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—— Abstract

We study the parameterized complexity of two classic problems on directed graphs: HAMILTONIAN
CyCLE and its generalization LONGEST CYCLE. Since 2008, it is known that HAMILTONIAN CYCLE is
W/[1]-hard when parameterized by directed treewidth [Lampis et al., ISSAC’08]. By now, the question
of whether it is FPT parameterized by the directed feedback vertex set (DFVS) number has become
a longstanding open problem. In particular, the DFVS number is the largest natural directed width

measure studied in the literature. In this paper, we provide a negative answer to the question,
showing that even for the DFVS number, the problem remains W[1]-hard. As a consequence, we also
obtain that LONGEST CYCLE is W[1]-hard on directed graphs when parameterized multiplicatively
above girth, in contrast to the undirected case. This resolves an open question posed by Fomin et
al. [ACM ToCT’21] and Gutin and Mnich [arXiv:2207.12278]. Our hardness results apply to the path
versions of the problems as well. On the positive side, we show that LONGEST PATH parameterized
multiplicatively above girth belongs to the class XP.
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1 Introduction

Hamiltonian Cycle (Path) Parameterized by DFVS. In HAMILTONIAN CYCLE (PATH),
we are given a (directed or undirected) graph G = (V, E), and the objective is to determine
whether G contains a simple cycle (path) of length n = |V (G)|, called a Hamiltonian cycle
(path). HAMILTONIAN CYCLE! has been widely studied, from various algorithmic (see, e.g.,
[7,9-12,15,16,28,29,37]) and structural (see, e.g., the survey [50]) points of view. This
problem is among the first problems known to be NP-complete [60], and it remains NP-
complete on various restricted graph classes (see, e.g., [2,20,46]). Nevertheless, a longest path
can be found easily in polynomial-time on the large class of directed acyclic graphs (DAGs)
using dynamic programming.? Thus, it is natural to ask — can we solve HAMILTONIAN CYCLE
efficiently on wider classes of directed graphs that resemble DAGs to some extent?

1 Throughout the following paragraphs, we refer only to the cycle variant of the problem, but the same
statements also hold for the path variant.
2 For example, see the lecture notes at https://people.csail.mit.edu/virgi/6.s078/1lecturel7.pdf.
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Figure 1 Figure 3 in [59]. Caption (verbatim): “The ecology of digraph widths. Undirected
measures refer to the underlying undirected graph. Arrows denote generalizations (for example small
treewidth implies small kelly-width). The dashed lines indicate rough borders of known tractability
and intractability for most studied problems (including HAMILTONIAN CYCLE).”

In the undirected realm, the class of acyclic graphs (i.e., forests) can be generalized
to graphs of bounded treewidth [27]. The celebrated Courcelle’s theorem [24] states that
a wide range of problems, including HAMILTONIAN CYCLE, are fized-parameter tractable
(FPT)? when parameterized by treewidth. Historically, the notion of directed treewidth
(Definition 4) was introduced by Johnson et al. [58] as a generalization of the undirected
notion contrived to solving linkage problems such as HAMILTONIAN CYCLE; see also [70].
Since then, directed treewidth has been intensively studied (see, e.g., [1,47,48,52,61,76]).
Over the years, various other width measures for directed graphs have been proposed and
studied as well, where the most prominent ones are the DFVS number (which is the minimum
number of vertices to remove to make the graph acyclic), directed pathwidth (defined similarly
to directed treewidth, where we replace trees by paths), DAG-width [69] and Kelly-width [55].
Notably, DFVS is the largest among them (see Fig. 1). Johnson et al. [58] and Hunter et
al. [55] proved that HAMILTONIAN CYCLE (as well as LONGEST CYCLE, defined later) is
slice-wise polynomial (XP) parameterized by directed treewidth. Later, Lampis et al. [64]
(originally in 2008 [63]) showed that, here, this is the “right” form of the time complexity:
they proved that HAMILTONIAN CYCLE parameterized by directed pathwidth is W[1]-hard
(in fact, even W[2]-hard), implying that the problem is unlikely to be FPT.

Thus, since 2008, it has remained open whether HAMILTONIAN CYCLE parameterized by
DFVS is FPT or W[1]-hard (see Fig. 1). As a follow-up to their result, Kaouri et al. [59]
wrote: “Treewidth occupies a sweet spot in the map of width parameters: restrictive enough
to be efficient and general enough to be useful. What is the right analogue which occupies a
similar sweet spot (if it exists) for digraphs? One direction is to keep searching for the right
width that generalizes DAGS, that is searching the area around (and probably above) DFVS.

. The other possibility is that widths which generalize DAGSs, such as DFVS and all the
currently known widths, may not necessarily be the right path to follow. ... The search is on!”

Our main contribution is, essentially, the finish line for this search for HAMILTONIAN
CycLE. We prove that, unfortunately, already for DFVS number itself, the problem is
W(1]-hard. Formally, HAMILTONIAN CYCLE (PATH) By DFVS is defined as follows: Given
a directed graph G = (V, E) and a subset X C V(G) such that G — X is acyclic, determine
whether G contains a Hamiltonian cycle (path). Here, the parameter is |X|. Note that X
need not be given as input — the computation of a minimum-size vertex set whose removal
makes a given directed graph acyclic is in FPT [23], so, given a directed graph G, we can
simply run the corresponding algorithm to attain X whose size is the DF'VS number of G.

3 A problem is FPT (resp. XP) if it is solvable in time f(k) - n®® (resp. n/®) for some computable
function f of the parameter k, where n is the size of the input.
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» Theorem 1. HAMILTONIAN CYCLE By DFVS is W[1]-hard.

We also obtain the same hardness result for HAMILTONIAN PATH By DFVS. Notice
that HAMILTONIAN CYCLE (PATH) By DFVS is in XP, since, as mentioned earlier, it is
already known to be in XP even when parameterized by the smaller parameter directed
treewidth [58]. So, the classification of this problem is resolved.

Lastly, we remark that the choice of the larger directed feedback arc set (DFAS) number
is also futile, as it also yields W[1]-hardness. Indeed, there is a simple reduction that shows
this: Replace each vertex v in .S by two vertices, v, and vout, so that all vertices that were
in-neighbors (out-neighbors) of v become in-neighbors (out-neighbors) of v, (vVout), and add
the arc (Vin, Vout)- It is immediate that the original instance is a Yes-instance of HAMILTONIAN
CycLE if and only if the new instance is, and that the DF'VS number of the original graph
equals the DFAS number of the new graph.

Longest Cycle (Path) Above Girth. In the LONGEST CYCLE (PATH) problem, also known
as k-LONG CYCLE (k-PATH), we are given a (directed or undirected) graph G and a non-
negative integer k, and the objective is to determine whether G contains a simple cycle
(path) of length at least k. Clearly, LONGEST CYCLE is a generalization of HAMILTONIAN
CYCLE as the latter is the special case of the former when k& = n. Over the past four
decades, LONGEST CYCLE and LONGEST PATH have been intensively studied from the
viewpoint of parameterized complexity. There has been a long race to achieve the best
known running time on general (directed and undirected) graphs for the parameter is
k [5,14,17,19,22,40,44,54,62,67,72,74,77-79], where the current winners for directed graphs
have time complexity 4% - n©(1) [79] for LONGEST CyYCLE and 2F - n®®) [77] for LONGEST
PATH. Moreover, the parameterized complexity of the problems was analyzed with respect to
structural parameterizations (see, e.g., [7,28,29,33,37,45,49]), on special graph classes (see,
e.g., [32,41,42,66,68,80]), and when counting replaces decision [3,4,6,13,18,25,26, 34,65, 75].
In fact, LONGEST PATH is widely considered to be one of the most well studied in the field,
being, perhaps, second only to VERTEX COVER [27].

We consider the “multiplicative above guarantee” parameterization for LONGEST PATH
where the guarantee is girth*, called LONGEST CYCLE (PATH) ABOVE GIRTH, which is
defined as follows (for directed graphs): Given a directed graph G = (V, E) with girth g and
a positive integer k, determine whether G contains a cycle (path) of length at least g - k.
Here, the parameter is k. This parameterization of LONGEST CYCLE (PATH) was considered
by Fomin et al. [36], who proved that on undirected graphs the problem is in FPT. They
posed the following open question: “For problems on directed graphs, parameterization
multiplicatively above girth (which is now the length of a shortest directed cycle) may also
make sense. For example, what is the parameterized complexity of DIRECTED LONG CYCLE
under this parameterization?” This question was also posed by Gutin et al. [51] as Open
Question 9. As our second contribution, we resolve this question — in sharp contrast to the
undirected case, the answer is negative:

» Theorem 2. LONGEST CYCLE ABOVE GIRTH is W[1]-hard.

Again, we can transfer the hardness also to the longest path setting. On the positive side,
we give a deterministic XP algorithm for the path variant of the problem.

» Theorem 3. LONGEST PATH ABOVE (GIRTH s in XP.

4 The girth of a graph is the length of its shortest cycle, and it is easily computable in polynomial time.
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Therefore, the classification of this problem is resolved as well. Notice that this theorem
also easily implies that when we ask for a path of length at least g + &, the problem is in
FPT (in fact, solvable in time 2°0®) . nOM)) as follows. If k > g, then we can simply run
some known 29®) . nO(M)_time algorithm for LONGEST PATH parameterized by the solution
size. Otherwise, when k < g, we create n instances of LONGEST PATH ABOVE GIRTH with
parameter 2 (thus, solvable in polynomial time by our theorem), one for each vertex v:
Replace v by a path of length g — k whose start vertex has all in-neighbors of v as its
in-neighbors and whose end vertex has all out-neighbors of v as its out-neighbors, and take
the disjoint union of the resulting graph and a cycle of length g; it is easy to see that we
should return Yes if and only if the answer to at least one of these n instances is Yes.

Other above/below guarantee versions of LONGEST CYCLE (PATH) were also considered in
the literature; see [8,35,38,39,51,53,56,57]. Remarkably, while the parameterized complexity
of all of these versions is quite well understood for undirected graphs, the resolution of the
parameterized complexity of most of these versions has been (sometimes repeatedly) asked
as an open question for directed graphs, where only little is known. It is conceivable that
our contributions will shed light on these open questions as well in future works.

1.1 Techniques

Hamiltonian Cycle By DFVS. Before describing the ideas behind our reduction, we provide
some background about the related D1SJOINT PATHS problem. Here, we are given a graph
with k vertex pairs (s;, ;) and the goal is to determine whether there exists k vertex-disjoint®
paths such that the i-th path connects s; to t;. While D1SJOINT PATHS is famously known
to be FPT (parameterized by k) on undirected graphs [71], the problem becomes NP-hard
on directed graphs already for k = 2 [43]. What is interesting for us is that when the input
is restricted to be a DAG, then DI1SJOINT PATHS can be solved by an XP algorithm [43], but
it is unlikely to admit an FPT algorithm as the problem is W[1]-hard [73].

The latter result suggests a starting point for extending the hardness to our problem.
A simple idea to design a reduction from DI1SJOINT PATHS on DAGs is to just insert edges
t1 — s9,lo —> 83,...,tr — s1. Then the set {s1,..., sk} becomes a DFVS and the existence
of k disjoint (s;, t;)-paths implies the existence of a long cycle. There is a catch, though.
This construction might turn a No-instance into an instance with a long cycle because the
cycle might traverse the vertices s;,t; in a different order, corresponding to a family of
disjoint paths which does not form a solution to the original instance. To circumvent this,
we open the black box and give a reduction directly from the basic W[1]-complete problem —
MULTICOLORED CLIQUE — while adapting some ideas from the hardness proof for DISJOINT
PaTHS on DAGs by Slivkins [73].

The construction by Slivkins uses two kinds of gadgets. First, for each i =1,...,k one
needs a choice gadget comprising two long directed paths with some arcs from the first path
to the second one. The solution path corresponding to the i-th choice gadget must choose one
of these arcs to “change the lane”; the location of this change encodes the choice of the i-th
vertex in the clique. Next, for each pair (i,5), where 1 < i < j < k, one needs a verification
gadget to check whether the i-th and j-th chosen vertices are adjacent. The corresponding
solution path must traverse the i-th and j-th choice gadgets around the locations of their
transitions. The arcs between the choice gadgets are placed in such a way that both these
locations can be visited only when the corresponding edge exists in the original graph.

5 Another studied variant involves finding edge-disjoint paths. While these two problems behave differently
in some settings, this is not the case in our context.
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Our reduction relies on a similar mechanism of choice gadgets, formed by k directed
paths, corresponding to k colors in the MULTICOLORED CLIQUE instance. The i-th path is
divided into blocks corresponding to the vertices of color i. We enforce that a Hamiltonian
cycle must omit exactly one block when following such a path, thus encoding a choice of k
vertices. The arcs between blocks from different paths encode the adjacency matrix of the
original graph. We would like to guarantee that any Hamiltonian cycle C' visits each omitted
block k — 1 times, utilizing the arcs mentioned above. To ensure this, we need to allow C' to
“make a step backward” on the directed path during such a visit. On the other hand, we
cannot afford to create too many disjoint cycles because DFVS should have size bounded
in terms of k. As a remedy, we attach k — 1 long cycles to each choice gadget, which are
connected to every block in a certain way (see Figure 3 on page 8). Using the fact that every
vertex in the gadget must be visited by C at some point, we prove that each long cycle is
entered exactly once and each choice gadget is entered exactly k times in total, imposing
a rigid structure on a solution. As a result, we get rid of the flaw occurring in the naive
construction and obtain an equivalent instance with DFVS number O(k?).

Longest Cycle (Path) Above Girth. Having established our main hardness result, it is easy
to extend it to LONGEST CYCLE (PATH) ABOVE GIRTH. We replace each vertex v in the
DFVS by two vertices v;;, and vy, splitting the in- and out-going arcs of v between them,
and insert a long path from v;, to v,y:. This path is set sufficiently long to make the girth g
of the graph comparable to its size. Consequently, the original graph G is Hamiltonian if and

only if the second one has a cycle of length g- (dfvs(G)+1). So, this problem is also W[1]-hard.

To design an XP algorithm for LONGEST PATH ABOVE GIRTH, we follow the win-win
approach employed by the FPT algorithm for the undirected case [36], which relies on a certain
version of the Grid Minor Theorem. In general, the theorem states that either a graph contains
a k X k-grid as a minor, or its treewidth is bounded by f(k), for some (in fact, polynomial)
function f. In the first scenario, a sufficiently long path always exists, whereas in the second
scenario, the problem is solved via dynamic programming on the tree decomposition.

We take advantage of the directed counterpart of the Grid Minor Theorem: either
a digraph contains a subgraph isomorphic to a subdivision of the order-O(k) cylindrical wall
or its directed treewidth is bounded by f(k), for some function f [61]. We prove that in the
first scenario again a sufficiently long path always exists (so we obtain a Yes-instance), while
in the second scenario we can utilize the known algorithm to compute the longest path in
XP time with the help of the directed tree decomposition. Finally, let us remark that this
argument does not extend to LONGEST CYCLE ABOVE GIRTH because we cannot guarantee
the existence of a sufficiently long cycle in a subdivision of a cylindrical wall. We leave it
open whether this problem belongs to XP as well.

2 Preliminaries

General Notation. For an integer r, let [r] = {1,...,7}, and for integers r1, 79, let [ry, 73] =
{r1,r1+1,...,r2}. We refer to [27] for standard definitions in Parameterized Complexity.

Directed Graphs. We use standard graph theoretic terminology from Diestel’s book [31].

We work with simple directed graphs (digraphs) where the edges are given by a set F
of ordered pairs of vertices. For an edge e = (u,v) in a digraph G, we say that u is an
in-neighbor of v and v is an out-neighbor of u. We refer to e as an incoming edge of v and an
outgoing edge of u. For a vertex set S C V(G) we define 9°%*(S) = {(u,v) € E(G): u € S},
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Figure 2 A cylindrical grid and a cylindrical wall of order 4. The figure is taken from [61].

9m(S) = {(u,v) € E(G): v € S}, and 9(S) = 9°“(S) U 9™(S). For two vertex sets
A, B C V(G) we write E(A, B) for 9(A)N9O(B), that is, the set of edges with one endpoint in
A and the other in B. We use this notation only when the digraph G is clear from the context.
When C is a subgraph of G we abbreviate 9(C) = d(V(C)) and likewise for the remaining
notation. A digraph G is isomorphic to a digraph H if there is a bijection f : V(G) — V(H)
such that for any u,v € V(G) we have (u,v) € E(G) if and only if (f(u), f(v)) € E(H). The
length of a path (or a cycle) P is the number of edges in P. When the first and last vertices of
a path P are s and t, respectively, we call it an (s, t)-path. A cycle in G is called Hamiltonian
if it visits all the vertices of G. The girth of a digraph G is the shortest length of a cycle in
G. For a rooted tree T and a node ¢t € V(T'), T; denotes the subtree of T rooted at ¢. By
orienting each edge in a rooted tree from a parent to its child we obtain an arborescence.

Directed Treewidth. We move on to the directed counterparts of treewidth and grids.

» Definition 4 (Directed Tree Decomposition [61]). A directed tree decomposition of a
directed graph G is a triple (T, 3,7), where T is an arborescence, and f: V(T) — 2V and
v : B(T) = 2V are functions such that

1. {B(t):t € V(T)} is a partition of V(G) into (possibly empty) sets, and

2. ife=(s,t) e E(T), A=J{B({) : ' € V(T3)} and B =V (G)\ A, then there is no closed

(directed) walk in G — y(e) containing a vertex in A and a vertex in B.

For t € V(T), define T'(t) := B(t) U|U{v(e) : e is incident with t}. Moreover, define
B(T) == U{B() : ¥ € V(T)}.

The width of (T, 8,7) is the least integer w such that |T'(t)| < w+1 for allt € V(T). The
directed treewidth of G is the least integer w such that G has a directed tree decomposition
of width w.

» Definition 5 (Subdivision). For a directed graph G, the edge subdivision of (u,v) € E(G) is
the operation that removes (u,v) from G and inserts two edges (u,w) and (w,v) with the new
vertex w. A graph derived from G by a sequence of edge subdivisions is a subdivision of G.

We now define special graphs called cylindrical grids and cylindrical walls (see Fig. 2).

» Definition 6 (Cylindrical Grid and Cylindrical Wall [21]). A cylindrical grid of order k, for
some k > 1, is the directed graph Gy consisting of k pairwise vertex disjoint directed cycles
Ci,...,Cy, together with 2k pairwise vertex disjoint directed paths Py ..., Psy such that:
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for i € [k], V(Cl) = {’Ui’l,vi,g,...,’ui’gk} and E(Cl) = {(’Ui’j,’l}i’j+1)| j € [2k - 1]} @]

{(vi2nk,vi1)}

fOT‘ 1€ {17 3,5,...,2k — 1}, E(PZ) = {(7)1’1', Ug’i), (Ug’i, ’Ug,i)7 ey ('kal,zﬁ Uk,i)}; and

fOT‘ 1€ {27 47 6, ey 2k’}, E(Pl) = {(’Uk,i, 'kal,i)y ('kal,zﬁ ’kag’i), RN (’Ug’i7 Ul,i)}-
A cylindrical wall of order k is the directed graph Wy, obtained from the cylindrical grid Gy,
by splitting each vertex of degree 4 as follows: we replace v by two new vertices vin, Voyut and
an edge (Vin, Vout) S0 that every edge (u,v) € E(Gy) is replaced by an edge (u,vi,) and every
edge (v,u) € E(Gy) is replaced by an edge (Vout, ).

Note that in the cylindrical grid Gy, the path P; is oriented from the first cycle to the
last one if ¢ is odd, and from the last cycle to the first if i is even (see Figure 2). We have
the following theorem for directed graphs, which will be helpful in designing our algorithm
in Section 4 using a win/win approach.

» Theorem 7 (Directed Grid Theorem [61]). There is a function f : N — N such that for
every fived k € N, when given a directed graph G, in polynomial time we can compute either:
1. a subgraph of G that is isomorphic to a subdivision® of Wy, or

2. a directed tree decomposition of G of width at most f(k).

3 Hardness of HAMILTONIAN CYCLE By DFVS

This section is devoted to the proof of Theorem 1. It is based on a parameterized reduction
from MULTICOLORED CLIQUE, defined as follows.

MULTICOLORED CLIQUE
Input: A graph G = (V, E), an integer k, and a partition (V!, V2, ... VF) of V.
Parameter: k

Question: Is there a clique of size k with a vertex from each V?, i € [k]?

This problem is well-known to be W/[l]-hard [27, Theorem 13.7]. For an instance
(G, (VY V2 ..., V*)) of MULTICOLORED CLIQUE, we construct an instance (G’,X) of
HAMILTONIAN CYCLE By DFVS as follows.

Construction of G’. For i € [k] we construct a directed path P? corresponding to V*
as follows. Let us fix an arbitrary ordering <; of the vertices in V', and accordingly,
denote V' = {v1,v9,. ..UM|}. To each vertex v € V! we associate a directed path P,
on 2k vertices. We let v'*/* and v"9"* denote the first and last vertices of P,, respect-

ively. We refer to the 2(k — 1) internal vertices of P, as vl:oul pbin g2o0ut gi=lout
pimhin gitlout pyitlin o gpkout ykin (note that the index 7 is avoided). The directed path
P? is the concatenation of these paths: P, =P, —,...,— P,

v
For every i € [k] we create a “universal” vertex u’ and insert edges (u;, v'*/?), (u;, v"9"*),
(v'eTt u;), (vr9ht u?) for all v € V. Next, we create k — 1 cycles C*=7 for j € [k]\ {4}, each of
. i : i—j i—j,out i—j,in Li—j,out i—j,in i—j,out i—j,in
length 2 - |V*|. The vertices of C are ¢, 7O, ey T e TP e e T e g
We insert edges from ¢! 77°% to v7°4* and from v7" to ¢77" for all v € V*. See Figure 3
for an illustration.

6 The theorem in [61] states that the cylindrical wall of order k is obtained as a topological minor of G.
For any topological minor H of GG, there exists a subdivision of H isomorphic to a subgraph of G.
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Figure 3 Fragment of the graph G’: the path P? (comprising subpaths P,,, Py,, Py;) and the
cycle C?73,

We add two sets of k “terminal” vertices: S = {s',s2,...,s"} and T = {t1,#2,... t*}.
For i € [k] we insert edges from s',i € [k], to v/ (being the first vertex of the path P?).
We also add edges from vlr‘lj’,ht (being the last vertex of the path P?) to t°.

We also create two additional sets of (2) terminal vertices each: S = {A‘_)j 1<1<5<
k}and T = {#77:1<1<j <k}. Fori,j € [k],i < j, and v € V*, we insert an edge from
5177 to v7'" (which belongs to P, and hence to P?) and for v € V3, we insert an edge from

vhout to 7 Furthermore, we add edges from every t € T'U T to every s € SU S.

Finally we encode the adjacency matrix of G: for each edge uv in E(G) with u € V¢ and
v € VJ with i < j, we insert an edge from u/°% to v*". See Figure 4 for an example.

This concludes the construction of G’. Clearly, the graph G’ can be computed in
polynomial time when given (G, (V',...,V*)). We begin the analysis of G’ by showing that
it has a DFVS of size O(k?).

» Lemma 8. There exists a subset X C V(G') such that G' — X is a DAG and |X| =
k(k —1) + 2k + (5).

Proof. Let Y be the set of vertices {ciﬁj’c’“t: i,j € [k], i # j} where v’ stands for the first

vertex in V. We set X = YUTUT U {u!,...u*} and claim that G’ — X is a directed
acyclic graph. First observe that for each i € [k] the graph L’ := P*U U;» L0 — X s
acyclic because it can be drawn with each edge being either vertical or hor1zontal facing
right (see Figure 3). The remaining edges in G’ — X either start at S U S (these vertices
have no incoming edges) or go from L' to L7 for i < j. Thus G’ — X is a DAG. Finally we
check that |X| = |Y| + |T| + |T| + k = k(k — 1) + 2k + (%). <

Correctness. We first show that if (G, (V1 V?2,...,V¥)) is a Yes-instance then there exists
a Hamiltonian cycle in G’. In the following lemmas, we refer to the directed feedback vertex
set X from Lemma 8.

» Lemma 9. If (G, (V, V2, ..., VF)) is a Yes-instance of MULTICOLORED CLIQUE then
(G', X) is a Yes-instance of HAMILTONIAN CYCLE By DFVS.

Proof. Let {v1,..., v} be a clique in G with v; € Vi for i € k. For i € [k] we define the
path Z* that starts at s?, follows P? until v'gf ! visits u, and then follows P from fu”ght to
t'. Next, for i < j we construct the path QHJ as §77 = ol o 01T o PO vl n_y

Ci7t vl oul 1123, Note that one can traverse the entire cycle C*7 after entering

t out djiny . .
jin and leave towards v/°**. The edge (v/*" ,v;™) is present in G’ due to the

encoding of the adjacency matrix of G. The union of all these paths covers the entire vertex
set of G'. Tt suffices to observe that these paths can be combined into a single cycle using

the edges from T'U T to SUS. <

it from v}
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Figure 4 Graph G (top right) with a clique {u1,vs, w2} and the graph G’ encoding G. For the
sake of legibility, several groups of edges are omitted in this picture: edges incident to u’ or the
cycles C*77 and edges going from TUT to SU S.

Proving the converse of Lemma 9 is more challenging. We will reveal the structure of a
potential Hamiltonian cycle H in G’ gradually. First, we show that if H enters the cycle
C'"™J through an incoming edge corresponding to a certain vertex v € V¥, then it must also
leave it through an outgoing edge related to v, and vice versa. A priori, there might be
multiple vertices v € V? for which this happens.

For v € V* we denote the edge from ci77:°% to piout by ei=Jout - Similarly, let the edge
from v to i3I be el din,

» Lemma 10. Let H be a Hamiltonian cycle in G' and 1 <i < j < k. Then E(H)NO(C*7)
is of the form \J,cp{el77°%, el 73} where U is some subset of V.

Proof. Note that §(C'™7) = {el ?70ut el 2din eiviout elsiin ..ef,;’/j"o“t ,eﬁ)ﬁ/]""} First
suppose that for some v € V', we have e¢{7%" € E(H). Since H is a Hamiltonian cycle in
G’ it has to visit the vertex ¢/ 774!, Thus H contains an outgoing edge of ¢ 77°4t. The
only two outgoing edges of ¢l 770Ut are ¢i=70ut and (cf730ut ci=3in)  Since el 79" € E(H)
is an incoming edge of ¢/, 77" the edge (¢!77°ut ¢i77m) cannot belong to E(H). The only
other candidate for the outgoing edge of ¢i73:°ut i eiiout gq el=iout ¢ B(H).

The proof of implication in the other direction is analogous. Hence for each v € V' we
have {794 € E(H) & el77m € E(H). <
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As the next step, we show that when v € V? and a Hamiltonian cycle enters some cycle
C'"™7 adjacent to P’ through a vertex from P,, then it must enter all the k — 1 cycles adjacent
to P’ through P,. Again, we cannot yet exclude a scenario that this would happen for
multiple vertices v € V.

» Lemma 11. For any Hamiltonian cycle H in G' and i € [k, there exists a subset U C V*
for which we have E(H) N E(P?, Ujzi C=9) =U,ep E(Py, Ui Cid).

Proof. Targeting a contradiction, suppose there exists a vertex v € V* such that at least
one edge of E(Py, U, C*77) is in E(H) and at least one edge of E(P,, Ujzi C*7) is not
in E(H). From Lemma 10 we know that E(H) N E(Py,U; C*7) is a union of pairs of
the form {ef77°ut ei=iin} for some j € [k] \ {i}. Hence there indices p,j € [k] \ {i} so that
(vPin piout) e B(PY), one of the sets E(B,, C'7P), E(B,,C*™7) has empty intersection with
E(H) and the other one is contained in E(H). We can assume w.l.o.g. that j =p+ 1 and
the first of these sets is empty.

We arrive at the following scenario: p € [k]\ {i}, e 7P°ut ei=Pin ¢ F(H) and el 7PHlout
,el=ptlin e B(H). Since H is a Hamiltonian cycle, it has to visit the vertex v”". Thus,
it has to traverse an outgoing edge of v»™. The only outgoing edges of vP™ are the
edges el P and (vPin yPTLoul) By the assumption, el 7P ¢ E(H) so (vPm, vPHLout) ¢
E(H). On the other hand, since ei?PT1°% ¢ F(H) is an incoming edge of vPT1°% we
have (v pPtlout)y ¢ EF(H) as it is also an incoming edge to vP¥1°% . This yields a

contradiction. |

We want to argue now that in fact the set U in Lemma 11 is a singleton, that is, for fixed
i € [k] each cycle C*77 is being entered exactly once and from the same subpath P, of P?.
To this end, we take advantage of the universal vertices u’.

» Lemma 12. For any Hamiltonian cycle H in G’ and i € [k] there exists v € V' such that
E(H)N E(P, Uj# Ci~9Y is B(P,, UJ_# i),

Proof. Let U be the set from Lemma 11. Targeting a contradiction, suppose that there
exist two distinct v,w € U. That is, E(H) N E(Pi,U#i C=3) D E(Py, U, C=i) U
E(Py,U; 2 C77).

The Hamiltonian cycle H must contain an outgoing edge of v'¢f*, which is the first vertex
on the path P,. The only out-neighbors of v'/* are u* and vP°** where p = 1 when i # 1 or
p =2 when i = 1. Recall that the e/ 77°“* is present in E(B},,; C'7/) and thereby in
E(H) by the assumption. Also, since the edge e/ ?P°“! is an incoming edge of vP°%! | the
edge (v'*ft, vP°") cannot be in E(H). Thus the outgoing edge of v'¢/* in H is (v'*/t, u?).

Now consider the vertex w'ef?, which is the first one of the path P,. By the same
argument as above, we have (w'*f* u?) € E(H). This implies that u’ has two in-neighbors in
H, a contradiction.

It is also impossible that U = ) because then E(H)Nd(C*7) = () for each j # i implying
that H is disconnected. Consequently, U contains exactly one element. |

We can summarize the arguments given so far as follows: for a Hamiltonian cycle H in
G’ and i € [k], there exists v; € V?, such that, for all j # i, it holds that E(H)N9(C*7) =

E(P,,,C"77) = {el 2704t el 7} We make note of a simple implication of this fact.

» Lemma 13. Let H be a Hamiltonian cycle in G' and i,j € [k]. Let v € V' satisfy
E(H)NO(C7) = {ei7dout ei=iin}  Then e = (v3:°% 7" does not belong to E(H).
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Proof. Since E(H) N d(C*77) comprises exactly two edges, we infer that H contains the

path Q = vii" — ci=din — ciziout _y giout with all internal vertices from V (C%7).

If H traversed the edge e = (v/°% v3") then it would contain the cycle C' formed by Q
and e. This would imply H = C, which contradicts that H is Hamiltonian. |

We are going to show that H can include only one edge that goes from V(P?) to V(P7);

it will follow that this edge must be (v}, v;’c’“t).

» Lemma 14. Let H be a Hamiltonian cycle in G'. For each pair i,j € [k] with i < j we
have |E(H) N E(P', P7)| < 1.

Proof. Suppose that |E(H) N E(P% P7)| > 2. Then there exist u,w € V7’ and e, €
A" (ub M) N U (PY), e, € O (wh™) N G°(P?) such that ey, e, € E(H). This implies
that the edges (u®°“t ub"), (wh°* wm) € E(P7) cannot be used by H. Since i < j,
the vertex u"°“" has only one out-neighbor different than u*™: the terminal t*27. Hence
(ui’°“t,tA’_’j) € E(H). But the same argument applies to w"°“!. As a consequence, two
incoming edges of 7 are being used by H and so we arrive at a contradiction. <

Finally, we prove the second implication in the correctness proof of the reduction.

» Lemma 15. If (G',X) is a Yes-instance of HAMILTONIAN CYCLE By DFVS then
(G, (VY V2 ...,V¥) is a Yes-instance of MULTICOLORED CLIQUE.

Proof. Let H be a Hamiltonian cycle in G’ and v; € V' be the vertex given by Lemma 12
for i € [k]. Fix a pair of indices i < j. By Lemma 13 we know that the edge (v/°",v/'")
does not belong to E(H). The remaining outgoing edges of v/°** belong to E(P?, P7) and
H must utilize one of them. By the same argument, H must traverse one of the incoming

edges of v;-’i" that belongs to E(P?, P7). Due to Lemma 14, the Hamiltonian cycle H can

use at most one edge from E(P?, P7). Consequently, we obtain that (v)°*,v""™) € E(H).

? J

) is present in E(G’) and, by the construction of

In particular, this means that (07", v%"

1 ’ J
G', implies that v;v; € E(G). Therefore, {v1,vs, ..., v} forms a clique in G. <

Lemmas 9 and 15 constitute that the instances (G, (V*,V2,...,V¥)) and (G, X) are
equivalent while Lemma 8 ensures that |X| = O(k?). We have thus obtained a parameterized
reduction from MULTICOLORED CLIQUE to HAMILTONIAN CYCLE By DFVS, proving
Theorem 1.

Due to space constraints, the W[1]-hardness proofs for LONGEST CYCLE ABOVE GIRTH
and the path variants of both problems are provided in the full version.

4 XP Algorithm for LONGEST PATH ABOVE GIRTH

Johnson et al. [58] proved that HAMILTONIAN PATH is in XP parameterized by directed
treewidth. This result was later extended by de Oliveira Oliveira [30] to capture a wider range
of problems expressible in Monadic Second Order (MSO) logic with counting constraints. As
a special case of this theorem, we have the following.

» Theorem 16 ([30]). LONGEST PATH on directed graphs is in XP when parameterized by
directed treewidth.

We will use the Directed Grid Theorem (Theorem 7), which either returns a cylindrical
wall of order O(k) in G or concludes that the directed treewidth of G is bounded in terms
of k. In the former case, we prove that a path of length g - k always exists in G. In the latter
case, we use Theorem 16 to solve the problem optimally by an XP algorithm.
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Figure 5 The path R (colored in red) in a subdivision of W5, described in Lemma 20.

Throughout this section we abbreviate W = Woi 11 (the cylindrical wall of order 2k + 1).
In order to establish correctness of the algorithm, we need to argue that any subdivision H
of W admits a path k times longer than the girth of H.

We denote the 2k + 1 vertex disjoint cycles in W by C}V,C¥V | ... C’;/ZH counting from
the innermost one. For a subdivision H of W we denote the counterpart of C}V in H as C/.
We refer to the girth of H as g. Note that g lower bounds the length of each cycle CH.

» Definition 17. A subpath in C}V is called a segment of CV if its endpoints have out-
neighbors in Ci‘/_‘ﬁl and none of its internal vertices has out-neighbors in Civjfl, A subpath in
CH is a segment of CH if it is a subdivision of a segment in C}V.

We make note of a few properties of segments.

» Observation 18. For every i € [2k + 1] the following hold.

1. Each cycle C}V is a cyclic concatenation of k + 1 segments of length 4.

2. Each cycle CH is a cyclic concatenation of k + 1 segments.

3. Ifi > 1 then each segment of C}V has a unique internal vertex with an in-neighbor in C} .

We show that in every cycle C# we can choose a segment S so that the path obtained by
traversing all vertices in C}! that are not internal vertices of S is almost as long as C'H.

» Lemma 19. For a segment S of CH, let S be the subpath of CH that starts at the end

of S and ends at the start of S. Then there exists a segment SHE of CH such that SE has

length at least g — 745

Proof. By Observation 18 we know that C# can be partitioned into k + 1 segments. By a
H

counting argument, there exist a segment S of size at most % Thus, for the path

SH complementing S¥ | we have |E(SH)| > |E(CH)|- (1 — =) =9 (- 29). <

Let 594t denote the first vertex on S. If i > 1, we define s to be the unique internal
vertex of S corresponding to a vertex in C}V with an in-neighbor in C}V,. If i = 1, we
define si" to be the last vertex on S¥.

» Lemma 20. Let H be a subdivision of Wapi1 and g be the girth of H. Then there exists a
path of length at least g - k in H.
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Proof. For i € [2k + 1] we define path R; in C; as follows. If ¢ is odd, we set R; to be the
subpath of C; from s to s If i is even, the path R; begins at the unique vertex in CH
that can be reached via a subdivided edge from s*} and R; ends at the unique vertex in C}
from which s'ﬁl is reachable by via a subdivided edge. Note that the first and last indices in
[2k + 1] are odd, so the paths R; are well-defined. We can now concatenate Ry, Ra, ..., Rogt1
using the subdivided edges between the cycles to obtain a path R in H; see Figure 5.

We argue that R is sufficiently long. There are k + 1 odd indices in [2k + 1], and, for
each of them, R; contains the path :S‘\f{ (from Lemma 19) of length at least g — z%7. Since
these form vertex disjoint subpaths of R, we conclude that E(R) > (9 — z%7)(k +1) =

gk+1)—g=g-k. <
We are ready to summarize the entire algorithm.
» Theorem 3. LONGEST PATH ABOVE GIRTH is in XP.

Proof. We first execute the algorithm from Theorem 7, which returns either a directed tree
decomposition of width f(k), for some computable function f, or a subgraph H of G that is
a subdivision of Wai1. Note that the girth of H is at least the girth of G. In the first case,
we apply the algorithm from Theorem 16 to find the longest path in G in polynomial time
for fixed k. In the latter case, Lemma 20 asserts that H contains a path of length at least k&
times the girth of H, so we can report that (G, k) a Yes-instance. <
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