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Abstract
A parallel algorithm for enumerating parse trees of a given string according to a fixed context-free
grammar is defined. The algorithm computes the number of parse trees of an input string; more
generally, it applies to computing the weight of a string in a weighted grammar. The algorithm is
first implemented on an arithmetic circuit of depth O((log n)2) with O(n6) elements. Then, it is
improved using fast matrix multiplication to use only O(n5.38) elements, while preserving depth
O((log n)2).
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1 Introduction

The classical cubic-time Cocke–Kasami–Younger parsing algorithm can be adapted to solving
such problems as counting the number of parse trees of an input string, or computing the
probability of an input string in a probabilistic grammar – and, more generally, computing
the weight of a string in a weighted grammar. This is possible, because the algorithm
considers the substrings in a certain predictable order, and investigates each partition of
each substring exactly once, and hence never enumerates the same parse tree twice.

Another classical parsing algorithm discovered by Valiant [9] computes the same values
in the time of matrix multiplication O(nω), where ω < 3. In spite of quite a nontrivial order
of processing the substrings and their partitions, it maintains the same property: every
partition of every substring is considered only once, there is no double counting. Hence,
the algorithm can be applied to computing weights in any ring [2], see Okhotin [6] for an
elementary presentation.

These are the sequential parsing algorithms. Yet another classical parsing method
is a parallel algorithm discovered independently by Brent and Goldschlager [3] and by
Rytter [7]. Their algorithm, if implemented on a parallel architecture with concurrent reads
and exclusive writes, works in time O((log n)2) and uses O(n6) processors. If implemented
on a uniform family of Boolean circuits (the model of parallel computation assumed in this
paper), the algorithm by Brent, Goldschlager and Rytter uses circuits of depth O((log n)2)
with O(n6 log n) elements, that is, NC2-circuits.

What is important to know about the Brent–Goldschlager–Rytter parallel parsing al-
gorithm is that it considers the same trees multiple times, and this happens in different
branches of parallel computation: each tree is obtained in different ways by combining
different subtrees. An example of this is given in Figure 1: here the input string is a1a2a3a4,
and the algorithm obtains its single parse tree in two ways. One way is to produce a subtree
of a1a2 with root A, another tree with root S with a “hole” instead of A and with the
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Figure 1 Multiple partitions of a tree into a “tree with a hole” and a subtree.

leaves a3a4 to the right of the hole, and then to fill this hole with the former subtree, see
Figure 1(left). The other way is similar, using a subtree of a3a4 with root D to fill a hole in
another “tree with a hole”. The algorithm will construct these subtrees in different branches
of parallel computation, each time deducing the existence of a parse tree of a1a2a3a4. If the
algorithm were modified to count the number of trees, then the tree in the figure will be
counted twice, as the algorithm has no means to check whether these trees were the same or
not. Hence, the algorithm can only determine the existence of a tree, but cannot compute
a reliable count of the number of trees, as well as cannot compute the weight of the input
string in most semirings.

In a recent paper by Bakinova et al. [1], a simple variant of the Brent–Goldschlager–Rytter
algorithm for computing the number of trees modulo two was presented: the algorithm uses
a Boolean circuit of the same depth O((log n)2), whereas the number of elements is O(n7).
This algorithm considers each tree only once, and therefore it can be adapted to compute
the precise number of trees, if the Boolean circuit is replaced with an arithmetic circuit. In
the same way, one can compute the weight in any semiring. This raises a natural question:
could the number of elements in (log n)2-depth circuits solving this problem be reduced to
O(n6) or below?

This paper presents a new parallel algorithm for enumerating all parse trees of an input
string, which maintains the same circuit depth O(log2 n), and is more efficient in terms of
the number of elements. First, in Section 3, the problem is solved using a circuit with O(n6)
elements. The algorithm is formulated as computing the number of trees, and then it is
adapted to compute the weight of an input string in any semiring.

Next, in Section 4, this algorithm is improved by using fast matrix multiplication. The
algorithm elaborates the algorithm in Section 3 in the same way as Valiant’s [9] algorithm
elaborates the Cocke–Kasami–Younger algorithm: it computes the same values as the original
algorithm, but rearranges the order of computation so that the arithmetical operations are
combined into matrix multiplications. As compared to Valiant’s [9] algorithm, the proposed
algorithm has to handle trees with holes, which require a more difficult rearrangement of the
computation.

By abuse of notation, let ω ⩾ 2 be a number, such that for every n and for every ring
there is a circuit of depth O(log n) with O(nω) elements computing operations in the ring,
which multiplies any two n × n matrices. Strassen’s algorithm [8] can be implemented
on such a circuit. Also it is known that the Coppersmith–Winograd [4] algorithm can be
implemented on a logarithmic-depth circuit as well – see, e.g., Gazit and Miller [5]. Then
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the new algorithm for enumerating parse trees maintains circuit depth O(log2 n), whereas
the number of elements in it is reduced to O(nω+3), that is, does not exceed O(n5.38). The
algorithm is applicable to computing the weight of a string in any ring.

2 Definitions

▶ Definition 1. A grammar in the Chomsky normal form is a quadruple G = (Σ, N, R, S),
where Σ is a finite alphabet; N is a finite set of nonterminal symbols; R is a finite set of
grammar rules, each of the form A → BC, with A, B, C ∈ N , or A → a, with A ∈ N and
a ∈ Σ; S ∈ N is the initial symbol.

▶ Definition 2. Let G = (Σ, N, R, S) be a grammar in the Chomsky normal form. A parse
tree in G is a tree, in which the root is labelled with S, every internal vertex is labelled with
any nonterminal symbol A ∈ N , and every leaf is labelled with a symbol a ∈ Σ. Every vertex
A ∈ N may either have two sons labelled B and C, for some rule A → BC, or one son
labelled a, if there is a rule A → a. Vertices with two sons have their sons ordered, which
induces an order on the leaves. If w ∈ Σ+ is the string formed by the leaves of a tree, this is
a parse tree of w.

The language defined by the grammar, denoted by L(G) is the set of all strings w ∈ Σ+

that have at least one parse tree.

Under this definition, it is easy to generalize grammars to weighted grammars over a
semiring.

▶ Definition 3. Let G = (Σ, N, R, S) be a grammar in the Chomsky normal form, let S
be a semiring, and let Φ: R → S be a function assigning weights in S to rules. The triple
(G, S, Φ) is called a weighted grammar.

Then, the weight of a parse tree is the product of weights of all rules used in the tree. The
weight of a string w ∈ Σ∗ is the sum of weights of all parse trees of w. The grammar defines
a mapping from Σ∗ to S.

If S is the Boolean semiring and all rules have weight 1, then a weighted grammar
become an ordinary grammar, which defines the language { w | w has weight 1 }; and if S
is a two-element field, the weighted grammar becomes a GF(2)-grammar. If S is the set of
non-negative integers with addition and multiplication, and all rules have weight 1, then the
weighted grammar defines the number of parse trees in G. If S is the set of probabilities in
[0, 1] with addition and multiplication, this is a probabilistic grammar.

This paper uses arithmetic circuits as a model of parallel computation.

▶ Definition 4. An arithmetic circuit over natural numbers N = {0, 1, 2, . . .} is a directed
acyclic graph, in which all nodes with no incoming arcs are called the inputs and are labelled
with distinct input variables, and each of the rest of the nodes, called elements, has two
incoming arcs and is labelled either with addition, or with multiplication. Input variables are
natural numbers, each element computes a function of the input variables. The circuit is said
to compute the function computed in a designated output element.

An arithmetic circuit over integers Z additionally may use the subtraction operation.
Arithmetic circuits over a semiring S and over a ring R generalize these circuits by computing
values in the corresponding algebraic structures.

The depth of a circuit is the length of the longest path.

MFCS 2023
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A parsing algorithm is implemented on a circuit, which is constructed for a fixed grammar
G = (Σ, N, R, S) and a fixed length of input strings n. The circuit has |Σ| · n inputs, each
indicating whether there is a particular symbol in a particular position. The output element
gives the number of parse trees of the given string.

Since a different circuit is needed for each input length, the following standard uniformity
condition is assumed.

▶ Definition 5. A family of arithmetic circuits is uniform, if there exists a deterministic
logarithmic-space Turing machine that, for every input length n given in unary notation,
produces the circuit for input strings of length n.

3 A circuit with O(n6) elements

▶ Theorem 6. For every grammar G = (Σ, N, R, S) in the Chomsky normal form there is a
uniform family of arithmetic circuits, for each length of input strings n ⩾ 1, which computes
the number of parse trees of an input string of length n, has at most |N |2 · |R| · n6 elements
and is of depth at most 21 log2

2 n + 7 log2 n log2 |R|.

Proof. Denote w = a1 . . . an. The circuit consists of the following elements.
An element A(i, j), for all A ∈ N and i, j, with 0 ⩽ i < j ⩽ n, computes the number of
parse trees from A for the string ai+1 . . . aj ; these trees are schematically presented as in
Figure 2(left).
An example of such a tree for A(0, 2) can be seen in Figure 1(left).
An element A

D (i, k, ℓ, j), for all A, D ∈ N and 0 ⩽ i ⩽ k < ℓ ⩽ j ⩽ n, computes the
number of parse trees for the string ai+1 . . . aj from A, with a hole instead of a subtree
ak+1 . . . aℓ from D, depicted as in Figure 2(middle).
Such a “tree with a hole” for S

A (0, 0, 2, 4) can be seen in Figure 1(left).
An element A

D

∣∣
q
(i, k, ℓ, j), for all A, D ∈ N and 0 ⩽ i ⩽ k < ℓ ⩽ j ⩽ n, with (k − i) +

(j − ℓ) > 0 and q ⩾ 0, computes the number of parse trees for the string ai+1 . . . aj from
A, with a hole instead of a subtree ak+1 . . . aℓ from D, such that at the first branching
the subtree with the hole contains at most q leaves, as shown in Figure 2(right).
The tree in the earlier Figure 1(left) is too small to illustrate this, because after the first
branching the subtree with the hole is empty (that is, contains 0 leaves).
Some extra elements are used to compute the values of the named elements listed above:
e.g., each element A(i, j) is computed by a circuit that consists of O(n3) extra elements,
etc.

A

A

D

ii j jk

A

i jk
<q

D

Figure 2 (left) A(i, j); (middle) A
D

(i, k, ℓ, j); (right) A
D

∣∣
q
(i, k, ℓ, j).



M. Mikhelson and A. Okhotin 67:5

C

B

E

A

i
m

j

k > – ( j–i )2
3

– ( j–i )2
3< – ( j–i )2

3<

E

A

i j

k
> – ( j–i )2

3

– ( j–i )2
3< – ( j–i )2
3<

s t

D

Figure 3 (left) Intermediate vertex E in a tree A(i, j); (right) Intermediate vertex E on the path
to the hole in a tree A

D
(i, k, ℓ, j).

Denote the inputs of the circuit by In(a, i), for all a ∈ Σ and 1 ⩽ i ⩽ n, where In(a, i) = 1
if the i-th symbol of an input string is equal to a and In(a, i) = 0 otherwise. Elements
of the circuit corresponding to one-symbol strings are initialized directly from the inputs
as A(i − 1, i) =

∑
A→a∈R In(a, i), for all A ∈ N and 1 ⩽ i ⩽ n. Also, trees with a hole

containing no leaves are defined for every pair of positions: A
D (i, i, j, j) = 1, for A, D ∈ N

and 0 ⩽ i < j ⩽ n.
The desired number of parse trees of w is computed by the element S(0, n).
Consider an arbitrary parse tree τ , corresponding to A(i, j) which has j − i leaves. Denote

by E the deepest vertex having more than 2
3 (j − i) leaves in its subtree. Such a vertex exists,

moreover it is unique. Denote by B and C the children of E. Suppose that the subtree of
B corresponds to leaves ak+1 . . . am, and the subtree of C corresponds to leaves am+1 . . . aℓ,
as illustrated in Figure 3(left). Taking into account that E is the deepest vertex with more
than 2

3 (j − i) leaves, both B and C may only have at most 2
3 (j − i) leaves each, in other

words, ℓ − k > 2
3 (j − i) and max(m − k, ℓ − m) ⩽ 2

3 (j − i).
Hence, the number of parse trees for A(i, j) can be calculated as

A(i, j) =
∑

E→BC∈R
k,ℓ,m:i⩽k<m<ℓ⩽j

ℓ−k> 2
3 (j−i)

max(m−k,ℓ−m)⩽ 2
3 (j−i)

A

E
(i, k, ℓ, j) · B(k, m) · C(m, ℓ)

Every parse tree τ has been taken into account, because there is such a vertex E in every
tree. Furthermore, the vertex E is unique for the given parse tree τ , therefore every τ is
taken into account only once.

The above formula for A(i, j) is implemented on a circuit as follows. For each triple
(k, ℓ, m), one extra element is used to multiply A

E (i, k, ℓ, j) by B(k, m), and another extra
element multiplies the result by C(m, ℓ). It remains to sum up the resulting products: as
there are O(n3) of them, up to O(n3) extra elements are needed, and they are organized into
a tree of logarithmic depth.

MFCS 2023



67:6 Parallel Enumeration of Parse Trees

Similar arguments allow us to deduce a formula for A
D (i, k, ℓ, j) and to implement it

on a circuit. Denote by E the deepest vertex on the path from A to D with more than
2
3 (k − i + j − ℓ) leaves in its subtree, and denote these leaves by as+1 . . . ak and sℓ+1 . . . st,
see Figure 3(right). Then

A

D
(i, k, ℓ, j) =

∑
E∈N

s:i⩽s⩽k
t:ℓ⩽t⩽j

k−s+t−ℓ> 2
3 (k−i+j−ℓ)

A

E
(i, s, t, j) · E

D

∣∣∣
2
3 (k−i+j−ℓ)

(s, k, ℓ, t)

Indeed, the intermediate positions s and t are chosen so that the subtree E has more than
2
3 (k − i + j − ℓ) leaves. On the other hand, the definition of E

D | 2
3 (k−i+j−ℓ) guarantees that

no other vertex on the path from E to D has more than 2
3 (k − i + j − ℓ) leaves. Hence, E is

indeed the deepest vertex on the path from A to D with more than 2
3 (k − i + j − ℓ) leaves.

Since such a vertex is unique for each tree, every parse tree for A
D (i, k, ℓ, j) is counted only

once.
A circuit computing A

D (i, k, ℓ, j) by the above formula uses O(n2) extra elements.
In order to compute E

D

∣∣
q
(s, k, ℓ, t), let us consider the rule used at the root E of a tree

with a hole D. Let E → BC be this rule, and let m be the position in the input such that
leaves up to am belong to subtree B, and leaves beginning with am+1 belong to subtree C.
Then E

D

∣∣
q
(s, k, ℓ, t) can be computed as follows:

E

D

∣∣∣
q
(s, k, ℓ, t) =

∑
E→BC∈R
m:s<m⩽k

k−m+t−ℓ⩽q

B(s, m) · C

D
(m, k, ℓ, t) +

∑
E→BC∈R
m:ℓ⩽m<t

k−s+m−ℓ⩽q

B

D
(s, k, ℓ, m) · C(m, t)

A circuit computing an element E
D

∣∣∣
q
(s, k, ℓ, t) by this formula uses O(n) extra elements.

The entire circuit consists of all the above elements and computes the desired values.

Number of elements in the circuit. There are O(n2) elements A(i, j) and computing each
of them takes O(n3) extra elements. Similarly, each of the O(n4) elements A

D (i, k, ℓ, j) takes
O(n2) extra elements to compute, whereas the computation of each of the O(n5) elements
E
D (s, k, ℓ, t)|q takes O(n) extra elements. This accounts for O(n6) elements in the entire
circuit; the calculation of the dependence on the grammar is omitted due to space constraints.

Depth of the circuit. The elements A(i, j) directly depend on elements, which have at
most 2

3 (j − i) leaves in their subtrees.
For each element A

D (i, k, ℓ, j), let α = k − i + j − ℓ be the number of leaves in its subtree.
Then it directly depends on elements E

D (·, ·, ·, ·) with at most 1
3 α leaves, and elements

E
D

∣∣
q
(·, ·, ·, ·) with at most α leaves, and with q ⩽ 2

3 α. The latter element depends on B(·, ·)
with at most α leaves, and on C

D (·, ·, ·, ·) with at most 2
3 α. Overall, A

D depends on elements
with at most 2

3 α leaves in three steps.
Each element E

D

∣∣
q
(s, k, ℓ, t) depends on elements A

D and B with fewer than α leaves.
Thus, for an element of every type, whether it is A(·, ·), E

D

∣∣
q
(·, ·, ·, ·) or A

D (·, ·, ·, ·), after a
quadruple application of the rules, the number of leaves is reduced at least by a factor of 3

2 .
At each level of these dependencies, a sum of multiple values is computed using a binary

tree of logarithmic depth in the number of arguments, whence overall depth O(log2 n). ◀
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The above circuit actually performs operations in the ring of natural numbers, adding
constant 1 for each parse tree accounted for. This can be generalized to compute the value
of a string in a weighted grammar over every semiring.

▶ Theorem 7. For every weighted grammar G = (Σ, N, R, S) in the Chomsky normal form,
with weights in a semiring S, there is a uniform family of arithmetic circuits computing
elements over S, for each length of input strings n ⩾ 1, which computes the value of an input
string of length n in the semiring, has O(n6) elements and is of depth O(log2 n).

4 A smaller circuit using fast matrix multiplication

In the circuit constructed in Theorem 6, all elements A(·, ·) are computed using Θ(n5)
operations in total, and computation of elements of both types A

D and A
D

∣∣
q

takes Θ(n6)
operations. Hence, in order to reduce the total number of elements in the circuit, computation
of elements A

D and A
D

∣∣
q

should be optimized. It turns out that such an optimization could
be done via fast matrix multiplication.

4.1 Matrix multiplication for A
D

Let us show how fast matrix multiplication can be used to compute the same values A
D (i, k, ℓ, j)

using fewer elements.
In the following, matrices with rows and columns indexed by substrings, that is, pairs of

two positions in the string, will be considered. Denote I = (i, j) and |I| = j − i; similarly, let
K = (k, ℓ), |K| = ℓ − k, S = (s, t), |S| = t − s. For every pair of non-terminal symbols A, D

let us define a matrix of size n(n+1)
2 × n(n+1)

2 , consisting of elements A
D [I][K] = A

D (i, k, ℓ, j)
with i ⩽ k < ℓ ⩽ j and A

D [I][K] = 0 otherwise. Then the formula for computing the value
A
D (i, k, ℓ, j) can be rewritten in the new notation as follows.

A

D
[I][K] =

∑
E∈N

S:K⊂S⊂I
|S|−|K|> 2

3 (|I|−|K|)

A

E
[I][S] · E

D

∣∣∣
2
3 (|I|−|K|)

[S][K]

In this notation, the formula resembles a matrix product, and suggests that some elements of
a matrix A

D [I][K], with rows indexed by I and columns indexed by K, could be computed as a
product of some submatrices of A

E and of E
D | 2

3 (|I|−|K|) (as long as |I| − |K| is fixed). However,
an algorithm cannot compute the product of these matrices in one step, since the elements
corresponding to the longer substrings indirectly depend on the elements corresponding to
the shorter substrings. For this reason, those matrices shall be split into several submatrices,
which shall be multiplied separately at different stages of the computation.

The matrix A
D [I][K] is split into submatrices with fixed |I| and |K|. The submatrix with

|I| = α and |K| = β, is denoted by
{

A
D [I][K]

}
|I|=α,|K|=β

, and is of size (n−α+1)×(n−β+1).
This submatrix is computed as the following sum of matrix products.{A

D
[I][K]

}
|I|=α
|K|=β

=
∑

E∈N
γ: 2

3 α+ 1
3 β<γ<α

{A

E
[I][S]

}
|I|=α
|S|=γ

·
{E

D

∣∣∣
2
3 (α−β)

[S][K]
}

|S|=γ
|K|=β

(the condition 2
3 α + 1

3 β < γ < α is obtained from the inequalities |S| − |K| > 2
3 (|I| − |K|)

and |S| < |I|)

MFCS 2023
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Figure 4 The computation of E
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∣∣
q
(s, k, ℓ, t) in the case of branching to the left.

The submatrices being multiplied include some elements A
E [I][S] with S ⊊ I, and

E
D | 2

3 (α−β)[S][K] with K ⊊ S, which are not in the formula for A
D [I][K]; however, since these

elements are zero by the definition of the matrices, these unintended terms in the sums have
no effect on the result.

Also note that the computation of the element A
D [I][K] with α − β leaves, requires only

the elements A
E [·][·] with at most 1

3 (α − β) leaves, and the elements E
D

∣∣
q
[·][·] with at most

α − β leaves. The overall order of computation will be set accordingly, so that by the time
the product is computed, its arguments will have already been computed.

4.2 Matrix multiplication for elements E
D

∣∣∣
q

Let us now consider the elements E
D

∣∣
q
(s, k, ℓ, t). As it was mentioned above, each of these

elements can be calculated as

E

D

∣∣∣
q
(s, k, ℓ, t) =

∑
E→BC∈R
m:s<m⩽k

k−m+t−ℓ⩽q

B(s, m) · C

D
(m, k, ℓ, t) +

∑
E→BC∈R
m:ℓ⩽m<t

k−s+m−ℓ⩽q

B

D
(s, k, ℓ, m) · C(m, t)

Let us show how fast matrix multiplication can be used in order to compute the first sum.
The second sum is computed similarly.

For each element E
D

∣∣
q
(s, k, ℓ, t), define a value p, which equals p = k + t − ℓ, as it is shown

in Figure 4. The proposed order of computations is designed in a such way that elements
E
D

∣∣
q

with the same p are calculated together.
Let us fix p > 0 and consider computations of E

D

∣∣
q
(s, k, ℓ, t) with t − ℓ + k = p. Denote a

matrix Up,B of size p×p, such that for all s, m = 0, 1, . . . p−1, Up,B [s][m] = B(s, m) if s < m,
and U [s][m] = 0 otherwise. In other words, U is a top-left corner of the matrix B. Also
denote a matrix W p,q,C,D of size p × n2, where the first coordinate is m = 0, 1 . . . p − 1, and
the second is a triple of k, ℓ, t, such that k + t − ℓ = p, and W p,q,C,D[m][k, ℓ, t] = C

D (m, k, ℓ, t)
if m ⩽ k ⩽ ℓ ⩽ t and m ⩾ p − q, and W p,q,C,D[m][k, ℓ, t] = 0 otherwise.

It is claimed that the product of Up,B and W p,q,C,D contains the exact values needed for
the computation of E

D

∣∣
q
.

(Up,B · W p,q,C,D)[s][k, ℓ, t] =
p−1∑
m=0

Up,B [s][m] · W p,q,C,D[m][k, ℓ, t]
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This sum has Up,B[s][m] = 0 for m ⩽ s, and W p,q,C,D[m][k, ℓ, t] = 0 for m ⩾ k and for
m ⩽ p − q. Since p = k + t − ℓ ⩾ k, the upper limit m < p becomes redundant. Therefore,
the range of the sum can be reduced as follows.

(Up,B · W p,q,C,D)[s][k, ℓ, t] =
p−1∑
m=0

Up,B [s][m] · W p,q,C,D[m][k, ℓ, t] =

=
∑

s<m⩽k
p−q⩽m

B(s, m) · C

D
(m, k, ℓ, t)

Hence, in order to compute all elements E
D

∣∣
q
(s, k, ℓ, t) with t − ℓ + k = p, it is needed

to iterate over all pairs of non-terminals B, C, such that E → BC ∈ R, construct the
corresponding matrices Up,B and W p,q,C,D, and sum up their products. However, elements in
each of these matrices indirectly depend on each other, so it is again impossible to build and
multiply these matrices in one step. For this reason, matrices Up,B and W p,q,C,D are never
built wholly, and their products are gradually calculated by multiplying their submatrices of
various size. The higher the value of p, the later the entire product Up,B · W p,q,C,D will be
obtained. Let us also mention that both matrices Up,B and W p,q,C,D, consist of elements B,
C
D and E

D

∣∣
q

or zeros, and so does their product Up,B · W p,q,C,D. Hence, there is no need to
actually store these matrices – it is only a way to represent computations performed over the
named elements.

▶ Remark 8. From the definition of Up,B it follows that an arbitrary element Up,B [s][m] has
m − s leaves in its subtree. In other words, the elements with α leaves in their subtrees lay
on the α-th diagonal, in the numeration where the main diagonal has number 0.

▶ Remark 9. Similarly, every element W p,q,C,D[m][k, ℓ, t] has min(k − m + t − ℓ, q) =
min(p − m, q) leaves in its subtree. In other words, the elements in the α-th row from the
bottom of W p,q,C,D have min(α, q) leaves in their subtrees.

For a fixed value of p, the matrix Up,B is split into disjoint submatrices, which will be
multiplied by the algorithm. These matrices are denoted by L(t, j) and R(t, ℓ, j), where the
number t refers to a large square of size 2t × 2t, in which the corresponding submatrix is
contained. The L-matrices are in the large squares centered at the main diagonal, whereas
the R-matrices are in the large squares to the right of the main diagonal. This decomposition
is illustrated in Figure 5.

It is important to note that even though the matrices Up,B for different p are corners
of the same matrix B, the matrix Up,B is split anew for each p, and there is no relation
between the decompositions for different p.

▶ Definition 10. For all t = 0, . . . log2 p − 1 and j = 1, . . . , 2t − 1, let nj be the maximal
power of two that divides j. Denote by L(t, j) the submatrix of matrix Up,B of size nj × nj

with left bottom corner at (p − 2t − j − 1, p − 2t − j).

L(t, j) = Up,B [p − 2t − j − nj , . . . , p − 2t − j − 1][p − 2t − j, . . . , p − 2t − j + nj − 1]

Each L(t, j) is in the t-th large square, its left corner is next to the main diagonal, and j

is the number of the row within the large square, numbered from the bottom.
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Row(α)
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Figure 5 Partition of Up,B , with p = 32, and the sets Level(α) and Row(α) for α = 14.

▶ Definition 11. For all t = 0, . . . log2 p − 1, ℓ = 0, . . . t − 1 and j = 1, . . . , 2t−ℓ − 1
denote by R(t, ℓ, j) the submatrix of matrix Up,B of size 2ℓ × 2ℓ with left bottom corner in
(p − 2t − 2ℓj − 1, p − 2ℓ+1 + 1).

R(t, ℓ, j) = U [p − 2t − 2ℓ(j + 1), . . . , p − 2t − 2ℓj − 1][p − 2ℓ+1 + 1, . . . , p − 2ℓ]

Here, if j = 1, then all the entries below the main diagonal in matrix R(t, ℓ, j) are set to
zero.

In addition to that, for all t = 0, . . . log2 p − 1 denote by R(t, t, 0) the submatrix of matrix
Up,B of size 2t × 2t with left top corner at (p − 2t+1, p − 2t), where all the entries above the
main diagonal are set to zero. If 0 ⩽ a, b < 2t are the indices of this submatrix, then

R(t, t, 0)[a][b] =
{

U [p − 2t+1 + a][p − 2t + b], a ⩾ b

0, a < b

The lower triangular part of the t-th R-square is R(t, t, 0). An R-square is split into blocks
of columns, with each ℓ-th block from the right of width 2ℓ. Then, a submatrix R(t, ℓ, j) is
the j-th submatrix down in the ℓ-th block of columns. The bottom submatrix in each block
of columns (one with j = 1) is upper triangular. All these details are illustrated in the figure.
Submatrices L(·, ·) and R(·, ·, ·) form a partition of the upper triangle of matrix U , which is
the non-zero part of U .
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For each α = 0, . . . p − 1 denote by Row(α) the set of all submatrices in the partition,
which do intersect with the (p − 1 − α)-th row of Up,B (that is, the (α + 1)-th row from the
bottom). The product of each of these matrices by the corresponding stripe of W p,q,C,D is
required for the computation of (p − 1 − α)-th row of U · W .

▶ Definition 12. Let α = 2t + r with 0 ⩽ r < 2t. Let r be represented as a sequence of
binary digits as r =

∑k
i=1 2ri , where r1 < . . . < rk are the numbers of all positive bits. Then

Row(α) consists of k matrices L(t, ·) and ⌊log2 r⌋ + 2 matrices R(t, ·, ·). To be more precise,

Row(α) =
{

L

(
t,

k∑
i=s

2ri

)∣∣∣∣∣s = 1, . . . , k

}
∪
{

R
(

t, ℓ,
⌊ r

2ℓ

⌋) ∣∣∣ℓ = 0, . . . , ⌊log2 r⌋
}

∪
{

R(t, t, 0)
}

Let us now denote by Level(α) the set of all matrices from Row(α) whose bottom row
intersects with the (p−1−α)-th row of Up,B . All matrices from Level(α) are to be multiplied
by the corresponding stripes of W simulatenously at a certain level of the circuit.

▶ Definition 13. For each α = 1, . . . p − 1, let α = 2t + r with 0 ⩽ r < 2t. If r > 0, then the
set of matrices Level(α) consists of the following matrices.

Level(α) = {L (t, r)} ∪
{

R
(

t, ℓ,
r

2ℓ

) ∣∣ℓ = 0, . . . ⌊log2 r⌋, r
... 2ℓ

}
And if r = 0, then Level(α) contains only the big lower-triangular matrix R.

Level(α) = {R (t, t, 0)}

In Figure 5, the sets Row(α) and Level(α) are illustrated for α = 14.

▶ Lemma 14. Every matrix of the partition lies in exactly one set Level(α).

▶ Lemma 15. Every element of every matrix from Level(α) has at most α leaves.

▶ Lemma 16. Every matrix from Level(α) is multiplied by some elements of W , each having
at most min(α, q) leaves.

▶ Lemma 17. For every α, every matrix from Row(α) lies in set Level(β), for some β ⩽ α.

In other words, in the circuit, every matrix from the partition shall be multiplied by the
corresponding stripe of W before their product would be needed.

4.3 Circuit
The circuit is organized into 6⌈log 3

2
n⌉ levels, each of depth at most log n. At each group of

six levels numbered 6t, 6t + 1, . . . , 6t + 5, all elements with α in the range
( 3

2
)t

⩽ α <
( 3

2
)t+1

are computed. This is done in six stages, according to the following plan.
0. At the level τ = 6t, elements A(·, ·) with α leaves, where

( 3
2
)t

⩽ α <
( 3

2
)t+1 are computed

directly via summation. These elements depend on B, C and A
E with β <

( 3
2
)t leaves –

each of which was computed at a level 6t′ or 6t′ + 3, where t′ < t.
1. At the level τ = 6t + 1 for all such α that

( 3
2
)t

⩽ α <
( 3

2
)t+1 matrices from Levelp,B(α)

are multiplied by the corresponding strips of the matrix W p,q,C,D; this is done separately
for each p. As it was mentioned in Lemma 15, all elements of the matrix Up,B involved
in this computation have at most α <

( 3
2
)t+1 leaves, so these elements were computed

at levels 6t′ with t′ ⩽ t. At the same time, as it follows from Lemma 16, the elements
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of W p,q,C,D involved in the computation have at most min(q, α) <
( 3

2
)t leaves, so these

elements were computed at levels 6t′ + 3 with t′ < t. All in all, the elements computed at
level τ = 6t + 1 depend only on elements from earlier levels.

2. At the level τ = 6t + 2, elements E
D

∣∣
q
(·, ·, ·, ·) with q <

( 3
2
)t and with α leaves, where( 3

2
)t

⩽ α <
( 3

2
)t+1, are computed. For each α, the earlier computed products of matrices

from the set Rowp,B(α) by the corresponding stripes of W p,q,C,D are taken, all their α-th
rows are summed up. Next, a sum of the resulting rows is taken over all rules E → BC.
Since submatrices from Rowp,B(α) form a partition of the non-zero part of α-th row of
matrix Up,B, the sum is exactly the value of E

D

∣∣
q
. As it was proven in Lemma 17, each

matrix from Rowp,B(α) lies in one of the sets Levelp,B(β) with β ⩽ α <
( 3

2
)t+1. Hence,

the elements from level τ = 6t + 2 depend on elements from levels 6t′ + 1, with t′ ⩽ t.
3. At the level τ = 6t + 3, according to the formulas from Section 4.1, elements A

D (·, ·, ·, ·)
with α leaves are computed, where

( 3
2
)t

⩽ α <
( 3

2
)t+1.

To be more precise, for all α in this range and for all ζ = 1 . . . n − α, the following matrix
products are computed simultaneously:{A

D
[I][K]

}
|I|=ζ+α

|K|=ζ

=
∑

E∈N
γ: 2

3 α+ζ<γ<ζ+α

{A

E
[I][S]

}
|I|=ζ+α

|S|=γ

·
{E

D

∣∣∣
2
3 α

[S][K]
}

|S|=γ
|K|=ζ

In the left part of the equation there are exactly the elements A
D with α leaves. They

depend on elements A
E with at most 1

3 α <
( 3

2
)t leaves, which were computed at some

levels 6t′ + 3 with t′ < t. Also there is a dependency on elements E
D

∣∣
q

with fewer than
α <

( 3
2
)t+1 leaves, where q = 2

3 α <
( 3

2
)t. These elements were computed at levels

{6t′ + 2|t′ ⩽ t} ∪ {6t′ + 5|t′ < t}. Overall, the elements from level τ = 6t + 3 depend on
elements from levels 6t′ + 3 and 6t′ + 5 with t′ < t, as well as on elements from levels
6t′ + 2 with t′ ⩽ t.

4. At the level τ = 6t + 4, matrices from the sets Levelp,B(α), with
( 3

2
)t

⩽ α <
( 3

2
)t+1, are

multiplied by the corresponding strips of matrices W p,q,C,D, and for all q ⩾
( 3

2
)t. The

computations are the same as at level 6t + 1, with the only difference that min(q, α) <( 3
2
)t+1. So, the elements from level τ = 6t + 4 depend on elements from levels 6t′ and

6t′ + 3 with t′ ⩽ t.
5. At the level τ = 6t + 5, the elements E

D

∣∣
q

with q ⩾
( 3

2
)t are computed for all α with( 3

2
)t

⩽ α <
( 3

2
)t+1. This is done similarly to the level 6t + 2, with the computations

depending on the elements from levels 6t′ + 4 with t′ ⩽ t.

▶ Theorem 18. For every grammar G = (Σ, N, R, S) in the Chomsky normal form and for
every string length n, there exists an arithmetic circuit of depth O((log n + log |R|) log n) and
with O(|N |2 · |R| · nω+3) elements, which computes the number of parse trees of an input
string of length n. (where ω ⩾ 2 is a number, such that for every n there is a an arithmetic
circuit of depth O(log n) and with O(nω) elements that computes the product of two n × n

integer matrices)

Proof.

Depth. Since the elements at every level τ depend only on elements from earlier levels, there
are no cycles in the circuit, and the depth of the logical dependencies between elements does
not exceed the number of levels, which is 6⌈log 3

2
n⌉. At each level, each element is computed

either as a sum of at most n3|R| values, or as a part of a matrix product involving matrices of
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size at most n × n. Sums are computed in depth O(log n + log |R|) by the standard method.
Matrix products are computed in depth O(log n) using fast matrix multiplication. Hence,
the entire circuit has depth O((log n + log |R|) log n).

Number of elements. Elements B(·, ·) are computed as sums of O(|N | · |R| · n5) elements,
which is less than O(|N |2 · |R| · n3+ω).

The computations of all elements A
D (·, ·, ·, ·) are performed at levels 6t + 3, see stage 3

above. For fixed α and ζ, there are α + ζ − ( 2
3 α + ζ) = 1

3 α different of γ, and for each γ

there are |N |3 matrix multiplications corresponding to different nonterminals A, D and E,
where each matrix is not larger than n × n. Summing up over all α, ζ, A, D and E gives the
following upper bound on the number of operations.

const ·
∑

A,D,E∈N

n−1∑
ζ=1

n−ζ∑
α=1

1
3αnω = const · |N |3 · n(n2 − 1)nω = O(|N |3 · n3+ω)

It remains to prove that all matrix multiplications required to compute E
D

∣∣
q
(·, ·, ·, ·) can

be done using O(|N |2 · |R| · n3+ω) elements.
Let firstly fix the parameters p, q, the rule E → BC and the nonterminal D, and estimate

the number of elements used to compute the product of matrices Up,B · W p,q,C,D for these
p, q,

Denote the width of the matrix W p,q,C,D by M , it is O(n2). Fix t ∈ {0, . . . , log2 p} and
consider the partition of matrices Up,B [p − 2t+1, . . . , p − 2t − 1][p − 2t+1, . . . , p − 2t − 1] (the
large square of size 2t × 2t on the main diagonal in Figure 5) and Up,B [p − 2t+1, . . . , p − 2t −
1][p−2t, . . . , p−1] (the large square of size 2t×2t to the right of the main diagonal in Figure 5).
The first matrix has 2k−j−1 submatrices L(t, ·) of size 2j ×2j , and the second one has 2k−j −1
submatrices R(t, j, ·) of size 2j × 2j . So, among the matrices {L(t, ·)} ∪ { R(t, ·, k) | k > 0 }
there are 2t−j−1 + 2t−j − 1 matrices of size 2j × 2j , and each of them is multiplied by a
strip of size 2t × M of the matrix W p,q,C,D; to be more precise, this product is computed
by splitting the stripe into M

2j square matrices of size 2t × 2t each. Each product of square
matrices of size 2j × 2j is computed using O(2jω) arithmetic operations, and therefore the
total number of operations is bounded by constant times the following expression.

t−1∑
j=0

(2t−j + 2t−j−1 − 1)M

2j
2jω ≤

t−1∑
j=0

3
22t−j M

2j
2jω = 3

2M

t−1∑
j=0

2t−j2jω−j =

= 3
22tM

t−1∑
j=0

2j(ω−2) ≈ const · 2tM · 2t(ω−2) = const · 2t(ω−1)M

In addition to that, there is one more matrix R(t, t, 0) of size 2t × 2t, which is multiplied
by the strip of the matrix W p,q,C,D of size 2t × M , implemented as M

2t multiplications by a
square matrix, which gives O(2tω) · M

2t = O(M2t(ω−1)) additional operations.
All in all, O(M2t(ω−1)) elements are required for a given t. The sum of the number of

elements for t = 0, . . . , log2 p is then bounded by

const ·
log p∑
t=0

M · 2t(ω−1) ≈ const · M · 2(ω−1) log p = const · pω−1M

Hence, for a given p and q all matrices from the partition of Up,B are multiplied using
O(Mpω−1) elements, where M = O(n2). Since p ⩽ n, this value is not more than O(nω+1).
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The last step is to sum the number of elements for all p, q = 1, . . . , n and for all rules E → BC

and nonterminals D, and obtain the desired upper bound O(|N | · |R| · nω+3) on the number
of elements in the circuit. ◀

Like the simple circuit with O(n6) elements, the new circuit can also be adapted to
compute the value of a string in a weighted grammar. Since fast matrix multiplication
requires matrices over a ring, this restriction makes its way into the theorem.

▶ Theorem 19. For every weighted grammar G = (Σ, N, R, S) in the Chomsky normal form,
with weights in a ring R, there is a uniform family of arithmetic circuits computing elements
over R, for each length of input strings n ⩾ 1, which computes the value of an input string of
length n in the ring, has O(|N |2 · |R| ·nω+3) elements and is of depth O((log n+log |R|) log n).
(where ω ⩾ 2 is a number, such that for every n there is a an arithmetic circuit of depth
O(log n) and with O(nω) elements that computes the product of two n × n matrices over R)

5 Future work

The smaller of the two proposed circuits for enumerating parse trees uses O(n3+ω) elements.
On the other hand, in the Boolean case, where only the existence of a parse tree is determined,
it should be sufficient to use only O(n2ω) elements, see Brent and Goldschlager [3, Sect. 6].
Perhaps the enumeration of parse trees might also be done using asymptotically fewer than
nω+3 elements, and this looks like an interesting subject for future research.
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