
12th Symposium on Languages,
Applications and Technologies

SLATE 2023, June 26–28, 2023, Vila do Conde, Portugal

Edited by

Alberto Simões
Mario Marcelo Berón
Filipe Portela

OASIcs – Vo l . 113 – SLATE 2023 www.dagstuh l .de/oas i c s

Editors

Alberto Simões
2Ai, School of Technology, Polytechnic Institute of Cávado and Ave (IPCA), Barcelos, Portugal
asimoes@ipca.pt

Mario Marcelo Berón
Departamento de Informática, Facultad de Ciencias Física Matemáticas y Naturales (FCFMyN),
Universidad Nacional de San Luis, Argentina
mberon@unsl.edu.ar

Filipe Portela
Centro Algoritmi, Escola de Engenharia, Universidade do Minho, Guimarães, Portugal
cfp@dsi.uminho.pt

ACM Classification 2012
Theory of computation → Formal languages and automata theory; Computing methodologies → Natural
language processing; Information systems → World Wide Web

ISBN 978-3-95977-291-4

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-291-4.

Publication date
August, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.SLATE.2023.0

ISBN 978-3-95977-291-4 ISSN 1868-8969 https://www.dagstuhl.de/oasics

https://orcid.org/0000-0001-6961-2660
mailto:asimoes@ipca.pt
https://orcid.org/0000-0002-7042-0671
mailto:mberon@unsl.edu.ar
https://orcid.org/0000-0003-2181-6837
mailto:cfp@dsi.uminho.pt
https://www.dagstuhl.de/dagpub/978-3-95977-291-4
https://www.dagstuhl.de/dagpub/978-3-95977-291-4
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.SLATE.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-291-4
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs is a series of high-quality conference proceedings across all fields in informatics. OASIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

SLATE 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

Contents

Preface
Alberto Simões, Mario Marcelo Berón, and Filipe Portela . 0:vii

List of Authors
. 0:ix

Committees
. 0:xi

Papers

Question Answering over Linked Data with GPT-3
Bruno Faria, Dylan Perdigão, and Hugo Gonçalo Oliveira . 1:1–1:15

A Framework for Fostering Easier Access to Enriched Textual Information
Gabriel Silva, Mário Rodrigues, António Teixeira, and Marlene Amorim 2:1–2:14

A Pseudonymization Prototype for Hungarian
Attila Novák and Borbála Novák . 3:1–3:10

Generating and Ranking Distractors for Multiple-Choice Questions in Portuguese
Hugo Gonçalo Oliveira, Igor Caetano, Renato Matos, and Hugo Amaro 4:1–4:9

Web of Science Citation Gaps: An Automatic Approach to Detect Indexed but
Missing Citations

David Rodrigues, António L. Lopes, and Fernando Batista . 5:1–5:11

Querying Relational Databases with Speech-Recognition Driven by Contextual
Knowledge

Dietmar Seipel, Benjamin Förster, Magnus Liebl, Marcel Waleska, and
Salvador Abreu . 6:1–6:15

Automatic Speech Recognition of Non-Native Child Speech for Language
Learning Applications

Simone Wills, Yu Bai, Cristian Tejedor-García, Catia Cucchiarini, and
Helmer Strik . 7:1–7:8

OCRticle - a Structure-Aware OCR Application
Sofia G. Rodrigues dos Santos and J. João Dias de Almeida . 8:1–8:14

Narrative Extraction from Semantic Graphs
Daniil Lystopadskyi, André Santos, and José Paulo Leal . 9:1–9:8

Large Language Models: Compilers for the 4th Generation of Programming
Languages?

Francisco S. Marcondes, José João Almeida, and Paulo Novais 10:1–10:8

Hierarchical Data-Flow Graphs
José Pereira, Vitor Vieira, and Alberto Simões . 11:1–11:9

Type Annotation for SAST
Marco Pereira, Alberto Simões, and Pedro Rangel Henriques . 12:1–12:13

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:vi Contents

Characterization and Identification of Programming Languages
Júlio Alves, Alvaro Costa Neto, Maria João Varanda Pereira, and
Pedro Rangel Henriques . 13:1–13:13

Towards a Universal and Interoperable Scientific Data Model
João Oliveira, Diogo Gomes, Francisca Santana, Jorge Oliveira e Sá, and
Filipe Portela . 14:1–14:16

Integrating Gamified Educational Escape Rooms in Learning Management
Systems

Ricardo Queirós, Carla Pinto, Mário Cruz, and Daniela Mascarenhas 15:1–15:8

Romaria De Nª Srª D’Agonia: Building a Digital Repository and a Virtual
Museum

Sara Cristina Freitas Queirós, Cristiana Araújo, and Pedro Rangel Henriques 16:1–16:16

Preface

In the realm of communication, language serves as the foundation pillar. Within the domain
of computer science, three distinct modes of communication have emerged: Human to Human
Languages (HHL), Human to Computer Languages (HCL), and Computer-to-Computer
Languages (CCL). Each of these modes possesses its unique attributes and significance. HHL
encompasses the languages humans employ to interact and converse, constituting the realm
of natural language processing. For the HCL, programming languages enable humans to
articulate their knowledge and issue commands that instruct computers’ behaviour. Finally,
CCL assumes its role as an inter-computer communication language. Particularly noteworthy
is the revolutionary transformation in the communication process, especially within HCL,
driven by the emergence of generative languages that facilitate using natural language to
communicate with computers.

The pursuit of understanding and advancing these three types of communication means
has been guiding the SLATE conference since its inception. The twelfth edition culminated
at the School of Media Arts and Design (P. Porto, ESMAD) in Vila do Conde, Portugal,
from the 26th to the 28th of July. SLATE serves as a nexus where researchers, developers,
and educators converge, facilitating the exchange of ideas and knowledge across three tracks:
the Human-to-Human Language (HHL) track, the Human-to-Computer Language (HCL)
track, and the Computer-to-Computer Language (CCL) track.

Within the context of this edition, we received twenty-one papers. The rigorous review
process realized by the Scientific Committee led to the selection of sixteen articles for
publication and oral presentation during the symposium.

We thank the individuals and groups instrumental in the resounding success of the 2023
edition of SLATE. The dedication of the Members of the Scientific Program Committee is
deeply appreciated; their meticulous efforts in reviewing submissions, providing insightful
corrections, and contributing novel ideas were pivotal in shaping the final roster of accepted
papers. The Organizing Committee equally deserves acknowledgement for their invaluable
contributions in ensuring the seamless execution of the conference. Our sincere appreciation
extends to the invited Speaker, Gerardo Sierra, the Head of the Language Engineering
Group at Universidad Nacional Autónoma de México (UNAM), for graciously accepting our
invitation and generously sharing their expertise.

Finally, we highly esteem the Authors, whose unwavering commitment and scholarly
contributions enriched SLATE with their ongoing projects and research pursuits. Among
these outstanding contributions, special recognition for the work by Bruno Faria, Dylan
Perdigão and Hugo Gonçalo Oliveira, entitled “Question Answering over Linked Data with
GPT-3,” which awarded the distinction of the Best Paper Award.

After SLATE 2023, it becomes manifest that the convergence of these myriad linguistic
dimensions fosters a harmonious symphony of knowledge and innovation, enabling profound
dialogue between humans and computers. Embrace the wealth of insights within this
compendium of proceedings and allow your curiosity to flourish.

Alberto Simões, Mario Marcelo Berón, and Filipe Portela

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

List of Authors

Salvador Abreu (6)
Nova-Lincs, University of Évora, Portugal

José João Almeida (10)
ALGORITMI Research Centre/LASI,
University of Minho, Braga, Portugal

Júlio Alves (13)
ALGORITMI Research Centre/LASI,
University of Minho, Braga, Portugal

Hugo Amaro (4)
Instituto Pedro Nunes, LIS, Coimbra, Portugal

Marlene Amorim (2)
GOVCOPP, DEGEIT, University of Aveiro,
Portugal

Cristiana Araújo (16)
ALGORITMI Research Centre / LASI,
DI-University of Minho, Braga, Portugal

Yu Bai (7)
Radboud University, Nijmegen, The Netherlands;
NovoLearning, Nijmegen, The Netherlands

Fernando Batista (5)
Iscte - University Institute of Lisbon, Portugal;
INESC-ID Lisbon, Portugal

Igor Caetano (4)
Instituto Pedro Nunes, Coimbra, Portugal;
Department of Informatics Engineering,
University of Coimbra, Portugal

Alvaro Costa Neto (13)
Federal Institute of Education, Science and
Technology of São Paulo, Barretos, Brazil

Mário Cruz (15)
School of Education & inED,
Polytechnic Institute of Porto, Portugal

Catia Cucchiarini (7)
Radboud University, Nijmegen, The Netherlands

J. João Dias de Almeida (8)
ALGORITMI/LASI, University of Minho,
Braga, Portugal

Bruno Faria (1)
Department of Informatics Engineering,
University of Coimbra, Portugal;
Centre for Informatics and Systems of the
University of Coimbra, Portugal

Benjamin Förster (6)
Department of Computer Science,
Universität Würzburg, Germany

Diogo Gomes (14)
University of Minho, Guimarães, Portugal

Hugo Gonçalo Oliveira (1, 4)
Department of Informatics Engineering,
University of Coimbra, Portugal;
Centre for Informatics and Systems of the
University of Coimbra, Portugal

Pedro Rangel Henriques (12, 13, 16)
ALGORITMI Research Centre/ LASI,
DI-University of Minho, Braga, Portugal

José Paulo Leal (9)
CRACS & INESC TEC, Porto, Portugal;
Faculty of Sciences, University of Porto,
Portugal

Magnus Liebl (6)
Department of Computer Science,
Universität Würzburg, Germany

António L. Lopes (5)
Instituto de Telecomunicações, Iscte – University
Institute of Lisbon, Portugal

Daniil Lystopadskyi (9)
Faculty of Sciences, University of Porto,
Portugal

Daniela Mascarenhas (15)
School of Education & inED,
Polytechnic Institute of Porto, Portugal

Renato Matos (4)
Center of Informatics and Systems, University of
Coimbra, Portugal;
Department of Informatics Engineering,
University of Coimbra, Portugal

Paulo Novais (10)
ALGORITMI Research Centre/LASI,
University of Minho, Braga, Portugal

Attila Novák (3)
Faculty of Information Technology and Bionics,
Pázmány Péter Catholic University, Budapest,
Hungary

Borbála Novák (3)
Faculty of Information Technology and Bionics,
Pázmány Péter Catholic University, Budapest,
Hungary

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.SLATE.2023.6
https://orcid.org/0000-0002-0722-2031
https://doi.org/10.4230/OASIcs.SLATE.2023.10
https://doi.org/10.4230/OASIcs.SLATE.2023.13
https://doi.org/10.4230/OASIcs.SLATE.2023.4
https://orcid.org/0000-0002-0901-0614
https://doi.org/10.4230/OASIcs.SLATE.2023.2
https://orcid.org/0000-0002-9656-3304
https://doi.org/10.4230/OASIcs.SLATE.2023.16
https://doi.org/10.4230/OASIcs.SLATE.2023.7
https://orcid.org/0000-0002-1075-0177
https://doi.org/10.4230/OASIcs.SLATE.2023.5
https://doi.org/10.4230/OASIcs.SLATE.2023.4
https://orcid.org/0000-0003-1861-3545
https://doi.org/10.4230/OASIcs.SLATE.2023.13
https://orcid.org/0000-0001-8894-8821
https://doi.org/10.4230/OASIcs.SLATE.2023.15
https://doi.org/10.4230/OASIcs.SLATE.2023.7
https://doi.org/10.4230/OASIcs.SLATE.2023.8
https://orcid.org/0000-0002-0154-1410
https://doi.org/10.4230/OASIcs.SLATE.2023.1
https://doi.org/10.4230/OASIcs.SLATE.2023.6
https://doi.org/10.4230/OASIcs.SLATE.2023.14
https://orcid.org/0000-0002-5779-8645
https://doi.org/10.4230/OASIcs.SLATE.2023.1
https://doi.org/10.4230/OASIcs.SLATE.2023.4
https://orcid.org/0000-0002-3208-0207
https://doi.org/10.4230/OASIcs.SLATE.2023.12
https://doi.org/10.4230/OASIcs.SLATE.2023.13
https://doi.org/10.4230/OASIcs.SLATE.2023.16
https://orcid.org/0000-0002-8409-0300
https://doi.org/10.4230/OASIcs.SLATE.2023.9
https://doi.org/10.4230/OASIcs.SLATE.2023.6
https://orcid.org/0000-0003-3045-0304
https://doi.org/10.4230/OASIcs.SLATE.2023.5
https://orcid.org/0009-0003-3645-2324
https://doi.org/10.4230/OASIcs.SLATE.2023.9
https://orcid.org/0000-0001-5854-536X
https://doi.org/10.4230/OASIcs.SLATE.2023.15
https://doi.org/10.4230/OASIcs.SLATE.2023.4
https://orcid.org/0000-0002-3549-0754
https://doi.org/10.4230/OASIcs.SLATE.2023.10
https://doi.org/10.4230/OASIcs.SLATE.2023.3
https://doi.org/10.4230/OASIcs.SLATE.2023.3
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:x Authors

João Oliveira (14)
University of Minho, Guimarães, Portugal

Dylan Perdigão (1)
Department of Informatics Engineering,
University of Coimbra, Portugal;
Centre for Informatics and Systems of the
University of Coimbra, Portugal

José Pereira (11)
Checkmarx, Braga, Portugal

Marco Pereira (12)
Checkmarx, Braga, Portugal;
University of Minho, Braga, Portugal

Maria João Varanda Pereira (13)
Research Centre in Digitalization and Intelligent
Robotics, Polythechnic Insitute of Bragança,
Portugal

Carla Pinto (15)
School of Engineering & CMUP, Polytechnic
Institute of Porto, Portugal

Filipe Portela (14)
Algoritmi Centre, University of Minho,
Guimarães, Portugal;
IOTECH – Innovation on Technology, Trofa,
Portugal

Ricardo Queirós (15)
School of Media Arts and Design & CRACS –
INESC TEC, Polytechnic Institute of Porto,
Portugal

Sara Cristina Freitas Queirós (16)
ALGORITMI Research Centre / LASI,
DI-University of Minho, Braga, Portugal

Sofia G. Rodrigues dos Santos (8)
Informatics Department, University of Minho,
Braga, Portugal

David Rodrigues (5)
Iscte – University Institute of Lisbon, Portugal

Mário Rodrigues (2)
IEETA, ESTGA, University of Aveiro, Portugal;
LASI – Intelligent System Associate Laboratory,
Coimbra, Portugal

Francisco S. Marcondes (10)
ALGORITMI Research Centre/LASI,
University of Minho, Braga, Portugal

Francisca Santana (14)
University of Minho, Guimarães, Portugal

André Santos (9)
CRACS & INESC TEC, Porto, Portugal;
Faculty of Sciences, University of Porto,
Portugal

Dietmar Seipel (6)
Department of Computer Science,
Universität Würzburg, Germany

Gabriel Silva (2)
IEETA, DETI, University of Aveiro, Portugal;
LASI – Intelligent System Associate Laboratory,
Coimbra, Portugal

Alberto Simões (11, 12)
Checkmarx, Braga, Portugal; 2Ai, School of
Technology, IPCA, Barcelos, Portugal

Helmer Strik (7)
Radboud University, Nijmegen, The Netherlands

Jorge Oliveira e Sá (14)
Algoritmi Centre, University of Minho,
Guimarães, Portugal

António Teixeira (2)
IEETA, DETI, University of Aveiro, Portugal;
LASI – Intelligent System Associate Laboratory,
Coimbra, Portugal

Cristian Tejedor-García (7)
Radboud University, Nijmegen, The Netherlands

Vitor Vieira (11)
Checkmarx, Braga, Portugal

Marcel Waleska (6)
Department of Computer Science,
Universität Würzburg, Germany

Simone Wills (7)
Radboud University, Nijmegen, The Netherlands

https://doi.org/10.4230/OASIcs.SLATE.2023.14
https://orcid.org/0000-0001-6923-900X
https://doi.org/10.4230/OASIcs.SLATE.2023.1
https://doi.org/10.4230/OASIcs.SLATE.2023.11
https://doi.org/10.4230/OASIcs.SLATE.2023.12
https://orcid.org/0000-0001-6323-0071
https://doi.org/10.4230/OASIcs.SLATE.2023.13
https://orcid.org/0000-0002-0729-1133
https://doi.org/10.4230/OASIcs.SLATE.2023.15
https://doi.org/10.4230/OASIcs.SLATE.2023.14
https://orcid.org/0000-0002-1985-6285
https://doi.org/10.4230/OASIcs.SLATE.2023.15
https://doi.org/10.4230/OASIcs.SLATE.2023.16
https://orcid.org/0009-0003-5510-9556
https://doi.org/10.4230/OASIcs.SLATE.2023.8
https://doi.org/10.4230/OASIcs.SLATE.2023.5
https://orcid.org/0000-0001-8415-9040
https://doi.org/10.4230/OASIcs.SLATE.2023.2
https://orcid.org/0000-0002-2221-2261
https://doi.org/10.4230/OASIcs.SLATE.2023.10
https://doi.org/10.4230/OASIcs.SLATE.2023.14
https://orcid.org/0000-0001-6410-9740
https://doi.org/10.4230/OASIcs.SLATE.2023.9
https://doi.org/10.4230/OASIcs.SLATE.2023.6
https://orcid.org/0000-0001-6798-9827
https://doi.org/10.4230/OASIcs.SLATE.2023.2
https://orcid.org/0000-0001-6961-2660
https://doi.org/10.4230/OASIcs.SLATE.2023.11
https://doi.org/10.4230/OASIcs.SLATE.2023.12
https://doi.org/10.4230/OASIcs.SLATE.2023.7
https://doi.org/10.4230/OASIcs.SLATE.2023.14
https://orcid.org/0000-0002-7675-1236
https://doi.org/10.4230/OASIcs.SLATE.2023.2
https://orcid.org/0000-0001-5395-0438
https://doi.org/10.4230/OASIcs.SLATE.2023.7
https://doi.org/10.4230/OASIcs.SLATE.2023.11
https://doi.org/10.4230/OASIcs.SLATE.2023.6
https://doi.org/10.4230/OASIcs.SLATE.2023.7

Committees

Organizing Committee

Alberto Simões
2Ai, School of Technology, IPCA
Barcelos, Portugal
asimoes@ipca.pt

Filipe Portela
Algoritmi, University of Minho
Guimarães, Portugal
cfp@dsi.uminho.pt

Ricardo Queirós
ESMAD, Polytechnic of Porto
Vila do Conde, Portugal
ricardoqueiros@esmad.ipp.pt

Mário Pinto
ESMAD, Polytechnic of Porto
Vila do Conde, Portugal
mariopinto@esmad.ipp.pt

Scientific Committee

Alberto Simões
Portugal

Alvaro Costa Neto
Brasil

Antoni Oliver
Spain

António Leitão
Portugal

António Miguel Rosado da Cruz
Portugal

António Teixeira
Portugal

Bostjan Slivnik
Slovenia

Brett Drury
United Kingdom

Cristina Ribeiro
Portugal

David Martins de Matos
Portugal

Diana Santos
Norway

Dietmar Seipel
Germany

Dušan Kolář
Czech Republic

Fernando Batista
Portugal

Filipe Portela
Portugal

Gergő Balogh
Hungary

Hugo Gonçalo Oliveira
Portugal

Irene Rodrigues
Portugal

Ivan Luković
Serbia

Jakub Swacha
Poland

Jan Janousek
Czech Republic

João Cordeiro
Portugal

João Saraiva
Portugal

José Carlos Paiva
Portugal

José Carlos Ramalho
Portugal

José João Almeida
Portugal

Jose Luis Sierra
Spain

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:xii Committeess

José Paulo Leal
Portugal

Josep Silva
Spain

Luís Ferreira
Portugal

Luis Filipe Costa Cunha
Portugal

Luís Matos
Portugal

Luis Morgado Da Costa
Czech Republic

Marcel Waleska
Germany

Maria João Varanda Pereira
Portugal

Mário Beron
Argentina

Mário Pinto
Portugal

Mário Rodrigues
Portugal

Nuno Almeida
Portugal

Pablo Gamallo
Spain

Paulo Matos
Portugal

Pedro Rangel Henriques
Portugal

Renato Preigschadt de Azevedo
Brasil

Ricardo Queirós
Portugal

Ricardo Rocha
Portugal

Ricardo Rodrigues
Portugal

Salvador Abreu
Portugal

Simão Melo de Sousa
Portugal

Teresa Guarda
Portugal

Tomaz Kosar
Slovenia

Vladimir Ivančević
Serbia

Question Answering over Linked Data with GPT-3
Bruno Faria #

Department of Informatics Engineering, University of Coimbra, Portugal
Centre for Informatics and Systems of the University of Coimbra, Portugal

Dylan Perdigão #

Department of Informatics Engineering, University of Coimbra, Portugal
Centre for Informatics and Systems of the University of Coimbra, Portugal

Hugo Gonçalo Oliveira #

Department of Informatics Engineering, University of Coimbra, Portugal
Centre for Informatics and Systems of the University of Coimbra, Portugal

Abstract
This paper explores GPT-3 for answering natural language questions over Linked Data. Different
engines of the model and different approaches are adopted for answering questions in the QALD-9
dataset, namely: zero and few-shot SPARQL generation, as well as fine-tuning in the training portion
of the dataset. Answers retrieved by the generated queries and answers generated directly by the
model are also compared. Overall results are generally poor, but several insights are provided on
using GPT-3 for the proposed task.

2012 ACM Subject Classification Computing methodologies → Natural language processing

Keywords and phrases SPARQL Generation, Prompt Engineering, Few-Shot Learning, Question
Answering, GPT-3

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.1

Supplementary Material
Software (Repository): https://github.com/brunofaria1322/GPT3-over-QALD9, archived at swh:
1:dir:5c52a1c2df0a799ceee6ac97ea1fe3ff6e056694

Funding This work was partially supported by the Portuguese Recovery and Resilience Plan (PRR)
through project C645008882-00000055, Center for Responsible AI; and by FCT – Foundation for
Science and Technology, I.P., within the scope of the project CISUC – UID/CEC/00326/2020 and
by the European Social Fund, through the Regional Operational Program Centro 2020. It is also
based upon work in COST Action CA18209 Nexus Linguarum, supported by COST (European
Cooperation in Science and Technology). http://www.cost.eu/.

1 Introduction

The Generative Pre-trained Transformer 3 (GPT-3) [7] Language Model (LM), developed
by OpenAI, is known to perform a broad range of Natural Language Processing (NLP) and
generation tasks, like summarisation, classification, or translation, in a zero or few-shot
scenario. However, there is not much work concerning its use for generating Simple Protocol
And RDF Query Language (SPARQL). This gap, to which access limitations contribute,
is the primary motivation for exploring GPT-3 in this task. We explore this model in the
generation of SPARQL queries for generic questions in Natural Language (NL). Such queries
should be able to retrieve answers from Linked Data (LD). The advantage of using a Large
Language Model (LLM) like GPT-3 is that we are not limited to a Knowledge Base (KB)
with static finite information. Not that the LLM s has infinite information, but it is much
more flexible: it can learn, even from only a few examples (i.e., in few-shot learning), and,
independently of the quality, will generate outputs for any prompt.

© Bruno Faria, Dylan Perdigão, and Hugo Gonçalo Oliveira;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 1; pp. 1:1–1:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:brunofaria@dei.uc.pt
https://orcid.org/0000-0002-0154-1410
mailto:dgp@dei.uc.pt
https://orcid.org/0000-0001-6923-900X
mailto:hroliv@dei.uc.pt
https://orcid.org/0000-0002-5779-8645
https://doi.org/10.4230/OASIcs.SLATE.2023.1
https://github.com/brunofaria1322/GPT3-over-QALD9
https://archive.softwareheritage.org/swh:1:dir:5c52a1c2df0a799ceee6ac97ea1fe3ff6e056694;origin=https://github.com/brunofaria1322/GPT3-over-QALD9;visit=swh:1:snp:c09034444e37e96eb151722faaf0a08abe67a1fa;anchor=swh:1:rev:96783b5325b7814be67fe0488b9042dc0a1ef6ca
https://archive.softwareheritage.org/swh:1:dir:5c52a1c2df0a799ceee6ac97ea1fe3ff6e056694;origin=https://github.com/brunofaria1322/GPT3-over-QALD9;visit=swh:1:snp:c09034444e37e96eb151722faaf0a08abe67a1fa;anchor=swh:1:rev:96783b5325b7814be67fe0488b9042dc0a1ef6ca
http://www.cost.eu/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

1:2 Question Answering over Linked Data with GPT-3

On the other hand, KB and LD are aligned with the FAIR data principles (Findable,
Accessible, Interpretable, Reusable) [23], in opposition to black-box LLM . Therefore, instead
of using GPT-3 directly for answering questions, a middle-ground would be using this model
for generating human-interpretable SPARQL, which may then be used for querying LD,
represented in Resource Description Framework (RDF).

For exploring GPT-3 in this task, we rely on the Question Answering over Linked Data 9
(QALD-9) [22] dataset, which has: NL questions; SPARQL for retrieving their answers from
DBpedia [2]; and the actual answers retrieved by these queries. Question Answering over
Linked Data (QALD) is a series of challenges that started in 2011, and are currently in the
10th edition1. Questions are available in several languages, but most translations lack the
necessary high quality, so we focus on English.

Using QALD-9 , experiments are conducted for generating SPARQL queries for DBpe-
dia with GPT-3 , using different engines (i.e., text-davinci-002 and text-davinci-003) and
approaches (i.e., zero-shot, few-shot, fine-tuning). Generated queries are evaluated with
BLEU [15] scores. Evaluation is complemented with the F1-score, computed on the results
of running the generated queries, and on the answers directly generated by GPT-3 when the
NL questions are asked.

Amongst our findings, we highlight that the zero-shot approach generates many invalid
SPARQL queries and that the queries by the fine-tuned model are the closest to the reference,
followed by the few-shot approach. On the other hand, answers retrieved from DBpedia
with queries by the few-shot approach are comparable to those of the fine-tuned model,
which learned from many more examples. Still, the best answers are obtained by asking the
NL question directly to GPT-3 , for which the query is not necessary. Despite the insights
provided by this exploration of GPT-3 , overall, all results end up being poor according to
the adopted metrics.

The remainder of this paper is organised as follows. Section 2 overviews existing LLM s
and their use cases in the scope of Question Answering (QA). Section 3 highlights essential
tools and frameworks for our experimentation. Section 4 describes the adopted methodologies.
Section 5 presents the obtained results, further discussed in Section 6. Finally, Section 7
concludes the paper and points to possible future directions.

2 Related Work

Bidirectional Encoder Representations from Transformers (BERT) [9] and Generative Pre-
trained Transformer (GPT) are two of the most popular LM based on the Transformer
architecture. Among many other tasks, they have both been used for QA.

BERT , developed by Google, uses only encoder blocks, and can be used for providing
contextual word embeddings or fine-tuned for many NLP tasks, including Extractive QA,
as long as data is available. GPT , an auto-regressive LM developed by OpenAI, has only
decoder blocks and is mostly used for text generation. However, this is enough for current
versions of this model, namely GPT-3 [7] and the recent GPT-4 [14], performing a broad
range of NLP tasks based on text prompts, not requiring fine-tuning (zero and few-shot),
which can still be performed for specific applications.

There is much work on automatic QA, mainly from unstructured text, often referred to
as Information Retrieval (IR)-based QA. Recent approaches rely on fine-tuning transformers
for extractive QA [9] or QA on the domain of the training data [16].

1 https://www.nliwod.org/challenge (accessed on 20/03/23)

https://www.nliwod.org/challenge

B. Faria, D. Perdigão, and H. Gonçalo Oliveira 1:3

Alternatively, knowledge-based QA gets answers from a structured KB. For this, NL
questions must be converted to logical constraints or structured queries, e.g., through semantic
parsing [6], or, more recently, deep neural networks [8].

When it comes to generating SPARQL queries, for KB in RDF , there are datasets of NL
questions and their translation to SPARQL. These include LC-QuAD [20] and the QALD [22].
The latter results from a series of challenges, currently in their tenth edition2.

SparseQA [3] is a framework used for answering complex questions tested in several
datasets, including those previously mentioned. It adopts a word-reordering approach for
creating and refining a graph based on each question. This encompasses:

(i) the classification of the question type;
(ii) the identification of entities and variables;
(iii) the construction of a graph from the sequential analysis of the question words.
The search space is then reduced by creating a knowledge sub-graph, and an approximate
match is performed with the relation pattern-based graph similarity. SParseQA was shown to
perform better than other systems that generate SPARQL with a broad range of approaches,
such as: graph traversal [21] and other graph-based [11, 12]; traditional supervised machine
learning [4]; parsing [24, 5] and rules on the underlying KB semantics [10]; query template
learning [22] and pattern recognition [28].

The performance of SPARQL generation with BERT and GPT-3 was compared in a
KB of aviation accident reports [1]. Four models, namely BM25-BERT (baseline), KGQA,
BERT-QA, GPT-3-QA, and two combinations, KGQA+BERT-QA and KGQA+GPT-3-QA,
were tested. Results were assessed with Exact Match (EM), Exact Recall (ER), accuracy,
and recall. KGQA+GPT-3-QA was the best approach in most metrics, which shows the
benefits of combining models. Even though GPT-3-QA was based on GPT-3 , it used older
engines (ada and curie) and is focused on aviation reports. There are very recent reports [18]
on using GPT-3 and related models for QA, in QALD and other datasets. When noting
that some of the models have difficulties for generating SPARQL, they focus only on the
answer, and report a F1 of 46% (text-davinci-003). In a related task, knowledge-based visual
QA, the steps of knowledge retrieval and reasoning were unified by prompting GPT-3 , used
implicitly as a KB [25].

SPBERT [19] was the first transformer-based LM pre-trained on a large quantity of
SPARQL queries. After fine-tuning, it was tested in four datasets: QALD-9, LC-QuAD,
Mon [17] and Verbalization QUestion ANswering DAtaset (VQuAnDa) [13] datasets, where it
outperformed other approaches that model SPARQL generation from NL as Neural Machine
Translation (NMT) [26], with Recurrent Neural Networks (RNN s), Convolutional Neural
Networks (CNN s), or an encoder-decoder Transformer model. Evaluation relied on BiLingual
Evaluation Understudy (BLEU) [15] and EM .

Our work complements existing research with the use of GPT-3 for SPARQL generation.
As in other works, SPARQL is evaluated with BLEU and the retrieved answers with F1-score.

3 Experimentation Setup

The main tools used in our experiments were:
(i) QALD-9 , a dataset of NL questions and their respective SPARQL queries;
(ii) OpenAI ’s Application Programming Interface (API), for text completion with different

engines of GPT-3 ;
(iii) SPARQLWrapper , for executing SPARQL queries and getting their respective results.

2 https://www.nliwod.org/challenge (accessed on 20/03/23)

SLATE 2023

https://www.nliwod.org/challenge

1:4 Question Answering over Linked Data with GPT-3

-- Boolean
Q: Was Marc Chagall a jew?
A: False

-- Date
Q: When was Olof Palme shot?
A: 1986-02-28

-- Literal
Q: What is the birth name of Angela Merkel?
A: Angela Dorothea Kasner

-- Number
Q: How much is the elevation of Düsseldorf Airport?
A: 44.8

-- URI
Q: What are the specialities of the UNC Health Care?
A: http://dbpedia.org/resource/Cancer; http://dbpedia.org/resource/Trauma_center

Figure 1 Five categories of questions with their respective answers.

(a) Train (408 questions) (b) Test (150 questions)
Figure 2 Composition of QALD-9 dataset.

Each entry of the QALD-9 [22] dataset has:
(i) a NL question, in a number of languages;
(ii) the gold SPARQL query for getting the answer of the question from DBpedia (2016-10

dump)3;
(iii) the gold answers to the previous queries.
Answers may belong to one of the following five categories: boolean, date, literal, number,
Uniform Resource Identifiers (URI s). Figure 1 shows an example question/answer pair
for each category. We have only considered their English version. QALD-9 is split into
training and testing portions, each with 408 and 150 questions, respectively. However, we
noted that some queries return an empty result due to wrong formatting or to changes in
the current version of DBpedia. Since these queries did not work, they were discarded for
our experimentation. Afterwards, we are left with 340 training and 112 testing questions.
Figures 2a and 2b have the distribution of the QALD-9 dataset, regarding the type of
answers.

3 Instead of DBpedia, version 9-plus of the dataset includes queries to Wikidata

B. Faria, D. Perdigão, and H. Gonçalo Oliveira 1:5

OpenAI offers an API 4 for generating any kind of text (e.g., NL or code), i.e., the user
prompts the model with some text and the model will generate following text. For instance,
if the prompt is a question, the model is expected to generate an answer. In our case, the
prompt is an instruction for generating a SPARQL query, and this is what we expect to
be generated. A spectrum of models and engines is available for performing different tasks,
with more or fewer capabilities and different prices. These models include: davinci, curie,
babbage, or ada. We tested two variants of davinci, the most powerful for text completion:
text-davinci-002 and text-davinci-003. OpenAI also allows fine-tuning one of the available
engines, which we did with QALD’s training set.

For executing SPARQL queries on the DBpedia endpoint5, we use SPARQLWrapper6 a
Python wrapper for executing SPARQL queries, part of RDFLib. SPARQLWrapper also
validates GPT-3 generated queries. If the query is well-formatted, results are retrieved in a
suitable format for further analysis.

4 Methods

This section describes the approaches adopted for testing GPT-3 in the QALD dataset,
namely: zero-shot SPARQL generation, few-shot SPARQL generation, generation with a
fine-tuned model, and direct answer generation. All of them are tested in QALD-9 ’s testing
data. Evaluation approaches and adopted metrics are also described.

4.1 Zero and Few-Shot

Zero and few-shot were tested in both pre-trained GPT-3 engines, davinci-002 and
davinci-003 . These were used with the ten prompts in Table 1, where the ⟨question⟩
placeholder is replaced by the questions from the QALD-9 dataset. The result can be, for
example:

Turn this into a DBpedia SPARQL query: “What is the time zone of Salt Lake City?”
Since the SPARQL queries in QALD-9 are meant for DBpedia, five prompts refer it specifically
and the others do not, for later analysis of the impact of this inclusion. The response of
GPT-3 to these prompts should be a SPARQL query. For example, an expected query for
the previous question is shown in Figure 6.

Table 1 Prompts tested for getting SPARQL queries.

ID Prompt

Q1 The SPARQL query for the question "⟨question⟩" is

Q2 What is the SPARQL query for the question
"⟨question⟩"?

Q3 SPARQL for "⟨question⟩" is

Q4 Write the complete SPARQL query to answer
the question: ⟨question⟩

Q5 Turn this into a SPARQL query: "⟨question⟩"

ID Prompt

Q6 The DBpedia SPARQL query for the question "⟨question⟩" is

Q7 What is the DBpedia SPARQL query for the question
"⟨question⟩"?

Q8 The DBpedia SPARQL for "⟨question⟩" is

Q9 Write the complete DBpedia SPARQL query to answer
the question: "⟨question⟩"

Q10 Turn this into a DBpedia SPARQL query: "⟨question⟩"

4 https://openai.com/api (accessed on 20/03/23)
5 https://dbpedia.org/sparql (accessed on 20/03/23)
6 https://github.com/RDFLib/sparqlwrapper (accessed on 20/03/23)

SLATE 2023

https://openai.com/api
https://dbpedia.org/sparql
https://github.com/RDFLib/sparqlwrapper

1:6 Question Answering over Linked Data with GPT-3

The main difference between zero and few-shot relies in the prompts. In zero-shot, they
consist of a single NL instruction, followed by the NL question from QALD. The expectation
is that GPT-3 generates the SPARQL for the question. In few-shot, the prompt includes a
number of instruction-question-SPARQL blocks, followed by an instruction-question pair.
We only tested five-shot learning, with a prompt illustrated in Figure 3 for the previous
example. The five questions for few-shot are selected from the training dataset and include
one example from each question category (Figure 1).

Turn this into a DBpedia SPARQL query: "What are the specialities of the UNC Health Care?"
SELECT DISTINCT ?uri WHERE { <http://dbpedia.org/resource/UNC_Health_Care>
<http://dbpedia.org/property/speciality> ?uri }

Turn this into a DBpedia SPARQL query: "When was Olof Palme shot?"
SELECT DISTINCT ?date WHERE { <http://dbpedia.org/resource/Olof_Palme>
<http://dbpedia.org/ontology/deathDate> ?date }

Turn this into a DBpedia SPARQL query: "How much is the elevation of Düsseldorf Airport ?"
SELECT ?ele WHERE { <http://dbpedia.org/resource/Düsseldorf_Airport>
<http://dbpedia.org/ontology/elevation> ?ele } LIMIT 1

Turn this into a DBpedia SPARQL query: "Was Marc Chagall a jew?"
ASK WHERE { <http://dbpedia.org/resource/Marc_Chagall>
<http://dbpedia.org/property/ethnicity> \"Jewish\"@en }

Turn this into a DBpedia SPARQL query: "What is the birth name of Angela Merkel?"
SELECT DISTINCT ?string WHERE { <http://dbpedia.org/resource/Angela_Merkel
<http://dbpedia.org/property/birthName> ?string }

Turn this into a DBpedia SPARQL query: "What is the time zone of Salt Lake City?"

Figure 3 Prompt for few-shot learning.

4.2 Fine-tuning
Fine-tuning is performed in the custom davinci engine with the 340 questions of the QALD-9
training data. For this purpose, a JSONL file is produced (see Figure 4), with each question
ending in a “->” followed by its SPARQL query. To avoid lengthy answers, an end-token (i.e.,
\n<EOQ>\n)) was added after each query.

{
"prompt":

"List all boardgames by GMT. ->",
"completion":

" PREFIX dbo: <http:\/\/dbpedia.org\/ontology\/>
PREFIX res: <http:\/\/dbpedia.org\/resource\/>
PREFIX rdfs: <http:\/\/www.w3.org\/2000\/01\/rdf-schema#>
SELECT ?uri WHERE {

?uri dbo:publisher res:GMT_Games
}\n<EOQ>\n"

}

Figure 4 First row of the JSONL file containing the pre-processed dataset.

4.3 Hyperparameters
The following hyperparameters were set for all experiments: temperature, max_tokens,
top_p, frequency_penalty, presence_penalty. The temperature controls the randomness
of the string completion and is set to 0 to avoid randomness. The maximum number of
tokens is max_tokens and is set to twice the length of the expected answer LEA from QALD.

B. Faria, D. Perdigão, and H. Gonçalo Oliveira 1:7

The top_p controls diversity via nucleus sampling (e.g., 0.5 means that half of all likelihood-
weighted options are considered). Finally, frequency_penalty and presence_penalty are
both set to 0. The former penalises new tokens based on their existing frequency in the text
so far, and the latter penalises new tokens based on whether they have appeared in the text
so far.

4.4 Direct Answer
The final approach does not involve SPARQL generation. It consists of making the NL
question directly to the model, with the gear of finally comparing the generated answer with
the query answers in QALD. Due to cost limitations, only davinci-002 was used for this.

To evaluate the model’s performance, and since the answers in the dataset are frequently
URI s in DBpedia, the first step was to convert URI to text. For this, DBpedia is queried
for a textual representation of the resource through the value of its rdfs:label or, if not
available, of its foaf:name. If none is available, the URI is parsed, and its final part (i.e.,
past the last /) is extracted, with _ replaced by white spaces. When the answer is a list
of URI s, the previous steps are applied to each URI , and the results are joined in a single
string, separated by white spaces.

The last step of this process is to normalise answers from the dataset and by GPT-3 .
This involves converting numbers and dates to a textual format, removing punctuation and
stopwords7, converting special characters (e.g., accents, cedillas) to ASCII, and lowercasing
everything. The result of this process is illustrated in Figure 5.

-- Original Answer
08/01/2020 was a good day to visit Monção, Portugal, with my 2 dogs.

-- Normalised Answer
01 august 2020 good day visit moncao portugal two dogs

Figure 5 Answer Normalisation.

PREFIX res: <http://dbpedia.org/resource/>
PREFIX dbp: <http://dbpedia.org/property/>
SELECT DISTINCT ?uri WHERE {

res:Salt_Lake_City <http://dbpedia.org/ontology/timeZone> ?uri
}

Figure 6 Expected SPARQL query for the question “What is the time zone of Salt Lake City?”.

For evaluation against the answers in QALD, the same normalisation was performed on
the results retrieved by the generated SPARQL.

4.5 Metrics
Two approaches were adopted for evaluating generated SPARQL queries:

(i) comparison with the gold SPARQL queries in the dataset;
(ii) comparison of their answers, i.e., results retrieved from DBpedia by the generated query

with the actual answer in the dataset.

7 We considered the list of English stopwords from NLTK, https://www.nltk.org/ (accessed on 20/03/23)

SLATE 2023

https://www.nltk.org/

1:8 Question Answering over Linked Data with GPT-3

Answers generated by GPT-3 , when asked the question directly, were also compared with
the answers in QALD-9 .

Since EM would be too strict, as in related work, we rely on BLEU 8 for comparing
how close two queries are. This has in mind that some queries might be invalid due
to simple syntactic errors that a human could quickly fix. BLEU is typically used in
Machine Translation, in our case, of English to SPARQL. It compares the gold answer with
the generated one and measures the weighted geometric average of all modified n-grams
precision (pn). Different values of n originate different variants of BLEU , such as BLEU -1
for unigrams and BLEU -2 for bigrams. We report on BLEU -1, BLEU -2, and a combined
measure, Sentence-BLEU , which averages BLEU -1, 2, 3 and 4.

As in the QALD challenge, typical IR measures, i.e., precision, recall and F1-score, are
computed for comparing generated and retrieved answers with the gold answers. When used
for assessing the direct answers, their normalisation is performed (see Section 4.4).

5 Evaluation

After analysing the type of the generated queries, this section reports on the evaluation of
SPARQL queries generated with the three methods, against the gold queries, followed by the
evaluation of their results, and of the direct questions, against the gold results.

5.1 Analysis of Generated Query Types
The proportion of valid queries is an initial insight into how GPT-3 can be used for SPARQL
generation. Figure 7a shows a distribution of answer types, including invalid queries and
empty answers, for queries generated when QALD test questions are concatenated to the
prompts in Table 1. Results are similar for each engine, so we present them only for
davinci-002. There are many invalid queries (yellow bar) with zero-shot, but most errors

(a) zero-shot. (b) few-shot.

Figure 7 All SPARQL queries generated by text-davinci-002.

are fixed in the few-shot scenario. However, the increase in valid answer types comes at the
cost of an increase in empty answers.

8 We have used the BLEU implementation of NLTK, https://www.nltk.org/_modules/nltk/translate/
bleu_score (accessed on 10/05/23)

https://www.nltk.org/_modules/nltk/translate/bleu_score
https://www.nltk.org/_modules/nltk/translate/bleu_score

B. Faria, D. Perdigão, and H. Gonçalo Oliveira 1:9

(a) zero-shot. (b) few-shot.

Figure 8 Valid SPARQL queries generated by each engine.

Figure 8 does the same analysis after removing empty and error queries. For each prompt,
two columns are presented, one for each engine. For zero and few-shot, more valid queries
can be generated with davinci-002 than with davinci-003.

5.2 Evaluation of Generated SPARQL

BLEU -1, 2, 3 and 4, as well as Sentence-BLEU were computed for the SPARQL generated
for the QALD test questions with each prompt, approach and engine, as well as with the
fine-tuned model. Table 2 reports on the average BLEU -1, BLEU -2, and Sentence-BLEU .
Besides considering the full gold query, we also report the scores when the declaration of
prefixes is ignored not only in the gold query but also in the generated one. This has in mind
that these declarations are not always necessary. For instance, standard prefixes like rdf, or
dbp and dbr for DBpedia, are often preloaded by SPARQL endpoints.

When considering prefixes, differences between davinci-002 and davinci-003 and between
different prompts are minimal. Referring DBpedia specifically on the prompt also seems to
make no difference. When prefix declarations are ignored, performance improves. In this
case, the few-shot approach performs better than the zero-shot. Still, low BLEU -2 and
Sentence-BLEU scores suggest that generated queries lack consistency and that GPT-3 is
not suitable for SPARQL generation, neither in a zero nor in a few-shot approach.

Despite being far from perfect, the best performance for every metric is achieved by the
fine-tuned model. To some extent, this was expected, because this approach was trained in
more data (340 examples), and confirms the benefits of fine-tuning.

5.3 Evaluation of SPARQL Results

A different perspective is given by running the generated queries in DBpedia and comparing
the obtained results with the gold results in QALD-9 . This is not immune to changes in
DBpedia because, due to hardware limitations, we queried its most recent version through its
public SPARQL endpoint, and not the source dump of the dataset, and we know that some
answers are only valid in a specific time frame (e.g., Who is the mayor of Berlin?).

SLATE 2023

1:10 Question Answering over Linked Data with GPT-3

Table 2 BLEU scores for different prompts and engines.

Engine Shots Prompt
With Prefix Without Prefix

BLEU-1 BLEU-2 Sent-BLEU BLEU-1 BLEU-2 Sent-BLEU

davinci-002 0 Q1 0.255 0.089 0.024 0.284 0.086 0.010
Q2 0.238 0.080 0.020 0.256 0.075 0.007
Q3 0.245 0.084 0.023 0.269 0.080 0.008
Q4 0.254 0.087 0.024 0.276 0.082 0.007
Q5 0.259 0.088 0.024 0.283 0.084 0.007
Q6 0.259 0.087 0.022 0.288 0.085 0.007
Q7 0.254 0.085 0.021 0.279 0.082 0.007
Q8 0.254 0.084 0.020 0.283 0.083 0.007
Q9 0.257 0.086 0.021 0.286 0.084 0.007
Q10 0.260 0.087 0.022 0.288 0.085 0.007

5 Q1 0.340 0.179 0.067 0.442 0.227 0.078
Q2 0.340 0.178 0.064 0.441 0.224 0.074
Q3 0.341 0.180 0.066 0.445 0.229 0.078
Q4 0.340 0.178 0.064 0.443 0.226 0.075
Q5 0.342 0.178 0.064 0.441 0.224 0.073
Q6 0.341 0.179 0.065 0.444 0.226 0.075
Q7 0.341 0.179 0.065 0.445 0.227 0.076
Q8 0.341 0.178 0.065 0.445 0.227 0.076
Q9 0.340 0.177 0.065 0.444 0.226 0.076
Q10 0.341 0.177 0.064 0.444 0.226 0.075

davinci-003 0 Q1 0.254 0.076 0.007 0.305 0.089 0.007
Q2 0.257 0.076 0.007 0.304 0.086 0.005
Q3 0.252 0.074 0.005 0.303 0.088 0.005
Q4 0.253 0.075 0.006 0.303 0.087 0.006
Q5 0.258 0.076 0.006 0.306 0.087 0.006
Q6 0.256 0.075 0.005 0.306 0.088 0.006
Q7 0.257 0.074 0.005 0.307 0.087 0.006
Q8 0.256 0.074 0.005 0.308 0.088 0.006
Q9 0.257 0.075 0.005 0.310 0.088 0.006
Q10 0.259 0.074 0.005 0.313 0.089 0.006

5 Q1 0.361 0.198 0.094 0.481 0.262 0.121
Q2 0.351 0.183 0.069 0.467 0.242 0.090
Q3 0.349 0.181 0.067 0.465 0.240 0.088
Q4 0.348 0.178 0.062 0.462 0.234 0.080
Q5 0.347 0.176 0.059 0.460 0.231 0.076
Q6 0.348 0.177 0.060 0.462 0.234 0.078
Q7 0.347 0.176 0.058 0.461 0.232 0.075
Q8 0.348 0.177 0.059 0.462 0.233 0.077
Q9 0.348 0.176 0.059 0.461 0.231 0.075
Q10 0.348 0.177 0.060 0.462 0.232 0.077

davinci-ft - - 0.473 0.313 0.245 0.519 0.345 0.261

Table 3 reports the evaluation of the results of the queries generated by each engine,
approach, and prompt. Here, recall and precision are both low, thus leading to low F1-scores.
Of course, the high number of invalid queries, considered empty, has a negative impact on the
results. Towards an alternative comparison with the answers directly generated (Section 5.4),
which might include unexpected results, BLEU metrics, this time between natural language
answers, were also computed, but do not bring much more to the table.

Performance is again better for the few-shot approach than for the zero-shot. Yet,
surprisingly, the few-shot compares well to the fine-tuned model. In fact, even if by an
insignificant margin, the best F1-score is achieved by the few-shot approach, in davinci-003,
using prompt Q2.

B. Faria, D. Perdigão, and H. Gonçalo Oliveira 1:11

Table 3 Scores of answers retrieved by generated queries or generated directly by the model.

Engine Shots Prompt Precision Recall F1-Score
BLEU-Score

BLEU-1 BLEU-2

davinci-002 0 Q1 0.028 0.043 0.034 0.022 0.000
Q2 0.008 0.010 0.009 0.008 0.000
Q3 0.033 0.035 0.034 0.026 0.000
Q4 0.027 0.024 0.025 0.020 0.000
Q5 0.011 0.018 0.014 0.011 0.000
Q6 0.038 0.039 0.038 0.031 0.007
Q7 0.023 0.028 0.025 0.016 0.000
Q8 0.064 0.072 0.068 0.057 0.007
Q9 0.055 0.062 0.058 0.049 0.000
Q10 0.063 0.068 0.065 0.050 0.000

5 Q1 0.113 0.142 0.126 0.110 0.000
Q2 0.116 0.130 0.122 0.113 0.001
Q3 0.100 0.125 0.111 0.100 0.000
Q4 0.105 0.123 0.113 0.102 0.001
Q5 0.094 0.119 0.105 0.093 0.001
Q6 0.118 0.141 0.128 0.112 0.000
Q7 0.113 0.134 0.123 0.108 0.001
Q8 0.104 0.133 0.117 0.104 0.000
Q9 0.098 0.124 0.109 0.095 0.001
Q10 0.096 0.109 0.102 0.093 0.001

davinci-003 0 Q1 0.026 0.028 0.027 0.019 0.000
Q2 0.032 0.040 0.035 0.025 0.000
Q3 0.026 0.029 0.028 0.019 0.000
Q4 0.027 0.029 0.028 0.021 0.000
Q5 0.043 0.053 0.048 0.036 0.000
Q6 0.027 0.024 0.026 0.015 0.000
Q7 0.054 0.053 0.054 0.043 0.000
Q8 0.026 0.024 0.025 0.015 0.000
Q9 0.077 0.075 0.076 0.061 0.000
Q10 0.039 0.043 0.041 0.033 0.007

5 Q1 0.104 0.121 0.112 0.096 0.007
Q2 0.124 0.139 0.131 0.112 0.007
Q3 0.115 0.131 0.122 0.107 0.007
Q4 0.120 0.134 0.121 0.103 0.007
Q5 0.103 0.119 0.110 0.098 0.007
Q6 0.112 0.119 0.115 0.104 0.007
Q7 0.114 0.130 0.122 0.104 0.007
Q8 0.104 0.121 0.112 0.096 0.007
Q9 0.092 0.107 0.099 0.085 0.007
Q10 0.114 0.130 0.122 0.104 0.007

davinci-ft - - 0.126 0.132 0.129 0.115 0.008

davinci-002-dir - - 0.317 0.419 0.361 0.240 0.124

Out of curiosity, considering only valid and non-empty queries, the best F1-score is 0.40,
specifically with the zero-shot approach in davinci-002, using prompt Q8. This is, however,
not comparable among approaches, because such queries and their number vary.

5.4 Evaluation of Direct Answers

In addition to SPARQL generation, GPT-3 was used for answering the QALD-9 test questions
directly, in NL. The generated answers were then compared with the gold answers, and
performance is included the last line of Table 3. Though not especially high, all the scores
are greater than for any other approach. This suggests that, if the query is not important, it
is preferable to avoid the extra step of query generation.

SLATE 2023

1:12 Question Answering over Linked Data with GPT-3

6 Discussion

Objectively, GPT-3 performed poorly for both SPARQL generation and QA. Yet, if we
look at the official results in the QALD-9 challenge [22], the 0.131 F1 would rank the best
few-shot approach third, which also shows that this is a challenging task. On top of that,
asking the questions directly to GPT-3 would rank it first (0.361 vs 0.298 F1).

However, we note that, since a portion of the entries were discarded from the dataset (see
Section 3), these scores are not directly compared to the official. Moreover, official scores
date from 2018 and, since then, there has been much progress in text to text generation.
In fact, the very recent work [18] that uses GPT-3 reports on a F1 of 46%. Besides using
the full dataset, they consider its 13 languages, not just English, and we do not about some
details of the experiment, e.g., whether they applied any kind of pre and post-processing, or
how they handled answers that have changed.

In any case, our results suggest that it is preferable to use GPT-3 directly. And asking a
question in NL is indeed straightforward, while queries must comply with a formal language,
to be made to a KB as DBpedia. If they are invalid, they will simply not be accepted.
Moreover, when it comes to comparing queries, it is usual that the generated query will
be different than the one in the dataset, even if slightly (e.g., name of a variable) because
there are many different ways to query DBpedia and obtain the same results. On the other
hand, queries are fixable and human-readable, and they are made to a transparent source
of knowledge, represented in RDF , in opposition to the black-box reasoning of GPT-3 . So,
when interpretability is a requirement, using GPT-3 directly is not a solution.

Despite slight improvements in the few-shot scenario with davinci-003, differences between
davinci-002 and davinci-003 engines are minimal. However, we note that davinci-002 insists
on generating Wikidata queries, instead of DBpedia, which ends up producing erroneous
queries. This was also why DBpedia was specified in half of the prompts but, apparently, it
made no noticeable difference on the quality of the generated SPARQL.

Fine-tuning the davinci engine led to improvements in the generated SPARQL. This was
somewhat expected because it was trained in 340 question-query pairs, whereas the few-shot
approach only saw five and the zero-shot none. Performance could be possibly improved if
more training examples were used, but this would have to resort to a different dataset.

Differences in SPARQL generation are, however, not reflected when comparing the results
of the generated queries, where the performance of the few-shot approach is comparable
to the fine-tuned model. This may be due to different queries that lead to similar results.
However, we recall that the best-scored answers were obtained by querying GPT-3 directly,
without SPARQL and DBpedia.

7 Conclusion and Future Work

GPT-3 has been used for many tasks, and SPARQL generation has been attempted with
different approaches. Yet, until recently, GPT-3 had not been explored for the automatic
generation of SPARQL queries.

Ideally, this would combine the best of text generation with KB-QA. Current text
generation models are known for their capacity of adapting to many tasks, taking advantage
of zero and few-shot learning. However, their inference is not transparent for humans, which
hinders their application to critical domains. On the other hand, both SPARQL queries and
LD can be easily scrutinised.

We tested different GPT-3 engines in zero and few-shot learning with ten different
prompts. We also fine-tuned a model for SPARQL generation. Results were analysed from
the perspective of valid queries produced and their resemblance with correct ones. The

B. Faria, D. Perdigão, and H. Gonçalo Oliveira 1:13

evaluation was complemented by scoring the results of running the generated queries and
comparing them to those obtained when the original question is asked directly to the model,
which also generates an answer in NL.

Briefly, in the zero-shot scenario, GPT-3 generates many invalid queries. Performance
increases with the five-shot approach, and even more with fine-tuning, but BLEU scores
show that generated queries are still far from the gold ones. On the other hand, the results
of queries by the few-shot approach are comparable to those of queries by the fine-tuned
model. Nevertheless, answers generated directly by the model are the best, even if still far
from the gold answers.

Overall, the results were poor and show that we were far from the aforementioned ideal
combination. Yet, we learned about the performance of GPT-3 for this specific task and
reported on insights that will hopefully open the door to further exploration of zero and
few-shot learning for SPARQL generation, using recent LLM s. This work was developed as a
course mini-project at the University of Coimbra, and some experiments were left to do due to
lack of time and resources. For instance, the reported performance could possibly be improved
with simple changes, such as: considering the type of question when selecting the training
examples for the few-shot approach; as others have done [17, 19], pre-processing SPARQL
queries for making them closer to NL (e.g., replace ?x variables or brackets, respectively
by tokens var_x or bra_left); and, most of all, using the correct DBPedia version. The
fine-tuned model could be further improved if more training data is used, but this would
have to resort to larger datasets (e.g., LC-QuAD [20]). Moreover, there are many LLM s left
to explore, e.g., OPT-175B [27], or the recent GPT-4 [14].

References
1 Ankush Agarwal, Raj Gite, Shreya Laddha, Pushpak Bhattacharyya, Satyanarayan Kar, Asif

Ekbal, Prabhjit Thind, Rajesh Zele, and Ravi Shankar. Knowledge Graph–Deep Learning: A
Case Study in Question Answering in Aviation Safety Domain. arXiv preprint arXiv:2205.15952,
2022. doi:10.48550/arXiv.2205.15952.

2 Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary
Ives. DBpedia: A Nucleus for a Web of Open Data. In Karl Aberer, Key-Sun Choi, Natasha
Noy, Dean Allemang, Kyung-Il Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika, Diana
Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux, editors, The
Semantic Web, LNCS, pages 722–735. Springer, 2007. doi:10.1007/978-3-540-76298-0_52.

3 Mahdi Bakhshi, Mohammadali Nematbakhsh, Mehran Mohsenzadeh, and Amir Masoud
Rahmani. SParseQA: Sequential word reordering and parsing for answering complex natural
language questions over knowledge graphs. Knowledge-Based Systems, 235:107626, 2022.
doi:10.1016/j.knosys.2021.107626.

4 Petr Baudiš. YodaQA: a modular question answering system pipeline. In POSTER 2015-19th
International Student Conference on Electrical Engineering, pages 1156–1165, 2015.

5 Romain Beaumont, Brigitte Grau, and Anne-Laure Ligozat. SemGraphQA@ QALD5: LIMSI
participation at QALD5@ CLEF. In Working Notes of CLEF 2015 – Conference and Labs of
the Evaluation Forum, 2015.

6 Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on Freebase
from Question-Answer pairs. In Proceedings of 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1533–1544, 2013.

7 Tom et al. Brown. Language Models are Few-Shot Learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

8 Yongrui Chen, Huiying Li, and Zejian Xu. Convolutional Neural Network-Based Question An-
swering Over Knowledge Base with Type Constraint. In China Conference on Knowledge Graph
and Semantic Computing, pages 28–39. Springer, 2018. doi:10.1007/978-981-13-3146-6_3.

SLATE 2023

https://doi.org/10.48550/arXiv.2205.15952
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1016/j.knosys.2021.107626
https://doi.org/10.1007/978-981-13-3146-6_3

1:14 Question Answering over Linked Data with GPT-3

9 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 4171–4186, Minneapolis, Minnesota, 2019. ACL.

10 Dennis Diefenbach, Andreas Both, Kamal Singh, and Pierre Maret. Towards a question
answering system over the Semantic Web. Semantic Web, 11(3):421–439, 2020. doi:10.3233/
SW-190343.

11 Sen Hu, Lei Zou, Jeffrey Xu Yu, Haixun Wang, and Dongyan Zhao. Answering Natural
Language Questions by Subgraph Matching over Knowledge Graphs. IEEE Transactions on
Knowledge and Data Engineering, 30(5):824–837, 2018. Conference Name: IEEE Transactions
on Knowledge and Data Engineering. doi:10.1109/TKDE.2017.2766634.

12 Hai Jin, Yi Luo, Chenjing Gao, Xunzhu Tang, and Pingpeng Yuan. ComQA: Question
Answering Over Knowledge Base via Semantic Matching. IEEE Access, 7:75235–75246, 2019.
Conference Name: IEEE Access. doi:10.1109/ACCESS.2019.2918675.

13 Endri Kacupaj, Hamid Zafar, Jens Lehmann, and Maria Maleshkova. VQuAnDa: Verbalization
QUestion ANswering DAtaset. In Andreas Harth, Sabrina Kirrane, Axel-Cyrille Ngonga Ngomo,
Heiko Paulheim, Anisa Rula, Anna Lisa Gentile, Peter Haase, and Michael Cochez, editors,
The Semantic Web, pages 531–547, Cham, 2020. Springer International Publishing.

14 OpenAI. GPT-4 Technical Report, March 2023. arXiv:2303.08774 [cs]. doi:10.48550/arXiv.
2303.08774.

15 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for
automatic evaluation of machine translation. In Proceedings of 40th Annual Meeting on
Association for Computational Linguistics - ACL ’02, page 311, Philadelphia, Pennsylvania,
2002. ACL. doi:10.3115/1073083.1073135.

16 Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into
the parameters of a language model? In Proceedings of 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 5418–5426, Online, 2020. ACL.
doi:10.18653/v1/2020.emnlp-main.437.

17 Tommaso Soru, Edgard Marx, Diego Moussallem, Gustavo Publio, Andre Valdestilhas, Diego
Esteves, and Ciro Baron Neto. Sparql as a foreign language. In Proceedings of the Posters and
Demos Track of the 13th International Conference on Semantic Systems - SEMANTiCS2017,
2017.

18 Yiming Tan, Dehai Min, Yu Li, Wenbo Li, Nan Hu, Yongrui Chen, and Guilin Qi. Evaluation
of chatgpt as a question answering system for answering complex questions. arXiv preprint
arXiv:2303.07992, 2023.

19 Hieu Tran, Long Phan, James Anibal, Binh T Nguyen, and Truong-Son Nguyen. SPBERT:
an Efficient Pre-training BERT on SPARQL Queries for Question Answering over Knowledge
Graphs. In Neural Information Processing: 28th International Conference, ICONIP 2021,
Proceedings, pages 512–523. Springer, 2021.

20 Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey, and Jens Lehmann. LC-QuAD:
A Corpus for Complex Question Answering over Knowledge Graphs. In Claudia d’Amato,
Miriam Fernandez, Valentina Tamma, Freddy Lecue, Philippe Cudré-Mauroux, Juan Sequeda,
Christoph Lange, and Jeff Heflin, editors, The Semantic Web – ISWC 2017, LNCS, pages 210–
218, Cham, 2017. Springer International Publishing. doi:10.1007/978-3-319-68204-4_22.

21 Christina Unger, Corina Forascu, Vanessa Lopez, Axel-Cyrille Ngonga, Elena Cabrio, Philipp
Cimiano, and Sebastian Walter. Question Answering over Linked Data (QALD-5). In Working
Notes of CLEF 2015 – Conference and Labs of the Evaluation Forum, volume 1391 of CEUR
Workshop Proceedings, page 10. CEUR-WS.org, 2015.

22 Ricardo Usbeck, Ria Hari Gusmita, Axel-Cyrille Ngonga Ngomo, and Muhammad Saleem. 9th
Challenge on Question Answering over Linked Data (QALD-9). Language, 7(1):58–64, 2018.

https://doi.org/10.3233/SW-190343
https://doi.org/10.3233/SW-190343
https://doi.org/10.1109/TKDE.2017.2766634
https://doi.org/10.1109/ACCESS.2019.2918675
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.1007/978-3-319-68204-4_22

B. Faria, D. Perdigão, and H. Gonçalo Oliveira 1:15

23 Mark D. Wilkinson et al. The FAIR Guiding Principles for scientific data management and
stewardship. Scientific Data, 3(1):160018, 2016. Number: 1 Publisher: Nature Publishing
Group. doi:10.1038/sdata.2016.18.

24 Kun Xu, Sheng Zhang, Yansong Feng, and Dongyan Zhao. Answering Natural Language
Questions via Phrasal Semantic Parsing. In Chengqing Zong, Jian-Yun Nie, Dongyan
Zhao, and Yansong Feng, editors, Natural Language Processing and Chinese Computing,
Communications in Computer and Information Science, pages 333–344. Springer, 2014.
doi:10.1007/978-3-662-45924-9_30.

25 Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Yumao Lu, Zicheng Liu, and Lijuan
Wang. An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA. Proceedings of
AAAI Conference on Artificial Intelligence, 36(3):3081–3089, 2022. doi:10.1609/aaai.v36i3.
20215.

26 Xiaoyu Yin, Dagmar Gromann, and Sebastian Rudolph. Neural machine translating from
natural language to SPARQL. Future Generation Computer Systems, 117:510–519, 2021.
doi:10.1016/j.future.2020.12.013.

27 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke
Zettlemoyer. OPT: Open Pre-trained Transformer Language Models, 2022. arXiv:2205.01068
[cs]. doi:10.48550/arXiv.2205.01068.

28 Weiguo Zheng and Mei Zhang. Question Answering over Knowledge Graphs via Structural
Query Patterns, 2019. arXiv:1910.09760 [cs]. doi:10.48550/arXiv.1910.09760.

SLATE 2023

https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1007/978-3-662-45924-9_30
https://doi.org/10.1609/aaai.v36i3.20215
https://doi.org/10.1609/aaai.v36i3.20215
https://doi.org/10.1016/j.future.2020.12.013
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.1910.09760

A Framework for Fostering Easier Access to
Enriched Textual Information
Gabriel Silva #

IEETA, DETI, University of Aveiro, Portugal
LASI – Intelligent System Associate Laboratory, Coimbra, Portugal

Mário Rodrigues #

IEETA, ESTGA, University of Aveiro, Portugal
LASI – Intelligent System Associate Laboratory, Coimbra, Portugal

António Teixeira #

IEETA, DETI, University of Aveiro, Portugal
LASI – Intelligent System Associate Laboratory, Coimbra, Portugal

Marlene Amorim #

GOVCOPP, DEGEIT, University of Aveiro, Portugal

Abstract
Considering the amount of information in unstructured data it is necessary to have suitable methods
to extract information from it. Most of these methods have their own output making it difficult and
costly to merge and share this information as there currently is no unified way of representing this
information. While most of these methods rely on JSON or XML there has been a push to serialize
these into RDF compliant formats due to their flexiblity and the existing ecosystem surrounding
them.

In this paper we introduce a framework whose goal is to provide a serialization of enriched data
into an RDF format, following FAIR principles, making it more interpretable, interoperable and
shareable. We process a subset of the WikiNER dataset and showcase two examples of using this
framework: One using CoNLL annotations and the other by performing entity-linking on an already
existing graph. The results are a graph with every connection starting from the document and
finishing on tokens while keeping the original text intact while embedding the enriched data into it,
in this case the CoNLL annotations and Entities.

2012 ACM Subject Classification Information systems → Document representation; Information
systems → Ontologies

Keywords and phrases Knowledge graphs, Enriched data, Natural language processing, Triplestore

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.2

Supplementary Material
Software (Dev Repository): https://github.com/gabrielrsilva11/GraphBuilderAPI

Funding This research is funded by National Funds through the FCT - Foundation for Science
and Technology (UI/BD/153571/2022). It is also funded, Research Unit IEETA, by National
Funds through the FCT - Foundation for Science and Technology, in the context of the project
UIDB/00127/2020.

1 Introduction

With the the expansion of the internet and IoT, the world saw a dramatic increase in the
amount of data that is generated every day [12]. While some of this data comes structured,
what we observe, especially in the last decade, is a huge amount of unstructured data
that was previously mostly ignored due to the difficulty in processing it. This difficulty in
processing comes not only in the form of lack of processing power but also in the fact that
the information in this type of data is enconded in natural language. This data is scattered

© Gabriel Silva, Mário Rodrigues, António Teixeira, and Marlene Amorim;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 2; pp. 2:1–2:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grsilva@ua.pt
https://orcid.org/0000-0001-6798-9827
mailto:mjfr@ua.pt
https://orcid.org/0000-0001-8415-9040
mailto:ajst@ua.pt
https://orcid.org/0000-0002-7675-1236
mailto:mamorim@ua.pt
https://orcid.org/0000-0002-0901-0614
https://doi.org/10.4230/OASIcs.SLATE.2023.2
https://github.com/gabrielrsilva11/GraphBuilderAPI
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 A Framework for Fostering Easier Access to Enriched Textual Information

throughout the web and comes from many sources. Tweets, forums, comments, anything
that is written in natural language can be a valuable source of data to be converted into
information. For example, twitter, can be used to identify adverse drug reactions [8] or
analyse comments to have a better understanding of patient feedback [13].

There are many methods to enrich this data that have been developed over the years,
Named Entity Recognition (NER), keyword extraction, topic modeling, among many others to
fit the needs of those working with this data. Another of such methods is text annotations [23].
Text annotations are labels that can be added to specific parts of a text to provide additional
information about the content. These annotations can include information such as part-
of-speech tags, named entities, or even more complex structures such as a syntactic trees.
This enriched data comes in different formats, for example, NER identifies which words are
recognized as named entities while something like syntactic annotations need something
more structured (like a table or a tree) for their representation. As a result of these different
processing methods of large amounts of data that is enriched by different frameworks or
humans is a complex process which can consume a lot of resources to accommodate.

Traditionally these annotations have been made and shared using, mostly, XML or JSON.
Both the Text Encoding Initiative 1 and the ISO TC37 SC4 WG1 2[27] have XML defined
guidelines for publishing/sharing data with text annotations. However, there is a growing
trend to integrate this enriched data with knowledge graphs in favour of JSON or XML
formats due to the flexibility and the existing tools for the semantic web [7].

In this work we aim to tackle common problems that are found while working with
enriched data. In general, these problems are:

Difficulty in managing the enriched data with possibly many levels/layers and diversity
of formats for each.
Difficulty in sharing the results of the data enrichment.
Lack of a common, unified way of representing the enriched data.
Processing and exploration of the enriched data requires costly development of custom
computational solutions.

Having identified these problems we set a few objectives for this work: (1) Creating a
framework that can integrate different annotations within a single knowledge graph; (2)
Create a knowledge graph that represents a unified way of representing documents (keeping
every connection possible) along with their annotations; (3) Make this knowledge graph
shareable and integratable with other software according to the user needs.

To tackle these problems our goal is to serialize enriched data into an RDF/OWL
compliant format. Achieving this serialization will make systems that this format more
interpretable, interoperable, and integrable with the already existent semantic web ecosystem.

By integrating this enriched data with knowledge graphs (both new and existing) we can
create richer relationships that have the potential to help improve algorithms. It will help
build more robust and accurate applications as well as sharing the information obtained.

The framework should make it possible to go directly from documents to a knowledge
graph. Building a framework capable of doing this would avoid certain issues like having
different data enrichment tools generate different representations. There is also the added
benefit of being more convenient to whoever uses the framework.

1 https://tei-c.org/
2 https://www.iso.org/committee/48104.html

https://tei-c.org/
https://www.iso.org/committee/48104.html

G. Silva, M. Rodrigues, A. Teixeira, and M. Amorim 2:3

The work will be developed using CoNLL and Entity Linking as our main use-cases
to showcase the framework as well as the resulting knowledge graph. The decision to use
CoNLL was because, as mentioned before, it is a widely used and accepted standard despite
the existing challenges. Entity linking will be to show the extensibility of the framework and
how it can be adapted to different annotations.

Paper structure. Following this introductory section, the paper structure is as follows:
Section 2 will focus on the framework and the different modules it comprises. How they were
developed and what each module does. Section 3 we present the use-cases of the framework:
CoNLL annotations and Entity Linking. Section 4 is the related work chapter, and Section 5
will present a conclusion and future work.

2 Our proposal: A framework for accessing enriched textual
information

This section will focus on the framework that was developed as well as the decisions behind
each module and how the requirements set at the beginning of the work were accomplished.
It starts by describing the system and how its modules work, followed by what was used
during the implementation as well as its issues. In the end we present a use-case of the
framework which will be entity-linking.

2.1 Requirements
The requirements set for this framework relate to both the general problems identified as
well as the concrete objectives defined for this work. As such, the requirements are:

Standards adoption – Adopting standards, such as RDF/OWL or CoNLL, makes the tool
be able to be integrated with an already existing suite of software.
Extensible and Flexible – There are a lot of different text annotations that users might
want to contemplate using and as such it should be possible to extend the usability of
the tool to cater to these different annotations.
Keep all the connections intact – That means linking the text to sentences, sentences to
words and annotation to words and make it easy to navigate both ways. This will help
keep the structure of the text intact and recreate the original document if needed. Ease of
navigation in the knowledge graph is a must to develop different applications of the tool.
Storage/Software Agnostic – The goal here is for the users to be able to integrate the
tool with whatever stack they are using making it as easy to use as possible for everyone.
Creating and uploading a knowledge graph should not be dependent on, for example, a
single triple storage system.
Abide by FAIR [28] principles – The four FAIR principals are the following: findable,
accessible, interoperable and reusable. These are principals we want to abide by because
of how important and connected to the problems we found they are, especially the last
three.

These were the major requirements that were identified as well as the rationale behind
each one of them.

2.2 Proposal/System
The major goal of this framework is to provide professionals with an extensible, easy-to-use
library which can be adapted to their needs and relies on standard practices and tools only.

SLATE 2023

2:4 A Framework for Fostering Easier Access to Enriched Textual Information

We propose a framework with an initial implementation as a python library that takes a
document and transforms it into a direct RDF serialization of enriched data that follows the
FAIR principles [28]. The first serialization, and the default one implemented in the library,
is done using CoNLL.

By serializing the enriched data into RDF while keeping all the connections between
elements intact we create an easy way to navigate this information as well as build upon it.

2.3 Framework overview
This framework uses standard resources that are not unknown to anyone that has ever
worked with NLP before. SpaCy and Stanza, which are the two main drivers of this work,
are widely used both in industry as well as research. The serialization is done to RDF which
is another well-known standard and one that is widely used, not only for NLP tasks. The
main difficulty found while developing the library was making it flexible so that users can,
for example, write their own queries.

The Fig. 1 presents a simple overview of the framework and its different components for
our use-cases.

Figure 1 Overview of the current framework architecture and the different modules.

The framework consists of 3 main modules: (1) Text Processing Module; (2) Graph
Module; (3) Querying Module. These are the models without which the framework would not
function. Each of them handles a different part of the pipeline needed to go from enriched
data to the final RDF serialization.

The text processing module objective is to take the raw document and apply the inform-
ation enrichment methods into it. For example, in our use case, and as seen in Figure 1 we
start off by processing the document, running it through a CoNLL parser (our enrichment
method) and we then build the knowledge graph based on this.

The Graph module, as the title implies, is responsible for the serialization of the enriched
data into an RDF compliant format. This involves parsing the enriched data, creating the
necessary connections to maintain the connections in the document intact as well as either
generating an RDF file or uploading it into a triple-storage system.

The last module is the querying module. This module is responsible for querying the
data and displaying its information or updating an existing graph to add information to it.
In our use-cases this is when entity linking is performed to showcase the flexibility of the
framework.

The implementation of each module will be presented in the next subsections.

G. Silva, M. Rodrigues, A. Teixeira, and M. Amorim 2:5

Table 1 Explanation of what each CoNLL data property represents.

Attribute Description

id The index of the word in the sentence.

word The text of the word

lemma The lemma of the word

pos Part-of-speech of the word

feats Morphological features of the word

edge Universal dependency relation of the word

head ID of the syntactic head of this word

2.4 First implementation of the Framework
In this section we will discuss how each module was implemented and the functionalities
present in each one.

2.4.1 Text processing module
The text processing module is responsible for reading the documents and parsing them into
the CoNLL format.

The first step is to split the text into sentences so that we can keep the connection from
text into the different sentences. Followed by using SpaCy [18] and Stanza [25] (formerly
StanfordNLP) to create the CoNLL representation.

This module allows us to choose the language in which the document comes in and the
output is a pandas dataframe in a standard tabular CoNLL format. Table 1 shows each
CoNLL attribute and their meaning. From here on out this is the representation we will use
to create our graph.

2.4.2 Graph Module
In order to build the graph we first start off by defining the required classes, data properties
and object properties. There are three classes defined: Text, sentence and word. This is so
that we can preserve every connection possible to be able to navigate the graph whichever
way we want and make it so that it is possible recreate the original document, even if just an
unformatted version of it.

The data properties are the ones that come from the parsed CoNLL data. These include:
edge, feats, lemma, id, pos, poscoarse, word and another data property called “sentence_text”
that connects the first word of the sentence with the sentence itself. The head property from
CoNLL will be defined as an object property instead of data since it isn’t related with the
data itself but with the structure of the text and the syntactic tree.

When it comes to object properties most of these were created because of either the
structure of the text or with navigation in mind. We create the following object properties:
head, depGraph, nextSentence, nextWord, containsSentence, previousWord, fromSentence.
Each of these properties are used in different one or various classes/instances. For text
the property containsSentence is used to know which sentences belong to a document/text.
For sentences we have nextSentence, this is used to know which sentence came next in the
text, and depGraph that represents the start of the syntactic tree of that sentence (the

SLATE 2023

2:6 A Framework for Fostering Easier Access to Enriched Textual Information

root node of the CoNLL representation). The rest of them are related to words, nextWord
and previousWord are related to the order in which the orders appear in the sentence and
depGraph are the words that depend on the current word. Figure 2 has a simplification of
these connections and showcases how we can navigate in the graph. X is the number of the
sentence and Y is the number of the word, so Sentence_1 would be the first sentence and
Word_1_3 would be the third word of the first sentence. After adding these properties and

Figure 2 Simplification of the connections existent in the knowledge graph.

classes all that is left is to create the graph. We go through the CoNLL tabular data, parse
it, and start by adding the sentences and appending the words to these sentences with the
respective tags.

It is also possible to choose how you want your graph. There are two methods available,
build it in-memory and export a TTL (Terse RDF Triple Language), a format used to express
RDF data, file or upload it into a triple storage system as long as there is an available
end-point. Ensuring the need for an endpoint instead of supporting specific triple-storage
systems makes the system more agnostic and able to be integrated with different systems to
suit different users needs.

The entity linking portion of the work is just a demonstration of a use-case of this
framework. We start off by identifying relevant word tags, such as, obj, obl or nsubj and
their dependents. From there on we utilize wikimapper which is a project that helps mapping
page titles with the corresponding wikipedia articles. If there are any relevant entities and
corresponding wikipedia articles we update the sentence to link these to the wikipedia pages
and therefor get a more complete knowledge base.

2.4.3 Querying Module
The final module of this system is the Querying Module. This is a module that comes with
some pre-built queries and the option to build your own. Currently this module also includes
the entity linking module.

The current built-in queries are able to: (1) insert triples into a storage; (2) Find sentences
that start by a given string; (3) Find sentences that contain a specific string or list of strings;
(4) Find sentence by id;

These queries are built with SPARQL 3, a communication and querying protocol, and
work for both triple-storage methods and the in-memory one. There are also functions that
use these queries to accomplish other tasks, for example, building sub-graphs with all the
dependencies starting from the root, find the syntactic path of a given subset of words to the
root node, finding the node of a given word.

This module operates mostly in the same way for every problem a user might have. It
starts off with a query to find out the useful nodes, for example, querying by sub-strings
or by an attribute. We build a sub-graph of the queried information and then apply our
navigation methods to find what the user wants to know.

3 https://www.w3.org/TR/sparql11-query/

https://www.w3.org/TR/sparql11-query/

G. Silva, M. Rodrigues, A. Teixeira, and M. Amorim 2:7

3 Use-Cases

To exemplify using this library we make use of two use-cases. The first use-case, which comes
built-in with the framework, is the creation of a knowledge graph with CoNLL annotations.
This example will show how we keep all the relations in a document and how we add
our own annotations to it. The second use-case is entity linking. Using the previously
created knowledge graph we perform entity linking and append the extracted entities to the
corresponding sentences.

We used the WikiNER [9] data for the Portuguese language and split it into a small
subset of data. We extracted 5121 sentences and processed them, built a knowledge graph
with CoNLL data (first use-case) and performed entity linking (second use-case).

3.1 CoNLL
Looking at one of the most popular annotation methods and one of our use-cases, CoNLL [2],
we can already identify some challenges when working with it. While this is a format that is
widely adopted by several systems and used by researchers everywhere it is not the most
human-readable format which makes interpreting the results hard, using tools to parse the
result table may lead to transformation errors or loss of information and sharing results is
not the easiest task.

To build the knowledge graph, we started off by processing the information as shown in
Figure 1. The input is a text file with each line being a sentence. The library starts off by
reading the file and converting the sentences into CoNLL using a combination of SpaCy [18]
and stanza [25]. This is done in chunks to avoid using more memory than what the system
would be capable of handling. As the chunks are parsed, they are being added to a new
knowledge graph. In this case we are not doing this in-memory but using a triple-storage
system called Virtuoso. We parse the text into CoNLL format and then, the resulting tabular
data is converted into triples to be uploaded to our system by an endpoint.

George

PROPN

Woodcock

PROPN

descreve

VERB

com

ADP

aptidão

NOUN

esse

DET

posicionamento

NOUN

libertário .

ADJ

nsubj

flat:name case

obl

det

obj

amod

Figure 3 Example of the universal dependencies parsing for the sentence “George Woodcock
descreve com aptidão esse posicionamento libertário .”.

To highlight the flexibility of the system we wanted to first create the CoNLL graph
based on this subset of data and then add the entity linking part of the work. The processing
and upload of the data took 4 hours to complete and the final result was a graph, with every
connection intact (document -> sentence -> word -> CoNLL attributes). Figure 3 shows an
example of the type of annotations, in this case the universal dependencies, present in our
data properties that come from CoNLL.

The result, shown in Protégé using OntoGraf, and for the sentence “George Woodcock
descreve com aptidão esse posicionamento libertário .” is shown in Figure 4. The framework
is made available as a Python library and to process a document the user has to mention:

SLATE 2023

2:8 A Framework for Fostering Easier Access to Enriched Textual Information

the desired relationships uri, an endpoint (if uploading to a triple storage), the language of
the document and the document or folder of documents. Then all that is left is to instantiate
our CreateGraph class and call the create_graph method. The output will either be an RDF
file or the graph uploaded into a triple storage. A more in-depth explanation of the process
is in Section 2.4.

Figure 4 Example of a sentence and its connections seen in Protégé [20] with OntoGraf as well
as its properties.

3.2 Entity Linking
The way we perform entity linking here was by using the universal dependency relations
found by CoNLL. We look at the 3 nominal core arguments of a sentence, namely, nsubj, obj
and iobj. Nsubj is identified as being the syntactic subject of a clause. Obj is the object of a
verb. Iobj is an indirect object that is a core argument of the verb but not a subject (nsubj)
or a direct object (obj) [10]. Not only do we look at these but also at the relations that are
related with these three relations.

For example, in the phrase “George Woodcock descreve com aptidão esse posicionamento
libertário”. “descreve” is our verb, “George” our nsubj and “posicionamento” our obj. Instead
of looking only at “George” and “posicionamento” to perform the entity linking we also
look at ”George Woodcock” and “esse posicionamento libertário”. We do this because, as
seen in Figure 3, “Woodcock”, “esse” and “libertário” are associated with our nsubj and obj.
This will lead to more robust entities being found in Wikidata as well as a more complete
knowledge base.

This relation information is already stored in our knowledge graph. To access it we use a
query SPARQL to fetch a sentence and then navigate on it. We start off with query to fetch
a single sentence and build its sub-graph. The following query will fetch all the data related
to a single sentence and from this data we build a sub-graph that we can navigate. In this
query str_id represents the id of a sentence.

PREFIX dbp: <http://dbpedia.org/resource/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX defpref: <http://example.pt/framework#>

SELECT ?s ?p ?o
WHERE {

<""" + str_id + """> defpref:depgraph* ?s .
?s ?p ?o .

}

G. Silva, M. Rodrigues, A. Teixeira, and M. Amorim 2:9

From there on it is a matter of navigating between the links and properties of the graph
that are shown in Figure 2. We define a root node (the word that is one of the relations
previously mentioned) and navigate using the “depGraph” link to fetch all the dependencies
of said node and build our partial sentence.

Using Wikimapper 4 we find if these entities exist on the portuguese version of wikipedia
or not and fetch their IDs and related names. The final step is to append this ID and names
to the sentence using the connection “wikidataId”. Figure 5 shows the Virtuoso SPARQL
viewer for the following query:

PREFIX dbp: <http://dbpedia.org/resource/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX defpref: <http://example.pt/ontoud#>

SELECT ?s ?p ?o
WHERE {

defpref:Sentence_148 defpref:depgraph* ?s .
?s ?p ?o .

}

This query will return the triples related with “Sentence_148” which corresponds to the
sentence in Figure 3.

Figure 5 Example of some sentences and the corresponding wikidata IDs found taken from
Virtuoso using a SPARQL query.

4 Related Work

In this section we will present the related work. The proposed framework can be used in
several areas of work, however, the most directly related ones are annotations (text, semantic),
linked data, and since it was our use case, entity linking.

A brief summary of the developments and current state-of-the-art will be presented here
in next subsection for each of these topics.

4 https://github.com/jcklie/wikimapper

SLATE 2023

https://github.com/jcklie/wikimapper

2:10 A Framework for Fostering Easier Access to Enriched Textual Information

4.1 Annotations
Works that follow the Linguistic Annotation Framework which was developed within the ISO
TC37 SC4 WG1 are a great starting point for anyone looking into developing a new framework
for annotations. This workgroup has put out several documents that can serve as an entry-
point, covering most of the language processing field [26]. They have developed standards
for morpho-syntactic representation (ISO 24611) 5 and syntactic structures (ISO 24615) 6

and representation of annotated content [27] (ISO 24612) 7 are some of the works published
by this work group that are relevant to this work. In general these frameworks provide
general requirements that should be followed when creating new annotations framework. For
example, the representation of annotated content presents requirements such as expressive
adequacy, media independence, semantic adequacy, incrementability, separability, uniformity,
openness, extensibility, human readability, processability and consistency [27].

The POWLA (Portable Linguistic Annotation with OWL) [4] is one such framework that
follows these guidelines and requirements. It is a framework designed to represent linguistic
data structures in a LOD/OWL-compliant way. It is a direct RDF implementation of the
PAULA datatypes and annotations. The authors also argue for the benefits of representing
annotations in an RDF format over the at-the-time state-of-the-art systems (XML and
GrAF).

There are other types of annotations that are not related to semantics but are also relevant
to the work developed.

Sentiment annotation consists of looking at a sentence sentiment and assigning it a value
of positive, negative or neutral. Assigning these marks is usually done to sentences as a whole
but specific words can also convey a negative or positive meaning. As the author of [17]
mentions it is not always clear to human annotators the emotion that is being portrayed
so there is a need to create more complex annotation schemes that contemplate different
parameters especially when considering text such as transcriptions or speeches.

Document Classification is another type of annotation. This one works at a document
level instead of sentence or words and the goal is to classify a document into a set of existing
categories [14].

4.2 Linked Data
Linked Data and NLP are two highly interconnected fields [7]. The focus of linked data is
to create a web of interconnected data which can be queried and analysed in a structured
way which pairs well, and even enriches, the goal of NLP which is to better understand
and interpret human language [15]. In recent years, the trend has been to use more
RDF/OWL based formats due to their interoperability and flexible yet standardized way of
representing data [1]. We have seen researchers share more data in this format. For example,
CovidPubGraph [24], Protein Ontology [3].

However, NLP is a big field of study and there are many tools which have different and
varied outputs making it so that working on large project with many components becomes a
complex task due to having to manage all these tools and different standards. There have
been attempts to create a standard way to share NLP data by serializing it into RDF, such
as the NIF (NLP Interchange Format) [11]. NIF is an RDF/OWL-based format whose goal

5 https://www.iso.org/standard/51934.html
6 https://www.iso.org/standard/62508.html
7 https://www.iso.org/standard/37326.html

https://www.iso.org/standard/51934.html
https://www.iso.org/standard/62508.html
https://www.iso.org/standard/37326.html

G. Silva, M. Rodrigues, A. Teixeira, and M. Amorim 2:11

was to achieve interoperability and reusability between NLP tools, language resources and
annotations. This format specifies several rules to follow as well as defining formal URIs
that can be used to maintain consistency between tools and help researchers get over the
hurdle of different formats for each tool and even achieve better results due to having the
possibility to enrich their data with LOD (Linked Open Data).

There have also been other projects that attempt to convert formats, for example, csv
or tsv into ontologies. The W3C keeps a web page of what they call “ConverterToRdf”8 as
well as “RDFImportersAndAdapters”9 which lists different formats and the tools that can
be used for each format, however, this list does not seem to be updated as some of these
projects are now offline. This list also does not make any mention of text annotations which
is what this work is going for.

The only project that we found who attempted to convert text annotations such as
CoNLL into an RDF format was CoNLL-RDF [5, 6]. This is a Java framework where the
user provides their own CoNLL file, and the program outputs the RDF representation relying
on NIF. This project, however, has some key differences to the framework proposed. The first
one being accepting free text / documents instead a CoNLL file. The proposed framework
deals with text and serializes it into an ontology with all the CoNLL information in it. This
makes it so that the attributes will always be consistent across different corpora. Providing
your own file into CoNLL-RDF may break serialization if you use an unknown tagger or there
is any error in the generated file. Our work also provides some pre-built SPARQL queries for
some useful text processing as well as the option to integrate with different triple-storage
systems (Jena, Virtuoso, etc . . .) if there is an available endpoint. With CoNLL-RDF the
only output is a RDF or TTL file which you can then upload it into said triple-storage
systems, however, if your corpora is too big this isn’t an ideal solution.

4.3 Entity Linking

While entity linking is not the main scope of this work it is one of the use cases identified for
this work. By using known and established knowledge bases we can improve the quality of
our data and of our own knowledge bases. While here we link entities to their corresponding
Wikipedia pages, EEL (Entity Extraction and Linking) is a vast field in which a wide variety
of approaches are taken.

Representative systme in this area are J-NERD which performs Entity Extraction and
Linking with respect to YAGO2/Wordnet and Wikipedia [22], Babelfy which combines
Wikipedia WordNet and Babelnet into a semantic network to be used as a multilingual
reference knowledge base [19], AIDA-Light focuses on scalability by using a two-step process
and uses YAGO2 and Wikipedia [21]. Besides these systems there have also been investments
in API/Web Services, for example, IBM has AlchemyAPI10 which offers a suit of different NLP
services (including EEL or Yahoo! Content Analysis API11 which also includes entity/concept
detection. For a more comprehensive study of such systems and a much more in-depth survey
of EEL it is recommended to look at [16] and for neural based approaches the survey [29].

8 https://www.w3.org/wiki/ConverterToRdf
9 https://www.w3.org/wiki/RDFImportersAndAdapters
10 https://www.ibm.com/watson/alchemy-api.html
11 https://developer.yahoo.com/contentanalysis/

SLATE 2023

https://www.w3.org/wiki/ConverterToRdf
https://www.w3.org/wiki/RDFImportersAndAdapters
https://www.ibm.com/watson/alchemy-api.html
https://developer.yahoo.com/contentanalysis/

2:12 A Framework for Fostering Easier Access to Enriched Textual Information

5 Conclusion

This paper presents a framework whose goal is to make working with NLP data easier. It
offers a common, shareable, unified way of representing data without the need to write
immense amounts of custom code. The framework is already capable of creating an RDF-
compliant way of working with NLP data, knowledge base completion, text statistics (by
navigating the graph) and appending annotations post graph creation. In this version of
the framework the requirements that were set at the start were also met. We abide by the
FAIR principles [28] by doing the following: it is findable and accessible by being online and
available through pypi or github and the dataset being public. It is interoperable by virtue
of using a standard format that any triple storage can use. It is reusable due to the data
annotation being CoNLL which is a widely known and used format as well not making use
of any proprietary frameworks or standards. All the connections from document to the word
are intact and navigable both ways. The graphs can be built in-memory or uploaded to a
triple storage that accepts SPARQL. We showed that it is extensible and flexible by adding
our own annotations after creating the CoNLL graph. We adopt standards and frameworks,
such as RDF and CoNLL, that allow integration with already existing software.

While the framework implementation currently only supports CoNLL annotations by
default for enriched data, it is already capable of other functions, including (1) Uploading
data to a triple-storage as long as there is an available endpoint; (2) Pre-built SPARQL
queries to work with the data; (3) Basic entity linking to wikipedia pages.

These functionalities already showcase how powerful the framework is, we also see no
issues as to why it could not support other standards, such as POWLA [4] or other types
of non-syntactic annotations as long as they are related to either a document, a sentence
or words. It is important to make the library adaptable and extensible since enriched data
methods are always evolving and the needs of professionals are different depending on their
use-cases.

As an example of a use-case we processed a sub-set of the WikiNER dataset for the
Portuguese language, we built the knowledge graph with CoNLL annotations and performed
a basic form of entity-linking on it. This was a subset with 5121 sentences and it took
about 4 hours to process the whole dataset and upload it to Virtuoso12. To create the graph
in-memory and export as a TTL file it took about 20 minutes. After the graph was created
and to show how we can easily extend it with other functionalities we performed entity
linking to get a more complete graph. In order to find entities we looked at three main
universal dependency relations: obj, obl and nsubj as well as their dependencies to look for
entities. When we have these relations and dependencies we use Wikimapper to find, if it
exists, the corresponding Wikidata ID and titles, appending them to the sentence it belongs.

These use-cases show the flexibility of the framework and the type of work it can do. We
opted to work with a triple-storage system, however it could also be done in-memory but for
large documents this is not advised due to memory constraints.

5.1 Future Work
There is still plenty of work that can be done with the current state of the library. The first
thing we plan on doing is optimizing the library. We can introduce parallelization when
processing large amounts of text. While most of the overhead when working with a triple
storage vs in-memory comes from network calls (4 hours vs 20 minutes processing time) for
large texts this will be beneficial.

12 https://virtuoso.openlinksw.com/

https://virtuoso.openlinksw.com/

G. Silva, M. Rodrigues, A. Teixeira, and M. Amorim 2:13

When it comes to enriched data, adding built-in support to other annotations methods
and allow users to choose which ones they want to keep in their serialization is another step
that is planned.

Allowing users to export only whichever parts of the graph that they want is also planned
if, for example, only part of the graph needs to be shared, or the graph without any custom
annotations that might have been done.

References
1 Michael Bergman. Advantages and Myths of RDF. AI3, April, 2009.
2 Sabine Buchholz and Erwin Marsi. CoNLL-X Shared Task on Multilingual Dependency Parsing.

In Proceedings of the Tenth Conference on Computational Natural Language Learning (CoNLL-
X), pages 149–164, New York City, June 2006. Association for Computational Linguistics.
URL: https://aclanthology.org/W06-2920.

3 Chuming Chen, Hongzhan Huang, Karen E. Ross, Julie E. Cowart, Cecilia N. Arighi, Cathy H.
Wu, and Darren A. Natale. Protein ontology on the semantic web for knowledge discovery.
Scientific Data, 7(1):337, October 2020. doi:10.1038/s41597-020-00679-9.

4 Christian Chiarcos. POWLA: Modeling Linguistic Corpora in OWL/DL. In Elena Simperl,
Philipp Cimiano, Axel Polleres, Oscar Corcho, and Valentina Presutti, editors, The Semantic
Web: Research and Applications, pages 225–239, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

5 Christian Chiarcos and Christian Fäth. CoNLL-RDF: Linked Corpora Done in an NLP-Friendly
Way. In International Conference on Language, Data, and Knowledge, 2017.

6 Christian Chiarcos and Luis Glaser. A Tree Extension for CoNLL-RDF. In Proceedings of the
Twelfth Language Resources and Evaluation Conference, pages 7161–7169, Marseille, France,
May 2020. European Language Resources Association. URL: https://aclanthology.org/
2020.lrec-1.885.

7 Philipp Cimiano, Christian Chiarcos, John P. McCrae, and Jorge Gracia. Modelling Linguistic
Annotations, pages 89–122. Springer International Publishing, Cham, 2020. doi:10.1007/
978-3-030-30225-2_6.

8 Anne Cocos, Alexander G Fiks, and Aaron J Masino. Deep learning for pharmacovigilance:
recurrent neural network architectures for labeling adverse drug reactions in Twitter posts.
Journal of the American Medical Informatics Association, 24(4):813–821, 2017.

9 Silviu Cucerzan. Large-Scale Named Entity Disambiguation Based on Wikipedia data. In
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL), pages 708–716, Prague,
Czech Republic, June 2007. Association for Computational Linguistics. URL: https://
aclanthology.org/D07-1074.

10 Marie-Catherine de Marneffe, Timothy Dozat, Natalia Silveira, Katri Haverinen, Filip Ginter,
Joakim Nivre, and Christopher D. Manning. Universal Stanford dependencies: A cross-linguistic
typology. In Proceedings of the Ninth International Conference on Language Resources and
Evaluation (LREC’14), pages 4585–4592, Reykjavik, Iceland, May 2014. European Language
Resources Association (ELRA). URL: http://www.lrec-conf.org/proceedings/lrec2014/
pdf/1062_Paper.pdf.

11 Sebastian Hellmann, Jens Lehmann, Sören Auer, and Martin Brümmer. Integrating NLP Using
Linked Data. In Harith Alani, Lalana Kagal, Achille Fokoue, Paul Groth, Chris Biemann,
Josiane Xavier Parreira, Lora Aroyo, Natasha Noy, Chris Welty, and Krzysztof Janowicz,
editors, The Semantic Web – ISWC 2013, pages 98–113, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

12 Martin Hilbert. Big Data for Development: A Review of Promises and Challenges. Development
Policy Review, 34:135–174, January 2016. doi:10.1111/dpr.12142.

SLATE 2023

https://aclanthology.org/W06-2920
https://doi.org/10.1038/s41597-020-00679-9
https://aclanthology.org/2020.lrec-1.885
https://aclanthology.org/2020.lrec-1.885
https://doi.org/10.1007/978-3-030-30225-2_6
https://doi.org/10.1007/978-3-030-30225-2_6
https://aclanthology.org/D07-1074
https://aclanthology.org/D07-1074
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
https://doi.org/10.1111/dpr.12142

2:14 A Framework for Fostering Easier Access to Enriched Textual Information

13 Mustafa Khanbhai, Patrick Anyadi, Joshua Symons, Kelsey Flott, Ara Darzi, and Erik Mayer.
Applying natural language processing and machine learning techniques to patient experience
feedback: a systematic review. BMJ Health Care Inform., 28(1):e100262, March 2021.

14 Vandana Korde. Text Classification and Classifiers:A Survey. International Journal of Artificial
Intelligence & Applications, 3:85–99, March 2012. doi:10.5121/ijaia.2012.3208.

15 Elizabeth D Liddy. Natural language processing, 2001.
16 Jose L Martinez-Rodriguez, Aidan Hogan, and Ivan Lopez-Arevalo. Information extraction

meets the semantic web: a survey. Semantic Web, 11(2):255–335, 2020.
17 Saif Mohammad. A practical guide to sentiment annotation: Challenges and solutions. In

Proceedings of the 7th workshop on computational approaches to subjectivity, sentiment and
social media analysis, pages 174–179, 2016.

18 Ines Montani, Matthew Honnibal, Matthew Honnibal, Sofie Van Landeghem, and Adriane
Boyd. spaCy: Industrial-strength Natural Language Processing in Python, 2020. doi:
10.5281/ZENODO.1212303.

19 Andrea Moro, Alessandro Raganato, and Roberto Navigli. Entity Linking meets Word Sense
Disambiguation: a Unified Approach. Transactions of the Association for Computational
Linguistics, 2:231–244, 2014. doi:10.1162/tacl_a_00179.

20 Mark A. Musen. The protégé project: a look back and a look forward. AI Matters, 1(4):4–12,
2015. doi:10.1145/2757001.2757003.

21 Dat Ba Nguyen, Johannes Hoffart, Martin Theobald, and Gerhard Weikum. AIDA-light:
High-Throughput Named-Entity Disambiguation. LDOW, 1184, 2014.

22 Dat Ba Nguyen, Martin Theobald, and Gerhard Weikum. J-NERD: Joint Named Entity
Recognition and Disambiguation with Rich Linguistic Features. Transactions of the Association
for Computational Linguistics, 4:215–229, 2016. doi:10.1162/tacl_a_00094.

23 Eyal Oren, Knud Möller, Simon Scerri, Siegfried Handschuh, and Michael Sintek. What are
semantic annotations. Relatório técnico. DERI Galway, 9:62, 2006.

24 Svetlana Pestryakova, Daniel Vollmers, Mohamed Ahmed Sherif, Stefan Heindorf, Muhammad
Saleem, Diego Moussallem, and Axel-Cyrille Ngonga Ngomo. CovidPubGraph: A FAIR
Knowledge Graph of COVID-19 Publications. Scientific Data, 9(1):389, July 2022. doi:
10.1038/s41597-022-01298-2.

25 Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning. Stanza:
A Python Natural Language Processing Toolkit for Many Human Languages, 2020. arXiv:
2003.07082.

26 Laurent Romary. Standards for language resources in ISO – Looking back at 13 fruitful years,
2015. arXiv:1510.07851.

27 Laurent Romary and Nancy Ide. International Standard for a Linguistic Annotation Framework,
2007. arXiv:0707.3269.

28 Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles
Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E.
Bourne, Jildau Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo,
Olivier Dumon, Scott Edmunds, Chris T. Evelo, Richard Finkers, Alejandra Gonzalez-Beltran,
Alasdair J.G. Gray, Paul Groth, Carole Goble, Jeffrey S. Grethe, Jaap Heringa, Peter A.C ’t
Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher, Maryann E. Martone,
Albert Mons, Abel L. Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene van
Schaik, Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag, Ted Slater, George Strawn,
Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik van Mulligen, Jan Velterop,
Andra Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun Zhao, and Barend Mons.
The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data,
3(1):160018, March 2016. doi:10.1038/sdata.2016.18.

29 Özge Sevgili, Artem Shelmanov, Mikhail Arkhipov, Alexander Panchenko, and Chris Biemann.
Neural entity linking: A survey of models based on deep learning. Semantic Web, 13(3):527–570,
April 2022. doi:10.3233/sw-222986.

https://doi.org/10.5121/ijaia.2012.3208
https://doi.org/10.5281/ZENODO.1212303
https://doi.org/10.5281/ZENODO.1212303
https://doi.org/10.1162/tacl_a_00179
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1162/tacl_a_00094
https://doi.org/10.1038/s41597-022-01298-2
https://doi.org/10.1038/s41597-022-01298-2
https://arxiv.org/abs/2003.07082
https://arxiv.org/abs/2003.07082
https://arxiv.org/abs/1510.07851
https://arxiv.org/abs/0707.3269
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.3233/sw-222986

A Pseudonymization Prototype for Hungarian
Attila Novák #

Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest,
Hungary

Borbála Novák #

Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest,
Hungary

Abstract
In this paper, we present a pseudonymization prototype for Hungarian, an agglutinating language
with complex morphology, implemented as a web service. The service provides the following functions:
entity identification and extraction; automatic generation and selection of replacement candidates;
automatic and consistent replacement and reinflection of entities in the final pseudonymized document.
The named entity recognition model applied handles names of persons well, and it has decent
performance on other entity types as well. However ID-like entities need to be handled separately
to achieve proper performance (not handled in the current prototype version). For automatic
replacement candidate generation, a simple entity embedding model is used. We discuss the
performance and limitations of the prototype in detail.

2012 ACM Subject Classification Computing methodologies → Natural language processing

Keywords and phrases named entity recognition, morphological reinflection, pseudonymization,
entity embedding model

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.3

Funding The research presented in this paper was implemented with support provided by grant
FK 125217 of the National Research, Development and Innovation Office of Hungary financed under
the FK 17 funding scheme.

1 Introduction

Machine learning-based NLP models are often domain dependent to some extent in the sense
that their performance often depends on how similar the features (topic, style, vocabulary)
of the text to which the model is applied are to the features of the texts used to train the
model. The performance of models can often be significantly improved if (ideally a significant
amount of) in-domain training data is available.

However, access to types of texts containing sensitive personal data (such as medical or
crime-related information) is severely restricted, and this can be a serious obstacle to the
development of high-quality models for handling texts in such domains. Consistent automatic
replacement of personal data in texts with similar but fictitious data is a possible solution to
this problem. The type of solution of which we outline a working research prototype in this
paper could provide a general solution to the legal problems that hinder the publication and
use of texts containing sensitive data, and thus contribute significantly to the development
of high-quality language models in these domains.

The objective of the research presented here was to develop a prototype that uses a
high-precision and high-coverage named entity recognition algorithm to identify names and
other personal data together with their entity type in text, and then associates fictitious but
natural-looking names and data with them, replacing the occurrences of names and data
(including suffixed forms) in the text in a consistent way. This way, we obtain texts that no
longer contain real personal data and are therefore no longer constrained by the restrictions
pertaining to the original data. These can thus be made available for training or fine-tuning

© Attila Novák and Borbála Novák;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 3; pp. 3:1–3:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:novak.attila@itk.ppke.hu
mailto:novak.borbala@itk.ppke.hu
https://doi.org/10.4230/OASIcs.SLATE.2023.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2 A Pseudonymization Prototype for Hungarian

language models that can handle texts in the given domain. This type of models can also
be used to replace the identified entities and other data with unique identifiers to provide
proper data masking. Typically, pseudonymization means that a given code key can be used
to recover the original information, and, indeed, the systematic recoverability of information
is often a desired objective. When unique identifiers are used to replace the original names
and data, these are recognizably different from real data. However, to achieve our original
objective (i.e. to obtain a restriction-free version of a corpus of texts in a domain typically
restricted by the presence of sensitive information), we need a solution that results in an
output that is essentially indistinguishable from the original in terms of lexical distribution,
thus we need to replace names with false names of similar distribution rather than with
identifiers. This solution is usually referred to as data masking. For this purpose, the code
key that could be used to recover the original data is unnecessary, and it can and should
be discarded or at least is to be kept separately and subject to technical and organizational
measures to ensure non-attribution to any identified or identifiable person.

Reversal of pseudonymization may be possible in some edge cases using externally available
information even in the absence of the code key, if unmodified information in the context can
be used to infer the identity of the person in an unambiguous manner. For this not to be the
case, data masking in general needs to be applied not only to names of persons but also to
other entities like institutions, places, facilities etc. in order to mask the contexts as well.

What makes the proper data masking process non-trivial in the case of morphologically
complex languages like Hungarian is that nouns may have dozens-to-hundreds of possible
inflected and derived forms that all should be recognized, disambiguated and consistently
replaced and reinflected in context.

2 Method

The prototype system we present in this paper contains the following components (for detailed
discussion of components and functions see the subsections below):
1. A named entity recognition (NER) model to identify the entities to be replaced and the

type of each entity.
2. A model for disambiguated morphological analysis and lemmatization to identify the

lexical form of entities to be replaced and the actual morphological form the name to be
used for substitution must take in the given context.

3. A simple extraction module that compiles a collection of extracted entities (in a normal-
ized/lemmatized form) along with their types and frequencies.

4. A model that can suggest suitable replacement candidates for the identified entities.
Ideally, replacements should be done in a manner that is consistent throughout the
document.

5. A model that replaces the identified entity names and reinflects them to match the
grammatical context. For this, a morphological generator model is used.

6. The prototype is implemented as a dockerized web service taking json input and returning
json output.

The web service call API has the following functions:
1. Function spans to preprocess text and extract entities (these are added to the input json).
2. Function suggest to suggest replacements (entities are enriched with suggestions and

replacements) creating a replacements configuration. If the input does not contain
preprocessed data and extracted entities, function spans is performed before suggesting
replacements.

A. Novák and B. Novák 3:3

3. Function replace to automatically replace entities in text based on the replacements
configuration reinflecting them in context. spans and/or suggest are also performed, if
needed. The replacements configuration can be modified manually or in an automatic
manner by an external process before calling replace.

2.1 The named entity recognition (NER) model

The NER model we used is based on the Hungarian named entity corpus NerKor+Cars-
OntoNotes++ [3], a 1.04M-token corpus covering 85 thousand entities of a relatively fine-
grained 28-class entity type set. The entity classes include the 18 entity types covered by
the Ontonotes 5 corpus [8], and further types (such as media, social media, awards, motor
vehicles, projects) differentiated when creating the corpus. We used this corpus to finetune a
transformer encoder model to perform token classification. It is based on the Hugging Face
Transformers tool set, and it is available at the Hugging Face Hub1.

The key entity types targeted in the current prototype application are: persons (PER),
organizations (ORG), geopolitical entities (GPE): i.e. names of settlements, countries and
geopolitical regions like counties, and facilities (FAC), which include streets/roads and other
public spaces. The latter two types are parts of addresses, an important target data type for
the data masking task. The NerKor+Cars-OntoNotes++ annotation does not cover nested
entities, thus addresses are not annotated as a whole, only their parts are identified by the
named entity annotation model. Nevertheless, given the unnested annotation, since the
consistent replacement of names (including settlement names) in the document is desirable,
annotation of addresses as a sequence of settlement and street address is not problematic.
The NerKor+Cars-OntoNotes++ corpus (in contrast to earlier NER datasets) also identifies
derived forms of names.

The model also identifies dates, times, time durations, numerical values, quantities,
amounts of money and certain types of ID’s in addition to named entities. These entities are
not only annotated but are also extracted. While the replacement of these types of entities
is necessary in a full-fledged data masking annotation solution, the current prototype, while
it identifies and annotates most of these, it does not automatically suggest a replacement for
them (while it does generate automatic replacement candidates for named entities).

2.2 A morphological analysis and lemmatization

The models used for disambiguated morphological annotation and lemmatization are the
emMorph morphological analyzer [4, 5] integrated with the PurePos/emTag tagger [6]. We
used the e-magyar/emtsv pipeline [7] to integrate the morphological analyzer, the tagger and
the named entity recognizer. However, we used improved versions of all tools instead of the
ones originally shipped with e-magyar.

The most important improvement concerns the NER model: the model in e-magyar
distinguishes only four entity types: persons, organizations, locations and miscellaneous (all
other types of named entities), and it was trained on a much smaller 226k-token corpus in a
limited domain (business news). Thus the original NER model does not properly identify or
differentiate some entity types important in a data masking application (e.g. geopolitical
entities, facilities and other geographical locations are not differentiated, and no derived

1 https://huggingface.co/novakat/nerkor-cars-onpp-hubert

SLATE 2023

https://huggingface.co/novakat/nerkor-cars-onpp-hubert

3:4 A Pseudonymization Prototype for Hungarian

forms of named entities are recognized).2 In addition, it has suboptimal performance on
generic (non-business-domain) texts due to its training data being limited to a single domain:
the BERT-based model originally featured in e-magyar has an F1 score of only 0.8439 on the
union of test sets of the business news NER corpus and NerKor corpus, while for the model
trained on NerKor (using the same architecture), F1 was found to be 0.9197 on the same
joint test set.

We have also retrained the tagger model on an improved version of its original training
corpus where annotation errors due to earlier erroneous conversion of morphosyntactic
annotation were fixed. We also extended the stem database of the morphological analyzer to
improve coverage of named entities both in analysis and generation.

2.3 Marking and extraction of entities
All entities identified by the NER model are marked in the text to be processed, they are
normalized to a lexical form based on the lemmatization provided by the morphological
analyzer, and the normalized form of the entities is extracted as a json dictionary including
frequency and entity type data. Normalization affects the rightmost element of multi-word
entities, as case marking and other inflections are attached to the head of the noun phrase,
which is on the right in Hungarian. Normalization is needed to create a single representative
lexical form for all inflected forms of each entity to make the consistent replacement and
reinflection of the entities possible. The entity annotation including morphological analysis
on heads of noun phrases is added to the original text as markup. This representation is
used later to replace and reinflect entities.

2.4 The model for replacement suggestion
The dictionary of extracted entities serves as a basis for the configuration of the replacements
to be performed. Replacement candidates are automatically added to this data structure
when the suggest function of the web service call API is called.

In the current prototype, we used a simple static word/entity embedding model to
automatically populate the replacements configuration candidates section. The embedding
model was trained using an annotated 2-billion-word web-crawled corpus. The annotation
followed the format presented in [2]: inflected words are represented by a sequence of two
tokens: one consisting of the lemma and the PoS tag, and another independent token
representing the morphological endings. The following example shows the representation of
the sentence Szeretlek, kedvesem. ‘I love you, my darling.’:

szeret[/V] [Prs.1Sg>2] ,[Punct] kedves[/N] [Poss.1Sg]
love [I, you] , darling [my]

This representation, while no information is lost, improves the quality of the word
embedding model compared to one created from surface word forms in several ways: by
assigning a separate representation to lexical items of different part of speech, by effectively
reducing data sparseness problems following from the great variety of rare inflected word
forms, and thus by improving the representation of lemmata.

2 In Hungarian, derivational suffixes are used to derive adjectives from e.g. names of locations. These are
not capitalized: budapesti ‘of/in/to Budapest’

A. Novák and B. Novák 3:5

This scheme was extended to include a representation of entities. In addition to mor-
phological annotation, the corpus was also annotated using the NER model presented in
Subsection 2.1. Lemmata of heads of entities were also annotated by the entity type in
addition to PoS. Sentences containing multi-word entities were represented twice in the
training data: once with the whole entity represented by a single token (with underscores
between words of the phrase) and once by each non-terminal surface word form of each
multi-word entity appearing as an independent token. This made it possible to generate
independent representations for the whole entity and its constituent parts.

Iványi_Márta[/N]=[PER] [Nom] -[Punct] szoprán[/Adj] [Nom]
Iványi Márta[/N]=[PER] [Nom] -[Punct] szoprán[/Adj] [Nom]
Márta Iványi - soprano

This feature of the embedding model makes it possible for the data masking tool to handle
different entity types in a different manner. E.g. replacement candidates for names of persons
are generated by handling surnames and given names independently. This ensures that e.g.
kinship relations among persons mentioned in the text reflected by identical surnames are
preserved by handling the surnames consistently. In contrast, facilities (e.g. street names) or
the names of organizations are treated by the algorithm as one unit, thus it does not make
up completely fictitious street or organization names.

The embedding model was trained using the fastText CBOW algorithm [1]. For the
entity types handled by the automatic replacement model of the prototype, a random
shuffled sample (currently 5 items) of the top (currently 50) nearest neighbors according
to cosine similarity from the embedding model are added as replacement candidates to
the replacements configuration with the second candidate selected (the first candidate is
always the original entity itself). For quantities, date and ID entities, currently no additional
replacement candidate is generated (see limitations of the current model below in Section 3).
The replacement candidates generated for the female name Bulcsu Mariann are shown as an
example below (with the candidate Putz Evelin selected).

"Bulcsu Mariann[/N]": {
"allsugg": [["Bulcsu","Putz","Gutbrod","Maczucza","Südy","Gálos"],

["Mariann","Evelin","Zita","Judit","Krisztina","Erika"]],
"frq": 1,
"repl": "Putz Evelin",
"norm": "Bulcsu Mariann",
"type": {"PER": 1}

},

2.5 Replacement and re-inflection of entities

Entities in the annotated original text are replaced based on the replacements configuration
passed to the replace API function. The normalized form of entities as marked in the
annotation is first replaced by the normalized form of the selected replacement candidate,
and then the latter is re-inflected using a morphological generator model created from the
morphological analyzer. The morphological generator uses the lemma of the head and
the disambiguated morphosyntactic analysis in the original annotation to generate the
contextually appropriate inflected form of the replaced entity.

SLATE 2023

3:6 A Pseudonymization Prototype for Hungarian

3 Limitations

The current prototype implementation has a number of limitations.
It does not automatically replace numeric, identifier or date-type entities, nor does it

recognize all of these types (especially some types of identifiers such as vehicle registration
numbers or telephone numbers). The latter is a major limitation from a GDPR point
of view, which can be handled by either creating extra training data for the underlying
NER model and retraining it, or by applying an independent identifier recognition model.
Automatic replacement of numerical, date-type etc. entities identified by the current NER
model can be simply solved by implementing and calling a module that generates and injects
a replacement for entities of these types in the entity replacements configuration before
invoking the replacement function. Most of these identifiers are easily detectable using simple
regex-based patterns. We did not deal with this issue in the current prototype.

The system does not currently detect and consistently handle informal references to
entities or accidental misspellings or other name variations. E.g. nicknames referring to
persons in the text are not identified, and the suggested replacement for them is not consistent
with the the replacement of the full name (e.g. the suggested replacement for a name like
Johnny may be e.g. Frankie while the replacement candidate for John may be e.g. Michael).

The automatic replacement of names referring to geographic entities are not currently
handled consistently either. E.g. while the original text may mention settlements which are
close to each other geographically and also the name of the county3 where all of them are
located may be mentioned, the automatically selected replacements may not have the same
properties.

Addresses are not handled completely consistently, either. The zip code may be in-
consistent with the rest of the address, and the substituted settlement may not have the
independently replaced street name. These inconsistencies in the output may negatively
impact the quality of a complex language model trained on the output of the data masking
tool, thus a better model for the replacement of place names and addresses would be desirable
in a follow-up model version. It is a question to what extent it is desirable to mask settlement
names. It is possible that masking street addresses provides satisfactory data masking to
prevent possible data leaks.

In addition, some personal data may “leak” through the system due to imperfect recall of
the named entity recognizer. However, the subsequent identification of such entities in the
text is only possible in certain presumably rare cases: if almost all occurrences of a name are
replaced except one, the inconsistent contextually unanchored single occurrence of the name
may be inferred to be the original name.

Note that for some linguistic tasks requiring domain adaptation, consistent replacement
of names is not necessarily required: a solution where names in the document are replaced
randomly may be sufficient. While the resulting text is not suitable for training e.g. of
models for co-reference resolution, it is certainly not a problem in this case if some data
has not been replaced by chance, because there is no way of deducing from the text which
elements of the original text remained unchanged.

A further problem may be the (lack of) handling of nested entities (when one name
element contains another name element). The frequency of such errors can be estimated by
measuring them on test data, and their actual impact can be assessed by manual inspection
of automatically pseudonymized example texts.

3 A county is a large administrative area in Hungary: Hungary consists of 19 counties.

A. Novák and B. Novák 3:7

4 Evaluation

We performed evaluation of the prototype on a 14.5k-word sample of police witness interview
reports, which had been manually pseudonymized before. Manual pseudonymization was
performed at the data processing company of the Ministry of the Interior, thus we were
provided test data that had already been manually made GDPR-compliant. Nevertheless,
the data was not made publicly available. The training data for the NER model did not
contain any data similar to this genre.

Table 1 Performance of the NER model on the test corpus. Scores were reported by the
CONLL-2003 NER evaluation script.

Frq. Ratio/Acc Type P R F1

99.48% 94.74 93.33 94.03
37.59% PER 99.01 99.01 99.01
14.26% CARDINAL 97.44 98.70 98.06
12.96% GPE 96.88 88.57 92.54
6.85% FAC 94.59 94.59 94.59
6.67% DATE 87.80 100.00 93.51
4.07% ORG 86.67 59.09 70.27
3.89% ORDINAL 100.00 100.00 100.00
3.70% TIME 95.24 100.00 97.56
2.41% DUR 100.00 100.00 100.00
1.67% ID 100.00 55.56 71.43
1.30% QUANTITY 100.00 100.00 100.00
1.11% MONEY 100.00 100.00 100.00
1.11% TEL 0.00 0.00 0.00
1.11% CAR 100.00 33.33 50.00
0.93% LOC 35.71 100.00 52.63
0.37% AGE 100.00 100.00 100.00
0.00% PROD 0.00 0.00 0.00

Table 1 shows the entity recognition performance on this test corpus. The overall F1
score was 0.943, which is quite acceptable (only exact token span match is rewarded).
The entity types in the table are ordered by their frequency in the gold test data. The
most common entities are person names, for which we get an almost perfect recognition
performance. This is quite reassuring, as this is the most important entity type from a
GDPR point of view. As for now, cardinals also subsume zip codes and house numbers, as
these have not been distinguished in the original NER model. But they are easily identifiable
given their distribution relative to other parts of addresses. The relatively lower recall for
geopolitical entities is caused by a) some informal references to settlement names (where
instead of the official name of a settlement, a colloquial form was used) that were mostly
mistagged by the model as LOC (this is a minor issue, its impact on replacement is that
the suggested replacement for the name was of the wrong semantic category), and b) by the
model sometimes missing some derived forms of settlement names. The relatively low recall
for ORG entities is due to references in the texts to specific police headquarters and their
departments in all caps, which was sometimes left untagged or tagged as LOC (except for the
settlement name within the name, which is identified as GPE). This is not a grave problem
either with regard to the performance of the data masking application. The model cannot

SLATE 2023

3:8 A Pseudonymization Prototype for Hungarian

identify phone numbers and some types of ID’s, as mentioned in Section 3 on limitations.
Other errors included the model tagging some car occurrences in the corpus as products
rather than assigning the more specific CAR tag.

We also evaluated replacement and reinflection performance. The test set contained 894
identified entities, of which 474 were replaced. The main error types are shown in Table 2.
The second column shows the ratio of errors in the replacement configurations, the third
column in the actual occurrences in the test corpus.

The majority of unreplaced entity occurrences was due to our decision not to change
them in the current prototype (dates, times, quantities, ID’s, etc.). 44 entities (8.5% of the
518 entities that should have been replaced) remained unreplaced due to some error in entity
identification or automatic suggestion generation. This ratio definitely needs to be improved
in a production version (e.g. by replacing/improving the static-embedding-based suggestion
algorithm). The inconsistent replacement of nicknames mentioned in Section 3 affects 2.7%
of entities to be replaced. The replacement was deemed ‘improper’ in 5% of the cases: the
selected replacement is of a different name type than the original, or a foreign first name was
suggested as a replacement of a Hungarian name.4 Adding a simple filtering mechanism to
the handling of persons names could alleviate these problems. In many cases, misclassification
of entity type by the NER model could be identified as the cause of improper replacement.
Another 0.6% was replaced inconsistently due to some other factor (e.g. nonstandard usage
of street address).

Table 2 Error types and actual occurrences in entity replacement due to an error in the automatic
entity detection or replacement candidate generation/selection.

error type entries in the configurations affected occurrences
all 40 (19.7) 87 (16.8)
unreplaced 23 (11.3) 44 (8.5)
improper 9 (4.4) 26 (5.0)
nickname 5 (2.5) 14 (2.7)
inconsistent 3 (1.5) 3 (0.6)

Reinflection errors in the final document can be traced back either to morphological
analysis errors (often due to some spelling error, affecting 1.8% of replaced entities) or affect
locative cases of settlement names (0.8%). In Hungarian, names of geopolitical entities and
public places (like street names) take a locative form either in the superessive (on) (e.g.
Budapest, Magyarország ‘Hungary’), or in the inessive (in) case (e.g. Madrid, Spanyolország
‘Spain’). This is a lexical property of the name, and replacement of a name with another
that belongs to the other group results in improper case inflection. This problem will need
to be addressed in a future model update.

5 In the context of ChatGPT

The prototype we presented in this paper is based on a traditional NLP pipeline (although
some elements of the pipeline have a neural implementation). Although it was created before
ChatGPT’s earthquake-like debut, we felt compelled to check whether we can get ChatGPT
perform the same task out of the box. However, we did not manage to prompt ChatGPT

4 This is due to the fact that a specific subset of foreign first names (of celebrities) are popular among
members of some specific social groups, while other similar foreign first names are not.

A. Novák and B. Novák 3:9

into performing a consistent and comprehensive pseudonymization of Hungarian texts, like
the system presented here performs.5 It either left most entities intact (despite an explicit
request not to retain any original names or data), or it just used single letters to mask more
(still not all) entities in the text.

6 Conclusion

We presented a pseudonymization/data masking prototype for Hungarian providing functions
of entity identification and extraction, automatic generation and selection of replacement
candidates, and automatic and consistent replacement and reinflection of entities in the
final pseudonymized document. The named entity recognition model handles most relevant
entity types well, however ID-like entities need to be handled separately to achieve proper
performance (not handled in the current prototype). The simple entity embedding model
used for replacement candidate generation has some limitations, however, we managed to
handle the problem of replacing names consistently to a reasonable degree. Performance
of the prototype is acceptable, although further improvement is needed to develop it into
a fully-fledged, reliable data masking solution that also outputs completely consistent text
with names having a completely natural distribution.

References
1 Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors

with subword information. Transactions of the Association for Computational Linguistics,
5:135–146, 2017. doi:10.1162/tacl_a_00051.

2 Attila Novák and Borbála Novák. Cross-lingual generation and evaluation of a wide-coverage
lexical semantic resource. In Proceedings of the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki, Japan, May 2018. European Language
Resources Association (ELRA). URL: https://aclanthology.org/L18-1007.

3 Attila Novák and Borbála Novák. NerKor+Cars-OntoNotes++. In Proceedings of the
Thirteenth Language Resources and Evaluation Conference (LREC 2022), pages 1907–1916,
Marseille, France, June 2022. European Language Resources Association. URL: https:
//aclanthology.org/2022.lrec-1.203.

4 Attila Novák. A new form of Humor – Mapping constraint-based computational morphologies
to a finite-state representation. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Hrafn
Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis,
editors, Proceedings of the Ninth International Conference on Language Resources and Eval-
uation (LREC’14), pages 1068–1073, Reykjavik, Iceland, May 2014. European Language
Resources Association (ELRA). URL: http://www.lrec-conf.org/proceedings/lrec2014/
pdf/207_Paper.pdf.

5 Attila Novák, Borbála Siklósi, and Csaba Oravecz. A new integrated open-source morphological
analyzer for Hungarian. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi,
Marko Grobelnik, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan
Odijk, and Stelios Piperidis, editors, Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC 2016), pages 1315–1322, Portorož, Slovenia, May
2016. European Language Resources Association (ELRA). URL: https://aclanthology.org/
L16-1209.

5 We did not perform exhaustive prompt engineering. We tried (the Hungarian equivalent of) the following
prompt variants: a. Replace all names and sensitive data in the text below consistently with a similar
name. b. a+(not letters), c. b+Do not retain any original names or data.

SLATE 2023

https://doi.org/10.1162/tacl_a_00051
https://aclanthology.org/L18-1007
https://aclanthology.org/2022.lrec-1.203
https://aclanthology.org/2022.lrec-1.203
http://www.lrec-conf.org/proceedings/lrec2014/pdf/207_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/207_Paper.pdf
https://aclanthology.org/L16-1209
https://aclanthology.org/L16-1209

3:10 A Pseudonymization Prototype for Hungarian

6 György Orosz and Attila Novák. PurePos 2.0: a hybrid tool for morphological disambiguation.
In Proceedings of the International Conference Recent Advances in Natural Language Processing
RANLP 2013, pages 539–545, Hissar, Bulgaria, September 2013. INCOMA Ltd. Shoumen,
BULGARIA. URL: https://aclanthology.org/R13-1071.

7 Tamás Váradi, Eszter Simon, Bálint Sass, Iván Mittelholcz, Attila Novák, Balázs Indig,
Richárd Farkas, and Veronika Vincze. E-magyar – A Digital Language Processing System. In
Nicoletta Calzolari (Conference chair), Khalid Choukri, Christopher Cieri, Thierry Declerck,
Sara Goggi, Koiti Hasida, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo,
Asuncion Moreno, Jan Odijk, Stelios Piperidis, and Takenobu Tokunaga, editors, Proceedings
of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan, May 7-12 2018. European Language Resources Association (ELRA).

8 Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance
Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-
Bachouti, Robert Belvin, and Ann Houston. OntoNotes Release 5.0, 2013. doi:10.35111/
xmhb-2b84.

https://aclanthology.org/R13-1071
https://doi.org/10.35111/xmhb-2b84
https://doi.org/10.35111/xmhb-2b84

Generating and Ranking Distractors for
Multiple-Choice Questions in Portuguese
Hugo Gonçalo Oliveira #

Center of Informatics and Systems, University of Coimbra, Portugal
Department of Informatics Engineering, University of Coimbra, Portugal

Igor Caetano #

Instituto Pedro Nunes, Coimbra, Portugal
Department of Informatics Engineering, University of Coimbra, Portugal

Renato Matos #

Center of Informatics and Systems, University of Coimbra, Portugal
Department of Informatics Engineering, University of Coimbra, Portugal

Hugo Amaro #

Instituto Pedro Nunes, LIS, Coimbra, Portugal

Abstract
In the process of multiple-choice question generation, different methods are often considered for
distractor acquisition, as an attempt to cover as many questions as possible. Some, however, result in
many candidate distractors of variable quality, while only three or four are necessary. We implement
some distractor generation methods for Portuguese and propose their combination and ranking with
language models. Experimentation results confirm that this increases both coverage and suitability
of the selected distractors.

2012 ACM Subject Classification Computing methodologies → Natural language processing

Keywords and phrases Multiple-Choice Questions, Distractor Generation, Language Models

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.4

Supplementary Material Software (Source Code): https://github.com/NLP-CISUC/smartedu-aqg/
blob/main/Generating_Ranking_Distractors_PT.ipynb

Funding This work was funded by: project SmartEDU (CENTRO-01-0247-FEDER-072620), co-
financed by FEDER, through PT2020, and by the Regional Operational Programme Centro 2020;
and through the FCT – Foundation for Science and Technology, I.P., within the scope of the
project CISUC – UID/CEC/00326/2020 and by the European Social Fund, through the Regional
Operational Program Centro 2020.

1 Introduction

Recent breakthroughs in Natural Language Processing (NLP) made knowledge even more
accessible with tasks like Question Answering. In most cases, however, this does not mean
that training and assessing humans is no longer necessary. Here, another task that benefits
from NLP is Question Generation (QG) [12]. As the name suggests, QG aims at creating
questions automatically (e.g., from learning materials), thus reducing the time that educators
spend in the production of tests and leaving more time for activities like class preparation or
interaction with students.

Due to straightforward grading, multiple-choice questions (MCQs) are a popular kind
of questions. In addition to the question stem, MCQs have a list of alternative answers,
out of which one is correct and the others are distractors. The creation of MCQs has also
been automatised [1] in a process that considers the generation of the distractors. Many
distractor generation methods have been proposed, but they are rarely suitable to every type

© Hugo Gonçalo Oliveira, Igor Caetano, Renato Matos, and Hugo Amaro;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 4; pp. 4:1–4:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hroliv@dei.uc.pt
https://orcid.org/0000-0002-5779-8645
mailto:igorccaetano601@gmail.com
mailto:renatomiguelmatos@gmail.com
mailto:hamaro@ipn.pt
https://doi.org/10.4230/OASIcs.SLATE.2023.4
https://github.com/NLP-CISUC/smartedu-aqg/blob/main/Generating_Ranking_Distractors_PT.ipynb
https://github.com/NLP-CISUC/smartedu-aqg/blob/main/Generating_Ranking_Distractors_PT.ipynb
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 Generating and Ranking Distractors for Multiple-Choice Questions in Portuguese

of question, making it necessary to combine different methods. At the same time, some of the
methods, or their combination, may produce a large set of candidates, while, in most cases,
only three or four distractors are necessary. A selection has to be done, but the produced
distractors are often of variable quality, so a random selection is rarely the best option.

We compile a set of distractor generation methods common in the literature, describe
their adaptation to Portuguese, and apply them to a set of machine reading comprehension
questions. To minimise the impact of random selection, we further propose a straightforward
method for ranking distractors. It is based on pretrained language models, namely BERT [8]
or GPT2 [23], and their application to computing the likelihood of textual sequences. A
manual evaluation of results for a set of questions confirms that such models are a good
option for ranking the distractors. They can be applied to distractors by different methods,
thus increasing the number of covered questions, as well as the proportion of good distractors.

In the remainder of the paper, after reviewing some related work, we describe the
implemented methods for generation and ranking; we report on a performed experiment and
its evaluation; we conclude with final remarks and possible future directions.

2 Related Work

When generating MCQs [1], distractors have to be generated in addition to the stem of the
questions. The quality of distractors has been estimated with several automatic methods,
including named entities (NEs) of the same category, relatedness in WordNet, semantic types
in DBPedia, or distributional semantics [21]. Not surprisingly, most of the previous methods
were also applied to distractor generation.

When the answer is a word of a specific part-of-speech (PoS) or a named entity (NE) of
a specific category [29], context words of the same type can be used as distractors. When
the answer is a number, distractors can be obtained by increasing or decreasing it [29].

Alternatively, distractors can be retrieved from external resources, such as WordNet [9]
or DBPedia [14]. From the latter, words that share a hypernym with the answer (co-
hyponym) [18, 29] or that are similar enough [29] can be used. If too many distractors
are obtained this way, preference can be given to those that appear in the context [18].
From DBPedia, distractors can be obtained by removing restrictions in the SPARQL query
that answers the question [26]. Concepts that share properties or are related with the
answers have also been obtained from other ontologies [28]. The external resource can also
be a model of distributional semantics, where words similar to the answer can be obtained
from [28, 11]. Other methods include using words with similar spelling [11] or masked
language modelling [2]. Transformers like T5 may also be fine-tuned for generating MCQs,
including the distractors [16].

In some of the previous, distractors can be ranked, according to one or more of the
following features: PoS similarity [25, 2], semantic similarity with the answer [11, 2, 25],
proximity of frequency [11, 25], or confidence score of a language model [2]. In any case,
distractors cannot be synonyms of the answer.

Specifically for Portuguese, there is some work on QG. The majority relies on linguistic
knowledge, such as syntactic dependencies [6, 22] or semantic roles [10], sometimes focusing
exclusively on named entities [22]. But there is recent work with neural [15] approaches.

For distractor generation in Portuguese, words that shared traces with the answer have
been used [6]. Specifically for cloze-style questions, multiple approaches were applied for
distractor generation [3], which could be words with similar features (e.g., PoS, frequency),
words obtained by exploring common errors in Portuguese, or related words (e.g., hyponyms
and hypernyms in lexical resources). In the scope of listening comprehension, distractors
were obtained from phonetically-similar words [20].

H. Gonçalo Oliveira, I. Caetano, R. Matos, and H. Amaro 4:3

3 Approach

Several distractor generation methods were compiled from the literature and adapted to
Portuguese. In order to select a subset of distractors by the previous, we rely on language
models for computing their likelihood as answers to the question. This section describes the
distractor generation and ranking methods.

3.1 Distractor Generation

Five distractor generation methods were implemented in this work. Due to their specificities,
they do not produce distractors for every single question-answer pair. Yet, the number of
covered questions can be maximised by a combination of methods.

The first method, hereafter Ctx, is the only that selects distractors from a given context
and it only applies if such a context is available. If the answer is a NE, other entities of
the same category that appear in the context are selected and used directly as distractors.
Otherwise, context words of the same PoS of words in the answer are selected to replace the
latter and result in new distractors.

Since many answers are or include numbers (e.g., ages, years, quantities), a method (Nb)
was implemented for generating distractors specifically for them. They are obtained by
replacing each numeric token of the answer by a range of numbers resulting from the addition
or subtraction of units.

Having in mind that distractors should be semantically-similar to the correct answer,
the remaining generation methods resort to three different resources for getting words of
the same category. One (WN) gets co-hyponyms, i.e., words that share a hypernym, from a
WordNet-like [9] lexical database.

Since wordnets cover mostly lexicographic knowledge, for world concepts, we get distractors
from DBPedia [14] (DBP), an open multilingual knowledge base extracted from Wikipedia.
Words that share one or more properties are good distractor candidates. In a parallelism
with WN, we focus on words of the same category.

Distractors are also obtained from the most similar words (Sim), according to a word2vec-
like [17] model. To avoid the inclusion of alternative correct answers, synonyms and hypernyms
of the answer are removed with the help of WordNet.

If no distractors are obtained for the full answer with the previous three methods, they
are applied to each open token in the answer, which is then replaced by the retrieved words
and used as distractors. Possible outputs of the described methods, when implemented
according to section 4, are illustrated in Tables 1 and 2.

Table 1 Examples of context, question, answer, and distractors extracted from context.

Context Question Answer Distractors Type
O caixão de Bell foi
construído com pinho
Beinn Bhreagh ... pediu
aos convidados para não
usarem preto (a cor
tradicional do funeral) ...,
durante o qual o solista
Jean MacDonald cantou
um verso de “Requiem” de
Robert Louis Stevenson: ...

Qual cantor se ap-
resentou no fu-
neral de Bell?

Jean MacDonald Beinn Bhreagh,
Robert Louis
Stevenson

Ctx

Arsène MacDon-
ald, Romain
MacDonal, Gab-
riel MacDonald,
...

DBP

SLATE 2023

4:4 Generating and Ranking Distractors for Multiple-Choice Questions in Portuguese

Table 2 Examples of questions and answers in the dataset, followed by distractors generated by
different methods.

Question Answer Distractors Type
Que peça do uniforme foi sub-
stituída pelo boné de patrulha?

boina preta balackava preta, gorro preta,
fez preta, quepe preta, ...

WN

jaqueta preta, gorro preta,
camisola preta, boina
branca, boina vermelha,
boina prateada, ...

Sim

Onde está localizado o templo de
Walhalla?

Baviera Berlim Leste, Renânia do
Norte-Vestfália, Baden,
Hamburgo, Saxônia, ...

DBP

Quando Victoria pediu a Palmer-
ston que retomasse seu escritório?

Junho de 1859 Junho de 1849, Junho de
1850, ... , Junho de 1868,
Junho de 1869

Nb

Janeiro de 1859, Agosto de
1859, Novembro de 1859

DBP

Qual é a substância mais comu-
mente abusada durante a adolescên-
cia nos EUA?

álcool água potável, anfetamina,
café, leite, tabaco, ...

WN

3.2 Distractor Ranking

Given their specificities, the five distractor generation methods will not generate distractors
for all types of questions. The problem is that, in many cases, there will still be many
distractors, even if only three or four are necessary. At the same time, their quality will
be variable. For instance, without further polishing, distractors might include typos (e.g.,
ttulos soberanos, agencia de jornais) or, after replacement: result in inconsistent gender /
number (e.g., boina adequado); result from very generic connections (e.g., Portas Citosina or
Portas Teriflunomida for Portas USB, because USB was an American Invention); be related
to a different sense of the answer (e.g., Anatomia de Yongying for Corpo de Yongying);
or simply result in odd mixes (e.g., Oskar New York Times). This is why, instead of just
using a random sample of all the produced distractors, a method for either selecting the
most promising, or for discarding problematic ones, can be useful. Here, we could opt for
classifying distractors as good or bad. However, this discrimination is often subjective (see
Section 4) and, even when distractors are good, they might have different “levels” of suitability.
Therefore, we opt for ranking distractors and propose to use language models (LMs) in what
they were originally developed for: computing the likelihood of text sequences. A sequence
will consist of the question immediately followed by the answer, e.g., the first distractor in
table 2 results in the following sequence: Que peça do uniforme foi substituída pelo boné
de patrulha? balackava preta. For each question, a sequence like the previous is produced
for each distractor, and distractors are ranked in descending order of the likelihood of their
sequence. Considering that, in any case, selected distractors should be reviewed by a human,
it should be easier to manually select distractors from a ranking than from a set, possibly
containing dozens of options.

H. Gonçalo Oliveira, I. Caetano, R. Matos, and H. Amaro 4:5

4 Experimentation

To test the distractor generation and ranking methods, they were applied to a selection of
Portuguese questions and answers. Obtained distractors were then manually evaluated and
some conclusions were taken. This section describes the data used, the implementation of
the methods, and finally presents the results and their discussion.

4.1 Evaluation Data
Distractors were generated for a random selection of 124 context-question-answer tuples in
the validation portion of a Portuguese translation of the SQuAD [24] dataset, produced by
the Deep Learning Brasil group1. Since MCQs typically have short answers, the sample was
restricted to questions of three-token answers or less. The first three columns in Table 1,
context, question, answer, illustrate the entries of the dataset. The original version of
SQuAD has been extensively used for training question answering and generation models
and it seemed appropriate to our experimentation. In opposition to another popular dataset,
RACE [13], it does not contain distractors, but, as far as we know, RACE is not available
for Portuguese. In any case, it would be difficult to automatise the evaluation of generated
distractors, because there are often many suitable options.

4.2 Implementation
To implement the distractor generation for Portuguese, several tools and resources were
used. In the Ctx method, the context is first tagged with the spaCy2 toolkit, using the
largest available model for Portuguese, pt_core_news_lg. This enables the identification
of NEs and of the words’ PoS. Only words of open PoS were considered for replacement.
The same model was used for obtaining the most similar words in the Sim method. In the
Nb method, numeric tokens nt are identified with Python’s isnumeric() function. Then,
all the numbers in the [nt − 10, nt[and]nt, nt + 10] intervals are generated to be used as
replacements. The WN method relied on the NLTK interface to wordnet3. For Portuguese,
it resorts to OpenWordNet-PT [7]. For DBP, DBPedia was accessed through its SPARQL
endpoint4. It first uses the skos:broader property, which links concepts with their broader
categories, i.e., we get the labels of concepts that share a broader category with the answer.
If no distractors are obtained, we do the same for the dct:subject property, which links
concepts with related subjects, i.e., we retrieve the labels of concepts related to the same
subjects as the answer.

For ranking distractors, three LMs were tested, all available from the HuggingFace
transformers library5: BERTimbau [27], both base and large, a BERT model pretrained
for Portuguese; and GPorTuguese-26, GPT2-small fine-tuned with 1GB of Portuguese text.

For the BERT models, we relied on the FitBERT7 tool, also based on the transformers
library. This tool relies on pre-softmax logit scores for ranking a list of options according
to their suitability to replace a mask in a given masked sentence. In this case, the input

1 https://drive.google.com/file/d/1Q0IaIlv2h2BC468MwUFmUST0EyN7gNkn
2 https://spacy.io/
3 https://www.nltk.org/howto/wordnet.html
4 https://dbpedia.org/sparql
5 https://huggingface.co/transformers/
6 https://huggingface.co/pierreguillou/gpt2-small-portuguese
7 https://github.com/Qordobacode/fitbert

SLATE 2023

https://drive.google.com/file/d/1Q0IaIlv2h2BC468MwUFmUST0EyN7gNkn
https://spacy.io/
https://www.nltk.org/howto/wordnet.html
https://dbpedia.org/sparql
https://huggingface.co/transformers/
https://huggingface.co/pierreguillou/gpt2-small-portuguese
https://github.com/Qordobacode/fitbert

4:6 Generating and Ranking Distractors for Multiple-Choice Questions in Portuguese

sentence was the question followed by a mask, and the options were the generated distractors.
With GPT2, the likelihood of each sequence of tokens was approximated by the exponential
of the loss of the model for this sequence.

4.3 Evaluation
Distractor generation methods were applied to each question of the evaluation data and
their results were ranked by each language model. For evaluation purposes, at most three
distractors were selected from each generation and each ranking method. When a generation
method resulted in more than three distractors, their selection was random. As for ranking
methods, they were applied to the set of all distractors by all the methods, before the previous
selection, out of which the top-3 were selected.

Distractors resulting from the previous process were then shuffled for manual evaluation,
which was done by two judges, one expert in Natural Language Processing and a Data
Science student. Given the context, the question, the correct answer, and list of distractors,
judges were asked to classify each distractor as: (0) unsuitable, i.e., nonsense or a synonym
of the answer; (1) close, but a minor edition is needed, e.g., changing the gender, number or
tense of a word; (2) suitable. Both judges were aware of the distractor generation methods
but, during the evaluation process, did not have access to the source of each distractor. In
order to compute agreement, distractors for the first 25 questions (230) were evaluated by
both judges. Considering the three classes, Cohen’s kappa was 0.61 (substantial agreement),
which increased to 0.77 when the unsuitable (0) and close (1) classes were merged.

With the distractors classified, we observed the coverage of each method, as well as on
the proportion of suitable distractors generated. The coverage of each method approximates
the proportion of distractors of the target type generated for each question, considering a
maximum of three per question, and is given by the total number distractors of the type
divided by the times the number of questions. Table 3 summarizes these results8.

Table 3 Distractor Evaluation.

Method Coverage 0 1 2
Ctx 42.2% 33.8% 16.7% 49.7%
Nb 21.8% 3.7% 3.7% 93.0%

WN 39.2% 24.7% 11.0% 64.4%
DBP 25.0% 19.4% 7.5% 73.1%
Sim 54.0% 43.4% 6.8% 49.7%

GPT2 96.0% 29.7% 13.3% 56.9%
BERT-base 96.0% 19.4% 8.4% 72.2%
BERT-large 96.0% 18.9% 6.7% 74.4%

Despite varying across methods, there is a significant proportion of unsuitable distractors
with all methods but Nb. This is also the method with the greatest proportion of suitable
distractors, followed by DBP, but, even if sometimes by a low margin, all provide at least
around 50% suitable distractors. It is easy to generate distractors for numbers. With the
current simplistic method, some situations could go wrong (e.g., negative quantities), but
they were a minority in the evaluation sample. However, such questions account for only one
fifth of the sample, and other methods must be used for the remaining questions.

8 For the shared 25 questions, only the classifications of the first judge were considered.

H. Gonçalo Oliveira, I. Caetano, R. Matos, and H. Amaro 4:7

Looking at the coverage, we confirm that no method applies to a large proportion of
questions. Greatest coverages are by Sim and Ctx, but these are also the least accurate
methods. With Sim, there is not much control on the obtained words, which are sometimes
plurals of the answer, or words of the same family. As for Ctx, we checked that the majority of
issues did not result from complete distractors obtained from context, but from replacements
of words with the same PoS.

The ranking methods consider the generations of each method, thus significantly increasing
the coverage and still having a better proportion of suitable distractors (except for Nb). The
4% of distractors missing with these methods occur in a minority of situations where no
generation method could generate a distractor. Among the models used, BERTimbau is
preferable to GPorTuguese-2. This is not necessarily due to the model architecture, but may
be caused by the data they were pretrained on. BERTimbau was pretrained for Portuguese
from scratch, whereas GPorTuguese-2 is GPT2, pretrained for English, then fine-tuned for
Portuguese. Performance of the two versions of BERTimbau, base and large, are very similar.

5 Conclusion

We have described the implementation of several methods for generating distractors, to be
used in the creation of MCQs in Portuguese. They are complementary but their combination
and raking by a language model provides both the best coverage and accuracy. The utility
of such a straightforward method was confirmed by an experimentation where distractors
were generated for a selection of questions and then manually classified.

This research contributes to the development of SmartEDU, a platform that aims at
accelerating the process of producing education materials [5], with a focus on MCQs and slide
deck generation [4]. In the future, we will work on improving the current methods and how
some deal with incorrect spellings, such as missing accents, missing characters, or unexpected
characters-(e.g., seculo 19, assitência de financiamento, -Assistência de financiamento). Due
to the low quality of some translations in the version of SQuAD used, we will consider
experimentation in other datasets (e.g., factoid sentences and questions [10], or questions
manually produced for SmartEDU). Moreover, we will devise the inclusion of additional
methods and explore other language models, not only for ranking, but also for generating
distractors. For English, several options are available, such as a T5 transformer fine-tuned
for distractor generation [16], given a context, a question and an answer. A similar model
could be trained for Portuguese, possibly taking advantage of SQuAD. Generating everything
with a language model is indeed more flexible, requires less programming and access to less
third-party tools and resources. With some recent models, it can be done with a simple
instruction prompt [19], which may additionally include a few complete examples for guiding
generation (e.g., few-shot learning). On the other hand, the proposed approach has the
main advantage of being transparent. For instance, we can easilly track the origin of the
distractors and discriminate them by type.

We make the implementation of the generation and ranking methods available from the
following notebook:
https://github.com/NLP-CISUC/smartedu-aqg/blob/main/Generating_Ranking_
Distractors_PT.ipynb

SLATE 2023

https://github.com/NLP-CISUC/smartedu-aqg/blob/main/Generating_Ranking_Distractors_PT.ipynb
https://github.com/NLP-CISUC/smartedu-aqg/blob/main/Generating_Ranking_Distractors_PT.ipynb

4:8 Generating and Ranking Distractors for Multiple-Choice Questions in Portuguese

References
1 Dhawaleswar Rao Ch and Sujan Kumar Saha. Automatic Multiple Choice Question Generation

from Text: A Survey. IEEE Transactions on Learning Technologies, 13(1):14–25, 2018.
2 Shang-Hsuan Chiang, Ssu-Cheng Wang, and Yao-Chung Fan. Cdgp: Automatic cloze dis-

tractor generation based on pre-trained language model. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pages 5835–5840, 2022.

3 Rui Pedro dos Santos Correia, Jorge Baptista, Nuno Mamede, Isabel Trancoso, and Maxine
Eskenazi. Automatic Generation of Cloze Question Distractors. In Second language studies:
acquisition, learning, education and technology, 2010.

4 Maria João Costa, Hugo Amaro, Bruno Caceiro, and Hugo Gonçalo Oliveira. SmartEDU:
Accelerating slide deck production with Natural Language Processing. In Proceedings of 28th
International Conference on Applications of Natural Language to Information Systems, NLDB
2023, volume 13286 of LNCS, page In press. Springer, 2023.

5 Maria João Costa, Renato Matos, Hugo Amaro, Bruno Caceiro, Alcides Marques, and Hugo
Gonçalo Oliveira. SmartEDU: A platform for generating education-support materials. In
Proceedings of the Experiment@ International Conference 2023 (expat’23), 2023.

6 Sérgio dos Santos Lopes Curto. Automatic generation of multiple-choice tests. Unpublished
master’s thesis). Universida de Técnica de Lisboa, Portugal, 2010.

7 Valeria de Paiva, Alexandre Rademaker, and Gerard de Melo. OpenWordNet-PT: An Open
Brazilian WordNet for Reasoning. In Proceedings of 24th International Conference on Compu-
tational Linguistics, COLING (Demo Paper), 2012.

8 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of 2019 Conference
of North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 4171–4186. Association for Computational Linguistics, June 2019.

9 Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database (Language, Speech,
and Communication). The MIT Press, 1998.

10 João Ferreira, Ricardo Rodrigues, and Hugo Gonçalo Oliveira. Assessing factoid question-
answer generation for Portuguese (short paper). In Proceedings of 9th Symposium on Languages,
Applications and Technologies, SLATE 2020, volume 83 of OASIcs, pages 16:1–16:9. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

11 Shu Jiang and John SY Lee. Distractor generation for Chinese fill-in-the-blank items. In
Proceedings of 12th Workshop on Innovative Use of NLP for Building Educational Applications,
pages 143–148, 2017.

12 Ghader Kurdi, Jared Leo, Bijan Parsia, Uli Sattler, and Salam Al-Emari. A systematic
review of Automatic Question Generation for Educational Purposes. International Journal of
Artificial Intelligence in Education, 30(1):121–204, 2020.

13 Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale
reading comprehension dataset from examinations. In Proceedings of 2017 Conference on
Empirical Methods in Natural Language Processing, pages 785–794, 2017.

14 Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören Auer, and Christian
Bizer. DBPedia–a large-scale, multilingual knowledge base extracted from Wikipedia. Semantic
Web, 6(2):167–195, 2015.

15 Bernardo Leite and Henrique Lopes Cardoso. Neural question generation for the Portuguese
language: A preliminary study. In Progress in Artificial Intelligence: 21st EPIA Conference on
Artificial Intelligence, EPIA 2022, Lisbon, Portugal, August 31–September 2, 2022, Proceedings,
pages 780–793. Springer, 2022.

16 Potsawee Manakul, Adian Liusie, and Mark JF Gales. MQAG: Multiple-choice question
answering and generation for assessing information consistency in summarization. arXiv
preprint arXiv:2301.12307, 2023.

H. Gonçalo Oliveira, I. Caetano, R. Matos, and H. Amaro 4:9

17 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word rep-
resentations in vector space. In Proceedings of Workshop track of the International Conference
on Learning Representations (ICLR), 2013.

18 Ruslan Mitkov, Ha Le An, and Nikiforos Karamanis. A computer-aided environment for
generating multiple-choice test items. Natural language engineering, 12(2):177–194, 2006.

19 NEA Nasution. Using artificial intelligence to create biology multiple choice questions for
higher education. Agricultural and Environmental Education, 2(1), 2023.

20 Thomas Pellegrini, Rui Correia, Isabel Trancoso, Jorge Baptista, Nuno Mamede, and Maxine
Eskenazi. Asr-based exercises for listening comprehension practice in european portuguese.
Computer Speech & Language, 27(5):1127–1142, 2013.

21 Van-Minh Pho, Anne-Laure Ligozat, and Brigitte Grau. Distractor quality evaluation in
multiple choice questions. In Artificial Intelligence in Education: 17th International Conference,
AIED 2015, Madrid, Spain, June 22-26, 2015. Proceedings 17, pages 377–386. Springer, 2015.

22 Juliana Pirovani, Marcos Spalenza, and Elias Oliveira. Geração automática de questões a
partir do reconhecimento de entidades nomeadas em textos didáticos. In Simpósio Brasileiro
de Informática na Educação-(SBIE), page 1147, 2017.

23 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

24 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Proceedings of 2016 Conference on Empirical
Methods in Natural Language Processing, pages 2383–2392, 2016.

25 Siyu Ren and Kenny Q Zhu. Knowledge-driven distractor generation for cloze-style multiple
choice questions. In Proceedings of AAAI Conference on Artificial Intelligence, volume 35,
pages 4339–4347, 2021.

26 Dominic Seyler, Mohamed Yahya, and Klaus Berberich. Knowledge questions from knowledge
graphs. In Proceedings of ACM SIGIR International Conference on Theory of Information
Retrieval, pages 11–18, 2017.

27 Fábio Souza, Rodrigo Nogueira, and Roberto Lotufo. BERTimbau: Pretrained BERT models
for Brazilian Portuguese. In Proceedings of Brazilian Conference on Intelligent Systems
(BRACIS 2020), volume 12319 of LNCS, pages 403–417. Springer, 2020.

28 Katherine Stasaski and Marti A Hearst. Multiple choice question generation utilizing an
ontology. In Proceedings of 12th Workshop on Innovative Use of NLP for Building Educational
Applications, pages 303–312, 2017.

29 Cheng Zhang, Yicheng Sun, Hejia Chen, and Jie Wang. Generating adequate distractors for
multiple-choice questions. arXiv preprint arXiv:2010.12658, 2020.

SLATE 2023

Web of Science Citation Gaps: An Automatic
Approach to Detect Indexed but Missing Citations
David Rodrigues #

Iscte - University Institute of Lisbon, Portugal

António L. Lopes #

Instituto de Telecomunicações, Iscte - University Institute of Lisbon, Portugal

Fernando Batista # Ñ

Iscte - University Institute of Lisbon, Portugal
INESC-ID Lisbon, Portugal

Abstract
The number of citations a research paper receives is a crucial metric for both researchers and
institutions. However, since citation databases have their own source lists, finding all the citations of
a given paper can be a challenge. As a result, there may be missing citations that are not counted
towards a paper’s total citation count. To address this issue, we present an automated approach
to find missing citations leveraging the use of multiple indexing databases. In this research, Web
of Science (WoS) serves as a case study and OpenAlex is used as a reference point for comparison.
For a given paper, we identify all citing papers found in both research databases. Then, for each
citing paper we check if it is indexed in WoS, but not referred in WoS as a citing paper, in order
to determine if it is a missing citation. In our experiments, from a set of 1539 papers indexed
by WoS, we found 696 missing citations. This outcome proves the success of our approach, and
reveals that WoS does not always consider the full list of citing papers of a given publication, even
when these citing papers are indexed by WoS. We also found that WoS has a higher chance of
missing information for more recent publications. These findings provide relevant insights about this
indexing research database, and provide enough motivation for considering other research databases
in our study, such as Scopus and Google Scholar, in order to improve the matching and querying
algorithms, and to reduce false positives, towards providing a more comprehensive and accurate
view of the citations of a paper.

2012 ACM Subject Classification Applied computing → Publishing; General and reference →
Verification; Information systems → Digital libraries and archives; Information systems → Enterprise
applications; Applied computing → Digital libraries and archives; Information systems → Data
cleaning

Keywords and phrases Research Databases, Citations, Citation Databases, Web of Science, OpenAlex

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.5

Funding This work is funded by FCT/MCTES through national funds and when applicable co-funded
by FEDER – PT2020 partnership agreement under the scholarship reference Iscte_SIIC/01/2022,
and projects UIDB/50021/2020 and UIDB/50008/2020.

1 Introduction

The number of citations on a research paper is of great value for the researcher and their
work, since usually, the more citations a paper has, the higher chances of it being worth
reading and having helpful information. Thus, the authors of said paper can also get prestige
from the number of citations of their paper and will be more highly regarded. This is useful
not only for the author to get recognition by his peers, but also for performance evaluation
processes in the researchers’ institutions that usually include publications’ citations as one of
the main metrics. This raises the importance of knowing the right amount of citations that
any given paper has.

© David Rodrigues, António L. Lopes, and Fernando Batista;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 5; pp. 5:1–5:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dmnrs@iscte-iul.pt
mailto:alsl@iscte-iul.pt
https://orcid.org/0000-0003-3045-0304
mailto:fernando.batista@inesc-id.pt
https://www.hlt.inesc-id.pt/~fmmb/
https://orcid.org/0000-0002-1075-0177
https://doi.org/10.4230/OASIcs.SLATE.2023.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 Web of Science Citation Gaps: Automatic Approach to Detect Missing Citations

However, it is not always easy to keep track of citations, even with the existence of big
citation databases, considering they too have their shortcomings. Each database has their
own source list, which means that some papers that are indexed in a database, may not
be found in another, therefore, there usually are unique citations for each database. But
sometimes, the unique citations we find, in reality, are missing citations that one of the
other databases did not find, because the citing paper is indexed in the database, but it is
not tagged as citing the paper. That being the case, the database is missing information
that another one has found, leaving us with incomplete data if only one database is used to
check for the number of citations of any given paper. Therefore, it is very useful to devise
a way to automatically find missing citations between databases, to get a closer depiction
of the real number of citations in any given paper. The problem we aim to solve is to find
these citations, where an article is indexed in multiple databases, but it does not count as a
citation to the research paper we are studying in at least one of them. As a consequence of
this problem, finding a way to automatically merge the information from multiple databases
could get us a closer depiction of the real number of citations of a given work without having
to go through the slow and tedious process of manually assessing these differences.

In this paper we present our first experiment, where we explore the potentially missing
citations in Web of Science (WoS) using OpenAlex as a baseline and find some of the citing
articles that WoS might be missing. There are two main reasons why we started by using
OpenAlex as a baseline: first, it is a free tool that gives us all the information via an API,
therefore it is easy to access and to gather information from it; secondly, OpenAlex gathers
information from multiple other resources, which means it might have a more complete
citation list for a given paper than other indexing databases. Consequently, OpenAlex allowed
us to test our approach faster, and helped us make sure that we find missing citations in
WoS, before moving on to Scopus and Google Scholar to complete our analysis.

In the next sections, we present the literature review, followed by a step by step description
of the approach to achieve the goal of automatically finding missing citations. Section 4
analyzes the results of an experiment performed with a set of more than 3000 articles. Section
5 describes a manual validation process, using a randomly chosen portion of the data we
gathered, in order to make sure that our approach was working correctly. Finally, Section 6
presents the major conclusions and pinpoints possible directions for further work.

2 Literature Review

Since each citation database shows strength covering different areas, looking only at one
database can be misleading [7] because a database may not have some of the articles that
could potentially cite the paper which a researcher is looking at since there are unique
citations for each database that the others do not have [5]. Moreover, missing publications
from indexed journals can aggravate the problem, for example, in a study from 2006 to 2017
in the journal of enfermeria nefrologica, only 50.2% of the papers were indexed by Scopus
[6]. Like Scopus, the other databases also show lack of coverage in some areas, but all of
them are working on enhancing their coverage, and getting all the articles they can in their
databases, showing some improvement over the years [7]. Nevertheless, neither database is
perfect, and for better results, more than one should be consulted.

The importance of having an accurate citation count is partially shown in the research
conducted by [9], where they correlated the citation count of a paper with the amount of
times that a paper would be consulted, as well as the attention level that the readers had
while examining it, showing that the higher citation count, the higher chance of a researcher
to read the paper and also pay closer attention to it.

D. Rodrigues, A. L. Lopes, and F. Batista 5:3

There are two reasons why a paper might be missing citations in a database: either it is
because the citing paper is not indexed in the database, or because there was some error
while processing the publication’s citing data. [1] found that there are a variety of errors that
can justify missing citations, and those errors can be committed by both the databases or
the authors of the articles. There can be errors in the DOIs or in the references of a paper.

Exploring these errors, [2] tries to automatically find and correct wrong DOIs in the
databases, that were wrongfully inserted either by the authors or by the databases themselves.
Although no concrete numbers of the total of errors were provided, we can see there are a lot
of errors found by the study. Ovid Technologies publisher alone had over 370,000 outgoing
citation errors in 2 years. Besides wrongfully written DOIs, [4] reports that databases
sometimes, mistakenly, give the same DOI to different articles, and since the DOI should be
unique for each article, these errors can make a difference in bibliometric analysis.

A follow-up study reported by [10], tries to find what were the differences of the references
lists in Scopus and WoS. While comparing the reference list of around 100.000 papers in both
databases, using as a baseline the Elsevier ScienceDirect Article Retrieval API to get the
references, they found that WoS had 77.2% of the papers with the same number of references,
while 19.3% had fewer references. On the other hand, 96.4% of Scopus papers had the same
amount of references. They manually analyzed random papers with different results and saw
a variety of different reasons why this happened. Since the different databases themselves,
can extract different references list of a paper, this can also explain why there can be missing
citations in some databases, because if they don’t extract a reference, or do it incorrectly,
then the paper that it is being cited won’t be found in the database as a cited paper and the
citation will be missing.

Having now a bigger understanding of some of the problems we might face, and what
causes them, we look for research that has been conducted where we can take inspiration
from. The research conducted by [5], showed us that using queries to try to find articles
through their authors’ names, is most of the time a futile endeavor, and might not the best
approach, since there are a lot of varieties of the same author name, as well as some databases
extract the authors’ names very poorly. Also, [3] identifies the missing citations of several
articles in an automated way. Our work follows a similar methodology to theirs, the main
difference being the way we identify if a possible missing citation paper is present in the
database where it is missing from. While they check if the paper’s journal or conference title
is present in the list of indexed sources of the database in question, we aim to look for the
paper itself in the database, making sure it really is indexed by it.

Finally, an advantageous tool we found is OpenAlex, which is a “fully-open index of
scholarly works, authors, venues, institutions, and concepts” that allows us, using the DOI
of a given paper, to get all the information that they gathered about that paper. OpenAlex
gets all their data from multiple services, like MAG and Crossref being the more important
ones, and also from ORCID, ROR, DOAJ, Unpaywall, Pubmed, Pubmed Central, The
ISSN International Centre and Subject-area and institutional repositories from a plethora of
platforms [8]. Using this API, it is possible to get easy access to the information from all
these other platforms from a single query.

3 Proposed Method

Our main goal is to automatically find missing citations between different citation databases.
In this project, we will be looking at Web of Science, using OpenAlex as a baseline reference.
We first need to find all citations that OpenAlex found, but WoS did not. Afterwards, with
these potentially missing citations, we have to search WoS to check if each citing paper is
indexed in it or not. If it is, then it is considered to be a missing citation.

SLATE 2023

5:4 Web of Science Citation Gaps: Automatic Approach to Detect Missing Citations

Table 1 Example of a report for paper A.

An example of the information we want to find out is shown on table 1. If we analyze
paper A, and WoS say that paper A is being cited by the articles 1, 4 and 6, and OpenAlex
says that paper A is being cited by the articles 1, 2, 3, 4 and 5, there are 3 citing articles
that OpenAlex found and WoS did not, which are 2, 3 and 5. The next step is to look for
these 3 articles in WoS, in order to confirm if they are indexed by the database. And, for
example, if only article 2 was found to be indexed by WoS, we can assert that article 2 is a
missing citation of paper A on WoS.

In order to look for missing citations in an article, all we need is its DOI. The first step
in the verification process is to clean the received data. Sometimes, the DOI can have extra
information, such as the https link, the doi.org domain, or other invalid characters or blank
spaces, so we standardize the DOI, so it is easier to work with it through the remaining steps.

Afterwards, we ask the institution’s Current Research Information System (CRIS) API1

for more information about this paper. From there, we can get the article’s title, authors,
year, the type of the article (journal, book, conference, etc.), as well as some information
about the WoS representation of this paper, such as if the article is indexed in WoS, the url
for the list of citing publications of our article and the unique identifier of WoS (accession
number) for this article (WoS ID = WOS:xxxxxxxxxx).

The next step is to query OpenAlex for their information about this article. Once again,
the query is done via the DOI, and all the information gathered about the article from the
CRIS is compared with the one gathered from OpenAlex. With OpenAlex we can also get
their list of citing publications, which comes with all the information they have about each
of these citing publications, namely the DOI, title, publication year and the type.

After retrieving the list of citing publications from OpenAlex, we need the corresponding
WoS list of citing publications to compare them both. Since the WoS API only provides the
link for the page where the information is, we had to extract the information of each citing
paper ourselves. We use the link provided by the CRIS in order to retrieve this information,
but it would also be possible to get to the web page with the list of citing publications
through the WoS unique identifier, since with that, we could build an URL that takes us
directly to the WoS page about the paper, and from there we are only one click away from
the list of citing publications.

1 https://ciencia.iscte-iul.pt/api/v2_6/doc

https://ciencia.iscte-iul.pt/api/v2_6/doc

D. Rodrigues, A. L. Lopes, and F. Batista 5:5

Furthermore, we could also try to find the publication via the DOI and other information
we got, but that method is more prone to errors, therefore, if possible, using the link to the
page or the WoS ID is the better solution.

With the list of citing publications from both OpenAlex and WoS, we can look for possible
missing citations in WoS. For this effect, we first try to match the OpenAlex publications
with the WoS publications, and if both of these databases have the same publication tagged
as citing our article, we don’t need to do any further work for this article. If instead, the
process does not find a match, then this publication is flagged as a possible missing citing
publication for the article in WoS.

Having now all of these publications that are flagged as potentially missing citing
publications in WoS, we need to check if they are in fact indexed in WoS. And only if
they are, then they are considered missing citations. So once again, we must consult WoS to
extract this information. This step is harder than the previous one, since before we already
had a link to the page of paper we were looking for, while this time, we don’t have any WoS
information about this paper. In order to find the paper in WoS, we execute two different
queries. First, we query using only the DOI of the publication ‘(query: DO=(doi))‘. If
this query does not provide results, we also try to find the publication via the title and
publication year ‘(query: TI=(title) AND PY=(year))‘. If any of the queries provides results,
we extract the results from WoS the same way we extract the list of citing publications,
and we double-check if the DOI is the same, or if the title, year and publication type are
the same. The reason we don’t use only the DOI to perform this check is because some
publications don’t have DOIs (or the database might be missing that information), but also
because sometimes there are errors in the assignment of DOIs in databases, as seen earlier
in the literature review. Hence, we might not find the correct publication via DOI, and do
so through the title. If the queries’ results are a match, then we are in the presence of a
missing citation, and we tag it as such in the report we send back to the client. With every
missing citation, we also provide the link of the publication we found that is supposed to be
citing our article, so that the client can easily double check manually any missing citations
they might want to check. These queries are very strict, and specially in the case of the
title, if there is an error on a word, or any difference, they will not match, in the future we
wish to improve these queries, using similarity techniques that will make it possible to find a
match even in the presence of small errors. We would also like to try to expand these queries
and use other information we might have on the paper to try to find it in the new database,
although this must be carefully tested in order to limit the number of false positives that our
application finds.

Through all this process, one of our main goals is not to overload the APIs or repeat
processes unnecessarily. With that in mind, we use delays between every request to avoid
overloading the systems. Moreover, we have a local database which is used as a cache, so
if we are asked to analyze the same publication in a short period of time (the time period
of when the data becomes outdated varies from each type of data, and ranges from 1 day
to 1 month), we don’t have to gather all the information from external sources to provide
an answer. Therefore, for the entire process, every time we need any data, we first query
our local database, and only if we don’t have the data stored locally we will do the process
described above in order to get the necessary data.

Finally it is important to state that in order to create a report for any publication, the
publication has to be indexed in both databases, so if we can’t find it either in WoS or
OpenAlex, no report is created. Also, if the publication has no citations in either database,
there isn’t anything to look for, and no report is created. A diagram with the representation
of our system’s design can be seen in Figure 1.

SLATE 2023

5:6 Web of Science Citation Gaps: Automatic Approach to Detect Missing Citations

Request information about paper A

local DB

Get paper info
(doi, title, where indexed, …)

Get list of citing papers from
Web of Science (WoS)

Get list of citing papers from
OpenAlex

Local service API

WoS Crawler

OpenAlex API

Cross-check lists, and create a single list
of citing papers

for each citing paper, check if is indexed
by each one of the indexing DBs

Report on paper A and missing citations

Figure 1 System’s design.

4 Evaluation

In order to evaluate our proposed approach, we performed an experiment where we used the
papers provided by our institution’s CRIS as the dataset. From the 52.000 papers present in
the dataset, we can only use 12.500 of them, since the others do not have a designated DOI.

For our experiment we decided to take a year-based approach, which means we carried
out the analysis of all papers of a predetermined set of years. We chose the years 2015, 2018
and 2021. We chose these years for a multitude of reasons. First, we wanted years that would
be relevant for our motivation, and since our university only examines the papers from the
last 10 years to evaluate their researchers’ performances, we did not want to look at papers
that were older than 10 years. We also wanted to analyze multiple years, not only so we
would have more data, but also so we could compare the results from each year and see if we
could notice anything changing or even improving over time. The year of 2018 was the first
year we explored, since it was before the COVID pandemic that started in 2019, and that
was an untypical year that probably would not give us a trustworthy result. The year of 2021
was chosen because we also wanted a more recent year, but not so recent that the publication
would not have had time to impact the scientific community, since if from the moment a
publication is published, it still has to be read by other members of the community, that
have to write and publish their own work. Finally, the year of 2015 was chosen to keep the 3
year gap between 2018 and 2021. A summary of the results from these 3 years is present
at Table 2.

D. Rodrigues, A. L. Lopes, and F. Batista 5:7

Table 2 Results per year.

0

100

200

300

400

500

600

700

2015 2018 2021

N
um

be
r o

f p
ap
er
s

book-chapter journal-article other

Figure 2 Type of publications being analysed.

Figure 2 shows the number of papers being considered in our experiments for each year,
by publication type. It is interesting to observe that most of the papers are of the type
“journal-papers”, a tendency that is increasing over the years.

In total, 3074 papers were analyzed by our system, where 820, 950 and 1304 are from
the year 2015, 2018 and 2021, respectively. For all the analyzed papers, a report is only
created if the paper is indexed in both databases (WoS and OpenAlex) and if the paper has
at least one citation in either of them, therefore, for each of the years, only 446, 497 and
596 (respectively) reports were created, giving us a total of 1539 reports of different papers.
We can see that the values are increasing over time, not only in the number of papers, but
also in the number of reports created, especially in 2021, where there was an increase in over
350 papers and almost 100 more reports when compared to 2018, whereas if we compare
2018 with 2015, the increase was only of 120 papers and 51 reports. While the number of
reports did not increase as much as the number of papers, that is probably due to the fact
that since 2021 papers are much more recent and maybe some of them are not indexed in
both databases yet or they do not have any citations. If we did the same analysis in one
year, the data from 2021 would be the one that would change the most.

All the data we are presenting next comes from the papers where a report was created.
The total number of citations in WoS for each year were 8760, 9277 and 3411 respectively.
The huge drop in the number of citations in 2021, comes from what has been said before,
which is that since the papers have had less time to be cited, the number of citations is
gonna be lower. The low number of citations, when compared to the other years, also greatly
influences the percentages that are presented in Table 2.

SLATE 2023

5:8 Web of Science Citation Gaps: Automatic Approach to Detect Missing Citations

In 2015, we found missing citations in 128 out of the 446 papers with a total of 233
Missing Citations (MC). This means that 28,70% of the papers had MC, averaging 1,82
per paper. The numbers in 2018 are very similar, with 140 papers out of 497 having MC
(28,17%) and with a total of 265 MC, with 1,89 per paper, a slight decrease in the number of
papers with MC but a slight increase of MC per paper. Once again the year of 2021 stands
out with only 130 papers out of 596 with MC (21,81%) and with 198 MC, with an average of
1,52 per paper.

Average_percentage_of_MC = MC/(MC + Citations)

To calculate the average percentage of MC we chose to use the formula presented above,
which will tell us, out of all the citations that a paper should have (the ones the database
caught and the ones it missed), how many are missing, giving us results from 0% to 100%.
We also counted the average of MC for all the papers, and only for the papers that had MC.
Out of all the papers, the percentage of missing citations both in 2015 and 2018 rounded the
5%, while in 2021 it was 9,6%. If we look only for the papers with MC in their reports, in
2015 and 2018 we had 18,5% and 18,3% respectively, while in 2021 we got an astounding
44,17%. In 2021 the number shoots up, especially because of the low number of citations in
2021. Once again we argue that these numbers in 2021 are higher because the papers did
not have as much time to be cited yet, and the papers that already cited them are still being
worked on by WoS, and because the papers are recent, the WoS process is still behind in
referencing the citations on the papers. In Figure 3 we present the distribution of papers
according to the percentage of missing citations. Although the average number of MC per
paper is low (between 1,5 to 1,8), there were some cases where a high number MC were
identified as it can be seen in Figure 4. In 2015 a paper had 12 MC, and in 2018 and 2021
both had a paper each with 25 MC each. Only 8% of the analyzed papers had over 3 MC,
and 7 papers had 6 or more MC, showing us that most of them have 3 or less MC.

0

10

20

30

40

50

60

]0
0%

,0
5%

[

[0
5%

,1
0%

[

[1
0%

,1
5%

[

[1
5%

,2
0%

[

[2
0%

,2
5%

[

[2
5%

,3
0%

[

[3
0%

,3
5%

[

[3
5%

,4
0%

[

[4
0%

,4
5%

[

[4
5%

,5
0%

[

[5
0%

,5
5%

[

[5
5%

,6
0%

[

[6
0%

,6
5%

[

[6
5%

,7
0%

[

[7
0%

,7
5%

[

[7
5%

,8
0%

[

[8
0%

,8
5%

[

[8
5%

,9
0%

[

[9
0%

,9
5%

[

[9
5%

,1
00
%
[

10
0%

2015 2018 2021

Figure 3 Distribution of papers according to missing citations percentage per year.

5 Results Validation

In order to have more trustworthy results, we manually checked a sample of the reports that
we created. Part of that sample was retrieved at random, but another part was retrieved from
reports that stand out because of unusual or unexpected results. We manually checked all

D. Rodrigues, A. L. Lopes, and F. Batista 5:9

0

20

40

60

80

100

120

1 2 3 4 5 6 >6

N
um

be
r o

f p
ap
er
s

Number of Missing Citations

2015 2018 2021

Figure 4 Distribution of papers according with the amount of missing citations per year.

reports that had over 3 MC and where those 3 MC represented at least half of the citations
of the paper. This is because if a paper had 4 MC out of 100, then it was quite plausible
that WoS might be missing a few citations, while if there were 4 MC out of 5 total citations,
then something might be wrong, since it means that WoS did not find most of the citations
that it should have.

The manual verification was processed as such for any given report:
We had the DOI of the paper that was initially provided to our system, as well as the
OpenAlex and WoS web links for this paper. Both were double checked to make sure
they related to the same paper.
For each missing citation identified by the system, we checked the OpenAlex and WoS
web links for the citing paper that our system matched, in order to make sure that the
OpenAlex publication was the same we found in WoS.
If the original paper being analyzed was the same in both databases, and all the missing
citations were correctly matched with a paper indexed in WoS, then it was a missing
citation.

We manually verified 40 random papers, from which 36 had correctly identified their 51
MC, while the other 4 reports had some errors.

In one of these reports with errors, out of 7 MC found, 2 of them were wrongly matched,
meaning that the OpenAlex citing publication was not the same as the WoS publication we
found through our queries. Upon closer inspection we found that the problem was that these
2 publications had the same DOIs in the different databases, and after a search for the DOI
in google, it looked to us that WoS had the publication with the wrong DOI.

We also found 2 cases, where one of the missing citations was due to OpenAlex saying
that the publication was citing itself, and since the publication was indexed in WoS, it was
tagged as a missing citation. Therefore we have a total of 2 wrong MC in these 2 reports.

Finally the remaining report was wrong not due to the fact that it incorrectly matched
citing papers, but because of an error in the data received by the CRIS, where the DOI
given to the publication, provided wrong information about the publication, which led to the
comparison of two different articles, in WoS and OpenAlex.

SLATE 2023

5:10 Web of Science Citation Gaps: Automatic Approach to Detect Missing Citations

In this manual search, from the 40 analyzed papers, only 10% had some kind of mistake,
one of the cases was due to WoS having assigned the wrong DOI to a publication, and the
other one was due to the fact that we tagged the publication as citing itself. The latter is
an easy fix we can do in our application so it won’t happen again, while the former is a
mistake that we cannot work around that easily, since it is a problem in WoS side. Finally
the mistake from wrong data provided by the CRIS is out of our reach to fix, since the
information in this database is provided mostly by the authors of the publications and it is
prone to have some errors.

Afterwards we confirmed the reports that showed over 3 MC which represent at least
50% of the citations of the report itself. Out of 14 total reports, 13 of them had no errors,
correctly identifying 82 MC. On the other hand, the remaining report was wrong, due to the
fact that the publication we got from OpenAlex, was different from the one in WoS, making
our system compare citation lists from two different papers. Therefore this report incorrectly
gave us 25 MC. This error came from the CRIS database, which had 2 different DOIs for the
same publication, and the DOI being analyzed did not match the information provided by
the CRIS.

In general, we are satisfied with the system’s performance as it has only encountered a
few errors, primarily caused by inaccurate data. Although we can address some of these
errors, there are others that are beyond the scope of our approach. As a result, there is
a slight chance of misclassifying a Missing Citation as such. To mitigate the it’s impact,
our reports include links to both databases for any matched papers, allowing for manual
verification. This process significantly reduces the effort required compared to starting from
scratch, thereby saving researchers a considerable amount of time.

6 Conclusions and Future Work

This paper proposes an automated approach that leverages two indexing databases to locate
missing citations in one of them. We focus on the case study of Web of Science (WoS) as the
primary citation database, while utilizing OpenAlex as a reference point for comparison. Our
method involves identifying all citing papers associated with a given target paper from both
research databases. Subsequently, we examine whether each citing paper is indexed in WoS
but not referenced in WoS as a citation, indicating the presence of a missing citation. By
conducting experiments on a dataset comprising 1539 papers indexed by WoS, we successfully
uncovered 696 missing citations using our approach. Although a small part of these missing
citations might be wrongfully identified, as shown above, the data suggests that most of them
are indeed missing citations, which proves the validity of our approach and the fact that
WoS has missing information for citing publications, specially if we take into consideration
that only OpenAlex was used as a baseline, while later on, we intend to add both Scopus
and Google Scholar, and we expect to detect a higher amount of missing citations in WoS,
as well as finding missing citations in Scopus and Google Scholar themselves.

In our analysis we detected that in the later years, the percentage of missing citations
skyrocketed, which makes sense since WoS might not have had the time to process the
citations of more recent publications, while OpenAlex uses data from other platforms like
DBLP and CrossRef, which might have faster algorithms to find missing citations, giving
OpenAlex an advantage for more recent publications. Nevertheless, this can be a problem if
an author is being evaluated on their more recent publications, making this process more
critical for that circumstance. It could be interesting to follow up this research and see how
the results have changed, and how long it takes for the WoS algorithm to catch up to the
standards of older publications, since the publications analyzed from 2021, were between 1.5
and 2.5 years old when analyzed.

D. Rodrigues, A. L. Lopes, and F. Batista 5:11

One aspect of our current work that we believe can be enhanced is the matching algorithms
employed for publications. Merely augmenting query parameters is not sufficient, as the
methodology outlined in this paper predominantly relies on the utilization of the DOI
reference system, as well as basic searches that incorporate the title, authors, publication
year, and publication type to establish connections between papers and their respective
citations. In our forthcoming endeavors, we aim to introduce similarity metrics to refine
paper searches, thereby potentially yielding more comprehensive and thorough outcomes.

The next step will be to add other indexing databases to our approach, such as Scopus
and Google Scholar (GS), not only to try to find missing citations, but also because they
might bring additional citing papers that WoS and OpenAlex might have missed. Especially
in the case of GS, which has a broader indexing policy than WoS and Scopus. Moreover, a
preliminary analysis has already shown us that there are cases where GS has more citations
than OpenAlex for the same publication.

References
1 Robert A. Buchanan. Accuracy of cited references: The role of citation databases. College &

Research Libraries, 67(4):292–303, 2006. doi:10.5860/crl.67.4.292.
2 Alessia Cioffi, Sara Coppini, Arcangelo Massari, Arianna Moretti, Silvio Peroni, Cris-

tian Santini, and Nooshin Shahidzadeh Asadi. Identifying and correcting invalid cita-
tions due to doi errors in crossref data. Scientometrics, 127:3593–3612, 2022. doi:
10.1007/s11192-022-04367-w.

3 Fiorenzo Franceschini, Domenico Maisano, and Luca Mastrogiacomo. A novel approach for
estimating the omitted-citation rate of bibliometric databases with an application to the field
of bibliometrics. Journal of the American Society for Information Science and Technology,
64(10):2149–2156, 2013. doi:10.1002/asi.22898.

4 Fiorenzo Franceschini, Domenico Maisano, and Luca Mastrogiacomo. Errors in doi in-
dexing by bibliometric databases. Scientometrics, 102:2181–2186, 2015. doi:10.1007/
s11192-014-1503-4.

5 Miguel A. García-Pérez. Accuracy and completeness of publication and citation records in the
web of science, psycinfo, and google scholar: A case study for the computation of h indices
in psychology. Journal of the American Society for Information Science and Technology,
61(10):2070–2085, 2010. doi:10.1002/asi.21372.

6 Erwin Krauskopf. Missing documents in scopus: the case of the journal enfermeria nefrologica.
Scientometrics, 119:543–547, 2019. doi:10.1007/s11192-019-03040-z.

7 Henk F. Moed, Judit Bar-Ilan, and Gali Halevi. A new methodology for comparing google
scholar and scopus. Journal of Informetrics, 10(2):533–551, 2016. doi:10.1016/j.joi.2016.
04.017.

8 Jason Priem, Heather Piwowar, and Richard Orr. Openalex: A fully-open index of scholarly
works, authors, venues, institutions, and concepts, 2022. doi:10.48550/ARXIV.2205.01833.

9 Misha Teplitskiy, Eamon Duede, Michael Menietti, and Karim R. Lakhani. How status of
research papers affects the way they are read and cited. Research Policy, 51(4):104484, 2022.
doi:10.1016/j.respol.2022.104484.

10 Nees Jan van Eck and Ludo Waltman. Accuracy of citation data in web of science and scopus,
2019. doi:10.48550/ARXIV.1906.07011.

SLATE 2023

https://doi.org/10.5860/crl.67.4.292
https://doi.org/10.1007/s11192-022-04367-w
https://doi.org/10.1007/s11192-022-04367-w
https://doi.org/10.1002/asi.22898
https://doi.org/10.1007/s11192-014-1503-4
https://doi.org/10.1007/s11192-014-1503-4
https://doi.org/10.1002/asi.21372
https://doi.org/10.1007/s11192-019-03040-z
https://doi.org/10.1016/j.joi.2016.04.017
https://doi.org/10.1016/j.joi.2016.04.017
https://doi.org/10.48550/ARXIV.2205.01833
https://doi.org/10.1016/j.respol.2022.104484
https://doi.org/10.48550/ARXIV.1906.07011

Querying Relational Databases
with Speech-Recognition
Driven by Contextual Knowledge
Dietmar Seipel #

Department of Computer Science, Universität Würzburg, Germany

Benjamin Förster #

Department of Computer Science, Universität Würzburg, Germany

Magnus Liebl #

Department of Computer Science, Universität Würzburg, Germany

Marcel Waleska #

Department of Computer Science, Universität Würzburg, Germany

Salvador Abreu #

Nova–Lincs, University of Évora, Portugal

Abstract
We are extending the keyword–based query interface DdQl for relational databases which is based
on contextual background knowledge such as suitable join conditions and which was proposed in [10].
In the previous paper, join conditions were extracted from existing referential integrity (foreign key)
constraints of the database schema, or they could be learned from other, previous database queries.

In this paper, we describe a speech–to–text component for entering the query keywords based on
the system Whisper. Keywords, which have been recognized wrongly by Whisper can be corrected
to similarly sounding words. Again, the context of the database schema can help here.

For users with a limited knowledge of the schema and the contents of the database, the approach
of DdQl can help to provide useful suggestions for query implementations in Sql or Datalog, from
which the user can choose one. Our tool DdQl can be run in a docker image; it yields the possible
queries in Sql and a special domain specific rule language that extends Datalog. The Datalog
variant allows for additional user-defined aggregation functions which are not possible in Sql.

2012 ACM Subject Classification Information systems → Relational database query languages;
Information systems → Relational database model

Keywords and phrases Knowledge Bases, Natural Language Interface, Logic Programming, Definite
Clause Grammars, Referential Integrity Constraints, Speech–to–Text

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.6

Supplementary Material Software (Source Code): https://gitlab2.informatik.uni-wuerzburg.
de/Wissensbasierte-Systeme/declare/declare.git

archived at swh:1:dir:fc9f1d42f6306261bee5a7fae45776845d7b1025

1 Introduction

The growing wave of digitization, which the smart world of the future is facing, could be met
by concepts from artificial intelligence (AI). The field of AI can be divided into symbolic and
subsymbolic approaches, e. g., [12]. Symbolic or knowledge–based approaches model central
cognitive abilities of humans like logic, deduction and planning in computers – mathematically
exact operations can be defined. Subsymbolic or statistical approaches try to learn a model
of a process (e. g., an optimal action of a robot or the classification of sensor data) from
the data. Current knowledge–based information systems are increasingly becoming hybrid,

© Dietmar Seipel, Benjamin Förster, Magnus Liebl, Marcel Waleska, and Salvador Abreu;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 6; pp. 6:1–6:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dietmar.seipel@uni-wuerzburg.de
mailto:benjamin.foerster@stud-mail.uni-wuerzburg.de
mailto:magnus.liebl@stud-mail.uni-wuerzburg.de
mailto:marcel.waleska@uni-wuerzburg.de
mailto:spa@uevora.pt
https://doi.org/10.4230/OASIcs.SLATE.2023.6
https://gitlab2.informatik.uni-wuerzburg.de/Wissensbasierte-Systeme/declare/declare.git
https://gitlab2.informatik.uni-wuerzburg.de/Wissensbasierte-Systeme/declare/declare.git
https://archive.softwareheritage.org/swh:1:dir:fc9f1d42f6306261bee5a7fae45776845d7b1025;origin=https://gitlab2.informatik.uni-wuerzburg.de/Wissensbasierte-Systeme/declare/declare;visit=swh:1:snp:1f8880633b12e1914df2469068001643c6f4c6a1;anchor=swh:1:rev:b6ea6b97b180932761f3d679944c21e98fe6bd97
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

6:2 Intelligent Query Answering

including different formalisms for knowledge representation. In this paper, we use concepts
from AI and logic programming for answering non–expert queries to hybrid knowledge bases.
Still, the most frequent formalism is relational databases, but it would be very interesting to
include rule–bases, ontologies and Xml databases as well.

It is becoming popular to consider natural language queries [1]. In a simple form, this
concept is well–known from keyword–based queries in search engines like Google. It can be
very helpful for users who are not so familiar with the database schema, and for users on
mobile devices, where it is difficult to enter complex–structured queries. For a preceeding
speech–to–text transformation, currently subsymbolic approches, e.g. voice/speech assistants
such as the commercial systems Siri, Alexa, or Dragon NaturallySpeaking or the publicly
available tools Whisper and Mozilla Common Voice/Deep Spech [13] are popular. In this
paper, the complicated step of assigning a suitable semantics – i.e. of compiling textual
keyword–based queries to correct complex–structured knowledge base queries, e.g. in Sql or
Datalog – is done using a symbolic, declarative knowledge–based approach.

In a previous paper on DdQl at SLATE 2021 [10], we had presented the compilation of
keywords to Sql or Datalog queries using concepts from logic programming [4, 6, 8]. In this
paper, we will add a speech–to–text component that is based on the well–known tool Whisper
for speech–to–text conversion. Subsequently, based on the context of the queried database,
another text–to–text conversion has been developed to convert the keywords, which might
have been understood a little bit wrongly by Whisper, to similar keywords that might have
been intended by the user. This is done using concepts from language processing and the
context of the database.

The rest of this paper is structured as follows: Section 2 gives an overview on database
query languages and intelligent query answering. Section 3 presents a running example
of a database instance, i.e. the representation by tables, and a set of relational database
queries. Section 4 deals with the speech–to–text conversion with Whisper and the following
text–to–text corrections based on the context of the database. Section 5 summarizes our
system DdQl for answering keyword–based queries using technology from logic programming
and deductive databases. We show how DdQl and Whisper are integrated in a docker–based
approach to optimize the usability, portability and availability of the tool. Finally, Section 6
concludes with a summary.

2 Database Query Languages and Intelligent Query Answering

Natural language interfaces (Nli) are considered a useful end–user facing query language
for knowledge bases, see Affolter et al. [1] and Damljanovic et al. [9]. This is especially true
for complex databases and knowledge bases, where the intricacies of both the information
schema and the technicalities of the query language – Sql most of the time – put the task of
issuing useful queries well beyond the skill of most prospective, non–technical users. Nlis can
usually be catgorized into keyword–, pattern–, parsing–, and grammar–based systems. Recent
case studies are also reported by Stockinger [22] who argues that the trend of building Nli
databases is stimulated by the recent success stories of artificial intelligence and in particular
deep learning. An important keyword–based system is Soda [3]. Li and Jagadish [15] hold
that Nlis are superior to other approaches to ease database querying, such as keyword search
or visual query–building. They present the parsing–based systems NaLir and NaLix.

The main gripe with a natural language interface is that it is inherently difficult to verify
reliably: an ambiguous sentence might be incorrectly parsed and its meaning evaluated,
without the end user ever becoming aware of the situation. As a consequence, much effort
has been placed into devising user–friendly ways of removing the ambiguity and translating

D. Seipel, B. Förster, M. Liebl, M. Waleska, and S. Abreu 6:3

the query to a semantically equivalent one in the native database query language. In practice,
this entails presenting alternatives to the user and asking him to decide; the process may
be iterated.

Doing so with Sql as the target seems a natural choice, but this hits many difficulties
arising from the language’s many quirks. This situation is exacerbated when one must present
the query interpretation back to the user. Relying on a more abstract query language, such
as a first order predicate logic–based one, turns out to be both easier and more effective,
especially as the reflection of the user’s utterance interpretation will be presented in a form
which is closer to its presumed grammatical structure and therefore easier to recognize
and understand. Besides convenience in presentation, relying on a logic representation for
the queries and schema has several enabling benefits: a major one is that it provides a
unifying framework for heterogeneous sources of information, such as Sql databases but also
deductive databases, Xml databases, ontologies queried in Sparql or Rdf datasets.

Interpreting a natural language sentence as a database query entails attempting to do
several queries, ranging over the schema but also the data and even the query history.
Contextual speech recognition is a very hard problem, which can be eased if one manages to
make use of background knowledge. The inherent ambiguity in the task of parsing and tagging
a sentence in natural language can be mitigated and complemented with concurrent knowledge
base queries: domain knowledge may be used to constrain the admissible interpretations as
well as to provide useful annotations. Having a logic–based framework also makes it easy to
provide views, which may be further used in interpreting natural language queries. The logic
dialect needs not be full first–order logic, as Datalog is sufficient to express queries originally
formulated in simple natural language.

3 Relational Database Queries

It is difficult for database users to have to remember the strucuture of the database (the
database schema) and the correct writing of the terms (table names and attributes) and
the values in the tables. Nevertheless, they have a good notion of the queries that they
would like to ask. We are proposing an intelligent expert tool for query answering based on
the deductive database system DDbase of the declarative programming toolkit Declare [20].
We have developed a module DdQl, that can first parse the textual representation of the
query using Declare’s extended definite clause grammars (Edcg) [19] in Prolog based on
the background knowledge of the database schema and the database, then hypothesize the
intended semantics of the query using expert knowledge, and finally present possible queries
and answers, so that the user can select one.

One could, e.g., imagine the following database queries to the well-known relational
database Company from [11] for exemplifying our approach.

Q1 Give me the salary of Borg.
Q2 What is the salary of Research ?
Q3 Give me the sum of the salaries of the departments by name.
Q4 Give me the list of the salaries of the departments by name.
Q5 Give me the supervisor name of an employee by name.

The database user does not say that salary is an attribute of a database table or that Borg
is a value of another attribute. Moreover, there could be slight spelling mistakes.

The complete database schema will be given in Figure 2 in the appendix; the ER diagram
contains 6 entity/relationship types and 8 referential integrity constraints between them
(links given by arrows). Some corresponding database tables will be given in this Section.

SLATE 2023

6:4 Intelligent Query Answering

In the background, the query compilation in Section 5.1 will extract undirected connected
subgraphs from the ER diagram. The relationship types from the corresponding ER diagram
of [11] are represented in the database schema as follows:
(a) in the table Employee, the 1:n relationship types Works_For and Supervision

from the ER diagram are integrated as foreign keys Dno and SuperSsn (the Ssn of
the supersisor), respectively;

(b) the manager of a department is given by the attribute MgrSsn in Department;
(c) the table Works_On gives the employees working on a project, and the attribute

Dnum in Project gives the responsible department of a project; both tables are not
shown here, but they can be seen in the ER diagram in the appendix.

Functionalities and existency constraints require: every employee works for exactly one
department; every department must have exactly one manager; an employee can manage at
most one department; every employee must work for at least one project; and every project
must have exactly one responsible department. All constraints of the database schema can
be used for optimizing queries.

In the following, we show a slightly restricted version of the database, where some entity
types and attributes are not present or renamed.

Employee
Fname Lname Ssn BDate Address Sex Salary SuperSsn Dno

John Smith 4444 1955-01-09 731 Fondren, Houston M 30000 2222 5

Franklin Wong 2222 1945-12-08 638 Voss, Houston M 40000 1111 5

Alicia Zelaya 7777 1958-07-19 3321 Castle, Spring F 25000 3333 4

Jennifer Wallace 3333 1931-06-20 291 Berry, Bellaire F 43000 1111 4

. .

James Borg 1111 1927-11-10 450 Stone, Houston M 55000 NULL 1

The departments and their managers are given by the table Department with the
primary key Dno. The 1:1 relationship type Manages is integrated as a foreign key
MgrSsn together with the describing attribute MgrStartDate, the start date of its
manager.

Department

Dname Dno MgrSsn MgrStartDate

Headquarters 1 1111 1971-06-19
Administration 4 3333 1985-01-01

Research 5 2222 1978-05-22

The multi–valued attribute Locations of the entity type Department yields a separate
table Dept_Locations, which we do not consider here. The table Works_On shows
the Hours that the employees work on the projects. The 1:n relationship type Controls
between Department and Project is integrated as the foreign key Dnum in Project.
Every project is located at one of the locations of its controlling department.

In this paper, we will only go into details for the shown tables Employee and Depart-
ment.

4 Speech–to–Text with Whisper and Word Corrections

In this section, the possibility of using DdQl in cooperation with a speech–to–text tool is ex-
amined in more detail. For this purpose, Whisper, which was released in September 2022 [18],
is presented and examined. For DdQl, it is crucial whether especially the keywords are

D. Seipel, B. Förster, M. Liebl, M. Waleska, and S. Abreu 6:5

correctly translated by a speech-to-text tool. Therefore DdQl can accordingly continue to
work correctly with the text transcribed from the spoken sentence. Whisper is apparently
better than the previous open-source speech-to-text tools, with a lower error rate regardless
of context. This is also described in the paper on Whisper in addition to an explanation
of the training model used to train Whisper. This training model is crucial for the high
robustness of the resulting speech-to-text tool [2].

Apart from that, we have deliberately decided against using commercial speech-to-text
variants. Experience has shown that voice assistants such as Amazon Alexa, Google Assistant
or Apple’s Siri work quite reliably, but they have the disadvantage that it is not possible
to trace what happens to the data that is transmitted to the company’s internal servers.
Furthermore we do not want to use ChatGPT due to its fatal privacy issues. Apart from
that, it would be possible to run a variant of ChatGPT locally. However, this would be
accompanied by significantly increased hardware requirements.

4.1 Technology of Whisper
As already mentioned, Whisper is a software built by a training model for machine learning.
This neural network is composed of a so called pipeline model [2]. This approach combined the
parallel learning of the aspects language identification, voice activity detection, transcription
of the spoken to a written text and transcription from any available language into english
text. Therefore, the model uses several tokens during the training process to specify, which
task especially is handled at the moment. All in all the model was trained with 680.000
hours of audio, of which 117.000 hours are 96 other languages than english. The resulting
speech-to-text-tool Whisper is really robust and detached from any context of the spoken
text, that would have been usually given by other training models [2].

4.2 Various Aspects of Speech–to–Text with Whisper
In the following, a case study will be presented to give an overview on various aspects of the
extent to which Whisper would be suitable for use as a speech-to-text-tool for DdQl. The
employee table (see Subsection 3) from the already mentioned company database gives the
basis for this purpose.

The table name, the column names and then all attributes were read out loud three times
and recorded in audio files. The values of the attributes fname, minit and lname were read
out as triples. The audio files were then evaluated and transcribed individually by Whisper.
The Whisper models base, small and medium were used one after the other. In summary,
each entry from the table was read out loud three times, recorded and then transcribed by
the three mentioned Whisper models. It would also have been possible to read out all the
words in the employee table in one take to record and then have it transcribed by Whisper.
According to the Whisper development team, however, this could have led to an unwanted
side effect. Whisper could let already evaluated audio data influence later evaluations within
an audio file [2]. Therefore, it was decided to record the different attributes and names
individually in the respective audio files and then have Whisper transcribe them.

SLATE 2023

6:6 Intelligent Query Answering

Since Whisper currently does not have the functionality to configure it easily so that it
recognises certain words preferentially by the user, a representative case distinction is now
presented below using the employee table as an example. This case distinction considers the
possibilities that could occur, how Whisper mis-transcribes words and how they would then
have to be further processed in order to ensure a meaningful further use by DdQl. Seen in
this way, the mappings opposite to the direction of the arrow in the following represent the
work of an intermediate tool between Whisper and DdQl in order to make the throughput
of spoken queries to the desired results of DdQl as high as possible.

Since DdQl is case-insensitive, capitalisation is ignored in the following. Generally,
Whisper transcriptions are complete sentences with punctuation. In the following, it is
assumed that Whisper transcriptions are passed as word lists. Therefore punctuation on the
edges of the whitespaces is also omitted, i.e. the characters ’.’, ’,’, ’;’, ’!’ and ’?’ inbetween
words of the word lists are not shown.

The arrows 7→ of the mappings below correspond to the transcription by Whisper. Each
left side of the arrows represent a table entry. The right side represents the possible Whisper
transcriptions of each entry. The mentioned word lists are shown as words separated by
whitespaces. Various transcriptions are separated by the character ’|’, while various mappings
are separated by a semicolon. The mappings only show a selection of the wrong transcriptions
of the medium model. This model, according to its own information [2], relatively often
translated what was said into what was wanted.

In the following, we show for a selection of types of speech-to-text by Whisper and in
the following Subsection 4.3 we present the subsequent text-to-text corrections by DdQl
depending on the context of the queried database.

Case 1: Separation of Words by Whisper. In the most cases, Whisper basically transcribes
the spoken words correctly. Apart from the correct order of letters, Whisper occasionally
adds whitespaces or other characters inbetween letters of words, that originally are written
as one word.
Examples:

fname (spoken f-name) 7→ f name; minit (spoken m-init) 7→ m in it;
lname (spoken l-name) 7→ l name; dno (spoken d-n-o) 7→ d-n-o;
superssn (spoken super-s-s-n) 7→ super ssn

Therefore an intermediate tool between Whisper and DdQl would have to ensure that
the keywords are partially reassembled in order to then pass them to DdQl. Incidentally,
this should also make it possible to spell out entries letter by letter.

Case 2: Tanscriptions of Similar or Phonetically Similar Words. Due to the fact that
Whisper is derived from a speech-to-text driven learning environment, it sometimes transcribes
words with smaller deviations. These discrepancies consist of either single or multiple letters
and can also take place across several words, as in Case 1.
Examples:

salary 7→ celery; bdate (spoken b-date) 7→ beat it | be date;
dno (spoken d-n-o) 7→ tno; franklin t wong 7→ franklin t wom;
alicia j salaya 7→ alicia j zelaya | alicia jade salaya;
joyce a english 7→ choice a english;
ahmad v jabbar 7→ amad vi jabar | amad vi javar | amad vi jabal;
james e borg 7→ james e bork; m 7→ um | mmm; null 7→ nah | no

D. Seipel, B. Förster, M. Liebl, M. Waleska, and S. Abreu 6:7

In this case, an intermediate tool between Whisper and DdQl would have to check for a
written similarity or even phonetic similarity with the words from the exemplary employee
table. If similarities are rated very highly according to a percentage value, these could then
be passed on to DdQl as word lists accordingly.

Case 3: Speech-to-Text for Numbers. Here, it is shown how Whisper transcribes spoken
numbers. Apart from characters like ’<whitespace>’, ’.’, ’,’ and ’-’ that could appear between
the digits after the transcription, a closer look reveals that in the following examples with
nine identical digits, an additional digit is added occasionally. Furthermore Whisper seems
to translate single digits into written-out numbers or even words that are phonetically very
close to these numbers.
Examples:

SSN (ID Number): 111111111 7→ 1 1 1 1 1 1 1 1 1 1;
444444444 7→ 4 4 4 4 4 4 4 4 4;
555555555 7→ 5 5 5 5 5 5 5 5 5 5 | 5-5-5-5-5-5-5;
666666666 7→ 6666666666; 777777777 7→ 7777 7777 7 | 7777 7777 7 7;
Money: 30000 7→ 3 0 0 0 0 | 30,000 | 3-0-0-0-0;
25000 7→ 25,000 | 2500 | 2 5 0 0 0; 43000 7→ 43,000 | 4 3 0 0 0;
Single Digits: 5 7→ five | fives; 4 7→ four | for; 1 7→ one

An intermediate tool between Whisper and DdQl could eliminate the separation of the
numbers by intermediate characters as described in Case 1. The occurrence of too many or
too few digits could be fixed by checking for equality of the first digits compared to the entries
of the exemplary employee table. This would also make it possible not to have to enter all
the digits for a number. For the written-out representation of a number, the intermediate
tool would have to pass the equivalent in digits on to DdQl. However, evaluating for as 4
and passing it on to DdQl as such would probably not make much sense, since the word for
occurs frequently in English sentences and would therefor be evaluated as a number each
time the speaker uses the word for.

Case 4: Transcription of Date Values. Whisper can transcribe dates read out loud number
by number. The cases in which the months were pronounced or the spoken order of a date
were differed is beyond consideration here.
Examples:

1955-01-09 7→ 1955.1.9; 1945-12-08 7→ 1945 12 8;
1958-07-19 7→ 1958 7 19 | 1958 719; 1931-06-20 7→ 1931 620;
1952-09-15 7→ 1952 9 15; 1927-11-10 7→ 1927 11 10

An intermediate tool for transforming the recognized words to more suitable words would
have to derive all possible dates that can be formed from the input and compare them with
the values in the database.

Case 5: Transcription of Addresses. Here the transcription of addresses is looked on more
closely. It can be seen that similar errors occur here, as they already emerged in the previous
cases.
Examples:

tx (spoken texas) 7→ texas;
3321 castle spring tx 7→ 3,3,2,1 castle spring texas |
3 3 2 1 kassel spring texas | 3321 carson spring texas;
291 berry bellaire tx 7→ 291 berry bel air texas

SLATE 2023

6:8 Intelligent Query Answering

Additionally tx was always transcribed to texas, but this is because it was recorded that
way. For an intermediate tool, several challenges would arise at the same time, as an address
can consist of numbers, words and also abbreviations. Accordingly, an intermediate tool
would have to combine several of the approaches from the previous cases. Apart from that,
another table could be introduced that divides the address into its different components.
This could be handled more easily by an intermediate tool, as described in Cases 1 to 4.

Case 6: Diverse. Proper Nouns like ProductX, abreviations like SSN, MGRSSN, and ambigu-
ities like SME (subject meta expert, small medium enterprises) have to be handled. Moreover,
MGR can abbreviate Manager. Nowaday, Laser, X-Ray, LGBTQ, ChatGPT and Open AI are
commonly known names. Furthermore, as in the example above with tx, it should be ensured
that common designations, such as USA, EU and ASEAN should be recognised and brought
into a context processable by DdQl.

In conclusion, it can be said that an intermediate tool between Whisper and DdQl should
be mostly dependent on data type in order to effectively enable corrections for DdQl. It is
important that all data types that occur in the accessed database are considered. A person
with expert knowledge about the database could then, for example in the case of this case
study, set the intermediate tool accordingly so that addresses are recognised and handled
like a compound data type.

The above mappings were composed mainly in relation to the transcription of the medium
model of Whisper. In fact, the same categories of error types occurred in the small and base
models, but with higher frequency and partially more bias. This is clearly due to the fact
that small and base are smaller and less accurate speech-to-text models than medium, but
thus are faster with respect to runtime [2]. When designing the intermediate tool between
Whisper and DdQl, this trade-off of accuracy and runtime can be utilized and should be
further investigated in the implementation.

4.3 Text–to–Text Corrections with Language Technology
As we have seen in the previous section, it is not only important to correctly interpret a user’s
request in natural language, but it is also of great importance to correct words incorrectly
transcribed by a speech–to–text (STT) engine in the case of spoken requests.

We use a custom fuzzy matching approach, adjusted to the observed wrong transcriptions
of Whisper, to counteract this problem. One main part of our fuzzy matching algorithm is
based on the fact that STT engines try to identify the correct phonemes of spoken words,
e.g. in an audio file, in order to map those phonemes to the correct spelling. Therefore it is
much more likely, that words are transcribed incorrectly to similar sounding words, as we
saw in, e.g., Case 2 (salary 7→ celery).

Our phonetic matching approach, to find homophones in the database, generates a phonetic
key for each word, which tries to represent the most important parts of its pronounciation.
This key generation is mainly derived from the known metaphone–algorithm [14].

Hereafter, for every case, mentioned in Subsection 4.2, it will be discussed how our fuzzy
matching approach addresses those listed mistranscriptions.

Case 1: Separation of Words by Whisper. The phonetic key generation does not pay
attention to any whitespaces, hyphen etc.. Therefore dno and d-n-o have the same phonetic
key, same goes with f name and fname. If we are not able to find an exact match with a
given value in the database, we compare the phonetic keys and pick those with the highest
similarity. This reduces the amount of format issues significantly.

D. Seipel, B. Förster, M. Liebl, M. Waleska, and S. Abreu 6:9

Nevertheless, we have to pay attention to those cases, in which word separations differen-
tiate values in the database. For example if there are an Anna Lyn and an Annalyn in the
database. A user may want to find Anna Lyn, but Whisper transcribes it incorrectly to Anna
Lin. All three names have the same phonetic key. As it is more likely that Whisper uses the
correct word separations, Anna Lyn will be preferred as a match.

Case 2: Transcriptions of Similar or Phonetically Similar Words. Here, several, but
not all of the mistranscriptions have the same phonetic key than their origin. salary
and celery have the same phonetic key of SLR. bdate, beat it and be date have also
the same phonetic key of BTT. franklin t wong (FRNKLNTWNK) and franklin t wom
(FRNKLNTWM) or Pork (PRK) and Borg (BRK) have different phonetic keys. In order to be
able to rank the similarities of phonetic keys, we use a custom Levenshtein Distance, where
we take into account, that some differences of phonetic keys are more likely to occur than
others. It is much more likely, that a difference of P and B in the phonetic keys is based on a
mistranscription of Whisper than P and L. Therefore differences like P and B contribute to a
much lesser degree to the calculated distance than differences like P and L.

We also pay attention to those characters in the near surrounding of a detected difference.
Keys like NL from the word null and N from no get a lower distance than NK from nik and N.
It is much more likely, that Whisper mistranslates null to no than it does with nik.

These adjustments are based on the pronounciation itself and our testing with Whisper.
Of course these rules are dependent of the used language. Right now, we only consider
english as spoken language. It would also be possible to deal with other languages, but for
every other language, an own phonetic algorithm has to be created.

Case 3: Speech–to–Text for Numbers. In the case of numbers, all spelled out digits are
first converted to their corresponding digits. Then, based on the amount of consecutive digits
or the given context, it is verified whether this could be a date. If this is not the case, all
consecutive digits, which are separated only by whitespaces or similar, are merged. Then we
search in the database for numbers that contain the given number, or if the given number
contains a number in the database. This gives us the opportunity, to address numbers, which
are not known in their entirety. If the user only knows the first few digits of the SSN of an
employee, it is possible to ask the user if a certain SSN, containing the given number, was the
SSN he meant. If there is more than one match with a high similarity, the user can choose
for which of them he wants to get the according result.

It is not recommended to combine this approach with the Levenshtein Distance, because
in our testing, Whisper usually did not mistranscribe one digit into another. It was more
likely that Whisper translated a 4 into for. Hence we consider cases, in which for was not
changed and cases, in which for was changed to 4. Those results are preferred, that did not
change anything.

Case 4: Transcription of Date Values. The usual way for a user to provide dates, is to
pronounce the month or year directly instead of spelling it out digit by digit. This works
quite well with Whisper. But if just the according digits are mentioned, we verify if a certain
set of digits could be a date. The different aspects we consider are the length and the value
of the number. From those possible date representations with the wrong format, we create
all dates that are eligible, compare them with the values in the database and ask the user if
he meant this specific date. 1931 620 for example, can only be 1931-06-20.

SLATE 2023

6:10 Intelligent Query Answering

Case 5: Transcription of Addresses. Many approaches discussed so far help us to interpret
a misunderstood address the correct way. berry bellaire tx (BRBLRTX) and berry bel
air texas (BRBLRTXS) have very similar phonetic representations, our algorithm will take
this kind of mistranslations into account. As we are also looking for matching substrings,
it would also be possible to respond to from Whisper transcribed queries like Give me all
employees, who live in berry bel air texas.

Case 6: Diverse. Abbreviations that can occur in the database are addressed by a simple
dictionary, which stores those words and their according abbreviation.

It is not only possible, to compare words according to spelling or pronounciation, it is
also possible to compare words according to their meaning. If we have a look at the query
How much does the employee Borg earn, then earn and salary have a similar meaning. This
can give us the opportunity to interpret a wider range of variations in the formulation of
queries in natural language correctly.

5 The Declarative Database Query Language DDQL

In DdQl, the generation of queries is based on declarative concepts from logic programming.
The knowledge-based compilation of keyword–queries to Datalog and/or Sql is done in
three steps. In experiments with the company database, useful queries were generated; if a
database does not contain referential integrity constraints, then we will need query logs for
deriving suitable join conditions.

The declarative programming toolkit Declare [20] and its deductive database system
DDbase already have functionality for evaluating database queries formulated using extensions
of Datalog. Even hybrid queries including different knowledge representation formalisms
are possible in DDbase. Relational databases can be accessed using Datalog or Sql queries
and Odbc; for Xml processing, a query, transformation and update language FNQuery is
given in [21]. In DDbase, Datalog programs are evaluated bottom–up with stratified fixpoint
computation, and they can – possibly, for simple forms of aggregation – be compiled to Sql
queries; often Datalog programs can also be evaluated top–down like in Prolog. For the
evaluation in logic programming, the field notation atoms are compiled to ordinary, logical
Datalog atoms based on background knowledge about the database schema. The ordinary
Datalog rules can be compiled to Sql with DDbase, if there is no default negation – and
for stratified default negation or aggregation.1 For non–stratified default negation, DDbase
could use answer set solvers, cf. [5], if there are no aggregation literals.

5.1 Knowledge–Based Compilation of Queries
DdQl compiles a NL query QN to a Datalog query QD in three steps:

QN → QA → QF → QD.

The result tables are shown in a graphical interface in Figure 1. First, using Definite Clause
Grammars (Dcgs, see, e.g., [4, 8]), an annotated query QA is generated. Using, e.g., the
following grammar rule in the extended Dcg formalism introduced in [19], also the resulting
parse tree can be computed:

query ==> aggregation , of , attribute , of , table.

1 A stratified evaluation requires that none of the embedded atoms Ai is mutualle recursive with the head
atom A. Then, the program is split into strata, such that default negated literals or aggregation literals
refer to lower strata; the strata are evaluated successively, beginning with the lowest.

D. Seipel, B. Förster, M. Liebl, M. Waleska, and S. Abreu 6:11

The Dcg rules are fully interleaved with database access operations of DDbase using Odbc.
E.g., the derivations of attribute and table can result in Odbc calls, or – for potential
speed–up – calls to a cached collection of facts previously extracted from the database. Some
words of the query – such as ”of” and ”the” – are ignored. DdQl generates the annotations
one after the other on backtracking, starting with the most likely annotations. E.g., the query
Q1 with the key words ”salary, of, Borg” is first annotated to the following query QA:

salary=company/employee/attribute
’Borg’=company/employee/row(@LNAME)

The keyword ”of” is ignored. In DdQl, it can be detected easily from the database schema
that salary is an attribute of the relation employee. The location of ’Borg’ has to be done
based on the contents of the database, which is more expensive. This can be done depending
on the context of the table employee; it turns out that it is the value of the attribute
LNAME. After the first annotation has been done and the first solution to the query has been
produced, DdQl uses backtracking to generate further annotations and solutions. Of course,
then DdQl will also search for ’Borg’ in other tables of the database. In summary, the
annotation QN → QA depends on – and can be refined by – the speech–to–text recognition
by Whisper and the text–to–text corrections.

Then, the compilation of the annotated queries QA to Sql or Datalog is done by adding
suitable join conditions using technology from DDbase based on the database schema. As an
intermediate representation, conjunctive queries QF in Datalog are generated with atoms in
field notation. The conjunctive queries are then refined and optimized to ordinary Datalog
queries QD using background knowledge from the database schema or Datalog–likes rules.
QD could be evaluated on a deductive variant of the relational database or a deductive
database; an Sql variant of QD can be evaluated on the relational database.

In Sql, queries usually have the form select-from-where-group by: The select part
specifies the attribute values that we are interested in and can contain aggregations of
attribute values. The from part specifies the tables that should be used to obtain the
answer. The intelligent where part describes the join-conditions for the envolved tables. For
transforming QA to QF and QD, in many cases, suitable join conditions can be inferred
from the foreign key constraints given in the database schema. The schema of the database
company contained many foreign key constraints. For databases without given foreign key
constraints, join conditions can be inferred from previous Sql queries in the log file: a join
condition can be assumed, if the primary key of a table (all attributes of the primary key)
is joined with some attributes of another table. In Declare, the schema of a table can be
extracted automatically from a running relational MySql database systen and presented in
Xml to the user and analysed with Prolog.

Obviously, query Q1 can simply be computed from table employee, since salary is an
attribute of employee and Borg is an attribute value in this table of the attribute lname.
Sometimes the word Borg could have been entered or spoken wrongly as, e.g., Bork with an
ending ”k”. Unless corrected by similarity search, the query would find no result. For Q2,
the situation is more complicated. Research is an attribute value in the table department,
and DdQl has to find the suitable join condition employee.DNO = department.DNUMBER.
Query Q3 requires the aggregation function sum on the salary values, and the departments
have to be grouped by name. The relevant links between the concepts mentioned in a user
query might be an undirected tree, or even a cyclic graph. E.g., if the user asks for the
salary of all employees working in a department that is controlling a given project and that
is located in a given city, then two different link trees might be used.

SLATE 2023

6:12 Intelligent Query Answering

Figure 1 Graphical User Interface of DdQl: Query Q4.

5.2 The Graphical User Interface
A prototype of the graphical user interface (GUI) of DdQl is shown in Figure 1. The query
keywords can be entered by speech after pressing the microphone icon or typed separated
by blanks into the input box. Then, the a list of possible search queries in Datalog or Sql
is generated, which might be further optimized. Currently, a corresponding Sql query is
shown, if there are no aggregation functions.

Obviously, for user–defined aggregation functions, only the Datalog variant is possible.
Figure 1 shows such a case with the user-defined aggregation function list for the query Q4.
For this example, only one Datalog answer was found, which leads to the result table shown
in the figure. Here, a unique answer was returned by DdQl. The join condition between the
first and the third Datalog atom of the query is given by the middle atom for employee: The
two occurences of F for the social security number identify the two employee atoms, and A
in the department atom ensures the Sql condition employee.DNO = department.DNUMBER.

5.3 Integration of Whisper into Declare in a Docker-Based Tool
To integrate Whisper with DdQl, several prerequisites must be met. First, Whisper must be
installed. For this, we need a current version of Python together with the PyTorch framework
and FFmpeg. For DdQl, we need the Declare developers toolkit, which contains DdQl to be
installed along with Swi–Prolog version 7.6.4 and Odbc to access the database. In addition,
we need a Python script which was developed to provide the command line interface and
connect Whisper and DdQl. To connect DdQl to the desired database, we need to manually
create a DSN with the required information. Moreover, the client environment must be able
to offer an X display for the graphical component of Declare to work.

Since the installation relies on a delicate balance of versions for all dependencies, the
process is somewhat cumbersome. On top of that, several other inconveniences may occur.
Whisper seems to have trouble with other installed Python packages. To avoid this, Whisper
should be installed in an isolated virtual environment. Another inconvenience could be the

D. Seipel, B. Förster, M. Liebl, M. Waleska, and S. Abreu 6:13

operating system used itself. It can influence the installation of the individual components
and can lead to unexpected behavior, since not all parts are tested on every variant of every
operating system.

To increase usability as well as other features such as portability and availability, several
approaches can be considered. As a first step, we have dockerized Declare2 to conveniently
provide a Declare distribution with all its dependencies. To use Whisper we either install it
as mentioned in the description above or use an existing Docker image of Whisper. However,
we need to install Python to run the script, which needs some small modifications, to provide
the CLI for the tool. We also have to create the DSN to connect DdQl with the database.
Another approach could be to combine all the required dependencies into a single Docker
image, so that only Docker needs to be installed to use the tool via CLI. Then, the database
connection can be created inside the Docker container by passing all the required information
as environment variables. This maximizes the portability and availability of the program, as
we can easily retrieve the Docker image from any machine and run it as needed. To further
optimize the usability of this approach, we could integrate the python script into a web server
that runs inside this single Docker container. With this step, we are able to install it both on
a local machine or on a server to provide the tool to the user with an appropriate web page.

6 Conclusions and Future Work

In this paper, we have shown how queries to relational databases can be answered in keyword–
based natural language interfaces using intelligent, cooperative techniques. The concepts
mentioned in the query are linked based on contextual background knowledge, mainly from
the database schema. In the future, also concepts from subsymbolic AI will be investigated
and included where useful. For instance, by looking at the user behaviour from previous
queries, we may derive heuristics for finding intended queries (e.g. linking atoms) using some
form of machine learning.

We have containerized Declare – inluding DdQl – in a docker image and added a voice
recognition part based on Whisper. In this paper, we have described the techniques used
for recognizing the correct queries in the context of the database. DdQl can benefit from
interleaving it with Whisper. Later, we are planning to use the voice recognition also for
DdQl on mobile devices and the knowledge acquisition could be done with a voice assistant
based on a domain–specific language, see [17]. Currently, we are training the Whisper tool
on different databases with varying schemata and instances. We would also like to add
voice output, i.e. spoken answers, such that the returned table could be read to the user.
At the moment the tool Whisper can transcribe 99 languages and we are planning to add
multilinguality to DdQl.

Graphical user interfaces (GUIs) might also be acted upon. Then, the GUI is the context;
it might also be described in a structured form such as Html 5 [16] or the Xml user interface
language Xul [7], which has been used by Mozilla for the firefox web browser; then text
matching has to be done on the interface components with reflection over a GUI. In Declare,
Xul interfaces can already be interpreted, and we are working on Prolog links in Html.

2 https://hub.docker.com/r/declaredocker/declare

SLATE 2023

https://hub.docker.com/r/declaredocker/declare

6:14 Intelligent Query Answering

References
1 Katrin Affolter, Kurt Stockinger, and Abraham Bernstein. A Comparative Survey of Recent

Nlis for Databases. VLDB J., 28(5):793–819, 2019. doi:10.1007/s00778-019-00567-8.
2 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sut-

skever. Robust Speech Recognition via Large-Scale Weak Supervision, 2022. arXiv preprint
arXiv:2212.04356. URL: https://arxiv.org/pdf/2212.04356.pdf.

3 Lukas Blunschi, Claudio Jossen, Donald Kossmann, Magdalini Mori, and Kurt Stockinger.
Soda: Generating Sql for Business Users. Proc. VLDB Endowment, 5(10):932–943, 2012.
doi:10.14778/2336664.2336667.

4 Ivan Bratko. Prolog Programming for AI. Addison–Wesley Longman, 4th edition, 2011.
5 Gerhard Brewka, Thomas Eiter, and Mirek Truszczynski. Answer Set Programming at a

Glance. Communications of the ACM, 54(12):92–103, 2011.
6 Ceri, Stefano and Gottlob, Georg and Tanca, Laetitia. Logic Programming and Databases.

Springer, 1990.
7 Christian Schneiker, Dietmar Seipel. Declarative Web Programming with Prolog and XUL. In

Proc. 26th Workshop on Logic Programming (WLP), 2012.
8 William Clocksin and Christopher S. Mellish. Programming in Prolog. Springer Science &

Business Media, 2003.
9 Danica Damljanovic, Milan Agatonovic, and Hamish Cunningham. Nlis to Ontologies:

Combining Syntactic Analysis and Ontology–based Lookup through the User Interaction. In
Extended Semantic Web Conf., pages 106–120. Springer, 2010.

10 Dietmar Seipel, Daniel Weidner, Salvador Abreu. Intelligent Query Answering with Contex-
tual Knowledge for Relational Databases. 10th Symposium on Languages, Applications and
Technologies (SLATE), 2021.

11 Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems, 3rd Edition.
Addison–Wesley Longman, 2000.

12 Ben Goertzel. Perception Processing for General Intelligence: Bridging the Symbolic/Sub-
symbolic Gap. In International Conference on Artificial General Intelligence, pages 79–88.
Springer, 2012.

13 Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan
Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep Speech: Scaling up
End–to–End Speech Recognition. arXiv preprint arXiv:1412.5567, 2014.

14 Lawrence Philips. Hanging on the Metaphone, Computer Language, Vol.7, No.12, 1990.
15 Fei Li and H. V. Jagadish. Understanding Natural Language Queries over Relational Databases.

SIGMOD Rec., 45(1):6–13, 2016. doi:10.1145/2949741.2949744.
16 Matthew MacDonald. Html 5: The Missing Manual, 2nd Edition. O’Reilly Media, Inc, 2011.
17 Falco Nogatz, Julia Kübert, Dietmar Seipel, and Salvador Abreu. Alexa, How Can I Reason

with Prolog? (Short Paper). In Proc. 8th Symposium on Languages, Applications and
Technologies (SLATE 2019), 2019.

18 OpenAI. Introducing ChatGPT and Whisper APIs. URL: https://openai.com/blog/
introducing-chatgpt-and-whisper-apis.

19 Christian Schneiker, Dietmar Seipel, Werner Wegstein, and Klaus Prätor. Declarative Parsing
and Annotation of Electronic Dictionaries. In Proc. 6th International Workshop on Natural
Language Processing and Cognitive Science (NLPCS 2009), 2009.

20 Dietmar Seipel. Declare – A Declarative Toolkit for Knowledge–Based Systems and Logic Pro-
gramming. http://www1.pub.informatik.uni-wuerzburg.de/databases/research.html.

21 Dietmar Seipel. Processing Xml–Documents in Prolog. In Workshop on Logic Programming
(WLP 2002), 2002.

22 Kurt Stockinger. The Rise of Natural Language Interfaces to Databases.
ACM SIGMOD Blog, 2019. URL: https://blog.zhaw.ch/datascience/
the-rise-of-natural-language-interfaces-to-databases/.

https://doi.org/10.1007/s00778-019-00567-8
https://arxiv.org/pdf/2212.04356.pdf
https://doi.org/10.14778/2336664.2336667
https://doi.org/10.1145/2949741.2949744
https://openai.com/blog/introducing-chatgpt-and-whisper-apis
https://openai.com/blog/introducing-chatgpt-and-whisper-apis
http://www1.pub.informatik.uni-wuerzburg.de/databases/research.html
https://blog.zhaw.ch/datascience/the-rise-of-natural-language-interfaces-to-databases/
https://blog.zhaw.ch/datascience/the-rise-of-natural-language-interfaces-to-databases/

D. Seipel, B. Förster, M. Liebl, M. Waleska, and S. Abreu 6:15

A Appendix

We have used the relational database Company from [11] for exemplifying our approach. The
database schema in Figure 2 contains 6 entity/relationship types and 8 referential integrity
constraints between them (links given by arrows). Some corresponding database tables have
been shown in Section 3 earlier in this paper.

Figure 2 Referential Integrity Constraints for the Relational Database Company.

SLATE 2023

Automatic Speech Recognition of Non-Native
Child Speech for Language Learning Applications
Simone Wills #

Radboud University, Nijmegen, The Netherlands

Yu Bai #

Radboud University, Nijmegen, The Netherlands
NovoLearning, Nijmegen, The Netherlands

Cristian Tejedor-García # Ñ

Radboud University, Nijmegen, The Netherlands

Catia Cucchiarini #

Radboud University, Nijmegen, The Netherlands

Helmer Strik #

Radboud University, Nijmegen, The Netherlands

Abstract
Voicebots have provided a new avenue for supporting the development of language skills, particularly
within the context of second language learning. Voicebots, though, have largely been geared towards
native adult speakers. We sought to assess the performance of two state-of-the-art ASR systems,
Wav2Vec2.0 and Whisper AI, with a view to developing a voicebot that can support children
acquiring a foreign language. We evaluated their performance on read and extemporaneous speech
of native and non-native Dutch children. We also investigated the utility of using ASR technology
to provide insight into the children’s pronunciation and fluency. The results show that recent,
pre-trained ASR transformer-based models achieve acceptable performance from which detailed
feedback on phoneme pronunciation quality can be extracted, despite the challenging nature of child
and non-native speech.

2012 ACM Subject Classification Human-centered computing → Human computer interaction
(HCI); Applied computing → Education

Keywords and phrases Automatic Speech Recognition, ASR, Child Speech, Non-Native Speech,
Human-computer Interaction, Whisper, Wav2Vec2.0

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.7

Category Short Paper

Funding The project ST.CART is funded by the European Regional Development Fund (ERDF).

Acknowledgements Special thanks go to all the children who participated, their parents, their
teachers, and the schools.

1 Introduction

In the field of education there is considerable interest in developing and employing voicebots
to support children in fundamental skills like learning to read or in acquiring foreign languages.
However, this is one of the areas in which the performance of automatic speech recognition
(ASR) systems is still lacking. In general, current speech-based systems work relatively well
for adult native speakers, with the performance dropping considerably when it comes to
other target groups such as elderly speakers, children, non-native speakers, and patients with
pathological speech [4, 8]. There are two main factors which contribute to this; firstly the
inherently challenging nature of the the speech produced by these speakers and secondly, the
limited availability of the speech data needed to develop and improve these systems.

© Simone Wills, Yu Bai, Cristian Tejedor-García, Catia Cucchiarini, and Helmer Strik;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 7; pp. 7:1–7:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:simone.wills@ru.nl
mailto:yu.bai@ru.nl
mailto:cristian.tejedorgarcia@ru.nl
https://cristiantg.com
https://orcid.org/0000-0001-5395-0438
mailto:catia.cucchiarini@ru.nl
mailto:helmer.strik@ru.nl
https://doi.org/10.4230/OASIcs.SLATE.2023.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

7:2 ASR of Non-Native Child Speech

In terms of child speech, ASR performance is hindered by speech characteristics which
include high degrees of variability, linguistic differences as a result of different stages of
language acquisition, and the marked presence of disfluencies and hesitation. This is in
addition to physiological differences, such as shorter vocal tracts, which cause a mismatch
between the adult and child speech [15]. For applications geared towards supporting the
acquisition of a second language (L2) or foreign language by children, the task is doubly
challenging in that it deals not only with child speech, but that on non-native speech which is
equally as challenging for ASR systems [9]. These challenges are exacerbated by the limited
availability of speech data, a particularly prominent problem when working with languages
other than English [13]. Collecting speech data is also often hampered by the difficulty in
obtaining approval for data collection as well as difficulty in gaining access to the speakers,
as they are generally less independent.

Existing ASR-based educational applications built for adult L2 learners have demonstrated
the utility of ASR output to provide immediate feedback on correct pronunciation based
on single utterances [10, 16]. Despite the challenges, there are few educational ASR-based
educational products which have been developed for children learning foreign languages. [11]
built a system for children with pronunciation difficulties to practice in their native languages,
where children get feedback, in the form of correct / incorrect, from an ASR system . In [17]
English pronunciation of short utterances is scored based on tone, volume, timbre and speed.

In this paper we report on research conducted within the framework of a project aimed
at investigating the usability of ASR technology for developing innovative educational
applications for children learning a second language. In general, ASR technology works
better when the text to be recognized is known in advance, as in the case of read speech.
However, using only read speech considerably limits the possibilities for developing educational
applications, which would indeed be confined to learning to read. For developing more creative
applications, less prepared and more spontaneous speech would be required, but this makes
the ASR even more complex [12].

To gain insight into the potential of ASR for these tasks in a language other than English,
we conducted experiments in which we analyzed extemporaneous speech produced by non-
native children learning Dutch through traditional and more recent ASR systems. The
research questions we addressed are: RQ1 How do current state-of-the art ASR systems fare
on extemporaneous, Dutch non-native child speech, and RQ2 how does their performance
compare to that on native and read speech? We also consider what kind of information can
be automatically extracted from such recordings to gain insights into language proficiency,
such as measures of pronunciation quality, articulation and fluency.

The paper is organized as follows. Section 2 describes the data we used, while Section 3
describes the ASR system evaluations. We present both the analysis and ASR performance
results in Section 4, followed by a discussion thereof in Section 5. The paper concludes with
final remarks and possible future work in Section 6.

2 Speech Material

In this study, we use speech material taken from the JASMIN corpus [7]. This is a Dutch-
Flemish corpus of around 90 hours of contemporary Dutch speech from groups of speakers
not represented in the existing Spoken Dutch Corpus (Corpus Gesproken Nederlands; CGN).
This includes children, non-native speakers, and elderly people. One of the corpus aims was
to collect speech from human-machine interactions. The corpus includes manual orthographic
transcriptions and phonetic transcriptions produced automatically using ASR.

S. Wills, Y. Bai, C. Tejedor-García, C. Cucchiarini, and H. Strik 7:3

For our study we selected the Dutch human-machine dialogues of children aged between
11 and 18 years old, separated into two groups; native Dutch child speakers and non-native
children learning Dutch. This corresponds to component-p of Group 2 and 3 in the corpus
structure. The total selected data contains 9 hours and 21 minutes of dual-channel speech
recordings, produced by 94 children (1).

In these dialogues children are questioned about activities they enjoy and are stimulated
to provide answers on the fly. The dialogues are conducted in a Wizard-of-Oz scenario, that
is that the role of the computer is played by a human being in disguise and the answers
provided by this person are sounded through TTS to make them sound like computer-
generated speech. The resulting speech is considered extemporaneous speech, as opposed
to spontaneous, because the children were prompted through questions to produce answers
rather than generating speech on their own initiative.

These recordings were selected because they reflect the realistic challenges which are
encountered when applying ASR to turn-taking conversations with children, as one might
expect in language learning practice. Additionally, these dialogues were designed such that the
children would produce hesitations and dysfluencies, as is often the case in extemporaneous
human-machine communication.

Table 1 Overview of Data.

No. Participants Female Male Age (Years) Duration (Hour)

Native 41 21 20 12-18 4.48
Non-Native 53 28 25 11-18 4.87

Total 94 49 45 11-18 9.35

3 Methodology

3.1 ASR Systems
We compare the performance of two state-of-the-art open-source ASR systems: Wav2Vec2.0 [1]
and Whisper AI [14]. Both systems employ openly available pre-trained models . Wav2Vec2.0
is a transformer-based model pre-trained on unlabelled audio, which can then be further
fine-tuned. In this paper we use a cross-lingual model1, which has been trained on multiple
languages and fine-tuned on Dutch. The Whisper ASR system is a recent release by OpenAI,
and is an encoder-decoder transformer model pre-trained on multilingual data. Word-level
time-stamps are obtained using the WhisperX Python library [3].

3.2 Speech Characteristics
We are not only interested in how well the different ASR systems perform in decoding the
audio, but whether this output can be reliably used to automatically extract information
about the children’s language proficiency. We calculated a number of measurements, for
each speaker, relating to speech characteristics. The measurements and their calculations
are presented in Table 2.

1 https://huggingface.co/FremyCompany/xls-r-2b-nl-v2_lm-5gram-os

SLATE 2023

https://huggingface.co/FremyCompany/xls-r-2b-nl-v2_lm-5gram-os

7:4 ASR of Non-Native Child Speech

Table 2 Speech Characteristic Measurements.

Measurement Calculation

Number of utterances segments of speech surrounded by significant pause
Number of words count of all word tokens
Number of phones count of all phone tokens
Number of filled pauses count of all filled pause words (e.g. “hmm”, “uh”, “ehm”)
Vocab Size count of unique word tokens
Average number of words per utterance number of words / number of utterances
Average number of phones per utterance number of phones / number of utterances
Total word duration (seconds) sum of all word durations
Average word duration (seconds) total word duration / total number of words
Articulation rate number of phones / total word duration
Total speech duration (seconds) sum of all utterance durations

We first calculated these measures through manual transcriptions and then used the
Whisper output to calculate a subset of these measures, so that we can compare manual
transcription-based measures to those based on ASR output. For the Whisper output, the
text was also lower-cased and punctuation removed for measurements replying upon word
forms, such as vocab size and filled pause identification.

3.3 Pronunciation Evaluation

Pronunciation information was extracted using the NovoLearning ASR system. This is
a back-end ASR system in a Dutch automatic Reading Tutor application which “listens”
and provides feedback to children. The ASR takes prompts and speech recordings as input
and gives results on both word level and phone level. The ASR analyses speech and gives
confidence score represented by probabilities on each phone of the words in the prompt [2].
The probability score ranges from 0 to 100. We passed the native and non-native dialogue
speech with the manual transcripts to the NovoLearning ASR. Unrecognized words and filler
words were filtered out. We calculated the mean confidence score and standard deviation
(SD) of each phoneme for native and non-native speech. We used the phone probability
scores to represent the pronunciation quality of each phoneme.

4 Results

4.1 ASR Performance

The word error rate (WER) for Whisper versus Wav2Vec2.0 on the native and non-native
speech are shown in Table 3. WER measures the accuracy of the text output of an ASR
system by computing the percentage of words which it transcribed incorrectly, determined
through comparison with a ’gold standard’ (typically manual) transcription. A higher WER
indicates more inaccuracies. As seen 3 Whisper outperforms Wav2Vec2.0, so we further
compared the performance of Whisper on Read vs. Dialogue speech. The WERs for Read
speech are lower than those for Dialogue, with the WER for native Read speech being
particularly low compared to the others.

S. Wills, Y. Bai, C. Tejedor-García, C. Cucchiarini, and H. Strik 7:5

Table 3 WERs (%) using two ASR models for native and non-native Dialogue Speech.

Model Native Non-native

Wav2Vec 44.80 44.60
Whisper 30.70 33.80

Table 4 WER (%) of Whisper for Read vs. Dialogue Speech.

Read Dialogue

Native 8.00 30.70
Non-native 24.80 33.80

Table 5 Speech Characteristics: Median and InterQuartile Range (IQR) values for manual
transcriptions.

Speech Characteristic Native Non-native
Median IQR Median IQR

Number of utterances 40 10 52 18
Number of words 105 60 141 84
Number of phones 375 147 482 251
Number of filled pauses 3 7 14 12
Vocab size 68 37 84 34
Average words / utterance 2.51 1.35 2.82 0.66
Average phones / utterance 9.39 3.99 9.44 1.90
Total word duration 39.97 13.31 53.40 31.31
Average word duration 0.38 0.22 0.38 0.37
Articulation rate 9.59 1.48 8.94 1.54
Total speech duration 48.93 15.79 68.94 29.96

Table 6 Speech Characteristics: Median and InterQuartile Range (IQR) values for Whisper
output.

Speech Characteristic Native Non-native
Median IQR Median IQR

Number of words 220 68.5 262 57
Number of filled pauses 1 1.5 3 4
Vocab size 129 20.5 145 24
Average words / utterance 4.25 0.70 4.17 0.85
Total word duration 57.95 22.95 72.66 13.30
Average word duration 0.26 0.04 0.28 0.02

4.2 Speech Characteristics

Table 5 and Table 5 present the speech characteristic measurements we calculated based
on the manual and Whisper ASR-based transcriptions, respectively. Using the manual
transcriptions, we see that for several measures, in comparison to native-speakers, the non-
native speakers have higher median values (the number of utterances, words, phones, and
filled pauses, total speech duration, total word duration, and vocabulary size). Articulation

SLATE 2023

7:6 ASR of Non-Native Child Speech

rate has a lower value, and average number of words and phones per utterance have similar
values in the two groups. A subset of measurements calculated using Whisper output are
given in Table 6. While the values are all higher when compared to the manual-based values,
but the same trends are reflected in the data, with non-native speaker values being higher
than native speakers’ for the same characteristics as above.

4.3 Pronunciation Evaluation

Table 7 Mean and SD values for the phoneme confidence scores for native and non-native speech.

Native Non-native Native Non-native
Mean SD Mean SD Mean SD Mean SD

a 95.69 12.85 92.32 15.61 b 97.07 8.38 96.65 8.87
aa 96.97 11.26 96.32 11.59 d 97.51 8.94 97.10 10.27
aw 95.12 11.67 88.13 18.29 f 96.30 7.55 93.83 12.47
ax 94.60 15.16 95.21 12.91 g 34.18 27.08 44.99 28.36
eh 90.99 19.97 90.58 19.27 hh 75.94 35.26 76.32 32.41
ei 96.73 10.84 96.79 8.83 k 98.23 7.26 97.52 9.43
eu 98.42 4.59 85.25 24.39 l 97.84 8.06 96.52 9.87
ey 90.73 22.71 90.75 21.43 m 97.27 8.10 96.18 9.70
ih 94.84 12.30 92.79 15.21 n 97.48 8.57 97.56 7.99
iy 98.12 6.14 92.70 15.72 ng 97.78 9.52 96.37 10.58
oh 92.08 17.38 87.04 19.91 p 98.05 7.15 97.48 9.30
ow 96.80 10.24 93.65 14.46 r 97.20 9.11 95.29 12.31
uh 93.28 12.72 86.64 19.77 s 98.74 4.51 96.57 11.20
uu 86.91 20.89 72.64 27.91 sh 95.67 8.43 72.16 28.79
uw 84.57 29.93 77.13 31.42 t 97.14 10.26 96.29 12.71
uy 97.31 6.64 87.25 19.10 v 98.43 6.17 97.40 9.94

wv 94.68 15.63 93.68 15.52
x 97.90 8.26 97.75 8.63
y 89.42 25.05 85.99 26.53
z 98.28 5.31 95.66 12.75
zh 96.24 NaN 70.87 40.07

Table 7 shows that the mean probability scores of most phonemes are similar between
native and non-native speech. Most phonemes are above 90. The probability of phoneme
“g” is low in both groups (34.18 for native speech, and 44.99 for non-native speech). We
looked into the words containing the “g” sound, most of them are English words since the “g”
sound does not occur in Dutch words. The only two Dutch words containing the “g” sound
are words “stokbrood”, “honkbal” and its plural form “honkballen”. The “g” sound in these
words is a result of voice assimilation. The voiceless velar “k” changes to a voiced velar stop.
However, the velar stop “g” is different from the English “g”, which leads to low probability.
the confidence scores for “hh” and “y” are slightly lower than those of other consonants in
both groups. For native speech we observe slightly higher scores in vowels like “eu”, “uu” and
“uy”. However, score differences for these vowels between the two groups are still below 20.

S. Wills, Y. Bai, C. Tejedor-García, C. Cucchiarini, and H. Strik 7:7

5 Discussion

In the present study we investigated the performance of the latest state-of-the-art ASR
systems on Dutch child speech to determine to what extent this technology can be employed
to process extemporaneous speech produced by non-native children learning Dutch. As to
our research question on how these ASR systems fare on extemporaneous, Dutch non-native
child speech (RQ1), the results indicate that recent, pre-trained transformer-based models
like Wav2Vec2.0 and Whisper obtain reasonable performance. Of these two transformer-
based models, Whisper achieves the better performance. While not further explored in this
paper, Whisper also has the advantage of producing punctuation. As to our second research
question (RQ2) regarding the performance difference between native and non-native, read
and extemporaneous speech, the results show that ASR performance is better for native than
non-native speech, as expected. Similarly, better results were observed for read speech over
extemporaneous speech. In particular, the results for read speech appear to be much better
for the group of native speakers. There are two possible explanations for this finding. As
native speakers, these children can read much better in Dutch. In addition, their realizations
of the Dutch sounds are more accurate, which leads to better ASR performance.

To gain a deeper understanding of these differences, we extracted information about
several aspects of speech quality that provide insights into language proficiency. We first
analyzed differences in temporal measures such as articulation rate, duration and fluency
and vocabulary-based measures such as number of words and vocabulary size. Temporal
and fluency measures indicate that native speakers are much more fluent than non-native
speakers. They speak faster and produce fewer dysfluencies, which is in line with previous
research findings [6]. With respect to the amount of speech produced, the results show that
the non-native speakers are surprisingly more talkative. They seem to produce longer replies
to the questions posed by the computer, which contain more words, but these words appear
to be shorter and often interrupted.

For pronunciation quality, however, we did not see considerable differences between native
and non-native speakers. ASR-based confidence scores for individual speech sounds do not
seem to differ between the two groups of native and non-native speakers, which is surprising.

It is clear that further research is needed to gain more insights into the differences
between native and non-native speech and the way in which these affect ASR performance.
Nevertheless, is is interesting to see that many of the results obtained through manual
transcriptions do not differ considerably from those based on ASR output. This means that
this technology has the potential to facilitate future analyses of non-native speech in the
context of language learning and language evaluation as well as the design and development
of innovative language learning applications.

6 Conclusions

The results of the present study on the suitability of state-of-the-art ASR technology for
Dutch non-native read and extemporaneous child speech allow us to conclude that in spite of
the considerable challenges recent, transformer-based models open up new perspectives for
applying this technology in educational applications. The use of ASR technology also makes
it possible to extract additional measures that provide insights into language proficiency. As
has been shown previously [5] completely correct performance is not necessarily required to
be able to realize pedagogically sound language learning applications.

SLATE 2023

7:8 ASR of Non-Native Child Speech

References
1 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A

framework for self-supervised learning of speech representations. Advances in neural information
processing systems, 33:12449–12460, 2020.

2 Yu Bai, Ferdy Hubers, Catia Cucchiarini, and Helmer Strik. ASR-Based Evaluation and
Feedback for Individualized Reading Practice. In Proc. Interspeech 2020, pages 3870–3874,
2020. doi:10.21437/Interspeech.2020-2842.

3 Max Bain, Jaesung Huh, Tengda Han, and Andrew Zisserman. Whisperx: Time-accurate
speech transcription of long-form audio. arXiv preprint arXiv:2303.00747, 2023.

4 Mohamed Benzeghiba, Renato De Mori, Olivier Deroo, Stephane Dupont, Teodora Erbes,
Denis Jouvet, Luciano Fissore, Pietro Laface, Alfred Mertins, Christophe Ris, et al. Automatic
speech recognition and speech variability: A review. Speech Communication, 49(10):763–786,
2007. Intrinsic Speech Variations. doi:10.1016/j.specom.2007.02.006.

5 Catia Cucchiarini, Ambra Neri, and Helmer Strik. Oral proficiency training in dutch l2: The
contribution of asr-based corrective feedback. Speech Commun., 51:853–863, 2009.

6 Catia Cucchiarini, Helmer Strik, and Lou Boves. Quantitative assessment of second language
learners’ fluency: comparisons between read and spontaneous speech. The Journal of the
Acoustical Society of America, 111 6:2862–73, 2002.

7 Catia Cucchiarini, Hugo Van hamme, Olga van Herwijnen, and Felix Smits. Jasmin-cgn:
Extension of the spoken dutch corpus with speech of elderly people, children and non-
natives in the human-machine interaction modality. In Proceedings of the Fifth International
Conference on Language Resources and Evaluation (LREC’06), Genoa, Italy, May 2006.
European Language Resources Association (ELRA). URL: http://www.lrec-conf.org/
proceedings/lrec2006/pdf/254_pdf.pdf.

8 Joost Doremalen, Catia Cucchiarini, and Helmer Strik. Optimizing automatic speech recogni-
tion for low-proficient non-native speakers. EURASIP Journal on Audio, Speech, and Music
Processing, 2010, January 2010. doi:10.1155/2010/973954.

9 Roberto Gretter, Marco Matassoni, Daniele Falavigna, A Misra, Chee Wee Leong, Katherine
Knill, and Linlin Wang. Etlt 2021: Shared task on automatic speech recognition for non-native
children’s speech. In Interspeech, pages 3845–3849, 2021.

10 Denis Liakin, Walcir Cardoso, and Natallia Liakina. Learning l2 pronunciation with a mobile
speech recognizer: French/y/. Calico Journal, 32(1):1–25, 2015.

11 Ikuyo Masuda-Katsuse. Pronunciation practice support system for children who have difficulty
correctly pronouncing words. In Fifteenth Annual Conference of the International Speech
Communication Association, 2014.

12 Susana Perez Castillejo. Automatic speech recognition: Can you understand me? Research-
publishing. net, 2021.

13 Martin Raab, Rainer Gruhn, and Elmar Noeth. Non-native speech databases. In 2007 IEEE
Workshop on Automatic Speech Recognition & Understanding (ASRU), pages 413–418, 2007.
doi:10.1109/ASRU.2007.4430148.

14 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya
Sutskever. Robust speech recognition via large-scale weak supervision. arXiv preprint
arXiv:2212.04356, 2022.

15 Martin Russell and Shona D’Arcy. Challenges for computer recognition of children’s speech.
In Workshop on speech and language technology in education, 2007.

16 Cristian Tejedor-García, David Escudero-Mancebo, Valentín Cardeñoso-Payo, and César
González-Ferreras. Using challenges to enhance a learning game for pronunciation training of
English as a second language. IEEE Access, 8:74250–74266, 2020. doi:10.1109/ACCESS.2020.
2988406.

17 Shelley Shwu-Ching Young and Yi-Hsuan Wang. The game embedded call system to facilitate
english vocabulary acquisition and pronunciation. Journal of Educational Technology & Society,
17(3):239–251, 2014.

https://doi.org/10.21437/Interspeech.2020-2842
https://doi.org/10.1016/j.specom.2007.02.006
http://www.lrec-conf.org/proceedings/lrec2006/pdf/254_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/254_pdf.pdf
https://doi.org/10.1155/2010/973954
https://doi.org/10.1109/ASRU.2007.4430148
https://doi.org/10.1109/ACCESS.2020.2988406
https://doi.org/10.1109/ACCESS.2020.2988406

OCRticle - a Structure-Aware OCR Application
Sofia G. Rodrigues dos Santos # Ñ

Informatics Department, University of Minho, Braga, Portugal

J. João Dias de Almeida #

ALGORITMI/LASI, University of Minho, Braga, Portugal

Abstract
While there are currently many applications and websites capable of performing Optical Character
Recognition (OCR), none of the widely available options offer structured OCR, i.e., OCR that
maintains the text’s original structure. For example, if a document has a title, after performing
OCR on it, the title should have a different formatting, in order to distinguish it from the rest of
the text.

This paper covers the topic of structure-aware OCR, first by describing the current state of OCR
tools, then by showcasing a prototype tool capable of retaining the structure of articles scanned
from an image.

2012 ACM Subject Classification Applied computing → Optical character recognition

Keywords and phrases OCR, Optical Character Recognition, Data Structure, Data Parsing, Docu-
ment Structure

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.8

Supplementary Material Software (Source Code): https://github.com/RisingFisan/OCRticle
archived at swh:1:dir:651451c61ae5fca1265a703ed38eab264bb82551

Funding This work has been supported by FCT Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020.

1 Introduction

Currently, most Optical Character Recognition (OCR) tools are limited to a textual output.
In other words, if someone is scanning an image that contains text with varying font sizes,
indentation or colors, for example, inputting this image into an OCR tool will generate a
string of pure text without any of that “extra” information. When scanning documents like
newspaper or magazine pages, it becomes important to retain that information, otherwise it
becomes much harder to identify features of the text like titles or captions.

The main goal of this paper is to provide a critical assessment of OCR tools, their
strengths and limitations, and to showcase a prototype tool capable of performing OCR
while keeping the original text’s structure as intact as possible.

2 State of the Art

This section covers the current state of OCR tools and some of their main features. It also
mentions and describes Tesseract, one of the most used OCR engines nowadays.

2.1 OCR Tools
Most available OCR tools can be described as “basic”, and a simple online search for the
term “online OCR” will reveal hundreds of websites that perform this type of OCR. Using
these tools, a user can upload a file, usually an image, and the tool will process it and return
a string of text that it found on the image. These tools offer very little customization or

© Sofia G. Rodrigues dos Santos and J. João Dias de Almeida;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 8; pp. 8:1–8:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d13177@di.uminho.pt
https://github.sofiars.xyz/RisingFisan/
https://orcid.org/0009-0003-5510-9556
mailto:jj@di.uminho.pt
https://doi.org/10.4230/OASIcs.SLATE.2023.8
https://github.com/RisingFisan/OCRticle
https://archive.softwareheritage.org/swh:1:dir:651451c61ae5fca1265a703ed38eab264bb82551;origin=https://github.com/RisingFisan/OCRticle;visit=swh:1:snp:593847b67251125fe609fdd4fff83455aae863de;anchor=swh:1:rev:32fb374df2f7006efc150f0fcac3e4679902f341
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

8:2 OCRticle - a Structure-Aware OCR Application

extra features, as they are meant to be used by anyone, regardless of previous knowledge in
character recognition software, with most of them only allowing users to select the language
in which the text is written and if the output file should be a text file, a PDF file or a
Microsoft Word file, for example [12][14].

Table 1 contains a list of some popular OCR tools [10] and the main features supported
by each. This list only includes tools that can be used for free. Paid tools tend to offer most,
if not all of these features, but we did not find any additional feature offered by a paid tool
that was not also part of a free tool. By default, all of these tools support textual output.

Table 1 Comparison of some OCR tools.

Tool Recognize text
in Portuguese Auto-rotation Table

recognition

Restrict OCR
to part

of file/image

Create
searchable

PDF

Create
DOCX file

OCRSpace [11] X X X X
FreeOCR [3] X
OnlineOCR [12] X X X X X
Google Lens [4] X X X
Text Grab [19] X

One of these OCR tools that stands out from the rest is Google Lens [4]. This tool,
available on mobile devices, allows the user to use their smartphone’s camera to capture
an image containing text. After taking this picture, the user can interactively select and
copy the text recognized in the picture. Google Lens also excels at recognizing handwritten
text and other kinds of text that traditional tools struggle with [20], mainly due to Google’s
investment in Machine Learning algorithms.

Some tools also offer the possibility to create a special PDF file containing the original
scanned document, but with an invisible text layer above the images [5]. This way, users
can still see the original document but also select the text found in it, as if it were a regular
PDF file. This method is a possible solution to structure-aware OCR, and is used by search
engines in order to find text in PDF files composed only of images [6]. However, the text
itself is not structured, it only appears to be, thus it is not the best solution for structured
OCR.

It’s worth noting that different tools have different use cases, and therefore might not
have the need for all of the features shown in Table 1. For example, Google Lens uses a
smartphone’s camera to capture and detect text, unlike the other tools, and Text Grab allows
the user to take a screenshot of their computer and immediately recognize text from the
captured image, so it makes sense that these tools wouldn’t focus on features like creating
searchable PDF files.

2.2 OCR Engines
Although the aforementioned tools perform optical character recognition, they are merely
wrappers for OCR engines. An OCR engine is the software responsible for recognizing the
characters in an image and converting them to text [1]. Applications like Text Grab use these
engines to bring OCR functionality to their tools, and are meant to be more user-friendly
and intuitive than purely using an engine.

One of the most widely used OCR engines is called Tesseract. It can be used directly
via command line, through a 3rd party tool or by using an API written for a programming
language [15]. Examples of Tesseract APIs include Python-tesseract [13] or Tesseract.js [17],
which can be used by programmers to create applications with OCR functionalities.

S. G. Rodrigues dos Santos and J. J. Dias de Almeida 8:3

Tesseract supports dozens of languages [18] and offers a wide assortment of options [15].
One of these is related to page segmentation, and affects how Tesseract detects text in an
image. By default, Tesseract tries to divide the original picture into segments, which can be
titles or columns of text, for example. Then, it performs OCR on each of those segments.
If the output format is a textual format, this will mean that the final text will be split
into segments. However, each one of these segments has the same font and size, making
it impossible to distinguish between a title and a regular sentence, for example, without
additional context. This default behavior can be modified or disabled, if one desires.

Additional options include output formatting, which can be a PDF file, a text file or
an hOCR file (HTML compatible file, with additional information about the original text’s
structure), for example, or an option to let Tesseract detect words from a user-provided list.

Since Tesseract is mainly an OCR engine, its image processing capabilities [16] may not
be adequate for all use cases, which leads many users to apply pre-processing effects to
their images before inputting them in Tesseract, in order to improve the text detection [9].
These may include changes in contrast, brightness, size or even converting the image to
black-and-white, to avoid issues with colored text/backgrounds.

3 Problem Definition

This paper proposes the creation of a program capable of performing Optical Character
Recognition on a file, while maintaining its original structure. For this purpose, a prototype
called OCRticle was developed, in order to showcase the benefits of this approach to OCR.
Unlike already existing solutions that convert a file to a PDF file with invisible text, this
tool creates a purely textual file. In order to have a structured textual file, this application
uses Markdown [2], a markup language [7], in the generated files.

3.1 Program Specifications
OCRticle is a desktop application developed in the Python programming language. This
decision stems from the authors’ experience with Python and the ability to easily and rapidly
create a command-line or graphical application with Python. Tesseract is used for the OCR
component of the application, along with pytesseract, Python’s Tesseract API [13].

The application focuses primarily on detecting text from newspapers or magazine pages,
essentially pages with one or more articles, as its name implies. In practice, it can scan any
type of document, but it might not be able to preserve its structure entirely.

OCRticle has a Graphical User Interface (GUI), developed using the Kivy framework [8],
where a user can select a source image containing the article(s) they want to convert. Then,
they can select each article’s position within the image. This allows the tool to focus less on
discerning between different articles and more on formatting each one independently. After
this step, the tool performs OCR on each image section and display the results to the user,
who can then save the detected text in a Markdown file or perform some minor adjustments
to the final document’s structure.

3.2 System Architecture
The system follows an architecture similar to the one shown in Figure 1.

OCRticle is composed of a front-end and a back-end. The front-end is responsible for
user interaction and uses the Kivy module to render a GUI. After receiving user input, the
front-end sends data to the back-end, the “brain” of the program. The back-end processes

SLATE 2023

8:4 OCRticle - a Structure-Aware OCR Application

Figure 1 System architecture diagram. Interactions within OCRticle are represented with solid
lines and interactions with the “outside” are represented with dotted lines.

data and generates results, in this case, a formatted article or group of articles. It also
communicates with Tesseract, sending it images and receiving data about the text present in
them.

4 Development

This section covers the development steps of OCRticle.
The first step in development consisted of creating a simple program capable of converting

an image into an intermediate representation (IR). This IR holds information about the
text and additional context about the OCR process, for example, the dimension of the
bounding box where the text was located. The pytesseract module already has a method
image_to_data which can convert an image into a data structure (e.g., TSV file, dictionary
or pandas dataframe). However, this data structure contains more data than necessary, so
it became necessary to simplify it and make it easier to navigate and access. Hence, this
information is filtered and converted into instances of Python classes.

4.1 Classes
Four classes were created for this purpose: Article, Block, Paragraph and Line. The last three
classes simply mirror the information returned by pytesseract, which splits text into pages,
blocks, paragraphs, lines and words. Since this tool will only work with individual pages, the
first category is not needed, and the fifth category, words, is represented as a list in the Line
class, since there is no need to store extra information about each word. Besides a list of
words, the Line class also contains information about its height. This information is useful
because Tesseract might sometimes classify two lines as being part of different paragraphs, or
two paragraphs as being part of different blocks, which is not always the case. If we assume
that lines of the same paragraph and paragraphs of the same block should have text of the
same size, by storing each line’s height, we can compare the height of different lines and
paragraphs, and infer if two lines/paragraphs should be part of the same paragraph/block.
For this purpose, the Paraphaph class contains a get_line_height method, which returns
the average height of all its lines. Similarly, the Block class contains an equal method, but
one which returns the average height of its paragraphs’ lines.

S. G. Rodrigues dos Santos and J. J. Dias de Almeida 8:5

Blocks have an additional attribute, type, which can be one of four different values:
TITLE, TEXT, QUOTE, or CODE. These types should match the role of the text inside the
block in the original article. When saving the final file generated by OCRticle, each block
type has a different representation, according to the Markdown syntax [2].

Figure 2 illustrates the internal representation of an article.

Figure 2 Article internal structure - example.

This particular article is composed of three blocks, one of which is the article’s title,
another a block of text, and the third one a quote.

4.2 Graphical User Interface
After these classes were developed, the main step in creating OCRticle arose, building the
GUI.

4.2.1 Image selection and preprocessing
When opening the application, the interface contains a window where the user can select an
image to be analyzed. This step can be skipped if OCRticle is opened through the command
line and given a file path as an argument.

After selecting an image, the next window of the application allows the user to select the
articles present in the image by drawing rectangles over them. Optionally, users can select
areas for the program to ignore. For example, if the original articles contain images with
text, one could select the image as an area to be excluded, so that Tesseract won’t detect the
text in the image. Additionally, if an image has many articles and the user only wants to run
OCRticle on some of them, they can just select the articles that they want from the image,
instead of having to perform OCR on the entire document or manually cropping the image.

There are also options to control the image’s brightness, contrast, and saturation. This is
particularly useful if the original image is not well-lit or has a lot of colors in it.

4.2.2 Text detection and formatting
After the user selects the articles in the image, OCRticle divides the image into segments,
based on the drawn rectangles, and feeds those segments to Tesseract, which proceeds to
detect the text within those images. Then, the tool creates instances of the Article class,
each containing the text from a different article. When creating these instances, the program
perform an optimization step, where it tries to group together different blocks or paragraphs,

SLATE 2023

8:6 OCRticle - a Structure-Aware OCR Application

based on how they end. For example, if a paragraph ends with a hyphen and the next one
begins with a lowercase letter and both paragraphs have the same line height, it probably
means that Tesseract failed to detect both lines as part of the same paragraph, and the
program will try to automatically fix that mistake.

In addition, OCRticle also tries to detect an article’s title. To do this, it analyses every
block from the scanned text and finds the one with the biggest font size, which it then tags
as the article’s title. In the final file, this is represented with a pound sign (#) before the
block, which is used in Markdown to define a heading. If every block has a similar font size,
OCRticle doesn’t do anything, to avoid mislabeling a block, although this can still happen if
the block with the biggest font size is not the article’s title.

In case of mislabeling, OCRticle allows the user to manually label each detected block
before saving the final file. These labels correspond to the block types mentioned previously.
OCRticle also joins blocks that it believes are similar enough to be of the same type. For
example, if an article has two columns, each with some paragraphs, and Tesseract returns one
block for each column, OCRticle will try to figure out if those blocks have the same structure
and should therefore be merged. If OCRticle doesn’t merge two blocks, for some reason, the
user can perform that merge automatically, though a button in the article preview screen.

Another feature offered by OCRticle, which is not present in most OCR tools, is the
possibility to include or exclude line breaks inside each paragraph. Typical OCR tools, when
scanning a document, will preserve each line in the original image as a separate line in the
final text. However, in the original document, the text is only split into multiple lines due to
the limited size of the paper. On a computer screen, which is typically wider than a piece of
paper, it might not make sense to preserve the original line breaks. Therefore, after scanning
a picture, there’s an option in the application to remove the original line breaks, and keep
each paragraph as a single continuous line. This behavior mimics computer text editors,
like Microsoft Word, where the line breaks are artificially created by the software in order
to make the text fit in the screen, while the text remains stored as a single line. Figure 3
illustrates this difference, with the newline characters highlighted in red.

Figure 3 Distinct options for line breaks in output file. The first option mimics the original
image.

Line breaks will always be removed in titles because headings in Markdown must consist
of a single line.

4.2.3 File saving

After a user has confirmed the labels for each articles’ blocks, OCRticle allows them to save
the formatted text as a Markdown file. This file can then be opened in a Markdown viewer
and it will be displayed according to the preferences set by the user before saving.

S. G. Rodrigues dos Santos and J. J. Dias de Almeida 8:7

5 Usage Example

This section illustrates a usage scenario for OCRticle.
In this scenario, a user called Sam wants to convert an image with an article to text while

keeping the article’s structure, so Sam uses OCRticle for this purpose. Sam’s original image
can be seen in Figure 4.

Figure 4 Image that Sam wants to convert to structured text.

Sam starts by opening OCRticle and selecting the image from their computer. This
particular image is stored as a PNG file, but Tesseract accepts any kind of image format.

Then, OCRticle asks Sam to select the article or articles from the image. Since this image
only has one article, Sam can simply press “Submit” and OCRticle assumes that the entire
image contains just one article. However, since the image also contains an advertisement,
Sam uses the “Exclude from article” drawing mode to draw a red rectangle over the banner,
thus excluding it from being scanned by Tesseract.

In addition, since the image has a purely white background and black text, Sam has no
need to use the brightness, contrast or saturation sliders. However, these options would be
useful if the image did not have a white background, or if it wasn’t bright enough for the
text to be easily read.

After pressing “Submit” on the article selection screen, Sam is taken to the next window,
the article preview screen.

Here, the text from the image is divided into logical blocks, each representing a section of
the original article. OCRticle correctly identified the article’s title, but it didn’t identify the
quote block as being a quote, instead labeling it as “TEXT”. Thus, Sam proceeds to click on
the “TEXT” button besides the corresponding block, which opens a drop-down menu where
they can select the “QUOTE” option, changing the block into a quote block.

The first two paragraphs of the text were split into different blocks because of the empty
space in the image caused by the removal of the advertisement. Therefore, Sam presses the
“Merge above” button on the second text block, in order to merge it with the first.

Sam also selects the “Keep line breaks” option, since they want the final text to match
the original image as best as possible.

SLATE 2023

8:8 OCRticle - a Structure-Aware OCR Application

Figure 5 Article selection screen. The red rectangle represents an “exclusion zone” that won’t be
considered by OCRticle.

Figure 7 shows the same screen as Figure 6, but now with Sam’s changes applied to the
article.

Finally, Sam presses the “Save article(s)” button, which takes them into the final screen
of the application, where Sam is asked to save a file containing the text from the previous
screen, correctly formatted. For this example, the generated file can be seen in Figure 8.

Both the article’s title and the quote are correctly identified, according to Markdown
syntax.

6 Case study

Throughout OCRticle’s development, several tests were conducted with all kinds of images. In
order to verify how OCRticle fared against real pictures, instead of just computer screenshots,
we used pictures of newspaper clippings or pages. One of those tests, which was performed
with a Portuguese newspaper from 1928, is described below.

Figure 9 shows the newspaper page in question, which was given to both Tesseract and
OCRticle.

Due to the color of the paper and to the fact that Tesseract’s Portuguese dictionary does
not contain some of the old words used in these articles, the results from just using Tesseract
for OCR are rather poor.

The full output was too large to be included in this paper, but this snippet, which
corresponds to the top left article from Figure 9 shows clearly that plain Tesseract does a
bad job at detecting text from this image:

Instalação da Comissão Administra-
realisada no dia à do corrente.

| Snr. Presidente da C. A. da
“pelo Snr. Governador Ci-
rmos do $ 3.º do art. 2.º
eto de 31 de Dezembro
“nomeado Administrador
ncelho, cargo que actual-
erce e assim nos termos

S. G. Rodrigues dos Santos and J. J. Dias de Almeida 8:9

Figure 6 Article preview screen.

Figure 7 Article preview screen after Sam’s changes.

1 presidiu a esta sessão.

Designou o dia para as ses-
uartas feiras pelas 15

gusto Barreira.

expostos; Dr.

jaldio:
ndes

juzir esta secção.

o — Mesa da Camara:

te Dr. Gonçalo Monteiro
; Vice-presidente Dr.
aquim Machado Guima-

SLATE 2023

8:10 OCRticle - a Structure-Aware OCR Application

Figure 8 File containing Sam’s article.

Secretario Juão Rodrigues.
ice-secretario Guilher-

ibuição de plouros: Presi-
Instrução, Fazenda, Po-
José J.
ado Guimarães — Taipas e
e; João Rodrigues Lourei-
Ss, Aguas e Incendios ;
Ribeiro Guima-
Pevidem; Guilhermino Au-
Barreira — Obras, Viação,
ro, Limpeza e Cemiterio;
os Pereira Mendes — Im-
Feiras, Mercados, e Luz;
o Alves — Vizela.

On the other hand, with OCRticle, text detection improves a fair amount, substantially
in some cases. The last two articles from the original image were detected and processed
by OCRticle as follows (consecutive blank lines have been suppressed in order to preserve
space):

rto, 3

ate da a Cates.

Maior,

tos

tie.

to Meão de 5 comr Dr. o Rigusto

as

gos com mais renc Por is: Comissão a sua ati para con verba n.º AE to ordina sob a ileg
des» put oficial da proximo | na «Desp rubrica «] económic:

Que los e aprovac plementar começo a:

Viagem de estudo

S. G. Rodrigues dos Santos and J. J. Dias de Almeida 8:11

Figure 9 Image of a 1928 Portuguese newspaper used for testing.

Acompanhados de dois Professores, os Snrs. Drs. Vieira Brito e Correia Cardoso, chegaram
ante- -ontem aqui, no comboio das 19,30, 47 alunos do Liceu Central José Falcão, de

Coimbra.

Visitaram o nosso Liceu, Castelo, Sociedade Martins Sarmento e vários Monumentos que
muito apreciaram, lastimando, porem, o estado de ruina em que se encontram os Claustros
da Oliveira.

Os nossos simpaticos hospedes deram hontem um espectaculo em o nosso S. Carlos,

O programa anunciado foi cumprido rigorosamente deixando nos espectadores agradavel
impressão.

Houve alegria e graça, sendo os simpaticos rapazes muito aplaudidos. «Pepita Graiêra», a
mais linda hespanhola que até hoje nos tem visitado, e que mereceu as honras da noite, na
exibição dos seus apreciadissimos bailados, ficou muito penhorada ao ser destinguida com
os camarins do palco, graca que a empresa exploradora do D. Afonso, só costuma conceder
às grandes celebridades, que raro veem a Guimarães.

A formosíssima hespanhola, das

Ultima notícia

As 3 horas

Foi hoje notificado o chefe da Repartição Municipal de Saúde do encerramento do Posto
Médico, cessando as gratificações e salários ao pessoal:

SLATE 2023

8:12 OCRticle - a Structure-Aware OCR Application

On the last article, OCRticle was able to maintain 100% of the original text and structure.
However, the other article has many problems on the first half. This is mostly due to the
fact that this article’s title, on the original image, is below some of the text, which causes
Tesseract to become confused.

Figure 10 shows how the articles were selected in OCRticle. Moreover, the image was
converted to black-and-white and its brightness and contrast were increased using OCRticle’s
sliders, which also improved text detection.

Figure 10 Article selection screen for the 1928 newspaper image.

The issue with the penultimate article can be alleviated by selecting the two columns as
separate articles (i.e., as non-intersecting rectangles) in OCRticle. In Figure 10, since the
two rectangles over the article are intersecting, OCRticle considers them to be part of the
same article. When using two different rectangles, the following output is obtained:

Viagem de estudo

Acompanhados de dois Professores, os Snrs. Drs. Vieira Brito e Correia Cardoso, chegaram
ante- -ontem aqui, no comboio das 19,30, 47 alunos do Liceu Central | José Falcão, de
Coimbra. -

Visitaram o nosso Liceu, Cas- | telo, Sociedade Martins Sarmento e vários Monumentos que
muito apreciaram, lastimando, porem, o estado de ruina em que se encontram os Claustros
da Oliveira.

Os nossos simpaticos hospedes deram hontem um espectaculo em o nosso S. Carlos,

O programa anunciado foi cumprido rigorosamente deixando nos espectadores agradavel
impressão.

Houve alegria e graça, sendo os simpaticos rapazes muito aplaudidos. «Pepita Graiêra», a
mais linda hespanhola que até hoje nos tem visitado, e que mereceu as honras da noite, na
exibição dos seus apreciadissimos bailados, ficou muito penhorada ao ser destinguida com
os camarins do palco, graca que a empresa exploradora do D. Afonso, só costuma conceder
às grandes celebridades, que raro veem a Guimarães.

A formosíssima hespanhola, das

S. G. Rodrigues dos Santos and J. J. Dias de Almeida 8:13

margens do Mondego, imprecionadíssima com tanta gentileza por tão luxuoso aposento, teve
expressões amaveis para o «arquitecto» amador Snr. Luiz do Souto a quem se deve aquela
obra d’arte. E num requinte de galanteria, que muito sensibilisou o Snr. Souto,
ofereceu-lhe, como singela prova de gratidão, uma almotolia de azeite para desinferrujar
a velha e arrelienta engrenagem do pano de boca.

O Snr. Souto ultra sensibilisado, corou... sorriu... e osculou a mão graciosa da
apreciada «tonadillera». —No espectaculo dos estudantes do Liceu de Coimbra presenceamos
um facto que a autoridade tem de reprimir.

Jogou-se ali o carnaval, como é proprio da quadra que atravessamos, mas o que é impróprio,
o que é mesmo imperdoavel, é que as serpentinas se apanhem, em rôlos, do chão e se joguem
para os camarotes ou para os espectadores da plateia.

Em terra alguma que se diga civilizada tal abuso é imediatamente castigado.

Além de ser anti-higienico, denota pelintrice.

Quem não tem dinheiro pastante para se divertir deixa-se estar quêdo, como está a grande
maioria.

Paro o caso chamamos a atencão da Autoridade, e da propria Direcção do Teatro.

Ou não teremos razão?!

While not a perfect solution, it substantially improves text detection. One would just
need to delete the three dashes between both text blocks (they are introduced by OCRticle
to separate distinct articles within the same file) in order to manually merge both articles.

The only remaining issue with OCRticle’s output is the occasional appearance of vertical
bars, colons or hyphens which don’t appear in the original text. This happens because the
paper on the original image has some imperfections, like folds or signs of age, which confuse
Tesseract. While converting the image to black-and-white fixes some of these issues, it’s
impossible to fully remove these imperfections without manually editing the image. Another
method to fix these errors would be to develop an algorithm to detect these “intruders” and
remove them. However, this introduces a new problem, i.e., how do we detect if a vertical bar
or other erroneous text element is supposed to be in the text or not. With OCRticle, since
the main focus was text detection and not necessarily text correction, we followed a more
conservative approach, and decided to let each individual user deal with these imperfections,
instead of trying to automatically fix them. However, a future version of OCRticle could
possess such a feature, even if optional or togglable.

7 Conclusion

This paper showcased OCRticle, a prototype software capable of performing Optical Character
Recognition on articles while maintaining the article’s original structure. OCRticle is able
to successfully receive an image with its articles highlighted and extract them in textual
format. It’s able to automatically detect some types of text blocks, like titles, marking them
as such in the generated Markdown file. The case studies shown in the previous section
demonstrated that, although not perfect, OCRticle is a much more valuable solution than
just using Tesseract when performing OCR on an image with one or more articles, even more
so if one wishes to keep the text’s original structure.

SLATE 2023

8:14 OCRticle - a Structure-Aware OCR Application

7.1 Release
OCRticle is publicly available for download and installation on PyPI, at https://pypi.org/
project/ocrticle/, and on GitHub, at https://github.com/RisingFisan/OCRticle.

On Unix systems, it can be installed by first installing Tesseract and then running pip
install ocrticle. On Windows systems, due to external dependencies, installation using
pip may fail. Therefore, an executable file is available for download on the project’s GitHub
page. Tesseract installation is still required for Windows users.

References
1 What is ocr (optical character recognition)? - aws. URL: https://aws.amazon.com/what-is/

ocr/.
2 Matt Cone. Markdown guide. URL: https://www.markdownguide.org/.
3 Freeocr. URL: http://www.paperfile.net/.
4 Search what you see. URL: https://lens.google/.
5 Trey Harris. Converting a scanned document into a compressed, searchable pdf with redactions,

September 2022. URL: https://medium.com/@treyharris/converting-a-scanned-
document-into-a-compressed-searchable-pdf-with-redactions-63f61c34fe4c.

6 Google answers whether it’s better to ocr text in pdfs or not, August 2022. URL:
https://iloveseo.com/seo/google-answers-whether-its-better-to-ocr-text-in-pdfs-
or-not/.

7 An introduction to markup. URL: https://port.sas.ac.uk/mod/book/view.php?id=568&
chapterid=336.

8 Kivy: Cross-platform python framework for gui apps development. URL: https://kivy.org/.
9 Kaan Kuguoglu. How to use image preprocessing to improve the ac-

curacy of tesseract, July 2021. URL: https://towardsdatascience.com/
getting-started-with-tesseract-part-ii-f7f9a0899b3f.

10 12+ best free ocr software for windows [2022 updated list], September 2022. URL: https:
//www.softwaretestinghelp.com/ocr-software-for-pc/.

11 Ocrspace. URL: https://ocr.space/.
12 Image to text converter using ocr online. URL: https://www.onlineocr.net/.
13 Pytesseract. URL: https://pypi.org/project/pytesseract/.
14 Online ocr - free ocr pdf document scanner & converter. URL: https://www.sodapdf.com/

ocr-pdf/.
15 Tesseract user manual. URL: https://tesseract-ocr.github.io/tessdoc/.
16 Improving the quality of the output - tesseract documentation. URL: https://tesseract-ocr.

github.io/tessdoc/ImproveQuality.html.
17 Tesseract.js: Pure javascript ocr for 100 languages! URL: https://tesseract.projectnaptha.

com/.
18 Languages supported in different versions of tesseract. URL: https://tesseract-ocr.github.

io/tessdoc/Data-Files-in-different-versions.html.
19 TheJoeFin. Thejoefin/text-grab: Use ocr in windows 10 quickly and easily with text grab. with

optional background process and popups. URL: https://github.com/TheJoeFin/Text-Grab.
20 James Vincent. Google lens can now copy and paste handwritten notes to

your computer, May 2020. URL: https://www.theverge.com/2020/5/7/21250556/
google-lens-copy-paste-handwritten-notes-computer-phone-ios-android.

https://pypi.org/project/ocrticle/
https://pypi.org/project/ocrticle/
https://github.com/RisingFisan/OCRticle
https://aws.amazon.com/what-is/ocr/
https://aws.amazon.com/what-is/ocr/
https://www.markdownguide.org/
http://www.paperfile.net/
https://lens.google/
https://medium.com/@treyharris/converting-a-scanned-document-into-a-compressed-searchable-pdf-with-redactions-63f61c34fe4c
https://medium.com/@treyharris/converting-a-scanned-document-into-a-compressed-searchable-pdf-with-redactions-63f61c34fe4c
https://iloveseo.com/seo/google-answers-whether-its-better-to-ocr-text-in-pdfs-or-not/
https://iloveseo.com/seo/google-answers-whether-its-better-to-ocr-text-in-pdfs-or-not/
https://port.sas.ac.uk/mod/book/view.php?id=568&chapterid=336
https://port.sas.ac.uk/mod/book/view.php?id=568&chapterid=336
https://kivy.org/
https://towardsdatascience.com/getting-started-with-tesseract-part-ii-f7f9a0899b3f
https://towardsdatascience.com/getting-started-with-tesseract-part-ii-f7f9a0899b3f
https://www.softwaretestinghelp.com/ocr-software-for-pc/
https://www.softwaretestinghelp.com/ocr-software-for-pc/
https://ocr.space/
https://www.onlineocr.net/
https://pypi.org/project/pytesseract/
https://www.sodapdf.com/ocr-pdf/
https://www.sodapdf.com/ocr-pdf/
https://tesseract-ocr.github.io/tessdoc/
https://tesseract-ocr.github.io/tessdoc/ImproveQuality.html
https://tesseract-ocr.github.io/tessdoc/ImproveQuality.html
https://tesseract.projectnaptha.com/
https://tesseract.projectnaptha.com/
https://tesseract-ocr.github.io/tessdoc/Data-Files-in-different-versions.html
https://tesseract-ocr.github.io/tessdoc/Data-Files-in-different-versions.html
https://github.com/TheJoeFin/Text-Grab
https://www.theverge.com/2020/5/7/21250556/google-lens-copy-paste-handwritten-notes-computer-phone-ios-android
https://www.theverge.com/2020/5/7/21250556/google-lens-copy-paste-handwritten-notes-computer-phone-ios-android

Narrative Extraction from Semantic Graphs
Daniil Lystopadskyi #

Faculty of Sciences, University of Porto, Portugal

André Santos #

CRACS & INESC TEC, Porto, Portugal
Faculty of Sciences, University of Porto, Portugal

José Paulo Leal #

CRACS & INESC TEC, Porto, Portugal
Faculty of Sciences, University of Porto, Portugal

Abstract
This paper proposes an interactive approach for narrative extraction from semantic graphs. The
proposed approach extracts events from RDF triples, maps them to their corresponding attributes,
and assembles them into a chronological sequence to form narrative graphs. The approach is
evaluated on the Wikidata graph and achieves promising results in terms of narrative quality and
coherence. The paper also discusses several avenues for future work, including the integration
of machine learning, graph embedding methods and the exploration of advanced techniques for
attention-based narrative labeling and semantic role labeling. Overall, the proposed method offers a
promising approach to narrative extraction from semantic graphs and has the potential to be useful
in various applications, including chatbots, conversational agents, and content creation tools.

2012 ACM Subject Classification Information systems → Environment-specific retrieval; Information
systems → Information extraction

Keywords and phrases Narratives, Narrative Extraction, Information Retrieval, Knowledge Graphs,
Semantic Graphs, Resource Description Framework, Web Ontology

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.9

Category Short Paper

Funding This work is financed by National Funds through the Portuguese funding agency, FCT –
Fundação para a Ciência e a Tecnologia, within project LA/P/0063/2020.
André Santos: Ph. D. Grant SFRH/BD/129225/2017 from Fundação para a Ciência e Tecnologia
(FCT), Portugal.

1 Introduction

Narratives are ubiquitous in human communication and understanding them is essential for
various applications[8], including information retrieval, summarization, storytelling, question
answering and content generation. However, defining narratives and formalizing them for
computational processing is a challenging task.

Narrative extraction is the task of automatically identifying, analyzing, and representing
narratives from textual or multimedia data[10]. Semantic graphs, which represent entities
and their relationships in a structured and rich manner, offer a promising framework for
narrative extraction that can capture both local and global coherence in a text[2].

The study of narratives has attracted significant attention in different research fields,
including computer science[8]. Most of the work in this field involves extracting narratives
from plain text using Natural Language Processing (NLP) techniques[10] or predefined
event-centric graphs[12]. However, extracting narratives from semantic graphs is a relatively
unexplored area, which is the focus of our work.

© Daniil Lystopadskyi, André Santos, and José Paulo Leal;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 9; pp. 9:1–9:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:up201805157@fc.up.pt
https://orcid.org/0009-0003-3645-2324
mailto:afs@inesctec.pt
https://orcid.org/0000-0001-6410-9740
mailto:jpleal@fc.up.pt
https://orcid.org/0000-0002-8409-0300
https://doi.org/10.4230/OASIcs.SLATE.2023.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

9:2 Narrative Extraction from Semantic Graphs

Semantic graphs provide a structured source of information that is easier for computers
to understand. By defining narratives as graphs, we provide a universal representation that
simplifies accessing and transferring information between systems[9]. Despite the potential
benefits of semantic graphs for narrative extraction, existing methods face several challenges,
such as the complexity of the graph structure, the sparsity of data and the lack of sufficient
domain-specific knowledge[7].

The main contributions of this paper are twofold. First, we propose an interactive approach
for narrative graph extraction from semantic graphs, which combines string matching and
rule-based methods to capture the semantic and structural information of a narrative. Second,
we demonstrate the effectiveness and adaptability of our approach across different domains
and languages. In the following sections, we give background for common concepts in
this field, provide an overview of related work, describe our approach in detail, present
experimental results, and discuss future work and conclusions.

2 Background

This section provides an overview of general concepts that are relevant to fully comprehend
the context of this field of study.

Semantic graphs, sometimes also referred to as knowledge graphs, store domain/context
specific information about concepts and relations between them. The information stored
in semantic graphs can also be viewed as a set of triples, where each triple corresponds to
(Subject, Predicate, Object). In terms of graphs, these triples are represented as (Node,
Edge, Node). Those triples are also called RDF triples.

Resource Description Framework (RDF) is a standard description format used for describ-
ing and exchanging metadata and other resources on the web. It forms an important part of
the semantic web stack and plays a key role in enabling the interoperability and integration
of data across different systems and domains.

The information within semantic graphs is structured according to a web ontology. An
ontology, in web semantics context, is a standardized way of defining the hierarchy of concepts
and relationships that exist within a particular domain, using a set of classes, properties and
constraints.

SPARQL is a query language used to retrieve and manipulate data stored in RDF format.
SPARQL allows users to query RDF data by specifying patterns and conditions that the
data must match. These patterns can include information about the structure of the data,
the types of entities and relationships involved, and constraints on the values of properties.

3 Related Work

Narrative extraction is a challenging task that has attracted significant research interest in
recent years. Existing methods can be broadly classified into three categories: NLP methods,
rule-based methods and hybrid methods.

NLP-based approaches that have been prominent in the field of narrative extraction
can be summarized into five stages: Pre-Processing and Parsing; Identification and Ex-
traction of Narrative Components; Linking Components; Representation of Narratives and
Evaluation[10]. An example of this approach is narrative extraction from administrative
records[4].

Rule-based methods for narrative extraction rely on manually crafted rules or heuristics
to identify the narrative structure or content. These methods often require domain-specific
knowledge and are limited in their adaptability to new domains or languages. Those types
of approaches are sparse, the most recent one being [2], which uses pre-defined mappings
between event components and properties in Wikidata to extract events.

D. Lystopadskyi, A. Santos, and J. P. Leal 9:3

Hybrid methods for narrative extraction combine NLP-based and rule-based approaches
to leverage their respective strengths. For example, [5] proposed a method that uses both
NLP-based and rule-based techniques to extract narrative events and their temporal relations
from Wikipedia biographies.

4 Approach

In relation to the existing work in this specific field, our contribution consists of expanding
the concept of events by removing constraints such as narrative genres and event classes,
allowing for more flexible narratives, as well as providing a web interface for deeper levels of
interactability and, consequently, higher generalizability. This approach can be described by
the pipeline in Figure 1. The next subsections describe, in detail, each step of the pipeline.

4.1 Narrative Definition and Ontology Specification
In this paper, narratives will be defined as ordered sequences of events. Although there is a
significant body of research focused on conceptualizing and defining narratives, this simplified
definition is sufficient for the purposes of this study. For the purposes of this study, an event
is considered an occurrence linked to a specific point in time. The 5W1H method, suggested
by [2], which involves answering questions related to “What”, “Where”, “Who”, “When”,
“Why” and “How”, will be used to describe events, with the “How” and “Why” questions
excluded due to their complexity, leaving only 4W’s: “What”, “Where”, “Who” and “When”.

To ensure consistency in the description of narratives, a web ontology was created. The
ontology has two primary classes: one to define events and the other to define narratives.
The event class includes four properties, one for each of the 4W categories mentioned above,
as well as a property to establish relationships between events and other entities that do not
fit into any of the attributes, although still fundamental for narrative flow. The narrative
class, as of time of writing this paper, has one property that links the narrative to its events.
However, the properties for the narrative class are still under development and will be
determined in due course. An example of an event in this ontology depicting the “Word War
I Ottoman Southern Front” can be seen in Figure 2.

4.2 Narrative and Graph Configuration
One of the primary challenges that we face in applying the rule-based approaches universally
is the inconsistency in graph structures across different domains[5]. This inconsistency affects
how the graph is traversed and how information is retrieved, making it difficult to find
a common ground between different graphs. Other inconsistencies, such as variations in
schema and uri prefixes for entities and predicates, add further complexity to the problem.
Furthermore, it is challenging to infer the meaning of ontology classes and predicates without
a clear understanding of the ontology itself.

Graph and narrative
configuration
acquisition

Narrative and event
definition Event identification Event attribute

mapping Narrative buildingRelevant entity
extraction

Figure 1 Approach Pipeline.

SLATE 2023

9:4 Narrative Extraction from Semantic Graphs

Event1Ottoman
Southern Front

Anatolia 19 May 1919

Ottoman Empire

Treaty of
Lausanne

French Third
Republic

Who
Related To

Who

When
Where

What

Figure 2 Ontology Event Representation.

Designing an algorithm that can work with any semantic graph, without prior knowledge of
the specific graph, is a formidable task [6]. Our approach achieves adaptability by prompting
users to provide specific configuration parameters for their graphs, such as the property that
could replace “rdf:type”.

Graphs are not the only aspect that requires configuration. Narratives, being a subjective
topic, require user input on how they should look and behave. Primarily, there needs to be
a parameter that defines how “deep” a narrative should be, seeing as narratives can span
out infinitely due to event inter-connectivity. This is also commonly known as the “butterfly
effect”, which the parameter “depth” attempts to control.

Some graphs are too large for the algorithm to handle, such as Wikidata. Thus, it is
necessary to specify a parameter that controls how much information is retrieved from the
graph in order to avoid long execution times or even timeouts. We will refer to this parameter
as the “size”.

4.3 Relevant Entity Extraction
The first step of this algorithm involves identifying the entity that represents the input topic.
The topic is given by the user as a string. The algorithm queries the graph for this string and
returns all entities that are labeled as such, of which there can be more than one. The user
then needs to specify which entity they want the narrative for. This entity is then marked as
the main entity, and event extraction can begin using it as the central point.

Once the main entity is acquired, the identification and extraction of all entities relevant
to the narrative can commence. Relevant entities are the ones linked to the main entity
through some property and constitute the narrative space.

The entities are collected through graph traversing using Breadth-first search. The depth
of the search is set by the equivalently called parameter which defines how far should we
search from the main entity. The higher the depth, the more specific or irrelevant events get
in relation to the main entity.

4.4 Event Identification
To identify events within a semantic graph, our approach looks for timestamps associated
with graph resources. Two types of events can be derived by manually analyzing semantic
graphs and their contents: entity events and property events. Entity events are represented
by entities that depict real-world events, such as “World War 2” or “1952 Swiss Mount
Everest expedition”, while property events are represented by properties whose range is a
literal with datatype “date” and/or “time”, such as “date of birth”. While it is true that
there could be entities that define time instances, for the sake of simplicity, those are ignored.

D. Lystopadskyi, A. Santos, and J. P. Leal 9:5

Property events are extracted from all relevant entities that are not classified as events.
The final set of events corresponds to extracted property events, as well as all relevant entities
classified as events. This set is then used for attribute mapping for each event.

4.5 Attribute Mapping
The process of event attribute mapping requires a deep understanding of entity and predicate
types. The assignment involves mapping all relevant data to each W of the 4W’s (Who,
What, Where, When) for every identified event, which is a challenging task. For this purpose,
we ask user to, manually, assign one of the 4 classes (“Person/Group”, “Location”, “Event”
or “Other”) to all extracted entities and properties for further processing. As a result, this
assignment can substantially influence the resulting narrative structure. The main advantage
of this approach is high adaptability to different graphs, since it does not rely on hardcoded
assignments.

For entity events, the attributes are mapped according to the following rules:
Who: All entities linked to the event entity that are classified as “Person/Group”.
What: Label of the event entity, concatenated with the property label that contains the
timestamp of the event, e.g. “start time”.
Where: All entities linked to the event entity that are classified as “Location”.
When: Value assigned to the property that contains the timestamp of the event.
Related to: All entities linked to the event entity that are classified as “Event”.

On the other hand, for event properties, the key difference is that not all objects of type
“Person” and “Location” that belong to the same entity are relevant to the event. Also, we
assume that all the necessary data is contained within the RDF triples of the same entity,
meaning that all incoming links to this entity are ignored. The first step is to find all triples
related to the triple containing the event property. This is done by clustering RDF triples
of the same entity based on Ratcliff-Obershelp similarity between each triple’s property
labels and only match properties that show similarity scores greater or equal than a certain
threshold, which, at this point of the development, has to be configured manually, through
trial and error.

Once we have the set of all related triples, the attributes are mapped according to the
following rules:

Who: All objects from clustered triples that are classified as “Person/Group”.
What: Label of the event property.
Where: All objects from clustered triples that are classified as “Location”.
When: Value assigned to the event property.
Related to: All objects from clustered triples that are classified as “Event”.

The summary of this process can be visualized in Figure 3 for entity events, and in Figure
4 for property events.

Battle of
Britain

Word War 2 United
Kingdom

10 July
1940

Horst
Tietzen

Battle of
Britain start

time

Word War 2

United
Kingdom

10 July
1940

Horst
Tietzen

Event

conflict

part of

start time

location

what who

whenrelated
to

where

Figure 3 Entity Event Example.

SLATE 2023

9:6 Narrative Extraction from Semantic Graphs

Albert
Einstein

14 March
1879Ulm

date of birth

Ulm14 March
1879

Albert
Einstein

Event

place of birth date of birth what who

when where

Figure 4 Property Event Example.

4.6 Narrative Building
After gathering all of the relevant data, the next step in the event extraction process involves
assembling the narrative, which is, perhaps, both the simplest and the hardest step of the
process. For the purpose of this paper and for the sake of clarity, we will be using a simple
approach.

The narrative is essentially an ordered sequence of events that occurred within a certain
period of time. As the extracted events all contain timestamps, building the narrative becomes
a straightforward task of arranging the events in chronological order. This chronological order
will serve as the backbone of the narrative, providing a clear timeline for the sequence of
events. Since the goal is to build semantic graphs out of extracted narratives, each extracted
event becomes a node in the graph. These events are linked to their attribute nodes, which
can be either literals or other entities. A narrative is a node itself, linked to every event node
that constitutes it. The final narrative graph can be embedded into original semantic graph.

A more complex approach would involve incorporating other important concepts such as
the perspective of the narrator, interconnected narratives and character roles. However, these
more complex narrative-building options will be explored only after the primary method has
been fully developed and refined.

5 Preliminary Results

To evaluate the quality of our approach, we conducted experiments on the Wikidata graph,
a benchmark knowledge graph for information retrieval. The results were extracted in form
of a table, with each row corresponding to an event and each column representing an event
attribute. All results were obtained for parameters “depth” equals one and “size” equals
thirty.

For the first example, “Marie Curie” was used as the topic for the algorithm. Once the
correct type was selected for the topic, in this case a person, and all entity and property
classes were assigned, the program returned results seen in Figure 5. In total, we managed
to obtain forty-eight events, which had to be truncated to the first ten in order to fit in
this paper. In those ten example events, we can deduct the general flow of the narrative,
starting from birth and progressing towards marriage and winning an award. As can be seen
in the table, some attributes are optional, since those were not found. Overall, the “What”
attribute requires more inference from the part of the reader, since it is not always obvious
what it is referring to. This is one of the possible quality-of-life adjustments that could be
introduced.

Another topic used was “Battle of Greece”, a historical event, for which seven events
were extracted and can be found in Figure 6. Once again, events that were too large were
excluded due to space limitations. Just as in the first example, some items appear duplicated
due to errors in the implementation of the algorithm, which can be resolved easily. In this
short example, we can see the main entity, Battle of Greece, which is then linked to other

D. Lystopadskyi, A. Santos, and J. P. Leal 9:7

Figure 5 Section of Extracted Narrative for Marie Curie.

Figure 6 Section of Extracted Narrative for Battle of Greece.

events, such as World War 2, Battle of Metaxas Line, Battle of Ptolemaida, and so on... Once
again, some attributes are omitted. The “Who” attributes in this case refers to participants
of respective battles.

Overall, despite there being a lot of room for improvement, our preliminary results
demonstrate the potential of our proposed approach for narrative extraction from semantic
graphs. Seeing as this is a work in progress, a better validation method is required once the
algorithm is finished to further evaluate the quality of produced narratives.

6 Conclusions

In this paper, we presented an interactive approach for extracting narratives from semantic
graphs. Our approach utilizes matching methods, rule-based techniques and string comparison
algorithms to analyse semantic graphs and extract narrative structures by converting them
into their own semantic graphs. Our approach was evaluated on the Wikidata graph and
showed promising results for a small sample size.

With that being said, there are several avenues for future work to further improve and
extend our method. One direction is the integration of graph-based algorithms, such as graph
embedding and graph neural networks[11], to enhance the model’s understanding of the
narrative. Another direction is the development of machine learning models for property and
entity classification, considering the vast amount of data provided by knowledge graphs[3].
Additionally, exploring more advanced techniques for attention-based narrative labeling
and semantic role labeling can further improve the quality of the results[1]. Finally, it is
important to evaluate our approach on other benchmark graphs and real-world datasets to
assess its adaptability and practical usefulness.

In conclusion, our proposed approach for narrative extraction from semantic graphs
represents a step forward in the field of event extraction and narrative understanding. We
believe that our approach has the potential to be applied to a wide range of real-world

SLATE 2023

9:8 Narrative Extraction from Semantic Graphs

applications, including chatbots, conversational agents, and automated story generation.
We hope that our work will inspire future research in this exciting field and lead to further
advancements in narrative extraction and semantic graph analysis.

References
1 Nandini Anantharama, Simon D. Angus, and Lachlan O’Neill. Canarex: Contextually aware

narrative extraction for semantically rich text-as-data applications. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang, editors, Findings of the Association for Computational Linguistics:
EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages 3551–3564.
Association for Computational Linguistics, 2022. URL: https://aclanthology.org/2022.
findings-emnlp.260.

2 Inès Blin. Building narrative structures from knowledge graphs. In Paul Groth, Anisa Rula, Jodi
Schneider, Ilaria Tiddi, Elena Simperl, Panos Alexopoulos, Rinke Hoekstra, Mehwish Alam,
Anastasia Dimou, and Minna Tamper, editors, The Semantic Web: ESWC 2022 Satellite Events
- Hersonissos, Crete, Greece, May 29 - June 2, 2022, Proceedings, volume 13384 of Lecture Notes
in Computer Science, pages 234–251. Springer, 2022. doi:10.1007/978-3-031-11609-4_38.

3 Victor de Boer. Knowledge graphs for impactful data science (keynote). In Umutcan Simsek,
David Chaves-Fraga, Tassilo Pellegrini, and Sahar Vahdat, editors, Proceedings of Poster and
Demo Track and Workshop Track of the 18th International Conference on Semantic Systems
co-located with 18th International Conference on Semantic Systems (SEMANTiCS 2022),
Vienna, Austria, September 13th to 15th, 2022, volume 3235 of CEUR Workshop Proceedings.
CEUR-WS.org, 2022. URL: https://ceur-ws.org/Vol-3235/keynote1.pdf.

4 Karine Megerdoomian, Karl Branting, Charles Horowitz, Amy Marsh, Stacy Petersen, and
Eric Scott. Automated narrative extraction from administrative records. In Luther Karl
Branting, editor, Proceedings of the Workshop on Artificial Intelligence and the Administrative
State co-located with 17th International Conference on AI and Law (ICAIL 2019), Montreal,
QC, Canada, June 17, 2019, volume 2471 of CEUR Workshop Proceedings, pages 38–48.
CEUR-WS.org, 2019. URL: https://ceur-ws.org/Vol-2471/paper7.pdf.

5 Daniele Metilli. Enhancing the Computational Representation of Narrative and Its Extraction
from Text. PhD thesis, University of Pisa, Italy, 2021. URL: https://etd.adm.unipi.it/
theses/available/etd-10222021-095519/.

6 Thiloshon Nagarajah, Filip Ilievski, and Jay Pujara. Understanding narratives through
dimensions of analogy. CoRR, abs/2206.07167, 2022. doi:10.48550/arXiv.2206.07167.

7 Emetis Niazmand, Gezim Sejdiu, Damien Graux, and Maria-Esther Vidal. Efficient semantic
summary graphs for querying large knowledge graphs. Int. J. Inf. Manag. Data Insights,
2(1):100082, 2022. doi:10.1016/j.jjimei.2022.100082.

8 Priyanka Ranade, Sanorita Dey, Anupam Joshi, and Tim Finin. Computational understanding
of narratives: A survey. IEEE Access, 10:101575–101594, 2022. doi:10.1109/ACCESS.2022.
3205314.

9 Vetle Ryen, Ahmet Soylu, and Dumitru Roman. Building semantic knowledge graphs from
(semi-)structured data: A review. Future Internet, 14(5):129, 2022. doi:10.3390/fi14050129.

10 Brenda Santana, Ricardo Campos, Evelin Amorim, Alípio Jorge, Purificação Silvano, and
Sérgio Nunes. A survey on narrative extraction from textual data. Artificial Intelligence
Review, January 2023. doi:10.1007/s10462-022-10338-7.

11 Daniil Sorokin. Knowledge Graphs and Graph Neural Networks for Semantic Parsing. PhD
thesis, Technical University of Darmstadt, Germany, 2021. URL: http://tuprints.ulb.
tu-darmstadt.de/19187/.

12 Zhihua Yan and Xijin Tang. Narrative graph: Telling evolving stories based on event-centric
temporal knowledge graph. Journal of Systems Science and Systems Engineering, 32(2):206–
221, April 2023. doi:10.1007/s11518-023-5561-0.

https://aclanthology.org/2022.findings-emnlp.260
https://aclanthology.org/2022.findings-emnlp.260
https://doi.org/10.1007/978-3-031-11609-4_38
https://ceur-ws.org/Vol-3235/keynote1.pdf
https://ceur-ws.org/Vol-2471/paper7.pdf
https://etd.adm.unipi.it/theses/available/etd-10222021-095519/
https://etd.adm.unipi.it/theses/available/etd-10222021-095519/
https://doi.org/10.48550/arXiv.2206.07167
https://doi.org/10.1016/j.jjimei.2022.100082
https://doi.org/10.1109/ACCESS.2022.3205314
https://doi.org/10.1109/ACCESS.2022.3205314
https://doi.org/10.3390/fi14050129
https://doi.org/10.1007/s10462-022-10338-7
http://tuprints.ulb.tu-darmstadt.de/19187/
http://tuprints.ulb.tu-darmstadt.de/19187/
https://doi.org/10.1007/s11518-023-5561-0

Large Language Models: Compilers for the 4th

Generation of Programming Languages?
Francisco S. Marcondes #

ALGORITMI Research Centre/LASI, University of Minho, Braga, Portugal

José João Almeida #

ALGORITMI Research Centre/LASI, University of Minho, Braga, Portugal

Paulo Novais #

ALGORITMI Research Centre/LASI, University of Minho, Braga, Portugal

Abstract
This paper explores the possibility of large language models as a fourth generation programming
language compiler. This is based on the idea that large language models are able to translate a
natural language specification into a program written in a particular programming language. In
other words, just as high-level languages provided an additional language abstraction to assembly
code, large language models can provide an additional language abstraction to high-level languages.
This interpretation allows large language models to be thought of through the lens of compiler
theory, leading to insightful conclusions.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Computing
methodologies → Natural language processing; Software and its engineering → Compilers

Keywords and phrases programming language, compiler, large language model

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.10

Category Short Paper

Funding This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020.

1 Introduction

As the title suggests, this is a speculative paper discussing whether large language models
could be considered a higher level of programming language in relation to current high-level
languages. In short, assembly language (2nd generation) replaced punch-card programming
(1st generation) by introducing mnemonics. These allowed larger and more complex programs
to be created in less time. High level languages (3rd generation) in turn replaced assembly
language by introducing structured English constraints.

The hypothesis explored in this paper is that large language models could be a 4th

generation language, replacing high-level languages by allowing natural language specifications.
The aim is then to discuss the strengths and weaknesses of large language models running as
natural to high-level language compilers. Other natural language processing tasks that would
be associated with an interpreter are therefore beyond the scope of this paper. The question
that arises is whether large language models can provide an additional level of abstraction
for programming [10] similar to the high-level languages provided for assembly language.

As a disclaimer, this paper uses ChatGPT as a basis for discussion, but does not consider
ChatGPT to be a compiler. A 4th generation compiler, as well as a 3rd generation compiler,
is expected to produce executable code as a result, not intermediate code as ChatGPT does.
Note that there are fine-tuned solutions for programming, such as the GitHub co-pilot, but
due to its current paywall ChatGPT 3.5 is used in this paper. Although ChatGPT is used
to support this discussion, a proper setup should be designed for proper use of the large

© Francisco S. Marcondes, José João Almeida, and Paulo Novais;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 10; pp. 10:1–10:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francisco.marcondes@algoritmi.uminho.pt
https://orcid.org/0000-0002-2221-2261
mailto:jj@di.uminho.pt
https://orcid.org/0000-0002-0722-2031
mailto:pjon@di.uminho.pt
https://orcid.org/0000-0002-3549-0754
https://doi.org/10.4230/OASIcs.SLATE.2023.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

10:2 Compilers Based on Large Language Models?

language model as a compiler. In this setup, a programmer is not expected to interfere with
the lower-level code any more than a programmer is expected to modify the assembly code
generated by a high-level language compiler.

Furthermore, a single prompt is not expected to be sufficient to produce industrial-scale
software, nor is a single specification sufficient to achieve the same end. A typical requirement
analysis takes several months and results in thousands of mutable requirements whose
complexity is managed by interactive and incrementally throughout the project [14]. There
is no reason to believe that this will change with the replacement of compiler technology.
Therefore, industrial-scale software would require several mutable prompts in order to properly
specify an industry level software product.

It is also worth noting that this proposal is not related to no-code or low-code initiatives.
In short, these initiatives aim to provide a different way of doing traditional programming,
but without providing the higher level language abstraction that large language models do.
Despite several papers are addressing large language models for code synthesis, it was not
possible to find any discussing it from the compiling perspective [16]. It was also not possible
to find papers referring to 4th or next generation compilers linked with large language models;
most are linked with model-driven [12] or domain-specific [17] approaches.

2 Theoretical Foundations

Current large language models are based on Transformers (see figure 1). Perhaps the core
element in Transformers is the attention mechanism [5]. In brief, given an input embedding,
the attention mechanism reweights the embeddings for each token in the input to match
the context of the input sentence. For example, let bank be a token in the input sentence
whose sense is equidistant from river and money in the embedding model. Multiplying the
embedding values of bank by the embeddings of the other words in the input sentence is
expected to bias the bank token towards the appropriate sense.

(a) Overall Architecture. (b) Multi-head attention. (c) Scaled dot-product attention.

Figure 1 Transformers cf. [13]. Note that (c) is in (b), which is in (a).

F. S. Marcondes, J. J. Almeida, and P. Novais 10:3

The attention mechanism is the underlying principle of prompt engineering. In a nutshell,
prompt engineering is concerned with designing a prompt that, when queried by a large
language model, returns the best possible answer. As a rule of thumb, a prompt cf. [9]
consists of: a) instruction; b) context; c) input data; and d) output indicator. Prompt
engineering is therefore less about acting out a natural language conversation, and more
about describing specific instructions aimed at an output.

This leads to the almost straightforward conclusion that large language models can be
understood as a natural language processor (see [1]). A compiler, or translator, is a type
of language processor that converts sentences from a usually high-level source language to
an often low-level target language. The compiled sentences are interpretable by the target
machine, which behaves accordingly. Considering that Transformers was built with the
goal of natural language translation in mind [13], a relationship between Transformers and
compilers can be suggested, with the source language being a natural language and the target
language being a high-level language.

3 Proof of Concept

For reference, consider the introductory programming class problem:

The soldiers of the queen of hearts have a problem: once again the queen has sent
them to fetch cookies for tea. Five of the soldiers went to get the cookies and returned.
Since only one of the soldiers can enter the tea room with the cookies, they need to
choose one of them. The problem is that the queen is greedy and has very little patience.
Either they quickly figure out which soldier brought the most cookies or they will lose
their heads. Your task is to write a program to find the answer.

(1)

The above problem has been prompted in ChatGPT as is. The result is shown in the figure
2a. Recall that a prompt cf. [9] is composed of: a) instruction; b) context; c) input data; and
d) output indicator. These are the elements being required by the model. ChatGPT does
not always give the same output for the same prompt, this is due to the Q, K, V (stands for
query, key and value) weight matrices used by the attention mechanism (see figure 1). On a
second run of this prompt in a different ChatGPT instance, the language model adopted the
previously requested parameters and returned the source code shown in 2b. Therefore, in
order to reduce variation, it is necessary to be as specific as possible on prompt building.

Note that the code in figure 2b is well-structured Python source code, capable of running
on a Python machine. An immediate assumption is that by providing a formal specification,
the resulting code would be enhanced. Prompt (1) is then rewritten as prompt (2) using
simple set notation and submitted to ChatGPT, resulting in the code shown in figure 3. Note
that the code in figure 3 is not necessarily better or more readable than the code in figure 2b.
Such an assumption is therefore not necessarily true in the domain of large language models.

Let S = {s1, ..., sn|n = 5} be a set of soldiers, C = {c1, ..., cn|n = 5} be the number of
cookies brought by each soldier, and f : S → C is a function that returns the number
of cookies of each soldier. The soldier with the maximum number of cookies is given
by max({f(s)|∀s ∈ S}) ⊢ min(s). Write a program to implement this algorithm.

(2)

The formal assumption is probably based on the idea that since natural language is ambiguous,
some mathematical notation is necessary. This is true in so far as it is not possible to go
through a process of clarification by asking questions, which is not the case in ChatGPT, as
shown in figure 2a. This does not mean that formal expressions should be avoided, but, as
suggested after figure 3, that it is necessary to understand how to use them in this context.
Also, that (2) may not be the best way to provide formal specification on ChatGPT.

SLATE 2023

10:4 Compilers Based on Large Language Models?

(a) First response.

(b) Second response.

Figure 2 ChatGPT’s responses for the same prompt on different instances.

Figure 3 Source code produced by ChatGPT for the formal specification on prompt (2) with
circumventing text removed.

F. S. Marcondes, J. J. Almeida, and P. Novais 10:5

4 Insights on a 4th Generation Compiler

At this point it is possible to suggest that ChatGPT (i.e. large language models) can be
considered as a translation device. Figure 4 shows a bird’s eye view of a compiler as defined
by Aho et al. in [1] and a translator as defined by Jurafsky et al. in [5]. The word “translator”
is accepted as a synonym for “compiler”, so the former can be considered a deterministic
translator and the latter a probabilistic one.

(a) A compiler instance as presented in [1].

(b) A translator instance as presented in [5].

Figure 4 Deterministic and probabilistic translator instances.

It can also be argued that the deterministic translator is primarily concerned with syntax
(i.e. the structure of sentences based on the Chomsky hierarchy) and the probabilistic
translator with semantics (i.e. the relationship between words based on the distributional
hypothesis). Therefore, it is not a case of replacement, but of composing these two translation
strategies. As a result, if a source is generated with syntactic errors, the generator would
produce an improved source by using the error messages as feedback. Note that the use
of examples is an important prompt feature due to the few-shot learning property of large
language models [2]. This in turn can be manifested as unit tests [11]. In this sense, not
only syntactic errors but also behavioural errors eventually introduced by the generator can
be automatically corrected. Note also that, not all information may be provided in a prompt.
There are two situations to consider. One is the prompt within a project, from which the
additional information can be retrieved (e.g. elements of a class, UML blueprints, etc.). If
the required information is ambiguous or missing, the compiler is expected to prompt the
programmer as shown in figure 2a with each interaction improving either the context or the
specification. Note that the correct definition of the prompt is the cornerstone of improved
generation; a context with more information than necessary is just as harmful as a context
with no information at all. A structured as such is depicted on figure 5.

It is worth noting that if the complexity of the specification becomes unmanageable, it
can be split or simply deleted to start again. Splitting opens up the possibility of tackling
increasingly large software. Regardless of the development process used (prescriptive or

SLATE 2023

10:6 Compilers Based on Large Language Models?

Figure 5 Suggested structure for a 4th generation compiler based on large language models.

agile), the overall organization of the project elements ends up being arranged in a tree-like
structure. The same structure can be applied to a series of prompts that make up the
software, helping to establish the correct context for each prompt. Consider the following
Use Case 2.0 [4] partial scenario:

Use-case: Registering to SLATE
1. Authentication Flow

a. The enrollee provides its e-mail, the SuD sends an e-mail with a confirmation link
b. The SuD receives a confirmation and set the status to “authenticated enrolee”

2. [authenticated enrolee] Basic Flow for Author Registration
a. ...

For this discussion, consider step 1a. Note that this step is a self-contained specification
and is sufficient to understand the desired behaviour. However, it is not a prompt in the
sense that there is much information missing. As a reference, the 4+1 view model [7] suggests
the existence of five views: 1) scenario, 2) logic, 3) development, 4) process and 5) physical.
This step description only satisfies the scenario view. For example, on which server is this
web service expected to run? In addition, a scenario is expected to satisfy the FURPS+ [3];
and this step only satisfies the “F”. For example, what would the content of the confirmation
email be? Therefore, prompting is not equivalent to a requirement analysis yet, as any
development task, derives from it.

Note that steps 1a and 1b form a slice (a coherent part of a use case that can be elaborated
into a deployment [4]). Therefore, to produce a deliverable for this slice, a prompt must be
written from these two steps. Considering the constraints presented, the 4+1 view model
and FURPS+, it becomes clear that only a chat-based structure is not sufficient to express a
whole, industrial-scale software (even a slice of it). One possibility of structure to explore is
that provided by literate programming, see [6].

In this sense, from a human perspective, it is not a matter of producing a single prompt,
but of producing a structured document composed of several prompts addressing different
concerns. Given such a document, the compiler would be expected to make two moves. One
towards the refinement of each prompt, i.e. a chat-based interaction aimed at producing an
improved prompt. Another towards the unfolding of additional prompts, i.e. the creation of
additional slots for prompts to address specific problems. For large software, there could be
several specification files, each for a slice. In this perspective, the compiler would act as a
specification co-pilot. Note that the context window used by ChatGPT is about 2048 tokens,
so managing the context of each prompt is also a feature to be considered.

Another support expected from the compiler is the generation of test cases. Following a
behaviour-driven development rationale [11], this leads the programmer to consider several
scenarios that improve the resulting program. From the perspective of this paper, this means
that the programmer would either refine previous prompts or introduce new prompts.

A possible literate programming early paragraph for the authentication slice could be the
one presented in (3). Note that this is not a proper programming prompt yet, submitting it
to ChatGPT, an excerpt can be seen in 6, it retrieves several suggestions that illustrate what

F. S. Marcondes, J. J. Almeida, and P. Novais 10:7

the refinement and unfolding moves would look like. For example, validating the email with
regular expressions would be a refinement on (3); describing the appearance of the HTML
form (e.g. colour, logo, etc.) would be an unfolding prompt.

This programme is part of a conference registration platform and is designed to verify
that the email provided by a registrant is a valid one. This requires: 1) a web page that
allows the registrant to enter their email address; 2) a web service that receives this
address and sends the confirmation email; and 3) another web service that generates
the confirmation page and waits for the registrant to retrieve it.

(3)

Figure 6 Excerpt of ChatGPT response when prompting (3).

The presented example is based on plain literate programming. Since large language
models are currently turning into multimodal, it is also possible to enrich the specification
with diagrams and other images [15].

5 Conclusion

This paper introduced the possibility of interpreting large language models as a fourth
generation programming language, based on the notion that large language models are capable
of translating a natural language specification into well-formed source code. This notion
opens up and strengthens a wide range of research areas, including further developments from
the compiler perspective to specific prompt engineering techniques for producing programs.
The key discussion is that the current fears and suspicions raised by this technology are
analogous to those that arose during the transition from the second to the third generation
of programming languages. It is therefore a natural phenomenon that should be resolved on
its own terms, as far as the proposal presented in this paper is concerned.

Comparing this approach with a current compiler raises the question of the probabilistic
nature of large language models (the same prompt produces two outputs). In short, this can
be addressed by a fixed, perhaps optimal, internal state with respect to the compilation task.
However, the strengths and weaknesses of such an approach are a subject for future work.
This is somehow related to explainability, a flourishing area of research that is expected to
provide answers to questions about why a model has generated a particular piece of code.

Note that ChatGPT may produce incorrect code, but also that it is not tuned for
programming, and it will eventually become outdated. However, it is expected that a 4th

generation compiler will be able to deal with such problems, just as 3rd generation compilers
will be able to deal with code with syntactic problems (perhaps one way, inspired by genetic
algorithms, would be to produce a few generations and select the best by a set of parameters).

SLATE 2023

10:8 Compilers Based on Large Language Models?

This assertion assumes that the specification has been written properly and correctly, but
it is also necessary to consider that intentional and induction errors will still exist, but at
a higher level of abstraction. In this sense, if the executable doesn’t run as expected, the
programmer should concentrate on fixing the prompt as he currently does with the source.

This leads to issues related to the dataset, which will also need to be addressed in
future work. Then, considering the compilation task, it would be necessary to understand
the composition of the dataset. Also, which setup would perform better: a general large
language model or a fine-tuned one? What would be the fine-tuning parameters? Also,
when considering prompting, which software engineering tools, methods and principles are
appropriate and which are not. Note that multimodal prompting requires a refresh on
model-driven development, see [8]. Finally, this seems to be a promising area of research to
be explored further.

References
1 Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Compilers: principles,

techniques and tools. Pearson, 2020.
2 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33, 2020.

3 Robert B Grady and Deborah L Caswell. Software metrics: establishing a company-wide
program. Prentice-Hall, Inc., 1987.

4 Ivar Jacobson, Ian Spence, and Brian Kerr. Use-case 2.0. Queue, 14(1):94–123, 2016.
5 Dan Jurafsky and James H. Martin. Speech and Language Processing. draft (ht-

tps://web.stanford.edu/̃jurafsky/slp3/), third edition, 2023.
6 Donald Ervin Knuth. Literate programming. The computer journal, 27(2):97–111, 1984.
7 Philippe B Kruchten. The 4+ 1 view model of architecture. IEEE software, 12(6):42–50, 1995.
8 Chris Raistrick, Paul Francis, John Wright, Colin Carter, and Ian Wilkie. Model driven

architecture with executable UML, volume 1. Cambridge University Press, 2004.
9 Elvis Saravia. Prompt engineering guide, 2023. URL: https://www.promptingguide.ai/.

10 Robert W Sebesta. Concepts of programming languages. Pearson Education, 2019.
11 J.F. Smart and J. Molak. BDD in Action, Second Edition: Behavior-Driven Development for

the Whole Software Lifecycle. Manning, 2023.
12 Bernhard Thalheim and Hannu Jaakkola. Model-based fifth generation programming. Inform-

ation Modelling and Knowledge Bases, 31:381–400, 2020.
13 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

14 Karl Wiegers. More about software requirements. Microsoft Press, 2005.
15 Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Mul-

timodal chain-of-thought reasoning in language models. arXiv:2302.00923, 2023.
16 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian

Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models.
arXiv preprint arXiv:2303.18223, 2023.

17 Majd Zohri Yafi. A Syntactical Reverse Engineering Approach to Fourth Generation Program-
ming Languages Using Formal Methods. PhD thesis, University of Essex, 2022.

https://www.promptingguide.ai/

Hierarchical Data-Flow Graphs
José Pereira #

Checkmarx, Braga, Portugal

Vitor Vieira #

Checkmarx, Braga, Portugal

Alberto Simões #

Checkmarx, Braga, Portugal
2Ai, School of Technology, IPCA, Barcelos, Portugal

Abstract
Data-Flows are crucial to detect the dependency of statements and expressions in a programming
language program. In the context of Static Application Security Testing (SAST), they are heavily
used in different aspects, from detecting tainted data to understanding code dependency.

In Checkmarx, these data flows are currently computed on the fly, but their efficiency is not the
desired, especially when dealing with large projects. With this in mind, a new caching mechanism is
being developed, based on hierarchical graphs.

In this document, we discuss the basic idea behind this approach, the challenges found and
the decisions put in place for the implementation. We will also share the first insights on speed
improvements for a proof of concept implementation.

2012 ACM Subject Classification Theory of computation → Grammars and context-free languages;
Software and its engineering → Compilers; Theory of computation → Graph algorithms analysis

Keywords and phrases Data Flow, Static Application Security Testing, Hierarchical Graphs

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.11

Funding Alberto Simões: This paper was partially funded by national funds, through the FCT/
MCTES of the projects UIDB/05549/2020 and UIDP/05549/2020.

1 Introduction

SAST (Static Application Security Testing) [8] is one of the different techniques employed
by Checkmarx for analyzing source code and scanning it for security vulnerabilities. As the
name implies, SAST tools scan the source code without executing it. The identification of
potential security weaknesses is performed after constructing an abstract syntax tree (AST)
for the code being analyzed and using a query system to find specific code patterns. SAST
can be used to detect vulnerabilities such as SQL injection, cross-site scripting, or buffer
overflow situations.

One important feature of SAST tools is the possibility to compute data flows. Data flows
allow the understanding of which expressions have their values affected by the values of
variable declarations or other expressions. This is useful, as an example, to understand if a
query to a database might be influenced directly by the user input, or if, during the data
flow, there is any kind of sanitization1 preventing SQL Injection. One of the first works using
data flows to analyze software reliability was conducted by Fosdick and Osterweil (1974) [4].
Their work includes a comprehensive explanation of what are data flows and how to represent
them as a graph. Data flows are an important part of SAST implementations [7].

1 Sanitization is the term used to any code that prevents the vulnerability to occur, remediating it.

© José Pereira, Vitor Vieira, and Alberto Simões;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 11; pp. 11:1–11:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jose.pereira@checkmarx.com
mailto:vitor.vieira@checkmarx.com
mailto:alberto.simoes@checkmarx.com
https://orcid.org/0000-0001-6961-2660
https://doi.org/10.4230/OASIcs.SLATE.2023.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

11:2 Hierarchical Data-Flow Graphs

The Checkmarx SAST engine does data flow analysis on demand, meaning that, whenever
a calculation is requested, rather than traversing a graph looking for paths between sources
and sinks2, it computes which are the next AST nodes to visit checking what immediate
data is affected by the first. This process iterates until a destination is eventually reached, or
there are no more adjacent nodes.

This might seem inefficient but, in fact, the traditional strategy of path-finding on an
actual graph was used before and it produced results 30% slower on average than the current
solution. The cause for this is the unnecessary graph expansion for every node on the abstract
syntax tree, even when no flow calculation is requested from them, allied with the fact that
the computational weight of finding a path in a large graph is heavier than computing
adjacency between nodes. Still, the process consumes a considerable portion of scan time,
averaging 30% scan time for most source projects.

The proposal is to cache a graph in which there’s enough context to avoid searching
impossible paths when specific sources and sinks are used. For that, clusters of vertices are
created, each one representing an entry or exit point of a certain context. The idea is to be
able to match any node on the AST to a cluster of vertices and therefore understand if it is
worth exploring for a specific path. There can be several kinds of grouping strategies for the
clusters as we will discuss later. For the Proof-of-Concept (POC) described here, nodes were
grouped functions/methods in which they are encapsulated.

In the next Section, a small literature review is presented focusing on the main concepts
used in the implementation of this solution. Follows Section 3 where the current data flow
engine algorithm is explained, allowing a better understanding of the proposed approach.
Section 4 describes the POC, including a first evaluation of the obtained results. Section 5
concludes with some final remarks and describes future work.

2 Literature Review

As a first note, Data Flows and Static Application Security Testing are not new concepts.
As shown in this section, most of the concepts have more than 50 years. Nevertheless, these
concepts are the base that support the development of the Proof-of-Concept here described.

In 1976, Allen and Cocke [1] present multiple situations in which a program data flow
can be of use. One of the most relevant for this work is to know what data use might be
affected by a particular variable definition, and the inverse, for a given use of a variable, the
definitions which can potentially supply values to it. They provide a formal definition of
what a data flow is, which might be summarized as a connected, directed graph with a single
entry point (usually a variable declaration), and where each vertex3 represents a statement
or expression whose value depends on the graph entry point or an expression or part of an
expression which modifies that data item.

As referred to in the introduction, Fosdick and Osterweil [4] present in their paper the
definition of a data flow, including a couple of examples of how to represent them as directed
graphs, as well as how these flows can be used to detect software implementation problems.
They present a system to analyze Fortran code, called DAVE, that detects some of the most
common data flow anomalies. DAVE performs this analysis by computing a flow graph
search for each variable in a given unit and analyzing subprograms. This is, probably, one of
the first SAST implementations.

2 The term source or input are traditionally used as the first node in the flow search, while the sink is the
target node (or target nodes).

3 For clearness, the term node will be used to refer to an item in the Abstract Syntax Tree, and the term
vertex will be used to refer to graph vertices. In most cases, a vertex represents a node, and therefore,
some confusion may arise.

J. Pereira, V. Vieira, and A. Simões 11:3

In their book [6], Khedker, et al. describe many different approaches for data flow analysis,
and how they can be used to find different situations. The book finishes with a chapter on
implementing data flow analysis in C programs using the GCC C compiler.

There are other examples of data flow analysis, that are not listed here, as they are
focused on a single programming language, as the examples shown above.

3 Checkmarx Lazy Flow

Checkmarx SAST solution supports data flow computation. It is executed on demand, every
time a specific flow is required. The flow can be computed in the flow direction (execution
flow) or backwards. This allows the engine to choose the direction that promises a relatively
smaller number of paths. This feature is known as Lazy Flow and is used by most queries
used to find vulnerabilities.

The Lazy Flow process receives a set of input nodes from the Domain Object Model4
(DOM), and a set of sink nodes. The algorithm is also able to deal with a set of sanitizer
nodes. These nodes are user-defined and consist of a set of specific instructions that should
be considered a flow barrier. As an example, consider the storage of personal information as
a password in a database. The flow could be discarded if the password gets encrypted (thus
making the flow not vulnerable). The encryption functions act as barriers and are considered
sanitizers.

The Lazy Flow algorithm considers each expression or statement as a potential hop in
the flow. Each hop has two visitors that decide the possible next (or previous) nodes to look
up, according to the flow direction. The search ends whenever a sanitiser node is found or
when a maximum number of hops was visited. The algorithm only considers the shorter
path between two specific nodes for efficiency.

This flow computation is performed on-the-fly, every time a flow is requested as shortly
described in the Section 1. This means that highly reused code blocks are scanned over and
over again for different vulnerability detection, producing a time overhead. This is the main
problem the proposed POC tries to tackle.

Note that the fact that the graph is not persistent (there is not a proper graph repres-
entation for the possible flows) does not have a real impact in terms of performance, as
the Domain Object Model acts as the graph, and only in very specific situations the edge
computation is not immediate.

4 Data Flow Hypergraph

A common solution for reducing the complexity of a graph is creating an abstraction that
clusters vertices together. Each cluster becomes a new vertex, and edges between these
clusters are aggregations of the original edges. Inside each cluster, a vertex is a graph.

These data structures are usually referred to as hierarchical graphs and are well-studied.
The path-finding algorithms perform at the top level and, when a concrete path is required,
look inside the relevant clusters to compute the real path.

These structures are heavily used in navigation, being in artificial or real worlds, and
therefore applications are found in the areas of video games, robotics and geographic
information systems. Examples of applications of Hierarchical Graphs (HG) include Pelechano

4 The Domain Object Model can be perceived as an Abstract Syntax Tree whose structure is shared
among different languages, and that does not mimic exactly the parsed code, but its semantics.

SLATE 2023

11:4 Hierarchical Data-Flow Graphs

and Fuentes (2016) [9] work for path-finding in Meshes, or the work by Antikainen (2013) [2]
use of HG for non-uniform traversal costs. Other examples can be found in the literature [5,
11, 3]. We will use the term Hypergraph to refer to the concrete HG implementation.

For the use case under consideration, one of the first discussions is about the clustering
approach. How to consider two nodes from the DOM to be part of the same cluster? This
discussion will be presented in Section 4.1. Follows Section 4.2 with an in-depth explanation
of the adopted clustering approach. Section 4.3 explains how the HG is being used and
presents some analysis of the obtained results.

4.1 Clustering DOM Nodes
One first decision to take is how to cluster the DOM nodes, to produce the hierarchical
graph. The approach to cluster the nodes can be defined accordingly with different semantic
approaches. The two main ideas discussed were:

Cluster nodes by the file in which they appear. This was the first idea given the parallel
work on an incremental parsing mechanism that deals with the change of a single file in a
project repository. This clustering would make the process of updating the HyperGraph
easy. Nevertheless, there is no clear definition of what a flow inside a file is. While in
some languages or some projects that might exist, a simple file that is just a library would
be hard to be properly grouped as a cluster, as it would have an extremely large number
of inbound and outbound edges.
Cluster nodes by the function in which they appear. This would mean that a vertex in
the Hypergraph would be a function and connections will represent the flows that enter or
exits that function. While the number of vertexes will rise, compared with the previous
approach, there is a clear semantic meaning of edges: they are method invocations or
stack frames. Curiously, this is quite similar to the second approach proposed by Sharir
and Pnueli [10] in 1981.

While the chosen approach was to cluster based on functions, and as it will be seen in the
next sections, some changes on the original idea were performed to encompass different entry
and exit points from methods. This will be described in the next section.

4.2 Method-based Clustering
For this POC, the chosen strategy to cluster vertices was by method/function invocation.
The term method will be used to refer to both functions and methods because the DOM was
designed for object-oriented programming languages and despite being able to also support
other paradigms, functions are wrapped in default classes for the sake of compatibility,
making them static methods.

A DOM node belongs to a specific method cluster if it is under the methods sub-tree.
Therefore, computing the first ancestor which is a method declaration is enough to infer
the vertex the node belongs to. Vertices on the Hypergraph should be entry points of
methods, such as parameters, and exit points, like return statements. Note that data can
flow in and out of methods through other kinds of nodes. Arguments can lead us to other
clusters/methods and method calls can make data flow into a method.

Edges on the Hypergraph are flows between the entry and exit points. Whenever there
are nodes in between this flow, these sequences are stored in the graph, annotating it. This
sequence represents the data flow from the method entry point to an exit point.

Follows a simple example. Consider the C#-like code sample in Listing 1, which describes
a basic program that would take in an input string and execute one SQL command, that is
affected by that same input.

J. Pereira, V. Vieira, and A. Simões 11:5

Listing 1 Sample C# code with interprocedural calls.
void main() {

string someInput = readFromStdIn ();
handleInput(someInput);

}

void handleInput(string someInput) {
if(isBadInput(someInput)) {

printErrorMessage(someInput);
abort ();

}
else {

string preparedStatement = prepareStatement(someInput);
executeSqlStatement(preparedStatement);

}
}

string prepareStatement(someInput) {
return "SELECT␣*␣FROM␣USERS␣WHERE␣USERNAME␣=␣" + someInput;

}

void executeStatement(string sqlStatement) {
printResults(database.Execute(sqlStatement));

}

Figure 1 shows that same code, where some nodes are highlighted. In green, we have
entry data points, and in red we have exit points. Entry points are, mostly, parameter
declarations (lines 7, 21 and 26) and method calls (lines 3, 9, 16 and 28). Exit points are
return statements (line 23) or parameters inside method calls (lines 4, 9, 11, 16, 17 and 28).

These will be the vertices on the Hypergraph. For the edges, we can compute the data
flow between these nodes and aggregate the sequences between entry and exit points of the
same method. For simplicity, Figure 2 shows only the relevant flows between the entry and
exit nodes. In this image, the purple arrows are edges between an entry point and an exit
point of a method, while the yellow arrows are edges between clusters.

The graph is stored in QuickGraph5 library using specific vertex and edge definitions.
Vertices include the entry or exit node information, and edges include the full path between
these nodes. Looking at Figure 2, purple arrows include paths, while yellow arrows are just
empty edges. The graph is bidirectional, thus allowing the computation of forward and
backward flows.

4.3 Hypergraph Application and metrics

While the final implementation will feature a rewritten flow engine, that will take advantage of
the Hypergraph to decide which paths are worth exploring, following the usual implementation
of hierarchical graphs, currently the POC uses the Hypergraph information as a cache, fast-
forwarding the computation of flows inside methods.

5 https://kernelith.github.io/QuikGraph/

SLATE 2023

https://kernelith.github.io/QuikGraph/

11:6 Hierarchical Data-Flow Graphs

Figure 1 Inbound (green underlines) and outbound flow nodes (red underlines).

Consider an input node and a sink. Given the input node, and considering it is not in
the current function scope, the traditional flow algorithm is computed until a relevant node
is visited: a method call, a parameter declaration, a return statement, or a parameter in a
method call. These are the entry and exit points for the Hypergraph, as stated earlier. At
this point, the Hypergraph is queried. If the sink node is inside the Hypergraph cluster of
nodes, the traditional flow algorithm keeps in charge. If not, the Hypergraph cluster node is
used and the path is fast-forwarded until the end of the flow (next flow jump). While this
process does not reduce the amount of visited paths it reduces the amount of calls to the
path-finding algorithm. This would result in efficiency improvements for large methods, and
little or even an efficiency decrease for small methods.

This prototype implementation was used to measure the performance impact on data
flow calculations of some benchmark projects6, producing the results presented in table 1.

6 These are some open-source projects written in different languages, that are used internally for benchmark
purposes.

J. Pereira, V. Vieira, and A. Simões 11:7

Figure 2 Flows inside functions: purple arrows are paths along lines of code while yellow arrows
are just empty edges.

The first project was the only one with a positive impact from the altered Lazy Flow
algorithm, using the Hypergraph. By correlating flow calculation statistics between these
projects, several things can be observed. AccorStruts is the project leading in terms of time
spent searching for the next references from the total time of flow calculation. Reference
finding is the act of mimicking the program’s control flow in order to understand which
symbol reference is the data flowing into next. This is a costly procedure that has specific
logic for each different DOM node.

One other observation, looking into the paths returned by the Lazy Flow algorithm, is
that the number of resulting flows is different when using the unaltered Lazy Flow and the
version using the Hyperhraph. This is an indicator that the algorithm is probably lacking
context and making some wrong assumptions about node sequences when compared to the
pure Lazy Flow approach. Finally, the only coherent and significant number regarding the
number of path reuses from the Hypergraph is with the AccorStruts project. Every other

SLATE 2023

11:8 Hierarchical Data-Flow Graphs

Table 1 Times before and after the Fast-Forward implementation (LOC=Lines of Code).

Project LOC Query time Query time with FF

AccorStruts 79.857 02:32.3 01:35.7
WebGoat 117.234 10:39.4 11:09.6
Qmxpp 20.478 00:24.0 00:30.3

Bookstore 17.588 00:25.9 00:43.0

project has a very low number of reuse, meaning that either the methods are used only
once per flow, that the clustering approach was not the best, or simply implies bugs in the
implementation.

5 Conclusions and Future Work

In this article, we present a first approach to develop a proof of concept for a hierarchical
graph to compute data flows for SAST. We are still in the early stage of the process, with a
prototype that is already allowing the analysis of the graph reuse and its impact on the flow
computation efficiency. Nevertheless, a lot of effort is still required to have a fully operational
solution. And more investment should be put into the POC to extract clearer conclusions.

In the making of this article, the generation of the Hypergraph and its reuse was achieved
by piggybacking the LazyFlow logic. The next steps would be to match the exact same
results as the standard Lazy Flow with the HyperGraph approach, creating a proper base
for a benchmark. After, the actual idea that served as motivation for the POC should be
put into practice. For that, a custom graph path-finding algorithm needs to be developed,
taking into account the same context that Lazy Flow uses. For instance, one cannot leave a
method cluster through means of a return statement into a different instance from where it
was entered.

Another point that requires further improvement is the use of output or reference
parameters, that are available in some languages. At this point, those were deliberately
ignored to have a simpler setup for initial analysis of the improvements resulting from this
approach.

References
1 F. E. Allen and J. Cocke. A program data flow analysis procedure. Communications of the

ACM, 19(3):137, March 1976. doi:10.1145/360018.360025.
2 Harri Antikainen. Using the hierarchical pathfinding a∗ algorithm in GIS to find paths through

rasters with nonuniform traversal cost. ISPRS International Journal of Geo-Information,
2(4):996–1014, October 2013. doi:10.3390/ijgi2040996.

3 Adi Botea, Martin Müller, and Jonathan Schaeffer. Near optimal hierarchical path-finding.
Journal of Game Development, 1(1):1–22, 2004.

4 Lloyd D. Fosdick and Leon J. Osterweil. Data flow analysis in software reliability. ACM
Computing Surveys, 8(3):305–330, September 1976. doi:10.1145/356674.356676.

5 Matthias Grundmann, Vivek Kwatra, Mei Han, and Irfan Essa. Efficient hierarchical graph-
based video segmentation. In 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 2141–2148, 2010. doi:10.1109/CVPR.2010.5539893.

6 Uday P. Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis: Theory and
Practice. CRC Press, March 2009.

https://doi.org/10.1145/360018.360025
https://doi.org/10.3390/ijgi2040996
https://doi.org/10.1145/356674.356676
https://doi.org/10.1109/CVPR.2010.5539893

J. Pereira, V. Vieira, and A. Simões 11:9

7 Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Data flow analysis. In Prin-
ciples of Program Analysis, pages 35–139. Springer Berlin Heidelberg, 1999. doi:10.1007/
978-3-662-03811-6_2.

8 Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.
Springer Berlin Heidelberg, 1999. doi:10.1007/978-3-662-03811-6.

9 Nuria Pelechano and Carlos Fuentes. Hierarchical path-finding for navigation meshes (HNA∗).
Computers & Graphics, 59:68–78, October 2016. doi:10.1016/j.cag.2016.05.023.

10 Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis. In
Steven S Muchnick and Neil D Jones, editors, Programme Flow Analysis, pages 189–233.
Prentice Hall, April 1981.

11 Edgar-Philipp Stoffel, Korbinian Schoder, and Hans Jürgen Ohlbach. Applying hierarchical
graphs to pedestrian indoor navigation. In Proceedings of the 16th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, GIS ’08, New York,
NY, USA, 2008. Association for Computing Machinery. doi:10.1145/1463434.1463499.

SLATE 2023

https://doi.org/10.1007/978-3-662-03811-6_2
https://doi.org/10.1007/978-3-662-03811-6_2
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1016/j.cag.2016.05.023
https://doi.org/10.1145/1463434.1463499

Type Annotation for SAST
Marco Pereira #

Checkmarx, Braga, Portugal
University of Minho, Braga, Portugal

Alberto Simões #

Checkmarx, Braga, Portugal
2Ai, School of Technology, IPCA, Portugal

Pedro Rangel Henriques #

ALGORITMI Research Centre/ LASI, DI-University of Minho, Braga, Portugal

Abstract
Static Application Security Testing (SAST) is a type of software security testing that analyzes
the source code of an application to identify security vulnerabilities and coding errors. It helps
detect security vulnerabilities in software code before deployment reducing the risk of exploitation
by attackers.

The work presented in this document describes the work performed to upgrade Checkmarx’s
SAST tool allowing the execution of vulnerability detection taking into account expression types.
For this to be possible, every expression in the Document Object Model needs to have a specific
type assigned accordingly to the kind of operation and to the different operand types.

At the current stage, this project is already supporting the expression type annotation for three
programming languages: C, C++ and C#. This support has been done through the addition of
a new Resolver Rule to the Resolver stage, allowing for the generalization of languages. We also
compare the complexity of writing vulnerability detection queries with or without access to type
information.

2012 ACM Subject Classification Theory of computation → Grammars and context-free languages;
Software and its engineering → Compilers

Keywords and phrases Static Application Security Testing, Type Annotation, C, C++, C#

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.12

Funding Alberto Simões: This paper was funded by national funds (PIDDAC), through the
FCT - Fundação para a Ciência e Tecnologia and FCT/MCTES under the scope of the pro-
jects UIDB/05549/2020 and UIDP/05549/2020.
Pedro Rangel Henriques: This work has been supported by FCT - Fundação para a Ciência e
Tecnologia within R&D Units Projects Scope: UIDB/00319/2020.

1 Introduction

Static Application Security Testing (SAST) is a fundamental tool for the software development
life-cycle. Although SAST is limited to detecting vulnerabilities and software issues during
compile time, not being able to find run-time bugs, it is able to discover a large variety of
problems. The number of results depends on the quality of the developed queries that find
vulnerable code structures. But, these queries’ effectiveness is constrained by the information
the language parsers are able to extract and infer from the source code.

This section will start by discussing what is SAST and type annotation and concludes
with a brief description of the main goals of this work. Section 2 discusses some related
work, following Section 3 with an introduction to Checkmark’s product pipeline. The
implementation of the type annotation system is depicted in Section 4 and in Section 5 we

© Marco Pereira, Alberto Simões, and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 12; pp. 12:1–12:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pg47449@alunos.uminho.pt
mailto:alberto.simoes@checkmarx.com
https://orcid.org/0000-0001-6961-2660
mailto:pedrorangelhenriques@gmail.com
https://orcid.org/0000-0002-3208-0207
https://doi.org/10.4230/OASIcs.SLATE.2023.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

12:2 Type Annotation for SAST

discuss the changes needed to support C, C++ and C# with the same code base. Finally,
Section 6 compare the complexity of vulnerability detection queries before and after the
availability of type annotation. Section 7 concludes with some remarks and future work.

1.1 Static Application Security Testing

Static Application Security Testing (SAST) [9] is a kind of security testing that is performed
on the source code of an application to identify security vulnerabilities and coding errors before
the application is deployed. It analyzes the application’s source code for potential security
flaws such as input validation errors, buffer overflow vulnerabilities, and SQL injection flaws.
SAST tools use a combination of pattern matching, data flow analysis, and other techniques
to identify vulnerabilities, providing detailed information about each issue detected and
guidance on how to remediate them.

SAST is an essential part of the software development life cycle (SDLC) because it helps
detect and address security issues early in the development process, reducing the cost and
effort required to fix them later on. By identifying potential vulnerabilities before the code
is deployed, SAST reduces the risk of exploitation by attackers and helps ensure the security
and integrity of the application.

Usually, SAST scans an application before the code is compiled, and thus is known as
white box testing.

1.2 Checkmarx’s Engine

Checkmarx’s primary product is a SAST Engine responsible for processing projects in
various programming languages. To guarantee language independence the engine produces
a generic structure, named DOM (Domain Object Model). Thus, the DOM is a language-
agnostic structure that contains information on variable declarations, assignments, conditions,
expressions and so on. The DOM is then queried by different queries in order to find
vulnerabilities in the code like SQL Injections. Each query is created following the flow of
the vulnerability it tries to detect, looking either for code constructs or to data-flows.

1.3 Type Annotation

Programming languages can be statically typed or dynamically typed (or even, in some
special situations, completely non-typed). For typed languages, each variable or expression
yields a type, either specified clearly (for static typing) or inferred by the context (for dynamic
typing) [5, 12].

Most programming languages allow declaring variables with a specific type. This type
can range from a byte or character, an integer, used to represent whole numbers, to floating
point values or even pointers and objects.

Along with the type of a variable, there can be information on its size. The most common
example is declaring an integer, where it can be specified to take two, four, eight or sixteen
bytes (in C the default integer usually takes four bytes and the remaining sizes can be stated
using the keywords short, long or the repetition long long). There can be also information
on the signedness of the variable: whether the variable can represent both positive and
negative values (the default) or only positive ones.

M. Pereira, A. Simões, and P. R. Henriques 12:3

1.4 SAST Problems solved with Type Annotation
There are different kinds of software vulnerabilities that can be tackled using type information.
This section describes one real-world example that falls in the class of Integer Overflow
situations.

Integer Overflow, also known as Wraparound, has been ranked number 13 in 2022 CWE
Top 25 vulnerabilities [6] and has been consistently ranked top 15 in the past years. The
vulnerability consists of trying to store a too-large (or too-small) value in a variable, whose
data type is not able to deal with. If we consider an integer variable, with default size and
signedness modifiers, in a C program running on a 64-bit machine, it will be able to store up
a maximum value of 2 147 483 647. This means that, if a variable of this type is yielding this
value and is incremented (for example, using the increment operator), the value will wrap,
and the variable will have the value -2 147 483 647.

An example of an integer overflow that results in a buffer overflow was detected in an
older version of OpenSSH (v3.3) [1]. For the code presented in Listing 1 the variable nresp
is obtained through a user-controlled function. This means that if the variable gets any value
higher than 1

8 × MAX_UINT, the expression inside the xmalloc function will wrap (here we
consider that we are running in a 64-bit machine, where a pointer is eight bytes). Given that
xmalloc function parameter is an unsigned integer, the wrapped value will be too small to
deal with the size of the packed being received, and data will be written in non-reserved
memory.

Listing 1 OpenSSH 3.3 excerpt vulnerable to integer overflow
nresp = packet_get_int ();
if (nresp > 0) {

response = xmalloc(nresp * sizeof(char *));
for (i = 0; i < nresp; i++)

response[i] = packet_get_string(NULL);
}

While SAST is unable to detect the value present in the nrest variable, it can detect
that variables of the same type are being multiplied and that their values are not checked for
possible overflows.

1.5 Objectives
The goal of the development described in this document is to create a proof of concept system
that adds information about types to each declared variable and each and any expression
that uses them. This information should be as complete as possible, including not only the
type itself, but also its size or signedness details, or even the target type in case of arrays,
pointers or objects.

Given that Checkmarx’s tool is language-independent, the developed solution must be
extensible to support statically or dynamically typed languages with the same code base.

2 Related work

There is not much work related to type annotation for SAST. Nevertheless, in this section
we present some related work at different levels: on how to represent types, on type inference
tools and on tools that rely on type information to find code vulnerabilities.

A comparison can be performed with the way Checkmarx deals with languages and the
way LLVM (formerly known as Low-Level Virtual Machine) does. LLVM is a collection
of modular and reusable compiler and tool-chain technologies. It provides a set of tools

SLATE 2023

12:4 Type Annotation for SAST

for building compilers, code analyzers, debuggers, and other related software. The key
idea behind LLVM is to provide a set of low-level, platform-independent instructions and
optimization steps that can be used to build high-level language compilers.

In LLVM, type annotations are added to the intermediate representation during the
front-end stage of compilation. The front end is responsible for translating the source code
of a programming language into the LLVM intermediate representation, much like the way
Checkmarx’s Engine constructs a Domain Object Model (DOM). To represent types, the
LLVM project provides a type system that is designed to be platform-independent and
flexible. It includes built-in types such as integers and floating-point numbers and user-
defined types such as structures and arrays. Figure 1 presents a diagram that describes all
the implementations of the LLVM type system [11].

Figure 1 LLVMType diagram.

Type inference, by itself, is common, especially for dynamically typed languages. Note
that these language interpreters can benefit from run-time to perform their type analysis.
Nevertheless, there are works for static type analysis for these languages. For the Python
programming language, such an example is presented by [4]. A more complex example for
type inference [3] has the goal to infer types from code executable files, and therefore, not
having any hints from the code itself.

A technical report [7] from the University of California at Berkeley focuses on a similar
problem as some of the queries being developed at Checkmarx that will take advantage of
type inference. Their goal is to detect signedness conversions that can cause application bugs.
Their work is developed on top of the Valgrind [8] tool.

3 Checkmarx’s Pipeline

In this section, some information on the current state of Checkmarx’s engine pipeline will be
provided for context.

Initially, the source code gets parsed by ANTLR [10], generating a parse tree. This tree
is then used by two sets of visitors. The first set of visitors creates a global symbol table for
the variables found, trying to store their type information, accordingly to their declaration
type (statically typed languages) or based on the values that are assigned to them. The
second set of visitors produces an abstract syntax tree (in fact, it is called Universal Abstract

M. Pereira, A. Simões, and P. R. Henriques 12:5

Figure 2 Checkmarx source code parsing pipeline.

Syntax Tree – UAST – as it is almost language independent). This tree is then converted
to a Domain Object Model (DOM) tree, that is shared among all programming languages.
The vulnerability scans run on top of this tree. A set of other services are then run on
top of this model, namely a resolver, that finds internal references for symbols, an abstract
interpretation engine, or even a lazy data-flow service. This structure is depicted in Figure 2.

Follows an elaborated explanation of the relevant steps involved in the type annotation
process.

Symbol Table

The first stage of the pipeline is responsible for generating the symbol table. A set of visitors
traverse the syntax tree constructed by the ANTLR grammar that gathers information about
declared variables and literal values. Thus, some information on types is obtained at this
point, as well as some type modifiers. Nevertheless, this information is not available for
expressions, as no resolution of symbols is performed.

Listing 2 shows the type information collected by this stage that will be useful for the type
annotation process. The example shows some information about an unsigned long variable.
type associated with each variable contains, among other data, a list of modifiers and the
name of the type. The list of modifiers will contain all the strings of the type that aren’t
the base type name, in this case, the two modifiers present are “unsigned”, the signedness
modifier of the type, and “long”, the size modifier of the type. The Modifiers array can
also contain strings like “static” and “volatile”. The name of the type is “int” as that is the
type declared implicitly for an unsigned long variable.

Listing 2 Information on the type and its modifiers for an unsigned long expression after the
Type Inference stage
Type: {

...
Modifiers: [unsigned , long],
Name: int
...

}

SLATE 2023

12:6 Type Annotation for SAST

UAST Creation

The parsing tree is traversed a second time using another set of visitors to create a Universal
Abstract Symbol Table (UAST). This tree structure is shared among other languages, with
minor language-specific details. Regarding types, the UAST does not add much information,
it just compiles the data collected in the symbol table and adds it to the correct tree nodes.

UAST to DOM Conversion

The Domain Object Model (DOM) is a tree structure shared among all programming
languages. This step processes the UAST in order to create this DOM structure. In
the DOM, type information is much more clear and straightforward as can be seen in
Listing 3. This Listing relates to the same data presented in Listing 2. At this stage the
type information is saved in a class named “TypeRef”, there are class variables which save
each of the type-related modifiers instead of having them all on a single list.

Listing 3 DOM information on type modifiers for unsigned long

TypeRef: {
TypeName: int ,
TypeSignedness : Unsigned ,
TypeSize : Long ,
...

}

Resolver

The Resolver is one of the complementary services that uses the information available in
the DOM to link all references, namely variables and functions with their definitions. This
information is crucial for the type annotation process, as the return type of an expression
that uses a variable requires the knowledge of that variable’s type, as well as the return type
of an expression that uses a function call, requires its return type.

4 Development

This section starts by discussing the different points, in Checkmark’s engine pipeline, where
the type annotation process could be implemented, and the challenges that arise from that
approach. Follows the description of the implemented solution.

4.1 Solution Discussion
Three different stages were analyzed as possible implementation points for the type annotation
system:
1. The first one was using the first pipeline step when the global symbol table is constructed.

While this stage would allow easy implementation, the drawback is how specific is this
stage accordingly with the language begin analyzed. This would mean that future
improvements and the addition of type annotation on other languages would require the
replication of similar code

2. The second approach was using the traversal done when converting the UAST into the
DOM. The implementation of the type annotation step at this point would have little
overhead, as the traversal through every tree node was already being performed either way.

M. Pereira, A. Simões, and P. R. Henriques 12:7

This would, also, be a much better solution in terms of allowing for the generalization of
different languages. The implementation would be a simple visitor for each node type in
the DOM structure.
Unfortunately, the type of declared variables is not associated with the calls of said
variables at the UAST2DOM stage, this means that no information on variable types is
present. Thus, the type annotation implementation had to be moved further to the end
of the pipeline.

3. There are complementary services that run on top of the final DOM structure. As already
referred, one of those services is the Resolver. The Resolver is composed of rules, each
one of them responsible for a different task. For example, one of them is responsible for
the attribution of types to variables, functions and method calls. Adding a new rule at
the end of all the other Resolver rules would allow access to all the information gathered
by the previous steps. Thus, the information on the types would already be present and
allow for the expression type annotation with all the information needed.

Taking into account the different approaches, the development was performed considering
the addition of a new Resolver rule. It supports the infrastructure for type annotation for
all languages, as the DOM structure that supports the type annotation engine is language-
independent. The main challenge, which will be discussed in the next section, is to deal with
different types from different languages, as well as the different type-inferring mechanisms
that each one of these languages implements.

4.2 Type Annotation Implementation
As discussed before, the solution was implemented as a new rule in the Resolver engine.
As expected, this approach requires a new traversal of all nodes in the DOM structure.
However, given only expressions will have a type (statements do not have an inferred type),
the solution is able to select only nodes that inherit from the expression node type, mitigating
this problem to some extent.

Figure 3 Resolver architecture.

Figure 3 shows that the Resolver is composed of various rules, each of them implementing
the IResolverRule interface. This interface defines a main method that is called by the
Resolver for each one of the rules. Along with this method, for the rule that is implemented,
the constructor method is also be very important.

SLATE 2023

12:8 Type Annotation for SAST

The constructor method is responsible for calling the TypeAnnotation class constructor
and retrieving, from every node in the final tree, those of type Expression. These expressions
are then processed by the mentioned Execute method, which iterates through the expressions
and calls the AddAnnotatedType method.

The dotted lines simply denote files/classes that are used. The TypeAnnotation class,
for example, is used inside the ResolveExpressionTypes rule.

4.2.1 The TypeAnnotation Class
The TypeAnnotation class goes through the different types of expressions (binary and unary
operators, method invocations, casts, etc) and calls the DetermineExpressionType method.

This method is polymorphic, meaning that there is a different implementation for each
expression type, thus making the code maintainable and easily extensible, and also recursive,
as some expression types depend on the types of the child expressions. Thus, every time a
node is visited, the process looks for the existence of the annotated type and returns if it
exists. This is required given that the class constructs a list with all the expressions in the
DOM structure.

The type annotation is stored as a custom attribute, meaning that no change was required
in the base DOM object structure. To decide which type to assign to each expression another
class, named Conversions, is used. It is responsible for deciding the type of a node given
the child node types. For example, to decide on the type of a binary expression the method
looks for the type of the left and right operands, to the operator.

4.2.2 The Conversions Class
The Conversions class is responsible for providing the TypeAnnotation class with the type
resultant of different operand and operator combinations. It has two different stages that
are equally important: a first stage, implemented in the class constructor, and a second one
implemented in the ResultOf methods that are called by the TypeAnnotation class:
1. The constructor of this class uses JSON file, as shown on Figure 3, that describes, for

each node type, operator or method, and operands, the inferred result type. This file
content is loaded and a structure is created with the required information for dealing
with the expression type annotation.
This file uses a domain-specific language in order to reduce the number of repetitions.
Details on this syntax are described in the next Section. For example, it is possible to
specify that, for binary operators, all the combinations of operand types will always have
the same result, regardless of the specific operator.
In order to support different languages a new feature has been added, that will allow this
main conversions file to be overridden, for specific node types. For example, considering
the C programming language, the result of the division of two integer operands is, also,
an integer, but in other languages, like Python, the result would be a floating-point value.
So, for these exceptions, a Python-specific conversion file will be created that will just
specify the main behaviour changes when compared with the base conversions file.
The conversion information is stored on an instance of the TypeInfo structure. This
structure is a simple type representation that contains basic type information: the type
name (char, integer, etc.) and its signedness and size properties.

2. The ResultOf method uses this information. It receives all the operand types present
and the operator (or other information like the name of the method being invoked), and
the type of the expression that is being processed.
It then iterates the map containing the corresponding expression type conversions and
returns the TypeRef resultant of the received operands and operator combination.

M. Pereira, A. Simões, and P. R. Henriques 12:9

4.2.3 The conversions JSON file
As explained previously, there is a JSON file that keeps all the combinations of operands,
operators and nodes, as well as the inferred expression type for that node. The main focus
of this file is to keep all this information in a simple and easily processable file, and also
readable by the programmer.

Listing 4 Excerpt from conversions.json

"BinaryOperator": {
"*": {

"bool": {
"default": "itself"

},
"char": {

"Signed Short int": "Signed Short int",
"Unsigned Short int": "Unsigned Short int",
[...]
"float": "float",
"double": "double",
"Long double": "Long double",
"default": "char"

},
"Signed Long int": {

"Unsigned Long int": "Unsigned Long int",
"Signed LongLong int": "Signed LongLong int",
[...]
"Long double": "Long double",
"default": "Signed Long int"

},
"Long double": {

"default": "Long double"
}

}
}

Consider the binary operator and the C programming language as an example. The
resulting type for a binary operator expression is only dependent on the operands and not on
the operator itself (except for the comparison operators, whose resulting type is a Boolean).
To reduce the number of entries in the conversions file, the operator can be replaced by a
special symbol: the asterisk (‘*’). Note that the operators are not represented by their symbol
but by an internal name. Therefore, this asterisk will not conflict with the multiplication
operator. Listing 4 shows a partial excerpt of the binary operator rules.

The C programming language always selects the more precise type from a binary operator.
If the first operand is a Boolean value, then no matter what the second operand is: the
inferred expression type will always be the other operand type. As another example, for
long double values, there is no more precise type so the resulting type will always be a long
double. The “default” keyword means any other type not specified in that rule, just like the
default keyword in a switch statement.

There is also a “itself“ keyword that is used in conjunction with the “default” keyword.
It means that the resulting type is always the type matching the default keyword.

5 C, C++ and C#

While the prototype started for the C and C++ programming languages, there was the
need to guarantee that the approach is easily extensible for other programming languages.
Before trying a dynamically typed language, where SAST will not be able to perform much

SLATE 2023

12:10 Type Annotation for SAST

Listing 5 Excerpt from the R10_03.cxql query.
CxList assignExprs = Find_AssignExpr ();
CxList paramDecls = Find_ParamDecl ();
CxList decls = All.NewCxList(Find_Declarators (), paramDecls);
CxList unknownReferences = Find_UnknownReference ();
CxList enumDecls = Find_Enum_Declarations ();
CxList realLiterals = Find_RealLiterals ();
CxList integerLiterals = Find_Integer_Literals ();
CxList charLiterals = Find_CharLiteral ();

CxList boolDecl = decls.FindByType("bool");
CxList charDecl = decls.FindByType("char");
CxList enumDecl = All.FindAllReferences(enumDecls) - enumDecls;
CxList shortDecl = decls.FindByTypeModifiers(TypeSizeModifiers.Short);
CxList intDecl = decls.FindByType("int")

.FindByTypeModifiers(TypeSizeModifiers.Default);
CxList longDecl = decls.FindByTypeModifiers(TypeSizeModifiers.Long);
CxList floatDecl = decls.FindByTypes("float", "double", "long␣double");

// Get all references from essential types
CxList boolDeclRefs = unknownReferences.FindAllReferences(boolDecl);
[...]
// Find for integer literals with ’L’ suffix
CxList literalsWithSuffix =

integerLiterals.FindByRegex(@"[1 -9]?[0 -9]+[lL]?", false , false , false);
[...]

// Checks if the type of return statement references is different from
↪→ the return type of the methodDecl

foreach(CxList retRefs in returnStmtRefs)
{
CxList methodDeclReturn = retRefs.GetAncOfType <MethodDecl >();
methodDeclReturn = methodDeclReturn.CxSelectDomProperty <MethodDecl >(

↪→ method => method.ReturnType);

CxList types = paramDecls.FindDefinition(retRefs);
types = types.CxSelectDomProperty <ParamDecl >(parDecl => parDecl.Type);

string retTypeName = types.CxSelectElementValue <TypeRef , string >(x => x.
↪→ TypeName).FirstOrDefault ();

string methodDeclRetTypeName = methodDeclReturn.CxSelectElementValue <
↪→ TypeRef , string >(x => x.TypeName).FirstOrDefault ();

if (methodDeclReturn != null && retTypeName != null &&
retTypeName != methodDeclRetTypeName)

result.Add(retRefs.GetFathers ().FindByType <ReturnStmt >());
}
[...]

// Add to result non - addition assign expressions that have char
// on the left side and real , integer literals on the right side
addToRefs.Add(integerLiterals);
assignExprs -= assignAddExprs;
result.Add(getRefs(charDeclRefs , addToRefs , assignExprs));

M. Pereira, A. Simões, and P. R. Henriques 12:11

inference at compile time, tests were performed for C#. While not too different from C, it
has some relevant differences that allowed the understanding of possible limitations.

The implementation of the C# language was made simply by adding support for expres-
sions that do not exist in C, such as the Try/Catch expressions, although this expression
exists as a statement, it can never be used as an assignment to a variable in C/C++ contrary
to C#.

C# also adds the Throw as an expression. Nevertheless, it works as a statement, as the
evaluation of the current expression is interrupted and the exception is raised. Thus, its
return type is irrelevant.

Another issue is the type system. C# does not support type modifiers. Instead, there
are different types, one for each combination of signedness and size. For example, the type
“long” in C# is the equivalent of a “long int” in C/C++. Thus, these new types need to
be taken into account in the conversions file. As these types do not overlap with the C/C++
ones, they can be described in the same file without any issue.

6 CXQL Query exploration

Checkmarx uses queries written in a Domain Specific Language (DSL) based of C#, known as
CxQL, to look up vulnerabilities in the DOM. Each query searches for a specific vulnerability
in a specific language (although there are some exceptions).

Before the addition of expression type annotation queries that needed type information
were hard to write. Consider Rule 10.3 from MISRA [2] (a group of safety guidelines for
writing code for the automotive industries). It states that “The value of an expression shall
not be assigned to an object with a narrower essential type or of a different essential type
category.”

This rule is currently implemented without any annotation of types. This query is quite
large and not readable, as can be seen in Listing 5. The code is very repetitive, with more
than 200 lines of code. It is partially replicating the type annotation process but in query
time. Also, other queries rely on similar information and repeat most of this code to be able
to infer expression types.

The code gets simpler by rewriting this query using the information provided by the type
annotation system. Listing 6 shows the complete new query. It has less than 50 lines of code
and is more maintainable. Testing the query in a project of 177 558 lines of code, we notice
that the original query takes 8.17 seconds, while the new version takes 7.86 seconds. Even
though it provides a speed improvement, it should be noted that the main gain of this query
is to allow for more readable and understandable code.

7 Conclusion

This document presents the implementation of a POC for a type annotation system for
Checkmarx’s SAST engine. While the tool is still in a proof-of-concept stage, it has proven to
be possible to extend to other statically typed languages and its usage in query development
makes them more readable and maintainable. In fact, the type of code assessment that can
be done with this new information is larger, allowing Checkmarx to develop new directions
for vulnerability scans.

Currently, there are some main directions to improve this prototype and integrate it
officially:

SLATE 2023

12:12 Type Annotation for SAST

Listing 6 Rule new_R10_03.xql

var expressionsWithAnnotatedType = All.FindExpressionWithCustomAttribute(
↪→ "AnnotatedType");

var assignments = All.FindByType <AssignExpr >();

var typeSizeModifiersRanking = new Dictionary <TypeSizeModifiers ,int >{
{ TypeSizeModifiers.LongLong , 1 }, { TypeSizeModifiers.Long , 2 },
{ TypeSizeModifiers.Default , 3 }, { TypeSizeModifiers.Short , 4 }}

var typeNameRanking = new Dictionary <string ,int > {
{"double", 1}, {"float", 2}, {"int", 3}, {"char", 4}, {"bool", 5}};

foreach (CxList assign in assignments) {
var leftTypeList = assign.CxSelectDomProperty <AssignExpr >(x => x.Left);
var rightTypeList = assign.CxSelectDomProperty <AssignExpr >(x => x.Right)

↪→ ;
var assignExpr = All.NewCxList(leftTypeList , rightTypeList);

if ((expressionsWithAnnotatedType * assignExpr).Count == 2) {

TypeRef leftAnnotatedType =
leftTypeList.CxSelectDomProperty <Expression >(x =>

(x.CustomAttributes.First(attr => attr.Name == "AnnotatedType")
.Parameters [0] as TypeOfExpr).Type).GetFirstGraph () as TypeRef;

TypeRef rightAnnotatedType =
rightTypeList.CxSelectDomProperty <Expression >(x =>

(x.CustomAttributes.First(attr => attr.Name == "AnnotatedType")
.Parameters [0] as TypeOfExpr).Type).GetFirstGraph () as TypeRef;

try {
if (
typeSizeModifiersRanking[leftAnnotatedType.TypeSize] >

↪→ typeSizeModifiersRanking[rightAnnotatedType.TypeSize]
|| (
typeSizeModifiersRanking[leftAnnotatedType.TypeSize] ==

↪→ typeSizeModifiersRanking[rightAnnotatedType.TypeSize]
&& typeNameRanking[leftAnnotatedType.ResolvedTypeName] >

↪→ typeNameRanking[rightAnnotatedType.ResolvedTypeName]
)
|| leftAnnotatedType.TypeSignedness != rightAnnotatedType.

↪→ TypeSignedness)
{
result.Add(assign.Clone());

}
}
catch (Exception e) {
result.Add(assign.Clone());

}
}

}

M. Pereira, A. Simões, and P. R. Henriques 12:13

Explore new statically typed languages that are farther from C. As an example, Java or
TypeScript are probable candidates.
Attempt type annotation for dynamically typed languages, like Python, Perl, JavaScript
or Ruby. We expect that many expressions will be annotated with a generic any type, but
that some others might be possible to annotate properly. For some of these languages,
like Python, code hints can be used in the source code to specify types. This information
can be used for the type annotation process.
Upgrade the proof-of-concept to handle more complex data types, record-like (classes,
struct), arrays, pointers or objects. While some of these will prove to be a challenge,
others will be simpler to support.

References
1 Acunetix. What is integer overflow? https://www.acunetix.com/blog/web-security-zone/

what-is-integer-overflow. Accessed on May 26, 2023.
2 Motor Industry Software Reliability Association. MISRA-C: 2012: Guidelines for the Use of

the C Language in Critical Systems. HORIBA MIRA, 2019.
3 Juan Caballero and Zhiqiang Lin. Type inference on executables. ACM Comput. Surv., 48(4),

May 2016. doi:10.1145/2896499.
4 Mingzhe Hu, Yu Zhang, Wenchao Huang, and Yan Xiong. Static type inference for foreign

functions of python. In 2021 IEEE 32nd International Symposium on Software Reliability
Engineering (ISSRE), pages 423–433, 2021. doi:10.1109/ISSRE52982.2021.00051.

5 Leandro T. C. Melo, Rodrigo G. Ribeiro, Breno C. F. Guimarães, and Fernando Magno
Quintão Pereira. Type inference for c: Applications to the static analysis of incomplete
programs. ACM Trans. Program. Lang. Syst., 42(3), November 2020. doi:10.1145/3421472.

6 MITRE. Cwe top 25 list (2022). https://cwe.mitre.org/top25/archive/2022/2022_cwe_
top25.html. Accessed on May 26, 2023.

7 David Alexander Molnar and David Wagner. Catchconv: Symbolic execution and run-time
type inference for integer conversion errors. Technical Report UCB/EECS-2007-23, University
of California at Berkeley, February 2007.

8 Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not., 42(6):89–100, June 2007. doi:10.1145/1273442.1250746.

9 Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.
Springer Berlin Heidelberg, 1999. doi:10.1007/978-3-662-03811-6.

10 Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages. The
Pragmatic Bookshelf, Raleigh, 2007.

11 The LLVM Project. LLVM compiler infrastructure and tools. https://llvm.org/, accessed
2023.

12 Stuart M. Shieber. Constraint-Based Grammar Formalisms: Parsing and Type Inference for
Natural and Computer Languages. MIT Press, Cambridge, MA, USA, 1992.

SLATE 2023

https://www.acunetix.com/blog/web-security-zone/what-is-integer-overflow
https://www.acunetix.com/blog/web-security-zone/what-is-integer-overflow
https://doi.org/10.1145/2896499
https://doi.org/10.1109/ISSRE52982.2021.00051
https://doi.org/10.1145/3421472
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1007/978-3-662-03811-6
https://llvm.org/

Characterization and Identification of
Programming Languages
Júlio Alves #

ALGORITMI Research Centre/LASI, University of Minho, Braga, Portugal

Alvaro Costa Neto #

Federal Institute of Education, Science and Technology of São Paulo, Barretos, Brazil

Maria João Varanda Pereira # Ñ

Research Centre in Digitalization and Intelligent Robotics, Polythechnic Insitute of Bragança,
Portugal

Pedro Rangel Henriques # Ñ

ALGORITMI Research Centre/LASI, University of Minho, Braga, Portugal

Abstract
This paper presents and discusses a research work whose main goal is to identify which characteristics
influence the recognition and identification, by a programmer, of a programming language, specifically
analysing a program source code and its linguistic style. In other words, the study that is described
aims at answering the following questions: which grammatical elements – including lexical, syntactic,
and semantic details – contribute the most for the characterization of a language? How many
structural elements of a language may be modified without losing its identity? The long term
objective of such research is to acquire new insights on the factors that can lead language engineers to
design new programming languages that reduce the cognitive load of both learners and programmers.
To elaborate on that subject, the paper starts with a brief explanation of programming languages
fundamentals. Then, a list of the main syntactic characteristics of a set of programming languages,
chosen for the study, is presented. Those characteristics outcome from the analysis we carried on at
first phase of our project. To go deeper on the investigation we decided to collect and analyze the
opinion of other programmers. So, the design of a survey to address that task is discussed. The
answers obtained from the application of the questionnaire are analysed to present an overall picture
of programming languages characteristics and their relative influence to their identification from the
programmers’ perspective.

2012 ACM Subject Classification Software and its engineering → Language types; Software and its
engineering → Formal language definitions

Keywords and phrases Programming Languages, Programming Language Characterization, Pro-
gramming Language Design, Programming Language Identification

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.13

Funding This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020.

1 Introduction

Computers have evolved to be capable of recognizing and translating sentences, written
according to formal rules, to machine code, which enables them to execute the tasks they
are being asked to do. These sets of sentences are called programming languages. Every
programming language has its own syntactic and semantic rules that make them unique [8],
and that must be strictly followed in order to construct valid programs.

Each programming language has been developed with certain goals in mind, the so called
programming paradigm, with some being being applied to specific fields of application, such
as artificial intelligence or web development, while many others have been denominated as

© Júlio Alves, Alvaro Costa Neto, Maria João Varanda Pereira, and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 13; pp. 13:1–13:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pg47390@alunos.uminho.pt
mailto:alvaro@ifsp.edu.br
https://orcid.org/0000-0003-1861-3545
mailto:mjoao@ipb.pt
http://www.ipb.pt/~mjoao/
https://orcid.org/0000-0001-6323-0071
mailto:prh@di.uminho.pt
https://www.di.uminho.pt/~prh/
https://orcid.org/0000-0002-3208-0207
https://doi.org/10.4230/OASIcs.SLATE.2023.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

13:2 Characterization and Identification of Programming Languages

general purpose languages. It can be said that behind the design of a programming language
lies a philosophy of problem solving, usually suited for its intended area of application [9]. It
is also evident that all languages have different characteristics, that can become obstacles
not only to the development process, but also in teaching, sometimes creating such a mixture
of diversified technologies applied to a system’s construction that one could denominate as a
technological cocktail. Due to each language’s nature, it may be harder for programmers and
students to understand how to properly apply the language rules to meet their needs [13].
The study of these differences and the identification of languages’ main characteristics are
not common practices in typical academia courses, making it a very important subject to be
tackled.

It is then possible to raise some interesting questions that deserve further research: what
indicates that two programming languages are different if what distinguishes them is not
clear? What characterizes and identifies a language? Is it a syntax driven feature, such as
the opening and closing symbols of code blocks? Could it be how a variable is declared? If a
programming language is incrementally modified, at what point does it lose its identity?

This paper starts with a short section regarding fundamentals of programming languages,
where it is explained how a programming language is specified and the role of its formal
grammar. Section 3 presents the most relevant characteristics of a set of programming
languages that have been elected for this study: C, C++, C#, Java, Python and Haskell.
Section 4 discusses the design process of a survey, through which programmers were inquired
about how they identified a programming language through several source code snippets.
Section 5 presents the analysis of results collected using the referred survey. Finally, the paper
concludes emphasizing what was discovered from the study so far conduced and proposes
the potential improvements to be done through future research.

2 Fundamentals in Programming Languages

Programming languages are defined by sets of rules. These rules define both its structure –
syntactic rules – and meaning – semantic rules. A context-free grammar is usually defined
to generate a parser, that checks if a source code abides to these syntactic rules. The
sentences derived from these rules are used to create programs that perform specific tasks,
solve problems, and interact with other systems. A considerable number of programming
languages has been developed, each one portraying its own syntax and features that make
them more suitable to solve problems in a certain domain [2, 5].

As previously stated, the main way to define the syntax of a programming language is
by using a grammar. A formal grammar is composed of a set of rules that must be used
to derive correct, or valid, sentences of that language. In order to specify a grammar, four
elements are needed:

Finite set of tokens - The elementary symbols of the language defined by the grammar,
usually called the Alphabet or Vocabulary;
Finite set of non-terminal symbols - Represent the language concepts that give raise
to, or derive, the sentences and sub-sentences;
Finite set of grammar rules - Substitution rules in which a non-terminal symbol (on
the left) may be substituted by a sequence of terminals and non-terminals defined on the
right side of the derivation operator;
Start non-terminal symbol - The starting point for the derivation process.

J. Alves, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 13:3

Despite this standard way of designing programming languages, the substitution rules
and the concepts expressed by each non-terminal symbol provide distinct characteristics to
each language, establishing a sense of identity. This sense may also be realised through the
use and application of each language, which allows for their characterization beyond formal
definitions.

3 Characterization of Programming Languages

As it is known by programmers, every programming language is different. These differences
may be on their purpose, the paradigms they realize, features (such as portability or efficiency)
or, and most notably, their lexicon and syntax. Programming languages may be divided in
two groups that are defined by their programming paradigms: declarative and imperative.
The former includes all the languages that are based on a set of declarations or specifications
of several program elements, while the latter is based on a sequence of instructions, or
orders. As can be observed in the following sections, out of all the selected languages the
only language under study that belongs to the declarative paradigm is Haskell. In order to
better understand these differences from the programmers’ points of view and construct a
well founded survey, it was important to collect the main features that define each languages
identity, gathering the syntactic and semantic characteristics that are either uniquely or
commonly recognizable to each of them. In this way, it became easier to determine which
questions to ask and how to ask them, as will be discussed in Section 4.

The main reasons for choosing these languages were:
General similarity (C versus C++, Java versus C#);
General dissimilarity (C versus Python and Haskell);
Variation of paradigms;
Ascendancy (C versus C++, C#, and Java);
Possible familiarity of the respondents.

It is important to note that these reasons were meant to compare similarities and
dissimilarities, in order to raise or lower the linguistic contrast of the snippets in the
questionnaire.

3.1 C
Being one of the most used and recognizable programming languages in history, C was an
important entry point for later comparison in the survey. Many other languages, such as
C++, derived their syntactic and semantic rules from those previously found in C. Some of
the defining characteristics of C are [14]:

C is a Procedural Programming language;
C is strong and statically typed;
A mandatory main function that defines the entry point for execution;
Curly brackets are used to enclose the contents of a code block;
Semi-colons indicate the end of a statement;
Variables and constants must be explicitly declared using the type identifier pattern;
Functions are the structural elements of the source code;
Function signatures must have a return type, followed by its name and a pair of parenthesis
grouping all arguments;
Functions may return nothing (void);

SLATE 2023

13:4 Characterization and Identification of Programming Languages

The fixed-length array is the only data collection built into the language and its declaration
follows the basic variable declaration pattern. Lengths and dimensions are defined using
square brackets after the identifier;
Pointers are memory addresses and are used to indirectly access memory addresses;
A pointer is declared like any other variable, with an added asterisk prefix before the
identifier;
An ampersand is used to fetch the address of a variable;
Characteristic and recognizable functions are present in the standard library, such as
printf and scanf.

3.2 C++
C++ was designed as a super set language of C, inheriting a lot of its syntactic and semantic
characteristics. The concept of classes is introduced in C++, which brings C’s structure and
form to a new paradigm. Some of its main characteristics are [15]:

Just like C, C++ is also strong and statically typed;
C++ imported all the basic syntactic and semantic elements from C. Therefore, character-
istics such as the entry point for execution, code block notation, declaration syntax and
so on were either unaltered or simply augmented;
The concept of classes was the most structural aspect that C++ implemented on top of C,
defining an Object Oriented Programing (OOP) language;
Classes are also structural elements of the source code;
Classes are declared using the class keyword, in a similar fashion to composite structures
(struct) in C;
Data members are declared inside the class definition using the standard variable declara-
tion pattern;
Methods may be declared either inside the class definition or outside, using a specific
notation (class::method);
The standard library added several data structures, such as dynamic vectors, linked
lists, and queues, while also provided several new redundant methods and operators that
implemented the same functionality as C’s standard library – « instead of printf, »
instead of scanf, and so on;
Some other additions to C’s mechanisms are also present, such as operator overloading,
new and delete commands, templates, virtual functions etc.;
In C++, the notion of namespaces is introduced. A namespace is a declarative region that
provides a scope to the identifiers (the names of types, functions, variables, etc) inside it.

3.3 C#
Just as C++ was designed to be an evolution of C, C# was meant to pursue this path further
concerning C++, while also competing in the same space of Java. C# simplifies many of C++’s
features and solves some of its problems (such as pointers and memory allocation issues)
while maintaining its power and paradigm. Some of C# characteristics are [1]:

Like its predecessors, C# is also strong and statically typed;
The need of a Main method, instead of a function;
As a successor of C++, it maintains the same syntatic features to delimit code blocks and
to end statements, both carried over from C;
When declaring a variable, one can explicitly state what the variable type will be or can
use the keyword var, and the variable type will be inferred by the compiler;

J. Alves, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 13:5

As C# is an Object Oriented Programming language, classes are the structural elements;
C# offers a variety of data structures, such as arrays, lists, stacks, queues, sets and
dictionaries;
Directives indicate that a specific namespace will be used. It is composed by the keyword
using, followed by the desired namespace identifier;
References types supplant pointers and remove the asterisk notation.

3.4 Java
Java is an Object Oriented Programming language that, despite not being based on C and
C++, certainly was influenced by them. Some of Java characteristics are [6]:

Java is a strong and statically typed language;
As Java was inspired by C and C++, many syntactic and semantic elements have been
imported into it, such as the mandatory entry point (main method), curly brackets to
delimit code blocks, semi-colons to end statements and the standard variable declaration
pattern;
All variables must be declared with a type;
There are specific declaration modifiers, such as final;
Just like C#, classes are the structural element;
Java also offers a significant variety of data structures, such as arrays, lists, stacks, queues,
sets and maps;
Types can be divided into two semantic categories: primitive types, such as boolean
and numeric types; and reference types such as classes, interfaces and arrays. Values in
reference types relate to objects;
The special type null has no name and can be assigned or cast to any reference type. Its
reference is the only possible value of an expression of type null;
Conversions, such as identity conversion, widening and narrowing primitive conversion,
unchecked conversion and capture conversion;
In order to use other packages, one must use the keyword import followed by the name
of the package, similar to C++ and C# namespaces.

3.5 Python
Python is an Interpreted, Scripting and Procedural language but also supports other program-
ming paradigms such as Object Oriented and Functional. Some of Python characteristics
are [10]:

Unlike the previously discussed languages, Python is dynamically typed;
A main function or method is not required;
In Python, instead of using braces to delimit code blocks and scope, these are defined by
indentation;
Semi-colons are not required to mark the end of a statement, a new line is enough;
Variables are declared when a value is assigned to them, without needing to declare their
type;
In order to define a function, its name must be preceded by the keyword def. After
the function name, a pair of parenthesis must be used containing and optional a set of
arguments;
Despite being an OOP language, Python’s structural elements are functions;
There are different data structures like lists, tuples, sets, dictionaries, strings and range
available in the standard library, some of which have special syntax associated with their
use.

SLATE 2023

13:6 Characterization and Identification of Programming Languages

3.6 Haskell
Differently from all other languages previously discussed, Haskell is a purely Functional
Programming language meaning, instead of telling the computer what to do, the programmer
tells the computer what something is. Haskell is also lazily executed, so the interpreter will
compute values only when they are actually needed, unless told otherwise. Some of Haskell
characteristics are [11]:

Haskell is a Declarative language since is based on the specification of a set of functions
and expressions;
Haskell is a strong and statically typed language;
Code blocks are delimited by indentation, just like Python;
A new line is used to define the end of a statement;
In order to declare a variable in Haskell, the programmer must use either the keyword
let or var, followed by the variable name. Variables are immutable by default, however
the keyword var allows the variable to be mutable;
Due to Haskell’s inference mechanism, it is not needed to specify variables types in
declarations;
In order to declare a function type, the programmer declares its name followed by the ::
operator – which can be read as “type of” – and all its parameters. The parameters are
separated by the arrow operator (->), with the last parameter being the return type;
Functions are the main structural element of the language;
The data structures offered by Haskell are: lists, tuples, sets, maps, strings and ranges;
Instead of requiring multiple lines of code to write nested if...then...else conditions,
Haskell implements guards. Guards are indicated by a pipe character (|) followed by a
boolean expression and what will be evaluated in case the expression is true. Should it
be false, the next guard is evaluated, and so on;
where - Haskell doesn’t allow to store variables for a future use. However, with the
keyword where, users can declare variables to be used inside a function with its biggest
limitation being the fact that where scope is limited to the function it was declared;
Haskell also has a switch like statement, with the use of the keyword case in the format
case <expression> of <pattern> -> <result>;
Recursion plays a big role on the regular use of the language.

4 Survey Design

A crucial part of this research was the development and implementation of a survey1 to gather
the different perspectives of a programmer regarding their known languages identification.
While not directly applied, the general concepts behind Value-Focused Thinking [7] founded
the rationale throughout the construction of the survey, as was the case with previous
studies [4].

Since the survey contemplated multiple programming languages and the target audience
had various degrees of knowledge of these languages, it became critical to weigh one’s
answers. For this reason, the survey started with a section containing only one question
on the respondent’s familiarity with the six chosen programming languages (C, C++, C#,
Java, Python and Haskell). Respondents could choose his or her level of knowledge in each
language from five different options, ranging from complete ignorance to profound knowledge.

1 Available at https://forms.gle/6kBuHhYD5FPHK8Cp9.

https://forms.gle/6kBuHhYD5FPHK8Cp9

J. Alves, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 13:7

From this section forward, all questions regarded different code snippets written in the
programming languages under study. These code snippets were created aiming for conciseness,
while also contrasting or emphasizing specific linguistic traits. As previously stated in section 3,
both similarities and dissimilarities were implemented when two snippets were compared.
This was made to evaluate not only how minor details influence the differentiation of similar
languages, but also to identify which linguistic elements have stronger identification roles,
raising similarity between very different languages.

The second section aimed to evaluate if the respondent could identify the language of a
snippet of code, justifying his or her answer. There were six pairs of questions (“What is
the language present in the following snippet?” and “Justify your rationale for the previous
answer.”), one for each language. The purpose of this section was to understand the reasoning
behind the identification of a programming language and to detect if multiple people use
the same thought process, specifically if the snippet contains a distinctive feature that is
commonly reported as important for the identification. Using a similar strategy as applied
to the previous section, for each language the respondent could choose one of four possible
answers: doesn’t know, it sure isn’t, maybe and absolutely is. Listing 1 presents the snippet
used for the question regarding the C language identification.

Listing 1 C language snippet used in the second section of the survey.
int main()
{

if(n <= 1 || (n = atoi(argv [1])) <= 0) n = 8;
int hist[n];
solve(n, 0, hist);

}

For the third section, the identification of programming languages was evaluated through
comparisons. In this section, the respondent was presented with two code snippets repres-
enting solutions to the same problem, each written in a different language, and asked to
identify which programming languages were used in each snippet. Listings 2 and 3 exemplify
the comparisons that were made in each of the third section’s questions. The similarities in
general form were intentional to pinpoint characteristics that respondents justified as crucial
to the identification of each language – or his or her inability to do so.

Listing 2 Java snippet used in the third section of the survey. This snippet was presented in the
same question as listing 3 for comparison.
class FileIOTest {

public static void main(String [] args) throws Exception {
var lines = Files.readAllLines(Paths.get("input.txt"));
Files.write(Paths.get("output.txt"),lines);

}
}

Listing 3 C# snippet used for comparison with the one presented in listing 2, in the third section
of the survey.
class FileIOTest
{

public static void Main(string [] args)
{

var lines = File.ReadLines .("input.txt");
File.WriteAllLines("output.txt",lines);

}
}

SLATE 2023

13:8 Characterization and Identification of Programming Languages

In the fourth and last section, a new approach was applied. This new approach consisted
in progressively modifying a given a code snippet in one programming language until it
became a substantially different. The respondent was then asked at which point of these
progressive changes he or she believed that the snippet of code no longer resembled the
original language, that is, at which point the language lost its identity. Figure 1 shows one
of the original snippets, followed by their progressively altered versions. The changes were
small and related to one of the language’s main characteristics at each version. This section
aimed to establish what is the breaking-point to a language’s identification, meaning which
characteristics are so entrenched into its definition that once it is changed, programmers can
no longer associate code with it.

int main(int argc , char *argv [])
{

char t[255]="alphaBETA";
str_toupper(t);
printf("uppercase:␣%s\n",t);
str_tolower(t);
printf("lowercase:␣%s\n",t);
return 0;

}

int main(int argc , string argv)
{

string t="alphaBETA";
str_toupper(t);
printf("uppercase:␣%s\n",t);
str_tolower(t);
printf("lowercase:␣%s\n",t);
return 0;

}

int main(int argc , string argv)
{

string t="alphaBETA";
str_toupper(t);
write("uppercase:␣",t);
str_tolower(t);
write("lowercase:␣",t);
return 0;

}

main(argc , argv)
{

t="alphaBETA";
str_toupper(t);
printf("uppercase:␣",t);
str_tolower(t);
printf("lowercase:␣",t);
return 0;

}

Figure 1 Four progressively altered snippets of C code used to establish what is the breaking
point for the identification of a programming language.

5 Survey Results Analysis

To start the results analysis, it is important to begin with the first question, as it shows how
well the respondents knew the six chosen languages. Java,C and Python were the most well
known languages, with 95%, 88% and 93%, respectively, of the respondents stating to be, at
least, capable of using the languages. These results are indicative that questions regarding
Java,C and Python can give a higher understanding on what identifies these languages. On
the other hand, Haskell, C++ and C# respectively had only 47%, 45% and 31% of respondents
stating to be, at least, capable of using the languages.

5.1 Second Section: Language Identification
Regarding C, respondents successfully identified it, stating the main reasons to its identification
were:

Variable declaration syntax;
Use of pointers;
Syntax features like semicolons, brackets to delimit code blocks and functions signature;

J. Alves, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 13:9

Like C, Java was also correctly identified, with the main reasons being:
Methods access modifiers;
Methods signatures;
Variables types;
The usage of System.out.println;

On the third snippet shown, the language present was C#, however, as the respondents
weren’t very familiarized with this language, there was a consistent lack of confidence to
distinguish whether the language was Java or C#. Out of the total, nine people said they
were sure it was Java, and nine said they were sure it was C#. On the other hand, twenty four
respondents said it could be Java, and twenty one said it could be C#. There were also fourteen
respondents who believed it could be C++. It was unanimous, however, that it was neither
Python nor C. The audience revealed a big difficulty in finding characteristics which allowed
them to distinguish between Java and C#. The respondents who could successfully identify
it as C#, expressed that what made them sure was the use of PascalCase naming convention
on identifiers. Since it represents a writing style other than a language characteristic, it is
safe to say that the identification wasn’t a consequence of the language’s formal definition,
but its conventions of use instead.

The fourth snippet consisted of a piece of C++ code. It was very obvious for the audience
that this snippet wasn’t C, Java or Python. There was some uncertainty if it could be C# as
the respondents could identify this language as being a part of the C language’s branch of
derived languages. Nonetheless, there was a major consistency as identifying the language as
being C++ due to:

The usage of the std library;
Unsigned long long type;
The method or member function call notation.

On the fifth snippet shown, the language present was Python. It was very evident for the
audience that this was Python as no other language was given a positive answer and Python
was picked as the right language by almost one hundred percent of the users. What made
them answer Python was:

Block syntax and indentation;
The use of def when defining a function;
Type inference;

For the last snippet on this section, respondents were finally presented with a Haskell
code snippet. Once again, the respondents were certain it couldn’t be any other language
other than Haskell. The reasons given for this were:

Functional programming style;
Point free syntax, a style of writing Haskell code that avoids explicit mention of the
arguments of a function;
Function signatures;
The complete overall difference to the other languages;

5.2 Third Section: Language Comparison

5.2.1 Java vs C#

As Java and C# were two languages which it was expected some difficulties to arise, two
comparisons were made. On the first comparison, the respondents were able to successfully
identify the languages correctly, stating – as they did on the previous section – the difference

SLATE 2023

13:10 Characterization and Identification of Programming Languages

in naming convention as the biggest contributor for the identification. Respondents also
pointed the way exceptions are thrown in Java as a differentiating factor. On the second
comparison however, there was a big uncertainty on the C# snippet, with respondents being
mainly divided between C#, C++ and Java. There were also some answers that were open to
the possibility of it being C or even another language. This indecision is due to respondents
not being able to associate the types ulong and uint to a language. Java’s identification
was very straightforward to the respondents, stating that the use of the keyword final on
an argument as the reason the snippet was written in Java.

5.2.2 C vs C++

In this comparison, the respondents were on the same page, with virtually no problems to
the correct identification. However, there were only two reasons on why they believed one
language was C and the other C++: the functions used to output something (printf for C
and cout for C++) and the use of namespace on C++.

5.2.3 C vs Java

Once again, there was no doubt within the respondents on what language was present in each
snippet. Respondents stated that the output functions printf and System.out.println
were the main reasons for their correct identification. There were also a few answers pointing
that the way arrays are declared was also a contributing factor.

5.3 Fourth Section: Language Identification Breaking-point
For C, respondents were adamant that from the second snippet onward the language couldn’t
be C. The modification that triggered this opinion was the replacement of char * with a
new type string, commonly used in other languages.

With C++, the answers were also unanimous on saying that, from the second snippet on,
the language could not be C++. The modification on how libraries are imported, switching
from namespace and #include <libraryName> to with was the defining change to arrive
at the breaking-point.

On the third question, respondents agreed that the first snippet was C# and were also open
to the possibility of it on the second snippet. It is possible to infer that the output function
is not a very defining characteristic of the language, as that was the modification made
from the first to the second snippet, changing System.Console.WriteLine() to write().
However, on the third snippet it became obvious to the respondents that the language wasn’t
C#. On this snippet, the way code blocks are structured was modified, replacing brackets
with indentation, such as in Python.

Curiously, the exact same reaction was obtained with Java. On the second snippet,
the code blocks syntax was modified from curly brackets to indentation, triggering the
respondents to not identify the language as being Java.

With Haskell and Python, respondents were open to the possibility of being the original
languages until the function declaration syntax were modified. In Haskell’s case, the
modification was the replacement of the standard syntax functionName :: argument ->
argument -> result with functionName(argument, argument). Python’s modification
was even more subtle, with the mere change of the keyword def to function.

The analysis of the results was obtained through the answers gathered from a class of
fourth year software engineering students. A select group of people, that included university
professors and software engineers, was also invited to answer, however, the survey has not

J. Alves, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 13:11

been yet made publicly available, as these results and the students’ feedback will be used to
make the necessary improvements for a future version.

The respondents were selected for their background in computer programming languages.
The majority of the respondents were Master’s Degree students present in a course of
Languages Engineering at University of Minho (UMinho). In total, 44 people responded
to the questionnaire, 39 of which were students. The other 5 people were professors of the
Department of Informatics, also at UMinho.

6 Conclusion

Machine Learning [12, 16] has been extensively used on the subject of computer programming
languages automatic identification. These studies applied different types of classifications
such as Image Based Classification [3], Algorithmic Classification [9] and Source Code Classi-
fication [8, 17], however not many studies have been conducted to consider the programmers’
points of view. What are the most relevant linguistic features that programmers observe,
consciously or not, to correctly identify a language used in a source code? What and how
much can a language’s syntax and semantics change and still retain its identity? In order
to answer these questions, the most straightforward solution is to actually ask people that
deal with programming languages. The challenge then becomes not only what to inquire
programmers about their perception of a language, how it is recognized and identified, but
also how to properly ask them.

This paper presented an analysis of typical linguistic features, commonly found in six
established programming languages (C, C++, C#, Java, Python, and Haskell) followed by the
design and application of a survey that seeks to better understand the intrinsic relationship
between programmers and their main tools of the trade: programming languages.

The survey was designed around three main approaches:
1. Direct identification of a programming language;
2. Comparison between similar languages;
3. Determination of the identity breaking-point.

The three approaches were implemented via corresponding sections in the survey. The
questions for approaches 1 and 2 were constructed in pairs: a multiple-choice direct question,
asking respondents to identify the language in the respective snippets of code; followed by
an open-ended justification. The last section (approach 3) used only multiple-choice direct
questions, gradually changing snippets of source code to evaluate at which point the original
language (shown at the first snippet of each question) lost its identity.

The common threads of identification in the answers showed that some typically associated
syntactic features, such as code block syntax, method signatures and variable declaration
patterns are contributing factors to identify a programming language – which was expected.
Other answers lead to some unpredicted results, pointing to the use of standard library
elements (functions, classes, methods, etc.) and specially the naming convention that is typical
– and sometimes, mandatory – in several programming languages. While not a characteristic
of the formal definition of the language, it is nonetheless prevalent and linguistically related
to it.

The comparison between languages pointed the inevitable mixed results between languages
that are very similar and descendants from a common parent – C# and Java being the most
prominent example, both derived from C and C++. The two main differentiating features, as
pointed by the respondents, were naming convention and typical standard library elements,
once more.

SLATE 2023

13:12 Characterization and Identification of Programming Languages

On the other hand, the results were not very conclusive on the breaking-point analysis,
since there is an argument to be made for changing the way the questions were asked.
Most respondents correctly identified the first snippet as being the original and unaltered
language, and the second one forward as promptly loosing its identity. Since the changes
were diminutive and triggered the breaking-point almost immediately, it is inconclusive as to
which ones contributed the most to the lost of identity.

The feedback was one of the goals of this first application, as respondents pointed to
two main difficulties they faced when answering the survey: they felt questions related to
languages they didn’t know should not be present and, as pointed in the previous paragraph,
the breaking-point analysis must change in form, avoiding the immediate lost of identity. The
latter showed us that a different approach to the breaking-point analysis must be tackled for
a next version, aiming to gather enough information towards a more conclusive argument.

The results already showed interesting facets about the relationship between programmers
and the languages they know and use. In a setting of multiple different technologies being
applied to the construction of a modern computer system – a technological cocktail – this
naturally occurring change of patterns and identities in the development process might be
cumbersome. If well understood, this cognitive load may be lightened by diminishing the
changes in language identity or even choosing technologies that use languages with similar
identity features. Not only that but, at an initial stage of a programmer study, it can also
aid a programmer to learn a programming language with more ease, given that it will allow
him to choose a programming language more suited to his preferences.

This research is part of a larger group of studies that aim to identify and understand
the human relations involved in computer programming. Future works include the review
and refactoring of the survey, specially in the last section, followed by the next version to be
openly applied for general public response. Finally, a guiding system will be implemented for
the detection of a language’s identity in snippets of source code, based on the programmers’
points of view.

References
1 Sam A Abolrous. Learn C-Sharp - Includes the C-Sharp 3.0 Features. Wordware Pub, 2007.
2 Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles,

techniques & tools. Addison Wesley, 2007.
3 Francesca Del Bonifro, Maurizio Gabbrielli, Antonio Lategano, and Stefano Zacchiroli. Image-

based many-language programming language identification. PeerJ Computer Science, 7,
2021.

4 Alvaro Costa Neto, Cristiana Araújo, Maria João Varanda Pereira, and Pedro Rangel Henriques.
Value-Focused Investigation into Programming Languages Affinity. In Alberto Simões and
João Carlos Silva, editors, Third International Computer Programming Education Conference
(ICPEC 2022), volume 102 of Open Access Series in Informatics (OASIcs), pages 1:1–1:12,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
OASIcs.ICPEC.2022.1.

5 Robert W. Floyd. The syntax of programming languages, 1964.
6 James Gosling, William N. Joy, and Guy L. Steele. The java language specification, 1996.
7 Ralph L. Keeney. Value-focused thinking: Identifying decision opportunities and creating

alternatives. European Journal of Operational Research, 92(3):537–549, 1996. doi:10.1016/
0377-2217(96)00004-5.

8 Jyotiska Nath Khasnabish, Mitali Sodhi, Jayati Deshmukh, and Gopalakrishnan Srinivas-
araghavan. Detecting programming language from source code using bayesian learning
techniques. In MLDM, 2014.

https://doi.org/10.4230/OASIcs.ICPEC.2022.1
https://doi.org/10.4230/OASIcs.ICPEC.2022.1
https://doi.org/10.1016/0377-2217(96)00004-5
https://doi.org/10.1016/0377-2217(96)00004-5

J. Alves, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 13:13

9 David Klein, Kyle Murray, and Simon Weber. Algorithmic programming language identification.
ArXiv, abs/1106.4064, 2011.

10 Dave Kuhlman. A Python Book: Beginning Python, Advanced Python, and Python Exercises.
Platypus Global Media, 2015.

11 Miran Lipovaca. Learn You a Haskell for Great Good! A Beginner’s Guide. No Starch Press,
2011.

12 Tom Mitchell. Machine learning, 1997.
13 Alvaro Costa Neto, Cristiana Araújo, Maria João Varanda Pereira, and Pedro Rangel Henriques.

Programmers’ affinity to languages. In ICPEC, 2021.
14 Easy Programming. C Programming Language The Ultimate Beginner’s Guide. CreateSpace

Independent Publishing Platform, 2016.
15 Bjarne Stroustrup. A History of C++: 1979–1991, pages 699–769. Association for Computing

Machinery, New York, NY, USA, 1996.
16 Peter Norvig Stuart Russell. Artificial Intelligence: A Modern Approach. Prentice Hall Series

in Artificial Intelligence. Prentice Hall, 3rd edition, 2010.
17 Shaul Zevin and Catherine Holzem. Machine learning based source code classification using

syntax oriented features. ArXiv, abs/1703.07638, 2017.

SLATE 2023

Towards a Universal and Interoperable Scientific
Data Model
João Oliveira
University of Minho, Guimarães, Portugal

Diogo Gomes
University of Minho, Guimarães, Portugal

Francisca Santana
University of Minho, Guimarães, Portugal

Jorge Oliveira e Sá
Algoritmi Centre, University of Minho, Guimarães, Portugal

Filipe Portela #

Algoritmi Centre, University of Minho, Guimarães, Portugal
IOTECH - Innovation on Technology, Trofa, Portugal

Abstract
The growing number of researchers in Portugal has intensified the appearance of several scientific
platforms that allow the indexation of publications and the management of scientific profiles. The
diversity and high number of platforms brings problems at the level of crossover and integrity of
the information, i.e., the researchers’ profiles are rarely updated, and their data are not properly
grouped and cross-referenced. Hence, the need arises for a more global platform that enables the
synchronization of information, free from constraints imposed by existing data.The study and work
carried out aims to solve this problem by creating a robust and interoperable platform based on an
innovative library merge algorithm. Thus, this platform includes information regarding publications,
researchers and scientific indicators, by crossing and grouping data from several platforms.

2012 ACM Subject Classification Software and its engineering → Development frameworks and
environments

Keywords and phrases RDProfile, Researchers, Scientific Platforms, Scientific Data

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.14

Funding This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020.

1 Introduction

Nowadays, the number of existing scientific data, libraries, metrics, and indicators (KPIs) is
enormous and makes it difficult to manage them by researchers and scientific institutions.
The number of researchers has also increased, which makes it even more difficult to access
correct and updated information on multiple platforms. Therefore it is vital to collect
and combine scientific data from several platforms to answer the institution’s requests and
improve the quality of project applications by enhancing the researcher’s data. To this end,
it is necessary to create an algorithm for merging libraries, as part of the RDProfile project
– a project that aims to create an inclusive, reliable, and scalable solution that can easily
include diverse information from the profiles of researchers.

In the scope of this study, the following research question can be identified throughout
the article: How can the data from profiles, quartiles, and indexes from various platforms be
conciliated?

© João Oliveira, Diogo Gomes, Francisca Santana, Jorge Oliveira e Sá, and Filipe Portela;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 14; pp. 14:1–14:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cfp@dsi.uminho.pt
https://doi.org/10.4230/OASIcs.SLATE.2023.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

14:2 Towards a Universal and Interoperable Scientific Data Model

The main objective is to develop an artifact that includes a prototype of a web solution
capable of grouping and cross-referencing data from researchers from various sources including
Scopus, Web Of Science, and ORCID. To accomplish this goal, it is necessary to create
secondary objectives such as developing a responsive interface with pervasive features,
developing an API that allows communication with some of the platforms, integrating several
APIs, and optimizing RDProfile platform with three new features (profiles, quartiles, and
index).

This paper is divided into six sections: Introduction, Background, Material and Method,
RDProfile Algorithm, Proof of Concept, and Conclusion. In the first chapter, the theme of
the paper is contextualized, as well as its objectives and research question are defined. The
most important concepts are described in Background. The Scrum and DSR methodologies
are covered in the next chapter – Material and Method – as well as the used tools and metrics,
and the three scientific platforms involved in the work, namely, ORCID, Scopus and Web Of
Science. In the fourth chapter, RDProfile Algorithm, the architecture and structure of the
RDProfile platform is described, with focus on the Middleware (API), where the developed
library merging algorithm fits. In Proof of Concept concrete cases are presented, using real
data from a Portuguese research institution and finally, in the last chapter, Conclusion, final
considerations are made and future work is described.

2 Background

In this section the most important concepts are covered, in order to better understand the
background of this paper. Thus, the project to which this work belongs is described, as well
as the general concept of scientific platforms and the related work.

2.1 RDProfile

RDProfile is a complete and interoperable platform that allows grouping and cross-referencing
researchers’ data from several sources, such as Scopus, ORCID and Web Of Science. The goal
is to provide users with correct and updated data of researchers and institutions, acting as an
aggregator of dispersed knowledge, publicly available and easily accessible. Besides being an
inclusive, reliable and scalable solution, RDProfile also intends, through gamification, to help
identify the best scientific profiles and improve indicators that allow increasing the number
of R&D projects funded based on the improvement of the quality of researchers’ metrics [10].

The RDProfile Project started in 2020 and has three phases [10]. The first phase –
Research and support the project idea – resulted in an understanding of the state of the
art and the definition of the requirements for the RDProfile, providing a clear vision of the
added value it adds. The second phase – Explore a possible solution to solve the problem –
will result in the creation of a library merging algorithm that will solve the problems that
currently exist, such as incorrect identification of references. Afterward, a web solution will
be implemented, which will have innovative and useful functions for scientific researchers,
such bibliometric indicators about researchers and institutions, metrics about projects and
reviews, filters that allow easy cross-referencing, monitoring of citations lists with indexations,
among others.

In the third phase, the artefact will be optimized and made universally available. Here
the focus will be on ensuring scalability and modularity so that the solution can be accessed
by any institution by Interface or API.

J. Oliveira, D. Gomes, F. Santana, J. O. e. Sá, and F. Portela 14:3

2.2 Scientific Platforms
The expansion of Internet has also expanded the number of digital platforms with similar
objectives, such as Web Of Science and Scopus, which have been the two most widely used
databases for bibliometric analyses [13]. We can divide these platforms into two groups.
The indexing platforms allow the indexing and cataloging of articles in a scientific database,
and the aggregating platforms, which aggregate various data in order to offer the user
more information about publications, researchers and institutions. RDProfile, as already
mentioned, is an aggregator since its goal includes making it easier and more efficient to
search for researchers and institutions, providing the majority of data in one place.

According to previous study conducted as part of the RDProfile project [2], the most
relevant scientific platforms are Scopus, Clarivate Web Of Science, ORCID, Authenticus,
Google Scholar, Crossref, Scholarpedia, Semantic Scholar and Dimensions. However, the
work will focus on the first four due to their similarity to the RDProfile platform.

Overall, these platforms are commonly used and recognized, but they have limitations or
errors, e.g., few features/data, non-matching data, missing or wrong metrics, wrong data
grouping, missing citations, and so on witch prevents institutions from getting accurate
data [10]. Of the four platforms, Authenticus and ORCID are aggregators, like RDProfile.
Authenticus combines the data of other platforms like Scopus and Web Of Science, but it
is nationally focused, not scalable, and lacks a responsive, user-centred interface. ORCID
has become increasingly popular and has recorded a steady growth in ORCID registrations
[1]. This platform allows looking at how individual researchers interact and produce their
work. Unlike the others platforms, the researcher becomes the center of the analysis, shifting
attention from merely counting publications and citations to a much richer perspective related
to the scientific workforce and its internal dynamics [5]. Web Of Science and Scopus stand
out as the two most traditional sources of scientometric data [5]. Scopus is often considered
as one of the largest curated databases [12]. Although, it does not cover all publications, nor
does it expose all metrics of either publications or authors. The same happens with Web
Of Science that remains relevant for the scientific area [12]. The combination of those three
relevant platforms can provide a good solution to the problem identified in this paper. The
more platforms a solution covers, the more complete it becomes, however, in this stage, only
these three will be considered, to avoid increasing unnecessarily complexity.

2.3 Related Work
Within the range of platforms previously identified as similar to RDProfile, a study “A
Benchmarking Study of the Scientific Platforms”[3] was conducted to Authenticus platform
for being the most similar platform.

Authenticus is a database of scientific publications authored by researchers from Por-
tuguese institutions. This database aggregates publications from different scientific platforms,
such as Scopus, Google Scholar, Clarivate Web Of Science, Crossref, DBLP and ORCID.
Its operation is based mainly on an algorithm capable of identifying the name of an author
in a publication and associating it correctly with a particular researcher in the database.
Subsequently, and if the association is successful, the publication of that same researcher
will be added to the database.

This study concluded that Authenticus contains some limitations, especially when it
comes to crossing the data and indicators. Some of the identified limitations are the absence
of the h-index indicator and quartiles per publication which are not totally correct, it does
not cross the platform data with the publications coming from Google Scholar, it contains
limiting filters, it only contains a visualization form and it does not contemplate indicators
related to projects and reviews.

SLATE 2023

14:4 Towards a Universal and Interoperable Scientific Data Model

3 Material and method

Given the complexity of the work, the Design Research Science and Scrum methodologies
were used, as they provided a set of principles, practices and techniques that assisted in
the development of the project. Next, Design Research Science is described as a scientific
methodology and SCRUM as a methodology to assist in efficient project management. Tools,
relevant metrics and the three scientific platforms involved in the work, namely, ORCID,
Scopus, and Web Of Science are also described in this chapter.

3.1 Design Science Research

The Design Science Research methodology has emerged in the field of information technology
supported by results, which offers a set of procedures and practices for the development of
research projects. Design Science Research divides the process into six steps, these being as
follows:

Problem Identification and Motivation: in this step, the problem and the research
question are defined, and the value of the solution is justified. In the case of the present
work, the problem is related to the lack of data transversality among the existing platforms,
so the research question is “In what way is it possible to reconcile the data of profiles,
quartiles and indexes from various platforms?”.

Define the Objectives for a Solution: in this step, the objectives of the solution are
defined.The main goal of the solution is to group and cross-reference data from researchers
from various sources (Scopus, Google Scholar, ORCID) on a global scale.

Design and Development: in this work, this step defines the artifact design of the
RDProfile prototype, referred to in chapter 4.

Demonstration: this step presupposes tests on the functioning of the developed product,
demonstrated in chapter 5.

Evaluation: in this step, the developed prototype is evaluated according to the defined
goals.

Communication: this step includes communicating the problem and the importance of
the artifact, as well as its usefulness and effectiveness to researchers and other relevant
target audiences. This article is an example of the communication of the artifacts
developed.

3.2 SCRUM

The Scrum is an agile methodology that uses an iterative and incremental approach to
optimize predictability and to control risk, relying on three pillars of implementation, namely
transparency, inspection, and adaptation [11]. The fundamental unit of scrum is a scrum
team. Scrum teams, composed by teams and organizations generating value through adaptive
solutions to complex problems, are cross-functional, which means that members have all the
skills needed to create value every sprint [11]. Thus, the Scrum methodology was used to
assist in the efficient management and structuring of the project, speeding up the development
of the practical part of the work developed.

J. Oliveira, D. Gomes, F. Santana, J. O. e. Sá, and F. Portela 14:5

3.3 Tools
Table 1 describes the tools and python libraries used to create the algorithm.

Table 1 Tools Description.

Tools Description
Python Versatile language for software development, web apps, and data analysis.

Provides libraries like NumPy, SciPy, and Pandas for numerical computing,
scientific tasks, and data manipulation

os Python library used to specify the working directory
glob Python library used to return all csv files (files with data regarding quartiles)
pandas Python library used to manipulate data, in this case to combine all csv files into

one
csv Python library to load the generated csv (combined csv)
json Python library used to transform the combined csv into a json file, used later to

load the data into MongoDB
MongoDB Scalable and flexible non-relational database program for storing large amounts

of data. Utilized for storing relevant data in the context of scientific publications
and researchers

3.4 Metrics
In order to expose the most relevant information about each researcher, metrics and indicators
were selected to enrich the profile of each researcher.

Number of Total Citations: Number of times the researcher’s scientific publications
were cited by other publications;
H-index: This metric is defined as the number of papers with citation number>h, as a
useful index to characterize the scientific output of a researcher [8];
CiteScore: It results from dividing the number of citations received in the last four
years by the number of publications that have been published in that same time interval;
SCImago Journal Ranking (SJR): Is a size-independent metric aimed at measuring the
current “average prestige per paper” of journals for use in research evaluation processes[7].
There are four quartiles: Q1, Q2, Q3, Q4. In quartile 1 (Q1) are the most important and
prestigious scientific journals, while in quartile 4 (Q4) are the least prestigious scientific
journals;
Source normalized impact per paper (SNIP): Aiming to allow direct comparison
of sources in different subject areas, this metric results from the ratio of the scientific
journal’s citation count per article and the citation potential in its subject field;
Journal Impact Factor (JIF): Corresponds to the average number of times articles
published in the last two years have been cited in the Journal Citations Report (JCR).

3.5 ORCID
ORCID is a platform that, through a digital identifier (ORCID iD), allows the distinction
among researchers. Each researcher has his ORCID iD and, in addition, also has his own
register (ORCID Record) which contains information about himself and his work. Each
researcher manages his own ORCID record data and may place different information about
himself. This information includes his name, biography, emails, websites and social links,
keywords, countries, and activities[9]. All activities from the investigator profile include:

SLATE 2023

14:6 Towards a Universal and Interoperable Scientific Data Model

Employment: Employment lists of organizations where the researcher has been profes-
sionally affiliated;
Education and Qualifications: Where the researcher studied and the educational
educational or professional qualifications that were awarded to him/her;
Invited positions and distinctions: Positions the researcher has held and awards or
awards he or she has received in recognition of his or her achievements;
Membership and service: Memberships in society or association and donations of
time or other resources in the service of an organization;
Funding: Grants, awards, and other funding that the researcher has received to support
his or her project;
Works: The researcher’s work and images of his or her research results, such as publica-
tions, conference presentations, data sets among others.

3.6 Libraries
For the creation of the library merging algorithm, the Scopus and Web Of Science APIs,
among others, were used. For this reason, it is relevant to understand these two indexing
libraries.

Scopus is a comprehensive database specializing in abstracts and citations with enriched
data and scholarly literature linked across a wide range of disciplines. This scientific platform
is owned by Elsevier and covers various academic disciplines such as science, technology,
medicine, social sciences and humanities. Scopus has a large number of indexed publishers
and is one of the largest databases of abstracts and citations of peer-reviewed literature[6].

The Web Of Science, owned by Clarivate, is a global publisher-independent citation
database. This scientific platform provides researchers with information and technology for
the global scientific research community. It provides data and analytics, as well as customized
tools and professional services to researchers and the entire research community such as
universities, research institutions, national and local governments, and private and public
research funding organizations around the world. It also supports more than 95 percent
of the world’s leading research institutions, multiple governments, and national research
agencies with about 20 million researchers in more than 7,000 research organizations[4].

4 RDProfile Algorithm

This section is about the architecture and structure used for the development of the RDProfile
platform.

4.1 Architecture
As can be seen in Figure 1, the API is communicating regularly with the APIs of ORCID,
APIs, collecting and uploading data about researchers and publications to the database. The
communication between the various APIs is done through functions that are timed to run
weekly, allowing the information to be kept up to date. In addition, two distinct processes
are carried out that aim to collect data relative to the scientific indicators (quartiles, h-index,
sjr, jif, among others). The first process consists in exporting data through the SCImago
platform – the rankings and quartiles from all journals since 1999 until now (2022) – , which
is then transformed and uploaded to MongoDB. For the second process, a Web Scraping
mechanism is used that allows collecting data from Clarivate, which is also later uploaded to
the database.

J. Oliveira, D. Gomes, F. Santana, J. O. e. Sá, and F. Portela 14:7

Figure 1 Architecture of the algorithm.

Figure 2 shows how the algorithm works at a high level. First it is checked if the publications
are in the database. If they are, it is checked to see if they are unique, otherwise the process
ends. If it is unique it is inserted in the “newPublications” array, if not it is alerted that it
already exists and verifies the publications again. Next, a series of validations are performed.
If the publication is from Web Of Science and Scopus it is inserted into the Web Of Science
and Scopus Model, if it is from Scopus it is inserted into the Scopus Model, if it is from
Web Of Science it is inserted into the Web Of Science Model. For all these validations
the quartiles of the respective publications are added. If all three decisions are false, new
publications are checked again and the process is repeated. All the models used are described
in subsection 4.2.

Figure 2 High level diagram of the algorithm.

SLATE 2023

14:8 Towards a Universal and Interoperable Scientific Data Model

4.2 Modeling, Collecting and Loading Data
The modeling phase consists of creating a data model to define how the data is related to
each other and stored in the database. In total six different models were created, namely
Researcher Model, Scopus Model, Web Of Science Model, Quartiles Model, Publications
Model and Metrics Model. For data collection, some sources were used, namely, API of
the Algoritmi Center, ORCID API, Scopus API and the Web Of Science API. After the
data collection, the data from each model is loaded into MongoDB. Each created model is
described below.

4.2.1 Researcher Model
The Researchers Model contains the data regarding scientific researchers. Table 2 contains a
brief individual description of each field and the types of data present in this model.

Table 2 Researcher Model.

Field name Description
id Unique Identifier of the researcher
academic_degree Academic degree of the researcher
degois Unique Identifier CiênciaVitae
gscholar Google Scholar Unique Identifier
institution Educational institution of the researcher
name Name of researcher
orcid ORCID Unique Identifier
researcher_id Web Of Science Unique Identifier
scopus Scopus Unique Identifier
articles Researcher’s articles
name_slug Researcher’s name slug

4.2.2 Scopus Model
The Scopus Model includes data related to Scopus publications, collected using the Scopus
API, which returns the scientific publication data according to the eid of the publication.
Thus, the Table 3 shows all the field names and its description.

4.2.3 Web Of Science Model
The Web Of Science Model includes data related to Web Of Science publications, collected
using the Web Of Science API, which returns the scientific publication data according to the
uid of the publication. Thus, the Table 4 shows all the field names and its description.

4.2.4 Quartiles Model
The data from the Quartiles Model were collected through two distinct processes, referring
to indicators from Scopus and Web Of Science. For the collection of Scopus indicators the
following activities are performed: export the indicator data, transform the data, create the
function to upload the data, and upload the data to the database. Regarding the collection
of Scopus indicators, it is necessary to process the data from the Journal Citation Reports
using a Web Scraping engine. Then the data are loaded into the database. Table 5 contains
a brief individual description of each field present in this model.

J. Oliveira, D. Gomes, F. Santana, J. O. e. Sá, and F. Portela 14:9

Table 3 Scopus Model.

Field name Description
dc_identifier Object identifier of the document
affiliation Publication’s affiliation
article_number Article number
author Author of the publication
citedby_count Number of citations of the publication
dc_creator Lead author of the publication
eid Unique Identifier for a publication present in Scopus
fa Total access
link Open access status
openaccess Open Access status
openaccessFlag Open Access status (boolean)
pii Publication item identifier
prism_aggregationType Type of aggregation (i.e. journal)
prism_coverDate Publication date (YYYY-MMDD)
prism_coverDisplayDate Date of publication (original text)
prism_doi Object identifier of the document
prism_eIssn Electronic serial number (international standard) of a publication
prism_issn Serial number (international standard) of a publication
prism_pageRange Interval of publication pages
prism_publicationName Publication name
prism_url Publication URL
prism_volume Volume number of the publication
pubmed_id Medline Unique Identifier
source_id Identifier of publication’s source
subtype Subtype of publication (i.e. cp)
subtypeDescription Description of the subtype of publication (i.e. conference paper)
title Article title

Table 4 Web Of Science Model.

Field name Description
uid Unique identifier of a publication in the Web Of Science
citations Number of citations
identifiers Publication identifiers (doi, issn, eissn, isbn, eisbn)
keywords Article keywords
links Publication links
names Publication authors
source Origin of the publication
title Publication title
types Publication type (article, editorial material, meeting)

SLATE 2023

14:10 Towards a Universal and Interoperable Scientific Data Model

Table 5 Quartiles Model.

Field name Description
rank Journal rank
sourceId Journal Unique Identifier
title Journal Title
type Type of journal
issn Serial number (international standard) of the journal
eIssn Electronic serial number (international standard) of a publication
sjr Scimago Journal Rank
sjr_best_quartile Best quartile of the journal
h_index Journal h-index
jif Journal Impact Factor
jci Journal Citation Indicator
total_docs Total number of documents
total_docs_3 Total number of documents in the last 3 years
total_refs Total references
total_cites_3 Total Citations in the last 3 years years
total_citations Total citations
citable_docs_3 Number of documents citable in the last 3 years
cites_by_doc_2 Number of citations per document in the last 2 years
ref_by_doc Total references per document
country Journal Country
region Journal Region
publisher Journal Publisher
coverage Journal Coverage
year Journal year
categories Journal categories

4.2.5 Publications Model

This model includes data from Scopus and Web Of Science publications, as well as indicators
related to them. The mechanism for data collection regarding the Publications Model results
from the interaction between the previously loaded Scopus Model, Web Of Science Model
and Quartiles Model. Table 6 contains a brief individual description of each field present in
this model.

4.2.6 Metrics Model

The Metric Model includes data related to the indicators of scientific researchers, and just
like the Researchers’ Model resulted in a model that aggregates data from other models. The
mechanism to collect data regarding the Metrics Model results from the interaction between
the previously loaded Researchers Model and Publications Model. It also requests the Scopus
API to obtain the researcher’s h-index. Table 7 contains a brief individual description of
each field present in this model.

J. Oliveira, D. Gomes, F. Santana, J. O. e. Sá, and F. Portela 14:11

Table 6 Publication Model.

Field name Description
data Identifiers (eid, uid, issn, eissn, doi, pii) and year of publication public-

ation
dc_identifier Object identifier of the document
title Publication title
citedby_count Number of citations of the publication
subtypeDescription Description of the subtype of publication (i.e. conference paper)
link Link to the publication
types Publication type (article, editorial material, meeting)
scopus_id Scopus Unique Identifier
wos_id Web Of Science’s Unique Identifier
author Publication authors
quartiles Publication quartiles
citations Number of citations present in the publication

Table 7 Metrics Model.

Field name Description
id Unique identifier of the researcher
calgId Algoritmi Center’s Unique Identifier
academic_degree Researcher’s academic degree
orcidId ORCID’s Unique Identifier
scopusId Scopus’s Unique Identifier
gscholar Google Scholar’s Unique Identifier
researcher_id Web Of Science’s Unique Identifier
name Researcher name
research_lab Research Laboratory name
research_groups Research groups name
articles Investigator articles
citation_count Researcher’s number of citations
editorial_count Researcher’s number of editorials
h_index H-index of researcher (Scopus)
publication_count Researcher’s number of publications
name_slug Researcher’s name slug
quartiles Researcher’s number of quartiles (total and by years)
final_score Final score of researcher
ranking Researcher Rank

SLATE 2023

14:12 Towards a Universal and Interoperable Scientific Data Model

5 Proof of Concept

The RDProfile emerges intending to create a robust solution that includes information about
publications, researchers and scientific indicators, by crossing and grouping data from various
platforms. Prior to the creation of the algorithm described in this paper, Algoritmi Center,
a Portuguese scientific institution, developed Algoritmi Center API within the RDProfile
project. Thus, the tests performed were done using real data from this institution.

To better understand the algorithm, the actual flow of the general process is shown below:

1. Collect investigator data through the ORCID API and Algoritmi center API;

2. Upload the data to the Researchers Model;

3. Collect data for each publication via Scopus API and Web Of Science API;

4. Upload publications with uid and eid simultaneously to the Publication Model;

5. Upload publications with eid to the Scopus Model and publications with uid to the Web
Of Science Model;

6. Collect and load data from Scopus and Web Of Science indicators into the Quartiles
Model;

7. Upload data to the Metrics Model, cross referencing data from the Researchers Model
and the Publications Model.

Once the flow is complete, it is possible to see the loaded models in MongoDB. Next,
real data examples of each model’s result is represented in tables. Since the Metrics Model
corresponds to the general model, which aggregates the data from the others models, the
final result represents the aggregation of relevant data for each researcher. Because of that,
it is shown, in image format, real data related with one of the authors of this paper.

In the Table 8 it is shown an example of a Researcher Model, from the researcher referred
above, with its attributes.

Table 8 Researchers Model Example.

Field name Variable
id “730”
academic_degree “PhD”
dgois “F311-7C27-F8DA”
gscholar “HoeD9UgAAAAJ”
institution “Escola de Engenharia da Universidade do Minho”
name “Carlos Filipe da Silva Portela”
orcid “0000-0003-2181-6837”
researcher_id “G-5324-2012”
scopus [0: “57194071672”]
articles Array
name_slug “carlos-filipe-da-silva-portela”

In the Table 9 it is shown the data of the Scopus publication with eid 2-s2.0-85129325287,
present in Scopus Model.

J. Oliveira, D. Gomes, F. Santana, J. O. e. Sá, and F. Portela 14:13

Table 9 Scopus Model Example.

Fields Variable
dc_identifier “SCOPUS_ID:85129325287”
affiliation Array
article_number null
author Array
citedby_count “0”
dc_creator “Azevedo J.”
eid “2-s2.0-85129325287”
fa true
link Array
openaccess “0”
openaccessFlag flase
pii null
prism_aggregationType “Book Series”
prism_coverDate “2022-01-01”
prism_coverDisplayDate “2022”
prism_doi “10.1007/978-981-16-7618-5_27”
prism_eIssn “23673389”
prism_issn “23673370”
prism_pageRange “307-318”
prism_publicationName “Lecture Notes in Networks and Systems”
prism_url https://api.elsevier.com/content/abstract/scopus_id/85129325287
prism_volume “350”
pubmed_id null
source_id “21100901469”
subtype “cp”
subtypeDescription “Conference Paper”
title “Convolutional Neural Network – A Practical Case Study”

In the Table 10 it is shown the data of the Wos publication with uid 000676684500001.

Table 10 Web Of Science Model Example.

Field name Variable
uid “WOS:000676684500001”
citations { 0: { bd:“WOS”, count:1, id:6393e85271c0384234a1218a} }
identifiers { doi:“10.3390/fi13070178”; issn:null; eissn:“1999-5903”; isbn:null; eisbn:null}
keywords {authorKeywordsArray}
links Array
names {Authors Array, Book Editor Array}
source {sourceTitle: “FUTURE INTERNET”, publishYear: 2021, ... }
title “Data Science and Knowledge Discovery”
types {0:“Editorial material”}

In the Table 11 it is shown an example of Quartiles Model with its attributes.
In the Table 12 it is shown an example of Publiations Model with its attributes.

SLATE 2023

14:14 Towards a Universal and Interoperable Scientific Data Model

Table 11 Quartiles Model Example.

Field name Variable
rank “1”
sourceId “16810”
title “Annual Review of Biochemistry”
type [0: journal]
issn [0: 15454509, 1: 00664154]
eIssn Array
sjr “50,518”
sjr_best_quartile “Q1”
h_index “293”
jif null
jci null
total_docs “30”
total_docs_3 “80”
total_refs “5913”
total_cites_3 “3484”
total_citations null
citable_docs_3 “80”
cites_by_doc_2 “35,78”
ref_by_doc “197,10”
country “United States”
region “Northern America”
publisher [0:“Annual Reviews Inc.”]
coverage “1946-1948, 1950-1960, 1962-2020”
year 1999
categories [{_id: 63596f8c8a7fc80c14936350, area:“Biochemistry”, quartil:“Q1”}]

Table 12 Publications Model Example.

Field name Variable
data {eid: “2-s2.0-85091404413”, uid: null, issn: null, eissn: null, doi: null, pii:

null, year: 2020}
dc_identifier “SCOPUS_ID:85091404413”
title “A SWOT analysis of big data in healthcare”
citedby_count “0”
subtypeDescription “Conference Paper”
link https://www.scopus.com/record/display.uri?eid=2-s2.0-

85091404413&origin=resultslist&sort=plf-f
types Array
scopus_id “635018a59e663c3c83f5931a”
author Array
quartiles {jif: null, jcr: Array, sci: Array}
citations Array

In the figure 3 it is shown an example of Metrics Model loaded in MongoBD. This figure
shows all the relevant real data from the researcher Carlos Filipe Portela. Here we can
see, among others, the researcher’s unique identifiers of Algoritmi Center, ORCID, Scopus,

J. Oliveira, D. Gomes, F. Santana, J. O. e. Sá, and F. Portela 14:15

Google Scholar and Web Of Science. In addition to the number of publications and citations,
a list of these publications, containing all relevant data, is also included. As for the quartiles
parameter, it contains, for each year, the number of publications per quartile – from quartile
1 to 4, and without quartile. Additionally, this list contains a last global element, that
contains the total sum of publications by quartiles, as can be seen in the figure.

Figure 3 Metric Model example.

The algorithm developed for RDProfile fills some of the identified gaps of the existing
algorithms, namely in Authenticus. This algorithm is more accurate, scalable and modular
than the existing and mentioned in section 2. It was created so that any researcher can
easily access their updated data. In other words, the RDProfile algorithm, in addition to
the total and per-year citations and quartiles indicators, also provides the h-index indicator
and indicators about projects and reviews. It also cross-references and groups all researchers’
data and indicators on a global scale. Based on this, the platform will have unique features
that provide a better experience for researchers and other users.

6 Conclusion

Based on the work, the feasibility of creating the library merging algorithm is verified, as
well as the added value it offers. To answer the research question, a literature review was
conducted and a prototype of a web solution capable of grouping and cross-referencing data
from ORCID, Scopus and Web Of Science was developed. The most in-depth study of ORCID

SLATE 2023

14:16 Towards a Universal and Interoperable Scientific Data Model

and Authentics allowed us to understand how RDProfile can be an added value. Both the
limitations of the missing indicators and the functionalities of each platform were overcome.
In other words, the RDProfile platform answers the research question by integrating:

4 APIs (ORCID, Scopus, Web Of Science and Algoritmi Center);
3 endpoints of the quartiles;
2 endpoints for the list of researchers with and without filter applied;
3 endpoints for the list of publications with and without filter applied;
1 endpoint for the researcher profile with the associated metrics;
a user interface, for the most recent publications;
13 functionalities at the API and user interface level.

The developed algorithm proves that it is possible to integrate the main sources of scientific
information in a single platform with highly interoperable and cross-reference data capabilities.
Therefore, it becomes possible to create a scalable solution that any researcher can use to do
their own analyses, representing a contribution to science.

Further improvements in functionalities and in the user interface are needed to make
RDProfile a more complete and useful platform. It is important to optimize the solution so
that it includes more platforms, such as Google Scholar, Crossref, Dimensions, among others.
In addition, errors related to number of citations should be corrected, since the existing
systems are limited to check articles that are correctly identified. Thus, this improvement is
important to ensure maximum data integrity and reliability.

References
1 Miriam Baglioni, Paolo Manghi, Andrea Mannocci, and Alessia Bardi. We can make a

better use of orcid: Five observed misapplications. Data Science Journal, December 2021.
doi:10.5334/dsj-2021-038.

2 Joanna G. Carvalho. O cv científico dos investigadores. Master’s thesis, U. Minho, 2020.
3 Joanna G Carvalho, João Oliveira, Luciana Machado, and Filipe Portela. A benchmarking

study of the scientific platforms. submmited to publication, 2023.
4 Clarivate Analytics. Web of science. https://clarivate.com/products/webofscience/.
5 Rodrigo Costas, Carmen Corona, and Nicolas Robinson-Garcia. Could orcid play a key role in

meta-research? discussing new analytical possibilities to study the dynamics of science and
scientists, May 2022. doi:10.31235/osf.io/sjck6.

6 Elsevier. Scopus. URL: https://www.elsevier.com/solutions/scopus.
7 Borja González-Pereira, Guerrero-Bote Vicente, and Felix Moya-Anegon. A new approach to

the metric of journals’ scientific prestige: the sjr indicator. J. Informetrics, 4:379–391, July
2010. doi:10.1016/j.joi.2010.03.002.

8 J. E. Hirsch. An index to quantify an individual’s scientific research output. Proceedings of the
National Academy of Sciences, 102(46):16569–16572, 2005. doi:10.1073/pnas.0507655102.

9 ORCID. What is orcid? https://info.orcid.org/what-is-orcid/.
10 F. Portela. Rdprofile - ficha tecnica, 2022.
11 Ken Schwaber and Jeff Sutherland. Scrum: A framework for managing agile projects. Online,

2013. URL: https://www.scrum.org/resources/what-is-scrum.
12 Vivek Singh, Prashasti Singh, Mousumi Karmakar, Jacqueline Leta, and Philipp Mayr.

The journal coverage of web of science, scopus and dimensions: A comparative analysis.
Scientometrics, 126, March 2021.

13 Vivek Kumar Singh, Prashasti Singh, Mousumi Karmakar, Jacqueline Leta, and Philipp
Mayr. The journal coverage of web of science, scopus and dimensions: A comparative analysis.
Scientometrics, 126(6):5113–5142, 2021.

https://doi.org/10.5334/dsj-2021-038
https://clarivate.com/products/webofscience/
https://doi.org/10.31235/osf.io/sjck6
https://www.elsevier.com/solutions/scopus
https://doi.org/10.1016/j.joi.2010.03.002
https://doi.org/10.1073/pnas.0507655102
https://info.orcid.org/what-is-orcid/
https://www.scrum.org/resources/what-is-scrum

Integrating Gamified Educational Escape Rooms in
Learning Management Systems
Ricardo Queirós # Ñ

School of Media Arts and Design & CRACS - INESC TEC, Polytechnic Institute of Porto, Portugal

Carla Pinto #

School of Engineering & CMUP, Polytechnic Institute of Porto, Portugal

Mário Cruz #

School of Education & inED, Polytechnic Institute of Porto, Portugal

Daniela Mascarenhas #

School of Education & inED, Polytechnic Institute of Porto, Portugal

Abstract
Escape rooms offer an immersive and engaging learning experience that encourages critical thinking,
problem solving and teamwork. Although they have shown promising results in promoting student
engagement in the teaching-learning process, they continue to operate as independent systems that
are not fully integrated into educational environments. This work aims to detail the integration of
educational escape rooms, based on international standards, with the typical central component of
an educational setting - the learning management system (LMS). In order to proof this concept,
we present the integration of a math escape room with the Moodle LMS using the Learning Tools
Interoperability (LTI) specification. Currently, this specification comprises a set of Web services
that enable seamless integration between learning platforms and external tools and is not limited to
any specific LMS which fosters learning interoperability. With this implementation, a single sign-on
ecosystem is created, where teachers and students can interact in a simple and immersive way. The
major contribution of this work is to serve as an integration guide for other applications and in
different domains.

2012 ACM Subject Classification Social and professional topics → Computer science education

Keywords and phrases Escape Rooms, Interoperability, Learning Management Systems, Standardiz-
ation

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.15

Category Short Paper

Funding This work of M. Cruz and D. Mascarenhas is funded by National Funds through the FCT
- Fundação para a Ciência e a Tecnologia, I.P., under the scope of the project UIDB/05198/2020
(Centre for Research and Innovation in Education, inED).
The author C. Pinto was partially supported by CMUP, which is financed by national funds
through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project with reference
UIDB/00144/2020.
All authors would like to thank Erasmus + MATH-DIGGER project, ref 2021-1-PT01-KA220-HED-
000032234.

1 Introduction

Escape rooms are interactive and immersive entertainment experiences in which participants
are locked in a room. The goal is to solve a variety of puzzles, riddles, and challenges within
a set time limit to ultimately find a way to escape from the room. Escape rooms often have
a specific theme or storyline which can be integrated into many academic disciplines such as
mathematics, computer science, STEM subjects, physics, biology and many others [4].

© Ricardo Queirós, Carla Pinto, Mário Cruz, and Daniela Mascarenhas;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 15; pp. 15:1–15:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ricardoqueiros@esmad.ipp.pt
http://www.ricardoqueiros.com
https://orcid.org/0000-0002-1985-6285
mailto:cap@isep.ipp.pt
https://orcid.org/0000-0002-0729-1133
mailto:mariocruz@ese.ipp.pt
https://orcid.org/0000-0001-8894-8821
mailto:daniela@ese.ipp.pt
https://orcid.org/0000-0001-5854-536X
https://doi.org/10.4230/OASIcs.SLATE.2023.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

15:2 Integrating Gamified Educational Escape Rooms in Learning Management Systems

These escape rooms, typically used for entertainment games, have been adapted for
educational purposes as a way to engage students in learning in an interactive and playful
way. This approach has received attention from educational researchers, who have investigated
how Educational escape rooms (EER) can be used to promote learning and develop skills
such as teamwork, problem-solving, decision-making, and critical thinking [3].

While EER have proven highly effective in terms of student engagement and active
learning [6], it is important to recognise that interoperability with learning environments,
such as Learning Management Systems (LMS), is crucial to create a unified ecosystem where
teachers and students can easily access and exchange information with each other through
two-way communication [5].

This work aims to address the integration of educational escape rooms into learning
management systems. Although escape rooms have shown promising results in promoting
student engagement and learning, they continue to operate as independent systems that are
not integrated into educational environments. The objective of this study is to demonstrate
the integration of an educational escape room – for learning Maths – with Moodle LMS using
an international specification called IMS LTI [1]. This standard includes a set of services
that enable seamless integration and is not limited to any specific LMS. By implementing
this approach, a single sign-on ecosystem is created, where teachers and students can interact
seamlessly. Teachers can expose links to specific escape rooms within the LMS, and students
can access and solve the challenges. Additionally, teachers can monitor students’ performance
in these rooms through the LMS’s gradebook without the burden of manually collecting data
from the escape room, reducing the potential for errors and saving valuable time.

The rest of the article is structured in three sections: the second section presents related
work on EER and integration frameworks. The following section present the integration
architecture, followed by a detailed explanation of its components and the steps needed to
integrate the two components using the IMS LTI specification, more precisely, the integration
between Moodle LMS and a Math escape room. Finally, the contributions of this article to
the scientific community are presented as well as the future work.

2 Related work

EER are a type of learning activity where students are placed in a simulated environment
where they must solve a series of puzzles and challenges in order to escape within a given
time limit. While solving challenges, students learn a variety of subjects and skills, from
critical thinking and problem-solving to content-specific concepts and knowledge. At the
same time, they promote collaboration, communication, and creativity. However, in order to
maximize the benefits of EER, it is important to integrate them with other learning tools
and platforms, such as learning management systems.

2.1 Integration of LMS with EER
Integration of EER with LMS allows for a seamless transfer of data between the two systems,
making it easier for teachers to manage student progress and for students to access and
engage with the content with a single sign-on environment. The following are some examples
of the integration between these two types of systems:

Schoology - Schoology is a popular LMS that offers integration with EER, such as
Breakout EDU [2]. This integration allows teachers to assign escape room challenges
to students directly through the Schoology platform, and students can complete the
challenges and submit their results back to Schoology for grading and assessment.

R. Queirós, C. Pinto, M. Cruz, and D. Mascarenhas 15:3

Canvas - Canvas is another popular LMS that offers integration with EER, such as
Escape Classroom and Breakout EDU. With this integration, teachers can easily embed
Escape Classroom challenges into their Canvas courses, and students can complete the
challenges and submit their results directly through the Canvas platform.
Moodle - Moodle is an open-source LMS that offers integration with EER through
several plugins and modules. For example, the “Escape Room” module allows teachers
to create and manage escape room challenges within their Moodle courses, and the
“Breakout EDU” plugin allows for integration with Breakout EDU escape rooms.
Blackboard - Blackboard is a widely used LMS that offers integration with educational
escape rooms through the “Breakout Room” tool. This tool allows teachers to create and
assign escape room challenges to students within their Blackboard courses, and students
can complete the challenges and submit their results back to Blackboard for grading and
assessment.
Google Classroom - Google Classroom is a free LMS that offers integration with
EER through various third-party tools and platforms. For example, the “Escape Room
Extension” for Google Chrome allows teachers to create and manage escape room chal-
lenges within Google Classroom, and the “Escape Room Digital Locks” tool allows for
integration with various types of digital escape rooms.

2.2 Integration specifications
The IMS LTI specification [1] defines a set of standard messages and protocols for commu-
nication between the LMS and external tools or applications. This ensures that different
tools and applications can work seamlessly with different LMS platforms, making it easier
for educators to use a variety of tools to enhance the learning experience.

In its 1.3 version, the specification integrates the LTI Advantage as an extension to provide
additional services that aim to enhance the interoperability, security, and user experience of
the LTI platform. The main services provided by LTI Advantage are:

Deep Linking - allows educators to link directly to specific content items in an external
tool, such as a specific quiz or assignment. This enables users to access specific content
items without having to navigate through the external tool interface.
Assignment and Grade Services - allows the exchange of assignment and grade data
between the LMS and external tools. This enables educators to create and grade assign-
ments directly within the LMS, using external tools to provide additional functionality or
content.
Names and Role Provisioning Services - allows the exchange of user and role data
between the LMS and external tools. This enables external tools to customize the user
experience based on the user’s role or other user data.

There are several alternatives to IMS LTI that provide similar functionality for integrating
external learning tools with LMS, such as:

SCORM (Sharable Content Object Reference Model) - a set of standards and specifications
that define how e-learning content can be packaged and delivered to learners through an
LMS. SCORM includes a runtime environment (the SCORM player) that enables the
communication between the content and the LMS.
xAPI (Experience API) - a newer specification that allows for more flexible tracking and
reporting of learning activities, beyond what is possible with SCORM. xAPI enables
the collection and analysis of data about a wide range of learning experiences, including
informal and social learning.

SLATE 2023

15:4 Integrating Gamified Educational Escape Rooms in Learning Management Systems

Common Cartridge - a standard for packaging and sharing e-learning content, including
multimedia, assessments, and other interactive learning objects. Common Cartridge aims
to provide a more portable and flexible way of sharing content across different LMS
platforms.
AICC (Aviation Industry Computer-Based Training Committee) - A specification for
integrating external learning tools with LMSs, primarily used in the aviation industry.
AICC provides a set of communication protocols and data structures for exchanging data
between the LMS and external tools.

From all these alternatives presented, the xAPI (Experience API) specification is one
of most promising specification. xAPI, also known as Tin Can API, is a specification for
tracking and recording learning experiences in a standardized format. It is designed to
capture data from a wide range of sources, including mobile devices, simulations, and virtual
environments, among others. The xAPI specification enables the collection of a wide range
of data, including learning experiences that occur outside traditional LMS, such as informal
learning experiences or on-the-job training. This data can include a variety of information,
such as learning objectives, assessment scores, and even learner emotions.

The xAPI specification is closely related to a Learning Record Store (LRS). An LRS is
a database that stores learning experience data in the format specified by xAPI. It is the
system responsible for collecting, storing, and retrieving xAPI statements, which are the
standardized format for recording learning experiences. The LRS can also provide analytics
and reporting capabilities that enable organizations to gain insights into learning experiences
and improve learning outcomes. By recording learning experiences, organizations can gain a
more complete understanding of how their learners are interacting with learning content, and
can use this information to improve training programs and support individual learning needs.

It’s worth noting that each of these alternatives has its own strengths and weaknesses, and
the choice of which to use may depend on specific use cases and requirements. However, IMS
LTI is currently the most widely adopted and supported standard for integrating external
learning tools with LMSs.

3 Integration framework

This section outlines the process of integrating a learning platform (Moodle LMS) with
an external tool (Math Escape Room). Firstly, the integration architecture is presented,
followed by a brief explanation of one of its components (the escape room). Finally, the steps
to integrate the two components, using the IMS LTI specification are listed.

3.1 Integration architecture
An integration architecture refers to the overall structure and design of the framework
that enables different software applications or systems to communicate with each other
and exchange data seamlessly. Figure 1 illustrates the integration architecture for the
communication between the learning platform and the external tool.

The LMS serves as the entry point for both teachers and students. Teachers can add links
to access the external tool (either as a whole or for a specific room), while students can access
these links and enter the escape room to solve challenges. All performance results are then
sent back to the learning platform, specifically to the LMS gradebook of the corresponding
course. All these interactions are done implementing the IMS LTI 1.3 (with Advantage
services). Meanwhile, all student activity, such as academic performance, behavior patterns,

R. Queirós, C. Pinto, M. Cruz, and D. Mascarenhas 15:5

Figure 1 Integration of the learning platform and the external tool.

and social interactions, among others, is sent to special databases called LRS and then
forwarded to reporting tools for analysis. All this communication is guaranteed by the xAPI
specification. By analyzing student data, educators can gain insights into how students
learn, identify challenges they face, and determine the most effective strategies for promoting
learning. They can use this information to customize instruction to the needs of individual
learners, identify students who may be at risk, and improve overall course design and delivery.

3.2 Math Escape Room
A math escape room is a type of interactive game where players are presented with math
problems and puzzles that they must solve to progress through a series of challenges or
rooms. The ultimate goal of the game is to “escape” from the room by solving all of the
puzzles before time runs out. Math escape rooms can be designed for a variety of skill levels,
from basic arithmetic to advanced calculus. They can be used as a fun way to reinforce
math concepts in a classroom setting, or as a team-building activity for a group of friends or
colleagues.

For this proof of concept, we choose a math escape room from the Math-Digger European
project1 – MATH-DIGGER project - MATHematics Digital Escape Rooms platform – which
aims to provide a free tool to maximize students’ enjoyment, engagement and motivation
in their math learning process. Students will face exciting math exercises and problems as
micro-games in Geogebra, developed for Linear Algebra and Analytical Geometry, Differential
and Integral Calculus courses, mostly based in real world problems, and solve them in a
virtual reality framework.

Despite its usefulness, it is implemented as a separate web platform to which a student
can log in to solve math challenges served in a gamified form (e.g., as challenges and quests
rewarded with points and badges, etc.). This means that the student must leave the LMS

1 https://www.ipp.pt/mathdigger/

SLATE 2023

https://www.ipp.pt/mathdigger/

15:6 Integrating Gamified Educational Escape Rooms in Learning Management Systems

platform to solve the challenge(s), and his/her achievements are not transferred back to the
LMS platform. Therefore, the instructor also must log into the Escape Room platform and,
somehow, to see the students’ individual progress and, finally, to combine this data with the
LMS-based student activity data to produce the final grade. The goal of this integration
work is therefore to fill the gap between interactive learning environments and popular LMS
platforms using an LTI-based approach, in specific, to open the Escape Room ecosystem to
educational environments. This is much more flexible and sustainable compared to writing
plugins for popular LMS platforms, i.e., by providing an LTI-compliant interface to Escape
Room platform, any LTI-compliant LMS can be connected to it. Using the plugin option,
every LMS would require a dedicated plugin written only for it and any updates to LMS code
could render older plugins incompatible. Furthermore, the LTI, as an established standard,
it is expected to stay for a considerable time.

4 Integration steps

This section presents a guide with all the steps to allow the integration of a math escape room
(the external tool) with Moodle LMS (the learning platform) using the IMS LTI specification.

It is expected that this section can be useful in other domains by replicating all the steps
contained herein to link other environments (new LMS platforms and new external tools)
into an educational setup. The main steps are:
1. Adding the external tool into the learning platform;
2. Registering the learning platform in the external tool;
3. Adding course activities in the learning platform.

4.1 Adding the external tool into the learning platform

In this section we detail the steps needed to add the math escape room as an external tool in
Moodle LMS. To this end, sign into Moodle as an administrator and select manage external
tools to configure a tool manually. This opens the external tool configuration form where
the administrator should fill the following fields:
1. Tool name, URL (the URL of the escape room) and description;
2. Specification: LTI 1.3
3. Public Key type: RSA key
4. Public key: leave this field empty. This will be filled out later when we register the LMS

(Moodle) as the platform in the escape room.
After saving changes, the Client ID will be filled in automatically which will be necessary for
the next step.

4.2 Registering the learning platform in the external tool

The LMS platform needs to be registered in the external tool (the math escape room) to
get a Public Key, which allows signatures of incoming messages and service requests to be
verified. At the moment, there isn’t a User Interface (UI) form to facilitate this process.
Therefore, the register code is stored in an index.js file of the web app deployed in a server
platform (Heroku).

R. Queirós, C. Pinto, M. Cruz, and D. Mascarenhas 15:7

Listing 1 Main code.
// Register platform
const platform = await lti. registerPlatform ({

url: MOODLE_URL ,
name: "MD",
clientId : process .env.LTI_KEY ,
authenticationEndpoint : "{{ MOODLE_URL }}/ mod/lti/auth.php",
accesstokenEndpoint : "{{ MOODLE_URL }}/ mod/lti/token.php",
authConfig : {

method : " JWK_SET ",
key: "{{ MOODLE_URL }}/ mod/lti/certs.php",

},
});

This JavaScript object contains several properties. Each property contains a key and the
respective value. The most important keys are: url - the URL for the platform; name - the
name of the external tool configuration in the platform; clientid - the id generated after
the creation of the external tool instance in the platform. Please add LTI_KEY as an
environment variable in the server platform where the Web app is deployed (in this case in
Heroku); endpoint - a set of URLs that defined platform endpoints. When we launch for
the first time the escape room it will log the public key. The obtained public key should be
added to the external tool in Moodle.

4.3 Adding course activities in the learning platform
After fully configuring the external tool, teachers may add an external tool activity by:
1. Select the added tool (in this case, the escape room) in the preconfigured tool;
2. Add a name and a description to the activity;
3. Select new window as Launch container
4. Enable all options, in the privacy section, namely Share launcher’s name with the tool,

Share launcher’s email with the tool, and Accept grades from the tool;
5. Set Completion tracking, in the activity completion section, to show activity as complete

when conditions are met and enable the Require grade option.

5 Conclusion

This paper presents a guide with all the steps needed to allow the integration of a learning
platform (Moodle LMS) with the external tool (math escape room) using the IMS LTI
specification. The expected impact is significant, as it removes the limitation in the adoption
of external tools in a typical educational setting where the LMS plays a central role. Apart
from satisfying the needs described above, it also addresses the psychological barrier of
instructors being reluctant to add yet another platform to the portfolio of their educational
IT tools. The major contribution of this work is to serve as an integration guide for other
applications and in different domains.

References
1 IMS Global Learning Consortium. Ims learning tools interoperability (lti). https://www.

imsglobal.org/activity/learning-tools-interoperability, 2021. Accessed: May 12,
2023.

SLATE 2023

https://www.imsglobal.org/activity/learning-tools-interoperability
https://www.imsglobal.org/activity/learning-tools-interoperability

15:8 Integrating Gamified Educational Escape Rooms in Learning Management Systems

2 Breakout EDU. Schoology integration. https://www.breakoutedu.com/schoology, 2021.
Accessed: May 14, 2023.

3 Fernando Gamboa-Rodríguez, Juan Nicolás García-Sánchez, Eloy García-Sánchez, and Arturo
Córdoba-Rangel. Educational Escape Rooms in Higher Education: A Systematic Literature
Review. Education Sciences, 11(3):114, 2021. doi:10.3390/educsci11030114.

4 Agoritsa Makri, Dimitrios Vlachopoulos, and Richard Martina. Digital escape rooms as
innovative pedagogical tools in education: A systematic literature review. Sustainability,
13:4587, April 2021. doi:10.3390/su13084587.

5 Nidhi Niyati, Pranav Awati, Neelam V Alai, and Ritu Jain. Escape rooms as an interactive
learning tool: A systematic review. International Journal of Emerging Technologies in Learning
(iJET), 16(5):223–240, 2021.

6 Alice Veldkamp, Liesbeth Grint, Marie-Christine Knippels, and Wouter van Joolingen. Escape
education: A systematic review on escape rooms in education. Educational Research Review,
31:100364, November 2020. doi:10.1016/j.edurev.2020.100364.

https://www.breakoutedu.com/schoology
https://doi.org/10.3390/educsci11030114
https://doi.org/10.3390/su13084587
https://doi.org/10.1016/j.edurev.2020.100364

Romaria De Nª Srª D’Agonia: Building a Digital
Repository and a Virtual Museum
Sara Cristina Freitas Queirós #

ALGORITMI Research Centre / LASI, DI-University of Minho, Braga, Portugal

Cristiana Araújo # Ñ

ALGORITMI Research Centre / LASI, DI-University of Minho, Braga, Portugal

Pedro Rangel Henriques # Ñ

ALGORITMI Research Centre / LASI, DI-University of Minho, Braga, Portugal

Abstract
Romarias are Christian pilgrimages that occur in order to celebrate a specific saint. Romaria de
Nª Srª d’Agonia (RNS Agonia, for short) occurs aimed at celebrating Nossa Senhora da Agonia,
patron of all Fishermen, at Viana do Castelo, Portugal. RNS Agonia is a very old event that surely
belongs to the Minho’s Cultural Heritage. There are many written documents, of various types,
that describe the event; so, their digital preservation is mandatory. However, digital preservation is
not restricted to a database of digital images obtained by scanning the documents. In this paper
we are concerned with digital repositories of XML-based annotated documents from which we can
extract automatically data to build a virtual museum that helps on disseminating information
about RNS Agonia. Such a Web resource is crucial to support people wishing to know more about
that pilgrimage, and also as a booster for tourism. The paper describes the different stages of this
project, including the documents annotation process, data extraction mechanisms, the creation of a
triple storage to archive the knowledge built from the sources analyzed, and the virtual museum
implementation. The methodological approach devised for the project under discussion is based on
the creation of an ontology that describes the RNS Agonia domain completely. The idea is to define
the XML dialect, to be used in the annotation, from the ontology. Moreover the ontology will also
lead the definition of the triple store used to set up the knowledge base that feeds the museum.

2012 ACM Subject Classification Applied computing → Document preparation; Information systems
→ Ontologies

Keywords and phrases Ontology, XML, Romaria, Pilgrimage, Digital Knowledge Repository, Triple
Storage Database, Virtual Museum

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.16

Funding This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020.

1 Introduction

With the increasing transition from the analog to the digital world, paper documents have
become obsolete and, in consequence, all the past knowledge about the evolution ends up in
oblivion. Portuguese Romarias are one of the main folk events that have been affected by
this change. Alongside, with time, customs and traditions have been changing and adapting
to this new reality.

Romaria de Nª Srª d’Agonia occurs every year in Viana do Castelo, being known as
the biggest romaria in the country. With faith and tradition, between the devotion and the
feast of a people, this is how, year after year, for more than two centuries, the RNS Agonia
has been made. Like all the others, it has a strong historical past, built up from a set of
events that have been expanding, particularly in the last decade.

© Sara Cristina Freitas Queirós, Cristiana Araújo, and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 16; pp. 16:1–16:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:saracristina-2000@hotmail.com
mailto:decristianaaraujo@hotmail.com
https://epl.di.uminho.pt/~cristiana.araujo/
https://orcid.org/0000-0002-9656-3304
mailto:prh@di.uminho.pt
https://www.di.uminho.pt/~prh/
https://orcid.org/0000-0002-3208-0207
https://doi.org/10.4230/OASIcs.SLATE.2023.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

16:2 Romaria De Nª Srª D’Agonia: Building a Digital Repository and a Virtual Museum

All these events have been documented in articles, books, news, and even transmitted
orally through generations, so that all the information is spread over different sources.
Therefore, this project aims to collect these diverse materials such as newspaper news,
posters, flyers, postcards, photographs and build a documentary repository. From this
repository, it will be possible to gather the historical and cultural information, which will
allow the recreation of those events, since the beginning of this pilgrimage up to the present
day.

To guide the collection and data extraction tasks, we built an ontology – OntoRomaria
– to describe the domain of festivities of RNS Agonia. This ontology is composed of the
concepts that describe the domain of Pilgrimage and the relationships that link the concepts,
building the triples. OntoRomaria aims to structure for archival purposes, in a triple-storage
format, all the information collected about the Pilgrimage. In order to publicly display the
collected information, we built a Virtual Museum. In this Virtual Museum the users can
conceptually browse the knowledge repository about RNS Agonia, a pilgrimage that belongs
to Minho’s cultural heritage illustrating their strong roots and traditions.

This paper is organized into 9 sections. In Section 2, the RNS Agonia and the main
concepts that characterize it are presented, as well as the events that take place throughout
the pilgrimage. Section 3 defines two crucial concepts in this project: Virtual Museums and
Ontologies. Section 4 presents the ontology built to describe the domain of RNS Agonia.
Section 5 shows the construction of the knowledge repository. In Section 6 the architecture of
the Virtual Museum is discussed. Section 7 describes the development of the Virtual Museum.
Section 8 shows the interface of the Virtual Museum of Romaria de Nª Srª d’Agonia. Finally,
Section 9 presents conclusions and future work.

2 Romaria de Nossa Senhora da Agonia

Romaria de Nª Srª d’Agonia occurs every year in Viana do Castelo, being known as the
biggest romaria in the country. Pride in essence, faith, tradition and devotion are the main
reasons that drive people, for more than two centuries, to plan, prepare and celebrate this
christian pilgrimage [11]. This pilgrimage is devoted to Nossa Senhora da Agonia. Agonia,
which translates to “agony”, was chosen as a surname for Our Lady (in Portuguese, “Nossa
Senhora”) due to the suffering that the constant sea hazards, such as shipwrecks, caused to
fishermen’s families. The sea in the region was very rough, causing frequently shipwrecks,
and the families of the brave fishermen used to wait for them on docks, distressed by the
struggle that these men were fighting for their lives. Kneeling, they prayed fervently to
Our Lady of Agony. As a way to relieve their pain, they would kneel and pray vigorously
to Nossa Senhora, hoping to put an end to the agony of the uncertainty about their loved
ones [9]. Nowadays, northern portuguese fishermen and their families, carry on the tradition
of visiting Nossa Senhora da Agonia sanctuary to pray for protection for the times to come
and thank for all the givens of that year.

Nevertheless, this romaria is not only about praying, but also about proudly exhibit
old costumes and other traditions. All festivities lasts four to five days full of events. As
mentioned before, over the last decade this event has become increasingly more publicized,
attracting more than 1 million visitors per year, improving the region’s tourism.

S. C. F. Queirós, C. Araújo, and P. R. Henriques 16:3

2.1 Main Concepts
To be able to understand the concept of this Christian Pilgrimage, it is necessary to explore
a little bit all the concepts that are associated with it:
1. Mordoma is a core term when RNS Agonia is mentioned. It describes usually young

and single women from Viana do Castelo that wear the traditional costumes (“trajes”)
as a way to pay tribute to the time that gave origin to the beginning of the celebration
of these festivities. They are responsible for being the “messengers” by introducing and
inviting everyone to gather and celebrate.

2. Gold is the most relevant ornament used by Mordomas in their Trajes, without it, it’s
incomplete. At the beggining of this traditions, gold jewelry was passed down from
generation to generation in the form of inheritance. It had its greatest highlight in
christian festivities, trips to the city of Viana do Castelo, where young woman would
proudly exhibit all that gold on their chest, representing their families social status.

3. Chieira it describes pride and vanity (on the positive side of this adjectives) for wearing
the costumes and gold.

4. Traje is a portuguese word used to reference old, traditional and historical costumes.
Within the context of this pilgrimage, the costumes in question were worn by women from
the old times, in the various occasions of their lives such as work, mourning, celebration,
engagement, etc.

2.2 Main Events
During the RNS Agonia, five relevant events take place:

Parade of Mordomas: parade through the city where women from Viana do Castelo
proudly exhibit their costumes.
Historical/Ethnographic parade is an highly theatrical moment where traditional
celebrations and old habits are represented by each parish of Viana do Castelo.
Procession to the sea: The image of Nossa Senhora da Agonia is carried through the
streets decorated with salt tapestries to the sea, where it is loaded in one of the flowery
boats and sails part of the river Lima.
Folk festival: all the vast variety and richness of trajes for all moments, traditional
music and folk related traditions are exhibited.
Fireworks: On the end of the festivities of each pilgrimage day fireworks are set off.
The last day is marked by a special set of fireworks, that are let off on Eiffel’s bridge and
boats on the river, leading to a spectacular show of lights that also reflects on the river.
This is usually called as “Serenata” (Serenade) because it’s accompanied by soulful songs.

3 Virtual Museums and Ontologies

To develop the solution it was necessary to understand two concepts: Virtual Museum and
Ontology.

On the one hand, virtual museums are a digital extension on the Internet, basically, a
museum without walls, capable of extending ideas and concepts into the digital space, trying
to reveal the essential nature of the museum. At the same time it allows people, who might
never be available of visiting a certain museum in person, to reach it out [7].

On the other hand, ontology is an artifact used for representation, where these are
intended to designate some combination of universal concepts, defined classes, and certain
relationships between them [2].

SLATE 2023

16:4 Romaria De Nª Srª D’Agonia: Building a Digital Repository and a Virtual Museum

Virtual museums developed using ontologies have gained increasing popularity in recent
years as a way to preserve and present cultural heritage in a digital format, since an ontology
is a formal representation of a set of concepts within a domain and the relationships between
those concepts. One example of a virtual museum developed using ontologies is the Virtual
Museum of Canada (VMC) (it was decommissioned in order to evolve out to Digital Museums
Canada in 20201). The VMC used the Cultural Heritage Ontology (CHO) to represent the
information about the museum’s collection. At a national level is possible to mention Museu
da Emigração e Comunidades (Imigration and Comunities Museum)2. However, to the best
of our knowledge, all of this examples developed the ontology based on annotations made on
the documents. The approach presented in this paper aims to reverse the direction of this
workflow and systematize the annotation of documents from an ontology already formulated
for this purpose.

One of the key advantages of using ontologies in virtual museums is that they provide a
standardized way of representing and organizing the information, which makes it easier to
search, browse, and access the museum’s content. Ontologies also enable interoperability
between different virtual museums, allowing information to be shared and reused across
different platforms around the world [8].

4 OntoRomaria

The first step towards designing the virtual museum was to define an ontology to describe
the domain under work. In order to do it formally, it was used OntoDL+, a Domain Specific
Language that was created to allow the rigorous description of ontologies by non-programmer
users. OntoDL+ is not a markup language like other ontology description languages (for
instance the well known standards OWL or RDF-Schema). It was designed to be easy to write
and clear to read, aiming at being used with simplicity by anyone from Science to Humanities.
OntoDL+ Compiler not only checks the specification to assure well-formedness and its
semantic correctness, but also can convert it to other ontology representation languages [4].
That language just requires the identification of the relevant concepts present in the domain,
the attributes that characterize them, the relations that will link concepts to define the
domain meaning, and the triples (two concepts, the Subject and the Object, and a relation,
the Predicate, that connects them) [1]. Optionally a fourth block can be added to declare the
individuals that will instantiate the concepts, allowing for the ontology population. Listing 1
illustrates that DSL exhibiting a fragment of a OntoDL+ template.

In order to build the ontology, the first step was to read and analyze multiple documents
such as newspaper news, posters, flyers, postcards, photographs, among others, highlight
the relevant data present in them, and understand which concepts are more important and
what are the relevant relations among them. Complementary to that bibliography research
process, and in order to enrich the acquisition of knowledge concerning RNS Agonia, many
conversations were hold with experts to recover the oral tradition.

After that long manual process of information retrieval, the next step was to the design
and specify in OntoDL+ language the envisaged OntoRomaria to describe RNS Agonia.
Listing 2 shows a short extract of the ontology developed.

1 Available at https://www.digitalmuseums.ca
2 Available at https://epl.di.uminho.pt/~ritafaria/MEC/index.php.

https://www.digitalmuseums.ca
https://epl.di.uminho.pt/~ritafaria/MEC/index.php

S. C. F. Queirós, C. Araújo, and P. R. Henriques 16:5

Listing 1 A template exhibiting OntoDL+ Syntax.
Ontology ontologyName
attributes { %attribs declaration block (optional)

attribA: string ,
attribB: enum(va , vb , vc)

}
concepts { %concepts declaration block

ConcA[attribA , attribC:int],
ConcB[attribB],
ConcC , ConcD , ConcE

}
individuals { %individuals declaration block

indA , indB
}
relations { %relations declaration block

% is -a, iof , pof are predefined
relA[domain: ConcA , codomain: ConcB],
rel1 , rel2

}
triples { %triples declaration block

ConcA =relA=> ConcB;
ConcB =[rel1 => ConcC , ConcD;

rel2 => ConcE];
indA =iof=> ConcA[attribA ="val1", attribC =3];
indB =iof=> ConcB[attribb=vb]

}

5 Virtual Museum, building the Repository

As previously said, one of the objectives of this project is to create a Virtual Museum
extracting the information from a digital repository, which should be populated automatically
from documents using a data extraction process. However to enable that process, the
documents to be used as information sources have to be annotated in XML.

XML is a markup language used worldwide due to the fact that it is a software and
hardware independent tool, easy to be read by humans and computers that allows to
emphasize information in a normal text by just wrapping data between tags [10] (annotation
elements that may be complemented by attributes). The XML language has no predefined
tags. This meta-language just establishes a small set of rules defining what can be a tag, the
way annotations open and close, and the way elements can contain other elements. So, when
a new XML dialect is desired, it is up to the user to define the set of tags he needs and the
element structure he desires.

Listing 3 is an example of a text (that is concerned with RNS Agonia, our specific
working domain) annotated in our XML dialect.

As explained above, to start the process of document annotation, it was necessary to define
the appropriate tags. The recurrent problem that information engineers face in that stage,
to perform that creative task, is how to deal with that subjective concept: appropriateness;
how to choose XML elements (tags, attributes and relations among elements) that are the
most adequate for a domain. Our contribution to overcome this difficulty is the proposal of
an ontological approach: XML elements shall be defined taking OntoRomaria (conceptual
level, without individuals) into account.

SLATE 2023

16:6 Romaria De Nª Srª D’Agonia: Building a Digital Repository and a Virtual Museum

Listing 2 OntoRomaria ontology in OntoDL+ (fragment).
Ontology OntoRomaria

concepts {
Romaria[dataInicio: string , dataFim: string , local: string ,

data: string , sinon: string],
Evento[local: string , data:string ,

fotografia: string , descricao: string , sinon: string],
Desfile_Mordomia[nr_mordomas: int],
Mordoma[descricao: string , explicacao: string , sinon: string],
Traje[material: string , adereco: string , cor: string ,

significado: string , tipo: string , sinon: string],
}
individuals {

Romaria_S_Agonia ,
Traje_Mordoma , Traje_Trabalho , Traje_Feirar

}
relations {

usa , enverga , ocorre , desfila
}
triples {

Romaria_S_Agonia =iof=> Romaria[dataInicio =...];
Romaria_S_Agonia = ocorre => Evento;

Desfile_Mordomia =is -a=> Evento;
Desfile_Mordomia = desfila => Mordoma;
Mordoma = usa => Traje;

Traje_Mordoma =iof=> Traje[material =...] ,
Traje_Trabalho =iof=> Traje[material =...];
Traje_Feirar =iof=> Traje[material =...]

}.

Therefore, based on the ontology defined in the previous phase, a group of XML elements
was created to markup documents concerned with the RNS Agonia.

For each concept in the ontology a XML element is created; the tag is the concept name.
If the concept has attributes, the respective element will have a similar list of attributes,
not required to make the annotation more flexible. For each relation, an empty element is
created; once again the tag is the relation name.

Using the DTD created according to the principles above, the annotation process followed
the guidelines below:

A sentence that describes a specific ’Concept’ is annotated inside the tags:
“<Concept></Concept>”.
When ’Concept’ is characterized by specific property ’att’, it is annotated inside tags
with the attribute ’att’ associated to its contextual value ’txt-value’:
“<Concept att=’txt-value’></Concept>”.
When two concepts are annotated according to the rules above, and the former is the
subject of a relation to the later, which is the object (target) of such a relation, then a
tag “<verb/>” is inserted between the concepts; notice that ’verb’ denotes the referred
relation. This strategy enables an easy extraction of the ontology triples.
When a concept has properties whose values are long texts, such as a description or

S. C. F. Queirós, C. Araújo, and P. R. Henriques 16:7

explanation, these attributes are treated as an element ’<Descritpion>’ instead of an
attribute. Care mus be taken to enclose that tag within the concept tag. Here follows an
example:

<Procissao_ao_Mar>
<Descricao>vénia da Senhora a todos os que a veneram
</Descricao>

</Procissao_ao_Mar>

Listing 3 Example of an annotatted document with XML tags based on OntoRomaria.
<Romaria_Sra_Agonia >

<ocorre/>
Desfile da Mordomia
<Desfile_Mordomia nr_mordomas=’mais␣de␣meio␣milhar ’> Preparam -se

durante dias , vestem -se rigorosamente e
saem a rua para mostrar a historia da <desfila/><Mordoma
sinon=’mulher␣vianense ’> mulher vianense </Mordoma >.
Mais de meio milhar de mulheres
desfilam orgulhosamente , espalhando a tradicional chieira
pela cidade no Desfile da Mordomia. Envergando os mais
belos <usa/><Traje ><Descricao >trajes das freguesias de
Viana do Castelo </Descricao ></Traje > e carregando
<adornado_com/><Ouro quantidade=’quilos ’><Descricao >
quilos de ouro ao peito</Descricao ></Ouro>, com varias
<usa/><Adereco qual=’pecas␣seculares␣de␣familia ’>pecas
seculares de familia </Adereco >, estas mordomas
representam , de forma espontanea , a maior montra de ouro
ao ar livre do mundo.
<desfila/><Mordoma > Trajam -se a rigor e com minucia
na arte de bem vestir e ourar , cumprindo todos os detalhes
herdados de geracoes anteriores , mantendo a tradicao para
desfilar com orgulho.</Mordoma >

</Desfile_Mordomia >
<Desfile_Mordomia >O Desfile da Mordomia e a historia viva

dos trajes ,desde as lavradeiras as varinas , ate aos mais
requintados trajes das mordomas , usados pelas raparigas e
senhoras de Viana do Castelo. Muitas das pecas de ouro sao
unicas e so sao mostradas em publico neste dia , redobrando a
chieira das mulheres que as usam. Uma tradicao cada vez mais
enraizada entre as mulheres de Viana do Castelo , que junta
variasgeracoes , no mesmo quadro , para mostrarem o esplendor
e a riqueza dos trajes e do ouro de Viana do Castelo.

</Desfile_Mordomia >
</Romaria_Sra_Agonia >

Once XML elements are defined an an appropriated dialect created for RNS Agonia, it is
possible to start the document annotation process using the referred dialect (as illustrated in
Listing 3). This process enables the Information Extractor to perform its work based on the
predefined set of tags.

SLATE 2023

16:8 Romaria De Nª Srª D’Agonia: Building a Digital Repository and a Virtual Museum

6 Virtual Museum, Architecture

The architecture describes the fundamental organization of a system and its components.
In our case, these components are the (human or software) modules responsible for all
processing, from documents treatment to the presentation of the information extracted in a
web interface.

Figure 1 System Architecture.

Figure 1 allows for an easier understanding of the different components and how they
interact in order to present the final product to the user. To make the image clearer, a color
scheme was used to distinguish them.

The leftmost, non-colored, part refers to an external process that has to be done prior
to the automatic processing. The source documents are simple articles, newspapers news,
flyers, photos, etc, that were gathered in order to extract valuable information. As already
explained, the ontology is used for the annotation process, specifically in tags creation,
since that process involves identifying instances of important concepts and their respective
relations. At this first stage the documents are manually annotated with the mentioned
XML tags.

After this process, the information processing represented by the blue component begins.
In this module, the Data Extractor will traverse the XML tree (the internal representation
of the annotated documents) and get sets of triples: subject, predicate and object that
describe in an ontological style the information obtained. In our case, these components
refer respectively to the concepts of the pilgrimage and relationships with other concepts
and their attributes. After extracting them they will be stored in a triple-storage database.
That database will be processed to answer the requests that will have origin on the web
application.

As Figure 1 shows, the green component refers to the Web application, responsible
for interacting with the user. It receives the requests and converts them into appropriate
queries that are send to the triple database and collects the responses to display to the users.
The final user, in the orange component, has the chance to conceptually navigate over the
information displayed.

7 Virtual Museum, Development

The development is divided in four phases as described in Figure 2. The first three will be
described in this section and the Data presentation is discussed in Section 8.

S. C. F. Queirós, C. Araújo, and P. R. Henriques 16:9

Figure 2 Stages of data processing evolution.

As mentioned before, from the designed ontology, a set of XML tags were created and
adapted to manually annotate documents. Once those rules for standardizing annotations
were in place, the next step was data extraction, taking them into account.

7.1 Data Extraction
To extract information from the annotated documents, using Python and the xml.etree
library, the following data structures were created:
1. Two classes, one for each entity: concepts and relations. Within each of that class,

were defined generic attributes to store the relevant information about that entity. For
“concept” class those attributes were id, properties (attributes), description, explanation
and relations.
Once that classes were defined, an array of objects for each class was created to store
the data. Each object in the array represents a specific instance of the entity type, and
contains the values of its corresponding attributes.
Storing the data in this way, it is easily accessible and manageable using Python object-
oriented programming capabilities. For example, it is possible to search for all instances
of a particular entity type, or filter the data based on certain attributes and easily add
information while documents are processed.
Overall, using this approach allows for efficiently and effectively store the extracted data
from the documents, while also providing flexibility and ease of use for further analysis
and processing.

2. One stack to keep track of the hierarchical relation and to inheritance among concepts.
Once the closing tag of the concept in question is found, this one is popped out of that
stack and the “parent” of that concept is maintained to keep analysing and storing further
relations.

Given as input an annotated document like the example shown in Listing 3, the data
structure produced by the extractor is:

Romaria_Sra_Agonia
Relacoes: [(’ocorre’, ’Desfile_Mordomia’)]
Atributos: {}

Desfile_Mordomia
Relações: [(’desfila’, ’Mordoma’), (’destaca’, ’Mordoma’), (’enverga’, ’

Traje’)]
Atributos: {’descricao’: [Desfile da Mordomia e a historia ...

riqueza dos trajes e do ouro de Viana do Castelo.]}
Mordoma

Relacoes: [(’usa’, ’Traje’), (’usa’, ’Adereco’)]
Atributos: {’sinonimo’: [’mulher vianense’], nr_mordomas: [’mais de

meio milhar’], ’descricao’: [Trajam-se a rigor e com minucia na
arte de bem vestir e ourar ... desfilar com orgulho.]}

SLATE 2023

16:10 Romaria De Nª Srª D’Agonia: Building a Digital Repository and a Virtual Museum

Traje
Relacoes: [(’adornado_com’, ’Ouro’)]
Atributos: {’descricao’: [’trajes das freguesias de Viana do Castelo’]}

Ouro
Relacoes: []
Atributos: {’quantidade’: [’quilos’], ’descricao’: [’quilos de ouro ao

peito’]}

7.2 Data Serialization
The main goal in terms of data extraction and storage was to use an appropriate triple-storage
approach. In the context of triple-storage, RDF stands for Resource Description Framework.
It is a standard model for data interchange on the web, using a graph-based data model to
represent information about resources in the form of subject-predicate-object triples. Each
triple in RDF represents a statement about a resource, where the subject is the resource
being described, the predicate is the property or attribute of the resource being described,
and the object is the value of the property or attribute. The triples can be stored in a variety
of ways, such as in a triple-store database or as a text file in one of the RDF serialization
formats like Turtle or RDF/XML, providing a flexible and inter-operable way to represent
and exchange data on the web. To this end, among the many formats that are available,
Turtle was chosen to serialize the data for its representation through RDF graphs [3]. In
order to perform this serialization, two main steps must be performed:
1. Convert the ontology OntoRomaria into Turtle format.
2. Convert also the internal representation of the extracted data (described in Subsection

7.1) into Turtle.

Convert OntoRomaria to Turtle

Since the first step is to convert OntoRomaria to Turtle, that process was made by using a
tool accessible online, OntoCnE-Nave3 that provides an environment to visualize and explore
ontologies [6]. The referred navigation tool has an extra, but actually useful, functionality
that converts ontologies written in OntoDL to Turtle format (required, as input format, by
that ontology processing environment). OntoRomaria was written in OntoDL+ and that
could be a hindrance to the use of the tool. However, as OntoDL+ is a superset of OntoDL,
that conversion was straightforward. Given OntoRomaria as input to OntoCnE-Nave, the
translator produced a Turtle version proper for its visualization as a graph.

Convert Extracted Data to Turtle

After extracting data from the sources and storing it in internal structures, it was necessary
to clean and prepare the extracted data and convert it to Turtle. For that purpose, it was
necessary to execute the following tasks:
1. A prefix for the ontology has to be established to make IRIs shorter, allow the reuse,

clarity and compatibility between ontologies, tools and software based on RDF. In this
particular situation, the predefined prefix is http://example.org/ontoromaria#. It is
important to note that the mentioned domain4 is public and can be used in this context.

3 Available at https://computationalthinking4all.epl.di.uminho.pt/OntoCnENave.
4 Available at http://example.org/.

https://computationalthinking4all.epl.di.uminho.pt/OntoCnENave
http://example.org/

S. C. F. Queirós, C. Araújo, and P. R. Henriques 16:11

2. Along side with the previous prefix, it is important to establish other three that will help
to specify types and labels:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

3. Every concept has an IRI appropriate to the scope of the pilgrimage and two associated
relationships: one defining its label according to the RDFS prefix and the other its type,
according to the RDF prefix. If it has additional relations with other concepts they will
be presented linking directly to those concepts IRIs, as it’s possible to see:
<http://example.org/ontoromaria#Romaria_Sra_Agonia> rdf:type
ontoromaria:Romaria_Sra_Agonia;

rdfs:label "Romaria Sra Agonia";
ontoromaria:ocorre <http://example.org/ontoromaria#Procissao_ao_Mar>;
ontoromaria:ocorre <http://example.org/ontoromaria#Desfile_Mordomia>;
ontoromaria:descricao "Ao meio-dia,o som de ... Revista de Gigantones
e Cabeçudos";

4. Specific cases such as dates need to be treated properly so, when the converter detects
that the object of a triple is a date, and follows the usual format (yyyy-mm-dd), adds
that type information type to the triple, using the XSD prefix.

Following all the guidelines above, the data stored in the internal data structures can be
converted to Turtle. Therefore, it is ready to be moved to the storage phase, as described in
Subsection 7.3.

Listing 4 exhibits the Turtle triples generated for the input document shown in Listing 3
and converted to the internal representation illustrated in Subsection 7.1.

Listing 4 Example of an annotatted document converted to Turtle.
@prefix ontoromaria: <http:// example.org/ontoromaria#> .
@prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#> .
@prefix rdfs: <http://www.w3.org /2000/01/rdf -schema#> .
@prefix xsd: <http://www.w3.org /2001/ XMLSchema#> .

<http:// example.org/ontoromaria#Romaria_Sra_Agonia > rdf:type
ontoromaria:Romaria_Sra_Agonia;

rdfs:label "Romaria␣Sra␣Agonia";
ontoromaria:descricao "Ao␣meio -dia␣...␣e␣Cabecudos";
ontoromaria:ocorre

<http:// example.org/ontoromaria#Desfile_Mordomia >;

<http:// example.org/ontoromaria#Desfile_Mordomia > rdf:type
ontoromaria:Evento;

rdfs:label "Desfile␣Mordomia";
ontoromaria:desfila

<http:// example.org/ontoromaria#Mordoma >;
ontoromaria:usa

<http:// example.org/ontoromaria#Traje>.

<http:// example.org/ontoromaria#Mordoma > rdf:type
ontoromaria:Mordoma;

rdfs:label "Mordoma";
ontoromaria:sinonimo "mulher␣vianense";
ontoromaria:nr_mordomas "mais␣de␣meio␣milhar";

SLATE 2023

16:12 Romaria De Nª Srª D’Agonia: Building a Digital Repository and a Virtual Museum

ontoromaria:adereco "pecas␣seculares␣de␣familia";
ontoromaria:descricao "Trajam -se␣...␣orgulho.".

<http:// example.org/ontoromaria#Traje> rdf:type
ontoromaria:Traje;

rdfs:label "Traje";
ontoromaria:descricao "trajes␣...␣Viana␣do␣Castelo".

7.3 Data Storage
After extracting the data available in the annotated sources and serializing it in Turtle, it
was necessary to study the graph databases (which allow triple storage) available systems.
For this, three options were considered:

GraphDB5

Neo4j6

StarDog7

GraphDB, Neo4j and Stardog are all popular graph databases with similar functionality
but also have some differences. Some key factors to consider when comparing these three
graph databases[5] are listed below:
1. Performance and Scalability: GraphDB and Neo4j are known for their high perform-

ance and scalability, while Stardog has focused more on providing a rich set of semantic
reasoning features.

2. Query Language Support: GraphDB supports the SPARQL query language, while
Neo4j uses the Cypher query language, and Stardog supports both SPARQL and a subset
of SQL. This factor is exclusively dependent on the programmer’s choice depending on
his familiarity with the languages.

3. Reasoning and Inference: Stardog is known for its strong support of semantic reasoning
and inference, while GraphDB and Neo4j have more limited support for these features. If
reasoning and inference are a critical requirement, Stardog may be the better choice.

4. Integration with Other Tools and Frameworks: Integration with Other Tools
and Frameworks: All three graph databases have strong integration with various tools
and frameworks, including popular programming languages, data integration tools, and
machine learning frameworks.

Given this general insight, summarized as a table in Figure 3, Stardog was considered
the best option since it focus on a rich set of semantic reasoning features and supports
SPARQL as query language. This is a plus since it allows to infer relations that are not
explicitly declared in the database.

8 Virtual Museum of Romaria de Nª Srª d’Agonia

After gathering and processing all the information, the goal is to provide a conceptual
navigation regarding the Romaria domain. Thus, Figures 4, 5, 6 and 7 illustrate a navigation
flow through the information exposed allowing to explore concepts and their relationships.

5 For details, see https://www.ontotext.com/products/graphdb/
6 For details, see https://neo4j.com/
7 For details, see https://www.stardog.com/

https://www.ontotext.com/products/graphdb/
https://neo4j.com/
https://www.stardog.com/

S. C. F. Queirós, C. Araújo, and P. R. Henriques 16:13

Figure 3 Summary of DB Features.

As an example, consider the case where the user wants to explore Desfile da Mordomia.
After landing in the museum’s opening page (Figure 4), the user can choose to start the
navigation in order to explore the knowledge about RNS Agonia. Clicking on the main button,
he will access the museum’s Homepage (Figure 5) that displays some general information
and the buttons that allow for the navigation to the subpages where the main concepts are
detailed. Choosing the button Mordomia, the user is redirected to a page (Figure 6) that
allows to explore that concept. In its explanation there are several other concepts that can
also be visited. By clicking on one of these concepts, Mordomas, for example, another page is
displayed with the information necessary for the user to understand the domain (Figure 7).

Figure 4 Landing Page on Virtual Museum for RNS Agonia.

SLATE 2023

16:14 Romaria De Nª Srª D’Agonia: Building a Digital Repository and a Virtual Museum

Figure 5 Home Page on Virtual Museum for RNS Agonia, showing the main concepts.

Figure 6 Desfile da Mordomia Page on Virtual Museum for RNS Agonia.

Figure 7 Mordomas Page on Virtual Museum for RNS Agonia.

9 Conclusion

The main goal of the project discussed in the paper is the creation of a documents repository
and the development of a Virtual Museum for the ancestral Portuguese pilgrimage Romaria
de Nª Srª d’Agonia (denoted as RNS Agonia, for short).

S. C. F. Queirós, C. Araújo, and P. R. Henriques 16:15

To achieve the established objectives it was necessary to deepen the knowledge related to
the Romaria domain (as summarized in Section 2), and study Virtual Museum and Ontology
concepts (discussed in Section 3).

RNS Agonia was described in Section 2 presenting some elements of its history, namely
its origin and evolution, its festive events, main symbols and remarkable characteristics that
distinguish it from all others.

After defining the problem domain using an ontology designed specifically (OntoRomaria),
it was discussed how to create a XML dialect to markup documents describing the Romaria.
To cope with the annotated texts, a data extraction process was implemented to build up a
digital repository supported by a triple data store.

It was also explained how the storage, structured according to OntoRomaria, is queried to
create the envisage virtual museum.

The hypothesis that we intend to prove with that project is that the web space built
from the data related according to the ontology will provide a conceptual navigation over the
pilgrimage information that offers to the virtual museum Visitor a chance to easily create
knowledge about the Romaria.

The engine built to automatize the information extraction and archival, and the Web site
implementation, the ontology created and the markup process are the contributions of the
work here exposed.

To the best of our knowledge, there is no other system built according to the ontological
approach here proposed. We are aware that the process still includes some manual tasks,
but in the future we plan to automatize all the phases.

The first prototype of the referred engine and a small repository to be used as a test
scenario have been developed. More tests and optimizations must be done in the near future,
as well as more documents shall be annotated to increase the knowledge repository.

Of course experiments have to be designed and conducted to assess the users satisfaction
and the platform effectiveness.

After that, we intend to find partners and start cooperation with local public or private
institutions that can support the project in order to maintain that virtual museum to promote
Romaria de Nª Srª d’Agonia.

References
1 Dean Allemang and Jim Hendler. Semantic Web for the Working Ontologist. Morgan Kaufmann,

2011.
2 Robert Arp, Barry Smith, and Andrew D. Spear. Building Ontologies with Basic Formal

Ontology. Massachusetts Institute of Technology, 2015.
3 Richard Cyganiak, David Wood, and Markus Lanthaler. Rdf 1.1 concepts and abstract syntax.

https://www.w3.org/TR/rdf-concepts/. accessed April 10, 2022.
4 Alexandre Dias. Ontodl+. https://epl.di.uminho.pt/~gepl/GEPL_DS/OntoDL/index.html,

2020. accessed November 8, 2022.
5 Bob DuCharme. Learning SPARQL: Querying and Updating with SPARQL 1.1. O’Reilly

Media, 2013.
6 Daniela Fonte, Alda Lopes Gançarski, Daniela da Cruz, and Pedro Rangel Henriques. Conversor

de OntoDL para Turtle. Project report, Dep. of Informatics, University of Minho, June 2022.
7 Werner Schweibenz. Virtual museums. The Development of Virtual Museums, ICOM News

Magazine, 3(3), 2004.
8 Werner Schweibenz. The virtual museum: an overview of its origins, concepts, and terminology.

The Museum Review, 4(1):1–29, 2019.

SLATE 2023

https://www.w3.org/TR/rdf-concepts/
https://epl.di.uminho.pt/~gepl/GEPL_DS/OntoDL/index.html

16:16 Romaria De Nª Srª D’Agonia: Building a Digital Repository and a Virtual Museum

9 VisitPortugal. Santuário da senhora da agonia. https://www.visitportugal.com/pt-pt/
content/santuario-da-senhora-da-agonia, 2020. accessed September, 2022.

10 W3Schools. Introduction to xml. https://www.w3schools.com/xml/xml_whatis.asp. ac-
cessed November 9, 2022.

11 Álvaro Campelo. A Falar de Viana(Volume I, Série 2), chapter As festas da Sra. D’ Agonia
“Virgem do Mar, Mordoma da Terra: um contraste de rostos, uma festa de emoções!”. Biblioteca
Municipal de Viana do Castelo, 2012.

https://www.visitportugal.com/pt-pt/content/santuario-da-senhora-da-agonia
https://www.visitportugal.com/pt-pt/content/santuario-da-senhora-da-agonia
https://www.w3schools.com/xml/xml_whatis.asp

	p000-Frontmatter
	Preface

	p001-Faria
	1 Introduction
	2 Related Work
	3 Experimentation Setup
	4 Methods
	4.1 Zero and Few-Shot
	4.2 Fine-tuning
	4.3 Hyperparameters
	4.4 Direct Answer
	4.5 Metrics

	5 Evaluation
	5.1 Analysis of Generated Query Types
	5.2 Evaluation of Generated SPARQL
	5.3 Evaluation of SPARQL Results
	5.4 Evaluation of Direct Answers

	6 Discussion
	7 Conclusion and Future Work

	p002-Silva
	1 Introduction
	2 Our proposal: A framework for accessing enriched textual information
	2.1 Requirements
	2.2 Proposal/System
	2.3 Framework overview
	2.4 First implementation of the Framework
	2.4.1 Text processing module
	2.4.2 Graph Module
	2.4.3 Querying Module

	3 Use-Cases
	3.1 CoNLL
	3.2 Entity Linking

	4 Related Work
	4.1 Annotations
	4.2 Linked Data
	4.3 Entity Linking

	5 Conclusion
	5.1 Future Work

	p003-Novak
	1 Introduction
	2 Method
	2.1 The named entity recognition (NER) model
	2.2 A morphological analysis and lemmatization
	2.3 Marking and extraction of entities
	2.4 The model for replacement suggestion
	2.5 Replacement and re-inflection of entities

	3 Limitations
	4 Evaluation
	5 In the context of ChatGPT
	6 Conclusion

	p004-GoncaloOliveira
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Distractor Generation
	3.2 Distractor Ranking

	4 Experimentation
	4.1 Evaluation Data
	4.2 Implementation
	4.3 Evaluation

	5 Conclusion

	p005-Rodrigues
	1 Introduction
	2 Literature Review
	3 Proposed Method
	4 Evaluation
	5 Results Validation
	6 Conclusions and Future Work

	p006-Seipel
	1 Introduction
	2 Database Query Languages and Intelligent Query Answering
	3 Relational Database Queries
	4 Speech–to–Text with Whisper and Word Corrections
	4.1 Technology of Whisper
	4.2 Various Aspects of Speech–to–Text with Whisper
	4.3 Text–to–Text Corrections with Language Technology

	5 The Declarative Database Query Language DDQL
	5.1 Knowledge–Based Compilation of Queries
	5.2 The Graphical User Interface
	5.3 Integration of Whisper into Declare in a Docker-Based Tool

	6 Conclusions and Future Work
	A Appendix

	p007-Wills
	1 Introduction
	2 Speech Material
	3 Methodology
	3.1 ASR Systems
	3.2 Speech Characteristics
	3.3 Pronunciation Evaluation

	4 Results
	4.1 ASR Performance
	4.2 Speech Characteristics
	4.3 Pronunciation Evaluation

	5 Discussion
	6 Conclusions

	p008-RodriguesdosSantos
	1 Introduction
	2 State of the Art
	2.1 OCR Tools
	2.2 OCR Engines

	3 Problem Definition
	3.1 Program Specifications
	3.2 System Architecture

	4 Development
	4.1 Classes
	4.2 Graphical User Interface
	4.2.1 Image selection and preprocessing
	4.2.2 Text detection and formatting
	4.2.3 File saving

	5 Usage Example
	6 Case study
	7 Conclusion
	7.1 Release

	p009-Lystopadskyi
	1 Introduction
	2 Background
	3 Related Work
	4 Approach
	4.1 Narrative Definition and Ontology Specification
	4.2 Narrative and Graph Configuration
	4.3 Relevant Entity Extraction
	4.4 Event Identification
	4.5 Attribute Mapping
	4.6 Narrative Building

	5 Preliminary Results
	6 Conclusions

	p010-S.Marcondes
	1 Introduction
	2 Theoretical Foundations
	3 Proof of Concept
	4 Insights on a 4^{th} Generation Compiler
	5 Conclusion

	p011-Pereira
	1 Introduction
	2 Literature Review
	3 Checkmarx Lazy Flow
	4 Data Flow Hypergraph
	4.1 Clustering DOM Nodes
	4.2 Method-based Clustering
	4.3 Hypergraph Application and metrics

	5 Conclusions and Future Work

	p012-Pereira
	1 Introduction
	1.1 Static Application Security Testing
	1.2 Checkmarx's Engine
	1.3 Type Annotation
	1.4 SAST Problems solved with Type Annotation
	1.5 Objectives

	2 Related work
	3 Checkmarx's Pipeline
	4 Development
	4.1 Solution Discussion
	4.2 Type Annotation Implementation
	4.2.1 The TypeAnnotation Class
	4.2.2 The Conversions Class
	4.2.3 The conversions JSON file

	5 C, C++ and C#
	6 CXQL Query exploration
	7 Conclusion

	p013-Alves
	p014-Oliveira
	1 Introduction
	2 Background
	2.1 RDProfile
	2.2 Scientific Platforms
	2.3 Related Work

	3 Material and method
	3.1 Design Science Research
	3.2 SCRUM
	3.3 Tools
	3.4 Metrics
	3.5 ORCID
	3.6 Libraries

	4 RDProfile Algorithm
	4.1 Architecture
	4.2 Modeling, Collecting and Loading Data
	4.2.1 Researcher Model
	4.2.2 Scopus Model
	4.2.3 Web Of Science Model
	4.2.4 Quartiles Model
	4.2.5 Publications Model
	4.2.6 Metrics Model

	5 Proof of Concept
	6 Conclusion

	p015-Queiros
	1 Introduction
	2 Related work
	2.1 Integration of LMS with EER
	2.2 Integration specifications

	3 Integration framework
	3.1 Integration architecture
	3.2 Math Escape Room

	4 Integration steps
	4.1 Adding the external tool into the learning platform
	4.2 Registering the learning platform in the external tool
	4.3 Adding course activities in the learning platform

	5 Conclusion

	p016-Queiros
	1 Introduction
	2 Romaria de Nossa Senhora da Agonia
	2.1 Main Concepts
	2.2 Main Events

	3 Virtual Museums and Ontologies
	4 OntoRomaria
	5 Virtual Museum, building the Repository
	6 Virtual Museum, Architecture
	7 Virtual Museum, Development
	7.1 Data Extraction
	7.2 Data Serialization
	7.3 Data Storage

	8 Virtual Museum of Romaria de Nª Srª d’Agonia
	9 Conclusion

