
A Super-Polynomial Separation Between
Resolution and Cut-Free Sequent Calculus
Theodoros Papamakarios #

Department of Computer Science, University of Chicago, IL, USA

Abstract
We show a quadratic separation between resolution and cut-free sequent calculus width. We use this
gap to get, for the first time, first, a super-polynomial separation between resolution and cut-free
sequent calculus for refuting CNF formulas, and secondly, a quadratic separation between resolution
width and monomial space in polynomial calculus with resolution. Our super-polynomial separation
between resolution and cut-free sequent calculus only applies when clauses are seen as disjunctions
of unbounded arity; our examples have linear size cut-free sequent calculus proofs writing, in a
particular way, their clauses using binary disjunctions. Interestingly, this shows that the complexity
of sequent calculus depends on how disjunctions are represented.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Proof Complexity, Resolution, Cut-free LK

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.74

Related Version Full Version: https://eccc.weizmann.ac.il/report/2021/176/

Acknowledgements We wish to thank Alexander Razborov for numerous suggestions and remarks
that greatly improved the presentation of the paper.

1 Introduction

Whether cut-free sequent calculus can polynomially simulate resolution for refuting CNF
formulas is a question existing since the beginnings of proof complexity. It was first raised
in [13] and iterated e.g. in [25]. Cook and Reckhow [13] show that in the tree-like case,
there are examples where resolution can have exponentially smaller proofs. Arai, Pitassi and
Urquhart [3] point out that the answer may heavily depend on how clauses are represented.
A clause consisting of the literals, say ℓ1, ℓ2, ℓ3, ℓ4, can be seen as either a single disjunction of
arity four, or as a series of applications of binary disjunctions, for example (ℓ1 ∨ ℓ2) ∨ (ℓ3 ∨ ℓ4),
and this can have a profound impact on the complexity of sequent calculus proofs. The result
of Cook and Reckhow above applies in the case where clauses are seen as single disjunctions
of unbounded arity, or the case where the order in which the binary disjunctions are applied
is fixed. If we are free to choose the order, then tree-like cut-free sequent calculus can
quasi-polynomially simulate tree-like resolution, and this is optimal [3]. In the DAG-like case,
and if we are free to choose the order in which binary disjunctions are applied, Reckhow [21]
shows that cut-free sequent calculus can polynomially simulate regular resolution, and Arai [2]
shows that it can polynomially simulate resolution for refuting k-CNF formulas F , where k

grows at most logarithmically as a function of the size of the shortest resolution refutation of
F . However, the general question has remained unresolved.

We define the width of a sequent calculus proof as the maximum number of formulas
occurring in a sequent of the proof. This definition extends in a natural way the concept
of the width of a resolution proof to stronger proof systems. Furthermore, it allows for a
simple, abstract characterization of sequent calculus width generalizing the characterization
of Atserias and Dalmau for resolution width [4]. Using this characterization, we show a
quadratic gap between resolution width and cut-free sequent calculus width. Resolution is a

© Theodoros Papamakarios;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 74; pp. 74:1–74:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:papamakarios@uchicago.edu
https://doi.org/10.4230/LIPIcs.MFCS.2023.74
https://eccc.weizmann.ac.il/report/2021/176/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

74:2 A Super-Polynomial Separation Between Resolution and Cut-Free Sequent Calculus

sequent calculus system that has only atomic cuts, so this says that including atomic cuts in
cut-free sequent calculus can shorten the width of proofs. Utilizing then this gap, we show a
super-polynomial separation between cut-free sequent calculus and resolution size. To put it
in other words, atomic cuts can super-polynomially decrease the size of proofs. This result
applies only when clauses are seen as disjunctions of unbounded arity. There is a way to
write the clauses in our examples using binary disjunctions, so that the resulting formulas
have linear size cut-free sequent calculus refutations. Thus, as it was already known for the
tree-like case, the complexity of sequent calculus proofs can depend on how disjunctions are
represented.

Several notions of width have been used to show space lower bounds in different proof
systems, demonstrating a close relationship between the two measures [5, 14, 4, 11, 12, 10,
9, 17, 20]. We note that our characterization of cut-free sequent calculus width for refuting
CNF formulas coincides with the concept of dynamic satisfiability, introduced by Esteban,
Galesi and Messner [14] as a tool for proving space lower bounds in resolution and k-DNF
resolution. It is easily seen that dynamic satisfiability is a weakened version of resolution
width. How much weaker however is a question that has not been addressed. We show
that it is strictly weaker, the quadratic gap between resolution and cut-free sequent calculus
width being a quadratic gap between the two. Furthermore, our basic construction extends
to stronger versions of dynamic satisfiability used to prove monomial space lower bounds in
algebraic proof systems [11, 12], allowing us to make progress towards separating resolution
width from monomial space.

To put things into perspective, Atserias and Dalmau [4] show that for a k-CNF formula
F , W (F ⊢ ⊥), the minimum width, and CSpace(F ⊢ ⊥), the minimum clause space needed
to refute F in resolution satisfy

W (F ⊢ ⊥) ≤ CSpace(F ⊢ ⊥) + k, (1.1)

and Galesi, Kołodziejczyk and Thapen [17] show a similar relation between resolution width
and the minimum monomial space needed to refute F in polynomial calculus with resolution:

W (F ⊢ ⊥) ≤ O
(

(MSpace(F ⊢ ⊥))2
)

+ k. (1.2)

Ben-Sasson and Nordström [6, 7] give for every n, a formula F of size n such that W (F ⊢
⊥) = O(1) and CSpace(F ⊢ ⊥) = Ω(n/ log n), rendering a relation between resolution
width and clause space in the opposite direction impossible. Whether clause space can
be meaningfully bounded in terms of monomial space is unknown, but the two measures
are related in a more indirect way: they coincide up to polynomial and log n factors once
regularized, meaning that a super-polynomial separation of them would imply a strong
trade-off between monomial space and size [20]. Despite however this close relationship, no
separation between width and monomial space is currently known – the techniques of [6, 7]
in particular fail to generalize to the case of monomial space. Our result shows a quadratic
separation between the two.

2 Sequent calculus

The sequent calculus was introduced by Gentzen to formulate and prove his famous cut-
elimination theorem. Many authors describe it as the most elegant proof system, and indeed,
it illustrates the symmetries of logic at the level of syntax, like no other system.

T. Papamakarios 74:3

Sequent calculus’s version for classical logic is often denoted by LK. We shall use LK to
denote its propositional part. LK operates with sequents. A sequent is a tuple of the form
(Γ, ∆), where Γ and ∆ are finite sets of formulas. Traditionally, a sequent (Γ, ∆) is written
as Γ → ∆. This is to remind us its semantic interpretation: Γ → ∆ is to be read as “if all
formulas in Γ are true, then at least one formula in ∆ is true”.

Let us present the rules of the system. In what follows, A, B represent arbitrary formulas,
and Γ, ∆, Γ′, ∆′ represent finite sets of formulas. Sets are written in a quite plain manner:
We write Γ, A instead of Γ ∪ {A}, A instead of {A}, A, B instead of {A, B} and so on. The
axioms of LK are all sequents of the form A → A. Of the inference rules, first we have a rule,
which allows us to add formulas to the left or right part of a sequent. This rule is called the
thinning or weakening rule and has the form

Γ → ∆
Γ′ → ∆′ ,

i.e., from Γ → ∆ derive Γ′ → ∆′, where Γ ⊆ Γ′ and ∆ ⊆ ∆′. Next, we have rules for each
connective. These come in pairs; a connective is treated differently according to which side
of its sequent it appears. The rules for the connectives ∧, ∨ and ¬ are shown in Table 1.

Table 1 The analytic LK rules.

¬L :
Γ, ¬A → ∆, A

Γ, ¬A → ∆
¬R :

Γ, A → ∆, ¬A

Γ → ∆, ¬A

∧L1 :
Γ, A ∧ B, A → ∆

Γ, A ∧ B → ∆

∧L2 :
Γ, A ∧ B, B → ∆

Γ, A ∧ B → ∆

∧R :
Γ → ∆, A ∧ B, A Γ → ∆, A ∧ B, B

Γ → ∆, A ∧ B

∨R1 :
Γ → ∆, A ∨ B, A

Γ → ∆, A ∨ B

∨R2 :
Γ → ∆, A ∨ B, B

Γ → ∆, A ∨ B

∨L :
Γ, A ∨ B, A → ∆ Γ, A ∨ B, B → ∆

Γ, A ∨ B → ∆

These rules are called analytic, and they already form a complete proof system for proving
tautologies; we shall call this system cut-free LK or LK−. Finally, there is the cut rule:

Γ, A → ∆ Γ → ∆, A

Γ → ∆
. (2.1)

So, already having a proof of, say → B, we may use it to prove → A: → A can be derived
from B → A and → B via the cut rule, and now to prove → A, we need to prove the weaker
formula B → A. B can be anything. It doesn’t need to have any intuitive relation to A, but
even as such, it might be the case that a proof of B → A is much shorter than a proof of
→ A. Gentzen’s cut elimination theorem says that there is always an effective procedure of
eliminating all applications of the cut rule from a proof, making it purely analytic. We refer
to the formula A in applications of rule (2.1) as the formula being cut, or as the cut formula.

An LK proof of a sequent σ is a derivation of σ starting with the axioms and applying
the rules of LK. We imagine starting with the axioms at the bottom, and going to the top by
applying the LK rules. More formally, an LK proof of σ is a sequence consisting of sequents

MFCS 2023

74:4 A Super-Polynomial Separation Between Resolution and Cut-Free Sequent Calculus

that ends with σ, in which every sequent is either an axiom, or results from previous sequents
by one of the LK rules. An LK− proof is an LK proof that never uses the cut rule. We may
view proofs as DAGs, by drawing edges from premises to conclusions in applications of the
inference rules. If the DAG corresponding to a proof is a tree, we shall refer to the proof as
being tree-like.

3 Sequent calculus as a satisfiability algorithm

It will be particularly convenient to consider the following view of LK. Following Smullyan [23],
let us write a sequent A1, . . . , Ak → B1, . . . , Bℓ as T A1, . . . , T Ak, F B1, . . . , F Bℓ. That is, we
annotate the formulas appearing on the left side of a sequent by T , the formulas appearining
on its right side by F , and conjoin the two sides to form a single set. T and F stand for true
and false respectively – T A should be thought of as asserting that A is true and F A as
asserting that A is false.

Annotated formulas that are not annotated variables are naturally divided into two
groups: those of a conjunctive and those of a disjunctive type. Formulas of the form T A ∧ B,
F A∨B, T ¬A or F ¬A belong to the former group, and those of the form T A∨B or F A∧B

to the latter. We use the letter “α” to stand for an arbitrary annotated formula of conjunctive
type, and the letter “β” to stand for an arbitrary annotated formula of disjunctive type. We
define the components αi of a formula α and the components βi of a formula β as shown in
Table 2.

Table 2 Smullyan’s notation.

α α1 α2 β β1 β2

T A ∧ B T A T B F A ∧ B F A F B

F A ∨ B F A F B T A ∨ B T A T B

T ¬A F A

F ¬A T A

These provisions allow on the one hand for an extremely concise description of the rules
of Table 1; they can be written as:

S, α, α1

S, α
,

S, α, α2

S, α
,

S, β, β1 S, β, β2

S, β
.

More importantly, they reveal an algorithmic interpretation of LK. An LK proof, seen
from the top to the bottom, i.e. from the sequent σ := A1, . . . , Ak → B1, . . . , Bℓ it is
proving to the axioms, describes the execution of an algorithm that tries to find a truth
assignment (or more generally a model) that falsifies σ. The algorithm begins with σ written
as T A1, . . . , T Ak, F B1, . . . , F Bℓ, asserting that there is an assignment that makes all Ai

true and all Bi false, or equivalently, an assignment that falsifies σ. Then it keeps expanding
this set, by applying the LK rules in reverse, that is from the conclusion to the premises.
This expansion takes the form of a tree (or a DAG if we identify nodes labelled by the same
set). At any point, we may choose a leaf labelled by S, α and add to it a single child labelled
by S, α, αi, as any assignment satisfying α must also satisfy every αi. Or we may choose a
leaf labelled by S, β and add to it two children, one labelled by S, β, β1 and the other by
S, β, β2, as any assignment satisfying β must either satisfy β1 or β2. The thinning rule allows
the algorithm to forget information: We may add to a leaf labelled by S, a child labelled by
a subset of S. Finally, the cut rule allows us to add to a leaf labelled by S, two children,

T. Papamakarios 74:5

one labelled by S, T A and the other by S, F A for any formula A, as every assignment must
satisfy either A or ¬A. This may greatly facilitate the search procedure. If at any point a set
of the form T A, F A is reached, then the search process may terminate at that particular
branch, as no assignment can set A to both true and false. Notice that the contradiction
T A, F A corresponds to the axiom A → A. A tree (or DAG) constructed this way, every
branch of which ends with a leaf labelled by a set of the form T A, F A, is an LK proof of σ.

A depth-first implementation of the algorithm described above is shown as Algorithm 1
below. Algorithm 1 is called on a sequent represented as a set of annotated formulas. It

Algorithm 1 The LK algorithm.

procedure LK(S)
if S contains both T A and F A for some formula A then

return false
if for every α ∈ S, all αi ∈ S and for every β ∈ S, there is a βi ∈ S then

return true
go to either 1, 2 or 3
1. select an S′ ⊆ S and return LK(S′)
2. select an arbitrary formula A and return LK(S, T A) or LK(S, F A)
3. select an A ∈ S

if A = α then
select a component αi and return LK(S, αi)

if A = β then
return LK(S, β1) or LK(S, βk)

chooses at each recursive call non-deterministically what rule to apply and which formula to
apply it to. If false is returned then there is an LK proof of our initial sequent; if no such
proof exists, then there is an assignment that falsifies our initial sequent and Algorithm 1
is able to find it, returning true. As presented, line 1, corresponding to the thinning rule,
is redundant. However, incorporating memoization, that is the ability to stop the search
when a set S has already been encountered in a previous recursive call that has returned,
effectively identifying nodes labelled by the same set, this line makes it possible to greatly
prune the search for a falsifying assignment. In terms of proofs, DAG-like proofs may be
shorter than tree-like proofs. The key point in analyzing the correctness of Algorithm 1 (or
equivalently the completeness of LK), is that when at the base case true is returned, we can
create an assignment consistent with S by setting for each formula A, A to true if T A ∈ S,
and false otherwise.

4 The width of sequent calculus proofs

We define the width of a sequent as the number of formulas it contains, and the width of a
sequent calculus proof as the maximum of the widths of the sequents it contains. It is not
hard to see that for any provable sequent S0, there is an LK proof of S0 of width a constant
plus the width of S0. The concept of the minimum width needed to prove a sequent becomes
non-trivial only if we restrict the class of cut formulas we are allowed to use. We shall be
mainly interested in the minimum width over all LK− proofs of S0, which we denote by
WLK−(⊢ S0).

We are going to give a characterization of WLK−(⊢ S0) in terms of the definition below. In
what follows, sequents are viewed as in the above section, viz. as sets of annotated formulas.

MFCS 2023

74:6 A Super-Polynomial Separation Between Resolution and Cut-Free Sequent Calculus

▶ Definition 4.1. Following the terminology of [23], let us call a sequent S0 analytically
k-consistent if there is a set of sequents S containing S0 and such that for each S ∈ S:
1. for any formula A, S does not contain both T A and F A;
2. S′ ⊆ S =⇒ S′ ∈ S;
3. |S| < k & α ∈ S =⇒ S, αi ∈ S for every component αi of α;
4. |S| < k & β ∈ S =⇒ S, βi ∈ S for some component βi of β.
If the following condition is also satisfied, then we call S0 synthetically k-consistent with
respect to the set C:
5. |S| < k =⇒ S, T A ∈ S or S, F A ∈ S for any formula A ∈ C.

It is often helpful to see definitions such as the above, as describing a strategy for the
adversary, in a game between a prover and an adversary played on a formula/sequent/set of
formulas. In this case, the game is as follows: The configurations of the game are sequents.
The initial configuration is S0. In every round, the prover either deletes some formulas in the
current sequent S, or selects an α-formula in S and adds a component of it to S, or selects
a β formula, in which case the adversary adds a component of it to S. Allowing condition
5, the prover may choose an arbitrary formula A ∈ C and the adversary must respond by
adding either T A or F A to S. The game ends with prover winning once S contains T A

and F A for some formula A. The prover can always win provided that S0 is provable. The
question is: given a bound k, can she win always maintaining that the width of S is at most
k? Definition 4.1 describes a strategy for the adversary, permitting the prover from winning
when she maintains that bound.

▶ Theorem 4.1. Suppose that |S0| ≤ k. Then S0 is analytically k-consistent if and only if
WLK−(⊢ S0) > k. It is synthetically k-consistent with respect to C if and only if every LK
proof of S0 in which every cut formula belongs to C has width more than k.

Proof. Let us only show the former sentence. Suppose first that S0 is analytically k-consistent,
and let S be the set of sequents witnessing this. We will show that in every tree-like LK−

derivation (not necessarily beginning with axioms) τ of S0, of width at most k, there is an
initial sequent (i.e. one appearing as a leaf) in S. From the first condition of Definition 4.1
that sequent is not an axiom, thus τ is not a proof. It is enough to show this for tree-like
derivations, since a DAG-like derivation can be transformed into a tree-like one without
increasing the width.
Base case. If τ contains just S0, then we are done since S0 ∈ S.
Inductive step. Take some initial sequents S1, . . . , Sr from which a sequent S is derived

via an inference rule ρ, and remove them to get the derivation τ ′. From the induction
hypothesis, there is an initial sequent in τ ′ that belongs to S. If that sequent is not
S, then it also appears in τ and we are done. Otherwise, we have the following cases
according to what rule ρ is:
Case 1. If it is the weakening rule, and thus r = 1 and S1 ⊆ S, then from the second

condition of Definition 4.1, S1 ∈ S.
Case 2. If ρ is the α-rule, and thus r = 1, α ∈ S and S1 = S, αi for some αi, then since

τ has width at most k, |S| < k, and hence from the third condition of Definition 4.1,
S1 ∈ S.

Case 3. If ρ is the β-rule, and thus β ∈ S and each Si is of the form S, βi, then again
|S| < k, and from the fourth condition of Definition 4.1, some Si belongs to S.

Now suppose that WLK−(⊢ S0) > k. Set

S := {S | |S| ≤ k & WLK−(⊢ S) > k}.

T. Papamakarios 74:7

Clearly S0 ∈ S. We will show that S satisfies the conditions 1–4 of Definition 4.1. For each
S ∈ S, first S cannot contain T A and F A for some A. This is so, because such a sequent is
a weakening of an axiom, and having size at most k, it has a proof of width at most k. For
the closure under subsets, if S′ ⊆ S, then WLK−(⊢ S′) > k, for otherwise WLK−(⊢ S) ≤ k

since S follows from S′ via the weakening rule. For the α condition, if α ∈ S and |S| < k,
then for each αi it must be that S, αi ∈ S, for otherwise WLK−(⊢ S) ≤ k since S follows
from S, αi via the α-rule. Finally, if β ∈ S and |S| < k, then there must be a βi such that
S, βi ∈ S, otherwise WLK−(⊢ S) ≤ k, since S follows from all S, βi via the β-rule. ◀

5 LK− for refuting CNF formulas and resolution

A literal is a propositional variable x, or the negation of propositional variable ¬x. We let
x

def= ¬x and ¬x
def= x. A clause is a disjunction (possibly empty) of literals, and a CNF

formula is a conjunction of clauses. The ordering of literals in a clause does not matter, so
that the clause x ∨ y is considered to be the same as y ∨ x. The width, W (F), of a CNF
formula F is the number of literals in the largest clause of F . A CNF formula of width at
most k is called a k-CNF formula.

Refuting a CNF formula F = C1 ∧ · · · ∧ Cm means proving that the clauses Ci cannot
be simultanesouly satisfied, that is, it means proving C1, . . . , Cm →. LK− for proving such
sequents has the following form. Of the rules in Table 1, the only one that is relevant is ∨L,
which now, seeing clauses as disjunctions of unbounded arity, has as many premises as the
number of literals in the clause it is deriving. Moreover, there is no reason to always carry
the clauses Ci in sequents. We may as well delete them from every sequent, but keep in our
mind that they are implicitly there. What remains are sequents of the form ℓ1, . . . , ℓr →,
where the ℓi’s are literals, and such sequents are nothing other than clauses. To be explicit,
the axioms of the resulting system are clauses of the form x ∨ ¬x, and the inference rules are
the weakening rule, from C infer C ∨ D, and

C ∨ ℓ1 · · · C ∨ ℓr

C
, (5.1)

where C and D are clauses and ℓ1 ∨· · ·∨ ℓr is a clause of the formula we are refuting. A proof
of C1, . . . , Cm →, in other words a refutation of F = C1 ∧ · · · ∧ Cm, in LK−, is a derivation
of the empty clause using the above rules. The size of such a derivation is the number of
clauses it contains, and its width is the size of the largest clause occurring in it. We shall
denote by SLK−(F ⊢ ⊥) and WLK−(F ⊢ ⊥) and the minimum size and the minimum width
respectively over all LK− refutations of F .

Resolution is the system we get by adding to the above system the cut rule (2.1), where
the cut formula A is restricted to be a propositional variable:

C ∨ x C ∨ ¬x

C
. (5.2)

We may make a proof in this system “cut-only”, by pushing all applications of the rule (5.1)
at the bottom levels. Namely, we can simulate rule (5.1) by (5.2) as follows: Start with
ℓ1 ∨ · · · ∨ ℓr, derive from it and C ∨ ℓ1, C ∨ ℓ2 ∨ · · · ∨ ℓr, then derive from C ∨ ℓ2 ∨ · · · ∨ ℓr

and C ∨ ℓ2, C ∨ ℓ3 ∨ · · · ∨ ℓr, and so on, until C is derived. Now the leaves containing clauses
of F and these can be derived from axioms by (5.1). Deleting all axioms, and incorporating
the weakening rule into (5.2), writing it as

MFCS 2023

74:8 A Super-Polynomial Separation Between Resolution and Cut-Free Sequent Calculus

C ∨ x D ∨ ¬x

C ∨ D
, (5.3)

we get the usual presentation of resolution, where, instead of deriving F →, the empty clause
is derived taking the clauses of F as axioms: A resolution refutation of a CNF formula F is
a derivation of the empty clause from the clauses of F , using only the rule (5.3). We shall
denote by WR(F ⊢ ⊥) and SR(F ⊢ ⊥) the minimum width and minimum size respectively,
over all resolution refutations of F , and by STR(F ⊢ ⊥) the minimum size, over all tree-like
resolution refutations of F .

6 Dynamic satisfiability

Adapting Definition 4.1 for resolution we get the characterization of [4] for resolution width.
Adapting it for LK− restricted to refuting CNF formulas, we get the definition of dynamic
satisfiability from [14]. Namely, let us call sets of literals that do not contain contradictory
literals partial assignments. We think of the assignment, say {x, ¬y, z}, as making x true, y

false and z true. A partial assignment satisfies a clause C, if it contains a literal of C. It
falsifies C if it contains ℓ for every ℓ in C. We get:

▶ Definition 6.1 [14]. Let F be a CNF formula, and let k be a natural number. F is said
to be k-dynamically satisfiable is there is a non-empty set A of partial assignments to its
variables such that for every assignment α ∈ A,
1. if α′ ⊆ α then α′ ∈ A;
2. if |α| < k and C is a clause of F , then there is an α′ ⊇ α in A that satisfies C.

Theorem 4.1 in particular, becomes:

▶ Theorem 6.1. A CNF F is k-dynamically satisfiable if and only if WLK−(F ⊢ ⊥) > k.

In the game corresponding to Definition 6.1, prover chooses in each round a clause of F ,
and the adversary responds by choosing a literal in that clause, which adds to the current
assignment. Again, the closure under subsets condition corresponds to the ability of the
prover to delete at any round literals from the current assignment. The prover wins once the
current assignment falsifies a clause of F .

We get a characterization of resolution width by having the prover selecting variables
instead of clauses, and the adversary responding by giving values to them. More specifically,
in every round the prover selects a variable x of F . Then the adversary selects either x or
¬x, and the prover updates the current assignment α by deleting (if she wants) literals and
adding the choice of the adversary. Again the prover wins once α falsifies a clause of F . She
can win always maintaining |α| < k if and only if WR(F ⊢ ⊥) ≤ k [4].

Notice that, if W (F) is small, the prover in the second game is more powerful. Namely,
we have WR(F ⊢ ⊥) ≤ WLK−(F ⊢ ⊥) + W (F) − 1. We already saw this when we explained
how the resolution rule can simulate (5.1). In terms of games, the argument goes as follows:
When the prover in the first game selects a clause C, the prover in the second game can
start selecting, one by one the variables of C. If the game does not end, then the current
assignment satisfies C, and then the prover can delete literals to match the assignments in
the two games.

Definition 6.1 was introduced in [14] as a tool for proving space lower bounds in resolution
and k-DNF resolution. The following definition is from [15, 1]. A memory configuration in
resolution, is a set of clauses. A resolution refutation of a CNF formula F , in configurational

T. Papamakarios 74:9

form, is a sequence M1, . . . , Mt of configurations where M1 is empty, Mt contains the
empty clause and for i > 1, Mi is obtained from Mi−1 by one of the following rules:
Axiom download: Mi = Mi−1 ∪ {C}, where C is a clause of F .
Inference: Mi = Mi−1 ∪ {C}, where C is derived from clauses in Mi−1 by the resolution

rule.
Erasure: Mi ⊆ Mi−1.
The clause space of such a refutation is max1≤i≤t |Mi|. The clause space of a CNF formula
F , denoted by CSpace(F ⊢ ⊥), is the minimum clause space, over all refutations, in
configurational form, of F .

▶ Theorem 6.2 [14]. If F is k-dynamically satisfiable, then CSpace(F ⊢ ⊥) ≥ k.

We thus have

WR(F ⊢ ⊥) − W (F) + 1 ≤ WLK−(F ⊢ ⊥) ≤ CSpace(F ⊢ ⊥). (6.1)

It is shown in [6] that there are 6-CNF formulas F of size O(n) such that WR(F ⊢ ⊥) = O(1)
and CSpace(F ⊢ ⊥) = Ω(n/ log n). It is easy to show that WLK−(F ⊢ ⊥) = O(1), thus these
formulas in fact provide a gap between WLK−(F ⊢ ⊥) and CSpace(F ⊢ ⊥). The question of
whether there is a gap between WR(F ⊢ ⊥) and WLK−(F ⊢ ⊥) has not been addressed, and
it is what we will deal with next.

7 A quadratic gap between LK− and resolution width

Let F =
∧s

i=1 Ci and G =
∧t

i=1 Di be unsatisfiable CNF formulas. We define

F × G
def=

s∧
i=1

t∧
j=1

(Ci ∨ Dj).

F × G is the CNF expansion of the formula F ∨ G, which is also unsatisfiable.
Remarkably, LK− width and resolution width exhibit a different behavior with respect

to this construction. This disparity ultimately relies on the fact that the cut rule gives us
the ability to combine given proofs into a more complicated proof.

On one hand, we have:

▶ Lemma 7.1. If F and G are over disjoint sets of variables, then

WLK−(F × G ⊢ ⊥) ≥ WLK−(F ⊢ ⊥) + WLK−(G ⊢ ⊥) − 1.

Proof. Suppose that F is k-dynamically satisfiable, G is ℓ-dynamically satisfiable, and let A
and B respectively be sets witnessing this. We need to show that F ×G is (k +ℓ)-dynamically
satisfiable, that is we need to find a set satisfying the conditions of Definition 6.1 for the
parameter k + ℓ. We claim that

C := {α ∪ β | α ∈ A & β ∈ B}

is such a set. Closure under subsets immediately follows from the fact that A and B are
closed under subsets. For the second condition, suppose that γ ∈ C, |γ| < k + ℓ, and let
Ci ∨ Dj be a clause of F × G, where Ci is a clause of F and Dj is a clause of G. Since γ ∈ C,
there is an α ∈ A and a β ∈ B such that γ = α ∪ β. Moreover, since |γ| < k and F and
G do not share variables, either |α| < k or |β| < ℓ. In the first case there is an α′ ⊇ α in
A satisfying Ci, and thus α′ ∪ β is an assignment in C satisfying Ci ∨ Dj . In the second
case there is a β′ ⊇ β in B satisfying Dj , and thus α ∪ β′ is an assignment in C satisfying
Ci ∨ Dj . ◀

MFCS 2023

74:10 A Super-Polynomial Separation Between Resolution and Cut-Free Sequent Calculus

For resolution on the other hand, we have:

▶ Lemma 7.2. WR(F × G ⊢ ⊥) ≤ max{WR(F ⊢ ⊥) + W (G), WR(G ⊢ ⊥)}.

Proof. Let π and ρ be resolution refutations of F and G respectively, both of minimum
width. Replacing every clause C in π with C ∨ Di we get a resolution proof πi of Di from
F × G. πi has width at most WR(F ⊢ ⊥) + W (F). Replacing then every clause Di in ρ with
πi we get a resolution refutation of F × G with the stated width. ◀

Choosing an appropriate seed and iterating, we get our result.

▶ Theorem 7.1. There are CNF formulas G with n2 variables, size O(n)n, and such that
WR(G ⊢ ⊥) = O(n) and WLK−(G ⊢ ⊥) = Ω(n2).

Proof. Let F be a CNF formula with n variables, width O(1), size Θ(n), and such that
WR(F ⊢ ⊥) = Θ(n). Such formulas exist from e.g. [8]. Consider the formula F n :=
F1 × · · · × Fn, where the Fi’s are copies of F over mutually disjoint sets of variables. From
Lemma 7.2, WR(F n ⊢ ⊥) = O(n). On the other hand WLK−(F ⊢ ⊥) = Ω(n) from (6.1), and
hence from Lemma 7.1, WLK−(F n ⊢ ⊥) = Ω(n2). ◀

8 Separating resolution width from monomial space

Monomial space is a generalized version of clause space. While configurations in the case of
clause space are sets of clauses, for monomial space, arbitrary linear combinations, over a field
F, of clauses are allowed as the contents of a configuration, where such a linear combination
P is interpreted as the asserting that P = 0. As a matter of fact, all known lower bounds
for monomial space even hold in the case where arbitrary Boolean functions of clauses are
allowed. The term monomial space comes from the fact that this concept captures space in
proof systems employing algebraic reasoning.

Namely, seeing clauses as monomials – a clause ℓ1 ∨ · · · ∨ ℓr is seen as the monomial
ℓ1 . . . ℓr – the question of whether a set of clauses over the variables x1, . . . , xn is unsatisfiable,
becomes the question of whether the polynomial 1 belongs to the ideal generated by those
clauses and the clauses x2

i − xi and xi + xi − 1 in F[x1, . . . , xn, x1, . . . , xn]. A systematic
way of generating this ideal, in a space oriented model, is the following [1]. Configurations
are sets of polynomials over F[x1, . . . , xn, x1, . . . , xn]. A refutation of a CNF formula F , in
configurational form, is a sequence M1, . . . , Mt of configurations where M1 is empty, Mt

contains the empty clause and for i > 1, Mi is obtained from Mi−1 by one of the following
rules:
Axiom download: Mi = Mi−1 ∪ {C}, where C is either a clause of F , x2

i − x, or xi + xi − 1.
Inference: Mi = Mi−1 ∪ {P}, where P is either a linear combination of polynomials in

Mi−1 or a literal multiplied by some polynomial in Mi−1.
Erasure: Mi ⊆ Mi−1.
The monomial space of such a refutation is the maximum number of distinct monomials
occurring in a configuration. The monomial space, MSpace(F ⊢ ⊥), of F , is the mimimum
monomial space over all refutations of F .

The gap shown in the previous section can be extended to stronger versions of dynamic
satisfiability that have been used to show monomial space lower bounds, thus showing a
gap between resolution width and monomial space. The configurations in those are not
assignments as in Definition 6.1, but sets of assignments. They will not be arbitrary sets
however; they will have a certain structure. Namely, we call a set H of assignments admissible,
if it is of the form

T. Papamakarios 74:11

H = H1 × · · · × Hr
def= {α1 ∪ · · · ∪ αr | αi ∈ Hi},

where each Hi is a non-empty set of non-empty assignments, for any two assignments αi ∈ Hi

and αj ∈ Hj for i ̸= j, the domains of αi and αj do not intersect, and moreover, if an
assignment α ∈ Hi gives the value ϵ to a variable x, then there is also an assignment α′ ∈ Hi

giving to x the value 1 − ϵ. The Hi’s are called the factors of H; we write ∥H∥ for their
number. We write H ′ ⊑ H if every factor of H ′ is a factor of H.

▶ Definition 8.1 [11, 12]. Let F be a CNF formula and let k be a natural number. We say
that F is k-extendible if there is a non-empty set of admissible configurations H such that
for each H ∈ H,
1. if H ′ ⊑ H, then H ′ ∈ H;
2. if ∥H∥ < k and C is a clause of F , then there is an H ′ ⊒ H in H, such that every α ∈ H ′

satisfies C.

▶ Theorem 8.1 [11, 12]. If F is k-extendible, then MSpace(F ⊢ ⊥) ≥ ⌊k/4⌋.

Lemma 7.1 with the same proof applies here as well.

▶ Lemma 8.1. Let F and G be CNF formulas over disjoint sets of variables. If F is
k-extendible and G is ℓ-extendible, then F × G is (k + ℓ)-extendible.

Proof. Let H and I be sets of admissible configurations witnessing the k and ℓ-extendibility
of F and G. Since F and G are over disjoint sets of variables, we may assume that the
domains for any of two assignments in H and I do not intersect. Set

J := {H × I | H ∈ H & I ∈ I}.

Clearly, J is a set of admissible configurations. We claim that it satisfies the conditions of
Definition 8.1 for the parameter k + ℓ. Closure under ⊑ immediately follows from the fact
that H and I are closed under ⊑. For the second condition, suppose that J = H × I ∈ J ,
∥J∥ < k +ℓ, and let Ci ∨Dj be a clause of F ×G, where Ci is a clause of F and Dj is a clause
of G. Since ∥J∥ < k + ℓ, either ∥H∥ < k or ∥I∥ < ℓ. In the first case, there is an H ′ ⊒ H in
H such that all assignments in H ′ satisfy Ci. Then H ′ × I is an admissible configuration in
J such that all assignments in it satisfy Ci ∨ Dj . The second case is analogous. ◀

Therefore, we get:

▶ Theorem 8.2. There are CNF formulas G with n2 variables, size O(n)n, and such that
WR(G ⊢ ⊥) = O(n) and MSpace(G ⊢ ⊥) = Ω(n2).

Proof. Again, let F be a CNF formula with n variables, width O(1) and size Θ(n), that is
Ω(n)-extendible. Such formulas exist, see [11, 16, 12, 9]. The formulas F n := F1 × · · · × Fn,

where the Fi’s are copies of F over mutually disjoint sets of variables, have resolution width
O(n), and from Lemma 8.1 they are Ω(n2)-extendible, thus from Theorem 8.1 require Ω(n2)
monomial space. ◀

MFCS 2023

74:12 A Super-Polynomial Separation Between Resolution and Cut-Free Sequent Calculus

9 A super-polynomial separation between resolution and LK− size

Many of the relations in resolution involving width, can be as well stated for LK−. In fact, they
seem to be better suited for LK−; there, the additive W (F) factor that naturally comes with
resolution width disappears. We have already seen that WLK−(F ⊢ ⊥) ≤ CSpace(F ⊢ ⊥),
refining the relation between clause space and width of [4]. But let us give an alternative,
constructive proof, here. For sets S and T of formulas, we write S |= T if every total
assignment satisfying every formula in S, also satisfies every formula in T .

▶ Theorem 9.1. For any unsatisfiable CNF formula F , WLK−(F ⊢ ⊥) ≤ CSpace(F ⊢ ⊥).

Proof. Let M1, . . . , Mt be a refutation of F , of clause space s. We shall construct a sequence
T1, . . . , Tt of trees, the vertices of which are labelled by sets of literals, such that for every
set S labelling a leaf of Ti, S |= Mi and |S| ≤ |Mi|.

We set T1 to be a tree with one vertex labelled by the empty set. Now, suppose we have
constructed Ti−1. If Mi results from Mi−1 via an inference step, we set Ti := Ti−1. If
Mi ⊆ Mi−1, then we add to every leaf of Ti−1 labelled by a satisfiable set S, a child labelled
by a subset S′ ⊆ S such that |S′| ≤ |Mi| and S′ |= Mi. Finally, if Mi = Mi−1 ∪ {C}, for a
clause C = ℓ1 ∨ · · · ∨ ℓr of F , we add to every child of Ti labelled by a satisfiable set S, r

children labelled by the sets S ∪ {ℓj}.
Replacing each set {ℓ1, . . . , ℓk} occurring in Tt, by the clause ℓ1 ∨ · · · ∨ ℓk, we get an LK−

refutation of F of width at most s. It is clear from the construction of Tt that every clause
has width at most s and every clause not at a leaf, results from the clauses at its children
via either the weakening or the ∨L rule. Moreover, since Mt is unsatisfiable, no set labelling
a leaf of Ti is satisfiable, that is sets at the leaves become weakenings of axioms. ◀

Next, we have the size-width relations of [8]. Here the proofs are the same as those in [8].

▶ Theorem 9.2. For any unsatisfiable CNF formula F , WLK−(F ⊢ ⊥) ≤ log STR(F ⊢ ⊥)+1.

Proof. This is in fact a weakened version of Theorem 9.1, as CSpace(F ⊢ ⊥) ≤ log STR(F ⊢
⊥) + 1 [15]. But let us give a direct construction instead. We shall construct, by induction
on s, for every tree-like resolution refutation T of F of size s, an LK− refutation of F of
width at most log s + 1.

If T has size 1, then it has width 0; if it has size 3 then it has width 2. For the inductive
step, suppose that T has size s > 3. Let T1 and T2 be the subproofs of T, deriving ¬x and
x respectively, for some variable x. One of T1 and T2, say T1, must have size at most s/2.
T1|x is a refutation of F |x of size at most s/2, and T2|x is a refutation of F |x of size less
than s. From the induction hypothesis, there are LK− refutations π1 and π2 of F |x and F |x
of width log s and log s + 1 respectively. Start with π2. To every application of Rule (5.1),
add the extra premise C ∨ x. But x can be derived from π1, and hence all those C ∨ x can
be derived via the weakening rule from x: We can do the same to π1, now adding C ∨ x as
the extra premise, and moreover add to every clause the variable x. The refutation obtained
when we combine π1 and π2 is a valid LK− refutation of F of width at most log s + 1. ◀

▶ Theorem 9.3. For any unsatisfiable CNF formula F over n variables, WLK−(F ⊢ ⊥) =
O

(√
n log SLK−(F ⊢ ⊥)

)
.

Proof. The construction will be the same as that of Theorem 9.2. The problem here is that
it is not clear what variable to choose to recurse on. The trick is to choose the variable that
appears more often in the clauses of the proof.

T. Papamakarios 74:13

For an LK− refutation π of a CNF and a d ≥ 0, let π∗ be the set of clauses in π of width
greater than d. We call the clauses in π∗ the fat clauses of π. We show, by induction on n,
that for any CNF F in n variables, any LK− refutation π of F and any integers d, b ≥ 0,

|π∗| < ab =⇒ WLK−(F ⊢ ⊥) ≤ d + b,

where a = (1 − d/(2n))−1
. The theorem follows taking π to be of minimum size and

d :=
⌈√

n log S(π)
⌉
.

If n = 1, then there is an LK− refutation of F of width 2, and in the case that b + d < 2
the implication becomes trivially true. For the inductive step, suppose that n > 1, let
d, b ≥ 0, and let π be an LK− refutation of F with |π∗| < ab. If b = 0, then π itself is a
refutation of width at most d + b. Suppose b > 0. There are 2n literals, so there must be
some literal, say the variable x, appearing in at least d|π∗|/(2n) clauses in π∗. π|x is an
LK− refutation of F |x with at most |π∗| (1 − d/(2n)) < ab−1 fat clauses, so by the induction
hypothesis (notice that a is a decreasing function of n), there is an LK− refutation π′ of F |x
of width at most d + b − 1. Furthermore, π|x is an LK− refutation of F |x with less than ab

clauses, so by the induction hypothesis, there is an LK− refutation π′′ of F |x of width at
most d + b. Combining π′ and π′′ as in the proof of Theorem 9.2, we get an LK− refutation
of F of width at most d + b. ◀

Notice that in Theorem 9.2 and the relation WLK−(F ⊢ ⊥) ≤ CSpace(F ⊢ ⊥), we have
LK− in the left hand side and resolution in the right hand side. That is to say, cuts are
eliminated when constructing the small width proofs. It is tempting to speculate on whether
the same is also true for Theorem 9.3, that is whether we can replace SLK−(F ⊢ ⊥) with
SR(F ⊢ ⊥). After all, the only place in the proof of Theorem 9.3 where we need LK− in the
right hand side is the case b = 0. Theorem 7.1 says that this cannot be true. In fact, the
formulas of Theorem 7.1 give the main theorem of this section, which is:

▶ Theorem 9.4. There is a CNF formula F with n2 variables and size O(n)n, such that
SR(F ⊢ ⊥) = O(n)n but SLK−(F ⊢ ⊥) ≥ exp(Ω(n2)).

Proof. The formulas of Theorem 7.1 are such. The upper bound SR(F ⊢ ⊥) = O(n)n

follows from the construction of Lemma 7.2. The lower bound follows from the fact that
WLK−(F ⊢ ⊥) = Ω(n2) and Theorem 9.3. Namely, Theorem 9.3 gives

SLK−(F ⊢ ⊥) ≥ exp
(

Ω
(

(WLK−(F ⊢ ⊥))2

n2

))
= exp

(
Ω

(
n2))

. ◀

It is important to note that the exp
(
Ω

(
n2))

lower bound in Theorem 9.4 holds for the
version of LK− operating on clauses, where the clauses of the CNF formula F to be refuted
are viewed as disjunctions of unbounded arity. It does not hold when the clauses of F are
made up from binary disjunctions and moreover we are free to choose the order in which they
are applied. If ∨ in the definition of of F × G, is seen as a binary disjunction, then having
derived C1, . . . , Cn → and D1, . . . , Dt →, it is easy to see that we may derive from these
sequents C1 ∨ D1, . . . , C1 ∨ Dt, . . . , Cs ∨ D1, . . . , Cs ∨ Dt → in s · t steps, and in this case F n

in Theorem 9.4 has an LK− refutation of size nO(n). An analogous situation occurs between
the tree-like versions of LK− and resolution [3]. But let us notice, concluding, that with
binary disjunctions, LK− cannot be seen as a system operating on clauses, and it becomes
rather unnatural to compare it with resolution – it is not even clear, in this case, whether
resolution can polynomially simulate LK−. LK− for clauses consisting of binary disjunctions
is closer to resolution with limited extension, in which case resolution does polynomially
simulate it [24].

MFCS 2023

74:14 A Super-Polynomial Separation Between Resolution and Cut-Free Sequent Calculus

10 Conclusion

We showed a quadratic gap between resolution and cut-free sequent calculus width. In terms
of the sequent calculus, this says that atomic cuts can shorten the width of proofs. It is well
known that cuts can make proofs exponentially shorter. Allowing arbitrary cuts we get a
system polynomially equivalent with any Frege system. These are very powerful; proving
non-trivial lower bounds for them is completely out of reach of current methods. But even
allowing cuts of depth d + 1 in an LK system that has cuts of depth d for any constant
d ≥ 0, gives exponentially shorter proofs [19]. And this goes lower: For any constant k ≥ 0,
allowing as cut formulas conjunctions and disjunctions of arity k + 1 in an LK system that
has as cuts conjunctions and disjunctions of arity at most k, again gives exponentially shorter
proofs [22]. We show in this paper that even allowing propositional variables as cuts, gives
super-polynomially shorter proofs.

Cut-free sequent width for refuting CNF formulas naturally compares to well studied
complexity measures related to resolution: it sits between resolution width and clause space.
Our quadratic gap in particular, provides a separation between resolution width and clause
space. Stronger such separations are known [6, 7]. Nontheless, our basic construction extends
to provide a quadratic gap between resolution width and monomial space. This is to be seen
in conjunction with relation (1.2) showing that monomial space provides an upper bound to
resolution width.

Several questions remain open:
1. Can cut-free sequent calculus width for refuting CNF formulas be bounded in terms of

resolution width? Given the similarity between the two measures, the combination of
Lemmas 7.1 and 7.2 giving a quadratic separation might come as a surprise. Can this
separation be improved? A strong separation in particular, would give an exponential
separation between resolution and cut-free sequent calculus.

2. Our super-polynomial separation of resolution and cut-free sequent calculus on the one
hand applies only when clauses are seen as disjunctions of unbounded arity. On the other
hand, it involves formulas whose size grows exponentially. Can there be a separation
independent of the representation of clauses? Can there be a separation for formulas
whose size grows polynomially?

3. Cut-free sequent calculus width is bounded by clause space. Can it be bounded in terms
of monomial space in a relation similar to (1.2)? This is a good point to also mention
that whether (1.2) can be improved to a linear inequality or there are examples where it
is tight is unknown as well, and there do not seem to be strong indications for which case
is true.

4. We show that resolution width and monomial space cannot coincide. Whether they
coincide up to polynomial factors however remains open, although it is speculated
(cf. [18]) that this is not the case, and moreover, as it is the case for resolution width and
clause space [6, 7], there is an O(1) vs Ω(n/ log n) separation.

References
1 Michael Alekhnovich, Eli Ben-Sasson, Alexander Razborov, and Avi Wigderson. Space

complexity in propositional calculus. SIAM J. of Computing, 31:1184–1211, 2002.
2 Noriko Arai. Relative efficency of propositional proof systems: resolution vs. cut-free LK.

Annals of Pure and Applied Logic, 104:3–16, 2000.
3 Noriko Arai, Toniann Pitassi, and Alasdair Urquhart. The complexity of analytic tableaux. J.

of Symbolic Logic, 71:777–790, 2006.

T. Papamakarios 74:15

4 Albert Atserias and Victor Dalmau. A combinatorial characterization of resolution width. J.
of Computer and System Sciences, 74:323–334, 2008.

5 Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in resolution. Random
Structures & Algorithms, 23:92–109, 2003.

6 Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal separation
of space and length in resolution. In Pr. of the 49th Annual IEEE Symp. on Foundations of
Computer Science, pages 709–718, 2008.

7 Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity: Separations
and trade-offs via substitutions. In Pr. of the 2nd Symp. on Innovations in Computer Science,
pages 401–416, 2011.

8 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple. J. of
the ACM, 48:149–169, 2001.

9 Patrick Bennett, Ilario Bonacina, Nicola Galesi, Tony Huynh, Mike Molloy, and Paul Wollan.
Space proof complexity for random 3-cnfs. Information and Computation, 255:165–176, 2017.

10 Ilario Bonacina. Total space in resolution is at least width squared. In Pr. of the 43rd
International Colloquium on Automata, Languages, and Programming, pages 56:1–56:13, 2016.

11 Ilario Bonacina and Nicola Galesi. Pseudo-partitions, transversality and locality: a combinat-
orial characterization for the space measure in algebraic proof systems. In Pr. of the 4th Conf.
on Innovations in Theoretical Computer Science, pages 455–472, 2013.

12 Ilario Bonacina and Nicola Galesi. A framework for space complexity in algebraic proof
systems. J. of the ACM, 62:23:1–23:20, 2015.

13 Stephen Cook and Robert Reckhow. On the lengths of proofs in the propositional calculus (pr.
ver.). In Pr. of the 6th Annual ACM Symp. on Theory of Computing, pages 135–148, 1974.

14 Juan Luis Esteban, Nicola Galesi, and Jochen Messner. On the complexity of resolution with
bounded conjunctions. Theoretical Computer Science, 321:347–370, 2004.

15 Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and Compu-
tation, 171:84–97, 2001.

16 Yuval Filmus, Massimo Lauria, Mladen Miksa, Jakob Nordström, and Marc Vinyals. To-
wards an understanding of polynomial calculus: New separations and lower bounds (extended
abstract). In Pr. of the 40th International Colloquium on Automata, Languages, and Program-
ming, pages 437–448, 2013.

17 Nicola Galesi, Leszek Kołodziejczyk, and Neil Thapen. Polynomial calculus space and resolution
width. In Pr. of the 60th Annual IEEE Symp. on Foundations of Computer Science, pages
1325–1337, 2019.

18 Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: amplifying communic-
ation complexity hardness to time-space trade-offs in proof complexity. In Pr. of the 44th
Annual ACM Symp. on Theory of Computing, pages 233–248, 2012.

19 Jan Krajíček. Lower bounds to the size of constant-depth propositional proofs. J. of Symbolic
Logic, 59:73–86, 1994.

20 Theodoros Papamakarios and Alexander Razborov. Space characterizations of complexity
measures and size-space trade-offs in propositional proof systems. J. of Computer and System
Sciences, 137:20–36, 2023.

21 Robert Reckhow. On the lengths of proofs in the propositional calculus. PhD thesis, Department
of Computer Science, University of Toronto, 1975.

22 Nathan Segerlind, Samuel Buss, and Russell Impagliazzo. A switching lemma for small
restrictions and lower bounds for k-DNF resolution. SIAM J. of Computing, 33:1171–1200,
2004.

23 Raymond Smullyan. First-order Logic. Dover, 1995.
24 Grigori Tseitin. On the complexity of derivation in propositional calculus. Studies in con-

structive mathematics and mathematical logic, part 2, pages 115–125, 1968.
25 Alasdair Urquhart. The complexity of propositional proofs. Bulletin of Symbolic Logic,

1:425–467, 1995.

MFCS 2023

	1 Introduction
	2 Sequent calculus
	3 Sequent calculus as a satisfiability algorithm
	4 The width of sequent calculus proofs
	5 LK^- for refuting CNF formulas and resolution
	6 Dynamic satisfiability
	7 A quadratic gap between LK^- and resolution width
	8 Separating resolution width from monomial space
	9 A super-polynomial separation between resolution and LK^- size
	10 Conclusion

