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Abstract
In the committee selection problem, the goal is to choose a subset of size k from a set of candidates C

that collectively gives the best representation to a set of voters. We consider this problem in Euclidean
d-space where each voter/candidate is a point and voters’ preferences are implicitly represented by
Euclidean distances to candidates. We explore fault-tolerance in committee selection and study the
following three variants: (1) given a committee and a set of f failing candidates, find their optimal
replacement; (2) compute the worst-case replacement score for a given committee under failure of f

candidates; and (3) design a committee with the best replacement score under worst-case failures.
The score of a committee is determined using the well-known (min-max) Chamberlin-Courant rule:
minimize the maximum distance between any voter and its closest candidate in the committee.
Our main results include the following: (1) in one dimension, all three problems can be solved in
polynomial time; (2) in dimension d ≥ 2, all three problems are NP-hard; and (3) all three problems
admit a constant-factor approximation in any fixed dimension, and the optimal committee problem
has an FPT bicriterion approximation.
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1 Introduction and Problem Statement

We consider the computational complexity of adding fault tolerance into spatial voting. In
spatial voting [7, 1, 29], the voters and the candidates are both modeled as points in some
d-dimensional space, where each dimension represents an independent policy issue that is
important for the election, and each voter’s preference among the candidates is implicitly
encoded by a distance function. For example, in the simplest 1-dimensional setting, voters
and candidates are points on a line indicating their real-valued preference on a single issue.
The specific setting for our work is multiwinner spatial elections, also called committee
selection, in d dimensions where we have a set V of n voters, a set C of m candidates, and a
committee size (integer) k. The goal is to choose a subset of k candidates, called the winning
committee, that collectively best represents the preferences of all the voters [9, 11, 12].

One aspect of committee selection that appears not to have been investigated is fault
tolerance, that is, how robust a chosen committee is against the possibility that some of the
winning members may default. Committee selection problems model a number of applications
in the social sciences and in computer science where such defaults are not uncommon, such as
democratic elections, staff hiring, choosing public projects, locations of public facilities, jury
selection, cache management, etc. [21, 14, 26, 2, 4, 23, 13]. In this paper, we are particularly
interested in designing algorithms to address questions of the following kind: If some of the
winning members default, how badly does this affect the overall score of the committee? Or,
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95:2 Fault Tolerance in Euclidean Committee Selection

how much does the committee score suffer if a worst-case subset of size f defaults? Finally,
can we proactively choose a committee in such a way that it can tolerate up to f faults with
the minimum possible score degradation? We begin by formalizing these problems more
precisely and then describing our results.

Suppose V = {v1, . . . , vn} is a set of n voters and C = {c1, . . . , cm} is a set of m

candidates, modeled as points in d-dimensional Euclidean space. (We occasionally call the
tuple (V, C) an election E.) Given a positive integer k, we want to elect k candidates, called
the committee, using the well-known Chamberlin-Courant voting rule [5]. This rule assigns a
score to each committee as follows. Let T ⊆ C be a committee. For each voter v, the score
of T for v is defined as σ(v, T ) = minc∈T d(v, c), namely, the distance from v to its closest
candidate in T .1 The score of the committee T is defined as σ(T ) = maxv∈V σ(v, T ), namely,
the largest distance between any voter and its closest neighbor in T . (In facility location
parlance, this is the well-known k-center problem.)

The fault tolerance of a committee is parameterized by a positive integer f , which is the
upper bound on the number of candidates that can fail.2 Throughout the paper, we use
the notation J to denote a failing set of candidates. We are allowed to replace the failing
members of J with any set of at most |T ∩J | candidates from C \J . We often denote this set
of replacement candidates by R. However, we must keep all the non-failing members of T in
the committee – that is, the replacement committee is the set (T \ J) ∪R – and throughout
the paper our goal is to optimize this committee’s score, namely σ((T \ J) ∪R).

We consider the following three versions of fault-tolerant committee selection, presented
in increasing order of complexity. The first problem is the simplest: given a committee and a
failing set, find the best replacement committee.

Optimal Replacement Problem (ORP)
Input: An election E = (V, C), a committee T ⊆ C and a failing set J ⊆ C.
Goal: Find a replacement set R ⊆ C \J of size at most |T ∩J | minimizing σ((T \J)∪R).

Our second problem is to quantify the fault tolerance of a given committee T over worst-
case faults. That is, what is the largest score of T ’s replacement when a worst-case subset
of f faults occur? We introduce the following notation as T ’s measure of j-fault-tolerance,
for any 0 ≤ j ≤ f : σj(T ) = maxJ⊆C s.t. |J|≤j σ((T \ J) ∪ R), where R is an optimal
replacement set with size at most |T ∩ J |. We want to compute σf (T ). Occasionally, we also
use the notation σ0(T ) for the no-fault score of T , namely σ(T ).

Fault-Tolerance Score (FTS)
Input: An election E = (V, C), a committee T ⊆ C and a fault-tolerance parameter f .
Goal: Compute σf (T ).

Our third and final problem is to compute a committee with optimal fault-tolerance score.

Optimal Fault-Tolerant Committee (OFTC)
Input: An election E = (V, C), a committee size k and a fault-tolerance parameter f .
Goal: Find T ⊆ C of size at most k minimizing σf (T ).

1 Originally, Chamberlin and Courant [5] defined a voting rule on Borda scores (also known as Borda-CC).
In this paper, similarly to [2], we study a min-max version of this rule on a more general scoring function,
which in our case is based on voter-candidate distances.

2 In our work, we will allow any subset of size f from C to fail, so the faults can also include candidates
not in the selected committee T . This only makes the problem harder because the adversary can always
limit the faults to T , and elimination of candidates from C \ T makes finding replacements for failing
committee members more difficult.



C. Sonar, S. Suri, and J. Xue 95:3

1.1 Our Results
We first show that even in one dimension, fault-tolerant committee problems are nontrivial. In
particular, while the Optimal Replacement Problem (ORP) is easily solved by a simple greedy
algorithm, the other two problems, Fault-Tolerance Score (FTS) and Optimal Fault-Tolerant
Committee (OFTC), do not appear to be easy. Our main result in one dimension is the
design of efficient dynamic-programming-based algorithms for these two problems. Along
the way, we solve a fault-tolerant Hitting Set problem for points and unit intervals, which
may be of independent interest.

In two dimensions and higher, OFTC is NP-hard because of its close connection to
the k-center problem. However, we show that even the seemingly simpler problem of
optimal replacement (ORP) is also NP-hard. Our main results include a constant-factor
approximation for all three problems in any fixed dimension (in fact, in any metric space),
as well as a novel bicriterion FPT approximation via an EPTAS whose running time has the
form f(ϵ)nO(1). For ease of reference, we show these results in the following table.

Table 1 Summary of our results.

One-dimensional
instances

Dimension d ≥ 2
Complexity Approximation Bounded f

ORP P
(Theorem 1)

NP-hard
(Theorem 11)

3-approx.
(Lemma 12)

P
(full version)

FTS P
(Theorem 6)

NP-hard
(Theorem 11)

3-approx.
(Lemma 13)

P
(full version)

OFTC P
(Theorem 9)

NP-hard
(Theorem 11)

5-approx.
(Lemma 17)

Bicriterion-EPTAS
(Theorem 20)

NP-hard
(full version)

3-approx.
(Theorem 16)

Due to limited space, proofs of some of the theorems/lemmas (marked with (⋆)) are
deferred to the full version of the paper.

1.2 Related Work
To the best of our knowledge, the issue of fault tolerance in committee selection has not been
studied in voting literature – their primary focus is on protocols and algorithms for choosing
candidates [11, 12, 25, 27, 28, 8, 3]. However, the following two lines of work consider some
related issues. First, in the “unavailable candidate model” [22, 15] the goal is to choose
a single winner with maximum expected score when candidates fail according to a given
probability distribution; in contrast, we consider multiwinner elections under worst-case
faults. In the second line of work, a set of election control problems are considered where
candidates are added [10] or deleted [17] to change the outcome of the election. In this
setting, the candidate set is modified to obtain a favorable election outcome, which is a
rather different problem than ours.

In the facility-location research, there has been prior work on adding fault tolerance to
k-center or k-median solutions [6, 20, 19, 30, 16], but the main approach there is to assign
each user (voter) to multiple facilities (candidates). In particular, the “p-neighbor k-center”
framework [6] minimizes the maximum distance between a user and its pth center as a
way to protect against p − 1 faults. This formulation, however, differs from our optimal
fault-tolerant committee problem (OFTC) because in our setting the replacement candidates
are chosen after failing candidates are announced. Therefore, in the OFTC problem, the
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designer does not have to simultaneously allocate p neighbors for all the voters. Furthermore,
to the best of our knowledge, neither of our first two problems – Optimal Replacement (ORP)
and Fault-Tolerance Score (FTS) – have been studied in the facility-location literature, and
initiate a new research direction. We also formulate and solve a fault-tolerant hitting set
problem in one dimension, which may be of independent interest.

2 Fault-Tolerant Committees in One Dimension

Even in one dimension, computing the fault-tolerance score of a given committee or finding
a committee with minimum fault-tolerance score is nontrivial. The optimal replacement
problem, however, is easy – a simple greedy algorithm works. Our main result in this section
is to design efficient dynamic-programming algorithms for the former two problems. In doing
so, we also solve the fault-tolerant version of Hitting Set for points and unit segments.

2.1 Optimal Replacement Problem
In the Optimal Replacement Problem (ORP), we are given a committee T ⊆ C and a failing
set J ⊆ C, and we must find a replacement set R minimizing the score σ((T \ J)∪R), where
|R| ≤ |T ∩ J |. Since this score is always the distance between some voter-candidate pair, it
suffices to solve the following decision problem: Is there a replacement set with score at most
r? We can then try all possible O(nm) distances to find the smallest feasible replacement
score.

This decision problem is equivalent to the following hitting set problem: for each voter
v ∈ V , let Iv be the interval of length 2r centered at v, and let I = {Iv : v ∈ V } be the set of
these n (voter) intervals. A subset of candidates is a hitting set for I if each interval contains
at least one of the candidates. In our problem, we are given a hitting set T and a failing
subset of candidates J , and we must find the minimum-size replacement hitting set. Such a
replacement is easily found using the standard greedy algorithm, as follows. We first remove
all of the intervals from I that are already hit by a candidate in T \ J , and we also remove
all the failing candidates J from C. For the leftmost remaining interval, we then choose the
rightmost candidate c contained in it, add it to R, delete all intervals hit by c, and iterate
until all remaining intervals are hit. If we ever encounter an interval containing no candidate,
or if the size of the replacement set is larger than |T \ J |, the answer to the decision problem
is no. Otherwise, the solution is R. The greedy algorithm is easily implemented to run in
time O((m + n) log(m + n)). To find the optimal replacement set, we can do a binary search
over O(nm) values of r and find the smallest r for which |(T \ J) ∪R| ≤ k.

▶ Theorem 1. The Optimal Replacement Problem can be solved in time O((m+n) log2(m+n))
for one-dimensional Euclidean elections.

2.2 Computing the Fault-Tolerance Score (FTS) of a Committee
We now come to the more difficult problem of computing the fault-tolerance score σf (T ) of
a committee T in one dimension, which is the worst case over all possible failing sets of T .
Once again it suffices to solve the following decision problem: given a size-k committee T and
a real number r, can we find a replacement with score at most r for every failing subset of
size f? Using our hitting set formulation, σf (T ) ≤ r if and only if T is an f -tolerant hitting
set of I, that is, for any failing set J ⊆ C of size at most f , there exists a replacement set
R ⊆ C \ J such that |(T \ J)∪R| ≤ |T | and (T \ J)∪R hits I. (Recall that each member of
I is an interval of length 2r centered at one of the voter positions.) We can then compute
the fault-tolerance score of T by trying each of the O(nm) voter-candidate distances to find
the smallest r for which this decision problem has a positive answer.
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I1

I2

I3

I4

c1 c2 c3 c4 c5

Figure 1 The figure shows an interval hitting set instance with four intervals and five points.
The set {c2, c4} is a feasible hitting set. For X = {c2, c3, c5}, the intervals I1, I3, I4 are X-disjoint.

We solve this fault-tolerant hitting set decision problem by observing that the size of
a smallest hitting set equals the size of a maximum independent set, defined with respect
to candidate points and voter intervals in the following way. Suppose the intervals of
I = {I1, . . . , In} are sorted left to right. First, we can assume without loss of generality that
|Ii ∩C| > f for all i ∈ [n], since otherwise there is no f -tolerant hitting set for I. Given a set
of points X in R, we say that a set of intervals is X-disjoint if each point in X is contained
in at most one interval. (That is, X-disjoint intervals can be thought of as independent in
that they contain disjoint sets of points in X). The following claim is easy to prove.

▶ Lemma 2. Given a set of points X and a set of intervals J on the real line, the size of a
minimum hitting set X ′ ⊆ X of J equals the maximum size of an X-disjoint subset of J .

Thus, if T ⊆ C is an f -tolerant hitting set for I, then for any failing set J ⊆ C, the
size of any (C \ J)-disjoint subset of I is at most |T |. One should note that the size of the
maximum (C \ J)-disjoint subset in I is a monotonically increasing function of |J | – as more
candidates fail, more intervals can become disjoint. Our goal is to find the maximum size
of such a disjoint interval family over all possible failure sets J of size at most f . We will
do this using dynamic programming, by combining solutions of subproblems, where each
subproblem corresponds to an index range [i, j], over the set of candidate points c1, . . . , cm.
Assuming that the candidate points C = {c1, . . . , cm} are ordered from left to right, our
subproblems are defined as follows, for 1 ≤ i ≤ j ≤ m:

Ci,j = {ci, . . . , cj} is the set of candidates in the range [ci, cj ].
Ii,j = {I ∈ I : I ∩ C ⊆ Ci,j} is the set of intervals that only contain points from Ci,j .
For any J ⊆ Ci,j , δi,j(J) is the maximum size of a (Ci,j\J)-disjoint subset of Ii,j .
The subproblems we want to solve are the values δi,j(f) = maxJ⊆Ci,j ,|J|≤f δi,j(J).

The key technical lemma of this section is the following claim.

▶ Lemma 3. T ⊆ C is an f-tolerant hitting set of I if and only if |T ∩ Ci,j | ≥ δi,j(f), for
all 1 ≤ i ≤ j ≤ m.

Proof. We first show the “if” part of the lemma. Assume |T ∩Ci,j | ≥ δi,j(f) for all i, j ∈ [m]
with i ≤ j. To see that T is an f -tolerant hitting set of I, consider a failing set J ⊆ C of
size at most f . We have to show the existence of a replacement set R ⊆ C\J such that
|(T\J) ∪R| ≤ |T | and (T\J) ∪R is a hitting set of I. We write T\J = {ci1 , . . . , cip

}, where
i1 < · · · < ip. For convenience, set i0 = 0 and ip+1 = m + 1. By our assumption, every
interval I ∈ I is hit by some point in C. Thus, either I is hit by T\J or I belongs to Ii,j where
i = it−1 + 1 and j = it − 1 for some index t ∈ [p + 1]. Now consider an index t ∈ [p + 1]. We
write Tt = T ∩Ci,j and define Rt ⊆ Ci,j\J as a minimum hitting set of Ii,j . By Lemma 2, the
size of Rt is equal to the maximum size of a (Ci,j\J)-disjoint subset of Ii,j , which is nothing
but δi,j(J ∩ Ci,j). Also, by assumption, we have |Tt| = |T ∩ Ci,j | ≥ δi,j(f) ≥ δi,j(J ∩ Ci,j).
Therefore, |Rt| ≤ |Tt|. Finally, we define R =

⋃p+1
t=1 Rt. Clearly, (T\J) ∪ R hits I. So it

suffices to show that |(T\J) ∪R| ≤ |T |. Since |Rt| ≤ |Tt| for all t ∈ [p + 1], we have
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95:6 Fault Tolerance in Euclidean Committee Selection

|(T\J) ∪R| = |T\J |+
p+1∑
t=1
|Rt| ≤ |T\J |+

p+1∑
t=1
|Tt| = |T |,

which completes the proof of the “if” part.
Next, we prove the “only if” part of the lemma. Assume T ⊆ C is an f -tolerant hitting

set of I. Consider two indices i, j ∈ [m] with i ≤ j. To show |T ∩ Ci,j | ≥ δi,j(f), it suffices
to show that |T ∩ Ci,j | ≥ δi,j(J) for all J ⊆ Ci,j with |J | ≤ f . Since T is an f -tolerant
hitting set of I, there exists R ⊆ C\J such that |(T\J)∪R| ≤ |T | and (T\J)∪R is a hitting
set of I. For brevity, let T ′ = (T\J) ∪ R. By definition, the intervals in Ii,j can only be
hit by the points in Ci,j . Thus, T ′ ∩ Ci,j is a hitting set of Ii,j . As T ′ ∩ Ci,j ⊆ Ci,j\J , by
Lemma 2, the size of T ′ ∩ Ci,j is at least the maximum size of a (Ci,j\J)-disjoint subset of
Ii,j , i.e., |T ′ ∩ Ci,j | ≥ δi,j(J). Furthermore, because J ⊆ Ci,j , we have (T\J)\Ci,j = T\Ci,j .
It follows that T\Ci,j ⊆ T ′\Ci,j and thus |T\Ci,j | ≤ |T ′\Ci,j |. For a committee T , we can
partition T into two parts: the part containing candidates in Ci,j and the part containing
candidates outside of Ci,j . Hence, |T | = |T ∩Ci,j |+ |T\Ci,j | and |T ′| = |T ′∩Ci,j |+ |T ′\Ci,j |.
Because |T ′| ≤ |T | and |T ′\Ci,j | ≥ |T\Ci,j |, we have |T ′ ∩ Ci,j | ≤ |T ∩ Ci,j |. Therefore,
|T ∩ Ci,j | ≥ δi,j(J). This completes the proof of Lemma 3. ◀

In order to decide if σf (T ) ≤ r, therefore, we just have to compute δi,j(f), for all i, j,
and check the condition |T ∩ Ci,j | ≥ δi,j(f). We now show how to do that efficiently.

Efficiently Computing δi,j(f)

For ease of presentation, we show how to compute δ1,m(f); computing other δi,j(f) is
similar. We have C1,m = C, I1,m = I, and δ1,m(f) is size of the largest subset of I that is
(C\J)-disjoint for any failing set J ⊆ C with |J | ≤ f . The intervals of I = {I1, I2, . . . , In}
are in the left to right sorted order and, for each i ∈ [n], let C(Ii) = C ∩ Ii be the set of
points in C that hits Ii. Define Γ [i][j] as the maximum size of an (C \X)-disjoint subset
J ⊆ {I1, . . . , Ii} such that X ⊆ C and |X| ≤ j.

▶ Lemma 4. We have the following recurrence

Γ [i][j] = max
{

Γ [i− 1][j],
max

0≤i′≤i
1 + Γ [i′][j − |C(Ii) ∩ C(Ii′)|]

}

Clearly, δ1,m(f) = Γ [n][f ]. The base case for our dynamic program is Γ [0, j] = 0 for
all j ∈ [f ] and Γ [i][j] = −∞ for j < 0 and all i ∈ [n]. Our dynamic program runs in time
O(n2mf). In the same way, we can compute the values of δi,j(f) for all i, j ∈ [m] with i ≤ j.

▶ Lemma 5. δi,j(f), for all 1 ≤ i ≤ j ≤ m, can be computed in time O(n2m3f).

Given a hitting set T ⊆ C and the values δi,j(f), we can verify the condition in Lemma 3
in time O(m3). We can then use binary search to find the smallest value of r for which T is
an f -tolerant hitting set. This establishes the following result.

▶ Theorem 6. The fault-tolerance score of a 1-dimensional committee T can be computed in
time O(n2m3f log(nm)).
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2.3 Optimal Fault-Tolerant Committee
We now address the problem of designing a fault-tolerant committee: select a committee T

of size k whose fault-tolerance score σf (T ) is minimized. Thus, our goal is not to optimize
the fault-free score of T , namely σ0(T ), but rather the score that the best replacement will
have after a worst-case set of f faults in T , namely σf (T ). Following the earlier approach, we
again focus on the decision question: given some r ≥ 0, is there a committee of size k with
σf (T ) ≤ r? For a given value of r, we construct our hitting set instance with candidate-points
and voter-intervals, and compute a minimum-sized f -tolerant hitting set T ⊆ C as follows:
1. Compute the value of δi,j(f), for all 1 ≤ i ≤ j ≤ m.
2. Compute a minimum subset T ⊆ C satisfying |T ∩ Ci,j | ≥ δi,j(f), for all 1 ≤ i ≤ j ≤ m.
3. If |T | ≤ k, we have a solution; otherwise, the answer to the decision problem is no.

Step (1) is implemented using the dynamic program of the previous subsection, and so it
suffices to explain how to implement step (2). We assume without loss of generality that
|Ci,j | ≥ δi,j(f) for all i, j, because otherwise there is no solution. We compute a set T using
the following greedy algorithm.

Initialize T = ∅.
For each ck for k ∈ [m], if there exists i, j ∈ [m] with i ≤ k ≤ j ≤ m such that
δi,j(f) ≥ |T ∩ Ci,j |+ (j − k + 1), then add ck to T .

The algorithm runs in time O(m3). To prove correctness, we first claim the following.

▶ Lemma 7. |T ∩ Ci,j | ≥ δi,j(f), for all 1 ≤ i ≤ j ≤ m.

Proof. Suppose not, so we have |T ∩ Ci,j | < δi,j(f), for some i ≤ j. We recall that for any
interval Ii ∈ I, |Ii ∩ C| > f . Therefore, for any failing set J , Ci,j \ J is a hitting set of
Ii,j , and |Ci,j | ≥ δi,j(f). This implies that there exists some point among ci, . . . , cj that
is not in T . Let k ∈ {i, . . . , j} be the largest index such that ck /∈ T . For convenience,
we use T ′ to denote the set T in the iteration of our algorithm that considers ck. Note
that T ∩ Ci,j = (T ′ ∩ Ci,j) ∪ {ck+1, . . . , cj} and (T ′ ∩ Ci,j) ∩ {ck+1, . . . , cj} = ∅. Therefore,
|T ′∩Ci,j | = |T ∩Ci,j |−(j−k) < δi,j(f)−(j−k). This implies |T ′∩Ci,j |+(j−k+1) ≤ δi,j(f).
By our algorithm, in this case we should include ck in T , which contradicts the fact that
ck /∈ T . ◀

We now argue that T has the minimum size among all subsets of C satisfying the property
of Lemma 7. Let opt be the minimum size of a subset of C satisfying the desired property.
We write T = {ck1 , . . . , ckr

}, where k1 < · · · < kr.

▶ Lemma 8 (⋆). For any t ∈ [r], there exists a subset T ∗ ⊆ C such that (1) |T ∗∩Ci,j | ≥ δi,j(f)
for all i, j ∈ [m] with i ≤ j, (2) |T ∗| = opt, and (3) {ck1 , . . . , ckt

} ⊆ T ∗.

We use binary search to find the smallest r such that the reduced instance has an
f -tolerant hitting set of size at most k. Therefore, the following theorem holds.

▶ Theorem 9. Optimal Fault-Tolerant Committee can be solved in time O(n2m3f log(nm))
for one-dimensional Euclidean elections.

▶ Remark 10. Our dynamic programming algorithm works as long as either the set V or the
set C is embedded in R (i.e., has a linear ordering), while the other set can have an arbitrary
d-dimensional embedding. Moreover, we can also extend our algorithms to ordinal elections
with (widely studied) single-peaked preferences [2, 24] to compute an optimal fault-tolerant
Chamberlin-Courant committee.
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3 Fault-Tolerant Committees in Multidimensional Space

We now consider fault tolerance in multidimensional elections. Unsurprisingly, the optimal
committee design problem is intractable – it is similar to facility location – but it turns out
that the seemingly simpler variants ORP and FTS are also intractable. In particular, we
have the following (refer to the full version of the paper for details).

▶ Theorem 11 (⋆). All three problems (Optimal Replacement, Fault-Tolerance Score, and
Optimal Fault-Tolerant Committee) are NP-hard, in any dimension d ≥ 2 under the Euclidean
norm, where size of the committee k and the failure parameter f are part of the input.

3.1 Optimal Replacement Problem
A simple greedy algorithm achieves a 3-approximation for the Optimal Replacement Problem
in any fixed dimension d as well as in any metric space.

▶ Lemma 12. We can find a 3-approximation for ORP in time O(k(nk + m)).

Proof. Let T ⊆ C be the given committee and let J ⊆ T be the failing set. In order to
find the replacement set R, we initialize T̂ = T \ J , and then repeat the following two steps
|T ∩ J | times: (1) Choose the farthest voter from T̂ , namely, choose v̂ = arg maxv∈V d(v, T̂ ),
and (2) Add to T̂ the candidate ĉ /∈ T̂ that is closest to v̂. Upon termination, we clearly have
|T̂ | = |T |. Due to limited space, the proof of the approximation ratio is deferred to the full
version of our paper. ◀

3.2 Computing the Fault-Tolerance Score
We can also approximate the optimal fault-tolerance score of a committee within a factor of
3. Specifically, if the optimal fault-tolerance score of T is σf (T ) = σ∗, then our algorithm
returns a real number σ′ such that σ∗ ≤ σ′ ≤ 3σ∗.

For each voter v, let df (v) be v’s distance to its (f + 1)th closest candidate, and let
d′ = maxv∈V df (v) be the maximum of these values over all voters. The basic idea behind our
approximation is simple and uses the following two facts: (1) σ∗ ≥ d′, and (2) σ∗ ≥ σ(T ). The
first one holds because d′ is the best score possible if some voter’s f nearest candidates fail,
and the second one holds because a failure can only worsen the score (that is, σf (T ) ≥ σ(T )
for any f > 0). Therefore, the distance σ′ = d′ + 2σ(T ) is clearly within a factor of 3 of the
optimal σ∗. We claim that for any failing set J ⊆ C, there exists a replacement R ⊆ C \ J of
size at most |T ∩ J | such that σ((T \ J) ∪R) ≤ σ′. Due to limited space, we omit the proof
from the extended abstract; it is included in the full version of our paper.

▶ Lemma 13. The fault-tolerance score of a committee can be approximated within a factor
of 3 in time O(nm log(f)).

3.3 Optimal Fault-Tolerant Committee
We now discuss how to design approximately optimal fault-tolerant committees in multiwinner
elections. Specifically, given a set of voters V and a set of candidates C in d-space, along
with parameters k (committee size) and f (number of faults), we want to compute a size k

committee T ⊆ C with the minimum fault-tolerance score σf (T ). We prove two approximation
results for this problem: (1) We can solve this problem within an approximation factor of
3 in polynomial time if the parameter f is treated as a constant (while k remains possibly
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unbounded). If f is not assumed to be a constant, we can solve the problem within an
approximation factor of 5. (2) We give an EPTAS with running time (1/ε)O(1/ε2d)(m+n)O(1)

which is a bicriterion approximation, where the output committee T is fault-tolerant for at
least (1− ε)n voters with σf (T ) ≤ (1 + ε)σ∗. The next two subsections discuss these results.

3.3.1 3-Approximation for Bounded f

Let σ∗ be the optimal f -tolerant score of a committee of size k. We compute the approximation
solution via an approximate decision algorithm, which takes as input a number σ ≥ σf (C)
and returns a committee T ⊆ C of size at most k with σf (T ) ≤ 3σ if σ ≥ σ∗. (We slightly
abuse notation to introduce a convenient quantity σf (C), which is the f -fault-tolerance score
of a committee with all the input candidates. This is clearly a lower bound on any size k

committee’s score.)
For a committee T ⊆ C and a failing set J ⊆ C, let δ(T, J) denote the score obtained

after finding an optimal replacement K. That is,

δ(T, J) = min
K∈C\J,|K|=|T ∩J|

σ0((T\J) ∪K).

Thus, σf (T ) = maxJ⊆C,|J|≤f δ(T, J). Our approximation algorithm is shown in Algorithm 1.
It begins with an empty committee T (line 1), and as long as there exists a failing set J of
size at most f for which δ(T, J) > 3σ, 3 we do the following.

First, we remove all candidates in J from T (line 3). Then, whenever there exists a voter
v ∈ V with d(v, T ) > 3σ, we add to T a candidate c ∈ C\J whose distance to v is at most σ

(lines 5-6). Such a c always exists because σ is at least the distance to the (f + 1)th closest
neighbor to v.

We call this voter v the witness of c, denoted by wit[c] (line 7). Adding c to T guarantees
that d(v, T ) ≤ σ. We repeat this procedure (the inner while loop) until d(v, T ) ≤ 3σ for all
v ∈ V . Finally, the outer while loop terminates when δ(T, J) ≤ 3σ for all J ⊆ C of size at
most f , i.e., σf (T ) ≤ 3σ. At this point, we return the committee T .

Algorithm 1 Approximate decision algorithm.

Input: a set V of voters, a set C of candidates, the committee size k, the fault-tolerance
parameter f , and a number σ ≥ σf (C)

1: T ← ∅
2: while ∃ J ⊆ C such that |J | ≤ f and δ(T, J) > 3σ do
3: T ← T\J
4: while ∃ v ∈ V such that d(v, T ) > 3σ do
5: c← a candidate in C\J satisfying d(v, c) ≤ σ

6: T ← T ∪ {c}
7: wit[c]← v

8: return T

▶ Lemma 14 (⋆). Let T be the committee computed by Algorithm 1. Then d(wit[c], wit[c′]) >

2σ for any two distinct c, c′ ∈ T .

▶ Lemma 15. If σ ≥ σ∗, then Algorithm 1 outputs a size k committee T with σf (T ) ≤ 3σ.

3 We can check this condition by iterating over all failing sets of size f and computing an optimal
replacement set in each case.
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Proof. The condition of the outer while loop of Algorithm 1 guarantees that δ(T, J) ≤ 3σ

for all J ⊆ C of size at most f , which implies σf (T ) ≤ 3σ. To prove |T | ≤ k, suppose
T = {c1, . . . , cr}. By Lemma 14, the pairwise distances between the voters wit[c1], . . . , wit[cr]
are all larger than 2σ and thus larger than 2σ∗ (as σ ≥ σ∗ by our assumption). Now consider
a committee T ∗ ⊆ C of size k satisfying σf (T ∗) = σ∗. For each wit[ci], there exists c∗

i ∈ T ∗

such that d(wit[ci], c∗
i ) ≤ σ∗. Observe that c∗

1, . . . , c∗
r are all distinct. Indeed, if c∗

i = c∗
j and

i ̸= j, then by the triangle inequality,

d(wit[ci], wit[cj ]) ≤ d(wit[ci], c∗
i ) + d(wit[cj ], c∗

j ) ≤ 2σ∗,

contradicting the fact that d(wit[ci], wit[cj ]) > 2σ∗. Since |T ∗| = k and c∗
1, . . . , c∗

r ∈ T ∗, we
have r ≤ k, which completes the proof. ◀

Using these two lemmas, we can compute a 3-approximate solution using Algorithm 1 as
follows. First, we compute σf (C) in O(nmf+1) time by enumerating all failing sets J ⊆ C of
size at most f . For every voter v ∈ V and every candidate c ∈ C such that d(v, c) ≥ σf (C),
we run Algorithm 1 with σ = d(v, c). Among all the committees returned of size at most k,
we pick the one, say T ∗, that minimizes σf (T ∗). To see that σf (T ∗) ≤ 3σ∗, note that σ∗ must
be the distance between a voter and a candidate. Thus, there is one call of Algorithm 1 with
σ = σ∗, which returns a committee T ⊆ C of size at most k such that σf (T ) ≤ 3σ = 3σ∗, by
Lemma 15. We have σf (T ∗) ≤ σf (T ) by construction, which implies σf (T ∗) ≤ 3σ∗. In the
full version, we show that each call of Algorithm 1 takes O(nm2f+1) time. We need to call
the algorithm O(nm) times. Thus, we have the following result.

▶ Theorem 16. We can find a 3-approximation for Optimal Fault-tolerant Committee in
time O(n2m2f+2), assuming the fault-tolerance parameter f is a constant.

If we do not assume f to be a constant, then the well-known “farthest first” greedy rule
for adding candidates achieves a factor 5 approximation. Due to limited space, we describe
the algorithm and its analysis in the appendix.

▶ Lemma 17 (⋆). We can find a 5-approximation for Optimal Fault-Tolerant Committee in
time O(mnk).

All of the above approximations hold not just for d-dimensional Euclidean space, for any
fixed d, but also for any metric space.

3.3.2 A bicriterion EPTAS
Finally, we design a bicriterion FPT approximation scheme with running time f(ε) · nO(1),
which finds a size-k committee whose fault-tolerance score for at least a (1 − ε) fraction
of the voters is within a factor of (1 + ε) of the optimum. Formally, we say a committee
T is (r, ρ)-good if there exists a subset V ′ ⊆ V of size at least ρn such that the f -tolerant
score of T with respect to only the voters in V ′ is at most r. Then our approximation
scheme can output a size-k committee which is ((1 + ε)σ∗, 1 − ε)-good. The core of our
approximation scheme is the following (approximation) decision algorithm. The decision
algorithm takes the problem instance and an additional number r > 0 as input. The output of
the algorithm has two possibilities: it either (i) returns YES and gives a size-k committee that
is ((1 + ε)r, 1− ε)-good or (ii) simply returns NO. Importantly, the algorithm is guaranteed
to give output (i) as long as r ≥ σ∗. Note that this decision algorithm directly gives us
the desired approximation scheme. Indeed, we can apply it with r = d(v, c) for all v ∈ V

and c ∈ C. Let r∗ be the smallest r that makes the algorithm give output (i). The size-k
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committee T ∗ obtained when applying the algorithm with r∗ is ((1 + ε)r∗, 1− ε)-good. We
have r∗ ≤ σ∗ because the algorithm must be applied with r = σ∗ at some point and it is
guaranteed to give output (i) at that time. Thus, T ∗ is ((1 + ε)σ∗, 1− ε)-good, as desired.

For simplicity of exposition, we describe our decision algorithm in two dimensions. By
scaling, we may assume that the given number is r = 1. To solve the decision problem, our
algorithm uses the shifting technique [18]. Let h be an integer parameter to be determined
later. For a pair of integers i, j ∈ Z, let □i,j denote the h× h square [i, i + h]× [j, j + h]. A
square □i,j is nonempty if it contains at least one voter or candidate. We first compute the
index set Ĩ = {(i, j) : □i,j is nonempty}. This can be easily done in time O((n + m)h2).

Consider a pair (x, y) ∈ {0, . . . , h− 1}2. Let Lx,y be the set of all integer pairs (i, j) such
that i (mod h) ≡ x and j (mod h) ≡ y. We write Ĩx,y = Ĩ ∩ Lx,y. For a voter v ∈ V and a
square □i,j , we say v is a boundary voter for □i,j if v /∈ [i + 2, i + h− 2]× [j + 2, j + h− 2].
Furthermore, we say v conflicts with (x, y) if v is a boundary voter in □i,j for some (i, j) ∈ Ĩx,y.

▶ Lemma 18 (⋆). There exists a pair (x, y) ∈ {0, . . . , h− 1}2 such that at most 4h−4
h2 · |V |

voters conflict with (x, y).

We fix a pair (x, y) ∈ {0, . . . , h − 1}2 that conflicts with the minimum number of
voters. For (i, j) ∈ Ĩx,y, we define the set of (non-boundary) voters Vi,j = {v ∈ □i,j : v ∈
[i + 2, i + h− 2]× [j + 2, j + h− 2]}, and the set of candidates Ci,j = {c ∈ C : c ∈ □i,j}. Note
that for (i, j) ∈ Ĩx,y, the Ci,j ’s are disjoint and form a partition of C. Next, we show an
important lemma which allows our algorithm to divide our problem into smaller subproblems,
solve them individually, and combine the solutions to solve the overall problem.

▶ Lemma 19 (⋆). Let V1, V2, . . . , Vs be subsets of V and let T1, T2, . . . , Ts be pairwise disjoint
subsets of C such that Ti is a fault-tolerant committee for Vi with σf (Ti) = σ. Then,
T =

⋃s
i=1 Ti is a fault-tolerant committee of

⋃s
i=1 Vi with σf (T ) = σ.

Consider a pair (i, j) ∈ Ĩx,y. Let T i,j be a smallest fault-tolerant committee for Vi,j with
σf (T i,j) ≤ 1. We observe that any inclusion-minimal fault-tolerant committee Ti,j for Vi,j

satisfies Ti,j ⊆ Ci,j . This is because any candidate outside Ci,j has distance more than
1 + 6/h to any voter in Vi,j (for a large enough value of h). In the next section we will show
how to compute a fault-tolerant committee Ti,j ⊆ Ci,j for Vi,j such that |Ti,j | ≤ |T i,j | and
σf (Ti,j) ≤ 1 + 6/h in hO(h4)nO(1) time. Assuming we can compute the above-mentioned
committee Ti,j , our overall algorithm is as follows:
1. Fix a pair (x, y) ∈ {0, . . . , h− 1}2 conflicting with the minimum number of voters, and

set h to be the smallest integer such that (4h− 4)/h2 ≤ ε and 6/h ≤ ε.
2. For each pair (i, j) ∈ Ĩx,y, compute Ti,j ⊆ Ci,j .
3. Let T =

⋃
(i,j)∈Ĩx,y

Ti,j . If |T | ≤ k, return YES (along with T ); otherwise, return NO.

Let V ′ =
⋃

(i,j)∈Ĩx,y
Vi,j . Since the Ci,j ’s are disjoint, using Lemma 19, we conclude that

T is a fault-tolerant committee for V ′. Furthermore, from our choice of (x, y), we have
|V ′| ≥ (1− ε)n. It is easy to show that the f -tolerant score of T with respect to the voters in
V ′ is at most 1 + ε, and in addition, if σ∗ ≥ 1, we have |T | ≤ k; we give a formal argument in
the full version of our paper. This proves correctness of our decision algorithm. The overall
algorithm takes (1/ε)O(1/ε4)(m + n)O(1) time. We note that the algorithm can be directly
generalized to the d-dimensional case with running time (1/ε)O(1/ε2d)(m + n)O(1). Therefore,
we have the following result.

▶ Theorem 20. Given a d-dimensional Fault-Tolerant Committee Selection instance, we can
compute a size-k committee T such that the f -tolerant score of T with respect to at least (1−ε)n
voters is at most (1 + ε)σ∗, where σ∗ is the optimal f-tolerant score of a size-k committee
(with respect to the entire set V ). This algorithm runs in time (1/ε)O(1/ε2d)(m + n)O(1).
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< 2/h
1/h

1/h

voters

candidates

Figure 2 The figure shows a cell in the shifted grid. The solid lines around the sides are the grid
lines (and the region inside them is a cell). The shaded (green) region is the boundary region. Inside
the boundary region, we divide the cell into 1/h × 1/h smaller cells. The distance between any two
points in a smaller cell is < 2/h. All candidates in smaller cells are identical (i.e., candidates in blue
regions). In this example, since only five cells are nonempty, we have at most 25 distinct failing sets.

Algorithm to Compute Ti,j

We now present the most challenging piece of our algorithm: the computation of the Ti,j ’s.
Consider a box □i,j . Suppose there exists a fault-tolerant committee T ⊆ C for Vi,j with
σf (T ) ≤ 1. Our task is to compute a fault-tolerant committee Ti,j ⊆ C for Vi,j such that
|Ti,j | ≤ |T | and σf (Ti,j) ≤ 1 + 6/h.

We divide □i,j into h4 smaller cells each with size 1
h ×

1
h , and we denote the set of these

cells by L = {l1, . . . , lh4}. (See Figure 2.) Our algorithm is based on two key observations:
(i) A committee with a candidate in every nonempty cell has f -tolerant score within a
difference of at most 2/h from the optimum score. Since the number of cells is h4, this implies
that the size of a smallest approximately optimal committee is bounded by h4 (formally
shown in Lemma 21).
(ii) All candidates in a cell can be treated as identical, causing only a loss of 2/h in the score.
This implies that for any Ti,j , to approximately compute the f -tolerant score of Ti,j , we only
need to consider the failing sets where either all or none of the candidates in a cell fail. Note
that the number of such failing sets is at most 2O(h4) (formally shown in Lemma 22).

Using these two observations, at a high level, our algorithm goes through all committees
of size at most h4 (there are hO(h4) of these as we can assume that each cell has at most
h4 candidates), approximately computes the f -tolerant score of each of these committees in
time 2O(h4), and returns the smallest one with the desired score.

▶ Lemma 21 (⋆). Let T, T ∗ ⊆ C be fault-tolerant committees for Vi,j. If |T ∗ ∩ la| = 1 for
all a ∈ [h4] such that C ∩ la ̸= ∅, then σf (T ∗)− σf (T ) ≤ 2/h.

Based on the above observation, we solve the problem as follows. We enumerate all maps
χ : L→ {0, 1, . . . , h4} where χ(la) is the number of candidates from la in the committee. The
total number of such maps is hO(h4). For each feasible map, i.e., χ satisfying χ(la) ≤ |C ∩ la|
for all a ∈ [h4], we construct a fault-tolerant committee T ∗

χ for Vi,j by picking (arbitrarily)
χ(la) candidates in C ∩ la for all a ∈ [h4] and including them in T ∗

χ . For each constructed
T ∗

χ , we compute a number σ̃f (T ∗
χ) that approximates σf (T ∗

χ) using the following lemma.

▶ Lemma 22 (⋆). Given T ∗
χ , one can compute a number σ̃f (T ∗

χ) in 2O(h4)nO(1) time such
that |σ̃f (T ∗

χ)− σf (T ∗
χ)| ≤ 2/h.
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Finally, we let Ti,j be the smallest among all committees T ∗
χ satisfying σ̃f (T ∗

χ) ≤ 1 + 4/h,
and we return it as our solution. The running time of our algorithm is clearly hO(h4)nO(1).
The following lemma shows that our algorithm is correct.

▶ Lemma 23 (⋆). We have σf (Ti,j) ≤ 1+6/h. Furthermore, |Ti,j | ≤ |T | for any fault-tolerant
committee T for Vi,j with σf (T ) ≤ 1.
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