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Preface

This volume contains the papers presented at DNA 29: the 29th International Conference on
DNA Computing and Molecular Programming. The conference was held during September
11–15, 2023, at Tohoku University, Sendai, Japan, and was organized under the auspices of
the International Society for Nanoscale Science, Computation, and Engineering (ISNSCE).
The DNA conference series aims to draw together researchers from the fields of mathematics,
computer science, physics, chemistry, biology, and nanotechnology to address the analysis,
design, and synthesis of information-based molecular systems.

Papers and presentations were sought in all areas that relate to biomolecular computing,
including, but not restricted to: algorithms and models for computation on biomolecular
systems; computational processes in vitro and in vivo; molecular switches, gates, devices, and
circuits; molecular folding and self-assembly of nanostructures; analysis and theoretical models
of laboratory techniques; molecular motors and molecular robotics; information storage;
studies of fault-tolerance and error correction; software tools for analysis, simulation,and
design; synthetic biology and in vitro evolution; and applications in engineering, physics,
chemistry, biology, and medicine.

Authors who wished to orally present their work were asked to select one of two submission
tracks: Track A (full paper) or Track B (one-page abstract with supplementary document).
Track B is primarily for authors submitting experimental or theoretical results who plan
to submit to a journal rather than publish in the conference proceedings. We received 61
submissions for oral presentations: 25 submissions to Track A and 36 submissions to Track
B. Each submission was reviewed by at least two reviewers, with most reviewed by three or
more. The Program Committee accepted 10 papers for Track A (40%) and 11 papers for
Track B (31%). We also received 108 submissions for Track C (poster), of which six were
selected as additional oral presentations by the Program Committee. This volume contains
the papers accepted for Track A.

We express our sincere appreciation to our invited speakers: Petra Berenbrink, Chunhai
Fan, Masami Hagiya, Olgica Milenkovic, Yusuke Sato, and Georg Seelig. We thank all of
the authors who contributed papers to these proceedings, and those who presented papers
and posters during the conference. Last, but by no means least, the editors are especially
grateful to the members of the Program Committee and the additional invited reviewers for
their hard work in reviewing the papers on a tight deadline and for providing insightful and
constructive comments to the authors.

Ho-Lin Chen
Constantine Evans

September 2023
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Minimum Free Energy, Partition Function and
Kinetics Simulation Algorithms for a Multistranded
Scaffolded DNA Computer
Ahmed Shalaby #

Hamilton Institute, Department of Computer Science, Maynooth University, Ireland

Chris Thachuk # Ñ

Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA,
USA

Damien Woods # Ñ

Hamilton Institute, Department of Computer Science, Maynooth University, Ireland

Abstract
Polynomial time dynamic programming algorithms play a crucial role in the design, analysis and
engineering of nucleic acid systems including DNA computers and DNA/RNA nanostructures.
However, in complex multistranded or pseudoknotted systems, computing the minimum free energy
(MFE), and partition function of nucleic acid systems is NP-hard. Despite this, multistranded and/or
pseudoknotted systems represent some of the most utilised and successful systems in the field. This
leaves open the tempting possibility that many of the kinds of multistranded and/or pseudoknotted
systems we wish to engineer actually fall into restricted classes, that do in fact have polynomial
time algorithms, but we’ve just not found them yet.

Here, we give polynomial time algorithms for MFE and partition function calculation for a
restricted kind of multistranded system called the 1D scaffolded DNA computer. This model of
computation thermodynamically favours correct outputs over erroneous states, simulates finite state
machines in 1D and Boolean circuits in 2D, and is amenable to DNA storage applications. In
an effort to begin to ask the question of whether we can naturally compare the expressivity of
nucleic acid systems based on the computational complexity of prediction of their preferred energetic
states, we show our MFE problem is in logspace (the complexity class L), making it perhaps one of
the simplest known, natural, nucleic acid MFE problems. Finally, we provide a stochastic kinetic
simulator for the 1D scaffolded DNA computer and evaluate strategies for efficiently speeding up
this thermodynamically favourable system in a constant-temperature kinetic regime.

2012 ACM Subject Classification Theory of computation → Models of computation; Applied
computing → Physical sciences and engineering

Keywords and phrases thermodynamic computation, model of computation, molecular comput-
ing, minimum free energy, partition function, DNA computing, DNA self-assembly, DNA strand
displacement, kinetics simulation

Digital Object Identifier 10.4230/LIPIcs.DNA.29.1
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1:2 MFE, Partition Function & Kinetics Simulation Algorithms for a Multistranded SDC

1 Introduction

Efficient algorithms play a crucial role in the design, analysis and engineering of nucleic
acid systems including DNA computers and DNA nanostructures. Some decades ago the
beautiful relationship between pseudoknot-free nucleic acid secondary structures1 and dy-
namic programming algorithms was established [28, 17, 33]. For just one or more DNA/RNA
strands, there are asymptotically exponentially many (in number of bases) distinct secondary
structures those strands may adopt. Despite this, for the case of a single DNA or RNA strand,
dynamic programming can be used to efficiently, in polynomial time, predict important
global properties of the system, such as its pseudoknot-free minimum free energy (MFE) or
partition function. Intuitively, the MFE is the energy of the most favoured2 structure(s) of
the system, and the partition function is the sum of the Boltzmann-weighted energy of each
secondary structure of the system.

Background. The free energy ∆G(S) =
∑

l∈S ∆G(l) + (n − 1)∆Gassoc of an n-strand
secondary structure S is a sum of empirically-obtained [22] free energies ∆G(l) of a set of
loop features of the secondary structure such as stack loops, bulge loops, and many others [7].
∆Gassoc > 0 is an entropic penalty for bringing strands together. The MFE of a set Ω of
unpseduoknotted secondary structures is simply minS∈Ω ∆G(S), and the partition function
is a (typically large positive) number Q =

∑
S∈Ω e−∆G(S)/kBT where kB is Boltzmann’s

constant in units of kcal/(mol ·K) and T is temperature in Kelvin. Q is typically used as a
normalisation factor to calculate the probability of any pseudoknot-free secondary structure
S at equilibrium: p(S) = (e−∆G(S)/kBT )/Q.

Dynamic-programming based MFE and partition function algorithms provide a firm basis
for some sophisticated DNA sequence design tasks. For example, we might use partition
function calculations in a design feedback loop with the goal of lowering the probability
of unwanted (“off-target”) secondary structures, and we may use MFE and/or partition
function to improve the design of desired (“on-target”) secondary structures [31, 10, 3, 7, 20].

As noted, there are fast MFE and partition function algorithms for systems consisting of
a single strand. But for the case of multiple interacting strands, even unpseudoknotted, the
situation is more nuanced: if we have a constant number (independent of input length) of
strands, there is a polynomial time dynamic programming partition function algorithm [7],
although, somewhat surprisingly, we don’t know of one for MFE [4], since there are over-
counting complications when there are multiple copies of the same strand. But if the system
is multistranded in the most general sense, where the number of strands is given as part of
the input (i.e. non-constant), unpseudoknotted MFE was recently shown to be both NP-hard
and hard to approximate (APX-hard) and so is unlikely to have a polynomial time algorithm,
even for a simple energy model (partition function is unknown for this case) [4]. Furthermore,
if pseudoknots are permitted, MFE determination becomes NP-hard for a large class of
reasonable energy models, even for a single strand [1, 15].

1 We have an ordered list of DNA strands, where each strand is a sequence of DNA bases ordered in 5’ to
3’ direction, giving a total order on all DNA bases in the system. Then, a secondary structure is simply
a set of pairs of the form (i, j) interpreted as “base i is paired with base j” (by convention i < j). We
may permute the order of the strands, and a structure is called unpsedoknotted if there exists a strand
order where such base pairs “do not cross”, i.e. a strand ordering where there are no two pairs (i, j) and
(i′, j′) such that i′ ∈ [i, . . . , j] and j′ ̸∈ [i, . . . , j]. This point is more intuitively explained using polymer
graphs (see Figure 1).

2 In physics and chemistry, more negative free energy generally means more favoured.
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Figure 1 (a) Polymer graph for a secondary structure over the strand set {1, 2, 3, 4} with strand
ordering 1324. Some crossings are shown. (b) By simply reordering to 1234 we get another polymer
graph for the same strand set and secondary structure, but without crossings. The existence
of a strand ordering that yields a crossing-free diagram implies that this secondary structure is
unpseudoknotted.

Despite the theoretical road-block of algorithmic hardness, multistranded and pseudoknot-
ted self-assembly systems are some of the most successful DNA nanostructure and DNA
computing paradigms: examples include DNA origami [21], RNA origami [12], and single-
stranded tile systems [29, 31]. In these cases the design process has not been via full de novo
algorithmic simulation of the thermodynamics, but by other methods including decomposition
into smaller pieces more amenable to analysis [31], or by intuition-based whiteboard drawings,
or some other method. Another key point is that such systems, and many others, are typically
designed at a domain level of abstraction, where we ignore the details of DNA sequences and
imagine a set of strands, each with one or more domains, and where several domains are
imagined to have identical free energy, and domains that should not bind never in fact bind.

Motivation. But perhaps many engineered multistranded and/or pseudoknotted systems
make use of design concepts, such as modularity, abstraction, principled thermodynamics, or
some other intuitively-attractive principles that make their design and analysis algorithmically
tractable? In other words, despite the above-cited algorithmic hardness results, we may
ask if there are sub-classes of multistranded and/or pseudoknotted DNA systems, that on
the one hand are interesting (experimentally implementable, make complex nanostructures,
are capable of computation, etc.) yet on the other hand allow for efficient, e.g. polynomial
time, MFE and partition function algorithms? Digging further into a computational nuance:
since the ability to calculate MFE and/or partition function seems to require detailed
(combinatorial/ enumerative) knowledge of a system one may wonder if there is a hierarchy of
nucleic acid computing systems, classified according to difficulty of computing MFE and/or
partition function, where higher levels corresponds to more expressive molecular computers
capable of stronger computation than lower-level systems?

Scaffolded DNA Computer. Here we look at a specific multistranded system. Stérin,
Eshra and Woods [24] introduced a thermodynamically favoured [8] model of computation
called the Scaffolded DNA Computer (SDC). The model is computationally expressive and
has theoretical thermodynamic benefits over most forms of molecular computing. In one
dimension (1D SDC) the model is capable of simulating finite state automata and transducers,
and in 2D simulates arbitrary Boolean circuits [5] (but proved for a slightly different model).

DNA 29
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(c)

(f)

scaffold

A B C D

compute tiles

x0 0x1 1 A

input

x ∈{B,C,D}
(e)
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BIT-COPY 1D SDC(a) (b)
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displacebind
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(d)

Figure 2 Thermodynamic model of the 1D scaffolded DNA computer (SDC) illustrated using a
simple Bit-Copy program (a wire) of length N = 4 and maximum tiles per scaffold position k = 2.
(a) Example Bit-Copy system for a length N = 4 scaffold. The system consists of 7 tiles: 2 per
scaffold position B, C and D and 1 input tile at scaffold position A. (b) An example execution:
starting from the empty scaffold, a tile may bind or displace an existing tile: in both cases the total
number of matching bonds (scaffold-tile or tile-tile) should monotonically increase. 5 bind steps
followed by 2 displace steps are shown. The final configuration has 4 scaffold-tile bonds and 3 tile-tile
bonds, making it the most favourable. (c) Depending on whether input 0 or 1, the Bit-Copy system
eventually reaches the most favoured (all-0 or all-1) configuration. (d) Using our partition function
algorithm to simulate an anneal: simulations, for various scaffold lengths showing probability of target
(correct output for Bit-Copy) with respect to temperature, using experimentally-relevant parameters,
see Appendix E. (e) Schema for converting tiles to domain-level DNA strand abstraction. (f) Domain
level abstraction of Bit-Copy system. 10 programs have been experimentally implemented in this
model [24], the strand diagrams show some implementation features (3-bit domains for data and
computing, as well as fluorescence/quencher reporting complexes).

Figure 2(a–c) describes the model at an abstract tile-level of abstraction suited to
programming and theoretical analysis (see Section 2.1 for a domain-level model definition).
This computational model borrows key principles from DNA origami [21] (low concentration
scaffold, high concentration strands that bind to the scaffold), but breaks one origami
principle by allowing non-scaffold strands to bind to each other, albeit somewhat weakly (no
stronger than scaffold-tile binding). These principles yield a thermodynamically favoured
model of molecular computation where the target (output) structure, is most favoured.

The SDC has been implemented experimentally [24] in 1D, showcasing a total of 10
programs that solve problems such as Addition of two 4-bit numbers, Parity of an 8-bit
input (is the number of 1s odd?), and Graph Reachability (is there a path in an input
graph from a source node s to a target node t). One future aim is to scale up to significantly
larger 1D and 2D systems, by exploiting the thermodynamic favourability of the scaffolded
design principle. However, to do that we need new algorithmic design tools since these
systems are multistranded in 1D and 2D, and pseudoknotted in 2D.
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Main results. We prove a number of results for the domain-based 1D SDC model. The
following two theorems are respectively proven in Sections 3 and 4 (see Figure 2 for N, k).

▶ Theorem 1. There is an O(k2N) time algorithm to determine the domain-level MFE for
a 1D SDC of length N with ≤ k computation strands competing at each scaffold domain.

▶ Theorem 2. There is an O(k2N) time algorithm for the domain-level partition function
for a 1D SDC of length N with ≤ k computation strands competing at each scaffold domain.

Our third result opens a door to the research direction of classifying the complexity
of (computational or not) nucleic acid systems based on the computational complexity of
computing MFE/partition function for those systems (proof in Appendix D):

▶ Theorem 3. Given a 1D SDC S of length N ∈ N, with k = O(1) computing strands
per scaffold domain and bounded domain energies (∆G(d) ∈ O(1), for a domain d binding
to its complement), and a finite-precision decimal r, the problem of deciding whether the
domain-level MFE of S is ≤ r is in the complexity class L.

Our fourth contribution is exploratory: In Section 5 we give a stochastic kinetic simulator
for 1D SDC systems. We evaluate the kinetics of the 1D SDC, and go on to test two strategies
to speed up kinetics, the first using extra components and the second exploiting varying
concentrations, both showing some speed-up. This initiates the kinetic study of the 1D
SDC model, where one imagines operating the system at a fixed temperature allowing the
system to move towards equilibrium via designed kinetic pathways. This stands in contrast
to previous work [24] which focused on using the 1D SDC thermodynamically: heat it up,
cool it down!

1.1 Related work
The SDC leverages thermodynamic favourability principles from DNA origami [21], and
computational abilities from self-assembly [31] and strand displacement systems such as the
scaffolded SIMD||DNA system [26, 27] as well as theory-based systems [8]. We wish to create
computational tools to evaluate future strategies for both thermodynamic computation,
and constant-temperature (kinetic) computation. But the SDC has a unique combination
of self-assembly and strand displacement features that make direct use of existing tools
problematic and led us to design bespoke thermodynamic (MFE and partition function)
prediction algorithms, and a kinetic simulator, all built on the same energy model.

SDC self-assembly features include: growth of large target structures, a large
combinatorically-described set of intermediate structures, hassle-free scaffold-mediated seeded
growth with in-built avoidance of unwanted off-scaffold nucleation (computational domains
bind weakly, hence enumeration/simulation of all complexes is not desired nor even relev-
ant). SDC strand-displacement features include: use of toeholds, and displacement domains
which are sometimes desired to work along standard toehold-mediated strand displacement
style pathways, but other times not, depending on our choice of operating mode – so far
experimental work used a simple, fast anneal [24], without needing careful kinetic control!

Related work on MFE and partition function was already discussed above. Multistranded
MFE is NP-hard [4], a result that holds in a simple domain-level model. Our polynomial
time MFE algorithm (Theorem 1) is also for a multistranded domain-level system; however,
we exploit the 1D SDC binding structure to side-step the general-case hardness result of [4].
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Related work on kinetic simulators. There are a variety of simulators suited to strand-
displacement systems and self-assembly based systems. One goal is to scale up to large scaffold
lengths, both in 1D and 2D (with pseudoknots), which may require new features not seen in
existing fine/coarse-grained strand displacement simulators [25, 2, 19, 23, 32]. Also, our use of
toehold mediated strand displacement, as well as future goals to handle displacement through
helices (in 2D), require features that go beyond existing self-assembly simulators [30, 9, 11].
Our kinetic model uses rates from the peppercorn reaction enumerator [2]. In future work
we could use oxDNA [25] to further inform and calibrate rates.

1.2 Future work
Are there fast thermodynamic prediction algorithms for other engineered multistranded
and/or pseudoknotted systems? Specifically, for DNA strand displacement circuits, or DNA
tile-based self-assembly systems, or even DNA origami systems? Our main motivation for
this question, and in fact for this work, is the idea that designed systems and abstractions
might side-step known hardness results and imply the existence of efficient MFE or partition
function algorithms. Here, for 1D SDC, two things helped: (1) using a domain-based model,
justified by enforcement of domain-level abstraction/interactions with careful sequence design,
and (2) that the set of all 1D SDC configurations have an implicit structure amenable to
divide-and-conquer, despite that set being exponentially large in system size.

Continuing this reasoning a step further, one may ask, beyond the existence of a fast,
polynomial time, thermodynamic prediction algorithm, can one attempt to classify engineered
DNA systems based on the computational complexity of their MFE or partition function?
Theorem 3 shows that MFE for 1D SDC is in the complexity class L(with the assumption
k = O(1); we leave it open to remove/generalise that caveat). Hence, we can say that if we
encode the output of a computation in an MFE configuration then the model solves only
problems in L. We know that (general) multi-stranded systems are NP-complete MFE [4].
Here, we are asking if there are natural systems with MFE that lie in other complexity
classes, for example perhaps the wide variety of engineered domain-based DNA systems have
algorithmic hardness of MFE that are characterised by some of the many complexity classes
within P [16, 14].

More concretely, it remains open to characterise the complexity of predicting, reasonable
domain-level formalisations of, 2D SDC systems.

2 1D Scaffolded DNA Computer (SDC): model definition

Previous work [24] defined the SDC at tile, domain, and sequence levels of abstraction, but
in a mainly experimental context. In this section we formally define the 1D SDC at the
domain level of abstraction, with sufficient extra technical detail to facilitate our proofs.

2.1 A simple domain-based model of 1D SDC
▶ Definition 4 (domain, complement, strand, binding). A domain d is an ordered triple
(name, len, dir), where name is a string over a fixed alphabet, len ∈ N is the length of d, and
dir ∈ {→,←} is the domain direction. The complement of domain d is the equal-length
opposite-direction domain d̄. An n-domain strand s, is an ordered n-tuple of domains
s = (d1, d2, ..., dn) all of the same direction (the strand is said to have that direction). We
say di < dj if i < j. Two strands s1 and s2 may bind at domain d, if one has domain d and
the other d̄.
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▶ Definition 5 (1D Scaffolded DNA Computer (SDC)). A 1D Scaffolded DNA Computer
(Figure 2), S, is an ordered pair (S, T ) where S = (d1, d2, . . . dN ) is an N -domain scaffold
strand with direction ←, with all N scaffold domains being distinct. T is a set of 3-domain
computation strands, of direction →, and each s ∈ T is the form s = (dL, dM

i , dR) where
dL, dM

i , dR are the domains on left, middle and right of s respectively, and where dM
i binds

to a scaffold domain di and dL, dR are called computation domains and they do not bind to
any scaffold domain. S is said to be of length N .

We say a computation strand s competes at scaffold domain di if its middle domain
dM

i = d̄i. The set of di-competing strands is Cdi
= {s | s = (dL, dM

i , dR) ∈ T and dM
i = d̄i}.

Since scaffold domains are distinct, if di ≠ dj then Cdi
∩ Cdj

= ∅ (hence each computation
strand binds at most at one scaffold domain). Sometimes, the first scaffold domain, d1, is
called the input domain. For any two computation strands s ∈ Cdi and s′ ∈ Cdj , we say
s ≺ s′ if di < dj .

▶ Definition 6 (SDC configuration, SDC secondary structure). For a 1D SDC S of length N ,
a configuration X is a sequence of l ≤ N computation strands X = (s1, s2, . . . , sl) such that
si ≺ si+1. X is said to be of size l. We interpret a configuration as a domain-level secondary
structure by binding up all adjacent matching domains, more formally for all i ∈ [1, l]:
(a) we bind the middle domain dM

i of si to si’s associated scaffold domain (since si ∈ Cd for
some d), and

(b) if dR
i = d̄ L

i+1 and si, si+1 are adjacent on the scaffold, i.e. if the right domain of si is
complement to the left of si+1 and if the scaffold indices of si, si+1 differ by exactly 1,
we bind those two domains.

In the previous definition, the condition si ≺ si+1 ensures that a configuration has at
most one competing computation strand per scaffold domain.

A computation is a sequence of configurations ϵ ⊢ X1 ⊢ X2 ⊢ . . . ⊢ Xt that begins with the
empty configuration ϵ (corresponding to a scaffold with nothing bound to it). A computation
step, Xj ⊢ Xj+1, is where a computation strand s binds at some scaffold domain d, where s

is non-deterministically chosen from those d-competing strands Cd that preserve or increase
the total number of bound domains.3 A configuration Xj is final if Xj has the maximum
number of bound domains out of all possible configurations. A final configuration may be
unique or not.4

Figure 2(c) shows an initial configuration (left), and two final configurations (right). A
useful intuition for computation in this model: the selection of a strand (from the finite set
of possibilities for that position) executes a logical step, and step-by-step the system will
moves towards an enthalpically favourable reachable configuration (or a cycle of them).

2.2 Ensemble of secondary structures
An MFE or partition function algorithm computes over an ensemble (i.e. a set) of permissible
secondary structures. In this work, we choose that ensemble to be the set of domain-level
secondary structures, that each include a scaffold strand with zero or more computation
strands bound to that scaffold and also to each other, or more formally:

3 Note that off-scaffold interactions are forbidden in this formalism. In Section 2.3 we will define a
free-energy based condition that more closely matches experimental implementation.

4 In the Bit-Copy example in Figure 2 the system eventually reaches one of two polymers (all 0 or all 1),
depending on the input (0 or 1). Other example SDC systems have multiple equal-energy polymers,
and there may or may not be a cycle (of length > 1) of steps between elements of a set of polymers. A
cycle can happen where there are several polymers (each with an identical number of unbound domains)
and the system transitions between these.
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Figure 3 A small example 1D SDC and its ensemble of configurations. (a) An example 1D SDC S
of length 3 showing its scaffold and four computation strands. At scaffold positions 1, 2 and 3 there
are respectively 1, 2 and 1 competing computation strands. (b) The ensemble of configurations ΩS ,
with A highlighted as the unique MFE configuration of this system (bound domains everywhere).

▶ Definition 7 (ensemble ΩS). The ensemble ΩS of a 1D SDC S is the set of all configurations
of S interpreted as domain-level secondary structures (see Definition 6).

For a 1D SDC S of length N that has k1, k2, ..., kN computation strands competing at the
N scaffold domains, we have |ΩS | = (k1 + 1)(k2 + 1) · · · (kN + 1) since each scaffold domain
di has ki possible strands that bind it plus the possibility of it being unbound. If there are
exactly k competing strands at each scaffold domain, |ΩS | = (k + 1)N .

▶ Example 8. Figure 3 shows a simple 1D SDC of length 3 and its ensemble of twelve
configurations/domain-level secondary structures.

Our choice of secondary structure ensemble is justified as follows: We ignore off-scaffold
interactions by making the assumption that the 1D SDC system is designed so that (a) scaffold
and computational strands do not self-bind, (b) any pair of matching computation domains
are sufficiently weak that a pair of 3-domain strands are unlikely to bind for much time
(even if they bind on two computation domains), (c) by using a principle analogous to DNA
origami [21], we assume the scaffold is at low concentration relative to the computation
strands and that (d) scaffold binding domains are strong ensuring that binding to the scaffold
is highly favoured.

It can be seen that the domain-level secondary structures we consider are unpseudoknotted.
This fact is not required to prove our theorems, so we omit (the straightforward) proof.

2.3 Energy model
We augment each domain d to have an associated negative real-valued free energy ∆G(d) ∈
R, ∆G(d) < 0. Also, we define ∆Gassoc to be a strictly positive real number such that
−∆G(d) > ∆Gassoc. For notation, we let ∆G(d, d′) = ∆G(d) if d = d̄′, and ∆G(d, d′) = 0
otherwise.

For a 1D SDC S of length N , the free energy of a configuration X ∈ ΩS of size l is:

∆GS(X) =
∑
s∈X

∆G(dM(s)) + l ·∆Gassoc +
∑

si,si+1∈X

∆G(dR(si), dL(si+1)). (1)
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where the latter summation sums the free energy of bound scaffold-adjacent strand pairs.
Note that since X represents l + 1 strands including the scaffold, the strand association
penalty of l ·∆Gassoc is consistent with previous work on multiple strands, e.g. [7, 4]). The
1D SDC domain-level MFE and partition function are respectively:

MFES = min
X∈ΩS

{∆GS(X)} (2)

QS =
∑

X∈ΩS

e−∆GS (X)/kBT (3)

▶ Example 9. The free energy of configuration B in Figure 3 is:

∆GS(B) = ∆G(dM(s2
2)) + ∆G(dM(s1

3)) + 2∆Gassoc + ∆G(dR(s2
2), dL(s1

3))

Configuration A in Figure 3 has MFE of all configurations, MFES = ∆GS(A), since A has
all scaffold domains bound, and all adjacent computation domains bound.

3 Thermodynamics: polynomial time 1D SDC MFE algorithm

Before proving the main result of this section, Theorem 1, we give some preliminary results.

3.1 Definitions for combining configurations & ensemble partitioning
▶ Definition 10 (X ⊛ Y ). For any two configurations X and Y such that ∀s ∈ X, ∀s′ ∈ Y

such that s ∈ Cd =⇒ s′ /∈ Cd, we say X is compatible with Y . The interlacing of two
compatible configurations X and Y is the configuration X ⊛ Y = (s1, s2, . . . , sk) such that
si ≺ si+1, and either si ∈ X or si ∈ Y . The interlacing of a configuration X with the set of
configurations Λ where X is compatible with Λ, is the set X⊛Λ = {X⊛Y | for each Y ∈ Λ}.

▶ Example 11. Configuration B is compatible with configuration C in Figure 3 since they
do not share any common, bound scaffold domain, B ⊛ C = A.

The following definitions will be useful to efficiently partition the (exponentially large)
SDC ensemble ΩS to compute its MFE and partition function.

▶ Definition 12 (ΩS
s ). For a 1D SDC S, ΩS

s denotes the set of all configurations having the
computation strand s as the (rightmost) strand, more formally, ΩS

s = {X | X ∈ ΩS and s ∈
X and ∀s′∈ X such that s′ ̸= s =⇒ s′ ≺ s}.

The intuition behind Lemma 13 comes from: if we have any configuration with final
strand s, we can see it as the interlacing of two smaller configurations one of the two is just
{s} itself and the other ends with a final strand s′ ≺ s.

▶ Lemma 13. In any 1D SDC S, for any computation stand s, ΩS
s = [s ⊛

⋃
s′≺s

ΩS
s′ ]

⋃
{s}

and |ΩS
s | = 1 +

∑
s′≺s

|ΩS
s′ |.

▶ Definition 14 (Ω-associated MFE). For a set of configurations Ω ⊂ ΩS of a 1D SDC S,
the Ω-associated MFE, MFES(Ω) = minX∈Ω{∆GS(X)}. If Ω = ΩS

s for some computation
strand s, then for simplicity we will denote MFES(ΩS

s ) by MFES
s .

▶ Remark 15. To simplify our proofs, from Observation 17 onwards, for any scaffold domain d,
we assume that |Cd| ̸= 0, meaning there is at least one computation strand competing at d.
At the end of this section (Remark 20) we will show how our proposed algorithm can be
easily used to overcome this restriction.
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From Section 2.3, (a) all domain binding energies are negative, and (b) ∆G(s) < −∆Gassoc

for a scaffold-bound strand s. Also, for a configuration Y of length l < N we can add N − l

computation strands to the N − l unbound scaffold positions, lowering the free energy (this
fact is used in the following two lemmas). The following lemma follows from the inclusion
ΩS

s′ ⊂ ΩS
s :

▶ Lemma 16. In any 1D SDC S, for any two different computation strands s and s′ such
that if s′ ≺ s, then MFES

s′ > MFES
s .

▶ Observation 17. For a 1D SDC S of length N , there is a configuration X of size N such
that MFES = ∆GS(X).

▶ Lemma 18. In any 1D SDC S, for any two different computation strands s and s′ such that
if s′ ≺ s, then MFES(ΩS

s′ ⊛ {s}) = MFES(ΩS
s′) + ∆GS(dM(s)) + ∆Gassoc + ∆G(dR(s′), dL(s)).

3.2 Polynomial time 1D SDC MFE algorithm
The main result of this section is the following (restated) theorem:

▶ Theorem 1. There is an O(k2N) time algorithm to determine the domain-level MFE for
a 1D SDC of length N with ≤ k computation strands competing at each scaffold domain.

Proof. We will prove that Algorithm 1, intuitively illustrated in Appendix A, returns the
recursively-defined quantity MS defined in Equation (4), and does so in O(k2N) steps (we
assume the standard RAM model [6] for algorithm analysis and ∆G = O(1) per domain).

MS = min
s∈CdN

{MS
s } (4)

MS
s = ∆G(dM(s)) + ∆Gassoc + min

s′∈Ls

{MS
s′ + ∆G(dR(s′), dL(s))} (5)

where CdN
is the set of strands competing at the final/rightmost scaffold domain (Section 2.1),

Ls is the set of strands that bind to the domain immediately “to the left” of s on the scaffold
(i.e. if s ∈ Cdi

then Ls = Cdi−1 , and where Ls = ∅ if s ∈ Cd1), and the remaining notation is
given in Section 2.3.

To prove the time bound: The for loops in Lines 3 and 5 iterate over all strands s in
the system, iteratively implementing the recursion in Equation (5), with each iteration (for
s) representing a corresponding Ls (Equation (5)). Then the min over s′ (Equation (5)) is
executed by Line 10 (as a min over m). There are ≤ Nk strands, and the min requires O(k)
steps, giving O(Nk2) time. Finally, Line 14 executes Equation (4) in an additional O(k)
steps, yielding the claim.

It remains to show that MS (Equation (4)) equals MFES (see Equation (2)): By Lemma 19
(below), for any computation strand s, MS

s = MFES
s , thus it is immediate that the same

strand s satisfies both mins∈T MS
s = mins∈T MFES

s . Since an MFE configuration has size N ,
there is some s ∈ CdN

, based on the assumption in Remark 15, such that MFES
s = MFES ,

and hence for that s, MS
s = MFES . ◀

▶ Lemma 19. For any 1D SDC S, for any computation strand s, MS
s = MFES

s (where MS
s

is from Equation (5) and MFES
s is from Definition 14).

Proof. We will prove the statement by induction on x, such that x is the domain index
where the computation strand s is competing. Formally if s ∈ Cdi

, then x = i.
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Algorithm 1 1D SDC MFE algorithm. The proof of Theorem 1 proof shows that this algorithm
returns the value MS defined in Equation (4). Note that arrays are indexed from 1. Notation:
k1, . . . , kN are the counts of competing strands at scaffold domains d1, . . . , dN . Let sj

i be the jth

strand competing at domain di.

1: Mcurr = [0, 0, . . . , 0] ▷ size k =max(k1, . . . , kN ) for current MFEs
2: Mprev = [0, 0, . . . , 0] ▷ size k =max(k1, . . . , kN ) for previous MFEs
3: for i← 1 . . . N do ▷ index scaffold domains
4: Mprev ←Mcurr
5: for j ← 1 . . . ki do ▷ index computational strands at scaffold domain di

6: if i = 1 then ▷ first scaffold domain, has no left neighbour
7: Mcurr[j]← ∆G(dM(sj

i ))
8: else
9: ▷ O(k) steps to choose min and bind scaffold + entropic penalty

10: Mcurr[j]←
[
minm∈{1,2,...,ki−1}

(
Mprev[m] + ∆G

(
dR(sm

i−1), dL(sj
i )

))
+ ∆G(dM(sj

i )) + ∆Gassoc]
11: end if
12: end for
13: end for
14: MS ← mink′∈{1,2,...,kN } Mcurr[k′] ▷ O(k) steps implement Equation (4) giving MS

15: return MS

Base step: if x = 1, then this means that s is a strand competing at the first scaffold
domain, then using Lemma 13 there is only one configuration X ∈ ΩS

s , and X = s. Then we
have MS

s = ∆G(dM(s)) + ∆Gassoc = ∆GS(X) = MFES
s , and this completes the base step.

Induction step: assume the induction hypothesis is valid for all x < y, in other words
that MS

s′ = MFES
s′ (the former from Equation (5), the latter from Definition 14) because

x, y are domain indices and s′ ≺ s.
Then, if x = y, we can replace MS

s′ in Equation (5) by MFES
s′ , we get the following: MS

s =
∆G(dM(s)) + ∆Gassoc + mins′∈Ls{MFES

s′ + ∆G(dL(s), dR(s′))}. As ∆G(dM(s)) + ∆Gassoc

is just a constant, and using the basic properties of the min operator, we get the following:
MS

s = mins′∈Ls{MFES
s′ + ∆G(dM(s)) + ∆Gassoc + ∆G(dL(s), dR(s′))}. Using Lemma 18,

we will get the following: MS
s = min

s′∈Ls

{MFES(ΩS
s′ ⊛ {s})}. Using Definition 14, we get:

MS
s = min

s′∈Ls

{ min
X∈(ΩS

s′⊛{s})
{∆GS(X)}}. For each distinct computation strand s′, it is easy to

show that each set of configurations [ΩS
s′ ⊛{s}] is disjoint. Let Ω′ =

⋃
s′∈Ls

[ΩS
s′ ⊛{s}], so again

we use another property of the min operator to get the following: MS
s = min

X∈Ω′
{∆GS(X)}.

From Observation 17 we know that if Y is the configuration that has the MFE of the
partition ΩS

s , then Y must be of length l if s ∈ Cdl
, in other words Y must have computation

strands only on scaffold domains 0, 1 . . . , l. Any configuration of size l that ends in s

is contained in ΩS
s , and is also contained in Ω′, and hence Y ∈ Ω′, and we get that

MS
s = min

X∈Ω′
{∆GS(X)} = min

X∈ΩS
s

{∆GS(X)}. So MS
s = min

X∈ΩS
s

{∆GS(X)} = MFES
s . ◀

▶ Remark 20. Now, we can easily remove the assumption in Remark 15 by dividing the
scaffold into pieces separated by domains d such that Cd = ∅ and running MFE on each such
region, and then summing each MFE.

Finally, Appendix D gives an analysis of Algorithm 1 that yields the proof of Theorem 3.

DNA 29



1:12 MFE, Partition Function & Kinetics Simulation Algorithms for a Multistranded SDC

Algorithm 2 1D SDC partition function algorithm. The proof of Theorem 2 argues that this
algorithm returns ZS as defined in Equation (6). Note that arrays are indexed from 1, and recall
that k1, . . . , kN are the counts of competing strands at scaffold domains d1, . . . , dN , and we let sj

i

be the jth strand competing at domain di. See Figure 9.

1: Zcurr = [0, 0, . . . , 0] ▷ size k =max(k1, . . . , kN ), current (partial) partition function
2: Zprev = [0, 0, . . . , 0] ▷ size k =max(k1, . . . , kN ), previous (partial) partition function
3: ZS ← 1; suma ← 0
4: for i← 1 . . . N do
5: suma ← suma +

∑
i∈{1,...,k} Zprev[i] ▷ suma: rightmost summation Equation (7)

6: Zprev ← Zcurr
7: Zcurr = [0, 0, . . . , 0]
8: for j ← 1 . . . ki do ▷ each iteration computes Equation (7) for a strand
9: t1 = e−(∆G(dM(sj

i
))+∆Gassoc)/kBT

10: if i = 1 then ▷ first domain where is no neighbors at all
11: Zcurr[j] = t1
12: else
13: t2 ← 0
14: for m← 1 . . . ki−1 do
15: t2 ← t2 +

(
e−(∆G(dR(sm

i−1),dL(sj
i
)))/kBT

)
· Zprev[m]

16: end for
17: Zcurr[j]← t1 + t2 + suma

18: end if
19: ZS ← ZS + Zcurr[j] ▷ computing Equation (6)
20: end for
21: end for
22: return ZS

4 Thermodynamics: polynomial time 1D SDC partition function

▶ Definition 21 (Ω-associated partition function). For a 1D SDC S, for any set of configurations
Ω ⊂ ΩS , the Ω-associated partition function is QS(Ω) =

∑
X∈Ω e−∆GS (X)/kBT . If Ω = ΩS

s

for some computation strand s, then for simplicity we will denote QS(ΩS
s ) by QS

s .

4.1 A polynomial time partition function algorithm for 1D SDC
We restate the main result of this section:

▶ Theorem 2. There is an O(k2N) time algorithm for the domain-level partition function
for a 1D SDC of length N with ≤ k computation strands competing at each scaffold domain.

Proof. We will first claim that Algorithm 2, intuitively illustrated in Figure 9 (Appendix B),
returns the recursively-defined quantity ZS (Equation (6)), and does so in O(k2N) steps:

ZS = 1 +
∑
s∈T

ZS
s (6)

ZS
s =

(
e−(∆G(dM(s))+∆Gassoc)/kBT

)
·

1 +
∑

s′∈Ls

Z(s′,s) ∗ ZS
s′ +

∑
s′≺s and s′ ̸∈Ls

ZS
s′

 (7)
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where Z(s′,s) = e−∆G(dR(s′),dL(s))/kBT . Here, ZS
s is an intermediate quantity (that we will

prove is the Ωs-associated partition function), Ls is the set of strands that bind to the domain
immediately “to the left” of s on the scaffold (i.e. if s ∈ Cdi

then Ls = Cdi−1 , and where
Ls = ∅ if s ∈ Cd1).

To see the claim note that Lines 4 and 8 iterate over all s ∈ T (O(kN) iterations), and
each inner-loop iteration calculates ZS

s for some strand s ∈ T . Line 14 for loop iterates O(k)
times and computes the left-hand summation of Equation (7) (giving O(k2N) total steps),
and Line 5 computes the right-hand summation. Line 19 accumulates the value of ZS at
each iteration, and when the algorithm terminates ZS is equal to Equation (6).

Lemma 23 below proves that ZS = QS , which completes the proof. ◀

▶ Lemma 22. For any 1D SDC S, for any computation strand s, ZS
s = QS

s (where ZS
s is

from Equation (7) and QS
s is from Definition 21)

Proof. We will prove it by induction on scaffold domain index x, with the induction hypothesis
being that ZS

s = QS
s for all s at scaffold domain index ≤ x ∈ [1, N ].

Base step, x = 1: This implies that strand s is competing at first scaffold domain d1, then
using Lemma 13 there is only one secondary structure X ∈ ΩS

s , hence X = s, a configuration
of size 1. Then we compete the base step via:

ZS
s = e−(∆G(dM(s)) +∆Gassoc)/kBT = e−(∆GS (X))/kBT = QS

s .

We re-write ZS
s (Equation (7)) as follows:

ZS
s =

(
e−(∆G(dM(s))+∆Gassoc)/kBT

)
·

1 +
∑
s′≺s

Z(s′,s) · ZS
s′

 . (8)

which is equivalent to Equation (7), as Z(s′,s) = 1 if s′ /∈ Ls since ∆G(dR(s′), dL(s)) will
equal 0 as s′, s are not adjacent, i.e. there is no interaction between them.

Induction step: assume the induction hypothesis is valid for all x < y, then if x = y, we
can replace ZS

s′ in Equation (8) by
∑

X∈ΩS
s′

e
− ∆GS (X)

kBT = QS
s (Definition 21), we get

ZS
s =

(
e− ∆G(dM(s)) +∆assoc

kBT

)
·

1 +
∑
s′≺s

Z(s,s′) ·
∑

X∈ΩS
s′

e
− ∆GS (X)

kBT

 . (9)

Using the distributive property of multiplication over addition we get

ZS
s = e− ∆G(dM(s)) +∆Gassoc

kBT +
∑
s′≺s

∑
X∈ΩS

s′

[
e− ∆G(dM(s)) +∆Gassoc

kBT · Z(s,s′) · e
− ∆GS (X)

kBT

]
. (10)

We then apply Lemma 25 since these ΩS
s′ sets, for different s′ are disjoint by Lemma 24, then

we can replace the double summation by only one over
⋃

s′≺s ΩS
s′ and we get

ZS
s = e

− ∆G(dM(s)) +∆Gassoc
kBT +

∑
X∈

⋃
s′≺s

ΩS
s′

[
e

− ∆G(dM(s)) +∆Gassoc
kBT · Z(s′,s) · e

− ∆GS (X)
kBT

]
. (11)

We can rewrite Equation (11) as follows:

ZS
s =

∑
X∈

[
{ϵ}∪

⋃
s′≺s

ΩS
s′

]
[
e

− ∆G(dM(s)) +∆Gassoc
kBT · Z(s′,s) · e

− ∆GS (X)
kBT

]
. (12)
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The latter transition is justified because if X = ϵ, then Z(s′,s) = 1 and ∆GS(X) = 0 since
there are no computation strand s′ to interact with s as X is the empty configuration.

Let Ω1 = [{ϵ}∪
⋃

s′≺s

ΩS
s′ ], Ω2 = ΩS

s , f : Ω1 → R, f ′ : Ω1 → R, g : Ω2 → R and g′ : Ω2 → R.

f ′, f , g′ and g are defined as follows:
f ′(X) = ∆GS(X) + ∆G(dM(s)) + ∆G(dR(sl), dL(s)) + ∆Gassoc,
f(X) = e−f ′(X),
g′(X ′) = ∆GS(X ′), and
g(X ′) = e−g′(X′),

where X is a configuration of length l and sl ∈ X is the final (right-most) strand on the
scaffold of configuration X (which may be at some domain index ≤ N). We know from
Observation 27 that there is a direct one-to-one correspondence, α : Ω1 → Ω2, defined by
α(X) = s ⊛ X. Notice that function f ′ is defined in a way that computes the free energy,
Equation (1), of the configuration that results from X ′ = α(X), so f ′(X) = g′(α(X)) =
g′(X ′). It directly follows that f(X) = e−f ′(X) = e−g′(X′) = g(X ′), then we can apply
Lemma 26 directly on Equation (12) using the previous setup for that lemma and we will
get ZS

s =
∑

X∈ΩS
s

e−∆GS (X)/kBT , and this completes the proof. ◀

▶ Lemma 23. For any 1D SDC S, ZS = QS , where ZS is defined in Equation (6) and QS

is the partition function of S (Equation (3)).

Proof. Since ZS = 1 +
∑

s∈T

ZS
s , and from Lemma 22, we know that ZS

s =
∑

X∈ΩS
s

e
− ∆GS (X)

kBT .

Then, we get the following: ZS = 1+
∑

s∈T

∑
X∈ΩS

s
e

− ∆GS (X)
kBT . Again we can apply Lemma 25

directly because these ΩS
s sets, for different s, are disjoint from Lemma 24, then we can

replace the double summation by only one over
⋃

s∈T ΩS
s , and with the aid of Observation 28,

we get the following:

ZS = 1 +
∑

X∈
⋃

s∈T

ΩS
s

e
− ∆GS (X)

kBT = 1 +
∑

X∈ΩS \{ϵ}

e
− ∆GS (X)

kBT =
∑

X∈ΩS

e
− ∆GS (X)

kBT . ◀

5 Kinetics: A simple domain-based kinetic model of 1D SDC

In this section, we first propose a simple kinetic model for the 1D SDC. Second, we implement
a simulator for this model (in java and python languages, as a Gillispie simulation [13]) and
use it to evaluate existing systems. Third, we use the model to evaluate two hypotheses for
improving the kinetics of constant temperature 1D SDC systems.

Model. Our kinetic model for a 1D SDC, Θ = (SN , T ), is a continuous-time Markov chain
(CTMC) that satisfies detailed balance [23]. The initial system state as shown in Figure 4(c)
is the empty configuration, ϵ, then the simplest version of our kinetic model assumes that
the first N steps are merely the binding of N computation strands to the scaffold (no
displacement). This assumption is reasonable since we know empirically that hybridization
reaction rates are much faster than reactions utilising strand displacement (this assumption
can be removed, but we leave it for simplicity). Then any next step will be a sub-step of either
toehold exchange or strand displacement, based on a 3-step and 2-step model, respectively
described in the following equations and shown in Figure 4(a):
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Figure 4 Summary of kinetic 1D SDC model that extends the thermodynamic model in Section 2.1
(and Figure 2). (a) 3 step bind-displace-unbind. (b) 2 step bind-displace. (c) An example computation.
We start with the all-empty scaffold, after some fast hybridization events, we have a random scaffold
configuration whereupon a sequence of strand displacement events eventually yield the unique
thermodynamically-favoured target configuration.

A + B kbind−−−−⇀↽−−−−−
kunbind

C
kdisp−−−⇀↽−−−
kdisp

D kunbind−−−−−⇀↽−−−−
kbind

E + F

A + B kbind−−−−⇀↽−−−−−
kunbind

C kdisp−−−→ D + E

where A, B, C, D, E, F are complex names, and the binding and unbinding rates, rbind and
runbind respectively, are rbind = [s]∗kbind and runbind = kunbind∗e(∆G(dR(s′),dL(s))+∆Gassoc)/kBT ,
where s, s′ are computation strands with matching computation domains, [s] denotes the
concentration of s and kdisp, kbind and kunbind denote the (single, global) displacement,
binding, and unbinding rate, respectively. We used the peppercorn enumerator [2] and
NUPACK [7] to obtain these rates.

Simulator. Our simulator for this model works as follows: If we assume the system is
currently in state x, the rate for each possible next state x′ will be computed, the sum of
these rates will be used as a normalization factor to compute a probability for each such next
state. Then we compute cumulative density function (CDF) of the random variable that is
the next state, and uniformly generate a random number from the interval [0, 1] and use it to
determine which next state, x′, the system will go to. This process will be repeated forever
until the system goes to a halt state, if there is one (which is a state with no next states).

Motivation for two proposals. An interesting challenge for 1D SDC goes thus: suppose we
are in the typical situation where our 1D SDC program has a single computation strand, d1,
competing at the first scaffold domain and several computation strand competing at the rest
of scaffold domains, and that we begin in an otherwise random configuration. On a large
scaffold, there will be many mismatching computational domains, implying many competing
random walks (moving to the left and right), and we will in the worst case need to wait
something like quadratic time in scaffold length for the single strand at d1 to “win” all
competitions leading to the most enthalpically favoured state. The question we ask here: are
there any tricks that we can use to speed up the kinetics?

Note that in this situation the input computation strand, i.e. the leftmost computation
strand, plays a crucial role both in determining the target configuration, and in driving the
system to that target. Hence, our intuition is that there is value in considering kinetic tricks
that push (speed-up) computation in the left-to-right direction. Below, we propose two tricks
that build on this intuition.
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Figure 5 Proposal 1: Scaffold with covers (here at the second, fourth, and sixth scaffold domains).

Proposal 1: Covers. A cover is simply a strand consisting of a single domain d̄ which is
complementary to some scaffold domain d, such that when the cover is at high concentration
relative to computation strands that compete at domain d, the cover out-competes the
computation strand. If we have covers for every scaffold domain, the scaffold gets coated,
or mostly coated, in covers as shown in Figure 5. The key idea here is that covers have
no computation domains, and hence do not send left or right randomly-walking signals,
intuitively making covers faster to displace. We carried out a number of simulations with
various cover excesses. Figure 7 shows the results (scaffold is at 0.1x, computation strands at
1x, and covers at higher excesses).

Proposal 2: Monotonically increasing computation strand concentrations. The intuition
here is that by having higher concentrations of computation strands at higher scaffold domain
indices (i.e. as we move further from the start position we increase computation strand
concentration) the random walk should be biased to move to the right at a higher rate, than
with all equal concentrations. The idea is illustrated in Figure 6: First imagine that we have
a Bit-Copy system, such that at each scaffold position i we have two computation strands
s0

i , s1
i (copying bit 0 or 1, respectively). We set concentrations to be strictly increasing with

respect to i, in other words [s0
i ] = [s1

i ] ≤ [s0
i+1] = [s1

i+1]. Thus, for any choice of bit b ∈ {0, 1},
the strand sb

i+1 has an equal or higher binding rate than sb
i . Figure 7 shows result with

scaffold at 0.1x, and where a computation strand at scaffold position i has concentration i x.

Figure 6 Proposal 2: increasing concentration from left to right. Computation strands further to
the right (higher subscript) have higher concentrations than those to the left.
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A Appendix: MFE algorithm illustration

Figure 8 Graphical illustration of Algorithm 1 (and for the proof of Theorem 1). The algorithm
iterates through scaffold domains, with i being the current scaffold domain. The strand si,j is the
jth strand (out of ki strands) at scaffold domain i. Strand si,j has an associated “partial” MFE
denoted Msi,j which is the MFE of all configurations that have strand si,j as their rightmost strand
(and have no strands binding to scaffold domains d>i). Algorithm 1 proceeds, for each of the ≤ ki

strands s at scaffold position i, by populating the list Mcurr, the jth entry of which will contain
the computed value Msi,j . In order to compute Msi,j , Algorithm 1 makes use of a list Mprev that
maintains a similar list for index i − 1, and merely needs to take a min over entries of Mprev added
to the interaction with computation strand si,j (shown as the equation for x at the top).
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B Appendix: Partition function algorithm illustration

Figure 9 Graphical illustration for Algorithm 2 (and Theorem 2). The coloured boxes contain
sets of configurations. The recursive structure in the figure corresponds to the recursive structure of
Equation (7): for example, the top blue box corresponds to the summation of the Ωs-associated
partition function for the following partitions: ϵ (empty scaffold on top), ΩS

s1
1
, ΩS

s2
1
, . . . , ΩS

s
k1
1

(top red

box), ΩS
s1

2
, ΩS

s2
2
, . . . , ΩS

s
k2
2

(lower level k2 red boxes in top blue box). Recursively, the computation
represented by the top blue box, is then used to compute the partition function for all strands s

that compete at domain d3, and so on.

C Thermodynamics: Basic lemmas

Here, we give some lemmas, proofs are straightforward and hence omitted. Lemma 24 gives
a simple method to partition the 1D SDC ensemble ΩS using the identity of the rightmost
(final) strand (the proof is immediate from the two strands s1, s2 being distinct, giving the
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required partition). The proof of Lemma 25 follows from the associative property of addition
and the disjointedness of the involved collection of configuration sets, and Lemma 26 follows
from existence of the one-to-one mapping α and how it is defined.

▶ Lemma 24. In any 1D SDC S, for any two distinct computation strands s1 ≠ s2,
ΩS

s1

⋂
ΩS

s2
= ∅.

▶ Lemma 25. In any 1D SDC S, for any finite collection of disjoint sets of configurations
Ω1, Ω2, ..., Ωn and any real-valued function f : ΩS → R,

n∑
i=1

∑
X∈Ωi

f(X) =
∑

X∈Ω′

f(X) where Ω′ =
n⋃

i=1
Ωi

▶ Lemma 26. In any 1D SDC S, for any two finite sets of configurations Ω1, Ω2 and for
any two real-valued functions f : Ω1 → R and g : Ω2 → R such that there is a one-to-one
correspondence, α, between Ω1 and Ω2, and f(X) = g(α(X)), then

∑
X∈Ω1

f(X) =
∑

X′∈Ω2

g(X ′).

▶ Observation 27. As a direct consequence from Lemma 13, for any 1D SDC S, and for
any computation strand s, we define a one-to-one correspondence α : {ϵ}

⋃
s′≺s ΩS

s′ → ΩS
s , by

interlacing the strand s to each configuration X that belongs to the domain of α, α(X) = X⊛s.

▶ Observation 28. As an important special case of Lemma 13, for any 1D SDC S of
length N , we can show the following ΩS partitioning: ΩS =

[ ⋃
s∈T ΩS

s

] ⋃
{ϵ}. By ordering

computation strands in T based on their domain indices, we can view ΩS as union of a
hierarchy of partitions beginning with {ϵ} then all ΩS

s for all s ∈ Cd1 and so on until all ΩS
s

for all s ∈ CdN
.

D Computational complexity of MFE

We restate and prove the following theorem. Note that MFE values are ≤ 0.

▶ Theorem 3. Given a 1D SDC S of length N ∈ N, with k = O(1) computing strands
per scaffold domain and bounded domain energies (∆G(d) ∈ O(1), for a domain d binding
to its complement), and a finite-precision decimal r, the problem of deciding whether the
domain-level MFE of S is ≤ r is in the complexity class L.

Proof. We assume familiarity with deterministic logarithmic space Turing machines and the
class L [16, 18]. Let n = max(N, len(r)) where len(r) is the number of decimal symbols used
to specify r, ignoring leading and trailing 0s. First, we argue that all variables in Algorithm 1
fit in O(log n) workspace: The MFE value MS produced by the algorithm is a negative
number bounded below by M

def= N · (∆G(dM (s)) + ∆Gassoc) + (N − 1) ·∆G(dR(s′)), where s

is the strand with the minimum ∆G (strongest) middle domain dM , and s′ is the strand with
the minimum ∆G (strongest) right domain dR (i.e. we are taking a min over all domains of
the system to compute a putative free energy that no configuration can be less than). Hence
M ∈ O(N) = O(n), and thus M ≤MS can be written down using O(log n) bits, keeping in
mind that these quantities are all ≤ 0. Mcurr and Mprev in the algorithm are lists of length
k ∈ O(1), and no value stored in these lists is less than M (since M is a lowerbound for
the MFE). Finally, the various operations in the algorithm (minimum of a list, addition,
assignment, and iteration) are all logspace computable. Hence our MFE problem is in L. ◀
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E Application of our partition function algorithm

Armed with a fast partition function algorithm (Algorithm 2) we can analyse 1D SDC systems.
Figure 2(d) shows an example result, where we used our partition function algorithm to
“simulate” an anneal of the Bit-Copy system, for scaffold lengths up to 400 (i.e. 801 strands),
by computing the probability of the target configuration (correct output) at every 2◦ C from
100◦ C down to 20◦ C.5 We used temperature-dependent domain binding energies computed
from DNA sequences from ongoing experimental work [24] (mean ∆G of 24-base scaffold
and 12-base computational domains being -20.7 and -11.2 kcal/mol for intended binding,
respectively, at 55◦ C).

For non-complementary (orthogonal) computational domains at adjacent positions on the
scaffold, we allowed some binding free-energy (16% of intended binding, an approximation
derived from the NUPACK-computed partition function free-energy for a designed sequence
set [24]), and a positive (unfavourable) penalty for two bound computational domains (to
approximate geometric strain of three helices in close proximity/loop closure). With these
minor tweaks, the probability of the target (correct Bit-Copy output) with respect to
temperature showed qualitative agreement with experimental results on an N = 4 1D SDC.

Our partition function algorithm allows for analysis of much longer scaffold lengths,
useful for future scaled-up designs, with Figure 2(d) showing scaffold lengths up to 400
(i.e. Bit-Copy with 801 strands). This test was meant as a speed test for our algorithm,
and not a quantitative prediction of the experimental system, which we leave to future work.
In particular there remains some work to calibrate our domain-level model to experiments.
For example, lowering the sequence orthogonality constraint from 16% to 8% increases the
predicted melting temperature by ≤ 2 degrees for scaffold length ≤ 100, implying that there
is some, albeit low, sensitivity to crucial, and difficult to measure, system parameters.

F Source code

Source code for our algorithms can be found at https://dna.hamilton.ie/software.html.

5 An earlier, brute-force exponential-time algorithm could not go beyond scaffold lengths ≥ 15 on our
hardware). Note that the target (output) is the structure with MFE.

https://dna.hamilton.ie/software.html
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Abstract
We introduce a new DNA tile self-assembly model: the Surface Flexible Tile Assembly Model
(SFTAM), where 2D tiles are placed on host 3D surfaces made of axis-parallel unit cubes glued
together by their faces, called polycubes. The bonds are flexible, so that the assembly can bind
on the edges of the polycube. We are interested in the study of SFTAM self-assemblies on 3D
surfaces which are not always embeddable in the Euclidean plane, in order to compare their different
behaviors and to compute the topological properties of the host surfaces.

We focus on a family of polycubes called order-1 cuboids. Order-0 cuboids are polycubes that
have six rectangular faces, and order-1 cuboids are made from two order-0 cuboids by substracting
one from the other. Thus, order-1 cuboids can be of genus 0 or of genus 1 (then they contain a
tunnel). We are interested in the genus of these structures, and we present a SFTAM tile assembly
system that determines the genus of a given order-1 cuboid. The SFTAM tile assembly system
which we design, contains a specific set Y of tile types with the following properties. If the assembly
is made on a host order-1 cuboid C of genus 0, no tile of Y appears in any producible assembly, but
if C has genus 1, every terminal assembly contains at least one tile of Y .

Thus, for order-1 cuboids our system is able to distinguish the host surfaces according to their
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1 Introduction

In this paper, we introduce a new tile self-assembly model in order to perform self-assembly
on 3-dimensional surfaces. The field of tile self-assemby originates in the work of Wang [14],
who introduced in 1961 Wang tiles, that is, equally sized 2-dimensional unit squares with
labels/colors on each edge (later called glues) and designed a Turing universal computation
model based on these tiles. In 1998, inspired by Wang tiles and DNA complexes from
Seeman’s laboratory [6], Winfree introduced in his PhD thesis [15] the abstract Tile Assembly
Model (aTAM). This model uses Wang tiling with an extra information: he associated a
non-negative integer strength for each glue label. The power of DNA self-assembly enables
to compute using this model. We refer to the survey [9] for more details on the literature,
and to the online bibliography of Seeman’s laboratory [12].

Most of the early work in the DNA tile self-assembly literature deals with rigid assemblies
in the Euclidean plane [9, 10] (since the assemblies are discrete, the Euclidean plane is
usually seen as the lattice Z2), which is a natural and simple setting for this model. However,
it can be interesting to use self-assembly in richer settings. This has been investigated
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experimentally for instance in [13, 16, 17] where the assembly takes place on a preexisting
surface and changes according to the surface. On the theoretical side, there have been some
recent works on DNA tile self-assembly outside the Euclidean plane, such as tile self-assembly
in mazes [4], where the tile placement is done on the walls of a certain maze. Other types
of self-assembly exist that also do not use the Euclidean plane, for example a model of
cross-shaped origami tiles [18]. Another type of self-assembly not in the plane is 3D assemblies
of complex molecules like crystals [3, 7]. Inspired by this, a recent model called Flexible Tile
Assembly Model (FTAM) was introduced by Durand-Lose et al. in 2020 [5], as an extension
of earlier work [8]. Here, we have Wang tiles but they self-assemble (without an input surface)
in 3D space (modeled by the lattice Z3) as they can have, in addition to standard rigid
bonds, flexible bonds that allow tiles to bind at any angle along the tile edges. The goal of
the FTAM model is to construct complex 3D structures called polycubes (3D shapes made of
unit cubes) [2].

In 2010, Abel et al. [1] used a variant of the aTAM to implement shape replication, where
tiles react to the shape of a preexisting pattern to reproduce it. The assembly takes place on
the 1-dimensional border of a 2D pattern. Here, the main challenge is that the system must
react to the shape of the space around, rather than to an external input it can read as it
wants.

We are interested in studying what happens if we put the tiles on a given 3D surface, that
is not necessarily topologically equivalent to the Euclidean plane. The intuition is that this
could modify the computational behaviour of the tile self-assembly model, and we believe it
will be interesting for practical systems, as in some practical settings, self-assembly could be
performed on complex surfaces.

Inspired by the FTAM, we introduce a new model, called Surface Flexible Tile Assembly
Model (SFTAM). In the SFTAM, we are given a 3D surface, on which the tiles of the
self-assembly get placed. The SFTAM is an intermediate between aTAM and FTAM. Unlike
in the FTAM, our aim for introducing the SFTAM is not for building 3D structures or
surfaces: we assume that the host surface already exists. In the SFTAM, tile bonds are all
flexible and the tiles can bind along the edges of the surface.

This model enables to use self-assembly on surfaces other than Z2. The aim of this article
is to introduce the SFTAM model, and to demonstrate its usefulness by showing how it can
be used on various types of surfaces. One of the most important properties of a surface is its
genus, which, intuitively, is the number of “holes” in the surface. The Euclidean plane has
genus 0. We are interested in using the SFTAM on surfaces with different values of genus.
For that, we study the problem of characterizing the surface of the assembly, according to its
genus, using the SFTAM. It is quit easy to devise a system which can behave in some way
only on the torus, but it is harder to make sure that it has always this behavior when it is in
fact on a torus.

We focus on a family of 3D surfaces called cuboids, which are special types of polycubes.
Polycubes can form complex surfaces, and their genus can be high. We focus on a simple
family of polycubes that can have genus 0 or genus 1. More specifically, we define an order-0
cuboid as a polycube which has only six faces. An order-1 cuboid C1 = C0 \ C ′

0 is a polycube
that is made from the difference of two order-0 cuboids C0 and C ′

0. Thus, an order-0 cuboid
is a simple surface with genus 0, but an order-1 cuboid can either have genus 0 (potentially
with a pit or concavity) or genus 1, if it has a tunnel.

In this paper, we will suppose that the SFTAM self-assembly is performed on the surface
of an order-1 cuboid C. We design an SFTAM system whose assemblies differ when C is of
genus 0 and of genus 1 and thus, can be used to detect the genus of the surface C of the



F. Becker and S. Heydarshahi 2:3

X

Y

Z

teven

teven

teven

teven

todd

todd

todd

todd

Seed

Figure 1 The skeleton of a SG assembly on an order-0 cuboid is shown in color. It is started
from a seed (in yellow) and after the formation of the skeleton, the regions are partially filled by
tiles of types todd and teven.

assembly it is used on. The goal of this study is to show that performing self-assembly on
surfaces of higher genus can be helpful. We also demonstrate some techniques which may
prove useful in characterizing the topological properties of a wide range of surfaces.

A tile assembly system (TAS) in the SFTAM is defined in a natural way as an extension
of the aTAM: tile types are made of four glue labels, each has a strength, there is a seed
assembly and a temperature (more formal definitions will be given later). An assembly is
a placement of tiles on facets of the surface of the cuboid C. Two tiles bind if they are
adjacent (i.e. their placements on the surface share an edge) and their glue labels are the
same. In particular, edges are flexible and as a result the tiles can be placed on the border
of orthogonal faces of C. The assembly is producible if it can be obtained by successfully
binding tiles, starting from a seed . It is terminal if no additional tile can be bound to an
existing tile.

Let C = C0 \ C ′
0 be an order-1 cuboid with its three dimensions at least 10 for C ′

0. Our
main result is to describe an SFTAM (TAS) SG with a subset Y of its tile types such that
the following holds:

if the order-1 cuboid C has genus 0, then no tile of Y appears in any producible assembly
of SG on C, and
if C has genus 1, every terminal assembly of SG on C contains at least one tile of Y .

In other words, the genus of C can be determined using the assemblies of SG on C. The
assemblies of SG consist of two phases: a skeleton forms on the cuboid and separates it into
several regions, then the regions are partially filled by inner tiles. See Fig. 1 for a sketch of
the skeleton and its inner filling for an order-1 cuboid with genus 0. When the cuboid has
genus 1, we show that there must be some parts of the skeleton or the inner filling which
intersect in a way that is not possible on a genus-0 cuboid. The tile types of Y stick at the
place where this happens. See Fig. 2.

We start with basic definitions and notations in Section 2, where we introduce and
formalize our SFTAM model. Next, we introduce the family of order-1 cuboids and we show
how the SFTAM behaves on the family of order-1 cuboids as an assembly model in three
dimensions. In Section 3 we develop technical lemmas that will be necessary for the proof of
our main result. In Section 4 we present our main result: a SFTAM tile assembly system
that identifies the genus of order-1 cuboids using specific tiles from that system. We conclude
in Section 5. Due to space constraints, some parts of the proofs and details are deferred to
the appendix.
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treg

Seed

(a) The case where the skeleton
does not meet the tunnel. In
this case, tiles of types todd and
teven located in the two regions
containing the entrances of the
tunnel, pass inside the tunnel.
Where they meet, a tile of type
treg appears in the assembly.

tibc

Seed

(b) The tunnel intersects along
the width of plane PX and
length of plane PY . The green
tile is of type tibc (a tile type
from Tibc).

tmfs

Seed

(c) The case where the tunnel of
an order-1 cuboid is shown by a
tile of type tmfs, located at the
intersection of the skeleton.

Figure 2 According to the relative position of the seed and the tunnel, the detection of the tunnel
is done by different tile types of SG . The seed is indicated in yellow and the skeleton is in color.

2 Definitions and notations

We now define the Surface Flexible Tile assembly Model, SFTAM. We work in 3-dimensional
space, on the integer lattice Z3.

▶ Definition 1 (Tile type in SFTAM). Let Σ be a finite label alphabet and ϵ represent the null
label. A tile type t is a 4-tuple t = (t1, t2, t3, t4) with ti ∈ Σ ∪ {ϵ} for each i = {1, 2, 3, 4}.
Each copy of a tile type is a tile and t1, t2, t3, t4 are the glues of t.

Tiles are 2D unit squares whose sides are assigned the labels of the tile type. These
squares are allowed to translate and rotate (unlike in aTAM), but they can not be mirrored
(unlike in FTAM). In fact, since the tiles stick to a given surface, we can assume that they
have an inner face and an outer face and that they always attach with the inner face in
contact with the surface. In the definition of tile types, we show labels by numbers rather
than cardinal directions. However, often, the orientation of a tile dictates the orientation of
the tiles around it. Then, we use the expression “northern label” to refer to the label which
will end up on the northern side (and similarly for east, west, south).

▶ Definition 2 (Facet). A facet is a face of the lattice Z3, i.e. a unit square whose vertices
have integer coordinates.

▶ Definition 3 (Polycube). A polycube is a 3D structure that is a subset of Z3 and is formed
by the union of unit cubes that are attached by their faces.

For a facet of a polycube, there are four possibilities for placing a tile.

▶ Definition 4 (Placement). Let C be a polycube. A placement p = (f, o) on C consists of a
facet f on the surface of C, and a side o of f , called its orientation.

We denote the set of all placements in C by Pl(C).
Given a tile type t = (t1, t2, t3, t4) and a placement p = (f, o), placing t at the placement

p defines a mapping from the edges of f to the label alphabet Σ. The i-th side of f (starting
from the orientation o and going in clockwise direction, looking from the exterior of the
surface of C) is associated with ti.

▶ Definition 5 (Tile assembly system (TAS) on a polycube in SFTAM). A tile assembly system,
or TAS, over the surface of a given polycube C is a quintuple S = (Σ, T, σ, str, τ ), where :

Σ is a finite label alphabet,
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T is a finite set of tile types on Σ,
σ is called the seed and can be a single tile or several tiles
str is a function from Σ ∪ {ϵ} to non-negative integers called strength function such that
str(ϵ) = 0, and
τ ∈ N is called the temperature.

While the SFTAM is a theoretical system, its components have an analogy with elements
of practical DNA settings. The labels are the single strands of DNA, the function str show
the strength of their connections and the τ is the temperature.

We present the definitions and notations of SFTAM assemblies that we will use throughout
the article. They define similar to the ones for the aTAM [9].

▶ Definition 6. An assembly α of a SFTAM TAS S on a polycube C is a partial function
α : Pl(C) 99K T defined on at least one placement such that for each facet f of C, there is at
most one placement (f, o) where α is defined.

For placements p = (f, o), p′ = (f ′, o′) of Pl(C) with α(p) = t and α(p′) = t′ such that f

and f ′ are distinct but have a common side s, we say that t and t′ bind together with the
strength st if the glues of t and t′ placed on s are equal and have the strength st.

The assembly graph Gα associated to α has as its vertices, the placements of Pl(C) that
have an image by α, and two placements p and p′ are adjacent in Gα if the tiles α(p) and
α(p′) bind.

An assembly α is τ -stable if for breaking Gα to any smaller assemblies, the sum of the
strengths of disconnected edges of Gα needs to be at least τ .

▶ Definition 7. Let C be a polycube and S = (Σ, T, σ, str, τ ) a SFTAM TAS with σ positioned
on a placement of C. An assembly α of S is producible on C if either dom(α) = {p} and
α(p) = σ where p ∈ Pl(C), or if α can be obtained from a producible assembly β by adding a
single tile from T \ σ on C, such that α is τ − stable. Note that dom(α) is the domain of
the assembly α. We denote the set of producible assemblies of S by AC [S]. An assembly is
terminal if no tile can be τ -stably attached on C. The set of producible, terminal assemblies
of S is denoted by AC

□[S].

The SFTAM assemblies start from a seed and growth by a one by one tile adding. A tile
can be added to an assembly in any placement on the host surface where it binds to the
existing assembly with total strength at least τ with each pair of matching edges contributing
the strength of its glue.

We now introduce order-1 cuboids, which are special types of polycubes.

▶ Definition 8 (Order-0 cuboid). An order-0 cuboid C = (sC , xC , yC , zC) where sC =
(sx, sy, sz) ∈ Z3 is the point of C with smallest coordinates and xC , yC , zC are integers
representing the length, width and height of C is a 3D structure containing all points (x, y, z)
of Z3 such that sx ≤ x ≤ sx + xC , sy ≤ y ≤ sy + yC and sz ≤ z ≤ sz + zC . We denote the
set of all cuboids by O0.

We are interested in 3D structures that are more complicated than order-0 cuboids, in
particular 3D structures that can have tunnels, that is, “holes”.

▶ Definition 9 (Order-1 cuboid). An order-1 cuboid C1 is the difference between two elements
of O0. Given C0 = (sC0 , xC0 , yC0 , zC0) and C ′

0 = (sC′
0
, xC′

0
, yC′

0
, zC′

0
) in O0. C1 = C0 \ C ′

0 is
an order-1 cuboid if there is a i ∈ {x, y, z} such that iC0 ≤ iC′

0
. We note O1 the set of all

order-1 cuboids.
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2:6 DNA Tile Self-Assembly for 3-D Surfaces

The genus of an order-1 cuboid is at most 1. The set of order-0 cuboids is a subset of the
set of order-1 cuboids, that is, O0 ⊆ O1. An order-1 cuboid C1 = C0 \ C ′

0 can be of three
different types, depending on how C0 and C ′

0 interact: (i) C0 and C ′
0 have no intersection,

and C1 is an order-0 cuboid, (ii) C ′
0 cuts a hole in C0, and C1 is denoted as an order-1 cuboid

with a tunnel and has genus 1; and (iii) C0 and C ′
0 intersect but C ′

0 does not cut a hole in
C0. If the cut is in the inner face of C0, C1 is an order-1 cuboid with a pit and if the cut is
in the side of a face of C0, C1 is an order-1 cuboid with a concavity. In both cases of order-1
cuboid with a pit or with a concavity, the genus is 0.

3 Finding the Middle of a Rectangle

Our main results uses some arithmetic and geometric computations, which are defined in Z2.
A transfer lemma guarantees that they also work on any surface, if it is regular enough.

Given an assembly of SFTAM on Z2, the smallest axis-parallel rectangle containing the
assembly is its underlying rectangle. If an SFTAM assembly is on a 3D surface, it is permitted
to fold along the tiles’ edges. The underlying rectangle is then the smallest subset of the
surface which contains the assembly and is isomorphic to a rectangle of Z2, if it exists.

▶ Lemma 10. Let α be a producible assembly of an SFTAM TAS S on Z2 with underlying
rectangle R, and let C be a polycube. If there exists a function i : Z2 → C such that the
restriction of i to R is a graph isomorphism, then the image of α under i is producible on C.

Proof. If the seed is placed at ps in Z2, it is placed at i(ps) on C. Since the tile bonds can
fold along edges of C, the assembly on C proceeds exactly as in Z2, and each tile placed at a
point p in Z2 is placed at point i(p) on C. ◀

We design the following systems (details omitted due to space constraints) which are
a variant of those of [11]. The IBC (Increasing Binary Counter) counts up to a number,
while distinguishing rows which are a power of two. The DBC (Decreasing Binary Counter)
counts down from a number, while distinguishing the row where 0 is reached. The U-
Turn System makes a copy of a number from position [(x, y), ..., (x + k, y)] to position
[(x − k − 1, y), ..., (x − 1, y)]. See Figure 15 for an example of IBC and DBC Systems, and
Figure 16 for U-Turn System.

An explicitly bounded rectangle R is a rectangle whose horizontal sides are bounded by
specially marked tiles. The following lemma uses the IBC, DBC and U-Turn Systems in a
SFTAM TAS that finds the middle of the height of R.

▶ Lemma 11 (Middle finding system). Let R be an explicitly bounded rectangle of height
N and width at least 3 log(N). There is a TAS S1/2 = (Σ, T1/2, σ+, str, τ) such that for all
assemblies with a seed located at the start, a tile of type tm appears at coordinate (x, ⌊ N

2 ⌋)
with no other tiles to its left, and tm does not appear anywhere else.

Proof sketch. Let R be an explicitly bounded rectangle and N = 2n + k with k < 2n be
the height of R. Without loss of generality, we assume that the specially marked horizontal
sides of R being “Start” at the bottom and the other, “Finish”, at the top. See Fig. 3 for an
overview.

We use the IBC, DBC and U-Turn Systems to define our Middle Finding SFTAM TAS
that finds N

2 = 2(n−1) + k
2 . There are two copies of the IBC, named IBC1 and IBC2. We

list the steps for the Middle Finding System, and omit the details due to space constraints.
0. Growing a column of support tiles until “Finish”.
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1. Using the IBC System IBC1 to find the height N = 2n + k of R. The support tiles from
the previous step are its seed.

2. Returning to row number 2n using the second IBC system IBC2, which then outputs the
value of k

3. Copying k until 2n−1 (the middle of 2n).
4. Halving k by eliminating its least significant bit.
5. Shifting k

2 to the left by a U-Turn System.
6. Going up by k

2 using the DBC system. ◀

Start

F inishY

X

0.
IB

C
Support

σ+

1. IBC12.IBC2

3. Copy 1. tv

1. tv

4. k
2

4.
U

-Turn
support

5. U-Turn

6. DBC

tmMiddle

≥ 3 log(N)

Figure 3 The steps of the Middle Finding System process, starting from the seed that is in red
on the right. The tile tm (the red tile on the left) appears in the middle of two rows of tiles that are
shown by start and finish.

4 Distinguishing order-1 cuboids by their genus

Our main result is stated as follows.

▶ Theorem 12 (Main Theorem). There is a SFTAM tile self-assembly system SG =
(Σ, T, σ, str, τ) and a subset of tile-types Y = {treg, tmfs} ∪ Tibc ⊆ T such that for any
order-1 cuboid C = C0 \ C ′

0 with the dimensions at least 10 for C ′
0, if SG assembles on C

starting from a seed which is placed in a normal placement, the following holds:
If C has genus 1, every terminal assembly of S on C contains at least one tile of Y .
If C has genus 0, then no tile of Y appears in any producible assembly of S on C.

The system presented here works for the case where the seed is on a normal placement,
i.e. “far enough” from the borders of the surface.

▶ Definition 13 (Normal placement). Let C be an order-1 cuboid such that (x1, y1, z1),
(x2, y2, z2), ... ,(xn, yn, zn) are its vertices. A placement p ∈ Pl(C) with position (x, y, z) is
a normal placement of C if and only if for all i ∈ N, two of the following inequalities hold:
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2:8 DNA Tile Self-Assembly for 3-D Surfaces

| xi − x |≥ 3 log(N) + 6, | yi − y |≥ 3 log(N) + 6 and | zi − z |≥ 3 log(N) + 6, where N is the
largest of the three dimensions of the cuboid. The set of all normal placements is denoted by
PlN (C).

The simplest example to demonstrate the concept of normal placement is on an order-0
cuboid C ∈ O0. In this case, normal placements consist of the cuboid’s surface minus
its “frame” i.e. the border of the cuboid’s edges with a thick margin. Hence there are 6
disconnected areas on C’s faces where the normal placements are. The normal placements
on order-1 cuboids can be described similarly. It should be noted that in this case there can
be more than 6 disconnected areas. Note that in order to have normal placements at all,
a cuboid needs to be large enough. Also, when dimensions of the order-1 cuboid are large
enough and not too disproportionate, most placements are normal placements.

4.1 Region partition on order-1 cuboids
Let C = C0 \ C ′

0 be an order-1 cuboid. In order to detect a potential tunnel whose entrances
are on parallel faces, the construction separates these faces. For this purpose we use three
planes, one for each pair of parallel faces of C, located between them. Let PX , PY , PZ be
three planes in this way: take p ∈ PlN (C). The plane PX is passing on p and is parallel to
the plane formed by the Y -axis and Z-axis. The plane PY is parallel to the plane formed
by the X-axis and Z-axis and is passing on p. The plane PZ is parallel to the plane formed
by the X-axis and Y -axis and contains the center of C0. In Fig. 4 the seed in yellow is in
the point p and the plane PX , PY and PZ are framed respectively by the ribbons RX (in
red), RY (in green) and RZ (in blue) on C. For i ∈ {X, Y }, Ri is the connected component
of ∂C ∩ Pi that contains p. If RX and RY intersect in one point, RZ in the empty set. If
they intersect in two points, R′

Z = PZ ∩ ∂C and RZ is the connected component of R′
Z that

has an intersection with RY . The difference C \ {RX , RY , RZ} consists of up to 8 connected
components called regions. They are noted by RXY Z such that X, Y, Z ∈ {0, 1} where 0
represents the left, down and back sides, and 1 represents the right, up and front sides. For
example, R101 refers to the region at the right, down and front side of C. The parity of the
regions RXY Z is the parity of X + Y + Z. This way of partitioning C helps to define the
graph GC , the region graph of C:

▶ Definition 14 (Region graph). Let C = C0 \ C
′

0 be an order-1 cuboid with p as a position of
it, the planes PX , PY two perpendicular planes passing on p, and PZ a plane perpendicular
to both planes passing through the middle of PY . Also, let Ri = ∂C0 ∩ Pi for i ∈ {X, Y, Z}.
There is a graph assigned to C named the region graph GC(p) whose vertices are the regions
separated by RX , RY and an edge is added between two regions if and only if they share PX ,
PY or PZ .

For an order-0 cuboid C, GC(p) is a bipartite graph and therefore it is 2-colorable. The
region graph for an order-0 cuboid is presented in Fig. 7.

If C is an order-1 cuboid with a tunnel, the number of disconnected regions can be less
than 8 depending on the intersection of the tunnel with the three planes PX , PY and PZ . The
axis of the tunnel is the direction orthogonal to its entrances. The three planes can intersect
the tunnel in two ways: along the width of the tunnel when the plane is perpendicular to
the axis of the tunnel, or along the length of the tunnel when the plane is parallel to the
axis of the tunnel. Thus, a tunnel may have an intersection with up to three perpendicular
planes, one along the width, and up to two other planes along the length. Based on this,
three types of partitions into regions are possible and the possible numbers of regions are: 7
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regions when one plane intersects along the width of the tunnel, 5 regions when one plane
intersects along the length of the tunnel and one along the width (See Fig 11), and 1 region
when the three perpendicular planes intersect along the tunnel, one along the width and the
others along the length.

4.2 Overview of the assemblies of the genus detector SG on O1

X

Y

Z

Seed X

Y

Z

Seed

Figure 4 The skeleton of a terminal assembly of SG on an order-0 cuboid starting from a seed
(in yellow) in a normal placement. On the left, the traces of the ribbons RX (in red), RY (in green)
and RZ (in blue). On the right, the shape of the skeleton on the cuboid.

Let C be an order-1 cuboid. An assembly of SG starts from a seed in an arbitrary normal
placement on C. In the TAS SG , the seed acts like a compass for the assemblies. Without
loss of generality, we assume that the side on which the seed is located is the face parallel to
the XY -plane and intersects the Z axis, and the north label of the seed’s tile points towards
the Y axis. The process of the assemblies’ growth in SG consists of two phases, a phase for
forming a skeleton, and a phase for filling up the skeleton:
1. Constructing the skeleton of the assembly’s structures by at most 7 perpendicular ribbons

on C. Here, the planes PX , PY and PZ are located from being framed by several ribbons
of tiles (RX , RY and RZ) during the assembly and each step starts only when the previous
step is finished.

RX including one ribbon for framing the first plane PX

RY including two ribbons for framing the second plane PY

RZ including zero or four ribbons constitutes the frame of the third plane PZ (depending
on the intersection of the two previous planes, details will be given later)

2. Filling the inside of the assembly’s skeleton by distinctive tiles. In this step the interior
of the regions is partially filled by their distinctive tiles in a way that no connected
component has a neighbor with the same inner filling tile.

In order to simplify the explanation of the process of the assemblies, first phase one is
presented:

how the skeleton grows depends on the placement of the seed
how the skeleton partitions C into distinct connected components
what its assigned region graph is.

Next, we study the phase of inner filling. Afterwards, we conclude the proof of the main
theorem.

4.2.1 Terminal assemblies on order-0 cuboids
This section will characterise the set AC0

□ [SG ] of terminal assemblies on an order-0 cuboid C0.
In fact, for the study of the shape of the productions in Ot

1, the productions on O0 will be
useful as a reference. We show that SG partitions order-0 cuboids into eight distinct regions
as presented in Section 4.1. Later in the next section we study the case of order-1 cuboids.
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2:10 DNA Tile Self-Assembly for 3-D Surfaces

1. The structure of the skeleton.

▶ Lemma 15. Let C ∈ O0 be an order-0 cuboid and assume that the seed σ is placed at
a normal placement p ∈ PlN (C). Every terminal assembly of SG on C includes a “3-step
skeleton” noted by RX ∪ RY ∪ RZ where each part is located on the corresponding ribbon
defined in Section 4.1.

Proof. Every terminal assembly of SG on C includes a “3-step skeleton” denoted by RX ∪
RY ∪ RZ where each part is located on the corresponding ribbon defined in Section 4.1. In
the first step, tiles make a vertical segment ribbon of tiles around C to form RX , starting
from the south of the seed and finishing at its north. RX divides C into two regions, the
right side and the left side of C with respect to the seed σ. (We always assume that we view
the cuboid from the point of view of the Z-axis, as in Fig. 4, and thus left, right, up, down,
back, front refer to this point of view.) Next, RY starts to form only when RX rebounds.
RY consist of two segment ribbons starting from both the right and left sides of σ. They
develop perpendicular to RX by using two Middle Finding Systems (Definition 11), one on
each side. Note that each system has its own distinguished tile types. Once the RY ribbons
form, they separate C into an up side and a down side. Thus, C is now partitioned into four
separate regions due to the first and second step ribbons. Next, by finding the middle of each
of RY ’s ribbons on the right and left faces, four new perpendicular ribbons are generated
at the right-up and left-down sides from the tile of type tm in the Middle Finding Systems.
They go on, until they reach RX on the upper and down faces. The plane RZ passes through
the union of these four ribbons. This step creates a separation between the front side and
the back side of the cuboid C with respect to σ. We show the detailed assembly of RX , RY

and RZ in Fig. 6 that starts from the seed σ (in red) at the left of the figure, where RX

rebounds on C. The western two-side Middle Finding System and its assign parts of RZ is
omitted for the sake of brevity, however they are the mirror image of the eastern ones. ◀

Figure 5 Two ribbons of RZ meeting the ribbon RX .

As mentioned in Section 4.1, these three steps partition C into 8 distinct regions.

2. Inner filling of the skeleton. After the formation of the skeleton, the second phase is to
fill the eight regions by lines of interior tiles, once the RZ ribbons reach RX . Since the region
graph of an order-0 cuboid C is a 2-colorable graph, we use two tile types to distinctly tile C.

▶ Lemma 16. Let C ∈ O0 be an order-0 cuboid. For all the terminal assemblies α ∈ AC0
□ [SG ]

started from a seed σ ∈ PlN (C), the tile teven = (ze, xev, ze, xev) appears in the even regions
and the tile todd = (zo, xod, zo, xod) appears in the odd regions.

Proof. First, four ribbons of tiles types (see Fig. 8) appear at the intersection of PX and the
PZ ribbons. Then, from the ribbons along RX , straight lines of tiles start growing parallel
to the x axis using strength 2 glues xev (resp. xod) in even (resp. odd) regions. Thanks to
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Figure 6 The assembly of RX , RY and RZ on an order-0 cuboid. The seed is located in the
middle of RX at the left. RX grows from the south of the seed and finishes at its north. Then, PY

starts growing by two two-side eastern and western Middle Finding Systems. At the end, PZ starts
to assemble from the found middle tile of RY (in red) and finishes by arriving at PX . The western
two-side Middle Finding System and its assigned parts of RZ are omitted for the sake of brevity,
however they are the mirror image of the eastern ones.

modulo 5 counters on the even RX border tiles, there is one such line every other 5 position
along that part of the border with tiles of type teven = (ze, xev, ze, xev). Also, on the odd RX

border tiles, thanks to modulo 3 counters on the odd RX border tiles, there is one such line
every other 3 position along that part of the border with tiles of type todd = (zo, xod, zo, xod).
These lines form the even (resp. odd) filling tiles and fill the partitioned regions. See Fig. 10
for an illustration.
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R000
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R011

R110R010

R001

R100

R111

(a) The region graph of an order-0 cuboid.

R000

R101

R011

R110R010

R001

R100

R111

teven

teven

teven

teven

todd

todd

todd

todd

(b) Tile coloring of the region graph, and
filling up the regions via tiles of types teven

and todd.

Figure 7 The region graph GC and its 2-coloring.

Figure 8 The tile types of four inner ribbons at the intersection of RX and RZ .

The 2-coloring indicates also where the tiles of type teven and of type todd can be placed.
The region R000 and the regions with even distance to it are tiled by tiles of type teven, and
the ones with odd distance to it, by todd tiles. For more clarity, see Fig. 7 where the regions
corresponding to teven are colored white and the ones with todd are colored black. ◀

Figure 9 The tile types tmfs and treg (which may only appear if C has genus 1).

4.2.2 Terminal assemblies on order-1 cuboids with genus 1
We consider now the process of the assembly of SG for order-1 cuboids with a tunnel. This
section will characterise the set A

Ct
1

□ [SG ] of terminal assemblies on such order-1 cuboids.
Let C be an order-1 cuboid with a tunnel. The key element of the proof is the appearance

of some specific tile in each assembly since it has less than 8 regions. The assemblies on C

have a skeleton with a different shape depending on the region graph associated with the
placement of the seed. Let Pi and Ri for i ∈ {X, Y, Z} be defined as presented in Section 4.1.
If a plane Pi intersects along the width of the tunnel, it acts like a separator between the
two parallel faces where the tunnel’s entrances are located. If a plane Pi intersects along the
length of the tunnel, the tiles of Ri enter and pass inside the tunnel. Moreover, three types of
partitions into regions are possible and the possible numbers of regions are: 7 regions when
one plane intersects along the width of the tunnel, 5 regions when one plane intersects along
the length of the tunnel and one along the width, and 1 region when three perpendicular
planes intersect along the tunnel, one along the width and the others along the length. Each
case needs to be studied separately, we give the proof of the case with 5 regions and the
proof of the Lemma 17 and Lemma 19 exist in the appendix.
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Figure 10 The inner filling with tiles of types teven (white) and todd (black) at the two places
where the RZ ribbons meet RX .

Note that in what follows, GC(σ) refers to the region graph GC(p) such that p is the
position of the seed σ on C.

Case 1 (7 regions): one plane intersects along the width of the tunnel. In this case, tiles
of types todd and teven touch, which enforces the attachment of treg or tmfs.

▶ Lemma 17. Let C = C0 \ C ′
0 ∈ Ot

1 be an order-1 cuboid with the dimensions at least 10
for C ′

0. Assume that the seed σ is placed in a normal placement p ∈ Pl(C). In a terminal
assembly of the system SG, if only one of the planes defined in Section 4.1 intersect with the
tunnel, GC(σ) has 7 regions and a tile of type treg or tmfs appears in the assembly.

Case 2 (5 regions): the tunnel intersects with PZ , and exactly one of PX and PY .

▶ Lemma 18. Let C ∈ Ot
1 be an order-1 cuboid and assume that the seed σ is placed in a

normal placement p ∈ Pl(C). In a terminal assembly of the system SG, if the plane PZ and
exactly one of the planes PX and PY defined in Section 4.1 have an intersection with the
tunnel, there exist 5 regions on the cuboid and a tile of type tmfs appears in the assembly.

Proof. If the seed is placed where the tunnel has intersection with two perpendicular planes,
one of them intersects the tunnel along its width and the other one along its length. If PZ

intersects with the tunnel along the length, the ribbons of RZ meet each other inside the
tunnel. However, if PZ intersects the tunnel along its width, they meet outside the tunnel.

In both cases, the tile tmfs = (ze, zo, ze, zo) appears in the assembly when two frame
ribbons of PZ meet each other. Note that when the tunnel has intersection with PZ and
one of the planes PX or PY , the cuboid is separated into two connected components such
that one of them is a cuboid with genus 0 and the other one is a cuboid with genus 1. The
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part with genus 0 has 4 distinct regions, and the part with genus 1 (containing a tile of type
tmfs) has one single region. In total, there exist 5 distinct regions on the cuboid C. For an
illustration of the skeleton and its graph in this case, see Fig. 11. ◀

R000

R101R001

R100

R011 = R111 = R010 = R110

(a) The region graph.

tmfs

Seed

(b) The tunnel intersects along
the width of plane PX and
length of plane PZ .

tmfs

Seed

(c) The tunnel intersects along
the length of plane PX and
width of plane PZ .

(d) A tile of type tmfs appears if and only if two segments of PZ (in purple) intersect each other by
passing through a tunnel (instead of reaching PX).

Figure 11 The case where C is partitioned into 5 distinct regions.

Case 3 (1 region): the tunnel intersects with PX and PY . Here, two opposite ribbons
of RY meet instead of colliding with RX . This enforces the attachment of some tiles in
Tibc ⊆ Y .

▶ Lemma 19. Let C ∈ Ot
1 be an order-1 cuboid and assume that the seed σ is placed in a

normal placement p ∈ Pl(C). In a terminal assembly of the system SG, if two planes PX

and PY defined in Section 4.1 intersect the tunnel, there exists 1 regions on the cuboid and a
tile of one of the Tibc types appears in the assembly.

Note that the situation when the seed is located inside the tunnel is similar to Case 3, up
to topological isomorphism.

From Lemmas 17, 18 and 19, the following corollary is obtained:

▶ Corollary 20. Let C = C0 \ C ′
0 ∈ O1 be an order-1 cuboid with the dimensions at least 10

for C ′
0 and α be an assembly of the TAS SG = (Σ, T, σ, str, τ ) such that its seed is placed at

a normal placement. If there is tunnel on C (i.e. its genus is 1), at least a tile type from
Y = {treg} ∪ {tmfs} ∪ Tibc ⊆ T exists in all terminal assemblies of SG on C.

4.3 Detecting the genus of the order-1 cuboids via SG

Before proving our main theorem (Theorem 12), we need to prove the following lemma:

▶ Lemma 21. Let C be an order-1 cuboid. If one tile of Y={treg} ∪ {tmfs} ∪ Tibc ⊆ T exists
in a terminal assembly of SG on C starting from a seed in a normal placement, there is a
tunnel on C.
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Proof. If a tile of type tmfs exists in a terminal assembly on C, two cases are possible. In
one case, there is a tunnel that intersects only PX along its width and teven and todd intersect
each other perpendicularly. As a result, tmfs appears in the assembly. In the other case, two
ribbons of RZ must meet each other since the tiles whose labels correspond to the labels
of tmfs are those of the RZ ribbons. Recall that the RX and RY ribbons intersect at two
places : one at the seed (since RY grows out of RX) and a second time, where the tiles of
type teu, ted, twu or twd appear in the assembly as the row tile number 1, in the second IBC
system of the Middle Finding Systems. The two ribbons of RZ , together with the parts of
the Middle Finding System located between the second intersection of RX and RY on the
one hand, and RZ on the other hand, form a closed ribbon on the surface of C (highlighted
in green and blue Fig. 12). This ribbon and RX pass through each other perpendicularly at
only one place. Since they pass through each other perpendicularly, it can be concluded that
the cuboid C cannot be topologically homeomorphic to the sphere, or in other words, be a
genus 0 cuboid, and so a tunnel must exist. The cases where there is a tile of type treg or
t ∈ Tibc are similar. ◀

In the cases where the genus is 0 but there is a pit or concavity the construction also
yields an 8 region partition but the details are omitted due to space constraints.

We are now ready to prove Theorem 12.

Proof of Theorem 12. Let C = C0 \ C ′
0 ∈ O1 be an order-1 cuboid with the dimensions at

least 10 for C ′
0 and α be an assembly of the TAS SG = (Σ, T, σ, str, τ ) such that its seed is

placed at a normal placement. Note that if C0 is too small, there is no normal placement.
By Corollary 20 and Lemma 21, there is a tile type from Y = {treg} ∪ {tmfs} ∪ Tibc ⊆ T in
all terminal assemblies of SG on C if and only if there is tunnel on C (i.e. its genus is 1). ◀

tmfs

Seed

tmfs

Seed

Figure 12 The closed ribbon formed by parts of the Middle Finding System (green) and the two
ribbons of RZ (blue), when two RZ ribbons meet each other instead of reaching RX . They meet the
red ribbon RX only once.

The general principle of the construction is as follows: cut the order-1 cuboid into regions
and check if the partition is the same as it would be on a cube. If it is the case, the cuboid has
genus 0, eight regions and the tiles of Y cannot be used in any terminal assembly. Otherwise,
the cuboid has genus 1, less than eight regions, and the tiles of Y must be used in any
terminal assembly.

In fact, the SFTAM system we obtain works quite intuitively. The different “moving
parts” are necessary to ensure the good function of the system:

Firstly, the Middle Finding System ensures the shape is split along each dimension. In
fact, a precise control is necessary to prevent false positives, i.e. order-1 cuboids of genus 0
with a tile of Y in their assembly, and less than 8 regions. To do so, the partition ensures
that any tunnel lies between two different regions that have the possibility of sharing a
tunnel. Hence, the Middle Finding System is needed to avoid false positives.
Lastly, the filling with unequally spaced stripes ensures that there is enough empty space
which triggers the detection of the meeting of two regions.

The relative complexity of these illustrates the challenges of working on an unknown surface.
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5 Conclusion

We have introduced our new model, SFTAM, that enables to perform tile self-assembly on
3D surfaces. We have shown that we can use it to determine the genus of a given surface.
For this, we have worked on a simple and special family of polycubes, the order-1 cuboids.

It would be interesting to extend our results to a larger family of polycubes. In our
work, the Middle Finding System was used to detect a potential tunnel on an order-1
cuboid. However, for more complicated surfaces, one needs to ensure that some part of the
construction does go through the tunnel, and that it can be differentiated from the tiles it
meets on the other side. The idea of having regions with distinct identities can be reused in
this context, but the Middle Finding System needs to be supplemented or replaced.
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A Technical Details

In our assemblies, we will represent a number by tiles, in a classic way for tile self-assembly
(see e.g. [11]) as follows.

▶ Definition 22 (Row tile number). Let T0 and T1 be two sets of tiles with labels 0 and 1,
respectively. Let N be an integer and a1...a2an be its binary representation with n = ⌈log2N⌉.
A row of tiles with labels a∗

1, a2, ..., an is the row tile number representation of N such that
the distinct tile a∗

1, represents the most significant bit of the number. See Fig. 13 for an
example.

Figure 13 Representation of the number 12 by its row tile number.

Start

Middle

F inish

(a) On Z2.

Middle

F inish

Start

(b) On a polycube.

Figure 14 Finding the middle of a surface. The underlying rectangle is in dark gray.

B The order-1 cuboids with pit or concavity

In the case that C ∈ O1 is an order-1 cuboid with a concavity or a pit (whose genus is 0),
the assembly’s process is similar to the assembly on order-0 cuboids. The frame ribbons
form completely by the assumption that the seed is located on a normal placement of C,
and separate C into 8 distinct regions, and the insides of the regions are tiled independently
by inner tiles of types todd and teven. However, in the case of a concavity, the regions do not
necessarily meet edge to edge, see Fig. 17 for an illustration.

C Omitted proofs

Proof of Lemma 17. Let the seed be placed in a manner that only one of the planes PX ,
PY or PZ intersects along the width of the tunnel.
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(a) The assembly of the IBC System until
the number 16.

(b) The assembly of the DBC System for number 12 to −1
at the left and negative 15 at the right.

Figure 15 Increasing Binary Counter System (left) and Decreasing Binary Counter System
(right).

The plane that intersects the tunnel is the separating buffer of two regions Rxyz and
Rx′y′z′ containing the two tunnel’s entrances. In this case, the two regions Rxyz and Rx′y′z′

are joined by the tunnel and get combined into a single region via the tunnel. Therefore, the
number of distinct regions decreases to 7 regions (compared with the genus 0 case, where we
always have 8 regions). See Fig. 18 for an illustration.

Without loss of generality, assume that x + y + z is an odd number and x′ + y′ + z′ is
an even number. When two regions Rxyz and Rx′y′z′ are joined by the tunnel, tiles of type
todd = (zo, xod, zo, xod) from Rxyz and of type teven = (ze, xev, ze, xev) from Rx′y′z′ both
exist in the new unique region. We show that the tile type treg = (ze, xod, zo, xev) or tmfs

must then occur in the assembly. The tile types treg and tmfs are the only tile type of SG
with labels zo and ze of inner filling tiles todd and teven. To conclude the proof, one needs to
show that in a region with a disconnected border, there is a good empty space, that is an
empty space which sees both an even tile and an odd tile through strength 1 sides. Then,
this space can be filled by neither type of filling tiles, but it must eventually be filled by a
tile of type treg = (ze, xod, zo, xev) or tmfs = (ze, zo, ze, zo). In a region with a tunnel, on
each side of the tunnel, the border of every 10 × 10 square must be crossed by either

at least two of the lines of tiles starting from PX on that side of the tunnel, or
at least two of the lines exiting the tunnel.

In particular, because C ′
0 is at least 10 × 10 units wide, there are at least two lines crossing

one of the edges the tunnel in the same direction. Each such line must either reach the
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(a) Copying 11111001 in the U-Turn System. The
gray bracket on the right shows the minimum number
of support tiles that are necessary for this assembly.

(b) The k-th stage of the assembly in the U-Turn
System is shown by yellow-filled rectangles. The
value of the k-th significant bit is copied down by
k − 1 rows during the previous stages. The k-th
stage copies the value one time to the south and
n times to the left and finally k times to the top.
Here, k = 5 and n = 8. In addition, in the k-th
stage, the tiles of type tb

←− in the gray rectangle
appear below the tile of type t⌟, and they will be
the supports for the (k + 1)-th stage. The seed is
highlighted in the black rectange.

Figure 16 U-Turn System.

Seed

Figure 17 Cuboid with concavity: RX (red), RY (green) and RZ (blue). The latter consists of
two semi-planes.

opposite connected component of the border, be stopped orthogonally by a line from the
opposite side of the tunnel, or run head-first into an opposite line. Consider such a pair of
lines, with minimal distance between them. In particular, that distance must be at most 10.

If one of the lines reaches the opposite connected component of the border, either of the
spaces next to its end is good and in this case the tile of type treg appears in the assembly;
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likewise, if one of them is stopped orthogonally by a line from the opposite side of the
tunnel, one of the spaces next to the intersections is good and a tile of type tmfs appears.

Moreover, if one of them runs head-first into an opposite line, the other cannot, because their
distance cannot be at the same time divisible by 15, positive and less than 10. Hence the pair
satisfies one the previous cases. This concludes the proof of that case of our construction. ◀

Proof of Lemma 19. In this case, the skeleton of the assembly is not the same as before.
Recall the process of the assembly’s skeleton: The frame ribbons of the plane PX are
generated independently from σ. Two segment ribbons of the plane PY begin to grow after
rebounding on the plane PX , regardless of passing through a tunnel or not. However, the
ribbons of PZ start to grow only after finding the middle of PY and they end by reaching
the ribbon of PX . Considering this process, when the two planes PX and PY intersect with
the tunnel, the plane PZ is not able to form since there is a tunnel that does not permit to
have the collision of PY and PX , and the ribbons of PY do not end in PX . As a result, since
the plane PZ depends on the collision of the PY ribbons with the PX ribbons, PZ is not able
to form.

Moreover, two ribbons of PY must meet each other at a tile of one of the Tibc types that
comes between their IBC1 systems. This happens inside the tunnel if PY intersects the
tunnel along its length, and outside the tunnel if it intersects the tunnel along its width. In
either cases a tile of one of the Tibc types appears.

Note that the skeleton consists of two closed loops of PX ribbons and PY ribbons. This
phenomenon demonstrates that the genus of C is 1. In order to have a better overview, see
Fig. 19. Furthermore, all regions are united and there is only one single region throughout
the whole surface of C. ◀

Proof of Corollary 20. If there is a tunnel on C, at least one of the planes PX , PY and PZ

defined in Section 4.1 intersects with the tunnel since its entrances are on parallel faces of
the cuboid, and these planes are located between parallel faces.

Firstly, if the tunnel of C intersects with only one of the planes, due to Lemma 17, a tile
of type treg or tmfs, which are the only tile types of SG with labels in common with both
inner filling tile types todd and teven, appears in the assembly.

Nextly, if two planes (among them PZ) intersect with the tunnel on C, a tile of type tmfs

appears in all terminal assemblies on C by Lemma 18.
At the end, if two planes PX and PY intersect with the tunnel, Lemma 19 implies that a

tile of one of the Tibc types is present in the assembly. ◀

The places where a tunnel implies the presence of a tile of Y are shown in Fig. 20.
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R000

R101

R110R010

R001

R100

R011 = R111

(a) Region graph.

Seed

(b) The cuboid and the three planes.

Figure 18 The case where C ∈ Ot
1 is partitioned into 7 distinct regions. If there is a tunnel

between two distinct regions, a tile of type treg or tmfs, which have common labels with both teven

and todd, must appear in the assembly.

Tibc

Seed

(a) The tunnel intersects along the length
of plane PX and width of plane PY .

Tibc

Seed

(b) The tunnel intersects along the width
of plane PX and length of plane PY .

Figure 19 Intersection of tunnel with the two planes PX (red) and PY (green).

tmfs

tmfs

Seed

Tibc

Tibc

Tibc tmfstmfs

treg/mfs treg/mfs

treg/mfstreg/mfs

tmfstmfs

Tibc

Tibc

Tibc

treg/mfs

treg/mfs

treg/mfs

treg/mfs

treg/mfs treg/mfs

treg/mfstreg/mfs

tmfs

tmfs

Figure 20 The places on a cuboid where, if there is a tunnel, a tile of Y must appear in the
assembly.
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round individually (inspired by definitions for the runtime of asynchronous distributed algorithms).
Following that, we turn to investigate various fundamental computational tasks and establish (often
tight) bounds on the runtime of the corresponding CRN protocols operating under the adversarial
scheduler. This includes an almost complete chart of the runtime complexity landscape of predicate
decidability tasks.
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1 Introduction

Chemical reaction networks (CRNs) are used to describe the evolution of interacting molecules
in a solution [20] and more specifically, the behavior of regulatory networks in the cell [7].
In the last two decades, CRNs have also emerged as a computational model for molecular
programming [24, 14]. A protocol in this model is specified by a set of species and a set
of reactions, which consume molecules of some species and produce molecules of others.
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3:2 On the Runtime of CRNs Beyond Idealized Conditions

In a (discrete) CRN computation, inputs are represented as (integral) molecular counts
of designated species in the initial system configuration; a sequence of reactions ensues,
repeatedly transforming the configuration, until molecular counts of other designated species
represent the output. The importance of CRNs as a model of computation is underscored by
the wide number of closely related models, including population protocols [2, 4], Petri nets
[23], and vector addition systems [21].1

The standard model of stochastic chemical kinetics [20], referred to hereafter as the
standard stochastic model, dictates that the execution of a CRN protocol (operating under
fixed environmental conditions) advances as a continuous time Markov process, where the rate
of each reaction is determined by the molecular counts of its reactants as well as a reaction
specific rate coefficient. This model crucially assumes that the system is “well-mixed”, and
so any pair of distinct molecules is equally likely to interact, and that the rate coefficients
remain fixed.2 Under the standard stochastic model, CRNs can simulate Turing machines
if a small error probability is tolerated [14]. The correctness of some protocols, including
Turing machine simulations, depends sensitively on the “idealized conditions” of fixed rate
coefficients and a well-mixed system.

However, correctness of many other CRN protocols, such as those which stably compute
predicates and functions [2, 4, 11, 18, 8, 10], is premised on quite different assumptions:
correct output should be produced on all “fair executions” of the protocol, which means
that the correctness of these protocols does not depend on idealized conditions. These
protocols operate under a notion of fairness, adopted originally in [2], requiring that reachable
configurations are not starved; in the current paper, we refer to this fairness notion as strong
fairness. A celebrated result of Angluin et al. [2, 4] states that with respect to strong fairness,
a predicate can be decided by a CRN if and only if it is semilinear.

As the “what can be computed by CRNs?” question reaches a conclusion, the focus
naturally shifts to its “how fast?” counterpart. The latter question is important as the
analysis of CRN runtime complexity enables the comparison between different CRN protocols
and ultimately guides the search for better ones. Even for CRNs designed to operate on all
(strongly) fair executions, the existing runtime analyses assume that reactions are scheduled
stochastically, namely, according to the Markov process of the standard stochastic model,
consistent with having the aforementioned idealized conditions. However, such conditions
may well not hold in real wet-lab experiments, where additional factors can significantly
affect the order at which reactions proceed [25]. For example, temperature can fluctuate,
or molecules may be temporarily unavailable, perhaps sticking to the side of a test tube or
reversibly binding to another reactant. Consequently, our work is driven by the following
research question: Is there a meaningful way to quantify the runtime of CRNs when idealized
conditions do not necessarily hold?

The Quest for an Adversarial Runtime Measure. We search for a runtime measure
suitable for adversarially scheduled executions, namely, executions that are not subject to the
constraints of the aforementioned idealized conditions. This is tricky since the adversarial
scheduler may generate (arbitrarily) long execution intervals during which no progress can be
made, even if those are not likely to be scheduled stochastically. Therefore, the “adversarial
runtime measure” should neutralize the devious behavior of the scheduler by ensuring that

1 To simplify the discussions, we subsequently stick to the CRN terminology even when citing literature
that was originally written in terms of these related models.

2 We follow the common assumption that each reaction involves at most two reactants.
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the protocol is not unduly penalized from such bad execution intervals. To guide our search,
we look for inspiration from another domain of decentralized computation that faced a similar
challenge: distributed network algorithms.

While it is straightforward to measure the runtime of (idealized) synchronous distributed
protocols, early on, researchers identified the need to define runtime measures also for
(adversarially scheduled) asynchronous distributed protocols [6, 16]. The adversarial runtime
measures that were formulated in this regard share the following two principles: (P1) partition
the execution into rounds, so that in each round, the protocol has an opportunity to make
progress; and (P2) calibrate the runtime charged to the individual rounds so that if the
adversarial scheduler opts to generate the execution according to the idealized benchmark,
then the adversarial runtime measure coincides with the idealized one.

Specifically, in the context of asynchronous message passing protocols, Awerbuch [6]
translates principle (P1) to the requirement that no message is delayed for more than a
single round, whereas in the context of the distributed daemon, Dolev et al. [16] translate
this principle to the requirement that each node is activated at least once in every round.
For principle (P2), both [6] and [16] take the “idealized benchmark” to be a synchronous
execution in which every round costs one time unit.

When it comes to formulating an adversarial runtime measure for CRN protocols, prin-
ciple (P2) is rather straightforward: we should make sure that on stochastically generated
executions (playing the “idealized benchmark” role), the adversarial runtime measure agrees
(in expectation) with that of the corresponding continuous time Markov process. Interpreting
principle (P1), however, seems more difficult as it is not clear how to partition the execution
into rounds so that in each round, the protocol “has an opportunity to make progress”.

The first step towards resolving this difficulty is to introduce an alternative notion of
fairness, referred to hereafter as weak fairness: An execution is weakly fair if a continuously
applicable reaction (i.e., one for which the needed reactants are available) is not starved;
such a reaction is either eventually scheduled or the system reaches a configuration where the
reaction is inapplicable. Using a graph theoretic characterization, we show that any CRN
protocol whose correctness is guaranteed on weakly fair executions is correct also on strongly
fair executions (see Cor. 3), thus justifying the weak vs. strong terminology choice. It turns
out that for predicate decidability, strong fairness is actually not strictly stronger: protocols
operating under the weak fairness assumption can decide all (and only) semilinear predicates
(see Thm. 8).

It remains to come up with a scheme that partitions an execution of CRN protocols into
rounds in which the weakly fair adversarial scheduler can steer the execution in a nefarious
direction, but also the protocol has an opportunity to make progress. A naive attempt
at ensuring progress would be to end the current round once every applicable reaction is
either scheduled or becomes inapplicable; the resulting partition is too coarse though since
in general, a CRN does not have to “wait” for all its applicable reactions in order to make
progress. Another naive attempt is to end the current round once any reaction is scheduled;
this yields a partition which is too fine, allowing the scheduler to charge the protocol’s
run-time for (arbitrarily many) “progress-less rounds”.

So, which reaction is necessary for the CRN protocol to make progress? We do not have
a good answer for this question, but we know who does. . .

Runtime and Skipping Policies. Our adversarial runtime measure is formulated so that it
is the protocol designer who decides which reaction is necessary for the CRN protocol to
make progress. This is done by means of a runtime policy ϱ, used solely for the runtime
analysis, that maps each configuration c to a target reaction ϱ(c). (Our actual definition of
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3:4 On the Runtime of CRNs Beyond Idealized Conditions

runtime policies is more general, mapping each configuration to a set of target reactions; see
Sec. 4.) Symmetrically to the protocol designer’s runtime policy, we also introduce a skipping
policy σ, chosen by the adversarial scheduler, that maps each step t ≥ 0 to a step σ(t) ≥ t.

These two policies partition a given execution η into successive rounds based on the
following inductive scheme: Round 0 starts at step t(0) = 0. Assuming that round i ≥ 0
starts at step t(i), the prefix of round i is determined by the adversarial skipping policy σ so
that it lasts until step σ(t(i)); let ei denote the configuration in step σ(t(i)), referred to as
the round’s effective configuration. Following that, the suffix of round i is determined by
the protocol designer’s runtime policy ϱ so that it lasts until the earliest step in which the
target reaction ϱ(ei) of the round’s effective configuration ei is either scheduled or becomes
inapplicable. That is, in each round, the adversarial scheduler determines (by means of the
skipping policy) the round’s effective configuration, striving to ensure that progress from this
configuration is slow, whereas the runtime policy determines when progress has been made
from the effective configuration. This scheme is well defined by the choice of weak fairness;
we emphasize that this would not be the case with strong fairness.

The partition of execution η into rounds allows us to ascribe a runtime to η by charging
each round with a temporal cost and then accumulating the temporal costs of all rounds
until η terminates.3 The temporal cost of round i is defined to be the expected (continuous)
time until the target reaction ϱ(ei) of its effective configuration ei is either scheduled or
becomes inapplicable in an imaginary execution that starts at ei and proceeds according
to the stochastic scheduler.4 In other words, the protocol’s runtime is not charged for the
prefix of round i that lasts until the (adversarially chosen) effective configuration is reached;
the temporal cost charged for the round’s suffix, emerging from the effective configuration, is
the expected time that this suffix would have lasted in a stochastically scheduled execution
(i.e., the idealized benchmark).

The asymptotic runtime of the CRN protocol is defined by minimizing over all runtime
policies ϱ and then maximizing over all weakly fair executions η and skipping policies σ.
Put differently, the protocol designer first commits to ϱ and only then, the (weakly fair)
adversarial scheduler determines η and σ.

Intuitively, the challenge in constructing a good runtime policy ϱ (the challenge one faces
when attempting to up-bound a protocol’s runtime) is composed of two, often competing,
objectives (see, e.g., Fig. 1): On the one hand, ϱ(c) should be selected so that every execution
η is guaranteed to gain “significant progress” by the time a round whose effective configuration
is c ends, thus minimizing the number of rounds until η terminates. On the other hand,
ϱ(c) should be selected so that the temporal cost of such a round is small, thus minimizing
the contribution of the individual rounds to η’s runtime. In the typical scenarios, a good
runtime policy ϱ results in partitioning η into nΘ(1) rounds, each contributing a temporal
cost between Θ(1/n) and Θ(n), where n is η’s initial molecular count.

To verify that our adversarial runtime measure is indeed compatible with the afore-
mentioned principle (P2), we show that if the (adversarial) scheduler opts to generate the
execution η stochastically, then our runtime measure coincides (in expectation) with that of
the corresponding continuous time Markov process (see Lem. 5). The adversarial scheduler
however can be more malicious than that: simple examples show that in general, the runtime
of a CRN protocol on adversarially scheduled executions may be significantly larger than on
stochastically scheduled executions (see Fig. 2 and 3).

3 The exact meaning of termination in this regard is made clear in Sec. 2.
4 Here, it is assumed that the stochastic scheduler operates with no rate coefficients and with a linear

volume (a.k.a. “parallel time”), see Sec. 2.
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While runtime analyses of CRNs in the presence of common defect modes can be insightful,
a strength of our adversarial model is that it is not tied to specific defects in actual CRNs
or their biomolecular implementations. In particular, if the adversarial runtime of a CRN
matches its stochastic runtime, then we would expect the CRN to perform according to
its stochastic runtime even in the presence of defect modes that we may not anticipate.
Moreover, in cases where stochastic runtime analysis is complex (involving reasoning about
many different executions of a protocol and their likelihoods), it may in fact be easier to
determine the adversarial runtime since it only requires stochastic analysis from rounds’
effective configurations. For similar reasons, notions of adversarial runtime have proven to be
valuable in design of algorithms in both centralized and decentralized domains more broadly,
even when they do not capture realistic physical scenarios. Finally, while the analysis task of
finding a good runtime policy for a given CRN may seem formidable at first, our experience
in analyzing the protocols in this paper is that such a runtime policy is quite easy to deduce,
mirroring intuition about the protocol’s strengths and weaknesses.

The Runtime of Predicate Decidability. After formulating the new adversarial runtime
measure, we turn our attention to CRN protocols whose goal is to decide whether the initial
configuration satisfies a given predicate, indicated by the presence of designated Boolean (“yes”
and “no”) voter species in the output configuration. As mentioned earlier, the predicates that
can be decided in that way are exactly the semilinear predicates, which raises the following
two questions: What is the optimal adversarial runtime of protocols that decide semilinear
predicates in general? Are there semilinear predicates that can be decided faster?

A notion that plays an important role in answering these questions is that of CRN
speed faults, introduced in the impressive work of Chen et al. [10]. This notion captures
a (reachable) configuration from which any path to an output configuration includes a
(bimolecular) reaction both of whose reactants appear in O(1) molecular counts. The
significance of speed faults stems from the fact that any execution that reaches such a “pitfall
configuration” requires Ω(n) time (in expectation) to terminate under the standard stochastic
model.5 The main result of [10] states that a predicate can be decided by a speed fault
free CRN protocol (operating under the strongly fair adversarial scheduler) if and only if it
belongs to the class of detection predicates (a subclass of semilinear predicates).

The runtime measure introduced in the current paper can be viewed as a quantitative
generalization of the fundamentally qualitative notion of speed faults (the quest for such a
generalization was, in fact, the main motivation for this work). As discussed in Sec. 4.1, in
our adversarial setting, a speed fault translates to an Ω(n) runtime lower bound, leading to
an Ω(n) runtime lower bound for the task of deciding any non-detection semilinear predicate.
On the positive side, we prove that this bound is tight: any semilinear predicate (in particular,
the non-detection ones) can be decided by a CRN protocol operating under the weakly fair
adversarial scheduler whose runtime is O(n) (see Thm. 8). For detection predicates, we
establish a better upper bound (which is also tight): any detection predicate can be decided
by a CRN protocol operating under the weakly fair adversarial scheduler whose runtime is
O(log n) (see Thm. 9). Refer to Table 1 for a summary of the adversarial runtime complexity
bounds established for predicate decidability tasks; for comparison, Table 2 presents a similar
summary of the known stochastic runtime complexity bounds.

5 The definition of runtime in [10] is based on a slightly different convention which results in scaling the
runtime expressions by a 1/n factor.
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3:6 On the Runtime of CRNs Beyond Idealized Conditions

Paper’s Outline. The rest of the paper is organized as follows. The CRN model used in this
paper is presented in Sec. 2. In Sec. 3, we link the correctness of a CRN protocol to certain
topological properties of its configuration digraph. Our new runtime notion for adversarially
scheduled executions is introduced in Sec. 4, where we also establish the soundness of this
notion and formalize its connection to speed faults. Sec. 5 presents our results for predicate
deciding CRNs. These are accompanied by a generic technique for amplifying the molecular
count of the voter species in the outcome, introduced in Sec. 6.

2 Chemical Reaction Networks

In this section, we present the chemical reaction network (CRN) computational model. For
the most part, we adhere to the conventions of the existing CRN literature (e.g., [14, 12, 9]),
but we occasionally deviate from them for the sake of simplifying the subsequent discussions.
(Refer to Fig. 1a–4a for illustrations of the notions presented in this section.)

A CRN is a protocol Π specified by the pair Π = (S,R), where S is a fixed set of species
and R ⊂ NS × NS is a fixed set of reactions.6 For a reaction α = (r,p) ∈ R, the vectors
r ∈ NS and p ∈ NS specify the stoichiometry of α’s reactants and products, respectively.7
Specifically, the entry r(A) (resp., p(A)) indexed by a species A ∈ S in the vector r (resp.,
p) encodes the number of molecules of A that are consumed (resp., produced) when α is
applied. Species A is a catalyst for the reaction α = (r,p) if r(A) = p(A) > 0.

We adhere to the convention (see, e.g., [11, 17, 15, 10]) that each reaction (r,p) ∈ R is
either unimolecular with ∥r∥ = 1 or bimolecular with ∥r∥ = 2. 8 Note that if all reactions
(r,p) ∈ R are bimolecular and density preserving, namely, ∥r∥ = ∥p∥, then the CRN model
is equivalent to the extensively studied population protocols model [2, 5, 22] assuming that
the population protocol agents have a constant state space.

For a vector (or multiset) r ∈ NS with 1 ≤ ∥r∥ ≤ 2, let R(r) = ({r} ×NS) ∩ R denote the
subset of reactions whose reactants correspond to r. In the current paper, it is required that
none of these reaction subsets is empty, i.e., |R(r)| ≥ 1 for every r ∈ NS with 1 ≤ ∥r∥ ≤ 2.
Some of the reactions in R may be void, namely, reactions (r,p) satisfying r = p; let
NV(R) = {(r,p) ∈ R | r ̸= p} denote the set of non-void reactions in R. To simplify the
exposition, we assume that if α = (r, r) ∈ R is a void reaction, then R(r) = {α}; this allows
us to describe protocol Π by listing only its non-void reactions. For the sake of simplicity, we
further assume that ∥r∥ ≤ ∥p∥ for all reactions (r,p) ∈ R.

Configurations. A configuration of a CRN Π = (S,R) is a vector c ∈ NS that encodes the
molecular count c(A) of species A in the solution for each A ∈ S.9 The molecular count
notation is extended to species (sub)sets Λ ⊆ S, denoting c(Λ) =

∑
A∈Λ c(A). We refer to

c(S) = ∥c∥ as the molecular count of the configuration c. Let c|Λ ∈ NΛ denote the restriction
of a configuration c ∈ NS to a species subset Λ ⊆ S.

A reaction α = (r,p) ∈ R is said to be applicable to a configuration c ∈ NS if r(A) ≤ c(A)
for every A ∈ S. Let app(c) ⊆ R denote the set of reactions which are applicable to c and
let app(c) = R − app(c), referring to the reactions in app(c) as being inapplicable to c. We

6 Throughout this paper, we denote N = {z ∈ Z | z ≥ 0}.
7 We stick to the convention of identifying vectors in NS with multisets over S expressed as a “molecule

summation”.
8 The notation ∥ · ∥ denotes the 1-norm ℓ1.
9 We consider the discrete version of the CRN model, where the configuration encodes integral molecular

counts, in contrast to the continuous model, where a configuration is given by real species densities.
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restrict our attention to configurations c with molecular count ∥c∥ ≥ 1, which ensures that
app(c) is never empty. For a reaction α ∈ app(c), let α(c) = c − r + p be the configuration
obtained by applying α to c.10

Given two configurations c, c′ ∈ NS , the binary relation c ⇀ c′ holds if there exists a
reaction α ∈ app(c) such that α(c) = c′. We denote the reflexive transitive closure of ⇀ by
∗
⇀ and say that c′ is reachable from c if c ∗

⇀ c′. Given a configuration set Z ⊆ NS , let

stab(Z) ≜
{

c ∈ Z | c ∗
⇀ c′ =⇒ c′ ∈ Z

}
and halt(Z) ≜

{
c ∈ Z | c ∗

⇀ c′ =⇒ c′ = c
}
,

observing that the latter set is a (not necessarily strict) subset of the former.
For the sake of simplicity, we restrict this paper’s focus to protocols that respect finite

density [17], namely, c ∗
⇀ c′ implies that ∥c′∥ ≤ O(∥c∥). We note that density preserving

CRNs inherently respect finite density, however we also allow for reactions that have more
products than reactants as long as the CRN protocol is designed so that the molecular count
cannot increase arbitrarily. This means, in particular, that although the configuration space
NS is inherently infinite, the set {c′ ∈ NS | c ∗

⇀ c′} is finite (and bounded as a function of
∥c∥) for any configuration c ∈ NS .

Executions. An execution η of the CRN Π is an infinite sequence η = ⟨ct, αt⟩t≥0 of
⟨configuration, reaction⟩ pairs such that αt ∈ app(ct) and ct+1 = αt(ct) for every t ≥ 0. It is
convenient to think of η as progressing in discrete steps so that configuration ct and reaction
αt are associated with step t ≥ 0. We refer to c0 as the initial configuration of η and, unless
stated otherwise, denote the molecular count of c0 by n = ∥c0∥. Given a configuration set
Z ⊆ NS , we say that η stabilizes (resp., halts) into Z if there exists a step t ≥ 0 such that
ct ∈ stab(Z) (resp., ct ∈ halt(Z)) and refer to the earliest such step t as the execution’s
stabilization step (resp., halting step) with respect to Z.

In this paper, we consider an adversarial scheduler that knows the CRN protocol Π and
the initial configuration c0 and determines the execution η = ⟨ct, αt⟩t≥0 in an arbitrary
(malicious) way. The execution η is nonetheless subject to the following fairness condition:
for every t ≥ 0 and for every α ∈ app(ct), there exists t′ ≥ t such that either (I) αt′ = α;
or (II) α /∈ app(ct′). In other words, the scheduler is not allowed to (indefinitely) “starve”
a continuously applicable reaction. We emphasize that the mere condition that a reaction
α ∈ R is applicable infinitely often does not imply that α is scheduled infinitely often.

Note that the fairness condition adopted in the current paper differs from the one used in
the existing CRN literature [2, 4, 11, 9]. The latter, referred to hereafter as strong fairness,
requires that if a configuration c appears infinitely often in the execution η and a configuration
c′ is reachable from c, then c′ also appears infinitely often in η. Strictly speaking, a strongly
fair execution η is not necessarily fair according to the current paper’s notion of fairness (in
particular, η may starve void reactions). However, as we show in Sec. 3, protocol correctness
under the current paper’s notion of fairness implies protocol correctness under strong fairness
(see Cor. 3), where the exact meaning of correctness is defined soon. Consequently, we refer
hereafter to the notion of fairness adopted in the current paper as weak fairness.

Interface and Correctness. The CRN notions introduced so far are independent of any
particular computational task. To correlate between a CRN protocol Π = (S,R) and concrete
computational tasks, we associate Π with a (task specific) interface I = (U , µ, C) whose

10 Unless stated otherwise, all vector arithmetic is done component-wise.
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3:8 On the Runtime of CRNs Beyond Idealized Conditions

semantics is as follows: U is a fixed set of interface values that typically encode the input
and/or output associated with the species; µ : S → U is an interface mapping that maps
each species A ∈ S to an interface value µ(A) ∈ U ; and C ⊆ NU ×NU is a correctness relation
that determines the correctness of an execution as explained soon.11

Hereafter, we refer to the vectors in NU as interface vectors. The interface of a configuration
c ∈ NS in terms of the input/output that c encodes is captured by the interface vector

µ(c) ≜ ⟨c ({A ∈ S | µ(A) = u})⟩u∈U .

The abstract interface I = (U , µ, C) allows us to define what it means for a protocol to be
correct. To this end, for each configuration c ∈ NS , let ZI(c) = {c′ ∈ NS | (µ(c), µ(c′)) ∈ C}
be the set of configurations which are mapped by µ to interface vectors that satisfy the
correctness relation with µ(c). A configuration c0 ∈ NS is a valid initial configuration with
respect to I if ZI(c0) ̸= ∅; an execution is valid (with respect to I) if it emerges from a
valid initial configuration. A valid execution η is said to be stably correct (resp., haltingly
correct) if η stabilizes (resp., halts) into ZI(c0). The protocol Π is said to be stably correct
(resp., haltingly correct) if every weakly fair valid execution is guaranteed to be stably (resp.,
haltingly) correct.12

The Stochastic Scheduler. While the current paper focuses on the (weakly fair) adversarial
scheduler, another type of scheduler that receives a lot of attention in the literature is the
stochastic scheduler. Here, we present the stochastic scheduler so that it can serve as a
“benchmark” for the runtime definition introduced in Sec. 4. To this end, we define the
propensity of a reaction α = (r,p) ∈ R in a configuration c ∈ NS , denoted by πc(α), as

πc(α) =


c(A) · 1

|R(r)| , r = A
1
φ ·

(c(A)
2

)
· 1

|R(r)| , r = 2A
1
φ · c(A) · c(B) · 1

|R(r)| , r = A+B,A ̸= B

,

where φ > 0 is a (global) volume parameter.13 Notice that reaction α is applicable to c if
and only if πc(α) > 0. The propensity notation is extended to reaction (sub)sets Q ⊆ R by
defining πc(Q) =

∑
α∈Q πc(α). Recalling that R(r) ̸= ∅ for each r ∈ NS with 1 ≤ ∥r∥ ≤ 2,

we observe that

πc ≜ πc(R) = ∥c∥ + 1
φ ·

(∥c∥
2

)
.

The stochastic scheduler determines the execution η = ⟨ct, αt⟩t≥0 by scheduling a reaction
α ∈ app(ct) in step t, setting αt = α, with probability proportional to α’s propensity πct(α)
in ct. The assumption that the CRN protocol respects finite density implies that η is (weakly
and strongly) fair with probability 1. We define the time span of step t ≥ 0 to be 1

/
πct ,

11 The abstract interface formulation generalizes various families of computational tasks addressed in
the CRN literature, including predicate decision [8, 10, 9] (see also Sec. 5) and function computation
[11, 18, 9], as well as the vote amplification task discussed in Sec. 6, without committing to the specifics of
one particular family. For example, for the CRDs presented in Sec. 5, we define U = (Σ∪{⊥})×{0, 1, ⊥}.
The interface mapping µ then maps each species A ∈ S to the interface value µ(A) = (x, y) ∈ U defined
so that (I) x = A if A ∈ Σ; and x = ⊥ otherwise; and (II) y = v if A ∈ Υv; and y = ⊥ otherwise.

12 Both notions of correctness have been studied in the CRN literature, see, e.g., [9].
13 In the standard stochastic model [20], the propensity expression is multiplied by a reaction specific rate

coefficient. In the current paper, that merely uses the stochastic scheduler as a benchmark, we make
the simplifying assumption that all rate coefficients are set to 1 (c.f. [11, 10]).
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i.e., the normalizing factor of the reaction selection probability.14 Given a step t∗ ≥ 0, the
stochastic runtime of the execution prefix η∗ = ⟨ct, αt⟩0≤t<t∗ is defined to be the accumulated
time span

∑t∗−1
t=0 1

/
πct .

We adopt the convention that the volume is proportional to the initial molecular count
n = ∥c0∥ [17]. The assumption that the CRN protocol respects finite density ensures that
φ = Θ(∥ct∥) for every t ≥ 0 which means that the volume is sufficiently large to contain all
molecules throughout the (stochastic) execution η. This also means that the time span of
each step t ≥ 0 is

1/πct = φ

φ·∥ct∥+(∥ct∥
2 ) = Θ(1/∥ct∥) = Θ(1/n) , (1)

hence the stochastic runtime of an execution prefix that lasts for t∗ steps is Θ(t∗/n).

3 Correctness Characterization via the Configuration Digraph

It is often convenient to look at CRN protocols through the lens of the following abstract
directed graph (a.k.a. digraph): The configuration digraph of a protocol Π = (S,R) is a
digraph, denoted by DΠ, whose edges are labeled by reactions in R. The nodes of DΠ are
identified with the configurations in NS ; the edge set of DΠ includes an α-labeled edge from
c to α(c) for each configuration c ∈ NS and reaction α ∈ app(c) (thus the outdegree of
c in DΠ is | app(c)|). Observe that the self-loops of DΠ are exactly the edges labeled by
(applicable) void reactions. Moreover, a configuration c′ is reachable, in the graph theoretic
sense, from a configuration c if and only if c ∗

⇀ c′. For a configuration c ∈ NS , let DΠ
c be

the digraph induced by DΠ on the set of configurations reachable from c and observe that
DΠ

c is finite as Π respects finite density. (Refer to Fig. 1b–4b for illustrations of the notions
presented in this section.)

The (strongly connected) components of the configuration digraph DΠ are the equivalence
classes of the “reachable from each other” relation over the configurations in NS . We say
that a reaction α ∈ R escapes from a component S of DΠ if every configuration in S admits
an outgoing α-labeled edge to a configuration not in S; i.e., α ∈ app(c) and α(c) /∈ S for
every c ∈ S (see, e.g., Fig. 1b). The notion of escaping reactions allows us to express the
stable/halting correctness of CRNs in terms of their configuration digraphs.

▶ Lemma 1. A CRN protocol Π = (S,R) is stably (resp., haltingly) correct with respect to
an interface I = (U , µ, C) under a weakly fair scheduler if and only if for every valid initial
configuration c0 ∈ NS , every component S of DΠ

c0 satisfies (at least) one of the following
two conditions: (1) S admits some (at least one) escaping reaction; or (2) S ⊆ stab(ZI(c0))
(resp., S ⊆ halt(ZI(c0))), where ZI(c0) = {c ∈ NS | (µ(c0), µ(c)) ∈ C}.

To complement Lem. 1, we also express the stable/halting correctness of CRNs in terms
of their configuration digraphs under a strongly fair scheduler.

▶ Lemma 2. A CRN protocol Π = (S,R) is stably (resp., haltingly) correct with respect to
an interface I = (U , µ, C) under a strongly fair scheduler if and only if for every valid initial
configuration c0 ∈ NS , every component S of DΠ

c0 satisfies (at least) one of the following two
conditions: (1) S admits some (at least one) edge outgoing to another component; or (2)
S ⊆ stab(ZI(c0)) (resp., S ⊆ halt(ZI(c0))), where ZI(c0) = {c ∈ NS | (µ(c0), µ(c)) ∈ C}.

14 The time span definition is consistent with the expected time until a reaction occurs under the continuous
time Markov process formulation of the standard stochastic model [20] with no rate coefficients.
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Combining Lem. 1 and 2, we obtain the following corollary.

▶ Corollary 3. If a CRN protocol Π = (S,R) is stably (resp., haltingly) correct with respect
to an interface I under a weakly fair scheduler, then Π is also stably (resp., haltingly) correct
with respect to I under a strongly fair scheduler.

4 The Runtime of Adversarially Scheduled Executions

So far, the literature on CRN protocols operating under an adversarial scheduler focused
mainly on computability, leaving aside, for the most part, complexity considerations. 15 This
is arguably unavoidable when working with the strong fairness condition which is inherently
oblivious to the chain of reactions that realizes the reachability of one configuration from
another. In the current paper, however, we adopt the weak fairness condition which facilitates
the definition of a quantitative measure for the runtime of adversarially scheduled executions,
to which this section is dedicated. (Refer to Fig. 1c–4c for illustrations of the notions
presented in this section.)

Consider a stably (resp., haltingly) correct CRN protocol Π = (S,R). We make extensive
use of the following operator: Given a weakly fair execution η = ⟨ct, αt⟩t≥0, a step t ≥ 0,
and a reaction (sub)set Q ⊆ R, let τ(η, t,Q) be the earliest step s > t such that at least one
of the following two conditions is satisfied:
(I) αs−1 ∈ Q; or
(II) Q ⊆

⋃
t≤t′≤s app(ct′).

(This operator is well defined by the weak fairness of η.)
Intuitively, we think of the operator τ(η, t,Q) as a process that tracks η from step t

onward and stops once any Q reaction is scheduled (condition (I)). This by itself is not well
defined as the scheduler may avoid scheduling the Q reactions from step t onward. However,
the scheduler must prevent the starvation of any continuously applicable reaction in Q, so
we also stop the τ -process once the adversary “fulfills this commitment” (condition (II)).

The Policies. Our runtime measure is based on partitioning a given weakly fair execution
η = ⟨ct, αt⟩t≥0 into rounds. This is done by means of two policies: a runtime policy ϱ,
determined by the protocol designer, that maps each configuration c ∈ NS to a non-void
reaction (sub)set ϱ(c) ⊆ NV(R), referred to as the target reaction set of c under ϱ; and a
skipping policy σ, determined by the adversarial scheduler (in conjunction with the execution
η), that maps each step t ≥ 0 to a step σ(t) ≥ t.

Round i = 0, 1, . . . spans the step interval [t(i), t(i+1)) and includes a designated effective
step t(i) ≤ te(i) < t(i+ 1). The partition of execution η into rounds is defined inductively by
setting

t(i) =
{

0 , i = 0
τ

(
η, te(i− 1), ϱ

(
cte(i−1)))

, i > 0
and te(i) = σ(t(i)) .

Put differently, for every round i ≥ 0 with initial step t(i), the adversarial scheduler first
determines the round’s effective step te(i) = σ(t(i)) ≥ t(i) by means of the skipping policy
σ. Following that, we apply the runtime policy ϱ (chosen by the protocol designer) to the
configuration ei = cte(i), referred to as the round’s effective configuration, and obtain the

15 The one exception in this regard is the work of Chen et al. [10] on speed faults – see Sec. 4.1 and 5.
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target reaction set Q = ϱ(ei). The latter is then plugged into the operator τ to determine
t(i+ 1) = τ(η, te(i), Q). Round i is said to be target-accomplished if αt(i+1)−1 ∈ Q; otherwise,
it is said to be target-deprived.
▶ Remark. Our definition of the runtime policy ϱ does not require that the reactions included
in the target reaction set ϱ(c) are applicable to the configuration c ∈ NS . Notice though
that if all target reactions are inapplicable to c (which is bound to be the case if c is halting),
then a round whose effective configuration is c is destined to be target deprived and end
immediately after the effective step, regardless of the reaction scheduled in that step. In
the full version [13], we investigate several other “natural restrictions” of the runtime policy
definition, including fixed policies and singleton target reaction sets, showing that they all
lead to significant efficiency loss.

Temporal Cost. We define the temporal cost of a configuration c ∈ NS under a runtime
policy ϱ, denoted by TCϱ(c), as follows: Let ηr = ⟨ctr, αtr⟩t≥0 be a stochastic execution
emerging from the initial configuration c0

r = c and define

TCϱ(c) ≜ E
(∑τ(ηr,0,ϱ(c))−1

t=0 1/πct
r

)
= Θ(1/∥c∥) · E (τ(ηr, 0, ϱ(c))) ,

where the expectation is over the random choice of ηr and the second transition is due to
(1). That is, the temporal cost of c under ϱ is defined to be the expected stochastic runtime
of round 0 of ηr with respect to the runtime policy ϱ and the identity skipping policy σid
that maps each step t ≥ 0 to σid(t) = t (which means that the effective step of each round is
its initial step).

Execution Runtime. Consider a runtime policy ϱ and a skipping policy σ. Let η = ⟨ct, αt⟩t≥0
be a weakly fair valid execution and let t(i), te(i), and ei = cte(i) be the initial step, effective
step, and effective configuration, respectively, of round i ≥ 0 under ϱ and σ. Fix some step
t∗ ≥ 0 and consider the execution prefix η∗ = ⟨ct, αt⟩0≤t<t∗ . We define the (adversarial)
runtime of η∗ under ϱ and σ, denoted by RTϱ,σ(η∗), by taking i∗ = min{i ≥ 0 | t(i) ≥ t∗}
and setting

RTϱ,σ(η∗) ≜
∑i∗−1
i=0 TCϱ

(
ei

)
.

The stabilization runtime (resp., halting runtime) of the (entire) execution η under ϱ and σ,
denoted by RTϱ,σstab(η) (resp., RTϱ,σhalt(η)), is defined to be RTϱ,σ (⟨ct, αt⟩0≤t<t∗), where t∗ ≥ 0
is the stabilization (resp., halting) step of η. In other words, we use ϱ and σ to partition η

into rounds and mark the effective steps. Following that, we charge each round i that starts
before step t∗ according to the temporal cost (under ϱ) of its effective configuration ei.

Looking at it from another angle, using the skipping policy σ, the adversarial scheduler
determines the sequence e0, e1, . . . of effective configurations according to which the temporal
cost TCϱ(ei) of each round i ≥ 0 is calculated. By choosing an appropriate runtime policy ϱ,
the protocol designer may (1) ensure that progress is made from one effective configuration
to the next, thus advancing η towards round i∗ = min{i ≥ 0 | t(i) ≥ t∗}; and (2) bound the
contribution TCϱ(ei) of each round 0 ≤ i < i∗ to the stabilization runtime RTϱ,σstab(η) (resp.,
halting runtime RTϱ,σhalt(η)). The crux of our runtime definition is that this contribution
depends only on the effective configuration ei, irrespectively of how round i actually develops
(see, e.g., Fig. 1c).
▶ Remark. Using this viewpoint, it is interesting to revisit the definitions of [6] and [16] for
the runtime of an asynchronous distributed protocol P. Following the discussion in Sec. 1,
this runtime is defined as the length of the longest sequence e0, e1, . . . , ei∗−1 of “non-terminal”
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configurations (of P) such that ei is reachable from ei−1 by an execution interval that lasts
for at least one round (according to the respective definitions of [6] and [16]). Our adversarial
runtime is defined in the same manner, taking e0, e1, . . . , ei∗−1 to be the first i∗ effective
(CRN) configurations, only that we charge each configuration ei according to its temporal
cost (rather than one “runtime unit” as in [6] and [16]). This difference is consistent with
the different “idealized benchmarks”: a synchronous schedule in [6] and [16] vs. a stochastic
execution in the current paper. The skipping policy σ plays a key role in adversarially
generating the sequence e0, e1, . . . , ei∗−1 as it “decouples” between the last step of round i,
determined by the runtime policy ϱ, and the effective configuration ei+1 of round i+ 1 (see,
e.g., Fig. 4c).

The Runtime Function. For n ≥ 1, let F(n) denote the set of weakly fair valid executions
η = ⟨ct, αt⟩t≥0 of initial molecular count ∥c0∥ = n. The stabilization runtime (resp., halting
runtime) of the CRN protocol Π for executions in F(n), denoted by RTΠ

stab(n) (resp.,
RTΠ

halt(n)), is defined to be

RTΠ
x (n) ≜ minϱ maxη∈F(n), σ RTϱ,σx (η) ,

where x serves as a placeholder for stab (resp., halt). This formalizes the responsibility of
the protocol designer to specify a runtime policy ϱ, in conjunction with the protocol Π, used
for up-bounding Π’s stabilization (resp., halting) runtime (see, e.g., Fig. 1c).

The following two lemmas establish the soundness of our adversarial runtime definition:
Lem. 4 ensures that the stabilization (resp., halting) runtime function is well defined.16

In Lem. 5, we show that if the scheduler generates the execution stochastically, then our
(adversarial) runtime measure agrees in expectation with the stochastic runtime measure.

▶ Lemma 4. Consider a stably (resp., haltingly) correct protocol Π = (S,R). There exists a
runtime policy ϱ such that for every integer n ≥ 1, execution η ∈ F(n), and skipping policy
σ, the stabilization runtime RTϱ,σstab(η) (resp., halting runtime RTϱ,σhalt(η)) is up-bounded as a
function of n.

▶ Lemma 5. Consider a stably (resp., haltingly) correct protocol Π = (S,R). Let ηr =
⟨ctr, αtr⟩t≥0 be a stochastic execution emerging from a valid initial configuration c0

r and let
t∗ ≥ 0 be the stabilization (resp., halting) step of ηr. Then,

minϱ Eηr (maxσ RTϱ,σx (ηr)) = Eηr

(∑t∗−1
t=0 1

/
πct

r

)
,

where x serves as a placeholder for stab (resp., halt).

4.1 Speed Faults
Consider a CRN protocol Π = (S,R) which is stably (resp., haltingly) correct with respect
to an interface I = (U , µ, C). For a valid initial configuration c0 ∈ NS , let ZI(c0) = {c ∈
NS | (µ(c0), µ(c)) ∈ C} and recall that if a weakly fair execution η of Π emerges from c0,
then η is guaranteed to reach stab(ZI(c0)) (resp., halt(ZI(c0))).

Given a parameter s > 0, a configuration c ∈ NS is said to be a stabilization s-pitfall
(resp., a halting s-pitfall) of the valid initial configuration c0 if c0 ∗

⇀ c and every path from
c to stab(ZI(c0)) (resp., halt(ZI(c0))) in the digraph DΠ includes (an edge labeled by) a

16 Note that in Lem. 4 we use a universal runtime policy that applies to all choices of the initial molecular
count n. This is stronger in principle than what the runtime definition actually requires.
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reaction whose propensity is at most s/φ (see, e.g., Fig. 2c and 4c). When s = O(1), we
often omit the parameter and refer to c simply as a stabilization pitfall (resp., halting pitfall).
Following the definition of Chen et al. [10], we say that an infinite family C0 of valid initial
configurations has a stabilization speed fault (resp., halting speed fault) if for every integer
n0 > 0, there exists a configuration c0 ∈ C0 of molecular count ∥c0∥ = n ≥ n0 that admits a
stabilization (resp., halting) pitfall.

▶ Lemma 6. If an infinite family C0 of valid initial configurations has a stabilization (resp.,
halting) speed fault, then for every integer n0 > 0, there exist a configuration c0 ∈ C0

of molecular count ∥c0∥ = n ≥ n0, a weakly fair execution η emerging from c0, and a
skipping policy σ, such that RTϱ,σx (η) ≥ Ω(n) for every runtime policy ϱ, where x serves as a
placeholder for stab (resp., halt).17

5 Predicate Decidability

An important class of CRN protocols is that of chemical reaction deciders (CRDs) whose goal
is to determine whether the initial molecular counts of certain species satisfy a given predicate.
In its most general form (see [10, 9]), a CRD is a CRN protocol Π = (S,R) augmented
with (1) a set Σ ⊂ S of input species; (2) two disjoint sets Υ0,Υ1 ⊂ S of voter species; (3) a
designated fuel species F ∈ S − Σ; and (4) a fixed initial context k ∈ NS−(Σ∪{F}). The CRD
is said to be leaderless if its initial context is the zero vector, i.e., k = 0.

A configuration c0 ∈ NS is valid as an initial configuration of the CRD Π if c0|S−(Σ∪{F}) =
k; to ensure that the initial molecular count ∥c0∥ is always at least 1 (especially when the CRD
is leaderless), we also require that c0(F ) ≥ 1. In other words, a valid initial configuration c0

can be decomposed into an input vector c0|Σ = x ∈ NΣ, the initial context c0|S−(Σ∪{F}) = k,
and any number c0(F ) ≥ 1 of fuel molecules. We emphasize that in contrast to the initial
context, the protocol designer has no control over the exact molecular count of the fuel
species in the initial configuration.

For v ∈ {0, 1}, let Dv =
{

c ∈ NS | c(Υv) > 0 ∧ c(Υ1−v) = 0
}

be the set of configurations
that include v-voters and no (1 − v)-voters. An input vector x ∈ NΣ is said to be stably
accepted (resp., haltingly accepted) by Π if for every valid initial configuration c0 ∈ NS with
c0|Σ = x, every weakly fair execution η = ⟨ct, αt⟩t≥0 stabilizes (resp., halts) into D1; the
input vector x ∈ NΣ is said to be stably rejected (resp., haltingly rejected) by Π if the same
holds with D0. The CRD Π is stably (resp., haltingly) correct if every input vector x ∈ NΣ

is either stably (resp., haltingly) accepted or stably (resp., haltingly) rejected by Π. In this
case, we say that Π stably decides (resp., haltingly decides) the predicate ψ : NΣ → {0, 1}
defined so that ψ(x) = 1 if and only if x is stably (resp., haltingly) accepted by Π.

By definition, the molecular count of the fuel species F in the initial configuration c0

does not affect the computation’s outcome in terms of whether the execution stabilizes (resp.,
halts) with 0- or 1-voters. Consequently, one can increase the molecular count c0(F ) of
the fuel species in the initial configuration c0, thus increasing the initial (total) molecular
count n = ∥c0∥ for any given input vector x ∈ NΣ. Since the runtime of a CRN is expressed
in terms of the initial molecular count n, decoupling x from n allows us to measure the
asymptotic runtime of the protocol while keeping x fixed. In this regard, the CRD Π is said
to be stabilization speed fault free (resp., halting speed fault free) [10] if for every input vector
x ∈ NΣ, the family of valid initial configurations c0 ∈ NS with c0|Σ = x does not admit a
stabilization (resp., halting) speed fault (as defined in Sec. 4.1).

17 As discussed in [10], a speed fault does not imply an Ω(n) lower bound on the (stochastic) runtime of
stochastically scheduled executions since the probability of reaching a pitfall configuration may be small.
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5.1 Semilinear Predicates
A predicate ψ : NΣ → {0, 1} is linear if there exist a finite set A = A(ψ) ⊂ NΣ and a vector
b = b(ψ) ∈ NΣ such that ψ(x) = 1 if and only if x = b +

∑
a∈A kaa for some coefficients

ka = ka(x) ∈ N, a ∈ A. A predicate ψ : NΣ → {0, 1} is semilinear if it is the disjunction of
finitely many linear predicates. The following theorem is established in the seminal work of
Angluin et al. [2, 4].

▶ Theorem 7 ([2, 4]). Fix a predicate ψ : NΣ → {0, 1}. If ψ is semilinear, then ψ can be
haltingly decided under a strongly fair scheduler by a leaderless CRD. If ψ can be stably
decided by a CRD under a strongly fair scheduler, then ψ is semilinear.

In the full version [13], we extend Thm. 7 to weak fairness which allows us to bound the
adversarial runtime of the corresponding CRDs and establish the following theorem; notice
that the O(n) runtime bound is asymptotically tight – see the speed fault freeness discussion
in Sec. 5.2.

▶ Theorem 8. Fix a predicate ψ : NΣ → {0, 1}. If ψ is semilinear, then ψ can be haltingly
decided under a weakly fair scheduler by a leaderless CRD whose halting runtime is O(n). If
ψ can be stably decided by a CRD under a weakly fair scheduler, then ψ is semilinear.

5.2 Detection Predicates
For a vector x ∈ NΣ, let x↓ ∈ {0, 1}Σ ⊂ NΣ be the vector defined so that x↓(A) = 1 ⇐⇒
x(A) > 0. A predicate ψ : NΣ → {0, 1} is a detection predicate if ψ(x) = ψ(x↓) for all
x ∈ NΣ (cf. [1, 10, 19]). Chen et al. [10] prove that a predicate ψ : NΣ → {0, 1} can be
stably decided under the strongly fair adversarial scheduler by a stabilization speed fault
free CRD if and only if it is a detection predicate. Cor. 3 ensures that the only if direction
translates to our weakly fair adversarial scheduler; employing Lem. 6, we conclude that a
non-detection predicate cannot be decided by a CRD whose stabilization runtime is better
than Ω(n). For the if direction, the construction in [10] yields leaderless CRDs that haltingly
decide ψ whose expected halting runtime under the stochastic scheduler is O(log n). The
following theorem states that the same (asymptotic) runtime upper bound can be obtained
under the weakly fair adversarial scheduler; the theorem is proved in the full version [13],
where we also explain why the promised upper bound is asymptotically tight.

▶ Theorem 9. For every detection predicate ψ : NΣ → {0, 1}, there exists a leaderless CRD
that haltingly decides ψ whose halting runtime is O(log n). Moreover, the CRD is designed
so that all molecules in the halting configuration are voters.

6 Vote Amplification

Recall that CRDs are required to stabilize/halt into configurations c that include a positive
number of v-voter molecules and zero (1 − v)-voter molecules, where v ∈ {0, 1} is determined
by the decided predicate according to the input vector. This requirement alone does not
rule out the possibility of having a small (yet positive) voter molecular count in c. Indeed,
the semilinear predicate CRDs promised in Thm. 8 are designed so that the configuration c
includes a single voter molecule (this is in contrast to the detection predicate CRDs promised
in Thm. 9, where all molecules in c are voters).

In practice though, it may be difficult to obtain a meaningful signal from small molecular
counts. Consequently, we aim for vote amplified CRDs, namely, CRDs that guarantee to
stabilize/halt into configurations in which the voter molecules take all but an ϵ-fraction of
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the total molecular count for an arbitrarily small constant ϵ > 0. These are obtained by
means of a “generic compiler” that can be applied, in a black-box manner, to any existing
CRD, turning it into a vote amplified CRD while preserving the original stabilization/halting
correctness. At the heart of this compiler lies a CRN protocol for a standalone computational
task, referred to as vote amplification (VA), whose runtime dominates the runtime overhead
of the compiler, as stated in the following theorem (proved in the full version [13]).

▶ Theorem 10. Consider a predicate ψ : NΣ → {0, 1} that can be haltingly decided by a
(leaderless) CRD in Tψ(n) time. The existence of a VA protocol that stabilizes (resp., halts)
in Tamp(n) time implies the existence of a (leaderless) vote amplified CRD that stably (resp.,
haltingly) decides ψ in Tψ(O(n)) + Tamp(O(n)) +O(log n) time.

Assuming a stochastic scheduler, Angluin et al. [3] develop a VA protocol that halts
in O(n) time. Unfortunately, the protocol of [3] does not meet the topological conditions
of Lem. 1, hence the (weakly fair) adversarial scheduler can prevent this protocol from
stabilizing (see the full version [13] for more details). Using a completely different technique,
we develop a VA protocol whose guarantees are cast in the following theorem.

▶ Theorem 11. There exists a VA protocol (operating under the weakly fair scheduler) that
stabilizes in O(n) time and halts in O(n log n) time.

Combined with Thm. 10, we obtain a compiler whose stabilization and halting runtime
overheads are O(n) and O(n log n), respectively. Applying this compiler to the CRDs
promised in Thm. 8 results in vote amplified CRDs whose stabilization runtime remains O(n),
however their halting runtime increases to O(n log n). The excessive log n factor would be
shaved by a VA protocol that halts in O(n) time whose existence remains an open question.

Task Formalization. A VA protocol is a CRN protocol Π = (S,R) whose species set S is
partitioned into the pairwise disjoint sets P0 ∪ P1 ∪ F0 ∪ F1 = S, where for v ∈ {0, 1}, the
species in Pv are referred to as permanent v-voters and the species in Fv are referred to as
fluid v-voters. The permanent voters are regarded as part of the task specification and can
participate in the reactions of Π only as catalysts (which means that the molecular count of
each permanent voter remains invariant throughout the execution).

A configuration c0 ∈ NS is a valid initial configuration for the VA task if there exists a
vote v ∈ {0, 1} such that c0(Pv) > 0 and c0(P1−v) = 0, in which case we refer to c0 as a
v-voting initial configuration. A configuration c ∈ NS is an amplification of a v-voting initial
configuration c0 if (1) c(A) = c0(A) for every A ∈ P0 ∪ P1; (2) c(Fv) = c0({F0 ∪ F1}); and
(3) c(F1−v) = 0. In other words, an amplification of a v-voting initial configuration keeps the
original permanent voter molecules and shifts all fluid voter molecules to the v-voting side.

The VA protocol Π is stably (resp., haltingly) correct if every weakly fair valid execution
η = ⟨ct, αt⟩t≥0 stabilizes (resp., halts) into the (set of) amplifications of c0. The typical
scenario involves a small number of permanent v-voter molecules and the challenge is to
ensure that all fluid voter molecules “end up” in Fv. We emphasize that for Π to be correct,
the protocol should handle any initial configuration c0|F0∪F1 of the fluid voters.

The VA Protocol. We now turn to develop the VA protocol Π = (S,R) promised in
Thm. 11. For simplicity, assume in this extended abstract that P0 and P1 are singleton sets
with P0 = {P0} and P1 = {P1}; the general case is handled in the full version [13]. Protocol
Π is defined over the fluid voter sets F0 = {H0, L0} and F1 = {H1, L1}. Semantically, we
think of the H (resp., L) fluid voters as having a high (resp., low) confidence level in their
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vote. The reaction set R of Π includes the following non-void reactions:
βAv : Pv +A → Pv +Hv for every v ∈ {0, 1} and A ∈ {H1−v, L0, L1};
γ: H0 +H1 → L0 + L1; and
δv: Hv + L1−v → 2Lv for every v ∈ {0, 1}.
Informally, these reactions guarantee that the adversary has little leverage because, as we
show soon, all of the non-void reactions make nontrivial progress in their own different ways.

For the runtime analysis of protocol Π, consider a weakly fair valid execution η = ⟨ct, ζt⟩t≥0
of initial molecular count ∥c0∥ = n. Assume for simplicity that the initial configuration c0

is 1-voting which means that ct(P1) > 0 and ct(P0) = 0 for all t ≥ 0; the case where c0 is
0-voting is analyzed symmetrically. Let m = c0({H0, L0, L1, H1}) be the initial molecular
count of the fluid voters and observe that ct({H0, L0, L1, H1}) = m for every t ≥ 0.

To capture progress , we assign an integral score s(·) to each fluid voter by setting
s(H0) = −4, s(L0) = −1, s(L1) = 1, and s(H1) = 2. Substituting the s(·) scores into each
reaction α ∈ NV(R) reveals that the sum of scores of α’s fluid reactants is strictly smaller
than the sum of scores of α’s fluid products. Denoting the total score in a configuration
c ∈ NS by s(c) =

∑
A∈{H0,L0,L1,H1} c(A) · s(A), we deduce that s(ct+1) ≥ s(ct) and that

ζt ∈ NV(R) =⇒ s(ct+1) > s(ct) for every t ≥ 0. Since −4m ≤ s(ct) ≤ 2m for every t ≥ 0, it
follows that η includes, in total, at most O(m) ≤ O(n) non-void reactions until it stabilizes.

The last bound ensures that progress is made on each non-void reaction. Accordingly, we
choose the runtime policy ϱ so that ϱ(c) = NV(R) for all configurations c ∈ NS .18

Fix some skipping policy σ and let ei be the effective configuration of round i ≥ 0 under
ϱ and σ. Let i∗ = min{i ≥ 0 | ei({H0, L0}) = 0} be the first round whose effective step
appears after η stabilizes. Since the choice of ϱ ensures that each round 0 ≤ i < i∗ is
target-accomplished, ending with a non-void reaction, it follows that i∗ ≤ O(n).

To bound the stabilization runtime of execution η under ϱ and σ, we argue that
πei(NV(R)) ≥ Ω(1) for every 0 ≤ i < i∗; by a simple probabilistic argument (elabor-
ated in the full version [13]), this allows us to conclude that TCϱ(ei) ≤ O(1) for every
0 ≤ i < i∗. To this end, notice that if ei(H1) ≥ m/2, then

πei ({γ, δ1}) = 1
φ · ei(H1) · ei({H0, L0}) ≥ Ω(m/n) = Ω(1) .

Otherwise (ei(H1) < m/2), we know that ei({H0, L0, L1}) > m/2, hence

πei

({
βA1 | A ∈ {H0, L0, L1}

})
= 1

φ · ei({H0, L0, L1}) · ei(P1) ≥ Ω(m/n) = Ω(1) ,

thus establishing the argument. Therefore, the stabilization runtime of η satisfies

RTϱ,σstab(η) =
∑i∗−1
i=0 TCϱ(ei) ≤

∑O(n)
i=0 O(1) = O(n) .

The proof of Thm. 11 is completed by showing that protocol Π halts in O(n log n) time.
This part of the proof is deferred to the full version [13].
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A FIGURES AND TABLES

Table 1 The (adversarial) runtime complexity landscape of predicate decidability CRN protocols
operating under the weakly fair adversarial scheduler. The upper bounds (O-notation) hold with
a universal quantifier over the predicate family and an existential quantifier over the CRD family;
the lower bounds (Ω-notation) hold with a universal quantifier over both the predicate and CRD
families. (As usual, Θ(f(n)) should be interpreted as both O(f(n)) and Ω(f(n)).)

predicates leaderless amplified vote stabilization runtime halting runtime

semilinear (non-
detection)

yes yes Θ(n) Ω(n), O(n log n)
yes no Θ(n) Θ(n)
no yes Θ(n) Ω(n), O(n log n)
no no Θ(n) Θ(n)

detection

yes yes Θ(log n) Θ(log n)
yes no Θ(log n) Θ(log n)
no yes Θ(log n) Θ(log n)
no no Θ(log n) Θ(log n)

Table 2 The (expected stochastic) runtime complexity landscape of predicate decidability CRN
protocols operating under the stochastic scheduler (refer to the full version [13] for details). The upper
bounds (O-notation) hold with a universal quantifier over the predicate family and an existential
quantifier over the CRD family; the lower bounds (Ω-notation) hold with a universal quantifier over
both the predicate and CRD families. (As usual, Θ(f(n)) should be interpreted as both O(f(n))
and Ω(f(n)).)

predicates leaderless amplified vote stabilization runtime halting runtime

semilinear (non-
eventually con-
stant)

yes yes Θ(n) Θ(n)
yes no Θ(n) Θ(n)
no yes Ω(log n), O(n) Ω(log n), O(n)
no no Ω(log n), O(n) Ω(log n), O(n)

eventually
constant (non-
detection)

yes yes Ω(log n), O(n) Ω(log n), O(n)
yes no Ω(log n), O(n) Ω(log n), O(n)
no yes Ω(log n), O(n) Ω(log n), O(n)
no no Ω(log n), O(n) Ω(log n), O(n)

detection

yes yes Θ(log n) Θ(log n)
yes no Θ(log n) Θ(log n)
no yes Θ(log n) Θ(log n)
no no Θ(log n) Θ(log n)

https://doi.org/10.1007/3-540-65306-6_14
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S = {A,B,X,X ′}

β: A+X → 2A
β′: A+X ′ → 2A
γ: A+B → 2A
δ: B +X → B +X ′

δ′: B +X ′ → B +X

(a) The species and non-void reactions of Π. A configuration c0 ∈ NS is valid as an initial configuration
of Π if c0(A) = c0(B) = 1. The protocol is designed so that the molecular count of A is non-decreasing,
whereas the molecular counts of B and of {X, X ′} are non-increasing. Moreover, all weakly fair valid
executions of Π halt in a configuration that includes only A molecules.

aA+B + xX + x′X ′

(a+ 1)A+B + (x− 1)X + x′X ′

aA+B + (x− 1)X + (x′ + 1)X ′

(a+ 1)A+ xX + x′X ′

β
δ

γ

(a+ 2)A+ xX + (x′ − 1)X ′

(a+ 2)A+ (x− 1)X + x′X ′
β

β′

δ′

β′

γ

(b) Part of the configuration digraph DΠ (excluding void reactions). The configuration set S =
{aA + B + (x + z)X + (x′ − z)X ′ | −x ≤ z ≤ x′} forms a component of DΠ. Since reactions β and
β′ are inapplicable in configurations aA + B + (x + x′)X ′ and aA + B + (x + x′)X, respectively, it
follows that these two reactions do not escape from S. Reaction γ on the other hand does escape
from S, ensuring that a weakly fair execution cannot remain in S indefinitely. After the B molecule
is consumed (by a γ reaction), each configuration constitutes a (singleton) component of DΠ and
every applicable non-void reaction is escaping.

ϱ(c) =
{

{β, β′, γ}, c(B) > 0
{β, β′}, c(B) = 0

(c) A runtime policy ϱ for Π. Under ϱ, a round with effective configuration e = aA + B + xX + x′X ′

is target-accomplished and ends upon scheduling one of the reactions β, β′, γ; in particular, it is
guaranteed that the next effective configuration e′ satisfies e′(A) > a (no matter what the adversarial
skipping policy is), i.e., progress is made. The adversary may opt to schedule reactions δ and δ′

many times before the round ends, however the crux of our runtime definition is that this does
not affect the round’s temporal cost. Specifically, since πc({β, β′, γ}) = a(x+x′+1)

φ for every c ∈ S

(recall the definition of component S from Fig. 1b), it follows, by a simple probabilistic argument,
that TCϱ(e) = φ

a(x+x′+1) . A similar (simpler in fact) argument leads to the conclusion that if
e = aA + xX + x′X ′, then TCϱ(e) = φ

a(x+x′) . This allows us to show that RTΠ
halt(n) = O(log n).

Figure 1 A CRN protocol Π = (S, R) demonstrating how a carefully chosen runtime policy
guarantees significant progress in each round while up-bounding the round’s temporal cost.
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S = {L0, L1, . . . , Lk+1, C,X, Y } βi: Li+X → L0 +Y for 0 ≤ i ≤ k+1, i ̸= k

γi: Li + C → Li+1 + C for 0 ≤ i ≤ k

(a) The species and non-void reactions of Π, where k is an arbitrarily large constant. A configuration
c0 ∈ NS is valid as an initial configuration of Π if c0(L0) = 1, c0(C) = 1, and c0({L1, . . . , Lk+1}) = 0.
The protocol is designed so that c({L0, L1, . . . , Lk+1}) = 1 for any configuration c reachable from
a valid initial configuration (i.e., L0, L1, . . . , Lk+1 are “leader species”). Species C is a catalyst
for any reaction it participates in and c(C) = 1 for any configuration c reachable from a valid
initial configuration. The execution progresses by shifting all X molecules into Y molecules. We are
interested in the stabilization of Π’s executions into the (set of) configurations c ∈ NS satisfying
c(X) < c(Y ), although the executions actually halt once c(X) = 0 (and c(Lk+1) = 1).

L0 + C + (x− 1)X + (y + 1)Y

L0 + C + xX + yY L1 + C + xX + yY
γ0

β3β0

L3 + C + xX + yY
γ1 γ2

β1

L2 + C + xX + yY

(b) Part of the configuration digraph DΠ (excluding void reactions) for k = 2. Notice that each
configuration constitutes a (singleton) component of DΠ and every applicable non-void reaction is
escaping.

ϱ(c) = app(c) ∩ NV(R)
(c) A runtime policy ϱ for Π. Under ϱ, every round ends once any non-void reaction is applied to
the round’s effective configuration. In the full version [13], we show that RTϱ,σ

stab(η) ≤ O(n2) for any
skipping policy σ and weakly fair valid execution η of initial molecular count n. It turns out that
this bound is tight: The (weakly fair) adversarial scheduler can generate the execution η = ⟨ct, αt⟩
by scheduling αt = γi if ct(Li) = 1 for some 0 ≤ i ≤ k; and αt = βk+1 if ct(Lk+1) = 1. Using the
identity skipping policy σid and assuming that c0(X) = x0 and c0(Y ) = 0, it is easy to show (see the
full version [13] ) that η visits the configuration cy = Lk +C + (x0 −y)X +yY for every 0 ≤ y ≤ x0/2
before it stabilizes and that each such visit constitutes the effective configuration of the corresponding
round, regardless of the runtime policy ϱ′. Since each such configuration cy is a 2-pitfall (recall the
definition from Sec. 4.1), we deduce that TCϱ′

(cy) = Ω(n), which sums up to RTϱ′,σid
stab (η) = Ω(n2).

The interesting aspect of protocol Π is that with high probability, a stochastic execution stabilizes
without visiting the pitfall configurations cy even once, which allows us to conclude that the expected
stochastic stabilization runtime of Π is O(n) – see the full version [13] for details.

Figure 2 A CRN protocol Π = (S, R) demonstrating that the adversarial stabilization runtime
may be significantly larger than the expected stochastic runtime due to (asymptotically many) pitfall
configurations.
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S = {L0, L1, X, Y }

β0: L0 + Y → 2Y
β1: L1 + Y → 2Y
γ0: L0 +X → L1 + Y

γ1: L1 +X → L0 + Y

(a) The species and non-void reactions of Π. A configuration c0 ∈ NS is valid as an initial configuration
of Π if c0({L0, L1}) = 1 and c0(Y ) ≥ c0(X). The protocol is designed so that the molecular counts of
{L0, L1} and of X are non-increasing, whereas the molecular count of Y is non-decreasing. Moreover,
all weakly fair valid executions of Π halt in a configuration that includes zero L0 and L1 molecules.

L0 + xX + yY

L1 + xX + yY

L0 + (x− 1)X + (y + 1)Y

L1 + (x− 1)X + (y + 1)Y

xX + (y + 1)Y (x− 1)X + (y + 2)Y

β0

β1

γ0

γ1

γ0

γ1

(b) Part of the configuration digraph DΠ (excluding void reactions). Notice that each configuration
constitutes a (singleton) component of DΠ and every applicable non-void reaction is escaping.
Furthermore, if c ⇀ c′, then app(c) ∩ app(c′) ∩ NV(R) = ∅.

ϱ(c) =
{
β0, c(L0) = 1
β1, c(L1) = 1

(c) A runtime policy ϱ for Π. Under ϱ, a round whose (non-halting) effective configuration is e ends
once the execution reaches any configuration c ̸= e. This may result from scheduling the target
reaction ϱ(e), in which case the round is target-accomplished; otherwise, the round ends because
ϱ(e) is inapplicable in c, in which case the round is target-deprived. Since πLi+xX+yY (βi) = y/φ
for i ∈ {0, 1}, it follows, by a simple probabilistic argument, that TCϱ(Li + xX + yY ) = φ/y. This
allows us to show that RTΠ

halt(n) = O(n). In the full version [13], it is shown that the O(n) halting
runtime bound is (asymptotically) tight under the (weakly fair) adversarial scheduler; in contrast,
the expected stochastic runtime of Π under the stochastic scheduler is only O(1). This gap holds
despite the fact that the executions that realize the Ω(n) runtime lower bound do not reach a pitfall
configuration.

Figure 3 A CRN protocol Π = (S, R) demonstrating that the adversarial runtime may be
significantly larger than the expected stochastic runtime even though the protocol does not admit a
speed fault.
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S = {A,B,E,X}

β: A+A → 2E
γ: X +X → 2E
δ: B +X → 2B
χZ : E+Z → 2E for every Z ∈ {A,B,X}

(a) The species and non-void reactions of Π. A configuration c0 ∈ NS is valid as an initial configuration
of Π if c0(A) = 2, c0(B) = 1, and c0(E) = 0. The protocol is designed so that once the first (two) E
molecules are produced, species E spreads by means of the χ reactions until it takes over the entire
test tube. The first E molecules can be produced either through reaction β, that remains applicable
as long as E was not produced, or through reaction γ, that may become inapplicable if reaction δ is
scheduled many times. In any case, all weakly fair valid executions of Π halt in a configuration that
includes only E molecules.

2A+ bB + xX 2A+ (b+ 1)B + (x− 1)X

bB + 2E + xX

2A+ bB + 2E + (x− 2)X

(b+ 1)B + 2E + (x− 1)X

2A+ (b+ 1)B + 2E + (x− 3)X

β

γ

δ

β

γ

(b) Part of the configuration digraph DΠ (excluding void reactions). Notice that each configuration
constitutes a (singleton) component of DΠ and every applicable non-void reaction is escaping.

ϱ(c) =
{

{β, γ}, c(E) = 0
{χA, χB , χX}, c(E) > 0

(c) A runtime policy ϱ for Π. Under ϱ, a round whose (non-halting) effective configuration e satisfies
e(E) = 0 ends once (two) E molecules are produced, either through reaction β or through reaction γ
(either way, the round is target accomplished); in particular, there can be at most one such round,
that is, the first round of the execution. To maximize the temporal cost charged for this round,
the adversarial scheduler devises (the execution and) the skipping policy σ so that e(X) < 2 which
means that reaction γ is inapplicable in e (this requires that σ generates a “large skip”). Such a
configuration e is a halting 2-pitfall as reaction β must be scheduled in order to advance the execution
and the propensity of β is 2/φ. We conclude, by a simple probabilistic argument, that TCϱ(e) = φ/2.
A round whose (non-halting) effective configuration e satisfies e(E) > 0 ends once a χ configuration
is scheduled, thus ensuring that the execution’s next effective configuration e′ satisfies e′(E) > e(E).
Using standard arguments, one can prove that the total contribution of (all) these rounds to the
halting runtime of an execution η with initial molecular count n is up-bounded by O(log n). Therefore,
together with the contribution of the first “slow” round, we get RTϱ,σ

halt(η) = Θ(n). Note that the same
runtime policy ϱ leads to a much better halting runtime of RTϱ,σid

halt (η) = Θ(log n) if the adversarial
scheduler opts to use the identity skipping policy σid instead of the aforementioned skipping policy
σ. As a direct consequence of Lem. 6, we conclude that ϱ is asymptotically optimal for Π, hence
RTΠ

halt(n) = Θ(n).

Figure 4 A CRN protocol Π = (S, R) demonstrating that a non-trivial skipping policy results in
a significantly larger runtime, compared to the identity skipping policy.
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Abstract
Molecular computation involving promiscuous, or non-orthogonal, binding interactions between
system components is found commonly in natural biological systems, as well as some proposed human-
made molecular computers. Such systems are characterized by the fact that each computational
unit, such as a domain within a DNA strand, may bind to several different partners with distinct,
prescribed binding strengths. Unfortunately, implementing systems of molecular computation that
incorporate non-orthogonal binding is difficult, because researchers lack a robust, general-purpose
method for designing molecules with this type of behavior. In this work, we describe and demonstrate
a process for the rational design of DNA sequences with prescribed non-orthogonal binding behavior.
This process makes use of a model that represents large sets of non-orthogonal DNA sequences
using fixed-length binary strings, and estimates the differential binding affinity between pairs of
sequences through the Hamming distance between their corresponding binary strings. The real-world
applicability of this model is supported by simulations and some experimental data. We then select
two previously described systems of molecular computation involving non-orthogonal interactions,
and apply our sequence design process to implement them using DNA strand displacement. Our
simulated results on these two systems demonstrate both digital and analog computation. We hope
that this work motivates the development and implementation of new computational paradigms
based on non-orthogonal binding.
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1 Introduction

The vast majority of prior work with DNA-based molecular computation has dealt with
the design and use of orthogonal DNA domains, which are intended to bind only to their
perfect complements and to exhibit minimal cross-talk interactions with other domains
in a system. This eases the design and analysis of large DNA-based molecular circuits,
because it reduces the number of interactions that must be considered, allowing the scalable
implementation of circuits with many more components [14, 20, 23]. Comparatively little
research has attempted to solve the problem of designing non-orthogonal DNA sequences,
that is, sets of DNA domains such that each sequence can bind to several partners with
prescribed binding affinities. This gap in our abilities exists despite several well-documented
examples of naturally occurring biological networks that make use of non-orthogonal binding
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behavior [1,15], computing problems that would benefit from non-orthogonal sequence design
like similarity search in large databases [2, 17], and nanostructure fabrication strategies that
rely on promiscuous binding between structural subunits [16,30].

Very recently, some researchers have attempted to use machine learning for the design of
non-orthogonal sequence designs, for example for DNA memory storage [3, 27], while others
have used exhaustive searches or evolutionary approaches to design non-orthogonal DNA
sequences for digital logic and analog computing circuits [18]. While promising, these attempts
have been characterized by design inaccuracies and, in some cases, the need for extensive
experimental trial and error. Further, some preliminary evidence suggests that computational
predictions of strand binding thermodynamics may be less accurate for sequences that are
highly non-complementary, although additional data to support this observation is warranted
[18]. Currently, the field of molecular computing lacks a general-purpose and efficient method
for non-orthogonal DNA sequence design, capable of handling the variety of potential use
cases in DNA-based molecular circuits, nanostructure fabrication, and data storage.

In this work, we describe a method for the rational design of non-orthogonal DNA
sequences, which is based on two main contributions: the identification of a subset of DNA
sequence space for which a simple model accurately predicts binding affinities between pairs
of DNA sequences, and the application of a process called isometric graph embedding to
the sequence design process. In Sections 3 and 4, we demonstrate our design process in the
context of two previously described molecular computation systems involving non-orthogonal
interactions [1, 18]. Through simulations of these systems, we demonstrate both digital and
analog computation using our sequence designs.2

2 Rational design of non-orthogonal DNA domains

Our ultimate goal will be to design for the differential binding affinities between pairs of DNA
sequences, that is, we will consider the quantities ∆G(x, y∗) − ∆G(w, z∗) for DNA sequences
x, y, w, z. In Section 2.1, we define a model for the binding affinity between sequences, which
will be applicable to a well-defined subset of the overall DNA sequence space. In Section 2.2,
we show how this model enables rational design of DNA sequences via isometric graph
embeddings.

2.1 Model of binding between non-orthogonal domains
In general, accurate estimation the binding affinity between two arbitrary DNA strands
requires involved computation, and our goal is not to address this task for any two DNA
strands. Instead, we first focus on defining a subset D of sequence space with properties that
are amenable to efficient and accurate DNA sequence design for prescribed binding affinities.
The main idea behind defining D will be to identify a set of substitution mutations that may
be applied in any combination to some sequence, and whose cumulative effect on binding
affinity is approximately additive. This will justify the model that we introduce at the end
of this subsection.

Let Dn = {A, T, C, G}n be the set of all n-nt DNA sequences using only canonical
nucleotides, where all sequences are written from 5′ to 3′. For an n-nt DNA sequence x ∈ Dn,
its perfect complement is denoted x∗. The nucleotides are referenced by subscripts, so that

2 This work incorporates material from my doctoral thesis [4], which describes the sequence design process
(Section 2) and one of the analog computing gates (part of Section 3).
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x

x*

y

x*

δi,A,T = [ΔGGT:CT + ΔGTT:TA] - [ΔGGA:CT + ΔGAT:TA]

δj,T,G = [ΔGTG:AA + ΔGGC:AG] - [ΔGTT:AA + ΔGTC:AG]

ΔG(z,x*) - ΔG(x,x*) = δi,A,T + δj,T,G 

AAT ↔ ATT
AAA ↔ ATA

AAC ↔ ATC
AAG ↔ ATG
TAA ↔ TTA

TAT ↔ TTT
TAC ↔ TTC
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CAC ↔ CTC

GAA ↔ GTA
GAT ↔ GTT

GAC ↔ GTC
GAG ↔ GTG
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Figure 1 a) The binding affinity of a DNA duplex can be estimated by summing the contributions
of each pair adjacent of base pairs. A single point substitution affects the contributions from two
of these terms, reflecting the decreased favorability of the two stacking bonds next to a mismatch.
A subsequent substitution at a nonadjacent nucleotide will affect two additional terms in the sum.
However, under the nearest neighbor model, its effect will be independent of the presence or absence
of the first substitution. b) To aid design, we proposed restricting the substitutions to those for which
various metrics of its effect on binding affinity agree. For example, mutating the top strand (δi,A,T (x))
or bottom strand (δ∗

i,A,T (x)) should have a similar effect. c) Because the effect of a substitution is
determined only by local interactions, we can enumerate all combinations of nucleotides that satisfy
our constraints. This makes it very easy to identify sites on a candidate DNA sequence that may be
mutated. d) Candidate substitution sites on a DNA site must be filtered to satisfy non-adjacency
and interiority requirements.

xi ∈ {A, T, C, G} is the i-th nucleotide of x. For 1 ≤ i ≤ n and a, a′ ∈ {A, T, C, G}, we define
a substitution σi,a,a′ : Dn → Dn as a function such that σi,a,a′(x) is the sequence generated
by substituting the nucleotide a at position i in x with the nucleotide a′.

Fix an x ∈ Dn, and consider the binding affinity of x to x∗. Under the nearest-neighbor
model for DNA strand binding [22], this binding affinity may be estimated from the additive
contributions of all pairs of neighboring base pairs in the duplex.3 For a substitution σi,a,a′ ,
1 < i < n and xi = a, let y = σi,a,a′(x). Note that the constraint 1 < i < n implies that
the substitution occurs at an interior position of x. Under the nearest-neighbor model, the
binding affinity of y to x∗ differs from that of x to x∗ due to the contributions of exactly
two affected pairs of adjacent base pairs (Figure 1a).4 With these assumptions the change
in binding affinity ∆G(y, x∗) − ∆G(x, x∗) depends only on the values of a, a′, xi−1, and
xi+1. We will write δi,a,a′(x) := ∆G(y, x∗) − ∆G(x, x∗), the change in binding affinity from
mutating x and leaving x∗ unchanged. The corresponding change in binding affinity with x∗

mutated and x unchanged will be written δ∗
i,a,a′(x) := ∆G(x, y∗) − ∆G(x, x∗). Note that

δ∗
i,a,a′(x) = δn−i+1,a∗,a′∗(x∗).

For a second substitution σj,b,b′ , 1 < j < n and xj = b, let z = σj,b,b′(y). δj,b,b′(y) =
∆G(z, y∗)−∆G(y, y∗) is determined only by the two affected pairs of base pairs. Furthermore,
if |i − j| > 1, then the base pairs affected by σi,a,a′ are disjoint from those affected by σj,b,b′ ,
and we may estimate ∆G(z, x∗) − ∆G(x, x∗) = δi,a,a′ + δj,b,b′ . More generally, given a set

3 This model is biochemically justified by the fact that the principal contributor to binding affinity is
the formation of a π-π stacking bond between two adjacent base pairs, and the contribution of each
so-called “stack” is determined by the identities of the neighboring nucleotides [22].

4 This calculation assumes that the substitution occurs in the interior of the sequence, and that “shifted”
binding conformations of y to x∗ may be neglected. This is likely valid when shifted conformations of x
to x∗ are unlikely, and the number of substitutions applied is small.
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4:4 Rational Design of DNA Sequences with Non-Orthogonal Binding Interactions

of substitutions occurring at non-adjacent interior positions within x, the effect on binding
affinity of applying any subset of these substitutions is the sum of the effects of applying
each substitution individually (Figure 1a).

We are now prepared to construct a subset of sequence space D ∈ Dn. Given x ∈ Dn, we
propose constructing D based on a set of substitutions S satisfying the following requirements:
1. (interiority) For each σi,a,a′ ∈ S, k + 1 ≤ i ≤ n − k and xi = a ̸= a′.
2. (non-adjacency) For any two σi,a,a′ , σj,b,b′ ∈ S, |i − j| > l ≥ 1.
3. (symmetry) For each σi,a,a′ ∈ S, y = σi,a,a′(x), the four values δi,a,a′(x), δi,a′,a(y),

δ∗
i,a,a′(x), δ∗

i,a′,a(y) are within the range (δmin, δmax).
For the interiority requirement, we choose k = 2 because of the observation that substitutions
at terminal or penultimate strand positions have different effects on binding affinity [19]. For
other the non-adjacency requirement, we use l = 1 as the minimal requirement for achieving
additivity in the effects of each substitution. The symmetry requirement is included to aid
subsequent sequence design, and its purpose will become clear by the end of this subsection.
Informally, it implies that the effect of a mutation is consistent across different measures of
its effect on binding affinity (Figure 1b). Because the effect of mutating a nucleotide depends
only on that nucleotide and its neighbors, there are exactly 192 possible substitutions, and
we may enumerate the list of those that satisfy condition (3) (Figure 1c). We use the
range (11.0, 15.3) kJ/mol, with all binding affinities estimated by published nearest neighbor
parameters [22]. In principle, greater design robustness could be achieved by increasing k,
increasing l, or decreasing the range (δmin, δmax), at the cost of reducing the size of the set S.

Given a set of substitutions S (Figure 1d), let D be the set of sequences generated by
applying a subset S′ ∈ S to x, and D∗ be the set of perfect complements to sequences in D.
Each element of D is associated with a binary string of length m := |S| as follows. Number
the elements of S from 1 to m. Assume without loss of generality that the j-th element of S

is a substitution at position i of x. Define f : D → {0, 1}m such that, for y ∈ D, f(y) is the
binary string with a j-th bit of 0 if xi = yi and 1 otherwise. In other words, a bit of f(y) is 1
if and only if the corresponding substitution in S was applied to generate y from x.

We may now model the differential binding affinity between two pairs of sequences taken
from D and D∗. For sequences y, z, u, v from D, we model the differential binding affinity as

∆G(y, z∗) − ∆G(u, v∗) ≈ δmut × [dH(f(y), f(z)) − dH(f(u), f(v))] (1)

where δmut is a proportionality constant approximating the change in binding affinity due
to a single mutation, and dH is the Hamming distance between two binary strings. This
approximation is justified by the fact that the set of substitutions S was chosen so that the
effect of each mutation would be approximately additive, and the number of substitutions
that differentiates x from y equals the Hamming distance between f(x) and f(y). Note that
Equation (1) relates the Hamming distance between f(x) and f(y) to the binding affinities
both of x to y∗ and of y to x∗, which is ensured by the symmetry requirement.

In this way, we model the binding affinity of any sequence of D with any sequence of
D∗. In principle, the number of sequences may be very large (e.g., later we find sets S of 9
substitutions within 25-nt sequences, which generate sets D of 29 = 512 sequences). However,
the distribution of binding affinities is constrained by the corresponding distribution of
Hamming distances, so only a subset of these sequences would likely be used for a particular
application. Note that these sequences contrast with those generated via random mutations
by Nikitin [18] for their designs, because we constrain our substitutions to enable an additive
model. While Nikitin observed that NUPACK predictions were not accurate enough to
avoid significant experimental debugging, we posit that the highly constrained nature of
our substitutions may improve the reliability of the non-orthogonal designs. This claim is
supported by our experimental results, although further validation is warranted.
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2.2 Design process with isometric graph embeddings
This model establishes a relationship between the binding affinities between D and D∗ and
the Hamming distances between binary strings. However, it does not solve the problem of
designing the sequences themselves given desired binding behavior. To accomplish this, we
proposed designing the binary strings for a system directly, and afterwards transforming
these into the sequences themselves. This latter step is trivial given binary strings, an initial
sequence, and an associated set of substitutions.

A specification of the binding affinities between pairs of sequences can be represented in
a matrix A = (aij), where aij represents the binding affinity between sequences xi and x∗

j in
some units. In analogy to Equation (1), our goal will be to design the differential binding
affinities aij − ai′j′ such that

aij − ai′j′ ∝ ∆G(xi, x∗
j ) − ∆G(xi′ , x∗

j′). (2)

To ease design, we chose to consider those design matrices that may be represented in an
undirected graph G such that there is some set of vertices ui ∈ V (G) where V (G) denotes
the vertex set of G. Specifically, we require the existence of a graph such that

aij − ai′j′ ∝ dG(ui, uj) − dG(ui′ , uj′) (3)

where dG is the shortest path metric on pairs of vertices of G. From this equation, we may
immediately conclude the following:

aij − aji ∝ dG(ui, uj) − dG(uj , ui) = 0 =⇒ aij = aji (4)
aii − ajj ∝ dG(ui, ui) − dG(uj , uj) = 0 =⇒ aii = ajj (5)

Thus, representation in an undirected graph implies that the design matrix must be symmetric
with all diagonal entries identical. In addition, because the shortest path metric is a
metric space, the design matrix must also represent a metric space (i.e., satisfy the triangle
inequality).

Next, we proposed using a mapping between graphs called an isometric graph embedding,
which is a mapping ϕ : V (G) → V (G′) between the vertex sets of two graphs that preserves
the distances between vertices. That is, for all u, v ∈ V (G),

dG(u, v) = dG′(ϕ(u), ϕ(v)). (6)

We are particularly interested in isometric graph embeddings into hypercube graphs, or
hypercube embeddings. A hypercube graph of dimension m is a graph of 2m vertices, with
each vertex associated with a binary string and two vertices adjacent if and only if their
binary strings differ at a single position. These graphs are of interest to us because they
naturally represent the Hamming distance between two binary strings in the graph distance
between the corresponding hypercube vertices.

For any graph G, finding a hypercube embedding h : V (G) → V (H) into m-dimensional
hypercube graph H immediately implies an assignment of binary strings to each vertex of the
graph such that the distance between vertices equals the Hamming distance between binary
strings. Given the results of Section 2.1, this completes our stated design goal, assuming we
are able to find an initial sequence and a set of substitutions of size at least m:

aij − ai′j′ ∝ dG(ui, uj) − dG(ui′ , uj′) (7)
= dH(h(ui), h(uj)) − dH(h(ui′), h(uj′)) (8)
= δmut × [∆G(xi, x∗

j ) − ∆G(xi′ , x∗
j′)] (9)

where in the final equality, xi is the sequence associated with binary string h(ui), so
f(xi) = h(ui).
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Figure 2 a) A cyclic graph on 18 nodes. b) The Desargues graph. c) A hypercube embeddable
weighted graph. d-f) NUPACK simulations of designed sequences show a strong linear relationship
between the graph distance and binding affinities of every pair of sequences from D and D∗. g)
Distributions of binding affinities between Dx and other sets of sequences. Binding affinites for
sequences that should not interact are unfavorable, comparable to the weakest binding affinites
observed among the correct pairs of sequences. h) Experimental testing of a subset of the sequences
in Dx and D∗

x (Technical Appendix) shows a linear relationship between melting temperature and
graph distance. Melting temperature is used here as a proxy for binding affinity.

Given a graph G, the difficulty of finding a hypercube embedding varies depending on
the properties of G. For unweighted, undirected graphs, hypercube embeddings were first
characterized by Djoković [8], with several important results later established by Winkler and
Graham [11, 28]. If an unweighted, undirected graph G permits a hypercube embedding it is
called a partial cube, and determining whether a particular graph is a partial cube may be
performed in O(v2) time [9], for a graph with v nodes. In addition, all hypercube embeddings
of G are equivalent up to symmetries of the hypercube graph [28]. While not all graphs
are partial cubes, many important classes of graphs do permit hypercube embeddings. Two
examples are a cyclic graph of 2m, which is embeddable into an m-dimensional hypercube,
and the Desargues graph on 20 nodes, which is embeddable into a 5-dimensional hypercube
(Figure 2ab).

To give an intuition for how such embeddings are constructed, we briefly describe the
algorithm proposed by Graham and Winkler [11], noting that more efficient algorithms exist.
First, a relation θ is defined on the edge set E(G) of the graph G, where uvθu′v′ if and only
if the quantity [d(u, u′) − d(u, v′)] − [d(v, u′) − d(v, v′)] is nonzero. The transitive closure
θ̂ of θ is an equivalence relation, and the equivalence classes of θ̂ partition E(G) into sets
E1, . . . , Em. For set Ei, let Gi be the graph with V (Gi) = V (G) and E(Gi) = E(G) \ Ei

(i.e., formed by removing the edges in Ei from G). If every Gi has exactly two connected
components, then G is hypercube embeddable. In this case, a hypercube embedding may be
constructed by assigning binary strings to each vertex of G such that the i-th bit of a vertex
is 0 if it is one connected component of Gi and 1 if it is in the other.
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When a graph G is weighted, the task of finding a hypercube embedding is NP-hard [7],
so an efficient and generally-applicable solution to the problem is unlikely to exist. However,
methods for efficiently embedding some classes of weighted G exist (Figure 2c) [5, 24, 25].
Characterizing additional classes of weighted graphs for which hypercube embeddings can be
efficiently found remains an open area of research in graph theory, and advances in this area
would improve the utility of this design process.

2.3 Validation via simulation and experiment

We consider three graphs of varying complexity (Figure 2a-c), and construct hypercube
embeddings and sequence designs for each. For the three designs, we denote the designed
sequences as Dx, Dy, and Dz, and the final binary strings and sequences are given in the
Technical Appendix. To show the robustness of our design, each design used a distinct initial
sequence taken from a previously designed set of 240,000 25-nt PCR primers known to be
orthogonal to one another [29]. In each case, the pairwise binding affinities between the
corresponding set of sequences Di and the set of complementary sequences D∗

i , i ∈ {x, y, z}
were simulated with NUPACK at 25 ◦C in an aqueous solution of 1M NaCl. The simulations
show a strong linear correlation between the binding affinities and the original graph distances
(Figure 2d-f), with correlation coefficients of R2 = 0.99, 0.98, and 0.95, respectively for the
three designs.

To test the orthogonality of separately designed sets of non-orthogonal sequences, we
computed binding affinities between sets of sequences that should not interact. Specifically,
we tested the set Dx against the sets Dx, Dy, D∗

y, Dz, and D∗
z , and found weak binding

affinities in all cases (Figure 2g). The binding affinities were comparable with the weakest
binding observed among any of the expected pairs of interacting sequences.

Experimental tests of the first sequence design (Dx and D∗
x) support the validity of our

model. As a proxy for binding affinity, we measured melting temperatures for 25 pairs of
sequences (5 sequences of Dx and 5 sequences of D∗

x), covering a range of graph distances.
Melting temperature was interpreted as a proxy for binding affinity, with higher melting
temperature indicating stronger binding affinity. Melting temperatures plotted against the
expected distance in the cyclic graph showed a strong linear correlation with a correlation
coefficient of R2 = 0.91 (Figure 2h).

3 Analog computation with promiscuous ligand-receptor networks

In naturally occurring biological networks, promiscuous binding between components (non-
orthogonality) is common [1, 15]. Recently, researchers studied the computational abilities of
promiscuous ligand-receptor networks, such as the BMP signaling pathway [1]. In their model
of this pathway, trimers are formed from the binding of a ligand to two receptor halves, with
each trimer having its associated free energy and signal output production rate. The ligand
concentrations, which were assumed to be in excess, affect the formation of trimers and
subsequent signal output, and these concentrations were the network inputs. The receptor
concentrations, binding affinities, and trimer production rates constitute network parameters
that determine the particular function computed by the system. The authors identified
four archetypal response types characteristic of the promiscuous ligand-receptor network
architecture, which they labeled “additive”, “ratiometric”, “balance”, and “imbalance” gates
[1]. In this section, we propose and simulate a DNA strand displacement analogue to the
promiscuous ligand-receptor network.
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Figure 3 a) The dimer model for a promiscuous ligand-receptor network uses a set of Kij binding
affinities between each pair of ligands and receptors, and a set of ϵij reaction rates to represent the
signal activation rates associated with each ligand-receptor pair. b) The signal response of each
receptor is independent of the other receptors, because we assume high ligand concentrations. For
a two-ligand network, the response is sigmoidal in the log-ratio of the two ligand concentrations
(left). This is also seen in a diagonal cross-section (dotted line) of a log-log heatmap (right). c) From
left to right, an additive response, a ratiometric response, an imbalance response, and a balance
response. Below each heatmap are conditions on Kij and εij to achieve each response.

3.1 Dimer model for the promiscuous ligand-receptor network
Here, we present a simplified model of a promiscuous ligand-receptor network, based only
on dimer formation between ligands and receptors. While less biologically pertinent, the
dimer model is capable of computing the same four archetypal response types. The dimer
model considers a system of nR receptors and nL ligands, such that each ligand-receptor
pair may bind and generate signal output with an arbitrary binding affinity and signal
production rate (Figure 3a). For simplicity, we let εij = ϵij

γ . Under the limit of high total
ligand concentration, we may assume that all receptors are bound to some ligand, and the
steady-state network output is given by

[S]ss =
∑

1≤i≤nR

[Ri]0

∑
1≤j≤nL

εijKij [Lj ]0∑
1≤j≤nL

Kij [Lj ]0
, (10)

where [A]0 is the total concentration of species A, bound or unbound. A full mathematical
analysis of the model is given in the Technical Appendix.

In our case, we are interested in a system of two ligands and two receptors, which is
already capable of generating the four archetypal response types identified in the context of
the BMP signaling pathway [1]. We consider the system response as a function of x = log [L2]

[L1] ,
because in the limit of high ligand concentration, the signal output of a two-ligand system is
a function only of the ratio of the two ligand concentrations. Consider the receptor R1. As
the x increases (L2 dominates L1), the receptor transitions from binding predominantly to
L1 to binding predominantly to L2. This transition follows a sigmoidal function of x, and
the signal output due to R1 is a sigmoid whose minimum and maximum are determined by
the output production rates of R1:L1 and R1:L2 (Figure 3b). Because ligand concentration
is high, the binding of R2 to L1 and L2 is not affected by that of R1, so the total network
output is a sum of the two sigmoidal responses generated by the two receptors.
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Each of the four archetypal response types is generated from a linear combination of two
sigmoids, and different responses may be chosen by transforming the sigmoidal response of
each receptor. The sigmoidal response of a receptor can be shifted horizontally by adjusting
the relative binding affinity of the receptor to each ligand. The response can be shifted
and scaled vertically by adjusting the output production rates of its dimers. Parameter
constraints and dimer model simulations for each response type are shown in Figure 3c. Note
that the additive and ratiometric responses require only a single receptor.

3.2 DNA strand displacement-based implementation

We designed a set of DNA-based “ligands” and “receptors” to implement the behavior of
the dimer model for a promiscuous ligand-receptor network. Each DNA-based ligand and
receptor uses a combination of classical orthogonal domains along with additional domains
taken from two sets of independently designed non-orthogonal sequences (Figure 4a). The
signal output is generated by a fluorophore-quencher FRET pair, so that the fluorophore is
quenched in certain ligand-receptor conformations. Changes in response type are possible
simply by swapping out the choice of non-orthogonal domains on each DNA-based ligand
and receptor.

a)

b) c)

aj’nj mj
5T 5T

aj*

bj’

bj*t*

ai bit
ligand

receptor

Kt
Kb

ij Kb
ij

Ka
ij

Ka
ij

Figure 4 a) A proposed DNA strand displacement implementation of a promiscuous ligand-
receptor network. b) For a balance gate, NUPACK simulations of the concentrations of the four
ligand-receptor pairs as well as the signal response from each. The signal response is estimated from
the probability that the 3′-most nucleotide of the ligand is bound to its corresponding nucleotide on
the bottom strand of the receptor. c) Heatmaps from NUPACK simulations of our sequence designs
for each of the four archetypal response types.

The steady-state output of this network is given by the following equation

∑
1≤i≤nR,1≤j≤nL

[(Ri:Lj)∗] =
∑

1≤i≤nR

[Ri]0
∑nL

j=1 Kt(1 + Ka
ij)[Lj ]0∑nL

j=1 Kt(1 + Ka
ij)(1 + Kb

ij)[Lj ]0
, (11)
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where [(Ri:Lj)∗] is the concentration of the ligand-receptor pair in a fluorescent (i.e., not
quenched) state (see the Technical Appendix for a full derivation). This equation can be
made formally equivalent to Equation (10) via the following substitutions

Kij = Kt(1 + Ka
ij)(1 + Kb

ij) (12)

εij = 1
1 + Kb

ij

(13)

which relate the parameters of this DNA strand displacement system (Kt, Ka
ij , and Kb

ij) to
the parameters of the dimer model of the previous section (Kij and εij). In this way, it is
possible in principle to implement a wide variety of dimer model parameters, limited mainly
by a discretization of the energy landscape due to δmut (the change in binding affinity due to
a single substitution mutation).

We describe our implementation of the balance gate in detail. Implementation of the other
three gates follows similarly. For our design, we used the binary strings and corresponding
sequences from the first two designs in Section 2.3, Dx and Dy. To achieve the network
parameters for the balance gate (Figure 3c), we chose 2 binary strings from the Dx design
and 4 binary strings from the Dy set of sequences. Sequences corresponding to each binary
string were designed, and NUPACK simulation was used to estimate Kij and εij using these
particular sequences and Equations (12) and (13), with Kt set to 1 as it did not affect the
relative values of the Kij) (Table 1). Complete lists of sequences are given in the Technical
Appendix.

Table 1 Table of estimated Kij and εij values for the balance gate.

Kij L1 L2

R1 4.0 1.5 × 105

R2 1.8 × 104 4.0

εij L1 L2

R1 0.5 1.0
R2 1.0 0.5

NUPACK does not allow direct simulation of the fluorophore or quencher modifications, so
the concentration of colocalized fluorophore-quencher pairs was estimated from the probability
that the rightmost nucleotide of the y domain on a ligand would be bound to its corresponding
nucleotide on a receptor. Note that hydrophobic interactions in an actual experiment could
stabilize this conformation further. Using NUPACK, we simulated the concentration of
each ligand-receptor pair for a fixed total ligand concentration [L1]0 + [L2]0 = 2 µM and
varying ligand concentration ratio (Figure 4b, top). This data shows the two transitions
corresponding to replacement of L1 by L2 on each receptor. The computed network output
was also computed, as well as the output from each ligand-receptor complex, showing the
expected balance gate behavior (Figure 4b, bottom). Finally, a heatmap was generated
showing the network output with initial receptor concentrations [R1]0 = [R2]0 = 5 nM and
ligand concentrations ranging from 10−9 to 10−1 M. This heatmap shows that at high ligand
concentration the signal output is high when the ligand concentrations are similar and low
otherwise. Note that at low ligand concentrations, receptors remain unbound and the signal
output will be low regardless of the ligand concentration ratio.

For the other three archetypal response types, the binary strings were selected based
on the constraints for each response type in Figure 3c, and DNA sequences and response
heatmaps were computed using NUPACK simulation (Figure 4c). Results show successful
implementation of each response type. Note that the additive and ratiometric gates required
only a single receptor for their implementations because their response profile consisted of a
single sigmoid.
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4 Digital logic computation with non-orthogonal DNA hairpins

Next, we wished to demonstrate the utility of our design process for digital logic computation.
We were motivated by recent work due to Nikitin illustrating digital logic gates based on
the binding of short ssDNA strands optimized for particular binding affinities [18]. Notably,
Nikitin used sequences that were freely mutated and subsequently tested with NUPACK
to achieve particular binding affinities, and additional optimization of the affinities and
strand concentrations was needed for successful circuit function. The author also found that
NUPACK predictions for sequences mutated in this manner were not accurate enough to avoid
significant experimental trial and error [18]. This contrasts with our approach of carefully
selecting the locations of each mutation and the nucleotide identities in order to achieve
consistent and predictable effects on binding affinity within the population of sequences
of our design. In addition, strand concentrations were largely determined from the circuit
connectivity, with only a single global working concentration that required optimization.

In Section 4.1, we begin by describing the basic structure of these logic gates, which is
based off of a fan-in design for a NOR gate, and our hairpin-based implementation, which
we call a “hairpin logic circuit”. Section 4.2 describes the application of our design process
to logic circuits of varying complexity. This process is based on the construction of an
interaction graph for which a hypercube embedding may be found as in Section 2.2.

4.1 Structure of the hairpin logic circuit
The gates proposed by Nikitin [18] use sequences of NOR gates implemented by controlled
binding between single strands of DNA. For each NOR gate, any one of a set of input strands
may bind to the output strand, preventing it from binding to any downstream strands. In
contrast to Nikitin’s proposed design, our sequence designs are intended for control of the
differential binding affinities of distinct double-stranded DNA complexes, rather than the
change in free energy associated with two single strands forming a duplex. Thus, we proposed
a hairpin-based circuit design in which each hairpin stem consists of two non-orthogonal
domains that may either bind to each other (stem closed) or to another hairpin (stem
open) (Figure 5a). For hairpin signal X, we denote the non-orthogonal stem domains with
lowercase x and x̄∗. The structure of our circuits is identical to those of Nikitin, except for
the substitution of each single-stranded signal molecule with one of our hairpin molecules.
For example, the NOT gate is simply a single-input NOR gate (Figure 5b), whose output
signal is high when the input is low using a FRET pair to modulate fluorescence. Other
examples of simple gates constructed from the NOR-gate primitive are shown in Figure 5c.

The favorability of two hairpins A and B opening and binding to each other is dependent
on several factors. These include the degree of sequence complementarity in their stems,
the favorability of opening up the hairpin loop, and the entropic penalty of replacing two
freely moving molecules with a single molecule. Our sequence design process controls the
first factor (i.e., the affinity of a to b̄∗ and b to ā∗ relative to the affinity of a to ā∗ and
b to b̄∗). The latter two factors are dependent on system parameters, such as the strand
concentrations and the design of the hairpin loop, and are expected to be approximately
equal for all hairpin signal binding reactions.

For each circuit, we assume a working concentration c, which can be increased or decreased
to tune the global favorability of a free (closed) hairpin state against the sequestered (open)
hairpin state in which it is bound to another (open) hairpin signal. Because some hairpin
signals must bind to multiple downstream signals as part of their function, the concentration
of each signal was set to the total concentration of the downstream signals to which it must
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Figure 5 a) The hairpin logic circuit uses signal strands that form either a closed hairpin when
isolated or an open conformation when bound to another signal. b) Example operation of a NOT
gate. Each Q hairpin has a quencher label that reduces fluorescence from S when they are bound.
c) Each layer of the circuit is a NOR gate, allowing the implementation of any other logic gate.
Circuits for an OR and an AND gate are shown. d) To design the domains for each hairpin stem, a
stem similarity graph is constructed that represents the desired binding relationships between each
pair of stem domains. Each circuit connection corresponds to two edges in the stem similarity graph,
to ensure that the domains on the two hairpins can bind to each other. e-f) Stem similarity graphs
and hypercube embeddings for the NOT and AND gates. g) NUPACK simulations of circuit output
for each gate. Performance is within 5% of the expected output (dotted lines) for all inputs.

bind. In principle, this means some hairpins will be at higher concentration and thus more
likely to bind to other hairpins; however, in practice, this did not materially affect the circuit
behavior (free energy of binding is affected by the logarithm of concentration, so orders of
magnitude change would likely be required to affect the circuit).

4.2 Sequence design for the hairpin logic circuit

From the connectivity of a circuit diagram, we can graphically represent the desired similarity
between hairpin stem domains. For a circuit C, the hairpin stem similarity graph H(C)
represents each hairpin stem domain with a vertex (i.e., two vertices per hairpin signal).
If two hairpin signals A and B are connected in the circuit diagram, then ab̄ and āb are
(unweighted, undirected) edges in H(C) (Figure 5d). This implies that a and b̄ should differ
by only a single mutation, and similarly for ā and a. The stem similarity graph for a NOT
gate is shown in Figure 5e. In this simple case, the stem similarity graph has two connected
components, which means that the graph distance for the domains in each hairpin stem can
be freely chosen (i.e., a to ā for hairpin signal A). For the NOT gate, we assign a graph
distance of 4 between every pair of domains on a single hairpin, which corresponds to 4
mutations within each hairpin stem. The implications of this choice are discussed further
later.
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When a circuit has at least 3 layers, it becomes necessary to adjust the stem similarity
graph so that the output signals bind less strongly to their connected signals. This ensures
that the output signal will only bind to any preceding signals if those signals have no other
binding partners. To accomplish this with the AND gate, we apply a weight of 2 to each
edge incident to a non-orthogonal domain of the output hairpin signal (Figure 5f).

Given a stem similarity graph, a hypercube embedding can be found in O(|V |2) time if
one exists, for a graph with |V | vertices. Hypercube embeddings for the NOT and AND
gates are shown in Figure 5ef. A unitless binding affinity of two hairpin signals, neglecting
factors other than stem loop complementarity, can be estimated with the equation

δ(A, B) = d(a, b̄) + d(b, ā) − d(a, ā) − d(b, b̄) (14)

Note that two hairpins that are intended to bind are guaranteed will always have the lowest
binding affinities because each stem domain was separated by only a single edge in the stem
similarity graph. This is true even for the output signal domains when they have incident
edge weights of 2.

Corresponding sequences for the NOT and AND gate designs are taken from the sequence
set Dy (Section 2.3; see the Technical Appendix for full set of sequences). When fewer than
9 substitutions were needed, such as with the NOT gate, a subset of the 9 substitutions
available with this design was selected. In addition, the order of the substitutions was
randomized, in order to distribute the mutations more evenly across the sequence. This
randomization was performed for the other gates as well. Using NUPACK, the circuit output
for high and low initial input concentration was computed as the concentration of the closed
hairpin S (Figure 5g), showing performance within 5% of the optimal values.

To ensure that only desired hairpin pairs would bind, we modulated the working concen-
tration for each circuit so that binding between undesired hairpin pairs was less favorable
than the hairpins remaining free (closed). Previously, we chose a graph distances of 4 (NOT
gate) or 3 (AND gate) between pairs of domains corresponding to the same hairpin signal,
to demonstrate the effect of this design choice. With the NOT gate, a working concentration
of 10−6 M was most effective, while with the AND gate, a significantly higher working
concentration of 10−4 M was used. In general, this graph distance can be increased at
the cost of additional bits in the hypercube embedding, in order to allow a lower working
concentration to correctly balance the open and closed hairpin states. This flexibility can be
useful, for instance, if the working concentration is fixed by other experimental factors and
cannot be independently modulated.

For some circuits, the stem similarity graph constrains the graph distance between the
two domains on each hairpin signal. The simplest feedforward circuit for which this occurs
is the logically false circuit for NOR(A, ¬A), which can be implemented with 3 signals A,
B = ¬A, and C = NOR(A, ¬A) (Figure 6a). In this case, the corresponding stem similarity
graph constrains the distance between a and ā to be 3 (similarly for B and C). Situations
such as this occur whenever the circuit is not bipartite, when viewed as a graph on the
hairpin signals themselves. This becomes increasingly common with larger circuits, and in
such cases, the working concentration must be chosen based on the constraints implied by
the stem similarity graph.

As a final example, we consider the square root circuit first considered by Qian and
Winfree [20], which was also implemented by Nikitin [18] (Figure 6b). The stem similarity
graph for this circuit is significantly more complex than the previous examples (Figure 6c),
consisting of 30 vertices and 34 edges. As with the AND gate, a weight of 2 was assigned to
the edges incident to the domains of the output signals S1 and S2. This stem similarity graph
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Figure 6 a) When a stem similarity graph is connected, the graph distance between domains
on the same hairpin is constrained. This is a circuit for A NOR NOT A, which is logically false.
b) Circuit connections for the square-root circuit. This is the same circuit that was constructed
by Nikitin [18]. c) Stem similarity graph for the square root circuit. Domains on the input and
output hairpins are colored for clarity. d) NUPACK simulations of circuit output for all 16 input
combinations (inputs are listed in the order I1I2I3I4). Outputs remain within 10% of the correct
values for all inputs, and within 5% (dotted lines) for all but 2 of the inputs (0001 and 0011).

is not exactly hypercube embeddable. For this case, we introduce the notion of a k-hypercube
embedding, or an isometric embedding into a hypercube that preserves all distances up to a
distance of k. Precisely, ϕ : V (G) → V (H) is a k-hypercube embedding if for all u, v ∈ V (G):
1. dG(u, v) = dH(ϕ(u), ϕ(v)) if dG(u, v) ≤ k

2. dG(u, v) > k if dG(u, v) > k

This notion is a generalization of the k-snake, which is a k-hypercube embedding of a linear
graph [13,26].

The use of a k-hypercube embedding has an additional advantage, in that it may allow
the researcher to embed into a hypercube of smaller dimension (i.e., requiring fewer bits).
Unfortunately, an efficient algorithm for finding a k-hypercube embedding is not known,
although for smaller circuits this is often possible to do by hand.

For the square root circuit, we constructed a 2-hypercube embedding of dimension 9,
where k = 2 was chosen because all correct interactions were encoded in the stem similarity
graph with a distance of at most 2 (see Technical Appendix). Any vertices at distance 3
or greater should not interact anyway, and the working concentration will be chosen to
ensure that these interactions are not favorable. Our 2-hypercube embedding has the added
advantage that for every hairpin, its two domains have the same Hamming distance from
each other. This makes it easier to choose a working concentration that correctly tunes the
propensity of each hairpin signal to choose an open conformation (bound to another hairpin)
over a closed one.

To simulate this circuit, sequences corresponding to each binary string were used from
the set Dy from Section 2.3. A working concentration of 10−11 M was used; all signals were
initially present at this concentration except for I1 and I2, which used concentrations of
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2 × 10−11 and 4 × 10−11, respectively. NUPACK simulations were performed over all 16
possible 4-bit inputs, which showed that, for all input combinations, the 2-bit output was
within 10% of the correct value (Figure 6d). All but two inputs (0001 and 0011) achieved
outputs within 5% of the correct values. It is possible that additional circuit optimization
could improve this further.

We make one final comments regarding this application of our sequence design procedure
to digital logic circuits. When some hairpin signals have stems that bind more strongly than
others, choosing a global working concentration can be difficult. In the square root circuit,
we circumvented this problem in the way we compressed our hypercube embedding; however,
this may not always be possible. Handling this scenario remains another open question that
could make it possible to apply our design process to additional circuits.

5 Discussion and Conclusions

In this work, we have presented an effective rational design approach for non-orthogonal
DNA domains, that may be combined with orthogonal domains for complex DNA strand
displacement circuitry. We applied this approach to two previously proposed molecular
computational systems based on non-orthogonal interactions, through which we demon-
strated in silico analog and digital logic computation. This design approach eases the use
of non-orthogonal domains within DNA strand displacement cascades, because it allows
researchers to perform initial designs of non-orthogonal domains using only binary strings.
Experimental implementation requires finding an appropriate starting DNA sequence with
enough substitutions; heuristically, a starting sequence with little secondary structure and
that binds to its perfect complement primarily in a single conformation works well. Once
found, generating the corresponding DNA sequence variants is straightforward, allowing
researchers to quickly design candidate non-orthogonal domains. Thus, a larger portion of
the design process can be done prior to ordering materials. Further experimental testing is
warranted to quantify the accuracy of our design method.

Several areas for further improvements to our method exist. For example, the use of
k-hypercube embeddings was necessary for the more complex square root circuit. Additional
work could address algorithms for efficiently constructing k-hypercube embeddings, which
would also help with compressing the embeddings so they can be implemented on shorter
DNA strands.

The sequence design process we describe here has the potential to be applied in other
contexts. For example, previous DNA strand displacement-based implementations of neural
networks have used “weight complexes,” dedicated auxiliary DNA molecules whose concen-
trations encode the weights between various nodes [6, 21]. However, as the size of a neural
network grows, the number of weights that must be encoded grows quadratically in the
number of nodes, so that the number of distinct DNA molecules that must be designed and
synthesized grows quickly. Using non-orthogonal sequence design, it may be possible to
encode weights in the binding affinities between molecules, which would significantly reduce
the number of system components required, increasing the size of the neural networks that
can feasibly be implemented experimentally.

Recently, researchers have shown that non-orthogonal interactions can also be applied to
nanostructure fabrication, allowing the design of a pool of structural subunits capable of
creating any one of several possible multi-subunit assemblies. The creation of a particular
assembly can be triggered by the presence of a nucleation seed [16] or by the concentrations
of the various subunits [30]. An experimental demonstration of this used a set of 917 unique
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DNA tiles to construct one or more of three target assemblies [10]. This demonstration
used orthogonal interactions between tiles; however, our sequence design method could in
principle be used to allow the construction of a larger number of target assemblies closer to
the theoretical limit [16].

The problem of non-orthogonal sequence design is a complex task, with different ap-
proaches likely to be best suited to different applications. However, there are many potential
use cases for a non-orthogonal sequence design approach that can be applied to a variety
of DNA strand displacement systems. We hope that our non-orthogonal sequence design
method spurs new innovation in both DNA sequence design and the computational uses of
non-orthogonality, and that future improvements to non-orthogonal design techniques will
open the doors to more complex DNA-based computers and new advancements in molecular
computing.

References
1 Yaron E Antebi, James M Linton, Heidi Klumpe, Bogdan Bintu, Mengsha Gong, Christina

Su, Reed McCardell, and Michael B Elowitz. Combinatorial signal perception in the BMP
pathway. Cell, 170(6):1184–1196, 2017.

2 Eric B Baum. Building an associative memory vastly larger than the brain. Science,
268(5210):583–585, 1995.

3 Callista Bee, Yuan-Jyue Chen, Melissa Queen, David Ward, Xiaomeng Liu, Lee Organick,
Georg Seelig, Karin Strauss, and Luis Ceze. Molecular-level similarity search brings computing
to DNA data storage. Nature communications, 12(1):1–9, 2021.

4 Joseph Berleant. DNA sequence design of non-orthogonal binding networks, and application to
DNA data storage. PhD thesis, Massachusetts Institute of Technology, 2023.

5 Joseph Berleant, Kristin Sheridan, Anne Condon, Virginia Vassilevska Williams, and Mark
Bathe. Isometric Hamming embeddings of weighted graphs. Discrete Applied Mathematics,
332:119–128, 2023.

6 Kevin M Cherry and Lulu Qian. Scaling up molecular pattern recognition with DNA-based
winner-take-all neural networks. Nature, 559(7714):370–376, 2018.

7 Vašek Chvátal. Recognizing intersection patterns. Annals of Discrete Mathematics, 8:249–252,
1980. doi:10.1002/net.3230210602.

8 Dragomir Ž Djoković. Distance-preserving subgraphs of hypercubes. Journal of Combinatorial
Theory, Series B, 14(3):263–267, 1973.

9 David Eppstein. Recognizing partial cubes in quadratic time. Journal of Graph Algorithms
and Applications, 15(2):269–293, 2011.

10 Constantine Glen Evans, Jackson O’Brien, Erik Winfree, and Arvind Murugan. Pattern
recognition in the nucleation kinetics of non-equilibrium self-assembly. arXiv preprint
arXiv:2207.06399, 2022.

11 Ronald L Graham and Peter M Winkler. On isometric embeddings of graphs. Transactions of
the American Mathematical Society, 288(2):527–536, 1985.

12 Haukur Gudnason, Martin Dufva, Dang Duong Bang, and Anders Wolff. Comparison of
multiple DNA dyes for real-time pcr: effects of dye concentration and sequence composition
on DNA amplification and melting temperature. Nucleic acids research, 35(19):e127, 2007.

13 Simon Hood, Daniel Recoskie, Joe Sawada, and Dennis Wong. Snakes, coils, and single-track
circuit codes with spread k. Journal of Combinatorial Optimization, 30:42–62, 2015.

14 Matthew R Lakin, Simon Youssef, Filippo Polo, Stephen Emmott, and Andrew Phillips.
Visual dsd: a design and analysis tool for dna strand displacement systems. Bioinformatics,
27(22):3211–3213, 2011.

15 Tomas Malinauskas and E Yvonne Jones. Extracellular modulators of Wnt signalling. Current
opinion in structural biology, 29:77–84, 2014.

https://doi.org/10.1002/net.3230210602


J. D. Berleant 4:17

16 Arvind Murugan, Zorana Zeravcic, Michael P Brenner, and Stanislas Leibler. Multifarious
assembly mixtures: Systems allowing retrieval of diverse stored structures. Proceedings of the
National Academy of Sciences, 112(1):54–59, 2015.

17 Andrew Neel and Max Garzon. Semantic retrieval in DNA-based memories with Gibbs energy
models. Biotechnology progress, 22(1):86–90, 2006.

18 Maxim P Nikitin. Non-complementary strand commutation as a fundamental alternative for
information processing by DNA and gene regulation. Nature Chemistry, pages 1–13, 2023.

19 Nicolas Peyret, P Ananda Seneviratne, Hatim T Allawi, and John SantaLucia. Nearest-
neighbor thermodynamics and NMR of DNA sequences with internal A⊙A, C⊙C, G⊙G, and
T⊙T mismatches. Biochemistry, 38(12):3468–3477, 1999.

20 Lulu Qian and Erik Winfree. Scaling up digital circuit computation with DNA strand
displacement cascades. Science, 332(6034):1196–1201, 2011.

21 Lulu Qian, Erik Winfree, and Jehoshua Bruck. Neural network computation with DNA strand
displacement cascades. Nature, 475:368–72, July 2011. doi:10.1038/nature10262.

22 John SantaLucia Jr. and Donald Hicks. The thermodynamics of DNA structural motifs.
Annual Review of Biophysics and Biomolecular Structure, 33(1):415–440, 2004. doi:10.1146/
annurev.biophys.32.110601.141800.

23 Georg Seelig, David Soloveichik, David Yu Zhang, and Erik Winfree. Enzyme-free nucleic acid
logic circuits. science, 314(5805):1585–1588, 2006.

24 Kristin Sheridan, Joseph Berleant, Mark Bathe, Anne Condon, and Virginia Vassilevska Willi-
ams. Factorization and pseudofactorization of weighted graphs. Discrete Applied Mathematics,
337:81–105, 2023. doi:10.1016/j.dam.2023.04.019.

25 Sergey V. Shpectorov. On scale embeddings of graphs into hypercubes. Eur. J. Comb.,
14(2):117–130, March 1993. doi:10.1006/eujc.1993.1016.

26 Richard C Singleton. Generalized snake-in-the-box codes. IEEE Transactions on Electronic
Computers, pages 596–602, 1966.

27 Kyle J Tomek, Kevin Volkel, Elaine W Indermaur, James M Tuck, and Albert J Keung.
Promiscuous molecules for smarter file operations in DNA-based data storage. Nature Com-
munications, 12(1):3518, 2021.

28 Peter M Winkler. Isometric embedding in products of complete graphs. Discrete Applied
Mathematics, 7(2):221–225, 1984.

29 Qikai Xu, Michael R Schlabach, Gregory J Hannon, and Stephen J Elledge. Design of 240,000
orthogonal 25mer DNA barcode probes. Proceedings of the National Academy of Sciences,
106(7):2289–2294, 2009.

30 Weishun Zhong, David J Schwab, and Arvind Murugan. Associative pattern recognition
through macro-molecular self-assembly. Journal of Statistical Physics, 167:806–826, 2017.

A Methods

A.1 NUPACK simulation parameters
All NUPACK simulations were performed at 25 ◦C, with 1 M NaCl. NUPACK simulations
for Sections 2 and 3 used material “dna04-nupack3” and ensemble “some-nupack3”. NUPACK
simulations for Section 4 used material “dna” and ensemble “stacking”.

A.2 DNA melting assay
The sequences x0, x1, x3, x6, and x10 and their complements were tested. Because intercalat-
ing dyes such as SYBR Green often affect the binding affinity of DNA strands or have strong
variations in fluorescence with temperature [12], we used a FRET assay with strands labeled
either with cyanine 3 (Cy3) or cyanine 5 (Cy5) dyes. Cy3- or Cy5-labeled strands were
ordered from Integrated DNA Technologies (IDT). Strands were mixed to a concentration
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of 0.25 µM per strand in a solution of 1× TAE and 1 M NaCl. Fluorescence of Cy3 was
measured on a qPCR machine (QuantStudio Flex 6, Applied Biosystems) over a temperature
ramp from 95 ◦C down to 10 ◦C and then back to 95 ◦C, at a rate of 0.5 ◦C/min. This was
repeated three times. Each curve was corrected with the Cy3 fluorescence measured from a
sample of the single strand without any binding partner. Data from the upward ramp was
averaged, and the average rate of change in fluorescence with temperature was computed.
The temperature with highest rate of change was taken as the melting temperature.

B Thermodynamic analysis of the promiscuous ligand-receptor system

B.1 Analysis of the dimer model
The dimer model uses a set of nR receptors Ri and nL ligands Lj and is capable of generating
the four archetypal response types. This requires fewer components than the trimer model
used in by Antebi et al. in their analysis of the BMP signaling pathway [1].

Ri + Lj

Kij−−⇀↽−− Dij (15)

Dij
ϵijk−−→ Dij + S (16)

S
γ−→ ∅ (17)

Let εij = ϵij

γ . Given these reactions, the steady-state level of S is

[S]ss =
∑

1≤i≤nR,1≤j≤nL

εij [Dij ]ss (18)

=
∑

1≤i≤nR

[Ri]0

∑
1≤j≤nL

εijKij [Lj ]ss

1 +
∑

1≤j≤nL
Kij [Lj ]ss

(19)

≈
∑

1≤i≤nR

[Ri]0

∑
1≤j≤nL

εijKij [Lj ]0∑
1≤j≤nL

Kij [Lj ]0
(20)

where [A]0 is the total concentration of species A bound or unbound and the final approxim-
ation is achieved by assuming the total ligand concentration is high.

When there are exactly two ligands, each term of the summation can be individually
expressed as a sigmoid curve:

[S]ss ≈
∑

1≤i≤nR

[Ri]0
εi1Ki1[L1]0 + εi2Ki2[L2]0

Ki1[L1]0 + Ki2[L2]0
(21)

= [R1]0

[
ε11 + ε12 − ε11

K11
K12

ex + 1

]
(22)

where x = log
(

[L1]0
[L2]0

)
. This describes a sigmoid curve that transitions from [Ri]0εi2 to

[Ri]0εi1 with a midpoint at − log Ki1
Ki2

. The “height” of the sigmoid is given by [Ri]0(εi2 −εi1).
Thus, in a two ligand, two receptor system, the signal response is the sum of two sigmoids,

each of which may be independently shifted along the x-axis by changing Ki1
Ki2

, and shifted
and/or stretched along the vertical axis by modifying εi1 and εi2. Note that the steepness of
the sigmoid (i.e. horizontal stretching) is not adjustable under this model; the same is true
of the trimer model presented by Antebi et al. [1].

The additive and ratiometric responses may be generated by a single receptor, while the
balance and imbalance responses require two receptors.
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B.2 DNA strand displacement implementation
Consider the ligands and receptors shown in Figure 4a. Each ligand has two non-orthogonal
domains (ai and bi) as well as a toehold that allows it to bind to each receptor. Once
bound, the two non-orthogonal domains on the receptor that flank its toehold binding
site may be displaced with some free energy change based on the relative affinities of the
incumbent domains (aj and bj) and intruder domains to the bottom domains (ak and bk). A
FRET-based readout is implemented by the addition of a fluorophore-quencher pair, which
is activated only when the right-hand non-orthogonal domain is displaced. The full reaction
diagram is enumerated below:

Ri + Lj
Kt

−−⇀↽−− Ri:Lj (23)

Ri:Lj

Ka
ij−−⇀↽−− (Ri:Lj)a (24)

Ri:Lj

Kb
ij−−⇀↽−− (Ri:Lj)b (25)

(Ri:Lj)a

Kb
ij−−⇀↽−− (Ri:Lj)ab (26)

(Ri:Lj)b

Ka
ij−−⇀↽−− (Ri:Lj)ab (27)

Thermodynamic analysis of this system is straightforward, as long as we neglect any
second-order effects of adjacent domains (note that these effects can in principle be significant).
The presence of the 5T loop on either side of the non-orthogonal domains on the receptor is
intended to reduce the significance of this. The following equations hold at equilibrium

Kt = [Ri:Lj ]
[Ri][Lj ] (28)

Ka
ij = [(Ri:Lj)a]

[Ri:Lj ] = [(Ri:Lj)ab]
[(Ri:Lj)b] (29)

Kb
ij = [(Ri:Lj)b]

(Ri:Lj ] = [(Ri:Lj)ab]
[(Ri:Lj)a] (30)

and some algebra yields the following:∑
1≤i≤nR,1≤j≤nL

[(Ri:Lj)∗] =
∑

1≤i≤nR

[Ri]0
∑nL

j=1 Kt(1 + Ka
ij)[Lj ]

1 +
∑nL

j=1 Kt(1 + Ka
ij)(1 + Kb

ij)[Lj ]
(31)

≈
∑

1≤i≤nR

[Ri]0
∑nL

j=1 Kt(1 + Ka
ij)[Lj ]0∑nL

j=1 Kt(1 + Ka
ij)(1 + Kb

ij)[Lj ]0
(32)

where [(Ri:Lj)∗] = [Ri:Lj ] + [(Ri:Lj)a] is the concentration of fluorescing receptor, noting
that [Ri] ≈ 0 because ligands are in excess so that essentially no receptor will be unbound.

Note the similarity to Equation (20). The two are formally equivalent if we make the
following correspondences

Kij = Kt(1 + Ka
ij)(1 + Kb

ij) (33)

εij = 1
1 + Kb

ij

. (34)

Thus, this system is capable of the same signal responses as the ligand-receptor system of
the previous section, and can in principle implement the four archetypal responses using two
ligands and two receptors.
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C Tables of sequences

Table 2 Base sequence and substitutions for the three designs Dx, Dy, and Dz.

cyclic graph Base sequence GCCTTGTATGTGAATATCCGTGTCA
Fully mutated sequence GCCATGAAAGAGTAAAACCGAGACA

Desargues graph Base sequence GGAGAATGATTAGCACGGAGAGTGG
Fully mutated sequence GGTGTAAGTTAAGCTCGGTGTGAGG

weighted graph Base sequence CGGTGTGCTTTTACTTAAGTAACCG
Fully mutated sequence CGGAGAGCATATTCATTAGAATCCG

Table 3 Sequences for the cyclic graph on 18 nodes (Dx), Desargues graph (Dy), and weighted
graph (Dz).

Design Name Binary string Sequence

cyclic

x0 000000000 GCCTTGTATGTGAATATCCGTGTCA
x1 100000000 GCCATGTATGTGAATATCCGTGTCA
x2 110000000 GCCATGAATGTGAATATCCGTGTCA
x3 111000000 GCCATGAAAGTGAATATCCGTGTCA
x4 111100000 GCCATGAAAGAGAATATCCGTGTCA
x5 111110000 GCCATGAAAGAGTATATCCGTGTCA
x6 111111000 GCCATGAAAGAGTAAATCCGTGTCA
x7 111111100 GCCATGAAAGAGTAAAACCGTGTCA
x8 111111110 GCCATGAAAGAGTAAAACCGAGTCA
x9 111111111 GCCATGAAAGAGTAAAACCGAGACA
x10 011111111 GCCTTGAAAGAGTAAAACCGAGACA
x11 001111111 GCCTTGTAAGAGTAAAACCGAGACA
x12 000111111 GCCTTGTATGAGTAAAACCGAGACA
x13 000011111 GCCTTGTATGTGTAAAACCGAGACA
x14 000001111 GCCTTGTATGTGAAAAACCGAGACA
x15 000000111 GCCTTGTATGTGAATAACCGAGACA
x16 000000011 GCCTTGTATGTGAATATCCGAGACA
x17 000000001 GCCTTGTATGTGAATATCCGTGACA

Desargues

y0 10100 GGTGAAAGATTAGCACGGAGAGTGG
y1 10110 GGTGAAAGTTTAGCACGGAGAGTGG
y2 10010 GGTGAATGTTTAGCACGGAGAGTGG
y3 11010 GGTGTATGTTTAGCACGGAGAGTGG
y4 01010 GGAGTATGTTTAGCACGGAGAGTGG
y5 01011 GGAGTATGTTAAGCACGGAGAGTGG
y6 01001 GGAGTATGATAAGCACGGAGAGTGG
y7 01101 GGAGTAAGATAAGCACGGAGAGTGG
y8 00101 GGAGAAAGATAAGCACGGAGAGTGG
y9 10101 GGTGAAAGATAAGCACGGAGAGTGG
y10 11100 GGTGTAAGATTAGCACGGAGAGTGG
y11 00110 GGAGAAAGTTTAGCACGGAGAGTGG
y12 10011 GGTGAATGTTAAGCACGGAGAGTGG
y13 11000 GGTGTATGATTAGCACGGAGAGTGG
y14 01110 GGAGTAAGTTTAGCACGGAGAGTGG
y15 00011 GGAGAATGTTAAGCACGGAGAGTGG
y16 11001 GGTGTATGATAAGCACGGAGAGTGG
y17 01100 GGAGTAAGATTAGCACGGAGAGTGG
y18 00111 GGAGAAAGTTAAGCACGGAGAGTGG
y19 10001 GGTGAATGATAAGCACGGAGAGTGG

weighted

z0 000011110 CGGTGTGCTTTTTCATTAGAAACCG
z1 001100110 CGGTGTGCATATACTTTAGAAACCG
z2 010101010 CGGTGAGCTTATACATAAGAAACCG
z3 000000000 CGGTGTGCTTTTACTTAAGTAACCG
z4 011010010 CGGTGAGCATTTTCTTAAGAAACCG
z5 111111110 CGGAGAGCATATTCATTAGAAACCG
z6 000000001 CGGTGTGCTTTTACTTAAGTATCCG
z7 011010011 CGGTGAGCATTTTCTTAAGAATCCG
z8 111111111 CGGAGAGCATATTCATTAGAATCCG
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Table 4 Shared sequences for the DNA strand displacement ligand-receptor networks.

Name Binary string Sequence
t GAGAACT

nR1 GGTCTTGACAAACGTGTGCT
mR1 TATGAGGACGAATCTCCCGC
nR2 CCGATGTTGACGGACTAATC
mR2 GTTTATCGGGCGTGGTGCTC
aR1 111111111 GCCATGAAAGAGTAAAACCGAGACA
aR′

1
111111100 GCCATGAAAGAGTAAAACCGTGTCA

aR2 111111100 GCCATGAAAGAGTAAAACCGTGTCA
aR′

2
111111111 GCCATGAAAGAGTAAAACCGAGACA

bR1 000000000 GGAGAATGATTAGCACGGAGAGTGG
bR′

1
100000000 GGTGAATGATTAGCACGGAGAGTGG

bR2 011111111 GGAGTAAGTTAAGCTCGGTGTGAGG
bR′

2
111111111 GGTGTAAGTTAAGCTCGGTGTGAGG

Table 5 Gate-specific sequences for the DNA strand displacement ligand-receptor networks.

Gate Name Binary string Sequence

Balance
aL1 111111100 GCCATGAAAGAGTAAAACCGTGTCA
aL2 111111111 GCCATGAAAGAGTAAAACCGAGACA
bL1 100000000 GGTGAATGATTAGCACGGAGAGTGG
bL2 111111111 GGTGTAAGTTAAGCTCGGTGTGAGG

Imbalance
aL1 111111110 GCCATGAAAGAGTAAAACCGAGTCA
aL2 111111110 GCCATGAAAGAGTAAAACCGAGTCA
bL1 100000000 GGTGAATGATTAGCACGGAGAGTGG
bL2 111111111 GGTGTAAGTTAAGCTCGGTGTGAGG

Ratiometric
aL1 111111110 GCCATGAAAGAGTAAAACCGAGTCA
aL2 111111111 GCCATGAAAGAGTAAAACCGAGACA
bL1 100000000 GGTGAATGATTAGCACGGAGAGTGG
bL2 111111111 GGTGTAAGTTAAGCTCGGTGTGAGG

Additive
aL1 111111110 GCCATGAAAGAGTAAAACCGAGTCA
aL2 111111110 GCCATGAAAGAGTAAAACCGAGTCA
bL1 111111111 GGTGTAAGTTAAGCTCGGTGTGAGG
bL2 111111111 GGTGTAAGTTAAGCTCGGTGTGAGG
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Table 6 Sequences for the hairpin logic circuits. The full hairpin sequence is alā∗ for signal A.

Gate Name Binary string Sequence
l TTT

NOT

i 11111111 GGTGTAAGTTAAGCTCGGTGAGAGG
ī 11110000 GGTGAAAGATTAGCACGGTGAGAGG
a 11100000 GGTGAAAGATTAGCACGGAGAGAGG
ā 11101111 GGTGTAAGTTAAGCTCGGAGAGAGG
q 11001111 GGTGTAAGTTAAGCTCGGAGAGTGG
q̄ 11000000 GGTGAAAGATTAGCACGGAGAGTGG
s 00000000 GGAGAATGATTAGCACGGAGAGTGG
s̄ 00001111 GGAGTATGTTAAGCTCGGAGAGTGG

AND

i1 111000000 GGTGAAAGATTAGCACGGAGAGAGG
ī1 111000111 GGTGAAAGATAAGCTCGGAGTGAGG
q1 110000111 GGTGAAAGATAAGCTCGGAGTGTGG
q̄1 110000000 GGTGAAAGATTAGCACGGAGAGTGG
i2 000111000 GGAGTATGTTTAGCACGGTGAGTGG
ī2 000111111 GGAGTATGTTAAGCTCGGTGTGTGG
q2 000110111 GGAGTATGATAAGCTCGGTGTGTGG
q̄2 000110000 GGAGTATGATTAGCACGGTGAGTGG
s 000000000 GGAGAATGATTAGCACGGAGAGTGG
s̄ 000000111 GGAGAATGATAAGCTCGGAGTGTGG

Square Root

i1 001010100 GGAGAAAGTTTAGCACGGAGAGAGG
ī1 110100100 GGAGTATGTTAAGCACGGAGTGTGG
i2 001110000 GGAGTAAGATTAGCACGGAGAGAGG
ī2 110000000 GGAGAATGATAAGCACGGAGTGTGG
i3 010001100 GGTGAATGTTAAGCACGGAGAGTGG
ī3 101111100 GGTGTAAGTTTAGCACGGAGTGAGG
i4 100001100 GGTGAATGTTTAGCACGGAGTGTGG
ī4 011111100 GGTGTAAGTTAAGCACGGAGAGAGG
m1 111100100 GGAGTATGTTAAGCACGGAGTGAGG
m̄1 000010100 GGAGAAAGTTTAGCACGGAGAGTGG
m2 111000000 GGAGAATGATAAGCACGGAGTGAGG
m̄2 000110000 GGAGTAAGATTAGCACGGAGAGTGG
m3 101111000 GGTGTAAGATTAGCACGGAGTGAGG
m̄3 010001000 GGTGAATGATAAGCACGGAGAGTGG
m4 011111000 GGTGTAAGATAAGCACGGAGAGAGG
m̄4 100001000 GGTGAATGATTAGCACGGAGTGTGG
x12 000010000 GGAGAAAGATTAGCACGGAGAGTGG
x̄12 111100000 GGAGTATGATAAGCACGGAGTGAGG
x23 010000000 GGAGAATGATAAGCACGGAGAGTGG
x̄23 101110000 GGAGTAAGATTAGCACGGAGTGAGG
x24 100000000 GGAGAATGATTAGCACGGAGTGTGG
x̄24 011110000 GGAGTAAGATAAGCACGGAGAGAGG
q1 110000100 GGAGAATGTTAAGCACGGAGTGTGG
q̄1 001110100 GGAGTAAGTTTAGCACGGAGAGAGG
q2 111110000 GGAGTAAGATAAGCACGGAGTGAGG
q̄2 000000000 GGAGAATGATTAGCACGGAGAGTGG
s1 001100110 GGAGTATGTTTAGCACGGTGAGAGG
s̄1 110010110 GGAGAAAGTTAAGCACGGTGTGTGG
s2 000000011 GGAGAATGATTAGCTCGGTGAGTGG
s̄2 111110011 GGAGTAAGATAAGCTCGGTGTGAGG
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Abstract
Nucleic acid strands, which react by forming and breaking Watson-Crick base pairs, can be designed to
form complex nanoscale structures or devices. Controlling such systems requires accurate predictions
of the reaction rate and of the folding pathways of interacting strands. Simulators such as Multistrand
model these kinetic properties using continuous-time Markov chains (CTMCs), whose states and
transitions correspond to secondary structures and elementary base pair changes, respectively. The
transient dynamics of a CTMC are determined by a kinetic model, which assigns transition rates to
pairs of states, and the rate of a reaction can be estimated using the mean first passage time (MFPT)
of its CTMC. However, use of Multistrand is limited by its slow runtime, particularly on rare events,
and the quality of its rate predictions is compromised by a poorly-calibrated and simplistic kinetic
model. The former limitation can be addressed by constructing truncated CTMCs, which only
include a small subset of states and transitions, selected either manually or through simulation. As
a first step to address the latter limitation, Bayesian posterior inference in an Arrhenius-type kinetic
model was performed in earlier work, using a small experimental dataset of DNA reaction rates
and a fixed set of manually truncated CTMCs, which we refer to as Assumed Pathway (AP) state
spaces. In this work we extend this approach, by introducing a new prior model that is directly
motivated by the physical meaning of the parameters and that is compatible with experimental
measurements of elementary rates, and by using a larger dataset of 1105 reactions as well as larger
truncated state spaces obtained from the recently introduced stochastic Pathway Elaboration (PE)
method. We assess the quality of the resulting posterior distribution over kinetic parameters, as
well as the quality of the posterior reaction rates predicted using AP and PE state spaces. Finally,
we use the newly parameterised PE state spaces and Multistrand simulations to investigate the
strong variation of helix hybridization reaction rates in a dataset of Hata et al. While we find
strong evidence for the nucleation-zippering model of hybridization, in the classical sense that the
rate-limiting phase is composed of elementary steps reaching a small “nucleus” of critical stability,
the strongly sequence-dependent structure of the trajectory ensemble up to nucleation appears to be
much richer than assumed in the model by Hata et al. In particular, rather than being dominated
by the collision probability of nucleation sites, the trajectory segment between first binding and
nucleation tends to visit numerous secondary structures involving misnucleation and hairpins, and
has a sizeable effect on the probability of overcoming the nucleation barrier.

2012 ACM Subject Classification Applied computing → Chemistry

Keywords and phrases DNA reaction kinetics, kinetic model calibration, simulation-based Bayesian
inference, continuous-time Markov chains

Digital Object Identifier 10.4230/LIPIcs.DNA.29.5

© Jordan Lovrod, Boyan Beronov, Chenwei Zhang, Erik Winfree, and Anne Condon;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on DNA Computing and Molecular Programming (DNA 29).
Editors: Ho-Lin Chen and Constantine G. Evans; Article No. 5; pp. 5:1–5:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DNA.29.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 Revisiting Hybridization Kinetics with Improved Elementary Step Simulation

1 Introduction

Nucleic acid strands, which can react in vitro or in vivo by forming and breaking Watson-Crick
base pairs, can be designed to fold into specific two and three-dimensional nanostructures
[19, 41] through methods such as tile and brick assembly [64, 13, 36] and DNA origami
[54, 21]. These nanostructures can execute various chemical [65, 11], mechanical [45, 5, 6],
computational [4, 63, 75], and biomedical tasks [62, 20, 12, 74, 80, 26, 40]. To design and
debug such systems of interacting nucleic acid strands within their environment, it is valuable
to predict both their thermodynamic behaviour (such as energetically stable structures) and
their kinetic behaviour (such as folding pathways or reaction rates).

Efficient, general-purpose methods are available for predicting thermodynamic properties
of interacting nucleic acid strands [34, 85, 76, 25]. These methods leverage “nearest-neighbor”
models of nucleic acid thermodynamics that have been well calibrated from experimental
data over many decades [46, 58, 57]. In contrast, general-purpose methods for predicting
kinetic properties can be slow and inaccurate. One such simulation model, Multistrand
[59, 60], samples folding trajectories from initial to final states through the space of all
possible secondary structures of the nucleic acid system. Each step along the trajectory
is an elementary transition [23], in which a base pair forms or breaks and in which a
holding time is consumed. Such simulations can be prohibitively slow when the reaction is
a rare event, e.g., when the initial and final states are separated by a high energy barrier.
Moreover, Multistrand’s elementary rates are determined by a combination of nearest neighbor
thermodynamics and a 2-parameter Metropolis kinetic model, which is too simplistic to
produce reliable rate predictions.

Two important improvements address these limitations of Multistrand. First, the Pathway
Elaboration (PE) method uses Multistrand to build truncated state spaces of reaction kinetics
[83, 81]. These smaller state spaces are amenable to matrix methods for rate computation,
which are efficient even on rare events. Second, a 15-parameter Arrhenius kinetic model
takes into account the local context around each elementary step, which in principle should
improve reaction rate predictions [82]. This Arrhenius model was calibrated using a dataset
of a few hundred reactions, on small, customised state spaces, that reflect assumptions about
likely pathways. We refer to these as Assumed Pathway (AP) state spaces.

1.1 Improved parameter inference
However, previous work stopped short of the challenging computational task of calibrating
the Arrhenius model using the PE state spaces. In this work, we describe a Bayesian inference
approach to this problem. Section 3.1 introduces a new prior distribution over the kinetic
parameters, which is directly motivated by their physical meaning and which is compatible
with experimental measurements of elementary rates. We use a dataset of 1105 reactions, as
will be described in Section 4.2, that had previously been sourced, but only a small subset
of which had been used for inference in past work. For each reaction in this dataset, we
generated a truncated state space with AP, and also using the existing PE implementation
when it completed within 7 days and with 10GB of guaranteed RAM on a single CPU core1.

Despite a significantly higher computational cost, we find that the larger PE state spaces
do not always lead to more accurate rate predictions than the small, manually designed AP
state spaces. For posterior approximation, we apply the standard random walk Metropolis

1 The majority of the runtime and memory footprint were caused by the unoptimised Python implement-
ation of PE, rather than by the Multistrand stochastic simulations in its inner loops.
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(RWM) algorithm. The resulting posterior approximations in Section 4.3, which are often
multimodal, recover an expected correlation structure among the kinetic parameters. However,
we also uncover severe numerical instability in the linear equation systems required for rate
prediction. Due to numerous design limitations in the legacy software, a significant refactoring
effort was required to implement the above extensions. In Section 4.4, we discuss several
modifications to the kinetic model and inference methods that could improve inference quality.
Full details of this work are described in Lovrod’s MSc Thesis [43].

1.2 Case study
In Section 5, we use the mode of the new posterior to parameterise the Multistrand model,
and present a case study based on the helix association data of Hata et al. [33]. Although
the examined sequences have equal length and similar melting temperatures, the reported
hybridization rates spread over more than two orders of magnitude. Our thermodynamic
simulations confirm a correlation between the experimental rate and the expected number of
free bases in the Boltzmann ensemble of unbound strands. However, our kinetic simulations
suggest that the process of nucleation, in the non-probabilistic sense of reaching three
consecutive correct inter-strand base pairs, is nontrivial and insufficiently explained by the
time to first binding. We then employ Multistrand’s “first step mode” (FSM) to analyse the
probabilistic and temporal behaviour of trajectories that start at the moment of initial binding
and end either with dissociation or hybridization. In particular, we find a positive correlation
between the proportion of successfully associating trajectories and the experimental rate.
Moreover, the two-stranded complexes often spend extended periods of time exploring
conformations with misnucleation and/or hairpins, and visualisations of the reactive FSM
trajectory ensemble indicate a rich and strongly sequence-dependent structure, including a
multimodal first passage time distribution for some reactions.

2 Background and related work

The DNA reactions we consider occur in systems with fixed experimental conditions (solution
volume V , temperature T , and concentrations of Na+ and Mg2+ ions). We often use the
inverse temperature β = 1

kBT , where kB is the Boltzmann constant. A nucleic acid reaction,
in which DNA or RNA strands fold from one three-dimensional structure into another by
forming and breaking base pairs, can be described at the secondary structure level with an
initial microstate (or initial distribution over microstates) representing the reactants, and a
final microstate (or final region of microstates) representing the products. The number of
microstates may in general scale exponentially in the total strand length l.

A thermodynamic model defines the Gibbs free energy ∆G(x) relative to some reference
state, at all allowed states x ∈ X of a system, and gives rise to the Gibbs-Boltzmann
distribution π and its partition function Zβ at inverse temperature β,

π(x | β) = 1
Zβ

· e−β·∆G(x), Zβ =
∫

e−β·∆G(x)dx, (1)

which can be used to compute all quantities of interest at thermodynamic equilibrium.

2.1 Kinetic models of nucleic acid elementary steps
We focus in this work on elementary step models of nucleic acid reactions [23, 15, 59, 60,
22, 82], which offer a relatively fine-grained view of the system, with states and transitions
corresponding to secondary structures and isolated changes in base pairs, respectively. These
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simulators model the reaction kinetics using a continuous-time Markov chain (CTMC) on
this state space, which will be defined in the next section. Notably, Multistrand can model
multi-stranded reactions, but like other currently available elementary step models, it only
allows pseudoknot-free secondary structures.

2.1.1 CTMCs and their mean first passage times (MFPTs)
A finite CTMC is characterised by an initial probability distribution π0 over a finite set
of allowed states X and a transition rate matrix K : X 2 → R, such that for all pairs of
distinct states x and x′, K(x, x′) is the instantaneous transition rate from x to x′, and
K(x, x) = −

∑
x′∈X \x K(x, x′) [69]. We refer to the subset of states I ⊂ X with non-zero

initial probability π0 as the initial region. The transition probability matrix P : X 2 → [0, 1]
is the normalised rate matrix, P (x, x′) = − K(x,x′)

K(x,x) , whereas the transition matrices (or
propagators) Qt = etK for t ∈ R≥0 determine the transient dynamics of a CTMC. A
stochastic process {X(t)}t∈R≥0

can then be identified with this CTMC if and only if

P (X(t0) = x0, . . . , X(tn) = xn) = π0(x0)
∏

m∈[0,n−1]

Qtm+1−tm(xm, xm+1) (2)

holds for any n ∈ N0, t0 < · · · < tn ∈ R≥0, and x0, . . . , xn ∈ X . In other words, trajectory
probabilities can be arbitrarily decomposed into segment probabilities due to Markovianity,
and the probability of any segment is determined solely by its spatial endpoints (xm, xm+1),
its temporal endpoints (tm, tm+1) and the transition rate matrix.

For a fixed final region F ⊂ X , the mean first passage time (MFPT) τF : X → R≥0
denotes the expected time to reach F for the first time from each state. It satisfies

−τF (x) · K(x, x) = 1 +
∑

x′∈X \x

τF (x′) · K(x, x′) for all x ∈ X \ {F} , (3)

which is a numerically solvable matrix equation for sufficiently small CTMCs in which all
states are connected to F [69], and this is the approach taken in this work. The MFPT from
I to F is then defined by taking the expectation over the initial state distribution. When
the state space of a CTMC is large, it can be infeasible to use matrix methods to exactly
compute quantities such as the MFPT. One can instead resort to Monte Carlo estimation,
e.g., via the stochastic simulation algorithm (SSA) [31], although SSA can be prohibitively
inefficient for rare event simulation such as in systems with several metastable regions.

2.1.2 Functional form of CTMC rates
A kinetic model with free parameters θ describes the non-equilibrium dynamics of a CTMC
via transition rates. We classify elementary transitions into three distinct types: association,
in which a base pair is formed between two previously separate complexes, dissociation,
in which a base pair breaks and causes a complex with multiple strands to separate into
two distinct complexes, and isomerisation, in which a base pair is formed/broken within a
complex. The kinetic model in Multistrand [59, 60] can be expressed as

ln K(x, x′|β, θ) = ln K̄(x, x′|β, θ)+


−β · 1∆G(x′)≥∆G(x)(∆G(x′) − ∆G(x)), isomerisation
ln(u · αθ), association
ln(u · αθ) − β · (∆G(x′) − ∆G(x)), dissociation

(4)

where the base transition rate function K̄ : X 2 → R≥0 and the bimolecular scaling parameter
αθ are parametric choices, x and x′ are adjacent microstates, and u is the initial strand
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concentration. A functional form of K̄(x, x′|β, θ) which is symmetric with respect to x and
x′ can easily be shown to satisfy detailed balance,

K(x, x′ | β, θ)
K(x′, x | β, θ) = π(x′ | β)

π(x | β) = e−β·(∆G(x′)−∆G(x)) for all x, x′ ∈ X , (5)

which is a sufficient condition for recovering the Gibbs-Boltzmann distribution (1) in the
steady-state limit.

2.1.3 Context-dependent Arrhenius rates
Kinetic models of Arrhenius type factorise the rate coefficient using a pre-exponential factor
A and an activation energy E that couples to the temperature. They can be parameterised in
ways that make the kinetic behavior of an elementary step dependent on local context features
surrounding the affected base pair [82, 25], e.g., by assuming multiplicative (log-additive)
effects selected by C : X 2 → 2C from a set of transition context features C,

ln K̄(x, x′|θ, β) :=
∑

c∈C(x,x′)

ln Aθ,c − β
∑

c∈C(x,x′)

Eθ,c , θ := (ln αθ, (ln Aθ,c)c∈C , (Eθ,c)c∈C) . (6)

In the Arrhenius model we consider in this work, C comprises topological half contexts, which
refer to base pairing structures on a single side of the affected base pair in an elementary
transition [82]. Symmetry of ln K̄ is ensured by applying the same features to the forward and
reverse directions of a transition. This model differentiates between seven half contexts2 which
categorise transitions into 28 equivalence classes of local contexts3. It therefore contains 15
free kinetic parameters, whereas the Metropolis kinetic model originally used in Multistrand
[59, 60] has only two, (kuni, kbi) ≡ (Aθ, αθ · Aθ).

3 Bayesian model for kinetic parameters

3.1 Prior over kinetic parameters
Our new prior imposes an independent, weak log-normal distribution on the multiplicative
rate contribution from each kinetic parameter dimension,

ln αθ ∼ N
(
µ = −2.3, σ2 = 800

)
[ln

(
M−1)

] , (7)
Eθ,c ∼ N

(
µ = 0.0, σ2 = 25

)
[kcal/mol] , ln Aθ,c ∼ N

(
µ = 7.5, σ2 = 110

)
[ln s−1/2 ] .

Assuming fixed thermodynamic parameters, this prior effectively describes a temperature-
dependent Gaussian law over the elementary log-rates, and provides support for all values
that may be physically possible. It leads to ln K̄ ∼ N (15.0, 364.8) at 25◦C and ln K̄ ∼
N (15.0, 342.3) at 50◦C, which is compatible with experimental measurements of elementary
rates [47, 15] as well as values from past calibration of the Metropolis model [59, 60, 68, 82, 83].

Notably, the pre-exponential factors Ac have non-negative support, and the particularly
weak prior for ln α is centred at − ln(10), which corresponds to the assumption that the
numerical value of the bimolecular elementary rate coefficient is approximately one order
of magnitude smaller than the numerical value of the unimolecular rate coefficient, when
measured in the standard units of M−1s−1 and s−1, respectively [59, 60, 68, 82, 83]. Our weak

2 C := {stack, loop, end, stack+loop, stack+end, loop+end, stack+stack}.
3 The number of unordered pairs of half contexts is the multiset coefficient

(( 7
2

))
=

(8
2

)
= 28.
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assumptions for the parameters Ec are that each elementary scale Arrhenius activation energy
should be less, in magnitude, than experimentally estimated macroscale activation energies
[9, 3, 50, 52], and that the elementary scale and macroscale activation energies will be closer
in value for simple reactions such as hairpin closing/opening, helix association/dissociation
and bubble closing, especially when the strands are short. Furthermore, centering Ec at zero
amounts to a regularisation towards the functional form of the original Metropolis model.

3.2 Likelihood of observations

Our observation model for macroscopic rates follows an approach that was previously used
for posterior inference [82] and for maximum likelihood estimation [82, 83] of elementary
step rates. Given a kinetic parameterisation θ and a state space X , a deterministic rate
prediction for a reaction is simulated as the inverse of the expected MFPT τF from the initial
state distribution π0, representing reactants, to the non-empty final region F , representing
products. More precisely, the rate coefficient prediction k̂ depends on the MFPT as:

k̂ =


1

Eπ0 [τF | X , β, θ] for reactions of the form A → B or A → B + C

1
u Eπ0 [τF | X , β, θ] for reactions of the form A + B → C or A + B → C + D.

(8)

The former case describes unimolecular reactions, for which k̂ has the meaning of a first-
order reaction rate coefficient. Its estimate is based on the assumption that there are no
intermediate association steps along the reaction pathway, which holds in our dataset. The
latter case describes bimolecular reactions, for which k̂ has the meaning of a second-order
reaction rate coefficient4. By dimensional analysis, it requires a concentration quantity to
relate to a time quantity. In general, second-order rates cannot be determined directly from
the CTMC model of the Multistrand simulator, but the simple estimate above, which uses
the initial concentration u of reactants, is justified in the limit of low concentrations, where
the initial association step of second order is rate-limiting for the full reaction5.

For each reaction r, our noise model then centers a log-normal distribution at the predicted
rate coefficient to obtain a probabilistic synthetic observation for the log-rate coefficient, i.e.,
log10 kr ∼ N (log10 k̂r, σ2

r), where the variance σ2
r is taken as the experimental variance of the

log-rate coefficients among the reactions of the same group. A group of reactions is defined
by its experimental publication and reaction type, and corresponds to a row in Appendix
Table 3. In the case where k̂ is a non-physical prediction, which occurs when the sparse
solver for the MFPT fails or produces a negative or infinite prediction, we instead apply a
constant likelihood close to zero, N (5σ2

r | 0, σ2
r). It should be noted that this noise model

is an ad hoc choice for constructing a likelihood kernel and, in its current form, cannot be
understood as a physically motivated generative model.

4 Note that the experimental rate coefficients in our dataset were not necessarily computed under the
same assumptions, and, for instance, we have several strand displacement reactions in our dataset
whose rate coefficients were estimated with first order fits. This warrants reconsideration in future work,
particularly if new reactions at higher concentrations are included in the dataset.

5 See [59, Ch. 7,8] for a discussion about estimating second-order rates from Multistrand simulation
statistics, and [82, Sec. 5.2] for the modelling assumptions in (8).
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3.3 Approximations of the intractable likelihood
In order to truncate the intractable state space underlying the Multistrand simulator, we
employ the deterministic method in [82], which we call Assumed Pathway (AP), and the
more recent stochastic method Pathway Elaboration (PE) [83]. A distinct truncated state
space X is precomputed once for each reaction and is treated as fixed during inference.

The states included in the AP approximation are the non-pseudoknotted secondary
structures whose base pairs occur in either the initial or final secondary structure, and which
are reachable by elementary step transitions where the affected base pair is always at the
boundary of a hybridized domain. Thus the AP method only considers a small subset of
states and transitions which are assumed to cover the dominant pathway. For instance, in a
helix association reaction, any hairpin formations prior to or during helix association would
not be modelled, although they could significantly affect reaction rates [27]. To avoid these
sorts of limitations, the PE method constructs truncated CTMCs stochastically, using the
states found through a succession of distance-biased and unbiased trajectory samples [83].

The criteria for the initial and final regions in our simulations are reported in Appendix
Table 1. In many cases, these criteria define regions that are much broader than those
considered in previous work [83]. The initial states are treated as Boltzmann distributed
according to the thermodynamic model, for which we use Nupack 3.2.2 [76]. The number of
states in the PE approximations that satisfy the criteria for our endpoint regions is stochastic:
Our simulations led to initial regions with up to 3689 states and final regions with up to
1080 states. In contrast, the AP state spaces include exactly one initial and one final state.

The computational cost of the PE method depends strongly on the choice of hyperpara-
meters and on the size and energy landscape of the true state space. We aim to construct
truncated CTMCs using a set of hyperparameters suggested in the original reference (nb = 128,
nκ = 256, b = 0.4, κ = 16ns) [83]. Each CTMC construction attempt for all reactions in our
dataset is given 7 days with at least 10GB of RAM on a single CPU core. However, these
resources proved insufficient for our initial choice of hyperparameters for many reactions.
We therefore attempted eight different hyperparameter settings, which we report and name
in Appendix Table 2. We give preference to the hyperparameter settings in order of the
expected resulting state space size. We did not use the δ-pruning step of the PE method,
because, in the existing implementation, its computational cost incurred during the CTMC
construction did not warrant the speedup that could have been achieved in inference. All
PE state spaces were generated with the Metropolis kinetic parameters

kuni = 3.61 × 106 [s−1] , kbi = 1.12 × 105 [M−1 s−1] , (9)

which are equivalent to the Arrhenius parameters

ln α = −3.47 [ln M−1] , ∀c ∈ C. ln Ac = 7.55 [ln s−1/2 ] , Ec = 0 [kcal/mol] (10)

in the sense of Section 2.1.3. These parameters were the result of previous parameter tuning
on PE state spaces via gradient-free maximum a posteriori (MAP) optimisation [83].

4 Bayesian inference for kinetic parameters

4.1 Bayesian inference methods
Following the approach taken in [82], we used Markov chain Monte Carlo (MCMC) [18, 53, 42]
for approximate Bayesian inference, but with a different implementation choice. In particular,
our Bayesian model was expressed in the probabilistic programming framework PyMC [56],
using custom operations to construct and solve the sparse linear equations for the MFPT,
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and the random walk Metropolis (RWM) algorithm [48] was used for inference. In addition to
the inference algorithm implementation, PyMC provides a number of standard tools [7, 55]
for diagnosing the behaviour of MCMC samplers, e.g., trace plots and the effective sample
size (ESS) estimated using Geyer’s initial monotone sequence criterion [29, 30].

Figure 1 Posterior densities over the Arrhenius kinetic parameters in Section 2.1.3. Approxim-
ations are obtained from 600 samples using RWM, on AP and PE inference targets as defined in
Section 4.2. The corresponding trace plots are shown in Appendix Figure 7.

4.2 Dataset and likelihood approximation results
The dataset used for parameter inference, summarised in Appendix Table 3, consists of
1105 DNA reactions and includes hairpin opening/closing [9, 8, 37], bubble closing [3], helix
association/dissociation [49, 52], and three-way strand displacement [52, 77, 44]6. We define
the following two posterior inference targets, which use different combinations of data subsets
and state space approximations.
1. AP target: All 1105 reactions, using state spaces constructed by the AP method.
2. PE target: Only 683 reactions, using all the valid CTMCs that could be constructed

by the existing PE implementation, with a preference over hyperparameter values as
described in Section 3.3.

These inference targets allow us to indirectly compare the state space approximation methods
through their behaviour during inference. For each inference target, the dataset and state
spaces are summarised in Appendix Table 4. The stack and loop half contexts together
account for more than 80% of the half context occurrences in each group of truncated CTMCs.

4.3 Posterior approximation results
We ran RWM for 800 total steps, 200 of which were discarded as burn-in. These choices, which
proved sufficient for an analysis of the current model and its most significant bottlenecks, were
motivated by computational resource constraints and past posterior inference attempts [83].

6 The dataset of reaction rate coefficients was collected by Sedigheh Zolaktaf. A small set of 14 four-way
strand exchange reactions were also collected [15], which we exclude due to computational limitations
of the PE implementation. Small subsets of the collected data have been used for parameter tuning or
Bayesian inference in previous work [82, 84, 83].
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(a) Bubble closing. (b) Hairpin opening. (c) Hairpin closing.

(d) Helix association. (e) Helix dissociation. (f) Strand displacement.

Figure 2 Posterior predictive distributions for each reaction type, using the AP and PE likelihood
approximations and the corresponding posteriors in Figure 1. The horizontal axis is the reaction
index, ordered by decreasing experimental reaction rate. Red and blue solid lines show the mean of
the posterior predicted log-rates, and the shaded regions are the 4-96 percentile ranges. We only
display the 683 reactions that appear in both inference targets. Both predictive distributions were
approximated by taking 100 samples from the likelihood kernel for each posterior sample.

The hyperparameter settings for the RWM sampler were chosen such that approximately the
same number of sparse matrix solves are performed in each posterior inference attempt. We
designated the kinetic parameters in Equation (10), which are in the 2-dimensional subspace
of the Metropolis model, as the seed for all MCMC experiments, expecting that this initial
point will mostly yield CTMCs that are physically possible and numerically stable.

The resulting posterior densities are shown in Figure 1. While distinctly multimodal in
many dimensions, the shapes of the marginal posterior approximations for each ln Ac roughly
mirror the shapes of the corresponding Ec, indicating a strong correlation between the kinetic
parameters associated with the same half context. When comparing posterior results from
different chains, the bimolecular scaling parameter ln α appears to be multimodal, and seems
to correlate with the loop-end and stack-stack half contexts, which are of low frequency in
our CTMCs. There has only been one other reported attempt at Bayesian inference on
the Arrhenius parameters [82], which used a smaller dataset of 376 reactions and AP state
spaces. Despite our different prior, likelihood width, dataset, and inference method, most of
our high density intervals for the ln Ac and Ec dimensions overlap with those reported in
[82]. Furthermore, their posterior correlation matrix reflected a correlation structure between
corresponding ln Ac and Ec dimensions that is qualitatively similar to ours.

In general, the approximation quality of Bayesian inference is determined by a complex
interaction of the inference method and its hyperparameters with the forward model and
the dataset, and each component should be assessed as a potential cause for poor behaviour
in inference [28]. As a first step of sampling diagnostics, the RWM trace plots in Appendix
Figure 7 display varied behaviour across different half contexts. For example, the stack-stack
parameters are consistently explored much more broadly than the stack and loop parameters.
In contrast, predictive checks are useful for understanding a prior or a posterior in terms
of the distribution of predictions it generates [10]. In Figure 2, we compare the posterior

DNA 29



5:10 Revisiting Hybridization Kinetics with Improved Elementary Step Simulation

predictive distributions from RWM using the AP and PE targets. Even though the PE
state spaces often cover more of the energy landscape, their posterior predictive log-rates are
not consistently more accurate than those resulting from the AP state spaces. For further
quantitative analyses of the inference results we refer to [43].

4.4 Discussion

4.4.1 Next steps for the kinetic model
The kinetic parameter dimensions that are least explored in our RWM chains (Appendix
Figure 7, rows 1-3) roughly correspond to the half contexts that occur most frequently. This
might suggest that some of the half contexts are underspecified, and that the multimodalities
in the posterior approximations (Figure 1, rows 1-3) arise from significant differences in
kinetic behaviour based on features that are not made explicit by the current kinetic model.
It would therefore be worth considering kinetic models that partition the transitions into
more fine-grained equivalence classes. For instance, the half contexts could be defined in a
way that accounts for stack and loop sizes, or for base identities. These refinements could
also improve posterior rate predictions, particularly for hairpin closing reactions, whose
rate coefficients are not well-captured in our current model (see Figure 2c), and whose
experimental rate measurements suggest sequence-dependent behavior [32].

4.4.2 Next steps for MCMC inference
Because RWM consistently recovers an expected correlation structure that is not incorporated
into the prior or the proposal, significant sampling effort is spent discovering these correlations.
The sample efficiency could be improved by using Gibbs sampling, in which a single sample
from the target is constructed by iteratively drawing from the conditional distributions
of parameter dimensions, while treating all other parameters as observed. Sampling from
such intractable conditional distributions is often performed via nested Metropolis-Hastings
steps, and the procedure is known as Metropolis within Gibbs. It might also be beneficial to
partition the parameters into Gibbs blocks, containing subsets of mutually highly correlated
parameters which are proposed jointly. In our case, the RWM posteriors suggest grouping
(ln Aθ,c, Eθ,c) for each c ∈ C.

4.4.3 Next steps for the likelihood formulation
Within the high density intervals of our posterior approximations, the posterior rate pre-
dictions are more strongly influenced by the state space approximation than by the kinetic
parameters. This suggests that our current likelihood model cannot further distinguish
between different kinetic parameters on the state spaces considered. Moreover, while the
PE state spaces cover a higher proportion of the full energy landscapes than the AP state
spaces, they do not consistently yield more accurate posterior rate predictions, as indicated
by Figure 2. We attribute this finding primarily to the high proportion of sparse linear solver
failures or non-physical solutions during inference, which arise from ill-conditioned MFPT
equations and for which we apply a constant likelihood close to zero (see Section 3.2). Hence,
while the MFPT equations evaluated at our posterior samples yield valid solutions, we expect
that the truncation-dependent and solver-dependent likelihood term biases the information
extracted during inference from the experimental data. A more detailed quantification of the
numerical issues around PE, MFPT equations and posterior inference can be found in [43].
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This bottleneck cannot easily be resolved by expanding the dataset or by increasing
the approximation quality of the truncated state spaces. The numerical stability of the
MFPT computation could in principle be improved by using an iterative solver with suitable
preconditioning techniques that might render more of the systems solvable. However,
regardless of the preconditioner, the current way of estimating the rate coefficients via the
MFPT is a simple, scalar observation model which conceals some transient kinetic effects
and which ignores the variety of regression techniques used to estimate reaction rates from
experimental observations. Hence, in addition to improved kinetic model features and
state space approximations, a reformulation of the observation model to better incorporate
transient observations appears prudent.

4.4.4 Software
Multistrand is an efficient and general forward simulator, but its implementation is not
amenable to the inverse problem of parameter inference and does not support flexible
parallelism. Any task that would require online updates to the state probabilities or
transition rates cannot be achieved without considerable overhead in software development
and resource usage. This includes forward simulation via replica exchange, Bayesian model
averaging, and kinetic parameter inference methods that sample trajectories in an inner loop.

Python libraries used for the work in Section 4 include PyMC [56], Aesara [17, 70], ArviZ
[38], Xarray [35], Joblib [71], SciPy, and UMFPACK [72, 16]. At the time of publication
of this manuscript, a new official minor release of Multistrand will port it to Python 3 and
will provide an Apptainer/Singularity container [39], making it simple to run on Linux host
systems including HPC clusters. This will be accompanied by a software release specific to
this work7, consisting of the posterior approximations in Section 4.3 and the post-processing
scripts used for the NUPACK and Multistrand simulations in Section 5.

5 Case study

5.1 Motivation
Among the reaction types in the dataset, the most pronounced difference between the
predictions made by the AP and PE state spaces is on the helix association reactions in
Figure 2d, suggesting that the additional secondary structures in the latter significantly affect
kinetic behavior. Many studies have assessed secondary structure effects on the reaction
rate of hybridization [27, 61, 33], although they typically extrapolate kinetic behaviour from
thermodynamic properties.

This case study focuses on a recent set of 47 hybridization reactions by Hata et al. [33],
which we will assess using PE state spaces and the mode of our new posterior distribution
over kinetic parameters. The examined sequences have equal length and similar melting
temperatures, and were designed to avoid very stable secondary structures as well as stable
misnucleation and mishybridization. Nevertheless, at a fixed temperature of 25° C and
single-strand concentration of 50 nM, the empirically estimated rate constants varied by
more than two orders of magnitude. The authors suggest that decreases in hybridization
rates can be explained by decreases in nucleation rates, caused by intra-molecular base pairs
that, although not necessarily thermodynamically stable, render nucleation sites inaccessible.

7 To be found at: https://github.com/UBC-Mol-Prog/hybridization-profiling
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Figure 3 Samples of the first passage times for the first binding, last unbinding, and hybridization
times for reactions no. 0 and no. 27 from [33]. The x-axis is the simulated ln-time in seconds, and
the blue vertical lines indicate the simulated ln-MFPT. For each event, we attempted to gather
3000 samples using KPS within 24 hours, with 30GB of RAM and 20 CPUs. However, it was only
possible to generate 102 samples for the hybridization of reaction no. 27.

The authors also estimated that mishybridized secondary structures (wherein an unwanted
stack of successive base pairs forms between strands) were unstable and infrequent, and
therefore that their effect on the overall kinetics was negligible.

To assess these hypotheses, we first employed the kinetic path sampling (KPS) imple-
mentation in DISCOTRESS [66, 67] to sample times from the first passage distributions
for forming the first inter-strand bond, for breaking the only inter-strand bond, and for
overall hybridization in the PE CTMCs. KPS is an enhanced sampling technique for rare
event simulation, and requires a partition of states into communities, which we specified
manually8. Results of the simulations on reactions no. 0 and no. 27 are given in Figure 3.
Although the simulated first binding rate is much faster in reaction no. 27, its simulated
total hybridization rate is much slower, which is compatible with experimental estimates.
Furthermore, the rate of dissociating from a state with a single base pair is comparable
between the two reactions. Therefore, although these rates are important in general, they do
not consistently account for experimental differences in hybridization rates. We therefore
expect significant sequence-dependent kinetic behavior to occur between the moments of first
binding and stable nucleation.

5.2 Boltzmann statistics of initial states
Starting from the classical nucleation-zippering model [1, Ch. 8.2], Hata et al. emphasise
the importance of single-strand secondary structures with positive Gibbs free energy of
formation. In particular, they argue that the nucleation phase is rate-limiting, and propose
an empirical model in which the hybridization rate is proportional to the expected effective
nucleation site density of each strand. As a consistency check for this model and similar
metrics over the Boltzmann distribution of single-stranded structures, we show in Figure 4
the average number of free bases per strand, the product over the average relative number of

8 Secondary structures were binned according to the nearest (edit-distance) structure in the AP model.
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nucleation sites in each strand (similar to Hata et al. [33]), and the average number of free
and compatible (mis-)nucleation sites per strand pair. All three metrics demonstrate some
positive correlation with the experimental rate, although the correlations appear too weak
to validate a kinetic model for hybridization based solely on Boltzmann statistics over the
unbound states.

Figure 4 Secondary structure metrics9 over the Boltzmann distribution of single-stranded
structures, estimated from 10k samples of each strand in NUPACK. Reactions are ordered by
decreasing experimental reaction rate and labeled using the same indices as in the reference [33].

5.3 Trajectory statistics after initial binding
Therefore, to assess potential secondary structure effects beyond the first moment at which
the two complementary strands bind, we employ Multistrand’s “first step mode” (FSM),
stopping the trajectory when the strands either fully dissociate or fully hybridize. Simu-
lations are performed at the same strand concentration and temperature as the physical
experiments. To analyze the trajectories, we define 8 different state types, which partition
the secondary structures based on occurrences of hairpins10, correctly hybridized stacks11,
and/or mishybridized stacks12. We label each of these types by three characters, which
indicate whether there is at least one correctly hybridized stack (S) or not (0), at least one
mishybridized stack (M) or not (0), and at least one hairpin (H) or not (0). For instance,
SM0 represents the type of states with at least three consecutive correctly hybridized base
pairs, at least three consecutive mishybridized base pairs, and at most two consecutive
intra-strand base pairs. Using these definitions, results of our kinetic simulations are provided
in Figure 5. The proportion of first step trajectories ending in hybridization varies over
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where for a strand A with complement B, πA
0 is the Boltzmann distribution over secondary structures,

nA
b is the no. of free bases, nA

s is the no. of free nucleation sites, nA,max
s is the max of nA

s (and analogously
for B), and nA,B

p is the no. of free and compatible (mis-)nucleation sites for the pair (A, B).
10 3+ consecutive base pairs occurring within a strand
11 3+ consecutive base pairs occurring between the two strands at the desired site
12 3+ consecutive base pairs occurring between the two strands in an undesired site
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Figure 5 Results of FSM simulations in Multistrand. Reactions are ordered by decreasing
experimental reaction rate. For each reaction, we accumulate reactive and non-reactive trajectory
samples until at least 5 million elementary steps (maximum 155 million) and at least 500 hybridization
trajectories (maximum 2305) have been sampled13.

two orders of magnitude, although high hybridization proportions do not always correspond
to fast reaction rates, such as in reaction no. 35. The proportion of different state types
appears relatively consistent across different reactions, with some notable exceptions, such
as reactions no. 39 and no. 46. In most reactions, we observe a high proportion of states
with mishybridized stacks, which is contrary to one of the hypotheses in the experimental
source [33]. Furthermore, the total time spent in conformations with misnucleation and/or
hairpins is often significant, indicating that the mishybridized states, although potentially
thermodynamically unfavourable, behave as kinetic traps. A small number of reactions, such
as no. 1 and no. 3, appear to have folding pathways dominated by desired stacks, which
is the underlying assumption in the AP model, while other reactions, such as no. 42 and
no. 44, appear to have a high proportion of dissociating trajectories caused by simple hairpin
formation after first binding, a phenomenon explored in other studies [27, 61].

13 With the exception of reaction no. 46, whose hybridization trajectories are much longer. Our estimates
therefore only include the 26 successful trajectories that could be stored using 30G of RAM, and
contained 4.5 million secondary structures on average.
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In Figure 6, the time spent in each state type is shown for 20 successful hybridization
trajectories in six different reactions. These trajectories illustrate a high degree of sequence
dependence, as well as a high variance of reactive pathways within reactions. Overall, these
findings suggest that short sequence-level features, such as the nucleation capability proposed
by Hata et al. [33], can be influential both before and after the first binding, and that in
order to reach higher accuracy, simplified kinetic models of hybridization should in general
consider misnucleation and hairpins in their choice of transition states. More generally, while
the state predicates above are useful for assessing the reaction pathways from stochastic
simulation, the correlation between the considered state predicates and the experimental
rates appears too weak, and the relative strength of the considered kinetic effects too varied
across reactions, to motivate or validate simplified mechanistic models for hybridization that
are derived solely from state-based features. This reinforces the need for elementary step
kinetic simulation methods that directly enable the parameterisation and estimation of local
and global transient behaviour.

Figure 6 Examples of successful hybridization trajectories sampled using Multistrand’s FSM.

6 Conclusion and outlook

In this work, we extended a previous Bayesian inference approach to the calibration problem
of an Arrhenius-type model of elementary step DNA kinetics. We introduced a new prior
distribution over the desired kinetic parameters and expanded the training dataset to over 1000
reactions, using truncated state spaces generated with the Assumed Pathway (AP) method for
the full dataset, and the Pathway Elaboration (PE) approach when computationally feasible.
Posterior inference was performed with the random walk Metropolis (RWM) algorithm.

Our posterior distributions, though only preliminary in terms of hyperparameter tuning
and convergence analysis, display expected strong correlations between physically tightly
coupled kinetic parameters, and thus establish compatibility with past work. The behavior
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of our MCMC chains varied significantly across the dimensions of our kinetic parameters,
and correlated with the half context frequency in our truncated state spaces, suggesting
that some half contexts are underspecified. Hence, it would be worth extending the dataset
with new reaction types contributing to the transition classes of currently low frequency,
as well as developing kinetic models that partition the transitions into more fine-grained
equivalence classes. Parameters for transition contexts which are prevalent in the energy
barrier regions, e.g., as suggested by the trajectory analyses in Section 5 for hybridization,
can be expected to be particularly influential for the overall kinetics. Another important
finding is that the posteriors obtained for the AP and PE targets are visibly different in
Figure 1, but still produce remarkably similar predictive distributions over reaction rates
in Figure 2. This suggests that the posterior approximations are concentrated towards a
parameter region in which the rate predictions are more strongly influenced by the state
space approximation than by the kinetic parameters. It would therefore be worth improving
the likelihood approximation method, such that the forward model dynamically regenerates
the state space with different parameters, rather than using a constant state space truncation.

Our results also reveal severe, previously undocumented numerical instability in the
current likelihood model, which predicts the MFPT by solving an often ill-conditioned
linear system. Effectively, this is a truncation-dependent and solver-dependent likelihood
term which penalises parts of the parameter space, influencing in a nontrivial way both the
exact posterior and its numerical approximation. In principle, this issue could be mitigated
by a suitably preconditioned iterative solver. However, this ill-conditioning is intrinsic
for metastable systems, and problem-specific preconditioners have not yet been developed,
beyond rescaling by the equilibrium distribution. Furthermore, the MFPT observation
model might in general be too low-dimensional and even misspecified with respect to various
regression methods used to extract reaction rates from experimental measurements.

Despite these challenges, we were able to use our new Arrhenius parameters to suggest
why rates of helix association reactions vary by two orders of magnitude, even when the
interacting strands have little or no stable intra-strand secondary structure. This shows the
potential of elementary step models for gaining insight into the kinetic behavior of nucleic
acid reactions, once properly calibrated and augmented with effective tools for truncation and
coarse-graining. In future work, it would be valuable to implement a simulator that allows
mathematically separate model components (e.g., experimental conditions, state spaces,
initial distributions, final regions, thermodynamic and kinetic models) to be defined and
parameterised independently, that supports flexible parallelism, and that provides enhanced
path sampling. With such capabilities, the elementary step model could become a standard
tool for designing sequences in a way that accounts for transient behavior, marking a
significant improvement over thermodynamic sequence design techniques.
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A Appendix

A.1 Criteria for initial and final regions of a reaction
A.2 PE method
The PE algorithm has five hyperparameters, b, κ, nb, nκ, and δ (referred to as β, κ, N , K,
and δ in the original reference [83]). For a CTMC with transition rate matrix K, probability
matrix P and final region F , let 1dist : X 2 → {0, 1} be the decreasing-distance indicator
that maps adjacent states x and x′ to 1 if the minimum distance (in steps) from x′ to any
absorbing state xf ∈ F is less than the distance from x to xf , and to 0 otherwise. This
indicator is used to define Pbias, which alters P by only allowing for transitions that decrease
the distance to the final region, and Pb for any b ∈ [0, 1] is taken to be the convex combination
of Pbias and P :

Pbias(x, x′) = K(x, x′)1dist(x, x′)∑
x′′∈X K(x, x′′)1dist(x, x′′) , (11)

Pb = bP + (1 − b)Pbias . (12)

For a given P , we refer to samples from Pb as b-biased. The PE algorithm can be summarised
in four steps:

DNA 29

https://doi.org/10.1021/ja906987s
https://doi.org/10.1038/nchem.2877
https://doi.org/10.1038/nchem.2877
https://doi.org/10.1038/s41467-021-24497-8
https://doi.org/10.1021/nn3022662
https://doi.org/10.14288/1.0395346
https://doi.org/10.14288/1.0395346
https://doi.org/10.1007/978-3-319-66799-7_12
https://doi.org/10.1016/j.compbiolchem.2023.107837
https://doi.org/10.1007/978-3-030-26807-7_5
https://doi.org/10.1093/nar/gkg595


5:22 Revisiting Hybridization Kinetics with Improved Elementary Step Simulation

Table 1 Criteria for the initial and final regions. Note that, although some of these definitions
allow for endpoint regions containing several secondary structure states, the state spaces constructed
by the AP approximation only include one state satisfying each criterion.

Bubble closing Initial: The microstate where all bases in the scope of the spe-
cified bubble are unpaired, and all other bases are paired as in
the final state
Final: The microstate with the fully formed hairpin

Hairpin opening Initial: The microstate with the fully formed hairpin
Final: The microstate with no base pairs

Hairpin closing Reverse of hairpin opening
Helix association Initial: Any microstate with no base pairs between strands

Final: The microstate with the fully formed helix
Helix dissociation Reverse of helix association
Strand displacement Initial: Any microstate where the incumbent and substrate form

a complex without the invader
Final: Any microstate where the invader and substrate form a
complex without the incumbent

1. Pathway construction. Sample nb distance-biased trajectories from initial region I to
final region F , such that the holding times are sampled according to the diagonal entries
of K, while transitions are sampled according to Pb.

2. State elaboration. For each state x discovered during the construction step, sample nκ

unbiaed paths according to K, starting at x with time limit κ.
3. Transition construction. Construct a new rate matrix K̂ such that for any states x

and x′ discovered during simulations, K̂(x, x′) := K(x, x′).
4. δ-pruning. Group all states that are within a fixed MFPT δ of any xf ∈ F into a single

absorbing state, and update the rate matrix K̂ accordingly.

The hyperparameters κ and b directly improve the approximation quality of the truncated
CTMC, while nκ and nb only increase the approximation quality if κ and b are suitable for
the CTMC in question. In brief, increases in b decrease the degree of bias in the pathway
construction step, increases in κ increase the expected length of each unbiased trajectory
sample, and increases in nb/nκ increase the number of biased/unbiased trajectory samples,
respectively. In particular, when b = 1 and nκ = 0, SSA is recovered as a special case. In
practice, the current implementation of PE is inefficient in time and memory usage, which
strongly limits the practically achievable hyperparameters and approximation quality.

A.3 PE hyperparameter value sets

Table 2 Sets of PE hyperparameter values attempted on each reaction. The ordering of the sets
of values corresponds to decreasing expected state space size. This order was also used to prioritise
which CTMCs to include in our inference targets (Appendix Table 4), for reactions where more than
one set of hyperparameters produced a valid CTMC.

P1B1 P1B2 P2B1 P2B2 P3B1 P3B2 P4B1 P4B2
nb 128 128 64 64 32 32 16 16
nκ 256 256 128 128 64 64 32 32
b 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1
κ 16ns 16ns 16ns 16ns 16ns 16ns 16ns 16ns
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A.4 Dataset

Table 3 Dataset of experimentally measured rate coefficients. The sign * next to the number of
reactions indicates that the dataset includes mismatch experiments.

Reaction type no. reactions no. bases °C log10
(
k [M−1s−1]

)
ref.

Bubble closing 18 62 21.9 – 48.7 3.8 – 4.5 [3]
Hairpin opening 63 22 – 40 10.3 – 48.8 1.4 – 4.6 [9]

79 20 – 40 17.8 – 48.7 2.2 – 4.7 [8, 32]
8 40 9.5 – 45.6 0.9 – 3.1 [73]

22 8 9.9 – 60.5 4.6 – 6.0 [37]
Hairpin closing 62 22 – 40 10.0 – 49.4 3.4 – 4.8 [9]

102 18 – 40 14.3 – 48.8 2.8 – 5.3 [8]
8 40 9.8 – 45.6 3.2 – 3.4 [73]

22 8 9.9 – 60.6 4.6 – 6.1 [37]
27 31 14.1 – 41.1 2.7 – 4.0 [2]

Helix association 15 20 – 40 3.4 – 49.3 5.9 – 7.6 [49]
47 46 25.0 4.0 – 6.7 [33]

210 72 28.0 – 55.0 4.2 – 7.4 [78]
39* 18 – 20 23.0 – 37.0 4.2 – 7.4 [14]
9 50 23.0 4.9 – 6.2 [27]

18 16 6.6 – 33.6 6.5 – 7.3 [51]
Helix dissociation 12 20 – 40 24.7 – 68.0 -2.7 – -1.0 [49]

14 42 – 46 30.0 – 55.0 -5.3 – -2.9 [52]
39* 18 – 20 23.0 – 37.0 -1.2 – 0.9 [14]

Strand displacement 30 78 – 96 25.0 0.9 – 7.0 [77]
14 54 – 62 30.0 – 55.0 0.6 – 1.9 [52]
36* 83 – 87 23.0 2.7 – 6.8 [44]

211 89 – 102 28.0 – 55.0 1.3 – 8.2 [79]
Overall 1105 8 – 102 3.4 – 68.0 -5.3 – 8.2

A.5 Inference targets

Table 4 State spaces used in each inference target.

no. reactions avg. no. states
AP target

Bubble closing 18 758
Hairpin opening 221 46
Hairpin closing 172 44
Helix association 338 1843
Helix dissociation 65 275
Strand displacement 291 9626
Total 1105 3143

PE target
Bubble closing 18 2048
Hairpin opening 221 3120
Hairpin closing 172 1268
Helix association 163 26113
Helix dissociation 65 23223
Strand displacement 44 27045
Total 683 11567
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A.6 MCMC trace plots

Figure 7 Trace plots from the RWM sampler for AP and PE inference targets, corresponding to
Figure 1. Burn-in samples are not shown.
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Abstract
The field of molecular programming allows for the programming of the structure and behavior
of matter at the molecular level, even to the point of encoding arbitrary computation. However,
current approaches tend to be wasteful in terms of monomers, gate complexes, and free energy.
In response, we present a novel abstract model of molecular programming, Reversible Bond Logic
(RBL), which exploits the concepts of reversibility and reversible computing to help address these
issues. RBL systems permit very general manipulations of arbitrarily complex “molecular” structures,
and possess properties such as component reuse, modularity, compositionality. We will demonstrate
the implementation of a common free-energy currency that can be shared across systems, initially
using it to power a biased walker. Then we will introduce some basic motifs for the manipulation of
structures, which will be used to implement such computational primitives as conditional branching,
looping, and subroutines. Example programs will include logical negation, and addition and squaring
of arbitrarily large numbers. As a consequence of reversibility, we will also obtain the inverse
programs (subtraction and square-rooting) for free. Due to modularity, multiple instances of these
computations can occur in parallel without cross-talk. Future work aims to further characterize
RBL, and develop variants that may be amenable to experimental implementation.
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1 Introduction

Molecular programming is the powerful idea that we can program the very structure and
behavior of matter at the molecular level. Not only can we build nanostructures of nearly
arbitrary shape and functional properties, but we can design molecules whose interactions
encode computation. Perhaps the earliest known example was able to compute solutions
to NP-complete problems, in particular the Hamiltonian path problem [1]. Since then,
implementations of models such as the Tile Assembly Model (TAM) and finite Chemical
Reaction Networks (CRNs) have arisen [32, 28], leading to the possibility of general Turing-
universal computation [27].

Versatile as these schemes are, for the most part our approaches to molecular computation
are wasteful. For one, they tend to be one-shot [1, 23, 35]. Computations are set up in a state
far from equilibrium, with free energy dispersed throughout the various species (typically
complexes of DNA). Computation then typically corresponds to the process of equilibration
of this system [26]. While this certainly provides a high driving force for the experiment, it
has a number of drawbacks. In the case of many DNA-strand displacement systems, which
typically consist of signal strands and gate complexes, many of the components cannot be
reused; rather they are transformed into a plethora of waste complexes [35]. As the variety of
waste complexes is large, it is non-trivial to selectively remove them and replace them with
fresh gate complexes. Consequently, the runtime of computation is generally constrained by
the initial concentrations of species. Moreover, the prospect of a long-running computational
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6:2 Reversible Bond Logic

system that responds to changing inputs over time – a feature that may be desirable in a
smart therapeutic, for example – becomes impractical at best. Nevertheless, some work on
renewable or long-running dynamic DNA-based systems is beginning to emerge [7, 10], as
well as systems that reuse components [6]. As for Tile Assembly systems, free tile monomers
are typically locked into a final assembly (except for transiently at the growing edge) [11].
Not only does this eventually starve future computation, but often these consumed tiles serve
no ongoing functional purpose save that of storing the history of computation. Signal-passing
Tile Assembly models [22] are capable of modifying the state of tiles after incorporation,
such as to remove them, but these are irreversible changes.

Is this waste – of free energy, monomers, and special complexes – unavoidable? Turning
to life, the maestra of molecular machines, we see that this is not the case. Biochemical
systems routinely recycle monomers – building up and breaking down macromolecules from
their constituent components. Their molecular machines (enzymes), which we loosely identify
with the gate complexes mentioned earlier, are in general fully reusable – acting catalytically.
Lastly, free energy is not distributed casually across a large number of components. Rather,
a select few species are designated as free energy currency. The prototypical example is
that of ATP/ADP. This pair of chemical species can be converted between one another, so
by maintaining a ratio of the two that is far from equilibrium, the hydrolysis of ATP into
ADP can be used to store free energy. The missing ingredient is then to build molecular
machines that couple a desired reaction to this hydrolysis, so the free energy can be supplied
to other reactions. In this way, living systems need only inject fresh free energy into these
few subsystems in order to continually sustain the operation of all other processes.

From this we draw one main conclusion for the design of more effective molecular systems.
Free energy should be separated out from the molecular machines it powers. As a consequence,
the molecular machines will generally be catalytic, returning to their original state after
performing their function. This is best implemented by exploiting reversible dynamics, which
is already a characteristic of the microscopic realm. In reversible dynamics, the previous state
of a system (and indeed, its entire history) is uniquely determined by the current state. More
strongly, we have time reversal symmetry: the laws of physics are the same both forwards
and backwards. An interesting corollary of these reversible dynamics is that the system’s
evolution (at least at the local level) can be reversed by inverting the free energy supply.
Additionally, the speed of evolution can be controlled by increasing or decreasing the amount
of free energy stored. Of course, these are not unknown ideas to the molecular programming
community. One of the earliest proposals for a molecular computer, arguably predating the
field, is Bennett’s enzymatic Turing machine [3]. Bennett’s design consisted of a polymeric
tape, bespoke enzymes performing reversible computational steps, and a pool of free energy
currency and structural monomers. While not experimentally realized, other enzymatic
approaches to molecular computation have been, such as the PEN toolbox [21] and PER [17].
As designing custom enzymes remains highly non-trivial, however, these approaches reuse
naturally occurring enzymes such as DNA polymerase. Non-enzymatic approaches include
the proposed DNA polymer stack machines of Qian et al. [23], the reversible surface CRNs
of Brailovskaya et al. [4], and intricate chemomechanical systems [5, 24]. Furthermore,
reversibility often features as a building block in other systems [12, 14, 16].

We present a novel abstract model of molecular programming, Reversible Bond Logic
(RBL). RBL systems consist of “atoms”, which can be combined by “bonds” into arbitrarily
complex “molecules”. By programming the energy landscape of the atom-bond configurations,
reversible paths through configuration space can be carved. This will prove sufficient to
implement a variety of systems, including catalytic molecular machines and a common free
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S = ({X, Y }, {P, Q}, {solid, dashed},R≥0 ∪ {∞})
P = {solid, dashed} Q = {solid}
X = ({p, q}, (p : P, q : Q), (p : in, q : in), eX)
Y = ({r, s}, (r : P, s : P ), (r : out, s : in), eY )
(a) (b) (c)

Figure 1 An example RBL scheme, S. (a) The formal definition of S, which comprises two atom
types, X and Y , two port types, P and Q, and two bond colors, solid and dashed. Energies may be
any non-negative real or infinite. Each atom has two ports, and the energy configurations (eX , eY )
are left unspecified. (b) The RBL atoms defined in diagrammatic form. The label p : P indicates
that the port has label p and is of type P . (c) An example system configuration with one copy of X

and two of Y . As we keep the same port positions as in (b), we omit port labels for brevity.

energy currency. Moreover, as RBL atoms are manipulated in a reversible fashion, they can
be freely reused. Indeed, in RBL complex and diverse macromolecular structures can be
built up and broken down as required. The informational content of these structures can
then be exploited to build modular and compositional computational entities, allowing for
rich computational primitives such as looping, recursion, and subroutines. The goal of RBL
is to be a new platform for molecular programming, in particular it is hoped that it will
enable the routine manipulation of complex structures and that it will make the design of
energy efficient systems easier. As a corollary, RBL may also provide a new route for the
implementation and study of reversible computing.

It is important to note that reversibility has profound implications on the very nature of
computation, and so will affect how are our programs are written. Conventional approaches to
computation make liberal use of non-invertible computational primitives, such as overwriting
variables or (freely) merging branches of control flow. The most immediate consequence
is that it is not generally possible to determine the previous state of a computer from the
current state, as there are often many possible consistent histories. While beyond the scope
of this paper, there is a deep and rich connection between irreversibility in computation and
the thermodynamics of information [29, 19]. As we seek reversible dynamics, we will leverage
the principles of reversible computing [3] and programming [20, 34][9, pp. 11–23]. Namely,
we will avoid loss of information and take care to distinguish branches of control flow when
they are merged.

The paper begins with a definition of RBL. Next, RBL is introduced more concretely
with the implementation of a walker powered by an external fuel supply. Then, one possible
scheme for computation is presented; a small selection of structural-manipulation primitives
are introduced, and used to implement conditional branching, looping, and subroutines.
Additionally, the computation is coupled to the same fuel supply introduced earlier, in order
to drive the otherwise-unbiased reversible computation forward. The paper concludes with
a discussion of the advantages and limitations of RBL. Elaboration of the computational
primitives introduced and the design decisions behind them is presented in the technical
appendix.

2 Definition

Informally, an RBL scheme consists of a set of atoms. These atoms are decorated with ports
of certain types, and like ports can form bonds between one another – whether between
ports on two different atoms or on the same atom (a self-loop). Ports additionally come
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in “oriented” pairs: “in” and “out”; a bond is then formed directionally from an out-port
to an in-port. A given port type may support bonds of multiple different “colors” (not
necessarily literal colors), which can be useful for signal passing. The decoration of ports on
an atom is geometry-free: there is no intrinsic ordering or positioning of ports, and they can
be considered freely labile. There is some resemblance of RBL to Thermodynamic Binding
Networks (TBNs) [8], which will be discussed in Section 5.

Key to RBL is the logic that dictates permissible bond formation and transitions. Each
possible configuration of an atom – namely, whether each of its ports is bonded and,
if so, with what color bond – is assigned an energy. As expected, higher energies are
thermodynamically less likely with “E = ∞” representing an impossible configuration. In
fact, in practice configurations are usually only assigned energies of E = 0 or E = ∞, i.e.
possible or impossible, although other finite positive energies may be employed for short-lived
transitional states. A system configuration – the configuration of multiple atoms – may
transition to another configuration if and only if: (1) the configurations differ by a single
bond (equivalently, by two port states), (2) the configuration energies are finite. That is,
only one bond transition (whether formation, color change, or breakage) may occur at a
given time. The kinetics may depend on the energy and associated entropy changes, e.g. due
to a change in particle number, but we leave a detailed treatment of this to future work.

Designing an RBL scheme then amounts to carefully picking the energy landscapes of
each atom so as to carve out a guided path(s) through configuration space. In general,
we seek to restrict the system so that at any one time there are precisely two possible
transitions: one to the previous state, and one to the next state. Sometimes, however, it
may be desirable to provide parallel paths through configuration space when the order of
operations is unimportant.

Although we will introduce RBL schemes diagramatically, we define RBL formally for
completeness. An RBL scheme is specified by a tuple (A, P, B, E) where A is an indexed set
of atoms, P an indexed set of ports, B a set of bond colors, and E a set of possible energies.
The indices of A and P are used to uniquely label each type of atom and port. A port p

consists of a subset of B, i.e. Pp ⊆ B, corresponding to the bond colors it can form. An atom
of type α consists of a tuple (J, p⃗, o⃗, e), where J is an index set enumerating the ports of the
atom, p⃗ is a vector of port types indexed by J , o⃗ is a vector of port orientations indexed by
J , and e is an energy function. An atom’s energy function maps each possible configuration
to its energy, i.e. e :

∏
ℓ∈J({ε} ∪ Ppℓ

) → E where ε corresponds to an unbound port. An
example scheme is shown in Figure 1.

A system configuration is a directed graph. Each atom of type α, with atom-tuple
(J, p⃗, o⃗, e), has an associated sub-graph. This sub-graph consists of an “atom” node labeled
α and a set of “port” nodes: for each j ∈ J we add an edge labeled j from the atom-node
to the port-node, which is labeled (pj , oj). A configuration consists of a (disjoint) union of
atom-graphs, where there may be any number ∈ N of copies of each type of atom-graph.
Bonds correspond to edges from a node (p, out) to a node (p, in) for some port type p, and
are labeled with some color in Pp. For each atom-sub-graph, we can compute its energy
using the energy function e. The system configuration is valid if each of the energies of its
constituent atoms is finite, and the total energy of the system is given by the sum of these.
Two system configurations are adjacent if they are both valid and they differ by a single
port-port edge; this difference can be the presence/absence of such an edge, or a change in
label. A system may transition to any adjacent configuration.
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atoms E = 0 E = ∞

(a) The RBL energy configuration of an unbiased walker. (b) The dynamics of walking.

Figure 2 An RBL implementation of an unbiased walker. (a) The system consists of four types
of atom. W represents the walker; it has two feet, given by the left (ℓ) and right (r) ports, which are
both of type w and can form bonds of a single color, solid. The other atoms represent the track, and
comprise a left-cap, track monomers, and a right-cap. The track monomers have a w port of type w,
allowing the feet of the walker to bind to them. The other ports, L and R of type t (monochromatic
solid), allow the track monomers to polymerize; if capped on the ends they will form a linear track,
else a circular loop. The energy configuration is defined by assigning each possible state to E = 0
(allowed) or E = ∞ (impossible). The energy configuration of W allows a walker to bind to one or
two track monomers, but it can never dissociate from the track as the unbound state is impossible.
Meanwhile, the energy configuration of the track enforces that it must be complete and cannot fall
apart. Optionally, the “transition” state where W binds to two track monomers can be assigned a
higher energy, e.g. E = 1. (b) The energy configuration leads to the walking dynamics shown. The
walker is free to step to the left or right, forming a transient state with two feet on the track. Then
either foot can dissociate, possibly leading to net movement along the track.

3 Walkers and Fuel

A walker is a molecular machine that walks along a molecular track. In nature these are
often referred to as motor proteins, and serve a vital role in cells performing such tasks as
transporting cargo or contracting muscle cells. Molecular programmers have designed many
instances of walkers. Some walkers have no requirement of directional movement and perform
a random walk through their domain, such as the “cargo-sorting robot” of Thubagere et
al. [30], or directionality is provided by cycling reagents [25]. Other walkers, such as that
of Yin et al. [33], achieve uni-directional movement along a one dimensional track by using
high-free energy fuel to permanently block previously-visited track footholds. This can be
considered analogous to a Brownian ratchet. Such “burnt bridge” approaches to walking
have the disadvantage that it is not possible to send multiple walkers down the same track,
and the track needs to be rebuilt in order to walk along it again. Motor proteins do not
modify their track. Instead, processive movement is conferred by supply of an external free
energy currency. We will implement such a walker within RBL, starting with an unbiased
walker that has no directional preference and then adding both polarity and an external fuel
supply that couples directional movement to the free energy supply. While this is not the
first directional walker that leaves its track intact [13], its implementation is particularly
natural and yields a common free energy currency.
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3.1 Unbiased Walker
An unbiased walker is relatively easy to implement, and an appropriate RBL scheme is shown
in Figure 2. The walker itself is given by a single RBL atom, W, and it walks along a track
using its two “feet” ports to make bonds as needed. All that is required for correct operation
is for W to be able to bind to the track with one or both feet, but not none. In this way, it
can make “progress” by putting down a second foot and lifting the first foot. In both the
unbiased and biased walkers, detachment from the track is made impossible by assigning
infinite energy to this state; in a realistic system, it may be desirable to permit controlled
attachment and detachment. The techniques used in Section 4 and beyond could be used to
do this. As the dynamics are reversible and history-free, there is of course no guarantee that
it won’t just lift the second foot and make no progress, nor is there any guarantee that it
will make net progress over time. Indeed, the statistics of movement are described by an
unbiased random walk with zero mean displacement after t steps, and ∼ O(

√
t) variance.

A brief commentary on the geometry of the walker atom W is warranted. If the ports of
W had fixed position, then there might be a risk of the walker not moving beyond the initial
pair of track monomers. Free rotation about the bonds or sufficient flexibility would fix this,
however recall from the definition of RBL that the ports have no intrinsic position and are
freely labile. As such, the ports are free to “move” as needed. A further consequence of being
geometry-free is that a walker may “skip” an arbitrary number of positions along the track;
there are a number of ways to address this, but we defer discussion of this to future work
which will introduce a geometric model for RBL.

Also of note is the importance of the directionality of the bonds. Without directionality,
the w ports of the track monomers would be able to bind to each other, as would the ℓ and
r feet of the walker W. Therefore directionality enforces a certain complementarity relation,
which is not unfamiliar in the world of DNA nanostructures.

3.2 Fuel
In order to build a powered directional walker, we will need an external fuel supply. Inspired
by biochemistry, we choose to store our free energy in the population of two related species.
For simplicity, we design (Figure 3) a bistable atom G with two distinct states, G+ and G−,
that can be interconverted by an external signal at the coupling port f . Consequently, the
equilibrium state corresponds to [G+] = [G−] and free energy may be stored by increasing
the ratio [G+] : [G−] above 1. Specifically, the amount of free energy is given simply by
kT log([G+]/[G−]). For another system X to usefully access this free energy, it needs to
couple carefully to the fuel species. The initial state of the system Xinit. must couple to
the G+ state, and the final state of the system Xfin. must couple to the G− state. That is,
we need to implement the “reaction” Xinit. + G+ ⇌ Xfin. + G−. This is the purpose of the
colorings available on the f port, and will be shown more concretely in the next subsection.

Critical to the design is the double self-loop on G. A single self-loop would be able
to autonomously transition between bond colors due to the rules of RBL, but a double
self-loop allows us to impose an (infinite) energy barrier between the G+ and G− states. This
barrier is lowered by the action of the coupling port, f , which thus acts as a catalyst for the
interconversion of states.

3.3 Biased Walker
To construct a walker with a preferred walking direction, we must introduce polarity into
both the track and the walker. In nature, a single monomer type (e.g. actin) is sufficient
for this by taking advantage of its spatial substructure. In RBL, however, such spatial
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atom E = 0

Figure 3 An RBL implementation of a bistable fuel species, G. The atom has five ports, s1/s2,
t1/t2, and f . The ports s1/s2 form a self-loop, and so we refer to them together as s; similarly for
the self-loop t. The loops are each of type g, which has two colors: + (bright blue) and − (gray-blue).
The “coupling” port f is of type f and has three colors: +, ± (lilac), and −. The two stable states
of G correspond to both loops being + (G+) or both being − (G−). These can be interconverted via
the coupling port, f , passing through a transitional state G± where s is colored + and t is colored −.
The + and − colorings allow another RBL atom to distinguish G+ from G−, whilst the ± coloring
allows interconversion. If there is more G+ than G− then there will be a negative (favorable) free
energy change ∆G associated with the reaction G+ → G−. Note that we only show the possible
states (E = 0); all other configurations may be presumed impossible (E = ∞).

substructure is non-existent. Instead we employ an alternating sequence of monomers. Two
monomers, i.e. a sequence · · · αβαβ · · · , would be insufficient to distinguish forward from
backward movement; the minimum sequence to introduce polarity consists of three monomers,
i.e. · · · αβγαβγ · · · . With such a polarized track, the walker can then be modified such that,
from an initial position on monomer α, the forward step takes it to β and the backward
step to γ. Similar behavior applies to the other track positions. Of course, without a fuel
supply forward and backward steps are identical and so movement is still non-directional.
To complete the implementation, we couple these steps to consumption of fuel as follows:

Wα + G+ ⇌ Wβ + G− Wβ + G+ ⇌ Wγ + G− Wγ + G+ ⇌ Wα + G− (1)

There are many possible designs, but we choose a three-footed walker with a fuel coupling
port f . Each foot is specific to a particular monomer type, i.e. α, β, or γ, and the dynamics
of “walking” resemble a wheel rolling along the track. This design is elaborated in Figure 4.
The main challenge in designing such an RBL system is to ensure that correct system
configurations cannot jump to invalid configurations. For example, if W did not maintain a
foothold on both α and β during an α → β step, then it would be possible to “jump” into
either of the other step processes. To assist in this, a computational suite (to be released
in the future) for designing and testing RBL schemes was developed. To finish, we prove
(Theorem 1, Appendix A) that the designed scheme has the desired properties:

▶ Theorem 1. The dynamics of the biased walker, in the long-run, are that of a biased
random walk.

4 Data and Computation

The advantages of structured data and programming abstractions are well known to users of
high-level programming languages. In this section, we will develop a set of conventions and
motifs for representing and computing with structured data in RBL. We will use these to
implement three example “programs”: (1) logical negation of a Boolean value, with which
we will introduce conditional branching; (2) addition of natural numbers (using a Peano
representation), with which we will introduce looping; (3) squaring of natural numbers,
using addition as a subroutine. A recursive implementation of addition is left as an exercise
for the reader. High level schemata to motivate these implementations are presented in
Figure 5.
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(a) The track.

(b) The walker, W. (c) The permissible energy configurations of W (E = 0).

(d) The transition diagram for an α → β step, i.e. Wα + G+ ⇌ Wβ + G−.

Figure 4 An RBL implementation of a biased walker. (a) The track consists of a polymer of α,
β, and γ track monomers. Their implementation is nearly identical to that of the track in Figure 2a,
except that: (1) the L/R ports enforce the · · · αβγα · · · sequence, by Rα/Lβ , Rβ/Lγ , and Rγ/Lα

each having a distinct port type; and (2) each monomer’s foothold port has a distinct type (α, β,
or γ). Another difference is that the foothold ports have two bond colors: “solid” and “dashed”,
with the latter corresponding to a transitional state. The track can again be linear or cyclic. (b)
The walker atom W has three feet which specifically bind each type of track monomer. It also has a
fuel coupling port f . (c) The set of permissible energy configurations of W implements each of the
“reactions” in Equation (1), one per row. Considering the top row, we start with W bound to an
α track monomer. If it then binds to G+, it can begin to attempt an α → β step (looking to the
end of the third row, if it instead bound G− then it would begin to attempt an α → γ backstep).
From here, it tentatively (dashed bond color) places a foot on the β monomer. Then it changes
the color of f to ± (lilac), the transitional state. While the fuel is interconverting between G+ and
G−, it changes its α binding to dashed and its β binding to solid in two steps. Then, it attempts
to change the color of f to − (gray-blue), which would indicate the successful consumption of fuel
(G+ → G−). It can then dissociate its α foot followed by the spent fuel G−. While we have described
this step as if W has “intent”, it is important to remember that this is only for narrative benefit; the
system is really performing a random walk through configuration space, with bias provided by the
free energy stored in the concentration of the fuel. (d) This α → β step process is expounded in
the transition diagram, which shows which system configurations can be reached from which other
system configurations. This makes clear that the consumption of fuel and transition of foothold
states occur in parallel.
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(a) Logical negation. A Boolean value, T or F, is tagged with an atom (¬) which serves as a “reference”
to the logical negation “function”. Then, two “reactions” are implemented recognizing each of the possible
inputs. The return value is tagged with (¬′) to represent the result of the logical negation.

(b) Addition. As with logical negation, we use two special atoms to represent an addition to be performed,
(+), and the result of an addition, (+′). As the computation must be reversible, we retain one of the
inputs: for example, after adding a = 3 and b = 4, we would return c = 7 and a′ = 3. The inputs and
outputs are represented as Peano numbers, i.e. polymers of the form S – S – · · · – Z where the number of S
atoms corresponds to the number. For example, 3 ≡ S – S – S – Z. The core of the computation is a loop
(middle reaction, tagged by (+̃)), which iteratively decrements the bottom-left number and increments
the top and bottom-right numbers. To see that this reaction functions as a loop, notice that the product
can serve as a reactant to the same reaction while the loop condition holds. Note also how any possible
molecule can participate in at most two reactions (corresponding to a forward and backward transition),
giving a deterministic path from input to output. As the bottom-left number is originally a and the top
number is originally b, these become respectively 0 and c = a + b. The bottom-right number starts at
0 and becomes a′ = a. The left reaction is responsible for entering the loop, and the right reaction for
exiting the loop.

(c) Squaring. A number n can be squared by using the identity n2 = (2n − 1) + (2n − 3) + · · · + 3 + 1:
that is, n2 is the sum of the first n odd numbers. The implementation of squaring uses (□) and (□′) as
initial and final tags. It takes a Peano number n as input and returns a Peano number s = n2 as output.
We implement squaring using a loop (tagged by (□̃)) with two variables, n and s. Initially, n is the number
to be squared and s = 0. On each iteration, we decrement n, add this to s twice, and then increment s;
the net result is s 7→ s + (2n − 1) and n 7→ n − 1. The addition is performed by using the program in
Figure 5b as a subroutine. By starting with the largest odd number and ending at 1, we ensure that we
consume the value n (by reducing it to 0) and produce only s = n2 as an output, even though addition
always returns one of its inputs.

Figure 5 High level schematic representations of three simple programs. These are not themselves
RBL systems, but will be used as a blueprint for the construction of equivalent RBL systems. Biased
arrows indicate the preferred direction for forward computation.

(a) The general form of a data-atom and data-port (∆). Its c
and w ports correspond to the specific and wildcard control ports
respectively, and the m port pair corresponds to the “monomer”
self-loop. The p data-port binds the data-atoms parent, and
x · · · y provide bindings to some number of children.

(b) The C atom. The a data-port
binds some computational data, the
r port binds its root or origin, and
the c port may be bound by some
compuzyme.

Figure 6 The RBL atoms for data-atoms and the C atom. The energy configurations and
dynamics are explored in Appendix B.
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4.1 Motifs

Recall that we intend for the computational systems we design to be modular, compositional,
and to support component reuse. To realize these properties, we will require a common
convention for the representation of data. Moreover, as this data may be reused in different
contexts (for example, Peano numbers may be added or multiplied), the data itself should
generally be inert. Computation will be performed by dedicated catalytic “machines”, taking
inspiration from biochemical systems. We will call these “compuzymes” (computational
enzymes). Consider the schematic for addition (Figure 5b). In principle, we will be able
to construct RBL molecules corresponding to each of the three types of abstract molecule
in the scheme, and we can also construct a compuzyme implementing each of the three
reactions. To demonstrate the power of RBL, however, we will construct a single compuzyme
performing the entire addition (loop included).

Data will be constructed from “data-atoms”, RBL atoms with a certain structure. Consider
Peano numbers, where a number is either zero (Z) or the successor (S) of another number.
In haskell, this may be represented as data N = Z | S N. We can therefore see that the
S atom has one “child” while the terminal Z atom has no children. For an example of a
data-atom with more than one child, consider the nodes of a binary tree1. These data-atoms
would have three children, two for its child nodes (or leaves), and one for its associated data.
As all data-atoms could be the child of another atom, each data-atom also has a parent.
Therefore, an RBL representation of a data-atom must have an in-port for a parent to bind,
and an out-port for each of its children; we refer to these special ports as “data-ports”. These
ports will in fact be pairs of ports: as with the double self-loop on the fuel atom G, a pair of
bonds can be used to provide an energy barrier against unintentional bond-breakage.

In addition to parent and child data-ports, a data-atom needs a few other ports. To
manipulate data, we add two control ports. These allow compuzymes to externally signal
data-atoms to alter their configuration. One control port is specific to the type of data-atom;
for example, the control port of an S atom is distinct from that of a Z atom. The other
control port is a “wildcard” control port that is common to all data-atoms, and enables
(limited) manipulation of variable data. Lastly, we have a pair of ports that can form a
self-loop. This self-loop is present only on free monomers. The reason why this is required is
somewhat subtle, and is explained in Appendix B.

The final key component of data is the C atom. Some data represent computations (either
to be performed or that have completed), such as the molecules in Figure 5. These data are
capped by a C atom, e.g. C – (¬) – T. The C atom therefore identifies computational data. It
may seem extraneous, but it provides important indirection for subcomputations by allowing
two compuzymes to interact with the same computational data simultaneously. As such, C
has a “root” port (r) bound by the computation’s origin, a “compuzyme” port (c) optionally
bound by a compuzyme, and a data-port (a) binding the actual computational data.

The RBL atoms for data-atoms and the C atom are shown in Figure 6. These data
structures can then be operated on by “compuzymes” to perform computation. Compuzymes
are special atoms that behave as a platform for structural manipulation, and are typically
represented as a rectangle. By recruiting data-atoms and interacting with them via their
control ports, a sequence of structural manipulations can be effected. Compuzymes also
maintain an internal state, via the color of a pair of self-loops. These state colors are typically
numbered, but any label will suffice. Internal states are useful for distinguishing between

1 Recall that the definition of a binary tree in haskell is data Tr a = Lf | Nd (Tr a) a (Tr a).
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(M) monomer binding (X) monomer exchange (fuelled) (C) computational binding

(D) destructuring (D∗) wildcard destructuring (S) subcomputation initiation

Figure 7 The five core motifs underlying our computational convention. Only the net effect of
the motif is shown; the detailed RBL implementations are given in Appendix B. The green rectangle
is a compuzyme, and the encircled value n corresponds to the internal compuzyme state. In all
motifs except X, there are one or two compuzyme state changes (from n to n′, and possibly to n′′).
(M) The binding of a free monomer (pink data-atom). (X) The exchange of a monomeric data-atom
A for B. (C) The binding of some computational data (pink data-atom, possibly with children).
(D,D∗) The destructuring of a child (blue data-atom) from its parent (pink data-atom). In the first
case, the identity of the child data-atom (A) is known by the compuzyme, while in the second case
it is not. (S) The initiation of a subcomputation. The pink data-atom (and children) represents
some pre-prepared computational data. It is bound to a fresh C atom, exposing it to the action of
other compuzymes.

similar configurations, such as may occur during branches, loops, or long sequences. There
are five core compuzyme motifs that are needed to perform arbitrary manipulations. These
are shown in Figure 7, and their detailed implementations may be found in Appendix B,
along with a description of the bond colorings of the data-ports and control ports. As RBL
is reversible, each of these motifs may also act in reverse; for example, Motif D may also be
used to bind a child data-atom to a parent. By convention, Motif X also expends one unit of
fuel to drive computation forward, but in principle fuel coupling can occur at any point(s)
during compuzyme operation.

To construct a compuzyme in RBL, we should first prepare an (abbreviated) transition
diagram of its operation using the above motifs. Having done this, we will be able to
determine what ports the compuzyme will require. With this, a suitable RBL atom can be
designed. Then, the RBL implementations of each motif (shown in Appendix B) dictate
which configurations are possible. For the most part, each motif will correspond to a distinct
compuzyme state, and so the sets of possible configurations will generally be disjoint. We
need merely extend the configurations to include the state of the other compuzyme bonds,
which will be static within the motif. In some cases, particularly with branching control flow,
motifs may share configurations. Thus the complete RBL description of the compuzyme is
simply the union of all the configurations of the motifs.

4.2 Logical Negation
With these motifs we are now in a position to implement our three example programs. One
approach to implement logical negation is to prepare two compuzymes performing each of
the two “reactions” in Figure 5a, NotT and NotF respectively. The compuzyme implementing
¬T would then use Motif C to bind a (¬) computational data-atom, and then Motif D
specialized to T. It can then use Motif X twice to swap T for F and (¬) for (¬′), followed
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(a) The RBL atoms for logical negation. From left to right, the compuzyme Not, the computational
data-atoms (¬) and (¬′), and the data-atoms for Boolean values, F and T. Not has ports for fuel (f),
atom C (C), and the control ports of each of the data-atom types; port labels and types are the same.

(b) The abbreviated transition diagram for logical negation, showing the motifs employed. The compuzyme
Not starts and ends in its pure unbonded atomic state, and so acts catalytically. The f port is not shown,
and unbound ports are shown with a dot. To aid comprehension, port order is consistent with that shown
in (a).

Figure 8 The implementation of logical negation using conditional branching.

by Motif D to bind F to (¬′), and finally Motif C to eject the result of the computation.
The compuzyme for ¬F would be very similar. Of course, it is possible that compuzyme
NotT might inadvertently bind C – (¬) – F, but the specificity of Motif D would mean the
compuzyme stalls. The only available option would be for it to backtrack; only the second
compuzyme can complete the computation in this case. Moreover, only once the correct
input to the compuzyme is bound can it expend fuel.

However, RBL allows us to go beyond this and implement conditional branches in control
flow without backtracking. That is, we can create a single compuzyme Not implementing
both cases. We can overlap two (or more) instances of Motif D, each recognizing different
data-atoms. The motifs would use the same states n and n′, but differing states n′′ for each
case; these distinct states n′′ then allow us to distinguish the different branches of control
flow. This is shown in Figure 8. Indeed, the dynamics of Not are simply the conjunction of
those for NotT and NotF. Note that, when the two branches of control flow are later merged,
this is a reversible operation: the two branches have to be clearly distinct. Here this is the
case because we are using Motif D against two cases, T and F, “combining” the data-atoms
into a single variable data-atom x′.

4.3 Addition
Similarly, we could implement addition using three compuzymes as indicated in Figure 5b.
However, we again leverage the power of RBL to show how looping can be implemented
directly with a single compuzyme Add. This implementation is given in Figure 9. Note that
in this condensed implementation, the atom (+̃) now just serves to hold temporary variables
and so only has one child compared to three in our original schematic. Looping is not much
different from the control flow for logical negation; whereas for conditional branching, we had
a branch followed by a merge, here we have a merge followed by a branch. At the beginning
of a loop, we merge control flow from two branches: entry and loop-continuation. This
would usually be trivial, but in a reversible context we need to be careful to conditionally
distinguish these two events (so that, in reverse, we know when to “un-start” the loop). At
the end of a loop, we branch into exit and loop-continuation.
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(a) The RBL atoms for addition. From left to right, the compuzyme Add, the computational data-atoms
(+), (+̃), and (+′), and the data-atoms for Peano numbers, S and Z. Add has ports for fuel (f , not shown),
atom C, and control ports for each type of data-atom, but also wildcard control ports a, b, and c for
holding variable values during computation; port labels and types are the same, except for the variables
which are of type ∗.

(b) The abbreviated transition diagram for addition, showing the motifs employed. Sometimes, two
Motif Ds are elided into a single transition (shown as D2). Green annotations show where variables are
renamed between transitions or where two alternative data-atoms are bound to a variable position. To aid
comprehension, port order is consistent with that shown in (a) except that atoms above the compuzyme
are flipped vertically; additionally, unbound ports are shown with a dot, and the compuzyme state is
shown with a single circle. Addition is implemented as a loop where the value of a is added to both b
(renamed to c, and yielding c = a + b) and 0 (yielding a copy of a). The top left set of transitions enter
the loop. The center set of transitions implement the control flow of the loop: on the left, they merge
branches corresponding to loop entry and loop continuation, using b to discriminate these branches; on
the right, they branch into the exit path or the main loop body, using a to discriminate these branches;
the middle transitions tidy up/set up these branch operations. The bottom set of transitions implement
the loop body, decrementing a and incrementing both b (now representing the copy of a) and c.

Figure 9 The implementation of addition using looping.

In our implementation of addition, we start with (a, b) and end with (a, c) where c = a+ b.
We begin by renaming b to c, to which we will add the value of a. Then we set the now free
variable b to 0, to which we will also add the value of a. In our loop, the entry condition is
therefore that the accumulator (b) is 0; if it is greater, then we have performed at least one
iteration. The exit condition is that a = 0, as we decrement it on each iteration. Therefore,
we merely need to use Motif D to check whether these variables are Z or S – n.
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Due to reversibility, this program can also perform subtractions. To achieve this, one
could either reverse the bias of the free energy currency, duplicate the implementation with
reversed fuel coupling, or introduce a “switch” for the direction of computation.

4.4 Squaring

(a) The RBL atoms for squaring. From left to right, the compuzyme Sq and the computational data-atoms
(□), (□̃), and (□′). Sq has ports for fuel (f , not shown), atom C, and control ports for the computational
data-atoms shown, Peano data-atoms, two variables (n and s), as well as a set of ports for the addition
subroutine: the computational data-atoms (+) and (+′) and the atom C; port labels and types are the
same, except for the variables which are of type ∗.

(b) The abbreviated transition diagram for squaring, showing the motifs employed. Some motifs are elided
into a single transition for brevity. Green annotations show where variables are renamed between transitions
or where two alternative data-atoms are bound to a variable position. To aid comprehension, port order
is consistent with that shown in (a) except that atoms above the compuzyme are flipped vertically;
additionally, unbound ports are shown with a dot, and the compuzyme state is shown with a single circle.
The implementation of squaring consists of a loop which on each iteration maps s 7→ s + (2n − 1) and
n 7→ n − 1, with s initially 0 and n ending at 0. The loop structure is essentially the same as for addition
(Figure 9). To perform the map s 7→ s + (2n − 1), we first decrement n, then add the new value of n to s
twice before incrementing it. The additions are performed using Add by preparing computational data
representing the two additions.

Figure 10 The implementation of squaring using subroutines.

Finally, we implement squaring. Again, squaring consists of a loop; however, this loop
involves calling addition as a subroutine. This is quite simply done. We use the data
manipulation motifs to bind the numbers we wish to add to a (+) atom; then Motif S
binds this computational data to a C atom, thus “presenting” it to Add compuzymes. The
implementation is shown in Figure 10.
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As with addition, the reverse of this program is also useful and performs square roots
(over a suitably restricted domain – attempting to take the square root of 10 would lead to
something resembling a runtime error).

4.5 Reversible Turing Machines
The implementation of reversible Turing Machines (defined by Bennett [2]) is left as an exercise
for the reader. It only requires conditional branching, but the reversible implementation of
a bi-infinite tape requires some care. For a hint, a reference implementation in a related
language is given in the author’s thesis [9] (p. 147).

5 Discussion

As required, the RBL model admits a variety of forms of component reuse: monomers used in
the construction of molecules can be fully recycled, being drawn from and returned to a pool
of free components; dynamic components can be designed to act catalytically, and so may
be reused multiple times; and the same monomers (e.g. those representing Peano numbers)
can be reused in distinct contexts without interference. These properties are strengthened
by the modularity conferred by molecular structure: any number of instances of the same
program or system can run in parallel using the same components and without crosstalk;
and common sub-systems can be factored out and used by multiple distinct systems, such as
a single common fuel species supplying all the free energy in the system. Moreover, RBL is
particularly amenable to implementing hierarchies of abstraction. For instance, we saw the
following hierarchy of computational abstractions: the definition of RBL “data-atoms”; a
set of basic structural-manipulation motifs; control flow primitives such as branching and
looping; and subroutines such as addition, which could then be used as a black-box by the
squaring routine. Further abstractions which are possible but not shown include recursion
and concurrency.

While RBL is a powerful model, it also has some limitations in its current formulation.
Simulations of the squaring routine encounter 1700 distinct configurations when computing
32 (alternatively,

√
9). This is a reflection of the hierarchy of abstractions used; the structural

manipulation motifs incur a cost of ∼ 10–15 transitions each, and multiple motifs must be
employed to perform a given structural manipulation leading to an overhead on the order
of 50–100 transitions for each useful computational step. Simpler “machines” such as the
biased walker lie closer to “pure” RBL and incur 8–10 transitions per step (counting the
shortest path in Figure 4d, and depending on whether we count the parallel transitions
separately), though this is still perhaps larger than desired. Arguably the most significant
reason for these overheads originates in the lack of spatial/geometric awareness of RBL. In
biochemical systems, enzymes are able to take advantage of shape complementarity and
differently-shaped conformations to perform their manipulations. This description omits the
series of microstate transitions involved in an enzymatic reaction, but even so enzymes are
(usually) particularly fast and efficient. Meanwhile in RBL we must very carefully coordinate
structural manipulations through the use of, e.g., control ports: our lack of spatial awareness
means that, without such coordination, we could not selectively displace a particular child
data-atom from its parent. This suggests an obvious RBL variant to pursue in the future:
one in which geometry plays a first-class role. Such a model should be able to more directly
perform desired structural manipulations. Moreover, incorporating geometry would ensure
that our designs are physically possible: the non-geometric RBL model can easily encode
structures that are too crowded for Euclidean space, such as a complete binary tree of depth
20.
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Another challenge for the experimental realization of RBL is that the number of con-
figurations of an RBL atoms scales exponentially with the number of ports, and each of
these may have a distinct energy. Restricting the set of allowed energies E to {0, ∞} would
considerably simplify this, as we may be able to get away with just programming the allowed
configurations. Nevertheless, compuzymes such as Add and Sq have on the order of 200
allowed configurations. Furthermore, control ports and compuzyme states involve dozens of
possible bond colors. Future work should investigate whether the number of required bond
colors can be reduced, or whether bond colors are even required (i.e. whether ports can be
monochromatic). Another question is whether atom configurations can be “factored” into
simpler subsystems. Additionally, it would be useful to know what the minimum required
complexity is to implement useful computational abstractions. For example, while Add
may require ∼ 200 configurations, the division into three compuzymes Addinit., Addloop, and
Addfin. may be substantially simpler. Combining with a geometric variant of RBL should
also reduce the number of distinct configurations required.

Lastly, a more accurate treatment of the kinetics of RBL is warranted. Not only will
configuration energy contribute to transition rates, but also any associated entropy changes.
These entropy changes are particularly significant when particle number changes, such
as when a compuzyme binds some computational data. There are also entropy changes
associated with interactions with the monomer pools that cannot be eliminated through any
“clever” means (see the author’s thesis [9] (pp. 101–120)).

There is some similarity between RBL and Thermodynamic Binding Networks (TBNs) [8].
TBNs consist of monomers with a geometry-free collection of domains, similar to RBL atoms
with a geometry-free collection of ports. Domains have complementary codomains, and these
can form bonds. However, the TBN model explicitly does not consider the kinetics of system
evolution. Instead it focuses on analyzing the possible stable configurations admitted by a
given TBN to determine whether leak reactions are possible, and presumes that the desired
state corresponds to thermodynamic equilibrium. In this way, the goals of TBNs diverge
from the goal of RBL. In RBL, it is the programming of kinetic pathways that is important,
and equilibration is to be avoided. Nevertheless, a realistic implementation of RBL would
likely be subject to error conditions such as leak reactions, and so it would be interesting to
use a TBN-like framework to evaluate or improve the robustness of RBL systems. Other
related systems worth comparing in the future include Polymer Reaction Networks [15] and
graph-theoretic molecular systems [18, 31].

In conclusion, RBL is an interesting new model with powerful properties, but it is also
currently too unwieldy for experimental realization. Future work will further develop RBL,
including variant models, to determine the possibility of achieving these powerful properties
in a real chemical system.
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A Proofs

▶ Theorem 1. The dynamics of the biased walker, in the long-run, are that of a biased
random walk.

Proof. Recall the definition of the biased walker (Section 3.3) and its transition diagram
(Figure 4d). We will assume typical CRN dynamics, namely that the evolution of the
system may be described by a Continuous-Time Markov Chain (CTMC) with transition
rates given by the law of mass action. For example, the reaction Wα + G+ ⇌ Wα:G+ has
forward transition rate k2[Wα][G+] and reverse transition rate k1[Wα:G+] where [X] is the
concentration of species X, k1 is the rate constant for unimolecular reactions, and k2 that
for bimolecular reactions (all the species have equal energy, and we assume no activation
energy). Note the periodic symmetry of the walker scheme; without loss of generality, we
can relabel the transition diagram to go from Wn to Wn+1 where n corresponds to the nth

position along the track. We assume the track extends infinitely in both directions, so that
n ∈ Z. We first prove that the net reaction Wn ⇌ Wn+1 has rate constants ∝ [G+] and
∝ [G−] for the forward and reverse reactions.

The dynamics of the walker are somewhat complicated by the number of intermediate
states – 13 between each net step (there are 15 distinct states in Figure 4d: 13 intermediate
states, and Wα and Wβ). However, after some convergence time, any initial distribution
will converge to a steady state distribution (up to periodicity of the Markov Chain (MC));
this is analogous to the steady state approximation in chemistry. To see this, note that the
behavior within each step-window (between Wn and Wn+1) is identical. Therefore, we can
overlap each of these “sub-chains”, reducing the infinite MC to the finite MC from Wn to
Wn+1 by symmetry. As this MC is aperiodic, irreducible, and reversible, it admits a steady
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state given by detailed balance and this steady state is reached exponentially fast. After this
“burn-in” time, the initial distribution is effectively forgotten.

For any pair of adjacent intermediate states i and j (states of the form W :G), the transition
rate for i → j is k1[i]. Consequently, by detailed balance their steady state concentrations
are all equal (within a given step-window), and we can write this concentration as [W :G].
The remaining reactions are Wn + G+ ⇌ Wn:G+ and Wn+1:G− ⇌ Wn+1 + G−. Using the
transition rates given earlier, k2[Wn][G+] = k1[W :G] and k1[W :G] = k2[Wn+1][G−], and
hence [Wn+1]/[Wn] = [G+]/[G−]. Furthermore, the net forward reaction rate constant for
Wn ⇌ Wn+1 is k2[G+], and the reverse reaction rate constant is k2[G−].

Having proved this, we can reduce the original CTMC to the effective CTMC

Wn−1 Wn Wn+1

k2[G+] k2[G+]

k2[G−]k2[G−]

which is prototypical of a random walk with bias b = ([G+] − [G−])/([G+] + [G−]). The
expected value of n at time t, given n(0) = 0, will be k2bt. The variance is non-trivial for a
continuous-time process, but will be approximately

√
k2t[G+][G−]/([G+] + [G−]). ◀

B Data & Compuzyme Motifs

Missing from the description of data-atoms and data-ports in Section 4.1 are the bond colors
and atom configurations.

Data-ports consist of two ports. The first port (counting clockwise) has two bond colors,
solid and dashed/‡. The second port is monochromatic. This design allows for the controlled
and coordinated breaking of bonds.

Control ports have more colors to allow for the intricate signaling required by the motifs.
These colors are: m, for “monomer”; solid/neutral, a bond that has no signaling intent;
dashed/‡, for transitional states; C•, C‡, and C◦, for displacing a data-atom from its C parent;
and x•, x‡, and x◦ for each child data-port x, for displacing child data-atoms. •, ‡, and ◦
indicate that the relevant entity is bound, is transitioning between bound and unbound, or is
unbound, respectively.

Wildcard control ports are much simpler, having just two bond colors: solid and dashed/‡.
With the bond colors enumerated, we now define the allowed RBL configuration for

data-atoms and compuzymes. These are illustrated piecemeal in the remainder of this
Appendix.

State changes

Not a motif in itself, compuzyme state changes are common to almost all our motifs.
Compuzymes may perform a long series of manipulations, including branched control flow.
As a result, indistinguishable configurations may be encountered, unexpectedly linking
distinct parts of the computation. To prevent this, we imbue compuzymes with an internal
“state” to track progress through configuration-space and correctly handle control flow. The
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implementation is below:

The top row is an RBL schematic, whereas the bottom row presents an abbreviated notation.
The state is represented by a pair of self-loops. Each of these have the same set of bond
colors, with each color representing a distinct state (e.g. m, n). Note that m and n are
variables rather than explicit colors, i.e. m is not the same as the monomer color. Typically
these states will be numbered, but any set of useful labels may be employed. There is also a
special “∅” state in which the bonds are broken; compuzymes typically start and end in this
state. Changing state from m to n is simply a matter of changing the bond colors of the
loops in turn.

The requirement of a pair of loops may seem superfluous; however, consider the case of
two otherwise identical configurations that are meant to be distinguished by this state. If a
single loop was used, then these configurations would be adjacent and so the state would not
serve as a barrier. The double loop prevents this scenario, as the intermediate m|n state will
be constructed so as to be inaccessible.

M Monomer binding
Data molecules are formed from data-atoms, and so the manipulation of individual data-atom
“monomers” is foundationally important. When building up data, fresh monomers will need
to be drawn; conversely, when breaking down data the extraneous monomers will need to be
discarded. We suppose that the environment provides an unlimited pool of fresh monomers
for these purposes. Both drawing and discarding monomers can be implemented by a single
motif, as they are inverses of each other and our system is reversible:

Here the monomer is the pink data-atom, and the compuzyme drawing (resp. discarding)
the monomer is the green rectangle. In general we consider compuzymes as a platform for
manipulations, hence the rectangular form. Both the free compuzyme and free monomer have
an adjacent configuration in which the control ports form an “m-colored” bond. Consequently,
the compuzyme is able to spontaneously form a bond with a free monomer of the correct
type, drawing it from solution. Going forward, we will not explicitly mention adjacent
configurations when they can be inferred from the diagrams. Recall that control ports are
unique to a given data-atom type. As such, a compuzyme can be sure it is drawing the
desired monomer from solution. We conclude the motif by switching the control port to the
“neutral” bond color, ready for subsequent transitions.

Notice that the monomer in solution has a self-loop, also m-colored. Suppose that it
didn’t and instead had 0 bonds. In this case, the neutral bond in the final configuration
could readily break. To address this, we assign an infinite energy to data-atoms with 0 bonds,
and use the self-loop to mark monomers. Observe further that the compuzyme has no direct
way to break the self-loop on the monomer. This is the reason for the existence of control
ports: through different bond colors, we can signal different intents. Upon receiving such a
signal, the normally-inert data-atom is able to transition to other configurations. Specifically,
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there are usually E = ∞ energy barriers preventing a data-atom from transitioning to other
configurations; but for specific control port colors, these energy barriers are lowered and a
small region of configuration space is made available to explore. Note also the state change,
the purpose of which we will elaborate further in Motif C.

X Monomer exchange
Related to the monomer binding motif is the monomer exchange motif. Arguably this is
not a single motif in its own right, as it can be realized by combining two monomer-binding
motifs back-to-back. However, monomer exchange is sufficiently common and useful that we
promote it to its own motif. The implementation follows:

Notice that its implementation differs from two occurrences of Motif M: the state changes
have been replaced by coupling to fuel. Though in principle any motif or state change
can be coupled to the burning of fuel, we choose this motif as the canonical such point for
convenience.

C Computational data binding
To bind computational data in order to manipulate it we need to (1) recognize it as such via
its control port, and (2) displace it from its C parent:

The C atom is in beige, and the computational atom in pink. Recall that the control
port has three colors indicating progress of binding and displacement: C• corresponds to
computational data with a C parent while C◦ corresponds to computational data displaced
from its parent. C‡ is a “transitional” state between these. We bind with C•, and then
immediately change state from n to n′. These state changes are frequent in motifs and act as
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bidirectional assertions. Without this, we could – for example – break the control port-bond
during a transitional state. After this assertion, we switch to the transitional bond color C‡.
In this configuration, the bond between computational atom and C parent can be weakened
in a number of steps until it’s broken completely. At the same time, we must form a bond
with the soon-to-be-displaced C atom so as not to lose the association between them. This
association is important, because this computation may be a subcomputation, with the
particular C atom bound by another compuzyme. If we were to lose the association, then we
could not return the result of this computation to the caller. Indeed, the series of adjacent
configurations is programmed carefully so that the bond between C and the computational
atom cannot be completely broken until the compuzyme has bound both. Finally we have
another bidirectional assertion from state n′ to n′′, after which further transitions and motifs
may occur. Notice that two of the last bond changes can happen in either order, hence the
parallelism in the transition diagram.

D Destructuring
Data molecules are tree structures formed from data-atoms. To effectively manipulate these,
we need to be able to break down (and build up) these structures into their constituent
parts. We achieve this with the destructuring motif, which can be used to displace (resp.
replace) a child data-atom from its parent. This motif is nearly identical to that of binding
computational data, primarily differing in the control port bond colors used:

The ? bond “color” indicates that this motif doesn’t care what the initial state of the control
port is. Recall that a data-atom may have multiple children, each bound by a differently-
labelled data-port. Here we are displacing a child data-atom (blue) from the x data-port of
its parent (pink). Specifically, the child data-atom is of type A, and indeed this particular
instance of Motif D can only displace an atom of type A. Note that the child data-atom may
have its own children.

If we wish to introduce a branch (resp. merge) in control flow, then multiple of these motifs
can be overlaid – one for each type of data-atom to be recognized. The first 5 configurations
shown are common, as they are independent of the child data-atom type. The remaining
configurations diverge. The nature of configuration adjacency ensures that this works as
expected. We may also want to displace a data-atom regardless of its type. For this, we
substitute the interactions with the control port for the wildcard control port.

S Subcomputation initiation
Because of the indirection provided by the C atom, compuzymes act independently of the
context of a computation. This means that any routines we implement can also be used as
subroutines. To call a subroutine, we prepare a “subcomputation”: computational data that
is bound to a host compuzyme and presented on a C atom. Other relevant compuzymes can
then act on this subcomputation. Upon completion, the host compuzyme can accept the
result and use it as required.
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Prior to using this motif, the appropriate data representing the subcomputation should
be prepared by means of the other motifs. Then, the subcomputation initiation motif will
bind it to a fresh copy of the C atom:

This motif is specialized to the type of the data-atom. To complete the subroutine, we use
another instance of this motif in reverse and specialized to the result data-atom. For example,
if the initial data is tagged with (+), then the final data would be tagged with (+′).

Now the purpose of the C atom becomes clear. We need to release the computational
atom’s control port so other compuzymes can interact with it, but then we would lose track
of it. Therefore, we need to maintain a separate bond to this molecule. However, we cannot
simply bind the data-atom on another port: it is important that this data-atom can be
swapped out, for example (+) for (+′), so as to indicate the completion of computation. As
such, we use the intermediate atom C to achieve the necessary indirection to satisfy all of
these conditions. In particular, we bind the C atom via its “root” port; its c port can then
be bound by other compuzymes as needed.
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Abstract

We present an abstract model of self-assembly of systems composed of “crisscross slats”, which have
been experimentally implemented as a single-stranded piece of DNA [21] or as a complete DNA
origami structure [28]. We then introduce a more physically realistic “kinetic” model and show how
important constants in the model were derived and tuned, and compare simulation-based results
to experimental results [21,28]. Using these models, we show how we can apply optimizations to
designs of slat systems in order to lower the numbers of unique slat types required to build target
structures. In general, we apply two types of techniques to achieve greatly reduced numbers of slat
types. Similar to the experimental work implementing DNA origami-based slats, in our designs the
slats oriented in horizontal and vertical directions are each restricted to their own plane and sets
of them overlap each other in square regions which we refer to as macrotiles. Our first technique
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domain patterns to determine the potential for errors consisting of incorrect slat types attaching
at undesired translations and reflections. The second technique leverages the power of algorithmic
self-assembly to efficiently reuse entire macrotiles which self-assemble in patterns following designed
algorithms that dictate the dimensions and patterns of growth.

Using these designs, we demonstrate that in kinetic simulations the systems with reduced
numbers of slat types self-assemble more quickly than those with greater numbers. This provides
evidence that such optimizations will also result in greater assembly speeds in experimental systems.
Furthermore, the reduced numbers of slat types required have the potential to vastly reduce the cost
and number of lab steps for crisscross assembly experiments.
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7:2 Accelerating Self-Assembly of Crisscross Slat Systems

Figure 1 An illustration of a crisscross slat ribbon. Growth of the ribbon occurs in two layers
with slats attaching to 4 binding domains presented by previously added slats in the opposite layer.

1 Introduction

In [21,28], the authors introduced a novel scheme for the seeded self-assembly of DNA-based
structures that is extremely resilient to spurious (unseeded) nucleation. In their scheme,
structures are formed from individual components called slats that can be thought of as
long, 1 × n tiles with n binding domains distributed across their lengths. Unlike traditional
DNA-based tiles that generally attach in a single plane to at most 2 adjacent tiles as they
bind into an assembly, slats attach in multiple layers by the matching of binding domains
between the layers. Consequently, whereas traditional tiles typically only coordinate their
growth with at most two others, slats can achieve a much higher coordination by spanning
across and binding with several slats in the other layer, as illustrated in Figure 1. This
increase in coordination (a.k.a., cooperation) makes spontaneous growth away from seeded
assemblies much more difficult, since this would require the entropically unfavorable merging
of n slats simultaneously, an event with probability exponentially small in n.

While the work of [21, 28] was primarily interested in the robust nucleation properties
of this crisscross scheme, here we explore crisscross slats as a means of growing structures
that are robust to erroneous attachments while also using greatly reduced numbers of unique
types of slats. In [28] they focused on systems of crisscross slats in which each slat is a
complete DNA origami structure (depicted in Figure 2), and exhibited growth of structures
that were of two types: (1) repeating patterns of slats forming unbounded 1D ribbons and
2D sheets (periodic structures), and (2) finite structures composed of unique slat types at
each location (hard-coded, a.k.a., fully addressable, structures). They were able to build
hard-coded structures that contained as many as 1,022 unique slat types. Although these
structures had few errors (e.g., missing slats or slats in incorrect locations and/or translations
or reflections), due to the low concentrations resulting from dilution after mixing so many
different structures, the growth was very slow and even needed to be separated into distinct
growth stages. In each stage, only a few hundred slat types were added and growth was
allowed to continue for multiple days before the slat types for the next stage were added.
Additionally, the authors estimated that without automated liquid handlers, manual pipetting
of the many strand combinations to create the large numbers of slat types would require
about one month of manual effort. Our techniques for lowering the numbers of slat types
required to build target structures and patterns are intended to make growth of crisscross slat
systems much faster (removing the need for staging) while experiencing similar error rates,
and having additional benefits of making system designs cheaper and less labor intensive.

In this paper, we first introduce two models of crisscross slat-based self-assembling systems.
These models are based on the abstract Tile Assembly Model (aTAM) and kinetic Tile
Assembly Model (kTAM) introduced in [27]. The model based on the aTAM, which we call
the abstract Slat Assembly Model (aSAM), is a mathematical abstraction suitable for creating
and testing high-level designs, especially those of algorithmic self-assembling systems.
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Figure 2 Schematic depiction of DNA origami slat as a 6-helix bundle. Each cylinder represents
a DNA double helix, and the wavy lines underneath represent single-stranded “handles” (a.k.a.,
“glues”) that serve as binding domains.

In algorithmic systems, the individual components (in this case, slats), can be thought
of as simple program instructions. The binding of each slat effectively uses the domains
available for a slat to bind (i.e. those exposed by slats already in the assembly and in the
necessary geometric arrangement) to discriminate among slat types, allowing exactly one type
to bind. Those initial binding domains can be thought of as the input, and the domains of
the slat that remain exposed to which later slats can bind as the outputs. The design of a slat
and its domains dictates the logic that transforms input into output and thus the function of
the “instruction”. In a computer program, instructions taken from a small number of unique
instruction types can be executed many times each, processing information to determine
which instructions are next and when the computation should end. In an algorithmic self-
assembling system, a small set of slat types do the same thing. Much theoretical work has
been done to show the power of algorithmic self-assembly [2,8, 11,14,16–18,20,22,27] and
that structures can be built with optimally small sets of tile types [3–5,7, 23,26] .

The second model we introduce, the kinetic Slat Assembly Model, is based on the kTAM
and intended to capture more physically realistic aspects of the self-assembly of systems. In
this model, slat attachments are modeled as reversible processes, where the forward rates of
attachment are dependent upon slat concentrations and the reverse (i.e. detachment) rates
are dependent upon the number of bonds formed by a slat. In this way, the model is able
to capture a wider spectrum of dynamics and model several types of errors that occur in
experimental implementations.

We present two techniques for reducing the number of slat types used by systems. The
first technique reduces number of unique slat types used within each (potentially repeating)
square region referred to as a macrotile. In a slat system where the cooperativity value is n

(i.e. each slat needs to bind with n others in order to join an assembly), we call each n × n

region where n slats running horizontally overlap with n slats running vertically a macrotile.
We present in Section 4.1 a technique for designing systems making use of multiple slats of
the same type in each macrotile, thus reducing the overall slat type count, and then present
the results from series of kSAM simulations demonstrating that such systems with fewer slat
types can both assemble more quickly and can do so while maintaining low error rates.

Our second method of reducing slat type numbers is algorithmic self-assembly. To
demonstrate this, we present our design for a system in which the slats compute the logical
xor function, resulting in a system producing the discrete self-similar fractal pattern called
the Sierpinski triangle [18, 24]. We present our macrotile and “tile gadget” design that
allows for the type of inter-macrotile cooperativity required for algorithmic growth, then
show the results of kSAM simulations of that system implemented with varying levels of
cooperativity and intra-macrotile slat counts. The results are very promising and show that
growth can be sped up greatly by decreasing slat type counts while also remaining essentially
error-free within relatively broad ranges of parameters in comparison with previously designed
algorithmic systems.

The organization of this paper is as follows. In Section 2 we define the aSAM and
in Section 3 we define the kSAM and discuss various properties of it and how we tuned
parameters for our simulations. In Section 4 we present our first method for reducing slat type
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counts and kSAM simulation results for systems designed using that method. In Section 5
we present our general design for algorithmic systems and a specific design of a system to
generate the Sierpinski triangle pattern, then kSAM simulation results of it. Finally, in
Section 6 we summarize our results and discuss future directions.

2 The abstract Slat Assembly Model

In this section we briefly introduce the abstract Slat Assembly Model. The abstract Slat
Assembly Model (aSAM) is a generalization of the aTAM [27] in which the fundamental
components are slats, n × 1 × 1 polyominoes made of cubes in 3D space. Similar to tiles,
slats can have glues (also referred to as handles) on each of their 4n + 2 faces. Each glue is
identified by a label, some string of characters (or sometimes a color), and a non-negative
integer strength. Each glue has a complementary glue which shares its strength. In this paper
we will often denote complementary glues using the same labels but with one appended by
an asterisk (e.g. “label” and “label*”). Furthermore, we make a distinction between slats
and slat types, the latter being just a description of the glues and length of a slat with no
defined position or orientation. The position and orientation of slats is restricted to the
3D integer lattice and two slats which sit incident to one another are said to be attached
or bound with strength s if they share complementary glues of strength s on their abutting
faces. An assembly is simply a set of non-overlapping slats.

A slat assembly system (SAS) consists of a finite set of slat types, an assembly called the
seed assembly which acts as the starting point for growth, and a positive integer called the
binding threshold. The binding threshold describes the minimum cumulative glue strength
needed for a slat to stably attach to a growing assembly. Growth in the aSAM is described
by a sequence of slat attachments. Any slat which could sit on the perimeter of an assembly
so that it would be attached to other slats with a cumulative strength meeting the binding
threshold is a candidate for attachment, and attachments are assumed to happen non-
deterministically. Any assembly which could result from a sequence of slat attachments
beginning with the seed assembly of a SAS S and using only those slat types in the slat set of
S is said to be producible in S. Any assembly which permits no additional slat attachments
is called terminal.

The aSAM is an idealized model intended to abstractly describe the growth of DNA-based
slats under ideal conditions, though it makes no attempt to model realist growth dynamics.
Rather, the aSAM is useful for designing and understanding complex slat systems on a logical
level rather than a physical one. Considering slat systems in the framework of the aSAM
allows us to investigate questions such as how many unique handles/glues are necessary to
perform a desired task or how many handles could an erroneous slat bind with at any given
time. Furthermore, the discrete nature of the aSAM is ideal for computer simulation.

We also consider a restricted version of the aSAM which we call the aSAM− which limits
slat attachments in several ways. These restrictions include slats only being allowed to attach
in the planes z = 0 and z = 1, and the requirement that any two slats sharing the same type
will always attach in the same orientation. These restrictions exist to limit our designs to
those which grow in a similar manner to those slat system in [28], but also allow for more
efficient computer simulation.

2.1 SlatTAS: an aSAM− simulator
We have developed and freely released the source code for a Python-based graphical simulator
for the aSAM− (and kSAM, see Section 3) called SlatTAS. It can be downloaded from
self-assembly.net via a link on the page here [15].

self-assembly.net
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2.2 Slat system design parameters
In this section, we provide an example of a SAS and some related terminology that will be
used throughout the remaining sections.

Figure 3 (left) A portion of an example “ribbon” made by a repeating pattern of 2 square
tiles, “A” and “B”, where one copy of A is used as the seed. (Note that the ribbon would extend
infinitely in both directions.) (middle) An example representation of tiles “A” and “B” as slats
using macrotiles of size 4. The outlines show the macrotile locations occupied by the slats. (right) A
portion of an example system of slats simulating this tile system.

The number of slats to which an incoming slat must bind (since all glues are of strength
1) is equal to the parameter τ and is called the cooperativity of a system (a.k.a., coordination
number, the term used in [21, 28]). Similar to the vast majority of the designs of [28], our
systems will be designed so that slats assemble in arrangements which we refer to as forming
macrotiles. Given a system whose cooperativity is c, a macrotile is simply a c × c square
through which c horizontal slats, and c vertical slats, extend and bind to each other. Multiple
macrotiles may be logically combined to form a tile gadget (or simply gadget) which can be
interpreted as a group of slats that “work together” to perform a logical operation, which
is often analogous to a tile in an aTAM system that we have converted into a functionally
equivalent slat system. For example, the set of four slats in Figure 3 which are shown to
“simulate” tile “A” can be thought of as a (relatively) simple gadget whose slats occupy two
macrotiles. The macrotile in which the slats initially bind can be thought of as providing
the input, and once each slat binds to the four slats in the input macrotile, it extends
into the output macrotile. Once all four slats have bound to the input slats, they provide
enough domains in each of four horizontal rows for the slats of the gadget simulating the “B”
tile attach. This process can alternate between horizontal and vertical gadget attachment
infinitely many times, in both the up-left and down-right directions.

The macrotiles of a gadget can serve as input, output, and connector (to be seen later)
macrotiles. We define the slat count as the count of unique slat types in each layer of a
macrotile. Figures 4a and 4b show example ribbons with cooperativity 8 and slat counts 8
and 2, respectively. We use the term motif to refer to the pattern of slat types in a macrotile.
For instance, in Figure 4a if the white vertical slats are of type w and the green are of type
g, we could denote the motif as wggwwggw.

3 The kinetic Slat Assembly Model

To better understand how crisscross slat assemblies grow, we extend the framework of the
kinetic Tile-Assembly Model (kTAM) to incorporate slats instead of square tiles. In the
kTAM [27], tile attachments are modeled as reversible processes with forward and reverse
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(a) Slat count 2 (i.e. each macrotile contains slats
of only two different types in each direction).

(b) Slat count 8 (i.e. each slat of each direction in
a macrotile is unique).

Figure 4 Example slat ribbons with macrotile size 8 (i.e. cooperativity 8) and varying slat count.
Slats running in different directions are of different types, and for each direction each type has a
unique color.

rates. Furthermore, the kTAM models seeded growth, beginning from a predefined seed
assembly which is assumed to exist at lower concentrations than the individual tiles. In the
kTAM, the forward rate of attachment for tile t has the form rf = kf [t], where kf is the
reaction rate constant and [t] is the concentration of t. The kTAM assumes that the rate
of tile detachment depends primarily on the number of glue bonds formed by each tile. A
tile with only 1 bound glue, for instance, should detach much more quickly than a tile with
2 or more bound glues. The reverse rate therefore depends on the free energy of a typical
bond which is denoted ∆G◦

se where se stands for sticky end. Consequently, the reverse rate
describing the detachment of a tile with b glue bonds has the form

rr,b = kf u0 exp
(

b
∆G◦

se

RT
+ α

)
where u0 is a standard reference concentration, T is the temperature in Kelvin, R is the
molar gas constant, and α is a unitless free energy parameter associated with other factors
specific to a particular realization of the tiles. These rates are generally translated into a more
symmetric form [10] by defining k̂f

def= u0kf exp(α), Gmc
def= α − log( [t]

u0
), and Gse

def= − ∆G◦
se

RT .
These can then be substituted into the original rate formula to get the following.

rf = k̂f exp(−Gmc) rr,b = k̂f exp(−bGse)

In this form, the parameter Gmc describes tile concentrations logarithmically with larger
values corresponding to smaller concentrations, and Gse describes the free energy of a strength
1 glue with larger values corresponding to stronger bonds. In the kTAM, the ratio Gmc/Gse

plays an important role, analogous to the binding threshold τ in the aTAM. When this
ratio is slightly less than 2 for instance, growth in the kTAM proceeds much like it would
in a binding threshold 2 aTAM system with the same tiles. This is because at this ratio,
tiles bound with strength 2 dissociate at a rate just barely less than tiles attach to the
assembly while tiles bound with strength 1 or 0 dissociate with a significantly higher rate.
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Consequently, a correctly bound tile (matching 2 glues) is likely to remain attached to the
assembly for long enough for additional tile attachments to occur, matching glues with the
correct tile and subsequently increasing its number of bonds so that it is held stably to the
attachment. Incorrect tiles (matching 1 glue or fewer) on the other hand detach much more
rapidly and very likely before any additional tile attachments occur. When this ratio is
exactly equal to 2, or more generally the cooperativity of the tile system, then the kTAM
describes how the system behaves at the melting temperature, i.e. even the strongest bound
tiles detach just as often as tiles attach to the assembly. In general, the ratio of Gmc to Gse

is often more pertinent when describing the expected dynamics of a system than the values
of the individual parameters, though the parameters themselves are necessary for computer
simulation of the kTAM. For a more detailed description of the kTAM and subsequent
analyses for square tiles, see [10,27].

Despite making several simplifying assumptions, the kTAM has been broadly successful
in realistically describing growth and error phenomena in a variety of tile-based schemes of
DNA self-asssembly [6, 9]. The model captures many critical features of physical tiles while
remaining simple enough for meaningful mathematical manipulation and efficient computer
simulation using the Gillespie algorithm [12]. Generalizing the kTAM to incorporate slats
rather than square tiles is, in principle, as straightforward as it sounds. Instead of square
tiles which occupy only a single grid location and contain at most 4 glues, we consider slats
which can occupy several adjacent grid locations and have a number of glues proportional to
their length. For purposes of brevity and clarity, we will refer to this generalization as the
kinetic Slat Assembly Model or kSAM to distinguish it from the kTAM for square tiles.

3.1 Finding appropriate parameter values for physical slats
While many important properties of a kSAM system can be inferred from the ratio Gmc/Gse,
it’s useful to find specific values for these individual parameters which yield simulations with
accurate growth rates. Other than α which describes an entropic cost associated with a
specific implementation of slats, all of the factors defining the parameters Gmc, Gse, and k̂f

such as temperature and slat concentrations are generally known. We can roughly estimate
the value of α by noting that, for slat systems with cooperativity c, the melting temperature
should correspond to values for Gmc and Gse such that Gmc = cGse. Consequently, by
substituting Gmc and Gse with their definitions we find that

α − log
(

[s]
u0

)
= −c

∆G◦
se

RT
.

Furthermore, ∆G◦
se = ∆H◦

se − T∆S◦
se where ∆H◦

se and ∆S◦
se are the enthalpy and entropy

associated with a single sticky end bond whose values can be approximated using the nearest
neighbor model. Rearranging the above equation, thus yields the following expression for α

which assumes that T is the melting temperature of the system.

α = c

R

(
∆S◦

se − ∆H◦
se

T

)
+ log

(
[s]
u0

)
In [28], the authors determined the melting temperature for origami slat ribbons using

cooperativity values of 8 and 16 and using handle lengths of 6, 7, and 8 nucleotides. Using
their values for melting temperature and the corresponding slat concentrations, and applying
the nearest neighbor model to their handle sequences therefore allows us to find a value for
α. Using the handle sequences from [28] we calculated typical values for 7nt handles to be
about ∆H◦

se ≈ −47kcal mol−1 and ∆S◦
se ≈ −142cal mol−1 K−1. For their slat concentration
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Figure 5 Error rates for kinetic simulations of cooperativity 16 ribbons at Gmc and Gse values
ranging from 10 to 200. The general shape of the error curve matches the trends predicted by the
kinetic trapping model with sharp jumps as the ratio Gmc/Gse crosses an integer value. Furthermore,
when Gmc < Gse the error probability is 1.

of 20nM and melting temperature of 42.1◦C = 315.25K, these values yield a value for α of
around 39. Admittedly, this approximation isn’t perfect; for one, the formula for α is quite
sensitive to the values of ∆H◦

se and ∆S◦
se which can vary a bit for the same glue sequence

depending on the specific duplex table used in the nearest neighbor model calculations. For
our simulations we chose to use α = 40, though we note that for our purposes the specific
value for α makes little difference in the error dynamics of our simulated slat systems.

3.2 A kSAM simulator

We have developed and freely released the source code for a C++ based stochastic simulator
for both the aSAM and kSAM, which has been highly optimized for faster simulation than the
existing SlatTAS [15]. It can be downloaded from self-assembly.net via a link on the page
here [13]. More generally, our simulator is capable of handling arbitrary 3D polyomino-shaped
tiles (including square/cube tiles) and can be configured to simulate 2D and almost-3D (with
only 2 layers in the z-axis) systems as well by use of a dimension restriction which allows
for specifying minimum and maximum allowed coordinates in all 3 dimensions if desired.
The simulator can also use multiple threads to simulate a system ensemble. All kinetic
simulations in this paper were performed using our simulator in kinetic mode and our error
metrics were calculated using reference assemblies generated by our simulator in abstract
mode.

4 Optimized implementation of crisscross ribbons via slat type reuse

In this section, we describe our first technique for reducing slat type counts, which involves
slat type reuse within macrotiles. We then describe the range of systems with varying
amounts of such intra-macrotile slat reuse that we designed and then tested via kSAM
simulations, and discuss the results of those simulations.

self-assembly.net
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Figure 6 Example using two types of slats in each direction for 8 × 8 macrotiles. (left): Two types of
vertical slats, w and x, with four copies of each used for the eight total vertical slats used in the input and
output macrotiles. (right): Two types of horizontal slats, y and z, where input glues of w and x bind to
output glues of y and z. This illustrates how slat re-use within a macrotile forces re-use of glues. Where
slats w and y overlap, they must have a complementary glue (a on w and a∗ on y, latter not depicted
since the output glues of the y slat are underneath the w and x slats). By symmetry, that same glue a
is forced to be used wherever slats w and y intersect. In this situation, the maximum number of glues
that can possibly be used is only four: a, b, c, d, increasing the potential for misaligned slats to have
complementary glues in adjacent locations over systems which use larger numbers of glues.

4.1 Slat layout in macrotile designs

Most assembly schemes in [28] consider slat assembly in a modular way, by partitioning
the integer lattice Z2 into n × n macrotiles. The n slats that assemble to fill in an n × n

macrotile can be considered as “simulating” a square tile in the abstract and kinetic Tile
Assembly Models [27]. In [28], a unique slat type was used in every one of the n relative
positions within a macrotile (even for periodic structures such as infinite 1D ribbons and 2D
sheets that used the rectangular macrotile growth pattern and repeated the same set of slats
in different macrotiles). However, we have analyzed patterns of possible slat reuse within
macrotiles and developed a technique for greatly reducing how many are required in each
while seeking to maintain (mostly) error-free growth, which we now describe.

Figure 6 shows an example of using only two types of slats in each direction when we use
cooperativity 8 to have 8 × 8 macrotiles. Its caption explains how this slat reuse forces the
reuse of glues. This reuse of glues in turn means we must confront the possibility that slats
can bind “strongly” somewhere that they should not (perhaps flipped and/or translated such
that they are not in alignment with macrotile boundaries) due to complementarity of a partial
subset of glues. Figure 7 shows some potential scenarios with erroneous binding. Although
we declare in the abstract aSAM model that no binding occurs if the number of matching
glues is less than the cooperativity value n, in the kSAM and in actual experiments it is
possible for such situations to allow for slat bindings with “close” to n bonds (although with
expected duration of attachment to diminish as the distance from n increases). Therefore,
we strive to ensure that slat and glue patterns are designed so that the maximum strength
of any such incorrect slat binding is minimized. We analyze motif patterns to detect and
minimize a property we call auto-correlation in order to minimize the errors that occur
during self-assembly.
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a* a* a* b* a* b* b* b*

aaababbb

Figure 7 Design of slat arrangement to minimize overlap of complementary glues in unintended slat
bindings. (a): The input glues of a horizontal slat (aaababbb; output glues on right not depicted) binding
with incorrect translation to the output glues of eight vertical slats presenting glues a∗a∗a∗b∗a∗b∗b∗b∗.
This arrangement of input glues has auto-correlation 4: this translation makes 4 of the glues bind, and
every other nonzero translation also has at most 4 matching glues. This means the slat could erroneously
bind with strength 4 in the incorrect x position. (b): A string of input glues for a slat with reversed
auto-correlation 3. Such a slat could bind with incorrect 180 degree rotation with strength 3. (c): Two full
slats binding erroneously to each other. A horizontal slat (on top; input glues a, b on left, output glues
c, d on right) and a vertical slat (on bottom; output glues a∗, x∗ on left, input glues c∗, z∗ on right) bind.
The potential for such binding occurs in situations such as the repeating ribbon of Figure 4a, where (in
the normal expected binding) a horizontal slat type binds to a vertical slat type, then the same vertical
slat type binds to the horizontal slat. By our glue design; in this scenario at most one glue can be shared
on each side, e.g., since they share a on the left, they have different glues (b vs. x) for the other type on
the left. This check was done in [28]. (d): Similar to part (a), but considers output glues of a slat also. In
this example, the left-side block are input glues for the horizontal slat, and the right-side block are the
outputs. This describes the scenario where, after vertical slats begin binding on the right (with less than
total cooperativity) to horizontal slats (not shown), before the block is complete with horizontal slats, a
correct horizontal slat with incorrect x-translation “backfills” in the block.

4.2 Testing slat reuse via kinetic simulations
In [28], the authors, among several other experiments, grew a variety of ribbons using
DNA-origami crisscross slats and investigated how their growth was affected by the number
of unique slat types used. Specifically, these ribbons, all of which used a cooperativity value
of 16, were designed to use either 8, 16, 32, or 64 unique slat types in each of the two layers
of growth, attaching periodically. They evaluated the growth of these ribbons both in the
situation where the concentration of individual slats was kept constant, and where the total
concentration of all slats was held constant (i.e. smaller slat counts having higher per-slat
concentrations). While the growth of these ribbons was generally similar when individual
slat concentrations were maintained, they did observe a significant decrease in growth as slat
count increased when total slat concentrations were fixed.

Here we explore the effects of slat count on ribbon growth conversely, to determine
the extent to which we can expect to decrease slat counts while preserving rapid correct
growth of the ribbons. To do this, we designed several cooperativity 16 ribbon systems with
decreasing slat count and evaluated their growth dynamics within the framework of the
kSAM. Our systems included ribbons with 2, 4, 8, and 16 unique slat types for each layer and
we performed kSAM simulations of these systems both with individual slat concentrations
held constant and with total slat concentrations held constant. The ribbon systems we
used are illustrated in Figure 8 and additional info can be seen in Table 1. We chose to
implement zig-zag ribbons which more closely match our motif for algorithmic growth than
the “staggered” ribbons of some of the designs in [28].

We simulated each of these systems at a fixed value of Gmc and varied Gse. In principle,
this corresponds to growing the slat systems with fixed slat concentrations at a variety of
temperatures. The specific value of Gmc used was 58 which corresponds to a slat concentration
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Figure 8 The cooperativity 16 ribbons simulated in the kSAM with various slat counts. Slat
counts from left to right: 16, 8, 4, 2.

Table 1 For the cooperativity 16 ribbon systems tested via kSAM simulations with given slat
counts, the motifs, auto-correlations and cross-correlations.

Slat count Motif Auto-correlation Cross-correlation
16 abcdefghijklmnop 1 2
8 chfgacbaheefddgb 2 4
4 bccababbddcdcaad 4 4
2 ababbbbaaabaabba 8 8

of 15nM using the value for α derived in Section 3.1. Values of Gse were chosen so that
Gmc/Gse values spanned the range from 1 to 16. For each ribbon, we wanted to simulate 2
situations: (1) with individual slat counts kept constant at 15nM for all ribbons, and (2)
with total slat concentrations held constant at 480nM across all ribbons. To keep total slat
concentrations fixed, systems with smaller slat counts had their slat concentrations adjusted1.
Note that for both the fixed individual slat concentrations and fixed total concentrations,
concentrations are identical for the slat count 16 ribbons, so those were only simulated once.

To estimate the rate of erroneous slat attachment, we additionally simulated each system
in the error-free aSAM with a binding threshold of 16. This resulted in a reference assembly
containing only correctly attached slats to which our kinetic simulations could be compared.
We then consider a slat to be correct in the kinetic simulation when a corresponding slat,
of the same type in the same translation, exists in the reference assembly. To estimate
growth rates in our simulated systems, we note that the time between events during a kinetic
simulation can be determined by sampling a value of ∆t from an exponential distribution
whose rate parameter is the net rate of any event (attachment or detachment) occurring [27].
The growth time of a simulation can thus be calculated by summing the sampled ∆t values
for each event which occurs in the simulation. Growth rate is then simply estimated as the
number of slats which attached by the total growth time.

4.3 Results for ribbons simulated with fixed individual slat
concentrations

Figures 9a and 9b describe the estimated error and growth rates of the various ribbons
with a fixed individual slat concentration. Note that Gmc/Gse = 16 corresponds to the
melting temperature since with those parameters, the rate of slat attachment is equal to
the rate of detachment of slats with 16 bound glues. Consequently, the growth rate beyond
that point will be 0. Near the melting temperature, all ribbons exhibit very few erroneous

1 In our simulation code, this is implemented as a multiplier to the forward rate, rather than adjusting
Gmc, though the effect is the same.
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(a) Simulated error rates of our cooperativity 16
ribbons when individual slat concentrations are held
constant.

(b) Simulated growth rates of our cooperativity 16
ribbons on a log scale when individual slat concen-
trations are held constant.

Figure 9 Results for kinetic simulations of cooperativity 16 ribbons with fixed individual slat
concentrations. Results represent averages over 100 simulations.

slat attachments. Interestingly, the error rate for all ribbons remain essentially at 0 for
Gmc/Gse > 12. Additionally, growth rates for all ribbons in this range are essentially
equivalent between the differening slat counts. Together these results suggest that there
exists a range of temperatures in which the slat count 2 ribbons grow just as well as the
slat count 4 and 8 ribbons. As discussed further in Section 7.1 of the appendix, the growth
rate of the slat count 2 ribbons interestingly decreases when Gmc/Gse drows below around
9. This seems to be due to a high frequency of erroneous slat attachments which quickly
occupy most available stable attachment sites preventing further growth.

In general, the error rates for the systems drastically increase as the Gmc/Gse ratio drops
to the value corresponding to the auto-correlation values of the systems. This is because
for each system there exist one or more slats that can bind while in an incorrect/misaligned
location with a number of glues equal to that system’s auto-correlation value, and when that
is near or equal Gmc/Gse, those attachments are relatively stable. Thus, the prevalence of
errors rapidly increases near those values. Due to space constraints, more details of the types
of errors observed can be found in Section 7.1 of the appendix.

The results of these kSAM simulations imply that there are ranges of Gmc and Gse where
ribbon growth can remain almost entirely error-free even when the slat counts are reduced to
the nearly optimal value of 2. (Note that any system using cooperativity n with a slat count
of 1 would necessarily have auto-correlation value of n − 1, and thus a very narrow possible
range for Gmc/Gse with low errors.) Additionally, even with individual slat concentrations
held constant across systems, the growth rates were roughly equivalent across wide ranges of
Gmc/Gse, meaning that the lower absolute concentrations of slats (and thus lower arrival
rates of slats at frontier locations) was balanced by the higher likelihood of a slat type being
the correct type for a location in which it randomly arrives.

4.4 Results for ribbons simulated with fixed total slat concentrations
In addition to simulating the ribbons with fixed individual slat concentrations, we also
simulated the ribbons with total concentrations fixed. That is, systems using fewer unique
slats had higher concentrations for each slat. For these experiments, we used the same
slat designs as in the previous section (with details shown in Table 1), changing only slat
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(a) Error rates for cooperativity 16 ribbons using
slat counts of 2, 4, 8, and 16 using a fixed total
concentration of all slats in each system. Notice that
despite having different concentrations, the results
are near identical to those in Figure 9a.

(b) Growth rates for cooperativity 16 ribbons using
slat counts of 2, 4, 8, and 16 with fixed total con-
centration of all tiles in each system. Results are
plotted on a log scale. Growth rates are larger for
smaller slat counts suggesting that decreasing slat
counts allows for faster growth of ribbons.

Figure 10 Results for kinetic simulations of cooperativity 16 ribbons with fixed total slat
concentrations. Results are averaged over 100 simulations.

concentrations. This is in line with the ribbon experiments performed in [28]. Error rates
and growth rates are calculated using the same method for the analogous results with fixed
individual slat counts. Our results are summarized in Figure 10a and Figure 10b. While
decreasing slat counts caused ribbons to have narrower regions of correct growth, our results
show that under the right conditions, all ribbons were able to grow essentially error free.
Moreover, in our simulations, halving slat counts lead to growth rates increasing by an
average factor of 2.35 at Gmc/Gse = 11. In fact over the range of Gmc/Gse values where
all ribbons grew with little error, (i.e. above 11), the ratio of growth rates between ribbons
whose slat counts differed by a factor of 2 was consistently greater than 2 as illustrated
in Figure 19. In other words, halving slat counts more than doubled growth rates in our
simulations. Whether these results would translate into the lab is unclear, but regardless our
results suggest that decreasing slat counts can be a powerful tool for improving growth rates
without sacrificing much error. Importantly, this technique for reducing slat type counts
is applicable in general, to all designs using macrotiles. (For more detailed examination of
some of the errors observed, please see Section 7.2.)

5 Algorithmic self-assembly using crisscross slats

An n × n square composed of square tiles in the aTAM can self-assemble in a system which
uses a unique tile type at each location (a so-called fully-addressable or hard-coded system),
requiring n2 unique tile types. However, an algorithmic system can form a structure of the
exact same shape using an optimal (via an information theoretic argument) log(n)

log(log(n)) tile
types [1, 25], meaning that the hard-coded system uses exponentially more tile types than
the algorithmic system. As previously mentioned, reducing the number of unique component
types has the benefits of making a physical implementation via DNA (1) cheaper, (2) faster,
and (3) require fewer unique domains thus making their individual binding characteristics
more uniform. However, in order to leverage the power of algorithmic self-assembly, a slightly
different notion of cooperativity than previously discussed is necessary. While the previously
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Figure 11 An example of “algorithmic” cooperation, i.e. the inputs of one gadget’s slats are the
outputs of slats from two different gadgets. In this case, the yellow slats belong to one gadget and
the pink to another. They overlap in the location of the central macrotile to provide input to the
green slats. This is often referred to as across-the-gap cooperation. This process is analogous to the
algorithmic cooperation realized by square yellow and pink tiles cooperatively binding to a square
green tile.

Figure 12 An example gadget that receives its input in a macrotile at the bottom, then has slats
which propagate output to macrotiles to the top left and right.

discussed notion of cooperativity concerned the binding of a single slat to multiple other
(orthogonally oriented) slats in order to attach to an assembly, in the examples shown (e.g.
Figure 3) all slats bound to as input for one gadget were acting as output for a single other
gadget. This effectively provides only a single logical input to direct the growth of each
gadget. Algorithmic growth, on the other hand, requires that some gadgets receive input from
at least two distinct gadgets, allowing the combined information from both input gadgets to
direct the growth of the new gadget. (This was shown to be necessary by the requirement of
a minimum temperature value of 2 in the aTAM [19,20].) An example of such algorithmic
cooperativity implemented via slats in 4 × 4 macrotiles can be seen in Figure 11.

Figure 13 Order of growth of a gadget using algorithmic cooperation.
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Figure 14 Example of algorithmic error propagation through a gadget.

5.1 Kinetic simulations and error analyses of algorithmic systems

We hypothesized that our design for algorithmic systems using slats arranged in gadgets
composed of macrotiles should exhibit strong proofreading characteristics. The reasoning
for this is depicted in Figures 12–14 where (1) the input and output regions of a gadget are
depicted (Figure 12), (2) the ordering of correct growth is shown (Figure 13), and (3) the
number of concurrent errors that would need to occur and persist in order for slats to bind
with even half of the designed binding strength in order to propagate algorithmic errors is
exemplified Figure 14. In general, for a macrotile scheme at cooperativity k (i.e. using slats of
length 2k), at least k erroneous half-strength slat attachments are required for at least half of
a macrotile’s outputs to encode the wrong value. While, this is the same number of erroneous
attachments necessary to invalidate a square tile system using k × k block-replacement, our
macrotiles consist of only k slats rather than k2 square tiles. In other words, a square tile
block-replacement scheme requires a quadratic increase in tile complexity, compared to a
linear increase for our slat based macrotiles, to achieve the same amount of proofreading.

The discrete self-similar fractal pattern known as the Sierpinski triangle is a well-studied
pattern in aTAM and kTAM self-assembly, both theoretically [18] and experimentally [24].
This is due to its relatively simple algorithmic logic (each location represents a 0 or 1 bit
value that is the xor of the bits of its two input neighbors) that results in an infinite,
aperiodic pattern known as a discrete self-similar fractal. (See Section 7.3 for depictions
of the Sierpinski triangle.) We designed several macrotile-based algorithmic slat systems
which grow to form a Sierpinski triangle pattern using cooperativity values of 2, 4, and 8. In
total we simulated 6 designs, permuting cooperativity and slat counts. For cooperativity
8 triangles we tested slat counts of 2, 4, and 8; for cooperativity 4 triangles we tested slat
counts of 2 and 4, and our cooperativity 2 triangles used a slat count of 2. Concentrations
of individual slats was kept constant at 15nM per slat. The results of the simulations are
summerized in Figure 15a. Our results show that while decreasing slat counts increased error
rates consistently, there were still ranges of conditions under which all triangles grew with
little error. Interestingly, for the cooperativity 4 triangles, using a slat count of 2, growth
rates slowed significantly below a Gmc/Gse of 3. Much like the slat count 2 ribbons in
Section 4, we suspect that this is due to erroneous slats quickly filling up most of the stable
attachment sites preventing further growth. This is supported by the fact that growth rates
increase below a Gmc/Gse of 2 where stable attachment sites require fewer correct glues.
Regardless, our triangle systems exhibit a remarkable tolerance to infrequent errors as can
be seen in Figure 23 and Figure 24. These results support the idea that even for algorithmic
systems, under ideal conditions, reducing slat counts is possible without sacrificing much in
terms of error.
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(a) Rate of erroneous slat attachment in kinetic sim-
ulations of our algorithmic slat systems as a function
of Gmc/Gse. All systems exibited little error in con-
ditions near their respective melting points, where
Gmc/Gse equals the cooperativity value of the sys-
tem.

(b) Log growth rate during kinetic simulations of our
algorithmic slat systems as a function of Gmc/Gse.
Here growth rate is calculated as the number of slat
additions per unit of simulated time.

Figure 15 Results for kinetic simulations of Sierpinski triangle systems. Each data point represents
the average of 100 simulations.

6 Conclusions and Future Work

In this paper, we have introduced an abstract mathematical model for self-assembling systems
composed of slats that can combine in layers using high levels of cooperativity, and shown
how to design algorithmic self-assembling systems of slats within it. We have also introduced
a more physically realistic “kinetic” model capable of capturing many types of errors that
occur in laboratory implementations of self-assembling systems, and showed that we were able
to tune parameters of simulations within that model to match results of systems from [28].
We then presented a technique for reducing the number of unique slat types required to
build ribbon structures (that generalizes to all macrotile-based designs) and showed via
simulations that growth rates can be greatly accelerated while low error rates are maintained.
Finally, we presented a technique for designing algorithmic self-assembling systems of slats
and demonstrated it by designing a system that generates the Sierpinski triangle pattern,
which we also simulated to show that extremely low error rates can be maintained. Due to
the fact that algorithmic systems are capable of self-assembling structures while utilizing
only a logarithmic number of unique components relative to hard-coded structures, and
combined with the first technique for reducing slat types, our designs result in slat systems
with dramatically fewer slat types than previous designs. Simulations show that these systems
will therefore self-assemble much faster, and they will also be much easier and cheaper to
implement.

We will be implementing these and similar systems using DNA origami slats and comparing
the laboratory results to the results of our simulations, then updating the model (and our
designs) as necessary to refine the designs. Future work could include new designs of
macrotiles so that the inter-macrotile cooperativity needed for algorithmic self-assembly
is achieved through different slat patterns and/or orientations, and then simulations and
laboratory experiments to see which are best. Also, further examination of the types of errors
that occur during simulations and laboratory experiments may result in additional checks and
optimizations to be made for designs. It is our hope that crisscross slat based self-assembling
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systems will achieve high-levels of algorithmic sophistication while maintaining low enough
levels of algorithmic errors to realize much more of the theoretical potential that has been
pursued for so long.
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7 Appendix

This section contains technical details of results omitted from the main body of the paper
due to space constraints.

7.1 Details regarding ribbon systems with fixed individual slat
concentrations

Here we provide more in-depth analysis of the types and causes of errors that we observed in
the simulations of ribbons with varying amount of slat reuse in Section 4.3. We attempt to

http://self-assembly.net/wiki/index.php?title=SlatTAS
https://doi.org/10.1007/s00224-010-9252-0
https://doi.org/10.1007/s00224-010-9252-0
https://doi.org/10.1145/3357713.3384263
https://doi.org/10.1145/3055399.3055446
https://doi.org/10.1007/s11047-010-9218-9
https://doi.org/10.1137/S0097539704446712


D. Doty, H. Fleming, D. Hader, M. J. Patitz, and L. A. Vaughan 7:19

give our intuitions for why we think error and growth rates trend as they do. For example,
the auto-correlation value for the slat count 2 system is 8, and for that system error rates
begin to increase slowly as Gmc/Gse drops below about 12 until around 9.5 where it suddenly
begins to spike. However, and importantly for continued growth of the ribbons, while the
error rate in this region is distinctly larger than 0, we note that the errors present are
generally isolated and do little to affect the overall growth of the ribbon. Figure 16 depicts a
section taken from a typical slat count 2 ribbon at Gmc/Gse = 10. Erroneous slats can be
seen clearly in the assembly as they are generally not aligned with the others, but because
only a small number are present in each block, the further attachment of correct slats is not
impeded significantly.

Figure 16 A typical section from ribbons with slat count 2 at Gmc/Gse = 10.

For both the slat count 4 and 8 ribbons, overall growth rates decrease monotonically
with Gmc/Gse which is to be expected as higher values of Gmc/Gse correspond to higher
temperatures. Surprisingly however, the slat count 2 ribbons seem to exhibit significantly
reduced growth rates as Gmc/Gse decreases below about 9.5. Given that this region corre-
sponds to growth with a significant amount of errors, this suggests, that the erroneous slat
attachments eventually accumulate to the point where no further attachments are possible.
Indeed, when we look at the assemblies resulting from these simulations, we find that this is
the case as depicted in Figure 17a. This behavior is unique to the slat count 2 ribbons; for
ribbons with slat counts 4 and 8, erroneous attachment below the point where errors become
common rarely seems to result in stalled growth and instead typically results in uncontrolled
growth as depicted in Figure 17b. This discrepancy between slat count 2 ribbons and those
using slat counts of 4 or 8 can be explained by considering the point at which errors become
common. For slat count 2, errors become common below Gmc/Gse = 9. At this ratio, slats
still need several bound glues to attach stably and since growth is uncontrolled it’s likely that
all sites in which slats could attach stably quickly fill up. Compare this to the ribbons with
slat counts 4 and 8 where errors are only common when Gmc/Gse is relatively small. Since
only a few matching glues are required for stable attachment at these values of Gmc/Gse,
it’s much more likely that even during uncontrolled growth, there will be numerous sites in
which slats can attach stably.

7.2 Details regarding ribbon systems with fixed total slat concentrations
Here we provide a few additional details regarding what we observed in the simulations of
ribbons with varying amount of slat reuse in Section 4.4. Interestingly, the error rates for these
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(a) A typical assembly from the simulation of
our ribbons with slat count 2 at Gmc/Gse = 7.
Here, errors have accumulated and filled in most
sites surrounding the assembly which could admit
stable attachments.

(b) A typical section from the growing edge
of our simulated ribbons with slat count 8 at
Gmc/Gse = 2.5. Here errors are plentiful and
growth is uncontrolled.

Figure 17 Example assemblies from simulations of two different ribbon systems with cooperativ-
ity 16.

Figure 18 The growth front of a typical ribbon using slat count 2 with total slat concentration
fixed at 480nM.

ribbons didn’t seem to change significantly with the adjusted concentrations. Conversely, as
should be expected, growth rates increased as slat counts decreased. These results agree well
with the observations from [28] and suggest that by reducing slat counts further should be
a viable approach to designing slat systems which grow more quickly. Suprisingly, unlike
with the ribbons keeping individual slat counts fixed, growth of the ribbons using slat count
2 did not drop significantly when Gmc/Gse dropped below about 9. With individual slat
concentrations fixed, the slat count 2 ribbons, reached a point where no further stable
tile attachments were possible, however when total slat concentrations were fixed across
ribbons, the increase to the individual slat concentrations allowed continued growth despite
erroneous attachments being dominant. Figure 18 illustrates the growth front of such a
ribbon when total slat concentrations were fixed which can be contrasted with Figure 17a
for fixed individual slat counts.
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Figure 19 Ratios between growth rates for ribbons with slat counts differing by a factor of 2.
Notice that this ratio never drops below 2 in the illustrated range, representing ideal conditions for
error-free growth.

7.3 The Sierpinski triangle in tiles and slats
An example of a portion of the Sierpinski triangle self-assembled from aTAM tiles is shown
in Figure 20, and (one layer of) our implementation with slats using cooperativity 4 is shown
in Figure 22. This construction uses a gadget for each tile type from Figure 20, which can be
seen in Figure 21.

Figure 20 The Sierpinski triangle pattern. (left) The four “logic” tiles which have their inputs
on the bottom and outputs on the top. The output bits are the logical “exclusive or” (xor) of the
input bits, (middle) A portion of the infinite assembly, (right) The boundary tiles.

Figure 21 The gadgets of the Sierpinski triangle construction with slats using cooperativity 4
analogous to the tiles of the aTAM construction in Figure 20.
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7:22 Accelerating Self-Assembly of Crisscross Slat Systems

Figure 22 The Sierpinski triangle pattern made from a system of slats with cooperativity 4
(i.e. total length 8 each except for some boundary slats which are length 18). The gadgets of the
construction are shown in Figure 21. Only the layer of vertical slats is shown, for clarity.

Figure 23 Growth errors during growth of a cooperativity 4 Sierpinski triangle using a slat count
of 4 at Gmc/Gse = 2.5. Notice that some erroneous attachments are visible, leaving gaps where
some horizontal slats should be, yet growth of the Sierpinski triangle pattern continues unaffected.
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Figure 24 A zoomed out view of the complete assembly formed by the same simulation as
illustrated in Figure 23. Here, horizontal slats are hidden so that the Sierpinski triangle pattern of
the verical slats is more visible. This system was grown at Gmc/Gse = 2.5 where the probability of
growth errors was distinctly non-zero. Still, the Sierpinski triangle pattern grows flawlessly.

DNA 29





Thermodynamically Driven Signal Amplification
Joshua Petrack #

University of California–Davis, CA, USA

David Soloveichik # Ñ

University of Texas at Austin, TX, USA

David Doty # Ñ

University of California–Davis, CA, USA

Abstract
The field of chemical computation attempts to model computational behavior that arises when
molecules, typically nucleic acids, are mixed together. By modeling this physical phenomenon at
different levels of specificity, different operative computational behavior is observed. Thermodynamic
binding networks (TBNs) is a highly abstracted model that focuses on which molecules are bound
to each other in a “thermodynamically stable” sense. Stability is measured based only on how many
bonds are formed and how many total complexes are in a configuration, without focusing on how
molecules are binding or how they became bound. By defocusing on kinetic processes, TBNs attempt
to naturally model the long-term behavior of a mixture (i.e., its thermodynamic equilibrium).

We study the problem of signal amplification: detecting a small quantity of some molecule and
amplifying its signal to something more easily detectable. This problem has natural applications
such as disease diagnosis. By focusing on thermodynamically favored outcomes, we seek to design
chemical systems that perform the task of signal amplification robustly without relying on kinetic
pathways that can be error prone and require highly controlled conditions (e.g., PCR amplification).

It might appear that a small change in concentrations can result in only small changes to the
thermodynamic equilibrium of a molecular system. However, we show that it is possible to design a
TBN that can “exponentially amplify” a signal represented by a single copy of a monomer called the
analyte: this TBN has exactly one stable state before adding the analyte and exactly one stable
state afterward, and those two states “look very different” from each other. In particular, their
difference is exponential in the number of types of molecules and their sizes. The system can be
programmed to any desired level of resilience to false positives and false negatives. To prove these
results, we introduce new concepts to the TBN model, particularly the notions of a TBN’s entropy
gap to describe how unlikely it is to be observed in an undesirable state, and feed-forward TBNs
that have a strong upper bound on the number of polymers in a stable configuration.

We also show a corresponding negative result: a doubly exponential upper bound, meaning that
there is no TBN that can amplify a signal by an amount more than doubly exponential in the number
and sizes of different molecules that comprise it. We leave as an open question to close this gap
by either proving an exponential upper bound, or giving a construction with a doubly-exponential
difference between the stable configurations before and after the analyte is added.

Our work informs the fundamental question of how a thermodynamic equilibrium can change
as a result of a small change to the system (adding a single molecule copy). While exponential
amplification is traditionally viewed as inherently a non-equilibrium phenomenon, we find that in a
strong sense exponential amplification can occur at thermodynamic equilibrium as well – where the
“effect” (e.g., fluorescence) is exponential in types and complexity of the chemical components.
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1 Introduction

Detecting a small amount of some chemical signal, or analyte, is a fundamental problem
in the field of chemical computation. The current state-of-the-art in nucleic acid signal
amplification is the polymerase chain reaction (PCR)[9]. By using a thermal cycler, PCR
repeatedly doubles the amount of the DNA strand that is present. One downside is the need
for a PCR machine, which is expensive and whose operation can be time-consuming. The
advantages of PCR are that it can reliably detect even a single copy of the analyte if enough
doubling steps are taken, and it is fairly (though not perfectly) robust to incorrect results.
Recent work in DNA nanotechnology achieves “signal amplification” through other kinetic
processes involving pure (enzyme-free) DNA systems, such as hybridization chain reaction
(HCR) [4], classification models implemented with DNA [7], hairpin assembly cascades [10],
and “crisscross” DNA assembly [8].

Although highly efficacious, PCR and these other techniques essentially rely on kinetic
control of chemical events, and the thermodynamic equilibria of these systems are not
consistent with their desired output. Can we design a system so that, if the analyte is
present, the thermodynamically most stable state of the system looks one way, and if the
analyte is absent, the thermodynamically most stable state looks “very different” (e.g.,
many fluorophores have been separated from quenchers)? Besides answering a fundamental
chemistry question, such a system is potentially more robust to false positives and negatives.
It also can be simpler and cheaper to operate: for many systems, heating up the system and
cooling it down slowly reaches the system’s thermodynamic equilibrium.

We tackle this problem of signal detection in the formal model of Thermodynamic
Binding Networks (TBNs) [5, 3]. The TBN model of chemical computation ignores kinetic
and geometric constraints in favor of focusing purely on configurations describing which
molecules are bound to which other molecules. A TBN yields a set of stable configurations,
the ways in which monomers (representing individual molecules, typically strands of DNA)
are likely to be bound together in thermodynamic equilibrium. A TBN performs the task of
signal amplification if its stable configurations, and thus the states in which it is likely to be
observed at equilibrium, change dramatically in response to adding a single monomer. TBNs
capture a notion of what signal amplification can look like for purely thermodynamic chemical
systems, without access to a process like PCR that repeatedly changes the conditions of
what is thermodynamically favorable.

This paper asks the question: if we add a single molecule to a pre-made solution, how
much can that change the solution’s thermodynamic equilibrium? To make the question
quantitative, we define a notion of distance between thermodynamic equilibria, and we
consider scaling with respect to meaningful complexity parameters. First, we require an
upper limit on the size of molecules in the solution and the analyte, as adding a single very
large molecule can trivially affect the entire solution. Large molecules are also expensive to
synthesize, and for natural signal detection the structure of the analyte is not under our
control. Second, we require an upper limit on how many different types of molecules are
in the solution, as it is expensive to synthesize new molecular species (though synthesizing
many copies is more straightforward).

Our main result is the existence of a family of TBNs that amplify signal exponentially.
In these TBNs, there are exponentially many free “reporter” monomers compared to the
number of types of monomers and size of monomers. In the absence of the analyte, this
TBN has a unique stable configuration in which all reporter monomers are bound. When a
single copy of the analyte is added, the resulting TBN has a unique stable configuration in
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* *

{a, b}

{a*, b*}

{a} {b}

Figure 1 A simple thermodynamic binding network T with four monomers. Site types are
differentiated by color. Bonds are shown by juxtaposing monomers so that unstarred sites cover
starred sites. Left: the all-singleton configuration melt(T ) with four polymers. Monomers are labeled
by their formal identities for reference. Middle: a configuration with two polymers. As all starred
sites are covered, the configuration is saturated. Right: a configuration with three polymers. As this
has the most possible polymers for a saturated configuration, it is stable.

which all reporter monomers are unbound. These TBNs are parameterized by two values:
the first is the amplification factor, determining how many total reporter molecules are
freed. The second is a value we call the system’s “entropy gap”, which determines how
thermodynamically unfavorable a configuration of the system would need to be in order for
reporters to be spuriously unbound in the absence of the analyte (false positive) or spuriously
bound in its presence (false negative).

We also show a corresponding doubly exponential upper bound on the signal amplification
problem in TBNs: that given any TBN, adding a single monomer can cause at most a doubly
exponential change in its stable configurations. We leave as an open question to close this
gap: either proving an exponential upper bound, or giving a TBN with a doubly-exponential
amplification factor.

Our work can be compared to prior work on signal amplification that exhibits kinetic
barriers. For example, in reference [8], a detected analyte serves as a seed initiating self-
assembly of an arbitrarily long linear polymer. In the absence of the analyte, an unlikely
kinetic pathway is required for spurious nucleation of the polymer to occur. However, in
that system, false positive configurations are still thermodynamically favorable; if a critical
nucleus is able to overcome the kinetic barrier and assemble, then growth of the infinite
polymer is equally favorable as from the analyte. In contrast, in our system, there are no
kinetic paths, however unlikely, that lead to an undesired yet thermodynamically favored
configuration.

2 Definitions

2.1 General TBN Definitions
A site type is a formal symbol such as a, and has a complementary type, denoted a∗, with the
interpretation that a binds to a∗ (e.g., they could represent complementary DNA sequences).
We also refer to site types as domain types, and sites as domains. We call a site type such as
a an unstarred site type, and a∗ a starred site type. A monomer type is a multiset of site
types (e.g., a DNA strand consisting of several binding domains); for example monomer type
m⃗ = {a, a, a, b, c∗} has three copies of site a, one of site b, and one of site c∗. A TBN [5, 2]
is a multiset of monomer types. We call an instance of a monomer type a monomer and an
instance of a site type a site.
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8:4 Thermodynamically Driven Signal Amplification

We take a convention that, unless otherwise specified, TBNs are star-limiting: for each
site type, there are always at least as many sites of the unstarred type as the starred type
among all monomers. Given a TBN, this can always be enforced by renaming site types to
swap unstarred and starred types, which simplifies many of the definitions below.

A configuration of a TBN is a partition of its monomers into submultisets called polymers.
We say that a site type (or a site) on a polymer is uncovered if, among the monomers in that
polymer, there are more copies of the starred version of that site type than the unstarred
version (otherwise covered). A polymer is self-saturated if it has no uncovered site types. A
configuration is saturated if all its polymers are self-saturated. A configuration α of a TBN
T is stable if it is saturated, and no saturated configuration of T has more polymers than α.
Figure 1 shows an example TBN.

An equivalent characterization of stability is in terms of merges rather than polymer
counts. We say that a merge is the process of taking two polymers in a configuration and
making a new configuration by joining them into one polymer; likewise a split is the process
of taking one polymer in a configuration and making a new configuration by splitting it
into two polymers. Maximizing the number of polymers in a saturated configuration is
equivalent to minimizing the number of merges of two polymers necessary to reach a saturated
configuration. To this end, some additional notation:

▶ Definition 2.1. The distance to stability of a saturated configuration σ is the number of
(splits minus merges) necessary to get from σ to a stable configuration.

Note that this number will be the same for any path of splits and merges, as all stable
configurations have the same number of polymers.

Equivalently, distance to stability is the number of polymers in a stable configuration
minus the number of polymers in σ. We only consider this value for saturated configurations
to ensure it is positive and because we may interpret it as a measure of how unlikely we are
to observe the network in a given state under the assumption that enthalpy matters infinitely
more than entropy.

The following definitions are not restricted to saturated configurations.

▶ Definition 2.2. Given a TBN T , we say that the all-melted configuration, denoted melt(T ),
is the configuration in which all monomers are separate.

▶ Definition 2.3. Given a configuration α in a TBN T , its merginess m(α) is the number
of merges required to get from melt(T ) to α (or equivalently, the number of monomers in T

minus the number of polymers in α).

▶ Definition 2.4. Given a configuration α in a TBN T , its starriness s(α) is the number of
polymers in α which contain at least one uncovered starred site.

We observe that α is saturated if and only if s(α) = 0.

▶ Definition 2.5. Given configurations α and β in a TBN T , we say α ⪯ β (equivalently,
β ⪰ α) if it is possible to reach β from α solely by splitting polymers zero or more times.

We read α ⪯ β as “α splits to β”. Observe that if α ⪰ β, then we can reach β from α in
exactly m(β) − m(α) merges. In general, we may order the merges required to go from one
configuration to another in whatever way allows the easiest analysis.
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2.2 Comparing TBNs
We need some notion of how “different” two TBNs are, so that we can quantify how much a
TBN changes after adding a single monomer.

▶ Definition 2.6 (distance between configurations). Let α and β be two configurations of
a TBN, or of two TBNs using the same monomer types. We say that the distance d(α, β)
between them is the L1 distance between the vectors of their polymer counts. That is, it is
the sum over all types of polymers of the difference between how many copies of that polymer
are in α and in β.

▶ Definition 2.7 (distance between TBNs). Given TBNs T and T ′, let C and C′ be their
stable configurations. Define the distance between T and T ′ as

d(T, T ′) = min
α∈C,α′∈C′

d(α, α′). (1)

Note that this distance is not a metric.1 Rather, it is a way to capture how easily we
can distinguish between two TBNs; even the closest stable configurations of T and T ′ have
distance d(T, T ′), so we should be able to distinguish any stable configuration of one of them
from all stable configurations of the other by that amount.

Note that this condition does not directly imply a stronger “experimentally verifiable”
notion of distance, namely that there is some “reporter” monomer which is always bound
in one TBN and always free in the other. However, the system we exhibit in this paper
does also satisfy this stronger condition. We focus on the distance given here, as it is more
theoretically general and our upper bound result in Section 4 apply to it.

We also need a notion of how likely we are to observe a configuration of a TBN that is
not stable, in order to have a notion of the system being robust to random noise. If a TBN
has one stable configuration but many other configurations that are nearly stable, we would
expect to observe it in those configurations frequently, meaning that in practice we may not
be able to discern what the stable configuration is as easily.

We work under the assumption that enthalpy matters infinitely more than entropy, so that
we may assume that only saturated configurations need to be considered. This assumption is
typical for the TBN model, and can be accomplished practically by designing binding sites
to be sufficiently strong. Under this paradigm, a configuration’s distance to stability is a
measure of how unlikely we are to observe it. This motivates the following definition:

▶ Definition 2.8 (entropy gap). Given a TBN T , we say that it has an entropy gap of k if,
for any saturated configuration α of T , one of the following is true:
1. α is stable.
2. There exists some stable configuration β such that α ⪯ β.
3. α has distance to stability at least k.

Note that by this definition, all TBNs trivially have an entropy gap of one. Note as well
that stable configurations are technically also included in the second condition by choosing
β = α, but we list them separately for emphasis.

The second condition is necessary in this definition because any TBN necessarily has some
configurations that have distance to stability one, simply by taking a stable configuration
and arbitrarily merging two polymers together. These configurations are unavoidable but

1 In particular, it fails to satisfy the triangle inequality, since T could have a stable configuration close
to one of T ′, so d(T, T ′) = 1, and T ′ could have a different stable configuration close to one of T ′′, so
d(T ′, T ′′) = 1, but T and T ′′ could have no close stable configurations, so d(T, T ′′) > 2.
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are not likely to be problematic in a practical implementation, because a polymer in such
a configuration should be able to naturally split itself without needing to interact with
anything else – these configurations will never be local energy minima. Reference [2] discusses
self-stabilizing TBNs in which all saturated configurations have this property, equivalent to
an entropy gap of ∞.

2.3 Feed-Forward TBNs
▶ Definition 2.9. We say that a configuration α of a TBN is feed-forward if there is an
ordering of its polymers such that for each domain type, all polymers with an excess of
unstarred instances of that domain type occur before all polymers with an excess of starred
instances of that domain type.

We say that a TBN T is feed-forward if there is an ordering of its monomer types with
this same property – that is, T is feed-forward if melt(T ) is feed-forward.

For example, the TBN {(ab), (a∗c), (b∗c∗)} is feed-forward with this ordering of monomers
because the a, b and c come strictly before the a∗, b∗ and c∗ respectively. Note that not all
configurations of a feed-forward TBN are necessarily feed-forward; for instance, merging the
first and third monomers in this TBN gives a non-feed-forward configuration.

An equivalent characterization can be obtained by defining a directed graph on the
polymers of a configuration α and drawing an edge between any two polymers that can
bind to each other, from the polymer with an excess unstarred binding site to the polymer
with a matching excess starred binding site (or both directions if both are possible). The
configuration α is feed-forward if and only if this graph is acyclic, and the ordering of
polymers can be obtained by taking a topological ordering of its vertices.

The main benefit of considering feed-forward TBNs is that we can establish a strong
lower bound on the merginess of stable configurations. If any TBN T has n monomers that
have starred sites, it will always take at least n

2 merges to cover all those sites, because each
monomer must be involved in at least one merge and any merge can at most bring a pair of
them together. For instance, the non-feed-forward TBN {{a, b∗}, {a∗, b}} can be stabilized
with a single merge. In feed-forward TBNs, this bound is even stronger, as there is no way
to “make progress” on covering the starred sites of two different monomers at the same time.

▶ Lemma 2.10. If a configuration α is feed-forward, then any saturated configuration σ such
that α ⪰ σ satisfies m(σ) − m(α) ≥ s(α). That is, reaching σ from α requires at least s(α)
additional merges.

Intuitively, in a feed-forward configuration, the best we can possibly do is to cover all of
the starred sites on one polymer at a time. We can never do better than this with a merge
like merging {a, b∗} and {a∗, b} that would let two polymers cover all of each others’ starred
sites.

Proof. Given a feed-forward configuration α, let L be the ordered list of polymers from α

being feed-forward. Partition L into separate lists (keeping the ordering from L) based on
which polymers are merged together in σ. That is, for each fully merged polymer P ∈ σ

create a list LP of the polymers from α that are merged to form P, and order this list based
on the ordering from L. We can order the merges to reach σ from α as follows: repeatedly
(arbitrarily) pick a polymer P from σ and merge all of the polymers in LP together in order
(merge the first two polymers in LP, then merge the third with the resulting polymer, and
so on).
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This sequence of merges gives us a sequence of configurations α = α1, α2, . . . , αℓ = σ. We
observe that for 1 ≤ i ≤ ℓ − 1, we have s(αi) − s(αi+1) ≤ 1. That is, each merge can lower
the starriness by at most one. We know this because each merge is merging a polymer Q ∈ α

with one or more other already-merged polymers from α that all come before Q in L. This
means Q cannot cover any starred sites on any monomers it is merging with. The only way
for the starriness of a configuration to decrease by more than 1 in a single merge is for the
two merging polymers to cover all of each others’ starred sites, so it follows that each merge
in this sequence lowers starriness by at most 1. From this it follows that we need at least
s(α) merges to get to σ, because s(σ) = 0. ◀

Letting α = melt(T ) (note m(α) = 0) gives the following corollary.

▶ Corollary 2.11. Any saturated configuration σ of a feed-forward TBN T satisfies m(σ) ≥
s(melt(T )).

Because stable configurations are saturated configurations with the minimum possible
merginess, this bound gives the following corollary.

▶ Corollary 2.12. If a saturated configuration σ of a feed-forward TBN T satisfies m(σ) =
s(melt(T )), then σ is stable.

3 Signal Amplification TBN

3.1 Amplification Process
In this section, we prove our main theorem. This theorem shows the existence of a TBN
parameterized by two values n (the amplification factor) and k (the entropy gap). Intuitively,
this TBN amplifies the signal of a single monomer by a factor of 2n, with any configurations
that give “incorrect” readings having Ω(k) distance to stability. Our proof will be constructive.

▶ Theorem 3.1. For any integers n ≥ 1, k ≥ 2, there exists a TBN T = Tn,k and monomer
a (the analyte) such that if T a = T a

n,k is the TBN obtained by adding one copy of a to Tn,k,
then
1. T and T a each have exactly one stable configuration, denoted σn,k and σa

n,k respectively,
with d(σn,k, σa

n,k) ≥ 2n. In particular, there are k monomer types with 2n−1 copies each,
with all of these monomers bound in σn,k and unbound in σa

n,k.
2. T and T a each have an entropy gap of ⌊ k

2 ⌋ − 1.
3. T and T a each use O(nk) total monomer types, O(nk2) domain types, and O(k2) domains

per monomer.
The first condition implies that Tn,k can detect a single copy of a with programmable
exponential strength - there is only one stable configuration either with or without a, and
they can be distinguished by an exponential number of distinct polymers. Note that this is
even stronger than saying that d(Tn,k, T a

n,k) ≥ 2n, as that statement would allow each TBN
to have multiple stable configurations. The second condition implies that the system has
a programmable resilience to having incorrect output, because configurations other than
the unique stable ones in each case are “programmably” unstable (based on k), and thus
programmably unlikely to be observed. Note that throughout this paper we will use k

2
instead of ⌊ k

2 ⌋ for simplicity, as we are concerned mainly with asymptotic behavior. The third
condition establishes that the system doesn’t “cheat” - it doesn’t obtain this amplification
by either having an extremely large number of distinct monomers, or by having any single
large monomers.
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Figure 2 The unique stable configuration σ2,3 of T2,3, with 19 polymers. All starred sites are
visually “covered” by unstarred sites on another monomer. The parts of the diagram are numbered
by the order that the signal from the analyte will cascade through them. Parts (1) and (2) form the
“first half”, where the signal is doubled at each step. Parts (3) and (4) form the “second half”, where
the signal converges so that it can get an “entropic payoff” from part (5).
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Figure 3 The unique stable configuration σa
2,3 of T a

2,3. The arrow shows the conceptual order in
which the analyte’s signal has been propagated, with a covering all s1,j , which cover all s2,j , which
cover all s′

2,j , which cover all s′
1,j , which finally cover p∗. This configuration has 21 polymers, 2

more than σ2,3: conceptually, one of these is from adding the analyte and the other is from the
analyte’s signal cascading through the layers to release P1 and P2 at the cost of one merge. As they
have no polymers in common, d(σ2,3, σa

2,3) = 19 + 21 = 40.
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The entire TBN Tn,k is depicted in Figures 2 and 3 with n = 2 and k = 3. The former
shows the unique stable configuration before adding the analyte, and the latter shows the
unique stable configuration after adding the analyte. For comparison, Figure 7 depicting the
pre-analyte configuration with n = 3 and k = 2 is shown in the appendix.

We will start by constructing the first half of Tn,k and describing “how it works”. The
monomers in this first half are the driving force that allows Tn,k and T a

n,k to have exponentially
different stable configurations.

The first half of Tn,k has monomer types ui,j and si,j (named as those with only unstarred
sites, and those with both starred and unstarred sites) for 1 ≤ i ≤ n, 1 ≤ j ≤ k. It has
domain types denoted as triples (i, j, ℓ) for 1 ≤ i ≤ n + 1, 1 ≤ j, ℓ ≤ k. Each ui,j monomer
has k different unstarred domains, one of each (i, j, ℓ) for each 1 ≤ ℓ ≤ k. Each si,j monomer
has a starred copy of each domain in ui,j , and additionally has two copies of each unstarred
domain (i + 1, ℓ, j) for each 1 ≤ ℓ ≤ k (note that here the second domain type parameter
varies instead of the third). For each ui,j and si,j monomer, there are 2i−1 copies. We can
conceptually break these monomers into n “layers”, each consisting of all monomers with the
same value for their first parameter. The analyte we wish to detect, a, is a monomer that
has one copy of each unstarred domain (1, j, ℓ), 1 ≤ j, ℓ ≤ k.

Conceptually, when the analyte is absent, the most efficient way for all starred sites on
each si,j to be covered is by the unstarred sites on a corresponding ui,j , as seen in Figure 2.
Although the TBN model is purely thermodynamic, we can conceptualize that when the
analyte is added, its signal can propagate “kinetically” through each layer. In the first layer,
it can “displace” the k different u1,j monomers and bind to all of the s1,j monomers. In
doing so, it brings together all the unstarred sites on all of the s1,j monomers. Having been
brought together, these sites “look like” two copies of the analyte, but with the domains from
layer 2 instead of layer 1. Thus, this polymer is then able to displace two copies of each u2,j

from their corresponding s2,j monomers, thus bringing all of the s2,j together. This in turn
now looks like four copies of the analyte for the domains in the third layer, and so on. Each
layer allows this polymer to assimilate exponentially more si,j , thus freeing exponentially
many ui,j . Each of these displacement steps involves an equal number of splits and merges.

3.2 Convergence Process
So far, the TBN described has exactly one stable configuration before adding the analyte,
and it performs the task of amplifying signal by having the potential to change its state
exponentially when the analyte is added. However, there is also a stable configuration after
adding the analyte in which nothing else changes, and many others in which only a small
amount of change occurs. We must guaranteed that the analyte’s signal “propagates” through
all of the layers.

To design the system to meet this requirement, we observe that all exponentially many
monomers that have been brought together must contribute to some singular change in the
system that gains some entropy, to spur the signal into propagating. The typical way to
accomplish this in a TBN is by having monomers that have been brought together displace a
larger number of monomers from some complex at the cost of a smaller number of merges.
Because the pre-analyte TBN has an entropy gap of k − 1 in this design so far, we can afford
to give the TBN with the analyte an “entropic payoff” of k

2 . When the analyte is absent,
this payoff is weak enough that there will still be an entropy gap of k

2 − 1; when the analyte
is present, the existence of this payoff will force the signal to fully propagate, and will give
the TBN with the analyte an entropy gap of k

2 − 1 by making it so that any configurations
in which this payoff is not achieved are also far away from stable.
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Another challenge is that we cannot simply detect all our exponentially many conjoined
monomers by binding them all to a single exponentially large monomer, because we need to
bound the size of the largest monomer in the system. Our conceptual strategy for overcoming
this is as follows: the signal will converge in much the same way as it was amplified. In the
amplification step, one set of domains coming together in one layer was enough to cause two
of them to come together in the next layer. In this convergence step, two sets of domains in
one layer will have to converge together to activate one set in the next layer. This convergence
ends in bringing together a set of binding sites that is of the same size as the analyte, which
can then directly displace some monomers to gain k

2 total polymers.
We now fully define Tn,k. We start with the already described ui,j and si,j . To these,

we first add monomer types u′
i,j and s′

i,j for 1 ≤ i ≤ n, 1 ≤ j ≤ k. These monomers are the
“converging” equivalents of ui,j and si,j . Conceptually, they will activate in the reverse order:
two copies of each s′

i,j for 1 ≤ j ≤ k, when brought together, will be able to bring together
one copy of each s′

i−1,j for 1 ≤ j ≤ k.
Each u′

i,j monomer has 2k unstarred domains: two copies each of domains (i + 1, j, ℓ)′

for each 1 ≤ ℓ ≤ k. Each s′
i,j has a starred copy of each of the 2k domains in u′

i,j and
additionally has one unstarred domain (i, ℓ, j)′ for 1 ≤ ℓ ≤ k (note again here that the second
domain type parameter varies instead of the third). One exception is the monomers u′

n,j

and s′
n,j (the first ones to activate) which use domains (n + 1, j, ℓ) and (n + 1, ℓ, j) instead of

(n + 1, j, ℓ)′ and (n + 1, ℓ, j)′ respectively so that they can interact with sn,j monomers that
have been brought together. Each monomer u′

i,j and s′
i,j has 2i−1 copies.

Finally, we add “payoff” monomers that will yield an entropic gain of k
2 when the signal

from the analyte has cascaded through every layer. This choice of k
2 is arbitrary – a similar

design works for any integer between 1 and k. Choosing a higher value leads to a higher
entropy gap after adding the analyte and a lower entropy gap before adding it, and vice
versa choosing a lower value. For simplicity of definitions we will assume k is even (though
figures are shown with k = 3, which shows how to generalize to odd k).

We add one monomer p∗, which contains the k2 sites (1, ℓ1, ℓ2)′∗ for 1 ≤ ℓ1, ℓ2 ≤ k. Note
that this monomer can be replaced with k monomers of size k (in which case a would be the
only monomer with more than 3k domains), but doing so makes the proof more complex.
The idea is that when all s′

1,j monomers are already together (as they can be “for free” when
a is present), they can cover p∗ in one merge; if they are apart, this requires k merges.
In order to make this favorable to happen when they’re already together but unfavorable
when they’re initially apart, we add another way to cover p∗ that takes k

2 merges. This is
accomplished via monomers pj for 1 ≤ j ≤ k

2 . Each pj contains the 2k sites (1, 2j − 1, ℓ)
and (1, 2j, ℓ) for 1 ≤ ℓ ≤ k. We can interpret this geometrically as p∗ being a square, the
s′

1,j covering it by rows, and the pj covering it by two columns at a time. This completes
the definition of Tn,k. Recall T a

n,k is Tn,k with one added copy of a.

▶ Lemma 3.2. Tn,k has exactly one stable configuration σn,k.

▶ Corollary 3.3. Tn,k has an entropy gap of k
2 − 1.

▶ Lemma 3.4. T a
n,k has exactly one stable configuration σa

n,k, and T a
n,k has an entropy gap

of k
2 − 1.

Proofs of these results are left to the appendix.
These results together complete the proof of Theorem 3.1: each of the more than 2n u

and u′ monomers (which serve as reporters) are bound in σn,k and unbound in σa
n,k, implying

their distance is more than 2n. The largest monomer is a with k2 domains, and there are
(2n + 1)k2 domain types and 4nk monomer types for the si,j , ui,j , s′

i,j , and u′
i,j , plus 2 + k

2
more for a, p∗, and pj .
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3.3 Avoiding Large Polymer Formation

The TBN T a
n,k will, in the process of amplifying the signal of the analyte, form a single

polymer of exponential size. This isn’t an issue in the theoretical TBN model, but it is a
practical issue because there is no way to design these monomers so that this large polymer
would form.2

This can be solved by adding “translator gadgets”. These gadgets’ job is to mediate
between consecutive layers. Instead of monomers from one layer directly binding to monomers
from the next layer, they can split apart these translator gadgets with half of the gadget going
to each layer. In exchange, the TBN will no longer have exactly one stable configuration
when the analyte is present, as in the TBN model, the use of these translator gates will be
purely “optional”.

We define a new TBN T̃n,k (as well as T̃ a
n,k, which is obtained by adding the analyte a).

We start with the TBN Tn,k. To assist with the amplification step, we add monomer types
gi and g∗

i for each 2 ≤ i ≤ n. Each gi consists of one copy of each unstarred domain (i, j, ℓ)
for each 1 ≤ j, ℓ ≤ k. Each g∗

i consists of the same domains but all starred. Each of these
monomers has 2i−1 copies. The use of these gadgets can be seen in Figure 4.

To assist with the convergence step, we add monomer types hi and h∗
i for each 2 ≤ i ≤ n+1.

Each hi has two copies of each unstarred domain (i, j, ℓ)′ for each 1 ≤ j, ℓ ≤ k. Each h∗
i has

only one copy of each of the corresponding starred domains. There are 2i−1 copies of each
hi and 2i copies of each h∗

i . The use of these gadgets can be seen in Figure 5.

▶ Theorem 3.5. Let T̃ = T̃n,k and T̃ a = T̃ a
n,k be as described. Then:

1. T̃ has exactly one stable configuration σ̃n,k, and d(T̃ , T̃ a) > 2n.
2. T̃ has an entropy gap of k

2 , and T̃ a has the property that all of its configurations α that
are within distance to stability k

2 satisfy d(σ̃n,k, α) > 2n.
3. T̃ = T̃n,k uses O(nk) total monomer types, O(nk2) domain types, and O(k2) domains

per monomer.
4. The unique stable configuration of T̃ has O(k) monomers in its largest polymer. There is

a stable configuration of T̃ a sharing this property.

Compared to Theorem 3.1, this theorem trades away the condition that both TBNs have
only a single stable configuration in exchange for the post-analyte TBN having a configuration
with O(k) monomers per polymer, whereas the previous construction has roughly k · 2n

monomers in a single polymer.
The second condition is somewhat complex. This complexity’s necessity is explained

by Figure 5. In that figure, if we propagate signal without using the translator gadget, we
arrive at a configuration that is saturated but has only one fewer complex than a stable
configuration. However, such near-stable configurations are still very different from the stable
configuration of T̃n,k, so it is still possible to distinguish the two TBNs with an amplification
factor proportional to 2n and a resilience to false positives and negatives proportional to k.

The proof of this theorem is very similar to that of Theorem 3.1, and is also left to the
appendix.

2 The binding graph of the monomers within this giant polymer contains many complete k-ary trees of
depth n as subgraphs. If each of the nodes of this graph is a real molecule that takes up some volume,
it will be impossible to embed the whole graph within 3-dimensional space as n grows.
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Figure 4 The amplifying translator gadget, before and after it is triggered to propagate the
signal forward by one layer. When s1,1, s1,2 and s1,3 have been brought together, instead of directly
replacing all the u2,j monomers, they can split two {g2, g∗

2} complexes, and the g2 monomers can
replace the u2,j monomers.

s’2,1 s’2,2 s’2,3 s’2,1 s’2,2 s’2,3

u’1,1
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Figure 5 The converging translator gadget, before and after it is triggered to propagate the
signal forward by one layer. When two copies each of s′

2,1, s′
2,2 and s′

2,3 have been brought together
into two complexes, instead of directly replacing all the u′

1,j monomers, they can split a {h2, h∗
2, h∗

2}
complex, and the h2 monomer can replace the u′

1,j monomers.
Note that in this image, the only way to propagate the signal efficiently would be to use the translator
gadget; not using it will be one unit of entropy less efficient, requiring 3 splits and 4 merges, showing
that this TBN no longer has an entropy gap. If instead we hadn’t used the translator gadgets in
the previous layer, then all six s′

2,j monomers in this image would be together in a single complex
rather than on two separate complexes, in which case it would be equally efficient to either use this
translator gadget or directly displace the u′

1,j .



J. Petrack, D. Soloveichik, and D. Doty 8:13

4 Upper Limit on TBN Signal Amplification

In this section, we show the following theorem providing an upper bound on the distance
between a TBN before and after adding a single copy of a monomer, showing that the
distance is at most double-exponential in the “size” of the system:

▶ Theorem 4.1. Let T be a TBN with d domain types, m monomer types, and at most a

domains on each monomer. Let n = max{d, m, a}. Let T ′ be T with one extra copy of some
monomer. Then d(T, T ′) ≤ n8n7n2

.

Recall Definition 2.7 for the distance between TBNs. Essentially, this theorem is saying
that adding a single copy of some monomer can only impact doubly exponentially many
total polymers, no matter how many total copies of each monomer are in the TBN.

Our strategy for proving this theorem is to fix some ordering on polymer types, and
bound the distance between the lexicographically earliest stable configuration of an arbitrary
TBN under that ordering before and after adding a single copy of some monomer. To bound
this distance, we cast the problem of finding stable configurations of a TBN as an integer
program (IP), and use methods from the theory of integer programming value functions to
give a bound on how much the solution to this IP can change given a small change in the
underlying TBN.

Proof. A complete proof including all technical details can found in the full version of this
paper on arxiv. Here we present only the main ideas of the proof. ◀

We first introduce a definition from [6] and some notation that was unnecessary in
previous sections.

▶ Definition 4.2. Given a (star-limiting) TBN T , the polymer basis of T , denoted B(T ), is
the set of polymers P such that both of the following hold:

P appears in some saturated configuration of a star-limiting TBN using the same monomer
types as T .
P cannot be split into two or more self-saturated polymers.

The polymer basis is a useful construction because it is known to describe exactly those
polymer types that may appear in stable configurations of T . It is always finite, and we will
bound its size later.

Given a TBN T , let M(T ) denote its monomer types, and let T (m) denote the count of
monomer m in T . Given a polymer P and a monomer type m ∈ M(T ), let P(m) represent
the count of monomer m in polymer P.

Suppose for the rest of this section that we have a TBN T to which we wish to add a
single copy of some monomer a (which may or may not exist in T ). Let T ′ be T with a
added.

4.1 Finding Stable Configurations via Integer Programming
Prior work [6] has shown that the problem of finding the stable configurations of a TBN can
be cast as an IP. There are multiple different formulations; we will use a formulation that is
better for the purpose of reasoning theoretically about TBN behavior.

Let {xP : P ∈ B(T )} be variables each representing the count of polymer P in a
configuration of T . Then consider the following integer programming problem:
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max
∑

P∈B(T )

xP

s.t.
∑

P∈B(T )

P(m)xP = T (m) ∀m ∈ M(T )

xP ∈ N ∀P ∈ B(T ) (2)

Intuitively, the linear equality constraints above express “monomer conservation”: the
total count of each monomer in T should equal the total number of times it appears among
all polymers.

The following was shown in [6]; for the sake of self-containment, we show it here as well

▶ Proposition 4.3. The optimal solutions to the IP (2) correspond exactly to stable configur-
ations of T .

Proof. If the variables xP form a feasible solution, then those counts of polymers are a valid
configuration because they exactly use up all monomers. If the solution is optimal, then there
is no saturated configuration with more polymers (as only polymers from B(T ) can show
up in stable configurations), so the configuration is stable. Conversely, if a configuration
σ is stable then it can be translated into a feasible solution to the IP because it only uses
polymers from B(T ) and obeys monomer conservation. If there were a solution with a greater
objective function, then this would translate to a configuration with more complexes that is
still saturated (because all polymers in the polymer basis are self-saturated), contradicting
the assumption of σ’s stability. ◀

We observe that adding an extra copy of some monomer to a TBN corresponds to changing
the right-hand side of one of the constraints of this IP by one. Note that this is true even
if we add a copy of some monomer for which there were 0 copies, as we may still include
variables for polymers that contain that monomer in the former IP and simply consider there
to be 0 copies of the monomer. Therefore, we are interested in sensitivity analysis of how
quickly a solution to an IP can change as the right-hand sides of constraints change.

However, there is one edge case we must account for first. It is possible that T and
T ′ have different polymer bases. This is because of the first requirement in Definition 4.2
requiring that the polymer basis respects that starred sites are limiting. If we add a single
copy of a monomer, this may change which sites are limiting, if a has more copies of a starred
site than T had excess copies of the unstarred site. We cannot include variables for such
polymers in the IP formulation without taking extra precautions, as if we do there may be
optimal solutions that don’t correspond to saturated configurations. Therefore, we will first
account for how many copies of such a polymer T and T ′ may differ by:

▶ Lemma 4.4. Suppose that some polymer P is exactly one of B(T ′) and B(T ). Then any
saturated configuration of T ′ contains at most |a| copies of P, where |a| denotes the number
of sites on a.

Note that this result is slightly surprising – one natural way that one might try to design
a TBN that amplifies signal is by designing the analyte so that it intentionally flips which
sites are limiting. This result shows that this is an ineffective strategy: going from 5 excess
copies of some site a to 5 excess copies of a∗ is seemingly no more helpful in instigating a
large change than going from 60 excess copies of a to 50.
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Proof. If P is in B(T ′) but not B(T ), it must contain an excess of a starred site that was
limiting in T , but is no longer limiting in T ′. We see this because P necessarily occurs in a
saturated configuration of the TBN containing precisely the monomers that it is composed
of; therefore, in order to not be in B(T ), by definition of the polymer basis, it must be the
case that this TBN has different limiting sites than T ′.

Let a denote some such site type, so that a∗ is limiting in T and a is limiting in T ′, and
P contains an excess of a∗. Then a must contain an excess of a∗, but it cannot contain more
than |a| excess copies. Therefore, there are at most this many total excess copies of a∗ in
T ′. It follows that if there are more than |a| copies of P in a configuration of T ′, then those
copies of P collectively have more excess copies of a∗ than T ′ does, so some other polymer in
that configuration would have to have an excess of a. This implies that such a configuration
is not saturated (and therefore also cannot be stable). An identical argument shows that the
same is true for polymers in B(T ) but not B(T ′). ◀

In order to analyze and compare the two IP instances, we need them to have the same
variable set. Therefore, we will include variables for all polymers from both polymer bases
in both IP formulations. Let B(T, T ′) = B(T ) ∪ B(T ′) denote this merged polymer basis,
and let P = |B(T, T ′)| denote the total number of possible polymers we must consider, or
equivalently the number of variables we will have in these IPs. In each IP, we will have a
constraint on each variable representing a polymer not in the relevant polymer basis, that
says that that variable must equal zero.

4.2 Sensitivity Analysis
This sensitivity analysis problem of how IPs change as the right-hand sides of constraints
change was studied by Blair and Jeroslow in [1]. We will not need their full theory, but we
will use some of their results and methods.

In Corollary 4.7 of [1], they show that there is a constant K3, independent of the right-
hand sides of constraints (in our case, independent of how many copies of each monomer
exist) such that:

Rc(v) ≤ Gc(v) ≤ Rc(v) + K3, (3)

where Gc(v) gives the optimal value of the objective function c of a minimization IP as a
function of the vector v of right-hand sides of constraints, and Rc(v) gives the optimal value
of the same problem when relaxing the constraint that variables must have integer values.
The objective function we’ve shown so far is to maximize the sum of polymer counts rather
than minimize, but the same statement applies that the integer and real-valued optimal
solutions differ by at most K3. In defining K3, they also show the existence of a constant
M1 such that

|Rc(v) − Rc(w)| ≤ M1 ||v − w|| , (4)

where v and w are different vectors for the right-hand sides of constraints. Note that we take
all norms as 1-norms. Combining these inequalities, we see that

|Gc(v) − Gc(w)| ≤ M1 ||v − w|| + K3. (5)

For example, if we want to know the difference between the total number of polymers in a
stable configuration before and after adding one copy of a monomer (and if the polymer bases
of T and T ′ are identical), then we care about increasing one element of v by 1, so our bound
on this difference is M1 + K3. This statement applies to maximization and minimization
problems.
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4.3 From Optimal Values to Polymer Counts
For ease of analysis, we order the polymers in B(T, T ′) as follows: first we list all the polymers
that are not in B(T ), then all the polymers that are not in B(T ′), then all the polymers in
B(T ) ∩ B(T ′). We need to show that the number of copies of each individual polymer does
not change too much. We do this using a technique similar to Corollary 5.10 in [1].

Let Ptot be the total number of polymers in a stable configuration (either before or after
adding a, depending on which case we are examining).

We now define a new sequence of integer programs whose optimal values give polymer
counts in the lexicographically earliest stable configuration under this ordering. We do this
by finding the value of each variable xP in order. This sequence of IP problems is defined
separately for both TBNs, before and after adding a.

For those variables representing a polymer that is in one basis but not the other, we do
not need to analyze this IP, so we simply fix such a variable’s value to whatever its value
is in this lexicographically earliest stable configuration, which will be 0 in one TBN and
bounded by |a| by Lemma 4.4 in the other.

Now, to find the value of some particular variable xQ in either of the two TBNs where
Q ∈ B(T ) ∩ B(T ′), suppose we have already found the value yP we wish to fix xP to for each
P < Q under our ordering. Then we define a new IP on all the same variables as follows:

min xQ

s.t.
∑

P∈B(T,T ′)

xP = Ptot

∑
P∈B(T,T ′)

P(m)xP = T (m) ∀m ∈ m(T )

xP = yP ∀P < Q
xP ∈ N ∀P ∈ B(T, T ′) (6)

By construction, this IP gives us the smallest possible value that xQ can take on in
a stable configuration (as all variables must sum to Ptot) in which all previous xP have
fixed values. Then this process gives us a sequence of P (minus however many polymers
were only in one polymer basis) different pairs of IP problems that we can sequentially
compare to bound the differences between the values of the individual polymer counts in
these lexicographically earliest configurations. We can repeatedly apply Equation (5) to each
xP in turn, as each variable’s value before and after adding a will be given by the optimal
value of (6) where the only differences are in the right-hand sides of constraints.

5 Conclusion

In this paper we have defined the signal amplification problem for Thermodynamic Binding
Networks, and we have demonstrated a TBN that achieves exponential signal amplification.
We also showed a doubly-exponential upper bound for the problem. As TBNs model mixtures
of DNA, a TBN that amplifies signal can potentially be implemented as a real system. An
upper bound has implications for how effective a system designed in this way can potentially
be, and shows that there are some limitations for a purely thermodynamic approach to signal
detection and amplification.

One clear direction for future work is to implement such a system. This would involve
creating a design that accounts for the simplifications of the TBN model. In particular,
enthalpy and entropy need to be strong enough with enthalpy sufficiently stronger than
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entropy. Further, the polymers formed need to be geometrically feasible. We have done
some work to make this problem geometrically realizable with the inclusion of translator
gadgets in Section 3.3. In principle, the polymers that are formed in this version of the
system are simple enough that they should form if the DNA strands implementing them are
well-designed.

Another goal would be to bridge the gap between our singly exponential amplifier and
doubly exponential upper bound by either describing a TBN that can amplify signal more
than exponentially, or deriving a more precise upper bound. If one wished to construct a
TBN with doubly exponential amplification, an examination of our upper bound proof will
show that such a TBN must have an exponentially sized polymer basis, and most likely
would need to actually use an exponential amount of different polymer types in its stable
configurations either with or without the analyte. Such a design seems relatively unlikely
to come to fruition, and it seems more likely that our proof technique or similar techniques
can be tightened in order to show a stricter upper bound. Thus, we conjecture that the true
upper bound is (singly) exponential.

There are also other types of robustness that we have not discussed in this work that
merit further analysis. One of these is input specificity: the question of how well the system
amplifies signal if the analyte is changed slightly. Another is sensitivity to the number of
copies of each component. Intuitively, our system’s behavior depends on having exactly
equal numbers of complementary strands within each layer; if there are too many copies of
one, it may result in those excess copies spuriously propagating or blocking signal to the
next layer. This issue may be intrinsic to thermodynamic signal amplifiers, or there may
be some system more robust to it. Lastly, it may be experimentally useful to show that
our system achieves its stable states not only in the limit of thermodynamic equilibrium,
but also more practically when annealed. Some systems such as HCR are designed to reach
non-equilibrium, meta-stable states when annealed. We conjecture that our system should
reach equilibrium when annealed, because kinetic traps in the system are far away from
being thermodynamically stable (large entropy gap). Formally studying annealing could be
done by analyzing versions of the TBN model with different tradeoffs between entropy and
enthalpy to model different temperatures.
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A Proofs for Section 3 (Signal Amplification TBN)

▶ Lemma 3.2. Tn,k has exactly one stable configuration σn,k.

Proof. We consider merges to get from the melted configuration to any saturated configura-
tion. We may order these merges such that we first make all the merges necessary to cover
each individual si,j in increasing value of i, then each individual s′

i,j in decreasing value of i.
We see that at each step of this process, we may cover the monomer in question by a single
merge (of its corresponding ui,j or u′

i,j). If we never merge the corresponding u monomer,
the only other monomers that can cover the starred sites on a given si,j are k different si−1,ℓ

monomers. Likewise, the only other way to cover the starred sites on a given s′
i,j is by using

k different s′
i+1,ℓ monomers (except for s′

n,j which needs sn,ℓ monomers).
If an s or s′ monomer is covered in multiple different ways, we order the merges such that

it is first covered by one corresponding u monomer (and then ignore any other merges for
now, as we are still ordering the merges to cover each s monomer sequentially). We see then
that if every s monomer is covered by a u monomer, then no s monomers will be brought
together during this process. Therefore, the first time in this sequence that we choose to cover
an s without its corresponding u will require k total merges to cover that s. The resulting
configuration is feed-forward, so by Corollary 2.11, reaching a stable configuration requires at
least one more merge per remaining s monomer. This results in at least k − 1 extra merges
compared to covering s and s′ monomers by using u and u′ monomers respectively.

Once all s and s′ monomers are covered, the only other monomer with starred sites is
p∗, so we can make all the merges that are needed to cover it. If none of the s′

1,j monomers
have been brought together, then the fewest merges it takes to cover p∗ is k

2 , via the pj

monomers. If any of them have been brought together, then it could potentially take a single
merge to cover p∗. However, this would have required k − 1 extra merges at some point
during the covering of s monomers, resulting in k

2 extra total merges compared to covering
all s monomers with u monomers, then covering p∗ with pj monomers.

Therefore, this latter set of merges covers all starred sites in as few merges as possible,
and therefore gives the unique stable configuration of Tn,k.

◀

▶ Corollary 3.3. Tn,k has an entropy gap of k
2 − 1.

Proof. Recall Definition 2.8 for what we must show. Any saturated configuration that
does not make all the merges in σn,k must either have some s that is not covered by its
corresponding u (resulting in at least k

2 extra merges, as per the above argument), or must
cover p∗ with initially-separate s′

1,j monomers (resulting in k
2 extra merges). Thus, any such

configuration has distance to stability at least k
2 . Any other saturated configuration that

does make all of the merges in this sequence simply makes some extra merges afterward, and
therefore splits to σn,k. It follows that Tn,k has an entropy gap of k

2 (and also of k
2 − 1, for

consistency in the statement of Theorem 3.1). ◀

▶ Lemma 3.4. T a
n,k has exactly one stable configuration σa

n,k, and T a
n,k has an entropy gap

of k
2 − 1.

Proof. We see that T a
n,k (like Tn,k) is feed-forward (recall Definition 2.9) by first ordering a

along with all the ui,j , u′
i,j , and pj monomers (none of which have starred sites), then all

the si,j in increasing order of i, then all the s′
i,j in decreasing order of i, and finally p∗.

Unlike Tn,k, however, we may reach a stable state by merging a together with every single
si,j , every single s′

i,j and p∗ into a single polymer. This covers all starred sites, and requires
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Figure 6 A version of Figure 2 with text labels on domains, for accessibility and allowing
comparison with the domains as defined in the text of the paper. This figure shows the unique
stable configuration of T2,3.
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Figure 7 The unique stable configuration σ3,2 of T3,2. Compared to Figure 2 (or Figure 6
above), which show T2,3, this figure shows one more layer and a smaller entropy gap parameter.
The additional layer means that there are 4 copies of each monomer in the largest parts of the
figure, compared to 2 copies of each monomer in the other figures; if another layer were added, it
would contain 8 copies of each monomer. The smaller entropy gap parameter manifests in this figure
visually having a “2 by 2 grid” design motif, compared to the “3 by 3 grid” motif in the other figures.
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exactly one merge per monomer with starred sites, so by Corollary 2.12, this configuration
σa

n,k is stable.
Now, we examine an arbitrary saturated configuration σ of T a

n,k. We consider merges
in essentially the opposite order of how they were considered when analyzing Tn,k. First,
consider p∗. It must be covered either by all the pj monomers, or by all the s′

1,j monomers.
If we merge all the pj monomers to p∗, we arrive at a configuration that is still feed-forward,
but has only one fewer polymer with uncovered starred sites compared to melt(T a

n,k) in spite
of making k

2 merges. Therefore, by Lemma 2.10, reaching a saturated configuration from
this point requires at least k

2 − 1 extra merges compared to σa
n,k.

Now, we may make a similar argument for all s monomers in the opposite order that we
considered them in Lemma 3.2. First, either we have already made k

2 − 1 extra merges, or
the s′

1,j monomers have all been brought together on a single polymer to cover p∗. If we now
make all the merges necessary to cover all starred sites on this polymer, we must do so either
using all the u′

1,j or by using all the s′
2,j . If we use the former, then this will require k total

merges but will only reduce the count of polymers with starred sites by 1. The resulting
configuration is still feed-forward, so again by Lemma 2.10 any saturated configuration we
reach from this point will require at least k − 1 extra merges compared to σ. Otherwise, we
must bring all the s2,j monomers together to cover these sites. This does not fall victim
to the same argument, because bringing these monomers with starred sites together onto
the same polymer lowers the total number of polymers with uncovered starred sites. Now
that they have been brought together, the same argument shows that we must either cover
all the starred sites on the s′

2,j using all the s′
3,j , or suffer k − 1 extra merges. The same

argument for each layer in the converging part of the TBN also works for each layer in the
amplifying part. Finally, after running through this argument we arrive at all s1,j being
brought together, which can be covered either by a single merge of a or by merging the k

u1,j to it.
Overall, this shows that any saturated configuration of T a

n,k either makes all of the merges
in σa

n,k or it must make at least k
2 − 1 extra merges. It follows that σa

n,k is the unique stable
configuration of T a

n,k, with an entropy gap of k
2 − 1 as desired. ◀

▶ Theorem 3.5. Let T̃ = T̃n,k and T̃ a = T̃ a
n,k be as described. Then:

1. T̃ has exactly one stable configuration σ̃n,k, and d(T̃ , T̃ a) > 2n.
2. T̃ has an entropy gap of k

2 , and T̃ a has the property that all of its configurations α that
are within distance to stability k

2 satisfy d(σ̃n,k, α) > 2n.
3. T̃ = T̃n,k uses O(nk) total monomer types, O(nk2) domain types, and O(k2) domains

per monomer.
4. The unique stable configuration of T̃ has O(k) monomers in its largest polymer. There is

a stable configuration of T̃ a sharing this property.

Proof. Recall the constructions of T̃n,k and T̃ a
n,k from Section 3.3. Our argument will be

very similar to that of Theorem 3.1 (i.e., the above lemmas), except we need to account for
the extra monomer types.

First, consider T̃n,k, where a is absent. We wish to show that its stable configuration
looks like that of Tn,k, with the added g and h monomers only binding to added g∗ and h∗

monomers respectively. We order the merges to get to a saturated configuration in essentially
the same order as we did in analyzing Tn,k: first we will make all merges necessary to cover
all (1, j, ℓ)∗ sites, then (2, j, ℓ)∗, and so on up to (n + 1, j, ℓ)∗, then (n, j, ℓ)′∗, and so on. As
before, at each step, we will see that we cannot make merges in any way other than those in
the desired stable configuration without needing k − 1 extra merges for that step.
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For (i, j, ℓ)∗ sites, at each step, there is exactly one way to cover all starred sites by
making one merge per monomer with these starred sites: we cover each si,j with a ui,j and
each g∗

i with a gi. In particular, we already know from the proof of Lemma 3.2 that this is
true for the si,j if we only use si−1,j and ui,j to cover it, and that we will otherwise need
to make k − 1 extra merges. Clearly we also cannot cover g∗

i with anything other than gi

without making k merges to cover it (and thus k − 1 extra merges), so we cannot use gi to
cover si,j .

Likewise, for (i, j, ℓ)′∗ sites, we only need to observe that each h∗
i monomer can only be

covered in a single merge by hi, so any other way of making merges necessarily involves k − 1
extra merges. So by the same argument as in Lemma 3.2 and Corollary 3.3, T̃n,k has exactly
one stable configuration with an entropy gap of k

2 . This configuration has 1 + k
2 monomers

in the polymer containing p∗ and all the pj , 3 monomers in each {hi, h∗
i , h∗

i } polymer, and
2 monomers in each other polymer.

Now, consider T̃ a
n,k, where a is present. If we take the stable configuration of T a

n,k and
simply put all g monomers into {gi, g∗

i } polymers, and all the h monomers into {hi, h∗
i , h∗

i }
polymers, we have still made exactly one merge per monomer with any starred sites, so by
Corollary 2.12 it is stable. If we then carry out the shifts described in Figure 4 and Figure 5,
an equal number of merges and splits are made at each step, so the resulting saturated
configuration is still stable. Additionally, in this configuration, the largest polymers have
k + 3 monomers (specifically, those containing a set of si,j along with one copy of gi and two
copies of g∗

i+1).
All that remains to show is that all configurations of T̃ a

n,k that are within k
2 distance to

stability have exponentially many different polymers from the stable configuration of T̃n,k.
We will do this by showing that all u and u′ monomers are free in all such configurations.

Again, this argument is very similar to the argument without the translator gadgets in
Lemma 3.4. We consider merges to cover starred sites in the opposite order of the above
argument for T̃n,k. First, consider the merges necessary to cover all the (1, j, ℓ)′ starred
sites (on p∗). Like before, they must be covered by either all the u′

1,j monomers or all the
pj monomers, but using the latter gives a feed-forward configuration in which k

2 − 1 extra
merges have already been made. Thus, to be within k

2 distance to stability, we must use the
s′

1,j . Next, for the (2, j, ℓ)′ starred sites, with the merges already made, there are two copies
of each of these sites all together on the polymer containing all the s′

1,j , and one copy of each
site on each of the two h∗

2 monomers. If we are to merge any u′
1,j monomers to any of these

in such a way that they cannot be split off without the result still being saturated, then we
must merge all of the u′

1,j into one polymer. Like with the argument for T̃ a
n,k, we see that

this results in k − 1 extra merges compared to a stable configuration. Thus, we cannot use
any u′

1,j , and these sites must be covered by the s′
2,j and h2 monomers.

We may do this either by using the h2 to cover both h∗
2 (in effect, not using the translator

gadget) or by using h2 to cover all the s′
1,j . The only difference in terms of the argument is

that in the former case all of the s2,j will be brought together in a single polymer, and in
the latter case they will be split between two polymers. In the former case, it may require
one extra merge to use translator gates in the next layer; however, either way, the same
argument on each other layer in sequence shows that we cannot use any u′

i,j monomers
without suffering k

2 − 1 extra merges. Likewise, the exact same argument shows that the
same thing is true of ui,j monomers, necessitating that in any configuration that makes fewer
than k

2 − 1 extraneous merges, all exponentially many u and u′ monomers must be free, as
desired. ◀
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9:2 Optimal Information Encoding in Chemical Reaction Networks

Discrete chemical reaction networks, also called stochastic chemical reaction networks, is
a formal model of chemical kinetics in a well-mixed solution. While in continuous chemical
kinetics, continuous concentrations change in time governed by ordinary differential questions,
here the state consists of non-negative integer molecular counts of the species, and reaction
events occur stochastically as a continuous time Markov process. Closely related models
include population protocols in distributed computing [4], as well as models without stochastic
kinetics such as Petri nets [20], vector addition systems [22] and commutative semigroups [11].
The model is particularly relevant when some species are present in small molecular counts,
which are not well-approximated by continuous concentrations [21]; this regime is germane
for small volumes such as that of a cell, natural or artificial. For the rest of this paper, the
acronym CRNs (Chemical Reaction Networks) refers to the discrete model.

Typically the ensuing sequence of reactions can be predicted only stochastically since
multiple reactions compete with each other. Nonetheless certain behaviors are independent
of the order in which reactions happen to occur. Such probability 1 behavior is formalized
using the notion of stable computation. For example the reactions X1 → 2Y and X2 +Y → ∅
compute the function f(x1, x2) = max(2x1 − x2, 0) regardless of the order in which reactions
happen. Below when we say that a CRN computes something, we mean it in the sense of
stable computation. It is known that stably computing CRNs are not Turing-universal [36],
but instead are limited to computing semilinear predicates and functions [5,13]. However,
the scaling of the computational power of CRNs with the number of reactions and species
still lacks a tight and general characterization.

Prior approaches to answering the question of reaction or species complexity – in the
equivalent language of population protocols – have focused largely on predicate computation
and can be divided into two groups. (We should point out that the literature makes the
important distinction between population protocols with and without a “leader,” which
is equivalent to starting with a single copy of a distinguished species in the initial state.
The prior results described here as well as our work correspond to protocols with a leader.)
The first line of work focuses on specific predicates – with the prototypical choice being
the so-called “counting predicates” in which the task is to decide whether the count of the
input species is at least some threshold x ∈ N [8, 17, 26]. In particular, close upper and lower
bounds were developed: for infinitely many x, the predicate can be stably decided with
O(log log x) species [8], and O((log log x)1/2−ϵ) species are required [26].

Other work has focused on the more general characterization of predicate computation.
It is well-known that semilinear predicates can be characterized in terms of Presburger
arithmetic, the first-order theory of addition. It was subsequently shown that a CRN can
decide a semilinear predicate with the number of species scaling polynomially with the size
of the corresponding Presburger formula [7,18]. There are also provable tradeoffs between
the speed of computation and the number of species (e.g., [2, 6, 19]). We do not consider the
time-complexity of CRNs further in this paper.

While the prior work described above involves stably deciding a counting predicate where
the system recognizes if the count of some species is at least x, we investigate the problem of
generating exactly x copies of a particular species Y , starting from a single copy of another
species L. This idea of generation is natural for engineers of these systems who may wish to
prepare a particular configuration to be used in a downstream process, and captures a certain
form of chemical self-organization. (We note the conceptual connection to another type of
self-organization: leader-election, in which we want to end up with exactly one molecule of a
species, starting from many [6].) Our constructions can be adopted to deciding the counting
predicates with only a constant more reactions – giving a novel upper bound on the number
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of reactions (see Open Questions). It is also worth noting that other complexity questions
have been investigated for CRNs, such as “the size of the smallest chemical reaction network
that approximates a desired distribution” [10].

The goal of this paper is to connect the complexity of the most compact CRN for
generating x to the well-known measures of the optimal “description length” of x. Kolmogorov
complexity, a widely recognized concept across various disciplines in computer science and
information theory, serves as a universal, broadly accepted measure of description length [27].
This notion quantifies the complexity of an object, such as a string or a number, by the length
of the shortest program that produces it. While the minimal number of species or reactions
to generate count x cannot be connected to the canonical Kolmogorov complexity, we provide
tight asymptotic bounds to a modification of Kolmogorov complexity K̃s (Equation (1)). As
this quantity incorporates not only the length of the shortest program to produce x, but
also the space (memory) usage of the program, it can be called “space-aware.” Unlike the
canonical Kolmogorov complexity, K̃s is computable.

Our quantity K̃s characterizes the CRN complexity of generating x in the range from
O(log log x) for highly “compressible” x to O(log x/ log log x) for “incompressible” x. The
module we develop for optimally encoding b bits of information with O(b/ log b) reactions
via a permutation code may be of independent interest. The encoded information could be
used for other purposes than for generating a desired amount of some species, which justifies
a more general interpretation of our work as studying the encoding information in CRNs.

2 Preliminaries

We use notation from [12,35] and stable computation definitions from [5,14] for (discrete)
chemical reaction networks. Let N denote the nonnegative integers. For any finite set
S (of species), we write NS to mean the set of functions f : S → N. Equivalently, NS

can be interpreted as the set of vectors indexed by the elements of S, and so c ∈ NS

specifies nonnegative integer counts for all elements of S. For a, b ∈ NS , we write a ≤ b if
a(i) ≤ b(i), ∀i.

2.1 Chemical Reaction Networks
A chemical reaction network (CRN) C = (S, R) is defined by a finite set S of species, and
a finite set R of reactions where each reaction is a pair ⟨r, p⟩ ∈ NS × NS that denotes
the reactant species consumed by the reaction and the product species generated by the
reaction. For example, given S = {A, B, C}, the reaction ⟨(2, 0, 0), (0, 1, 1)⟩ represents
2A → B + C. Although the definition allows for more general stoichiometry, in this paper
we only consider third-order reactions (with at most three reactants and three products).
For reversible reactions, we will use the notation A + B⇄C + D to mean A + B → C + D

and C + D → A + B. We say that the size of a CRN (denoted |C|) is simply the number of
reactions in R.1

A configuration c ∈ NS of a CRN assigns integer counts to every species s ∈ S. When
convenient, we use the notation {n1S1, n2S2, . . . , nkSk} to describe a configuration with
ni ∈ N copies of species Si, ∀i ∈ [1, k]. When using this notation, any species Sj ∈ S that
is not listed is assumed to have a zero count (e.g., given S = {A, B, C}, the configuration
{3A, 2B} has three copies of species A, two copies of species B, and zero of species C). For
two configurations a, b ∈ NS , we say b covers a if a ≤ b; in other words, for all species, b
has at least as many copies as a.

1 When considering systems with third-order reactions it is clear that |R|1/6 ≤ |S| ≤ 6|R|.
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9:4 Optimal Information Encoding in Chemical Reaction Networks

A reaction ⟨r, p⟩ is said to be applicable in configuration c if r ≤ c. If the reaction ⟨r, p⟩
is applicable, it results in configuration c′ = c − r + p if it occurs, and we write c↣ c′. If
there exists a finite sequence of configurations such that c↣ c1↣ . . .↣ cn↣d, then we
say that d is reachable from c and we write c⇝d.

In keeping with established definitions for stable computation, we specify an output
species Y ∈ S and a leader species L ∈ S for stable integer computation.2 We start from
an initial configuration i = {1L}. A configuration c is output-stable if ∀d such that c⇝d,
c(Y ) = d(Y ). CRN C stably computes integer x if, from any configuration c that is reachable
from input configuration i, there is an output-stable configuration o reachable from c with
o(Y ) = x. Note that when considering systems with bounded state spaces like those discussed
in this paper, stable computation is equivalent to probability 1 computing.

We also consider a much stronger constraint on CRN computation that specifies a special
halting species. A species H ∈ S is a halting species if ∀c such that c(H) ≥ 1, c is output
stable and ∀d where c⇝d, d(H) ≥ 1. We say that a CRN C haltingly computes an integer
x if (1) C stably computes x and (2) C has a halting species H. Intuitively, a halting CRN
knows when it is done – the halting species can initiate some downstream process that is
only meant to occur when the computation is finished.

2.2 Kolmogorov Complexity
A focus of this paper is the “optimal description” of integers. As such, we often refer to the
traditional notion of Kolmogorov complexity which we define here.

Let U be a universal Turing machine. The Kolmogorov complexity for an integer x is
the value K(x) = min{|p| : U(p) = x}. In other words, the Kolmogorov complexity of x

is the size of the smallest Turing machine program p that outputs x. This captures the
descriptional complexity of x in the sense that a (smaller) description of x can be given to
some machine that generates x based on the given description.

We use a “space-aware” variant of this quantity which we later connect to the size of the
smallest CRN stably computing x:

K̃s(x) = min
{

|p|
log|p|

+ log(space(U(p))) : U(p) = x

}
. (1)

Note that K̃s(x) does not refer to CRNs in any direct way, so the tight asymptotic connection
(Theorem 12) we establish may be surprising.

K̃s(x) is similar to the Kolmogorov complexity variant defined as Ks(x) = min{|p| +
log(space(U(p))) : U(p, i) = x[i]} by Allender, Kouckỳ, Ronneburger, and Roy [3] in that it
additively mixes program size with the log of the space usage. There are two differences:
(1) The program size component of K̃s is |p|/ log |p| rather than |p|. The intuition is that
a single chemical reaction can encode more than one bit of information; thus, a Turing
machine program p can be converted to a “CRN program” with a number of reactions that
is asymptotically smaller than the number of bits of p. (2) Ks(x) is defined with respect
to programs that, given index i as input, output x[i], the i’th bit of x, while our K̃s(x)
is defined with respect to programs that (taking no input) directly output all of x. Thus
K̃s(x) ≥ log |x|, since the Turing machine must at least store the output integer, while Ks(x)

2 For stable function computation, an ordered subset of input species {X1, X2, . . . , Xn} ⊂ S is also
included; however, stable integer computation would be something along the lines of f(1) = x, so a
single copy of the leader species serves as the “input” here.
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may be smaller in principle. Due to the ability of efficient universal Turing machines to
simulate each other efficiently, K̃s (like Ks) is invariant within multiplicative constants to the
choice of universal Turing machine U , as long as U is space-efficient. Note that if K̃s were
not robust to the choice of U , it could hardly be a universal measure.

It is worth noting that unlike K(x), K̃s(x) is computable. To see this, one can enumerate
all programs for universal Turing machine U and run them in order from smallest to largest,
stopping on the first machine that outputs x. Since the space usage of U(p) is included in K̃s,
we can terminate executions as soon as they start using too much space. This ensures that
no execution will run forever, and so we are guaranteed to find the smallest p that outputs x.

2.3 Overview
Here, we give a high level overview for the constructions and results presented in the
subsequent sections of this paper.

Our constructions rely on the ability of CRNs to “efficiently” simulate space-bounded
Turing machines (in terms of program size and space usage, not time) by “efficiently”
simulating bounded-count register machines. Section 3 details how to use a combination of
previous results to achieve this. The first half of the section describes how to construct a
CRN to faithfully simulate a bounded-count register machine. The second half of the section
shows how to generate a large register machine bound (22n) with very few species/reactions
(n). While the latter result is from previous work [11], we translate their construction from a
commutative semigroup presentation into a chemical reaction network.

In Section 4, we present a method for constructing a CRN Cx which (optimally) haltingly
computes n-bit integer x with |Cx| = O(n/ log n) by using a permutation code (Theorem 6).
The idea of the construction is to generate a specified permutation and convert that permuta-
tion to a mapped target integer x. This construction relies on the “efficient” bounded-count
register machine and space-bounded Turing machine simulations.

We then show how to use our permutation construction to achieve an optimal encoding
(within global multiplicative constants) for algorithmically compressible integers in Section 5.
Here, we use our permutation code technique to “unpack” a Turing machine program
that that outputs x, resulting in a CRN that haltingly computes x with O(K̃s) reactions
(Theorem 7). Afterwards, we use a result from Künnemann et al. [24] to show that the size
of our constructed CRN is within multiplicative constants of the optimal size of a CRN that
stably computes x, denoted Kcrn(x) (Lemma 11). The results of the paper culminate with
us connecting Kcrn(x) and K̃s in Theorem 12 (our main theorem), which is directly implied
by the combination of Theorem 7 and Lemma 11.

Lastly, we present some open questions for future work in Section 6.

3 Efficient Simulation of Bounded Register Machines

3.1 Register machines
A register machine is a finite state machine along with a fixed number of registers, each with
non-negative integer counts. The two fundamental instructions for a register machine are
increment inc(ri, sj) and decrement dec(ri, sj , sk). The first instruction increments register
ri and transitions the machine to state sj . The second instruction decrements register ri if it
is non-zero and transitions the machine to state sj , otherwise the machine just transitions to
state sk. We also consider the more advanced instruction of copy(ri, rj , sk), which adds the
value of register ri to register rj , i.e., it is equivalent to the assignment statement rj := rj +ri
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9:6 Optimal Information Encoding in Chemical Reaction Networks

(note that the value is preserved in ri). It is clear that copy can be constructed with a
constant number of register machine states. In fact, register machines are known to be
Turing-universal with three registers [30].3

In [36], a simple CRN construction was shown to simulate register machines with some
possibility of error (thus not directly compatible with stable computation). The source of the
error is due to the zero-checking in a dec instruction. For the simulation, the CRN has a finite
set of species (one for each register and one for each state of the register machine) and a finite
set of reactions (one for each instruction in the register machine program). Each inc(ri, sj)
instruction corresponds to the reaction Sj′ → Ri + Sj , and each dec(ri, sj , sk) instruction to
two reactions Sj′ + Ri → Sj and Sj′ → Sk. In the chemical reaction network implementation
of a dec instruction, the two reactions are competing for the state species Sj′ . While in
general this is an unavoidable problem, in the special case that the maximum value in our
counters is bounded by a constant, we can remedy this following the idea from [28] as follows.

Let’s consider bounded registers that can contain a value no greater than b ∈ N. For each
register ri, we can use two species RA

i and RI
i as “active” and “inactive” species for register

ri, respectively. The idea is that the total sum of the counts of species RA
i and RI

i is always
equal to b: whenever one is consumed, the other is produced. Now, an inc(ri, sj) instruction
could be implemented with the reaction Sj′ + RI

i → RA
i + Sj , and a dec(ri, sj , sk) instruction

could be implemented with the reactions Sj′ + RA
i → RI

i + Sj and Sj′ + bRI
i → bRI

i + Sk.
With this approach, register ri has a zero count exactly when inactive species RI

i has a count
of b, and so we can zero-check without error. Notice that this approach uses reactions with a
large stoichiometric coefficient b. At this point, there are two issues to be addressed: (1) how
to generate an initial b count of inactive species RI

i , and (2) how to transform the reactions
into a series of third-order reactions (avoiding the large stoichiometric coefficient b).

Let’s first consider a very simple construction which addresses the above concerns, albeit
suboptimally. Suppose b = 2n is a power of two. To handle (1), we can initially produce
count b of RI

i from a single copy of A1 using O(log b) species with reactions

A1 → 2A2

A2 → 2A3

...
An → RI

i .

To handle (2), we can transform the decrement reactions into a series of n bimolecular
reactions by adding reversible versions of the reactions from (1) and “counting down” to
some unique zero count indicator species C1:

RI
i ⇄Cn

2Cn⇄Cn−1

...
2C2⇄C1.

Then C1 is producible if and only if RI
i had count ≥ b, so the reaction Sj + C1 → Sk + C1

implements the “jump to state k if ri = 0” portion of the dec(ri, sj , sk) command. This

3 Turing-universality has also been shown for machines with two registers, but only when a nontrivial
encoding of the input/output is allowed [30,33].
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construction allows an error-free simulation of a register machine with counters with bound
b exponential in the number of species. Now we discuss a more sophisticated construction,
based on previous results [11, 28], that achieves a counter bound b that is doubly exponential
in the number of species.

3.2 Counting to 22n with n species
The CRN constructions in this paper simulate bounded register machines in the manner
discussed previously. Since we are focused on reducing the size of our CRN, we want to
do this simulation with as few species (reactions) as possible. Fortunately, we can rely on
established results from prior work to do this. Lipton provided a construction for which the
largest producible amount of a species is a doubly exponential count [28]. However, this
amount is only produced non-deterministically and (most) paths produce less. Cardoza et al.
went on to present a fully reversible system that can achieve this doubly exponential count
as well [11]. Further, their system is halting in the sense that a new species is produced
precisely when the maximum amount is reached.

While Cardoza et al. [11] describe their construction in the language of commutative
semigroup presentations, we present a modified construction in Figure 1 articulated as a CRN.
In the figure and in the text below, we use the “box” notation to indicate meta-reactions,
which correspond to a set of reactions. Note that in Lemma 4 we will see that the combined
behavior of the reactions in a meta-reaction module faithfully implement the meta-reaction
semantics. By construction, the sets of reactions that meta-reactions expand to overlap, and
we include only one copy of any repeated reaction. Each layer of the construction introduces
O(1) more reactions and species – 9 reactions ((1)–(9)) and 9 species (Sk

i , Hk
i , Xk

i , T 1k
i , T 2k

i ,
C1k

i , C2k
i , C3k

i , C4k
i ) for each i ∈ {1, 2, 3, 4}.

The idea of the construction is to produce (or consume) a doubly exponential count
of species X by recursively producing (or consuming) quadratically more X’s than the
previous layer. Each species type performs a different role. X is the counting species to
be generated or consumed. S starts the process to generate/consume many molecules of
species X. T transforms different types of X species into one another. H indicates that the
generation/consumption process has completed. C “cleans up” the H species. Reaction (5)
in the meta-reaction implementation (which converts Xk−1

2 into Xk−1
3 ) changes based on i.

If i ∈ {1, 2}, then Xi appears as a product and is generated by this reaction. If i ∈ {3, 4},
the Xi appears as a reactant and is consumed by this reaction. A high level diagram of a
layer-k meta-reaction is shown in Figure 2, which is helpful in understanding the behavior of
the system.

▶ Definition 1. Let c be a configuration of CRN C given above. We say c is well-led if
c(S∗

∗) + c(H∗
∗ ) + c(T ∗

∗ ) = 1 where the notation S∗
∗ denotes any species with label S, regardless

of the subscript or superscript. In other words, there is only a single leader in the system
and it either has the label S, H, or T . We call species S∗

∗ , H∗
∗ , and T ∗

∗ leader species.

▶ Observation 2. Every reaction has exactly one leader species as a reactant, and exactly
one leader species as a product.

The following is immediate from Observation 2:

▶ Corollary 3. Let c be a well-led configuration of CRN C given above. Then any configuration
d such that c⇝d is also well-led. In other words, the well-led property is forward invariant.

Informally, the observation above together with the well-led condition implies that we
can reason about the meta-reactions in isolation, without fear of cross-talk – because while
one meta-reaction is executing, no reactions outside of it are applicable. This allows us to
inductively prove the main result of this section:
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9:8 Optimal Information Encoding in Chemical Reaction Networks

Base reactions:

S0
1⇄H0

1 + 2X0
1

S0
2⇄H0

2 + 2X0
2

2X0
3 + S0

3⇄H0
3

2X0
4 + S0

4⇄H0
4

Layer-k meta-reactions:

Sk
1 ⇌Hk

1 + 22k

Xk
1

Sk
2 ⇌Hk

2 + 22k

Xk
2

22k

Xk
3 + Sk

3 ⇌Hk
3

22k

Xk
4 + Sk

4 ⇌Hk
4

Implementation of layer-k
meta-reaction:

Sk
i ⇄C1k

i + Sk−1
1 (1)

Sk−1
1 ⇌Hk−1

1 + 22k−1
Xk−1

1

C1k
i + Hk−1

1 ⇄T1k
i (2)

T1k
i + Xk−1

1 ⇄C2k
i + Xk−1

4 + Sk−1
2 (3)

Sk−1
2 ⇌Hk−1

2 + 22k−1
Xk−1

2

C2k
i + Hk−1

2 ⇄T2k
i (4)

Xk
i + T2k

i + Xk−1
2 ⇄T2k

i + Xk−1
3 + Xk

i (5)
T2k

i ⇄C3k
i + Sk−1

3 (6)

22k−1
Xk−1

3 + Sk−1
3 ⇌Hk−1

3

C3k
i + Hk−1

3 ⇄T1k
i (7)

C3k
i + Hk−1

3 ⇄C4k
i + Sk−1

4 (8)

22k−1
Xk−1

4 + Sk−1
4 ⇌Hk−1

4

C4k
i + Hk−1

4 ⇄Hk
i (9)

Figure 1 Doubly exponential counting construction. (Left) The base reactions and layer-k
meta-reactions. We use the box notation to indicate meta-reactions, which correspond to a set of
reactions. Note that the reactions corresponding to the different meta-reactions overlap; when all
the meta-reactions are expanded we include only one reaction copy. (Right) Explicit reactions for
the layer-k meta-reaction in terms of reactions and other meta-reactions. The core functionality
is the same for any i, but reaction (5) either generates Xk

i ’s (if i ∈ {1, 2}) or consumes Xk
i ’s (if

i ∈ {3, 4}).

Figure 2 A visualization of the states for a layer-k meta-reaction. The state transitions effectively
execute a nested loop. In order to iterate the outer loop (transition from V → II), the inner loop IV
must be executed 22k−1

times. And in order to leave state VI and produce an H, the outer loop
must be executed 22k−1

. So, state IV must be executed a total of 22k

times, which either produces
or consumes that many Xk

i ’s depending on the type of meta-reaction.
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▶ Lemma 4 (Production). Consider the CRN implementing Sk
i ⇌Hk

i + 22k
Xk

i . For any

n ∈ N, let s = {nXk
i , 1Sk

i } and h = {(22k + n)Xk
i , 1Hk

i }, and let c be any configuration
reachable from s or h. Then: (a) Both s and h are reachable from c. (b) If c contains Sk

i

then c = s, and if c contains Hk
i then c = h.

▶ Lemma 5 (Consumption). Consider the CRN implementing 22k
Xk

i + Sk
i ⇌Hk

i . For any

n ∈ N, let s = {(22k + n)Xk
i , 1Sk

i } and h = {nXk
i , 1Hk

i }, and let c be any configuration
reachable from s or h. Then: (a) Both s and h are reachable from c. (b) If c contains Sk

i

then c = s, and if c contains Hk
i then c = h.

Proof. (Of Lemma 4 and Lemma 5, Sketch) Both lemmas are proven by induction over the
layers of the construction. The base case (k = 1) can be checked by inspection. Now assume
the lemmas are true for k − 1 layers, and we want to prove them true for k layers.

First we argue that the construction is correct if the k − 1 layer meta-reactions are
“atomic” and occur in one step. As visualized in Figure 2, the CRN iterates through a nested
loop process. Each state transition (states Ik through VIk) is coupled to a conversion of the
leader species; the well-led condition ensures that the CRN is in exactly one state at any
given time. Each net forward traversal of the outer loop converts a Xk−1

1 to Xk−1
4 , and each

forward traversal of the inner loop converts a Xk−1
2 to Xk−1

3 . Step Ik makes 22k−1
Xk−1

1 ,
bounding the net maximum number of times that the outer loop can happen in the forward
direction. Step IIIk makes 22k−1

Xk−1
2 , bounding the net maximum number of times that

the inner loop can happen in the forward direction for every net forward traversal of the
outer loop. This implies that reaction (5) can fire at most a net total 22k times (producing
at most a net total 22k

Xk
i ’s).

Step Vk consumes 22k−1
Xk−1

3 , requiring the net total number of forward traversals of
the inner loop to be at least 22k−1 for every net forward traversal of the outer loop. Step
VIk consumes 22k−1

Xk−1
4 , requiring the net total number of forward traversals of the outer

loop to be at least 22k−1. This implies that reaction (5) must fire at least a net total 22k

times (producing at least a net total 22k
Xk

i ’s).
Thus, reaction (5) must be executed exactly 22k times (producing exactly 22k

Xk
i ’s).

Notice that an excess of Xk
i (as allowed by the statement of the lemma) does not affect the

net total number of times reaction (5) can fire (forward or backward) since Xk−1
2 and Xk−1

3
are the limiting factors.

Now we need to make sure that this behavior is preserved once the meta-reactions are
expanded to their constituent reactions. Each meta-reaction i in Figure 1 expands to some
set Ri of reactions. First we note that for each meta-reaction, Ri overlaps with reactions
not in Ri only over species Sk−1

i , Hk−1
i , and Xk−1

i . We are not worried about cross-talk in
species Sk−1

i and Hk−1
i because of the well-led property. We may still be concerned, however,

that external consumption of Xk−1
i might somehow interfere with the meta-reaction. Luckily,

the well-led property and Observation 2 enforce that unless we have Sk−1
i or Hk−1

i (i.e.,
we are at the beginning or end of the meta-reaction), it is never the case that a reaction
in Ri and a reaction not in Ri are applicable at the same time. Thus nothing outside the
meta-reaction can change Xk−1

i while the meta-reaction is executing. ◀

Note that although we chose to write Lemma 4 and Lemma 5 separately, we could have
just one kind of meta-reaction (production or consumption) and obtain the other kind by
running the meta-reaction backward switching the roles of S and H. We include the two
different versions because it is conceptually easier to just think about the intended execution
being in the forward direction.

DNA 29



9:10 Optimal Information Encoding in Chemical Reaction Networks

4 Optimal Encoding

4.1 Encoding Information in CRNs
In this section we discuss the encoding of an integer in a chemical reaction network. In the
same sense as Kolmogorov-optimal programs for Turing machines, we consider a similar
measure of optimality for chemical reaction networks. In particular, we ask the question,
“what is the smallest chemical reaction network that can produce a desired count of a
particular chemical species?”

A simple construction shows that x copies of some species can be produced using O(log x)
reactions. The idea is to have a reaction for each bit bi of the binary expansion of x, and
produce a copy of your output species in each reaction where bi = 1. More concretely,
consider log x reactions of the form Xi → 2Xi+1 and Xi → 2Xi+1 + Y . For each bit bi in the
binary expansion of x, use the first reaction if bi = 0 and use the second reaction if bi = 1.
Each species Xi will have a count equal to 2i, and species Y will have a count equal to the
sum of the powers of two that were chosen (which is x). While this simple construction
generates x with log x reactions, it is not immediately clear how to improve upon it.

Our first result shows how to construct a CRN that can generate x copies of an output spe-
cies (from an initial configuration with only a single molecule) yet uses only O(log x/ log log x)
many reactions. This matches the lower bound dictated by Kolmogorov complexity (see
end of Section 4), which suggests that the full power of CRNs is really being used in our
construction. Our construction is achieved through the simulation of (space-bounded) Turing
machines via the simulation of (space-bounded) register machines. A key aspect in this
process is the ability of CRNs to use the previously discussed recursive counting technique
to count very high with very few species (counting to 22k with k species).

4.2 Our Construction
Now, we present an encoding scheme to produce count x of a particular species with
O(n/ log n) CRN reactions, where n = log x. In the simple CRN given in Section 4.1, each
reaction encodes a single bit of x. In the optimized construction with k reactions, each
reaction will encode log k bits instead.4 A sketch of our construction is as follows:

Sketch: We start with a CRN in configuration c1 = {1L} and create a configuration
c2 = {1Si, m1R1, m2R2, . . . , mkRk} that represents a particular permutation of k distinct
elements. We encode this permutation in the count of a species I, transforming configuration
c2 into a configuration c3 = {1Sj , mI}. The count of species I can be interpreted as the
input to a Turing machine, so we simulate a Turing machine that maps the permutation
to a unique integer via Lehmer code/factorial number system [25,34] (by choosing the right
value of k, we can ensure there are sufficiently many permutations to let us map to x). This
Turing machine simulation transforms configuration c3 into configuration c4 = {1H, xY }.

▶ Theorem 6. For any n ∈ N and any n-bit integer x, there exists a chemical reaction
network Cx that haltingly computes x from initial configuration {1L} with |Cx| = O(n/ log n).

Proof. First, we describe how to construct CRN Cx that haltingly computes x from starting
configuration {1L}, then we describe the size of |Cx|. Let k = ⌈n/ log n⌉. We will map a
permutation of k distinct elements to the integer x, and this value of k ensures there are at
least x permutations. We break the construction into three primary steps.

4 Adleman et al. [1] provided a clever base conversion trick for tile assembly programs. Here, we employ a
permutation encoding trick to yield the same effect.
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Step 1: {1L}⇝{1Si, m1R1, m2R2, . . . , mkRk}. We can transform {1L} into a con-
figuration {1Si, m1R1, m2R2, . . . , mkRk} where (m1, m2, . . . , mn) is a permutation of the
integers 1 through k. This can be achieved with k registers and 2k register machine states.
For example, to set the permutation (2, 4, 3, 1), use instructions

s0 : inc(r2, s1)
s1 : copy(r2, r4, s2)
s2 : inc(r2, s3)
s3 : copy(r2, r1, s4)
s4 : inc(r2, s5)
s5 : copy(r2, r3, s6)
s6 : inc(r2, s7)

Step 2: {1Si, m1R1, m2R2, . . . , mkRk}⇝{1Sj, mI}. Now, we can transform configur-
ation {1Si, m1R1, m2R2, . . . , mkRk} into configuration {1Sj , mI}, encoding the permutation
as the integer count m of species I. For each register ri for i from 1 to k in order, we can
decrement the register to 0. On each decrement, we double the count of I and then add 1 to
it, i.e., appending a 1 to m’s binary expansion. After the register reaches 0, before moving
to the next register, we double the count of I again, appending a 0 to m’s binary expansion.
For example, if the permutation configuration was {3R1, 1R2, 2R3}, the resulting count of I

in binary would be

111︸︷︷︸
3

0 1︸︷︷︸
1

0 11︸︷︷︸
2

.

Step 3: {1Sj, mI}⇝{1H, xY }. At this point, we can consider the value in register I,
expressed as a binary string, to be the input tape content for a Turing machine that maps
the permutation to the integer x using a standard Lehmer code/factorial number system
technique [25, 34]. The output of the Turing machine will be the count of Y in configuration
c at the end of the computation (with c(Y ) = x). Our register machine will have a state
species that corresponds to the halted state of the Turing machine – and such a species
serves as our halting species H.

Now we argue the size of CRN |Cx| = O(n/ log n), i.e., it uses O(k) reactions. The
register machine program from Step 1 generates the permutation using k registers and 2k

register machine states, which results in O(k) CRN reactions. The register machine program
from Step 2 encodes the permutation as a binary number in register I using O(k) registers
and O(k) register machine states, which also results in O(k) CRN reactions. Even a naive
algorithm for the Turing machine from Step 3 maps the permutation to an integer using
O(k2 log k) space (O(k2) bits to store the initial permutation, O(k log k) bits to store the
Lehmer code, O(k2 log k) bits to store factorial bases 1! through k!, and O(k log k) bits to
store the integer x). Recall, a Turing machine using space O(k2 log k) can be simulated by a
register machine with count bound O(2k2 log k) on its registers. This can in turn be simulated
by a CRN via the construction of Section 3.2 with O(log log 2k2 log k) = O(log k) reactions.
Thus O(k) reactions suffices to simulate the register machine instructions as well as the
bounded counters for our register machine to simulate this Turing machine. ◀

The above construction is optimal for almost all integers x in the following sense. Any
CRN of |C| reactions, each with O(1) reactants and products, can be encoded in a string
of length O(|C| log |C|). Given an encoded CRN stably computing an integer x, a fixed-size
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program can simulate it and return x. Thus K(x) ≤ O(|C| log |C|). The pigeonhole principle
argument for Kolmogorov complexity implies that K(x) < ⌈log x⌉ − ∆ for at most (1/2)∆ of
all x [27]. Together these observations imply that there is a c such that for most x there
does not exist a CRN C of size smaller than cn/ log n that stably computes x.

5 Algorithmic Compression

The construction in Section 4 is optimal for incompressible integers (integers x where
K(x) ≈ |x|, which is the case for “most” integers). Now we extend the construction
to be optimal within global multiplicative constants for all integers. For algorithmically
compressible integers x, there exists a p such that U(p) = x and |p| < |x|. We discuss the
construction in Section 5.1 and we argue optimality of our construction in Section 5.2.

5.1 Our Construction

We now show how to fully exploit the encoding scheme and doubly exponential counter from
Section 4 to achieve an optimal result for all integers. A sketch of our construction is as
follows:

Sketch: Given a program p for a fixed Universal Turing Machine U such that U(p) = x,
we construct a CRN that simulates running p on U via a register machine simulation. The
idea is to use O(|p|/ log|p|) reactions to encode p, and to use O(log(space(U(p))) reactions
for a counter machine simulation of U(p).

▶ Theorem 7. For any integer x, there exists a CRN Cx that haltingly computes x from
initial configuration {1L} with |Cx| = O(K̃s(x)).

Proof. Let p be a program for a fixed Universal Turing Machine U such that U(p) = x. We
encode p in the manner provided by Theorem 6 using O(|p|/ log|p|) reactions. This results
in p count of species Y (specifically, configuration {1H, pY }). Since haltingly-computing
CRNs are composable via concatenation [12,35], we can consider {1H, pY } to be taken as
the input for another system which simulates running U(p) via the previously described
register machine method with bounded register count (Section 3.2). Again, we need enough
species/reactions to ensure our bounded registers can count high enough. The registers
must be able to store an integer that represents the current configuration of the Turing
machine being simulated (at most this is 2space(U(p))). Since we have doubly exponential
counters, an additional log

(
space(U(p))

)
species are needed to do this. So, the total size of

our CRN is O
(
|p|/ log|p| + log(space(U(p)))

)
and by choosing the program p that minimizes

this expression, we see |Cx| = O(K̃s(x)). ◀

It is interesting to note the appearance of our “space-aware” version of Kolmogorov
complexity. Importantly, this notion is different from space-bounded Kolmogorov complexity
that puts a limit on the space usage of the program that outputs x. This alternate version
allows a trade-off between compact program descriptions and the space required to run those
programs, which seems natural for systems like CRNs. Perhaps it is surprising that this
(computable) measure of complexity shows up here, and at first it may seem like log of this
space usage is a bit arbitrary, but we will show that this is indeed optimal (within global
multiplicative constants) for CRNs.
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5.2 Optimality
Here, we argue that size of CRN Cx from Theorem 7 is optimal. We begin by giving a
definition for the size of the optimal CRN that haltingly computes an integer x.

▶ Definition 8. For any integer x, define Kcrn(x) = min{|C| : CRN C haltingly computes x}.
In other words, Kcrn(x) is the size of the smallest CRN that haltingly computes x.

Our argument relies on a Turing machine that solves the coverability problem for CRNs.
We give the definition for this problem in Definition 9 and discuss its space complexity in
Lemma 10.

▶ Definition 9 (Coverability). Given a CRN C, initial configuration s, and target configuration
u, does there exist a configuration t ≥ u such that s⇝ t?

Using the natural notion of problem size n for the specification of a coverability problem,
Lipton provided a 2Ω(

√
n) space lower bound for coverability [28], which was later improved

to 2Ω(n) by Mayr and Meyer [29]. As for upper bounds, Rackoff provided an algorithm to
decide coverability that uses 2O(n log n) space [31]. Following this, Koppenhagen and Mayr
gave an algorithm that decided coverability in 2O(n) space for reversible systems, closing
the gap for this class of systems [23]. A recent result by Künnemann et al. also closes this
gap [24] for Vector Addition Systems with States. Our work uses this latest result.

▶ Lemma 10 (Implied by Theorem 3.3 from [24]). Let CRN C = (S, R) be a CRN that
haltingly computes x. Then there exists an algorithm which solves coverability for CRN C for
initial configuration {1L} and target configuration {1H} which uses 2O(|C|) space.

Proof. This result follows from Theorem 3.3 from the recent work by Künnemann et al. [24].
There, the authors consider the problem of coverability in Vector Addition Systems with
States (VASS). They show that if the answer to coverability is yes, the length of the longest
path is n2O(d) where n is the maximum value change of any transition and d is the dimension
of the vector. For us, n = 2 since each reaction has at most two reactants/products and
d = |S|. While vector addition systems are not capable of “catalytic” transitions, it is known
that the same effect can be achieved by decomposing transitions into two vector additions.
So the path length would at most double for our systems.

With this bound on the path length, we can consider an algorithm that non-deterministic-
ally explores the state space of C (from starting configuration {1L}) by simulating reactions
on a current configuration of the system until a configuration that covers {1H} is found. By
Savitch’s Theorem [32], this can be converted to a deterministic algorithm using the same
space: O(|R| log|R|) bits to hold a description of C, 2O(|S|) bits for a path length counter,
and 2O(|S|) · log(|S|) bits to store the current configuration of C. All of these values are
absorbed under a 2O(|C|) bound. ◀

With this space bound on the coverability problem established, we can now argue that
the size of our constructed CRN from Theorem 7 is asymptotically equal to the size of the
the smallest CRN that haltingly computes x.

▶ Lemma 11. For all x ∈ N, letting Cx be the CRN from Theorem 7, |Cx| = Θ(Kcrn(x)).

Proof. Clearly |Cx| = Ω(Kcrn(x)), by definition of Kcrn(x) and since Cx from Section 5 is an
instance of a CRN that haltingly computes x. Now, we argue that |Cx| = O(Kcrn(x)). The
big picture is that one of the programs over which K̃s(x) is minimized in the construction of
Cx is the program solving coverability for the optimal CRN for generating x.
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Start with the CRN K = (SK, RK) that haltingly computes x with optimal size |K| =
Kcrn(x) = n. Consider program pK that solves coverability for K with initial configuration
{1L} and target configuration {1H}, and outputs x. Now, with that program pK, build a
CRN K′ by following our construction for Theorem 7. We know |pK| = O(n log n) so our
final CRN needs O(n) reactions to encode pK (by Theorem 6). By Lemma 10, we know that
the space usage of U(pK) is 2O(|K|), so our final CRN needs O(|K|) additional reactions to
have large enough registers for the simulation of U(pK). Thus, the total size of our final CRN
is O(|K| + |K|) = O(Kcrn(x)). ◀

The following theorem, which is the main result of our paper, follows immediately from
Theorem 7 and Lemma 11. It characterizes the optimal number of reactions haltingly
computing a number x using the space-aware Kolmogorov complexity measure K̃s defined in
Section 2.2.

▶ Theorem 12. For all x ∈ N, Kcrn(x) = Θ(K̃s(x)).

Although, as mentioned above, CRN stable computation is not Turing universal, the theorem
underlines its essential connection to space-bounded Turing machine computation.

6 Open Questions

Our results rely on the fact that we consider CRNs that perform halting computation – the
end of the computation is indicated by the production of a designated halting species. This
constraint, intuitively that the systems know when they have finished a computation, is
rather strong. It is known that a much larger class of functions can be stably computed
than can be haltingly computed [15]. It remains an open question if lifting this halting
requirement (and allowing just stable computation) reduces the reaction complexity.

It is also worth noting that our approach starts with exactly one copy of a special leader
species. Recently, Czerner showed that leaderless protocols are capable of deciding doubly
exponential thresholds [16]. While starting in some uniform state and converging to a specific
state would be a better expression of “chemical self-organization,” their construction seems
incompatible with our register machine simulation. Leaderless stable integer computation
remains an area for future work.

Making a tight connection between stable integer computation and counting predicate
computation commonly studied in population protocols [16] also remains open. We can easily
follow the halting generation of a specific amount of x by running the “less-than-or-equal-to”
predicate, thereby converting our constructions to compute a counting predicate with only
a constant more reactions. This gives a new general upper bound on the complexity of
counting in terms of K̃s(x). However, it is unclear whether counting predicate constructions
carry over to the generation problem, leaving it open whether counting may be easier.

Our notion of “space-aware” Kolmogorov complexity K̃s is interesting in its own right.
While the similar quantity Ks has been previously studied in the context of computational
complexity theory [3] (see also Section 2.2), it is not clear which properties proven of Ks
carry over to K̃s. Although the robustness to the choice of U carries over, other properties
may not. For example, it is not obvious whether our results still hold if we consider programs
that output a single bit of x at a time (like Ks does).

A core piece of this work is simulating space-bounded Turing machines, so it is very natural
to extend the discussion to Boolean circuits (computing functions ϕ : {0, 1}n → {0, 1}).
When attempting to compute Boolean functions with CRNs, one may be tempted to directly
implement a Boolean circuit by creating O(1) reactions per gate in the circuit. However,
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our results imply that reaction complexity can be improved by doing a space-bounded
Turing machine simulation instead – when the circuit is algorithmically “compressible.” An
important class of such compressible circuits are uniform circuits, i.e., those constructable
by a fixed Turing machine given an input size. Prior work established a quadratically tight
connection between the depth of uniform circuits and Turing machine space [9]. Further
investigation into optimal Boolean function computation is warranted.
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Abstract
We analyze the computational complexity of basic reconfiguration problems for the recently in-
troduced surface Chemical Reaction Networks (sCRNs), where ordered pairs of adjacent species
nondeterministically transform into a different ordered pair of species according to a predefined set
of allowed transition rules (chemical reactions). In particular, two questions that are fundamental to
the simulation of sCRNs are whether a given configuration of molecules can ever transform into
another given configuration, and whether a given cell can ever contain a given species, given a set of
transition rules. We show that these problems can be solved in polynomial time, are NP-complete,
or are PSPACE-complete in a variety of different settings, including when adjacent species just
swap instead of arbitrary transformation (swap sCRNs), and when cells can change species a limited
number of times (k-burnout). Most problems turn out to be at least NP-hard except with very few
distinct species (2 or 3).
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1 Introduction

The ability to engineer molecules to perform complex tasks is an essential goal of molecular
programming. A popular theoretical model for investigating molecular systems and distrib-
uted systems is Chemical Reaction Networks (CRNs) [6, 26]. The model abstracts chemical
reactions to independent rule-based interactions that creates a mathematical framework
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10:2 Complexity of Reconfiguration in Surface Chemical Reaction Networks

equivalent [8] to other well-studied models such as Vector Addition Systems [18] and Petri
nets [24]. CRNs are also interesting for experimental molecular programmers, as examples
have been built using DNA strand displacement (DSD) [27].

Abstract Surface Chemical Reaction Networks (sCRNs) were introduced in [25] as a way
to model chemical reactions that take place on a surface, where the geometry of the surface
is used to assist with computation. In this work, the authors gave a possible implementation
of the model similar to ideas of spatially organized DNA circuits [21]. This strategy involves
DNA strands being anchored to a DNA origami surface. These strands allow for “species”
to be attached. Fuel complexes are pumped into the system, which perform the reactions.
While these reactions are more complex than what has been implemented in current lab
work, it shows a route to building these types of networks.

1.1 Motivation
Feed-Forward circuits using DNA hairpins anchored to a DNA origami surface were imple-
mented in [5]. This experiment used a single type of fuel strand. The copies of the fuel
strand attached to the hairpins and were able to drive forward the computation.

A similar model was proposed in [9], which modeled DNA walkers moving along tracks.
These tracks have guards that can be opened or closed at the start of computation by
including or omitting specific DNA species at the start. DNA walkers have provided
interesting implementations such as robots that sort cargo on a surface [29].

A new variant of surface CRNs we introduce is the k-burnout model in which cells can
switch states at most k time before being stuck in their final state. This models the practical
scenario in which state changes expend some form of limited fuel to induce the state change.
Specific experimental examples of this type of limitation can be seen when species encode
“fire-once” DNA strand replacement reactions on the surface of DNA origami, as is done
within the Signal Passing Tile Model [22].

1.2 Previous Work
The initial paper on sCRNs [25] gave a 1D reversible Turing machine as an example of the
computational power of the model. They also provided other interesting constructions such
as building dynamic patterns, simulating continuously active Boolean logic circuits, and
cellular automata. Later work in [7] gave a simulator of the model, improved some results of
[25], and gave many open problems- some of which we answer here.

In [2], the authors introduce the concept of swap reactions. These are reversible reactions
that only “swap” the positions of the two species. The authors of [2] gave a way to build
feed-forward circuits using only a constant number of species and reactions. These swap
reactions may have a simpler implementation and also have the advantage of the reverse
reaction being the same as the forward reaction, which makes it possible to reuse fuel species.

A similar idea for swap reactions on a surface that has been studied theoretically are
friends-and-strangers graphs [10]. This model was originally introduced to generalize problems
such as the 15 Puzzle and Token Swapping. In the model, there is a location graph containing
uniquely labeled tokens and a friends graph with a vertex for every token, and an edge if
they are allowed to swap locations when adjacent in the location graph. The token swapping
problem can be represented with a complete friends graph, and the 15 puzzle has a grid
graph as the location graph and a star as the friends graph (the ‘empty square’ can swap
with any other square). Swap sCRNs can be described as multiplicities friends-and-strangers
graph [19], which relax the unique restriction, with the surface grid (in our case the square
grid) as the location graph and the allowed reactions forming the edges of the friends graph.
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Table 1 Summary of our and known complexity results for sCRN reconfiguration problems,
depending on the type of sCRN, number of species, and number of rules. All problems are contained
in PSPACE, while all k-burnout problems are in NP.

Problem Type Graph Species Rules Result Ref
Reconfiguration sCRN 1D 17 67 PSPACE-complete [25]

1-Reconfiguration Swap sCRN Grid 4 3 PSPACE-complete Thm. 3
1-Reconfiguration Swap sCRN Any ≤ 3 Any P Thm. 6
1-Reconfiguration Swap sCRN Any Any ≤ 2 P Thm. 6
Reconfiguration Swap sCRN Grid 4 3 PSPACE-complete Thm. 4
Reconfiguration Swap sCRN Any ≤ 3 Any P Thm. 5
Reconfiguration Swap sCRN Any Any ≤ 2 P Thm. 5
Reconfiguration 2-burnout Grid 3 1 NP-complete Thm. 7

1-Reconfiguration 1-burnout Grid 17 40 NP-complete Thm. 8
Reconfiguration sCRN Grid ≥ 3 1 NP-complete Cor. 15
Reconfiguration sCRN Any ≤ 2 1 P Thm. 11

1.3 Our Contributions
In this work, we focus on two main problems related to sCRNs. The first is the reconfiguration
problem, which asks given two configurations and a set of reactions, can the first configuration
be transformed to the second using the set of reactions. The second is the 1-reconfiguration
problem, which asks whether a given cell can ever contain a given species. Our results are
summarized in Table 1. The first row of the table comes from the Turing machine simulation
in [25] although it is not explicitly stated. The size comes from the smallest known universal
reversible Turing machine [20] (see [30] for a survey on small universal Turing machines.)

We first investigate swap reactions in Section 3. We prove both problems are PSPACE-
complete using only four species and three swap reactions. For reconfiguration, we show
this complexity is tight by showing with three or less species and only swap reactions the
problem is in P.

In Section 4, we study a restriction on surface CRNs called k-burnout where each species is
guaranteed to only transition k times. This is similar to the freezing restriction from Cellular
Automata [14, 15, 28] and Tile Automata [4]. We start with a simple reduction showing
reconfiguration is NP-complete in 2-burnout. This is also of interest since the reduction only
uses three species types and a reaction set of size one. For 1-reconfiguration, we show the
problem is also NP-complete in 1-burnout sCRNs. This reduction uses a constant number of
species.

In Section 5, we analyze reconfiguration for all sCRNs that have a reaction set of size
one. For the case of only two species, we show for every possible reaction, the problem is
solvable in polynomial time. With three species or greater, we show that reconfiguration is
NP-complete. The hardness comes from the reduction in burnout sCRNs.

Finally, in Section 6, we conclude the paper by discussing the results as well as many
open questions and other possible directions for future research related to surface CRNs.

2 Surface CRN model

Chemical Reaction Network. A chemical reaction network (CRN) is a pair Γ = (S, R) where
S is a set of species and R is a set of reactions, each of the form A1 + · · ·+Aj → B1 + · · ·+Bk

where Ai, Bi ∈ S. (We do not define the dynamics of general CRNs, as we do not need them
here.)
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Figure 2 An initial, single step, and target configurations.

Surface, Cell, and Species. A surface for a CRN Γ is an (infinite) undirected graph G.
The vertices of the surface are called cells. A configuration is a mapping from each cell to a
species from the set S. While our algorithmic results apply to general surfaces, our hardness
constructions assume the practical case where G is a grid graph, i.e., an induced subgraph of
the infinite square grid (where omitted vertices naturally correspond to cells without any
species). When G is an infinite graph, we assume there is some periodic pattern of cells
that is repeated on the edges of the surface. Figure 1 shows an example set of species and
reactions and a configuration of a surface.

Reaction. A surface Chemical Reaction Network (sCRN) consists of a surface and a CRN,
where every reaction is of the form A + B → C + D denoting that, when A and B are in
neighboring cells, they can be replaced with C and D. A is replaced with C and B with D.

Reachable Configurations. For two configurations I, T , we write I →1
Γ T if there exists a

r ∈ R such that performing reaction r on a pair of species in I yields the configuration T .
Let I →Γ T be the transitive closure of I →1

Γ T , including loops from each configuration to
itself. Let Π(Γ, I) be the set of all configurations T for which I →Γ T is true. A sequence of
reachable states is shown in Figure 2

2.1 Restrictions

Reversible Reactions. A set of reactions R is reversible if, for every rule A + B → C + D in
R, the reaction C + D → A + B is also in R. We may also denote this as a single reversible
reaction A + B ⇌ C + D.

Swap Reactions. A reaction of the form A + B ⇌ B + A is called a swap reaction.
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k-Burnout. In the k-burnout variant of the model, each vertex of the system’s graph can
only switch states at most k times (before “burning out” and being stuck in its final state).

2.2 Problems
Reconfiguration Problem. Given a sCRN Γ and two configurations I and T , is T ∈ Π(Γ, S)?

1-Reconfiguration Problem. Given a sCRN Γ, a configuration I, a vertex v, and a species
s, does there exist a T ∈ Π(Γ, S) such that T has species s at vertex v?

3 Swap Reactions

In this section, we will show 1-reconfiguration and reconfiguration with swap reactions is
PSPACE-complete with only 4 species and 3 swaps in Theorems 3 and 4. We continue
by showing that this complexity is tight, that is, reconfiguration with 3 species and swap
reactions is tractable in Theorems 5 and 6.

3.1 Reconfiguration is PSPACE-complete
We prove PSPACE-completeness by reducing from the motion planning through gadgets
framework introduced in [11]. This is a one player game where the goal is to navigate a
robot through a system of gadgets to reach a goal location. The problem of changing the
state of the entire system to a desired state has been shown to be PSPACE-complete [1].
This reduction treats the model as a game where the player must perform reactions moving
a robot species through the surface.

The Gadgets Framework
Framework. A gadget is a finite set of locations and a finite set of states. Each state is a
directed graph on the locations of the gadgets, describing the traversals of the gadget. An
example can be seen in Figure 3. Each edge (traversal) describes a move the robot can take
in the gadget and what state the gadget ends up in if the robot takes that traversal. A robot
enters from the start of the edge and leaves at the exit.

In a system of gadgets there are multiple gadgets connected by their locations. The
configuration of a system of gadgets is the state of all gadgets in the system. There is a single
robot that starts at a specified location. The robot is allowed to move between connected
locations and allowed to move along traversals within gadgets. The system of gadgets can
also be restricted to be planar, in which case the cyclic order of the locations on the gadgets
is fixed, and the gadgets along with their connections must be embeddable in the plane
without crossings.

The 1-player motion planning reachability problem asks whether there exists a sequence
of moves within a system of gadgets which takes the robot from its initial location to a target
location. The 1-player motion planning reconfiguration problem asks whether there exists
a sequence of moves which brings the configuration of a system of gadgets to some target
configuration.

There are many sets of motion planning models and gadgets to build our reduction. We
select 1-player over 0-player since in the sCRN model there are many reactions that may
occur and we are asking whether there exists a sequence of reactions which reaches some
target configuration; in the same way 1-player motion planning asks if there exists a sequence
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Figure 3 The Locking 2-Toggle (L2T) gadget and its states from the motion planning framework.
The numbers above indicate the state and when a traversal happens across the arrows, the gadget
changes to the indicated state.

of moves which takes the robot to the target location. The existential query of possible
moves/swaps remains the same regardless of whether a player is making decisions vs them
occurring by natural processes. The complexity of the gadgets used here are considered in
the 0-player setting in [12].

Locking 2-Toggle. The Locking 2-toggle (L2T) is a 4 location, 3 state gadget. The states of
the gadget are shown in Figure 3. The L2T has advantages because it universal for reversible
deterministic gadgets. Reversibility was important to picking a gadget since swap reactions
are naturally reversible.

Constructing the L2T

We will show how to simulate the L2T in a swap sCRN system. Planar 1-player motion
planning with the L2T was shown to be PSPACE-complete [11]. We now describe this
construction.

Species. We utilize 4 species types in this reduction and we name each of them according
to their role. First we have the wire. The wire is used to create the connection graph between
gadgets and can only swap with the robot species. The robot species is what moves between
gadgets by swapping with the wire and represents the robot in the framework. Each gadget
initially contains 2 robot species, and there is one species that starts at the initial location
of the robot in the system. The robot can also swap with the key species. Each gadget
has exactly 1 key species. The key species is what performs the traversal of the gadget by
swapping with the lock species. The lock species can only swap with the key. There are 4
locks in each gadget. The locks ensure that only legal traversals are possible by the robot
species.

These species are arranged into gadgets consisting of two length-5 horizontal tunnels.
The two tunnels are connected by a length-3 central vertical tunnel at their 3rd cell. At the
4th cell of both tunnels there is an additional degree 1 cell connected we will call the holding
cell.

States and Traversals. The states of the gadget we build are represented by the location of
the key species in each gadget. If the key is in the central tunnel of the gadget then we are
in state 1 as shown in Figure 4b. Note that in this state the key may swap with the adjacent
locks, however we consider these configurations to also be in state 1 and take advantage of
this later. The horizontal tunnels of the gadget in this state contain a single lock with an
adjacent robot species.
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Robot Key

LockWire

(a) Swap rules/species. (b) State 1. (c) State 2. (d) State 3.

Figure 4 Locking 2-toggle implemented by swap rules. (a) The swap rules and species names.
(b-d) The three states of the locking 2-toggle.

Figure 5 Traversal of the robot species.

States 2 and 3 are reflections of each other (Figures 4c and 4d). This state has a robot in
the central tunnel and the key in the respective holding cell. The gadget in this state can
only be traversed from right to left in one of the tunnels.

Figure 5 shows the process of a robot species traversing through the gadget. Notice when
a robot species “traverse” a gadget, it actually traps itself to free another robot at the exit.
We prove two lemmas to help verify the correctness of our construction. The lemmas prove
the gadgets we design correctly implement the allowed traversals of a locking 2-toggle.

▶ Lemma 1. A robot may perform a rightward traversal of a gadget through the north/south
tunnel if and only if the key is moved from the central tunnel to the north/south holding cell.

Proof. The horizontal tunnels in state 1 allow for a rightward traversal. The robot swaps
with wires until it reaches the third cell where it is adjacent to two locks. However the key
in the central tunnel may swap with the locks to reach the robot. The key and robot then
swap. The key is then in the horizontal tunnel and can swap to the right with the lock there.
It may then swap with the robot in the holding cell. This robot then may continue forward
to the right and the key is stuck in the holding cell.

Notice when entering from the left the robot will always reach a cell adjacent to lock
species. The robot may not swap with locks so it cannot traverse unless the key is in the
central tunnel. ◀

▶ Lemma 2. A robot may perform a leftward traversal of a gadget through the north/south
tunnel if and only if the key is moved from the north/south holding cell to the central tunnel.

Proof. In state 2 the upper tunnel can be traversed and in state 3 the lower tunnel can be
traversed. The swap sequence for a leftward traversal is the reverse of the rightward traversal,
meaning we are undoing the swaps to return to state 1. The robot enters the gadget and
swaps with the key, which swaps with the locks to move adjacent to the central tunnel. The
key then returns to the central tunnel by swapping with the robot. The robot species can
then leave the gadget to the left.
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A robot entering from the right will not be able to swap to the position adjacent to
the holding cell if it contains a lock. This is true in both tunnels in state 1 and in the
non-traversable tunnels in states 2 and 3. ◀

We use these lemmas to first prove PSPACE-completeness of 1-reconfiguration. We
reduce from the planar 1-player motion planning reachability problem.

▶ Theorem 3. 1-reconfiguration is PSPACE-complete with 4 species and 3 swap reactions or
greater even when the surface is a subset of the grid graph.

Proof. Given a system of gadgets create a surface encoding the connection graph between
the locations. Each gadget is built as described above in a state representing the initial state
of the system. Ports are connected using multiple cells containing wire species. When more
than two ports are connected we use degree-3 cells with wire species. The target cell for
1-reconfiguration is a cell containing a wire located at the target location in the system of
gadgets.

If there exists a solution to the robot reachability problem then we can convert the
sequence of gadget traversals to a sequence of swaps. The swaps relocate a robot species to
the location as in the system of gadgets.

If there exists a swap sequence to place a robot species in the target cell there exists a
solution to the robot reachability problem. Any swap sequence either moves an robot along
a wire, or traverses it through a gadget. From Lemmas 1 and 2 we know the only way to
traverse a gadget is to change its state (the location of its key) and a gadget can only be
traversed in the correct state. ◀

Now we show Reconfiguration in sCRNs is hard with the same set of swaps is PSPACE-
complete as well. We do so by reducing from the Targeted Reconfiguration problem which
asks, given an initial and target configuration of a system of gadgets, does there exist sequence
of gadget traversals to change the state of the system from the initial to the target and
has the robot reach a target location. Note prior work only shows reconfiguration (without
specifying the robot location) is PSPACE-complete[1] however a quick inspection of the proof
of Theorem 4.1 shows the robot ends up at the initial location so requiring a target location
does not change the computational complexity for the locking 2-toggle. One may also find
it useful to note that the technique used in [1] for gadgets and in [17] for Nondeterministic
Constraint Logic can be applied to reversible deterministic systems more generally. This
means the method described in those could be used to give an alternate reduction directly
from 1-reconfiguration of swap sCRNs to reconfiguration of swap sCRNs.

▶ Theorem 4. Reconfiguration is PSPACE-complete with 4 species and 3 swap reactions or
greater.

Proof. Our initial and target configurations of the surface are built with the robot species at
the robots location in the system of gadget, and each key is placed according to the starting
configuration of the gadget.

Again as in the previous theorem we know from Lemmas 1 and 2 the robot species
traversal corresponds to the traversals of the robot in the system of gadgets. The target
surface can be reached if and only the target configuration in the system of gadgets is
reachable. ◀
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3.2 Polynomial-Time Algorithm
Here we show that the previous two hardness results are tight: when restricting to a smaller
cases, both problems become solvable in polynomial time. We prove this by utilizing
previously known algorithms for pebble games, where labeled pebbles are placed on a subset
of nodes of a graph (with at most one pebble per node). A move consists of moving a pebble
from its current node to an adjacent empty node. These pebble games are again a type of
multiplicity friends-and-strangers graph.

▶ Theorem 5. Reconfiguration is in P with 3 or fewer species and only swap reactions.
Reconfiguration is also in P with 2 or fewer swap reactions and any number of species.

Proof. First we will cover the case of only two swap reactions. There are two possibilities:
the two reactions share a common species or they do not. If they do not, we can partition the
problem into two disjoint problems, one with only the species involved in the first reaction
and the other with only the species from the second reaction. Each of these subproblems has
only one reaction, and is solvable if and only if each connected component of the surface has
the same number of each species in the initial and target configurations.

The only other case is where we have three species, A, B, and C, where A and C can
swap, B and C can swap, but A and B cannot swap. In this case, we can model it as a
pebble motion problem on a graph. Consider the graph of the surface where we put a white
pebble on each A species vertex, a black pebble on each B species vertex, and leave each C
species vertex empty. A legal swap in the surface CRN corresponds to sliding a pebble to
an adjacent empty vertex. Goraly et al. [16] gives a linear-time algorithm for determining
whether there is a feasible solution to this pebble motion problem. Since the pebble motion
problem is exactly equivalent to the surface CRN reconfiguration problem, the solution given
by their algorithm directly says whether our surface CRN problem is feasible. ◀

▶ Theorem 6. 1-reconfiguration is in P with 3 or fewer species and only swap reactions.
1-reconfiguration is also in P with 2 or fewer swap reactions.

Proof. If there are only two swap reactions, we again have two cases depending on whether
they share a common species. If they do not share a common species, then we only need
to consider the rule involving the target species. The problem is solvable if and only if the
connected component of the surface of species involved in this reaction containing the target
cell also has at least one copy of the target species. Equivalently, if the target species is A,
and A and B can swap, then there must either be A at the target location or a path of B
species from the target location to the initial location of an A species.

The remaining case is when we again have three species, A, B, and C, where A and C
can swap, B and C can swap, but A and B cannot swap. If C is the target species, then the
problem is always solvable as long as there is any C in the initial configuration. Otherwise,
suppose without loss of generality that the target species is A. Some initial A must reach
the target location. For each initial A, consider the modified problem which has only that
single A and replaces all of the other copies of A with B. A sequence of swaps is legal in this
modified problem if and only if it was legal in the original problem. The original problem has
a solution if and only if any of the modified ones do. We then convert each of these problems
to a robot motion planning problem on a graph: place the robot at the vertex with a single
copy of A, and place a moveable obstacle at each vertex with a B. A legal move is either
sliding the robot to an adjacent empty vertex or sliding an obstacle to an adjacent empty
vertex. Papadimitriou et al. [23] give a simple polynomial time algorithm for determining
whether it is possible to get the robot to a given target location. By applying their algorithm

DNA 29



10:10 Complexity of Reconfiguration in Surface Chemical Reaction Networks

Figure 6 An example reduction from Hamiltonian Path. We are considering graphs on a grid,
so any two adjacent locations are connected in the graph. Left: an initial board with the starting
location in blue. Middle: One step of the reaction. Right: The target configuration with the ending
location in blue. Bottom: the single reaction rule.

to each of these modified problems (one for each cell that has an initial A), we can determine
whether any of them have a solution in polynomial time (since there are only linearly many
such problems), and thus determine whether the original 1-reconfiguration problem has a
solution in polynomial time. ◀

4 Burnout

In this section, we show reconfiguration in 2-burnout with species (A, B, C) and reaction
A + B → C + A is NP-complete in Theorem 7. Next, we show 1-reconfiguration in 1-burnout
with 17 species and 40 reactions is NP-complete in Theorem 8.

Reconfiguration and 1-Reconfiguration for burnout sCRNs are in NP since there is the
length of any reconfiguration is bounded. For space we do not include this proof but note
this has been proved in other system such as Resource Bounded Cellular Automata [13],
Freezing Cellular Automata [14] and Freezing Tile Automata [3].

4.1 2-Burnout Reconfiguration
This is a simple reduction from Hamiltonian Path, specifically when we have a stated start
and end vertex.

▶ Theorem 7. Reconfiguration in 2-burnout sCRNs with species (A, B, C) and reaction
A + B → C + A is NP-complete even when the surface is a subset of the grid graph. It is
also NP-complete with the same species and reactions without the 2-burnout restriction.

Proof. Let Γ = {(A, B, C), (A + B → C + A)}. Given an instance of the Hamiltonian path
problem on a grid graph H with a specified start and target vertex vs and vt, respectively,
create a surface G where each cell in G is a node from H. Each cell contains the species B

except for the cell representing vs which contains species A. The target surface has species C

in every cell except for the final node containing A, vt. An example can be seen in Figure 6.
The species A can be thought of as an agent moving through the graph. The species B

represents a vertex that hasn’t been visited yet, while the species C represents one that has
been. Each reaction moves the agent along the graph, marking the previous vertex as visited.

(⇒) If there exists a Hamiltonian path, then the target configuration is reachable. The
sequence of edges in the path can be used as a reaction sequence moving the agent through
the graph, changing each cell to species C finishing at the cell representing vt.

(⇐) If the target configuration is reachable, there exists a Hamiltonian path. The sequence
of reactions can be used to construct the path that visits each of the vertices exactly once,
ending at vt.
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Note that we have not discussed the effect of Burnout on the reduction. However since
each cell transitions through species in the following order: B, A, C this reaction always
results in a 2-burnout sCRN so the reduction holds with and without the restriction.

This means the CRN is 2-burnout which bounds the max sequence length for reaching
any reachable surface, putting the reconfiguration problem in NP. ◀

4.2 1-Burnout 1-Reconfiguration
For 1-burnout 1-reconfiguration, we show NP-completeness by reducing from 3SAT and
utilizing the fact that once a cell has reacted it is burned out and can no longer participate
in later reactions.
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Figure 7 All the possible configurations of two variable gadgets.

▶ Theorem 8. 1-reconfiguration in 1-burnout sCRNs with 17 species and 40 reactions is
NP-complete even when the surface is a subset of the grid graph. It is also NP-complete with
the same species and reactions without the 1-burnout restriction.

Proof. We reduce from 3SAT. The idea is to have an “agent” species traverse the surface to
assign variables and check that the clauses are satisfied by “walking” through each clause. If
the agent can traverse the whole surface and mark the final vertex as “satisfied”, there is a
variable assignment that satisfies the original 3SAT instance.

Variable Gadget. The variable gadget is constructed to allow for a nondeterministic
assignment of the variable via the agent walk. At each intersection, the agent “chooses” a
path depending on the reaction that occurs. If the agent chooses “true” for a given variable,
it will walk up then walk down to the center species. If the agent chooses “false”, the agent
will walk down then walk up to the center species. From the center species, the agent can
only continue following the path it chose until it reaches the next variable gadget. Examples
of the agent assigning variables can be seen in Figure 7.

Each variable assignment is “locked” by way of geometric blocking. When the agent
encounters a variable gadget whose variable has already been assigned, the agent must follow
that same assignment or it will get “stuck” trying to react with a burnt out vertex. This can
be seen in Figure 8.

Initial Configuration. First, the configuration is constructed with variable gadgets
connected in a row, one for each variable in the 3SAT instance. This row of variable gadgets
is where the agent will nondeterministically assign values to the variables. Next, a row of
variable gadgets, one row for each clause, is placed on top of the assignment row, connected
with helper species to fill in the gaps.

For each clause, if a certain variable is present, the center species of the variable gadget
reflects its literal value from the clause. For example, if the variable x1 in clause c1 should
be true to satisfy the clause, the variable gadget representing x1 in c1’s row will contain
a T species in the center cell. Lastly, the agent species is placed in the bottom left of the
configuration. An example configuration can be seen in Figure 9.

The agent begins walking and nondeterministically assigns a value to each variable. After
assigning every variable, the agent walks right to left. If at an intersection, the agent chooses
a different assignment than it did its first pass, the agent becomes “stuck” only being able to
react with a burnt out vertex.
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Figure 8 The assignment “locking” process.
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Figure 9 Reduction from 3SAT to 1-burnout 1-reconfiguration. (a) The starting configuration of
the surface for the example formula φ = (¬x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x3). (b)
The configuration after evaluating the first clause. A red outline represents the unsatisfied state,
and a green outline represents the satisfied state.

After walking all the way to the left, the first clause can be checked. The agent starts in
the unsatisfied state, walking through each variable in the row, left to right. If the current
variable assignment at a variable gadget satisfies this clause, the agent changes to the satisfied
state and continues walking. If the agent walks through all the variables without becoming
satisfied, the computation ends. If the clause was satisfied, the agent continues by walking
back, right to left, to begin evaluation of the next clause. If the agent walks all the way to
the final vertex with a satisfied state, then the initial variable assignment satisfies all the
clauses.

(⇒) If there exists a variable assignment that satisfies the 3SAT instance, then the final
vertex can be marked with the satisfied state s. The agent can only mark the final cell with
the satisfied state s if all clauses can be satisfied.

(⇐) If the final vertex can be marked with satisfied state s, there exists a variable
assignment that satisfies the 3SAT instance. The variable assignment that the agent non-
deterministically chose can be read and used to satisfy the 3SAT instance. ◀

5 Single Reaction

When limited to a single reaction, we show a complete characterization of the reconfiguration
problem. There exists a reaction using 3 species for which the problem is NP-complete. For
all other cases of 1 reaction, the problem is solvable in polynomial time.
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Figure 10 Species identification and transition rules for 1-burnout 1-reconfiguration.

5.1 2 Species
We start with proving reconfiguration is in P when we only have 2 species and a single
reaction.

▶ Lemma 9. Reconfiguration with species {A, B} and reaction A + A → A + B OR A + B →
A + A is solvable in polynomial time on any surface.

Proof. The reaction A + B → A + A is the reverse of the first case. By flipping the target
and initial configurations, we can reduce from reconfiguration with A + B → A + A to
reconfiguration A + A → A + B.

We now solve the case where we have the reaction A + A → A + B.
All cells that start and end with species B can be ignored as they do not need to be

changed, and can not participate in any reactions. If there is a cell that contains B in the
initial configuration but A in the target, the instance is “no” as B may never become A.

Let any cell that starts in species A but ends in species B be called a flip cell, and any
species that starts in A and stays in A a catalyst cell.

An instance of reconfiguration with these reactions is solvable if and only if there exists
a set of spanning trees, each rooted at a catalyst cell, that contain all the flip cells. Using
these trees, we can construct a reaction sequence from post-order traversals of each spanning
tree, where we have each non-root node react with its parent to change itself to a B. In the
other direction, given a reaction sequence, we can construct the spanning trees by pointing
each flip cell to the neighbor it reacts with. ◀

▶ Lemma 10. Reconfiguration with species {A, B} and reaction A + A → B + B is solvable
in polynomial time on any surface.

Proof. Reconfiguration in this case can be reduced to perfect matching. Create a graph
M including a node for each cell in S containing the A species initially and containing B

in the target, with edges between nodes of neighboring cells. If M has a perfect matching,
then each edge in the matching corresponds to a reaction that changes A to B. If the target
configuration is reachable, then the reactions form a perfect matching since they include
each cell exactly once. ◀

▶ Theorem 11. Reconfiguration with 2 species and 1 reaction is in P on any surface.

Proof. As we only have two species and a single reaction, we can analyze each of the four
cases to show membership in P. We divide into two cases:
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A + A: When a species reacts with itself, it can either change both species, which is
shown to be in P by Lemma 10; or it changes only one of the species, which is in P by
Lemma 9.

A + B: When two different species react, they can either change to the same species,
which is in P by Lemma 9; or they can both change, which is a swap and thus is in P by
Theorem 5. ◀

5.2 3 or more Species
Moving up to 3 species and 1 reaction, we showed earlier that there exists a reaction for
which reconfiguration is NP-complete in Theorem 7. Here, we give reactions for which
reconfiguration between 3 species is in P, and in Corollary 15 we prove that all remaining
reactions are isomorphic to one of the reactions we’ve analyzed.

▶ Lemma 12. Reconfiguration with species (A, B, C) and reaction A+B → C +C is solvable
in polynomial time on any surface.

Proof. At a high level, we create a new graph of all the cells that must change to species C,
and add an edge when the two cells can react with each other. Since a reaction changes both
cells to C we can think of the reaction as “covering” the two reacting cells. Finding a perfect
matching in this new graph will give a set of edges along which to perform the reactions to
reach the target configuration.

Consider a surface G and a subgraph G′ ⊆ G where we include a vertex v′ in G′ for each
cell that contain A or B in the initial configuration and C in the target configuration. We
include an edge (u′, v′) between any vertices in G′ that contain different initial species, i.e.
any pair of cell which one initially contains A and the other initially B.

Reconfiguration is possible if and only if there is a perfect matching in G′. If there is
a perfect matching then there exists a set of edges which cover each cell once. Since G′

represents the cells that must change states, and the edges between them are reactions, the
covering can be used as a sequence of pairs of cells to react. If there is a sequence of reactions
then there exists a perfect matching in G′: each cell only reacts once so the matching must
be perfect, and the cells that react have edges between them in G′. ◀

▶ Lemma 13. Reconfiguration with species (A, B, C) and reaction A+B → A+C is solvable
in polynomial time on any surface.

Proof. The instance of reconfiguration is solvable if and only if any cell that ends with
species C either contained C in the initial configuration, or started with species B and have
an A adjacent to perform the reaction. Additionally, since a reaction cannot cause a cell
to change to A or B, each cell with an A or B in the target configuration must contain the
same species in the initial configuration. ◀

The final case we study is 4 species 1 reaction. Any sCRN with 5 or more species and 1
reaction has a species which is not included in the reaction.

▶ Lemma 14. Reconfiguration with species (A, B, C, D) and the reaction A + B → C + D is
in P on any surface.

Proof. We can reduce Reconfiguration with A + B → C + D to perfect matching similar to
Lemma 12. Create a new graph with each vertex representing a cell in the surface that must
change species. Add an edge between each pair of neighboring cells that can react (between
one containing A and the other B). A perfect matching then corresponds to a sequence of
reactions that changes each of the species in each cell to C or D. ◀
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▶ Corollary 15. Reconfiguration with 3 or greater species and 1 reaction is NP-complete on
any surface.

Proof. First, from Theorem 7 we see that there exists a case of reconfiguration with 3 species
that is NP-hard with or without the burnout restriction.

For membership in NP, we analyze each possible reaction. We note that we only need to
consider two cases for the left hand side of the rule, A + A and A + B. Any other reaction is
isomorphic to one of this form as we can relabel the species. For example, rule B +C → A+A

can be relabeled as A + B → C + C. Also, we know that C must appear somewhere in the
right hand side of the rule. If it does not then the reaction only takes place between two
species, which is always polynomial time as shown above, or it involves a species we can
relabel as C.

Here are the cases for A + B and our analysis results:

A + B → A + C P in Lemma 13
A + B → C + B P in Lemma 13 under isomorphism
A + B → C + A NP in Theorem 7
A + B → B + C NP in Theorem 7 under isomorphism
A + B → C + C P in Lemma 12
A + B → C + D P in Lemma 14

When we have A + A on the left side of the rule, the only case we must consider is
A + A → B + C (since all 3 species must be included in the rule). We have already solved
this reaction: first swap the labels of A and C giving rule C + C → B + A, then reverse the
rule to B + A → C + C and swap the initial and target configuration. Finally since rules do
not care about orientation this is equivalent to the rule A + B → C + C in Lemma 12.

Finally, for 4 species and greater, the only new case is A + B → C + D, which is proven
to be in P in Lemma 14. Any other case would have species that are not used since a rule
can only have 4 different species in it.

Thus, all cases are either in NP, or in P which is a subset of NP, therefore, the problem
is in NP. Also, since our results for each case apply for any surface, the same is true in
general. ◀

6 Conclusion

In this paper, we explored the complexity of the configuration problem within natural
variations of the surface CRN model. While general reconfiguration is known to be PSPACE-
complete, we showed that it is still PSPACE-complete even with several extreme constraints.
We first considered the case where only swap reactions are allowed, and showed reconfiguration
is PSPACE-complete with only four species and three distinct reaction types. We further
showed that this is the smallest possible number of species for which the problem is hard
by providing a polynomial-time solution for three or fewer species when only using swap
reactions.

We next considered surface CRNs with rules other than just swap reactions. First, we
considered the burnout version of the reconfiguration problem, and then followed by the
normal version with small species counts. In the case of 2-burnout, we showed reconfiguration
is NP-complete for three species and one reaction type, and 1-burnout is NP-complete for
17 species with 40 distinct reaction types. Without burnout, we achieved, as a corollary,
that three species, one reaction type is NP-complete while showing that dropping the species
count down to two yields a polynomial-time solution.
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6.1 Computing Polynomial Space Functions
An interpretation of Theorem 3 is that surface Chemical Reactions are capable of computing
any function that can be computed in polynomial space. Perhaps the most important
PSPACE-Complete is the acceptance problem for polynomial space Turing machines. While
there may be a few reduction between these problems, we can may turn any polynomial
space Turing machine into a surface CRN such that the robot species swaps with a wire
species at a target location. In experiments one can imagine the target location as having a
special type of wire species that acts as a reporting, emitting a signal when it reacts with the
robot species. The size of the surface is polynomial in the space of the Turing machine since
these are all polynomial time reductions. While we do not claim this experiment can be done
with such a small number of species, but rather that theoretically more sequence efficient
reaction systems which can compute should exists by taking advantage of the surface.

Our polynomial time algorithms describe experiments with 1, 2, or 3 reactions on surfaces
where well studied algorithms for problems such as matching and motion planning may be of
use.

6.2 Open Problems
This work introduced new concepts that leaves open a number of directions for future work.
While we have fully characterized the complexity of reconfiguration for the swap-only version
of the model, the complexity of reconfiguration with general rule types for three species
systems remains open if the system uses more than one rule. All of hardness results also
use a square grid graph, while our algorithms work on general surfaces. We would like to
know if the threshold for hardness can be lowered on more general graphs. In the 1-burnout
variant of the model, we have shown 1-reconfiguration to be NP-complete, but the question
of general reconfiguration remains a “burning” open question.
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