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Abstract
The average properties of the well-known Subset Sum Problem can be studied by means of its
randomised version, where we are given a target value z, random variables X1, . . . , Xn, and an
error parameter ε > 0, and we seek a subset of the Xis whose sum approximates z up to error ε.
In this setup, it has been shown that, under mild assumptions on the distribution of the random
variables, a sample of size O(log(1/ε)) suffices to obtain, with high probability, approximations
for all values in [−1/2, 1/2]. Recently, this result has been rediscovered outside the algorithms
community, enabling meaningful progress in other fields. In this work, we present an alternative
proof for this theorem, with a more direct approach and resourcing to more elementary tools.
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1 Introduction

In the Subset Sum Problem (SSP), one is given as input a set of n integers X = {x1, x2, . . . , xn}
and a target value z, and wishes to decide if there exists a subset of X that sums to z. That
is, one is to reason about a subset S ⊆ [n] such that

∑
i∈S xi = z. The special case where

z is half of the sum of X is known as the Number Partition Problem (NPP). The converse
reduction is also rather immediate.1

1 To find a subset of X summing to z, one only needs to solve the NPP for the set X ∪ {2z,
∑

i∈[n] xi}.
By doing so, one of the parts must consist of the element

∑
i∈[n] xi alongside the desired subset.
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37:2 Revisiting the Random Subset Sum Problem

Be it in either of these forms, the SSP finds applications in a variety of fields, ranging
from combinatorial number theory [31] to cryptography [20,26]. In complexity theory, the
SSP is a well-known NP-complete problem, being a common base for NP-completeness proofs.
In fact, the NPP version figures among Garey and Johnson’s six basic NP-hard problems [19].
Under certain circumstances, the SSP can be challenging even for heuristics that perform
well for many other NP-hard problems [25,30], and a variety of dedicated algorithms have
been proposed to solve it [10, 17, 22–24]. Nonetheless, it is not hard to solve it in polynomial
time if we restrict the input integers to a fixed range [5]. It suffices to recursively list all
achievable sums using the first i integers: we start with A0 = {0} and compute Ai+1 as
Ai ∪ {a + xi+1 | a ∈ Ai}. For integers in the range [0, R], the search space has size O(nR).

Studying how the problem becomes hard as we consider larger ranges of integers (relative
to n) requires a randomised version of the problem, the Random Subset Sum Problem
(RSSP), where the input values are taken as independently and identically distributed
random variables. In this setup, the work [6] proved that the problem experiences a phase
transition in its average complexity as the range of integers increases.

The result we approach in this work comes from related studies on the typical properties
of the problem. In [27] the author proves that, under fairly general conditions, the expected
minimal distance between a subset-sum and the target value is exponentially small. More
specifically, they show the following result.

▶ Theorem 1 (Lueker, 1998). Let X1, . . . , Xn be independent uniform random variables
over [−1, 1], and let ε ∈ (0, 1/3). There exists a universal constant C > 0 such that, if
n ≥ C log(1/ε), then, with probability at least 1 − ε, for all z ∈ [−1, 1] there exists Sz ⊆ [n]
for which∣∣∣∣z −

∑
i∈Sz

Xi

∣∣∣∣ ≤ ε.

That is, a rather small number (of the order of log 1
ε ) of random variables suffices to have a

high probability of approximating not only a single target z, but all values in an interval.
Even though Theorem 1 is stated and proved for uniform random variables and target

values in [−1, 1], it is not hard to extend the result to a broad class of distributions2

and a wider range of targets. This generality makes the theorem a powerful tool for the
analysis of random structures and has recently proven to be particularly useful in the field of
Machine Learning, taking part in a proof of the Strong Lottery Ticket Hypothesis [29] and
in subsequent related works [11,13,14,18], and in Federated Learning [32].

Generalisations of the RSSP have played important roles in the study of random Knapsack
problems [3,4], and to random binary integer programs [7,8]. In particular, the works [2,7,8,14]
recently provided an extension of Theorem 1 to multiple dimensions. As for the equivalent
Random Number Partitioning Problem, [12] recently generalised [6] and the integer version
of the RSSP to non-binary integer coefficients.

The simplicity and ubiquity of the SSP have granted the related results a special didactic
place. Be it as a first example of an NP-complete problem [19], a path to science communic-
ation [21], or simply as a frame for the demonstration of advanced techniques [28], it has
been a tool to make important, but sometimes complicated, ideas easier to communicate.

2 Distributions whose probability density function f satisfies f(x) ≥ b for all x ∈ [−a, a], for some
constants a, b > 0 (see Corollary 3.3 from [27]).
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This work offers a substantially simpler alternative to the original proof of Theorem 1 by
following a general framework introduced in the context of the analysis of Rumour Spreading
algorithms [15]. Originally, the work [27] approaches Theorem 1 by considering the random
variable associated with the proportion of the values in the interval [−1, 1] that can be
approximated up to error ε by the sum of some subset of the first t variables, X1, . . . , Xt.

After restricting to some specific types of subsets, they proceed to evaluate the expected
per-round growth of this proportion, conditioned on the outcomes of X1, . . . , Xt. Their
strategy is to analyse this expected increase by martingale theory, which only becomes
possible after a non-linear transformation of the variables of interest. Those operations
hinder any intuition for the obtained martingale. Nonetheless, a subsequent application of
the Azuma-Hoeffding bound [1] followed by a case analysis leads to the result.

The argument presented here starts in the same direction as the original one, tracking
the mass of values with suitable approximations as we reveal the values of the random
variables X1, . . . , Xn one by one. However, we quickly diverge from [27], managing to obtain
an estimation of the expected growth of this mass without discarding any subset-sum. We
eventually restrict the argument to some types of subsets, but we do so at a point where the
need for such restriction is clear.

We proceed to directly analyse the estimation obtained, without any transformations.
Following [15], this estimation reveals two expected behaviours in expectation, which can
be analysed similarly: as we consider the first variables, the proportion of approximated
values grows very fast; then, after a certain point, the proportion of non-approximable values
decreases very fast.

We remark that, while Theorem 1 crucially relies on tools from martingale theory such
as Azuma-Hoeffding’s inequality, which are not part of standard Computer Science curricula,
our argument makes use of much more elementary results3 which should make it accessible
enough for an undergraduate course on randomised algorithms.

2 Our argument

In this section, we provide an alternative argument for proving Theorem 1. It takes shape
much like the pseudo-polynomial algorithm we described in the introduction. Leveraging
the recursive nature of the problem, we construct a process which, at time t, describes the
proportion of the interval [−1, 1] that can be approximated by some subset of the first t

variables.
We will show that with a suitable number of uniform variables (proportional to log(1/ε))

a factor of 1 − ε/2 of the values in [−1, 1] can be approximated up to error ε. This implies
that any z ∈ [−1, 1] which cannot be approximated within error ε is at most ε away from a
value that can. Therefore it is possible to approximate z up to error 2ε.

2.1 Preliminaries
Let X1, . . . , Xn be realisations of random variables as in Theorem 1, and, without loss of
generality, fix ε > 0. We say a value z ∈ R is ε-approximated at time t if and only if there
exists S ⊆ [t] such that |z −

∑
i∈S Xi| < ε. For 0 ≤ t ≤ n, let ft : R → {0, 1} be the indicator

function for the event “z is ε-approximated at time t”. Therefore, we have f0 = 1(−ε,ε), since
only the interval (−ε, ε) can be approximated by an empty set of values. From there, we can

3 Namely, the intermediate value theorem, Markov’s inequality, and standard Hoeffding bounds.

ESA 2023



37:4 Revisiting the Random Subset Sum Problem

exploit the recurrent nature of the problem: a value z can be ε-approximated at time t + 1 if
and only if either z or z − Xt+1 could already be approximated at time t. This implies that
for all z ∈ R we have that

ft+1(z) = ft(z) +
(
1 − ft(z)

)
ft(z − Xt+1). (1)

To keep track of the proportion of values in [−1, 1] that can be ε-approximated at each
step, we define, for each 0 ≤ t ≤ n, the random variable

vt = 1
2

∫ 1

−1
ft(z) dz.

For better readability, throughout the text we will refer to vt simply as “the volume.”
As we mentioned, it suffices to show that, with high probability, at time n, enough of the

interval is ε-approximated (more precisely, that vn ≥ 1 − ε/2) to conclude that the entire
interval is 2ε-approximated.

2.1.1 Expected behaviour
Our first lemma provides a lower bound on the expected value of vt.

▶ Lemma 2. For all 0 ≤ t < n, it holds that

E
[
vt+1

∣∣X1, . . . , Xt

]
≥ vt

[
1 + 1

4 (1 − vt)
]

.

Proof. The definition of vt and the recurrence in Equation (1) give us that

E
[
vt+1

∣∣X1, . . . , Xt

]
= E

1
2

∫ 1

−1
ft+1(z) dz

∣∣∣∣∣X1, . . . , Xt


=
∫ 1

−1

1
2

(
1
2

∫ 1

−1
ft(z) +

(
1 − ft(z)

)
ft(z − x) dz

)
dx

= 1
2

∫ 1

−1
ft(z) dz

∫ 1

−1

1
2 dx + 1

2

∫ 1

−1

1
2

∫ 1

−1

(
1 − ft(z)

)
ft(z − x) dz dx

= vt + 1
4

∫ 1

−1

(
1 − ft(z)

) ∫ 1

−1
ft(z − x) dx dz

= vt + 1
4

∫ 1

−1

(
1 − ft(z)

) ∫ z+1

z−1
ft(y) dy dz,

where the last equality holds by substituting y = z − x. For the previous ones, we apply the
basic properties of integrals and Fubini’s theorem to change the order of integration.

We now look for a lower bound for the last integral in terms of vt. To this end, we exploit
that, since all integrands are non-negative, for all u ∈ [−1/2, 1/2] we have that∫ 1

−1

(
1 − ft(z)

) ∫ z+1

z−1
ft(y) dy dz ≥

∫ u+ 1
2

u− 1
2

(
1 − ft(z)

) ∫ z+1

z−1
ft(y) dy dz

≥
∫ u+ 1

2

u− 1
2

(
1 − ft(z)

) ∫ u+ 1
2

u− 1
2

ft(y) dy dz.
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Both inequalities come from range restrictions: in the first, we use that u ∈ [−1/2, 1/2]
implies [u−1/2, u+1/2] ⊆ [−1, 1]; for the second, we have that [u−1/2, u+1/2] ⊆ [z−1, z+1]
for all z ∈ [u − 1/2, u + 1/2].

To relate the expression to vt explicitly, we choose u in a way that the window [u −
1/2, u + 1/2] entails exactly half of vt. The existence of such u may become clear by recalling
the definition of vt. To make it formal, consider the function given by

h(u) = 1
2

∫ u+ 1
2

u− 1
2

ft(y) dy,

and observe that

min {h(−1/2), h(1/2)} ≤ vt

2 , and max {h(−1/2), h(1/2)} ≥ vt

2 .

Thus, by the intermediate value theorem, there exists u∗ ∈ [−1/2, 1/2] for which h(u∗) = vt/2,
that is, for which

1
2

∫ u∗+ 1
2

u∗− 1
2

ft(y) dy = vt

2 .

Altogether, we can conclude that

E
[
vt+1

∣∣X1, . . . , Xt

]
= vt + 1

4

∫ 1

−1

(
1 − ft(z)

) ∫ z+1

z−1
ft(y) dy dz

≥ vt + 1
2

∫ u∗+ 1
2

u∗− 1
2

(
1 − ft(z)

)(1
2

∫ u∗+ 1
2

u∗− 1
2

ft(y) dy

)
dz

= vt +
(

1
2 − vt

2

)
vt

2

= vt

[
1 + 1

4 (1 − vt)
]

. ◀

Lemma 2 tells us that, if vt were to behave as expected, it should grow exponentially up
to 1/2, at which point 1 − vt starts to decrease exponentially. The rest of the proof follows
accordingly, with Section 2.2 analysing the progress of vt up to one half, and Section 2.3
analogously following the complementary value, 1 − vt, starting from one half. By building
on the results from Section 2.2, we obtain fairly straightforward proofs in Section 2.3. Thus,
the following subsection comprises the core of our argument.

2.2 Growth of the volume up to 1/2
Arguably, the main challenge in analysing the RSSP is the existence of over-time dependencies
and deciding how to overcome it sets much of the course the proof will take. Our strategy
consists in constructing another process which dominates the original one while being free of
dependencies.

Let τ1 be the first time at which the volume exceeds 1/2, that is, let

τ1 = min{t ≥ 0 : vt > 1/2}.

We just proved that up to time τ1 the process vt enjoys exponential growth in expectation.
In the following lemma, we apply a basic concentration inequality to translate this property
into a constant probability of exponential growth for vt itself.

ESA 2023



37:6 Revisiting the Random Subset Sum Problem

▶ Lemma 3. Given β ∈ (0, 1/8), let pβ = 1 − 7
8(1−β) . For all integers 0 ≤ t < τ1 it holds

that

Pr
[
vt+1 ≥ vt(1 + β)

∣∣X1, . . . , Xt, t < τ1
]

≥ pβ .

Proof. The result shall follow easily from reverse Markov’s inequality [9, Lemma 4] and
the bound from Lemma 2. However, doing so requires a suitable upper bound on vt+1 and,
while 2vt would serve the purpose, such bound does not hold in general.

We overcome this limitation by fixing t and considering how much vt would grow in the
next step if we were to consider only values ε-approximated at time t that happen to lie
in [−1, 1] after being translated by Xt+1. Making it precise by the means of the recurrence
in Equation (1), we define

ṽ = 1
2

∫ 1

−1

[
ft(z) +

(
1 − ft(z)

)
ft(z − Xt+1) · 1[−1,1](z − Xt+1)

]
dz.

This expression differs from the one for vt+1 only by the inclusion of the characteristic
function of [−1, 1]. This not only implies that ṽ ≤ vt+1, but also that ṽ can replace vt+1 in
the bound from Lemma 2, since the argument provided there eventually restricts itself to
integrals within [−1, 1], trivialising 1[−1,1]. Moreover, as we obtain ṽ without the influence of
values from outside [−1, 1], we must have ṽ ≤ 2vt. Finally, using that t < τ1 implies vt < 1/2
and chaining the previous conclusions in respective order , we conclude that

Pr
[
vt+1 ≥ vt(1 + β)

∣∣X1, . . . , Xt, t < τ1
]

≥ Pr
[
ṽ ≥ vt(1 + β)

∣∣X1, . . . , Xt, t < τ1
]

≥ E[ṽ | X1, . . . , Xt, t < τ1] − vt(1 + β)
2vt − vt(1 + β)

≥
9
8 vt − vt(1 + β)
2vt − vt(1 + β)

= 1 − 7
8(1 − β) ,

where we applied the reverse Markov’s inequality in the second step. ◀

The previous lemma naturally leads us to look for bounds on τ1, that is, to estimate the
time needed for the process to reach volume 1/2. As expected, the exponential nature of the
process yields a logarithmic bound.

▶ Lemma 4. Let t be an integer and given β ∈ (0, 1/8), let pβ = 1 − 7
8(1−β) and i∗ =⌈

log 1
2ε

log(1+β)

⌉
. If t ≥ i∗/pβ, then

Pr [τ1 ≤ t] ≥ 1 − exp

−
2p2

β

t

(
t − i∗

pβ

)2
 .

Proof. The main idea behind the proof is to define a new random variable which stochastically
dominates τ1 while being simpler to analyse. We begin by discretising the domain (0, 1/2] of
the volume into sub-intervals {Ii}0≤i≤i∗ defined as follows:

I0 = (0, ε],

Ii =
(

ε(1 + β)i−1, ε(1 + β)i
]

for 1 ≤ i < i∗,

Ii∗ =
(

ε(1 + β)i∗−1,
1
2

]
,

where i∗ is the smallest integer for which ε (1 + β)i∗
≥ 1/2, that is, i∗ =

⌈
log 1

2ε

log(1+β)

⌉
.
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Now, for each i ≥ 0, we direct our interest to the number of steps required for vt

to exit the sub-interval Ii after first entering it. By Lemma 3, this amount is majorised
by a geometric random variable Yi ∼ Geom(pβ). Therefore, we can conclude that τ1 is
stochastically dominated by the sum of such variables, that is, for t ∈ N, we have that

Pr [τ1 ≥ t] ≤ Pr

 i∗∑
i=1

Yi ≥ t

 . (2)

Let Bt ∼ Bin(t, pβ) be a binomial random variable. For the sum of geometric random
variables, it holds that Pr

[∑i∗

i=1 Yi ≤ t
]

= Pr [Bt ≥ i∗] . Since E[Bt] = tpβ , the Hoeffding
bound for binomial random variables [16, Theorem 1.1] implies that, for all λ ≥ 0, we have
that Pr[Bt ≤ tpβ − λ] ≤ exp(−2λ2/t). Setting t such that tpβ − λ = i∗, we obtain that

Pr

 i∗∑
i=1

Yi ≥ t

 ≤ Pr
[
Bt ≤ i∗]

≤ exp
[
−2

t

(
tpβ − i∗)2

]

= exp

−
2p2

β

t

(
t − i∗

pβ

)2
 ,

which holds as long as λ = tpβ − i∗ ≥ 0, that is, for all t ≥ 1
pβ

⌈
log 1

2ε

log(1+β)

⌉
.

The thesis follows by applying this to Equation (2) and considering the complementary
events. ◀

Since we are done with the analysis of the first phase, we can fix the value of β and
rearrange the bound in Lemma 4 to make it easier to apply later.

▶ Corollary 5. Let ε ∈ (0, 1
3 ), and let t be an integer satisfying t ≥ 264 log 1

ε . Then

Pr [τ1 ≤ t] ≥ 1 − exp
[

− 2
225t

(
t − 264 log 1

ε

)2
]

.

Proof. Setting β = 1
16 in Lemma 4 and, thus, pβ = 1

15 , it suffices to notice that

15 log 1
2ε

log 17
16

+ 15 ≤ 264 log 1
ε

. ◀

2.3 Growth of the volume from 1/2
Here we study the second half of the process: from the moment the volume reaches 1/2 up
to the time it gets to 1 − ε/2. We do so by analysing the complementary stochastic process,
i.e., by tracking, from time τ1 onwards, the proportion of the interval [−1, 1] that cannot
be approximated up to error ε. More precisely, we consider the process {wt}t≥0, defined by
wt = 1 − vτ1+t.

We shall obtain results for wt similar to those we have proved for vt. Fortunately, building
on the previous results makes those proofs quite straightforward. We start by noting that
a statement analogous to Lemma 2 follows immediately from the definition of wt+1 and
Lemma 2.

ESA 2023



37:8 Revisiting the Random Subset Sum Problem

▶ Corollary 6. For all t ≥ 0, it holds that

E
[
wt+1

∣∣X1, . . . , Xτ1+t

]
≤ wt

[
1 − 1

4 (1 − wt)
]

.

Let τ2 the first time that wt gets smaller than or equal to ε/2, that is, let

τ2 = min
{

t ≥ 0 : wt ≤ ε/2
}

.

The following lemma bounds this quantity, in analogy to Lemma 4.

▶ Lemma 7. For all t > 0, it holds that

Pr [τ2 ≤ t] ≥ 1 − exp
[

−1
8

(
t − 8log 1

ε

)]
.

Proof. Applying that 1 − wt = vτ1+t > 1/2 to Corollary 6 gives the bound

E
[
wt+1

∣∣X1, . . . , Xτ1+t

]
≤ 7

8wt. (3)

Moreover, from the conditional expectation theory, for any two random variables X and Y ,
we have E

[
E[X | Y ]

]
= E[X]. From this and Equation (3), we can conclude that

E[wt] = E
[
E
[
wt

∣∣X1, . . . , Xτ1+t−1
]]

≤ 7
8 E
[
wt−1

]
,

which, by recursion, yields that

E[wt] ≤
(

7
8

)t

E[w0] ≤ 1
2

(
7
8

)t

.

Finally, by Markov’s inequality,

Pr [τ2 ≥ t] ≤ Pr
[
wt ≥ ε

2

]
≤ 2E[wt]

ε

≤ 1
ε

(
7
8

)t

,

and, since log 8
7 > 1

8 , it holds that

Pr [τ2 ≥ t] ≤ exp
[

−1
8

(
t − 8log 1

ε

)]
.

The thesis follows by considering the complementary event. ◀

2.4 Putting everything together
In this section we conclude our argument, finally proving Theorem 1. We first prove a more
general statement and then detail how it implies the theorem.

Let τ = τ1 + τ2, the first time at which the process {vt}t≥0 reaches at least 1 − ε/2.
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▶ Lemma 8. Let ε ∈ (0, 1/3). There exist constants C ′ > 0 and κ > 0 such that for every
t ≥ C ′ log 1

ε , it holds that

Pr [τ ≤ t] ≥ 1 − 2 exp
[

− 1
κt

(
t − C ′ log 1

ε

)2
]

.

Proof. The definition of τ allows us to apply Corollary 5 and Lemma 7 quite directly. Indeed,
if, for the sake of Corollary 5, we assume that t/2 ≥ 264 log 1

ε , we have that

Pr [τ ≤ t] = Pr [τ1 + τ2 ≤ t]
≥ Pr

[
τ1 ≤ t/2, τ2 ≤ t/2

]
≥ Pr

[
τ1 ≤ t/2

]
+ Pr

[
τ2 ≤ t/2

]
− 1

≥ 1 − exp
[

− 4
225t

(
t

2 − 264 log 1
ε

)2
]

− exp
[

−1
8

(
t

2 − 8log 1
ε

)]

≥ 1 − exp
[

− 4
225t

(
t

2 − 264 log 1
ε

)2
]

− exp
[

− 1
4t

(
t

2 − 8 log 1
ε

)2
]

,

where the second inequality holds by the union bound. By setting κ = 225 and C ′ = 512, we
obtain the thesis. ◀

The expression in the claim of Lemma 8 can be reformulated as

Pr
[
vt ≥ 1 − ε

2

]
≥ 1 − 2 exp

[
− 1

κt

(
t − C ′ log 1

ε

)2
]

;

hence, Theorem 1 follows by taking C ≥ 3C ′ and observing that once we can approximate
all but an ε/2 proportion of the interval [−1, 1], any z ∈ [−1, 1] either is ε-approximated
itself, or is at most ε away from a value that is, which implies that z is 2ε-approximated.
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