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Abstract
Braess’s paradox is a counterintuitive and undesirable phenomenon, in which for a given graph
with prescribed source and sink vertices and cost functions for all edges, removal of edges decreases
the cost of a Nash flow from source to sink. The problem of deciding if the phenomenon occurs is
generally NP-hard. In this paper, we consider the problem of deciding if, for a given graph with
prescribed source and sink vertices, Braess’s paradox does not occur for any cost functions. It is
known that this problem can be solved in O(nm2) time for directed graphs, where n and m are
the numbers of vertices and edges of the input graph, respectively. In this paper, we propose a
faster O(m2) time algorithm solving this problem for directed graphs. Our approach is based on
a simple implementation of a known characterization that the subgraph of a given graph induced
by all source-sink paths is series-parallel. The faster running time is achieved by speeding up the
simple implementation using another characterization that a certain structure is embedded in the
given graph. Combined with a known technique, the proposed algorithm can also be used to design
a faster O(km2) time algorithm for directed graphs with k source-sink pairs, which improves the
previous O(knm2) time algorithm.
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1 Introduction

Braess’s paradox is a counterintuitive and undesirable phenomenon, in which for a given
two-terminal graph G with prescribed vertices (or terminals) s and t, and nonnegative,
continuous, nondecreasing cost functions {ce} for every edge e, removal of an edge decreases
the cost of a Nash flow (or Wardrop flow) from s to t. Here, a network is modeled by the
two-terminal graph G, in such a way that a pair of source and sink (or origin and destination)
of the network is represented by the vertices s and t, respectively, and that the latency or any
other cost depending on the amount x of users passing through each edge e is represented
by the edge cost function ce(x). Nash flow is a flow from s to t in the graph reaching an
equilibrium among selfish users, each of which chooses a route from s to t that incurs the
minimum cost for the user.
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12:2 Faster Algorithm for Recognizing Directed Invulnerable Graphs

Braess’s paradox was first published in 1968 [2]1 and has been quite extensively studied
in wide range of engineering, but it was not until 2001 that the computational complexity
of detection of Braess’s paradox was proved by Roughgarden [11, 13]. Specifically, given a
two-terminal graph G and cost functions {ce}, the problem of deciding if Braess’s paradox
occurs is NP-complete. Besides, for the problem of network design, i.e., finding a subgraph
of G with the minimum Nash flow cost, (4/3 − ϵ)-approximation for linear cost functions and
(⌊n/2⌋ − ϵ)-approximation for general cost functions, where n is the number of vertices, are
both NP-hard [11, 13]. Formal definitions of Nash flow and Braess’s paradox are provided in
Section 2.4.

Roughgarden [13] also raised a relaxed variation of the problem focusing on graph structure
that can cause Braess’s paradox without considering cost functions as input. This property of
graphs was called vulnerability in [13]. Milchtaich [10] characterized undirected two-terminal
graphs that are not vulnerable, or paradox-free [8], i.e., that do not admit Braess’s paradox
for any cost functions.

▶ Theorem 1 ([10]). Let G be an undirected two-terminal graph such that every edge
is contained in a path from source to sink. Then, G is paradox-free if and only if G is
series-parallel.

A counterpart for directed graphs was proved by Chen, Diao, and Hu [8].

▶ Theorem 2 ([8]). Let G be a directed two-terminal graph such that every edge is contained
in a path from source to sink. Then, G is paradox-free if and only if G is series-parallel.

Theorems 1 and 2 raise a question: Can we decide in polynomial time if Braess’s paradox
occurs in a general given two-terminal graph G that may have vertices and edges contained
in none of source-sink paths, for some cost functions? Obviously only edges contained in a
(simple) source-sink path have a positive flow in any Nash flow. Therefore, a straightforward
approach to this question would be to first construct the subgraph G̃ of G induced by
all edges contained in a path from source to sink, called the maximally irredundant or
route-induced subgraph,2 and then to check if G̃ is series-parallel. This idea succeeds if G

is undirected [8], because G̃ can be obtained through finding biconnected components of G

in linear time [14], and (directed and undirected) series-parallel graphs can be recognized
in linear time [15]. However, this approach fails for directed graphs, because computing
the route-induced subgraph G̃ of a directed graph G is generally NP-hard [7]. This means
that any polynomial time algorithm deciding if a given directed two-terminal graph G

is paradox-free must (implicitly or explicitly) solve the problem of deciding if the route-
induced subgraph G̃ is series-parallel in polynomial time without construction of G̃, unless
P = NP. Although this seems to be intractable as conjectured in [8], Cenciarelli, Gorla, and
Salvo [7] succeeded in designing a polynomial time algorithm. The authors of [7] presented a
constructive (but somewhat complicated) proof for a characterization [8, 6] that directed
vulnerable graphs contain a subgraph homeomorphic to the graph shown in Fig. 1, which is
called the Wheatstone network, and derived from the constructive proof an O(nm2) time
algorithm to detect such a subgraph, where n and m are the numbers of vertices and edges
of G, respectively.

1 English version of [2] (in German) is published as [3].
2 In the terminology of [8, 7, 9], this graph is said to be maximum or maximal(ly) irredundant. We

introduce and mainly use the more self-explanatory term “route-induced” in this paper.
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Figure 1 The Wheatstone network.

In this paper, we propose a faster O(m2) time algorithm for deciding if a given directed
two-terminal graph G is paradox-free. Our approach is based on a simple implementation
of Theorem 2, which decides if the route-induced subgraph G̃ of G is series-parallel. More
specifically, we check if G̃ satisfies a recursive characterization of series-parallel graphs, i.e.,
G̃ is decomposed into single edges by a sequence of series and parallel decompositions. Since
it is unrealistic to depend on the complete information of G̃, instead, we recursively try to
decompose G into the maximum number of subgraphs G1, . . . , Gℓ in such a way that G̃ is
obtained either by series decompositions or by parallel compositions of the route-induced
subgraphs G̃1, . . . , G̃ℓ of G1, . . . , Gℓ, respectively. This can be performed in polynomial time
without complete information of G̃ or G̃1, . . . , G̃ℓ as we prove in this paper.

It was conjectured in [7] that not a characterization in terms of the route-induced subgraph
(as Theorem 2) but a characterization in terms only of the input graph (as the inclusion of
the Wheatstone network [8, 6]) would be necessary to design a polynomial time algorithm
for checking vulnerability. Our implementation of Theorem 2 disproves this conjecture.

To achieve O(m2) time complexity, we also use the characterization of [8, 6] (but not the
constructive proof in [7]) that G is vulnerable, i.e., G̃ is not series-parallel, if and only if G

contains a subgraph homeomorphic to the Wheatstone network.

Our algorithm, as well as the algorithm of [7], can be used to design an algorithm for
multicommodity networks modeled by directed 2k-terminal graphs with k > 1 source-sink
pairs. Chen et al. [8] defined a naturally extended concept of paradox-freeness for 2k-terminal
graphs with k > 1 (see [8] for the definition). Under the extended definition, they generalized
Theorems 1 and 2 to undirected and directed 2k-terminal graphs and proposed a polynomial
time algorithm for deciding if a given undirected 2k-terminal graph is paradox-free. For the
directed case, Fiorenza, Gorla, and Salvo [9] presented an O(knm2) time algorithm. Their
k-commodity algorithm for 2k-terminal graphs calls the single-commodity algorithm of [7]
for two-terminal graphs as a subroutine. The crucial property exploited by [9] is that if the
input directed two-terminal graph G is paradox-free, then the single-commodity algorithm
of [7] not only returns the result of decision but also produces the route-induced subgraph
of G, with simple modification. Actually, the k-commodity algorithm of [9] can use any
single-commodity algorithm with this property as a subroutine, and essentially runs in time
of k executions of the subroutine. Our algorithm has this property as well; therefore, we can
obtain a faster O(km2) time algorithm for deciding if a given directed 2k-terminal graph is
paradox-free (in the sense of the definition of [8]).

This paper is organized as follows: We describe some notation and definitions in Section 2.
In Section 3, we present our algorithm for deciding if a given directed two-terminal graph is
paradox-free, together with analysis of the correctness and time complexity. We conclude
this paper in Section 4.

ATMOS 2023
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Figure 2 Two-terminal graphs G and H and their route-induced subgraphs G̃ and H̃ (solid
vertices and edges), respectively.

2 Preliminaries

2.1 Graphs and Paths
Graphs considered in this paper are directed or undirected, and may have multiple (or
parallel) edges joining the same pair of vertices, but no loops joining a single vertex. A
path P in a directed (undirected, resp.) graph consists of a sequence of distinct vertices
(v1, . . . , vℓ) and directed (undirected, resp.) edges (vi, vi+1) for all 1 ≤ i < ℓ. The path may
be empty, i.e., v1 = vℓ. The end-vertices of P are v1 and vℓ. The internal vertices of P are
vertices of P except its end-vertices, i.e., v2, . . . , vℓ−1. A directed path that starts from s

and ends with t, i.e., has end-vertices s and t and edges leaving s and entering t, is called
an st-path. For an undirected path with end-vertices s and t, we may call it an st-path or
a ts-path. We define that two paths intersect if an internal vertex of one of the paths is
also an internal vertex of the other path. Two paths that do not intersect are said to be
internally vertex disjoint, or simply disjoint.

2.2 Two-terminal graphs and Route-Induced Subgraphs
A two-terminal graph (or a single-commodity graph) is a graph that has two prescribed
distinct vertices representing source and sink. For a two-terminal graph G with source s

and sink t, a vertex or an edge of G is said to be irredundant if it is contained in an st-path
of G, redundant otherwise. The graph G is said to be irredundant if all edges (and hence
all vertices) of G are irredundant, and redundant otherwise. The maximally irredundant or
route-induced subgraph, denoted by G̃, is the subgraph of G induced by all irredundant edges.
The route-induced subgraph G̃ is also defined as the subgraph obtained as the graph union
of all st-paths of G. Examples are shown in Fig. 2. We note that route-induced subgraphs
are not necessarily vertex-induced subgraphs, as the graphs G̃ and H̃ in Fig. 2.

2.3 Series-Parallel Graphs
Suppose that G1 and G2 are directed or undirected two-terminal graphs, such that for each
i ∈ {1, 2}, Gi has source si and sink ti. The series composition of G1 and G2 is to compose
the new two-terminal graph from G1 and G2 by identifying t1 and s2, and by setting s1 and
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t2 to the new source and sink, respectively. The parallel composition of G1 and G2 is to
compose the new two-terminal graph from G1 and G2 by identifying s1 and s2 as the new
source, and t1 and t2 as the new sink. A (two-terminal) series-parallel graph is recursively
defined as follows.

▶ Definition 3 (series-parallel graphs).
1. A single edge (s, t) is a series-parallel graph with source s and sink t.
2. A graph obtained from two series-parallel graphs by series or parallel composition is

series-parallel.
As an example, the graph H̃ in Fig. 2 is series-parallel, but the rest in Fig. 2 are not.

2.4 Nash Flows and Braess’s Paradox
Let G = (V, E) be a directed or undirected two-terminal graph with source s and sink t, and
for each edge e ∈ E, let ce : R+ → R+ be a nonnegative, continuous, nondecreasing cost
function. We associate a traffic rate r ≥ 0 with the source-sink pair. Let P be the set of
all st-paths in G. We assume P ≠ ∅ in this paper. A flow vector (or simply flow) f is a
nonnegative real vector (fP )P ∈P . A flow f is said to be feasible if

∑
P ∈P fP = r. A flow on

an edge e is defined as fe =
∑

P ∈P:e∈P fP . The cost of a path P ∈ P with respect to a flow f

is defined as cP (f) =
∑

e∈P ce(fe). The cost of a flow f is defined as c(f) =
∑

P ∈P cP (f)fP ,

which is equal to∑
P ∈P

(∑
e∈P

ce(fe)
)

fP =
∑
e∈E

( ∑
P ∈P:e∈P

fP

)
ce(fe) =

∑
e∈E

ce(fe)fe.

A feasible flow f is at Nash equilibrium (Wardrop equilibrium), or called a Nash flow
(Wardrop flow), if and only if for all P, P ′ ∈ P with fP > 0, cP (f) ≤ cP ′(f). Note that
this means that all paths in P with positive flows have the same cost in a Nash flow. It is
known that there exists a Nash flow for any instance (G, r, c), where c = (ce)e∈E , and that
all Nash flows have the same cost. For any Nash flows f and f ′, specifically, it follows that
ce(fe) = ce(f ′

e) for every edge e ∈ E, and hence, cP (f) = cP (f ′) for any path P ∈ P. See,
e.g., [12] for further detailed discussion.

Braess’s paradox occurs in the instance (G, r, c) if removal of some edges of G decreases
the unique cost of a Nash flow, i.e., there exists a spanning subgraph H = (V, E′) of G such
that

d(H, r, c) < d(G, r, c),

where d(H, r, c) and d(G, r, c) are the unique costs of Nash flows for the instances (H, r, c)
and (G, r, c), respectively. If there exist a traffic rate r and cost functions c = (ce)e∈E such
that Braess’s paradox occurs in the instance (G, r, c), then we define that Braess’s paradox
can occur in G, or G is paradox-ridden or vulnerable. Any graph that is not vulnerable is
said to be paradox-free.

The following is a characterization of directed vulnerable graphs, which we use in our
algorithm.

▶ Theorem 4 ([8, 6]). A directed two-terminal graph G with source s and sink t is vulnerable
if and only if there is an st-embedding ⟨ϕ, ρ⟩ of the Wheatstone network in Fig. 1 into G.
Here, ϕ is an injective mapping from the vertices in Fig. 1 to the vertices of G, and ρ maps
each edge in Fig. 1, denoted by (u, v), to a ϕ(u)ϕ(v)-path in G, as well as constructs a
(possibly empty) sϕ(p)-path and a (possibly empty) ϕ(q)t-path, in such a way that all these
paths are disjoint with each other.

ATMOS 2023
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3 Algorithm for Directed Graphs

Our algorithm recursively performs series and parallel decompositions, which are similar to
the inverse operations of series and parallel compositions, respectively. Specifically, there
are two goals of series and parallel decompositions in our algorithm: One is to find the
maximum number of two-terminal subgraphs G1, . . . Gk of an input graph G, in such a way
that the route-induced subgraph G̃ of G is obtained either by series compositions or by
parallel compositions of the route-induced subgraphs G̃1, . . . G̃k of G1, . . . Gk, respectively.
The redundant vertices and edges in G− G̃ may or may not remain in the resulting subgraphs
G1, . . . Gk. The other goal is that the subgraphs G1, . . . Gk are almost separated, by which the
running time is reduced. Actually, only terminals of each of the subgraphs may be shared by
another subgraph. The series and parallel decompositions are implemented using depth-first
search (DFS) on G, as defined in this section. To obtain an O(m2) time implementation for
graphs with m edges, the parallel decomposition algorithm quits when an st-embedding of the
Wheatstone network is detected. We decide that G is paradox-free, i.e., G̃ is series-parallel
if and only if G̃ is decomposed into a collection of single edges by recursive executions of
the series and parallel decompositions with detecting no st-embedding of the Wheatstone
network. Because the series and parallel decomposition algorithms preserve irredundant
edges as the first goal above, the proposed algorithm can produce the series-parallel G̃ if G

is paradox-free.
We define and analyze the series and parallel decomposition algorithms in Sections 3.1

and 3.2, respectively, and the main procedure of the proposed algorithm in Section 3.3. To
simplify the discussion, we assume without loss of generality that the input graph G with m

edges has O(m) vertices. Note that this assumption is simply implied by weak connectivity,
and hence affects neither the vulnerability of G nor the time complexity of our algorithm.

3.1 Series Decomposition

3.1.1 Idea and Definition of Series Decomposition Algorithm
Our series decomposition algorithm, called Series_Decomposition, is based on the simple
observation that the route-induced subgraph G̃ of an input graph G is obtained by series
composition of two graphs H1 and H2, identifying the sink t1 of H1 and the source s2 of
H2, if and only if all st-paths in G contain the identified vertex t1 = s2 (Lemma 5). We call
such a vertex, including s and t, an st-articulation point. All st-articulation points can be
found in linear time using several algorithms [1, 4, 5] (Step 1). Lemma 5 implies that all
st-articulation points appear in the same order on all st-paths. If v0 = s, v1, . . . , vk−1, vk = t

are st-articulation points appearing in this order on an st-path, then for 1 ≤ i ≤ k, we define
Gi as the graph induced by the vertices reachable from vi−1 with passing through neither vi

nor vertices reachable from vj−1 with j < i (Step 2). In this way, the route-induced subgraph
G̃ is series decomposed into the route-induced subgraphs G̃1, . . . , G̃k as desired (Lemma 6).
The following is a high level pseudocode of Series_Decomposition.

Algorithm Series_Decomposition(G, s, t)
Input A directed two-terminal graph G with source s and sink t.
Output The maximum number k of two-terminal subgraphs G1, . . . , Gk of G, such that G̃

is obtained by series composition of G̃1, . . . , G̃k, and that for each 1 ≤ i < k, Gi and⋃
j>i Gj share vi+1 only.
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P
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Figure 3 Intersecting sv-path P and vt-path Q.

1. Find all st-articulation points v0 = s, v1, . . . , vk−1, vk = t appearing in this order on an
st-path.

2. For i = 1 to k, perform the following:
a. Find a set Vi of vertices x such that there exists a vi−1x-path in G consisting of edges

neither leaving vi nor entering a vertex in
⋃i−1

j=1 Vj .
b. Return the graph induced by Vi as Gi.

3.1.2 Analysis of Series_Decomposition

We prove the correctness of Series_Decomposition in Lemmas 5 and 6 below, together
with the time complexity in Lemma 7.

▶ Lemma 5. For a directed two-terminal graph G with source s and sink t, the route-induced
subgraph G̃ is obtained by series composition of some graphs H1 and H2 if and only if there
exists an st-articulation point v /∈ {s, t}.

Proof. The necessity (⇒) is immediate by the definition of series composition. Specifically,
if G̃ is obtained by identifying the sink t1 of a graph H1 and the source s2 of a graph H2,
then s and t must be contained in H1 and H2, respectively, and all st-paths of G must pass
through the vertex t1 = s2 in G.

For the sufficiency (⇐), let v /∈ {s, t} be an st-articulation point. If an sv-path P and a
vt-path Q intersect, then let u be the internal vertex of both P and Q that appears first on P .
Then, we obtain the st-path avoiding v, which proceeds from s to u along P and then from
u to t along Q (Fig. 3). This contradicts that v is an st-articulation point. Therefore, any
sv-path and any vt-path are distinct. This means that G̃ is obtained by series composition
of two subgraphs induced by all sv-paths and vt-paths. ◀

▶ Lemma 6. Series_Decomposition returns the maximum number k of two-terminal
subgraphs G1, . . . , Gk of an input graph G such that G̃ is obtained by series composition of
G̃1, . . . , G̃k, and that for each 1 ≤ i < k, Gi and

⋃
j>i Gj share vi only.

Proof. In Step 1, we find st-articulation points v0 = s, v1, . . . , vk−1, vk = t appearing in this
order on an st-path. Lemma 5 implies that G̃ is obtained by series compositions of k graphs
H1, . . . , Hk, where Hi has the source vi−1 and sink vi, and that k is the maximum number
of such graphs. We observe the following claim.

▷ Claim. For each 1 ≤ i ≤ k, the graph Gi defined in Step 2 contains no vertices in⋃
j>i Hj − vi.

Proof. The claim holds because for 1 ≤ i < j ≤ k, any vertex x ̸= vi contained in both Gi and
Hj would yield an st-path avoiding vi, which proceeds from s to vi−1 through H1, . . . , Hi−1,
from vv−1 to x in Gi, and then from x to t through Hj , . . . , Hk (Fig. 4). ◁

ATMOS 2023
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Figure 4 A vertex x ̸= vi in both Gi and Hj with j > i yields an st-path avoiding vi.

Now we prove the lemma by showing that G̃i and Hi are identical for each 1 ≤ i ≤ k.
Since G̃ is induced by all the st-paths and obtained by series compositions of H1, . . . , Hk,
every vertex x of Hi is on a vi−1vi-path, denoted by Qx, consisting of edges not leaving vi.
In addition, Qx has no internal vertices in the graph

⋃
j<i Gj by the above claim. Thus, the

vi−1x-subpath of Qxconsists of edges neither leaving vi nor entering a vertex in the graph⋃
j<i Gj , implying that Hi is a subgraph of G̃i. On the other hand, since G̃i is the subgraph

induced by all vi−1vi-paths in Gi, every vertex y of G̃i is on a vi−1vi-path, denoted by Qy.
The path Qy has no internal vertices in the graph

⋃
j>i Hj by the above claim. Moreover,

Qy has no internal vertices in the graph
⋃

j<i Hj , since Gi contains no vertices in
⋃

j<i Gj

by the definition of Step 2, and since Hj is a subgraph of G̃j . Therefore, the path Qy is
included in Hi, and hence G̃i is a subgraph of Hi. Thus, the graphs G̃i and Hi are identical.

It is obvious by the definition of Step 2 that for each 1 ≤ i < k, Gi and
⋃

j>i Gj share vi

only. We thus conclude that Series_Decomposition returns desired subgraphs. ◀

▶ Lemma 7. Series_Decomposition runs in O(m) time for an input graph G with m edges.

Proof. Step 1 can be executed in linear time using one of the algorithms in [1, 4, 5]. Step 2
can be implemented as graph search, e.g., DFS from vi−1 for each 1 ≤ i ≤ k. Since no edge
entering a vertex in Vj with j < i is visited by the ith search from vi−1, each edge is visited
at most once. Therefore, Step 2 finishes also in linear time. Thus Series_Decomposition
runs in O(m) time. ◀

3.2 Parallel Decomposition
We describe two versions of our parallel decomposition algorithm. We first present a base
version in Section 3.2.1, which depends on Theorem 2 but not on Theorem 4, and prove
its correctness and the polynomial time complexity in Section 3.2.2. Our main purpose of
presenting this version is to prove the correctness of the base idea of our algorithm. We then
present a faster version with improved implementation using Theorem 4 in Section 3.2.3.

3.2.1 Idea and Definition of Parallel Decomposition Algorithm
To describe the idea of our parallel decomposition algorithm, it is convenient to represent
st-paths of an input graph G as another undirected graph, called the route intersection
graph, which is obtained by creating a vertex for each st-path and an edge for any two
intersecting st-paths in G. On the basis of the route intersection graph, we introduce graph
notion, such as adjacency and distance, into st-paths: Two st-paths are said to be adjacent
to each other if they intersect in G, and the distance between two st-paths P and P ′ is the
distance between them in the route intersection graph, i.e., the minimum number h of pairs
of adjacent st-paths Qi−1 and Qi, 1 ≤ i ≤ h, such that Q0 = P and Qh = P ′. To avoid
confusion, we use the terms chains and chained for the notions “paths” and “connected” in
the route intersection graph, respectively. In particular, connected components in the route
intersection graph are called chained components below.
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A key observation is that the goal of our parallel decomposition algorithm is to decompose
G into subgraphs, in such a way that st-paths are partitioned into the chained components
(Lemma 9). To this end, in the base version called Parallel_Decomposition, we begin by
finding a maximal number of disjoint st-paths P1, . . . , Pℓ (Step 1). By the maximality of ℓ,
any remaining st-path is adjacent to some Pi. We find st-paths adjacent to Pi, and put them
together as one subgraph, by searching for vertices x such that there are ux-path and xv-path
for certain vertices u and v on Pi (Step 2). At this point every st-path is contained in at
least one of subgraphs emerged from paths P1, . . . , Pℓ (Lemma 10). We then find subgraphs
sharing an internal vertex and put them together as one subgraph (Step 3). This procedure
merges paths Pi and Pj within distance 3, together with paths adjacent to them, into one
subgraph (Lemmas 11 and 12). Conversely, we can prove that two subgraphs are merged
by this procedure only if they contain such Pi and Pj within distance 3 (Lemma 13). The
algorithm thus yields desired subgraphs, each of which contains st-paths composing a chained
component in the route intersection graph (Lemma 14).

The following is a high level pseudocode of Parallel_Decomposition.

Algorithm Parallel_Decomposition(G, s, t)
Input A directed two-terminal graph G with source s and sink t.
Output The maximum number k of two-terminal subgraphs G1, . . . , Gk of G, sharing s and

t only, such that G̃ is obtained by parallel composition of G̃1, . . . , G̃k.

1. Find a maximal number of disjoint st-paths P1, . . . , Pℓ of G greedily.
2. For each 1 ≤ i ≤ ℓ, let Vi be the vertex set obtained from the vertex set of Pi by adding

every vertex x satisfying the following condition.
▶ Condition 8. The vertex x is not contained in Pi, and there exist (not necessarily
distinct) vertices u and v in Pi, such that
a. there are a ux-path and an xv-path in G, each of which is disjoint with Pi, and
b. u /∈ {s, t} and v /∈ {s, t}, or u = s and v /∈ {s, t}, or u /∈ {s, t} and v = t.

3. If Vi and Vj (i < j) share a vertex that is neither s nor t, then Vi = Vi ∪ Vj and Vj = ∅.
Perform this process as long as two sets sharing a vertex neither s nor t exist.

4. For each i such that Vi ̸= ∅, return the subgraph of G induced by Vi.

3.2.2 Analysis of Parallel_Decomposition

We prove the correctness of Parallel_Decomposition in Lemmas 9–14 below, together with
the polynomial time complexity in Lemma 15.

▶ Lemma 9. Let C1, . . . , Ck be the sets of st-paths in all the chained components of the
route intersection graph of an input graph G. Then, the route-induced subgraph G̃ of G is
obtained by parallel compositions of the maximum number k of graphs H1, . . . , Hk, which are
induced by the edges of the st-paths in C1, . . . , Ck, respectively.

Proof. For each 1 ≤ i ≤ k, let Hi be the subgraph of G induced by the edges of the st-paths
in Ci. Then, G̃ can be obtained by parallel composition of the two graphs Hi and

⋃
j ̸=i Hj ,

because any st-path in G is contained in exactly one of the sets C1, . . . , Ck, and because
any st-path in Ci and any st-path not in Ci are disjoint. Moreover, the graph Hi cannot be
obtained by parallel composition of two smaller graphs, because for any partition of Ci into
two non-empty disjoint subsets, there are two intersecting st-paths contained in the different
subsets. Therefore, G̃ can be obtained by parallel compositions of H1, . . . , Hk but not of
more than k graphs. ◀
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Figure 5 Intersecting st-paths P and Pi, and a vertex x in P but not in Pi.

▶ Lemma 10. For any st-path P of a graph G input to Parallel_Decomposition, there
exists 1 ≤ i ≤ ℓ such that P and Pi intersect or P = Pi. Moreover, all vertices of P are
contained in Vi for each such i after Step 2.

Proof. If P = Pi for some i, then Vi contains the vertices of P by definition, and therefore,
the lemma holds for this case.

Assume otherwise. By the maximality of the number ℓ of disjoint st-paths, there exists
1 ≤ i ≤ ℓ such that P and Pi intersect, i.e., share at least one internal vertex. For each
such i, let u0 = s, u1, . . . , uh−1, uh = t (h ≥ 2) be all the vertices shared by P and Pi and
appearing in this order on P . For each 0 ≤ j < h, each internal vertex x on the subpath
of P from uj to uj+1 is not in Pi, and added to Vi at Step 2 because of the ujuj+1-path
disjoint with Pi (Fig. 5). Here, we observe by h ≥ 2 that uj /∈ {s, t} and uj+1 /∈ {s, t} for
0 < j < h − 1, uj = s and uj+1 /∈ {s, t} for j = 0, and uj /∈ {s, t} and uj+1 = t for j = h − 1.
We thus have the lemma. ◀

▶ Lemma 11. For any 1 ≤ i < j ≤ ℓ, if there is an st-path Q such that Pi and Q intersect,
and Q and Pj intersect, then Vi and Vj are merged in Step 3.

Proof. Under the assumption of the lemma, Pi and Q share an internal vertex x. By
Lemma 10, x is contained in Vi after Step 2. Since Q and Pj intersect, x is also contained in
Vj after Step 2 by Lemma 10. Therefore, Vi and Vj are merged in Step 3, since they share
the vertex x that is neither s nor t. ◀

▶ Lemma 12. For any 1 ≤ i < j ≤ ℓ, if there are two distinct st-paths Q and Q′ such that
Pi and Q intersect, Q and Q′ intersect, and Q′ and Pj intersect, then Vi and Vj are merged
in Step 3.

Proof. Under the assumption of the lemma, all vertices of Q are contained in Vi, and all
vertices of Q′ are contained in Vj , both after Step 2 by Lemma 10. Moreover, Q and Q′

share an internal vertex x. This implies that x, which is neither s nor t, is contained in both
Vi and Vj . Therefore, Vi and Vj are merged in Step 3. ◀

▶ Lemma 13. If two vertex sets, denoted by V and V ′, are merged in Step 3, then there exist
i and j with 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ℓ, and i ̸= j such that the vertex sets of the st-paths Pi and
Pj are included in V and V ′, respectively, and that at least one of the following conditions is
satisfied.
1. There is an st-path Q such that Pi and Q intersect, and Q and Pj intersect.
2. There are st-paths Q and Q′ such that Pi and Q intersect, Q and Q′ intersect, and Q′

and Pj intersect.
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Proof. Under the assumption of the lemma, the sets V and V ′ share a vertex x that is
neither s nor t. Since st-paths P1, . . . , Pℓ are disjoint with each other, x is contained in
at most one of these paths and added to V and/or V ′ in Step 2. We assume without loss
of generality that x is added to V in Step 2. Then, there exists 1 ≤ i ≤ ℓ such that the
vertices of Pi are included in V , and Condition 8 for x to be added to Vi in Step 2 is satisfied.
Specifically, there are a ux-path Qu and an xv-path Qv for some vertices u and v of Pi, such
that these paths are both distinct with Pi, and that u /∈ {s, t} and v /∈ {s, t}, or u = s and
v /∈ {s, t}, or u /∈ {s, t} and v = t. We prove by cases.

1. Suppose that u /∈ {s, t} and x is contained in no st-path Pj with j ̸= i whose vertices
are included in V ′. Then, x is added to V ′ in Step 2, and therefore, there exists j ̸= i

such that the vertices of Pj are included in V ′, and Condition 8 for x to be added to Vj

in Step 2 is satisfied. Specifically, there are a yx-path Qy and an xz-path Qz for some
vertices y and z of Pj , such that these paths are both distinct with Pj , and that y /∈ {s, t}
and z /∈ {s, t}, or y = s and z /∈ {s, t}, or y /∈ {s, t} and z = t.

a. If Qu and Pj intersect, then let r be the internal vertex of both Qy and Pj that appears
first on Qu. Then, we obtain the st-path Q proceeding s → u → r → t (Fig. 6(a)).
The paths Q and Pi intersect at u, and Q and Pj intersect at r.

b. If Qv and Pj intersect, then let r be the internal vertex of both Qv and Pj that appears
last on Qv. Then, we obtain the st-path Q proceeding s → r → v → t (Fig. 6(b)).
The paths Q and Pi intersect at v, and Q and Pj intersect at r.

c. If Qy or Qz intersects with Pi, then we can prove the existence of an st-path Q

intersecting with Pi and Pj as in the case 1a or 1b, with exchanged roles of i and j, u

and y, and v and z. (Fig. 6(c)-i,ii).
d. Assume that both Qu and Qv are disjoint with Pj , and both Qy and Qz are disjoint

with Pi.
i. If z ̸= t, then let r be the vertex of Qz appearing first on Qu. The vertex r is

identical with x if Qu and Qz are disjoint. Then, we obtain the st-path Q proceeding
s → u → r → z → t (Fig. 6(d)-i). The paths Q and Pi intersect at u, and Q and
Pj intersect at z.

ii. If z = t, then let r be the vertex of Qz that appears first on Qu, and let w be the
vertex of Qz that appears first on Qy. Then, we obtain two st-paths Q proceeding
s → u → r → t and Q′ proceeding s → y → w → t (Fig. 6(d)-ii). The paths Q and
Pi intersect at u, Q and Q′ intersect at one of the vertices r and w that appears
latter on Qz, and Q′ and Pj intersect at y.

2. Suppose that u /∈ {s, t} and x is contained in Pj for some j ̸= i whose vertices are included
in V ′. We can prove for this case as in the case 1a.

3. Suppose u = s, implying v /∈ {s, t}. Let G′ be the graph obtained from G by reversing
the direction of every edge. Then, any path in G is a path in G′ with reverse direction,
and vice versa. Also, vertex sets V1, . . . , Vℓ created and processed in the algorithm are
exactly the same for G′ as for G. Therefore, this case can be reduced to the case 1 or 2
with exchanged roles of s and t, u and v, and y and z.

In all cases, there is an st-path Q that intersect with Pi and Pj , or there are two
intersecting st-path Q and Q′ that intersect Pi and Pj , respectively. ◀
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Figure 6 Paths Pi and Pj (solid arrows), Qu and Qv (dotted arrows), and Qy and Qz (dashed
arrows).

▶ Lemma 14. Parallel_Decomposition returns the maximum number k of subgraphs
G1, . . . , Gk of an input graph G, sharing s and t only, such that G̃ is obtained by parallel
composition of G̃1, . . . , G̃k.

Proof. We begin with proving that the sets of st-paths in the returned subgraphs G1, . . . , Gk

induce the chained components. To this end, we prove the following claims.

▷ Claim. Every st-path in G is contained in exactly one of the returned subgraphs.

Proof. By Lemma 10 and the property of Parallel_Decomposition that the vertex sets
created in Step 2 are not divided in the subsequent steps, every st-path in G is contained
at least one of the returned subgraphs. Since the returned subgraphs share s and t only by
definition, the claim holds. ◁

▷ Claim. Any two chained st-paths are contained in one of the returned subgraphs.

Proof. By Lemma 10, any st-path P not in {P1, . . . , Pℓ} intersects with some Pi, and the
vertices of P are added to Vi in Step 2. So it suffices to show that any chained Pi and Pj

are contained in one of the returned subgraphs. Consider a chain from Pi to Pj in the route
intersection graph, and suppose that the chain consists of c st-paths Q1, . . . , Qc. For each
1 ≤ h ≤ c, if the hth st-path Qh in the chain is in {P1, . . . , Pℓ}, then let Q′

h be this hth path
Qh. Otherwise, let Q′

h be an st-path in {P1, . . . , Pℓ} adjacent to the hth st-path Qh in the
chain. Note Q′

1 = Pi and Q′
c = Pj . For each 1 ≤ h < c, the distance between Q′

h and Q′
h+1

is at most 3, because Qh and Qh+1 are adjacent, and the distances between Qh and Q′
h and

between Qh+1 and Q′
h+1 are both at most 1. Moreover, the distance between Q′

h and Q′
h+1

is at least 2, because P ′
h and P ′

h+1 are in the set {P1, . . . , Pℓ} of disjoint st-paths, and hence
at a distance more than 1. By Lemmas 11 and 12, therefore, the vertex sets of Q′

h and Q′
h+1

are merged in Step 3. This means that the vertex sets of Q′
1 = Pi and Q′

c = Pj are merged
in Step 3 as well. ◁

▷ Claim. Any two st-paths contained in one of the returned subgraphs are chained.



A. Matsubayashi and Y. Saito 12:13

Proof. By Lemma 13, when two vertex sets are merged in Step 3, there are two st-paths at
a distance 2 or 3, whose vertex sets are included in each of the two merged sets. This means
that in Step 4, any two st-paths in one of the returned subgraphs are within a finite distance.

◁

By the above claims, the sets of st-paths in G1, . . . , Gk induce the chained components.
Combined with Lemma 9, we have the lemma. ◀

▶ Lemma 15. Parallel_Decomposition runs in O(nm2) time for an input graph G with
n vertices and m edges.

Proof. We prove a (naive) implementation of Parallel_Decomposition runs in polynomial
time. For Step 1, we can find a maximal number ℓ of disjoint st-paths by ℓ + 1 iterations
of DFS on G with removal of the internal vertices (or possibly the single edge (s, t)) of an
st-path found in each DFS. Step 1 thus finishes in O(ℓm) = O(m2) steps.

For Step 2, we can obtain the set of vertices satisfying Condition 8 as the intersection
of (i) the vertices not in Pi and reachable from Pi − t without passing through the vertices
of Pi, and (ii) the vertices not in Pi from which Pi − s are reachable without passing through
the vertices of Pi. These vertex sets (i) and (ii) can be found in O(m) steps using DFS with
some ingenuity, such as avoiding Pi and traversing edges in the reverse direction for (ii).
Merging the vertices of Pi and the intersection of the sets (i) and (ii) for each 1 ≤ i ≤ ℓ,
Step 2 finishes in O(ℓm) = O(m2) steps.

An implementation of Step 3 is to iterate the process that we find a combination of a
vertex x /∈ {s, t} and 1 ≤ i < j ≤ ℓ such that x ∈ Vi ∩ Vj , in O(ℓn) steps, and merge Vi and
Vj in O(n) steps if such a combination is found. Because at most ℓ iterations of this process
are enough, Step 3 finishes in O((ℓn + n)ℓ) = O(nm2) steps.

Putting together, Parallel_Decomposition runs in O(nm2) steps. ◀

3.2.3 Implementation for Linear Time Parallel Decomposition

We describe intuitively (not precisely) the idea of a linear time implementation of Parallel_
Decomposition using the characterization of Theorem 4.

The original Step 1, which finds a maximal number ℓ of disjoint st-paths P1, . . . , Pℓ, can
be implemented as iterations of DFS on the input graph G that starts at source s and ends
at sink t. By avoiding previously visited vertices and single edges (s, t) in each DFS, we can
find desired paths in linear time.

For the original Step 2, which is, for each 1 ≤ i ≤ ℓ, adding all vertices x satisfying
Condition 8 to the vertex set of Pi (the resulting vertex set is denoted by Vi), we define
the following sets of vertices of G: Si and Ti are the sets of vertices x not in Pi such that
there exists an sx- and xt-path disjoint with Pi, respectively. In addition, O′

i and I ′
i are the

sets of vertices x not in Pi such that there exist an internal vertex u of Pi and a ux- and
xu-path disjoint with Pi, respectively. The set of vertices satisfying Condition 8 is obtained
as Xi = (O′

i ∩ I ′
i) ∪ (O′

i ∩ Ti) ∪ (I ′
i ∩ Si). Each of the sets O′

i, I ′
i, Si, and Ti can be found in

linear time using DFS with some ingenuity, such as, traversing edges in the reverse direction
for I ′

i and Ti, which we call reverse DFS, and avoiding vertices of Pi. However, it possibly
takes a super-linear Θ(ℓm) time to find these sets for all 1 ≤ i ≤ ℓ for graphs with m edges
and ℓ = ω(1). To reduce this running time, we modify the original Steps 2 and 3.
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In the original Step 3, two sets Vi and Vj are merged if they share a vertex neither s nor
t, i.e., Vi ∩ Vj ≠ {s, t}.3 Merging the sets is necessary to complete the parallel decomposition.
However, this process is not necessary to check if the route-induced subgraph G̃ of G is
series-parallel, because if Vi ∩ Vj ̸= {s, t}, then there is an st-embedding of the Wheatstone
network into G (Lemmas 19 and 17), and hence G̃ is not series-parallel by Theorems 2 and 4.
In this case, therefore, we quit our algorithm with the return value “No” (meaning G̃ is
not series-parallel). Otherwise, i.e., if Vi ∩ Vj = {s, t} for all 1 ≤ i < j ≤ ℓ, then we return
the subgraph Gi induced by Vi for each 1 ≤ i ≤ ℓ. Note that not all st-embeddings of the
Wheatstone network can be detected in this way; each of the returned subgraphs may have
an st-embedding of the Wheatstone network.

To implement the modified Steps 2 and 3 in linear time, we find S =
⋂ℓ

i=1 Si and
T =

⋂ℓ
i=1 Ti using (reverse) DFS avoiding vertices of P1, . . . , Pℓ. Then, for i = 1 to ℓ, we

find Oi ⊆ O′
i by DFS, starting at internal vertices of Pi in turn and avoiding vertices in Pi

and in Oj with each j < i, as well as vertices already found as elements of Oi. During DFS
for Oi, if we reach an internal vertex of Pj with j < i, then Vi ∩ Vj ̸= {s, t}, and therefore we
quit with “No”. In addition, if we reach a vertex Oj ∩ T with j < i, then Vi ∩ Vj ≠ {s, t}, and
therefore we quit with “No”. We find Ii ⊆ I ′

i similarly (using reverse DFS). In this way, we
can actually obtain the set Xi of vertices satisfying Condition 8 as (Oi ∩Ii)∪(Oi ∩T )∪(Ii ∩S)
(Lemma 18).

The following is a high level pseudocode of the implementation, called Fast_Parallel_
Decomposition.
Algorithm Fast_Parallel_Decomposition(G, s, t)
Input A directed two-terminal graph G with source s and sink t.
Output Either the maximum number k of two-terminal subgraphs G1, . . . , Gk of G, sharing

s and t only, such that G̃ is obtained by parallel composition of G̃1, . . . , G̃k, or “No”
meaning G̃ is not series-parallel.

1. Set i = 1 and suppose that there are d edges leaving s, denoted by (s, u1), . . . , (s, ud).
For j = 1 to d, perform the following.
a. If uj = t, then we define Pi as the st-path consisting of the single edge (s, uj) and

increment i by 1.
b. If uj ̸= t, then perform DFS starting at s, traversing the edge (s, uj) first, and avoiding

vertices visited by previous DFS for smaller j. In the current DFS, if we reach a vertex
incident to an edge entering t, then we define Pi as the st-path visited by the DFS.
We then quit the DFS and increment i by 1. If we backtrack to s with no st-path
found, then we just quit the DFS.

2. Suppose that we have ℓ st-paths P1, . . . , Pℓ. For each 1 ≤ i ≤ ℓ, let Ui be the set of
internal vertices of Pi, In addition, let Uo

i and U i
i be the set of vertices that are not in Pi

and incident to an edge leaving and entering a vertex in Ui, respectively.

3. Find the set S of vertices x, excluding s, such that there exists an sx-path disjoint with
P1, . . . , Pℓ, by performing DFS starting at s and avoiding vertices in

⋃ℓ
i=1 Ui ∪ {t}.

4. Find the set T of vertices x, excluding t, such that there exists an xt-path disjoint with
P1, . . . , Pℓ, by performing reverse DFS (i.e., DFS traversing edges in the reverse direction)
starting at t and avoiding vertices in

⋃ℓ
i=1 Ui ∪ {s}.

5. For i = 1 to ℓ, perform the following.

3 Note that both Vi and Vj contain s and t.
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a. Find the set Oi of the vertices, visited by DFS starting at every vertex v in Uo
i and

avoiding vertices in Pi or in
⋃

j<i Oj and vertices already found as elements of Oi.
During the DFS, we perform the following.
i. If we reach a vertex in Uj with j ̸= i, then return “No”.
ii. If we reach a vertex incident to an edge entering a vertex in Oj ∩ T for some j < i,

then return “No”.
b. Find the set Ii of the vertices, visited by reverse DFS starting at every vertex v in U i

i

and avoiding vertices in Pi or in
⋃

j<i Ij and vertices already found as elements of Ii.
During the DFS, we perform the following.
i. If we reach a vertex in Uj with j ̸= i, then return “No”.
ii. If we reach a vertex incident to an edge leaving a vertex in Ij ∩ S for some j < i,

then return “No”.
6. For each 1 ≤ i ≤ ℓ, define Vi = {s, t} ∪ Ui ∪ (Oi ∩ Ii) ∪ (Oi ∩ T ) ∪ (Ii ∩ S) and return the

graph induced by Vi as Gi.

We prove the correctness of Fast_Parallel_Decomposition in Lemmas 16–20 below.

▶ Lemma 16. The paths P1, . . . , Pℓ found in Step 1 are the maximal number ℓ of disjoint
st-paths.

Proof. In the DFS starting with the edge (s, uj) in Step 1, when we reach a vertex x incident
to an edge (x, t), we define Pi as the ith st-path found. At this point, there is no st-path
that contains a vertex visited by this DFS before we reach x and is disjoint with previously
found st-paths P1, . . . , Pi−1 (for otherwise, we should have found another vertex x′ incident
to an edge (x′, t) before we reach x). This means that the number ℓ of st-paths is maximal.
Because the DFS starting with the edge (s, uj) avoids vertices visited by previous DFS, the
found st-paths P1, . . . , Pℓ are disjoint. We thus have the lemma. ◀

▶ Lemma 17. If Fast_Parallel_Decomposition returns “No”, then there exists an st-
embedding of the Wheatstone network into G.

Proof. There are four cases that “No” is returned. If “No” is returned in Step 5(a)i or 5(b)i,
then it is implied that there is a path, denoted by Q, from a vertex in Ui to a vertex in Uj

or from a vertex in Uj to a vertex in Ui, containing neither s nor t. Since Ui and Uj are the
sets of internal vertices of disjoint st-paths Pi and Pj by Lemma 16, in either case, Pi, Pj ,
and Q constitute an st-embedding of the Wheatstone network (Fig. 7(a)).

Suppose that “No” is returned in Step 5(a)ii due to a vertex x ∈ Oi incident to an edge
entering a vertex y ∈ Oj ∩ T for some j < i. By the conditions on x and y, there exist a
path Qy

i from a vertex u ∈ Ui to y via vertices in Oi, and a path Qt
j from a vertex w ∈ Uj

to t via vertices in Oj (including y) and in T . We observe the following.
Qy

i and Pi are disjoint, because Oi is found by DFS avoiding vertices in Pi.
Qt

j and Pi are disjoint and share only one vertex t. For otherwise, some vertex z in
Qt

j is contained in Ui. The vertex z is not contained in T , because T is found by DFS
avoiding vertices in Ui ∪ {s}. The vertex z is not contained in Oj either, because the
algorithm should have quit at Step 5(a)i if a vertex in Ui such as z was visited by DFS
for finding Oj . Therefore, there exists no such vertex z.

Let r be the vertex of Qt
j appearing first on Qy

i . By the observations above, Pi, the ur-
subpath of Qy

i , and the st-path obtained by concatenating the sw-subpath in Pj and Qt
j

constitute an st-embedding of the Wheatstone network (Fig. 7(b)).
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Figure 7 Paths constituting an st-embedding of the Wheatstone network.

The case that “No” is returned in Step 5(b)ii can be reduced to the case for Step 5(a)ii
with the paths in the reverse direction and with the exchanged roles of Oi and Ii, and T

and S. ◀

▶ Lemma 18. If Fast_Parallel_Decomposition does not return “No”, then the set (Oi ∩
Ii) ∪ (Oi ∩ T ) ∪ (Ii ∩ S) in Step 6 equals the set of vertices satisfying Condition 8.

Proof. Let Si, Ti, O′
i, and S′

i be the sets of vertices defined as follows:

Si ={x | x is not in Pi, and there exists an sx-path disjoint with Pi}
Ti ={x | x is not in Pi, and there exists an xt-path disjoint with Pi}
O′

i ={x | x is not in Pi, and there exist a vertex u∈Ui and a ux-path disjoint with Pi}
I ′

i ={x | x is not in Pi, and there exist a vertex v ∈Ui and an xv-path disjoint with Pi}

By these definitions, the set of vertices x satisfying Condition 8 is Xi = (O′
i ∩ I ′

i) ∪ (O′
i ∩

Ti) ∪ (I ′
i ∩ Si). Because S, T , Oi, and Ii found in the algorithm are obviously subsets of Si,

Ti, O′
i, and I ′

i, respectively, it follows that Xi ⊇ (Oi ∩ Ii) ∪ (Oi ∩ T ) ∪ (Ii ∩ S). We prove
Xi ⊆ (Oi ∩ Ii) ∪ (Oi ∩ T ) ∪ (Ii ∩ S) by observing that if there is a vertex in Xi but not in
(Oi ∩ Ii) ∪ (Oi ∩ T ) ∪ (Ii ∩ S), then the algorithm returns “No”.

Suppose x ∈ Xi \ ((Oi ∩ Ii) ∪ (Oi ∩ T ) ∪ (Ii ∩ S)). Then, x is contained in at least one of
the sets O′

i \ Oi, I ′
i \ Ii, Ti \ T , and Si \ S.

1. If x ∈ O′
i \Oi, then DFS for finding Oi either quits before visiting x at Step 5(a)i or 5(a)ii,

or does not visit x because of x ∈ Oj for some j < i. In the former possibility, we are
done. In the latter possibility, x ∈ (O′

i \ Oi) ∩ Oj , the vertex x is contained in I ′
i or Ti.

a. If x ∈ (O′
i \ Oi) ∩ Oj ∩ I ′

i, then it is implied that there is a path from a vertex in Uj

to a vertex in Ui via vertices in Oj ∪ I ′
i, and hence the algorithm quits at Step 5(a)i

during DFS for Oh with minimum h ≤ j such that O′
h ∩ Ui ̸= ∅.

b. If the vertex x ∈ (O′
i \ Oi) ∩ Oj is contained in Ti, then either x ∈ T or x ∈ Ti \ T .

i. If x ∈ (O′
i \ Oi) ∩ Oj ∩ T , then there exists a path from a vertex v in Uo

i (defined
in Step 2) to x. This path is obtained by concatenating i − j + 1 (possibly empty)
paths: Qi from v to a vertex yi via vertices in Oi, Qh from yh+1 to a vertex yh via
vertices in Oh for each j < h < i, and Qj from yj+1 to x via vertices in Oj . Note
that all vertices in Qj are also contained in T . Therefore, the algorithm quits at
Step 5(a)ii during DFS for Oh with the minimum h (j < h ≤ i) such that Qh is not
empty.

ii. If the vertex x ∈ (O′
i \ Oi) ∩ Oj is contained in Ti \ T , then it is implied that there

exists a path from a vertex in Ui to a vertex in Uh for some h ̸= i. For the minimum
such h, the algorithm quits at Step 5(a)i during DFS for Oi if i < h, or at Step 5(b)i
during DFS for Ih if h < i.
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2. If x ∈ Ti \ T , then x ∈ O′
i. If x ∈ O′

i \ Oi, then the algorithm returns “No” as proved in
the case 1. If x ∈ (Ti \ T ) ∩ Oi, then it is implied that there exists a path from a vertex
in Ui to a vertex in Uj for some j ≠ i, and hence the algorithm quits as in the case 1(b)ii.

3. If x ∈ I ′
i \ Ii or x ∈ Si \ S, then we can prove that the algorithm returns “No” as in the

case 1 or 2, respectively, with the paths in the reverse direction and with the exchanged
roles of O

(′)
i and I

(′)
i , and T(i) and S(i).

We thus conclude that Xi = (Oi ∩ Ii) ∪ (Oi ∩ T ) ∪ (Ii ∩ S) in Step 6. ◀

▶ Lemma 19. If Fast_Parallel_Decomposition does not return “No”, then Vi ∩Vj = {s, t}
for Vi and Vj with any i ̸= j in Step 6.

Proof. We prove that if there exists a vertex in Vi∩Vj but not in {s, t} for some i ̸= j, then the
algorithm returns “No”. Suppose that x ∈ (Vi∩Vj)\{s, t} for some i > j. Then, x is contained
in one of the sets Ui ∩ Xj , Uj ∩ Xi, and Xi ∩ Xj , where Xi = (Oi ∩ Ii) ∪ (Oi ∩ T ) ∪ (Ii ∩ S)
and Xj = (Oj ∩ Ij) ∪ (Oj ∩ T ) ∪ (Ij ∩ S).

If x ∈ Ui ∩ Xj , then because neither T nor S contains any vertex in Ui, it follows that
x ∈ Ui ∩ Oj ∩ Ij . Therefore, the algorithm quits at Step 5(a)i during DFS for Oj . Similarly,
if x ∈ Uj ∩ Xi, then x ∈ Uj ∩ Oi ∩ Ii. Note that this also implies Ui ∩ Oj ≠ ∅ and Ui ∩ Ij ̸= ∅.
Therefore, the algorithm quits at Step 5(a)i during DFS for Oj .

Suppose x ∈ Xi ∩ Xj . If x ∈ Oi ∩ Ij or x ∈ Ii ∩ Oj , then it is implied that there is a path
from a vertex in Ui to a vertex in Uj via vertices in Ij , or from a vertex in Uj to a vertex in
Ui via vertices in Oj . Therefore, the algorithm quits at Step 5(a)i or at Step 5(b)i during
DFS for Oj or Ij . The remaining possibilities are x ∈ Oi ∩ Oj ∩ T and x ∈ Ii ∩ Ij ∩ S, by
which the algorithm quits at Step 5(a)ii or 5(b)ii during DFS for Oi or Ii. ◀

▶ Lemma 20. Fast_Parallel_Decomposition returns either desired graphs or “No” mean-
ing G̃ is series-parallel in O(m) time for an input graph G with m edges.

Proof. If Fast_Parallel_Decomposition returns “No”, then G̃ is not series-parallel by
Lemma 17 and Theorems 2 and 4. Otherwise, by Lemmas 16, 18 and 19, V1, . . . , Vℓ

defined in Step 6 are exactly the sets obtained in Step 2 of Parallel_Decomposition, and
Vi ∩ Vj = {s, t} for any i ̸= j. Therefore, by Lemma 14, the desired subgraphs are returned.
Fast_Parallel_Decomposition runs in O(m) time, because each edge is searched at most
constant times. ◀

3.3 Main Procedure
The following is a high level pseudocode of main procedure, called SP_Test.

Algorithm SP_Test(G, s, t)
Input A directed two-terminal graph G with source s and sink t.
Output “Yes” if the route-induced subgraph G̃ of G is series-parallel, “No” otherwise.

1. If G̃ is a single edge (s, t), then return “Yes”.
2. Perform Series_Decomposition(G, s, t).
3. For each subgraph G′ and its source s′ and sink t′ returned by Series_Decomposition(G,

s, t), perform the following.
a. Perform Fast_Parallel_Decomposition(G′, s′, t′). If it returns “No” or a single

subgraph whose route-induced subgraph is not a single edge (s′, t′), then return “No”.
b. For each subgraph G′′ and its source s′′ and sink t′′ returned by Fast_Parallel_

Decomposition(G′, s′, t′), perform SP_Test(G′′, s′′, t′′) recursively.
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4. If all executions of SP_Test in Step 3 return “Yes”, then return “Yes”. Otherwise, return
“No”.

▶ Theorem 21. SP_Test correctly decides if the route-induced subgraph of an input graph
with m edges is series-parallel in O(m2) steps.

Proof. SP_Test makes decision depending on whether or not an input graph G is decom-
posed into subgraphs whose route-induced graphs consist only of a single edge by Series_
Decomposition and Fast_Parallel_Decomposition. Correctness of these decomposition
algorithms are proved in Lemmas 6 and 20. In particular, if the route-induced subgraph
G̃ of G is not series-parallel, then G or its subgraph appearing at some recursive step has
the route-induced subgraph obtained by neither series nor parallel composition. Such a
graph may be either input to SP_Test, which is possibly a recursive step of the parent
process, or returned by Series_Decomposition in Step 2. In either case, Fast_Parallel_
Decomposition in Step 3 receives a graph whose route-induced subgraph neither is a single
edge nor can be parallel decomposed into smaller graphs, and therefore, returns “No” or a
single subgraph whose route-induced subgraph is not a single edge. Since SP_Test returns
“No” for such a case, it makes decision correctly.

We analyze the time complexity of SP_Test. We can decide that the route-induced
subgraph G̃ is a single edge (s, t) by checking if G has an edge (s, t) and no st-paths avoiding
the edge (s, t), using DFS. Combined with Lemma 7, we can perform Steps 1 and 2 in O(m)
steps.

Suppose that Series_Decomposition in Step 2 returns graphs G1, . . . , Gk such that for
each 1 ≤ i ≤ k, Gi has mi edges. Since Gi and

⋃
j<i Gj share only one vertex by Lemma 6, it

follows that
∑k

i=1 mi ≤ m. By Lemma 20, therefore, Step 3 finishes in
∑k

i=1 O(mi) = O(m)
steps. Since subgraphs returned by Fast_Parallel_Decomposition are edge-disjoint by
Lemma 20, the sum of the numbers of edges of all the subgraphs returned by all executions of
Fast_Parallel_Decomposition in Step 3 is at most m. This means that the total number
of recursive executions of SP_Test is at most the number of vertices of a tree with m leaves.
Thus, SP_Test runs in O(m2) steps. ◀

We observe two remarks on SP_Test.
▶ Remark 22. If we use Parallel_Decomposition instead of Fast_Parallel_Decomposi-
tion in SP_Test, then by Lemma 15 and a slightly modified proof of Theorem 21, we obtain
an O(nm3) time algorithm based only on the characterization of Theorem 2.
▶ Remark 23. If we modify SP_Test so that we mark the single edge in Step 1, then after
all recursive executions of SP_Test finish with “Yes”, we can obtain the series-parallel
route-induced subgraph of an input graph as the subgraph induced by all the marked edges.

4 Conclusion

In this paper, we presented an O(m2) time algorithm for deciding if, for a given directed
two-terminal graph with m edges, its route-induced subgraph is series-parallel. On the basis
of the characterization proved in [8], our algorithm decides if the given graph does not admit
Braess’s paradox for any cost functions. Our approach is based on a simple implementation of
the characterization of [8]. Since this implementation runs in polynomial time, we disproved
a conjecture in [7] that another characterization in terms of the input graph (not of the
route-induced subgraph) would be necessary to design a polynomial time algorithm. The
faster O(m2) running time is achieved by speeding up the simple implementation using



A. Matsubayashi and Y. Saito 12:19

another characterization proved in [8, 6] that the Wheatstone network is embedded in the
given graph. The proposed algorithm is faster than the previous O(nm2) time algorithm
presented in [7], where n is the number of vertices of the given graph. Combined with the
technique of [9], the proposed algorithm can also be used to design a faster O(km2) time
algorithm for the k-commodity case, which solves a question posed in [9] by improving the
O(knm2) time algorithm presented in [9]. As future work, it would be interesting to design
an even faster algorithm, such as a linear time algorithm.
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