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—— Abstract

Randomized matrix algorithms have had significant recent impact on numerical linear algebra. One
especially powerful class of methods are algorithms for approximate matrix multiplication based on
sampling. Such methods typically sample individual matrix rows and columns using carefully chosen
importance sampling probabilities. However, due to practical considerations like memory locality
and the preservation of matrix structure, it is often preferable to sample contiguous blocks of rows
and columns all together. Recently, (Wu, 2018) addressed this setting by developing an approximate
matrix multiplication method based on block sampling. However, the method is inefficient, as it
requires knowledge of optimal importance sampling probabilities that are expensive to compute.

We address this issue by showing that the method of Wu can be accelerated through the use of
a randomized implicit trace estimation method. Doing so allows us to provably reduce the cost of
sampling to near-linear in the size of the matrices being multiplied, without impacting the accuracy
of the final approximate matrix multiplication. Owverall, this yields a fast practical algorithm,
which we test on a number of synthetic and real-world data sets. We complement our algorithmic
contribution with the first extensive empirical comparison of block algorithms for randomized matrix
multiplication. Our method offers a significant runtime advantage over the method of (Wu, 2018)
and also outperforms basic uniform sampling of blocks. However, we find another recent method
of (Charalambides, 2021) which uses sub-optimal but efficiently computable sampling probabilities
often (but not always) offers the best trade-off between speed and accuracy.
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1 Introduction

Matrix computations are central across computing, with applications in optimization, scientific
computing, data science, and more. In recent years, in an effort to tackle the challenge of
scaling computations to larger and larger matrices, randomized methods have taken center
stage [14, 27]. Collectively known as Randomized Numerical Linear Algebra or “RandNLA”,
the study of randomized matrix algorithms has led to faster algorithms for a number of
central problems in linear algebra, including least squares regression [5, 24, 25], low-rank
approximation [10, 13, 17, 23], trace estimation [18, 21], and more. Many of these algorithms
are based on relatively simple sampling and sketching routines (like Johnson-Lindenstrauss
random projection hashing-based methods) which are easily parallelized and adapted to
modern computational environments, including distributed and streaming architectures [4].
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1.1 Randomized Matrix Multiplication

Beyond the problems listed above, another topic of central interest in RandNLA is, of course,
matrix multiplication. There has been significant work on developing randomized algorithms
for matrix multiplication that return an approximate solution in a fraction of the time it
would take to perform exact multiplication [6, 7]. Roughly, randomized matrix-multiplication
methods can be split into two categories — random projection methods [25] and random
sampling methods [12]. In both cases, the idea is to quickly compress given input matrices
A € R™*"™ and B € R"*P to form matrix “sketches” C € R™*¢ and D € R*P, where ¢ < n.
We then return CD as an approximation to AB. For many standard methods, including
Johnson-Lindenstrauss random projection [25] and norm-based column and row sampling
[12], a choice of ¢ = O(1/€?) for € € (0,1) ensures that with high probability:

|AB — CD|[p < €| Al [B]r. (1)

The approximation CD can be computed in O(cmp) = O(mp/€?) time, significantly im-
proving on the naive cost of O(nmp) when n is large in comparison to 1/€%. So, we get an
algorithmic speedup as long as C and D can be quickly obtained from A and B.

1.1.1 The BasicMatrixMultiplication Method

In this paper, we are specifically interested in random sampling methods for computing C

and D. The most well-known method is the BasicMatrixMultiplication algorithm of Drineas,

Kannan, and Mahoney [11, 12]. The idea behind the algorithm is elegant: the matrix

multiplication AB can be cast as the sum of rank-one components, each an outer product

of a column in A and the corresponding row in B. In particular, AB = >"" | A(i)B(i),
where A9 denotes the i*" column of A and B(;) denotes the i* row of B. BasicMatrix-

Multiplication approximates this sum by sampling the rank-one components using non-

uniform sampling probabilities. To be more specific, we sample A(i)B(i) with probability

pi = A 2B 12

> 1AD 2B 2
product) are sampled with high probability. Equivalently, for the BasicMatrixMultiplication
method, C and D consist of a subset of columns and rows from A and B, sampled according

to their £5 norms. More details are provided in Section 2.

The BasicMatrixMultiplication algorithm is a powerful method with a number of desirable
properties. First, the method achieves the strong bound of Equation (1), matching random
projection methods in the worst case. However, on top of this:

1. When constructing C and D, the BasicMatrixMultiplication method preserves sparsity
and structure originally present in A and B. This can lead to more compact sketches in
practice. The same is not true of random projection based methods, which e.g. produce
dense sketches C and D, even if A and B are sparse.

2. The sampling probabilities pq,...,pn, and thus the sketches C and D can be computed
in just O(mn + pn) time, which is linear in the size of the input. We simply need to
compute the norm of all columns (resp., rows) in A (resp., B).

3. The sampling probabilities used are provably optimal in the sense that they minimize the
expected squared error E [HAB — CD||%] amongst all choices of probabilities. As a result,
BasicMatrixMultiplication often outperforms the worst-case bound of Equation (1).

so “heavy” columns and rows (which contribute more to the matrix

Thanks to the advantages above, the BasicMatrixMultiplication algorithm has been
widely adapted and applied to problems in information retrieval [15], image processing [20],
and distributed computation [19].
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1.2 Qur Contributions

Despite its many virtues, an important practical issue with the BasicMatrixMultiplication
method is that it samples columns and rows from A and B independently at random. In many
applications, it would actually be preferable to sample contiguous blocks of columns from A,
and respective blocks of rows from B, i.e., to sample every column A® AG+D A lit+ea—1)
for some starting index ¢ and block size q. The need for block sampling arises for a few
reasons. First, in some settings it is desirable to keep nearby rows together to preserve
structure in A. As an example, [28] and [29] consider a problem where samples are obtained
from block-structured finite element stiffness matrices. Moreover, even when A and B are
unstructured, sampling multiple blocks of columns is typically more efficient on modern
architectures where memory access costs are a major factor in determining final runtimes.
When A and B are large enough that they must be stored in slow memory (e.g. on disk
instead of in RAM) accessing a block of ¢ adjacent columns (which are stored adjacent on
disk) will often be far cheaper than accessing a set of ¢ columns with non-adjacent indices.

1.2.1 The BlockBasicMatrixMultiplication Method

To address these concerns, recent work by Wu introduces a block-wise version of the Ba-
sicMatrixMultiplication method, which we call BlockBasicMatrixMultiplication [28]. The
method maintains many of the nice properties of the BasicMatrixMultiplication method,
and for any block size g, it can be shown that sampling O(1/€?) blocks results in the same
error guarantee of Equation (1).! Moreover, it can be shown that the sampling probabilities
used by Wu’s method are optimal for block sampling, just as those used by BasicMatrix-
Multiplication were optimal for single column sampling. However, a major disadvantage of
BlockBasicMatrixMultiplication is that these probabilities are no longer efficient to compute.
Concretely, consider O, ..., 0, which are disjoint subsets of adjacency indices that partition
{1,...,n}, ie forall j, 0, = {ki,ki+1,...,k +¢;} for some starting index k; and block size
gi, and ©1 U...UO, ={1,...,n}. If we want to sample a subset of blocks from ©1,..., 0Oy,
[28] shows that the optimal probability to sample the it" block is equal to:

b= |ACIBg,|IF @
Y A@IB g, F

This strictly generalizes the probabilities from BasicMatrixMultiplication, since for two
vectors A and B, [ADB;|lr = |A@D|2]| B ll2. However, in the general block case,
the probability is more expensive to compute. In particular, the naive cost of computing
p; equals O(g;mp) (the cost of multiplying A(@i)B(@i)) so the total cost of sampling is
Zle O(gimp) = O(nmp). This is as slow as if we had computed AB exactly! Assuming
for simplicity that ¢ = ... = g¢ = ¢ (typically blocks have the same size), this runtime
can be improved to O(nmg + npq) when g < p,m (see Equation (4) for more details). But
nevertheless, the complexity is still greater than the linear run time of O(nm + np) achieved
by BasicMatrixMultiplication by a multiplicative factor of ¢q. In practice, we might want ¢ in
the 100s or 1000s to take sufficient advantage of memory locality.

! We might have hoped to obtain a better guarantee with block sampling. E.g. that when sampling
blocks of size ¢, we would only need O(q%) block samples, which is a total of O(1/€®) columns. This
is not possible, however, as can be seen by considering adversarial matrices with e.g. all but columns
1,g+1,2¢+1,... set to zero. That said, in practice, sampling ¢ blocks from A and B often performs
much better in terms of accuracy than sampling ¢ individual columns.
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1.3 Faster Probabilities via Stochastic Trace Estimation

Our main contribution is to present a simple method for efficiently implementing the
optimal sampling scheme of [28]. In particular, we show how to approximate the required
sampling probabilities from Equation (2) up to a multiplicative constant factor using the
classic Hutchinson’s stochastic traces estimation method [18]. Another central technique in
randomized numerical linear algebra, Hutchinson’s traces estimator can approximate the
|A®)B g, F term from Equation (2) with just a small number of matrix-vector multiplies
with A(®9) and B (e,) involving randomly chosen vectors. The end result is a method running
in O((nm +np) log(n)) time for computing all probabilities, which is near linear in the size of
the total size of the input matrices. At the same time, an analysis of our method shows that
using approximate sampling probabilities yields the same theoretical guarantees as [28], up
to constant factors. We call our method Hutchinson-estimated Block Approximate Matrix
Multiplication (Hutch AMM for short).

1.3.1 Empirical Evaluation

We perform an extensive experimental evaluation of our Hutch AMM method, showing that,
empirically, the probability computation can be performed to sufficient accuracy using just
5(nm + np) floating-point operations, even for very large values of m. The cost of then
computing CD once the probabilities are computed and used for sampling is then a lower
order computational. As a result, our method outperforms an efficient implementation of the
approach from [28] in terms of runtime, without sacrificing accuracy in approximating AB.

We also compare Hutch AMM to other baselines. For example, one natural approach is
simply to uniformly sample from the rows and columns of A and B (either blocks or individual
rows and columns). Uniform sampling typically requires more samples in comparison to using
optimal importance sampling probabilities to obtain a given level of accuracy. The trade-off,
however, is that uniform sampling has no computational overhead to compute probabilities —
a sample of ¢ columns from A can be chosen in O(c) time. The only major runtime cost
is computing CD. Nevertheless, we show that for block sampling, our method typically
outperforms uniform sampling in terms of runtime to achieve a given level of approximation
accuracy, showing the value of importance sampling.

Finally, we compare against a recent method of [3], which also studies block based sampling
methods for approximate matrix multiplication. Their “Block CR Method” introduces an
alternative approach that samples blocks with probabilities equal to:

IAV]|7 (Bl (3)
4 )
Zj:l ”A(G’)HF”B(@J')”F

P =

While not optimal for minimizing E [||AB — CD||%.], these probabilities minimize a natural
upper bound? on the expected squared error, and can be shown to achieve the bound of
Equation (1) with ¢ = O(1/€?) samples [3]. So, they match the result of Wu in the worst
case. At the same time, py,..., P, can be computed in linear time, O(nm + np), as they do
not require multiplying the blocks A(®#) and Be,)-

2 The text of [3] implies that the probabilities are optimal, but there is a small error in the derivation
of the variance of the estimator considered, where an upper bound is mistakenly considered to be
an equality. Nevertheless, the authors conclusion, that O(1/€?) block samples suffice to achieve error
|AB — CD||r < €¢||A||r||B||F, still holds.
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Overall, we find the Block CR method of [3] extremely effective. While it does not yield
as good an accuracy for a given number of samples as our method and that of Wu, the
difference is relatively small. So, when comparing overall runtime to approximate the matrix
product AB, the method of [3] usually offers the best accuracy vs. runtime trade-off.

1.4 Paper Organization

The organization of this paper is as follows: In Section 2, we introduce the BlockBasicMa-
trixMultiplication and our proposed modification. Section 3 presents a detailed analysis
and comparison of the expected squared error of the methods. In Section 4, we provide the
experiment details, followed by a brief discussion of the results. Finally, we conclude the
paper and discuss future research directions in Section 5.

2 Methodology

2.1 Notation

We denote matrices and vectors using bold Roman letters. For a vector v € R”, ||v]j2 =
V> oi_; v; denotes the standard Euclidean norm. For a matrix A € R™ ", |Allp =

\/m denotes the Frobenius norm. We use superscript A to denote the 7"

column of A and subscript A(;) to denote the 4 row. For a set of ¢ indices S, we let
A(®) denote the m x ¢ matrix containing AU for j € S. Similarly, A (s) denote the ¢ X n
matrix containing A ;) for j € S. For a square M € R™*", tr(M) = """ | Mj; denotes the
trace. We use Pr[B] to denote the probability of a random event B and E[X] to denote the
expectation of a random variable X.

2.2 Hutchinson-estimated block Approximate Matrix Multiplication

Given matrices A € R™*" and B € R"*P  BasicMatrixMultiplication returns an unbiased
estimator for the matrix product AB by sampling rank-one components (each is an outer
product of a column from A and corresponding row from B). Specifically, the algorithm
selects and re-weights a subset of ¢ columns from A to form a matrix C € R™*¢ and the
corresponding ¢ rows from B to form a matrix D € R°*? so that CD ~ AB. To reduce the
approximation error, rows and columns are sampled with non-uniform probabilities, and
appropriately scaled after sampling by the inverse probability to ensure the E[CD] = AB.
The algorithm is summarized in Algorithm 1:

Algorithm 1 BasicMatrixMultiplication w/ Optimal Sampling Probability [12].

Input: A € R™*" B € R™*P number of samples c.
Output: Estimate of matrix product AB.

IAD [2[B 12
n . .
S TAD2[Bg Iz

For all i € 1,...,n, compute optimal sampling probability p; =

fort=1...,cdo
Pick j € {1,...,n} with probability Pr(j = k) = py.

t _ AW _ By
Set C\W) = NG and D) = N
end
Return CD
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As discussed in Section 1, the sampling probabilities p1, ..., p, used in Algorithm 1 are
optimal in that they minimize E [||AB — CD||%] amongst all possible choices of probabilities
[12] (when using an unbiased estimator of the same form as Algorithm 1).

It is possible to extend the BasicMatrixMultiplication method to sampling blocks of rows
and columns. To do so, we consider a partition of the indices {1,...,n} into ¢ disjoint sets
©1,...,0,. [28] derived optimal probabilities p1,..., Py for sampling in the block setting,
which are shown below in Algorithm 2. Again, these probabilities minimize E [HAB — CD||%]
amongst all possible choices of sampling probabilities.

Algorithm 2 Block BasicMatrixMultiplication w/ Optimal Sampling Probability [28].

Input: A € R™*" B € R"*P number of samples ¢, disjoint set of column indices
{@1,...,@(} with @1U...U94:{17...,n}.
Output: Estimate of matrix product AB.

1ACIB,,)r
7 -
Z]’:1 HA(QJ)'B(("J')HF

For all i € 1,...,¢, compute optimal sampling probability p; =

Initialize C and D as empty matrices.
fort=1,...,cdo
Pick j € {1,..., ¢} with probability Pr(j =k)=px

Ch)
Append A7 onto C’s columns and 2©2 onto D’s rows.
PP = Vo
end
Return CD
> Claim 1. Assume ©Oj,...,0, are equally sized, so each contains ¢ = 7 indices. Then

the BlockBasicMatrixMultiplication method of Algorithm 2 can be implemented in time
O(mnp), or in time O(n(m + p)q + cgmp), which is faster when ¢ < m, p.

Proof. Once sampling probabilities are computed and sampling performed, the cost of
multiplying CD is equal to O(cgmp). Specifically, C contains ¢ blocks of ¢ columns, so has
dimension m X ¢q and D has dimension cq X p. We focus on the cost of computing the
optimal probabilities, p1,...,ps. Doing so requires computing ||A(@i)B(@i)||F all 4. Since
A®) ¢ R™*q and B(e,) € R?*P, this can be done directly in O(gmp) time. Summing
over all £ blocks and using that ¢ = %, the total runtime is O(nmp) to compute py, ..., pe.
Alternatively, if ¢ < m + p, we can use the cyclic property of the trace:

|A©IBo,)|% = tr(BT  (A©)TACIB o)) = tr((A©®))TACIB o BL, ). (4)

If we first compute (A(@i))TA(@i) and B(ei)B,(TGi) and then multiply the resulting ¢ x ¢
matrices, the above trace can be computed in time O(¢?m+¢*p+¢®) = O((m+p)q?). Again,
summing over all £ blocks and using that ¢ = %, the total runtime is O(n(m + p)q). <

As illustrated by Claim 1, the computational cost of BlockBasicMatrixMultiplication can
be prohibitively expensive. When ¢ is larger than either m or p, the cost is as large as the
cost of computing the product AB exactly.

Our proposed approach is to speed up the BlockBasicMatrixMultiplication method
by using Hutchinson’s stochastic trace estimator [16, 18] to efficiently approximate
| A(®: )B % = tr(BT )(A(@i))TA(e"')B(@i)). Given an p x p matrix M, this estimator
estlmatee tr(M) via repeated multiplication of the matrix by random vectors. In particular,
for a sampling parameter h and vectors g1, ..., g, each chosen to have independent random
entries with mean 0 and variance 1, the estimator takes the form:
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h
Z MQJ (5)

Typically, random {—1,+1} Rademacher random variables are chosen for the entries of each
g;. It is easily checked that E [Hy,(M)] = tr(M) and for sufficiently large h, the estimator
concentrates around its expectation [1, 8]. The value of the estimation in Equation (5) is that,
for M = B{ )(A(6 NT A(®: )B(@ ), each term in the sum E?:l g]Tng can be computed in
just O(pq + mq + pq + mq) = O(q(m + p)) time by multiplying B?@)i) (A(@i))TA(@i)B(@i)gj
from right to left. When h is a small constant, the cost is thus linear in the total size of the
blocks A(®) and B(e,). Overall, our proposed algorithm is summarized in Algorithm 3:

Algorithm 3 Hutchinson-estimated Block Approx. Matrix Multiplication (Hutch AMM).

Input: A € R™*" B € R"*P number of samples ¢, disjoint sets of column indices
{©1,...,0,} with © U...UO,; ={1,...,n}, number of Hutchinson’s
samples h.

Output: Estimate of matrix product AB.

For alli € 1,...,¢, compute approximate optimal sampling probability

\/Hh fo,) (AC)TAOIBg )

bi =
ZJ 1\/Hh 7, (AC)TAC)B )

Initialize C and D as empty matrices.
fort=1,...,cdo
Pick j € {1,...,¢} with probability Pr(j = k) =

(©;) B.o;
Append 2—= onto C’s col s and =24 onto D’s rows.
ppen 5, n S umns an b n Trow
end
Return CD

We can bound the runtime of Algorithm 3 as follows:

> Claim 2. Assume O, ...,0, are equally sized, so each contains ¢ = 7 indices. Then the

Hutch AMM method of Algorlthm 3 can be implemented in time O(nh(m + p) + cgmp).

Proof. The proof follows from the discussion above. For each block, computing the Hutchin-
son’s estimate Hh(BT )(A(@ NTA®IBg,)) takes time O(gh(m + p)) for a total runtime of
2-O(qgh(m+p)) = O(nh(m + p)). We then have an additional cost of O(cgmp) to compute
CD, which will typically be a lower order term when the number of samples c is small. <

From Claim 1 and Claim 2, we can check that Hutch AMM improves on the BlockBasicMa-
trixMultiplication algorithm whenever the number of Hutchinson’s iterations h is less than
the block size ¢q. As we will prove in the next section, if suffices to set h = O(logn) to match
the accuracy guarantees of BlockBasicMatrixMultiplication up to a multiplicative constant.

3  Error Analysis

In this section we provide an analysis of our Hutch AMM method. We start by stating the
main result from [28], which bounds the expected squared error of the BlockBasicMatrixMul-
tiplication method.

103:7
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» Proposition 3 (Proposition 2.2 [28]). For input matrices A € R™*™ and B € R"*? let
CD be the approzimate matriz product returned by Algorithm 2. We have that E[CD] = AB
and the expected squared approrimation error in Frobenius norm is:

14

1 1 _ |AB|2
E[|AB - CD|}] = 1 3 S AB(o,|[} — = - (6)
i=1 1"
. N HA(e )B(O )HF . . .. .
Setting p; := fori=1,...,¢, we obtain minimum expected error, which

Y., IACIB@,r
can be upper bounded by:

E[|AB - CD|%] < <ZIIA@)B(9 ||F> (7)

1=1

Note that, applying submultiplicativity of the Frobenius norm and Cauchy-Schwarz inequality
we can (loosely) bound:
) 2

i 2 ¢
(z ||A<@i>B<ei>nF) < (zw
i=1 i=1
1
< p <Z |AG) ) (Z Bt

Using the resulting bound on E[||[AB — CD||%] we can apply Markov’s inequality to the
non-negative random variable ||AB — CD||% to prove that, with probability (1 — §), Block-
BasicMatrixMultiplication achieves error ||AB — CD||p < \/%”A”FHB”F- In other words,
with ¢ = O(1/8€?) samples, we obtain error €||A||z||B||# with probability (1 — §), as desired.

What happens if we sample with approximately optimal probabilities? From Equation (6),
it can be checked directly that, if instead C and D are sampled with probabilities p1, ..., pe
satisfying p; > %ﬁi for some constant 3 > 1, then the expected squared error can be bounded
by:

ol

1
) = —IAlZIB]E

2

¢
p .
E[|AB - CDJ[7] < > IA®IB,llr | - (8)
i=1
In other words, as long as p1, . . ., pg approximate the optimal sampling probabilities p1, . . ., pe

up to a constant factor, we obtain expected squared error that is within a multiplicative
constant of the bound from Equation (8) achieved by Wu’s optimal method.

With this in mind, we focus on showing that the approximate probabilities used in our
Hutch AMM method satisfy this multiplicative bound. In particular, we prove:

» Lemma 4. For inputs A € R™*" and B € R"*P, let py,...,pe be computed as in
Algorithm 3 with parameter h, and let p1,...,Pe be the optimal sampling probabilities from
Algorithm 2. As long as h > C'log(£/6) for a fized constant C, then with probability 1 — 0,

Di > foralliel,... £

- 2
In other words, as long as h = O(log¢) < O(logn), then with high probability we obtain
sampling probabilities with a constant factor of the optimal probabilities, and thus expected
squared error with a constant of Equation (7), as desired.

To prove 4, we use the following standard bound on the accuracy of Hutchinson’s estimator:
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» Lemma 5 (See [8] or [21]). Let M € R™*? and 6 € (0,1/2]. Let H,(M) be Hutchinson’s
estimator run for h repetition, as in Equation (5). For fized constants Cy,Ca, if h >
Cylog (1/6), then with probability > 1 — 6

(M) — (M) < oy /B g ©

Proof of Lemma 4. Let X; denote X; = A®)B g,). Let h = 4max(C1,C3)log(¢/5). Then
by Lemma 5 it follows that, for any i € 1,...,7,

1
| Hp (X7 X5) — tr(X{X5)| < §||X§FX1'||F»
with probability 1 — §/¢. By a union bound, the statement holds simultaneously for all
i €1,...,¢ with probability 1 —§. Since X7 X; is a positive semidefinite matrix, we have

that | XTX;||r < tr(XTX;). So we can conclude that for alli € 1,... ¢,

5etr(XTX,) < Hy (XTX,) < 1.5 - tr(XFX).

/ s .
We have that p; = — Hi (X, X) , so we conclude that, as desired,
SRV

_ V5 tr(XTX,) 1.
Di = ; p = 5bi- <
VL5 (X X)

Combined with the bound in Equation (8) and Markov’s inequality, Lemma 4 implies

that as long as h = O(log(¢/d), then with probability 1 — ¢, Hutch AMM returns an estimate
e ¢ .

CD satistying ||AB — CD||r < \/% S ||A(®¢)B(@i) r < \/%HA”F”BHF Accordingly,
we match the guarantees of the BlockBasicMatrixMultiplication method, but with a total
computational cost of just O(nlog(n)(m + p)) to compute sampling probabilities, which is
near linear in the size of the inputs A € R™*"™ and B € R™"*P.

4 Experiments

In this section, we test our algorithm on both synthetic matrices and real-world datasets. We
demonstrate its performance by comparing it with the optimal BlockBasicMatrixMultiplica-
tion method [28], which in this section we call “Optimal Block AMM?” for conciseness. As
discussed in the introduction, we also compare with two baseline method: sampling blocks
using uniform probabilities p; = % and the CR method from [3], which samples with the
probabilities shown in Equation (3).3

To compare methods, we use mean relative error % and the total computational
time as two performance metrics in estimation accuracy and efficiency. All experiments were
conducted in Matlab R2022b on a laptop with a 2.7 GHz Quad-Core Intel Core i7 and 16

GB memory.

3 We note that there has been some recent follow-up work in [22] on modifications of the BlockBasic-
MatrixMultiplication method. However, the algorithms in that work ultimately perform individual
row/column sampling within each block, so they are not directly comparable to the other methods
studied in this paper, which always sampled contiguous blocks of rows or columns together.
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(c) Uniform. (d) Sparse.

Figure 1 Performance comparison of different block approximate matrix multiplication methods
on matrices generated by different procedures. The matrices for plots (a-c) have size of 100 x 10000,
with a sampling block size ¢ = 100, (d) involves matrices of size of 10 x 100000, with sampling block
size ¢ = 1000. Our results show that, when comparing the number of samples c to average relative
error for 200 trials, the Hutch AMM method with A > 5 consistently performs as well as the optimal
Optimal Block AMM method for matrices with significant differences in row/column norms (a,b),
while the Hutch AMM with h = 1 and uniform sampling methods perform worse. The CR methods
perform similarly to the optimal block AMM, except for the sparse case (d).

4.1 Data sets

For our synthetic data, we generate B € R19000x100 with a]l entries uniform random in [0, 1].
For two data sets, we generate A € R00%10000 with random Gaussian entries with variance 1,
and mean depending on the column index, i. For (a) Exponential decreasing, the means are
uniformly spaced on an exponential grid from exp (50) down to 1. For (b) Drift, the means
follow two trends. For the first 5000 columns they are exponentially decreasing as in (a), and
for the next 5000 columns the means are linearly decreasing. A similar matrix was used in [9].
These first two data sets have columns and blocks of columns with widely varying magnitudes.
For our third dataset, (c¢) Uniform, A is simply generated with entries uniform random in
[0, 1] like B. Finally, for (d) Sparse, we construct a sparse matrix A € R0>*100000 with (0.1%
non-zero entries selecting uniformly at random in [0,1]. We construct B € R00000x10 wjith
entries drawn from a standard normal distribution, but with 1% entries randomly replaced
with larger values uniformly distributed between 0 and an arbitrary positive number (we
used exp (4) in this paper).

For real-world data, we consider two different application scenarios: (1) Natural language
processing: We extracted TF-IDF matrices from a subset of the TDT2 corpus (Nist Topic
Detection and Tracking corpus)[2]. (2) Time series: We formed the whole-month (February
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(a) Mean relative error comparison of Hutch AMM (b) Estimation error for selected h plotted in shaded
from h=1 to h=10. region, shaded region ranges between plus and minus
one standard deviation from mean.

Figure 2 This figure investigates the impact of h on the estimation accuracy of Hutch AMM
methods. The graph shows the average relative estimation error against sampling number ¢ for 200
trials for the Exponential Decreasing synthetic data. Higher choices of h generally lead to better
average error, but there is little to no benefit of choosing a value of h larger than 5. Similarly, low
choices of h lead to higher variance, as shown in (b). The shaded region represents the plus and
minus one standard deviation from the mean relative estimation error among the 200 trials. As we
can see, this region is much narrower for A = 5 in comparison to h = 1.

2022) yellow taxi trip records as a matrix using NYC Taxi and Limousine Commission
(TLC) Trip Record Data[26], the columns are sorted by pick-up time. We include numerical
features such as trip distances, itemized fares, and driver-reported passenger counts, as well
as one-hot-encoded categorical features such as VendorID and payment type. For the TF-IDF
experiments, we construct a matrix A of size 1000 x 36763; for the trip record experiments,
A has size 24 x 2877693. In both cases we set B = AT and use block size ¢ = 100.

4.2 Results

We first compare the accuracy of block approximate matrix multiplication methods as a
function of the number of samples ¢. As shown in Figure 1, our Hutch AMM method run
with h as small as 5 consistently matches the Optimal Block AMM method from [28]. Both
methods outperform uniform sampling, except when A and B have uniform column norms,
in which case there is limited value in importance sampling. The CR method also performs

quite well, although is worse than our Hutch AMM method for the sparse synthetic data.

Running Hutch AMM with h = 1 shows worse performance. In Figure 2, we take a closer
look at the impact of varying h, and the choice of h = 5 seems to be a sweet spot — lower
values lead to higher error (due to worse approximation of the optimal sampling probabilities)
whereas high values offer little improvement, and lead to higher computation cost.

Having settled on h = 5 as a default parameter for our Hutch AMM method, we proceed
to compare the runtime against all baselines. We do so in Figure 3 for the synthetic data
and Figure 4 for the real-world data sets. In both cases, we perform repeated trials with
various choices of ¢. Since runtime and accuracy are not deterministic functions of ¢, this
leads to a scatter plot comparing running time vs. accuracy, which we visualize plot plotting
a moving average trend for each method tested. Overall, the plots show that Hutch AMM
offers improved computation time over Optimal Block AMM, and typically much better
accuracy than uniform sampling. However, while it showed better performance than the
CR method in terms of accuracy for a given number of samples for some problems (e.g. the
Sparse data), the slightly lower computational complexity of the CR method comes through
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Figure 3 Relative estimation error against computation time, with a moving average line generated
using window length 20. Matrices are generated using the same procedures as in Figure 1. For
interpretation: A line to the left indicates the corresponding method’s superior computational
efficiency; a line towards the bottom indicates the corresponding method’s superior estimation
accuracy. Our observations indicate that both our Hutch AMM method and the CR method improve
on the Optimal Block Matrix multiplication method in terms of efficiency/accuracy tradeoff. They
also beat uniform sampling in all cases except for (c). Overall, the CR method shows the best overall
performance, despite its use of non-uniform sampling probabilities.

in the plots. In terms of overall computational complexity, in our experiments, it was more
efficient to run the CR method. The lack of optimal sampling probabilities is made up for
by including a slightly larger number of samples ¢ in C in D.

5 Summary and Conclusion

In this study, we present the Hutchinson-estimated block Approximate Matrix Multiplication
(Hutch AMM) method, which is a more computationally efficient variant of the existing
BlockBasicMatrixMultiplication method. Our proposed method utilizes Hutchinson’s es-
timator to calculate a near-optimal sampling probability, which reduces computation cost
while maintaining a high level of estimation accuracy when an appropriate h parameter is
chosen. We validate our method through a detailed complexity analysis and proof of bounded
squared error. Additionally, we perform experiments on both synthetic and practical data.
Our results demonstrate that the Hutch AMM method is more computationally efficient and
provides accurate estimation on par with the optimal BlockBasicMatrixMultiplication in
all cases. Furthermore, we show that our proposed method can offer better performance
in terms of estimation accuracy than the similarly efficient CR block matrix multiplication
method.
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Figure 4 The figure shows scatter points of relative estimation error plotted against computation
time, with a moving average line generated using smoothing window length 20. The matrices used
are practical datasets: (a) TF-IDF matrices from a subset of the TDT?2 corpus, and (b) the February
2022 Trip Record Data from the NYC Taxi and Limousine Commission (TLC). Despite the different
characteristics of these datasets, we still observe that Hutch AMM is more computationally efficient
and achieves close estimation accuracy to optimal block AMM.

We acknowledge that our proposed Hutch AMM method has potential for improvement.
Although our current partitioning strategy splits matrix columns into blocks by a natural
sequence, it may be possible to optimize this process by implementing alternative partitioning
strategies tailored for specific matrix factors. Moreover, we can explore alternative estimators
for near-optimal sampling probabilities or even consider biased estimators to further enhance
the computational efficiency of AMM. These are promising avenues for future research in
this area.
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