
OCRticle - a Structure-Aware OCR Application
Sofia G. Rodrigues dos Santos #Ñ

Informatics Department, University of Minho, Braga, Portugal

J. João Dias de Almeida #

ALGORITMI/LASI, University of Minho, Braga, Portugal

Abstract
While there are currently many applications and websites capable of performing Optical Character
Recognition (OCR), none of the widely available options offer structured OCR, i.e., OCR that
maintains the text’s original structure. For example, if a document has a title, after performing
OCR on it, the title should have a different formatting, in order to distinguish it from the rest of
the text.

This paper covers the topic of structure-aware OCR, first by describing the current state of OCR
tools, then by showcasing a prototype tool capable of retaining the structure of articles scanned
from an image.

2012 ACM Subject Classification Applied computing → Optical character recognition

Keywords and phrases OCR, Optical Character Recognition, Data Structure, Data Parsing, Docu-
ment Structure

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.8

Supplementary Material Software (Source Code): https://github.com/RisingFisan/OCRticle
archived at swh:1:dir:651451c61ae5fca1265a703ed38eab264bb82551

Funding This work has been supported by FCT Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020.

1 Introduction

Currently, most Optical Character Recognition (OCR) tools are limited to a textual output.
In other words, if someone is scanning an image that contains text with varying font sizes,
indentation or colors, for example, inputting this image into an OCR tool will generate a
string of pure text without any of that “extra” information. When scanning documents like
newspaper or magazine pages, it becomes important to retain that information, otherwise it
becomes much harder to identify features of the text like titles or captions.

The main goal of this paper is to provide a critical assessment of OCR tools, their
strengths and limitations, and to showcase a prototype tool capable of performing OCR
while keeping the original text’s structure as intact as possible.

2 State of the Art

This section covers the current state of OCR tools and some of their main features. It also
mentions and describes Tesseract, one of the most used OCR engines nowadays.

2.1 OCR Tools
Most available OCR tools can be described as “basic”, and a simple online search for the
term “online OCR” will reveal hundreds of websites that perform this type of OCR. Using
these tools, a user can upload a file, usually an image, and the tool will process it and return
a string of text that it found on the image. These tools offer very little customization or

© Sofia G. Rodrigues dos Santos and J. João Dias de Almeida;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 8; pp. 8:1–8:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d13177@di.uminho.pt
https://github.sofiars.xyz/RisingFisan/
https://orcid.org/0009-0003-5510-9556
mailto:jj@di.uminho.pt
https://doi.org/10.4230/OASIcs.SLATE.2023.8
https://github.com/RisingFisan/OCRticle
https://archive.softwareheritage.org/swh:1:dir:651451c61ae5fca1265a703ed38eab264bb82551;origin=https://github.com/RisingFisan/OCRticle;visit=swh:1:snp:593847b67251125fe609fdd4fff83455aae863de;anchor=swh:1:rev:32fb374df2f7006efc150f0fcac3e4679902f341
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

8:2 OCRticle - a Structure-Aware OCR Application

extra features, as they are meant to be used by anyone, regardless of previous knowledge in
character recognition software, with most of them only allowing users to select the language
in which the text is written and if the output file should be a text file, a PDF file or a
Microsoft Word file, for example [12][14].

Table 1 contains a list of some popular OCR tools [10] and the main features supported
by each. This list only includes tools that can be used for free. Paid tools tend to offer most,
if not all of these features, but we did not find any additional feature offered by a paid tool
that was not also part of a free tool. By default, all of these tools support textual output.

Table 1 Comparison of some OCR tools.

Tool Recognize text
in Portuguese Auto-rotation Table

recognition

Restrict OCR
to part

of file/image

Create
searchable

PDF

Create
DOCX file

OCRSpace [11] X X X X
FreeOCR [3] X
OnlineOCR [12] X X X X X
Google Lens [4] X X X
Text Grab [19] X

One of these OCR tools that stands out from the rest is Google Lens [4]. This tool,
available on mobile devices, allows the user to use their smartphone’s camera to capture
an image containing text. After taking this picture, the user can interactively select and
copy the text recognized in the picture. Google Lens also excels at recognizing handwritten
text and other kinds of text that traditional tools struggle with [20], mainly due to Google’s
investment in Machine Learning algorithms.

Some tools also offer the possibility to create a special PDF file containing the original
scanned document, but with an invisible text layer above the images [5]. This way, users
can still see the original document but also select the text found in it, as if it were a regular
PDF file. This method is a possible solution to structure-aware OCR, and is used by search
engines in order to find text in PDF files composed only of images [6]. However, the text
itself is not structured, it only appears to be, thus it is not the best solution for structured
OCR.

It’s worth noting that different tools have different use cases, and therefore might not
have the need for all of the features shown in Table 1. For example, Google Lens uses a
smartphone’s camera to capture and detect text, unlike the other tools, and Text Grab allows
the user to take a screenshot of their computer and immediately recognize text from the
captured image, so it makes sense that these tools wouldn’t focus on features like creating
searchable PDF files.

2.2 OCR Engines
Although the aforementioned tools perform optical character recognition, they are merely
wrappers for OCR engines. An OCR engine is the software responsible for recognizing the
characters in an image and converting them to text [1]. Applications like Text Grab use these
engines to bring OCR functionality to their tools, and are meant to be more user-friendly
and intuitive than purely using an engine.

One of the most widely used OCR engines is called Tesseract. It can be used directly
via command line, through a 3rd party tool or by using an API written for a programming
language [15]. Examples of Tesseract APIs include Python-tesseract [13] or Tesseract.js [17],
which can be used by programmers to create applications with OCR functionalities.

S. G. Rodrigues dos Santos and J. J. Dias de Almeida 8:3

Tesseract supports dozens of languages [18] and offers a wide assortment of options [15].
One of these is related to page segmentation, and affects how Tesseract detects text in an
image. By default, Tesseract tries to divide the original picture into segments, which can be
titles or columns of text, for example. Then, it performs OCR on each of those segments.
If the output format is a textual format, this will mean that the final text will be split
into segments. However, each one of these segments has the same font and size, making
it impossible to distinguish between a title and a regular sentence, for example, without
additional context. This default behavior can be modified or disabled, if one desires.

Additional options include output formatting, which can be a PDF file, a text file or
an hOCR file (HTML compatible file, with additional information about the original text’s
structure), for example, or an option to let Tesseract detect words from a user-provided list.

Since Tesseract is mainly an OCR engine, its image processing capabilities [16] may not
be adequate for all use cases, which leads many users to apply pre-processing effects to
their images before inputting them in Tesseract, in order to improve the text detection [9].
These may include changes in contrast, brightness, size or even converting the image to
black-and-white, to avoid issues with colored text/backgrounds.

3 Problem Definition

This paper proposes the creation of a program capable of performing Optical Character
Recognition on a file, while maintaining its original structure. For this purpose, a prototype
called OCRticle was developed, in order to showcase the benefits of this approach to OCR.
Unlike already existing solutions that convert a file to a PDF file with invisible text, this
tool creates a purely textual file. In order to have a structured textual file, this application
uses Markdown [2], a markup language [7], in the generated files.

3.1 Program Specifications
OCRticle is a desktop application developed in the Python programming language. This
decision stems from the authors’ experience with Python and the ability to easily and rapidly
create a command-line or graphical application with Python. Tesseract is used for the OCR
component of the application, along with pytesseract, Python’s Tesseract API [13].

The application focuses primarily on detecting text from newspapers or magazine pages,
essentially pages with one or more articles, as its name implies. In practice, it can scan any
type of document, but it might not be able to preserve its structure entirely.

OCRticle has a Graphical User Interface (GUI), developed using the Kivy framework [8],
where a user can select a source image containing the article(s) they want to convert. Then,
they can select each article’s position within the image. This allows the tool to focus less on
discerning between different articles and more on formatting each one independently. After
this step, the tool performs OCR on each image section and display the results to the user,
who can then save the detected text in a Markdown file or perform some minor adjustments
to the final document’s structure.

3.2 System Architecture
The system follows an architecture similar to the one shown in Figure 1.

OCRticle is composed of a front-end and a back-end. The front-end is responsible for
user interaction and uses the Kivy module to render a GUI. After receiving user input, the
front-end sends data to the back-end, the “brain” of the program. The back-end processes

SLATE 2023

8:4 OCRticle - a Structure-Aware OCR Application

Figure 1 System architecture diagram. Interactions within OCRticle are represented with solid
lines and interactions with the “outside” are represented with dotted lines.

data and generates results, in this case, a formatted article or group of articles. It also
communicates with Tesseract, sending it images and receiving data about the text present in
them.

4 Development

This section covers the development steps of OCRticle.
The first step in development consisted of creating a simple program capable of converting

an image into an intermediate representation (IR). This IR holds information about the
text and additional context about the OCR process, for example, the dimension of the
bounding box where the text was located. The pytesseract module already has a method
image_to_data which can convert an image into a data structure (e.g., TSV file, dictionary
or pandas dataframe). However, this data structure contains more data than necessary, so
it became necessary to simplify it and make it easier to navigate and access. Hence, this
information is filtered and converted into instances of Python classes.

4.1 Classes
Four classes were created for this purpose: Article, Block, Paragraph and Line. The last three
classes simply mirror the information returned by pytesseract, which splits text into pages,
blocks, paragraphs, lines and words. Since this tool will only work with individual pages, the
first category is not needed, and the fifth category, words, is represented as a list in the Line
class, since there is no need to store extra information about each word. Besides a list of
words, the Line class also contains information about its height. This information is useful
because Tesseract might sometimes classify two lines as being part of different paragraphs, or
two paragraphs as being part of different blocks, which is not always the case. If we assume
that lines of the same paragraph and paragraphs of the same block should have text of the
same size, by storing each line’s height, we can compare the height of different lines and
paragraphs, and infer if two lines/paragraphs should be part of the same paragraph/block.
For this purpose, the Paraphaph class contains a get_line_height method, which returns
the average height of all its lines. Similarly, the Block class contains an equal method, but
one which returns the average height of its paragraphs’ lines.

S. G. Rodrigues dos Santos and J. J. Dias de Almeida 8:5

Blocks have an additional attribute, type, which can be one of four different values:
TITLE, TEXT, QUOTE, or CODE. These types should match the role of the text inside the
block in the original article. When saving the final file generated by OCRticle, each block
type has a different representation, according to the Markdown syntax [2].

Figure 2 illustrates the internal representation of an article.

Figure 2 Article internal structure - example.

This particular article is composed of three blocks, one of which is the article’s title,
another a block of text, and the third one a quote.

4.2 Graphical User Interface
After these classes were developed, the main step in creating OCRticle arose, building the
GUI.

4.2.1 Image selection and preprocessing
When opening the application, the interface contains a window where the user can select an
image to be analyzed. This step can be skipped if OCRticle is opened through the command
line and given a file path as an argument.

After selecting an image, the next window of the application allows the user to select the
articles present in the image by drawing rectangles over them. Optionally, users can select
areas for the program to ignore. For example, if the original articles contain images with
text, one could select the image as an area to be excluded, so that Tesseract won’t detect the
text in the image. Additionally, if an image has many articles and the user only wants to run
OCRticle on some of them, they can just select the articles that they want from the image,
instead of having to perform OCR on the entire document or manually cropping the image.

There are also options to control the image’s brightness, contrast, and saturation. This is
particularly useful if the original image is not well-lit or has a lot of colors in it.

4.2.2 Text detection and formatting
After the user selects the articles in the image, OCRticle divides the image into segments,
based on the drawn rectangles, and feeds those segments to Tesseract, which proceeds to
detect the text within those images. Then, the tool creates instances of the Article class,
each containing the text from a different article. When creating these instances, the program
perform an optimization step, where it tries to group together different blocks or paragraphs,

SLATE 2023

8:6 OCRticle - a Structure-Aware OCR Application

based on how they end. For example, if a paragraph ends with a hyphen and the next one
begins with a lowercase letter and both paragraphs have the same line height, it probably
means that Tesseract failed to detect both lines as part of the same paragraph, and the
program will try to automatically fix that mistake.

In addition, OCRticle also tries to detect an article’s title. To do this, it analyses every
block from the scanned text and finds the one with the biggest font size, which it then tags
as the article’s title. In the final file, this is represented with a pound sign (#) before the
block, which is used in Markdown to define a heading. If every block has a similar font size,
OCRticle doesn’t do anything, to avoid mislabeling a block, although this can still happen if
the block with the biggest font size is not the article’s title.

In case of mislabeling, OCRticle allows the user to manually label each detected block
before saving the final file. These labels correspond to the block types mentioned previously.
OCRticle also joins blocks that it believes are similar enough to be of the same type. For
example, if an article has two columns, each with some paragraphs, and Tesseract returns one
block for each column, OCRticle will try to figure out if those blocks have the same structure
and should therefore be merged. If OCRticle doesn’t merge two blocks, for some reason, the
user can perform that merge automatically, though a button in the article preview screen.

Another feature offered by OCRticle, which is not present in most OCR tools, is the
possibility to include or exclude line breaks inside each paragraph. Typical OCR tools, when
scanning a document, will preserve each line in the original image as a separate line in the
final text. However, in the original document, the text is only split into multiple lines due to
the limited size of the paper. On a computer screen, which is typically wider than a piece of
paper, it might not make sense to preserve the original line breaks. Therefore, after scanning
a picture, there’s an option in the application to remove the original line breaks, and keep
each paragraph as a single continuous line. This behavior mimics computer text editors,
like Microsoft Word, where the line breaks are artificially created by the software in order
to make the text fit in the screen, while the text remains stored as a single line. Figure 3
illustrates this difference, with the newline characters highlighted in red.

Figure 3 Distinct options for line breaks in output file. The first option mimics the original
image.

Line breaks will always be removed in titles because headings in Markdown must consist
of a single line.

4.2.3 File saving

After a user has confirmed the labels for each articles’ blocks, OCRticle allows them to save
the formatted text as a Markdown file. This file can then be opened in a Markdown viewer
and it will be displayed according to the preferences set by the user before saving.

S. G. Rodrigues dos Santos and J. J. Dias de Almeida 8:7

5 Usage Example

This section illustrates a usage scenario for OCRticle.
In this scenario, a user called Sam wants to convert an image with an article to text while

keeping the article’s structure, so Sam uses OCRticle for this purpose. Sam’s original image
can be seen in Figure 4.

Figure 4 Image that Sam wants to convert to structured text.

Sam starts by opening OCRticle and selecting the image from their computer. This
particular image is stored as a PNG file, but Tesseract accepts any kind of image format.

Then, OCRticle asks Sam to select the article or articles from the image. Since this image
only has one article, Sam can simply press “Submit” and OCRticle assumes that the entire
image contains just one article. However, since the image also contains an advertisement,
Sam uses the “Exclude from article” drawing mode to draw a red rectangle over the banner,
thus excluding it from being scanned by Tesseract.

In addition, since the image has a purely white background and black text, Sam has no
need to use the brightness, contrast or saturation sliders. However, these options would be
useful if the image did not have a white background, or if it wasn’t bright enough for the
text to be easily read.

After pressing “Submit” on the article selection screen, Sam is taken to the next window,
the article preview screen.

Here, the text from the image is divided into logical blocks, each representing a section of
the original article. OCRticle correctly identified the article’s title, but it didn’t identify the
quote block as being a quote, instead labeling it as “TEXT”. Thus, Sam proceeds to click on
the “TEXT” button besides the corresponding block, which opens a drop-down menu where
they can select the “QUOTE” option, changing the block into a quote block.

The first two paragraphs of the text were split into different blocks because of the empty
space in the image caused by the removal of the advertisement. Therefore, Sam presses the
“Merge above” button on the second text block, in order to merge it with the first.

Sam also selects the “Keep line breaks” option, since they want the final text to match
the original image as best as possible.

SLATE 2023

8:8 OCRticle - a Structure-Aware OCR Application

Figure 5 Article selection screen. The red rectangle represents an “exclusion zone” that won’t be
considered by OCRticle.

Figure 7 shows the same screen as Figure 6, but now with Sam’s changes applied to the
article.

Finally, Sam presses the “Save article(s)” button, which takes them into the final screen
of the application, where Sam is asked to save a file containing the text from the previous
screen, correctly formatted. For this example, the generated file can be seen in Figure 8.

Both the article’s title and the quote are correctly identified, according to Markdown
syntax.

6 Case study

Throughout OCRticle’s development, several tests were conducted with all kinds of images. In
order to verify how OCRticle fared against real pictures, instead of just computer screenshots,
we used pictures of newspaper clippings or pages. One of those tests, which was performed
with a Portuguese newspaper from 1928, is described below.

Figure 9 shows the newspaper page in question, which was given to both Tesseract and
OCRticle.

Due to the color of the paper and to the fact that Tesseract’s Portuguese dictionary does
not contain some of the old words used in these articles, the results from just using Tesseract
for OCR are rather poor.

The full output was too large to be included in this paper, but this snippet, which
corresponds to the top left article from Figure 9 shows clearly that plain Tesseract does a
bad job at detecting text from this image:

Instalação da Comissão Administra-
realisada no dia à do corrente.

| Snr. Presidente da C. A. da
“pelo Snr. Governador Ci-
rmos do $ 3.º do art. 2.º
eto de 31 de Dezembro
“nomeado Administrador
ncelho, cargo que actual-
erce e assim nos termos

S. G. Rodrigues dos Santos and J. J. Dias de Almeida 8:9

Figure 6 Article preview screen.

Figure 7 Article preview screen after Sam’s changes.

1 presidiu a esta sessão.

Designou o dia para as ses-
uartas feiras pelas 15

gusto Barreira.

expostos; Dr.

jaldio:
ndes

juzir esta secção.

o — Mesa da Camara:

te Dr. Gonçalo Monteiro
; Vice-presidente Dr.
aquim Machado Guima-

SLATE 2023

8:10 OCRticle - a Structure-Aware OCR Application

Figure 8 File containing Sam’s article.

Secretario Juão Rodrigues.
ice-secretario Guilher-

ibuição de plouros: Presi-
Instrução, Fazenda, Po-
José J.
ado Guimarães — Taipas e
e; João Rodrigues Lourei-
Ss, Aguas e Incendios ;
Ribeiro Guima-
Pevidem; Guilhermino Au-
Barreira — Obras, Viação,
ro, Limpeza e Cemiterio;
os Pereira Mendes — Im-
Feiras, Mercados, e Luz;
o Alves — Vizela.

On the other hand, with OCRticle, text detection improves a fair amount, substantially
in some cases. The last two articles from the original image were detected and processed
by OCRticle as follows (consecutive blank lines have been suppressed in order to preserve
space):

rto, 3

ate da a Cates.

Maior,

tos

tie.

to Meão de 5 comr Dr. o Rigusto

as

gos com mais renc Por is: Comissão a sua ati para con verba n.º AE to ordina sob a ileg
des» put oficial da proximo | na «Desp rubrica «] económic:

Que los e aprovac plementar começo a:

Viagem de estudo

S. G. Rodrigues dos Santos and J. J. Dias de Almeida 8:11

Figure 9 Image of a 1928 Portuguese newspaper used for testing.

Acompanhados de dois Professores, os Snrs. Drs. Vieira Brito e Correia Cardoso, chegaram
ante- -ontem aqui, no comboio das 19,30, 47 alunos do Liceu Central José Falcão, de

Coimbra.

Visitaram o nosso Liceu, Castelo, Sociedade Martins Sarmento e vários Monumentos que
muito apreciaram, lastimando, porem, o estado de ruina em que se encontram os Claustros
da Oliveira.

Os nossos simpaticos hospedes deram hontem um espectaculo em o nosso S. Carlos,

O programa anunciado foi cumprido rigorosamente deixando nos espectadores agradavel
impressão.

Houve alegria e graça, sendo os simpaticos rapazes muito aplaudidos. «Pepita Graiêra», a
mais linda hespanhola que até hoje nos tem visitado, e que mereceu as honras da noite, na
exibição dos seus apreciadissimos bailados, ficou muito penhorada ao ser destinguida com
os camarins do palco, graca que a empresa exploradora do D. Afonso, só costuma conceder
às grandes celebridades, que raro veem a Guimarães.

A formosíssima hespanhola, das

Ultima notícia

As 3 horas

Foi hoje notificado o chefe da Repartição Municipal de Saúde do encerramento do Posto
Médico, cessando as gratificações e salários ao pessoal:

SLATE 2023

8:12 OCRticle - a Structure-Aware OCR Application

On the last article, OCRticle was able to maintain 100% of the original text and structure.
However, the other article has many problems on the first half. This is mostly due to the
fact that this article’s title, on the original image, is below some of the text, which causes
Tesseract to become confused.

Figure 10 shows how the articles were selected in OCRticle. Moreover, the image was
converted to black-and-white and its brightness and contrast were increased using OCRticle’s
sliders, which also improved text detection.

Figure 10 Article selection screen for the 1928 newspaper image.

The issue with the penultimate article can be alleviated by selecting the two columns as
separate articles (i.e., as non-intersecting rectangles) in OCRticle. In Figure 10, since the
two rectangles over the article are intersecting, OCRticle considers them to be part of the
same article. When using two different rectangles, the following output is obtained:

Viagem de estudo

Acompanhados de dois Professores, os Snrs. Drs. Vieira Brito e Correia Cardoso, chegaram
ante- -ontem aqui, no comboio das 19,30, 47 alunos do Liceu Central | José Falcão, de
Coimbra. -

Visitaram o nosso Liceu, Cas- | telo, Sociedade Martins Sarmento e vários Monumentos que
muito apreciaram, lastimando, porem, o estado de ruina em que se encontram os Claustros
da Oliveira.

Os nossos simpaticos hospedes deram hontem um espectaculo em o nosso S. Carlos,

O programa anunciado foi cumprido rigorosamente deixando nos espectadores agradavel
impressão.

Houve alegria e graça, sendo os simpaticos rapazes muito aplaudidos. «Pepita Graiêra», a
mais linda hespanhola que até hoje nos tem visitado, e que mereceu as honras da noite, na
exibição dos seus apreciadissimos bailados, ficou muito penhorada ao ser destinguida com
os camarins do palco, graca que a empresa exploradora do D. Afonso, só costuma conceder
às grandes celebridades, que raro veem a Guimarães.

A formosíssima hespanhola, das

S. G. Rodrigues dos Santos and J. J. Dias de Almeida 8:13

margens do Mondego, imprecionadíssima com tanta gentileza por tão luxuoso aposento, teve
expressões amaveis para o «arquitecto» amador Snr. Luiz do Souto a quem se deve aquela
obra d’arte. E num requinte de galanteria, que muito sensibilisou o Snr. Souto,
ofereceu-lhe, como singela prova de gratidão, uma almotolia de azeite para desinferrujar
a velha e arrelienta engrenagem do pano de boca.

O Snr. Souto ultra sensibilisado, corou... sorriu... e osculou a mão graciosa da
apreciada «tonadillera». —No espectaculo dos estudantes do Liceu de Coimbra presenceamos
um facto que a autoridade tem de reprimir.

Jogou-se ali o carnaval, como é proprio da quadra que atravessamos, mas o que é impróprio,
o que é mesmo imperdoavel, é que as serpentinas se apanhem, em rôlos, do chão e se joguem
para os camarotes ou para os espectadores da plateia.

Em terra alguma que se diga civilizada tal abuso é imediatamente castigado.

Além de ser anti-higienico, denota pelintrice.

Quem não tem dinheiro pastante para se divertir deixa-se estar quêdo, como está a grande
maioria.

Paro o caso chamamos a atencão da Autoridade, e da propria Direcção do Teatro.

Ou não teremos razão?!

While not a perfect solution, it substantially improves text detection. One would just
need to delete the three dashes between both text blocks (they are introduced by OCRticle
to separate distinct articles within the same file) in order to manually merge both articles.

The only remaining issue with OCRticle’s output is the occasional appearance of vertical
bars, colons or hyphens which don’t appear in the original text. This happens because the
paper on the original image has some imperfections, like folds or signs of age, which confuse
Tesseract. While converting the image to black-and-white fixes some of these issues, it’s
impossible to fully remove these imperfections without manually editing the image. Another
method to fix these errors would be to develop an algorithm to detect these “intruders” and
remove them. However, this introduces a new problem, i.e., how do we detect if a vertical bar
or other erroneous text element is supposed to be in the text or not. With OCRticle, since
the main focus was text detection and not necessarily text correction, we followed a more
conservative approach, and decided to let each individual user deal with these imperfections,
instead of trying to automatically fix them. However, a future version of OCRticle could
possess such a feature, even if optional or togglable.

7 Conclusion

This paper showcased OCRticle, a prototype software capable of performing Optical Character
Recognition on articles while maintaining the article’s original structure. OCRticle is able
to successfully receive an image with its articles highlighted and extract them in textual
format. It’s able to automatically detect some types of text blocks, like titles, marking them
as such in the generated Markdown file. The case studies shown in the previous section
demonstrated that, although not perfect, OCRticle is a much more valuable solution than
just using Tesseract when performing OCR on an image with one or more articles, even more
so if one wishes to keep the text’s original structure.

SLATE 2023

8:14 OCRticle - a Structure-Aware OCR Application

7.1 Release
OCRticle is publicly available for download and installation on PyPI, at https://pypi.org/
project/ocrticle/, and on GitHub, at https://github.com/RisingFisan/OCRticle.

On Unix systems, it can be installed by first installing Tesseract and then running pip
install ocrticle. On Windows systems, due to external dependencies, installation using
pip may fail. Therefore, an executable file is available for download on the project’s GitHub
page. Tesseract installation is still required for Windows users.

References
1 What is ocr (optical character recognition)? - aws. URL: https://aws.amazon.com/what-is/

ocr/.
2 Matt Cone. Markdown guide. URL: https://www.markdownguide.org/.
3 Freeocr. URL: http://www.paperfile.net/.
4 Search what you see. URL: https://lens.google/.
5 Trey Harris. Converting a scanned document into a compressed, searchable pdf with redactions,

September 2022. URL: https://medium.com/@treyharris/converting-a-scanned-
document-into-a-compressed-searchable-pdf-with-redactions-63f61c34fe4c.

6 Google answers whether it’s better to ocr text in pdfs or not, August 2022. URL:
https://iloveseo.com/seo/google-answers-whether-its-better-to-ocr-text-in-pdfs-
or-not/.

7 An introduction to markup. URL: https://port.sas.ac.uk/mod/book/view.php?id=568&
chapterid=336.

8 Kivy: Cross-platform python framework for gui apps development. URL: https://kivy.org/.
9 Kaan Kuguoglu. How to use image preprocessing to improve the ac-

curacy of tesseract, July 2021. URL: https://towardsdatascience.com/
getting-started-with-tesseract-part-ii-f7f9a0899b3f.

10 12+ best free ocr software for windows [2022 updated list], September 2022. URL: https:
//www.softwaretestinghelp.com/ocr-software-for-pc/.

11 Ocrspace. URL: https://ocr.space/.
12 Image to text converter using ocr online. URL: https://www.onlineocr.net/.
13 Pytesseract. URL: https://pypi.org/project/pytesseract/.
14 Online ocr - free ocr pdf document scanner & converter. URL: https://www.sodapdf.com/

ocr-pdf/.
15 Tesseract user manual. URL: https://tesseract-ocr.github.io/tessdoc/.
16 Improving the quality of the output - tesseract documentation. URL: https://tesseract-ocr.

github.io/tessdoc/ImproveQuality.html.
17 Tesseract.js: Pure javascript ocr for 100 languages! URL: https://tesseract.projectnaptha.

com/.
18 Languages supported in different versions of tesseract. URL: https://tesseract-ocr.github.

io/tessdoc/Data-Files-in-different-versions.html.
19 TheJoeFin. Thejoefin/text-grab: Use ocr in windows 10 quickly and easily with text grab. with

optional background process and popups. URL: https://github.com/TheJoeFin/Text-Grab.
20 James Vincent. Google lens can now copy and paste handwritten notes to

your computer, May 2020. URL: https://www.theverge.com/2020/5/7/21250556/
google-lens-copy-paste-handwritten-notes-computer-phone-ios-android.

https://pypi.org/project/ocrticle/
https://pypi.org/project/ocrticle/
https://github.com/RisingFisan/OCRticle
https://aws.amazon.com/what-is/ocr/
https://aws.amazon.com/what-is/ocr/
https://www.markdownguide.org/
http://www.paperfile.net/
https://lens.google/
https://medium.com/@treyharris/converting-a-scanned-document-into-a-compressed-searchable-pdf-with-redactions-63f61c34fe4c
https://medium.com/@treyharris/converting-a-scanned-document-into-a-compressed-searchable-pdf-with-redactions-63f61c34fe4c
https://iloveseo.com/seo/google-answers-whether-its-better-to-ocr-text-in-pdfs-or-not/
https://iloveseo.com/seo/google-answers-whether-its-better-to-ocr-text-in-pdfs-or-not/
https://port.sas.ac.uk/mod/book/view.php?id=568&chapterid=336
https://port.sas.ac.uk/mod/book/view.php?id=568&chapterid=336
https://kivy.org/
https://towardsdatascience.com/getting-started-with-tesseract-part-ii-f7f9a0899b3f
https://towardsdatascience.com/getting-started-with-tesseract-part-ii-f7f9a0899b3f
https://www.softwaretestinghelp.com/ocr-software-for-pc/
https://www.softwaretestinghelp.com/ocr-software-for-pc/
https://ocr.space/
https://www.onlineocr.net/
https://pypi.org/project/pytesseract/
https://www.sodapdf.com/ocr-pdf/
https://www.sodapdf.com/ocr-pdf/
https://tesseract-ocr.github.io/tessdoc/
https://tesseract-ocr.github.io/tessdoc/ImproveQuality.html
https://tesseract-ocr.github.io/tessdoc/ImproveQuality.html
https://tesseract.projectnaptha.com/
https://tesseract.projectnaptha.com/
https://tesseract-ocr.github.io/tessdoc/Data-Files-in-different-versions.html
https://tesseract-ocr.github.io/tessdoc/Data-Files-in-different-versions.html
https://github.com/TheJoeFin/Text-Grab
https://www.theverge.com/2020/5/7/21250556/google-lens-copy-paste-handwritten-notes-computer-phone-ios-android
https://www.theverge.com/2020/5/7/21250556/google-lens-copy-paste-handwritten-notes-computer-phone-ios-android

	1 Introduction
	2 State of the Art
	2.1 OCR Tools
	2.2 OCR Engines

	3 Problem Definition
	3.1 Program Specifications
	3.2 System Architecture

	4 Development
	4.1 Classes
	4.2 Graphical User Interface
	4.2.1 Image selection and preprocessing
	4.2.2 Text detection and formatting
	4.2.3 File saving

	5 Usage Example
	6 Case study
	7 Conclusion
	7.1 Release

