
4th International Computer
Programming Education
Conference

ICPEC 2023, June 26–28, 2023, Vila do Conde, Portugal

Edited by

Ricardo Alexandre Peixoto de Queirós
Mário Paulo Teixeira Pinto

OASIcs – Vo l . 112 – ICPEC 2023 www.dagstuh l .de/oas i c s



Editors

Ricardo Alexandre Peixoto de Queirós
Politécnico do Porto, Portugal
ricardoqueiros@esmad.ipp.pt

Mário Paulo Teixeira Pinto
Politécnico do Porto, Portugal
mariopinto@esmad.ipp.pt

ACM Classification 2012
Applied computing → Interactive learning environments; Applied computing → E-learning; Applied
computing → Computer-managed instruction; Applied computing → Computer-assisted instruction;
Security and privacy

ISBN 978-3-95977-290-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-290-7.

Publication date
August, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ICPEC.2023.0

ISBN 978-3-95977-290-7 ISSN 1868-8969 https://www.dagstuhl.de/oasics

https://orcid.org/0000-0002-1985-6285
mailto:ricardoqueiros@esmad.ipp.pt
https://orcid.org/0000-0002-6734-5797
mailto:mariopinto@esmad.ipp.pt
https://www.dagstuhl.de/dagpub/978-3-95977-290-7
https://www.dagstuhl.de/dagpub/978-3-95977-290-7
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.ICPEC.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-290-7
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics


0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs is a series of high-quality conference proceedings across all fields in informatics. OASIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

ICPEC 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics




Contents

Preface
Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto . . . . . . . . . . 0:vii

List of Authors
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:ix

Committees
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xi

Invited Talk

Shifting Programming Education Assessment from Exercise Outputs Toward
Deeper Comprehension

André L. Santos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:1–1:5

Papers

I’m Sorry Dave, I’m Afraid I Can’t Fix Your Code: On ChatGPT, CyberSecurity,
and Secure Coding

Tiago Espinha Gasiba, Kaan Oguzhan, Ibrahim Kessba, Ulrike Lechner, and
Maria Pinto-Albuquerque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1–2:12

LCSMAR, an AR Based Tool to Inspect Imperative Programs
Luis Carlos Martins, Lázaro Vinicius Lima, and Pedro Rangel Henriques . . . . . . . . 3:1–3:9

Can a Content Management System Provide a Good User Experience to Teachers?
Yannik Bauer, José Paulo Leal, and Ricardo Queirós . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4:1–4:8

Sifu Reloaded: An Open-Source Gamified Web-Based CyberSecurity Awareness
Platform

José Carlos Paiva, Ricardo Queirós, and Tiago Gasiba . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:1–5:8

A Gamified Educational Escape Rooms’ Framework for Computer Programming
Classes

Ricardo Queirós, Carla Pinto, Mário Cruz, and Daniela Mascarenhas . . . . . . . . . . . . 6:1–6:8

A Systematic Review of Formative Assessment to Support Students Learning
Computer Programming

Jagadeeswaran Thangaraj, Monica Ward, and Fiona O’Riordan . . . . . . . . . . . . . . . . . . 7:1–7:13

A New Approach to Perform Individual Assessments at Higher Education Using
Gamification Systems

Filipe Portela . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8:1–8:12

NLP/AI Based Techniques for Programming Exercises Generation
Tiago Carvalho Freitas, Alvaro Costa Neto, Maria João Varanda Pereira,
and Pedro Rangel Henriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9:1–9:12

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


0:vi Contents

Data Visualization for Learning Analytics Indicators in Programming Teaching
Ranieri Alves dos Santos, Dalner Barbi, Vinicius Faria Culmant Ramos,
and Fernando Alvaro Ostuni Gauthier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10:1–10:7

Automated Assessment of Simple Web Applications
Luís Maia Costa, José Paulo Leal, and Ricardo Queirós . . . . . . . . . . . . . . . . . . . . . . . . . 11:1–11:8

Haskelite: A Step-By-Step Interpreter for Teaching Functional Programming
Pedro Vasconcelos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12:1–12:8

A Systematic Review of Teacher-Facing Dashboards for Collaborative Learning
Activities and Tools in Online Higher Education

Tiago Romão, Pedro Pestana, and Leonel Morgado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13:1–13:12

An Experience with and Reflections on Live Coding with Active Learning
Anders Schlichtkrull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14:1–14:13



Preface

As the world continues its rapid technological evolution, the role of computer programming
education has become increasingly pivotal in shaping the future of our societies. The
landscape of computer programming education is undergoing profound changes driven by
advancements in technology, shifts in pedagogical approaches, and the growing demand for
digital skills. As educators, researchers, and practitioners, we find ourselves confronted with
new challenges and opportunities that call for a deep exploration of generative tools and
their potential to revolutionize the teaching and learning of computer programming.

In this edition of ICPEC, we are excited to delve into a theme that not only reflects the
current state of the field but also guides its future trajectory: “Generative Tools and the
Future of Teaching-Learning in Computer Programming.”

Generative tools encompass a diverse array of technologies, from code generation frame-
works to interactive development environments and automated assessment systems. These
tools hold the promise of enhancing both the efficiency and effectiveness of programming
education. With their ability to produce code, offer instant feedback, and facilitate collabor-
ative learning, generative tools can empower students and educators alike to engage with
programming concepts more deeply and creatively.

However, we must also confront a series of complex questions and challenges:
How do generative tools impact students’ problem-solving skills and their understanding
of fundamental programming concepts?
What are the ethical considerations surrounding the use of automated assessment systems
and code generation tools in educational contexts?
How can educators best integrate generative tools into their curricula to promote a
balanced approach between automation and conceptual mastery?
What new paradigms of teaching and learning emerge as a result of incorporating
generative tools, and how do these paradigms reshape the traditional classroom dynamics?

In addition to generative tools, this edition of ICPEC also highlights new trends, paradigms,
and tools that are redefining the landscape of computer programming education. From
the rise of interdisciplinary approaches that bridge programming with other fields, to the
exploration of alternative programming paradigms and languages, we will explore the rich
tapestry of possibilities that lie ahead.

We extend our deepest gratitude to the dedicated individuals who have contributed to
making ICPEC 2023 a reality, from the organizing committee to the presenters and attendees.
Your passion and commitment are the driving forces behind the success of this conference.

Ricardo Alexandre Peixoto de Queirós
Mário Paulo Teixeira Pinto

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de




List of Authors

Dalner Barbi (10)
Graduate Program in Knowledge Engineering
and Management, UFSC, Florianópolis, Brazil

Yannik Bauer (4)
DCC – FCUP, Porto, Portugal;
CRACS – INESC TEC, Porto, Portugal

Alvaro Costa Neto (9)
Instituto Federal de Educação, Ciência e
Tecnologia de São Paulo, Barretos, Brazil

Luís Maia Costa (11)
Faculty of Engineering, University of Porto,
Portugal;
CRACS – INESC TEC, Porto, Portugal

Mário Cruz (6)
School of Education & inED, Polytechnic
Institute of Porto, Portugal

Ranieri Alves dos Santos (10)
Graduate Program in Knowledge Engineering
and Management, UFSC, Florianópolis, Brazil

Tiago Espinha Gasiba (2)
Siemens AG, München, Germany

Tiago Carvalho Freitas (9)
ALGORITMI Research Centre/LASI,
University of Minho, Braga, Portugal

Tiago Gasiba (5)
Siemens AG, München, Germany;
Universität der Bundeswehr München, Germany

Fernando Alvaro Ostuni Gauthier (10)
Graduate Program in Knowledge Engineering
and Management, UFSC, Florianópolis, Brazil

Pedro Rangel Henriques (3, 9)
ALGORITMI Research Centre / LASI,
DI-University of Minho, Braga, Portugal

Ibrahim Kessba (2)
Siemens AG, München, Germany

José Paulo Leal (4, 11)
CRACS – INESC TEC, Porto, Portugal;
DCC – FCUP, Porto, Portugal

Ulrike Lechner (2)
Universität der Bundeswehr München, Germany

Lázaro Vinicius Lima (3)
Department of Informatics, Instituto Federal de
Brasília, Brasil

Luis Carlos Martins (3)
ALGORITMI Research Centre / LASI,
DI-University of Minho, Braga, Portugal

Daniela Mascarenhas (6)
School of Education & inED, Polytechnic
Institute of Porto, Portugal

Leonel Morgado (13)
LE@D, CIAC, & CEG, Universidade Aberta,
Lisbon, Portugal;
INESC TEC, Porto, Portugal

Kaan Oguzhan (2)
Siemens AG, München, Germany

Fiona O’Riordan (7)
Teaching Enhancement Unit, Dublin City
University, Ireland

José Carlos Paiva (5)
CRACS – INESC TEC, Porto, Portugal;
DCC – FCUP, Porto, Portugal

Maria João Varanda Pereira (9)
Research Centre in Digitalization and Intelligent
Robotics, Polythechnic Insitute of Bragança,
Portugal

Pedro Pestana (13)
Universidade Aberta, Lisbon, Portugal;
CITAR, UCP, Porto, Portugal

Carla Pinto (6)
School of Engineering & CMUP, Polytechnic
Institute of Porto, Portugal

Maria Pinto-Albuquerque (2)
Instituto Universitário de Lisboa (ISCTE-IUL),
ISTAR, Portugal

Filipe Portela (8)
Algoritmi Centre, University of Minho,
Guimarães, Portugal

Ricardo Queirós (4, 5, 6, 11)
CRACS – INESC TEC, Porto, Portugal;
uniMAD – ESMAD, Polytechnic of Porto,
Portugal

Vinicius Faria Culmant Ramos (10)
Graduate Program in Knowledge Engineering
and Management, UFSC, Florianópolis, Brazil

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7464-3557
https://doi.org/10.4230/OASIcs.ICPEC.2023.10
https://orcid.org/0000-0001-8987-2419
https://doi.org/10.4230/OASIcs.ICPEC.2023.4
https://orcid.org/0000-0003-1861-3545
https://doi.org/10.4230/OASIcs.ICPEC.2023.9
https://orcid.org/0009-0005-4437-6354
https://doi.org/10.4230/OASIcs.ICPEC.2023.11
https://orcid.org/0000-0001-8894-8821
https://doi.org/10.4230/OASIcs.ICPEC.2023.6
https://orcid.org/0000-0002-7071-8291
https://doi.org/10.4230/OASIcs.ICPEC.2023.10
https://orcid.org/0000-0003-1462-6701
https://doi.org/10.4230/OASIcs.ICPEC.2023.2
https://doi.org/10.4230/OASIcs.ICPEC.2023.9
https://orcid.org/0000-0003-1462-6701
https://doi.org/10.4230/OASIcs.ICPEC.2023.5
https://orcid.org/0000-0002-1648-7613
https://doi.org/10.4230/OASIcs.ICPEC.2023.10
https://orcid.org/0000-0002-3208-0207
https://doi.org/10.4230/OASIcs.ICPEC.2023.3
https://doi.org/10.4230/OASIcs.ICPEC.2023.9
https://orcid.org/0000-0001-9297-7502
https://doi.org/10.4230/OASIcs.ICPEC.2023.2
https://orcid.org/0000-0002-8409-0300
https://doi.org/10.4230/OASIcs.ICPEC.2023.4
https://doi.org/10.4230/OASIcs.ICPEC.2023.11
https://orcid.org/0000-0002-4286-3184
https://doi.org/10.4230/OASIcs.ICPEC.2023.2
https://orcid.org/0000-0001-8964-1100
https://doi.org/10.4230/OASIcs.ICPEC.2023.3
https://doi.org/10.4230/OASIcs.ICPEC.2023.3
https://orcid.org/0000-0001-5854-536X
https://doi.org/10.4230/OASIcs.ICPEC.2023.6
https://orcid.org/0000-0001-5517-644X
https://doi.org/10.4230/OASIcs.ICPEC.2023.13
https://orcid.org/0000-0002-0975-9449
https://doi.org/10.4230/OASIcs.ICPEC.2023.2
https://orcid.org/0000-0002-0139-5169
https://doi.org/10.4230/OASIcs.ICPEC.2023.7
https://orcid.org/0000-0003-0394-0527
https://doi.org/10.4230/OASIcs.ICPEC.2023.5
https://orcid.org/0000-0001-6323-0071
https://doi.org/10.4230/OASIcs.ICPEC.2023.9
https://orcid.org/0000-0002-3406-1077
https://doi.org/10.4230/OASIcs.ICPEC.2023.13
https://orcid.org/0000-0002-0729-1133
https://doi.org/10.4230/OASIcs.ICPEC.2023.6
https://orcid.org/0000-0002-2725-7629
https://doi.org/10.4230/OASIcs.ICPEC.2023.2
https://orcid.org/0000-0003-2181-6837
https://doi.org/10.4230/OASIcs.ICPEC.2023.8
https://orcid.org/0000-0002-1985-6285
https://doi.org/10.4230/OASIcs.ICPEC.2023.4
https://doi.org/10.4230/OASIcs.ICPEC.2023.5
https://doi.org/10.4230/OASIcs.ICPEC.2023.6
https://doi.org/10.4230/OASIcs.ICPEC.2023.11
https://orcid.org/0000-0002-8319-743X
https://doi.org/10.4230/OASIcs.ICPEC.2023.10
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


0:x Authors

Tiago Romão (13)
University of Trás-os-Montes e Alto Douro, Vila
Real, Portugal;
Universidade Aberta, Lisbon, Portugal;
INESC TEC, Porto, Portugal

André L. Santos (1)
Instituto Universitário de Lisboa (ISCTE-IUL),
ISTAR-IUL, Portugal

Anders Schlichtkrull (14)
Department of Computer Science, Aalborg
University Copenhagen, Denmark

Jagadeeswaran Thangaraj (7)
School of Computing, Dublin City University,
Ireland

Pedro Vasconcelos (12)
Departamento de Ciência de Computadores,
Faculdade de Ciências da Universidade do Porto,
Portugal;
LIACC – Laboratório de Inteligência Artificial e
Ciência de Computadores, Porto, Portugal

Monica Ward (7)
School of Computing, Dublin City University,
Ireland

https://orcid.org/0000-0003-3392-0367
https://doi.org/10.4230/OASIcs.ICPEC.2023.13
https://orcid.org/0000-0002-8247-7413
https://doi.org/10.4230/OASIcs.ICPEC.2023.1
https://orcid.org/0000-0001-9212-6150
https://doi.org/10.4230/OASIcs.ICPEC.2023.14
https://orcid.org/0000-0002-2721-0898
https://doi.org/10.4230/OASIcs.ICPEC.2023.7
https://orcid.org/0000-0002-8387-9772
https://doi.org/10.4230/OASIcs.ICPEC.2023.12
https://orcid.org/0000-0001-7327-1395
https://doi.org/10.4230/OASIcs.ICPEC.2023.7


Committees

Organizing Committee

Ricardo Queirós
ESMAD, Polytechnic University of Porto
Vila do Conde, Portugal
ricardoqueiros@esmad.ipp.pt

Mário Pinto
ESMAD, Polytechnic University of Porto
Vila do Conde, Portugal
mariopinto@esmad.ipp.pt

Scientific Committee

Alberto Simões
Portugal

Alexandre Braganca
Portugal

Anabela Gomes
Portugal

André Santos
Portugal

Bárbara Cleto
Portugal

Bertil P. Marques
Portugal

Bruno Cunha
Portugal

Cristina Alcaraz
Spain

Daniela Pedrosa
Portugal

Fabrizio Messina
Italy

Filipe Pinto
Portugal

Filipe Portela
Portugal

Filomena Castro Lopes
Portugal

Govardhan Aliseri
India

Ivone Amorim
Portugal

Jakub Swacha
Poland

João Carlos Silva
Portugal

João Cordeiro
Portugal

J. Ángel Velázquez-Iturbide
Spain

José Carlos Paiva
Portugal

José Paulo Leal
Portugal

Karolina Baras
Portugal

Marco Temperini
Italy

María Ángeles Pérez Juárez
Spain

Maria José Marcelino
Portugal

Mário Pinto, ESMAD
Portugal

Martinha Piteira
Portugal

Micaela Esteves
Portugal

Muhammad Younas
United Kingdom

Nuno Rodrigues
Portugal

Patrícia Leite
Portugal

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


0:xii Committeess

Paula Tavares
Portugal

Pedro Rangel Henriques
Portugal

Ricardo Martinho
Portugal

Ricardo Queirós
Portugal

Robertas Damasevicius
Poland

Roberto Hirata Jr
Brazil

Sergio Ilarri
Spain

Simon Fong
China

Sónia Sobral
Portugal

Spyros Panagiotakis
Greece

Štefan Korečko
Slovak Republic

Teresa Terroso
Portugal

Vítor Sá
Portugal

Wei Zhou
France

Ya-Han Hu
China



Shifting Programming Education Assessment from
Exercise Outputs Toward Deeper Comprehension
André L. Santos #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Portugal

Abstract
Practice and assessment in introductory programming courses are typically centered on problems
that require students to write code to produce specific outputs. While these exercises are necessary
and useful for providing practice and mastering syntax, their solutions may not effectively measure
the learners’ real understanding of programming concepts. Misconceptions and knowledge gaps
may be hidden under an exercise solution with correct outputs. Furthermore, obtaining answers
has never been so easy in the present era of chatbots, so why should we care (much) about the
solutions? Learning a skill is a process that requires iteration and failing, where feedback is of
utmost importance. A programming exercise is a means to build up reasoning capabilities and
strategic knowledge, not an end in itself. It is the process that matters most, not the exercise
solution. Assessing if the learning process was effective requires much more than checking outputs.

I advocate that introductory programming learning could benefit from placing more emphasis on
assessing learner comprehension, over checking outputs. Does this mean that we should not check if
the results are correct? Certainly not, but a significant part of the learning process would focus on
assessing and providing feedback regarding the comprehension of the written code and underlying
concepts. Automated assessment systems would reflect this shift by comprising evaluation items for
such a purpose, with adequate feedback. Achieving this involves numerous challenges and innovative
technical approaches. In this talk, I present an overview of past and future work on tools that
integrate code comprehension aspects in the process of solving programming exercises.

2012 ACM Subject Classification Social and professional topics → Computer science education;
Applied computing → Computer-assisted instruction

Keywords and phrases Introductory programming, assessment, comprehension

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.1

Category Invited Talk

Acknowledgements I thank the ICPEC organizing committee for this Invited Talk.

1 Do programming learners fully understand their code?

Studies have shown that programming assignments that are successfully solved do not
necessarily have a matching learner confidence [13, 11], while a significant number of students
may struggle to explain their own code [15]. In other words, a learner’s ability to write a
correct solution to a problem does not imply mastery of the underlying concepts, algorithms,
and programming primitives. Despite reaching solutions that work, the learner may hold
misconceptions [7, 18] about the written code. Even if a learner did not cheat and actually
wrote the code, the latter could have been obtained through tinkering and trial-and-error
until reaching a working solution. In my experience as a programming instructor, I often get
surprised when a third-year student almost graduating cannot interpret rather elementary
aspects of program execution and errors. (I ask myself: How did the student reach this point
without understanding these matters? Systematically hammering out programs until they
work as expected?)

© André L. Santos;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 1; pp. 1:1–1:5

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andre.santos@iscte-iul.pt
https://orcid.org/0000-0002-8247-7413
https://doi.org/10.4230/OASIcs.ICPEC.2023.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


1:2 Shifting Programming Education from Exercise Outputs Toward Comprehension

These days we have just reached the era of chatbots capable of correctly solving most
introductory programming assignments [8]. These systems, such as the popular ChatGPT1,
not only solve problems but also have a generative nature that allows them to output different
solutions for those, with accompanying detailed explanations. Until now one could easily find
code snippets for typical programming problems by browsing the Web. However, the learner
had to make at least a minimal effort regarding the interpretation and integration of the
search. With the advent of the latest chatbots, that effort is reduced to the minimum possible
– copy and paste the problem statement. Furthermore, there are barely any constraints
regarding the written or programming language. This implies that one may easily pass an
online programming exam blindly, just using the outputs of chatbots. Some solutions will
fail or not be optimal, but the overall score is likely to be positive. Therefore, obtaining
solutions has never been so easy, and this is likely to remain as such.

If just reading solutions would be adequate to learn to program, chatbots would not even
be necessary, and students simply would be provided with a bundle of problem statements and
corresponding solutions.2 Most programming exercises are “classical”, for which thousands
of solutions exist out there. The ease of obtaining solutions implies that they lose their value.
However, the real benefit of solving a programming exercise is not reaching a solution, but
rather the process of developing it – the problem interpretation, the strategy to approach
it, how to express it, handling common errors and bugs that will occur, and in turn, their
interpretation and strategy to overcome those. If a learner obtains immediate working
solutions without going through this process and just focuses on checking whether they meet
the desired outcome, will certainly acquire weaker skills. In analogy with natural languages,
it is like training to write sentences by modifying existing ones, but not being able to express
oneself by writing on a blank sheet.

Even in a pre-chatbot era, overreliance on automatic assessment systems could lead to an
“autograder insanity” phenomenon [5], where students replace the task of testing their own
solutions with highly frequent resubmissions to the system until they obtain a high score.
Not imposing limits and/or penalties for overusing the submission system may incentivize a
trial-and-error and tinkering approach to problem-solving. I believe this is a poor educational
practice, because one may reach a solution with high quality, but not fully understand all
aspects that characterize it as such. While in a small programming exercise against an
autograder a trial-and-error tactic may suffice to reach a working solution, in real settings
that strategy may be highly inefficient due to aspects pertaining to state space size, system
complexity, and development settings.

Access to (reliable) information is generally perceived as beneficial. Still, I argue that the
absence of learning strategies that are adapted to this new reality may hinder programming
learning processes (and other subjects). Struggling students will likely use the means at
their disposal to overcome their difficulties, especially when they are considered legitimate. I
believe that if the activities for fulfilling programming course requirements remain focused
on obtaining solutions, the widespread use of chatbots might lead to a shallow acquisition of
programming skills.

1 https://chat.openai.com/
2 Worked examples [4] are an effective learning means, but their aim is not to replace deliberate practice.

https://chat.openai.com/


A. L. Santos 1:3

2 How can courseware help to improve program comprehension?

I believe that the instructional design of programming courses could place more emphasis
on assessing the learner’s comprehension of programming concepts, algorithms, and code
understanding while downplaying the accomplishment of reaching a solution that produces
the expected outputs. In this perspective, an exercise would not be completed until some
assessment of program comprehension is carried out. My hypothesis is that deemphasizing
solution outputs will, to some degree, shift the learners’ attention and learning time to
understanding.

A possible approach to assess code understanding is to pose questions about learners’
code [16]. Given that having a human tutor to carry out this role systematically for each
individual learner is likely not to be feasible in practice due to instructor availability and
cost, such an approach would better scale using automated assessment systems. A recent
survey [17] concluded that such systems generally do not comprise this sort of meta-cognition
feedback on the submitted code solutions. Jask [21] is a research prototype capable of
generating question-answer pairs about Java code against methods. Our early experiment
with introductory programming students revealed a high failure rate (> 60%) on questions
involving program dynamics (e.g., variable tracing, call stack) [21], while their solutions
were producing the expected outputs. Another study with questions on JavaScript [14] has
revealed similar failure rates and found that students that repeatedly fail these questions are
more likely to drop out. The results confirm that correct exercise solutions do not imply
an understanding of the inner workings of programs. This fragility may become evident as
problems and algorithms get more complex, but that was not yet evaluated.

Questions about learners’ code could be applied in a post-submission fashion in an
automated assessment system, where a learner would face questions about the submitted
code solution. Upon submitting a solution, the system could also ask questions about other
solutions for the same exercise from other students. This would lead the learner to carry out
code comprehension tasks related to the same matter, possibly strengthening the related
skills by having to interpret similar or different solutions.

Questions about learners’ code may be posed at different moments and target different
concerns. For example, an inquisitive code editor [10] may prompt questions to learners when
the written code reveals a hypothetical misconception, fostering users to reflect on their code.
Another possibility for asking questions is during debugging (when errors occur) [1], leading
users to reflect on the cause of the errors (instead of trying something else straight away).

Another form of assisting programming learners during exercise solving is by providing
feedback and appropriate hints. When a learner cannot progress in an exercise the first
temptation might be to look for the solution somewhere else, such as a chatbot. However,
in their current form, chatbots may straightly provide a complete solution. As discussed
earlier, this may cause the learner to go through the exercise with minimal reflection, despite
that chatbots are also capable of outputting detailed explanations of the provided solutions.
Jinter [9] is a system to provide fine-grained hints for progressing and receiving feedback in
programming exercises. Instead of providing straight answers, the hints attempt at leading
the learner to a viable path, while demanding some reflection. Other approaches have focused
on providing feedback for improving the code, for instance, with respect to code quality [2]
and refactoring [12].

Following a different research line – educational programming environments (e.g., Ville [19],
BlueJ [6], Thonny [3], PandionJ [20]) – I postulate that the programming environments
themselves could improve their role in program comprehension. Namely, by providing

ICPEC 2023



1:4 Shifting Programming Education from Exercise Outputs Toward Comprehension

additional insights that would be otherwise unnoticeable or of difficult access, such as
providing facilities for users to: see execution history, ask questions about program behavior,
trace output to program statements, detail error explanations and location, and present
information about execution performance (time and memory). Hypothetically, the absence
of available information to help understand what went wrong in a program incentivizes a
learner to search for other forms of overcoming the problem.

To conclude, chatbots have the potential of being a fabulous aid to programming learners
that are stuck in their progress. The great novelty of chatbots relates to their immediacy and
conversational nature, while they do not provide anything that is not explained elsewhere.
Programming education will have to adapt to this new reality, but I argue that educators
should not overvalue chatbots as if they were a silver bullet – in the end, one still has to
understand how programs work. Time will tell how chatbots affect the learning processes of
programming.

References
1 Fatima Abu Deeb and Timothy Hickey. Reflective debugging in Spinoza V3.0. In Australasian

Computing Education Conference, ACE ’21, pages 125–130, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3441636.3442313.

2 Francisco Alfredo, André L. Santos, and Nuno Garrido. Sprinter: A didactic linter for structured
programming. In Alberto Simões and João Carlos Silva, editors, Third International Computer
Programming Education Conference, ICPEC 2022, June 2-3, 2022, Polytechnic Institute of
Cávado and Ave (IPCA), Barcelos, Portugal, volume 102 of OASIcs, pages 2:1–2:8. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/OASIcs.ICPEC.2022.2.

3 Aivar Annamaa. Introducing Thonny, a Python IDE for learning programming. In Proceedings
of the 15th Koli Calling Conference on Computing Education Research, Koli Calling ’15,
pages 117–121, New York, NY, USA, 2015. Association for Computing Machinery. doi:
10.1145/2828959.2828969.

4 Robert K. Atkinson, Sharon J. Derry, Alexander Renkl, and Donald Wortham. Learning from
examples: Instructional principles from the worked examples research. Review of Educational
Research, 70(2):181–214, 2000. doi:10.3102/00346543070002181.

5 Elisa Baniassad, Lucas Zamprogno, Braxton Hall, and Reid Holmes. Stop the (autograder)
insanity: Regression penalties to deter autograder overreliance. In Proceedings of the 52nd ACM
Technical Symposium on Computer Science Education, SIGCSE ’21, pages 1062–1068, New
York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3408877.3432430.

6 Jens Bennedsen and Carsten Schulte. BlueJ visual debugger for learning the execution of
object-oriented programs? ACM Transactions on Computing Education, 10(2):8:1–8:22, June
2010. doi:10.1145/1789934.1789938.

7 Luca Chiodini, Igor Moreno Santos, Andrea Gallidabino, Anya Tafliovich, André L. Santos,
and Matthias Hauswirth. A curated inventory of programming language misconceptions. In
Proceedings of the 26th ACM Conference on Innovation and Technology in Computer Science
Education V. 1, ITiCSE ’21, pages 380–386, New York, NY, USA, 2021. Association for
Computing Machinery. doi:10.1145/3430665.3456343.

8 James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and James
Prather. The robots are coming: Exploring the implications of openai codex on introductory
programming. In Proceedings of the 24th Australasian Computing Education Conference,
ACE ’22, pages 10–19, New York, NY, USA, 2022. Association for Computing Machinery.
doi:10.1145/3511861.3511863.

9 Jorge Gonçalves and André L. Santos. Jinter: a hint generation system for Java exercises. In
28th annual ACM conference on Innovation and Technology in Computer Science Education
(ITiCSE) (to appear), 2023.

https://doi.org/10.1145/3441636.3442313
https://doi.org/10.4230/OASIcs.ICPEC.2022.2
https://doi.org/10.1145/2828959.2828969
https://doi.org/10.1145/2828959.2828969
https://doi.org/10.3102/00346543070002181
https://doi.org/10.1145/3408877.3432430
https://doi.org/10.1145/1789934.1789938
https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1145/3511861.3511863


A. L. Santos 1:5

10 Austin Z. Henley, Julian Ball, Benjamin Klein, Aiden Rutter, and Dylan Lee. An inquisitive
code editor for addressing novice programmers’ misconceptions of program behavior. In
43rd IEEE/ACM International Conference on Software Engineering: Software Engineering
Education and Training, ICSE (SEET) 2021, Madrid, Spain, May 25-28, 2021, pages 165–170.
IEEE, 2021. doi:10.1109/ICSE-SEET52601.2021.00026.

11 Cazembe Kennedy and Eileen T. Kraemer. Qualitative observations of student reasoning. In
The 24th Annual Conference on Innovation and Technology in Computer Science Education,
ITiCSE ’19, pages 224–230. ACM, 2019. doi:10.1145/3304221.3319751.

12 Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. A tutoring system to learn code
refactoring. In Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education, SIGCSE ’21, pages 562–568, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3408877.3432526.

13 Päivi Kinnunen and Beth Simon. My program is ok – am I? computing freshmen’s experiences
of doing programming assignments. Computer Science Education, 22(1):1–28, 2012. doi:
10.1080/08993408.2012.655091.

14 Teemu Lehtinen, Lassi Haaranen, and Juho Leinonen. Automated questionnaires about
students’ JavaScript programs: Towards gauging novice programming processes. In Proceedings
of the 25th Australasian Computing Education Conference, ACE 2023, Melbourne, VIC,
Australia, 30 January 2023 - 3 February 2023, pages 49–58. ACM, 2023. doi:10.1145/
3576123.3576129.

15 Teemu Lehtinen, Aleksi Lukkarinen, and Lassi Haaranen. Students struggle to explain their
own program code. In Carsten Schulte, Brett A. Becker, Monica Divitini, and Erik Barendsen,
editors, ITiCSE ’21: Proceedings of the 26th ACM Conference on Innovation and Technology
in Computer Science Education V.1, Virtual Event, Germany, June 26 - July 1, 2021, pages
206–212. ACM, 2021. doi:10.1145/3430665.3456322.

16 Teemu Lehtinen, André L. Santos, and Juha Sorva. Let’s ask students about their programs,
automatically. In 29th IEEE/ACM International Conference on Program Comprehension,
ICPC 2021, Madrid, Spain, May 20-21, 2021, pages 467–475. IEEE, 2021. doi:10.1109/
ICPC52881.2021.00054.

17 José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. Automated assessment in computer
science education: A state-of-the-art review. ACM Trans. Comput. Educ., 22(3), June 2022.
doi:10.1145/3513140.

18 Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in introductory
programming: A literature review. ACM Trans. Comput. Educ., 18(1), October 2017. doi:
10.1145/3077618.

19 Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. Ville: A language-
independent program visualization tool. In Proceedings of the Seventh Baltic Sea Conference
on Computing Education Research - Volume 88, Koli Calling ’07, pages 151–159, Darlinghurst,
Australia, Australia, 2007. Australian Computer Society, Inc. URL: http://dl.acm.org/
citation.cfm?id=2449323.2449340.

20 André L. Santos. Enhancing visualizations in pedagogical debuggers by leveraging on code
analysis. In Mike Joy and Petri Ihantola, editors, Proceedings of the 18th Koli Calling
International Conference on Computing Education Research, Koli, Finland, November 22-25,
2018, pages 11:1–11:9. ACM, 2018. doi:10.1145/3279720.3279732.

21 André L. Santos, Tiago Soares, Nuno Garrido, and Teemu Lehtinen. Jask: Generation of
questions about learners’ code in Java. In Brett A. Becker, Keith Quille, Mikko-Jussi Laakso,
Erik Barendsen, and Simon, editors, ITiCSE 2022: Innovation and Technology in Computer
Science Education, Dublin, Ireland, July 8 - 13, 2022, Volume 1, pages 117–123. ACM, 2022.
doi:10.1145/3502718.3524761.

ICPEC 2023

https://doi.org/10.1109/ICSE-SEET52601.2021.00026
https://doi.org/10.1145/3304221.3319751
https://doi.org/10.1145/3408877.3432526
https://doi.org/10.1080/08993408.2012.655091
https://doi.org/10.1080/08993408.2012.655091
https://doi.org/10.1145/3576123.3576129
https://doi.org/10.1145/3576123.3576129
https://doi.org/10.1145/3430665.3456322
https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
http://dl.acm.org/citation.cfm?id=2449323.2449340
http://dl.acm.org/citation.cfm?id=2449323.2449340
https://doi.org/10.1145/3279720.3279732
https://doi.org/10.1145/3502718.3524761




I’m Sorry Dave, I’m Afraid I Can’t Fix Your Code:
On ChatGPT, CyberSecurity, and Secure Coding
Tiago Espinha Gasiba #

Siemens AG, München, Germany

Kaan Oguzhan #

Siemens AG, München, Germany

Ibrahim Kessba #

Siemens AG, München, Germany

Ulrike Lechner #

Universität der Bundeswehr München, Germany

Maria Pinto-Albuquerque #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Portugal

Abstract

Software security is an important topic that is gaining more and more attention due to the rising
number of publicly known cybersecurity incidents. Previous research has shown that one way to
address software security is by means of a serious game, the CyberSecurity Challenges, which are
designed to raise awareness of software developers of secure coding guidelines. This game, which has
been proven to be very successful in the industry, makes use of an artificial intelligence technique
(laddering technique) to implement a chatbot for human-machine interaction.

Recent advances in machine learning led to a breakthrough, with the implementation of ChatGPT
by OpenAI. This algorithm has been trained in a large amount of data and is capable of analysing
and interpreting not only natural language, but also small code snippets containing source code
in different programming languages. With the advent of ChatGPT, and previous state-of-the-art
research in secure software development, a natural question arises: to which extent can ChatGPT
aid software developers in writing secure software?.

In this paper, we draw on our experience in the industry, and also on extensive previous work
to analyse and reflect on how to use ChatGPT to aid secure software development. Towards this,
we run a small experiment using five different vulnerable code snippets. Our interactions with
ChatGPT allow us to conclude on advantages, disadvantages and limitations of the usage of this
new technology.

2012 ACM Subject Classification Applied computing → Learning management systems; Security
and privacy → Software security engineering; Applied computing → Distance learning; Applied
computing → E-learning

Keywords and phrases Serious Games, IT-Security, Machine Learning, ChatGPT, Secure Coding,
Industry, Software Development, Teaching

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.2

Funding Ulrike Lechner : Acknowledged funding for project LIONS by dtec.bw.
Maria Pinto-Albuquerque: This work is partially financed by national funds through FCT - Fundação
para a Ciência e Tecnologia, I.P., under the projects FCT UIDB/04466/2020 and UIDP/04466/2020.
Furthermore, Maria Pinto-Albuquerque acknowledges and thanks the Instituto Universitário de
Lisboa and ISTAR, for their support.

© Tiago Espinha Gasiba, Kaan Oguzhan, Ibrahim Kessba, Ulrike Lechner, and Maria
Pinto-Albuquerque;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 2; pp. 2:1–2:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tiago.gasiba@siemens.com
https://orcid.org/0000-0003-1462-6701
mailto:kaan.oguzhan@siemens.com
https://orcid.org/0000-0002-0975-9449
mailto:ibrahim.kessba@siemens.com
https://orcid.org/0000-0001-9297-7502
mailto:ulrike.lechner@unibw.de
https://orcid.org/0000-0002-4286-3184
mailto:maria.albuquerque@iscte-iul.pt
https://orcid.org/0000-0002-2725-7629
https://doi.org/10.4230/OASIcs.ICPEC.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


2:2 I’m Sorry Dave, I’m Afraid I Can’t Fix Your Code

1 Introduction

According to ISO 25000 [16], one aspect of software development is security. Software
security has been gaining much attention over the last decade due to the increasing number
of cybersecurity incidents that are caused by poor software development practices. As a
consequence, industrial standards such as IEC 62.443 mandate the implementation of a
secure software development life cycle, to address and lower the number of vulnerabilities in
products and services. The development of secure software is not only an important topic
for the industry (e.g. in critical infrastructures), but it is also an important subject taught
in may engineering and informatics courses at several universities.

There are several known methods to improve the quality of software. Among others,
some of these methods include: performing secure code reviews, usage of static application
security testing (SAST), and employment of security testing techniques such as unit testing,
penetration testing, and fuzzing. These methods to improve software security are generally
based on the fact that software should comply to a set of secure coding guidelines; secure
coding guidelines are policies aimed at minimizing vulnerabilities and bugs in software. One
way to ensure that software follows secure coding guidelines is by means of the usage of static
application security testing tools. However, not all secure coding guidelines are decidable [3],
i.e. there exist some secure coding guidelines for which no theoretical Turing Machine (TM)
can be constructed such that, given some source code the TM identifies compliance or non
compliance to the guideline. As a result from this theoretical perspective, an immediate
problem is raised: full automation of secure coding is not possible. Software developers are
ultimately responsible for the security of the code they write. However, in a 2019 survey
with more than 4000 software developers from the industry, Patel [21] has shown that more
than 50% of them cannot recognize vulnerabilities in source code.

A way to address this problem is to raise awareness of secure coding among software
developers. Similar to Patel, in [11], Gasiba has shown that industrial software developers’
lack awareness of secure coding guidelines. He extended the work by Hänsch et al. to the
field of secure coding, defining secure coding awareness in three dimensions: perception,
protection, and behavior.

The recent advances in technology, in particular in Machine Learning (ML), allow new
techniques to be used to assist software developers to write secure code. In [8], Gasiba et al.
have shown that artificial intelligence can to be used to raise awareness of software developers.
The authors devised an intelligent coach by means of an artificial intelligent technique - the
laddering technique - which is mostly used in chatbots [22]. The intelligent coach, which
allowed Human-Machine interaction (HMi) in a controlled environment (the Sifu platform),
was shown to be very successful to raise awareness of secure coding guidelines of software
developers in the industry.

In this paper, we extend previous work by exploring the usage of ChatGPT [19] as a
means of HMi. ChatGPT, which was released in November 2022, is built on top of the GPT-3
family of large language models, and was developed by the American research laboratory
OpenAI. The language model has been fine-tuned with both supervised and reinforcement
learning techniques.

Given the authors’ experience, previous work, as also the theoretical limitations inherent
to the secure coding field, this work aims to broaden the understanding on the extent
ChatGPT can aid software developers to write secure code. This work seeks to understand
to which extent ChatGPT can recognize vulnerabilities in source code, and to which extent
ChatGPT can rewrite code to eliminate the present security vulnerabilities. The reason the



T. Espinha Gasiba, K. Oguzhan, I. Kessba, U. Lechner, and M. Pinto-Albuquerque 2:3

authors have chosen ChatGPT for experimentation, as opposed to other existing generative
models (in particular models trained for cybersecurity), is the fact that, to the best of our
knowledge, not only is ChatGPT available to the wide public, but also allows to maintain a
conversation while remembering previous requests and answers. Theregore, we achieve the
present study by means of interactions with ChatGPT based on five exercises taken from
the serious game CyberSecurity Challenges (CSC), and analysis of the answers in terms of
secure coding. In the present work, we also reflect on the usage of ChatGPT and similar
technologies as a means to teach software developers to write secure code, both in academia
and also in the industry.

This work provides a valuable insight to both industry practitioners, but also to researchers,
by giving an overview of the advantages, disadvantages but also limitations of using Human-
Machine interactions as a means to raise awareness of secure coding. This paper also opens
the doors and gives a first step towards a new and rich field of research: using Machine
Learning algorithms and generative AI to raise awareness of secure coding by means of HMi.

In Section 2 we present related work that was used as basis for our research. In Section 3
we describe the setup and experiment that we used to address our research question. Section
4 presents the result as the outcome of our experiments. A discussion and reflection on the
obtained results is provided in Section 5. Finally, Section 6 concludes the paper and gives an
outline of future work.

2 Related Work

Several previous work was used as a basis for the current publication. Industrial security
standards such as ISO/IEC 62.443 [15] motivate the work. In particular, the 4.1 part of the
standard describes the implementation of processes to address the life cycle of secure software
development. One important aspect that the standard mandates is the establishment of
several secure coding practices, e.g. the implementation of secure coding guidelines during
the development of software. Some influential secure coding guidelines are provided by the
Open Web Application Security Project (OWASP) in the form of Top-10 rules [18], and
the secure coding guidelines provided by the Software Engineering Institute of the Carnegie
Mellon University [5]. A further cybersecurity standard widely used in the industry is given
by the MITRE corporation in form of Common Weakness Enumeration [6].

One way to address IT security is given by the German BSI Grundschutzkatalog [4]
standard, which recognizes serious games as a means to raise awareness of IT security. A
serious game, as defined by Dörner et al. [7], is a game that is developed with a purpose that
is not only entertainment. Gasiba et al. have developed a game with the purpose to raise
awareness of software developers of secure coding guidelines. This game (the CyberSecurity
Challenges) is based on a platform which the authors called Sifu [8, 11], and has been shown
to motivate software developers to think about security. In their game, the player is presented
with a secure coding challenge containing software vulnerabilities. The player interacts with
an intelligent coach, which is a software component that implements an artificial intelligence
(AI) engine, in order to solve the challenge. The goal of the intelligent coach is to provide
hints to the players on the reasons why software is not compliant to secure coding rules.
The game is played through several interactions with the intelligent coach, until a solution
to the given challenge is considered acceptable by the AI algorithm. The criteria for an
acceptable solution includes: (1) initial vulnerability present in the challenge is removed, (2)
no additional vulnerabilities are introduced, and (3) the code respects the desired semantics,
i.e. behaves as expected. The AI mechanism implemented in the Sifu plaform makes use
of the chatbot laddering technique [22]. The hints that are provided to the player are thus
given in an increasing level of clarity and exactness.

ICPEC 2023



2:4 I’m Sorry Dave, I’m Afraid I Can’t Fix Your Code

Although there exist other ways to increase software security, e.g. by means of static
application security testing tools, our work focuses on the human factor. We motivate our
choice by the fact that secure coding is a topic that cannot be fully solved by means of
automation [13, 20, 2]. In [1], Acar et al. discuss how software developers search for advice for
their coding activities, and conclude that software developers need assistance to understand
this advice. Additionally, in 2019, Patel [21] conducted a large-scale study with over 4000
software developers. One of the results of his survey shows that more than half of software
developers cannot recognize vulnerabilities in source code. Similar results were obtained by
Gasiba et al. [9, 10].

Recent work has been published on the usage of machine learning algorithm to detect
security vulnerabilities in source code. Harrer et al. [14] studied two feature extraction
methods for C/C++ code and use this to build a control flow graph and to determine if the
code contains vulnerabilities or not, without classifying them. In [23], Tang et al. extend
previous work by not only looking for the presence of vulnerabilities, but also in classifying
them according to MITRE’s Common Weakness Enumeration (CWE) [6]. While previous
approaches dealt with the C and C++ programming languages, Louati et al. extended
this work for the C# programming language in [17]. To the best of our knowledge, all
previous work show good indicators that machine learning is adequate to detect and classify
vulnerabilities in software.

One machine learning algorithm that is currently raising lots of interest in the research
community is the ChatGPT. ChatGPT is a language model developed by OpenAI that uses
machine learning to generate human-like text. It is trained on a large dataset of text from
the internet and is capable of understanding and responding to natural language inputs. It
can be used for a wide range of tasks such as language translation, question answering, and
text completion.

Not only is the algorithm based on machine learning, but its implementation allows a
natural dialog between man and machine. ChatGPT processes queries from users, which are
written in English, and compute an answer in an conversational way. ChatGPT not only
processes the answer based on the current query, but also based on previous queries. Although
it is mostly trained for natural languages, it can also interpret programming languages, such
as C and C++. In the present work, we use this feature to conduct an interactive dialog
with the algorithm based on five challenges from the CSC game.

3 Experiment

To setup our experiment, we selected five different challenges from the CyberSecurity
Challenges, based on C/C++, and contained in the Sifu platform. Table 1 shows a summary
of the selected challenges, and the corresponding CWE identifier. These challenges were
chosen based both on the prevalence of the programming errors, but also based on practical
experience in teaching cybersecurity from the authors’. The authors’ used the 2023 January
13 version of ChatGPT, which is based on the GPT-3 training data.

The first challenge contains code of a C function that has a standard buffer overflow
vulnerability. The buffer overflow in this challenge is evident through the usage of the
strcpy function. The function in the second challenge, which is developed in C++, contains
vulnerability based on undefined behavior. Depending on the compiler, the implemented
function can produce different results. The third challenge makes use of a vulnerable C
function, the gets function. Due to the problems that this function can cause, it has been
deprecated and removed in the C11 standard. The fourth challenge corresponds to code that



T. Espinha Gasiba, K. Oguzhan, I. Kessba, U. Lechner, and M. Pinto-Albuquerque 2:5

Table 1 Selected Challenges from Sifu Platform, According to CWE ID.

ID Vulnerability Description
1 CWE-121 Stack-Based Buffer Overflow
2 CWE-758 Reliance on Undefined, Unspecified, or Implementation-Defined Behavior
3 CWE-242 Use of Inherently Dangerous Function
4 CWE-190 Integer Overflow or Wraparound
5 CWE-208 Observable Timing Discrepancy

contains an integer overflow vulnerability. The integer overflow can be triggered by calling
the function with large integer values. Finally, the fifth and last chosen challenge contains a
side-channel leakage vulnerability. The information leakage occurs due to the fact that the
function performs string string comparison and the running time epends on its inputs. The
last chosen challenge is more typical in embedded systems.

Listing 1 Vulnerable Code Snippet Containing CWE-208.
int is_equal ( const char* a, const char* b, size_t len) {

for ( size_t i = 0; i < len ; i++) {
if (a[i] != b[i])

return 1;
}
return 0;

}

Listing 1 shows the source code corresponding to the fifth challenge. The problem with
the code is that, the for loop will break depending on the contents of the input a and input b.
Whenever the first difference is found, the for loop breaks and the function results 1. If both
vectors contain the same values, the for loop will take the longest time to run, dependent on
the length of the vectors. In the Sifu platform, the user is also given the information that
the input a and b are of the same length, and that this length is equal to len.

For this example, the desired answer from the player corresponds to the code shown in
listing 2. In this listing, the function does not return immediately when the first unequal
values are observed. The run time of the function will be constant, and only dependent on
the length of the vectors. Since the returned value of the comparison does not depend on the
contents of the input vectors a and b but only on their length, no information is leaked by
running the algorithms, i.e. an attacker able to manipulate one of the inputs cannot gain
information about the other input by means of the time the algorithm takes to run.

Listing 2 Desired Challenge Solution.
int is_equal ( const char* a, const char* b, size_t len) {

if (a == NULL || b == NULL) return -1;

int result = 0;
for ( size_t i = 0; i < len; i++) {

result |= a[i] ^ b[i];
}
return result ;

}

ICPEC 2023



2:6 I’m Sorry Dave, I’m Afraid I Can’t Fix Your Code

Figure 1 shows how the interaction was carried out with ChatGPT. For each challenge, a
different code snippet S containing vulnerable code is provided. To test the algorithm, the
author conducted several human interactions with the ML algorithm, for each code snippet
S, corresponding to the five chosen challenges.

Code Snippet Human 
Interaction ChatGPT

S Qn An

Figure 1 Interaction with ChatGPT.

The interactions with ChatGPT consisted of a separate session of questions Qn posed to
the algorithm and its corresponding answers An.

Table 2 Human Interactions with ChatGPT.

Nr Question Expected Answer
1 What is the vulnerability present in the following code snippet S Correct vulnerability identification
2 What is the corresponding CWE number? CWE number according to table 1
3 Please fix the code Correct fix of the code

4..15 There is still a vulnerability in the code, please fix it Improved code
>15 The code contains vulnerability XXX, please fix it Improved code

The strategy to ask questions was the following. In the first question, we ask ChatGPT
to identify the vulnerability by name. Since ChatGPT is verbose, we expected it to output
a description of the problem. In the second question, we wanted to get the CWE number
corresponding to the vulnerability to test if it matches our design. The design of both of
these questions has the goal to identify how ChatGPT can support a software developer in
finding and understanding secure code problems.

In the next phase (i.e. starting with question 3), we asked ChatGPT to fix the code, based
on its previous answers. Our expectation is that the fixed code will correctly address the
challenge vulnerability. We also carried out additional questions (4..14), where we claimed
to ChatGPT that there were additional vulnerabilities and that ChatGPT should fix them.
The goal of this last question was to determine how far could the algorithm could detect
further problems and iteratively improve the code. Finally, on the sixteenth question, we
claimed to ChatGPT that the code contained the intended vulnerability, and that ChatGPT
should fix it.

The experiments were carried out through the online interface of ChatGPT on the 15th
January 2023. It consisted of a total of 43 interactions with the ChatGPT user interface,
corresponding to 5 for CWE-121, 5 for CWE-758, 5 for CWE 242, 11 for CWE-190, and 17
for CWE-208. The version of ChatGPT reported in the user interface was “ChatGPT 9 Jan
Version”.

4 Resuls

Table 3 shows a summary of the challenges and their corresponding identified vulnerability
by ChatGPT. Since the CWE identified by ChatGPT was not matching exactly the CWE
from the challenge, we decided to compare the solution based on the proximity of the answer



T. Espinha Gasiba, K. Oguzhan, I. Kessba, U. Lechner, and M. Pinto-Albuquerque 2:7

from ChatGPT. We concluded that, for the first three challenges, the vulnerabilities that
were identified were corresponding to a specialization of the problem. While the challenge
CWE considered the general case, ChatGPT was more precise in its findings. Therefore, we
concluded that the answer from ChatGPT was acceptable in those circumstances.

Table 3 Vulnerabilities Identified by ChatGPT.

ID
Designed
Challenge

Vulnerability

ChatGPT
Identified

Vulnerability

Assessment
is

Acceptable?
Description

1 CWE-121 CWE-120 YES Correctly identified that buffer overflow occurs due to copying string
2 CWE-758 CWE-835 YES Correctly identified an infinite loop due to undefined behavior
3 CWE-242 CWE-121 YES Technically correct assessment, but failed to identify that gets is deprecated
4 CWE-190 CWE-835 NO Assessment of problem misses the major issue, in favor of smaller detail
5 CWE-208 CWE-121 NO While technically correct, the assessment is wrong due to missing context

For the fourth and fifth challenge (CWE-190 and CWE-121), ChatGPT did not correctly
identify the problem with the code. For the CWE-190 challenge, ChatGPT found another
problem, which although correct, was not the major problem with the code. Since the major
problem with the code was not identified, we decided not to accept ChatGPT’s solution. For
the CWE-208 challenge, ChatGPT completely missed the problem. Even though we asked
several times (4..15) to find and fix vulnerabilities in the code, ChatGPT could not identify
it. In the 16th iteration, we told ChatGPT that the code had the CWE-208 vulnerability
and that ChatGPT should solve fix the code.

Due to the interesting nature of this special case, we present the solution from ChatGPT
at question 16. Listing 3 shows the solution presented by ChatGPT. In this case, ChatGPT
used the CRYPTO_memcmp from OpenSSL to solve the problem

Listing 3 ChatGPT Solution to CWE-208 Challenge (using OpenSSL).
# include <openssl / crypto .h>

int is_equal ( const char* a, const char* b, size_t len) {
if(a == NULL || b == NULL) return -1;
size_t a_len = strnlen (a, len );
size_t b_len = strnlen (b, len );
if (len == 0 || len > a_len || len > b_len) {

len = a_len < b_len ? a_len : b_len;
}
if (a[a_len] != ’\0’ || b[b_len] != ’\0’) {

return -1;
}
return CRYPTO_memcmp (a, b, len );

}

Since we were not expecting that ChatGPT would use an external library, on iteration 17
we asked ChatGPT to provide us with a solution without using OpenSSL. The answer from
ChatGPT is presented in Listing 4.

Listing 4 ChatGPT Solution to CWE-208 Challenge (without using OpenSSL).
int is_equal ( const char* a, const char* b, size_t len) {

if(a == NULL || b == NULL) return -1;
size_t a_len = strnlen (a, len );
size_t b_len = strnlen (b, len );
if (len == 0 || len > a_len || len > b_len) {

len = a_len < b_len ? a_len : b_len;
}

ICPEC 2023



2:8 I’m Sorry Dave, I’m Afraid I Can’t Fix Your Code

if (a[a_len] != ’\0’ || b[b_len] != ’\0’) {
return -1;

}
int result = 0;
for( size_t i = 0; i < len; i++) {

result |= a[i] ^ b[i];
}
return result ;

}

In this listing, we can see that the desired solution (see listing 2) is present in the code.
However, additional tests are performed in relation to the length of the input arrays, which
are unnecessary, given the context in which the function is used. Furthermore, ChatGPT
has assumed that both inputs represent a string and therefore tests for the case that the
inputs are null-terminated. We note that these modifications to the source code introduced
by ChatGPT change the semantic of the function.

5 Discussion

According to our experience in teaching secure coding in the industry, and as a result of
the interactions taken with ChatGPT, we can conclude that this ML algorithm has a very
high potential to be used to assist software developers in writing secure code. In more
than 60% of the code that we provided to ChatGPT, it was able to correctly identify the
problem with the source code, and to provide a good fix., This was very surprising since, as
briefly discussed in the introduction, the problem of secure coding leads to non-decidable
problems. We hypothesize that the reason for this success has to do with the fact that the
code snippets that were supplied to ChatGPT were relatively small (i.e. less than 40 lines of
code). Further investigations would be needed on the efficiency of ChatGPT in identifying
software vulnerabilities in large code basis.

Another surprise was the fact that the explanations about the problems contained in the
challenges was matching very well with the actual problem. ChatGPT’s explanation was not
only 3/5 of the time correct, but it was also precise in the identification and explanation of
the problem. We see this as a clear advantage for ChatGPT as a teaching tool. Nevertheless,
due to the fact that only a small number of snippets were tried, and that the code snippets
were small in size, more investigation needs to be carried out to fully understand the usage
of ChatGPT for teaching purposes.

Another point that surprised us was the fact that, not only could ChatGPT interpret the
code, but could also suggest fixes to it. In particular, some of the code fixes suggested by
ChatGPT could be considered to be creative. This is a clear indicator of how advanced the
implementation of the algorithm is.

However, several limiting factors have also been found while interacting with ChatGPT.
We were surprised of how good the model is, but we also found limitations to its use,

as it is lacking on some aspects. In the following we summarize the major aspects that we
found that can limit the usage of this technology:
Missing Context. ChatGPT lacks the context in which the code is being used. This can

lead to superfluous corrections and bug fixes which are not necessary due to the boundary
conditions

Change Semantics. One major problem that was identified in the fourth challenge was that
the solution given by ChatGPT changed the semantic of the code in a very subtle way;
this means that code before fixing and after fixing can behave slightly different. This



T. Espinha Gasiba, K. Oguzhan, I. Kessba, U. Lechner, and M. Pinto-Albuquerque 2:9

can be a strong deterrent factor to use this technology in practice (e.g. for safety-critical
systems). Changes in the code should be semantic-preserving and ChatGPT currently
does not guarantee this

Code Complexity. Code produced by ChatGPT has the potential to have more computa-
tional complexity than the original (vulnerable) code. This can potentially introduce
computational inefficiencies, which is a critical aspect for real-time systems

Code Maintainability. Code produced by ChatGPT lacks maintainability characteristics,
e.g. due to increased complexity or missing comments

Limited Learning. ChatGPT has been tuned with data up to 2021. This means that
potential new threats and vulnerabilities that have been found since then might not be
well processed by the system. Further investigations would need to be carried out to test
the algorithm in this circumstances

Learning Interference. ChatGPT can learn from user interactions. For the algorithm to
be used in a professional environment (especially in safety-critical systems and critical
infrastructures), some protections need to be added such that the algorithm behind
ChatGPT cannot learn incorrect data and therefore does not give bad answers.

Combining our experience, previous research , and our experiment with ChatGPT, we
conclude with a reinforcement of the conclusions done in [8], and in [11]. In particular,
we reinforce the conclusion that using an AI/ML engine can be an excellent approach for
teaching and raising awareness of secure coding in software. Further research could integrate
ChatGPT into the Sifu platform to further validate the approach with real-world scenarios
and software developers in the field.

This work shows the potential that ChatGPT has to be used not only as a teaching tool,
but also as a tool to assist professional software developers in the industry. We think that
the tool can can assist software developers to think outside the box and find creative new
solutions to complex problems. One example of the usage of generative AI technology to
assist software developers write code is GitHub’s Copilot [12]. However, as per conclusions
on the present work, while Copilot can help software developers write code faster, further
investigation is needed to understand the extent to which this software development model
can introduce or eliminate the introduction of vulnerabilities in software.

Additionally, careful reflection and care must be carried out when using AI models in
an industrial environment, since the model can potentially learn also from input which is
provided to it. This could potentially lead to serious leakages of information to the wide
public, e.g. on software weaknesses in the products and services offered by the company.
Therefore, according to our experience, we consider in-house usage of AI for assisting software
development to be the appropriate means to use the technology in an industrial context.

Finally, we would like to reflect on the possible usage of ChatGPT as a means to
understand the output of SAST tools. Our experience has shown that software developers
do not always understand the output that is provided by SAST tools and, therefore, cannot
recognize the corresponding vulnerability in software. We think that ChatGPT could be
used to analyse the result of these tools and to aid software developers to understand this
output and therefore to write better code. However, further research is needed to validate
this point.

In conclusion, we would like to highlight a further possible problem which is related to
software plagiarism. ChatGPT learns from many different sources (containing many different
types of software licenses) and summarizes the output of these while processing the answers
to the questions. One potential problem and danger of using ChatGPT is the fact that, since
it can produce code that is equal to some random source, or may be considered derivative
work, this could lead to potential legal problems.

ICPEC 2023



2:10 I’m Sorry Dave, I’m Afraid I Can’t Fix Your Code

Our experience and previous research has shown that AI-based technologies can be used
to effectively raise awareness of software developers, both in an industrial setting and also in
the academia. Nevertheless, while we observe good indicators for ChatGPT as tool to teach
cybersecurity, we are not entirely convinced that this is the case, especially for the industry,
as not only the answers provided by the model can be partially wrong, it is not clear the
status of the copyright infringement of the provided solutions.

To wrap-up our final conclusions, we add a text generated by ChatGPT itself:
ChatGPT is not able to fix code or help developers write secure code. While it is able to

understand and respond to natural language inputs related to coding and cybersecurity, it does
not have the capability to understand or execute code. It can provide general information and
suggestions based on the information it has been trained on, but it cannot guarantee that the
suggestions will be accurate or complete. Additionally, ChatGPT is not able to identify or fix
specific vulnerabilities in code.

While ChatGPT can be a useful tool for developers, it should not be relied upon as a sole
solution for ensuring the security of code. Developers should use a combination of techniques,
such as threat modeling, penetration testing, and code review, to identify and fix vulnerabilities
in their code. Additionally, it is important for developers to stay informed about the latest
threats and vulnerabilities, and to follow secure coding practices.

5.1 Threats to Validity
The present work is based on the ChatGPT version from January 13 2023, with the training
model GPT-3. As the model is being rapidly improved, part of our results might not be
reflected in later versions of the improved model. This can potentially limit or invalidate
part of the conclusions in the present work. While the authors’ believe that the generative
AI technology will experience a significant improvement, leading to potential better results
as those hereby presented, we also claim that there are fundamental theoretical limitations
that will certainly impose limits to its usefulness and practical applicability.

6 Conclusion

Software security is not only an important topic of software development, it has been gaining
much attention over the last years. The reason for this, is the fact that there is an increasing
number of cybersecurity incidents taking place that have negative consequences for society in
general. A possible root-cause of cybersecurity incidents is related with poor coding practices.
Therefore, to reduce the number of incidents, software developers should know and employ
best practices while developing software. These practices are generally taught either in the
university, or during an internal training in the industry.

In this paper, we look at the potential of using Machine Learning algorithms to both assist
software developers to write secure code, but also as a tool to raise awareness of secure coding.
Previous work has shown that artificial intelligence techniques can be successfully used to
train software developers in secure coding guidelines. This paper presents a preliminary
exploration of the usage of ChatGPT to raise secure coding awareness. Our work follows not
only from the experience of the authors, but also on their extensive work in the field. In this
paper, we reflect on the advantages and disadvantages of the usability of ChatGPT or similar
algorithms and show that, while ChatGPT has a clear potential to be used as an aid to
software development, there are some limitations to its usage. In further work, the authors
would like to integrate ChatGPT with CyberSecurity Challenges – a serious game to raise
awareness of secure coding guidelines of software developers in the industry. Our preliminary
research presented in the present work lead us to expect good results of this integration.



T. Espinha Gasiba, K. Oguzhan, I. Kessba, U. Lechner, and M. Pinto-Albuquerque 2:11

References

1 Yasemin Acar, Christian Stransky, Dominik Wermke, Charles Weir, Michelle Mazurek, and
Sascha Fahl. Developers Need Support, Too: A Survey of Security Advice for Software
Developers. 2017 IEEE Cybersecurity Development (SecDev), pages 22–26, September 2017.
IEEE Computer Science, Engineering. doi:10.1109/SecDev.2017.17.

2 Bushra Aloraini, Meiyappan Nagappan, Daniel German, Shinpei Hayashi, and Yoshiki Higo.
An Empirical Study of Security Warnings From Static Application Security Testing Tools.
Journal of Systems and Software, 110427(158):1–25, December 2019. Elsevier, Amsterdam,
Nederland. doi:10.1016/j.jss.2019.110427.

3 Roberto Bagnara, Abramo Bagnara, and Patricia M Hill. Coding guidelines and undecidability.
arXiv preprint, 2022. arXiv:2212.13933.

4 Bundesamt für Sicherheit in der Informationstechnik. BSI IT-Grundschutz-Katalog. Technical
report, Bundesamt für Sicherheit in der Informationstechnik, Reguvis Fachmedien GmbH,
Köln, Germany, April 2016. 15. ed, BSI. URL: https://download.gsb.bund.de/BSI/ITGSK/
IT-Grundschutz-Kataloge_2016_EL15_DE.pdf.

5 Carnegie Mellon University. Secure Coding Standards. Software Engineering Institute, Online,
Accessed 19 March 2019. URL: https://wiki.sei.cmu.edu/confluence/display/seccode.

6 MITRE Corporation. Common Weakness Enumeration. Online, Accessed 4 July 2019. URL:
https://cwe.mitre.org/.

7 Ralf Dörner, Stefan Göbel, Wolfgang Effelsberg, and Josef Wiemeyer. Serious Games:
Foundations, Concepts and Practice. Springer International Publishing, 1 edition, September
2016.

8 Tiago Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque. Sifu - A CyberSecurity Awareness
Platform with Challenge Assessment and Intelligent Coach. Special Issue of Cyber-Physical
System Security of the Cybersecurity Journal, pages 1–23, October 2020. SpringerOpen, Online.
doi:10.1186/s42400-020-00064-4.

9 Tiago Gasiba, Ulrike Lechner, Maria Pinto-Albuquerque, and Daniel Mendez Fernandez.
Awareness of Secure Coding Guidelines in the Industry - A First Data Analysis. In Guojun
Wang, Ryan Ko, Md Zakirul Alam Bhuiyan, and Yi Pan, editors, TrustCom 2020: International
Conference on Trust, Security and Privacy in Computing and Communications, pages 345–352,
December 2020. IEEE, Guangzhou, China. doi:10.1109/TrustCom50675.2020.00055.

10 Tiago Gasiba, Ulrike Lechner, Maria Pinto-Albuquerque, and Daniel Mendez. Is Secure
Coding Education in the Industry Needed? An Investigation Through a Large Scale Survey. In
Hakan Erdogmus and Ana María Moreno, editors, 43rd International Conference on Software
Engineering, pages 1–12, May 2021. . URL: https://arxiv.org/abs/2102.05343.

11 Tiago Espinha Gasiba. Raising Awareness on Secure Coding in the Industry through
CyberSecurity Challenges. PhD thesis, Universität der Bundeswehr München, 2021.
URN: urn:nbn:de:bvb:706-7860. URL: https://athene-forschung.unibw.de/85049?query=
gasiba&show_id=140142.

12 GitHub. Copilot. Online, Accessed 15 June 2023. URL: https://github.com/features/
copilot.

13 Katerina Goseva-Popstojanova and Andrei Perhinschi. On the Capability of Static Code
Analysis to Detect Security Vulnerabilities. Information and Software Technology, 68:18–33,
December 2015. Butterworth-Heinemann, Newton, MA, USA. doi:10.1016/j.infsof.2015.
08.002.

14 Jacob A. Harer, Louis Y. Kim, Rebecca L. Russell, Onur Ozdemir, Leonard R. Kosta, Akshay
Rangamani, Lei H. Hamilton, Gabriel I. Centeno, Jonathan R. Key, Paul M. Ellingwood,
Marc W. McConley, Jeffrey M. Opper, Sang Peter Chin, and Tomo Lazovich. Automated
Software Vulnerability Detection with Machine Learning. CoRR, abs/1803.04497, 2018.
arXiv:1803.04497.

ICPEC 2023

https://doi.org/10.1109/SecDev.2017.17
https://doi.org/10.1016/j.jss.2019.110427
https://arxiv.org/abs/2212.13933
https://download.gsb.bund.de/BSI/ITGSK/IT-Grundschutz-Kataloge_2016_EL15_DE.pdf
https://download.gsb.bund.de/BSI/ITGSK/IT-Grundschutz-Kataloge_2016_EL15_DE.pdf
https://wiki.sei.cmu.edu/confluence/display/seccode
https://cwe.mitre.org/
https://doi.org/10.1186/s42400-020-00064-4
https://doi.org/10.1109/TrustCom50675.2020.00055
https://arxiv.org/abs/2102.05343
https://athene-forschung.unibw.de/85049?query=gasiba&show_id=140142
https://athene-forschung.unibw.de/85049?query=gasiba&show_id=140142
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.1016/j.infsof.2015.08.002
https://doi.org/10.1016/j.infsof.2015.08.002
https://arxiv.org/abs/1803.04497


2:12 I’m Sorry Dave, I’m Afraid I Can’t Fix Your Code

15 International Electrotechnical Commission. IEC 62443-4-1 – Security for industrial automation
and control systems - Part 4-1: Secure product development lifecycle requirements. Technical
report, International Electrotechnical Commission, Geneval Switzerland, January 2018. .

16 International Organization for Standardization. ISO/IEC 25000:2014 – Systems and Software
Engineering — Systems and Software Quality Requirements and Evaluation (SQuaRE) —
Guide to SQuaRE. Technical report, International Organization for Standardization, Geneva,
CH, March 2014. Software and Systems Engineering. URL: http://iso25000.com/index.
php/en/iso-25000-standards.

17 Akram Louati and Tiago Gasiba. Source Code Vulnerability Detection using Deep Learning
Algorithms for Industrial Applications. In The Second International Conference on Ubiquitous
Security (UbiSec 2022), pages 1–19, December 2022. .

18 Open Web Application Security Project. OWASP Top 10. Online, Accessed 15 July 2017.
URL: https://tinyurl.com/yyb8wcv9.

19 OpenAI LP. ChatGPT. Online, Accessed 23 January 2023. URL: https://chat.openai.com/.
20 Tosin Daniel Oyetoyan, Bisera Milosheska, Mari Grini, and Daniela Soares Cruzes. Myths

and Facts About Static Application Security Testing Tools: An Action Research at Telenor
Digital. International Conference on Agile Software Development, pages 86–103, May 2018.
Springer, Cham. doi:10.1007/978-3-319-91602-6_6.

21 Suri Patel. 2019 Global Developer Report: DevSecOps finds security roadblocks divide
teams. Online, Accessed 18 July 2020. URL: https://about.gitlab.com/blog/2019/07/15/
global-developer-report/.

22 Tim Rietz and Alexander Maedche. LadderBot: A Requirements Self-Elicitation System.
2019 IEEE 27th International Requirements Engineering Conference (RE), pages 357–362,
September 2019. IEEE, Jeju, South Korea. doi:10.1109/RE.2019.00045.

23 Gaigai Tang, Lianxiao Meng, Shuangyin Ren, Weipeng Cao, Qiang Wang, and Lin Yang.
A Comparative Study of Neural Network Techniques for Automatic Software Vulnerability
Detection. CoRR, abs/2104.14978, 2021. arXiv:2104.14978.

http://iso25000.com/index.php/en/iso-25000-standards
http://iso25000.com/index.php/en/iso-25000-standards
https://tinyurl.com/yyb8wcv9
https://chat.openai.com/
https://doi.org/10.1007/978-3-319-91602-6_6
https://about.gitlab.com/blog/2019/07/15/global-developer-report/
https://about.gitlab.com/blog/2019/07/15/global-developer-report/
https://doi.org/10.1109/RE.2019.00045
https://arxiv.org/abs/2104.14978


LCSMAR, an AR Based Tool to Inspect Imperative
Programs
Luis Carlos Martins # Ñ

ALGORITMI Research Centre / LASI, DI-University of Minho, Braga, Portugal

Lázaro Vinicius Lima #

Department of Informatics, Instituto Federal de Brasília, Brasil

Pedro Rangel Henriques # Ñ

ALGORITMI Research Centre / LASI, DI-University of Minho, Braga, Portugal

Abstract
LCSMAR is a Learning Resource that takes advantage of Augmented Reality in order to promote
the development of Computational Thinking among students who are starting to dive in to the
world of computer programming. Students can write code in a imperative programming language
and, with the help of their mobile phone, they can visualize and analyze the execution of the code
they developed, seeing how variable and data structures change over time with each instruction.
Augmented Reality tools allow the visualization of abstract concepts that are often misunderstood
and that cause misconception among students, which in term should help students develop the
abilities to understand and use these abstract concepts, such as data structures, in other areas of
application.

2012 ACM Subject Classification Computing methodologies → Mixed / augmented reality

Keywords and phrases Augmented Reality, Learning Resources, Computer Programming, Computa-
tional Thinking

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.3

Funding This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020.

1 Introduction

Augmented Reality (AR) is a technology that has often been associated with the world of
entertainment and gaming[8]. However, in recent years, its has gained more attention for its
educational purposes and has started to being used as a Learning Resource (LR)[2]. The use
of an AR in an educational environment gives students new tools and possibilities that a
normal, tradition classroom cannot give, thus making their new learning experiences less
stale and mundane, creating opportunities for new AR tools to be created.

Computational Thinking (CT) is the thought process that going into formulating problems
and the solution for them and its an essential skill to have in the 21st Century[9]. CT enclose
a range of concepts that define what it is, such as algorithmic thinking, decomposition,
patter recognition and abstraction. One of the core concepts of CT is abstraction, that
involves focusing on the essential features of a problem or system while ignoring irrelevant
details, but it can be a challenging concepts to grasp, specially for students learning any new
concepts that doesn’t have a concrete representation and that may cause confusions and
misconceptions between students.

Since AR displays computer generated information onto the real world, it is possible to
the same with abstract concepts, displaying them in a virtual environment that students
could visualize and interact with them in a way that isn’t possible in tradition ways, thus
being an important technology to be used when teaching in the modern world.

© Luis Carlos Martins, Lázaro Vinicius Lima, and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 3; pp. 3:1–3:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luiscarlosm2000@gmail.com
http://www.myhomepage.edu
mailto:lazaro.lima@ifb.edu.br
https://orcid.org/0000-0001-8964-1100
mailto:prh@di.uminho.pt
https://www.di.uminho.pt/~prh/
https://orcid.org/0000-0002-3208-0207
https://doi.org/10.4230/OASIcs.ICPEC.2023.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


3:2 LCSMAR, an AR Based Tool to Inspect Imperative Programs

Language-Specific Code Simulation with a Mobile using AR (LCSMAR) is a mobile
application with AR where students can develop their own pieces of code in a imperative
language that then can be visualized in AR environment step-by-step, thus visualizing the
execution of the code, the changes to the variables and data structures in real-time. This
approach aims to help students understand the underlying functionalities of basic data
structures, such as lists, queues and stacks and how to manipulate them in a correct way,
while at the same time visualizing and learning how they work.

In this article, we present the development of a AR-based Learning Resource called
LCSMAR (Section 5) after discussing in detail its architecture and desired functionalities
Section 4). Before that the main areas of research involved in this project, Computational
Thinking and Augmented Reality, are discussed in Sections 2 and 3 respectively. Section 6
closes the paper.

2 Computational Thinking

As defined by Wing [9], Computational Thinking is the thought process that goes into
formulating problems, being a collection of skill based on the principles of Computer Science,
therefore being one of the most essential skills of the 21st century.

It is a very important skill that, such as reading or writing, must be taught to the younger
population at an early age, in order to allow them to develop the necessary skills, not only for
CS but also for other areas of science, being mainly focused on the aspect of systematizing,
representing, analyzing and problem solving skills.

Just like any other skill, it is important to develop and training it and to do so it is
needed specialized tools and LR to help teachers thought their students to develop CT.

One of the ways to effectively train CT is through the use of Learning Resources (LR)
that, as the name suggests, are tools designed to assist teachers teaching and students
learning. These resources, which can either be physical or digital devices, allow students
to not only gain knowledge during classes but also allow them to develop said knowledge,
therefore making the learning experience interesting, appealing and modern, thus stimulating
their interests in acquiring new skills [3].

In order to train CT it is necessary to use LR to develop this thought process. As CT
requires a wide range of different skill sets, including abstraction and problem decomposition
(Figure 1), it is crucial to have appropriate resources to develop each one of these skills,
facilitating students’ development of CT skills. These tools must be easy to understand and
to use but also must have high potential for students to develop their skills.

There are two main kinds of LRs: plugged or virtual resources that must be used with
electronic equipment and devices such as smartphones and cameras and unplugged resources
that don’t. Each one of these types offer different advantages that depend on the environment
that they are being used.

The initiative CS Unpluggedhttps://www.csunplugged.org/en/ is a collection of many
different unplugged activities like card games, puzzles and challenges that aim to build the
ground work necessary for students to dive into Computer Science (CS). This initiative not
only provides materials for student to learn concepts about CS but also provides teachers
with content to teach during classes, thus providing students with a favourable environment
to develop and train their CT skills.

One plugged LR that’s very widely known and used in the work is Scratch ([7]) that is
used to introduce student to programming and also to CT. There is a big community around
Scratch, where students can share their creations with other students around the world, as
well as tinker and modify other’s projects to learn how they work. This tool allows students

https://www.csunplugged.org/en/


L. C. Martins, L. V. Lima, and P. R. Henriques 3:3

Figure 1 Computational Thinking Concepts that can be trained.

to use blocks of code that can be used interchangeably to make their own creation, while
developing and using computer programming concepts such as conditionals, loops and events,
while at the same time that they develop CT related skills.

Analyzing the success and impact that Scratch has in students, where they get motivated
and interested in developing their own applications and games, its possible to conclude that
unplugged activities have the power to make students more engaged in learning, showing a
need for new pieces of technology that provide students with material to learn new sets of
skills, starting with CT.

Thus there is a need for new and innovative LR that allow students to learn new concepts
and skills that are easy and intuitive to use, while at the same time being effective at
delivering its promise of teaching and engaging students.

3 Augmented Reality

Virtual Environment (VE) technologies are becoming more prominent in our world, becoming
a key technology for the near future and already having a lot of uses in our society, helping
and enhancing our daily tasks.

One of the most popular and used VE technologies is Augmented Reality, being one of
the spectrums of the Mixed Reality continuum, as presented by [6]. When using VR the user
is completely immersed in a fully virtual environment, separate from the real world, through
the use of head-mounted displays and sensory devices, while when using AR devices, the
user experiences the real world enhanced by information generated by these devices, adding
digital information to the real world. While VR provides a complete virtual experience, AR
allows for a mix between real and virtual world.

AR is the enrichment of a real environment by bringing virtual information into the world
using technological devices, providing users with computer generated texts, images and/or
virtual objects that are superimposed in the real objects that they see, bridging these distinct
worlds [1]. AR aims to explore the use of vision and hearing in these environments but it is
not exclusive to these senses, as presented by Azuma [1], where all the others senses, such as
tact and smell can also be used and explored.

ICPEC 2023



3:4 LCSMAR, an AR Based Tool to Inspect Imperative Programs

Figure 2 System Architecture.

To take advantage of AR, there are multiple types of devices available to be used that
can be subdivided in the following categories. Firstly, head-mounted displays (HMD) are
designed to be worn on the head and a projection is displayed in the user’s field of view.
This type of AR is mainly used in a industrial setting where worked need hand-free access to
information. Secondly, handheld devices that are much more portable than the one above
since it can be used with the help of a smartphone to display, using the phones cameras, AR
information superimposed into the real world. Lastly, using spatial displays, the computer
generated information can be displayed directly into the real world without the need for any
display. Some examples of these kinds of displays are video-projector or holograms, allowing
the virtual world to extend to a wider amount of people simultaneously.

Even tho that at first sight AR look more like a piece of entertainment over anything else,
it is a very useful tool to help teachers and students at the same time. With AR its possible
to captivating the students attention and motivation while at the same time promoting their
own development of skills. The work of [4], CodeCubes, is a game with an AR interface
developed to teach scientific principles of computational thinking. In order to solve the tasks,
students need to explore, experiment, and interact with CodeCubes putting to practice the
trial-and-error method. This approach aims at introducing basic programming concepts to
children through experimentation. It combines physical paper cubes with AR technology for
teaching basic programming concepts.

Another tool that uses AR in the objective to teach students is the work of [5], stating
that programming is an effective way to promote the development of CT, presenting a
tangible programming tool that utilizing AR technology for kids, helping them create their
own programs by positioning programming blocks and executing code with a mobile device.
Through this, kids can learn fundamental programming concepts, such as parameters, loop
logic, debug and so on. Following the authors’ tests in children, they found that they
were engaged and enjoying the game, indicating that these tools are conducive for them to
understand several computer concepts. The authors also realized that children are more
likely to ignore feedbacks that are received through plain text.

4 Architecture

The developed Learning Resource consist of two main components (Figure 2, each serving a
unique purpose and important role in the environment of the system.

The first component Language-Specific Code Interpreter that’s written in Python and
utilizes the Lark library to do so. This component is responsible for analyzing and interpreting
code in a custom imperative language. This library was chosen because it is very flexible and



L. C. Martins, L. V. Lima, and P. R. Henriques 3:5

powerful parsing library for Python, allowing to create the custom imperative language with
ease, making it an ideal choice for the project. This component take the code that a user
writes, analyzes and executes it and create information that will be transmitted through a
Qr-Code and then processed by the second component in the mobile app.

The second component is an AR mobile app that utilizes the Vuforia AR software. In
order to gather the processed information from the first component, the ZXing library is used
in order to read the generated Qr-Code, which will then be processed in order to layout the
initial virtual environment, where the users can see the execution of their written code step
by step. The choice to use Vuforia as the AR platform for the mobile app was driven by the
fact its a robust piece of software that allows for easy development of AR based programs.

In order to create the Virtual Environment a the AR mobile app uses the data created
by the Interpreter in order to display the statement in the AR scene. This data represents a
JSON with all the necessary information to be able to advance the code step-by-step while
at the same time allow for the user to step back into the execution of the code, only needing
to follow the flow of information represented in the JSON itself, thus being a solution not
very computationally intensive.

One of the key goals of this project it to develop and AR app that is able to create a tool
that can be used in schools that is both easy to use and highly intuitive while also being
engaging for the user allowing them to easily visualize the execution of the code they’ve
written step-by-step. The interface was designed to be as easy to use as possible with a
clear and simple interface to navigate. Creating an engaging experience was one of the main
priorities during the development of the app, with the objective of creating visual that are
easy to understand while at the same time being engaging. Despite being able to use HMD
displays to take advantage of AR, we decided to stick with the use of smartphones for the fact
that they are easier to use, more accessible, an already build-in camera and many students
already have one, so it can be used by a larger number of the population.

In order to transmit information from one component to another, many solutions where
considered to do so, but the one that made more sense was through the use of QR Codes.
QR Codes are two-dimensional barcodes that can easily be read by smartphones. They can
stored any type of information from links to website, product details, etc, but can also save
binary data that then can be used. So with their help, its possible to transmit information
from one component to another with the need to setup additional infrastructure. Since QR
Codes have a limited amount of data that can be stored, in order to fit the most amount of
data in it as possible, the instructions generated by the interpreter component are compressed
before being transformed into a QR Code, thus allowing to storage large amounts of data
into it.

5 LCSMAR

The developed LR, as said before, is divided into two components, the first one, the interpreter,
it takes the code that the students write in a imperative programming language, interprets it
and generates information that can then be used by the second component to lay-out the
execution of the code written in a AR environment.

In order to make these two components more independent from each other by not creating
a direct way of communication between them, there was a need to find another possible
way to transmit information from one component to another, and to do so we used QR
Codes, since they are easy to generate and scan, and can be read by almost every modern
smartphone. Thus, by using QR Codes there is no need to create server making it an LR
that can be used without the need for an internet connection.

ICPEC 2023



3:6 LCSMAR, an AR Based Tool to Inspect Imperative Programs

Listing 1 Example code of the developed imperative language.
1 VARS
2 i,evenSum , oddSum :int;
3 listOdd , listEven :List(int );
4 STATS
5 evenSum = 0;
6 oddSum = 0;
7 for (i = 1;i <=10;i++){
8 if (i % 2 == 0){
9 listEven . insert (i);

10 } else {
11 listOdd . insert (i);
12 }
13 }
14 while( listEven .len > 0){
15 evenSum += listEven . remove ();
16 oddSum += listOdd . remove ();
17 }
18 END

The main focus of this project was developing an AR application that its easy to use,
engaging, appealing and that allowed students to understand better how their code works
and how to manipulate and use data structures. Some of the features of the developed
application are, visualizing the written code, advancing or stepping back each line of code,
see the changes that occur in each variable and data structure, know if the current line of
code is inside a conditional block, knowing if the condition is either true or false and know if
a line is inside a cycle.

The first step to use this LR is to write the code that will generate a QR Code, that then
can be read using the mobile phone. To do so, the users will write their code in a web-browser
based application that is able to generate the QR Code thanks to the information generated
by the Interpreter (Figure 3).

Figure 3 Web App where students can write their code.



L. C. Martins, L. V. Lima, and P. R. Henriques 3:7

After reading the generated QR Code, the starting scene is generated, with the starting
variables and the empty data structures, which can then be advanced step by step using the
UI. The piece of code 1 will be used to show the features of the AR application. The code
puts the numbers between 1 and 10 in a corresponding List of either even or odd numbers,
and then it calculates the sum of each, storing these values in their corresponding variable.
In the Figure 4 the variables and their states can be seen represented in the blue cubes, that
have the name of the variable as well as its state.

Figure 4 Code execution representing a for cycle.

When the code reaches the for cycle a new block appear representing it, showing the
loop condition. In a similar way a block that represents the if condition can either be red
(Figure 5 )when the condition is false or green if the condition is true.

Figure 5 Code execution representing an if condition.

As the code is executed the content of each data structure changes, adding more blocks
to each one, representing each element as can be seen in the Figure 6.

Then inside a while loop (Figure 7) that is represented by another colored block, the
elements of each data structure will be removed from them and then they are added to the
respective variable, thus calculating the sum of the numbers.

This LR allow for students to have a different approach into learning how code works and
the intricacies that are the manipulation and use of data structures. By using a variety of
teaching methods and tools, such as visual aids, interactive exercises, and real-world examples,
students can gain a deeper understanding of the concepts and develop problem-solving skills
that they can apply in their future careers. Additionally, a well-designed LR can help students
stay engaged and motivated throughout the learning process, which can improve their overall
retention and mastery of the material.

ICPEC 2023



3:8 LCSMAR, an AR Based Tool to Inspect Imperative Programs

Figure 6 Code execution representing the state of the data structures.

Figure 7 Code execution representing removal of elements from data structures during a while
loop.

6 Conclusion and Future Work

In this article, we have presented LCSMAR, an innovative LR that uses AR to enhance
students’ understanding of important programming concepts and data structures. We
have described the two main components of LCSMAR: the interpreter, which generates
information about the code written by students; and the AR application, which uses the
information generated by the previous component to lay out the execution of the code in an
AR environment. At the best of our knowledge, this approach is new and can pave the way
to the development of original tools to help the learning process enabling the production of
nice visualizations of formal specifications or programs provided at the input. We believe
that we can aid Programming teachers to improve the success of their courses. The initial
development phase of LCSMAR focused on creating an easy-to-use, engaging, and visually
appealing AR application that allows students to visualize step-by-step the execution of his
source program emphasizing the data structures manipulation.

While the tests conducted in classrooms have shown promising results, we plan to
conduct further experiments with students and educators to refine and improve LCSMAR.
By incorporating feedback from users, we aim to create an effective and comprehensive
learning resource that can be used to teach programming and data structures in a more
engaging and interactive way.



L. C. Martins, L. V. Lima, and P. R. Henriques 3:9

Figure 8 AR application being used.

LCSMAR here discussed is a component of a bigger project that aims at the creation
of AR-based Learning Resource to train Computational Thinking. Our idea is to define a
strategy to develop in a systematic way, guided by the description of the skills to train, such
kind of tools.

References
1 Ronald T Azuma. A survey of augmented reality. Presence: teleoperators & virtual environ-

ments, 6(4):355–385, 1997.
2 Matt Bower, Cathie Howe, Nerida McCredie, Austin Robinson, and David Grover. Augmented

reality in education–cases, places and potentials. Educational Media International, 51(1):1–15,
2014.

3 Rona Bušljeta. Effective use of teaching and learning resources. Czech-Polish historical and
pedagogical journal, 5(2), 2013.

4 Bárbara Cleto, Cristina Sylla, Luís Ferreira, and João Martinho Moura. Codecubes: Coding
with augmented reality. In First international computer programming education conference
(ICPEC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

5 Qiao Jin, Danli Wang, Xiaozhou Deng, Nan Zheng, and Steve Chiu. Ar-maze: a tangible
programming tool for children based on ar technology. In Proceedings of the 17th ACM
Conference on Interaction Design and Children, pages 611–616, 2018.

6 Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio Kishino. Augmented reality: A
class of displays on the reality-virtuality continuum. In Telemanipulator and telepresence
technologies, volume 2351, pages 282–292. Spie, 1995.

7 Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silverman, et al. Scratch:
programming for all. Communications of the ACM, 52(11):60–67, 2009.

8 Karen Schrier. Using augmented reality games to teach 21st century skills. In ACM SIGGRAPH
2006 Educators Program, SIGGRAPH ’06, pages 15–es. Association for Computing Machinery,
New York, NY, USA, 2006. doi:10.1145/1179295.1179311.

9 Jeannette M Wing. Computational thinking benefits society. 40th anniversary blog of social
issues in computing, 2014:26, 2014.

ICPEC 2023

https://doi.org/10.1145/1179295.1179311




Can a Content Management System Provide a
Good User Experience to Teachers?
Yannik Bauer #

DCC – FCUP, Porto, Portugal
CRACS – INESC TEC, Porto, Portugal

José Paulo Leal # Ñ

CRACS – INESC TEC, Porto, Portugal
DCC – FCUP, Porto, Portugal

Ricardo Queirós # Ñ

CRACS – INESC TEC, Porto, Portugal
uniMAD – ESMAD, Polytechnic of Porto, Portugal

Abstract
The paper discusses an ongoing project that aims to enhance the UX of teachers while using
e-learning systems. Specifically, the project focuses on developing the teacher’s user interface (UI)
for Agni, a web-based code playground for learning JavaScript. The goal is to design an intuitive UI
with valuable features that will encourage more teachers to use the system. To achieve this goal,
the paper explores the use of a headless Content Management System (CMS) called Strapi. The
primary research question the paper seeks to answer is whether a headless CMS, specifically Strapi,
can provide a good UX to teachers. A usability evaluation of the built-in Strapi UI for content
creation and management reveals it to be generally consistent and user-friendly but challenging and
unintuitive to create courses with programming exercises. As a result, the decision was made to
develop a new teacher’s UI based on the existing Agni UI for students in an editable version. Once
the development is complete, a new usability evaluation of the fully developed teacher’s UI will be
conducted with the Strapi UI evaluation as a baseline for comparison.

2012 ACM Subject Classification Applied computing → Interactive learning environments

Keywords and phrases learning environment, programming exercises, programming learning, auto-
matic assessment, headless CMS, CMS, user experience

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.4

Category Short Paper

Funding This research was conducted within the “FGPE Plus: Learning tools interoperability
for gamified programming education” project supported by the European Union’s Erasmus Plus
programme (agreement no. 2020-1-PL01-KA226-HE-095786), and financed by National Funds
through the Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia, within
project LA/P/0063/2020.

1 Introduction

Learning programming can be challenging for beginners. Winslow [13] noted that many
novice programmers might know the syntax and semantics of individual statements but
struggle with combining these features into valid programs. His and other studies [11, 3]
have emphasized the importance of practice through exercises, which is most effective with
immediate feedback. However, it is impossible for teachers to manually provide immediate
feedback for every exercise. Automated assessment systems for programming exercises
emerged as a solution, freeing teachers to focus on students needing additional support.

© Yannik Bauer, José Paulo Leal, and Ricardo Queirós;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 4; pp. 4:1–4:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yannikbauer.1@gmail.com
https://orcid.org/0000-0001-8987-2419
mailto:zp@dcc.fc.up.pt
https://www.dcc.fc.up.pt/~zp/about/
https://orcid.org/0000-0002-8409-0300
mailto:ricardoqueiros@esmad.ipp.pt
https://www.ricardoqueiros.com/
https://orcid.org/0000-0002-1985-6285
https://doi.org/10.4230/OASIcs.ICPEC.2023.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


4:2 Can a CMS Provide a Good User Experience to Teachers?

While there are e-learning systems that offer the ability to create and manage courses
with automated assessment, many of them were designed to focus on the UX of students and
less on the teacher’s UX, which can result in fewer teachers utilizing them.

This paper presents the design and development of a UI to manage and author course
contents with automated assessment for Agni, a code playground for learning JavaScript.
Previously, Agni consisted only of a UI for students. The course contents were saved in
configuration files without the ability to alter or create them through an interface. The
main objectives for the UI are 1) a good user experience for teachers; 2) an effective way of
creating, adapting, and managing course contents with automated assessment; 3) a repository
of exercises with the possibility of extending it with other repositories and 4) allowing for
sequencing the course content.

The idea was to use a headless CMS to achieve the goal. This offers the flexibility to use
a separate UI for displaying the content (in our case, the Agni Student UI) without being
tied to a specific model, as with traditional CMSs. Also, headless CMSs provide a UI to
manage and create the contents, which the teachers could use. Strapi was selected for this
task. However, a usability evaluation showed that the UI for creating and managing content
was generally consistent and user-friendly but challenging and unintuitive for creating course
content with programming exercises. This, and the inability to customize the UI, led to the
decision to develop a new UI for the teachers. The design approach was to leverage the Agni
student‘s UI and make it editable. This means having input fields instead of text boxes, for
example, for lesson names, and adding missing functionalities, such as the addition of new
modules. The work is ongoing, and once development is complete, a usability evaluation of
the fully developed teacher’s UI will be conducted and assessed its effectiveness with the
previous evaluation as a benchmark.

The remainder of this paper is organized as follows. Section 2 presents the state of the art,
covering user experience and existing programming virtual learning systems (VLEs). The
following section describes the main parts of the user interface, a presentation of the data
model, and a subsection about the API. The evaluation method and evaluation of Strapi’s
UI are presented in Section 4. The final section summarizes the paper’s contributions and
highlights future work.

2 State of The Art

The field of programming VLEs is constantly evolving, with emerging trends and innovations
shaping how students interact, and teachers create programming courses. This section starts
with a general review of UX and explores teachers’ UX in VLEs, analyzing their features
and missing potentials.

2.1 User Experience
According to ISO 0241 – 210, the definition of UX is “A person’s perceptions and responses
that result from the use or anticipated use of a product, system or service.”. However, the
concept of UX encompasses various aspects, leading to multiple possible definitions, dynamic
concepts, and theoretical models, including aesthetics, usability, effectiveness, pleasure-based,
and emotional experience. [4, 1, 6] provide more detailed information about the different
concepts and challenges related to UX.

When designing a UI, authors agree that the focus must be on the user’s needs rather than
solely relying on the designer’s perspective. Therefore, evaluation is crucial to gain insights
into the user’s experience. There are several evaluation methods, including questionnaire-
based evaluation, such as the User Experience Questionnaire (UEQ) by Martin Schrepp,



Y. Bauer, J. P. Leal, and R. Queirós 4:3

Bettina Laugwith, and Theo Held [5], or a questionnaire based on the 10 usability heuristics
for User Interface Design described by Jakob Nielsen in [7]. These heuristics include visibility
of system status, match between system and real world, user control and freedom, consistency
and standards, error prevention, recognition rather than recall, flexibility and efficiency of
use, aesthetic and minimalist design, help users recognize/diagnose and recover from errors,
and help and documentation. Other evaluation methods are explained in more detail in [2, 8]

2.2 System Review
Various systems are available to assist teachers in creating and managing programming courses,
including Udemy, Mooshak 2, and Moodle. Typically, the course content is structured within
one or two levels, consisting of modules and lessons where teachers can create materials and
exercises.

The most common exercises with automated assessment are multiple-choice quizzes
and programming exercises, supported by many systems such as Udemy, Mooshak 2, and
Coderbyte. The correctness of the student’s code for programming exercises is being evaluated
dynamically. This means that predefined test cases run on the code to verify its correctness
and efficiency and give immediate feedback to the student. The tests can be divided into
dynamic and static testing [12]. Static testing refers to tests for which the code does not
have to run, for example, checking for expression usage or code design. On the other hand,
dynamic testing is performed on code execution. Unit tests are an example of dynamic tests.
Most e-learning systems with automated assessment only support the creation of dynamic
tests that can either be introduced with an input and wanted output field or a file for the
teacher to write the whole code for unit tests. Other helpful features, such as an exercise
repository, are often missing [10].

Sequencing the course content is another interesting feature. It can be based on time
conditions, where the teacher can define a date or number of weeks/days after which the
students can work on specific content. Alternatively, content can be sequenced based on the
progress of exercises. Mooshak 2, for example, supports the sequencing of all content based
on time and exercises completed.

Although these functionalities are important, they lose their impact with an unintuitive
UI. The majority of systems involve a strategy of “form filling”, where the interface consists
of pairs of field names and inputs to declare the data of the contents. Some systems, such as
Udemy, support the visualization of the created content in a student’s view to see how it will
appear. Moodle‘s teacher UI is more similar to an editable version of the Student UI with
additional functionalities, such as adding lessons and declaring metadata.

3 System Design

Agni is a web-based code playground designed for learning JavaScript and providing students
with a user-friendly interface for programming courses with exercises that are being evaluated
automatically. However, a crucial feature was missing - a dedicated interface for teachers
to create, manage, and customize the course content, along with a backend system to
independently store them. Previously, the content was saved in configuration files with no
interface for editing or creation.

To address this issue, Strapi, a headless CMS, was chosen as the solution for content
management. Strapi offers both a user-friendly interface and an API for quickly creating
a data model and managing/creating content. The API supports CRUD (Create, Read,
Update, Delete) operations and can be customized using hooks. Strapi provides three types

ICPEC 2023



4:4 Can a CMS Provide a Good User Experience to Teachers?

of data structures: single types, collection types, and components. Single types and collection
types have an API endpoint and can be created and edited independently. Components are
reusable structures that can be used in different collections and single types.

While Strapi’s UI for content management was initially considered a hypothesis for
teachers to create and manage content, a usability evaluation (explained more in Section 4)
revealed that it was generally consistent and user-friendly but challenging and unintuitive for
creating course content with programming exercises. Additionally, the lack of customization
options in the UI led to the decision to develop a new UI to ensure a better UX for the teachers.
The design of this UI, the data model to support it, and the API for the communication
between the UI and the server will be explained in the following subsections.

3.1 User Interface
The teacher’s UI consists of two main parts: class management and content management.
The former is to import, create, and manage students and their work, which is not fully
developed yet, and the latter is to create and modify courses with their materials. To ensure
a positive UX for teachers and provide an intuitive interface for creating and editing courses,
the Agni student‘s UI was transformed into an editable version (see Figure 1). This approach
enables teachers to see exactly what they are modifying and how it will look to students.
Currently, the system only supports course creation.

Figure 1 displays a screenshot of the UI in the state of editing or creating a course. It
is divided into three panels. The left panel is a navigation menu. The right panel shows
buttons for actions on the middle panel, such as save the course or exit. The middle part is
the main panel where teachers are able to see the different courses, classes, etc., and edit
them. In the main panel of Figure 1, the editable Agni student interface for creating or
editing courses can be seen. In order to make the student UI editable, text fields, such
as module name and lesson description, were transformed into input fields. Additionally,
buttons add functionalities, such as creating or deleting lessons, exercises, and other elements.
Furthermore, the edit icons in the menu open dialog boxes to introduce information, such as
conditions for when a student can work on a lesson that the student cannot see directly in
the UI.

Figure 1 UI while editing or creating a course.



Y. Bauer, J. P. Leal, and R. Queirós 4:5

3.2 Data Model
The data model for the content created by teachers and viewed by students is illustrated in
Figure 2. It has been implemented in Strapi and can be divided into two substructures: one
for managing the classes, which teachers can access in the class management navigation, and
the other for managing courses and their contents, which teachers can access in the content
management navigation.

A Course is composed of Modules, which contain Lessons, that can include multiple
Expositive and Evaluative contents. Expositives are used to present information to students
and can be in the form of PDF files or video files. Evaluatives, on the other hand, are
exercises that can be in the form of multiple-choice quizzes or programming exercises. To
automatically evaluate these programming exercises, teachers can create Tests with input,
expected output, type (log, expression, metric, function), and subtype (error for expression,
occurrences, and lines for metric) parameters. This provides teachers with a quick way to
create different types of tests without having to write complex code for unit tests. In order
to sequence Modules and Lessons, they contain conditions with fields named “afterWeek” to
specify after which week the student can work on a Module or Lesson, and “afterPercDone”
to define a percentage of completed exercises after which the student can progress.

Occurrences, Classes, Students, and Statuses, form the structure for managing classes.
Occurrences are linked to a Course and have a start date, determining when students can
start accessing the Course. The “afterWeek” condition for Modules and Lessons is based on
this start date. Classes and Students have fields for declaring delays that may occur during
the year. The grade and solution to a programming exercise done by the student are saved
in the Status.

Course, Expositive, Evaluative, and Question were chosen as collection types for easy
reuse and individual editing. Similarly, Occurrence, Class, Student, and Status were chosen
as collection types for quick and convenient access and creation.

Figure 2 Main parts of the Data Model.

3.3 API
Strapi offers a RESTful API as the primary means for communication between UI and server.
The API supports the full range of CRUD operations, including creating, reading, updating,
and deleting content within collection types. These operations can be customized to the

ICPEC 2023



4:6 Can a CMS Provide a Good User Experience to Teachers?

specific needs of individual collection types through hooks. Additionally, the API supports
a wide range of query parameters, which can be utilized to filter, sort, and paginate data
within requests.

To optimize performance and reduce communication between the UI and server, the
possibility of creating multiple instances of collection types with one request was imple-
mented. Furthermore, the creation of a complete course structure encompassing different
collection types, such as Course, Evaluatives, Expositives, and Questions, with one request
was developed.

The API is secured using Strapis’ built-in user-permission plugin, in which user roles
were created for students and teachers. This plugin allows the customization of permissions
for each collection and request type, depending on the user’s role. For instance, only teachers
are authorized to create content. When teachers create content, the author’s identity is also
saved in the data structure. This enables the declaration of permissions for modifying or
getting content created by other teachers. For example, can they only access the data of
their students. As for the students, the API enables them to access only their course, with
the modules and lessons viewable contingent on the conditions established by the teacher.

4 Validation

The evaluation is an essential part of creating a UI with a good UX. Strapi‘s UI, which
was the first idea for the teachers, was evaluated using a satisfaction questionnaire. Since
the result was not satisfactory, the decision was made to develop a new UI for the teacher.
The work is ongoing, and after finishing it, a satisfaction evaluation will be done with the
previous evaluation used as a baseline for comparison and evaluating progress. The evaluation
methodology, results of the Strapi UI evaluation, and its conclusion will be presented next.

4.1 Evaluation Methodology
The evaluation was done using a satisfaction questionnaire based on the ten usability heuristics
for User Interface Design from Jakob Nielsen [7]. These are visibility of system status, match
between the system and the real world, user control and freedom, consistency and standards,
error prevention, recognition rather than recall, flexibility and efficiency of use, aesthetic
and minimalist design, help users recognize/diagnose and recover from errors, and help
and documentation. These ten heuristics and additional the easiness of learning, speed,
and reliability of functions and tasks that the system wants to solve were evaluated with
multiple questions on a five-point Likert scale (1 - Never, 2 - Almost Never, 3 - Regular, 4
- Almost always, 5 - Always). The questionnaire also included an overall classification of
the system on a five-point scale (1 - Bad, 2 - Insufficient, 3 - Sufficient, 4 - Good, 5 - Very
Good) and text fields to describe strong points, weak points, and improvement suggestions.
Before completing the questionnaire, the respondents were required to carry out typical tasks
performed by a professor, such as creating courses, reusing course materials, and associating
them with students. Following Jakob Nielsen’s proposal [9], five computer science master
students from the University of Porto were selected to evaluate Strapi’s UI, as this number
is sufficient to identify the majority of usability issues.

4.2 Results Strapi UI
Figure 3 shows the evaluation heuristics with its average mean score and standard deviation
of their questions. Many of them leading to a positive spectrum, especially speed, consistency,
and emphasis, with a mean score of about 4, were evaluated positively. On the other hand,



Y. Bauer, J. P. Leal, and R. Queirós 4:7

flexibility, easiness, reliability, and overall classification, with a medium score of 2, 2.2, 2.9,
and 2.8, respectively, were evaluated negatively. As strong points were mentioned, easy
creation of a Course with Modules and Lessons, excluding Expositives and Evaluatives, and
also the generally easy-to-use and fast UI. Weak points described were the need to create
collection types like Course, Expositive, Evaluative, and Question individually and only after
that being able to associate them with each other, which is unintuitive and time-consuming.
The lack of a help system, a landing page without helpful information, and no explanation of
some fields were also critiqued. A tutorial was added as an improvement suggestion.

The overall more positive evaluation of the 10 usability heuristics for Strapi‘s UI was
expected due to it being one of the positive aspects of why people use Strapi. However,
the Strapi UI is too generic for the specific necessities of managing programming courses.
Different collection types can only be created separately, which makes the creation of a whole
course time-consuming and not effective. Also, the inability to create a hierarchy of collection
types or define different sizes for fields makes it difficult to organize and use the space in an
efficient way. This led to the conclusion that the Strapi UI is not sufficient to achieve the
objective of a good UX for the teacher. Nevertheless, the API and database can be used due
to the ability to customize using hooks.

While students provided valuable insights into the UX, selecting teachers as respondents
for the evaluation would have been more appropriate. Teachers possess a deeper understanding
of the specific needs and requirements associated with their role within the system.

Category Mean SD
1. Visibility 3.25 0.94
2. Compatibility 3.17 0.82
3. Freedom 3.14 0.73
4. Consistency 3.94 0.87
5. Prevention 3.11 0.48
6. Emphasis 3.93 0.59
7. Flexibility 2 0.80
8. Aesthetics 3.25 0.43
9. Help to Users 3.2 0.53
10. Help with documentation 3.25 1.04
11. Easiness 2.25 1.12
12. Speed 4.2 0.49
13. Reliability 2.91 1.19
14. Classification 2.8 0.61

Figure 3 Strapi‘s UI evaluation results.

5 Conclusion and Future Work

This paper highlights the advancements made in the development of a UI with a good
UX and useful functionalities for teachers to manage and create courses. One of the main
contributions of this paper is the examination of whether a headless CMS, specifically Strapi,
can adequately serve this purpose. The usability evaluation indicated it to be too generic
and not flexible for effectively creating and managing programming courses.

Furthermore, the paper presents a promising approach to leverage the Agni student’s
UI and make it editable by having input fields instead of text boxes and adding missing
functionalities, such as the addition of lessons for the teacher. The UI communicates with
the customized API of Strapi to create and manage the contents of the data model.

ICPEC 2023



4:8 Can a CMS Provide a Good User Experience to Teachers?

In future work, features such as the reuse of exercises will be implemented. The possibility
to import external contents, especially exercises, as well as the design and implementation
of the class managing part, including the import and creation of students, will be finished.
After that, a final evaluation of the UI will be conducted using the Strapi UI evaluation as a
benchmark for comparison and evaluation of the progress.

References
1 Allam Hassan Allam, Ab Razak Che Hussin, and Halina Mohamed Dahlan. User experience:

challenges and opportunities. In Journal of Information Systems Research and Innovation
2013, 2013.

2 D. Benyon. Designing User Experience. Pearson Educación, 2019. URL: https://books.
google.pt/books?id=MXqFDwAAQBAJ.

3 John Dunlosky, Katherine A. Rawson, Elizabeth J. Marsh, Mitchell J. Nathan, and Daniel T.
Willingham. Improving students’ learning with effective learning techniques: Promising
directions from cognitive and educational psychology. Psychological Science in the Public
Interest, 14(1):4–58, 2013. URL: http://www.jstor.org/stable/23484712.

4 Marc Hassenzahl and Noam Tractinsky. User experience – A research agenda. Behaviour &
Information Technology, 25(2):91–97, 2006. doi:10.1080/01449290500330331.

5 Bettina Laugwitz, Theo Held, and Martin Schrepp. Construction and evaluation of a user
experience questionnaire. In HCI and Usability for Education and Work, volume 5298, pages
63–76, November 2008. doi:10.1007/978-3-540-89350-9_6.

6 Effie Lai-Chong Law, Virpi Roto, Marc Hassenzahl, Arnold P.O.S. Vermeeren, and Joke Kort.
Understanding, scoping and defining user experience: A survey approach. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, pages 719–728, New
York, NY, USA, 2009. Association for Computing Machinery. doi:10.1145/1518701.1518813.

7 Jakob Nielsen. Enhancing the explanatory power of usability heuristics. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’94, pages 152–158, New
York, NY, USA, 1994. Association for Computing Machinery. doi:10.1145/191666.191729.

8 Jakob Nielsen. Usability inspection methods. In Conference Companion on Human Factors
in Computing Systems, CHI ’94, pages 413–414, New York, NY, USA, 1994. Association for
Computing Machinery. doi:10.1145/259963.260531.

9 Jakob Nielsen. Why you only need to test with 5 users, March 2000. URL: https://www.
nngroup.com/articles/why-you-only-need-to-test-with-5-users/.

10 Ricardo Queiros and José Leal. Programming exercises evaluation systems – An interoperability
survey. In International Conference on Computer Supported Education, volume 1, pages 83–90,
January 2012.

11 Roshni Sabarinath and Choon Lang Gwendoline Quek. A case study investigating programming
students’ peer review of codes and their perceptions of the online learning environment.
Education and Information Technologies, 25(5):3553–3575, September 2020. doi:10.1007/
s10639-020-10111-9.

12 Zarina Shukur, Edmund Burke, and Eric Foxley. The automatic assessment of formal specific-
ation coursework. Journal of Computing in Higher Education, 11(1):86, 1999.

13 Leon E. Winslow. Programming pedagogy – A psychological overview. SIGCSE Bull.,
28(3):17–22, September 1996. doi:10.1145/234867.234872.

https://books.google.pt/books?id=MXqFDwAAQBAJ
https://books.google.pt/books?id=MXqFDwAAQBAJ
http://www.jstor.org/stable/23484712
https://doi.org/10.1080/01449290500330331
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1145/1518701.1518813
https://doi.org/10.1145/191666.191729
https://doi.org/10.1145/259963.260531
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://doi.org/10.1007/s10639-020-10111-9
https://doi.org/10.1007/s10639-020-10111-9
https://doi.org/10.1145/234867.234872


Sifu Reloaded: An Open-Source Gamified
Web-Based CyberSecurity Awareness Platform
José Carlos Paiva #

CRACS – INESC TEC, Porto, Portugal
DCC – FCUP, Porto, Portugal

Ricardo Queirós # Ñ

CRACS – INESC TEC, Porto, Portugal
uniMAD – ESMAD, Polytechnic of Porto, Portugal

Tiago Gasiba #

Siemens AG, München, Germany
Universität der Bundeswehr München, Germany

Abstract
Malicious actors can cause severe damage by exploiting software vulnerabilities. In industrial settings,
where critical infrastructures rely on software, handling these vulnerabilities with utmost care is
crucial to prevent catastrophic consequences. For this purpose, a cybersecurity awareness platform
called Sifu was created. This platform automatically assesses challenges to verify its compliance to
secure coding guidelines. Using an artificial intelligence method, an interactive component provides
players with solution-guiding hints. This paper presents an improved version of the Sifu platform,
which evolves the tool in the following aspects: architecture, data model and user interface. The new
platform separates the server and client-side using a REST API architecture. It also accommodates
an intrinsic and richer layer of gamification, which explores the concept of game rooms at an
organizational and gamification level. Finally, it offers an improved interactive training experience
for individuals and organizations through a responsive and intuitive single-page web application.

2012 ACM Subject Classification Applied computing → Interactive learning environments; Applied
computing → E-learning; Applied computing → Computer-managed instruction; Applied computing
→ Computer-assisted instruction; Security and privacy

Keywords and phrases learning environment, cybersecurity, challenges, gamification, automatic
assessment

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.5

Category Short Paper

Funding This work is financed by National Funds through the Portuguese funding agency, FCT –
Fundação para a Ciência e a Tecnologia, within project LA/P/0063/2020.

1 Introduction

In an increasingly interconnected world, the importance of cybersecurity awareness cannot
be overstated. The rapid proliferation of digital technologies and increased cyber threats
demand proactive measures to safeguard critical infrastructures. As malicious actors continue
to exploit software vulnerabilities, there is a need for practical and effective cybersecurity
awareness training that gives individuals and organizations the knowledge and skills to
defend against cyber threats. In [3], the Sifu platform was introduced. This platform aims to
increase cybersecurity awareness of software developers on secure coding. The Sifu platform,
embedded in cybersecurity challenge (CSC) events, is a successful artifact among industrial
software developers. CyberSecurity Challenges is a game that targets software developers and
was inspired in the Capture-the-Flag (CTF) type of game. In CTF games, the participants

© José Carlos Paiva, Ricardo Queirós, and Tiago Gasiba;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 5; pp. 5:1–5:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jose.c.paiva@inesctec.pt
https://orcid.org/0000-0003-0394-0527
mailto:ricardoqueiros@esmad.ipp.pt
http://www.ricardoqueiros.com
https://orcid.org/0000-0002-1985-6285
mailto:tiago.gasiba@siemens.com
https://orcid.org/0000-0003-1462-6701
https://doi.org/10.4230/OASIcs.ICPEC.2023.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


5:2 Sifu Reloaded

are presented with challenges related to cybersecurity in a competitive environment. Upon
solving the challenges, the players earn points. The player or team with the most points wins
the game.

However, the Sifu platform needs a consolidated gamification aspect and cannot easily
be used as a stand-alone application (i.e., separated from CSC events). An improved Sifu
platform was developed to address these issues, which we call SifuV2. The new platform
profits from the authors’ long experience with the original Sifu platform, players’ feedback on
user experience, and the author’s experience in designing gamified applications. The newly
evolved platform can empower individuals and organizations in the battle against cyber risks.

This paper aims to introduce the new features and capabilities of this web-based cyber-
security awareness platform based on architecture, data model, and user interface. In the
architecture facet, this new version separates client and server through an API complying
with REST (Representational State Transfer). The importance of REST architectures lies in
their ability to provide scalable, interoperable, and flexible systems that can easily integrate
with other services. By adhering to REST principles, developers can build robust, distributed,
and easily maintainable software systems that meet the demands of modern web and mobile
applications. The second facet is the data model, which adds a new layer of gamification,
exploring the concept of game rooms both from an organizational perspective and to gamify
the environment. Including gamification elements, such as quizzes, challenges, and rewards,
enhances user engagement and motivation, transforming cybersecurity education into an
enjoyable and immersive experience.

Additionally, the platform was changed to provide an improved user experience through
an intuitive user interface. Here, learners can access a rich array of interactive training
modules and engaging videos through a responsive single-page web application.

In the subsequent sections of this paper, we will explore related work, in particular,
other web-based cybersecurity awareness platforms. In section 3, we present the evolved
platform’s architecture, and enumerate the data model changes regarding the previous version.
Additionally, we introduce the new user interface. In the last section, the contributions of
this article to the scientific community are presented, and future work is briefly discussed.

2 Related Work

Table 1 and Table 2 depict currently available cybersecurity awareness training platforms.
These platforms typically offer a combination of training modules, phishing simulations,
knowledge assessments, and reporting capabilities to help organizations educate their em-
ployees about cybersecurity threats and promote a culture of security awareness. Among
these, we can find the following training platforms:

Cybrary1: offers a wide range of cybersecurity courses, which covers various topics
such as network security, ethical hacking, and incident response. This platform is offered
as a free or as a paid version. The platform includes the option to earn cybersecurity
certifications.
Hack The Box2: a platform offering a range of realistic virtual machines for penetration
testing practice. It provides challenges and labs allowing participants to test their skills
in a controlled environment. Access to some machines and features requires a paid
subscription, but a free option is also available.

1 https://www.cybrary.it
2 https://www.hackthebox.eu

https://www.cybrary.it
https://www.hackthebox.eu


J. C. Paiva, R. Queirós, and T. Gasiba 5:3

TryHackMe3: is a platform that teaches cybersecurity through interactive and gamified
content. It offers various rooms with different themes and difficulty levels. Each room
includes practical exercises, challenges, and walkthroughs to help players learn and
practice cybersecurity concepts.
PentesterLab4: provides online courses and hands-on labs specifically designed for web
application security. Their courses cover web penetration testing, network security, and
secure coding. They offer a mix of free and paid content, with interactive labs for skill
practicing.
OverTheWire5: is a platform that offers a series of interactive war games designed to
teach and practice cybersecurity skills. Each game focuses on a specific area of cyberse-
curity, such as e.g. basic Linux command-line skills and cryptography. The challenges‘
difficulty gradually increase, allowing the player to improve their skills progressively.
Root-me6: is a platform that offers a wide range of challenges and labs covering various
cybersecurity topics, including web security, network security, reverse engineering, and
more. It provides a hands-on approach with practical activities to reinforce players‘
understanding and skills.
CTFtime7: while not a training platform, this website aggregates information about
existing Capture The Flag (CTF) competitions that take place worldwide.

Evaluating each platform based on the organization’s needs and requirements is essential
before deciding which to use. In [4], the authors provide guidelines on selecting CTF games
to address industrial software developers. Employing a set of well-defined criteria facilitates
the comparison of tools, allowing one to make an informed decision and choose the most
suitable web-based platform for specific cybersecurity needs. It also provides a structured
approach to assess the strengths and weaknesses of each tool, making it easier to identify the
best fit for any specific use case.

Predefined criteria were selected and applied to compare cybersecurity tools effectively.
The results are presented in two tables according to their pricing models: Table 1 with those
that offer both free and paid models (or exclusively paid) and Table 2 with the free tools.

Table 1 Comparison of paid cybersecurity tools.

Criteria Cybrary Hack The Box TryHackMe PentesterLab
Year 2015 2017 2018 2013
OS/Proprietary Proprietary Online Platform Online Platform Online Platform
User Experience ✓ ✓ ✓ ✓

Course Catalog ✓ ✓ ✓ ✓

Course Topics Various Ethical Hacking Ethical Hacking Penetration Testing
Challenge Types N/A CTF CTF N/A
Certification ✓ × × ×
Gamification ✓ ✓ ✓ ×
Automatic Eval. × × × ×
Collaboration ✓ × ✓ ✓

3 https://tryhackme.com
4 https://pentesterlab.com
5 https://overthewire.org
6 https://www.root-me.org
7 https://ctftime.org

ICPEC 2023

https://tryhackme.com
https://pentesterlab.com
https://overthewire.org
https://www.root-me.org
https://ctftime.org


5:4 Sifu Reloaded

Table 2 Comparison of free cybersecurity tools.

Criteria OverTheWire Root-me CTFtime
Year 2002 2004 2008
OS/Proprietary Online Platform Online Platform N/A
User Experience ✓ ✓ ✓

Course Catalog ✓ ✓ ✓

Course Topics Networking/Security Challenges/CTF Challenges/CTF
Challenge Types Challenges/CTF Challenges/CTF Challenges/CTF
Certification × × ×
Gamification × × ×
Automatic Eval. × × ×
Collaboration × ✓ ✓

Since currently available tools have different pricing models, ranging from free to paid
options, this criteria allows users to choose a platform that fits their budget and financial
constraints.

All the covered platforms offer a comprehensive course catalog covering various aspects of
cybersecurity. This indicates that there are abundant learning opportunities available across
different platforms. The tools also cover various course topics, including ethical hacking,
penetration testing, networking/security, and challenges/capture the flag. While there is a
large variety in the subjects offered, a quality assessment of these is outside the scope of the
present work. We refer the reader to [4] for further discussions.

Cybrary is the only platform that offers certifications upon completion of their courses.
This is beneficial for individuals looking to enhance their credentials and showcase their skills
in the cybersecurity field.

Regarding gamification, Hack The Box, Cybrary, and TryHackMe incorporate several
gamification features which can enhance engagement and motivation. The former offers
simulations with avatars and narrative scenarios to throw users into classic cyber hacks. The
others include gamification features typically found in PBL (Points/Badges/Leaderboards)
gamified applications. In terms of collaboration, Cybrary, TryHackMe, Root-me, and
CTFtime have collaborative challenges/missions that require teams to work together to
accomplish a common goal. In this realm, most tools also offer social features, such as
discussion chats and forums, which allows participants to share ideas and build relationships,
enhancing collaboration and promoting a sense of community.

Finally, as indicated by the checkmarks, most tools strive to provide a positive user
experience. This suggests that they are designed considering usability and accessibility,
making it easier for learners to navigate and engage with the platforms.

3 SifuV2

Sifu [3] is an open-source web-based platform for cybersecurity awareness that challenges
users to fix the source code of a project containing vulnerabilities. User submissions are
automatically accepted if the source code complies with secure coding guidelines, does
not have known or additional vulnerabilities, and performs the desired tasks. To this
end, the analysis of the proposed solution submitted by a user involves several tools (e.g.,
SonarQube [9], CodeChecker [2], and various unit testing tools) acting on different phases of
the analysis, static and dynamic. An intelligent coach processes the result of such analysis to
complement the result presented to the learner with a hint.



J. C. Paiva, R. Queirós, and T. Gasiba 5:5

SifuV2 keeps both the original automated assessment module and the intelligent coach
module, which are the central components of Sifu. However, it reformulates the server and
client sides. In particular, it separates both by adopting a REST (Representational State
Transfer) API architecture on the server side. The REST API is then connected to the front
end by a single-page application (client). The REST API is implemented using Flask [8] and
is supported with a PostgreSQL database. The following subsections present the significant
changes present in the second version of Sifu, which concentrate on the data model and user
interface.

3.1 Data Model
Sifu v2 aims to redesign the previous version [3] to accommodate an intrinsic and richer layer
of gamification rather than only awarding points for correctly solving a challenge presented in
an external leaderboard and giving the platform a more formative direction. To this end, it
explores the concept of game rooms from an organizational and gameful perspective. Firstly,
rooms represent checkpoints of the learning path a player must complete before proceeding
to another. Lastly, rooms display the active players solving the challenges simultaneously,
track the best performers using a leaderboard, and reward players on successful completion.

Consequently, the data model has been re-implemented to achieve these goals. The most
important model components are the following.

User represents both administrators and players. Each player has experience points, levels,
badges, medals, and a wallet containing coins. Moreover, they have a public profile
containing the username, avatar, level, medals, and badges.

Room has a set of generally related challenges to be solved (e.g., the same vulnerability or
project). Platform administrators create rooms that can be either of the type: “open”,
“accessed by invite”, or “locked by password/access code”. Completing a room gives the
player one or more rewards, possibly unlocking another room directly (i.e., providing
an access code) or indirectly (i.e., achieving a level of experience that enables access to
the room). Each room has an internal leaderboard sorted in descending order by the
number of solved challenges and, in case of tie, in ascending order of shortest solving
time. Furthermore, players can also create duel rooms by using coins. These rooms are
open to a limited amount of players, who should pay an established entry fee and run
until one of the participants finalizes all challenges. Such participant collects the sum of
coins paid by all participants.

Challenge is the educational unit of Sifu. The traditional Sifu challenges are projects that
contain one or more vulnerabilities, which ask the player to rewrite the code keeping the
same functionality but eliminating existing vulnerabilities and following secure coding
guidelines and secure software development best practices. Quizzes are the other type
of challenge supported in Sifu. Challenges contain all information and necessary files
for the presentation of the task to the player as well as its evaluation by the automated
assessment module and hint generation by the artificial intelligence coaching module.
Although challenges can only be accessed through rooms, a pre-association to a room is
not mandatory. Challenges left disconnected are randomly selected for duel rooms when
these are started. Any challenge can reward the player on completion, independently of
the room.

Hint belongs to a challenge and defines the name, description, and cost (in coins) of the
hints generated by the intelligent coach, according to its priority in the ranking of secure
coding guidelines, as presented in Gasiba et al. [5]. Actual hints are generated on players’
request, and they can opt to buy or not the hint.

ICPEC 2023



5:6 Sifu Reloaded

Leaderboard holds the name, sorting metric (e.g., points and coins), context (global or
room-scoped), and reset interval of the leaderboards. Being on top-3 of a leaderboard
awards the player a medal at each reset.

Reward is a virtual item given to a player for completing a room or challenge or leveling
up. SifuV2 includes four types of rewards, namely coins, experience points, badges, and
access codes. For the first two, an amount should be set.

Question and Answer enable players to submit clarification requests about challenges and
administrators to answer them, respectively.

3.2 User Interface
The user interface (UI) is a single-page web application developed in Vue 3 with TypeScript,
using Tailwind CSS [6] – a utility-first CSS framework packed with several classes that can
be composed to build any design directly from the markup. An additional free and open-
source Tailwind CSS component library – daisyUI [10] – has been applied to obtain a more
characteristic design line. The UI colors, with dark and light themes, follow the company’s
brand guidelines. Non-authenticated users share the views for registration, email verification,
request a password reset, reset password, and signing in. These pages are identical, containing
a dojo background, a light/dark theme switch on the screen’s bottom-left, and a centered
card with the corresponding form. Authentication/authorization is based on access and
refresh JSON Web Tokens (JWTs); the former is part of the managed state, whereas the
latter is stored in local storage. The global state is managed through Vuex [1], a state
management pattern. The library serves as a centralized store for all the components in an
application, with rules ensuring that the state can only be mutated predictably.

Logged-in users are either administrators or players, each having its separate SifuV2
environment. The administration side works similarly to a content management system and,
thus, has much in common with the characteristic UIs of those systems. A top navigation
bar with a togglable menu on the left, the notifications icon, and the user avatar on the
right. The content area has a paginated data table with an associated search box (right)
on resource listing views, while the details view has the associated resource form. The
administrators set up all the content available to the players, including the creation of the
rooms, the association of challenges to them, and the definition of rewards delivered on
the successful completion of such challenges. Moreover, they are also able to consult the
submissions, profiles, leaderboards, and all player activity, as well as to clarify doubts sent
by players about a challenge. Figure 1 shows the Activity Log view (i.e., listing view of the
events of Sifu v2 users) after clicking the zoom-in button to check the details of an evaluated
submission.

The player’s dashboard consists of a grid of cards corresponding to rooms. Each card con-
tains the room name and description, an indication of the status relative to the authenticated
user, and deck-like visualization of the avatars of at most three randomly selected users who
are active in the room (with an indication of the total active users in the room). The player
can search a specific room using the search box and hide/show open, closed, completed, and
locked rooms. One distinctive aspect of the player environment is that the navigation bar
is located on the left rather than on top. This navigation bar can be collapsed to prevent
distraction and give extra space.

The Challenge Solving view in Figure 2 has the look and feel of a traditional (simple)
code editing application. On the left, the workspace files are presented as a file tree. On the
bottom is a simple console emulator where the learner can run several predefined commands
and see their outcome (e.g., submit to send code for evaluation). The content area has a code



J. C. Paiva, R. Queirós, and T. Gasiba 5:7

Figure 1 Activity Log view on the administrator panel, with details of an evaluated submission
opened in a modal box.

editor based on Monaco Editor [7], the editor that powers Visual Studio Code, displaying the
contents of the active file and tabs for other opened files. On the top of the screen are buttons
(from left to right) to change editor settings, report the challenge, reset workspace files, and
submit the current files for evaluation. A vital component of this view is the Sifu Master.
This animated avatar interacts with the player, providing guidance through hints (when
explicitly requested) or presenting the UI tour. The avatar is a CSS3 animated SVG, which
can be moved to any position on the screen, with several animations executed depending on
the action performed, including looking right/left, blinking right/left eye, waving right/left
arm, boiling hat, talk, panic, greeting with the arm, celebrate, angry, and wind on beard
and mustache.

Figure 2 Challenge Solving view on the players environment.

ICPEC 2023



5:8 Sifu Reloaded

4 Conclusion

Cybersecurity awareness is more and more inevitable in this digital world. The need for
professionals with the required knowledge and skills to defend against cyber threats is a
top priority in big companies and any digitalized company.

This paper presents the second version of Sifu, a re-design of a cybersecurity open-source
system with automated assessment and coaching into a gamified web-based cybersecurity
training platform. In addition to gamifying the platform, SifuV2 implements the server-side
to adhere to more scalable, interoperable, and flexible web development standards and a
new user interface with a cleaner, more attractive, interactive, and independent design. The
changes to the interface reflect the author’s experience in the field and the design of gamified
platforms.

We expect to conduct an online open experiment to evaluate this platform’s usability
and learning effectiveness in future work. These aim to demonstrate that this platform can
improve the cybersecurity awareness of participants while having a smooth and engaging
experience.

References
1 Vue JS Community. What is Vuex? – Vuex, 2023. Accessed on May 2nd, 2023. URL:

https://vuex.vuejs.org.
2 Ericsson. CodeChecker, 2023. Accessed on May 2nd, 2023. URL: https://codechecker.

readthedocs.io.
3 Tiago Espinha Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque. Sifu - a cybersecurity

awareness platform with challenge assessment and intelligent coach. Cybersecurity, 3(1):24,
December 2020. doi:10.1186/s42400-020-00064-4.

4 T. Espinha Gasiba, K. Beckers, S. Suppan, and F. Rezabek. On the requirements for serious
games geared towards software developers in the industry. In 2019 IEEE 27th International
Requirements Engineering Conference (RE), pages 286–296, Los Alamitos, CA, USA, September
2019. IEEE Computer Society. doi:10.1109/RE.2019.00038.

5 Tiago Gasiba, Ulrike Lechner, Jorge Cuellar, and Alae Zouitni. Ranking Secure Coding
Guidelines for Software Developer Awareness Training in the Industry. In Ricardo Queirós,
Filipe Portela, Mário Pinto, and Alberto Simões, editors, First International Computer
Programming Education Conference (ICPEC 2020), volume 81 of OpenAccess Series in
Informatics (OASIcs), pages 11:1–11:11, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. doi:10.4230/OASIcs.ICPEC.2020.11.

6 Tailwind Labs. Tailwind CSS, 2023. Accessed on May 2nd, 2023. URL: https://tailwindcss.
com.

7 Microsoft. Monaco – The Editor of the Web, 2023. Accessed on May 2nd, 2023. URL:
https://microsoft.github.io/monaco-editor/.

8 Pallets. Welcome to Flask, 2023. Accessed on May 4th, 2023. URL: https://flask.
palletsprojects.com.

9 SonarSource SA. SonarQube, 2023. Accessed on May 2nd, 2023. URL: https://docs.
sonarqube.org/latest.

10 Pouya Saadeghi. daisyUI – Tailwind CSS Components, 2023. Accessed on May 2nd, 2023.
URL: https://daisyui.com.

https://vuex.vuejs.org
https://codechecker.readthedocs.io
https://codechecker.readthedocs.io
https://doi.org/10.1186/s42400-020-00064-4
https://doi.org/10.1109/RE.2019.00038
https://doi.org/10.4230/OASIcs.ICPEC.2020.11
https://tailwindcss.com
https://tailwindcss.com
https://microsoft.github.io/monaco-editor/
https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://docs.sonarqube.org/latest
https://docs.sonarqube.org/latest
https://daisyui.com


A Gamified Educational Escape Rooms’ Framework
for Computer Programming Classes
Ricardo Queirós # Ñ

School of Media Arts and Design, Polytechnic Institute of Porto, Portugal
CRACS – INESC TEC, Porto, Portugal

Carla Pinto #

School of Engineering & CMUP, Polytechnic Institute of Porto, Portugal

Mário Cruz #

School of Education & inED, Polytechnic Institute of Porto, Portugal

Daniela Mascarenhas #

School of Education & inED, Polytechnic Institute of Porto, Portugal

Abstract
This paper presents a study on the use of gamified educational escape rooms to foster the teaching-
learning process of computer programming, based on an user type taxonomy. The ultimate goal of
this work is to identify and validate the most suitable gamification elements and mechanics for each
user profile, providing case studies that illustrate their implementation. The main contribution of
this work is to guide the design process of educational escape rooms in any domain, by considering
the needs, preferences, and motivations of different user types.

2012 ACM Subject Classification Social and professional topics → Computer science education

Keywords and phrases Escape Room, Gamification, Computer Programming, User Type Taxonomy

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.6

Category Short Paper

Funding This work of M. Cruz and D. Mascarenhas is funded by National Funds through the FCT
- Fundação para a Ciência e a Tecnologia, I.P., under the scope of the project UIDB/05198/2020
(Centre for Research and Innovation in Education, inED).
The author C. Pinto was partially supported by CMUP, which is financed by national funds
through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project with reference
UIDB/00144/2020.
All authors would like to thank Erasmus + MATH-DIGGER project, ref 2021-1-PT01-KA220-HED-
000032234.

1 Introduction

Teaching computer programming is a complex task that requires a deep understanding of
programming concepts, problem-solving skills, and, as in any other domain, a lot of practice.
However, traditional approaches to teaching programming often fail to engage learners,
leading to high dropout rates and low learning outcomes [15, 2].

In order to address this issue, new approaches have emerged, such as gamification and
educational escape rooms, with the aims to make learning programming more engaging,
effective and fun. Gamification involves using game design elements and mechanics in
non-game contexts, such as education, to enhance motivation, engagement, and learning
outcomes. On the other hand, educational escape rooms are immersive learning environments
that simulate real-world scenarios, requiring learners to solve puzzles, complete tasks, and
collaborate with others to achieve a common goal [7].

© Ricardo Queirós, Carla Pinto, Mário Cruz, and Daniela Mascarenhas;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 6; pp. 6:1–6:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ricardoqueiros@esmad.ipp.pt
http://www.ricardoqueiros.com
https://orcid.org/0000-0002-1985-6285
mailto:cap@isep.ipp.pt
https://orcid.org/0000-0002-0729-1133
mailto:mariocruz@ese.ipp.pt
https://orcid.org/0000-0001-8894-8821
mailto:daniela@ese.ipp.pt
https://orcid.org/0000-0001-5854-536X
https://doi.org/10.4230/OASIcs.ICPEC.2023.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


6:2 A Gamified Educational Escape Rooms’ Framework

By combining gamification and educational escape rooms, educators can create an
interactive and dynamic learning experience that caters to the diverse needs of learners. By
using gamification elements and mechanics (e.g. points, badges, leaderboards), educators
build a sense of achievement and recognition for learners, while also fostering healthy
competition and collaboration. Additionally, educational escape rooms provide an engaging
way for learners to apply their programming knowledge in a practical setting, enhancing
their problem-solving skills and critical thinking skills.

In this paper, we present a study on the use of gamified educational escape rooms
(GEER) to foster the teaching-learning process of computer programming based on the User
Type Hexad Taxonomy of Andrzej Marczewski [10]. For each user type profile, a set of
gamification elements and mechanics are provided and applied in case studies related with
the computer programming domain. The contribution of this work is to guide the design
process of educational escape rooms in any domain by considering the needs, expectations,
and motivations of different user types.

The rest of the article is structured in three sections: the second section presents related
work on educational escape rooms, user type taxonomies and gamification frameworks. The
following section present a GEER framework based on the User Type Hexad Taxonomy.
Hence, for each user type profile a set of gamification components are assigned and deployed
in a specific case study within the realm of the computer programming domain. Finally, the
contributions of this article to the scientific community are presented as well as the future
work.

2 Related work

This paper aims to present a study on the use of GEER to promote computer programming
learning, based on Andrzej Marczewski’s Hexad taxonomy of user types [10]. The work seeks
to identify the most suitable gamification components for each user profile. With these ideas
in mind, this section explores the concepts of educational escape rooms, gamification and
user type taxonomies in order to give a richer context to the selected educational approaches,
in order to overcome students’ difficulties in the computer programming learning.

2.1 Gamification
With the growing demand for computer programming professionals, teaching programming
has become increasingly important at different educational levels. Gamification has proven
to be a promising approach to make learning programming more attractive for students.
Gamification is defined as the use of game elements and mechanics in non-game contexts in
order to increase user motivation in several activities [6].

By applying gamification to teaching programming, educators can create a more engaging
and challenging environment, making the learning process more interesting. Gamification
frameworks, such as Octalysis [4] and Hexad [10], can be used to guide the gamification
design process and ensure that the chosen game components are aligned with educational
goals and, most important, with the student preferences [13].

In fact, some research stated the effectiveness of gamification in teaching programming. A
recent study by Cai et al. [3] presented a systematic review of the literature on gamification
in education, showing that gamification can lead to significant improvements in student
performance and engagement with content. Furthermore, the use of games and gamification
elements in programming education can contribute to the development of cognitive skills,
such as critical thinking and problem solving [12].



R. Queirós, C. Pinto, M. Cruz, and D. Mascarenhas 6:3

2.2 Educational Escape Rooms
Educational escape rooms are immersive learning environments that simulate real-world
situations in which students work in teams to solve problems and complete tasks in a limited
amount of time. These escape rooms, typically used for entertainment games, have been
adapted for educational purposes as a way to engage students in learning in an interactive
and playful way. This approach has received attention from educational researchers, who
have investigated how educational escape rooms can be used to promote learning of specific
content and develop skills such as teamwork, problem-solving, decision-making, and critical
thinking [7].

Some studies have shown that educational escape rooms can be effective in engaging
students and enhancing their cognitive and social skills [12]. Moreover, the use of gamification
elements in educational escape rooms can further increase student engagement [3].

However, the design and implementation of educational escape rooms can be challenging
for educators. Not only for the lack of knowledge on this domain as well the selection of the
best tools to do it. Regardless of the tooling set, the most important is that the experience
provides students with an interesting and meaningful challenge, which in turn promote
the acquisition of specific knowledge and skills in students [9]. It is also necessary that
educational escape rooms are carefully planned, so that the proposed tasks and challenges
are aligned with the desired learning objectives [14].

2.3 User types taxonomies
User types taxonomies are frameworks that classify users based on their psychological
profiles and behavioral tendencies. These frameworks have been widely used in various
fields, including human-computer interaction and marketing, to help designers understand
their target audience and create more engaging and effective products [11]. One of the
most well-known user type taxonomy is the Hexad framework [10] developed by Andrzej
Marczewski, which categorizes users into six types based on their motivations and preferences
in software applications:

Achievers: users who seek mastery, completion, and recognition of their accomplishments;
Socializers: users who seek social interaction, collaboration, and feedback from others;
Philanthropists: users who seek to help others, contribute to a cause, and make a
positive impact;
Free Spirits: users who seek novelty, freedom, and self-expression;
Players: users who seek competition, challenge, and rewards;
Disruptors: users who seek to break the rules, challenge authority, and explore alternative
solutions.

Other popular user type taxonomies include the Bartle Taxonomy of Player Types [1], the
Self-Determination Theory of Motivation [5], and the Big Five Personality Traits [8]. These
frameworks provide valuable insights into how users interact with software applications and
can enrich the design process to create more personalized experiences.

3 GEER framework

This section presents a framework for GEER based on the user type Hexad taxonomy
(Figure 1). For each identified user profile, we present the most suitable gamification
components and apply them in a specific computer programming case study comprising a
storyline and a gameplay.

ICPEC 2023



6:4 A Gamified Educational Escape Rooms’ Framework

Figure 1 User type HEXAD.

3.1 Achiever – Cybercrime Investigation
The Achiever is motivated by competition and achievement. They are likely to enjoy an
escape room scenario that involves a race against the clock, where they can compete against
other teams to see who can escape the room fastest. The room could have multiple paths to
escape, allowing the Achiever to choose the most challenging path to prove their skills.

For the achiever user type the most important gamification elements are:
Challenges and quests to encourage mastery and accomplishment;
Progress bars and badges to track accomplishments;
Leaderboards to foster competition and drive motivation.

The case study chosen for this user type is a Cybercrime Investigation. In this story,
the user is a detective investigating a cybercrime. The suspect has locked the detective in
their own office, and the user should escape the room to continue their investigation and
catch the suspect.

In terms of gameplay, the room is designed to look like a typical detective’s office, with
clues and puzzles hidden throughout the room related to the cybercrime investigation. The
puzzles are designed to test the player’s knowledge of computer programming concepts, such
as coding languages, data structures, and algorithms. For example, one puzzle could involve
decoding a message written in a programming language, while another could require the
player to debug a code snippet.

In order to add a competitive element to the achiever profile, the room could have multiple
paths to escape, each with increasing levels of difficulty. The user can choose the most
challenging path to prove their skills and compete against other users who have completed
the room. The room could have a leaderboard displaying the fastest escape times and highest
scores, encouraging users to come back and beat their previous records.

3.2 Socializer – Hackathon
The socializer is motivated by social interaction and collaboration. They would enjoy an
escape room scenario that requires teamwork and communication, with puzzles that can only
be solved through cooperation. The room could have a theme that encourages socializing,
such as a murder mystery or a haunted house, to make the experience more immersive.



R. Queirós, C. Pinto, M. Cruz, and D. Mascarenhas 6:5

For the socializer user type the most important gamification elements are:
Collaborative and social challenges that promote teamwork;
Interactive leaderboards that allow for social comparison and recognition;
Community features such as forums, chats, and social media integration (likes, following
friends and sharing resources).

In order to apply some of these elements the case study will be a Hackathon. In
this story, the user is a member of a team participating in a hackathon, a collaborative
programming competition. The team has been locked in a room and must escape before the
time runs out in order to submit their project and win the competition.

The room is designed to look like a typical hackathon workspace, with computer worksta-
tions and programming equipment scattered throughout the room. The puzzles are designed
to test the player’s knowledge of computer programming concepts, such as coding languages,
data structures, and algorithms, but also require teamwork and communication to solve. For
example, one puzzle could require the player to share their screen with a team member and
work together to debug a code snippet, while another could involve coordinating multiple
players to input different pieces of code into a shared program. To encourage socializing, the
room could also have elements such as a shared whiteboard or a chat system, where players
can collaborate and communicate with each other.

Overall, the hackathon theme would make the experience more immersive and exciting,
while the collaborative puzzles would promote socializing and teamwork.

3.3 Philanthropist – Humanitarian Aid

The philanthropist is motivated by helping others and making a positive impact. They would
enjoy an escape room scenario that involves solving puzzles for a good cause, such as finding
a cure for a disease or stopping a disaster from occurring. The room could be designed to
look like a laboratory or research facility to reinforce the sense of purpose.

For the philanthropist user type the most important gamification elements are:
Charitable donation or volunteerism opportunities as rewards for achievement;
Sharing or promoting positive social impact on social media;
Offering virtual gifts.

In order to apply some of these elements the case study will be a Humanitarian Aid.
In this story, the user is a member of a team tasked with providing humanitarian aid in
a crisis-stricken region. However, the aid shipment has been blocked and the player must
escape the room to find a way to get the aid through and help those in need.

In this case study, the room is designed to look like a logistics office, with maps, shipping
records, and other aid-related documents scattered throughout the room. The puzzles are
designed to test the player’s knowledge of computer programming concepts, such as coding
languages, data structures, and algorithms, but also require problem-solving and critical
thinking skills.

For example, one puzzle could require the player to analyze shipping records and optimize
delivery routes using algorithms, while another could involve debugging a program used to
track the shipment.

To promote philanthropy, the room could also have elements such as a live feed showing
images and videos of the crisis-stricken region, and information about the impact that the
aid will have on the local population.

ICPEC 2023



6:6 A Gamified Educational Escape Rooms’ Framework

Overall, the humanitarian aid theme would make the experience more emotionally
engaging, while the programming puzzles would promote critical thinking and problem-
solving skills.

3.4 Free Spirit – Virtual Reality Adventure
The Free Spirit is motivated by creativity and self-expression. They would enjoy an escape
room scenario that allows them to use their imagination to solve puzzles, with a variety of
open-ended challenges that can be tackled in different ways. The room could have a theme
that allows for self-expression, such as an art gallery or a music studio.

For the free spirit user type the most important gamification elements are:
Creative challenges that allow for self-expression and experimentation;
Non-linear or open-ended gameplay that encourages exploration and discovery;
Self-guided quests that allow players to set their own goals and direction.

For this type of user the case study selected is related with a Virtual Reality Adventure.
Here, the user is a virtual reality game developer who has been transported into their own
game world by a glitch. The user must escape the game world by solving programming
puzzles and fixing the code in order to return to the real world.

The room is designed to look like a virtual reality environment, with futuristic technology
and gaming equipment. The puzzles are designed to test the player’s knowledge of computer
programming concepts, but also require creativity and imagination. For example, one puzzle
could involve programming a character to navigate through a maze-like environment, while
another could require the player to design and code a new game feature on the spot. To
promote free-spiritedness, the room could have elements such as open-ended puzzles that
can be solved in multiple ways, or a “sandbox” programming environment where the player
can experiment and create without limitations.

Overall, the virtual reality theme would make the experience more exciting, while the
programming puzzles would promote problem-solving and critical thinking skills in a fun
and imaginative way.

3.5 Player – Hacking Adventure
The player user type is motivated by the thrill of the game and the experience of playing.
They would enjoy an escape room scenario that is designed like a video game, with a clear
objective and challenges that gradually increase in difficulty. The room could have a futuristic
or sci-fi theme, with high-tech gadgets and special effects to enhance the gaming experience.

The Player type feels comfortable with the following gamification elements:
Point systems and rewards for achievements;
Unlockable content and in-game purchases for added benefits;
Competitive gameplay with leaderboards and multiplayer options.

In this realm, a hacking adventure was the case study selected. The user is a hacker
who has been recruited by a secret organization to complete a series of hacking challenges.
The user must escape the room by solving programming puzzles and completing hacking
tasks in order to prove their skills and earn the organization’s trust.

The room is designed to look like a hacker’s lair, with computer workstations and hacking
tools. The puzzles are designed to test the player’s knowledge of computer programming
concepts, but also require quick thinking and problem-solving skills. For example, one
puzzle could require the player to hack into a computer system using a specific programming



R. Queirós, C. Pinto, M. Cruz, and D. Mascarenhas 6:7

language, while another could involve decoding a complex encryption algorithm. To promote
the player’s motivation for competition and rewards, the room could have elements such as a
leaderboard showing the player’s progress and a reward for completing all the challenges.

3.6 Disruptor – Cybersecurity Breach
The disruptor user type is motivated by the desire to challenge the status quo and push
boundaries. This user type seeks to break down existing barriers and explore new possibilities,
often by challenging conventional wisdom and advocating for change.

In this profile, users will be satisfied with the following gamification elements:
Challenging gameplay that requires strategic thinking and creativity;
Unique and unconventional gameplay elements that break from traditional game design;
Risk-taking opportunities, such as high-stakes challenges or timed events.

In this storyline, the user is a cybersecurity expert who has been called in to investigate a
major security breach at a government agency. The user must escape the room by solving
programming puzzles and detecting vulnerabilities in the agency’s computer systems in order
to prevent further damage and restore security.

The room is designed to look like a government agency’s computer center, with advanced
technology and equipment related to cybersecurity investigations. The puzzles are designed
to test the player’s knowledge of computer programming concepts, but also require strategic
thinking and creativity. For example, one puzzle could require the user to analyze a system’s
code and detect any vulnerabilities, while another could involve creating a program to block
a hacker’s access. To promote disruptive thinking, the room could have elements such as
fake news articles or social media posts related to the security breach displayed on the walls.
The puzzles could be designed to encourage users to think creatively and outside the box,
challenging them to find innovative solutions to the problems they encounter.

4 Conclusion

This study has demonstrated the potential of gamified educational escape rooms as a valuable
tool for enhancing the teaching-learning process of computer programming. By using a
user type taxonomy, the study has identified the motivations, preferences, and needs of
different user profiles and provided case studies that illustrate the successful implementation
of gamification elements and mechanics for each profile.

The results of this study have practical implications for the design and implementation
of educational escape rooms in any domain. By considering the unique characteristics of
each user type, designers and educators can create tailored gamification experiences that are
engaging, effective, and inclusive. Overall, this paper contributes to the growing body of
research on gamification in education and highlights the importance of user-centered design
in the development of educational technologies.

References
1 Richard A Bartle. Hearts, clubs, diamonds, spades: Players who suit muds. Journal of MUD

research, 1(1), 1996.
2 Ashwin Basawapatna, Ashish Tewari, and Thomas Moher. Identifying and addressing mis-

conceptions about programming: A review of programming knowledge and student errors.
Computer Science Education, 27(2-3):78–114, 2017.

ICPEC 2023



6:8 A Gamified Educational Escape Rooms’ Framework

3 Wei Cai, Xiao Ma, and Chin-Lung Lai. Gamification in education: A systematic review.
Journal of Educational Technology Development and Exchange (JETDE), 13(1):1–22, 2020.

4 Yu-kai Chou. Actionable gamification: Beyond points, badges, and leaderboards. Octalysis
Media, 2015.

5 Edward L Deci and Richard M Ryan. Self-determination theory: A macrotheory of human
motivation, development, and health. Canadian Psychology/Psychologie canadienne, 49(3):182–
185, 2008.

6 Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. From game design elements
to gamefulness: Defining “Gamification”. In Proceedings of the 15th International Academic
MindTrek Conference: Envisioning Future Media Environments, pages 9–15. ACM, 2011.

7 Fernando Gamboa-Rodríguez, Juan Nicolás García-Sánchez, Eloy García-Sánchez, and Arturo
Córdoba-Rangel. Educational Escape Rooms in Higher Education: A Systematic Literature
Review. Education Sciences, 11(3):114, 2021. doi:10.3390/educsci11030114.

8 Lewis R Goldberg. The structure of phenotypic personality traits. American psychologist,
48(1):26–34, 1993.

9 Chin-Lung Lai, Gwo-Dong Chen, and Rong-Chi Shih. Applying the escape room game
approach to course design: A case study of a university english course. Computers & Education,
150:103839, 2020.

10 Andrzej Marczewski. User types. Retrieved from https://www.gamified.uk/user-types/,
2015.

11 John D. McCarthy, Kevin McCarthy, and Barry Smyth. User Type Taxonomies for Personalised
Interactive Systems. In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems. ACM, 2022. doi:10.1145/3450439.3480504.

12 Nidhi Niyati, Pranav Awati, Neelam V Alai, and Ritu Jain. Escape rooms as an interactive
learning tool: A systematic review. International Journal of Emerging Technologies in Learning
(iJET), 16(5):223–240, 2021.

13 Ricardo Alexandre Queiros, Mário Pinto, Alberto Simões, and Carlos Filipe Portela. A
primer on gamification standardization. In Filipe Portela and Ricardo Queirós, editors, Next-
Generation Applications and Implementations of Gamification Systems, pages 1–13. IGI Global,
2022. doi:10.4018/978-1-7998-8089-9.ch001.

14 Brittany Shapiro and Joshua Levine. The gamification of learning: A meta-analysis. Journal
of Educational Psychology, 111(5):757–772, 2019.

15 Joke Voogt, Ola Erstad, Chris Dede, and Punya Mishra. Challenges to learning and schooling
in the digital networked world of the 21st century. Journal of Computer Assisted Learning,
32(3):200–213, 2016.

https://doi.org/10.3390/educsci11030114
https://www.gamified.uk/user-types/
https://doi.org/10.1145/3450439.3480504
https://doi.org/10.4018/978-1-7998-8089-9.ch001


A Systematic Review of Formative Assessment to
Support Students Learning Computer
Programming
Jagadeeswaran Thangaraj #

School of Computing, Dublin City University, Ireland

Monica Ward #

School of Computing, Dublin City University, Ireland

Fiona O’Riordan #

Teaching Enhancement Unit, Dublin City University, Ireland

Abstract
Formative assessment aims to increase student understanding, instructor instruction, and learning
by providing feedback on students’ progress. The goal of this systematic review is to discover trends
on formative assessment techniques used to support computer programming learners by synthesizing
literature published between 2013 and 2023. 17 articles that were peer-reviewed and published in
journals were examined from the initial search of 197 studies. According to the findings, all the
studies were conducted at the higher education level and only a small number at the secondary
school level. Overall, most studies found that motivation, scaffolding, and engagement were the
three main goals of feedback, with less research finding that metacognitive goals were the intended
outcomes. The two techniques for facilitating formative feedback that were used most frequently
were compiler or testing based error messages and customised error messages. The importance of
formative feedback is highlighted in the reviewed articles, supporting the contention that assessments
used in programming courses should place a heavy emphasis on motivating students to increase
their level of proficiency. This study also suggests a formative assessment that employs an adaptive
strategy to evaluate the ability level of the novice students and motivate them to learn programming
to acquire the necessary knowledge.

2012 ACM Subject Classification Applied computing → Education; Social and professional topics
→ Computing education; Social and professional topics → Student assessment

Keywords and phrases Automatic assessment, Computer programming, Formative assessment,
Higher education, Novice programmer, Systematic review

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.7

1 Introduction

Any course in a higher education institution worldwide that is concerned with software
development requires programming modules. By introducing syntax and semantics, these
modules aim to impart fundamental knowledge of programming languages [58]. Novice
programmers are those taking their first computer programming courses or those with no
prior programming experience. Independent components of programming will increase the
difficulties of novices [42, 32]. Novice programmers are unable to interpret program code
and have a lack of understanding of programming principles [27]. Although the computer
science courses are in high demand, introductory programming modules frequently have
dropout and failure rates as high as 50% [36, 34]. These modules play an important role
to make them comfortable in continuing their education in computing [46]. Their interest
in programming will rise once pedagogical methods motivate their confidence, and dropout
rates will reduce [36].

© Jagadeeswaran Thangaraj, Monica Ward, and Fiona O’Riordan;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 7; pp. 7:1–7:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Jagadeeswaran.Thangaraj2@mail.dcu.ie
https://orcid.org/0000-0002-2721-0898
mailto:Monica.Ward@dcu.ie
https://orcid.org/0000-0001-7327-1395
mailto:Fiona.m.Oriordan@dcu.ie
https://orcid.org/0000-0002-0139-5169
https://doi.org/10.4230/OASIcs.ICPEC.2023.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


7:2 A Systematic Review of Formative Assessment

An essential component of education that promotes learning is assessment [48]. Addi-
tionally crucial for assisting and motivating their programming abilities are assessment and
feedback [57]. Formative assessment aims to increase student understanding, instructor
instruction, and learning by providing feedback on students’ progress[12]. Formative pro-
gramming assessment system evaluates student program submissions and provides timely
feedback [42]. The impact of feedback on learning and assessment is significant [55]. Form-
ative feedback is information given to a student with the goal of changing their way of
thinking or acting to enhance learning [50]. Formative assessment is one of the approaches
for effective programming learning [53]. To ensure that students receive the correct results,
the assessment and feedback systems must examine the programs’ small aspects and point
out any areas where mistakes were made by the students. Beyond assessment, it increases
novice programmers’ self-confidence and metacognitive awareness [41, 49, 29]. Additionally,
checking a participant’s knowledge depending on their prior attempts during the assessment
process is referred to as adaptive assessment [39]. It varies from typical assessment in that
each participant receives a separate set of questions instead of everyone receiving the same
set of questions [56]. This enables everyone to assess the knowledge at their own pace and
helps in assessing each element of the topic. While some systematic reviews have been
undertaken on automated assessments in computer programming, this study is interested in
knowing whether formative assessment is used to scaffold or encourage novice programmers
as feedback is essential to learning programming. It also examines any assessment system
that makes use of an adaptive strategy.

2 Related Works

Recent systematic literature reviews on assessment systems for programming courses tend
to concentrate on how useful they are for automatic assessment techniques [24, 40, 20]
or on the kind of feedback generated by assessment tools for evaluating programming
languages or programming paradigms [25, 9, 28]. Further, other research reviews examined
the assessment process, finding that it was primarily concentrated on advanced courses [35]
or other computing subjects [16]. Studies that use automatic assessment programming as
a pedagogical strategy typically focus solely on teaching and learning and do not examine
findings on inspiring or motivating novices. In summary, there are no studies that concentrate
on the formative assessment of introductory programming courses and no research reports
that motivate novice programmers. Since motivation, scaffolding, and metacognitive support
are important for learning programming modules, this research therefore examines formative
assessment methods in these areas.

Research Questions

This review of formative assessments for introductory programming is guided by the following
research questions:

RQ1: What is the purpose of the formative feedback techniques for programming languages
learning?
RQ2: What is the nature of the formative feedback techniques for programming languages
learning?
RQ3: Does the assessment method prioritize helping novices and influencing their
programming learning?



J. Thangaraj, M. Ward, and F. O’Riordan 7:3

Table 1 Key Search Terms.

Key
Concepts Search Terms

Computer
Programming

“novice computer programmers” or “computer programming”
or “programming skills” or “first year computer programming”
or “programming concepts” or “introductory programming” or
“automated system” or “Automated assessment”

Formative
Assessment

“formative feedback” or “error correction” or “learner confid-
ence” or “learner efficacy” or “adaptive assessment” or “com-
puter programming assessment system”

3 Research Methodology

More study, according to [14], is necessary to fully understand the inquiry process (formative
assessment) that takes place in a programming learning environment. In order to better
comprehend the current state of research, this study will examine recent articles that were
released between 2013 and 2023. This study used this time frame of the last 10 years because
the review topic is only applicable to contemporary studies [37]. This research was guided
by the following PICO question: “The impact of formative feedback to motivate novices
in learning introductory programming”. The What Works Clearinghouse Procedures and
Standards Handbook, Version 4.0, from the U.S. Department of Education’s Institute of
Education Sciences served as the process [33]. The five stages were as follows: (a) creating
the review methodology; (b) locating pertinent literature; (c) screening studies; (d) reviewing
articles; and (e) reporting findings. This study follows these stages to systematically review
the literature.

3.1 Data Sources and Search Strategies
The terms “Formative assessment” and “Computer programming” were broadly entered into
databases using the Title, Keyword, and Abstract search functions to look for published
publications between the years 2013 and 2023. Table 1 shows the alternative terms for the
key terms in the search. Academic Search Complete, ERIC Library, ACM, IEEE and Science
Direct were the databases combined. This research used search engines like Google Scholar,
ResearchGate, and Academia to find manuscripts [22]. Additionally, core conferences in
computer education such as SIGCSE, CompEd, ITiCSE, UKICER and ICPEC are taken
into account. 197 articles were found in the initial search results since 1998. Based on the
inclusion and exclusion criteria, these papers were evaluated at the title, abstract, and full
text levels. 17 articles were produced as a result out of 22, and they were coded for the
systematic review. As they concentrated on basic computer science, summative assessment,
or gaming techniques rather than clearly focusing on introductory programming, formative
assessment, or evaluation approaches, 5 articles were eliminated [51, 54, 43, 21, 15].

3.2 Inclusion and Exclusion Criteria
Each study must meet these screening requirements to be considered for this systematic
review: Computer programming and formative assessment are the article’s primary foci,
and its publication dates range from 2013 to 2023. Its publication type is original research
from peer-reviewed journals, and its research methodology includes both quantitative and
qualitative approaches with a clear methods section and results presentation. Its language

ICPEC 2023



7:4 A Systematic Review of Formative Assessment

Table 2 Inclusion and Exclusion Criteria.

Criterion Inclusion Exclusion

Timeframe 2013–2023
Prior to 2013 the focus in literature
prior to this time was primarily on
plagiarism.

Language English Non-English
Access Full-text availability only Only titles or abstracts available

Sample Novice programmers

Programming languages, Web design,
model development, advanced pro-
gramming, visual or scratch program-
ming

Type of
publication

Peer-reviewed, original research, con-
ference papers

Content that was not peer-reviewed
or original

Focus of
literature

Presenting findings that help design
an enhanced formative assessment
system for novice programmers (what
works and doesn’t work, and why).

Studies that present findings on sum-
mative assessment. Systems designed
for gifted programmers.

is English, and its emphasis on formative assessments that are being used to support their
programming learning. If a research study did not satisfy one or more of the inclusion
requirements that shows in Table 2, it was excluded.

4 Data Coding

Content analysis was used to find categorical themes from narrative data used to inform
research focus and feedback strategy. In order to draw logical conclusions, content analysis
aims to organize and interpret the data collected [6, 26]. The data gathering method across
all research was formative or automated assessment. All studies took place in either a higher
education or secondary context. All of the research was carried out globally, primarily in
Northern America and Europe.

4.1 Formative Feedback Purpose: (RQ1)
Using the main subcategories of formative feedback found in the chosen publications, authors
expand the following categories as they are interrelated in achieving learning goals [1].

4.1.1 Scaffold
The term “scaffolding” describes how an assessment plan might lead students through the
steps of a larger project, with the teacher acting as an experienced leader who offers advice
along the way [44]. The design of an assessment can scaffold the steps of a larger project by
asking students to complete the steps so they can receive formative feedback in between [19].

4.1.2 Motivation
A student’s motivation is defined as their “willingness, need, desire, and necessity to engage
in and be successful in the learning process” [52]. The two main categories of motivational
factors are intrinsic and extrinsic [2]. Self-motivation is another name for intrinsic motivation,
which is the strong desire to learn a subject. Extrinsic motivation occurs when actions are



J. Thangaraj, M. Ward, and F. O’Riordan 7:5

Table 3 Purpose of formative feedback.

Instructional strategies # Studies
Scaffolding 5 [17][5][45][8][29]
Motivation 6 [19][38][4][3][23][31]
Engagement 4 [18][7][11][13]
Metacognitive/ Self-efficacy 2 [29][49]

taken to satiate an outside demand or receive an outside-imposed reward. Instead of just
enjoying the activity or engaging in it for its own sake, they may be performed for their
instrumental benefit.

4.1.3 Metacognitive and Self-efficacy

Understanding how to learn, participating actively, and reflecting on that engagement is
defined as metacognition [10]. An individual’s belief in their own ability to do well is known
as self-efficacy [2]. For successful learning programming, metacognition and self-efficacy are
crucial abilities [30].

4.1.4 Engagement

Engagement promotes learning and forecasts students’ success [1]. It is a multidimensional
meta-construct with elements of behavior, emotion, and cognition. Formative assessment
helps students become more engaged in their learning and that makes them more confident
in the subject [47].

4.2 Nature of Formative Feedback: (RQ2)

Authors distinguish between the studies using feedback techniques tailored to engage students
in learning programming as follows:

4.2.1 Assessment Approach

This defines the assessment approaches to generate the feedback such as, self-assessment,
peer assessment, (semi-) automated assessment on programming assignment.

4.2.2 Feedback Types

It defines what type of feedback the tool or system provides such as, standard error messages,
customised error messages, testing report or grades.

4.2.3 Feedback Mechanism

It defines how the feedback is generated to notify such as unit testing, test cases, verification
and validation, guided instructions or directions of tests.

ICPEC 2023



7:6 A Systematic Review of Formative Assessment

Table 4 Nature of formative feedback.

# Studies Assessment
approaches Feedback types Feedback

Mechanisms

4 [5, 13, 17, 4] Automatic Test case reports
w/grade Automated testing

1 [18] Automatic Unit test results Automated testing

2 [3, 11] Automatic Verification report (Static) Verifier
generated

2 [31, 53] Peer Customised error
messages

Peer (Lecturer/
fellow) feedback

1 [29] Self Customised error
messages Rubric-based

3 [19, 38, 8] Automatic Standard error
messages Compiler

1 [49] Peer Customised error
messages Guided inquiry

2 [23, 7] Semi-
Automatic

Customised error
messages

Feedback about code
quality

1 [45] Semi-
Automatic

Customised error
messages Manual feedback

5 Results

5.1 Purpose of Formative Feedback (RQ1)
In order to determine the aim and different kinds of formative feedback strategies for learning
programming languages, authors examined the relevant research studies in order to get the
answers to the research questions. Overall, the majority of studies found that motivation,
scaffolding, and engagement were the purposes of feedback, with metacognitive purposes
being recognized in fewer studies (see Table 3). In general, the goal of all these studies is to
inspire students who are learning programming at various levels.

5.2 Feedback Strategies (RQ2)
Automated assessment was more commonly employed to generate feedback rather of using
other approaches. Customised error messages were provided for facilitating formative feedback
that were most frequently used in addition to automated testing results and compiler-based
standard error messages. They were customised by peer, manual feedback and rubric-based
feedback. Guided inquiry, feedback on the quality of the code, and chatbot interaction are
among the assessment mechanisms (see Table 4). In general, most systems offer customized
error messages to help students comprehend the errors they committed.

5.3 Novices’ Support (RQ3)
All of these studies generally aim to motivate students learning programming at different
stages. This analysis found that, with the exception of one, no studies have focused especially
on novices [45]. The assessment system that aids novices, however, makes use of Teaching
Assistants’ (TA’s) feedback rather than automatic feedback [45]. As a result, no automatic
formative feedback is primarily emphasizing novices to encourage their learning programming.



J. Thangaraj, M. Ward, and F. O’Riordan 7:7

6 Discussion

Formative assessment systems offer automatic formative feedback to students who submit
their solutions or programs. These systems use various technologies to provide this feedback.
Students can receive automatic formative feedback based on automated unit and system
tests in this system if the code is valid [18]; otherwise, they receive error messages so they
can change it. This system tested how well formative feedback connects with students of
diverse backgrounds and showed how it facilitated their learning of programming. Another
system [17] employed laboratory exercises were accompanied by automated test cases created
by the lecturer using solely free software testing tools that match industry standards in order
to provide students with formative feedback as they were working. The immediate feedback
and continued efforts to close the performance gap between actual and expected performance
were lauded by the students, and the efficacy was determined to be successful [17].

The autoCOREctor, a tool for automated student-centered assessment, was created to be
easily connected with learning management systems (LMSs)[5]. It encourages the development
of a problem-statement scaffold for programming assignments and a straightforward test
set with test cases to assist teachers in using it in diverse situations. Regarding the codes
they entered, which they must attempt several times to pass, students receive grades and
feedback. Because of this, the autoCOREctor’s feedback was helpful, easy to understand,
helped students improve their assignments, and increased their motivation. The work’s
drawback was that it was unclear whether it would be helpful for novice programmers or the
introductory programming module.

A study looked at Algo+ and EPFL, two automated evaluation methods for online
introductory programming courses [8]. Based on the discrepancy between the supplied
program and the referent solution that is the closest match, Algo+ delivers comments. This
distinction clarifies to the learner the processes to follow in order to arrive at the correct
response. The feedback given by the EPFL grader is based on test cases and a check style
process. The generated feedback educates students about the test case successes and failures
by displaying the program’s result and the anticipated output. The student’s understanding
of why the programs don’t provide the right responses even though they are syntactically
correct is improved by the feedback on the most well-liked incorrect programs.

Incorporating online coding tasks into formative assessment is examined in an article to
determine its practicality and efficacy [4]. Positive results from the experimental investigation
back up the use of online coding environments in introductory programming and algorithm
courses. It argues that formative rather than summative assessments enhance the learning
process for students. As tutoring systems, chatbots have been used in a variety of settings. A
system aims to use chatbots to teach basic CS concepts while increasing work completion and
engagement among students, especially female students [7]. Because they produce formative
feedback immediately at the task level and use the input to guide students toward learning
programming, chatbots are useful tools for formative feedback.

Another formative assessments technique is that formative evaluation is combined with
automatic source code verification and validation feedback [3]. With the use of this system,
formative assessments will be able to provide feedback on the verification outcomes. When
errors are discovered during the automatic verification phase, students will be given a
report, enabling them to both fix the errors and gain a deeper understanding of the code.
Similar system evaluated a library for automated assessments created especially for static
analysis [11]. The lecturer can personalize exercises, reuse verification, and modify the lesson
for each student using the library. It showed how flexible feedback on verification helps
students identify inefficient and incorrect code fragments and encourages them to adopt good
programming techniques.

ICPEC 2023



7:8 A Systematic Review of Formative Assessment

Guided inquiry learning (GIL), an illustration of an inductive collaborative learning
strategy. Students are expected to complete the learning objectives and provide their peers
and the instructor comments on the problem [31]. It showed how receiving peer feedback
improved their programming skills. Another system that used formative evaluation based on
peer code review caused students’ programming abilities to consistently improve [53]. Peer
code review and inspection is an effective strategy to ensure the high quality of a software
by methodically examining the source code. With the use of peer feedback, the students
were able to identify and correct their errors. Similarly, a study looked at how students
in introductory courses who are not majoring in computer science respond to evaluation
situations [45]. The automatic evaluation system was utilized with TA’s support. Because of
this, the manual’s (TA’s) input was useful but not always practical to access.

A framework for understanding the what, why, and how of formative assessment of
inroductory programming in K–12 computer science was developed in order to answer the
overall need for understanding formative assessment [19]. Thus, CS research on assessment
design and programming learning, particularly student misconceptions, has an impact on the
formative assessment questions’ design [19]. Another study focused on how repeat questions
can give students rapid feedback by using an internet platform called HERA [38]. It argues
that the formative feedback was important and helpful for computational thinking [38].
According to another study [23], suggestions about unit length, unit complexity, and code
duplication were the most beneficial to students. While this feedback does not help with the
assignment, it enhances understanding [23].

A study [29] looked at the role of self-assessment in computer programming. Interest
in learning is developing as a result of self-efficacy. The results of this study indicate that
formative self-assessment may improve students’ performance in an introductory programming
course. Exercises in self-assessment with a rubric might be beneficial for first-year students.
It was found that students who got comprehensive feedback on their learning were more
motivated than those who merely got a rubric-based evaluation. According to this study,
however, it was discovered that the self- assessment intervention had a practically significant
impact on students’ performance on programming projects. Another study [49] looked at the
effects of open-ended assessment on students learning introductory programming in terms of
performance and self-efficacy. Students who routinely completed the open-ended versions
had higher average self-efficacy scores and assignment marks, though not by a statistically
significant amount.

Because they can accommodate an endless number of students and submissions, Auto-
mated Testing and Feedback (ATF) systems were examined in this study to meet the
demand [13]. The learning process can be completed by the student by submitting a novel
answer and promptly receiving feedback. Feedback can address syntax errors, output accur-
acy, code performance, and if the code adheres to instructions exactly. The engagement and
learning behaviors of learners in massive open online course (MOOCs) are examined in this
study. This study found that code feedback is one of the most crucial aspects of MOOCs
for programming and that there might be a positive trend toward ATF users getting better
grades.

7 Conclusion

This systematic review revealed that most systems used customised feedback for formative
assessment which adds more scaffolding to support learners’ progression to the next level
[13, 19]. In these systems, if the code is correct, students can receive automatic formative



J. Thangaraj, M. Ward, and F. O’Riordan 7:9

feedback based on automated unit and system tests; if not, they receive error messages to
fix it out [18, 5]. Students praised the quick feedback and the ongoing drive to decrease
the performance gap between actual and intended performance, and the efficacy was rated
successful [17]. The study’s positive findings support the use of formative assessments
for introductory programming courses, and it makes the case that formative rather than
summative assessments improve student experience [4]. Verifier generated feedback enabled
the students to recognize and fix the errors using verification techniques [11, 3]. Students’
programming skills steadily increased because of formative assessment based on peer code
review [53, 31]. When an automated assessment system was incorporated with manual
feedback, the result was more beneficial, but it was not always realistically accessible [45].
Self-efficacy has attracted growing interest in learning. The findings of this study suggest
that formative self-assessment may enhance students’ performance in a course on basic
programming [49]. It was discovered that students who received granular feedback during
their learning were more motivated than those who only received evaluation using a rubric
and open-ended questions [29]. The positive is all these studies found the formative feedback
(customised or standard error messages) were helpful to motivate, scaffold, engage or self-assess
the learners in learning programming [23, 7, 29, 49, 45].

7.1 Limitations
However, only a few studies focused on novice learners and introductory programming
[29, 45, 8]. There is no clear evidence that these formative assessments were helpful in
motivating specifically the novice learners in programming assignments. By showing the
result of the program that was submitted and the anticipated output, the generated feedback
instructs students about the test case’s success or failure [8]. The work’s limitation was
that it did not say whether it was useful for novice programmers who were just starting out
or the introductory programming module [5]. Another limitation is that all these systems
assess the same questions to all students. It does not support students with different abilities.
Adaptive techniques are used in formative assessment to achieve its goals [56]. When a
student provides an erroneous response to a question, the system can progressively lead
the student through a discovery process that results in the proper solution, breaking down
complex concepts one step at a time [35]. When students fail, it aids in providing assistance
and encourages personalised learning [59].

7.2 Implications
This study provides an overall analysis of the formative assessment that underpins the
programming module in various educational settings. For several factors, including scaffold,
motivation, self-confidence, and engagement, enormous amounts of evidence was discovered.
The utilization of feedback techniques and student participation in formative assessment, we
discovered, had an impact. The findings of this review also suggest that several variables
may have an impact on the various formative assessment strategies. To better assist novice
programmers in learning programming, formative assessment needs to improve how it presents
error messages. We could not find any research that addressed formative assessment or the
use of feedback, despite the fact that these elements are probably crucial for inspiring novice
learners. There is also less support for several criteria including adaptive strategy, purely
because fewer research have looked into them. As a conclusion, this study recommends on
how to use an adaptive strategy in the process of formative assessment, in order to especially
motivate novices and boost their knowledge and confidence. Therefore, this study’s next work

ICPEC 2023



7:10 A Systematic Review of Formative Assessment

will design a formative assessment system that uses the adaptive strategy with enhanced
error messages to evaluate the ability level of the novice students and motivate them to learn
programming to acquire the necessary knowledge.

References
1 Elizabeth Acosta-Gonzaga and Aldo Ramirez-Arellano. Scaffolding Matters? Investigat-

ing Its Role in Motivation, Engagement and Learning Achievements in Higher Education.
Sustainability, 14(20), 2022. doi:10.3390/su142013419.

2 Francisca A. Adamopoulos. Learning Programming, Student Motivation, pages 1–10. Springer
International Publishing, Cham, 2019. doi:10.1007/978-3-319-60013-0_182-1.

3 Felipe I. Anfurrutia, Ainhoa Álvarez, Mikel Larrañaga, and Juan-Miguel López-Gil. Integrating
Formative Feedback in Introductory Programming Modules. IEEE Revista Iberoamericana de
Tecnologias del Aprendizaje, 13(1):3–10, 2018. doi:10.1109/RITA.2018.2801898.

4 Dhakshina Moorthy Anitha and Dhakshina Moorthy Kavitha. Online coding event as a form-
ative assessment tool in introductory programming and algorithmic courses —A exploration
study. Computer Applications in Engineering Education, 28:1580–1590, 2020.

5 Enrique Barra, Sonsoles López-Pernas, Álvaro Alonso, Juan Fernando Sánchez-Rada, Aldo
Gordillo, and Juan Quemada. Automated Assessment in Programming Courses: A Case Study
during the COVID-19 Era. Sustainability, 12(18), 2020. doi:10.3390/su12187451.

6 Mariette Bengtsson. How to plan and perform a qualitative study using content analysis.
NursingPlus Open, 2:8–14, 2016. doi:10.1016/j.npls.2016.01.001.

7 Luciana Benotti, Mara Cecilia Martnez, and Fernando Schapachnik. A Tool for Introducing
Computer Science with Automatic Formative Assessment. IEEE Transactions on Learning
Technologies, 11(2):179–192, 2018. doi:10.1109/TLT.2017.2682084.

8 Anis Bey, Patrick Jermann, and Pierre Dillenbourg. A Comparison between Two Automatic
Assessment Approaches for Programming: An Empirical Study on MOOCs. Journal of
Educational Technology & Society, 21(2):259–272, 2018. URL: http://www.jstor.org/stable/
26388406.

9 Sébastien Combéfis. Automated Code Assessment for Education: Review, Classification
and Perspectives on Techniques and Tools. Software, 1(1):3–30, 2022. doi:10.3390/
software1010002.

10 David T. Conley and Elizabeth M. French. Student Ownership of Learning as a Key Component
of College Readiness. American Behavioral Scientist, 58(8):1018–1034, 2014. doi:10.1177/
0002764213515232.

11 Pedro Delgado-Pérez and Inmaculada Medina-Bulo. Customizable and scalable automated
assessment of C/C++ programming assignments. Computer Applications in Engineering
Education, 28:1449–1466, 2020.

12 Suzanne W. Dietrich, Don Goelman, Jennifer Broatch, Sharon M. Crook, Becky Ball, Kimberly
Kobojek, and Jennifer Ortiz. Using Formative Assessment for Improving Pedagogy: Reflections
on Feedback Informing Database Visualizations. ACM Inroads, 11(4):27–34, November 2020.
doi:10.1145/3430766.

13 Hagit Gabbay and Anat Cohen. Investigating the effect of Automated Feedback on learning
behavior in MOOCs for programming. In Proceedings of the 15th International Conference
on Educational Data Mining, pages 376–383. International Educational Data Mining Society,
July 2022. doi:10.5281/zenodo.6853125.

14 Donn Randy Garrison. E-learning in the 21st century: A community of inquiry framework for
research and practice. Third Edition, October 2016. doi:10.4324/9781315667263.

15 Ashok Goel and David Joyner. Formative Assessment and Implicit Feedback in Online
Learning. In Proceedings of Learning with MOOCs III, Philadelphia, PA, 2016. URL:
https://www.davidjoyner.net/blog/formative-assessment-and-implicit-feedback-in-
online-learning/.

https://doi.org/10.3390/su142013419
https://doi.org/10.1007/978-3-319-60013-0_182-1
https://doi.org/10.1109/RITA.2018.2801898
https://doi.org/10.3390/su12187451
https://doi.org/10.1016/j.npls.2016.01.001
https://doi.org/10.1109/TLT.2017.2682084
http://www.jstor.org/stable/26388406
http://www.jstor.org/stable/26388406
https://doi.org/10.3390/software1010002
https://doi.org/10.3390/software1010002
https://doi.org/10.1177/0002764213515232
https://doi.org/10.1177/0002764213515232
https://doi.org/10.1145/3430766
https://doi.org/10.5281/zenodo.6853125
https://doi.org/10.4324/9781315667263
https://www.davidjoyner.net/blog/formative-assessment-and-implicit-feedback-in-online-learning/
https://www.davidjoyner.net/blog/formative-assessment-and-implicit-feedback-in-online-learning/


J. Thangaraj, M. Ward, and F. O’Riordan 7:11

16 Rubén González. ICE: An Automated Tool for Teaching Advanced C Programming. Interna-
tional Association for Development of the Information Society, 2017.

17 Peadar F. Grant. Formative test-driven development for programming practicals. AISHE-J:
The All Ireland Journal of Teaching and Learning in Higher Education, 9, 2017.

18 Beate Grawemeyer, John Halloran, Matthew England, and David Croft. Feedback and
Engagement on an Introductory Programming Module. CoRR, abs/2201.01240, 2022. arXiv:
2201.01240.

19 Shuchi Grover. Toward A Framework for Formative Assessment of Conceptual Learning in
K-12 Computer Science Classrooms. In Association for Computing Machinery, SIGCSE ’21,
pages 31–37, New York, NY, USA, 2021. doi:10.1145/3408877.3432460.

20 Sugandha Gupta and Anamika Gupta. E-Assessment Tools for Programming Languages: A
Review. In International Conference on Information Technology and Knowledge Management,
2018.

21 Thomas Hainey, Gavin Baxter, Julie Black, Kenneth Yorke, Julius Bernikas, Natalia
Chrzanowska, and Fraser McAulay. Serious games as innovative formative assessment
tools for programming in higher education. In ECGBL, 16th European Conference on
Games Based Learning, 6 - 7 October 2022, Lisbon, Portugal, June 2022. URL: https:
//www.academic-conferences.org/conferences/ecgbl/.

22 Jared Howland, Thomas Wright, Rebecca Boughan, and Brian Roberts. How Scholarly
Is Google Scholar? A Comparison to Library Databases. College & Research Libraries,
70:227–234, May 2009. doi:10.5860/crl.70.3.227.

23 Julian Jansen, Ana Oprescu, and Magiel Bruntink. The impact of automated code quality
feedback in programming education. In Post-proceedings of the Tenth Seminar on Advanced
Techniques and Tools for Software Evolution (SATToSE), volume 210, 2017.

24 Maria Kallia. Assessment in Computer Science courses: A Literature Review. In King’s
College London, 2017.

25 Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. A Systematic Literature Review of
Automated Feedback Generation for Programming Exercises. ACM Transactions on Computing
Education, 19:1–43, September 2018. doi:10.1145/3231711.

26 Barbara Kitchenham and Stuart Charters. Guidelines for performing Systematic Literature
Reviews in Software Engineering. Keele University and University of Durham technical report,
2, January 2007.

27 Melisa Koorsse, Charmain Cilliers, and André P. Calitz. Programming assistance tools to
support the learning of IT programming in South African secondary schools. Comput. Educ.,
82:162–178, 2015.

28 Nguyen-Thinh Le. A Classification of Adaptive Feedback in Educational Systems for Program-
ming. Systems, 4(2), 2016. doi:10.3390/systems4020022.

29 Alex Lishinski and Aman Yadav. Self-evaluation Interventions: Impact on Self-efficacy and
Performance in Introductory Programming. ACM Transactions on Computing Education
(TOCE), 21:1–28, 2021.

30 Dastyni Loksa, Lauren Margulieux, Brett A. Becker, Michelle Craig, Paul Denny, Raymond
Pettit, and James Prather. Metacognition and Self-Regulation in Programming Education:
Theories and Exemplars of Use. ACM Trans. Comput. Educ., 22(4), September 2022. doi:
10.1145/3487050.

31 Jose Manappattukunnel Lukose and Kuttickattu John Mammen. Enhancing Academic
Achievement in an Introductory Computer Programming Course through the Implementation
of Guided Inquiry-Based Learning and Teaching. In Asia-Pacific Forum on Science Learning
and Teaching, volume 19,2, 2018.

32 Andrew Luxton-Reilly, Brett A. Becker, Yingjun Cao, Roger McDermott, Claudio Mirolo,
Andreas Mühling, Andrew Petersen, Kate Sanders, Simon, and Jacqueline Whalley. Devel-
oping Assessments to Determine Mastery of Programming Fundamentals. In Association
for Computing Machinery, ITiCSE-WGR ’17, pages 47–69, New York, NY, USA, 2018.
doi:10.1145/3174781.3174784.

ICPEC 2023

https://arxiv.org/abs/2201.01240
https://arxiv.org/abs/2201.01240
https://doi.org/10.1145/3408877.3432460
https://www.academic-conferences.org/conferences/ecgbl/
https://www.academic-conferences.org/conferences/ecgbl/
https://doi.org/10.5860/crl.70.3.227
https://doi.org/10.1145/3231711
https://doi.org/10.3390/systems4020022
https://doi.org/10.1145/3487050
https://doi.org/10.1145/3487050
https://doi.org/10.1145/3174781.3174784


7:12 A Systematic Review of Formative Assessment

33 Daniel M. Maggin, Erin Barton, Brian Reichow, Kathleen Lynne Lane, and Karrie A. Shogren.
Commentary on the What Works Clearinghouse Standards and Procedures Handbook (v. 4.1)
for the Review of Single-Case Research. Remedial and Special Education, 43(6):421–433, 2022.
doi:10.1177/07419325211051317.

34 Sohail Iqbal Malik and Jo Coldwell-Neilson. A model for teaching an introductory programming
course using ADRI. Education and Information Technologies, 22:1089–1120, 2017.

35 Marina Marchisio, Tiziana Margaria, and Matteo Sacchet. Automatic Formative Assessment in
Computer Science: Guidance to Model-Driven Design. In 2020 IEEE 44th Annual Computers,
Software, and Applications Conference (COMPSAC), pages 201–206, 2020.

36 Lauren E. Margulieux, Briana B. Morrison, and Adrienne Decker. Reducing withdrawal and
failure rates in introductory programming with subgoal labeled worked examples. International
Journal of STEM Education, 7:1–16, 2020.

37 Timothy Meline. Selecting Studies for Systemic Review: Inclusion and Exclusion Criteria.
Contemporary Issues in Communication Science and Disorders, 33(Spring):21–27, 2006. doi:
10.1044/cicsd_33_S_21.

38 Laura Orozco-Garcia, Carolina Gonzalez, Juan Montano, Cristian Mondragon, and Hendrys
Tobar-Munoz. A Formative Assessment Tool to Support Computational Thinking in the
Classroom. In 2019 International Conference on Virtual Reality and Visualization (ICVRV),
pages 185–188, 2019. doi:10.1109/ICVRV47840.2019.00043.

39 Elena C. Papanastasiou. Adaptive Assessment, pages 18–19. Springer Verlag, 2015.
40 Raymond Pettit, J.D. Homer, K.M. Holcomb, N. Simone, and Susan Mengel. Are automated

assessment tools helpful in programming courses? ASEE Annual Conference and Exposition,
Conference Proceedings, 122, January 2015.

41 James E. Prather. Beyond Automated Assessment: Building Metacognitive Awareness in
Novice Programmers in CS1. In Nova Southeastern University, 2018.

42 Yizhou Qian and James Lehman. Students’ Misconceptions and Other Difficulties in Intro-
ductory Programming: A Literature Review. ACM Trans. Comput. Educ., 18(1), October
2017. doi:10.1145/3077618.

43 Yizhou Qian and James Lehman. Using an automated assessment tool to explore difficulties
of middle school students in introductory programming. Journal of Research on Technology in
Education, 54:1–17, January 2021. doi:10.1080/15391523.2020.1865220.

44 Brian J. Reiser and Iris Tabak. Scaffolding, pages 44–62. Cambridge University Press, United
Kingdom, January 2014. doi:10.1017/CBO9781139519526.005.

45 Emma Riese and Stefan Stenbom. Experiences of Assessment in Introductory Programming
From the Perspective of NonComputer Science Majors. In 2020 IEEE Frontiers in Education
Conference (FIE), pages 1–9. IEEE Press, 2020. doi:10.1109/FIE44824.2020.9274060.

46 Siti Nurulain Mohd Rum and Maizatul Akmar Binti Ismail. Metacognitive Support Accelerates
Computer Assisted Learning for Novice Programmers. J. Educ. Technol. Soc., 20:170–181,
2017.

47 G. W. Scott. Active engagement with assessment and feedback can improve group-work
outcomes and boost student confidence. Higher Education Pedagogies, 2(1):1–13, 2017.
doi:10.1080/23752696.2017.1307692.

48 Nicole Shanley, Florence Martin, Nicole Collins, Manuel Perez-Quinones, Lynn Ahlgrim-Delzell,
David Pugalee, and Ellen Hart. Teaching Programming Online: Design, Facilitation and
Assessment Strategies and Recommendations for High School Teachers. TechTrends, 66, April
2022. doi:10.1007/s11528-022-00724-x.

49 Sadia Sharmin, Daniel Zingaro, Lisa Zhang, and Clare Brett. Impact of Open-Ended Assign-
ments on Student Self-Efficacy in CS1. In CompEd ’19: Proceedings of the ACM Conference
on Global Computing Education, pages 215–221, April 2019. doi:10.1145/3300115.3309532.

50 Valerie J. Shute. Focus on Formative Feedback. Review of Educational Research, 78(1):153–189,
2008. doi:10.3102/0034654307313795.

https://doi.org/10.1177/07419325211051317
https://doi.org/10.1044/cicsd_33_S_21
https://doi.org/10.1044/cicsd_33_S_21
https://doi.org/10.1109/ICVRV47840.2019.00043
https://doi.org/10.1145/3077618
https://doi.org/10.1080/15391523.2020.1865220
https://doi.org/10.1017/CBO9781139519526.005
https://doi.org/10.1109/FIE44824.2020.9274060
https://doi.org/10.1080/23752696.2017.1307692
https://doi.org/10.1007/s11528-022-00724-x
https://doi.org/10.1145/3300115.3309532
https://doi.org/10.3102/0034654307313795


J. Thangaraj, M. Ward, and F. O’Riordan 7:13

51 Judith Stanja, Wolfgang Gritz, Johannes Krugel, Anett Hoppe, and Sarah Dannemann.
Formative assessment strategies for students’ conceptions—The potential of learning analytics.
British Journal of Educational Technology, 54(1):58–75, 2023. doi:10.1111/bjet.13288.

52 Ricarda Steinmayr, Anne F. Weidinger, Malte Schwinger, and Birgit Spinath. The Importance
of Students’ Motivation for Their Academic Achievement – Replicating and Extending Previous
Findings. Frontiers in Psychology, 10, 2019. doi:10.3389/fpsyg.2019.01730.

53 Qing Sun, Ji Wu, Wenge Rong, and Wenbo Liu. Formative assessment of programming
language learning based on peer code review: Implementation and experience report. Tsinghua
Science and Technology, 24:423–434, August 2019. doi:10.26599/TST.2018.9010109.

54 Elise Trumbull and Andrea A. Lash. Understanding Formative Assessment Insights from
Learning Theory and Measurement Theory. In WestEd, 2013.

55 Fabienne M. van der Kleij, Theodorus Johannes Hendrikus Maria Eggen, Caroline F. Timmers,
and Bernard P. Veldkamp. Effects of feedback in a computer-based assessment for learning.
Comput. Educ., 58:263–272, 2012.

56 Jill-Jênn Vie, Fabrice Popineau, Éric Bruillard, and Yolaine Bourda. A Review of Recent
Advances in Adaptive Assessment, volume 94, pages 113–142. Studies in Systems, Decision
and Control, February 2017. doi:10.1007/978-3-319-52977-6_4.

57 Xiao-Ming Wang, Gwo-Jen Hwang, Zi-Yun Liang, and Hsiu-Ying Wang. Enhancing students’
computer programming performances, critical thinking awareness and attitudes towards
programming: An online peer assessment attempt. Educational Technology and Society,
20:58–68, January 2017.

58 Stelios Xinogalos, Tomáš Pitner, Miloš Savić, and Mirjana Ivanović. First Programming
Language in Introductory Programming Courses, Role of, pages 1–11. Springer International
Publishing, Cham, 2019. doi:10.1007/978-3-319-60013-0_217-1.

59 Albert Yang, Brendan Flanagan, and Hiroaki Ogata. Adaptive formative assessment system
based on computerized adaptive testing and the learning memory cycle for personalized
learning. Computers and Education: Artificial Intelligence, 3:100104, October 2022. doi:
10.1016/j.caeai.2022.100104.

ICPEC 2023

https://doi.org/10.1111/bjet.13288
https://doi.org/10.3389/fpsyg.2019.01730
https://doi.org/10.26599/TST.2018.9010109
https://doi.org/10.1007/978-3-319-52977-6_4
https://doi.org/10.1007/978-3-319-60013-0_217-1
https://doi.org/10.1016/j.caeai.2022.100104
https://doi.org/10.1016/j.caeai.2022.100104




A New Approach to Perform Individual
Assessments at Higher Education Using
Gamification Systems
Filipe Portela #

Algoritmi Centre, University of Minho, Guimarães, Portugal

Abstract
Assessment is a crucial element of the educational process, but traditional pen-and-paper tests have
limitations in promoting active learning and engagement. To address this challenge, the use of
online gamification platforms has increased. In this context, this study explores the effectiveness
of Kahoot! for assessment exercises (AE) in higher education. These experiments occurred over
three years, included five courses with computer science subjects and had 507 participants. Overall,
97.04% of students achieved a grade higher than ten, and only four failed. The results show that
Kahoot! can promote engagement, motivation, and learning outcomes, and its use is well-received
by students – 78.70% of students enjoyed this approach, and only 8.68% of participants disliked
it. The study’s findings provide valuable insights into using Kahoot! as Student Response System
for testing in higher education, with implications for developing new and innovative approaches to
assessment and evaluation.

2012 ACM Subject Classification Information systems → Information retrieval

Keywords and phrases TechTeach, Information Systems, Gamification, Higher Education Assessment
Tools, Kahoot!

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.8

Funding This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020.

1 Introduction

Assessment is a critical component of the educational process, and the type of tests used is
essential to its effectiveness. Traditional pen-and-paper tests are frequently utilised in higher
education but have limitations. Engaging students and promoting active learning is a signi-
ficant challenge. To address this issue, online platforms such as Kahoot! have been developed
to provide an interactive and engaging environment for assessment. Online platforms in
higher education emphasise the importance of incorporating active learning techniques into
teaching to promote deeper understanding and engagement [17]. Active learning has been
shown to have numerous benefits, including increased motivation, engagement, and better
academic performance [12]. Online platforms like Kahoot! have the potential to facilitate
active learning by providing an interactive and engaging environment for assessment.

Although alternatives arise, professors still focus on traditional learning with tests/exams
and distrust the efficiency of new approaches/solutions. To solve it, the TechTeach paradigm
[17] was created to turn classes more attractive and engaging using emerging techniques and
technologies. In this context, some new experiences were performed to overcome the stigma
created by online assessments. Using interactive tools (e.g. Mentimeter, VoxVote, Kahoot!,
among others) in higher education Assessment Exercises (AE) can result in better engagement,
higher motivation, and improved learning outcomes than traditional pen-and-paper tests.
AE can include different types, such as tests, mini-tests, or exams.

© Filipe Portela;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 8; pp. 8:1–8:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cfp@dsi.uminho.pt
https://orcid.org/0000-0003-2181-6837
https://doi.org/10.4230/OASIcs.ICPEC.2023.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


8:2 A New Approach to Perform Individual Assessments

This study explores a new assessment strategy proposed by professors and evaluates the
effectiveness of an online platform – Student Response Systems (SRS) – for higher education
AE. The traditional focus of testing students’ knowledge with complex questions has shifted
to promoting active learning by assessing whether students have assimilated the basics. The
goal is to develop students’ ability to understand the foundational concepts and enable
them to comprehend problems and identify possible solutions. Professors summarise the
matter during the test, explaining the answers and highlighting the most critical aspects.
The assessment paradigm must change. With the abundance of platforms available, such
as Google, Bing, or ChatGPT, professors can focus on teaching students how to find the
information they need rather than memorising it.

This new approach was introduced in 2020/2021, and since then, Kahoot! has been used to
assess knowledge from over 500 individual AE. These experiments were performed in various
courses with computer science subjects, including civil engineering (CIV), Textile Engineering
(TEXT), Applied Maths and Statistics (ESTAP), Data Science (DS) and Engineering and
Management of Information Systems (EGSI). This work aimed to assess the feasibility of
using Kahoot! to evaluate students’ knowledge and promote active learning. This article
presents the results of several experiments and discusses the implications of the authors’
findings for using online platforms in higher education assessment.

This paper is structured into seven sections. The first section, Introduction, presents the
goal of the work and the relevant background information. The second section, Background,
provides an explanation of some key concepts. The third section, Materials and Methods,
outlines the methodologies and tools used in this case study. Forth section presents the
approach and gamification rules. The fifth section, Case Study, presents the experiments
and results. The sixth section, Discussion, analyzes the results in detail. Finally, the last
section, Conclusion, summarizes the study’s main findings and provides recommendations
for future research.

2 Background

This section presents the main topics of the work and some similar works.

2.1 Academic Assessments
Academic assessments have been an essential aspect of education for centuries, providing a
means of evaluating student learning and ensuring that educational goals are being met. Over
time, assessment practices have evolved to include a range of methods, including standardized
tests, essays, projects, and presentations, among others [4, 5, 19].

However, the traditional approach to assessment has been criticized for its emphasis
on high-stakes testing, which can create a culture of fear and anxiety among students and
limit their ability to learn and grow. In response, alternative assessment methods that
emphasize formative assessment, feedback, and student engagement have been proposed and
implemented in various educational settings [5, 9].

One of the emerging alternative assessment methods is using gamification and online
platforms, such as Kahoot!, in higher education assessments. These platforms have been
found to enhance student engagement, motivation, and learning outcomes and provide
instructors with real-time feedback on student performance [10, 6].

As the field of education continues to evolve, assessments will remain an integral part
of the learning process. The ongoing development and adoption of innovative assessment
practices, including gamification and online platforms (e.g. Student Response Systems), will
undoubtedly continue to shape the future of education and improve student outcomes.



F. Portela 8:3

2.2 TechTeach
TechTeach is a new approach to enhancing student engagement in the classroom by using
technology [17]. The authors describe it as combining various digital tools and approaches,
such as Gamification, Bring Your Own Device (BYOD), B-learning or project and team-based
learning to enhance student engagement. In the context of this work, Gamification and
BYOD can be highlighted. Gamification is a different way to assess students, where professors
can use the students’ actions to give points. BYOD consists of using personal devices (e.g.
computer or smartphone) in classes to interact with the subject or do practical exercises.
TechTeach suggests that using technology in classrooms can effectively improve education
quality and enhance students’ learning experience [18].

2.3 Student Response Systems
Student Response Systems (SRS), also known as classroom response systems or clickers, are
technology-based tools that enable instructors to engage and assess students in real-time
during lectures or presentations. These systems allow students to respond to questions or
prompts using handheld devices, such as clickers or mobile devices, and the responses are
collected and displayed instantly for both the instructor and students to see [7].

2.4 Similar Works
Student Response Systems have become increasingly popular in higher education for their
potential to facilitate active learning and engagement. One such platform is Kahoot!, a game-
based learning platform that allows instructors to create quizzes and interactive activities
that students can access via their devices.

Kahoot! has been used in various educational contexts, including primary, secondary,
and higher education. In higher education, Kahoot! has been used as a tool for formative
assessment, student engagement, and promoting active learning. Studies have shown that
Kahoot! can improve learning outcomes and increase student motivation and engagement.
[15, 13].

Several studies have evaluated the effectiveness of Kahoot! for testing in higher education.
For example, Al-Busaidi et al. [1] evaluated the use of Kahoot! as a formative assessment
tool in a medical school course and found that students were highly motivated and engaged
with the platform. Similarly, study [16] found several works using Kahoot to engage and
assess students. Other studies have compared Kahoot! to traditional pen-and-paper tests.
For example, Chiang et al. [8] compared the effectiveness of Kahoot! and pen-and-paper
tests in English as a foreign language class and found that Kahoot! resulted in higher scores
and greater engagement.

Furthermore, a study by Hunsu and Adesope (2016) [14] conducted a meta-analysis of
research on clicker use in higher education and found that clickers positively impacted student
engagement, academic achievement, and overall learning outcomes.

While Kahoot! has shown promise as a tool for testing in higher education, it is not
without limitations. For example, Kahoot! quizzes are typically short and may not be
suitable for more complex topics. Additionally, Kahoot!’s gamification elements may not be
appealing to all students.

Other systems similar to Kahoot! have also been used for testing in higher education.
For example, Socrative and Quizlet have been used to assess student knowledge and promote
active learning [2]. Like Kahoot!, these platforms provide an interactive and engaging
environment for assessment.

ICPEC 2023



8:4 A New Approach to Perform Individual Assessments

In summary, Kahoot! and SRS have shown potential as tools for testing in higher education.
Studies have demonstrated their effectiveness in promoting engagement, motivation, and
learning outcomes. However, further research is needed to explore their use in more complex
topics and to determine their effectiveness over the long term.

3 Material and Methods

This article follows the case study methodology, a qualitative research method involving a
detailed investigation of a particular phenomenon or event [20]. The case study methodology
typically involves several phases: design, data collection, analysis, and interpretation [3]. The
case study consisted in following phases and tasks:

Design:
Creation of the exercise and AE based on the course’s learning objectives and curriculum
Planning of questions and strategies used in the exercises
Definition of rules for calculating grades
Design of students’ opinion questions to assess their perception of the Kahoot! platform
for testing in higher education

Implementation:
Administration of the designed exercise and AE to students using the Kahoot! platform
Collection of data on students’ performance and grades according to the predefined
rules
Use of students’ opinion questions to assess their perception of the Kahoot! platform
for testing

Analysis:
Examination of collected data using various statistical methods, such as descriptive
statistics and regression analysis
Determination of relationships between students’ performance and the Kahoot! plat-
form for testing
Analysis of students’ opinion responses using thematic analysis to identify any recurring
themes or patterns in their feedback [3]

Interpretation:
Interpretation of results to draw conclusions and make recommendations for the use of
Kahoot! in higher education testing
Comparison of findings with existing literature on the topic
Discussion of implications of the results in the broader context of higher education
testing

This study follows the case study methodology to provide an in-depth analysis of the use
of Kahoot! as an SRS for testing in higher education. By collecting and analyzing data on
students’ performance and perception of the platform, this study aims to contribute to the
growing body of research on the use of online platforms for testing in higher education. The
case study methodology is well-suited for exploratory research in real-world settings [11],
making it an ideal approach for this study.

4 Approach

This section presents the new assessment approach designed (design phase of case study
methodology) and then tested with the case study.



F. Portela 8:5

4.1 Gamification model
The Gamification model enhances a narrative that can be highlighted. It is a key aspect of
this approach. The students must know the rules before starting each AE.

1. Students should have previous contact with the tool used (e.g. VoxBot, Kahoot! or other)
and must test all question types before the AE start (e.g. short, true or false, multiple
choice, among others).

2. All questions must have all details easily identified - question value (bonus), type and
timing, left time, number of questions missing, and possible answers.

3. The questions of each AE should only address the fundamentals and essential subjects.
4. Questions must be designed according to the basic knowledge that students must have in

their professional work. Subjects that a typical worker needs to use Google or similar
should be avoided. However, it must be part of a question if they need to know something
before using Google.

5. Each participant can answer the AE using BYOD: smartphone, computer or tablet.
6. The system should incorporate a cut-off value that allows for the exclusion of certain

questions. For instance, if the percentage of correct answers to a particular question is
low, it indicates that the question may be poorly formulated or that the professor may
have been ineffective in explaining the corresponding content. In such cases, the final
assessment should not include the question.

7. The Evaluation criteria should consider quickness and rightness. Each question is timed,
so if a student answers with a response time inside of Q3 answers time, he receives 100%;
otherwise, he receives a percentage according to the average time

8. If a question is relevant, it should have double points (200%)
9. Quick students with correct answers (higher than the average) can receive a bonus.

10. The question’s time varies according to the typologies and complex level.
11. In case multiple answers are allowed, if students hit at least 50% of cases, they receive

some points; otherwise, they have 0.

The professor can add or consider different ideas; however, they must be explained at the
beginning of the subject.

4.2 Rules
The guidelines for the assessment exercise were developed as part of the TechTeach paradigm
and considered a set of specific factors, including

Type of questions: true and false; multiple choice; short answer; ordering
Time limited: 10s, 30s, 60s, and 90s
Valuation: normal and double
Knowledge: essential and must have
Evaluation criteria: quickness (quartiles and average time), rightness
Types of exercises: simple and quick questions, code with variables or images.
Questions number: 25-30 (a ratio from each matter taught) - Many questions allow
crossing all matters addressed and show if students know all the basics.

This approach evaluates critical knowledge, and the AE class can be used for reviewing
purposes. After the students answer each question, the professor should explain the question
and respective answers to the class, ensuring that the key knowledge of the subject is not
forgotten.

Strategies like questions with short time, bonuses and others can be used to avoid copy.
Students are instigated to answer quickly with their knowledge; otherwise, time elapses, and
they will not respond on time.

ICPEC 2023



8:6 A New Approach to Perform Individual Assessments

A case study was designed and implemented to test this approach over the last three
years.

5 Case Study

This case study started in 2020 and followed some TeachTeach guidelines [17], including
gamification [18] and bringing your own device (BYOD), which was presented in Section 4.
Since 2020, 507 students participated in this study and used Kahoot! to perform their
exercises. The study was applied in several subjects(courses), including:

Introduction to Programming
Courses: Civil, Textile, Applied Statistics and Maths, Data Science
Academic Year: 1st

Web Programming
Course: Information Systems
Academic Year: 2nd and 3rd

5.1 Implementation
The following list presents the implementation phase and shows some questions that exemplify
the rules explained in section 4.2. The list includes the question, its type, the defined answering
time, and the available answer choices.
(A) Question: What is the “not equal to” symbol in Em Gaddys?

Question type: short answer
Time-limited: 30 sec
Solution: <>

(B) Question: Which of the following loops (figure 1) is a “while” loop?

Figure 1 Example of While Loop and IF.

Time-limited: 30 sec
Question type: Quiz
Answers:

(a) A
(b) B
(c) None of the above



F. Portela 8:7

(C) Question: What does a compiler do?
Time-limited: 30 sec
Question type: Quiz
Answers:

(a) Translates the source code instructions into Assembly language instructions
(b) Translates Assembly language instructions into corresponding binary code
(c) Prepares the object code to be loaded into memory and executed
(d) Examines, decodes, and executes each instruction of the source code line by line

(D) Question: What is the value of a[5] in figure 2?

Figure 2 Example of array.

Question type: Type answer
Time-limited: 30sec
Solution: 45

(E) Question: How many columns does Bootstrap’s grid system have?
Question type: Type answer
Time-limited: 20 sec
Possible Solutions:

(a) 12
(b) twelve
(c) Twelve

(F) Question: Order the following options in order to validate the code of figure 3

Figure 3 An example of code with missing details.

Question type: Ordering
Time-limited: 90sec

(a) input1
(b) answer
(c) result
(d) innerHTML

ICPEC 2023



8:8 A New Approach to Perform Individual Assessments

5.2 Analysis of the results
During the case study, which started in the academic year 2020/2021, seven distinct exams
were conducted using Kahoot! the platform for testing in higher education. These exams
were administered in multiple courses. 2020/21 was the team’s first year in this subject, and
the team started by experimenting with this approach, so it was not possible to compare the
results with traditional methods (pen & paper) yet. Regarding the results, three types of
performance data were evaluated: quickness, rightness, and exercise relevance. The quickness
of the students’ responses was measured using quartiles and average time, while rightness
was calculated based on the number of correct answers. The exercise relevance was classified
as a normal or double point.

In this case study, a cut-off was defined, i.e., the lower number of correct answers to
each question ranged between five and twelve per cent. So, questions where the number of
rightness was lower than the cut-off were removed.

To understand students’ opinions about this evaluation approach, the two last questions
of each EA are
1. Q1 – How challenging was the examination?
2. Q2 – Did you approve this model?

Figure 4 depicts students’ opinions about the difficulty of the exam. As observed, more
than 50% of the students considered it hard or very hard.

Figure 4 Q1 – How challenging was the examination?

Figure 5 illustrates the students’ approval of this exercise model. Of the total number of
students surveyed, 78 approved of this model, while only 9 did not want this type of exercise.

Figure 5 Q2 – Did you approve this model?



F. Portela 8:9

The following image (Figure 6) shows the distribution of student grades. As can be
observed, this method resulted in only four students (0.78%) failing (grade R) and 2.96%
receiving a negative rate of less than 10. Furthermore, the results indicate that this method
efficiently avoids too high grades. Conscientious, we can understand that none of the students
can know everything a professor teaches, so they hit answer all the questions. So, only 15
students (2.96%) achieved a grade between eighteen and twenty.

Figure 6 Results distribution.

Another interesting analysis pertains to students’ perceptions of the assessment exer-
cises(figure 7), broken down by course. While generally, all courses expressed approval of this
approach, certain courses such as CIVIL (>60%) demonstrated the highest level of approval
(i.e., ’Yes, I enjoyed it’)

Figure 7 Approved opinion By Course.

The same analysis can be performed based on students’ perceptions of the difficulty of
the assessment exercise (Figure 8). Overall, the assessment exercise was perceived as difficult
or very difficult by the students across all courses, with a minimum of 50% of students rating
it as such.

Figure 8 Difficulty perception by Course.

ICPEC 2023



8:10 A New Approach to Perform Individual Assessments

Another potential avenue for further research is using pivot tables to analyze and compare
students’ opinions and grades across different courses.

Figure 9 presents the minimum (min), maximum (max), and average grades grouped by
students’ approval of the approach and their perception of the AE difficulty. This figure
crosses user expectations, perceptions and the achieved results. For instance, in the Civil
course, students who enjoyed the AE and found it challenging achieved grades ranging from
8.30 to 15.18. Students who enjoyed the mechanism but considered it difficult could achieve
good grades.

In another analysis, EGSI students who may approve this mechanism and consider the
exam easy had a minimum grade of 9,18 and a maximum grade of 17,03 with an average of
14.07. Globally, those who considered the AE easy achieved better grades than others.

Curiously, some students who enjoyed the mechanism did not achieve positive grades,
which means the agent is correct, but they must study more to achieve better results.

This analysis can provide valuable insights into the relationship between students’ opinions,
perceived difficulty, and their academic performance in different courses.

Figure 9 Students grades by opinions.



F. Portela 8:11

6 Discussion

The case study results provide valuable insights into the use of Kahoot! as a Student Response
System for testing in higher education. In the interpretation phase, it was observed that
these findings could inform the development of new and innovative approaches for assessment
and evaluation in this context, contributing to ongoing efforts to improve the quality of
education and student learning outcomes.

Naturally, non-technical courses, such as DS, ESTAP, and Textile, rated the assessment
exercise as challenging (hard or very hard), which is understandable given their knowledge
base in non-computing subjects. It ranged from 63.33% at DS and textile at 85.71%. The
students still approved the assessment exercise as a valid test mechanism. Interestingly,
EGSI students had varying opinions, with 42.50% rating the assessment exercise as easy and
42.75% rating it as hard.

Furthermore, students’ opinions about the difficulty of the AE had little impact on their
results. For instance, some students who found it hard achieved good results, whereas some
who found it easy achieved lower results. However, better results were achieved by students
who approved of this approach.

Most students highlighted the importance of explaining each question after their end.
According to them, it allowed them to understand what they failed and improve their
understanding of the subject matter.

Overall, the study’s results were very positive, with 97.04% of the students achieving
a grade higher than ten and only 4 out of 507 failed. Globally, the students approved the
assessment exercise, with a 78.70% approval rating, and only 8.68% of participants disliked
it.

7 Conclusion

The study demonstrates the effectiveness of Kahoot! as an SRS for assessment exercises
in higher education. The use of Kahoot! resulted in high levels of student engagement,
motivation, and learning outcomes. The majority of students achieved a grade higher than
10, with only 4 out of 507 failing. Additionally, 78.70% of participants approved the approach,
while only 8.68% disapproved. This high approval rate suggests that students found the use
of Kahoot! to be a valuable and effective tool for testing in higher education.

The results of this study have important implications for the development of new and
innovative approaches to assessment and evaluation in higher education. Kahoot! and other
gamification platforms have the potential to transform traditional methods of assessment,
promoting active learning and engagement. The findings of this study also highlight the
importance of providing students with real-time feedback and explaining the correct answers
after the assessment exercises, which can improve their understanding and performance.

By incorporating interactive and engaging assessment exercises like Kahoot! into their
teaching practices, instructors can promote active learning and provide students with a more
engaging and rewarding educational experience. The study can help professors interested in
adopting a game-based learning platform in their teaching practices.

This experiment will continue in the future, and distinct types of questions will be added
to further explore the potential of Kahoot! and other gamification platforms in higher
education assessment. Further, this approach will also be compared with other existing and
having the same goal and explored using different tools. Finally, the team will explore the
possibility of comparing results using digital with non-digital methods.

ICPEC 2023



8:12 A New Approach to Perform Individual Assessments

References
1 Ibrahim S Al-Busaidi, Abdulhadi A Alamodi, Majid S Al-Musalhi, and Marwan A Al-Lamki.

Using kahoot! as a formative assessment tool in medical education. Journal of Taibah
University Medical Sciences, 13(4):349–353, 2018.

2 Azza Alawadhi and Emad AS Abu-Ayyash. Students’ perceptions of kahoot!: An exploratory
mixed-method study in efl undergraduate classrooms in the uae. Education and Information
Technologies, pages 1–30, 2021.

3 Pamela Baxter and Susan Jack. Qualitative case study methodology: Study design and
implementation for novice researchers. The qualitative report, 13(4):544–559, 2010.

4 Paul Black and Dylan Wiliam. Assessment in education: Principles, policy & practice.
Assessment in Education: Principles, Policy & Practice, 5(1):7–74, 1998.

5 Paul Black and Dylan Wiliam. Inside the black box: Raising standards through classroom
assessment. Phi delta kappan, 80(2):139–148, 1998.

6 Eoghan Brady and Linda B Holcomb. Using kahoot! in the classroom to create engagement
and active learning: A game-based technology solution for elearning novices. Management
Teaching Review, 2(2):77–85, 2017. doi:10.1177/2379298116689783.

7 Jane E Caldwell. Clickers in the large classroom: Current research and best-practice tips.
CBE—Life Sciences Education, 6(1):9–20, 2007.

8 Hui-Hua Chiang. Kahoot! in an efl reading class. Journal of Language Teaching and Research,
11(1):33–44, 2020.

9 Ian Clark. Formative assessment: Assessment is for self-regulated learning. Educational
psychology review, 24:205–249, 2012.

10 Isabel Cortés-Pérez, Nicolás Zagalaz-Anula, María del Carmen López-Ruiz, Ángel Díaz-
Fernández, Esther Obrero-Gaitán, and María del Carmen Osuna-Pérez. Study based on
gamification of tests through kahoot!™ and reward game cards as an innovative tool in
physiotherapy students: A preliminary study. Healthcare, 11(4):578, 2023. doi:10.3390/
healthcare11040578.

11 Kathleen M Eisenhardt. Building theories from case study research. The Academy of
Management Review, 14(4):532–550, 1989.

12 Scott Freeman, Sarah L Eddy, Miles McDonough, Michelle K Smith, Nnadozie Okoroafor,
Hannah Jordt, and Mary Pat Wenderoth. Active learning increases student performance in
science, engineering, and mathematics. Proceedings of the National Academy of Sciences,
111(23):8410–8415, 2014.

13 Derya Orhan Göksün and Gülden Gürsoy. Comparing success and engagement in gamified
learning experiences via kahoot and quizizz. Computers & Education, 135, March 2019.
doi:10.1016/j.compedu.2019.02.015.

14 Nathaniel J Hunsu, Olusola Adesope, and Dan James Bayly. A meta-analysis of the effects of
audience response systems (clicker-based technologies) on cognition and affect. Computers &
Education, 94:102–119, 2016.

15 Muhd Al-Aarifin Ismail and Jamilah Al-Muhammady Mohammad. Kahoot: A promising tool
for formative assessment in medical education. Education in medicine journal, 9(2), 2017.

16 Kyoko Johns. Engaging and assessing students with technology: a review of kahoot! Delta
Kappa Gamma Bulletin, 81(4):89, 2015.

17 Filipe Portela. Techteach – An innovative method to increase the students’ engagement at
classrooms. Information, 11(10), 2020. doi:10.3390/info11100483.

18 Filipe Portela. Towards an engaging and gamified online learning environment – A real
casestudy. Information, 13(2), 2022. doi:10.3390/info13020080.

19 Dylan Wiliam. What is assessment for learning? Studies in Educational Evaluation, 37(1):3–14,
2011.

20 Robert K Yin. Case study research and applications: Design and methods. SAGE Publications,
2017.

https://doi.org/10.1177/2379298116689783
https://doi.org/10.3390/healthcare11040578
https://doi.org/10.3390/healthcare11040578
https://doi.org/10.1016/j.compedu.2019.02.015
https://doi.org/10.3390/info11100483
https://doi.org/10.3390/info13020080


NLP/AI Based Techniques for Programming
Exercises Generation
Tiago Carvalho Freitas #

ALGORITMI Research Centre/LASI, University of Minho, Braga, Portugal

Alvaro Costa Neto #

Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Barretos, Brazil

Maria João Varanda Pereira # Ñ

Research Centre in Digitalization and Intelligent Robotics,
Polythechnic Insitute of Bragança, Portugal

Pedro Rangel Henriques # Ñ

ALGORITMI Research Centre/LASI, University of Minho, Braga, Portugal

Abstract
This paper focuses on the enhancement of computer programming exercises generation to the benefit
of both students and teachers. By exploring Natural Language Processing (NLP) and Machine
Learning (ML) methods for automatic generation of text and source code, it is possible to semi-
automatically construct programming exercises, aiding teachers to reduce redundant work and more
easily apply active learning methodologies. This would not only allow them to still play a leading
role in the teaching-learning process, but also provide students a better and more interactive learning
experience. If embedded in a widely accessible website, an exercises generator with these Artificial
Intelligence (AI) methods might be used directly by students, in order to obtain randomised lists of
exercises for their own study, at their own time. The emergence of new and increasingly powerful
technologies, such as the ones utilised by ChatGPT, raises the discussion about their use for exercise
generation. Albeit highly capable, monetary and computational costs are still obstacles for wider
adoption, as well as the possibility of incorrect results. This paper describes the characteristics
and behaviour of several ML models applied and trained for text and code generation and their
use to generate computer programming exercises. Finally, an analysis based on correctness and
coherence of the resulting exercise statements and complementary source codes generated/produced
is presented, and the role that this type of technology can play in a programming exercise automatic
generation system is discussed.

2012 ACM Subject Classification Social and professional topics → Computer science education;
Software and its engineering → Imperative languages; Computing methodologies → Machine learning;
Software and its engineering → Parsers

Keywords and phrases Natural Language Processing, Computer Programming Education, Exercises
Generation, Text Generation, Code Generation

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.9

Funding This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020 and UIDB/05757/2020.

1 Introduction

With technological advancements, computer programming education has become increasingly
important in recent years, and along with it, the need for effective methods of teaching
programming languages has become a priority.

A large part of the students have a lot of difficulties and consequent low approval rates in
introductory computer programming courses, much because of the lack of motivation and
attention inside and outside the classes [21]. To overcome those difficulties, students need to

© Tiago Carvalho Freitas, Alvaro Costa Neto, Maria João Varanda Pereira, and Pedro Rangel
Henriques;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 9; pp. 9:1–9:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pg47687@alunos.uminho.pt
mailto:alvaro@ifsp.edu.br
https://orcid.org/0000-0003-1861-3545
mailto:mjoao@ipb.pt
http://www.ipb.pt/~mjoao/
https://orcid.org/0000-0001-6323-0071
mailto:prh@di.uminho.pt
https://www.di.uminho.pt/~prh/
https://orcid.org/0000-0002-3208-0207
https://doi.org/10.4230/OASIcs.ICPEC.2023.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


9:2 NLP/AI Based Techniques for Programming Exercises Generation

practice frequently solving problems with an increasing complexity. On account of that, one
of the major challenges faced by teachers is creating a large number of unique programming
exercises that address different levels of difficulty. One possible way to help solve these issues
is the development of a system for automatic generation of programming exercises based on
Natural Language Processing (NLP) and Artificial Intelligence (AI) techniques capable of
generating text and source code. In this paper we present and discuss the preliminary results
of a research project focused on the analysis of ML models for text and code generation,
aiming at building a generator for programming exercises.

This paper starts with a review at how programming exercises are usually constructed
(Section 2), followed by a discussion on modern approaches for text and code generation
(Section 3). Then, case studies regarding different generation mechanisms are presented, with
the subsequent analysis and discussion of their results (Section 4). Finally, it is presented a
summary of the paper and our main contribution, as well as a proposal of a road map for
the future construction of a website that automatically generates computer programming
exercises (Section 5).

2 Classification and Characterisation of Programming Exercises

Programming exercises are the key object of study for this project. It is then essential to
gather the most used formats and understand their common characteristics to group them
by type, aiming to automatically create them. In this way it is possible to avoid creating
exercises that are unfamiliar to students and teachers.

2.1 Exercise Types
Listed below are some of the most common types of exercises in programming courses,
gathered and adapted from the study published in [28]. It is important to note that, although
there are additional taxonomies and categories, such as the ones proposed in [4, 26, 23], the
former was chosen as it better resembles the structural nature of the exercises to be generated.
The purpose in gathering such a variety of types is to present different challenges to students,
on several themes. While some types are frequently used in open-ended questions, each one
of these types can be adapted to multiple-choice formats, where students must select the
correct answer from a list of options. This adaption is not trivial though, since it is necessary
to generate not only the correct option, but also a set of incorrect ones.

Seven types were collected:
1. Code from Scratch: Students receive a blank sheet to write down the complete solution

to a problem. Something that is easy for teachers to prepare, but also presents quite a
lot of difficulties to those who are being evaluated. Listing 1 contains an example of a
simple exercise that asks to write a function in Python.

Listing 1 Example of Code from Scratch type exercises.
Write a program in Python that reverses a string .
Input : "cool"
Output : "looc"

2. Code Completion: To solve this type of problem the students are provided with a
sample code containing some blanks to fill. There are usually two approaches: one in
which an important part of the code is missing and it is necessary to fill it with the
correct statements; and another whose blanks must be filled with values for which the
program returns a given output. Listing 2 contains an example in which it is necessary
to complete the condition in a selection statement in the body of a certain function in
Python whose purpose is described.



T. C. Freitas, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 9:3

Listing 2 Example of Code Completion type exercise.
Complete the following Python function that receives a list of numbers
and returns another one only with the even numbers .

def even( input_list ):
even_list = []
for n in input_list :

if _________ :
even_list .add(n)

return even_list

3. Code Improvement: Another approach consists in providing students a complete snip-
pet of code that solves a given problem which should be improved. These improvements
may have as objective improving the performance or reducing lines of code. Listing 3
contains an exercise in which it is proposed to rewrite a function in Python to a reduced
version.

Listing 3 Example of Code Improvement type exercises.
Rewrite the following code snippet in order to make it smaller ,
mantaining its funcionality .

my_list = list ( range (1 ,100))
res = 0
i = 0
while i < len( my_list ):

if my_list [i] % 3 == 0:
if my_list [i] % 2 == 1:

res += my_list [i]
i += 1

return res

4. Bug Finding: As the name suggests, in this type of exercise the students must find
in code purposefully added bugs without correcting them per se. This type of exercise
is used to check if students attained the first step of learning to program, that is to be
capable of interpreting the code written by others in terms of the syntax or semantics of
the language used. Listing 4 contains an exercise in which it is asked to identify bugs in
a function and explain in a few lines why they are bugs.

Listing 4 Example of Bug Finding type exercises.
Identify the bug(s) present in the following code sample .

def my_function (n):
a = 1
my_list = [1 ,2 ,3]
if n > 3:

return n + b
else :

return a + my_list [3]

5. Debugging and Fixing: Interestingly, if the two previous types of exercises are mixed
together, the result is also quite common, in which students must rewrite a source code
that contains bugs. It is necessary not only to detect them, but also to fix the code.

6. Code Interpretation: As the name suggests, in this type of exercise the student has
to interpret a given code snippet. There are many possibilities for what is asked, such
as: describing its behaviour, identifying its goals, reporting the evolution of a variable’s
value throughout its execution, etc. Listing 5 contains an exercise in which it is asked to
describe what a given function does.

Listing 5 Example of Code Interpretation type exercises.
Describe the behaviour and the goal of the following function .

def my_function ( str ):
if len(str) < 2:

return ’’
return str [0:2] + str [ -2:]

ICPEC 2023



9:4 NLP/AI Based Techniques for Programming Exercises Generation

7. Output or State Prediction: Finally, and in a more traditional format, the students
are asked to find out either the output of the program, or the value of a variable at the
end or during its run-time. This ends up being very similar to what was discussed in
the last item, as it is necessary to analyse and interpret the provided code to obtain the
correct solution. Listing 6 contains an exercise where it is asked to indicate what value a
function call returns.

Listing 6 Example of Output or State Prediction type exercises.
Indicate what the following function returns as an output .

def my_function (n):
my_list = []
for i in range (n):

my_list . append (i*i)
return my_list

my_function (3)

2.2 Exercise Components
It is important to understand the components that make up a programming exercise in order
to effectively design and create them. There are usually three main components that need to
be considered:

Problem Statement: Initial component containing text that is presented to the student.
It explains the context and parameters of the problem, and the type of answer they must
provide. It can be lengthy if the topic needs an introduction or concise and objective if it
only requires the essential instructions for solving the problem. It is important to provide
enough information to solve the problem, specially when the domain is unknown to the
student.
Code: Most programming exercises contain a section dedicated to code snippets. This
section may vary in form, containing whole programs, snippets with blanks to be filled,
and correct or erroneous versions to be analysed of fixed. The purpose of this component
is to support the Problem Statement to establish a basis for solving the problem.
Answer field or options: There are two usual possibilities for the answer section, either
a designated space or an area embedded in another component. The former includes a
blank space where students are free to write whatever they want, or a list of available
options to choose from. The latter usually consists of blank spaces embedded in the Code
component, visually identifying where the students must fill in their answers.

While not a component in itself, the evaluation of the students’ answers must be taken
into account. Its complexity may vary depending on the type of the exercise, ranging from a
direct verification of the correct option, to more sophisticated mechanisms, such as a set of
tests performed on the code that the student has written. Although, some characteristics of
the answers present a qualitative nature that prevents its automatic evaluation, such as code
sophistication and legibility.

In summary, understanding the components of a programming exercise is crucial to design
effective exercises. These components can vary depending on the type of exercise and its
objectives.

3 Text Generation

Natural Language Generation (NLG) is a sub-field of Natural Language Processing (NLP)
that involves building systems capable of producing coherent and useful text in multiple
languages [24]. NLG systems are used to create chatbots, translate text, and generate



T. C. Freitas, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 9:5

complex articles and stories [6]. This process involves taking input data, such as keywords
or a set of facts, and transforming them into meaningful output text. Reiter and Dale [25]
identified six tasks that are essential for NLG, still present in current models:
1. Content Determination: Deciding what information should be included in the text

under construction;
2. Discourse Planning or Text Structuring: Defining in which order information will

be presented and the structure of such presentation;
3. Sentence Aggregation: Grouping information into sentences;
4. Lexicalization: Deciding which words and phrases should be chosen to express the

required information;
5. Referring Expression Generation: According to Reiter and Dale [25], it consists of

“selecting the words and phrases to identify domain objects”;
6. Linguistic Realisation: Combining all words and phrases by applying grammatical

rules to produce a text which is syntactically and orthographically correct.

This type of system can be built using different architectures, being the most common
the three-stage pipeline, also proposed by Reiter and Dale [24]. The pipeline includes
text planning, sentence planning, and linguistic realisation. In text planning, content
determination and discourse planning are combined to decide what information to include
and how to structure it. In sentence planning, sentence aggregation, lexicalization, and
referring expression generation are combined to select words and phrases and group them
into sentences. Finally, in linguistic realisation, grammatical rules are applied to produce a
syntactically and orthographically correct text.

3.1 Models
Natural Language Processing (NLP) is a sub-field of Artificial Intelligence (AI) that focuses
on the interaction between computers and human language [13]. Machine Learning algorithms
have been developed and trained using text data to perform various natural language tasks
such as text prediction and generation [17]. This section will explore some of the most
commonly used and successful NLP models, as well as other generation systems.

Recurrent Neural Networks (RNNs)
Neural Networks are a subset of Machine Learning that are inspired by the structure and
function of the human brain. They are used to classify and cluster data, and consist of layers
of artificial neurons that send data to each other. The output of these neurons is determined
by weights and threshold values, and training data is used to improve their accuracy over
time [11].

One type of neural network architecture that is well-suited for processing sequential data,
such as text, is Recurrent Neural Networks (RNNs). RNNs have feedback connections that
allow them to incorporate information from previous time steps or observations into their
current output. This makes them effective at modelling dependencies between elements in a
sequence to predict the next one [12].

Long Short-Term Memory (LSTM) networks: A type of RNN that is particularly
well-suited for modelling long-term dependencies in sequential data, such as natural
language text. LSTM networks are able to “remember” important information from the
past for extended periods of time, by using state cells, making them ideal for generating
coherent and realistic text [9]. For example, in the paper [15], the authors trained a
LSTM on a dataset of Shakespearean plays was able to generate text that was difficult to
distinguish from human-written equivalents.

ICPEC 2023



9:6 NLP/AI Based Techniques for Programming Exercises Generation

Seq2seq models: Have been widely used for NLP tasks that involve the generation of an
output sequence based on an input sequence. Seq2seq models consist of an encoder and a
decoder (each one a model with neural network architecture), which process the input
and output sequences. One of their key advantages is the ability to handle variable-length
input and output sequences [8]. Seq2seq models can be implemented using various types
of neural network architectures, although RNNs are the most common. For example, in
the article [29], the authors use a Seq2seq model with an RNN architecture to generate
translations from one language to another.

In conclusion, Recurrent Neural Networks, such as Long Short-Term Memory networks
and Seq2seq models are among the most commonly used and successful NLP models at the
moment. They are able to effectively process sequential data, such as natural language text,
and generate coherent and realistic output.

Transformers
Transformers consist in a type of neural network architecture that was first described in
an article by Vaswani et al. [30], which has been effective in NLP tasks. The capacity of
transformers to model long-range dependencies between words in a sentence or text is one of
its most important features. This is done by utilising self-attention mechanisms, which give
the network the ability to weigh the importance of the different words or tokens in the input
based on how they relate to other words or tokens. Transformers are thus well suited for
tasks that require a thorough comprehension of the context and semantics of a particular
text. Some of the most popular and successful transformer models are:

Generative Pre-training Transformer (GPT): Transformer-based language model
developed by OpenAI [19], that has been widely used for natural language processing
tasks such as text generation. It uses unsupervised learning to pre-train a large neural
network on a massive dataset of text, discovering “hidden patterns or data groupings
without the need for human intervention” [14], and then fine-tunes the network on a
smaller dataset of labeled text for a specific task. GPT-3 is the third generation of GPT
models, which was introduced in 2020 [5] and. This model are significantly larger and
more powerful than its predecessor models, since it is trained on 175 billion parameters
(over ten times the size of GPT-2) and requires very little fine-tuning on a task-specific
dataset to achieve good performance on a wide range of NLP tasks. OpenAI also launched
GPT-3.5, an upgrade for this model, and a new version, GPT-4 [20], which is even more
powerful (100 trillion parameters). ChatGPT is a well-known application of GPT that is
specifically designed for conversational language understanding and generation, trained
on conversational data [18].
It is worth noting that, as GPT-3 is an unsupervised model, it is vulnerable to biases
present in its training dataset, and may generate texts that reflect them.
BERT: Transformer-based language model that was developed by Google in 2018 [7]
and, in similar form to GPT, it also uses unsupervised learning to train a neural network
on a large dataset of text. The main difference between GPT and BERT is that BERT is
a masked language model, trained to predict missing words in a sentence rather than the
next word, as GPT does. This makes the text generated by BERT less likely to diverge
from the original context of the input. In one study, researchers used BERT to generate
news articles that were evaluated by human annotators, who found them comparable in
quality to those written by humans [34].



T. C. Freitas, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 9:7

Source:

prompt = " Create a programming exercise in Python about string
manipulation and write the answer ."

exercise = openai . Completion . create ( engine ="text -davinci -003",
prompt =prompt , temperature =0.7 , max_tokens =500 , top_p =1,
frequency_penalty =0, presence_penalty =0)

Output:

Write a program to print out the last three characters of a string .

# Answer :
string = input (" Enter a string : ")
length = len( string )
last_three_chars = string [ length - 3:]
print ( last_three_chars )

Figure 1 Example of a programming exercise generation using GPT-3.5.

4 Case Studies and Results

This section introduces some case studies to explore different implementations of up-to-date
text generation models. The outcomes are then analysed in order to assess some of the
most commonly used mechanisms and how they can be improved for the generation of
programming exercises.

4.1 OpenAI API
OpenAI has made available APIs to GPT-3 and GPT-3.5 models. Using an access token
it is possible to make requests by sending a prompt with a certain maximum number of
tokens, which will be answered with the generated text. Each of these models has some
variations: some are applied to simpler and faster tasks while others are used for more
complex text generation. Despite its technical capacity and current popularity, there is an
important tangential disadvantage: the API is not completely free. After a gracing period
of three months, there are monetary usage fees for the different OpenAI models, which
despite appearing minimal (GPT-3.5 is 0.002$ per 1K tokens) may become a problem in
an academic context with a lot of tests. Beyond that, for actual implementation in harsher
socioeconomic contexts, it might become a dividing criteria that opposes the already slow-
paced democratisation of science and education, while concurrently enlarging the technological
gap between world-wide communities.

In the context of generating programming exercises, this tool presents satisfactory results.
By making requests with the type of the exercise, theme or more concrete characteristics,
such as the mandatory use of a language structure or construct, it is possible to obtain
complete exercises, including their corresponding answers. The only disadvantage that was
realised about the quality and effectiveness of the results is the possible incoherence derived
from the lack of context of the model, that is, it may produce correct text, but outside
the scope of the problem in question. To improve this, OpenAI also provides the option of
fine-tuning, in which the model is further trained with a shorter dataset to perform a specific
task. By fine-tuning GPT, it would be possible to obtain faster and more adequate results,
in the sense that the exercises and their parts would be in accordance with a pre-defined
structure and better contextualised with the domain in question.

Figure 1 shows the generation of a programming exercise from a prompt, in which
the latest GPT-3.5 model was used (text-davinci-003 ). The model was configured using
parameters recommended in the OpenAI documentation. As can be seen, the result for a

ICPEC 2023



9:8 NLP/AI Based Techniques for Programming Exercises Generation

Source:

prompt = """ Exercise

Instructions :
Write a Python program to reverse a string .

Code : """

model . generate ( prompt =prompt , max_length =500 , temperature =0.3 , top_p =0.9)

Output:

Exercise

Instructions :
Write a Python program to reverse the binary representation of a given
integer .

Code:
def test(n):

return int(bin(n)[:: -1][: -2] , 2)

Figure 2 Example of a programming exercise generation using a finetuned GPT-2 model.

relatively small input is quite satisfactory and there are a lot of possible generations for the
same input. The potential is clearly enormous with regard to the type, structure, subject
and difficulty of the exercises.

4.2 Finetuning GPT-2

Among GPT models, it is possible to work with older versions for free. There are even
libraries such as aitextgen [33] that provide the possibility to finetune the GPT-2 model
from a dataset. Using PyTorch and TensorFlow (machine learning libraries), it is possible to
improve the performance of a specific task within text generation. However, this version is
not as powerful as the most recent ones, since it was trained with 100 times fewer parameters,
which makes the results not as adequate. Furthermore, it does not provide as much flexibility
in order to perform different text generation tasks (question answering, summarization, text
classification and so on) [27]. The fact that there is no remote access to use and train GPT-2
makes it free, but also requires all processes to be done locally, demanding a significantly
greater use of computational resources. Figure 2 displays the output of an attempt that was
made to finetune GPT-2 from a dataset consisting of a list of 300 Python basic exercises
taken from the W3 Resource website [31].

As GPT-2 is not prepared to answer requests, but to complete text, the dataset was
modified in order to define the structure of the exercise as Problem Statement and Code.
When analysing the result obtained for the provided prompt, it can be seen that the model
was not able to generate according to the predefined Problem Statement and, with that,
generated another text with some similarities, maintaining the structure, but incoherently
and out of the context.

The quality of the results is not the one that is expected and this is mainly due to the
small size of the dataset. The model to be trained with this dataset took about 1 hour, which
implies that, with a dataset of adequate size, it would require spending a huge amount of
time.



T. C. Freitas, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 9:9

Source:

keystotext_model . predict ([" delete ", "list", "odd numbers "])

Output:

Write a function to delete odd numbers from a list .

Figure 3 Example of a Problem Statement component generation using the trained keys-to-text
model.

4.3 Key-to-Text
The keytotext library [2] was used in the attempt to generate the Problem Statement
component of an exercise, which implements a model that receives keywords as input and
generates sentences. It is based on the Text-to-Text Transfer Transformer (T5) model, a
transformer-based language model developed by Google’s AI team that employs sequence-
to-sequence (Seq2Seq) pre-training and uses a fine-tuning approach to perform a variety of
NLP tasks [22]. The T5 model is one of the largest transformer-based language models to
date, with 11 billion parameters.

The keytotext library simplified the process of fine-tuning the original model to work with
computing programming exercises generation. Using the Mostly Basic Python Problems
(MBPP) dataset from Google Research [1], which consists of 1000 programming problems
designed to be solvable by entry level programmers, the model was fine-tuned to perform in
a contextualised and efficient way. In order to train the model to generate exercise Problem
Statement from keywords, a field with the three most relevant keywords that represent the
text of each exercise was included in the dataset. The NLTK platform [3] was used to
accomplish this, since it has numerous libraries and functionalities for working with natural
language, such as RAKE that can extract and sort words from a given text by importance.

By applying this method of text generation to the context of the programming exercises,
it was possible to obtain satisfactory results. It should be noted that, as the model was
trained with a trio of keywords for each text, it will loose its efficiency if provided with a
different quantity of keywords.

As illustrated in Figure 3, the results are quite satisfactory and coherent within the
context of the dataset provided. Sometimes, the generated text does not correspond to what
the user expects, but it manages to make sense according to the words entered. This provides
a wider variety of exercises helping in the creative process.

4.4 CodeT5
CodeT5 [32] builds on the T5 architecture, but incorporates source code-specific knowledge
to endow the model with better code understanding. It was trained on the CodeSearchNet
dataset, which consists of millions of lines of code written in popular programming languages
such as Python, Java, and JavaScript, as well as popular frameworks and libraries such as
TensorFlow, React, and Django [10]. This enables the model to generate code that is not
only syntactically but also functionally correct and efficient. It was tested using one of the
checkpoints of this model (CodeT5-large-ntp-py) which was trained on millions of Python
source code files from GitHub (GCPY - Python Github Code Dataset) [16].

The source shown in Figure 4 requested from the model a function in Python with
substantial complexity, including string manipulation and the use of a repetition structure
(loop). The model produced code that performs what was requested in an optimised way.
However, being a somewhat computationally demanding mechanism, it required significant
time to load and generate the corresponding code.

ICPEC 2023



9:10 NLP/AI Based Techniques for Programming Exercises Generation

Source:

txt = " Function that counts the frequency of each character in a string ."
input_ids = tokenizer (txt , return_tensors ="pt"). input_ids
generated_ids = model . generate (input_ids , max_length =128)
print ( tokenizer . decode ( generated_ids [0] , skip_special_tokens =True ))

Output:

def count_characters ( string ):
char_freq = {}
for char in string :

char_freq [char] = char_freq .get(char , 0) + 1
return char_freq

Figure 4 Example of code generation using CodeT5.

Despite using a constant string as input to the model in Figure 4 (variable txt, used
for exemplification purposes only), the real test was conducted by linking the output of the
keytotext model to the input of CodeT5, creating a pipeline that generated not only the
Problem Statement, but also the Code for that specific exercise directly.

4.5 Summary
After the review and implementation of NLP/ML methods that can be integrated into a
tool for automatic generation of programming exercises, it was possible to analyse various
approaches, comparing advantages and disadvantages between them.

As drawbacks, the price may be seen as a barrier for public and free implementations,
while computational resources required by some implementations, such as GPT-3, also incur
in initial costs to infrastructure construction and maintenance. These factors are undoubtedly
important in order to choose which approach to adopt for the implementation of an exercise
generator. Another aspect that should obviously be discussed is the quality of the generated
exercises, in terms of lexical, syntactic and semantic correctness and overall coherence to the
input parameters.

The initial approach to generate a complete exercise (problem statement, code snippet
and answer options), using theme and type as inputs, required an advanced model (GPT-3).
This raised three problems:

Implementing such a system on an ordinary machine is quite complicated, as it requires
resources that common computers do not have, making this process very slow or even
unattainable;
The need to use costly APIs would present a financial strain that could be unsustainable
in the medium or long term;
Creating a system dependent on an Internet connection could lead to communication
failures and reliability issues.

The approach of generating the components of an exercise separately has proven to be
more efficient, as it lies upon the use of simpler models. The first component was generated
by the keytotext library in tandem with the MBPP dataset, resulting in a fully constructed
and comprehensible problem statement. In turn, this problem statement was then fed to
the CodeT5 model in order to generate the second component of the exercise, namely the
source code snippet. Besides other models with higher complexity were tested, this approach
– used to generate around 100 exercises – demonstrated equally capable results to GPT-3,
with approximately 80% rate of success in generating comprehensible and coherent exercises.



T. C. Freitas, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 9:11

5 Conclusion

The investigation and exploration reported in this paper contributed to establish a panorama
on how to automatically generate computer programming exercises, using acceptable NLP
and ML mechanisms to construct both the Problem Statement and its accompanying Code. A
prototype for the system that implements these mechanisms has been developed and tested,
in order to pave the way to the final semi-automatic exercise generator we intend to build.

Future works in this project include a compiler to a Domain Specific Language (DSL) that
has been designed to facilitate the exercises generation process, templates to automatically
create different versions of the Problem Statement and Code, and user interfaces to create new
templates and retrieve lists of exercises. In that way teachers and students will benefit from
our system, getting different and challenging problems to practice and test their programming
abilities.

References
1 Jacob Austin, Augustus Odena, Maxwell Nye, et al. Program synthesis with large language

models. arXiv preprint, 2021. arXiv:2108.07732.
2 Gagan Bhatia. keytotext. URL: https://github.com/gagan3012/keytotext.
3 Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python:

analyzing text with the natural language toolkit. O’Reilly Media, Inc., 2009.
4 Matt Bower. A taxonomy of task types in computing. SIGCSE Bull., 40(3):281–285, June

2008. doi:10.1145/1597849.1384346.
5 Tom B. Brown, Benjamin Mann, Nick Ryder, et al. Language models are few-shot learners.

CoRR, abs/2005.14165, 2020. arXiv:2005.14165.
6 Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. Evaluation of text generation: A survey,

2021. arXiv:2006.14799.
7 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of

deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages
4171–4186. Association for Computational Linguistics, 2019. doi:10.18653/v1/n19-1423.

8 Pranay Dugar. Attention – Seq2Seq Models. https://towardsdatascience.com/day-1-2-
attention-seq2seq-models-65df3f49e263, 2019.

9 Alex Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850,
2013. arXiv:1308.0850.

10 Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search. CoRR, abs/1909.09436,
2019. arXiv:1909.09436.

11 IBM. What are Neural Networks? https://www.ibm.com/topics/neural-networks, 2023.
12 IBM. What are Recurrent Neural Networks? https://www.ibm.com/topics/recurrent-

neural-networks, 2023.
13 IBM. What is Natural Language Processing? https://www.ibm.com/topics/natural-

languageprocessing, 2023.
14 IBM. What is Unsupervised Learning? https://www.ibm.com/topics/unsupervised-

learning, 2023.
15 Andrej Karpathy. The unreasonable effectiveness of recurrentneural networks, 2015. URL:

http://karpathy.github.io/2015/05/21/rnneffectiveness/.
16 Hung Le, Yue Wang, Akhilesh Gotmare, Silvio Savarese, and Steven Hoi. Coderl: Mastering

code generation through pretrained models and deep reinforcement learning, July 2022.
doi:10.48550/arXiv.2207.01780.

ICPEC 2023

https://arxiv.org/abs/2108.07732
https://github.com/gagan3012/keytotext
https://doi.org/10.1145/1597849.1384346
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2006.14799
https://doi.org/10.18653/v1/n19-1423
https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263
https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1909.09436
https://www.ibm.com/topics/neural-networks
https://www.ibm.com/topics/recurrent-neural-networks
https://www.ibm.com/topics/recurrent-neural-networks
https://www.ibm.com/topics/natural-languageprocessing
https://www.ibm.com/topics/natural-languageprocessing
https://www.ibm.com/topics/unsupervised-learning
https://www.ibm.com/topics/unsupervised-learning
http://karpathy.github.io/2015/05/21/rnneffectiveness/
https://doi.org/10.48550/arXiv.2207.01780


9:12 NLP/AI Based Techniques for Programming Exercises Generation

17 Archna Oberoi. What are Language Models in NLP? https://insights.daffodilsw.com/
blog/what-are-language-models-in-nlp, 2020.

18 OpenAI. ChatGPT. https://openai.com/blog/chatgpt.
19 OpenAI. OpenAI. https://www.openai.com/product.
20 OpenAI. Gpt-4 technical report, 2023. arXiv:2303.08774.
21 Mário Pinto and Teresa Terroso. Learning Computer Programming: A Gamified Approach.

In Alberto Simões and João Carlos Silva, editors, Third International Computer Programming
Education Conference (ICPEC 2022), volume 102 of Open Access Series in Informatics
(OASIcs), pages 11:1–11:8, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2022/16615.

22 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21(1), January 2020.

23 Noa Ragonis. Type of questions – The case of computer science. Olympiads in Informatics,
6:115–132, January 2012.

24 Ehud Reiter and Robert Dale. Building Natural Language Generation Systems. Cambridge
University Press, 2000.

25 Ehud Reiter and Robert Dale. Building applied natural language generation systems. Natural
Language Engineering, 3, March 2002.

26 Alexander Ruf, Marc Berges, and Peter Hubwieser. Classification of programming tasks
according to required skills and knowledge representation. In Informatics in Schools. Curricula,
Competences, and Competitions - 8th International Conference on Informatics in Schools: Situ-
ation, Evolution, and Perspectives, ISSEP 2015, Ljubljana, Slovenia, September 28 - October
1, 2015, Proceedings, volume 9378, September 2015. doi:10.1007/978-3-319-25396-1_6.

27 Gianetan Sekhon. Gpt-2 vs gpt-3. https://medium.com/@gianetan/gpt-2-vs-gpt-3-
e915ac43e981, 2023.

28 Alberto Simões and Ricardo Queirós. On the Nature of Programming Exercises. In Ricardo
Queirós, Filipe Portela, Mário Pinto, and Alberto Simões, editors, First International Computer
Programming Education Conference (ICPEC 2020), volume 81 of OpenAccess Series in
Informatics (OASIcs), pages 24:1–24:9, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. doi:10.4230/OASIcs.ICPEC.2020.24.

29 Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In Proceedings of the 27th International Conference on Neural Information Processing
Systems – Volume 2, NIPS’14, pages 3104–3112, Cambridge, MA, USA, 2014. MIT Press.

30 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, pages 6000–6010,
Red Hook, NY, USA, 2017. Curran Associates Inc.

31 w3resource. Python exercises, practice, solution. https://www.w3resource.com/python-
exercises/, 2023.

32 Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, pages 8696–8708,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. URL: https://aclanthology.org/2021.emnlp-main.685.

33 Max Woolf. aitextgen. https://docs.aitextgen.io/, 2021.
34 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:

Evaluating text generation with bert, 2020.

https://insights.daffodilsw.com/blog/what-are-language-models-in-nlp
https://insights.daffodilsw.com/blog/what-are-language-models-in-nlp
https://openai.com/blog/chatgpt
https://www.openai.com/product
https://arxiv.org/abs/2303.08774
https://drops.dagstuhl.de/opus/volltexte/2022/16615
https://doi.org/10.1007/978-3-319-25396-1_6
https://medium.com/@gianetan/gpt-2-vs-gpt-3-e915ac43e981
https://medium.com/@gianetan/gpt-2-vs-gpt-3-e915ac43e981
https://doi.org/10.4230/OASIcs.ICPEC.2020.24
https://www.w3resource.com/python-exercises/
https://www.w3resource.com/python-exercises/
https://aclanthology.org/2021.emnlp-main.685
https://docs.aitextgen.io/


Data Visualization for Learning Analytics Indicators
in Programming Teaching
Ranieri Alves dos Santos #

Graduate Program in Knowledge Engineering and Management, UFSC, Florianópolis, Brazil

Dalner Barbi #

Graduate Program in Knowledge Engineering and Management, UFSC, Florianópolis, Brazil

Vinicius Faria Culmant Ramos #

Graduate Program in Knowledge Engineering and Management, UFSC, Florianópolis, Brazil

Fernando Alvaro Ostuni Gauthier #

Graduate Program in Knowledge Engineering and Management, UFSC, Florianópolis, Brazil

Abstract
Learning Analytics (LA) has the potential to transform the way we learn, work and live our lives.
To reach its potential, it must be clearly defined, incorporated into institutional teaching-learning
strategies and processes and practices. The main goal of this study is to list indicators to be used in
learning analytics in programming teaching and how to expose their views. For the development of
the indicator model, this study based on a qualitative analysis, using data visualization and business
intelligence tools, in projects focused on Learning Analytics. As a result, four main indicators were
mapped: accesses to the system, resources accessed, activities carried out and, performance in
activities.

2012 ACM Subject Classification Information systems → Data analytics

Keywords and phrases learning analytics, data visualization, learning indicators

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.10

Category Short Paper

Funding This work was carried out with the support of the Coordination for the Improvement of
Higher Education Personnel – Brazil (CAPES) – Financing Code 001.

1 Introduction

In the context of the academic domain, Learning Analytics (LA) has grown rapidly, with a
large volume of special editions of scientific journals in education, psychology, computing and
social sciences focused on this topic. Due to its recent use, the organization of its fundamental
concepts, theories, techniques, methods, approaches, applications and strategies has been
structured for its development in several fields of action.

Since the emergence of digital teaching and learning platforms, which support educational
processes, it has been possible to monitor the behavior of students and teachers in a broad
and detailed way, offering a range of precision and prediction to the effectiveness of learning.
And, in this context, new computational and interactional techniques are being created to
absorb all the issues that involve it, from statistical results, purely, to issues such as ethics
and privacy [17, 4, 11].

The field of Learning Analytics is attractive as a result of the possibility of using large
volumes and a variety of data that enhance the vision of substantial improvements in teaching
and learning practices, in an optimized and scalable way [9, 12].

© Ranieri Alves dos Santos, Dalner Barbi, Vinicius Faria Culmant Ramos, and Fernando Alvaro Ostuni
Gauthier;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 10; pp. 10:1–10:7

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ranierisantos@gmail.com
https://orcid.org/0000-0002-7071-8291
mailto:dalnerbarbi@gmail.com
https://orcid.org/0000-0002-7464-3557
mailto:v.ramos@ufsc.br
https://orcid.org/0000-0002-8319-743X
mailto:fernando.gauthier@ufsc.br
https://orcid.org/0000-0002-1648-7613
https://doi.org/10.4230/OASIcs.ICPEC.2023.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


10:2 Data Visualization for Learning Analytics Indicators in Programming Teaching

As Clow [4] exposes, the exponential availability of data on learning activities in digital
environments, with an approach centered on quantitative metrics, contributes to the under-
standing of educational processes that, in the context of the analysis, offers a broad view for
teachers to use its resources, conceptions and teaching methods more effectively, providing
better results.

Indeed, the field of Learning Analytics has been developing in a society permeated by the
power of algorithms, mathematical approaches, advanced conditions of technological informa-
tion processing equipment and data analysis methods, impacting education management and
the process assessment as a foundation for the epistemological assumptions of pedagogical
practices [8, 6].

2 Indicators for Learning Analytics

As the field of Learning Analytics is very recent, indicators of learning behavior in virtual
learning environments with some degree of standardization have not yet been determined, to
be used in the development of learning analyzes [12, 16].

Using a group concept mapping (GCM) approach, a tool available online, [16] create five
dimensions of qualitative indicators for use in Learning Analytics assessments: a) object-
ives (awareness, reflection, motivation, behavioral change); b) learning support (perceived
usefulness, recommendation, classification of activities, detection of students at risk); c)
measures of learning and outcomes (comparability, effectiveness, efficiency, usefulness); d)
data aspects (transparency, data standards, data ownership, privacy); and, e) organizational
aspects (availability, implementation, training of educational stakeholders, organizational
change).

In another study, Maraza-Quispe et al. [12] use a quantitative approach to propose
indicators of learning behavior in virtual environments, to efficiently develop analytical
learning processes, aiming at more effective predictions about learners’ performance, decision-
making and optimization of learning processes. They are: a) preparation for learning;
b) progress along the course; c) learning resources; d) interaction in the forums; and, e)
assessment of resources.

3 Data Visualization

Data visualization aims to provide ways to graphically represent collections of data. There are
several ways to visualize and represent data, which go back to the first forms of information
representation, such as maps, graphs and other graphics[18]. Data visualization technology
acts as a cognitive aid to understand what you want to report, and it is a device that allows
you to visualize nuances laid out only in the form of raw data in an understandable way. In
this way, these techniques facilitate research, add meaning, capture information, collaborative
discoveries and assist in the process of discovery and identification of elements.

Although clarity, objectivity and the ability to allow logical reasoning between data
represent an aspect of data visualization, the reliability of the database and the reality it
represents has a clear value relationship with visualization capabilities [13, 2, 3]. However,
the data cannot speak for themselves, requiring the interlocutors to articulate variables for
them in the discourse, from which the expected inferences of the reader can be generated.
This work, sometimes attributed to data journalists, sometimes to researchers, condenses,
aggregates, cuts or adjusts data so that it can be analyzed and disseminated. According to



R. A. dos Santos, D. Barbi, V. F. C. Ramos, and F. A. O. Gauthier 10:3

his ongoing project, with the advent of big data and the democratization of data visualization,
it has become essential that executives and business analysts have the power to choose the
information that is relevant to them [18].

The neutrality of the graphical representation agents as authors of the information and
the neutrality of the elements that previously develop data acquisition patterns and variables
are usually analyzed as much as the information provided by these agents. Therefore, just
as the possibility of improving the comprehensibility of quantitative information through
cognitive sources is widely discussed, it is essential to discuss the magnitude of biases that
can be aggregated within the same source of information and the aspects that affect its
reliability in projects of data visualization [2].

New ways of presenting data make it possible to instantly find insights that can now be
displayed anywhere in the world. Thus, new data visualization tools and techniques address
an old problem where knowledge is seen as synonymous with power, but having too much
information can be counterproductive [18].

4 Methodological Procedures

For the development of the indicators model, this work was based on a qualitative analysis
of approaches that use data visualization and business intelligence in projects focused on
Learning Analytics. Therefore, a scope review was carried out using the acronym PCC
(Population, Concept and Context).

The population was stipulated as being “indicators in Learning Analytics”, the concept
as “data visualization techniques” and the context as “technologies in higher education”. As
a research period, references published between 2012 and 2023 were sought, performing the
search with the string “learning analytics” AND (“data visualization” OR “indicators”). The
research sought to integrate several sources of publications about educational technology, for
which the search used the LearnTechLib, Google Scholar and Web of Science databases and
resulted in 1655 records.

Considering the only exclusion criteria is articles not related to the research question of
this work, an exploratory qualitative research was carried out, focusing on the mapping of
initiatives in Learning Analytics and data visualization. All articles that did not present
relevant proposals on the use of visualization of learning analytics data and that were
applicable to the teaching environment of programming in e-learning were excluded, in the
end, 7 articles were selected.

5 Results and Discussions

From the works resulting from the review, Ali et al. [1] propose a tool for visualizing
qualitative data in learning analytics, Essa and Ayad [5] propose a student success analysis
system based on the visualization and prediction of learning data analytics, meanwhile,
Khuzairi et al. [7] reviews the use of data visualization in learning analytics in the literature,
Paiva et al. [14] proposes data mining in learning analytics, with data visualization, Phillips et
al. [15] develops a classification algorithm for student engagement data in learning analytics,
Song [19] analyzes data mining and visualization techniques in the context of learning
analytics, Uskov et al. [20] works on the analysis of learning in higher education using data
cleaning and visualization techniques.

The indicators to compose the dashboard proposed in this work were based on the works
of Khuzairi et al. [7], Phillips et al. [15], Essa and Ayad [5] and Ali et al. [1]. These works
served as a reference for defining the variables that will serve as a basis for viewing and

ICPEC 2023



10:4 Data Visualization for Learning Analytics Indicators in Programming Teaching

classifying the educational data that will be displayed on the dashboard. Based on the
works by Song [19], Paiva et al. [14] and Khuzairi et al. [7], data visualization strategies and
navigation modes between data contexts (data drilling) were developed.

As a result of the research, four main indicators were mapped, raised in the literature
that would be able to provide visualizations that would facilitate the process of learning
analytics in programming teaching. Accesses to the System: indicator that measures the
number of accesses to the system that the user made, regardless of the actions carried out in
the educational system, only their accesses.

Resources Accessed: indicator referring to the amount of resources accessed within the
educational system, compared to the amount of resources available.

Performed Activities: indicator that measures the amount of activities carried out in the
system, comparing with the amount of activities available, without taking into account their
mistakes and successes, only the performance.

Performance in Activities: indicator that measures errors and successes in activities
available in the system.

The indicators of “Accesses to the System”, “Resources Accessed” and “Performed
Activities” are important to measure the performance of programming students because,
according to Phillips et al[15], students with too much access to educational resources tend
to be very effective in balancing your study commitments, contributing to your performance.
In this way, on the contrary, when the student does not access the educational resources on
the e-learning platform, his programming learning is compromised. The act of accessing or
not accessing educational resources and the platform is not the main indicator of success
or failure of the programming student. For Macarini et al[10], for example, counting any
student interaction with the platform may be enough to predict early failure of programming
students.

However, it is an indicator that contributes to the visualization of the learning analytics
data about the student’s commitment. “Performance in Activities” is the main indicator
of student performance success to be visualized. This indicator, along with the three other
indicators, make up the gauge visualization strategy in the proposed dashboard.

Based on the mapped indicators, a proposal for data visualization of these indicators was
developed based on the “BI Dashboard” visualization style, with contextual visualizations,
enabling data drilling by class and by students. Visualizations will be plotted in bar, pie and
line graphs (Figure 1).

On the upper left side, the first data drill option appears, where the user can access
views by class, in the example of Figure 1, the performance of the indicators in the class
of “Object-Oriented Programming – 23948203-1” is displayed. The teacher will be able to
browse the information of their classes and the educational manager will be able to access
the data of all classes.

Just below, on the left side, the second data drill option is displayed, which allows the
teacher to choose which student he would like to visualize his performance. The teacher or
manager can group one or more students to obtain their average performance.

In the visualization graphs, it will be possible to observe the student’s performance in the
activities carried out, where from a bar graph, their assertiveness can be measured against
the expected context. In the next pie chart, the teacher will be able to easily visualize the
percentage of available resources that the user has accessed, the same happens with the next
pie chart, which visualizes the percentage of activities carried out by the student. Just below,
the line graph displays the number of accesses to the system in the historical series and a
gauge with the student’s classification.



R. A. dos Santos, D. Barbi, V. F. C. Ramos, and F. A. O. Gauthier 10:5

Figure 1 Overview of the Proposed Model Dashboard.

The student rating scale is displayed in a gauge at the lower right corner (Figure 2). The
gauge is based on the algorithm by Phillips et al [15], which uses the four indicators mapped
in this work to specify the student’s level of involvement within the course. This algorithm,
based on the indicators, classifies the student in ascending order in the following terms:
non-user, random, single-use, accidental, free-time, inserted, constant user, well-intentioned,
engaged and conscious, the latter being the student with the highest ranking against the
algorithm.

Figure 2 Overview of the Proposed Model Dashboard.

ICPEC 2023



10:6 Data Visualization for Learning Analytics Indicators in Programming Teaching

6 Conclusion

With the development of the proposed Learning Analytics data visualization model applied
to programming teaching, it was possible to observe that the literature presents several
approaches that facilitate the development of new approaches for the analysis of educational
data from the actions already carried out and mapped fundamentally in online educational
and learning management systems.

In this way, the present work presented a form of data visualization based on existing
approaches in the literature capable of facilitating the analysis of the performance of classes
and of specific students from contextual visualizations with data drilling navigation.

Initiatives aimed at simplifying quantitative symbologies from raw data in infographics,
which are capable of composing strategies that facilitate the understanding of information
for the appropriate target audience, can be of great contribution to the most diverse sectors,
especially in education. Teachers and educational managers having access to simplified
graphical views, which allow a quick understanding of the current status of certain students
or classes, can dedicate more time to other activities, since they will no longer need to look
for reports of grades, accesses and activities on several screens, since that a dashboard like
the one proposed here is able to quickly inform those involved about the current performance
of the selected sample.

As a way of continuing the work developed based on this, it is suggested that further
research be carried out on the proposed model, implementing its dashboard in programming
teaching institutions that have systems capable of retrieving information on indicators from
educational databases.

References
1 Liaqat Ali, Marek Hatala, Dragan Gasevic, and Jelena Jovanovic. A qualitative evaluation of

evolution of a learning analytics tool. Comput. Educ., 58(1):470–489, 2012. doi:10.1016/j.
compedu.2011.08.030.

2 Jaqueline Vasconcelos Braga, Tiago Barros Pontes, Virginia Tiradentes Souto, et al. Stat-
istical manipulations and visual anomalies: data visualization design and statistical bias
recognition/manipulacoes estatisticas e anomalias visuais: design de visualizacao de dados e
reconhecimento de vieses estatisticos. Brazilian Journal of Information Design, 17(2):145–163,
2020.

3 Alberto Cairo. The truthful art: Data, charts, and maps for communication. New Riders,
2016.

4 Doug Clow. An overview of learning analytics. Teaching in Higher Education, 18(6):683–695,
2013.

5 Abdullah Essa and Hany Ayad. Student success system: risk analytics and data visualization
using ensembles of predictive models. In Proceedings of the 2nd International Conference on
Learning Analytics and Knowledge, pages 158–161. ACM, April 2012.

6 HU Hoppe. Computational methods for the analysis of learning and knowledge building
communities. In Handbook of Learning Analytics, chapter 2. Society for Learning Analytics
Research, 2017.

7 Nur Muizzatul Shafiqah Khuzairi, Zainal Choy Cob, and Tuan Hilaluddin. Towards under-
standing the synergetic relationship of data visualization with learning analytics: A review. In
AIP Conference Proceedings, volume 2644(1), page 030030. AIP Publishing LLC, November
2022.

8 Simon Knight and Simon Buckingham Shum. Theory and learning analytics. In Handbook of
Learning Analytics, pages 17–22. Society for Learning Analytics Research, 2017.

https://doi.org/10.1016/j.compedu.2011.08.030
https://doi.org/10.1016/j.compedu.2011.08.030


R. A. dos Santos, D. Barbi, V. F. C. Ramos, and F. A. O. Gauthier 10:7

9 Vitomir Kovanović, Srećko Joksimović, Dragan Gašević, Marek Hatala, and George Siemens.
Content analytics: The definition, scope, and an overview of published research. In Handbook of
Learning Analytics and Educational Data Mining, pages 77–92. Society for Learning Analytics
Research, 2017.

10 Lucas A B Macarini, Cristian Cechinel, Marilde F Batista Machado, Vanessa Faria Cul-
mant Ramos, and Rodrigo Munoz. Predicting students success in blended learning—evaluating
different interactions inside learning management systems. Applied Sciences, 9(24):5523, 2019.

11 Katerina Mangaroska and Michail Giannakos. Learning analytics for learning design: A
systematic literature review of analytics-driven design to enhance learning. IEEE Transactions
on Learning Technologies, 12(4):516–534, 2018.

12 Basilio Maraza-Quispe, Omar Marcelo Alejandro-Oviedo, Wilson Choquehuanca-Quispe,
Nilton Caytuiro-Silva, and Juan Herrera-Quispe. Towards a standardization of learning
behavior indicators in virtual environments. International Journal of Advanced Computer
Science and Applications, 11(11), 2020.

13 Isabel Meirelles. Design for information: an introduction to the histories, theories, and best
practices behind effective information visualizations. Rockport publishers, 2013.

14 Rodrigo Paiva, II Bittencourt, Wagner Lemos, Andrade Vinicius, and Diego Dermeval. Visu-
alizing learning analytics and educational data mining outputs. In International Conference
on Artificial Intelligence in Education, pages 251–256. Springer, June 2018.

15 Rob Phillips, Dorit Maor, Greg Preston, and Wendi Cumming-Potvin. Exploring learning
analytics as indicators of study behavior. In EdMedia+ Innovate Learning, pages 2861–2867.
Association for the Advancement of Computing in Education (AACE), 2012.

16 Maren Scheffel, Hendrik Drachsler, Slavi Stoyanov, and Marcus Specht. Quality indicators for
learning analytics. Journal of Educational Technology and Society, 17(4):117–132, 2014.

17 George Siemens. Learning analytics: The emergence of a discipline. American Behavioral
Scientist, 57(10):1380–1400, 2013.

18 Felipe Cezar Cardoso Da Silva. Data visualization: past, present and future. LIINC em
Revista, 15(2):205–223, 2019.

19 Dongmin Song. Learning analytics as an educational research approach. International Journal
of Multiple Research Approaches, 10(1):102–111, 2018.

20 Vladimir L Uskov, Jon P Bakken, Karthik S Ganapathi, Kevin Gayke, Blake Galloway, and
Johra Fatima. Data cleaning and data visualization systems for learning analytics. In Smart
Education and e-Learning 2020, pages 183–197. Springer, 2020.

ICPEC 2023





Automated Assessment of Simple Web
Applications
Luís Maia Costa #

Faculty of Engineering, University of Porto, Portugal
CRACS – INESC TEC, Porto, Portugal

José Paulo Leal #

Faculty of Sciences, Universidade do Porto, Portugal
CRACS – INESC TEC, Porto, Portugal

Ricardo Queirós #

uniMAD, ESMAD/P.Porto, Portugal
CRACS – INESC TEC, Porto, Portugal

Abstract
Web programming education is an important component of modern computer science curricula.
Assessing students’ web programming skills can be time-consuming and challenging for educators.
This paper introduces Webpal, an automated assessment tool for web programming exercises in entry-
level courses. Webpal evaluates web applications coded in HTML, CSS, and Javascript, and provides
feedback to students. This tool integrates with Virtual Learning Environments (VLEs) through
an API, allowing the creation, storage, and access to exercises while assessing student attempts
based on the created exercises. The evaluation process comprises various subcomponents: static
assessment, interface matching, functional testing, and feedback management. This approach aims
to provide feedback that helps students overcome their challenges in web programming assignments.
This paper also presents a demo showcasing the tool’s features and functionality in a simulated VLE
environment.

2012 ACM Subject Classification Applied computing → Interactive learning environments

Keywords and phrases Web Applications, Static Assessment, Interface Matching, Functional Assess-
ment, Feedback Manager

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.11

Category Short Paper

Funding José Paulo Leal is financed by National Funds through the Portuguese funding agency,
FCT – within project LA/P/0063/2020. We also would like to acknowledge the European Union’s
Erasmus Plus programme (agreement no. 72020-1-ES01-KA226-VET-096004).

1 Introduction

The internet is a crucial resource for learning and researching nowadays, enabling teachers
and students to access and share information. In the 1990s, Virtual Learning Environments
(VLEs) were introduced to aid education, making it easier to share knowledge and provide
feedback to students [10]. Evaluating students’ programming abilities can be challenging
since most exercises have an uncountable number of solutions. Moreover, since students
must complete many programming tasks, it can burden teachers to assess them all [2]. This
challenge increases in the automated assessment of web applications since these often use a
combination of programming and markup languages, such as HTML, CSS, and JavaScript.
Additionally, events in web applications do not follow a predetermined sequence and may occur
randomly. As a result, conventional black-box methodologies that rely on test cases to assess
student performance are inadequate for analyzing web interfaces and graphical user interfaces

© Luís Maia Costa, José Paulo Leal, and Ricardo Queirós;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 11; pp. 11:1–11:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luiscosta205@gmail.com
https://orcid.org/0009-0005-4437-6354
mailto:zp@dcc.fc.up.pt
https://orcid.org/0000-0002-8409-0300
mailto:ricardoqueiros@esmad.ipp.pt
https://orcid.org/0000-0002-1985-6285
https://doi.org/10.4230/OASIcs.ICPEC.2023.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


11:2 Automated Assessment of Simple Web Apps

(GUIs) [2, 12]. To address these issues, this paper introduces a tool under development called
Webpal (WEB Programming Assessment for Learning) that allows teachers to automatically
assess basic web programming skills involving HTML, CSS, and JavaScript. While there are
many tools and frameworks available to automate the assessment of various programming
languages, there is a need for more solutions for web page evaluation. This work aims to
develop an npm package that integrates with VLEs and assists in the automated assessment
of web programming assignments and is capable of providing incremental feedback to the
students about their attempts. The paper is structured as follows. Chapter 2 provides an
overview of the current state of the art on tools and algorithms comparable to Webpal.
Chapter 3 describes the Webpal architecture, features, and evaluation process. Lastly,
Chapter 4 summarizes the significant contributions and highlights potential future directions
for research in this area.

2 State of the Art

In this study, we introduce a tool for evaluating basic web applications, specifically involving
HTML, CSS, and JavaScript. To the best of our knowledge, no equivalent tools exist that
can offer an automated assessment within these distinct programming languages. As such,
our analysis focuses on tools that embody attributes relevant to our project, particularly
those relating to interface and functional assessments. It is noteworthy that most of the
prevailing literature in the interface assessment domain seems to come from the early 2000s,
with a predominant emphasis on tools developed in Java.

Douce, Livingstone, and Orwell [3] reviewed various automated assessment tools and
pointed out some advantages and disadvantages. On the positive side, since assessing
programming assignments is laborious, these tools can reduce teachers’ work, allowing them
to concentrate on more critical tasks, such as clarifying CS and programming concepts. Also,
computers are less likely to fail if configured correctly, while humans are error-prone. On
the other hand, there are many restrictions on what can be assessed automatically, and the
feedback provided by these tools needs to be revised for educational reasons [11].

In 2010, Ihantola et al. [6] presented a literature review of the current systems for auto-
matically assessing programming assignments from 2006 to 2010. The authors recommended
that new automated assignment systems should explain clearly how the tool functions and
that the security of these systems should get more consideration. They also suggested that
automated assessment tools should be open-source to avoid scattering, emphasized the need
to integrate automated assessment into virtual learning environments, and identified the
assessment of web applications as an area for future research.

It’s possible to identify two types of assessment for programming assignments:

Dynamic Assessment assesses a program by executing it. It requires a secure sandbox
environment that doesn’t interfere with the host’s computer integrity. It’s possible to
check the program functionality by comparing the result with test data sets or its efficiency
by monitoring execution-related activities such as execution time and memory usage [2].

Static Assessment, contrarily to dynamic, assesses programming code without executing it.
Adequate software code doesn’t just guarantee proper execution; other critical elements
must be considered, such as coding style and code smells, to check if the code contains
the correct syntax. It can also check for plagiarism in the source code [2, 1, 9, 16].



L. M. Costa, J. P. Leal, and R. Queirós 11:3

2.1 Interface Assessment
In 2006, Gray and Higgins [5] introduced an approach to grading GUIs by analyzing the
hierarchical relationship among interface components. This method extracts data from
graphical elements and uses dynamic class loading in object-oriented programming languages
to retrieve information about the interface’s object structure. Then, a file specifies the
required actions and objects to test and grade assignments.

Štěpánek and Šimková [17] described three algorithms for comparing the internal structure
of HTML trees to detect duplicate interfaces (phishing) and assist in education. The first
algorithm counts the number of occurrences of each element in a tree. The second algorithm
calculates a ratio representing the percentage of reference paths in the compared interface.
The third algorithm identifies the largest possible subtree in both interfaces and calculates a
ratio between them.

Thackston [15] noted in 2020 that only some tools are available to grade web assignments.
The author proposed a method that uses XPath queries to automate the assessment of
HTML files. Although XPath has the potential for automatic evaluation, the author reported
limitations in flexibility, incomplete coverage, and grading difficulties when the assignment is
partially correct.

Leal and Primo [12] proposed a web interface matching algorithm that uses element
mapping to identify and compare elements from different interfaces. This method extracts
original and derived properties from the Document Object Model (DOM) API, reflecting
spatial relationships between elements. The authors suggested refining the algorithm and
extending it to evaluate interfaces visually and functionally, along with creating an incremental
feedback manager.

2.2 Functional Assessment
Sztipanovits et al. [14] proposed an application to assess the functionality of web graphical
user interfaces (GUIs). This solution requires a list of URL hosting submissions with the
interfaces to evaluate and an Excel document defining the inputs and test cases.

The js-assess online playground [7] is a tool that automatically assesses Javascript
programming exercises. It is a serverless tool that runs inside a Javascript engine and
combines an online editor with libraries to evaluate functionality, style, programming errors,
and software metrics. js-assess can evaluate Javascript functionality, style, programming
errors, and software metrics, being unable to assess interfaces and styling. Due to the lack
of a server, feedback cannot be stored, making it useful only for self-studying. This tool
has a collection of assignments available and is implemented in pure HTML and Javascript,
facilitating the integration of js-assess into any web page. The authors highlighted the
importance of researching how Javascript should be taught, the libraries that should be used,
and where Javascript should be introduced to students.

Mirshokraie [8] proposed an automated technique to generate test cases for individual
Javascript functions and DOM event sequences, which focused on developing efficient and
practical tests for JS web applications. The approach consists of a three-step process that
involves dynamically exploring the application to deduce a test model, generating test
cases, and creating test assertions automatically using mutation testing. The technique uses
specific mutation operators to identify common JS programming errors and analyze only
the application’s necessary code. The study results showed that the generated tests covered
an average of only 68.4%, demonstrating that this method is not particularly interesting in
generating tests for web applications.

ICPEC 2023



11:4 Automated Assessment of Simple Web Apps

WebWolf [13] is a framework for automatically evaluating introductory web programming
exercises. This tool can load web pages, find and inspect elements, click links, and perform
unit testing. Teachers can create JUnit-like Java programs to test websites by writing test
methods to simulate user inputs on the page and make assertions to compare the student’s
result with the expected output. However, WebWolf requires knowledge of Selenium’s
WebElement and the specification of IDs on web elements, which is not ideal. The authors
concluded that this framework significantly reduces grading time compared to manual grading
and has the potential for automated assessment.

2.3 Feedback Manager
There is a lack of information on systems incorporating incremental feedback managers.
ProtoAPOGEE [4] is an automated grading system that aims to guide students and enhance
faculty productivity by providing informative and iterative feedback through failed unit
testing. The tool comprises three modules: project specification, automatic grading, and
grading report viewer. The system requires teachers to know the Ruby programming language
to write scripts. One challenge of providing detailed feedback to students was the need for
teaching staff to write lengthy descriptive messages about errors. ProtoAPOGEE addresses
this issue by generating an animation demo for each failed test case, providing a step-by-step
guide on how the student failed a particular requirement. Teachers can also provide textual
hints to assist students during the assignment. The tool can provide feedback at two levels:
a summary report and detailed feedback for each requirement and test case.

3 Webpal

Webpal automates the evaluation process for web programming exercises in beginner-level
courses. It assesses web applications coded in HTML, CSS, and Javascript, and provides
immediate non-repetitive feedback to students. It consists of an independent module respons-
ible for managing the entire tool, from file parsing to assessment and feedback generation.
Webpal interacts with VLEs via an API, enabling the creation, storage, and access to ex-
ercises and assessing student attempts based on created exercises. The evaluation process
encapsulates several subcomponents, including the analysis of the submission structure,
code syntax verification, generation of a paired array of HTML elements from both the
solution and attempted interfaces, and element mapping for functional testing. The latter
employs chai/mocha tests provided during the exercise creation to evaluate the attempted
web application. Each process can yield messages for the feedback generation manager,
who processes these messages to provide the most helpful feedback for assisting students in
overcoming their challenges.

Client

Server

Webpal API

Static
Assessment

Request
Validation

HTML/CSS
Processing

Functional
Testing

Feedback
Manager

Evaluator

Exercise
Management

Webpal

Exercise Manager

Virtual Learning Environment

Evaluation

Figure 1 Webpal architecture.



L. M. Costa, J. P. Leal, and R. Queirós 11:5

3.1 Webpal API
The Webpal API provides a collection of functions for managing and evaluating web develop-
ment exercises. These functions include:

createExercise(exerciseData, testData, assignment): Returns a unique identifier
after creating an exercise using the provided exercise data, test data, and assignment
information.
getExerciseData(id), getExerciseTestData(id), getExerciseAssignment(id):
Each function fetches specific information about an exercise using its unique identi-
fier.
getAllExercises(): Returns a list of all existing exercises.
deleteExercise(id): Deletes an exercise using its unique identifier.
evaluateAttempt(exerciseID, attemptData, PORT, previousFeedback): Evalu-
ates an exercise attempt and returns the feedback.

The exercise and attempt data follow a structured JSON format where each submission
consists of an array of objects. Each object includes two main properties: the filename and
code. The filename is a string that represents the name of the file being submitted, while the
code contains the actual content of the file, such as HTML, CSS, or JavaScript code. The
test data, represented by a string of Mocha tests written in JavaScript, is used to evaluate
the functionality of a learner’s submission. Presently, Webpal assesses one HTML file per
submission, including linked CSS and JavaScript files. Our future goal is to enable the
evaluation of multiple pages per student submission. Webpal is deployed as an npm package,
which simplifies its integration in existing JavaScript-based systems, and requires a server to
execute.

3.2 Static Assessment
A preliminary step of Webpal evaluateAttempt function involves static evaluation. Three
npm packages1 are used for validating code syntax for each file type. For HTML, html-
validator is employed, which validates HTML using Nu HTML Checker or html-validate.
For CSS, w3c-css-validator is used, taking advantage of the W3C public CSS validator.
Finally, JSHINT identifies Javascript errors and suggests better coding practices in JS. Static
assessment helps to pinpoint issues before executing the evaluator, providing feedback about
these problems without requiring Webpal to run the evaluator entirely, enriching students’
understanding of their solution, and teaching them ways to produce more interoperable code.

3.3 Browser Emulation
Evaluating interfaces requires web page emulation to determine the relationships and positions
of elements. Alternative approaches, such as jsdom and cheerio, were considered, which
attempt to implement and emulate web standards on the server side. While these tools
manage and verify relationships between HTML elements, they cannot simulate element
positions. Webpal employs Playwright, a web testing and automation framework that runs
headless browser instances, providing accurate results through the use of an actual web page.
Another similar framework is Puppeteer, but it’s older and lacks certain features, such as
cross-browser support. The express npm package is used to serve files, offering a simple

1 https://www.npmjs.com/

ICPEC 2023

https://www.npmjs.com/


11:6 Automated Assessment of Simple Web Apps

solution for routing individual web pages and websites. Webpal examines the extensions
of the specified files and express serves the HTML files locally on a port selected by the
VLE. If CSS and JS files are imported into an HTML page, express will serve them. This
dynamic routing approach enables the creation of various evaluators using different ports
simultaneously.

3.4 Evaluation
The HTML/CSS processing component is responsible for processing attempt and solution
HTML files, creating two tree structures representing HTML elements and associated CSS
styles. This is achieved through a recursive traversal of elements and their children, ensuring
all nested components are processed and included. The comparison and evaluation processes
are simplified by utilizing a list of elements. Comparisons between elements and their
properties are based on the Leal and Primo web interface matching algorithm [3]. This
algorithm examines spatial relationships, styling, and textual content, resulting in a computed
match score for each element pair within the attempt and solution trees. Pairs with the
highest match scores are then selected. Subsequently, the functional testing component
generates a mapping based on the best pairs, connecting the original IDs of the solution
elements to their corresponding attempt element IDs. This mapping updates the functional
test data provided initially (JS file with chai/mocha written tests), facilitating the automated
testing of the attempt web page.

3.5 Feedback Manager
This module comprises a class that handles outputs sent by the request validation, static
assessment, and functional testing modules. The Webpal execution follows a specific order,
so it doesn’t need complete execution if errors are encountered in the first steps of its pipeline.
First, the student’s attempt is checked against the predefined JSON schema to ensure it
follows the required format. If the solution doesn’t corroborate with the necessary structure,
Webpal generates a feedback message highlighting this problem. Next, the static assessment
module performs a syntax validation on the student’s code. If any syntax errors are detected,
a feedback message related to that error is generated. After the static evaluation and the
HTML tree generation, the functional testing module tries to map the HTML elements of the
student’s attempt to the solution’s HTML elements. The student is advised to review their
HTML structure and element relationships if Webpal cannot find any correspondence between
the two sets of elements. Finally, the functional testing module evaluates the functionality of
the student’s code, generating feedback for any failed tests.

3.6 Webpal Playground
The Webpal Playground is a demo created in Vue.js to showcase the features and functionality
of Webpal, emulating a simplified Virtual Learning Environment. The demonstration consists
of two pages: Playground and Backoffice. It is complemented by a backend server running
on Node.js using the Webpal API. The Playground is the primary interface for students to
interact with and explore Webpal. On this page, students can select from a list of available
exercises and work on them using a built-in code editor. The code editor is divided into
three sections for HTML, CSS, and Javascript, allowing students to edit and preview their
work in real-time. It’s also possible to check the solution output on this page. Students can
execute and submit their code to be evaluated by clicking the “Execute” button. When



L. M. Costa, J. P. Leal, and R. Queirós 11:7

the code is submitted, Webpal evaluates the attempt and provides feedback to the student.
The feedback is displayed in the “Feedback Log”, which records all feedback messages along
with their timestamps. The Backoffice is designed for exercise management. Teachers can
create new exercises on this page by providing an assignment name, exercise file names and
code, and chai/mocha tests to evaluate the student’s code. Once an exercise is submitted, a
success message is displayed, and the exercise is added to the list of available exercises in
the Playground. The backend server utilizes the Webpal API to handle various tasks, such
as creating, deleting, and fetching exercises, as well as evaluating student attempts. This
server communicates with the frontend pages using HTTP requests and responses. Figure 2
illustrates the demonstration interface, presenting a scenario where two feedback messages
are generated in response to two distinct attempts made by a student.

Figure 2 Webpal playground demonstration.

4 Conclusion and Future Work

In this paper, we presented Webpal, an automated assessment tool for web programming
exercises in introductory-level courses. Webpal focuses on evaluating student submissions
coded in HTML, CSS, and Javascript, providing incremental feedback. The tool integrates
with VLEs through an API. This work’s main contribution is an approach to assess the
main aspects of simple web applications through static evaluation, interface matching, and
functional testing. This approach also ensures that students receive valuable feedback to
improve their programming skills and address the challenges they face in their assignments.
Another contribution of this work was the development of an npm package that simplifies
integration with VLEs and will serve as a base for validating this approach. There are
several potential future directions for research in this field. It would be beneficial to extend
the capabilities of Webpal to cover more advanced web programming assignments, such as
multi-page web applications, or develop plugins to integrate directly with platforms like
Moodle or Blackboard. The next steps include validating Webpal by integrating it into a code
playground to evaluate the effectiveness of Webpal in terms of student learning outcomes
and satisfaction to get insights of its impact. Comparing the performance of students using
Webpal against traditional assessment methods could help establish the benefits of automated
web programming assessment.

ICPEC 2023



11:8 Automated Assessment of Simple Web Apps

References
1 Kirsti Ala-Mutka, Toni Uimonen, and Hannu-Matti Järvinen. Supporting students in C++

programming courses with automatic program style assessment. JITE, 3:245–262, January
2004. doi:10.28945/300.

2 Kirsti M Ala-Mutka. A survey of automated assessment approaches for programming assign-
ments. Computer Science Education, 15(2):83–102, 2005. doi:10.1080/08993400500150747.

3 Christopher Douce, David Livingstone, and James Orwell. Automatic test-based assessment of
programming: A review. J Educ Resour Comput, 5, September 2005. doi:10.1145/1163405.
1163409.

4 Xiang Fu, Boris Peltsverger, Kai Qian, Lixin Tao, and Jigang Liu. Apogee-automated project
grading and instant feedback system for web based computing. SIGCSE’08 – Proceedings
of the 39th ACM Technical Symposium on Computer Science Education, pages 77–81, 2008.
doi:10.1145/1352135.1352163.

5 Geoffrey R. Gray and Colin A. Higgins. An introspective approach to marking graphical user
interfaces. ITiCSE06 – Proceedings of the 11th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, 2006:43–47, 2006. doi:10.1145/1140123.1140139.

6 Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. Review of recent systems
for automatic assessment of programming assignments. In Proceedings of the 10th Koli Calling
International Conference on Computing Education Research, Koli Calling ’10, pages 86–93, New
York, NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1930464.1930480.

7 Ville Karavirta and Petri Ihantola. Serverless automatic assessment of javascript exercises.
ITiCSE’10 – Proceedings of the 2010 ACM SIGCSE Annual Conference on Innovation and
Technology in Computer Science Education, page 303, 2010. doi:10.1145/1822090.1822179.

8 Shabnam Mirshokraie. Effective test generation and adequacy assessment for javascript-based
web applications. 2014 International Symposium on Software Testing and Analysis, ISSTA
2014 – Proceedings, pages 453–456, 2014. doi:10.1145/2610384.2631832.

9 Jan Nordin. A review on the static analysis approach in the automated programming assessment
systems. National Conference on Programming 07, 2007. URL: https://www.researchgate.
net/publication/228328534.

10 RL O’Leary and AJ Ramsden. Virtual Learning Environments, pages 1–30. Economics
Learning and Teaching Support Network, 2002.

11 José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. Automated assessment in computer
science education: A state-of-the-art review. ACM Transactions on Computing Education,
22:1–40, September 2022. doi:10.1145/3513140.

12 Marco Primo and José Paulo Leal. Matching user interfaces to assess simple web applications.
OpenAccess Series in Informatics, 91:7:1–7:0, 2021. doi:10.4230/OASIcs.ICPEC.2021.7.

13 Antonio C. Siochi and William R. Hardy. Webwolf: Towards a simple framework for automated
assessment of webpage assignments in an introductory web programming class. SIGCSE 2015
– Proceedings of the 46th ACM Technical Symposium on Computer Science Education, pages
84–89, 2015. doi:10.1145/2676723.2677217.

14 Mate’ Sztipanovits, Kai Qian, and Xiang Fu. The automated web application testing (awat)
system. Proceedings of the 46th Annual Southeast Regional Conference on XX, ACM-SE 46,
pages 88–93, 2008. doi:10.1145/1593105.1593128.

15 Russell Thackston. Exploring the use of xpath queries for automated assessment of student
web development projects. SIGITE 2020 – Proceedings of the 21st Annual Conference on
Information Technology Education, pages 255–259, 2020. doi:10.1145/3368308.3415389.

16 Nghi Truong, Paul Roe, and Peter Bancroft. Static analysis of students’ java programs. IFAC
Symposium on Advances in Control Education, pages 317–325, January 2004.

17 Jiří Štěpánek and Monika Šimková. Comparing web pages in terms of inner structure. Procedia
– Social and Behavioral Sciences, 83:458–462, 2013. doi:10.1016/j.sbspro.2013.06.090.

https://doi.org/10.28945/300
https://doi.org/10.1080/08993400500150747
https://doi.org/10.1145/1163405.1163409
https://doi.org/10.1145/1163405.1163409
https://doi.org/10.1145/1352135.1352163
https://doi.org/10.1145/1140123.1140139
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/1822090.1822179
https://doi.org/10.1145/2610384.2631832
https://www.researchgate.net/publication/228328534
https://www.researchgate.net/publication/228328534
https://doi.org/10.1145/3513140
https://doi.org/10.4230/OASIcs.ICPEC.2021.7
https://doi.org/10.1145/2676723.2677217
https://doi.org/10.1145/1593105.1593128
https://doi.org/10.1145/3368308.3415389
https://doi.org/10.1016/j.sbspro.2013.06.090


Haskelite: A Step-By-Step Interpreter for Teaching
Functional Programming
Pedro Vasconcelos # Ñ

Departamento de Ciência de Computadores, Faculdade de Ciências da Universidade do Porto,
Portugal
LIACC – Laboratório de Inteligência Artificial e Ciência de Computadores, Porto, Portugal

Abstract
This paper describes Haskelite, a step-by-step interpreter for a small subset of Haskell. Haskelite
is designed to help teach fundamental concepts of functional programming, namely: evaluation by
rewriting; definition of functions using pattern-matching; recursion; higher-order functions; and
on-demand evaluation. The interpreter is implemented in Elm and compiled to JavaScript, so it
runs on the browser and requires no installation.

This is on-going work and has yet to be fully evaluated; we present some initial experience in
the classroom and highlight some points for improvement.

2012 ACM Subject Classification Software and its engineering → Functional languages; Information
systems → Web applications; Software and its engineering → Interpreters

Keywords and phrases Functional programming, Step-by-step evaluators, Web applications

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.12

Funding This work was financially supported by: Base Funding - UIDB/00027/2020 of the Artificial
Intelligence and Computer Science Laboratory - LIACC - funded by national funds through the
FCT/MCTES (PIDDAC).

Acknowledgements The author would like to thank Sandra Alves for helpful feedback on a earlier
draft of this paper.

1 Introduction

Functional programming has been taught in many universities as part of the Computer Science
undergraduate curricula since the 1980s as attested by the steady tradition of textbooks
available [2, 4, 9, 20, 1, 15]. Interest in functional programming is also increasing by the
adoption of functional features in more mainstream languages, e.g. Java, Kotlin, Swift and
Rust. Indeed, the ACM CS Curricula recommendation of August 2022 has increased the
functional programming component from 3 to 4 hours relative to the CS2013 edition. However,
educators have reported several beginner difficulties while learning functional programming,
namely with the evaluation model [19], understanding type error messages [16, 21] or due to an
incorrect perception of functional languages being only useful for academic problems [3, 14].

This paper describes Haskelite, a step-by-step interpreter for a small subset of Haskell [17].
Haskelite is designed to help with the first of the above problems, namely: understanding
evaluation by rewriting; definition functions using pattern-matching and recursion; higher-
order functions and on-demand evaluation. We focus on a restricted subset of Haskell covering
these fundamental concepts. The Haskelite interpreter is implemented in Elm [6, 5] and
compiled to JavaScript [10], so it runs on the browser and requires no installation. The
source code is available at https://github.com/pbv/haskelite and a demo is available at
https://pbv.github.io/haskelite/.

Haskelite is not intended to replace a full language implementation (so that students are
not discouraged by learning only a “toy” language). It can nonetheless be useful for teachers
and students to explain concepts and clarify misunderstandings.

© Pedro Vasconcelos;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 12; pp. 12:1–12:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pbv@dcc.fc.up.pt
https://www.dcc.fc.up.pt/~pbv
https://orcid.org/0000-0002-8387-9772
https://doi.org/10.4230/OASIcs.ICPEC.2023.12
https://github.com/pbv/haskelite
https://pbv.github.io/haskelite/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


12:2 Haskelite: A Step-By-Step Interpreter for Teaching Functional Programming

Figure 1 Haskelite interpreter embedded on a web page.

2 Design

2.1 Goals and motivation

The functional paradigm that we want to teach is well presented in the Bird and Wadler’s
classic textbook [2]: “Programming in a functional language consists of building definitions
and using the computer to evaluate expressions. The primary role of the programmer is to
construct a function to solve a given problem. (. . . ) The primary role of the computer is to
act as an evaluator or calculator.” (emphasis added). In principle, this notion of computation
by evaluation should be familiar to university students from high-school algebra; in practice,
we have noted that students repeatedly experience difficulties:

1. There is a jump in complexity going from numerical expressions (as is done in high-school)
to expressions with algebraic data types such as pairs and lists;

2. When defining functions by pattern matching, it is common for students to either miss
necessary cases (e.g. the empty list) or to add redundant ones (e.g. special cases for lists
of one or two elements);

3. Understanding recursive definitions requires transitioning from thinking by extension (e.g.
viewing a list as a sequence of values [1,2,3,4]) to thinking inductively (e.g. viewing a
list as the nested application of constructors 1:(2:(3:(4:[]))));

4. Reasoning about termination also requires thinking inductively about “what is getting
smaller” at each step of the recursion;

5. Reasoning about non-terminating processes (like lazy lists) also requires thinking (co-)-
inductively about transformations that consume or produce a few elements at a time.

Such difficulties can be overcome by diligently working out calculations on paper, but this
often requires individual motivation and sometimes assistance by the teacher. The design
goal for Haskelite is to help expedite this learning process by automating the calculation
steps. Moreover, it should also allow the student to quickly change the expression and/or
definitions and re-try the evaluation, hopefully improving his or her’s understanding.



P. Vasconcelos 12:3

Figure 2 Partial evaluation of the sum of squares.

2.2 User interface
Haskelite is a JavaScript application embedded in a web page. The user interface starts in
editing mode, allowing students to type in equations defining functions and an expression.
The editor provides feedback for parsing and type errors (see Figure 1). It is also possible for
the instructor to prepare pages with filled-in expressions and definitions, so that the student
is given particular examples to try.

Clicking the evaluate button switches to evaluation mode: the current expression is shown
and the student can advance one step at a time; each evaluation step is either a primitive
operation (e.g. arithmetic) or the application of a student function definition (or one from the
Prelude of built-in functions). Previous evaluation steps are shown and a tool-tip highlights
the justification for each step (see Figure 2). The student can also move backwards to
previous steps.

Evaluation steps are justified as either primitive operations, one of the program’s equations
or an equation for a built-in Prelude function (such as sum). Using equations to justify
evaluation steps serves two purposes: firstly, it connects the computation to the student’s
code; secondly, it helps prepare for the final topic of the course, which introduces proofs of
program properties using equational reasoning and induction. This should help transition
from evaluations with concrete values to proofs with variables that stand for arbitrary values.

2.3 Examples
We now present some examples of evaluations using Haskelite, highlighting possible uses in
functional programming classes.

2.3.1 Structural recursion over lists
One of the early examples of recursion over lists to to (re)define the sum function that adds
all values in a list:

sum [] = 0 -- base case
sum (x:xs) = x + sum xs -- recursive case

Haskelite can be used to exemplify evaluation of this function with some arbitrary lists. After
this we can ask the students to define an analogous function to compute the product of all
values a list. A frequent mistake is to define the base case incorrectly:

ICPEC 2023



12:4 Haskelite: A Step-By-Step Interpreter for Teaching Functional Programming

product [] = 0 -- base case (WRONG)
product (x:xs) = x * product xs -- recursive case

Trying this in the Haskell interpreter gives only the final result (0); using Haskelite students
can observe where the computation goes wrong:

product [1,2,3]
1*(product [2,3])
1*(2*(product [3]))
1*(2*(3*(product [])))
1*(2*(3*0))
1*(2*0)
1*0
0

The student’s reaction might be to implement a less general solution where the base case is a
list of a single value:

product [x] = x
product (x:xs) = x * product xs

This will, however, not work for the empty list; it is then possible for the teacher to compare
with the sum function and relate the value of base case with the neutral element of operation
in order to introduce the more general solution:

product [] = 1
product (x:xs) = x * product xs

2.3.2 Intercalating values
As a second example, consider the exercise: Define a recursive function intersperse that
intercalates a value between successive elements in a list. For example: intersperse 0
[1,2,3] should be [1,0,2,0,3].

This function requires a more complex recursion pattern because we need to distinguish
whether the list has at least two values. The following attempt has a mistake in the recursive
case:

intersperse a [] = []
intersperse a [x] = [x]
intersperse a (x:y:xs) = x:a:y:intersperse a xs

-- WRONG: should be x:a:intersperse a (y:xs)

Again evaluating the test case yields the following trace:

intersperse 0 [1,2,3]
1:(0:(2:(intersperse 0 [3])))
1:(0:(2:[3]))
1:(0:[2,3])
1:[0,2,3]
[1,0,2,3]

From this trace it should be easier to understand why the definition is wrong: each recursion
step should remove only a single element from the list.



P. Vasconcelos 12:5

2.3.3 Mapping over an infinite list
As a final example, consider mapping the function that multiplies by 3 over the infinite list
[1,2,3,...]. This illustrates both higher-order functions (map) and on-demand evaluation
of infinite lists:

map (\x -> (3*x)) [1..]
map (\x -> (3*x)) (1:[2..])
((\x -> (3*x)) 1):(map (\x -> (3*x)) [2..])
(3*1):(map (\x -> (3*x)) [2..])
3:(map (\x -> (3*x)) [2..])
3:(map (\x -> (3*x)) (2:[3..]))
3:(((\x -> (3*x)) 2):(map (\x -> (3*x)) [3..]))
3:((3*2):(map (\x -> (3*x)) [3..]))
3:(6:(map (\x -> (3*x)) [3..]))
3:(6:(map (\x -> (3*x)) (3:[4..])))
3:(6:(((\x -> (3*x)) 3):(map (\x -> (3*x)) [4..])))
3:(6:((3*3):(map (\x -> (3*x)) [4..])))
3:(6:(9:(map (\x -> (3*x)) [4..])))

Evaluation will not terminate; instead the resulting list is also infinite but new elements are
produced one at a time, so that the process is still algorithmic.

3 Implementation

3.1 Technical details
Haskelite was developed in the Elm programming language [6, 5], which compiles to JavaScript
and runs in a web browser. No server-side software is required: the parsing, type-checking
and evaluation all run in the web browser. Listing 1 illustrates the embedding of a Haskelite
interpreter in an HTML page to evaluate the sum of squares example.

The techniques used are well-known: parsing is done using a parser combinator library1,
type-checking implements the standard Hindley-Milner system [7] and evaluation is done by
a naive rewriting engine using substitutions. The later choice is adequate: the focus is on
the ability to easily relate the evaluation to the student’s code (i.e. which equation is chosen)
and efficiency is not critical for small programs and data sizes that a student is likely to use
while learning.

The performance is perfectly adequate: the minified JavaScript bundle is only about
70KB of size, which is quite small by today’s web page standards and parsing, type checking
and evaluation of small programs appear instantaneous. Moreover, scalability to a large
number of students is ensured because evaluation occurs in the clients’ browsers.

Listing 1 Embedding a Haskelite interpreter in an HTML page.
<! doctype html >
<html >

<head ><link rel =" stylesheet " href =" screen .css"></head >
<body >

<div id=" haskelite "></div >

1 https://package.elm-lang.org/packages/elm/parser/latest/

ICPEC 2023

https://package.elm-lang.org/packages/elm/parser/latest/


12:6 Haskelite: A Step-By-Step Interpreter for Teaching Functional Programming

<script src =" haskelite -min.js"></script >
<script >

Elm. Haskelite .init ({
node: document . getElementById (" haskelite "),
flags: { expression :" sum (map square [1..5])" ,

declarations : " square x = x*x" }
});

</script >
<hr >

</body >
</html >

3.2 Limitations
Haskell is large language with a rich syntax and many extensions. Currently Haskelite
supports only a very limited subset of Haskell:

the only basic values are integers and booleans;
the only structured data types are tuples and lists;
definitions are by equations only (no case-expressions) and do not support guards (i.e.
inline conditions);
no support for user defined data types;
no support for list comprehensions;
no support for type classes.

Another important technical detail is that Haskelite implements a call-by-name evaluation
strategy rather call-by-need (i.e. lazy evaluation), meaning that sub-expressions whose results
would be shared in a lazy implementation will be re-computed in Haskelite. This is done
to present each evaluation step as a simple expression; the alternative would be to expose
an implementation using graph reduction, which would obfuscate the presentation. Due to
the purely functional semantics, this change in evaluation strategy does not change the final
result, only the number of evaluations steps required.

4 Related work

Helium is a special compiler and interpreter developed at the Utrecht University for teaching
a subset of Haskell [13]. Its principal focus is on producing better messages for beginners,
particularly type errors. This system appears to no longer be maintained2.

The Glasgow Haskell Compiler includes an interactive mode (GHCi) that can run programs
using an imperative-style debugger, allowing setting break points, inspecting the values of
variables and single-stepping execution [8]. It exposes Haskell’s lazy evaluation mechanism,
e.g. showing function arguments as partially evaluated expressions; thus it is intended more
for experienced programmers than beginners.

Python tutor is a web site that allow visualizing the execution of Python, JavaScript,
C, C++ and Java programs [12, 11]. The computational model is strictly imperative: the
program state is visualized as pointer to the current instruction and the current values of
variables in scope.

2 As of April 2023, the Hackage database reports the last successful build in 2015: https://hackage.
haskell.org/package/helium

https://hackage.haskell.org/package/helium
https://hackage.haskell.org/package/helium


P. Vasconcelos 12:7

There is a long tradition of teaching languages based on the functional programming
language Scheme; DrScheme (now DrRacket) is an IDE for programming used for teaching
which include a graphical debugger. This allows setting breakpoints, inspecting variables
and step-by-step execution. There is even a web-based version [23]. However, Scheme does
not encourage the reasoning by pattern-matching and equations that we are interested in
teaching [22].

Haskelite was inspired by the Lambda lessons page built by Jan Paul Posma and Steve
Krouse [18]. Lambda lessons allows step-by-step evaluation of simple definitions over lists
and integers. The desire to extend this work lead to rewriting the interpreter from JavaScript
into Elm.

5 Experience and further work

We started using Haskelite in the spring semester of 2022 and in only 2023 was the type-
checker added. The interpreter has been used both in lectures and practical classes as soon
as pattern matching and recursion are introduced.

The experience in practical classes is that students are keen to try out examples to clarify
their understanding. Sometimes they will even try to use Haskelite as a debugger for larger
programs (which will not work due to the limited language supported). We have not yet
conducted any empirical validation of its application.

Nonetheless, there are already a number of directions for improvement that we have
identified:

adding more basic types to the language (e.g. strings and characters) would increase the
range of examples that can be tried;
similarly, adding support for user-defined datatypes would allow using it to explore more
complex patterns of recursion, e.g. over tree-like data structures;
the current user-interface side is not optimized for responsiveness in mobile devices;
improving this should be relatively simple;
there is currently no persistent state: expressions and definitions entered are lost each
time the user closes the web page; adding the possibility of saving and loading programs
using browser storage, or exporting links to share with others could be interesting in a
classroom setting.

References
1 Richard Bird. Thinking Functionally with Haskell. Cambridge University Press, 2015.
2 Richard Bird and Philip Wadler. Introduction to Functional Programming. Prentice-Hall,

1988.
3 Manuel M. T. Chakravarty and Gabriele Keller. The risks and benefits of teaching purely

functional programming in first year. Journal of Functional Programming, 14(1):113–123,
2004. doi:10.1017/S0956796803004805.

4 Manuel M. T. Chakravarty and Gabrielle Keller. An Introduction to Computing with Haskell.
Pearson SprintPrint, 2002. URL: https://books.google.pt/books?id=qC3dAAAACAAJ.

5 Evan Czaplicki. Elm: A delightful language for reliable web applications. https://elm-lang.
org/, 2023. [Online; accessed June 2023].

6 Evan Czaplicki and Stephen Chong. Asynchronous functional reactive programming for GUIs.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 411–422, New York, NY, USA, June 2013. ACM Press.

ICPEC 2023

https://doi.org/10.1017/S0956796803004805
https://books.google.pt/books?id=qC3dAAAACAAJ
https://elm-lang.org/
https://elm-lang.org/


12:8 Haskelite: A Step-By-Step Interpreter for Teaching Functional Programming

7 Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’82, pages 207–212, New York, NY, USA, 1982. Association for Computing Machinery.
doi:10.1145/582153.582176.

8 GHC developers. The ghci debugger. https://downloads.haskell.org/ghc/latest/docs/
users_guide/ghci.html#the-ghci-debugger, 2023. [Online; accessed June 2023].

9 Kees Doets and Jan van Eijck. The Haskell road to Logic, Maths and Programming. College
Publications, 2004.

10 Mozilla Foundation. Javascript MDN. https://developer.mozilla.org/en-US/docs/Web/
JavaScript, 2023. [Online; accessed June 2023].

11 Philip J. Guo. Python tutor. https://pythontutor.com/. [Online; acessed June 2023].
12 Philip J. Guo. Online Python tutor: Embeddable web-based program visualization for

Cs education. In Proceeding of the 44th ACM Technical Symposium on Computer Science
Education, SIGCSE ’13, pages 579–584, New York, NY, USA, 2013. Association for Computing
Machinery. doi:10.1145/2445196.2445368.

13 Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. Helium, for learning Haskell.
In Proceedings of the ACM SIGPLAN Haskell Workshop (Haskell’03), Uppsala, Sweden,
page 62. ACM SIGPLAN, August 2003. URL: https://www.microsoft.com/en-us/research/
publication/helium-for-learning-haskell/.

14 John Hughes. Experiences from teaching functional programming at Chalmers. SIGPLAN
Notices, 43(11):77–80, 2008. doi:10.1145/1480828.1480845.

15 Graham Hutton. Programming in Haskell. Cambridge University Press, 2nd edition, 2016.
16 Stef Joosten, Klaas Van Den Berg, and Gerrit Van Der Hoeven. Teaching functional pro-

gramming to first-year students. Journal of Functional Programming, 3(1):49–65, 1993.
doi:10.1017/S0956796800000599.

17 Simon Marlow. Haskell 2010 language report. https://www.haskell.org/onlinereport/
haskell2010/, 2023. [Online; accessed June 2023].

18 Jan Paul Posma and Steve Krouse. Lambda lessons. https://stevekrouse.com/hs.js/, 2014.
[Online; accessed April 2023].

19 Judith Segal. Empirical studies of functional programming learners evaluating recursive
functions. Instructional Science, 22:385–411, 1994.

20 Simon Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley, 3rd
edition, 2011.

21 Ville Tirronen, Samuel Uusi-Mäkelä, and Ville Isomöttönen. Understanding beginners’
mistakes with Haskell. Journal of Functional Programming, 25:e11, 2015. doi:10.1017/
S0956796815000179.

22 Philip Wadler. A critique of Abelson and Sussman or why calculating is better than scheming.
SIGPLAN Notices, 22(3):83–94, 1987. doi:10.1145/24697.24706.

23 Danny Yoo, Emmanuel Schanzer, Shriram Krishnamurthi, and Kathi Fisler. WeScheme: The
browser is your programming environment. In Proceedings of the 16th Annual Joint Conference
on Innovation and Technology in Computer Science Education, ITiCSE ’11, pages 163–167, New
York, NY, USA, 2011. Association for Computing Machinery. doi:10.1145/1999747.1999795.

https://doi.org/10.1145/582153.582176
https://downloads.haskell.org/ghc/latest/docs/users_guide/ghci.html#the-ghci-debugger
https://downloads.haskell.org/ghc/latest/docs/users_guide/ghci.html#the-ghci-debugger
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://pythontutor.com/
https://doi.org/10.1145/2445196.2445368
https://www.microsoft.com/en-us/research/publication/helium-for-learning-haskell/
https://www.microsoft.com/en-us/research/publication/helium-for-learning-haskell/
https://doi.org/10.1145/1480828.1480845
https://doi.org/10.1017/S0956796800000599
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://stevekrouse.com/hs.js/
https://doi.org/10.1017/S0956796815000179
https://doi.org/10.1017/S0956796815000179
https://doi.org/10.1145/24697.24706
https://doi.org/10.1145/1999747.1999795


A Systematic Review of Teacher-Facing
Dashboards for Collaborative Learning Activities
and Tools in Online Higher Education
Tiago Romão
University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
Universidade Aberta, Lisbon, Portugal
INESC TEC, Porto, Portugal

Pedro Pestana
Universidade Aberta, Lisbon, Portugal
CITAR, UCP, Porto, Portugal

Leonel Morgado #

LE@D, CIAC, & CEG, Universidade Alberta, Lisbon, Portugal
INESC TEC, Porto, Portugal

Abstract
Dashboard for online higher education support monitoring and evaluation of students’ interactions,
but mostly limited to interaction occurring within learning management systems. In this study,
we sought to find which collaborative learning activities and tools in online higher education are
included in teaching dashboards. By following Kitchenham’s procedure for systematic reviews,
36 papers were identified according to this focus and analysed. The results identify dashboards
supporting collaborative tools, both synchronous and asynchronous, along categories such as learning
management systems, communication tools, social media, computer programming code management
platforms, project management platforms, and collaborative writing tools. Dashboard support was
also found for collaborative activities, grouped under four categories of forum discussion activities,
three categories of communication activities and four categories of collaborative editing/sharing
activities, though most of the analysed dashboards only provide support for no more than two or
three collaborative tools. This represents a need for further research on how to develop dashboards
that combine data from a more diverse set of collaborative activities and tools.

2012 ACM Subject Classification Applied computing → Collaborative learning; Applied computing
→ Distance learning; Applied computing → E-learning

Keywords and phrases Dashboards, collaborative tools, collaborative activities, online learning,
e-learning, computer-supported collaborative learning

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.13

Funding This work was supported by the TRIO project funded by the European Union’s Erasmus+
KA220-ADU – Cooperation partnerships in adult education programme under grant agreement no.
KA220-ADU-1B9975F8.

1 Introduction

Online learning has grown in public interest in the last few years, largely due to the COVID-
19 pandemic [34]. A popular online pedagogical strategy is collaborative learning, where
students interact with each other and in groups, typically seeking consensus on a learning
topic [35].

Although monitoring students’ online collaborative activities makes teaching more effective,
as in face-to-face learning [45], and even though many collaborative tools have some kind of
monitoring functionalities, most teachers and tutors are discouraged of doing so. The main
reason for this is that such monitoring requires devoting substantial time and effort, as it is
primarily a manual task [41].

© Tiago Romão, Pedro Pestana, and Leonel Morgado;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 13; pp. 13:1–13:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3392-0367
https://orcid.org/0000-0002-3406-1077
mailto:Leonel.Morgado@uab.pt
https://orcid.org/0000-0001-5517-644X
https://doi.org/10.4230/OASIcs.ICPEC.2023.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


13:2 A Systematic Review of Teacher-Facing Dashboards

Learning dashboards support online teaching by automating the extraction and analysis of
data on students’ interactions within collaborative tools used in online learning. However, most
collaborative activities dashboards are student-facing, to assist in students’ self-regulation or
help students’ improve their own learning outcomes, unlike learning dashboards in general,
which are mostly teacher-oriented [50].

To support teacher monitoring, and consequently support pedagogical orchestration,
teacher-oriented dashboards for collaborative learning contexts need to consider students’
interaction data, known as collaborative activities indicators [3]. These may include forum
participation, sentiment analysis, document editing or audio-visual conferencing, among
significant diversity of online collaborative learning activities [41]. Interaction data may
be extracted both from synchronous or asynchronous tools, learning management systems
(LMS), and as other pieces of software, such as communication or collaborative writing tools
[1, 31]. In this study, we identify which collaborative tools and what collaborative activities
are supported by indicators in current teacher-facing dashboards, in the context of online
higher education.

To achieve this objective, we applied Kitchenham’s procedure for systematic reviews to
answer two research questions: RQ1: “Which collaborative tools are supported by online
higher education teaching dashboards?” and RQ2: “What indicators about collaborative
activities are provided in online higher education teaching dashboards?”

2 Background

2.1 Dashboards

A dashboard is “a visual display of the important information needed to achieve one or more
goals, consolidated and arranged on a single screen” [54].

In educational contexts, these are typically known as Learning Dashboards, aggregating
indicators about individual learners or groups, the learning processes, and the learning
context, regardless of their target users being students (as with StepUp! [48] and STEMscopes
[39]), teachers (with dashboards like GradeCraft [25], or GLASS [36]), program chairs (e.g.
[19]; [57]), administrators (e.g. LADA dashboard [23]) or educational researchers (e.g.
moocRP [50]). Learning dashboards aim to support decision-making by educational context
participants, as well as support students’ motivation and prevent dropout [33].

2.2 Collaborative Learning

Collaborative learning is defined as two or more people working together toward a shared
learning goal [28], a context where “learners have the opportunity to converse with peers,
present and defend ideas, exchange diverse beliefs, question other conceptual frameworks,
and are actively engaged”, including by editing or improving artefacts, either directly or
indirectly [28].

Collaborative learning, within the context of online learning, involves collaborative tools,
either synchronous or asynchronous. These may be communication tools, such as Discord
(2015), Slack (2013), Skype (2003) or Zoom (2011), discussion tools like blogs or forums,
collaborative writing tools such as Google Docs (2006), Microsoft Office 365 (2011) or
Zoho (2005), social networking/media sharing tools including Facebook (2004), Twitter
(2006), Youtube (2005) or Prezi (2009), source code management tools like Github (2008)
or Gitlab (2011), project management tools such as Asana (2011) or Trello (2011), and
learning management systems (LMS), e.g. Moodle (2002), Blackboard (1997) and Canvas
(2011) [1, 31].



T. Romão, P. Pestana, and L. Morgado 13:3

Collaborative learning activities are actions, tasks or exercises that enable collaborative
learning, commonly grouped as synchronous, asynchronous or blended, and classified as
discussion activities (with indicators such as sentiment analysis) involving forum particip-
ation, interaction, or rating, communication activities like instant messaging, audio-visual
conferencing or emails and collaborative editing or development of activities such as document
editing, programming code submission, file sharing or project management [3, 31].

Monitoring students online collaborative activities makes teaching more effective by
checking their learning process, the access and review of learning resources or by keeping
track of their contributions and their quality [45]. Often this is a manual task that involves
substantial time and effort [41].

3 Research Methods

The goal of this systematic literature review is to identify which collaborative tools and
activities are currently supported by indicators in online higher education teaching dashboards.
The framework that we applied was Kitchenham’s systematic reviewing procedures [32].

Kitchenham’s procedures have three main phases: the planning of the review, where the
need for the review is stated and the review protocol is developed; the research questions
and strategy used to search primary studies, which includes the search query or terms, which
databases or journals and conference proceedings to include, study selection criteria, study
quality assessment and data extraction strategy; and conducting the review, where the search
for the research studies is carried out, the studies quality assessment is performed and the
data extraction and synthesis is executed.

In this systematic review our research questions are: RQ1: “Which collaborative tools
are supported by online higher education teaching dashboards?” and RQ2: “What indicators
about collaborative activities are provided in online higher education teaching dashboards?”.

The Population of this systematic review, under Kitchenham’s procedure for the planning
stage, are online higher education teaching staff (professors, teaching assistants, etc.), the
Intervention target are the learning dashboards, the Comparison criterium for inclusion is
the dashboards’ usage, and the Outcome items are dashboard indicators about students’
collaborative activities and collaborative tools from which those indicators are collected.
Finally, the Context is online higher education.

3.1 Selection Process

The search query used was a combination of the keywords “online learning”, “dashboard”,
“collaborative tools”, “activities indicators” and their synonyms. The search process was
conducted with the Publish or Perish software (available from https://harzing.com/
resources/publish-or-perish) [24] using Google Scholar’s database to look for the search
terms in articles’ titles and keywords.

We chose Google Scholar for this search process since nearly all citations found in other
databases like Web of Science and Scopus were also found in Google Scholar’s database and
also that a substantial amount of unique citations were not found in these other databases
[38]. However, since Google Scholar also includes less reputable sources, this required close
scrutiny for reliability during the exclusion process.

ICPEC 2023

https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish


13:4 A Systematic Review of Teacher-Facing Dashboards

3.2 Exclusion Process
In the exclusion process, duplicated articles were excluded. Then, because of the rapid
evolution associated with social media, instant messaging and online learning collaborative
tools, we considered only articles from the most recent 10 years, considering they represent
71% of all found articles, as shown in Figure 1, and some of the most used collaborative
application were only launched recently, such as Discord in 2015, Slack in 2013, and Teams
in 2017.

Figure 1 Articles identified from the selection process by year of publication.

Afterwards, the titles and abstracts of the articles were analysed and those that were not
relevant or did not make reference either to dashboards or to online higher education or to
collaborative activities indicators were also excluded.

Finally, a more in-depth analysis was made by examining the entirety of the remaining
articles. We excluded those not addressing teacher-facing dashboards (9 articles) or online
higher education (14 articles), i.e. not meeting the the Population, Intervention or Context
of this systematic review. We also excluded articles which did not mention collaborative
platforms or indicators (62 articles).

As shown in Figure 2, a total of 981 articles were identified: 940 articles from the search
queries and 41 from other serendipitous sources. From the selection process, 365 articles
were found to be duplicates, 134 articles were more than 10 years old, 312 articles did not
make reference either to dashboards, to online higher education or to collaborative activities
indicators, based on the title or abstract. All these were excluded. There were 12 articles
written in languages that the researchers are unable to read, i.e. neither in Portuguese,
English, French, nor Spanish, and 122 articles that did not meet the selection criteria,
resulting in 36 articles that were analysed for this systematic review (see Table 1).

4 Results and Discussion

As a result of the search process, both synchronous and asynchronous collaborative tools were
used as analysis categories. These include communication tools, discussion tools, collaborative
writing tools, social networking/media sharing tools, source code management tools, project
management tools, and learning management systems [1, 31].



T. Romão, P. Pestana, and L. Morgado 13:5

Id
en

tif
ic

at
io

n
S

cr
ee

ni
ng

In
cl

ud
ed

Articles identified through 
database search: 

(n=940)

Articles identified through 
other sources: (n=41)

Articles screened: 
(n=981)

Duplicated articles 
removed: (n=365)

Articles aged ≤ 10 years: 
(n=482)

Articles excluded based 
on title or abstract: 

(n=312)

Articles after duplicated 
articles removed (n=616)

Articles aged > 10 years: 
(n=134)

Articles sought for 
retrieval: (n=170)

Articles excluded:
Unknown language 
(n=12)
Dashboard not for 
teachers (n=9)
Do not refers:
• Dashboards (n=21)
• Online higher learning 

(n=14)
• Student collaboration 

indicators (n=54)
• Collaborative tools 

(n=8)
Articles screened: (n=52)Articles not retrieved or 

unavailable: (n=16)

Articles included in this 
review (n=36)

Figure 2 Diagram of the systematic literary review.

We extracted elements from the final corpus of papers and subjected them to thematic
content analysis, performing coding and theme development, leading to the following results.

Regarding RQ1, “Which collaborative tools are supported by online higher education
teaching dashboards?” we found that that the collaboration tools most used as data sources
for online higher education teaching dashboards were learning management systems (and
mainly Moodle), followed by social networking/media tools and collaborative writing tools
(see Figure 3), appearing in 28 of the 36 articles.

The analysis categories utilised to achieve the second research question, RQ2: “What
indicators about collaborative activities are provided in online higher education teaching
dashboards?”, were collaborative learning activities such as discussion activities, communica-
tion activities and collaborative editing or development of activities [3, 31]. The discussion
activities identified were forum participation, rating, and networking (mainly on LMS forums);
the communication activities refer to synchronous communication, such as audio-visual con-
ferencing, asynchronous communication (like email) or both synchronous and asynchronous
communication using live chat or instant messaging by the use of tools like Slack or Discord.

The results regarding the collaborative activities’ indicators identified in the articles
were mostly related to characterising LMS forum discussion activities, referenced in 31
articles of the total corpus, followed by indicators on live chat/instant messaging or other
communication activities, and by indicators on collaborative editing or development of
activities (see Figure 4).

ICPEC 2023



13:6 A Systematic Review of Teacher-Facing Dashboards

Table 1 Overview of collaborative tools used in the dashboards from the reviewed articles.

Articles LMS
Source code
management

tool

Social
network/

media
tools

Project
management

tools

Collaborative
writing tool

Async.
comm.
tools

Sync.
comm.
tools

[2] ✓
[4] ✓
[5] ✓
[6] ✓
[7] ✓
[8] ✓ ✓ ✓ ✓ ✓
[9] ✓ ✓
[10] ✓
[11] ✓ ✓ ✓
[12] ✓
[13] ✓
[15] ✓
[16] ✓
[17] ✓
[18] ✓ ✓ ✓ ✓ ✓
[20] ✓
[21] ✓
[22] ✓
[25] ✓
[26] ✓
[27] ✓
[29] ✓
[30] ✓
[37] ✓
[40] ✓
[42] ✓ ✓ ✓
[43] ✓ ✓ ✓
[44] ✓ ✓ ✓
[46] ✓ ✓ ✓
[49] ✓ ✓ ✓ ✓
[51] ✓
[14] ✓ ✓
[53] ✓
[55] ✓
[56] ✓
[58] ✓

Results on teaching dashboard indicators about collaborative activities in online higher
education, were identified in the articles. These were mostly related to characterising LMS
forum discussion activities, as referenced in 31 articles of the whole corpus of 36 articles.
These provide relevant knowledge about student’s interactions, namely by messages sentiment
analysis and forum interaction networks. However, the asynchronous nature of forums does
not provide the full dynamics of how students are communicating and collaborating with
their peers. Particularly low in occurrences where indicators on project management, file
sharing, submission of programming code, audio-video conferencing and email communication.
Regarding this kind of collaborative learning indicators, we find there is a lack of research
and possible future research is needed and encouraged. The least used collaborative tools as
data sources in the teacher-facing learning dashboards were source code management tools,
synchronous and asynchronous communication tools, and project management tools.

Regarding collaborative tools, most dashboards mainly used data from learning man-
agement systems exclusively and, to some extent, social network/media sharing tools or
collaborative writing tools. By doing so, knowledge available from these dashboards is



T. Romão, P. Pestana, and L. Morgado 13:7

somewhat restricted to the more strict or formal communication in the LMS and ignores
other data sources, such as live chat/IM platforms or source code management tools. Thus,
a more dynamic overview of the collaborating interaction between students is being ignored.

Figure 3 Collaborative tools used in online higher education teacher-facing dashboards, by type.

In this systematic review, we identified a relationship between collaborative tools and col-
laborative activity indicators. The collaborative editing or development activities mostly take
places in collaborative writing tools, project and source code managements tools, whereas
discussion activities predominantly are carried out on the LMS. Regarding communica-
tions activities, email communication and live chat/IM, these take place in asynchronous
communication tools, except for audio-video conferencing, which is synchronous in nature.

Figure 4 Collaborative activities indicators identified in online higher education teaching dash-
boards.

ICPEC 2023



13:8 A Systematic Review of Teacher-Facing Dashboards

5 Conclusions

In this study we identify which collaborative tools and activities are the source of indicators
utilised in online higher education teaching dashboards.

The low occurrence of dashboard support for collaborative activities on asynchronous
tools such as Slack or Discord is surprising, considering that none of the few indicators
found in those categories used these collaboration tools as data sources, even though such
collaboration tools are very popular among online higher education students, leveraging their
social media-like features, and their combination of group and private messaging [47, 52].
A possible reason could be the pedagogical approach implemented in the institutions or
a possible lack of knowledge or training on the part of the lecturers, something that was
observed during the emergency online learning due to COVID-19 pandemic [45].

Additionally, several indicators on collaborative activities refer only to a single collaborat-
ive tool, notwithstanding that these indicators could be also implemented with data extracted
from other data sources, in order to get a better understanding of student activity and
interaction. An example of this is sentiment analysis, participation statistics, and interaction
network indicators, which are mostly applied to LMS forum data, even though they could
also use data from other collaborative tools, such as Slack or Discord, whereas live chat/IM
communication activities indicators could also be applied to direct messages featured in most
LMS.

We propose that future research efforts explore the challenges and opportunities of lever-
aging indicators about online collaborative learning activities taking place in the collaboration
tools more frequently used in recent years, seeking to contribute to better understanding
of collaborative learning in online contexts. This better understanding, in turn, is key to
supporting better collaborative education and deploying collaborative learning.

References

1 Abbas Abdoli-Sejzi, Baharuddin Aris, Maizah Hura Ahmad, and Mohd Shafie Rosli. The
relationship between web 2.0 technologies and students achievement in virtual university. In
International Education Studies, volume 8, pages 67–72, 2015. doi:10.5539/ies.v8n13p67.

2 Gokce Akcayir, Leticia Farias Wanderley, Carrie Demmans Epp, Jim Hewitt, and Athar
Mahmoudi-Nejad. Learning Analytics Dashboard Use in Online Courses: Why and How
Instructors Interpret Discussion Data. In Visualizations and Dashboards for Learning Analytics,
pages 371–397. Springer, 2021. doi:10.1007/978-3-030-81222-5_17.

3 Hosam Al-Samarraie and Noria Saeed. A systematic review of cloud computing tools for
collaborative learning: Opportunities and challenges to the blended-learning environment.
Computers and Education, 124:77–91, 2018. doi:10.1016/j.compedu.2018.05.016.

4 Naif Radi Aljohani, Ali Daud, Rabeeh Ayaz Abbasi, Jalal S. Alowibdi, Mohammad Basheri,
and Muhammad Ahtisham Aslam. An integrated framework for course adapted student
learning analytics dashboard. Computers in Human Behavior, 92:679–690, 2019. doi:10.
1016/j.chb.2018.03.035.

5 Elske Ammenwerth and Werner O. Hackl. Monitoring of students’ interaction in online learning
settings by structural network analysis and indicators. Studies in Health Technology and
Informatics, 235:293–297, 2017. doi:10.3233/978-1-61499-753-5-293.

6 Haogang Bao, Yanyan Li, You Su, Shuang Xing, Nian Shing Chen, and Carolyn Penstein
Rosé. The effects of a learning analytics dashboard on teachers’ diagnosis and intervention in
computer-supported collaborative learning. Technology, Pedagogy and Education, 30(2):287–
303, 2021. doi:10.1080/1475939X.2021.1902383.

https://doi.org/10.5539/ies.v8n13p67
https://doi.org/10.1007/978-3-030-81222-5_17
https://doi.org/10.1016/j.compedu.2018.05.016
https://doi.org/10.1016/j.chb.2018.03.035
https://doi.org/10.1016/j.chb.2018.03.035
https://doi.org/10.3233/978-1-61499-753-5-293
https://doi.org/10.1080/1475939X.2021.1902383


T. Romão, P. Pestana, and L. Morgado 13:9

7 Francis Brouns, Marta Zorrilla, Elena Álvarez, and Pedro Solana-González. ECO D2.5 Learning
analytics requirements and metrics report. Technical report, Open Universiteit, 2015. URL:
www.ecolearning.eu.

8 Susan Bull, Matthew D. Johnson, Mohammad Alotaibi, Will Byrne, and Gabi Cierniak.
Visualising multiple data sources in an independent open learner model. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 7926 LNAI, pages 199–208. Springer, 2013. doi:10.1007/
978-3-642-39112-5_21.

9 Susan Bull, Michael Kickmeier-Rust, Ravi K. Vatrapu, Matthew D. Johnson, Klaus Ham-
mermueller, William Byrne, Luis Hernandez-Munoz, Fabrizio Giorgini, and Gerhilde Meissl-
Egghart. Learning, learning analytics, activity visualisation and open learner model: Confusing?
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), volume 8095 LNCS, pages 532–535. Springer,
2013. doi:10.1007/978-3-642-40814-4_51.

10 Youness Chaabi and Yahya Al-Ashmoery. Development of a learning analytics extension
in Open edX. In International Conference of Modern Trends in ICT Industry: Towards
the Excellence in the ICT Industries, MTICTI 2021, pages 1–6. IEEE, 2021. doi:10.1109/
MTICTI53925.2021.9664754.

11 Li Chen, Min Lu, Yoshiko Goda, Atsushi Shimada, and Masanori Yamada. Learning Analytics
Dashboard Supporting Metacognition. In Balancing the tension between digital technologies
and learning sciences, pages 129–149. Springer, 2021. doi:10.1007/978-3-030-65657-7_8.

12 Miguel A. Conde, Francisco J. García-Peńalvo, Diego A. Gómez-Aguilar, and Roberto Theron.
Visual learning analytics techniques applied in software engineering subjects. In Proceedings
- Frontiers in Education Conference, FIE, volume 2015-February, pages 1–9. IEEE, 2015.
doi:10.1109/FIE.2014.7044486.

13 Emilia Corina Corbu and Eduard Edelhauser. Responsive dashboard as a component of
learning analytics system for evaluation in emergency remote teaching situations. Sensors,
21(23):7998, 2021. doi:10.3390/s21237998.

14 Rogério F. da Silva, Itana M. S. Gimenes, and José C. Maldonado. Analyzing learners’ behavior
and discourse within large online communities: a social learning analytics dashboard. In
Anais do XXXII Simpósio Brasileiro de Informática na Educação, pages 576–585. SBC, 2021.
doi:10.5753/sbie.2021.217468.

15 Jonce Dimov. Infrastructure of learning analytics dashboard. Technical report, Technische
Universiteit Eindhoven, 2017.

16 Anna Dipace, Bojan Fazlagic, and Tommaso Minerva. The design of a learning analytics
dashboard: EduOpen MOOC platform redefinition procedures. Journal of E-Learning and
Knowledge Society, 15(3):29–47, 2019. doi:10.20368/1971-8829/1135044.

17 Raphael A. Dourado, Rodrigo Lins Rodrigues, Nivan Ferreira, Rafael Ferreira Mello,
Alex Sandro Gomes, and Katrien Verbert. A teacher-facing learning analytics dashboard for
process-oriented feedback in online learning. In ACM International Conference Proceeding
Series, pages 482–489, 2021. doi:10.1145/3448139.3448187.

18 Xiaojing Duan, Chaoli Wang, and Guieswende Rouamba. Designing a learning analytics
dashboard to provide students with actionable feedback and evaluating its impacts. In
International Conference on Computer Supported Education, CSEDU - Proceedings, volume 2,
pages 117–127, 2022. doi:10.5220/0011116400003182.

19 Anabela Costa e Silva, Leonel Morgado, and António Coelho. Drill-down dashboard for chairing
of online master programs in engineering. In Technology and Innovation in Learning, Teaching
and Education - Second International Conference, TECH-EDU 2020, Vila Real, Portugal,
December 2-4, 2020, Proceedings, 3, pages 203–209, 2020. doi:10.1007/978-3-030-73988-1\
_15.

20 Luan Einhardt, Tatiana Aires Tavares, and Cristian Cechinel. Moodle analytics dashboard: A
learning analytics tool to visualize users interactions in Moodle. In Proceedings - 2016 11th

ICPEC 2023

www.ecolearning.eu
https://doi.org/10.1007/978-3-642-39112-5_21
https://doi.org/10.1007/978-3-642-39112-5_21
https://doi.org/10.1007/978-3-642-40814-4_51
https://doi.org/10.1109/MTICTI53925.2021.9664754
https://doi.org/10.1109/MTICTI53925.2021.9664754
https://doi.org/10.1007/978-3-030-65657-7_8
https://doi.org/10.1109/FIE.2014.7044486
https://doi.org/10.3390/s21237998
https://doi.org/10.5753/sbie.2021.217468
https://doi.org/10.20368/1971-8829/1135044
https://doi.org/10.1145/3448139.3448187
https://doi.org/10.5220/0011116400003182
https://doi.org/10.1007/978-3-030-73988-1_15
https://doi.org/10.1007/978-3-030-73988-1_15


13:10 A Systematic Review of Teacher-Facing Dashboards

Latin American Conference on Learning Objects and Technology, LACLO 2016, pages 1–6.
IEEE, 2016. doi:10.1109/LACLO.2016.7751805.

21 Anatoliy Gruzd and Nadia Conroy. Designing a learning analytics dashboard for twitter-
facilitated teaching. In Proceedings of the 5th Annual ACM Conference on Learning at Scale,
L at S 2018, pages 1–4, 2018. doi:10.1145/3231644.3231704.

22 Anatoliy Gruzd and Nadia Conroy. Learning analytics dashboard for teaching with Twitter.
In Proceedings of the Annual Hawaii International Conference on System Sciences, volume
2020-January, pages 2708–2717, 2020. doi:10.24251/hicss.2020.330.

23 Francisco Gutiérrez, Karsten Seipp, Xavier Ochoa, Katherine Chiluiza, Tinne De Laet, and
Katrien Verbert. LADA: A learning analytics dashboard for academic advising. Computers in
Human Behavior, 107:105826, 2020. doi:10.1016/j.chb.2018.12.004.

24 Anne-Wil Harzing. The publish or perish book. Tarma Software Research Pty Limited
Melbourne, 2010.

25 Caitlin Holman, Stephen Aguilar, and Barry Fishman. GradeCraft: What can we learn from
a game-inspired learning management system? In ACM International Conference Proceeding
Series, pages 260–264, 2013. doi:10.1145/2460296.2460350.

26 Ya Han Hu, Chia Lun Lo, and Sheng Pao Shih. Developing early warning systems to predict
students’ online learning performance. Computers in Human Behavior, 36:469–478, 2014.
doi:10.1016/j.chb.2014.04.002.

27 Rangana Jayashanka, E. Hettiarachchi, and K. P. Hewagamage. Technology enhanced learning
analytics dashboard in higher education. Electronic Journal of e-Learning, 20(2):151–170,
2022. doi:10.34190/ejel.20.2.2189.

28 Heisawn Jeong and Cindy E. Hmelo-Silver. Seven affordances of computer-supported col-
laborative learning: How to support collaborative learning? How can technologies help?
Educational Psychologist, 51(2):247–265, 2016. doi:10.1080/00461520.2016.1158654.

29 Rogers Kaliisa and Jan Arild Dolonen. CADA: a teacher-facing learning analytics dashboard to
foster teachers’ awareness of students’ participation and discourse patterns in online discussions.
Technology, Knowledge and Learning, pages 1–22, 2022. doi:10.1007/s10758-022-09598-7.

30 Max Kesselbacher, Kevin Wiltschnig, and Andreas Bollin. Block-based learning analytics
repository and dashboard: Towards an interface between researcher and educator. In ACM
International Conference Proceeding Series, pages 1–2, 2020. doi:10.1145/3421590.3421662.

31 Hanan Khalil and Martin Ebner. Using electronic communication tools in online group
activities to develop collaborative learning skills. Universal Journal of Educational Research,
5(4):529–536, 2017. doi:10.13189/ujer.2017.050401.

32 Barbara Kitchenham. Procedures for performing systematic reviews. Keele University,
33(2004):1–26, 2004.

33 Joris Klerkx, Katrien Verbert, and Erik Duval. Learning analytics dashboards. In Charles
Lang, George Siemens, Alyssa Friend Wise, and Dragan Gaševic, editors, Handbook of Learning
Analytics, pages 143–150. Society for Learning Analytics Research, Alberta, Canada, 2017.
doi:10.18608/hla17.012.

34 Koushal Kumar and Bhagwati Prasad Pande. Rise of online teaching and learning processes
during COVID-19 pandemic. In Lalit Mohan Goyal Praveen Kumar Khosla, Mamta Mittal,
Dolly Sharma, editor, Predictive and preventive measures for COVID-19 pandemic, pages
251–271. Springer, 2021. doi:10.1007/978-981-33-4236-1_14.

35 Marjan Laal and Mozhgan Laal. Collaborative learning: What is it? Procedia-Social and
Behavioral Sciences, 31:491–495, 2012.

36 Derick Leony, Abelardo Pardo, Luis de la Fuente Valentín, David Sánchez de Castro, and
Carlos Delgado Kloos. GLASS: a learning analytics visualization tool. In Proceedings of the
2nd International Conference on Learning Analytics and Knowledge - LAK ’12, page 162, 2012.
doi:10.1145/2330601.2330642.

https://doi.org/10.1109/LACLO.2016.7751805
https://doi.org/10.1145/3231644.3231704
https://doi.org/10.24251/hicss.2020.330
https://doi.org/10.1016/j.chb.2018.12.004
https://doi.org/10.1145/2460296.2460350
https://doi.org/10.1016/j.chb.2014.04.002
https://doi.org/10.34190/ejel.20.2.2189
https://doi.org/10.1080/00461520.2016.1158654
https://doi.org/10.1007/s10758-022-09598-7
https://doi.org/10.1145/3421590.3421662
https://doi.org/10.13189/ujer.2017.050401
https://doi.org/10.18608/hla17.012
https://doi.org/10.1007/978-981-33-4236-1_14
https://doi.org/10.1145/2330601.2330642


T. Romão, P. Pestana, and L. Morgado 13:11

37 SungTae Lim and EunHee Kim. The design of dashboard for instructor feedback support based
on learning analytics. The Journal of Korean Association of Computer Education, 20(6):1–15,
2017.

38 Alberto Martín-Martín, Enrique Orduna-Malea, Mike Thelwall, and Emilio Delgado López-
Cózar. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in
252 subject categories. Journal of Informetrics, 12(4):1160–1177, 2018. doi:10.1016/j.joi.
2018.09.002.

39 Carlos Monroy, Virginia Snodgrass Rangel, and Reid Whitaker. STEMscopes: Contextualizing
learning analytics in a K-12 science curriculum. In ACM International Conference Proceeding
Series, pages 210–219, 2013. doi:10.1145/2460296.2460339.

40 Diana M. Naranjo, José R. Prieto, Germán Moltó, and Amanda Calatrava. A visual dashboard
to track learning analytics for educational cloud computing. Sensors (Switzerland), 19(13):2952,
2019. doi:10.3390/s19132952.

41 Donatella Persico, Francesca Pozzi, and Luigi Sarti. Monitoring collaborative activities
in computer supported collaborative learning. Distance Education, 31(1):5–22, 2010. doi:
10.1080/01587911003724603.

42 Stanislav Pozdniakov, Roberto Martinez-Maldonado, Shaveen Singh, Peter Chen, Dan Richard-
son, Tom Bartindale, Patrick Olivier, and Dragan Gasevic. Question-driven learning analytics:
Designing a teacher dashboard for online breakout rooms. In Proceedings - IEEE 21st Interna-
tional Conference on Advanced Learning Technologies, ICALT 2021, pages 176–178. IEEE,
2021. doi:10.1109/ICALT52272.2021.00060.

43 Faisal A.T. Putra, Harry B. Santoso, and Rizal F. Aji. Evaluation of learning analytics
metrics and dashboard in a software engineering project course. Global Journal of Engineering
Education, 20(3):171–180, 2018.

44 A. Ramos-Soto, M. Lama, B. Vazquez-Barreiros, A. Bugarin, M. Mucientes, and S. Barro.
Towards textual reporting in learning analytics dashboards. In Proceedings - IEEE 15th
International Conference on Advanced Learning Technologies: Advanced Technologies for
Supporting Open Access to Formal and Informal Learning, ICALT 2015, pages 260–264. IEEE,
2015. doi:10.1109/ICALT.2015.96.

45 Chrysi Rapanta, Luca Botturi, Peter Goodyear, Lourdes Guàrdia, and Marguerite Koole.
Online university teaching during and after the COVID-19 crisis: Refocusing teacher presence
and learning activity. Postdigital Science and Education, 2(3):923–945, 2020. doi:10.1007/
s42438-020-00155-y.

46 Alex Rayón, Mariluz Guenaga, and Asier Núñez. Supporting competency-assessment through
a learning analytics approach using enriched rubrics. In ACM International Conference
Proceeding Series, pages 291–298, 2014. doi:10.1145/2669711.2669913.

47 Majid Rouhani. Utilizing Slack as a communication platform in a flexible learning trajectory
course: Supporting the learning process. In ACM International Conference Proceeding
Series, CSERC ’20, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3442481.3442503.

48 Jose Luis Santos, Katrien Verbert, Sten Govaerts, and Erik Duval. Addressing learner issues
with StepUp!: An evaluation. In ACM International Conference Proceeding Series, pages
14–22, 2013. doi:10.1145/2460296.2460301.

49 Jose Luis Santos, Katrien Verbert, Joris Klerkx, Sven Charleer, Erik Duval, and Stefaan
Ternier. Tracking data in open learning environments. Journal of Universal Computer Science,
21(7):976–996, 2015.

50 Beat A. Schwendimann, Maria Jesus Rodriguez-Triana, Andrii Vozniuk, Luis P. Prieto,
Mina Shirvani Boroujeni, Adrian Holzer, Denis Gillet, and Pierre Dillenbourg. Perceiving
learning at a glance: A systematic literature review of learning dashboard research. IEEE
Transactions on Learning Technologies, 10(1):30–41, 2017. doi:10.1109/TLT.2016.2599522.

51 Gabriel Lenon Barros Silva, Janaína Alexandre de Carvalho, and Alexandre Magno Andrade
Maciel. Desenvolvimento de um learning analytics dashboard a partir de modelos de mineração

ICPEC 2023

https://doi.org/10.1016/j.joi.2018.09.002
https://doi.org/10.1016/j.joi.2018.09.002
https://doi.org/10.1145/2460296.2460339
https://doi.org/10.3390/s19132952
https://doi.org/10.1080/01587911003724603
https://doi.org/10.1080/01587911003724603
https://doi.org/10.1109/ICALT52272.2021.00060
https://doi.org/10.1109/ICALT.2015.96
https://doi.org/10.1007/s42438-020-00155-y
https://doi.org/10.1007/s42438-020-00155-y
https://doi.org/10.1145/2669711.2669913
https://doi.org/10.1145/3442481.3442503
https://doi.org/10.1145/2460296.2460301
https://doi.org/10.1109/TLT.2016.2599522


13:12 A Systematic Review of Teacher-Facing Dashboards

de dados educacionais. Revista de Engenharia e Pesquisa Aplicada, 6(3):59–69, 2021. doi:
10.25286/repa.v6i3.1688.

52 Keerthana Muthu Subash, Lakshmi Prasanna Kumar, Sri Lakshmi Vadlamani, Preetha
Chatterjee, and Olga Baysal. DISCO: A dataset of Discord chat conversations for software
engineering research. In Proceedings - 2022 Mining Software Repositories Conference, MSR
2022, pages 227–231, 2022. doi:10.1145/3524842.3528018.

53 Harmid Tarmazdi, Rebecca Vivian, Claudia Szabo, Katrina Falkner, and Nickolas Falkner.
Using learning analytics to visualise computer science teamwork. In Annual Conference on
Innovation and Technology in Computer Science Education, ITiCSE, volume 2015-June, pages
165–170, 2015. doi:10.1145/2729094.2742613.

54 Stephanie D. Teasley. Student facing dashboards: One size fits all? Technology, Knowledge
and Learning, 22(3):377–384, 2017. doi:10.1007/s10758-017-9314-3.

55 Saida Ulfa, Izzull Fattawi, Ence Surahman, and Hayashi Yusuke. Investigating learners’
perception of learning analytics dashboard to improve learning interaction in online learning
system. In 2019 5th International Conference on Education and Technology, ICET 2019, pages
49–54. IEEE, 2019. doi:10.1109/ICET48172.2019.8987229.

56 Mehmet Uysal and Mehmet Barış Horzum. Designing and developing a learning analytics
dashboard to support self-regulated learning. In Visualizations and Dashboards for Learning
Analytics, pages 477–496. Springer, 2021. doi:10.1007/978-3-030-81222-5_22.

57 Maria Viana, António Coelho, and Leonel Morgado. Drill-down and drill-through dashboard
for master program chairing in e-learning. Revista de Ciências da Computação, 17:13–27, 2022.
doi:10.34627/rcc.v17i0.279.

58 Juan Zheng, Lingyun Huang, Shan Li, Susanne P. Lajoie, Yuxin Chen, and Cindy E. Hmelo-
Silver. Self-regulation and emotion matter: A case study of instructor interactions with a
learning analytics dashboard. Computers and Education, 161:104061, 2021. doi:10.1016/j.
compedu.2020.104061.

https://doi.org/10.25286/repa.v6i3.1688
https://doi.org/10.25286/repa.v6i3.1688
https://doi.org/10.1145/3524842.3528018
https://doi.org/10.1145/2729094.2742613
https://doi.org/10.1007/s10758-017-9314-3
https://doi.org/10.1109/ICET48172.2019.8987229
https://doi.org/10.1007/978-3-030-81222-5_22
https://doi.org/10.34627/rcc.v17i0.279
https://doi.org/10.1016/j.compedu.2020.104061
https://doi.org/10.1016/j.compedu.2020.104061


An Experience with and Reflections on Live Coding
with Active Learning
Anders Schlichtkrull #

Department of Computer Science, Aalborg University Copenhagen, Denmark

Abstract
In this paper I report and reflect on a concrete experience with changing an introductory programming
course from being based on “classical lectures” to being based on live coding with active learning. The
experiment is built on learnings found in the literature and the pedagogical theories of scaffolding,
think-pair-share and teaching as facilitation of learning. I reflect on the students’ reaction to the
experiment, the difficulty of the active learning, how to keep time, coverage of learning objectives,
the degree of improvisation and student involvement. The experiment was well received by the
students, and I report also on the feedback. My hope is that educators who want to introduce live
coding with active learning will be able to draw inspiration from my preparation of, execution of
and reflections on the experiment.

2012 ACM Subject Classification Applied computing → Education

Keywords and phrases Live coding, active learning, teaching programming

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.14

Acknowledgements I thank my colleagues Kurt Nørmark and Jens Myrup Pedersen for providing
me inspiration and ideas for changing the course and also for comments on an earlier version of
this text. I thank my colleagues Johannes Bjerva, Søren Qvist Eliasen, Andrés Masegosa, David
Maya-Drysdale and René Rydhof Hansen for discussions. I thank Aalborg University for giving me
the opportunity to do this experiment as part of its University Pedagogical Program.

1 Introduction

In the fall of 2020, I taught the 5 ECTS course “Imperative Programming” (IMPR) with
∼35 students at the first semester of the Software BSc education of Aalborg University
Copenhagen (AAU CPH). For the lectures, a large seminar room was booked. In 2021 I
would teach this course again – this time with ∼55 students. The course material consists of
a book [4], a set of video lectures for each week and a set of exercises for each week. The
videos were prepared by my colleague Kurt Nørmark for his version of the course which runs
on Aalborg University’s campus in Aalborg.

In 2020, each of my lectures in the seminar room consisted of some of the following parts:
Classic lectures where I go through a number of slides to teach a curriculum.
General feedback on a hand-in.
Answers to questions from the videos.
Live coding where the students see me write a program live in the seminar room.

I will focus here on the classical lecture and live coding. In my lectures, the “classic
lecture” part took up a majority of the time. However, it frustrated me that I would often end
up repeating the points that had already been taught in the video lectures. Some students
also pointed this redundancy out to me in their feedback. On the other hand, I enjoyed
particularly the live coding part because this gave the students a chance to see the concepts
and theory that they had learnt about in the videos being applied to construct a program.
Several students also told me that they learnt a lot from seeing a program being constructed.

© Anders Schlichtkrull;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 14; pp. 14:1–14:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andsch@cs.aau.dk
https://orcid.org/0000-0001-9212-6150
https://doi.org/10.4230/OASIcs.ICPEC.2023.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


14:2 An Experience with and Reflections on Live Coding with Active Learning

One can also ask the question: What value can the lectures bring which videos cannot?
With a traditional view of lectures where the active lecturer delivers knowledge to the passive
students like a jug pouring water into a mug, the answer would be “Not much”. However, if
we abandon this view, we see opportunities. When the students and teacher are in the same
room it gives opportunities for active learning, immediate feedback and interaction.

With this in mind I decided to conduct an experiment in which my lectures would largely
abandon the classical presentation of slides and instead expand the live coding. Additionally,
I would try to have the students be active during the lecture and give them immediate
feedback. One can discuss whether the word “lecture” can describe this approach, but for
the lack of a better word I will keep using it for the remainder of this paper.

The rest of the paper is organized as follows: Section 2 states the problem considered.
Section 3 presents the related work about live coding that the present paper builds on.
Section 4 presents the concept of the experiment. Section 5 explains which pedagogical
theories the experiment is based on. Section 6 explains how I prepared, presented, executed
and continuously adapted the experiment. Section 7 reflects on the experiment. Section 8
presents my ideas for further experimentation. Section 9 discusses the feedback on the
experiment that I got from the students. Lastly, Section 10 draws a conclusion on the
experiment.

2 Pedagogical problem

Based on the above motivation I have formulated the following problem: “In the context of
the course IMPR at AAU CPH, how can I teach programming using live coding and active
learning?” I addressed the problem by experimentation in IMPR during the fall of 2021. In
this paper I explain the experiment and reflect on how it went, and how I could go further
with it.

3 Live coding

I am not the first to teach programming using live coding, and I draw inspiration for my
experiment from many sources [5, 20, 15, 3, 12, 2], but in particular from Nederbragt, Harris,
Hill and Wilson [9], Raj, Patel, Halverson and Halverson [13] and an example from the digital
education platform Future Learn [7].

Nederbragt, Harris, Hill and Wilson [9] list ten quick tips for live coding. I list the tips
here in italic, and explain the ones that are not self-explanatory:
1. Go slowly.
2. Mirror your learner’s environment. The setup that you use on the computer should be

as similar as possible to that of the students.
3. Be seen and heard. You should not sit down behind a screen and hide. It is better to

stand up and be seen and heard.
4. Use the screen(s) wisely. You should make sure that what you put on the screen can

actually be seen, and therefore you should ensure that the font is big enough and the
contrast strong enough e.g.

5. Avoid distractions. A main point here is to close programs that might give disturbing
notifications during the lecture.

6. Use illustrations – Even better, draw them.
7. Stick to the lesson material.



A. Schlichtkrull 14:3

8. Embrace your mistakes. When (not if) you make mistakes while live coding, you should
explain the mistake to the students. In this way they will actually learn what to do when
they end up in the same situation instead of just being confused.

9. Get real-time feedback and provide immediate help. The idea here is to let the students
give real time feedback on whether they manage to follow along. Another point is to have
a good ratio between students, teaching assistants and teachers.

10. Turn learners into co-instructors. Let the students be part of the process of writing the
program by letting them give suggestions. You should also give the students a chance to
discuss and put what they have learnt into words.

The authors also provide links to a video of a real world example of live coding [21], a
(constructed) example of a teacher breaking most of the rules above [10], and an example of
the same teacher following these rules [11].

Raj, Patel, Halverson and Halverson [13] explain the role of live coding in introductory
programming. They point out a number of advantages:

Incremental coding. Programmers do not sit and write a whole program before they run
it. Rather they will change back and forth between writing the program and trying it out.
Thus, the program is built incrementally. In slide presentations this will not be clear to
the students because they will just see a perfect program “magically” appear on a slide.
Breaking down the problem. Incremental coding can be done by breaking down the
problem into smaller parts that can be solved individually. Live coding can illustrate this
to the students.
Making thinking visible. With live coding, the teacher has the chance to make thinking
visible by expressing what thoughts go into building the program.
Modelling, Scaffolding and Fading. Live coding presents an opportunity to do Modelling,
Scaffolding and Fading. The authors see the modelling stage as the part where the teacher
writes a program. They see the scaffolding stage as the part where the students have
to solve an exercise based on what was learnt. They see the fading stage as when the
students have to do home-work exercises without scaffolds.

The digital education platform Future Learn gives a small example of how one could do
live coding to teach lists [7]. They give examples of how one can run the program often, ask
questions to students, illustrate concepts and talk about errors in the program. I have also
drawn inspiration from this example.

4 Concept

I present here my concept for the reorganized lectures of the fall of 2021:
Introduction with slides
1st half

Live coding by Anders
Exercise in pairs for the students
Discussion of a solution

2nd half
Live coding by Anders
Exercise in pairs for the students
Discussion of a solution

Small presentation with slides

The total time for this is ∼2 hours. I gave the students 15 minutes to solve the exercises in
pairs. After the lecture follows ∼2 hours of group exercises in the same way as in 2020.

ICPEC 2023



14:4 An Experience with and Reflections on Live Coding with Active Learning

5 Pedagogical theory

I will now explain the pedagogical theory behind the experiment. A recent survey by
Rodrigues, Monteiro and Osório [14] identifies methodologies for teaching programming.
Of these my experiment draws on active learning and peer programming, but also takes
inspiration from the flipped classroom (via video lectures) and is situated in an educational
program oriented towards Problem-Based Learning. It also relies on teaching in the lecture
room – not as traditional classes with a slide deck, but rather by applying the learnings from
the aforementioned papers on live coding and a number of other didactic tools explained
below.

One can see teaching as facilitation of learning rather than mere delivery of knowledge.
As written in the beginning, I see live coding with active learning as a way to do this. Of
course, there is still knowledge that has to be delivered such as “What is a type?” and
“How does an if-statement work?” but using live coding with active learning I explore a
different way to facilitate the students’ learning of this knowledge than delivering it through
a presentation.

Another pedagogical theory is that of scaffolding [22, 19], and as Raj, Patel, Halverson
and Halverson [13] explained, live coding presents an opportunity to apply this principle. In
the exercises in pairs the students have to program something that is similar to what they
have just seen me program. Thus, the program I have just written can be seen as a scaffolding
for the exercise. However, in contrast to Raj, Patel, Halverson and Halverson’s way to do
live coding [13] my concept fades the scaffolds away in several stages rather than “just” in a
set of home exercises. When the students arrive at the group exercises there will be less of a
scaffold – these exercises are typically more challenging and are not preceded by a very similar
example. There is still a scaffold however, namely the course material and the availability of
the teacher and teaching assistant. Additionally due to the Aalborg PBL (Problem-Based
Learning) model [16, 17, 18, 6, 1] used on the education program, the students will also use
what they have learnt in their semester project. The 10 ECTS semester project module on
the first semester consists of the students finding and delimiting a problem and programming
a solution to it as a program in C. The project is done in groups of size approximately 7.
Each group has a supervisor who is either a teacher employed by the university or hired
externally. The problems that the students face in their semester projects are less structured
than exercises, and the only scaffolding is the students’ supervision meetings.

A last pedagogical tool I will consider is “Think, pair, share” [8] in which lectures are
broken up by pair exercises in which the students are given a question to think about, then
pair up to talk about and lastly to share with the other participants. The methodology is
generic and so I had to adapt it to the specific topic of live coding.

6 The experiment

From the third week of the semester and forward, I conducted my experiment. For each
week this consisted of preparing and executing that week’s live coding and exercises. In this
section of the paper, I first explain my experiment as conducted in the third week and then
I will explain how the experiment continued during the following weeks. In the following
section, I will then give my reflections on the experiment.



A. Schlichtkrull 14:5

6.1 Preparation

The third lecture’s topic was logical expressions, if statements and switch statements. In my
preparation I took a look at the learning objectives for that lecture and chose which ones of
them I wanted to cover. I decided to cover logical expressions and if statements, but to leave
out switch statements from the live coding. My reasoning was that it would simply be too
much to also cover the switch statements and thus this part of the learning objectives would
instead be covered “only” by the book, the videos and the exercises. Hereafter, I came up
with 2 programs that illustrated respectively logical expressions and if statements. I then
tried to write these programs as a practice. I also wrote a manuscript that contained the
“plan” for writing the programs, i.e., how I would break it down into smaller parts and also
suggestions for questions I could ask the students. Lastly, I made a minimalistic set of slides.

6.2 Presenting the experiment

In the “Introduction with slides” for this first run of the experiment, I presented and
motivated the experiment to the students. I motivated live coding as a modern way to teach
programming with the following advantages:

The students see not only programs but also the process of constructing them.
The students learn the thought process used to construct a program.
The students see programs with mistakes and how these are repaired.

Furthermore, I argued that one of the learning objectives of the course is to program with the
learnt knowledge, and that live coding could be a way to facilitate the students in achieving
this objective.

After this presentation of the experiment, I asked the students if they were up for trying
this and they agreed (by nodding and/or saying yes).

6.3 Execution

During the live coding I used large font sizes and also streamed the screen to the students’
computers using Microsoft Teams. I did the streaming without sound, because the concept is
that this is something we do in the seminar room. The motivation for streaming the screen
was that everyone should be able to see what I code no matter where they sit in the room.

As shown in section 4, the concept of the lectures consists of two largely identical “halves”
and therefore I will only explain the first of these. The first “Live coding by Anders” consisted
of me programming a rock-paper-scissor game. During the development I asked the students
questions and they also asked questions for me. The questions I asked were rather open,
namely collecting suggestions on how we could split the program into smaller parts that we
could then solve. Several students came up with suggestions.

In the first exercise in pairs, the students had to write an expression characterizing a
draw in the game. During the 15 minutes where the students were working on this, I replied
to their questions when they asked. After the exercise in pairs, I asked if anyone wanted
to share a solution by uploading it to Microsoft Teams. Several pairs raised a hand, and I
picked one. When they had uploaded it, I walked through it so that the rest of the students
would also understand it. Then I pointed to a number of things that could be improved and
showed how this could be done.

At the end of the lecture, I did an evaluation using an online form.

ICPEC 2023



14:6 An Experience with and Reflections on Live Coding with Active Learning

6.4 Continuing the experiment
In the following weeks I continued and adapted the experiment. I made a number of changes
such as:

adjusting the difficulty of the exercises in pairs
using the black board and slides for illustrations
doing mistakes in the programming on purpose
asking more closed questions compared to open questions.

The changes were based on reflections that I will discuss in the following section.

7 Reflection on the experiment

I will now give my reflections on the experiment.

7.1 The students’ reaction
The students understood the motivation for the experiment and were ready to “play along”.
Several students were also happy to give suggestions to my questions of how we could
write the program. The students asked questions when there was something they did not
understand, and they also remarked when they saw me make mistakes in my programming.
During the exercises in pairs the students worked on them actively. The feedback I got from
my survey was positive. It seemed that I had hit a good level of difficulty for the exercises in
pairs, and feedback for the live coding was positive.

7.2 Bonus exercises in pairs
When preparing the exercises in pairs, I had to consider the difficulty. Since the exercises
have a length of 15 minutes, they have to be quite easy to be possible to finish within this
time limit. I asked the students for feedback on the difficulty of the exercises. The feedback
indicated that I managed to hit a spot where most student thought the difficulty level was
just right, some thought it was too easy and some thought it was too hard. I also got personal
feedback from some students that it was too easy for them. A challenge when teaching
introductory programming is that students do not start with the same experience. There
are students who meet up with no experience in programming, while others have experience
from either hobby programming or from having computer science as a subject in high school.
In order to also give these students a challenge I decided to introduce also bonus exercises.
The idea was to include an optional objective for each of the exercises. My experience was,
as hoped, that some students only did the normal exercises while others could also manage
to do the bonus exercises. The only disadvantage I see with having bonus exercises was that
when we discuss the solutions together, students would often submit solutions that solved
also the bonus exercises, and perhaps this could confuse the ones who did only the normal
ones.

7.3 Difficulty
Another observation was of a subset of the students that had followed along with my live
coding, completed the exercises in pairs during the lecture, but then at the group exercises
really struggled to apply what they had been taught. At the group exercises I got the
impression that they had managed to solve the exercises in pairs largely by copying what I
had done and adapting it, but without really getting an understanding of what was going on.



A. Schlichtkrull 14:7

I therefore wanted to change my exercises in pairs to avoid this problem. For this reason, I
increased the difficulty of the future exercises in pairs. I made sure that each exercise had a
small “twist” on what I presented in the live coding. E.g., in the lecture about structs, my
live-coding example had structs where all values of fields were given as user input, whereas
for the exercises in pairs, I required some of them to be calculated.

7.4 Keeping time

A challenge is to keep the time plan for each lecture. I set off 15 minutes for the students
to finish the exercises in pairs and 5 for us discussing a solution. However, during the 15
minutes I would sometimes get a question in the last minute, and a dilemma was whether to
help the student or to continue the lecture. If we were ahead of schedule and my impression
was that most of the other students could use more time to work on the exercise I would
just go ahead and help the student. In case we were not on schedule I would have to tell the
student that I did not have time to help.

Another dilemma is that keeping the time can sometimes clash with Nederbragt, Harris,
Hill and Wilson’s [9] tip of going slowly. Sometimes I simply did not have the time to go as
slowly as I would have liked. Of course, I could have extended the lecture at expense of the
group exercises, but this also has drawbacks.

7.5 Learning objectives

Related to the dilemmas of keeping time is the question of how many learning objectives to
cover during a lecture. In the classical lectures with slides that I did in 2020 I could cover a
lot! With slides I could introduce new concepts, example programs etc. at a high pace at
the click of a button or the blink of an eye. However, if the students see many things at the
blink of an eye how much do they really learn? Live coding forced me to cut down a lot
on how many learning objectives I could cover in each lecture. The consequence was that I
covered less, but I did it more thoroughly.

This was not without consequences though. As mentioned for the lecture on logical
expressions, if statements and switch statements, I decided to not cover switch statements in
the live coding. As a consequence, some students were confused in the lecture on loops, when
I used a switch statement. Because of this experience, I decided to start every lecture by
listing to the students which part of the week’s learning objectives were covered by the live
coding, and which parts I expected them to learn from the videos, book and group exercises.

7.6 Sticking to the plan

Another challenge was when the students answered my open questions about how the program
could be split into parts. The challenge was that they sometimes came up with a suggestion
that was good, but that I had not prepared. Then I was in the dilemma of deciding between
following what I had planned or the suggestion. I decided to compliment the student for
their idea but to still follow my plan. Even if a student’s idea is good from a programming
perspective, it might not illustrate certain parts of the language that the students have to
learn. In these cases, my choice to carry on with my plan seemed to me to be the right one.
In another case however, I decided to carry on where it might have been better to follow the
student’s idea because in that particular case there would have been no loss with respect to
what had to be learnt, and the student’s idea was actually better than mine.

ICPEC 2023



14:8 An Experience with and Reflections on Live Coding with Active Learning

7.7 Mistakes
Based on Nederbragt, Harris, Hill and Wilson’s [9] tip of embracing mistakes, I did exactly
that. Whenever there was a mistake, I would explain to the students what the mistake was
and how we could fix it. The only downside of doing this is that it can take time to do, but
I would say that it is worth it. I also experimented with doing mistakes on purpose. In a
lecture on random numbers, I tried to make a program where I “forgot” to call the srand
function on purpose. This meant that students would not only see a slide telling them to
remember this function, but that they also saw in practice what happened if they forgot it.
At the group exercises I was happy to see many students remember to call that function, but
there were also students who still forgot it. I think this shows that for some students it is
not enough to be told about the problem and to see someone else experience it. They need
to experience it themselves. Therefore I would say that this shows the value of the group
exercises.

7.8 Illustrating problematic programs
In 2020 I included in my lectures a part where I would, with consent, discuss during the
lecture some, anonymous, program that the students had handed in. I tried to pick a program
that was not perfect, and then I showed the students what could be improved. In the new
concept I instead discussed the programs that the students did during the lecture. A problem
here was that often only the students with a strong grip of the material would share their
solution, and there would often not be much to say about these, since they were close to
perfect. In the later lectures, however, some students were brave enough to volunteer with
less perfect programs. These were more interesting to discuss because there was more to say
about them. I will also point out that when I received these kinds of programs, I made sure
to compliment them – in all cases the students were on the right track and I believe that the
students should be rewarded for sharing a solution like this, no matter what state it is in.

7.9 Students as co-instructors
Nederbragt, Harris, Hill and Wilson’s [9] give the tip of having students be co-instructors. In
my lectures I saw this happening especially during the exercises in pairs. When the students
work in pairs, students who understand the topic can help clear things up for those who
don’t, and additionally they get a chance to put their knowledge into words. From a logistical
point of view, it also makes a lot of sense. In the lectures I am one teacher for ∼50 students.
In the group exercises we are one teacher and one teaching assistant for ∼50 students. If I
can facilitate the course such that students help each other, then the ratio is much better. I
saw this happening during the exercises in pairs. However, there were also some students
who preferred to work alone here, even though that was not the intention. In some of the
lectures I tried talking to them about it during the exercises in pairs. Some then decided to
find someone to work with, while others decided to keep working alone. Among those who
decided to find someone to work with, I then saw them in the next lecture working alone
again. But if this can help some of them to work in pairs then it is probably worth it.

7.10 Scalability
The following year, 2022, I taught the course again, but I was allowed to teach the course,
in the same time slot, for also another educational program with ∼40 students. Thus ∼95
students started on the course that year. Because of this I was allowed to have two student



A. Schlichtkrull 14:9

teaching assistants for the group exercises instead of only one. My experience was that the
course scaled to the larger size without problems. In particular, the active learning part of
the course gives all students the chance to be active during the lecture rather than only the
ones who are brave enough to ask during the lecture or to answer one of my questions to the
audience.

8 Possibilities for further experimentation

I see a number of possibilities for further experimentation with teaching introductory pro-
gramming using live coding and active learning. I will explain and reflect on them here.

8.1 Variations on the exercises in pairs
In the exercises in pairs, I used a concept where the students work in pairs for 15 minutes.
One can easily try out variations where they work for longer or shorter time in bigger or
smaller groups. Another interesting idea could be to have the pairs meet other pairs to
discuss their solutions. They could then look at pros and cons or to perhaps build a solution
consisting of the best ideas of both solutions. The challenge with these opportunities is that
one has to keep in mind both the time that they cost at expense of other activities and to
which extent the facilities in the seminar rooms allow them to be possible. If the students sit
on rows, then how can two pairs realistically meet up? In a seminar room that could perhaps
work by having half of the pairs turn their chair, but in an auditorium it would not work.

8.2 Extending live coding with active learning
In the 2021 iteration of the course, I did 2 hours of live coding with active learning followed
by 2 hours of group exercises. An idea could be to extend the live coding to cover the full 4
hours. A challenge when doing live coding is that it takes time and I struggle to cover several
learning objectives; more time could make it possible to cover more. I have also experienced
that some few students leave after the live coding, and this could be a way to circumvent
that problem. I do also see a number of negative aspects of this idea. Firstly, it removes the
amount of time that is spent in the project groups and thus time where the group is bonded
together. I think this would be a shame. Of course, one could have the students work in
their groups during the lecture instead of the pairs, but unfortunately the facilities in the
seminar rooms are not fit for that. Secondly, if we see the group exercises as a part of the
course where the scaffolding is (partially) removed then one could also fear that abolishing
this part would hinder the students’ learning.

8.3 Going off script
As discussed during the reflection, I largely avoided going off script during the live coding. I
would like to explore what happens if I tried changing this habit. I suspect that the more I
involve the students in the live coding, the more they will be active, and thus the more they
will learn. One can also ask what the point is for me to ask them what we can do next if I
am not willing to follow their suggestions.

8.4 Illustrating problematic programs
As discussed during the reflection, it was more interesting to discuss a problematic program
than a “perfect” one. Therefore I am wondering what opportunities there are for getting
students to submit programs that are less than perfect. An idea could be to encourage it

ICPEC 2023



14:10 An Experience with and Reflections on Live Coding with Active Learning

verbally during the lecture. Or a way could be to have all pairs submit a solution anonymously,
and then I could look at them during a pause and pick out an interesting one to discuss. In
this way it would not require bravery on behalf of the students to submit a solution.

9 Feedback from the students

In several of my lectures I asked the students for feedback on the lecture they had just
experienced. I asked for quantitative feedback on the difficulty of the exercises in pairs and
qualitative feedback on the lecture as a whole. In each of these I got replies from between 19
and 34 students. The general picture on the difficulty of the exercises in pairs was that I hit
a good difficulty – there was a good spread between the students finding it easy, in between
and difficult. In Appendix A, I list some of the concrete thing that students liked about the
live coding as well as some things they thought could be improved.

In addition, I also asked for feedback on the course as a whole in the last lecture. Here I
got 33 replies. In the quantitative feedback, the students answered that they learnt a lot,
were encouraged to participate actively, were motivated by the activities and liked the course.
They also claimed to get a lot out of my (limited) presentation of slides, the live coding and
the exercises during the lecture. All replies except 2 claimed to get a lot out of my feedback
on a pair’s solution to an exercise during the lectures. In Appendix B, I list some of the
concrete thing that students liked about the live coding as well as some things they thought
could be improved. In Appendix C, I have put bar charts for the quantitative feedback.

All in all, the feedback on this experiment from the students has been very positive –
much, much more than I would have hoped for. When running the course again in the fall of
2022 for a larger audience the feedback was again very positive.

10 Conclusion

In the fall of 2021, I taught programming using live coding with active learning. I see this as
an improvement over my previous approach where the emphasis was on teaching with slides.
However live coding with active learning presented a number of challenges with respect to
e.g. finding the right difficulty for the exercises, keeping time, coverage of learning objectives
and illustrating problems in programs. The experiment was well received by the students. I
see many opportunities for further experiments on the concept. It is my hope that teachers
in programming can draw inspiration for their own teaching from my experiment, reflections
and experiences.

References
1 Peter Dolog, Lone Leth Thomsen, and Bent Thomsen. Assessing problem-based learning in a

software engineering curriculum using Bloom’s taxonomy and the IEEE software engineering
body of knowledge. ACM Transactions on Computing Education (TOCE), 16(3):1–41, 2016.

2 Alessio Gaspar and Sarah Langevin. Active learning in introductory programming courses
through student-led “live coding” and test-driven pair programming. In International Con-
ference on Education and Information Systems, Technologies and Applications, Orlando, FL,
2007.

3 Alessio Gaspar and Sarah Langevin. Restoring “coding with intention” in introductory
programming courses. In Proceedings of the 8th ACM SIGITE conference on Information
technology education, pages 91–98, 2007.

4 Jeri R. Hanly and Elliot B. Koffman. Problem solving and program design in C (8th edition,
global edition). Pearson, 2015.



A. Schlichtkrull 14:11

5 Luke W Johnston, Madeleine Bonsma-Fisher, Joel Ostblom, Ahmed R Hasan, James S
Santangelo, Lindsay Coome, Lina Tran, Elliott Sales de Andrade, and Sara Mahallati. A
graduate student-led participatory live-coding quantitative methods course in R: Experiences
on initiating, developing, and teaching. Journal of Open Source Education, 2(16):49, 2019.

6 Anette Kolmos, Flemming K Fink, and Lone Krogh. The Aalborg PBL model: progress,
diversity and challenges. Aalborg University Press Aalborg, 2004.

7 Future Learn. Live coding. https://www.futurelearn.com/info/courses/secondary-
programming-pedagogy/0/steps/68423, 2020. Accessed: 5. December 2021.

8 Frank T. Lyman. The responsive classroom discussion: The inclusion of all students. Main-
streaming digest, 109:113, 1981.

9 Alexander Nederbragt, Rayna Michelle Harris, Alison Presmanes Hill, and Greg Wilson. Ten
quick tips for teaching with participatory live coding. PLOS Computational Biology, 16(9):1–7,
September 2020. doi:10.1371/journal.pcbi.1008090.

10 Lex Nederbragt. A video introduction to live coding part 1. https://www.youtube.com/
watch?v=bXxBeNkKmJE, May 2016. Accessed: 3. December 2021.

11 Lex Nederbragt. A video introduction to live coding part 2. https://www.youtube.com/
watch?v=SkPmwe_WjeY, May 2016. Accessed: 3. December 2021.

12 John Paxton. Live programming as a lecture technique. J. Comput. Sci. Coll., 18(2):51–56,
December 2002.

13 Adalbert Gerald Soosai Raj, Jignesh M. Patel, Richard Halverson, and Erica Rosenfeld
Halverson. Role of live-coding in learning introductory programming. In Mike Joy and Petri
Ihantola, editors, Proceedings of the 18th Koli Calling International Conference on Computing
Education Research, Koli, Finland, November 22-25, 2018, pages 13:1–13:8. ACM, 2018.

14 Gabryella Rodrigues, Ana Francisca Monteiro, and António Osório. Introductory programming
in higher education: A systematic literature review. In Alberto Simões and João Carlos Silva,
editors, Third International Computer Programming Education Conference, ICPEC 2022,
June 2-3, 2022, Polytechnic Institute of Cávado and Ave (IPCA), Barcelos, Portugal, volume
102 of OASIcs, pages 4:1–4:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/OASIcs.ICPEC.2022.4.

15 Marc J Rubin. The effectiveness of live-coding to teach introductory programming. In
Proceeding of the 44th ACM technical symposium on Computer science education, pages
651–656, 2013.

16 John R. Savery. Overview of problem-based learning: Definitions and distinctions. Essential
readings in problem-based learning: Exploring and extending the legacy of Howard S. Barrows,
9(2):5–15, 2015.

17 Maggi Savin-Baden. What are problem-based pedagogies? Journal of Problem-Based Learning,
2020.

18 Virginie Servant-Miklos. Problem-oriented project work and problem-based learning: “Mind
the gap!”. Interdisciplinary Journal of Problem-Based Learning, 14(1), 2020.

19 Rob Wass and Clinton Golding. Sharpening a tool for teaching: the zone of proximal
development. Teaching in Higher Education, 19(6):671–684, 2014.

20 Greg Wilson. Software Carpentry: lessons learned. F1000Research, 3, 2014.
21 Greg Wilson. Software Carpentry teaching demonstration. https://vimeo.com/139316669,

2015. Accessed: 3. December 2021.
22 David Wood, Jerome S. Bruner, and Gail Ross. The role of tutoring in problem solving. Child

Psychology & Psychiatry & Allied Disciplines, 1976.

ICPEC 2023

https://www.futurelearn.com/info/courses/secondary-programming-pedagogy/0/steps/68423
https://www.futurelearn.com/info/courses/secondary-programming-pedagogy/0/steps/68423
https://doi.org/10.1371/journal.pcbi.1008090
https://www.youtube.com/watch?v=bXxBeNkKmJE
https://www.youtube.com/watch?v=bXxBeNkKmJE
https://www.youtube.com/watch?v=SkPmwe_WjeY
https://www.youtube.com/watch?v=SkPmwe_WjeY
https://doi.org/10.4230/OASIcs.ICPEC.2022.4
https://vimeo.com/139316669


14:12 An Experience with and Reflections on Live Coding with Active Learning

A Qualitative feedback from feedback form at the end of a number of
lectures

Here is my summary of some concrete things that students mentioned they liked about the
approach:

Following along and understanding the live coding without prior coding experience.
Live coding and active learning can be seen as “programming by practice”.
Getting a chance to experiment with the code.
Working in pairs gave a chance to learn from someone with more experience.
The exercises in pairs as a way to be included in what is happening.

Here is my summary of some concrete suggestions for improvements:
The live coding could be more detailed.
One of the early lectures was quite easy.
The tempo can be too high, which can encourage just copying what the lecturer was
typing without understanding it.
One could more often involve students in coming up with what to do next when live
coding.
Show an animation of what was happening while the lecturer was coding instead of doing
it afterwards.

B Qualitative feedback from feedback form at the end of the course

In the qualitative feedback, the students were positive about the live coding. Here is my
summary of some concrete things that students liked about the approach:

The live coding involves the students.
The live coding shows the students how to build a program from scratch and not only
the theory of programming.
The live coding is engaging.
The live coding made the content clearer and easier to implement.
The live coding showed how to use the content in practice.

Here is my summary of the suggestions of what students thought could be better in the live
coding:

The lecturer could explain more of the thoughts that go into the programming.
The tempo during the live coding can be too high for them to type along.
The tempo during the live coding can sometimes be too high for students to understand
what is going on.



A. Schlichtkrull 14:13

C Quantitative feedback from feedback form at the end of the course

0

5

10

15

20

25

5: Agree
completely

4 3 2 1: Disagree
completely

I learnt a lot in this course.

0
2
4
6
8

10
12
14
16
18
20

5: Agree
completely

4 3 2 1: Disagree
completely

The teaching encourages me to participate 
actively.

0

2

4

6

8

10

12

14

16

5: Agree
completely

4 3 2 1: Disagree
completely

The teaching activities motivated me to work 
actively with the material.

0

5

10

15

20

25

5: Agree
completely

4 3 2 1: Disagree
completely

All in all I think the course is good.

0

5

10

15

20

25

5: Agree
completely

4 3 2 1: Disagree
completely

X: Didn't
participate.

I learnt and got a lot out of it when Anders 
presented slides.

0

5

10

15

20

25

30

5: Agree
completely

4 3 2 1: Disagree
completely

X: Didn't
participate.

I learnt a lot and got a lot out of it when Anders 
did live coding.

0

2

4

6

8

10

12

14

16

18

5: Agree
completely

4 3 2 1: Disagree
completely

X: Didn't
participate.

I learnt a lot and got a lot out of it when we had 
to write programs in pairs during the lectures.

0

5

10

15

20

25

5: Agree
completely

4 3 2 1: Disagree
completely

X: Didn't
participate.

I learnt and got a lot out of it when Anders gave 
feedback on a solution to the exercises in pairs.

ICPEC 2023




	p000-Frontmatter
	Preface

	p001-Santos
	1 Do programming learners fully understand their code?
	2 How can courseware help to improve program comprehension?

	p002-EspinhaGasiba
	1 Introduction
	2 Related Work
	3 Experiment
	4 Resuls
	5 Discussion
	5.1 Threats to Validity

	6 Conclusion

	p003-Martins
	1 Introduction
	2 Computational Thinking
	3 Augmented Reality
	4 Architecture
	5 LCSMAR
	6 Conclusion and Future Work

	p004-Bauer
	1 Introduction
	2 State of The Art
	2.1 User Experience
	2.2 System Review

	3 System Design
	3.1 User Interface
	3.2 Data Model
	3.3 API

	4 Validation
	4.1 Evaluation Methodology
	4.2 Results Strapi UI

	5 Conclusion and Future Work

	p005-Paiva
	1 Introduction
	2 Related Work
	3 SifuV2
	3.1 Data Model
	3.2 User Interface

	4 Conclusion

	p006-Queiros
	1 Introduction
	2 Related work
	2.1 Gamification
	2.2 Educational Escape Rooms
	2.3 User types taxonomies

	3 GEER framework
	3.1 Achiever – Cybercrime Investigation
	3.2 Socializer – Hackathon
	3.3 Philanthropist – Humanitarian Aid
	3.4 Free Spirit – Virtual Reality Adventure
	3.5 Player – Hacking Adventure
	3.6 Disruptor – Cybersecurity Breach

	4 Conclusion

	p007-Thangaraj
	1 Introduction
	2 Related Works 
	3 Research Methodology 
	3.1 Data Sources and Search Strategies 
	3.2 Inclusion and Exclusion Criteria 

	4 Data Coding
	4.1 Formative Feedback Purpose: (RQ1) 
	4.1.1  Scaffold 
	4.1.2  Motivation
	4.1.3 Metacognitive and Self-efficacy
	4.1.4 Engagement 

	4.2  Nature of Formative Feedback: (RQ2) 
	4.2.1  Assessment Approach
	4.2.2  Feedback Types
	4.2.3  Feedback Mechanism


	5 Results
	5.1  Purpose of Formative Feedback (RQ1)
	5.2  Feedback Strategies (RQ2)
	5.3  Novices' Support (RQ3)

	6 Discussion
	7 Conclusion
	7.1 Limitations
	7.2 Implications


	p008-Portela
	1 Introduction
	2 Background
	2.1 Academic Assessments
	2.2 TechTeach
	2.3 Student Response Systems
	2.4 Similar Works

	3 Material and Methods
	4 Approach
	4.1 Gamification model
	4.2 Rules

	5 Case Study
	5.1 Implementation
	5.2 Analysis of the results

	6 Discussion
	7 Conclusion

	p009-Freitas
	1 Introduction
	2 Classification and Characterisation of Programming Exercises
	2.1 Exercise Types
	2.2 Exercise Components

	3 Text Generation
	3.1 Models

	4 Case Studies and Results
	4.1 OpenAI API
	4.2 Finetuning GPT-2
	4.3 Key-to-Text
	4.4 CodeT5
	4.5 Summary

	5 Conclusion

	p010-DosSantos
	1 Introduction
	2 Indicators for Learning Analytics
	3 Data Visualization
	4 Methodological Procedures
	5 Results and Discussions
	6 Conclusion

	p011-Costa
	1 Introduction
	2 State of the Art
	2.1 Interface Assessment
	2.2 Functional Assessment
	2.3 Feedback Manager

	3 Webpal
	3.1 Webpal API
	3.2 Static Assessment
	3.3 Browser Emulation
	3.4 Evaluation
	3.5 Feedback Manager
	3.6 Webpal Playground

	4 Conclusion and Future Work

	p012-Vasconcelos
	1 Introduction
	2 Design
	2.1 Goals and motivation
	2.2 User interface
	2.3 Examples
	2.3.1 Structural recursion over lists
	2.3.2 Intercalating values
	2.3.3 Mapping over an infinite list


	3 Implementation
	3.1 Technical details
	3.2 Limitations

	4 Related work
	5 Experience and further work

	p013-Romao
	1 Introduction
	2 Background
	2.1 Dashboards
	2.2 Collaborative Learning

	3 Research Methods
	3.1 Selection Process
	3.2 Exclusion Process

	4 Results and Discussion
	5 Conclusions

	p014-Schlichtkrull
	1 Introduction
	2 Pedagogical problem
	3 Live coding
	4 Concept
	5 Pedagogical theory
	6 The experiment
	6.1 Preparation
	6.2 Presenting the experiment
	6.3 Execution
	6.4 Continuing the experiment

	7 Reflection on the experiment
	7.1 The students' reaction
	7.2 Bonus exercises in pairs
	7.3 Difficulty
	7.4 Keeping time
	7.5 Learning objectives
	7.6 Sticking to the plan
	7.7 Mistakes
	7.8 Illustrating problematic programs
	7.9 Students as co-instructors
	7.10 Scalability

	8 Possibilities for further experimentation
	8.1 Variations on the exercises in pairs
	8.2 Extending live coding with active learning
	8.3 Going off script
	8.4 Illustrating problematic programs

	9 Feedback from the students
	10 Conclusion
	A Qualitative feedback from feedback form at the end of a number of lectures
	B Qualitative feedback from feedback form at the end of the course
	C Quantitative feedback from feedback form at the end of the course


