
Faster Local Motif Clustering via Maximum Flows
Adil Chhabra #

Heidelberg University, Germany

Marcelo Fonseca Faraj #

Heidelberg University, Germany

Christian Schulz #

Heidelberg University, Germany

Abstract
Local clustering aims to identify a cluster within a given graph that includes a designated seed node
or a significant portion of a group of seed nodes. This cluster should be well-characterized, i.e., it
has a high number of internal edges and a low number of external edges. In this work, we propose
SOCIAL, a novel algorithm for local motif clustering which optimizes for motif conductance based on
a local hypergraph model representation of the problem and an adapted version of the max-flow
quotient-cut improvement algorithm (MQI). In our experiments with the triangle motif, SOCIAL
produces local clusters with an average motif conductance 1.7% lower than the state-of-the-art,
while being up to multiple orders of magnitude faster.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases local motif clustering, motif conductance, maximum flows, max-flow quotient-
cut improvement

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.34

Related Version Full Version: https://arxiv.org/pdf/2301.07145.pdf

Supplementary Material Software (Code):
https://github.com/LocalClustering/HeidelbergMotifClustering

Funding DFG grant SCHU 2567/5-1.

1 Introduction

Graphs are a fundamental tool for representing complex systems and relationships in a
wide range of contexts. They can be used to model everything from data dependencies and
social networks to web links and email interactions. With the massive expansion of data in
recent years, many real-world graphs have grown to enormous sizes, making it challenging
to analyze them. In particular, many applications only require analyzing a small, localized
portion of a graph rather than the entire graph, which is the case for community-detection
on Web [12] and social [21] networks as well as structure-discovery in bioinformatics [47]
networks, among others. Those real-world applications are usually preceded by or modeled
as a local clustering problem. Local clustering aims at identifying a specific cluster within
a given graph that includes a designated seed node or a portion of a group of seed nodes,
and is well-characterized, i.e., it consists of many internal edges and few external edges.
More specifically, the quality of a community can be quantified by specific metrics such as
conductance [22]. Since minimizing conductance is NP-hard [48], approximate and heuristic
approaches are used in practice. Given the nature and scale of the problem, these approaches
should ideally require time and memory dependent only on the size of the found cluster.

The local clustering problem has been investigated both theoretically [1] and experiment-
ally [29], and has been solved using a wide variety of techniques, including statistical [9, 24],
numerical [30, 32], and combinatorial [35, 15] methods. While traditional approaches to local

© Adil Chhabra, Marcelo Fonseca Faraj, and Christian Schulz;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 34;
pp. 34:1–34:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:adil.chhabra@stud.uni-heidelberg.de
https://orcid.org/0009-0009-5726-9389
mailto:marcelofaraj@informatik.uni-heidelberg.de
https://orcid.org/0000-0001-7100-236X
mailto:christian.schulz@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-2823-3506
https://doi.org/10.4230/LIPIcs.ESA.2023.34
https://arxiv.org/pdf/2301.07145.pdf
https://github.com/LocalClustering/HeidelbergMotifClustering
https://github.com/LocalClustering/HeidelbergMotifClustering
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Faster Local Motif Clustering via Maximum Flows

clustering typically consider the edge distribution when evaluating the quality of a local
community, novel methods [49, 50, 33, 34, 7] have shifted focus to finding local communities
based on the distribution of motifs, higher-order structures within the graph. These works
provide empirical evidence that this approach, which can be called local motif clustering, is
effective at detecting high-quality local communities. Nevertheless, since this local clustering
perspective is relatively new, there are still many opportunities to improve upon current
approaches and discover more efficient algorithms for finding high-quality solutions.

Contribution. In this work, we propose a novel algorithm for local motif clustering which
optimizes for motif conductance by combining the strongly local hypergraph model from
Chhabra et al. [7] with an adapted version of the fast and effective algorithm max-flow
quotient-cut improvement (MQI) [26]. Our algorithm SOCIAL, which stands for faSter mOtif
Clustering vIa mAximum fLows, starts by building a hypergraph model which is an exact
representation for the motif-distribution around the seed node on the original graph [7].
Using this model, we create a flow model in which certain cuts correspond one-to-one with
sub-sets of the initial cluster that include the seed node and have lower motif conductance
than that of the whole cluster. We then use a push-relabel algorithm to either find such a
cut and repeat the process recursively, or to prove that the current cluster is optimal among
all its sub-clusters containing the seed node. In our experiments with the triangle motif,
SOCIAL produces communities with a motif conductance value that is 1.7% lower than the
state-of-the-art on average, while also being up to multiple orders of magnitude faster.

2 Preliminaries

Graphs. Let G = (V = {0, . . . , n − 1}, E) be an undirected graph with no multiple or self
edges allowed, such that n = |V | and m = |E|. Let c : V → R≥0 be a node-weight function,
and let ω : E → R>0 be an edge-weight function. We generalize c and ω functions to
sets, such that c(V ′) =

∑
v∈V ′ c(v) and ω(E′) =

∑
e∈E′ ω(e). Let N(v) = {u : {v, u} ∈ E}

be the open neighborhood of v, and let N [v] = N(v) ∪ {v} be the closed neighborhood of
v. We generalize the notations N(.) and N [.] to sets, such that N(V ′) = ∪v∈V ′N(v) and
N [V ′] = ∪v∈V ′N [v]. A graph G′ = (V ′, E′) is said to be a subgraph of G = (V, E) if V ′ ⊆ V

and E′ ⊆ E ∩ (V ′ × V ′). When E′ = E ∩ (V ′ × V ′), G′ is the subgraph induced in G by V ′.
Let V ′ = V \ V ′ be the complement of a set V ′ ⊆ V of nodes. Let a motif µ be a connected
graph. Enumerating the motifs µ in a graph G consists of building the collection M of all
occurrences of µ as a subgraph of G. Let d(v) be the degree of node v and ∆ be the maximum
degree of G. Let dω(v) be the weighted degree of a node v and ∆ω be the maximum weighted
degree of G. Let dµ(v) be the motif degree of a node v, i.e., the number of motifs µ ∈ M

which contain v. We generalize the notations d(.), dω(.), and dµ(.) to sets, such that the
volume of V ′ is d(V ′) =

∑
v∈V ′ d(v), the weighted volume of V ′ is dω(V ′) =

∑
v∈V ′ dω(v),

and the motif volume of V ′ is dµ(V ′) =
∑

v∈V ′ dµ(v). Let a spanning forest of G be an
acyclic subgraph of G containing all its nodes. Let the arboricity of G be the minimum
amount of spanning forests of G necessary to cover all its edges.

Local Motif Clustering. In the local graph clustering problem, a graph G = (V, E) and a
seed node u ∈ V are taken as input and the goal is to detect a well-characterized cluster
(or community) C ⊂ V containing u. A high-quality cluster C usually contains nodes
that are densely connected to one another and sparsely connected to C. There are many
functions to quantify the quality of a cluster, such as modularity [5] and conductance [22].

A. Chhabra, M. Fonseca Faraj, and C. Schulz 34:3

The conductance metric is defined as ϕ(C) = |E′|/ min(d(C), d(C)), where E′ = E ∩ (C × C)
is the set of edges shared by a cluster C and its complement. Local motif graph clustering is
a generalization of local graph clustering where a motif µ is taken as an additional input
and the computed cluster optimizes a clustering metric based on µ. In particular, the motif
conductance ϕµ(C) of a cluster C is defined by Benson et al. [4] as a generalization of the
conductance in the following way: ϕµ(C) = |M ′|/min(dµ(C), dµ(C)), where M ′ are all the
motifs µ which contain at least one node in C and one node in C. Note that, if the motif
under consideration is simply an edge, then |M ′| is the edge-cut and ϕµ(C) = ϕ(C).

Hypergraphs. Let H = (V = {0, . . . , ”nffl−1}, E) be an undirected hypergraph with no multiple
or self hyperedges allowed, with ”nffl = |V| nodes and ”mffl = |E| hyperedges (or nets). A net is
defined as a subset of V . The nodes that compose a net are called pins. Let `c : V → R≥0 be
a node-weight function, and let ”w : E → R>0 be a net-weight function. We generalize `c and
”w functions to sets, such that `c(V ′) =

∑
v∈V′ `c(v) and ”w(E ′) =

∑
e∈E′ ”w(e). A node v ∈ V is

incident to a net e ∈ E if v ∈ e. Let I(v) be the set of incident nets of v, let `dffl(v) := |I(v)|
be the degree of v, and let `dffl”w(v) := ”w(I(v)) be the weighted degree of v. We generalize
the notations `dffl(.) and `dffl”w(.) to sets, such that the volume of V ′ is `dffl(V ′) =

∑
v∈V′ `dffl(v) and

the weighted volume of V ′ is `dffl”w(V ′) =
∑

v∈V′ `dffl”w(v). Two nodes are adjacent if they are
incident to the same net. Let the number of pins |e| in a net e be the size of e. We define
the contraction operator as

/
such that H

/
V ′, with V ′ ⊆ V, is the hypergraph obtained by

contracting the nodes from V ′ of H. This contraction consists of substituting all the nodes in
V ′ by a single representative node x, removing nets totally contained in V ′, and substituting
all the pins in V ′ by a single pin x in each of the remaining nets. Given a cluster V ′ ⊆ V,
the cut or cut-net cut(V ′) of V ′ consists of the total weight of the nets crossing the cluster,
i.e., cut(V ′) =

∑
e∈E′ ”w(E ′), in which E ′ :=

{
e ∈ E : e ∩ V ′ ̸= ∅, e ∩ V ′ ̸= ∅

}
.

Flows. Let N = (V, E) be a directed flow network. A directed flow network has one source
node s ∈ V , one sink node t ∈ V , and a set of remaining nodes V \ {s, t}. All edges e = (u, v)
in a directed flow network are directed and associated with a nonnegative capacity cap(u, v).
An s-t flow is a function f : V × V → R>0 which satisfies a capacity constraint, i. e., f(u, v) ≤
cap(u, v), a symmetry constraint, i. e., ∀u, v ∈ V : f(u, v) = −f(v, u), and a flow conserva-
tion constraint, i. e., ∀u ∈ V \ {s, t} :

∑
v∈V f(u, v) = 0. An edge (u, v) is called saturated if

cap(u, v) = f(u, v); The total amount of flow moved from s to t is defined as the value |f | of f

and is computed as follows: |f | =
∑

u∈V f(u, t) =
∑

v∈V f(s, v). A given s-t flow f in N is
maximum if, for any s-t flow f ′ in N , |f ′| ≤ |f |. Let Nf = (V, Ef) be the residual graph asso-
ciated with a given flow f on N , such that Ef = {(u, v) ∈ V × V : cap(u, v) − f(u, v) > 0}.
According to the Max-Flow Min-Cut Theorem [13], the value |f | of a maximum s-t flow f

on N equals the weight of a minimum s-t cut on N , i. e., a 2-way partition of N where edge
weights equal edge capacities, s and t are in distinct blocks, and the total weight of the cut
edges is minimum. To find the sink side of the minimum cut associated with a maximum
flow in N , a reverse breadth-first search can be performed on N starting at the sink node t.

Push-Relabel. For each node u in a directed flow network N , let d(u) be its potential
and exc(u) =

∑
v∈V (f(v, u) − f(u, v)) be its excess. A node u is called active if exc(u) > 0.

An edge (u, v) is called admissible if cap(u, v) − f(u, v) > 0 and d(u) = d(v) + 1. The push-
relabel [16] algorithm builds a maximum flow by computing a succession of preflows, i. e., flows
where the flow conservation constraint is relaxed and replaced by ∀u ∈ V \ {s, t} : exc(u) ≥ 0.
In the initial preflow, all out-edges of s are saturated, ∀u ∈ V \{s} : d(u) = 0, and d(s) = |V |.

ESA 2023

34:4 Faster Local Motif Clustering via Maximum Flows

Lawler ExpansionStar ExpansionClique Expansion

Figure 1 Net expansion techniques. Nodes and nets of the hypergraph are respectively represented
by black circles and colored areas around them. Artificial nodes and edges are respectively represented
by circles and arrows with same color as the corresponding net. Bidirectional arrows represent edges
in both directions. Solid and dashed edges have finite and infinite weight, respectively.

The initial preflow is evolved via operations push, i. e., sending as much flow as possible from
an active node through an admissible edge, and relabel, i. e., increasing the potential of a
node until it becomes active. Preflows induce minimum sink-side cuts, so a maximum flow
and a minimum cut are obtained once no node is active.

Flows on Hypergraphs. A common technique to solve flow problems on hypergraphs consists
of transforming them in directed graphs and then applying traditional graph-based techniques
on them. Among the existing transformations [46, 27], we highlight clique expansion, star
expansion, and Lawler expansion. In the clique expansion, each net is represented by a clique,
i.e., a set of edges connecting each pair of its pins in both directions. In this approach, the
weight of each edge is equal to weight of the corresponding net e divided by |e| − 1 and
parallel edges are substituted by a single edge whose weight is the sum of the weights of
the removed edges. In the star expansion, each net is represented by an auxiliary artificial
node connected to its pins by edges in both directions. In this expansion, the edges have the
same weight as the corresponding net. In the Lawler expansion, each net e is represented by
two auxiliary artificial nodes w1 and w1 and a collection of edges. In particular, there is a
directed edge (w1, w2) which has the same weight as the corresponding net. Additionally,
each pin of the corresponding net has an out-edge to w1 and an in-edge from w2, each of
them with weight infinity. The three transformation approaches are exemplified in Figure 1.

2.1 Related Work
Motif-based clustering has been widely studied in the literature, with works such as [3, 49,
25, 36, 44] partitioning all the nodes of a graph into clusters based on motifs. We also
address the topic of clustering based on motifs, but our focus is on identifying clusters in
the immediate vicinity of a specific seed node, rather than on the entire graph. Several
works [24, 30, 32, 11, 42] propose local clustering algorithms on graphs, but they do not
focus on optimizing for motif-based metrics like our work. Instead, they use metrics based
on edges, like conductance and modularity. Multiple works [45, 14, 20, 31] propose local
clustering algorithms on hypergraphs. These algorithms are not designed for local graph
clustering based on motifs, but for local hypergraph clustering. In one of them [45], the
authors utilize a hypergraph extension of FlowImprove [2], which is itself an extension of the
MQI [26] technique. Similarly, we also extend MQI to hypergraphs, then we use it as one of
the steps of our algorithm SOCIAL. In this section, we review previous work on local graph
clustering based on motifs, which is the focus of our work.

Rohe and Qin [38] propose a local clustering algorithm based on triangle motifs. Their
algorithm starts by initializing a cluster containing only the seed node, and iteratively
grows this cluster. Particularly, the algorithm greedily inserts nodes contained in at least a

A. Chhabra, M. Fonseca Faraj, and C. Schulz 34:5

assigned to cluster

not assigned to cluster

nets contained in S

nets between S and S

motifs contained in S

motifs in S and S

V

u

(a)

u S S
(b)

u

(c)

u

(d)

u st

(e)

Cu st
(f)

(g)

u

Figure 2 Illustration of the phases of SOCIAL. (a) Given a seed node u and a graph G, a ball S

around u is selected. (b) Motif occurrences of µ with at least a node in S are enumerated. (c) The
hypergraph model Hµ is built by converting motifs into nets and contracting S into a single node.
The ball S is taken as the initial cluster C0. (d) The flow model N is built based on C0 in Hµ.
(e) A cluster C ⊆ C0 containing u is found using maximum flows. (f) While C ⊂ C0, the model N
is rebuilt based on C, which is taken as the initial cluster C0. (g) When eventually C = S, C is
converted in a local cluster around the seed node in G.

predefined amount of cut triangles. Huang et al. [19] recover local communities containing
a seed node in online and dynamic setups based on higher-order graph structures named
Trusses [10]. They define the k-truss of a graph as its largest subgraph whose edges are all
contained in at least (k − 2) triangle motifs, hence trusses are a graph structure based on the
frequency of triangles. The authors use indexes to search for k-truss communities in time
proportional to the size of the recovered community.

Yin et al. [49] propose MAPPR, a local motif clustering algorithm based on the Approximate
Personalized PageRank (APPR) method. In a preprocessing phase, MAPPR enumerates the
motif of interest in the entire input graph and constructs a weighted graph W , in which edges
only exist between nodes that appear in at least one instance of the motif, and their edge
weight is equal to the number of occurrences of the motif containing these two endpoints.
Afterward, MAPPR uses an adapted version of the APPR method to find local communities in
the weighted graph constructed in the preprocessing phase. MAPPR is able to extract local
communities from directed input graphs, something that cannot be done using APPR alone.

Zhang et al. [50] propose LCD-Motif, an algorithm that addresses the local motif clustering
problem using a modified version of the spectral method. LCD-Motif has two main differences
in comparison to the traditional spectral motif clustering method. First, instead of computing
singular vectors, the algorithm performs random walks to identify potential members of the
searched cluster. They use the span of a few dimensions of vectors, obtained through random
walks, as an approximation for the local motif spectra. Second, instead of using k-means
for clustering, LCD-Motif searches for the minimum 0-norm vector within the previously
mentioned span, which must contain the seed nodes in its support vector.

Meng et al. [33] propose FuzLhocd, a local motif clustering algorithm that uses fuzzy
arithmetic to optimize a modified version of modularity. Given a seed node, FuzLhocd starts by
detecting probable core nodes of the targeted local community using fuzzy membership. After
identifying the probable core nodes of the target local community using fuzzy membership,
the algorithm expands these nodes using another fuzzy membership to form a cluster.

Zhou et al. [51] propose HOSPLOC, a local motif clustering algorithm that uses a motif-
based random walk to compute a distribution vector, which is then truncated and used in a
vector-based partitioning method. The algorithm begins by approximately estimating the

ESA 2023

34:6 Faster Local Motif Clustering via Maximum Flows

distribution vector through a motif-based random walk. To further refine the computation
and focus on the local region, HOSPLOC sets all small vector entries to 0. After this prepro-
cessing step, the algorithm applies a vector-based partitioning method [43] on the resulting
distribution vector in order to identify a local cluster.

Shang et al. [41] propose HSEI, a local motif clustering algorithm that uses motif and
edge information to grow a cluster from a seed node. The algorithm begins by creating an
initial cluster consisting of only the seed node. It then adds nodes to the cluster from the
seed’s neighborhood, selecting them based on their motif degree. The cluster is expanded
using a motif-based extension of the modularity function.

Chhabra et al. [7] propose an algorithm to solve the local motif clustering problem
using powerful (hyper)graph partitioning tools [39, 40, 17, 18]. Their algorithm first uses a
breadth-first search to select a ball containing the seed node and nearby nodes. Next, they
enumerate motif occurrences within the ball and build a (hyper)graph model which allows
them to compute the motif conductance of any cluster within the ball. They then partition
their model into two blocks using a high-quality (hyper)graph partitioning algorithm, and
refine the solution for motif conductance.

3 Local Motif Clustering via Maximum Flows

We now present our algorithm SOCIAL, then we discuss its algorithmic components.

3.1 Overall Strategy

Given a graph G = (V, E), a seed node u, and a motif µ, our strategy for local clustering is
based on the following phases. First, we select a set S ⊆ V containing u and close-by nodes.
From now on, we refer to this set S as a ball around u. Second, we enumerate the collection
M of occurrences of the motif µ which contain at least one node in S. Third, we build a
hypergraph model Hµ in such a way that the motif-conductance of any cluster C ⊆ S in G

can be computed directly in Hµ. Fourth, we set C0 = S as our initial cluster and use it to
build our MQI-based [26] flow model N from the hypergraph model Hµ. Fifth, we use N
to either find a new cluster C ⊂ C0 containing u with strictly smaller motif conductance
than C0 or prove that such cluster does not exist. While C ⊂ C0 is found, we take it as
our new initial cluster, rebuild N , and repeat the previous phase. When eventually no
such strict sub-set is found, the best obtained cluster is directly translated back to G as a
local cluster around the seed node. Figure 2 provides a comprehensive illustration of the
consecutive phases of SOCIAL. Note that there is no guarantee of finding the best overall
cluster including u strictly contained in S. Instead, we find a succession of clusters with
strictly decreasing cardinality and motif conductance until a local optimum is reached. To
better explore the vicinity of u in G and overcome the fact we only find clusters inside S, we
repeat the overall strategy α times with different balls S. Our overall algorithm including
the mentioned repetitions is outlined in Algorithm 1.

3.2 Hypergraph Model

We follow the same procedure as Chhabra et al. [7] to construct the hypergraph model Hµ.
To ensure a thorough understanding of our overall algorithm, we provide a summary of the
phases involved, i.e., finding a ball around the seed node, enumerating motifs within it, and
finally constructing the hypergraph model Hµ.

A. Chhabra, M. Fonseca Faraj, and C. Schulz 34:7

SS

N [S]

(a)

SS

(b)
r

SS

Figure 3 Example of motif-enumeration and model-construction phases for the triangle motif. In
the left, the nodes of G are split into sets S and S. In the center, motifs containing nodes in S are
enumerated. In the right, Hµ is built by converting motifs in nets and contracting S into a node r.

Algorithm 1 Local Motif Clustering via Max Flows.
Input graph G = (V, E); seed node u ∈ V ; motif µ
Output cluster C∗ ⊆ V

1: C∗ ← ∅
2: for i = 1, . . . , α do
3: Select ball S around u
4: M ← Enumerate motifs in S
5: Build hypergraph model Hµ based on S and M
6: C ← S
7: do
8: C0 ← C
9: Build flow model N based on C0 in Hµ

10: Solve N to obtain cluster C ⊆ C0 including u
while C ⊂ C0

11: if C∗ = ∅ ∨ ϕµ(C) < ϕµ(C∗) then
12: C∗ ← C
13: Convert C∗ into a local motif cluster in G

Ball around the Seed Node. Our approach to select a ball S is a fixed-depth breadth-first
search (BFS) rooted on u. More specifically, we compute the first ℓ layers of the BFS tree
rooted on u, then we include all its nodes in S. For each of the α repetitions of the overall
algorithm, we use different amounts ℓ of layers for a better algorithm exploration. Two
special cases are handled by SOCIAL, namely a ball S that is either too small or disconnected
from S. We avoid the first special case by ensuring that S contains 100 or more nodes in at
least one repetition of our overall algorithm. More specifically, in case this condition is not
automatically met, then we accomplish it in the last repetition by growing additional layers
in our partial BFS tree while it contains fewer than 100 nodes. The number 100 is based on
the findings of Leskovec et al. [29], which show that most well characterized communities
from real-world graphs have a relatively small size, in the order of magnitude of 100 nodes.
If the second exceptional case happens, it means that the whole BFS tree rooted on the seed
node has at most ℓ layers. In this case, we simply stop the algorithm and return the entire
ball S, which corresponds to an optimal community with motif conductance 0 provided that
there is at least one motif in S and another one in S. The number α of repetitions as well as
the amount ℓ of layers used in each repetition are tuning parameters.

Motif Enumeration. Although enumerating a general motif on some graph is NP-hard [37],
there are efficient heuristics to do it such as the one proposed by Kimmig et al. [23]. Never-
theless, simpler motifs such as small paths, cycles, and cliques can be trivially enumerated in

ESA 2023

34:8 Faster Local Motif Clustering via Maximum Flows

polynomial time. We focus our enumeration phase on the triangle motif. We implement the
simple and exact algorithm proposed by Chiba and Nishizeki [8] to enumerate the collection
M of occurrences of the motif µ which contain at least one node in S. Roughly speaking,
this algorithm works by intersecting the neighborhoods of adjacent nodes. For each node
v, the algorithm starts by marking its neighbors with degree smaller than or equal to its
own degree. For each of these specific neighbors of v, it then scans its neighborhood and
enumerates new triangles as soon as marked nodes are found. The running time of this
algorithm is O(ma), where a is the arboricity of the graph. We apply this enumeration
algorithm only on the subgraph induced in G by N [S], which is enough to find all triangles
containing at least one node in S, as exemplified by transformation (a) in Figure 3. As-
suming a constant-bounded arboricity, the overall cost of our motif-enumeration phase for
triangles is O

(
|N [S] × N [S]) ∩ E|

)
.

Hypergraph Model. The hypergraph model Hµ is finally built in two conceptual operations.
First, define a hypergraph containing V as nodes and a set E of nets such that, for each
motif in M , E has a net with pins equal to the endpoints of this motif. Then, we contract
together all nodes in S into a single node r and substitute parallel nets by a single net
whose weight is equal to the summed weights of the removed parallel nets. More formally,
we define the hypergraph version of our model as Hµ = (S ∪ {r}, E) where the set E of
nets contains one net e associated with each motif occurrence G′ = (V ′, E′) ∈ M such
that e = V ′ if V ′ ⊆ S, and e = V ′ ∩ S ∪ {r} otherwise. In the former case the net has
weight 1, in the latter case the net has weight equal to the amount of motif occurrences
in M represented by it. Since node weights in Hµ are irrelevant for SOCIAL, the involved
theorems, and the motif conductance metric, we make all node weights unitary in Hµ. In
practice, the model Hµ can be built by instantiating the nodes in S ∪ {r} and the nets in E .
Assuming that the number of nodes in µ is a constant, our model is built in time O(|S|+ |M |)
and uses memory O(|S| + |M |). The construction of Hµ is illustrated in transformation (c)
of Figure 2 and demonstrated for a particular example in transformation (b) of Figure 3.
Theorem 1 shows that the motif conductance in G of any cluster C ⊆ S can be directly
computed from Hµ assuming dµ(S) ≤ dµ(S). The assumption dµ(S) ≤ dµ(S) is fair in
practice since the ball S computed via BFS tends to be considerably smaller than S for
huge sparse networks. Enumerating the motifs in S is not reasonable for a local clustering
algorithm, but we did verify that our assumption holds during all our experiments.

▶ Theorem 1 (Theorem 3.2 from [7]). The motif conductance ϕµ(C) of a cluster C ⊆ S in
the original graph G can be calculated directly in the hypergraph model Hµ using the ratio of
its cut-net cut(C) to its weighted volume `dffl”w(C), assuming that the motif enumeration step
is exact and dµ(S) ≤ dµ(S).

3.3 Flow Model
In this section, we describe the process of constructing our MQI-based flow model N using the
hypergraph model Hµ and an initial cluster C0 ⊆ S which contains the seed node u. There
are three possible implementations of N based on the three already explained techniques to
represent hypergraphs using graphs, namely clique expansion, star expansion, and Lawler
expansion (see Figure 1). We show a bijective correspondence between certain s-t cuts in
N and clusters C ⊆ C0 in G that include the seed node u and have motif conductance
less than that of C0. We start by converting our hypergraph model Hµ in a directed graph
using the chosen net expansion technique. Second, we find a corresponding cluster C ′

0

A. Chhabra, M. Fonseca Faraj, and C. Schulz 34:9

Lawler ExpansionStar ExpansionClique ExpansionHypergraph Model

Figure 4 Flow model N given a hypergraph model Hµ and an initial cluster C0. Nodes and
nets of Hµ are respectively represented by black circles and brown areas around them. The seed
node u is circled in white and the initial cluster C0 is surrounded by a dotted ellipse. Auxiliary
artificial nodes and edges used in each net-expansion are respectively represented by brown circles
and arrows. Bidirectional arrows represent pairs of edges in both directions. The seed node s, the
sink node t, and the in-edges of t are respectively represented by a green circle, a blue circle, and
blue arrows. Solid and dashed arrows respectively represent edges with finite and infinite weight.

for C0 in the created graph. For the clique expansion, C ′
0 = C0 since this transformation

does not create artificial nodes. For the star expansion, C ′
0 consists of C0 and also the

auxiliary artificial nodes connected to at least one node in C0. For the Lawler expansion, C ′
0

consists of C0, the auxiliary artificial nodes w1 having in-edges only from nodes in C0, and
the auxiliary artificial nodes w2 having out-edges to at least one node in C0. Third, we
contract C ′

0 to a single source node s and then remove all its in-edges. Fourth, we multiply
the weight of all the remaining edges by `dffl”w(C0), i.e., the weighted volume of C0 in Hµ. Fifth,
we introduce a sink node t and include in-edges to it from each of the nodes v ∈ C0 \ {u},
such that the weight of (v, t) is set to cut(C0)`dffl”w(v), i.e., the cut-net of C0 in Hµ multiplied
by the weighted degree of v in Hµ. Finally, we include an edge (u, t) from the seed node to
the sink and set its weight to infinity. Our flow network model N is concluded by setting
edge capacities to match edge weights. Figure 4 shows the three possible configurations of
our flow model N for a given hypergraph model Hµ and an initial cluster C0.

We now analyze the theoretical guarantees provided by the defined flow model N .
Theorem 2 shows that there is a set C ⊂ C0 in G including the seed node u with motif
conductance smaller than that of C0 if, and only if, the value of the maximum flow on N
is less than cut(C0)`dffl”w(C0), which is the weight of the trivial cut ({s}, V (N) \ {s}). Due
to space constraints, we put the proof of Theorem 2 in our public technical report [6]. In
the proof, we show that such improved cluster C consists of the sink side of the minimum
cut associated with the maximum flow. This cluster can be directly obtained with a reverse
breadth-first search on N starting at the sink node. For an even stronger claim, see our
public technical report [6]. Assumptions (a) and (b) in Theorem 2 are the same used in
Theorem 1, which were previously shown to be reasonable in practice. Note that the claim is
only valid for motifs with three nodes for clique and star expansion models, while it is valid
in general for the Lawler expansion model.

▶ Theorem 2. There is a set C ⊂ C0 in G including the seed node u with motif conductance
smaller than that of C0 if, and only if, the maximum flow on N is less than cut(C0)`dffl”w(C0)
under the following assumptions:
a) the motif enumeration phase is exact;
b) dµ(S) ≤ dµ(S) in G;
c) in case N is based on clique expansion or star expansion, the motif µ has three nodes;

ESA 2023

34:10 Faster Local Motif Clustering via Maximum Flows

Table 1 Graphs for experiments.

Graph n m # Triangles
com-amazon 334 863 925 872 667 129
com-dblp 317 080 1 049 866 2 224 385
com-youtube 1 134 890 2 987 624 3 056 386
com-livejournal 3 997 962 34 681 189 177 820 130
com-orkut 3 072 441 117 185 083 627 584 181
com-friendster 65 608 366 1 806 067 135 4 173 724 142

SOCIAL utilizes a push-relabel approach to iteratively search for a maximum s-t flow in the
model N . If the found maximum flow is strictly smaller than cut(C0)`dffl”w(C0), then we can
directly find a minimum cut with the same weight as it and, consequently, a cluster C ⊂ C0
containing the seed node u that has a strictly smaller motif conductance value ϕµ(C) than
that of C0 in G. If such a cut is found, the algorithm repeats the process recursively setting
the identified sub-cluster C as the new initial cluster, i.e., it constructs a new flow model based
on Hµ and the initial cluster and uses the push-relabel algorithm to continue searching for
sub-clusters with even lower motif conductance values. If, on the other hand, the maximum
flow is not strictly smaller than cut(C0)`dffl”w(C0), it means that the current cluster C0 is
optimal among all of its sub-clusters containing the seed node u, and the algorithm terminates
for the given ball S.

4 Experimental Evaluation

Methodology. We implemented SOCIAL in C++. We compiled our program using gcc 11.2
with full optimization turned on (-O3 flag). All our experiments are based on the triangle
motif, i.e., the undirected clique of size three. Since this motif has three nodes, Theorem 2 is
valid for all net expansion techniques. Therefore, we focus our experiments on the clique
expansion technique, which is more efficient than the other techniques because it does not
utilize any auxiliary artificial nodes and uses the minimum amount of auxiliary artificial
edges. We use the following parameters for SOCIAL: α = 3, ℓ ∈ {1, 2, 3}. We do not utilize
more than 3 BFS layers because otherwise the ball around the seed node could become
too large in densely connected areas of a graph. Nevertheless, as explained in Section 3.2,
SOCIAL might occasionally use more than 3 BFS layers to ensure that the ball includes a
minimum of 100 nodes, if the seed node under consideration is located in a sparse portion
of the graph. We ensure the integrity of our results by using the same motif-conductance
evaluator function for all tested algorithms. In our experiments, we have used a machine with
a sixty-four-core AMD EPYC 7702P processor running at 2.0 GHz, 1 TB of main memory,
32 MB of L2-Cache, and 256 MB of L3-Cache. We measure running time, motif-conductance,
and/or size of the computed cluster. For each graph, we pick 50 random seed nodes and
use all of them as input for each algorithm. When averaging running time or cluster size
over multiple instances, we use the geometric mean in order to give every instance the same
influence on the final score. When averaging motif conductance over multiple instances, the
final score is computed via arithmetic mean. This is a necessary averaging strategy since
motif conductance can be zero, which makes the geometric mean infeasible to compute. We
also use performance profiles which relate the running time (resp. motif conductance) of a
group of algorithms to the fastest (resp. best) one on a per-instance basis. Their x-axis shows
a factor τ while their y-axis shows the percentage of instances for which algorithm A has up
to τ times the running time (resp. motif conductance) of the fastest (resp. best) algorithm.

A. Chhabra, M. Fonseca Faraj, and C. Schulz 34:11

Table 2 Average comparison against state-of-the-art. Times are given in seconds.

Graph SOCIAL LMCHGP MAPPR
ϕµ |C| t(s) ϕµ |C| t(s) ϕµ |C| t(s)

com-amazon 0.031 76 <0.01 0.037 64 0.22 0.153 58 2.68
com-dblp 0.090 58 0.02 0.115 56 0.38 0.289 35 3.04
com-youtube 0.125 1832 4.52 0.172 1443 7.93 0.910 2 10.44
com-livejournal 0.158 494 3.33 0.244 387 8.17 0.507 61 173.80
com-orkut 0.273 1041 256.21 0.150 13168 496.94 0.407 511 923.26
com-friendster 0.388 2060 1194.50 0.368 10610 1339.99 0.741 121 16565.99
Overall 0.178 453 2.33 0.181 823 12.67 0.500 50 79.34

Instances. The graphs used in our experiments are the same ones used by Yin et al. [49]
and Chhabra et al. [7] and the seed nodes used in our experiments are the same used in [7].
Specifically, we use real graphs from the SNAP Network Dataset Collection [28]. Prior to
our experiments, we removed parallel edges, self-loops, and directions of edges and assigning
unitary weight to all nodes and edges. Basic properties of the graphs under consideration
can be found in Table 1.

Competitors. We experimentally compare our SOCIAL against the state-of-the-art compet-
itors, namely MAPPR [49] and the algorithm proposed by Chhabra et al. [7]. For conciseness,
we refer to the latter one from now on as LMCHGP, an acronym for local motif clustering via
(hyper)graph partitioning. We also ran preliminary experiments with HOSPLOC [51]. However,
the algorithm is very slow even for small graphs and not scalable as their algorithm works
using an adjacency matrix and hence needs Ω(n2) space and time. Moverover, experiments
done in their paper are on graphs that are multiple orders of magnitude smaller than the
graphs used in our evaluation. Hence, we are not able to run the algorithm on the scale of the
instances used in this work. We were not able to explicitly compare against LCD-Motif [50]
since their code is not available (neither public, nor privately1) and the data presented in
the respective paper does not warrant explicit comparisons (e.g. seed nodes are typically not
presented in the papers). However, we try to make implicit comparisons in Section 4.1.

We compare our results against the globally best cluster computed for each seed node
by MAPPR using its standard parameters (α = 0.98, ϵ = 10−4) and by LMCHGP using the
configuration with best overall results in [7] (graph model, label propagation, α = 3,
ℓ ∈ {1, 2, 3}, and β = 80). Unless mentioned otherwise, experiments presented here involve
all graphs from Table 1.

4.1 Results
The performance profile plots shown in Figures 5a and 5b, compare LMCHGP [7] and MAPPR [49]
against SOCIAL. In Table 2, we show average results for each graph in our Test Set as well
as average results overall. As shown in Figure 5a, SOCIAL obtains the best or equal motif
conductance value for 62% of the instances, while LMCHGP and MAPPR respectively obtain
the best or equal motif conductance for 49% and 19% of the instances. This result can be
explained with two observations. First, SOCIAL explores the solution space considerably
better than MAPPR, since we build our model multiple times, while MAPPR simply uses the
APPR algorithm. Second, SOCIAL is based on a flow approach which directly optimizes for
motif conductance, whereas LMCHGP is based on a (hyper)graph partitioning algorithm which

1 Personal communication with the authors

ESA 2023

34:12 Faster Local Motif Clustering via Maximum Flows

 0

 0. 2

 0. 4

 0. 6

 0. 8

 1

 1 1. 5 2 2. 5 3 3. 5 4

%
in

st
an

ce
s

≤
 τ

 b
es

t
φ

µ

τ

M A P P R
L M C H G P
S O CI A L

(a) Motif conductance.

 0

 0. 2

 0. 4

 0. 6

 0. 8

 1

1 0
0

1 0
1

1 0
2

1 0
3

1 0
4

1 0
5

%
in

st
an

ce
s

≤
 τ

 f
as

te
st

τ

M A P P R
L M C H G P
S O CI A L

(b) Running time.

Figure 5 Performance profiles for motif conductance and running time considering all instances,
i.e., 50 random seed nodes for each graph in Table 1. In the running time plot, the SOCIAL curve is
roughly coincident with the y-axis.

is repeated multiple times to compensate for its design to minimize the number of cut motifs
rather than motif conductance. In Table 2, SOCIAL outperforms LMCHGP for 4 of the 6 graphs
and overall, and outperforms MAPPR for all graphs and overall. Overall, SOCIAL computes
clusters with motif conductance 0.178 while LMCHGP and MAPPR compute clusters with motif
conductance 0.181 and 0.500, respectively.

As exhibited in Figure 5b, SOCIAL is the fastest one for 87% of the instances, while LMCHGP
and MAPPR are the fastest ones for 12% and 1% of the instances, respectively. Furthermore, the
running time of SOCIAL is within a factor 1.18 of the running times of the fastest competitors
for all instances. SOCIAL is respectively up to 237 and 144 063 times faster than LMCHGP and
MAPPR while being a factor 5.4 and 34.1 faster than them on average. The reason for MAPPR
being considerably slower than the other algorithms is that it must enumerate motifs across
the entire graph, while SOCIAL and LMCHGP only require enumeration of motifs in a ball
around the seed node. The reduced but still substantial difference in running time between
SOCIAL and LMCHGP is a result of LMCHGP’s repeated partitioning of each ball around the
seed node, while SOCIAL employs a flow model to greedily improve the motif conductance
metric until a local optimum cluster is obtained. In Table 2, SOCIAL outperforms LMCHGP
and MAPPR on average in terms of running time for every single graph and overall.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

M
o

ti
f

C
o

n
d

u
c
ta

n
c
e

Cluster Size

MAPPR

LMCHGP

SOCIAL

Figure 6 Motif conductance vs cluster size.

A. Chhabra, M. Fonseca Faraj, and C. Schulz 34:13

For a more intuitive analysis of the quality of our results, Figure 6 plots motif conductance
versus cluster size for all communities computed by the three algorithms. Observe that the
communities found by SOCIAL are densely localized in the lower left area of the chart, which
is the region with smaller motif conductance and smaller cluster size. On the other hand,
communities computed by MAPPR are often in the upper area of the chart and communities
computed by LMCHGP are often in the right area of the chart.

Additional Comparisons. As we mention above, we were not able to run comparisons against
LCD-Motif [50] explicitly since their code is not available (neither publicly, nor privately) and
the data presented in the respective papers does not warrant explicit comparisions (e.g., seed
nodes are typically not presented in papers, and in this case instances are directed rather
than undirected). Here, we make an attempt at implicit comparisons. Zhang et al. [50]
(Table 4 therein) compare motif conductance against MAPPR on three directed instances
(cit-HepPh, Slashdot, StanfordWeb) and report an geometric mean improvement of 54%
in motif conductance for the triangle motif. As SOCIAL works for undirected instances,
we have build undirected version of those graphs and run SOCIAL as well as MAPPR for the
triangle motif. The geometric mean improvement we obtain over MAPPR is 223% which is
significantly larger than the improvement of Zhang et al. [50] over MAPPR. Also note that in
our experiments from Table 2, the geometric mean improvement (using the average motif
conductance values) of SOCIAL over MAPPR in motif conductance is 219%.

5 Conclusion

In this work, we propose SOCIAL, a fast flow-based algorithm to solve the local motif clustering
problem in graphs. Given a seed node, our SOCIAL selects a ball of nodes around it, which is
taken as an initial cluster and used to build an exact hypergraph model where nets represent
motifs. Using this model and the initial cluster, we create a flow model in which the value of
the maximum s-t flow is directly related to the presence of sub-sets of the initial cluster that
contain the seed node and have lower motif conductance than the initial cluster as a whole.
Utilizing a push-relabel algorithm, SOCIAL either identifies a sub-cluster containing the seed
node with improved motif conductance and repeats the process recursively by considering it
as the initial cluster, or demonstrates that the current initial cluster is the best among all its
sub-clusters that include the seed node.

In our experiments with the triangle motif, we found that SOCIAL produces communities
with an average motif conductance better than the state-of-the-art, while running up to
orders of magnitude faster on average. For future work, we intend to conduct experiments
with larger motifs and use the Lawler-expansion version of our flow model, since it is the
only one whose quality guarantee holds true for larger motifs. Laslty, we intend to add
parallelization to improve the speed on large instances further.

References

1 Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors.
In FOCS, pages 475–486, 2006. doi:10.1109/FOCS.2006.44.

2 Reid Andersen and Kevin J. Lang. An algorithm for improving graph partitions. In Proceedings
of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 651–
660. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347154.

ESA 2023

https://doi.org/10.1109/FOCS.2006.44
http://dl.acm.org/citation.cfm?id=1347082.1347154

34:14 Faster Local Motif Clustering via Maximum Flows

3 Austin R. Benson, David F. Gleich, and Jure Leskovec. Tensor spectral clustering for
partitioning higher-order network structures. In Proceedings of the 2015 SIAM International
Conference on Data Mining, pages 118–126. SIAM, 2015. doi:10.1137/1.9781611974010.14.

4 Austin R. Benson, David F. Gleich, and Jure Leskovec. Higher-order organization of complex
networks. Science, 353(6295):163–166, 2016. doi:10.1126/science.aad9029.

5 Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer, Zoran Nikoloski,
and Dorothea Wagner. On modularity clustering. IEEE Trans. Knowl. Data Eng., 20(2):172–
188, 2008. doi:10.1109/TKDE.2007.190689.

6 Adil Chhabra, Marcelo Fonseca Faraj, and Christian Schulz. Faster local motif clustering via
maximum flows. CoRR, abs/2301.07145, 2023. doi:10.48550/arXiv.2301.07145.

7 Adil Chhabra, Marcelo Fonseca Faraj, and Christian Schulz. Local motif clustering via (hy-
per)graph partitioning. In Symposium on Algorithm Engineering and Experiments (ALENEX
23), January 22-23, 2023. SIAM, 2023.

8 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM J.
Comp., 14(1):210–223, 1985. doi:10.1137/0214017.

9 Fan Chung and Olivia Simpson. Solving linear systems with boundary conditions using heat
kernel pagerank. In Intl. Workshop on Algorithms and Models for the Web-Graph, pages
203–219. Springer, 2013. doi:10.1007/978-3-319-03536-9_16.

10 Jonathan Cohen. Trusses: Cohesive subgraphs for social network analysis. National se-
curity agency Tech. report, 16(3.1), 2008. URL: https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.505.7006&rep=rep1&type=pdf.

11 Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. Local search of communities in
large graphs. In ACM SIGMOD Intl. Conf. on Management of data, pages 991–1002, 2014.
doi:10.1145/2588555.2612179.

12 Alessandro Epasto, Jon Feldman, Silvio Lattanzi, Stefano Leonardi, and Vahab Mirrokni.
Reduce and aggregate: similarity ranking in multi-categorical bipartite graphs. In WWW,
pages 349–360, 2014. doi:10.1145/2566486.2568025.

13 Lester Randolph Ford and Delbert Ray Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

14 Kimon Fountoulakis, Pan Li, and Shenghao Yang. Local hyper-flow diffusion. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan,
editors, Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
tual, pages 27683–27694, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/
e924517087669cf201ea91bd737a4ff4-Abstract.html.

15 Kimon Fountoulakis, Meng Liu, David F. Gleich, and Michael W. Mahoney. Flow-based
algorithms for improving clusters: A unifying framework, software, and performance. SIAM
Rev., 65(1):59–143, 2023. doi:10.1137/20m1333055.

16 Andrew V. Goldberg and Robert Endre Tarjan. A new approach to the maximum-flow problem.
J. ACM, 35(4):921–940, 1988. doi:10.1145/48014.61051.

17 Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Scalable shared-memory
hypergraph partitioning. In Proceedings of the Symposium on Algorithm Engineering and
Experiments, ALENEX, pages 16–30. SIAM, 2021. doi:10.1137/1.9781611976472.2.

18 Lars Gottesbüren, Tobias Heuer, Peter Sanders, Christian Schulz, and Daniel Seemaier. Deep
multilevel graph partitioning. In 29th Annual European Symposium on Algorithms, ESA,
volume 204 of LIPIcs, pages 48:1–48:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ESA.2021.48.

19 Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. Querying k-truss
community in large and dynamic graphs. In ACM SIGMOD, pages 1311–1322, 2014. doi:
10.1145/2588555.2610495.

20 Rania Ibrahim and David F. Gleich. Local hypergraph clustering using capacity releasing
diffusion. CoRR, abs/2003.04213, 2020. arXiv:2003.04213.

https://doi.org/10.1137/1.9781611974010.14
https://doi.org/10.1126/science.aad9029
https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.48550/arXiv.2301.07145
https://doi.org/10.1137/0214017
https://doi.org/10.1007/978-3-319-03536-9_16
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.505.7006&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.505.7006&rep=rep1&type=pdf
https://doi.org/10.1145/2588555.2612179
https://doi.org/10.1145/2566486.2568025
https://doi.org/10.4153/CJM-1956-045-5
https://proceedings.neurips.cc/paper/2021/hash/e924517087669cf201ea91bd737a4ff4-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/e924517087669cf201ea91bd737a4ff4-Abstract.html
https://doi.org/10.1137/20m1333055
https://doi.org/10.1145/48014.61051
https://doi.org/10.1137/1.9781611976472.2
https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://doi.org/10.1145/2588555.2610495
https://doi.org/10.1145/2588555.2610495
https://arxiv.org/abs/2003.04213

A. Chhabra, M. Fonseca Faraj, and C. Schulz 34:15

21 Lucas G. S. Jeub, Prakash Balachandran, Mason A. Porter, Peter J. Mucha, and Michael W.
Mahoney. Think locally, act locally: Detection of small, medium-sized, and large communities
in large networks. Physical Review E, 91(1):012821, 2015. doi:10.1103/PhysRevE.91.012821.

22 Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and spectral.
JACM, 51(3):497–515, 2004. doi:10.1145/990308.990313.

23 Raphael Kimmig, Henning Meyerhenke, and Darren Strash. Shared memory parallel subgraph
enumeration. In 2017 IEEE International Parallel and Distributed Processing Symposium
Workshops, IPDPS Workshops, pages 519–529. IEEE Computer Society, 2017. doi:10.1109/
IPDPSW.2017.133.

24 Kyle Kloster and David F. Gleich. Heat kernel based community detection. In The 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pages
1386–1395. ACM, 2014. doi:10.1145/2623330.2623706.

25 Christine Klymko, David F. Gleich, and Tamara G. Kolda. Using triangles to improve
community detection in directed networks. CoRR, abs/1404.5874, 2014. arXiv:1404.5874.

26 Kevin J. Lang and Satish Rao. A flow-based method for improving the expansion or
conductance of graph cuts. In Integer Programming and Combinatorial Optimization,
10th International IPCO, volume 3064 of LNCS, pages 325–337. Springer, 2004. doi:
10.1007/978-3-540-25960-2_25.

27 Eugene L. Lawler. Cutsets and partitions of hypergraphs. Networks, 3(3):275–285, 1973.
doi:10.1002/net.3230030306.

28 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

29 Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Community
structure in large networks: Natural cluster sizes and the absence of large well-defined clusters.
Internet Math., 6(1):29–123, 2009. doi:10.1080/15427951.2009.10129177.

30 Yixuan Li, Kun He, David Bindel, and John E. Hopcroft. Uncovering the small community
structure in large networks: A local spectral approach. In Proceedings of the 24th International
Conference on World Wide Web, WWW, pages 658–668. ACM, 2015. doi:10.1145/2736277.
2741676.

31 Meng Liu, Nate Veldt, Haoyu Song, Pan Li, and David F. Gleich. Strongly local hypergraph
diffusions for clustering and semi-supervised learning. In WWW ’21: The Web Conference,
pages 2092–2103. ACM / IW3C2, 2021. doi:10.1145/3442381.3449887.

32 Michael W. Mahoney, Lorenzo Orecchia, and Nisheeth K. Vishnoi. A local spectral method
for graphs: with applications to improving graph partitions and exploring data graphs locally.
J. Mach. Learn. Res., 13:2339–2365, 2012. doi:10.5555/2503308.2503318.

33 Tao Meng, Lijun Cai, Tingqin He, Lei Chen, and Ziyun Deng. Local higher-order community
detection based on fuzzy membership functions. IEEE Access, 7:128510–128525, 2019. doi:
10.1109/ACCESS.2019.2939535.

34 Mrudula Murali, Katerina Potika, and Chris Pollett. Online local communities with motifs.
In 2020 Second Intl. Conf. on Transdisciplinary AI (TransAI), pages 59–66. IEEE Computer
Society, September 2020. doi:10.1109/TransAI49837.2020.00014.

35 Lorenzo Orecchia and Zeyuan Allen Zhu. Flow-based algorithms for local graph clustering. In
SODA, pages 1267–1286. SIAM, 2014. doi:10.1137/1.9781611973402.94.

36 Nataša Pržulj. Biological network comparison using graphlet degree distribution. Bioinform-
atics, 23(2):e177–e183, 2007. doi:10.1093/bioinformatics/btl301.

37 Ronald C. Read and Derek G. Corneil. The graph isomorphism disease. J. Graph Theory,
1(4):339–363, 1977. doi:10.1002/jgt.3190010410.

38 Karl Rohe and Tai Qin. The blessing of transitivity in sparse and stochastic networks. arXiv
preprint, 2013. arXiv:1307.2302.

39 Peter Sanders and Christian Schulz. Engineering multilevel graph partitioning algorithms. In
Algorithms – ESA 2011 – 19th Annual European Symposium, volume 6942 of LNCS, pages
469–480. Springer, 2011. doi:10.1007/978-3-642-23719-5_40.

ESA 2023

https://doi.org/10.1103/PhysRevE.91.012821
https://doi.org/10.1145/990308.990313
https://doi.org/10.1109/IPDPSW.2017.133
https://doi.org/10.1109/IPDPSW.2017.133
https://doi.org/10.1145/2623330.2623706
https://arxiv.org/abs/1404.5874
https://doi.org/10.1007/978-3-540-25960-2_25
https://doi.org/10.1007/978-3-540-25960-2_25
https://doi.org/10.1002/net.3230030306
http://snap.stanford.edu/data
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1145/2736277.2741676
https://doi.org/10.1145/2736277.2741676
https://doi.org/10.1145/3442381.3449887
https://doi.org/10.5555/2503308.2503318
https://doi.org/10.1109/ACCESS.2019.2939535
https://doi.org/10.1109/ACCESS.2019.2939535
https://doi.org/10.1109/TransAI49837.2020.00014
https://doi.org/10.1137/1.9781611973402.94
https://doi.org/10.1093/bioinformatics/btl301
https://doi.org/10.1002/jgt.3190010410
https://arxiv.org/abs/1307.2302
https://doi.org/10.1007/978-3-642-23719-5_40

34:16 Faster Local Motif Clustering via Maximum Flows

40 Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter Sanders, and
Christian Schulz. k-way hypergraph partitioning via n-level recursive bisection. In Proceedings
of the Workshop on Algorithm Engineering and Experiments, ALENEX, pages 53–67. SIAM,
2016. doi:10.1137/1.9781611974317.5.

41 Ronghua Shang, Weitong Zhang, Jingwen Zhang, Jie Feng, and Licheng Jiao. Local community
detection based on higher-order structure and edge information. Physica A: Statistical
Mechanics and its Applications, 587:126513, 2022. doi:10.1016/j.physa.2021.126513.

42 Mauro Sozio and Aristides Gionis. The community-search problem and how to plan a
successful cocktail party. In Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 939–948. ACM, 2010. doi:10.1145/1835804.
1835923.

43 Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs and
its application to nearly linear time graph partitioning. SIAM J. Comput., 42(1):1–26, 2013.
doi:10.1137/080744888.

44 Charalampos E. Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. Scalable motif-
aware graph clustering. In Proceedings of the 26th International Conference on World Wide
Web, WWW, pages 1451–1460. ACM, 2017. doi:10.1145/3038912.3052653.

45 Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Minimizing localized ratio cut objectives
in hypergraphs. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 1708–1718. ACM, 2020. doi:10.1145/3394486.3403222.

46 Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Hypergraph cuts with general splitting
functions. SIAM Rev., 64(3):650–685, 2022. doi:10.1137/20m1321048.

47 Konstantin Voevodski, Shang-Hua Teng, and Yu Xia. Spectral affinity in protein networks.
BMC systems biology, 3(1):1–13, 2009. doi:10.1186/1752-0509-3-112.

48 Dorothea Wagner and Frank Wagner. Between min cut and graph bisection. In Mathematical
Foundations of Computer Science 1993, International Symposium, MFCS, volume 711 of
LNCS, pages 744–750. Springer, 1993. doi:10.1007/3-540-57182-5_65.

49 Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. Local higher-order graph
clustering. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 555–564. ACM, 2017. doi:10.1145/3097983.3098069.

50 Yunlei Zhang, Bin Wu, Yu Liu, and Jinna Lv. Local community detection based on network
motifs. Tsinghua Science and Technology, 24(6):716–727, 2019. doi:10.26599/TST.2018.
9010106.

51 Dawei Zhou, Si Zhang, Mehmet Yigit Yildirim, Scott Alcorn, Hanghang Tong, Hasan Davulcu,
and Jingrui He. High-order structure exploration on massive graphs: A local graph clustering
perspective. ACM Trans. Knowl. Discov. Data, 15(2):18:1–18:26, 2021. doi:10.1145/3425637.

https://doi.org/10.1137/1.9781611974317.5
https://doi.org/10.1016/j.physa.2021.126513
https://doi.org/10.1145/1835804.1835923
https://doi.org/10.1145/1835804.1835923
https://doi.org/10.1137/080744888
https://doi.org/10.1145/3038912.3052653
https://doi.org/10.1145/3394486.3403222
https://doi.org/10.1137/20m1321048
https://doi.org/10.1186/1752-0509-3-112
https://doi.org/10.1007/3-540-57182-5_65
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.26599/TST.2018.9010106
https://doi.org/10.26599/TST.2018.9010106
https://doi.org/10.1145/3425637

	1 Introduction
	2 Preliminaries
	2.1 Related Work

	3 Local Motif Clustering via Maximum Flows
	3.1 Overall Strategy
	3.2 Hypergraph Model
	3.3 Flow Model

	4 Experimental Evaluation
	4.1 Results

	5 Conclusion

