
Correlating Theory and Practice in Finding Clubs
and Plexes
Aleksander Figiel #

Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Tomohiro Koana #

Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

André Nichterlein #

Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Niklas Wünsche #

Unaffiliated Researcher, Berlin, Germany

Abstract
For solving NP-hard problems there is often a huge gap between theoretical guarantees and observed
running times on real-world instances. As a first step towards tackling this issue, we propose an
approach to quantify the correlation between theoretical and observed running times.

We use two NP-hard problems related to finding large “cliquish” subgraphs in a given graph as
demonstration of this measure. More precisely, we focus on finding maximum s-clubs and s-plexes,
i. e., graphs of diameter s and graphs where each vertex is adjacent to all but s vertices. Preprocessing
based on Turing kernelization is a standard tool to tackle these problems, especially on sparse graphs.
We provide a parameterized analysis for the Turing kernelization and demonstrate their usefulness
in practice. Moreover, we demonstrate that our measure indeed captures the correlation between
these new theoretical and the observed running times.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Preprocessing, Turing kernelization, Pearson correlation coefficient

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.47

Related Version Full Version: https://arxiv.org/abs/2212.07533

Supplementary Material Software: https://git.tu-berlin.de/afigiel/splex-sclub-correl
archived at swh:1:dir:12573624f6d53cfd4d7e9181b0cf1596585fb93d

Funding Aleksander Figiel: Supported by the Deutsche Forschungsgemeinschaft (DFG) project
MaMu (NI 369/19).
Tomohiro Koana: Supported by the Deutsche Forschungsgemeinschaft (DFG) project DiPa (NI
369/21).

1 Introduction

Highly engineered solvers often perform much better than the known theoretical results
would suggest. This is especially true when dealing with NP-hard problems. Unless P = NP,
no efficient (i. e. polynomial-time) algorithm exists that solves all input instances correctly.
However, optimized implementations can often solve instances with millions of vertices,
variables, etc. as demonstrated frequently at algorithm engineering conferences [4, 35]. Of
course, these implementations are not polynomial-time algorithms for NP-hard problems – the
real-world instances are simply not worst-case instances but have algorithmically exploitable
structures. On the other hand, there are usually relatively small instances making these
solvers struggle. So theoretical running time bounds can often not predict observed running
times on the given data set. Obviously, a better correlation between theoretical results and
empirical findings would be highly desirable.

© Aleksander Figiel, Tomohiro Koana, André Nichterlein, and Niklas Wünsche;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 47;
pp. 47:1–47:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.figiel@tu-berlin.de
mailto:tomohiro.koana@tu-berlin.de
mailto:andre.nichterlein@tu-berlin.de
mailto:cs@nwuensche.com
https://doi.org/10.4230/LIPIcs.ESA.2023.47
https://arxiv.org/abs/2212.07533
https://git.tu-berlin.de/afigiel/splex-sclub-correl
https://archive.softwareheritage.org/swh:1:dir:12573624f6d53cfd4d7e9181b0cf1596585fb93d;origin=https://git.tu-berlin.de/afigiel/splex-sclub-correl;visit=swh:1:snp:4ff91ec3c7ded8827824c593be7cd16928a33cd3;anchor=swh:1:rev:e1ae11cc7393fb43593b717ec7d5ab3b3a08d6a0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Correlating Theory and Practice in Finding Clubs and Plexes

A multivariate (i. e. parameterized) analysis of the algorithm allows for a more nuanced
picture of running time bounds. In principle, it could provide us with a much better prediction
for the running time. However, a comparison to the theoretical parameterized running time
is rarely made in practice (although there are notable exceptions [39, 21]). This is probably
due to the multitude of issues arising here; let us mention just a few: For example, most
theoretical bounds are stated using the O-notation that hides constants. Matching these to
observed running times (which depend also on the used hardware) is not straightforward.
Moreover, optimized solvers often combine several tricks that work well in different cases.
The effect of these tricks is often hard to analyze and the observed running times most likely
depend on a large (possibly unknown) set of parameters.

In this work, we use the Pearson correlation coefficient to quantify the correlation between
theoretical bounds and observed running times. Our approach allows us to compare which
theoretical running-time bound fits “better” to the observed running times for a given data
set. Hence, it is relatively easy (but tedious) to generate hypotheses for theoretical bounds
that fit well to experimental observations. Although proving such bounds is a different story,
our approach can be used to transform practical results into impulses for theory.

We exemplify our approach on the s-Club and s-Plex problems and show how for
various solver variants different theoretical explanations can be used. To this end, we follow
the approach of Walteros and Buchanan [39] who demonstrated by means of a multivariate
analysis why Clique is often efficiently solvable in relatively sparse graphs.

1.1 Related work
Clique on Sparse Graphs. Clique is one of Karp’s 21 NP-complete problems [18]. As
such, it is well studied, both in theory and practice; see Wu and Hao [40] for a survey. The
currently fastest exact algorithm has running time O(1.20n) [41], where n is the number of
vertices. While 1.20 seems very small, for a graph with 400 vertices the number of steps has
more than 30 digits which is still infeasibly large. In contrast, a maximum clique can be
found in real-world graphs with millions of vertices [8, 14, 31, 38].

It is easy to see that any clique is contained in the neighborhood of each of its vertices.
Thus, a very basic approach solving clique on a sparse graph G = (V, E) is the following. Take
a vertex v of minimum degree and find the largest clique in N [v] (the closed neighborhood
of v). Then, remove v and continue in the same fashion. In the end, output the largest found
clique. The degeneracy d of a graph is the size of the largest neighborhood encountered in
the above algorithm. Hence, the above algorithm can be implemented to run in 1.20d · nO(1)

time which is on large sparse graphs far better than the O(1.20n) bound. Many of the
graphs considered by Walteros and Buchanan [39] have several hundred thousand vertices
and can be solved in less than a minute (often less than a second). Yet, some of these graphs
have a degeneracy of well above 400 (again resulting in an infeasibly large number of steps).
To rectify this, Walteros and Buchanan [39] provide an algorithm running in 1.28gnO(1)

time, where g := d − k + 1 is called the core-gap and k denotes the number of vertices in
a maximum clique (see Section 3 for a more detailed explanation). Clearly g can be much
smaller than d. In fact, Walteros and Buchanan [39] observe that all their relatively small
but hard-to-solve instances have a large core-gap.

Clubs and Plexes. An s-club is a graph of diameter s. An s-plex is a graph with ℓ vertices
where every vertex has degree at least ℓ − s. While not required by definition, in this work we
only consider connected s-plexes. The task in s-Club / s-Plex is to find the largest s-club /
s-plex in a given graph. Both s-Club and s-Plex are NP-hard as they contain Clique as

A. Figiel, T. Koana, A. Nichterlein, and N. Wünsche 47:3

special case (s = 1). Both problems are well-studied in the literature, both from theoretical
and practical perspective. For example, s-Plex is W[1]-hard with respect to the parameter
solution size k for all s ≥ 1 [19, 23]. In contrast, if s > 1, then s-Club is fixed-parameter
tractable with respect to the solution size k [33, 9]. We refer to Komusiewicz [22] for a
further overview on the parameterized complexity of these problems. Several algorithmic
approaches (heuristics and exact algorithms) have been proposed and examined to find
maximum-cardinality clubs [6, 5, 7, 9, 15, 28, 32, 25, 24] or plexes [3, 12, 11, 36, 29]. Variants
of the above-mentioned Turing kernelization approach are employed in engineered solvers for
finding clubs [15, 32] and plexes [3, 29].

1.2 Our results
We start by transferring the approach of Walteros and Buchanan [39] to s-Club and s-
Plex. To this end, introducing a new graph parameter, we describe and analyze the
Turing kernelization for both problems in Section 3. Moreover, we provide simple branching
algorithms showing fixed-parameter tractability with respect to a gap parameter. In Section 4,
we then analyze the impact of the Turing kernelization in computational experiments
for s ∈ {2, 3}. To this end, we use ILP-formulations with and without Turing kernelization
and basic lower bounds. For s-Club significant speedups are observed whereas for s-Plex
the improvements are not as clear (though still a speedup factor of more than 2.5 is achieved
on average). Finally, in Section 5 we use correlations (more precisely the Pearson correlation
coefficient) to analyze how well our theoretical findings fit to our practically observed running
times. While this measure makes no statement about the efficiency of the algorithms, we can
observe that even with the use of black boxes such as ILP-solvers our theoretical findings are
reflected in the experimental results, in particular for the s-Club problem.

2 Preliminaries

For an integer a ∈ N, we denote by [a] the set {1, . . . , a}. For a graph G = (V, E),
let n := |V | and m := |E| be the number of vertices and edges, respectively. Let u, v ∈ V

be two vertices of G. Let distG(u, v) denote the length of any shortest path between u

and v. For x ∈ N, let Nx,G(v) be the xth neighborhood of v, i. e., the set of vertices u

with 1 ≤ distG(u, v) ≤ x, Nx,G[v] = {v} ∪ Nx,G(v), and degx,G(v) be the size of its xth
neighborhood, i. e., degx,G(v) = |Nx,G(v)|. For a set X ⊆ V of vertices, let G[X] denote the
subgraph induced by X. We drop the subscript ·x for x = 1. Also, we omit the subscript ·G
when G is clear from context.

Clique relaxations. Let X be a set of vertices. If the vertices of X are pairwise adjacent,
then we say that X is a clique. Let s ∈ N be an integer. We say that X is an s-club if
the vertices of X have pairwise distance at most s, i. e., maxu,v∈X distG[X](u, v) ≤ s and
that X is an s-plex if G[X] is connected and every vertex v in X has at most s − 1 vertices
nonadjacent to v in X \ {v}, i. e., maxv∈X |X \ N(v)| ≤ s. (Note that a 1-club and a 1-plex
are each a clique.) We sometimes abuse these terms to refer to the subgraph induced by an
s-club or s-plex. The decision problems s-Club and s-Plex ask, given a graph G and an
integer k ∈ N, whether G contains an s-club and s-plex, respectively, of size at least k.

Degeneracy. We say that a graph G = (V, E) is d-degenerate if for every subgraph G′

of G, there exists a vertex with degG′(v) ≤ d. Equivalently, G is d-degenerate if there is an
ordering of V in which every vertex has at most d neighbors that appear later in the ordering.

ESA 2023

47:4 Correlating Theory and Practice in Finding Clubs and Plexes

We say that such an ordering is a degeneracy ordering of G. The degeneracy dG of G is
the smallest number d such that G is d-degenerate. For a vertex v ∈ V and an ordering σ

of V , we denote by Qσ
G(v) (and Qσ

G[v]) the set of vertices in NG(v) (and NG[v]) that appear
after v in σ. We also omit the superscript ·σ when it is clear.

Parameterized complexity. Here, we list several relevant notions from parameterized
complexity. See e. g., Cygan et al. [13] for a more comprehensive exposition of parameterized
complexity. A parameterized problem is fixed-parameter tractable or FPT for short if every
instance (I, k) can be solved in time f(k) · |I|O(1) for some computable function f . Such an
algorithm is called an FPT algorithm. It is widely believed that a parameterized problem is
not FPT if it is W[i]-hard for i ∈ N. One way to show fixed-parameter tractability is via
the notion of Turing kernel. For t ∈ N, a t-oracle for a parameterized problem is an oracle
that solves any instance (I, k) in constant time, provided that |I| + k ≤ t. We say that a
parameterized problem admits a Turing kernel of size f(k) if there is an algorithm with
access to an f(k)-oracle that solves (I, k) in time (|I| + k)O(1). It is straightforward to turn
a Turing kernel into an FPT algorithm by simply replacing an f(k)-oracle with a brute-force
algorithm. The brute-force algorithm runs in f ′(k) time for some computable function f ′,
resulting in an f ′(k) · (|I| + k)O(1)-time algorithm.

3 Theory

In this section, we provide theoretical analysis of clique relaxations based on the notion
of Turing kernels. We first describe in Section 3.1 the algorithm for Clique outlined by
Walteros and Buchanan [39], which runs in 1.28gnO(1) time for the gap g := d − k + 1. The
algorithms have two components. The first component is the Turing kernel parameterized by
the degeneracy d. In short, we show that Clique is polynomial-time solvable when we have
access to f(d)-oracle (see Section 2). In practice, there is no such convenient oracle so we
have to provide some algorithm – this is the second component. One way to substitute the
oracle is to use a brute-force algorithm. Since every oracle call takes an input whose size is
bounded by d, we already obtain an FPT algorithm parameterized by d. We can actually
make a more refined analysis by considering the gap parameter g = d − k + 1. Essentially, we
use an FPT algorithm parameterized by g rather than relying on brute force. Walteros and
Buchanan [39] showed that many Clique instances that can be solved efficiently in practice
indeed have small values of g.

We want to adapt this approach to clique relaxations, namely, s-Club and s-Plex.
However, there is one issue: Under standard complexity assumptions, there is no FPT
algorithm for s-Club or s-Plex. More precisely, s-Club is known to be NP-hard for s = 2
and d = 6 [16] and s-Plex is known to be W[1]-hard when parameterized by d + s [20]. For
this reason, we consider a broader notion of degeneracy, which we call x-degeneracy for x ∈ N
(1-degeneracy coincides with the standard degeneracy). We give the formal definition in
Section 3.2. With the notion of x-degeneracy at hand, we describe how to adapt the approach
employed by Walteros and Buchanan [39] to s-Club and s-Plex in Section 3.3.

3.1 Algorithm for Clique
We subsequently sketch the algorithmic approach of Walteros and Buchanan [39] for Clique.

Turing kernel. The Clique problem admits a Turing kernel, in which every input to the
oracle has at most d+1 vertices (thus size O(d2)) as follows: For an instance (G, k) of Clique,
consider a degeneracy ordering of σ = (v1, . . . , vn) of G. We will assume that k ≤ d + 1 since

A. Figiel, T. Koana, A. Nichterlein, and N. Wünsche 47:5

a d-degenerate graph has no clique of size d + 2. Observe that for every clique C of G, we
have C ⊆ Qσ[v], where v ∈ C is the vertex that appears first in a degeneracy ordering σ.
Thus, G has a clique of size k if and only if there exists a vertex v ∈ V such that G[Qσ[v]]
has a clique of size k. Since G is d-degenerate, G[Qσ[v]] has at most d + 1 vertices and
size O(d2). This leads to a Turing kernel for the parameter d: Simply call the oracle for the
instances (Qσ[v1], k), . . . , (Qσ[vn], k) and return yes iff at least one oracle answer was yes.

Oracle algorithm. Every oracle can be replaced with a brute-force algorithm running
in O(2dd2) time: Since Qσ[v] is of size at most d + 1, there are O(2d) subsets of Qσ[v] and for
every subset, it takes O(d2) time to check if every pair of vertices are adjacent. Thus, Clique
can be solved in O(2d · d2n) time. In fact, we can refine the analysis for the oracle algorithm
in terms of the gap parameter d − k + 1: To that end, we solve the Deletion to Clique
problem: Given a graph G and an integer ℓ, the task is to find a set of at most ℓ vertices
whose deletion results in a clique. There is a simple O(2ℓn2)-time algorithm for this problem:
If all vertices are pairwise adjacent and ℓ ≥ 0, then we have a yes-instance at hand. Otherwise,
there exist two nonadjacent vertices, say u and v. If ℓ = 0, then we can conclude that there is
no solution. If ℓ ≥ 1, then we recursively solve two instances (G − u, ℓ − 1) and (G − v, ℓ − 1).
This algorithm runs in O(2ℓ · n2) time. Since we need to solve this problem on G[Qσ(v)]
with ℓ := |Qσ[v]| − k ≤ d − k + 1, we have an O(2d−k+1 · d2n)-time algorithm for Clique.
We remark that an instance (G, ℓ) of Deletion to Clique is equivalent to the Vertex
Cover instance (G, ℓ) where G is the complement graph of G. Thus, using a faster known
FPT algorithm for Vertex Cover [10], we obtain an O∗

d(1.28d−k+1n)-time algorithm for
Clique (O∗

d hides factors polynomial in d).

3.2 Extending degeneracy
As mentioned in the beginning of this section, we consider a broader notion of degeneracy
that can defined in two ways.

▶ Definition 3.1. Let G be a graph and x ∈ N. The x-degeneracy of G is the smallest
integer dx ∈ N such that for each subgraph G′ of G, there exists a vertex v with |Nx,G′(v)| ≤ dx.

▶ Definition 3.2. Let G be a graph and x ∈ N. The x-degeneracy of G is the smallest
integer dx such that there is an ordering σ = (v1, . . . , vn) of G such that for every i ∈ [n],
the xth neighborhood of vi in G[vi, . . . , vn] has size at most dx. The ordering σ is called an
x-degeneracy ordering. The set of vertices in Nx,G[v] that appear after v in σ is Qσ

x,G[v].

It is not difficult to show that these two definitions are equivalent. We remark that the
notion of 2-degeneracy has been proposed by Trukhanov et al. [36] in the context of finding
s-plexes. The x-degeneracy and an x-degeneracy ordering can be found in polynomial time:

▶ Theorem 3.3. Given a graph G and an integer x ∈ N, we can compute the x-degeneracy
of G and an x-degeneracy ordering of G in O(n2m) time.

Proof. Repeat the following until the graph is empty: for every vertex v, compute the xth
neighborhood of v. Find a vertex whose xth neighborhood has the smallest size and delete it
from the graph. The ordering in which vertices are deleted is an x-degeneracy ordering. The
x-degeneracy is the maximum over all vertices of the xth neighborhood size when they are
deleted. Note that we spend O(nm) time to compute the xth neighborhood of every vertex
using e.g., BFS. Since we repeat this n times, the algorithm runs in the claimed time. ◀

ESA 2023

47:6 Correlating Theory and Practice in Finding Clubs and Plexes

G

a

b

c

d

e

f

g

G2

a

b

c

d

e

f

g

Figure 1 An example showing the difference between the 2-degeneracy of G (which is 5) and
the degeneracy of G2 (which is 6). The ordering a, b, . . . , g is a 2-degeneracy ordering in G and a
degeneracy ordering in G2. Note that {b, c, . . . , g} forms a clique in G2 but not a 2-club in G.

We remark that a very similar graph parameter has been studied in the context of
x-Club [25, 24]: the degeneracy of the xth power graph Gx of G. The power graph Gx has
the same vertices as G. Moreover, two vertices u and v are adjacent in Gx if and only if u

and v have distance at most x in G. Note that every s-club in G is a clique in Gx. The
converse, however, is not true; see Figure 1 for an example. While the degeneracy of Gx is in
general larger than the x-degeneracy, it can be computed faster: in O(nm) time [32]. In fact,
the degeneracy of Gx has already been used in Turing kernelization for finding s-clubs [32].
Subsequently, we use the smaller x-degeneracy for stronger algorithmic results.

3.3 Algorithm for s-Club and s-Plex
Turing kernel. For s-Club, we adapt the Turing kernel for Clique as follows. For every s-
club C of G, we have C ⊆ Qσ

s [v], where v ∈ C is the first vertex of C in an s-degeneracy
ordering σ. Thus, G has an s-club of size k if and only if there exists a vertex v ∈ V such
that G[Qσ

s [v]] has an s-club of size k. By the definition of x-degeneracy, we have |Qσ
s (v)| ≤ ds.

Thus, we have a Turing kernel in which every oracle call involves at most ds + 1 vertices.

Oracle algorithm. Again, we can replace every oracle call with a brute-force algorithm.
The input to every oracle call has at most ds + 1 vertices and hence there are 2ds+1 subsets.
Moreover, for every subset, it takes O(d3

s) time to determine whether the vertices have pairwise
distance at most s, resulting in an algorithm running in O(2dsd3

s) time. As in Section 3.1,
we can also refine the algorithm substituting for the oracle using the parameter ds − k + 1.
To this end, we solve the Deletion to s-Club problem: Given a graph G and an integer ℓ,
the task is to find a set of at most ℓ vertices whose deletion results in an s-club. There is
a simple O(2ℓn3)-time algorithm for this problem. If G has diameter at most s and ℓ ≥ 0,
then we have a yes-instance at hand. Otherwise there exist two vertices, say u and v,
with distG(u, v) > s. If ℓ = 0, then we can conclude that there is no solution. If ℓ ≥ 1, then
we recursively solve two instances (G − u, ℓ − 1) and (G − v, ℓ − 1). Since it takes O(n3) time
to compute all pairwise distances, this algorithm runs in O(2ℓ · n3) time. Since we need to
solve this problem on G[Qσ

s [v]] with ℓ := |Qσ
s [v]| − k ≤ ds − k + 1, we obtain:

▶ Theorem 3.4. Given the subgraph G[Qσ
s [v]] for every v ∈ V for an s-degeneracy ordering σ,

s-Club can be solved in O(2ds−k · d3
sn) time.

Turing kernel. For s-Plex, we will provide two adaptations. First, note that every s-plex
is also an s-club (recall that we only consider connected s-plex). Thus the Turing kernel with
the parameterization by ds follows analogously. For another adaptation, we use the fact that
any s-plex with at least 2s − 1 vertices have diameter at most two, as observed by Seidman

A. Figiel, T. Koana, A. Nichterlein, and N. Wünsche 47:7

and Foster [34]: Suppose that two vertices u and v in an s-plex C have distance three in G[C].
Then, every vertex in C is nonadjacent to either u or v. Since for each of u and v, there are
at most s − 1 vertices nonadjacent to it, we have |C| ≤ 2s − 2. This leads to a Turing kernel
with respect to the parameter d2 when k ≥ 2s − 1. For every s-plex of size at least 2s − 1, we
have C ⊆ Qσ

2 [v], where v ∈ C is the first vertex of C in a 2-degeneracy ordering σ. Thus, we
have again a Turing kernel where every oracle call involves at most d2 + 1 vertices. (Small
s-plex of size at most 2s − 2 can be found in O(n2s−1).)

Oracle algorithm. Again, we can replace every oracle call on h vertices with a brute-force
algorithm. The input to every oracle call has at most h + 1 vertices and hence there are 2h+1

subsets. Moreover, for every subset, it takes O(h2) time to determine whether it is an
s-plex, resulting an algorithm running in O(2hh2) time. As in Section 3.1, we can also refine
the algorithm substituting for the oracle using the parameter h − k + 1. To that end, we
solve the Deletion to s-Plex problem: Given an n-vertex graph G and an integer ℓ, the
task is to find a set of at most ℓ vertices whose deletion results in an s-plex. There is a
simple O((s + 1)ℓn2)-time algorithm for this problem. If G is an s-plex and ℓ ≥ 0, then we
have a yes-instance at hand. Otherwise there exist a vertex v and s vertices nonadjacent
to v. If ℓ = 0, then we can conclude that there is no solution. If ℓ ≥ 1, then we recursively
solve s + 1 instances (G − v, ℓ − 1) and (G − u, ℓ − 1) where u is one of s vertices nonadjacent
to v. Since it takes O(n2) time to check if the graph is an s-plex, this algorithm runs
in O((s + 1)ℓ · n2) time. Since we need to solve this problem on graphs with h vertices
with ℓ := h − k, we obtain the following:

▶ Theorem 3.5. Given the subgraph G[Qσ
s [v]] for every v ∈ V for an s-degeneracy ordering σ,

s-Plex can be solved in time O((s + 1)ds−k · d2
sn) and O(n2s−1 + (s + 1)d2−k · d3

2n).

We remark that for very small s, the first term n2s−1 can be ignored in practice, because
most instances contain an s-plex of size at least 2s − 1.

4 Experiments

In this section we present the results of our computational experiments for s-Club and
s-Plex for s ∈ {2, 3} on a large dataset of real-world graphs. We did not optimize every
aspect of the implementations as our goal is to investigate the effect of Turing kernelization
and the extent to which our theoretical findings are reflected in the running time (this is
discussed in Section 5). We will see, that the Turing kernelization is quite beneficial for
s-Club but for s-Plex the situation is not as clear.

Setup & Dataset. All experiments were performed on a machine running Ubuntu 18.04
LTS, with an Intel Xeon® W-2125 CPU and 256GB of RAM. A maximum running time of 1
hour per instance was set. We used Gurobi 8.1 to solve ILP-formulations, limited to a single
thread of execution. The program that was used to build the ILP models was implemented
in C++ and compiled with g++ 7.5.

The static graphs from the Network Repository [30] were used for all experiments. Graphs
for which at least one solver configuration timed out, ran out of memory, or completed
in less than 0.05 seconds were omitted. The last case (less than 0.05 s) is to not deal
with the effect of noise in the small running time measurements. The resulting dataset
consists of 259 graphs, with 1033 vertices on average. The source code is available at
https://git.tu-berlin.de/afigiel/splex-sclub-correl.

ESA 2023

https://git.tu-berlin.de/afigiel/splex-sclub-correl

47:8 Correlating Theory and Practice in Finding Clubs and Plexes

We remark that s-Club and s-Plex have been solved for small s on much larger graphs
within minutes [15, 12, 11]. The reason we focus on smaller graphs is to have a meaningful
multivariate analysis. More precisely, we want to see if the running time grows (as suggested
by theory) with growing x-degeneracy and gap. Having running times for large graphs with
small x-degeneracy and gap but not for large graphs with large x-degeneracy and gap would
give misleading results in our analysis in Section 5.

Solvers. We used an ILP solver as oracle for s-Club and s-Plex in the Turing kernelization.
The ILP formulations were taken from the literature: For s-Plex we used a straight-froward
formulation with O(n) variables and constraints and O(n + m) non-zeroes1 [27].

maximize: y

subject to: xv ∈ {0, 1} , y ∈ {0, . . . , n}

y =
∑
v∈V

xv

∀v ∈ V : |V |(1 − xv) +
∑

u∈N(v)

xu ≥ y − s

For 2-Club a simplified formulation by Bourjolly et al. [6] was used. It has O(n) variables,
O(n2) constraints, and O(n3) non-zeroes.

maximize:
∑
v∈V

xv

subject to: xv ∈ {0, 1}
∀u, v ∈ V, dist(u, v) > 2: xu + xv ≤ 1

∀u, v ∈ V, dist(u, v) = 2: xu + xv ≤ 1 +
∑

c∈N(u)∩N(v)

xc

For 3-Club the neighborhood formulation from Almeida and Carvalho [1, 2] was used,
with O(n) binary variables, O(m) continuous variables, at most O(n2) and O(n3) constraints
and non-zeroes, respectively2.

maximize:
∑
v∈V

xv

subject to: xv ∈ {0, 1}
∀u, v ∈ V, dist(u, v) > 3: xu + xv ≤ 1

∀u, v ∈ V, dist(u, v) ∈ {2, 3} : xu + xv ≤ 1 +
∑

c∈N(u)∩N(v)

xc +
∑

e∈Euv

ze

∀e = {a, b} ∈ E : ze ≤ xa, ze ≤ xb

∀e ∈ E : 0 ≤ ze ≤ 1

1 An s-plex of size ℓ > 2s − 1 is guaranteed to be connected and of diameter two [34]. As we only
consider s ∈ {2, 3}, we do not add constraints enforcing connectedness to the ILP. Unsurprisingly, all
found subgraphs were still connected.

2 For compact and general ILP formulations for s-Club (s ≥ 2) we refer to Salemi and Buchanan [32]
and Veremyev et al. [37].

A. Figiel, T. Koana, A. Nichterlein, and N. Wünsche 47:9

Table 1 Average running times in seconds of various solver configurations.

noTK full default hint

2club 294.3 18.7 1.9 0.9
3club 641.8 296.0 81.4 41.7
2plex 26.4 63.8 10.1 10.2
3plex 39.6 260.6 81.4 77.6
3plex-2 39.6 63.4 12.4 12.0

where Euv = {{p, q} ∈ E | p ∈ N(u) \ N(v), q ∈ N(v) \ N(u)}. We remark that different
ILP-formulations for these problems are discussed in the literature [3, 27, 32]. However,
analyzing them is beyond the scope of this work.

Solver variants. We tested several approaches using these ILP models to cover all concepts
discussed in Section 3. To this end, we use four different solver configurations, namely noTK,
full, default and hint (described below). We will refer to, for example, 2club_noTK as
the benchmark results of the noTK solver configuration on the 2-Club problem.

The noTK variant (no Turing kernel) simply built a single ILP model for the entire graph.
All other variants use the Turing kernelization to some extent. The full variant makes
only basic use of Turing kernelization, utilizing the 2/3-degeneracy as described in Section 3.
There, each oracle call is solved via an ILP. For 2-Club and 2-Plex the Turing kernelization
using 2-degeneracy is employed, for 3-Club and 3-Plex the one using 3-degeneracy. As
there is only one connected 3-plex of diameter three (the P4) which was never the largest
3-plex in our experiments we also used the 2-degeneracy based Turing kernelization for
3-Plex. We report the results of this variant under 3plex-2 (thus 3plex-2_noTK is the
same as 3plex_noTK).

The default variant uses the Turing kernel approach in combination with a simple lower
bound: It uses the maximum solution size of already solved ILPs as a lower bound on the
global solution size by adding a constraint to the ILPs enforcing that the solution has to
be larger than the current lower bound. Note that this lower bound does not appear in the
algorithm descriptions in Section 3. The order in which the ILPs are solved can therefore
have an impact on the overall running time. We used a fixed 2/3-degeneracy ordering and
did not analyze the impact of the order. Instead, we remove this effect in the hint variant.
There, we added a constraint to each ILP model in the Turing kernels which enforced that
the solution size to the Turing kernel is at least the size of the optimal solution size for
the entire graph. Thus, one can think of (heuristically) optimizing in the default variant
the order in the Turing kernelization so that the oracle calls giving the largest results come
first. Alternatively, this shows the maximum speedup possible by a “perfect” lower-bound
heuristic. Note that in the hint variant at least one ILP model still has a feasible solution.

Results. In Table 1 we summarize the average running time of the different solver configura-
tions on the four considered problems. The approach without Turing kernels is significantly
slower for 2- and 3-Club but not so much for 2- and 3-Plex. This can also be seen in the
detailed comparisons in Figure 2. Interestingly, the noTK variants are much faster in finding
plexes than in finding clubs (more than 10 times larger average running time). However, the
average running time of 2club_default is five times smaller than that of 2plex_default.
Thus, on the one hand the ILP-formulation we use for finding 2/3-clubs may have a room for

ESA 2023

47:10 Correlating Theory and Practice in Finding Clubs and Plexes

10−1

100

101

102

103
de

fa
ul

t
(c

lu
bs

)

s = 2 s = 3 s = 2

10−1 100 101 102 103

10−1

100

101

102

103

noTK [s]

de
fa

ul
t

(p
le

xe
s)

10−1 100 101 102 103

noTK [s]
10−1 100 101 102 103

hint [s]

Figure 2 Running time comparison (in seconds) of different variants (top row for 2- and 3-Club,
second row for 2- and 3-Plex). Each cross represents one instance with the x- and y-coordinates
indicating the running time of the respective variant (in seconds): default and noTK resp. hint.
Thus, a cross above (below) the solid diagonal indicates that the solver on the x-axis (y-axis) is
faster on the corresponding instance. The diagonal lines mark factors of 1 (solid), 5 (dashed) and 25
(dotted). The solid horizontal red lines indicate the time limit (1 hour). For 2- and 3-Club a
significant running time improvement is visible. For 2- and 3-Plex the picture is not so clear.

improvement. On the other hand, the Turing kernel approach works much better for clubs
than plexes. The reason is most likely that the Turing kernels are built based on distance,
which fits better with clubs than plexes. This can be seen in the gap-parameter: for 73 resp.
57 instances the gap-parameter was zero for 2-Club resp. 3-Club whereas for the plexes
the gap-parameter was never zero.

Unsurprisingly, the hint variant is the fastest one. However, the default variant is not
much slower than hint (see also right column of Figure 2), even though it does not receive
the solution size as input, and instead uses the maximum solution of the previously solved
ILPs to update the lower bound. Moreover, the default variant is considerably faster than
the full variant. This shows the strength of providing lower bounds to the ILP-solver.
Remarkably, for finding 2/3-clubs even the full variant brings a decent speedup compared
to the noTK variant.

5 Correlation between Theory and Practice

We now analyze correlations between the theoretical running time bounds in Section 3 and
the measured running times in Section 4. Since we have NP-hard problems, our working
hypothesis is that the running time should depend exponentially on some parameter(s).

A. Figiel, T. Koana, A. Nichterlein, and N. Wünsche 47:11

10−1

101

103
tim

e
[s]

–
no

TK

10−1

101

103

tim
e
[s]

–
fu

ll

10−1

100

101

102

tim
e
[s]

–
de

fa
ul

t

0 2,000 4,000 6,000
10−1

100

101

102

n

tim
e
[s]

–
hi

nt

0 500 1,000
2-degeneracy

0 50 100 150
gap

Figure 3 The running times of 2club_noTK, 2club_full, 2club_default, and 2club_hint plotted
against the number n of vertices, the 2-degeneracy, and the gap of the input graph. The solid red
lines are linear regressions best fitting to the data points (where the logarithm of the running times
is taken).

Natural parameter candidates are the number n of vertices, the 2- resp. 3-degeneracy, and
the gap parameter (suggested by our theoretical findings). Note that there is a multitude of
other viable parameters3; however, studying them is beyond the scope of this work.

We studied five problems (counting 3plex and 3plex-2 as two) with four different solvers
of each problem. Thus, there are 5 · 4 · 3 = 60 different (parameter, running time)-pairs
to analyze. We illustrate the 12 pairs for 2club in Figure 3 with the red lines depicting
the exponential function of the form αp · β that best fit the data; these lines are computed
via linear regression (logarithm of the running time versus parameter value p). Obviously,
the suggested running time function on the bottom left (2club_hint with parameter n) is
useless: our implementation will in general not become faster the larger the input gets. The
red lines on the top left and bottom right seem far more sensible.

3 See for example https://manyu.pro/assets/parameter-hierarchy.pdf or https://www.
graphclasses.org/ for dozens of graph parameters.

ESA 2023

https://manyu.pro/assets/parameter-hierarchy.pdf
https://www.graphclasses.org/
https://www.graphclasses.org/

47:12 Correlating Theory and Practice in Finding Clubs and Plexes

5.1 Method
Instead of “carefully looking” at each of the plots in Figure 3 and finding arguments for each
one of them, we want an automated way of distinguishing useful from useless suggestions.
To this end, we suggest using the Pearson correlation coefficient which we subsequently just
call correlation coefficient. It is a standard measure of linear correlation between two sets of
data. Simply put, given the (running time, parameter) data points the correlation coefficient
computes a number between -1 and 1. If there is no correlation at all, then the coefficient
is 0. With perfect correlation (i. e. the data points are on a straight line with positive slope)
the coefficient is 1. With perfect negative correlation (i. e. the data points are on a straight
line with negative slope) it is -1.

We report correlations between the logarithm of the running time and the parameter
(in our case either the number of vertices, the generalized degeneracy, or the gap). Thus,
values close to 1 represent good correlations (i.e. some exponential dependency between the
running time and the parameter). However, note that a better correlation value does not
imply a better running time. There are several specifics with our measure that we like to
address before reporting the results.

Exponential Dependency. Note that our approach “ignores” the base of the exponential
functions, in the following sense: A “perfect correlation” of 1 with, say the gap parameter g,
implies that the measured running time t satisfies the following linear relation for some
constant a and b: log t = a · g + b ⇐⇒ t = 2a·g+b = β · αg where β = 2b and α = 2a are
again two constants. Of course, α has to be nowhere close to the bases of the exponential
functions we describe in Section 3. Thus, a “perfect correlation” just indicates that there is
some exponential dependency between the parameter and the running time.

Our justification here is that the measure needs to be somewhat imprecise: The measured
running times can be greatly impacted by the configuration of the ILP-solver [17] or by
the experimental setup [26]. Hence, hitting the theorized worst-case running time seems
rather unlikely. Since we deal with NP-hard problems we expect (despite all heuristic
improvements) some exponential function describing the running time. With our setting we
can get suggestions for the base of the exponential function from experimental results.

Restricted Setting. We restrict ourselves to correlations between one parameter and the
running time. While correlations between multiple parameters and the running time are
possible, our theoretical results in Section 3 only suggest exponential dependencies between
one parameter (2/3-degeneracy or gap) and the running time and not two parameters.
Incorporating the polynomial factors of n in the running times of Section 3 is easily doable.
However, in our analysis it changed the coefficients only marginally (by less than 5%, usually
much less than 1%), probably due to the relatively small size of the graphs. As we are (for
now) only interested in simple exponential dependencies, the Pearson correlation coefficient
suffices as we can take the logarithm of all measured running times. Note that there are
different correlation coefficients that can also measure non-linear correlations and might be
better suited to other settings (e. g. when dealing with polynomial-time solvable problems).

Simplistic Analysis. We use a very simplistic statistical analysis. For example, we ignore
confidence intervals, p-values, or similar issues. The reason being that any “good” correlation
between a parameter (or a combination of parameters) and the measured running time
is only an indication for such a correlation. In particular, if some “new” correlations are
discovered with this method, then this only gives suggestions. Using our theoretical tools, we

A. Figiel, T. Koana, A. Nichterlein, and N. Wünsche 47:13

Table 2 Tables summarizing the correlation of different graph parameters n (left table), d2/d3

(middle table), and the gap g (right table) with the logarithm of the measured running times of various
solver configurations (def abbreviates default). In the middle the correlation with 2-degeneracy is
shown for 2club, 2plex and 3plex-2, and with 3-degeneracy for 3club and 3plex).

Correlation with n

noTK full def hint

2club 0.59 0.34 0.03 −0.06
3club 0.48 0.16 0.08 −0.22
2plex 0.53 0.07 0.08 0.07
3plex 0.52 0.06 −0.02 −0.01
3plex-2 0.52 0.08 0.07 0.06

Correlation with d2/d3

noTK full def hint

−0.08 0.84 0.38 −0.01
−0.12 0.67 0.46 0.22

0.21 0.63 0.46 0.46
0.02 0.65 0.40 0.39
0.02 0.62 0.45 0.44

Correlation with gap
noTK full def hint

0.01 0.06 0.35 0.61
0.14 0.34 0.46 0.72
0.22 0.60 0.44 0.45
0.02 0.63 0.39 0.38
0.02 0.59 0.42 0.42

can prove (e. g. show a running time bound) or disprove (e. g. NP-hardness for a constant
parameter value) such suggestions. This ability of theoretical verification allows us to ignore
“safety”-features from statistical analysis.

5.2 Results

Table 2 summarizes the 60 correlation coefficients of three graph parameters with the
logarithm of the measured running times.

Consider the first row corresponding to 2-Club in the three parts of Table 2. The first
columns display the correlation with n which is best for the noTK variant. This well reflects
our observations for the plots in the left column of Figure 3: The default and hint variant
do not display any reasonable correlation with n, only noTK does to some extent. Similarly,
in the right column of Figure 3 the correlations of the default and hint variant with the
gap-parameter are quite decent, but not for the noTK variant. Moreover, in the plot for the
default variant of the right column in Figure 3 there are a few instances that have a high
running time despite a parameter value of zero. This is an argument against the suggested
regression being a “good” explanation. Also, in the bottom right plot one can see that there
are no such (drastic) outliers. Hence, the correlation with the hint variant with the gap is
considerably “better” than with the slower default variant (despite only small differences in
the average running time, see Table 1). This is also reflected in the corresponding correlation
coefficients of 0.61 and 0.35 respectively (see two rightmost columns in Table 2) and, thus,
supports the correlation coefficient as reasonable measure. All in all, the results for 2-Club
indicate that the correlation coefficients reveal exponential dependencies between the running
time and the considered parameter.

Correlations with number of vertices. The results for the other problems are somewhat
similar to the ones for 2-Club. The correlation coefficient for the number of vertices is
highest for all problems with the noTK configuration, whereas with the configurations based
on Turing kernels it is significantly lower (or even negative). This is somehow expected, as
all our ILP formulations use O(n) binary variables. State-of-the-art ILP solvers are highly
complex (“a bag of tricks”) and able to solve instances with millions of integer variables
efficiently. Thus, the correlation of around 0.5 (for noTK) with the number of vertices is
higher than for the other variants, but not the overall highest correlations (see second row
and second column in Figure 3 for the plot corresponding to the highest correlation).

ESA 2023

47:14 Correlating Theory and Practice in Finding Clubs and Plexes

Correlations with generalized degeneracy. The Turing kernel approaches correlate in gen-
eral better with the 2/3-degeneracy, notable exceptions are the 2club_hint and 3club_hint
variants. As expected, across all problems the highest correlations with the 2/3-degeneracy
are achieved by the full variants: The 2-degeneracy (3-degeneracy) is in our dataset on
average more than five times (more than three times) smaller than n. Hence, the high
correlations for the noTK variants with n translate to high correlations for the full variants
with 2/3-degeneracy. For the noTK configuration there is barely any correlation with the
2/3-degeneracy. It thus seems that the ILP solver cannot exploit the 2/3-degeneracy – at
least with the given ILP formulations.

Correlations for default and hint variants. As discussed in Section 4, the default and
hint variants are considerably faster than the full variants due to having access to some
(perfect) lower bound. As we use the black box of an ILP-solver we do not have theoretical
running time bounds covering the effect of this lower bound. Also note that the running time
differences between the default and hint variants are much smaller than the differences
between other pairs of variants (see Table 1). However, we can observe significant differences
in the correlations of the default and hint variants for 2-Club and 3-Club with respect
to the generalized degeneracy and the gap parameter. Moreover, the correlation coefficients
support some speculations: The correlations in the middle table of Table 2 suggest that
this running time improvement is not (so much) correlated to the 2/3-degeneracy but to
another parameter. For finding clubs the gap-parameter is a good explanation: 2club_hint
and 3club_hint have high correlations with the gap parameter; this can also be seen in the
bottom right 2 × 2 plot subgrid of Figure 3. Thus, with a better lower bound computation
(i. e., some actual heuristic) we suspect the correlation of the default variant with the
degeneracy to decrease and increase with the gap parameter.

For plexes this argumentation does not hold. There is rarely any difference in the
correlation coefficients of the default and hint variant with the 2/3-degeneracy and the
gap-parameter. The reason is simple: while the gap is considerably smaller than the 2/3-
degeneracy for 2/3-Club (the clubs are rather large), this is not the case for 2/3-Plex (the
plexes are quite small), see Figure 4 (in the appendix). Thus, for 2/3-Plex the correlations
differ only marginally between the hint and default variants. Moreover, this explains
very well why despite 2club_noTK being quite slow compared to 2plex_noTK the variant
2club_hint is much faster than 2plex_hint: The average gap for our 2-club instances
is 7.9, hence the exponential running time dependency on the gap is manageable. For 3-club
instances, the average gap is 18.6 which, apparently, is one of the reasons why the 3club
variants are much slower than the 2club variants.

6 Conclusion

We provided theoretical bounds for algorithms solving s-Club and s-Plex and experimentally
tested the employed Turing kernelization for s ∈ {2, 3}. We found that the Turing kernel
approach improves the running time significantly more for clubs than plexes. We believe
that this is due to the fact that the x-degeneracy is defined based on distance. This suggests
the need for exploring notions more suitable for finding plexes.

We also discussed the correlation between the observed running times and the theoretical
bounds. Yet, there is still a large gap between theory and practice: for example, the bases
of the exponential function obtained by regression are all below 1.1 – much smaller than
current theoretical results suggest. We are confident that our approach based on correlation
coefficients can help to close this gap. The approach is easy to employ and quite flexible.

A. Figiel, T. Koana, A. Nichterlein, and N. Wünsche 47:15

100

101

102

103

ga
p

+
0.

5
(c

lu
bs

)

100 101 102 103

100

101

102

103

2-degeneracy

ga
p

+
0.

5
(p

le
xe

s)

100 101 102 103

3-degeneracy

102

103

104

n

Figure 4 Relation between 2-degeneracy, gap, and number of vertices. We added 0.5 to the gap
as we use log scale and several instances have a gap of zero (for 2club and 3club). The diagonal
lines mark factors of 1 (solid), 5 (dashed) and 25 (dotted).

Finally, we discuss some directions for future work:
Checking whether the running times correlate with multiple parameters is an easy (but
tedious) extension. The whole process should allow for relatively easy automation. An
automated tool could generate a list of likely correlations from experimental results.
These can then be analyzed theoretically with the parameterized complexity framework.
This way, practice could give more impulses for theory.
Our approach is not limited to analyzing running times. Other objectives could be the
size of preprocessed instances (using the kernelization framework from parameterized
algorithmics) or approximation factors of heuristics or approximation algorithms.
While we use worst-case analysis, average case analysis or smoothed analysis are further
natural candidates.
Improving our general approach: For example, how to incorporate timeouts? Or are
different correlation coefficients better suited?

References
1 Maria Teresa Almeida and Filipa D. Carvalho. The k-club problem: new results for k= 3.

CIO - Centro de Investigação Operacional, CIO - Working Paper 3/2008, 2008.
2 Maria Teresa Almeida and Filipa D. Carvalho. An analytical comparison of the lp relaxations of

integer models for the k-club problem. European Journal of Operational Research, 232(3):489–
498, 2014. doi:10.1016/j.ejor.2013.08.004.

3 Balabhaskar Balasundaram, Sergiy Butenko, and Illya V. Hicks. Clique relaxations in social
network analysis: The maximum k-plex problem. Operations Research, 59(1):133–142, 2011.
doi:10.1287/opre.1100.0851.

ESA 2023

https://doi.org/10.1016/j.ejor.2013.08.004
https://doi.org/10.1287/opre.1100.0851

47:16 Correlating Theory and Practice in Finding Clubs and Plexes

4 Thomas Bläsius, Tobias Friedrich, David Stangl, and Christopher Weyand. An efficient branch-
and-bound solver for hitting set. In Proceedings of the Symposium on Algorithm Engineering and
Experiments (ALENEX ’22), pages 209–220. SIAM, 2022. doi:10.1137/1.9781611977042.17.

5 Jean-Marie Bourjolly, Gilbert Laporte, and Gilles Pesant. Heuristics for finding k-clubs in an
undirected graph. Computers & Operations Research, 27(6):559–569, 2000.

6 Jean-Marie Bourjolly, Gilbert Laporte, and Gilles Pesant. An exact algorithm for the maximum
k-club problem in an undirected graph. European Journal of Operational Research, 138(1):21–
28, 2002. doi:10.1016/S0377-2217(01)00133-3.

7 Austin Buchanan and Hosseinali Salemi. Parsimonious formulations of low-diameter clusters.
Optimization Online Eprints, 2017.

8 Lijun Chang. Efficient maximum clique computation over large sparse graphs. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD 2019), pages 529–538. ACM, 2019. doi:10.1145/3292500.3330986.

9 Maw-Shang Chang, Ling-Ju Hung, Chih-Ren Lin, and Ping-Chen Su. Finding large k-clubs in
undirected graphs. Computing, 95(9):739–758, 2013. doi:10.1007/s00607-012-0263-3.

10 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theoretical
Computer Science, 411(40-42):3736–3756, 2010. doi:10.1016/j.tcs.2010.06.026.

11 Alessio Conte, Donatella Firmani, Caterina Mordente, Maurizio Patrignani, and Riccardo
Torlone. Cliques are too strict for representing communities: Finding large k-plexes in real
networks. In Proceedings of the 26th Italian Symposium on Advanced Database Systems,
volume 2161 of CEUR Workshop Proceedings. CEUR-WS.org, 2018. URL: http://ceur-ws.
org/Vol-2161/paper41.pdf.

12 Alessio Conte, Tiziano De Matteis, De Sensi, Roberto Grossi, Andrea Marino, and Luca
Versari. D2K: scalable community detection in massive networks via small-diameter k-plexes.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (KDD ’18), pages 1272–1281. ACM, 2018. doi:10.1145/3219819.3220093.

13 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

14 David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in large
sparse real-world graphs. ACM J. Exp. Algorithmics, 18, 2013. doi:10.1145/2543629.

15 Sepp Hartung, Christian Komusiewicz, and André Nichterlein. Parameterized algorithmics and
computational experiments for finding 2-clubs. Journal of Graph Algorithms and Applications,
19(1):155–190, 2015. doi:10.7155/jgaa.00352.

16 Sepp Hartung, Christian Komusiewicz, André Nichterlein, and Ondrej Suchý. On structural
parameterizations for the 2-club problem. Discrete Applied Mathematics, 185:79–92, 2015.
doi:10.1016/j.dam.2014.11.026.

17 Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Automated configuration of mixed
integer programming solvers. In Proceedings of the 7th International Conference on Integration
of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR 2010), volume 6140 of Lecture Notes in Computer Science, pages 186–202. Springer,
2010. doi:10.1007/978-3-642-13520-0_23.

18 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

19 Subhash Khot and Venkatesh Raman. Parameterized complexity of finding subgraphs with
hereditary properties. Theoretical Computer Science, 289(2):997–1008, 2002. doi:10.1016/
S0304-3975(01)00414-5.

20 Tomohiro Koana, Christian Komusiewicz, and Frank Sommer. Computing dense and sparse
subgraphs of weakly closed graphs. In Procedings of the 31st International Symposium on
Algorithms and Computation (ISAAC 2020), pages 20:1–20:17, 2020. doi:10.4230/LIPIcs.
ISAAC.2020.20.

https://doi.org/10.1137/1.9781611977042.17
https://doi.org/10.1016/S0377-2217(01)00133-3
https://doi.org/10.1145/3292500.3330986
https://doi.org/10.1007/s00607-012-0263-3
https://doi.org/10.1016/j.tcs.2010.06.026
http://ceur-ws.org/Vol-2161/paper41.pdf
http://ceur-ws.org/Vol-2161/paper41.pdf
https://doi.org/10.1145/3219819.3220093
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/2543629
https://doi.org/10.7155/jgaa.00352
https://doi.org/10.1016/j.dam.2014.11.026
https://doi.org/10.1007/978-3-642-13520-0_23
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.4230/LIPIcs.ISAAC.2020.20
https://doi.org/10.4230/LIPIcs.ISAAC.2020.20

A. Figiel, T. Koana, A. Nichterlein, and N. Wünsche 47:17

21 Tomohiro Koana, Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, and Philipp
Zschoche. Data reduction for maximum matching on real-world graphs: Theory and
experiments. ACM Journal of Experimental Algorithmics, 26:1.3:1–1.3:30, 2021. doi:
10.1145/3439801.

22 Christian Komusiewicz. Multivariate algorithmics for finding cohesive subnetworks. Algorithms,
9(1):21, 2016. doi:10.3390/a9010021.

23 Christian Komusiewicz, Falk Hüffner, Hannes Moser, and Rolf Niedermeier. Isolation concepts
for efficiently enumerating dense subgraphs. Theoretical Computer Science, 410(38-40):3640–
3654, 2009. doi:10.1016/j.tcs.2009.04.021.

24 Yajun Lu, Esmaeel Moradi, and Balabhaskar Balasundaram. Correction to: Finding a
maximum k-club using the k-clique formulation and canonical hypercube cuts. Optimization
Letters, 12(8):1959–1969, 2018. doi:10.1007/s11590-018-1273-7.

25 Esmaeel Moradi and Balabhaskar Balasundaram. Finding a maximum k-club using the
k-clique formulation and canonical hypercube cuts. Optimization Letters, 12(8):1947–1957,
2018. doi:10.1007/s11590-015-0971-7.

26 Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Producing
wrong data without doing anything obviously wrong! In Mary Lou Soffa and Mary Jane
Irwin, editors, Proceedings of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems(ASPLOS 2009), pages 265–276. ACM, 2009.
doi:10.1145/1508244.1508275.

27 Mohammad Javad Naderi, Austin Buchanan, and Jose L. Walteros. Worst-case analysis of clique
mips. Mathematical Programming, 195(1):517–551, 2022. doi:10.1007/s10107-021-01706-2.

28 F. Mahdavi Pajouh and B. Balasundaram. On inclusionwise maximal and maximum cardinality
k-clubs in graphs. Discrete Optimization, 9:84–97, 2012.

29 Foad Mahdavi Pajouh, Esmaeel Moradi, and Balabhaskar Balasundaram. Detecting large
risk-averse 2-clubs in graphs with random edge failures. Annals of Operations Research,
249(1-2):55–73, 2017. doi:10.1007/s10479-016-2279-0.

30 Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive
graph analytics and visualization. In AAAI, 2015. accessed 01.01.2022. URL: https:
//networkrepository.com.

31 Ryan A. Rossi, David F. Gleich, and Assefaw Hadish Gebremedhin. Parallel maximum
clique algorithms with applications to network analysis. SIAM J. Sci. Comput., 37(5), 2015.
doi:10.1137/14100018X.

32 Hosseinali Salemi and Austin Buchanan. Parsimonious formulations for low-diameter
clusters. Mathematical Programming Computation, 12(3):493–528, 2020. doi:10.1007/
s12532-020-00175-6.

33 Alexander Schäfer, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Parame-
terized computational complexity of finding small-diameter subgraphs. Optimization Letters,
6(5):883–891, 2012. doi:10.1007/s11590-011-0311-5.

34 Stephen B Seidman and Brian L Foster. A graph-theoretic generalization of the clique concept.
Journal of Mathematical Sociology, 6(1):139–154, 1978.

35 Darren Strash and Louise Thompson. Effective data reduction for the vertex clique cover
problem. In Proceedings of the Symposium on Algorithm Engineering and Experiments
(ALENEX ’22), pages 41–53. SIAM, 2022. doi:10.1137/1.9781611977042.4.

36 Svyatoslav Trukhanov, Chitra Balasubramaniam, Balabhaskar Balasundaram, and Sergiy
Butenko. Algorithms for detecting optimal hereditary structures in graphs, with application
to clique relaxations. Computational Optimization and Applications, 56(1):113–130, 2013.
doi:10.1007/s10589-013-9548-5.

37 Alexander Veremyev, Oleg A. Prokopyev, and Eduardo L. Pasiliao. Critical nodes for distance-
based connectivity and related problems in graphs. Networks, 66, 2015. doi:10.1002/net.
21622.

ESA 2023

https://doi.org/10.1145/3439801
https://doi.org/10.1145/3439801
https://doi.org/10.3390/a9010021
https://doi.org/10.1016/j.tcs.2009.04.021
https://doi.org/10.1007/s11590-018-1273-7
https://doi.org/10.1007/s11590-015-0971-7
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1007/s10107-021-01706-2
https://doi.org/10.1007/s10479-016-2279-0
https://networkrepository.com
https://networkrepository.com
https://doi.org/10.1137/14100018X
https://doi.org/10.1007/s12532-020-00175-6
https://doi.org/10.1007/s12532-020-00175-6
https://doi.org/10.1007/s11590-011-0311-5
https://doi.org/10.1137/1.9781611977042.4
https://doi.org/10.1007/s10589-013-9548-5
https://doi.org/10.1002/net.21622
https://doi.org/10.1002/net.21622

47:18 Correlating Theory and Practice in Finding Clubs and Plexes

38 Anurag Verma, Austin Buchanan, and Sergiy Butenko. Solving the maximum clique and
vertex coloring problems on very large sparse networks. INFORMS J. Comput., 27(1):164–177,
2015. doi:10.1287/ijoc.2014.0618.

39 Jose L. Walteros and Austin Buchanan. Why is maximum clique often easy in practice?
Operations Research, 68(6):1866–1895, 2020. doi:10.1287/opre.2019.1970.

40 Qinghua Wu and Jin-Kao Hao. A review on algorithms for maximum clique problems. European
Journal of Operational Research, 242(3):693–709, 2015. doi:10.1016/j.ejor.2014.09.064.

41 Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent set.
Information and Computation, 255:126–146, 2017. doi:10.1016/j.ic.2017.06.001.

https://doi.org/10.1287/ijoc.2014.0618
https://doi.org/10.1287/opre.2019.1970
https://doi.org/10.1016/j.ejor.2014.09.064
https://doi.org/10.1016/j.ic.2017.06.001

	1 Introduction
	1.1 Related work
	1.2 Our results

	2 Preliminaries
	3 Theory
	3.1 Algorithm for Clique
	3.2 Extending degeneracy
	3.3 Algorithm for s-Club and s-Plex

	4 Experiments
	5 Correlation between Theory and Practice
	5.1 Method
	5.2 Results

	6 Conclusion

