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Abstract
In the sublinear geometric model, we are provided with an oracle access to a point set P of n points
in a bounded discrete space [∆]2, where ∆ = nO(1) is a polynomially bounded number in n. That is,
we do not have direct access to the points, but we can make certain types of queries and there is
an oracle that responds to our queries. The type of queries that we assume we can make in this
paper, are range counting queries where ranges are axis-aligned rectangles (that are basic primitives
in database [36, 11, 17], computational geometry [1, 2, 6, 5], and machine learning [35, 31, 29, 28]).
The oracle then answers these queries by returning the number of points that are in queried ranges.
Let Alg be an algorithm that (exactly or approximately) solves a problem P in the sublinear
geometric model. The query complexity of Alg is measured in terms of the number of queries
that Alg makes to solve P. In this paper, we study the complexity of the (uniform) Euclidean
facility location problem in the sublinear geometric model. We develop a randomized sublinear
algorithm that with high probability, (1 + ϵ)-approximates the cost of the Euclidean facility location
problem of the point set P in the sublinear geometric model using Õ(

√
n) range counting queries.

We complement this result by showing that approximating the cost of the Euclidean facility location
problem within o(log(n))-factor in the sublinear geometric model using the sampling strategy that
we propose for our sublinear algorithm needs Ω̃(n1/4) RangeCount queries. We leave it as an open
problem whether such a polynomial lower bound on the number of RangeCount queries exists
for any randomized sublinear algorithm that approximates the cost of the facility location problem
within a constant factor.
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1 Introduction

In the sublinear query model, we consider scenarios in which we do not have direct access to
the underlying data, but there is an oracle or a prophet who provides us metadata about the
data that we are interested in. An interesting real-world application of such scenarios is for
retail or ride hailing companies that have millions of customers. Often these giant companies
do outsourcing by hiring a party outside a company to perform temporary services to reduce
costs or optimize customers buying experience. Due to privacy concerns1, these companies do
not want to provide accurate and detailed information of their customers to the outsourced
companies. However, they can provide some sort of metadata (such as how many customers
are in an area or a neighborhood or how often customers in a town purchase particular goods
or use a service) that can help the outsourced company to perform its service.

1 See “Threat to Security and Confidentiality” in https://www.thebalancesmb.com/top-outsourcing-
disadvantages-2533777 and “Security and Privacy Concerns” in https://www.truppglobal.com/blog/
top-10-outsourcing-problems-and-how-to-solve-them#5-security-and-privacy-concerns
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6:2 Facility Location in the Sublinear Geometric Model

As a concrete example, let us consider a retail company that plans to open new stores or
lockers to provide fast and responsive support for its customers. To this end, the company
hires an (experienced) outsourced company to estimate the total cost of opening new stores
or lockers. Due to privacy concerns, the company does not want to provide information
about its customers, but it can provide aggregate data such as how many customers are in
an area or a neighborhood. An interesting question is how many times these aggregate data
should be provided so that the outsourced company can estimate a fairly accurate cost of
opening new stores or lockers.

Motivated by these applications, we study the (uniform) Euclidean facility location in
the sublinear geometric model which is a sublinear model suitable when the underlying data
is a point set in a d-dimensional Euclidean space. In particular, we seek to design sublinear
algorithms that approximate the cost of the Euclidean facility location problem when we do
not have access to the underlying point set, but instead, we can make queries and there is an
oracle who will respond and provide solutions to our queries. Next, we define the facility
location problem formally.

▶ Definition 1 ((uniform) Euclidean facility location). In the (uniform) Euclidean facility
location problem, we are given a point set P of size n in a bounded discrete space [∆]2,
where ∆ = nO(1) is a polynomially bounded number in n and an opening cost f > 0,
and the goal is to compute a set F ∗ ⊂ [∆]2 of facilities that minimizes the cost function
costF L(P, F ∗) =

∑
p∈P dist(p, F ∗) + f · |F | , where dist(p, F ∗) = minq∈F ∗ dist(p, q) is the

Euclidean distance of p to its nearest facility in F ∗. We denote the optimal facility location
cost of the point set P by OPTF L(P, f).

1.1 Sublinear geometric model
Let P ⊆ [∆]2 be a point set of size n in a 2-dimensional discrete space [∆]2 = {1, 2, 3, · · · , ∆}2,
where ∆ = nO(1) is a polynomially bounded number in n. For the simplicity of exposition,
we assume that ∆ = n. This means that the space [∆]2 is indeed, the space [n]2. We also
assume that every unit square (of side length one), can store at most one (weighted) point 2.

In the sublinear geometric model, we assume we do not have access to points of P directly,
but instead, we have query access to points of P . That is, we can make certain queries
with respect to point set P and there is an oracle that returns the solutions to our queries.
The type of queries that we assume are provided in the sublinear geometric model are
range counting queries where ranges are axis-aligned rectangles (that are basic primitives in
database [36, 11, 17], computational geometry [1, 2, 6, 5], and machine learning [35, 31, 29, 28]).
The oracle then answers these queries by returning the number of points in queried ranges.

Range counting queries. We assume that we have a query access to P where we query an
axis-aligned rectangle c ⊆ [n]2 and the oracle returns the number of points nc = |P ∩ c| that
are in rectangle c. We denote such a query by RangeCount(c). Let Alg be an algorithm
that (exactly or approximately) solves a problem P in the sublinear geometric model. The
query complexity of Alg is measured in terms of the number of RangeCount(c) queries
that Alg makes to solve P. Assume that the input of problem P is a point set P of size n.
If the number of RangeCount(c) queries that we ask is o(n), we say the query complexity
of problem P is sublinear in terms of its input set.

2 We make these explicit assumptions to simplify the notations in this paper.
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1.2 Our Contribution

Here, we state our main result.

▶ Theorem 2 (Facility location in sublinear geometric model). Let P be a point set of size
n in a discrete space [n]2. Let f > 0 be the opening cost for the facility location problem
and 0 < ϵ ≤ 1 be the error parameter. Then, there exists a randomized sublinear algorithm
that (w.h.p.) returns an (1 + ϵ)-estimator for the facility location cost of P in the sublinear
geometric model using Õ(

√
n) RangeCount queries.

We complement this result by showing that approximating the cost of the Euclidean
facility location problem within o(log(n))-factor in the sublinear geometric model using the
sampling strategy that we propose for Theorem 2 needs Ω̃(n1/4) RangeCount queries.
See Figure 2 in Section 4 for the illustration of the hard instance that we explain there.
We leave it as an open problem whether such a polynomial lower bound on the number of
RangeCount queries exists for any randomized sublinear algorithm that approximates the
cost of the facility location problem within a constant factor.

▶ Lemma 3 (Lower bound). There exists a facility location instance for which the sublinear
algorithm of Theorem 2 needs Ω(

4√n
log n ) RangeCount queries to estimate the cost of facility

location within o(log n)-factor in the sublinear geometric model.

Outline of the proof of Theorem 2. Our starting point to prove this theorem is to choose
a known polynomial-time approximation scheme (PTAS) for the Euclidean facility location
problem in the plane. Our goal would be to simulate such a PTAS in sublinear time to
obtain an estimator for the optimal cost of the facility location problem.

Known PTAS algorithms [7, 30, 15] are often based on partitioning the underlying space
of a point set. Two such PTAS algorithms are known. The first one was proposed by Arora,
Raghavan, and Rao [7] and later improved by Kolliopoulos and Rao [30] that partitions the
space into regions and then combine solutions of small regions using the dynamic programming
to obtain solutions for the bigger regions. The issue with extracting an estimator based on
this PTAS is that simulating the dynamic programming in sublinear time seems to be hard.

The second PTAS for this problem was proposed by Czumaj, Lammersen, Monemizadeh,
and Sohler [15] where they partition the underlying space [n]2 of a point set P into a set Λ
of cells in a way that they can solve the facility location instance inside each cell independent
of the facility location instances of the other cells. The independency that is provided by this
algorithm is a good choice for us. However, the problem with using this approach (in order
to develop an estimator) in the geometric sublinear model is we do not have access to Λ.

Overall Idea: We develop a sublinear algorithm that randomly samples cells of
a number of grids (of exponentially increasing granularity) that we impose on the
discrete space [n]2 and determines whether the sampled cells could be cells in the
set Λ or not. For those sampled cells that are in fact, cells in Λ, we solve the facility
location instance independently and compute a (1 + ϵ)-approximation of their facility
location costs. We then multiply their costs with proper weights to (1 + ϵ)-estimate
the optimal facility location cost OPTF L(P, f).

APPROX/RANDOM 2023



6:4 Facility Location in the Sublinear Geometric Model

Next we briefly describe the space partitioning and the PTAS that are developed in [15]
and then, we explain our sublinear algorithm in detail.

PTAS of [15]. Suppose we are given a point set P ⊂ [n]2 of size n. We impose a (nested)
grid set Glog(n)+1, Glog(n), · · · , G1, G0 on the space [n]2 where the grid Gi consists of cells of side
length 2i. We then randomly shift the border lines of the grids Glog(n)+1, Glog(n), · · · , G1, G0
as follows. We choose two random real numbers v1, v2 ∈ [0, n]. Then, we shift every border
line ℓ of every grid Gi using the random vector v = (v1, v2). Observe that after this random
shifting process, the point set P is enclosed in a rectangle of side length [2n]2. In the sublinear
geometric model, whenever we make range queries for ranges that are axis-aligned rectangles,
we first shift these rectangles using v and then query them.

c

parent(c)

parent(c)

c

A

root

B C

Figure 1 In the sub-figure A, a point set P ⊆ [∆]2 is given. The sub-figure B illustrates the
space partitioning Λ that is computed by the PTAS of [15]. A light cell c (dark gray square) that is
in the partition set Λ and its parent parent(c) (gray square) are shown. In the sub-figure C, the
nodes that correspond to c and parent(c) are also shown in the corresponding quadtree partitioning.

The PTAS [15] is based on partitioning heavy cells and detecting light cells, two notions
that we define next. Let c be an arbitrary cell in a grid Gi. We use the 3-approximation
algorithm due to Jain and Vazirani [26] (who developed it for facility location) to determine
if c is heavy or light. Let us call this algorithm Alg3

F L. We say an arbitrary c in a grid Gi is
a heavy cell if Alg3

F L(P ∩ c) outputs that the facility location cost of P ∩ c is at least δF L · f

where δF L = O(ϵ−2 log2 n). If the reported cost is less than δF L · f , c is a light cell.
Starting with the square [2n]2, if a cell c ∈ Gi is heavy, we then split it into its 4 children

c1, c2, c3, c4 (that are in the grid Gi−1) of equal side length and recurse for those children
that are heavy. At the end of this recursive algorithm, we let Λ be the set of all light cells
that are constructed in this way. Interestingly, for every cell c, we can solve the facility
location instance of the point subset P ∩ c independently. Later, we combine the solutions of
these independent instances to obtain a (1 + ϵ)-approximate solution of the optimal facility
location of P . See Figure 1 for an illustration of Λ.

Sublinear algorithm. Now, we outline our sublinear algorithm. This algorithm samples
cells of the grids Glog(n)+1, Glog(n), · · · , G1, G0 randomly and determine whether the sampled
cells can be in set Λ or not. If we sample enough cells from Λ uniformly at random, compute
a (1 + ϵ)-approximation of their costs and multiply their costs with proper weights, we can
approximate the optimal facility location cost OPTF L(P, f) within (1 + ϵ)-factor. However,
this is not an easy task in the sublinear geometric model as we have the following challenges:
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Query Access: Given a cell c in a grid Gi:
We need to determine if c is heavy or light using Alg3

F L(P ∩ c).
If we know that we have sampled a cell c ∈ Λ, we need to compute a (1 + ϵ)-
approximation of its cost using a PTAS algorithm, say [15].

However, we do not have direct access to the points in P ∩ c. We can only make
range counting queries.
Many noisy empty cells: In any grid Gi for i ≤ 1

2 · log(n), we have Ω(n) cells
and plenty of them could be empty. Recall that |P | = n. Thus, a uniform random
sampling may need to sample many cells to hit a cell from Λ.

We first develop a tester algorithm (so-called HeavyTester) that using poly(ϵ−1 · log(n))
RangeCount queries determines if a cell c in a grid Gi is a heavy or a light cell. In case
that c is a light cell, the tester returns the facilities that (1 + ϵ)-approximates the optimal
facility location cost of the cell c. This already resolves the first challenge. Next, we deal
with the second challenge. We first develop a sublinear algorithm (so-called

√
n-Estimator)

that using Õ(
√

n) RangeCount queries distinguishes between the following two cases:
Low cost instances: The first case is if the optimal cost of P is upper-bounded by
O(

√
nf). If this is indeed the case, the algorithm

√
n-Estimator solves the facility

location instance of P and returns (1 + ϵ)-approximate solution (not the cost) of P .
High cost instances: The second case is if the optimal cost of P is Ω(

√
nf). For this

case, the algorithm
√

n-Estimator outputs that the cost of P is Ω(
√

nf).
From now on, we assume that the optimal facility location cost of P is Ω(

√
nf).

We develop a telescoping sampling that samples any arbitrary cell c in a grid Gi

with probability Pr [c] = nparent(c)
n , where parent(c) is the parent of c in the grid Gi+1 and

nparent(c) = |parent(c)∩P | is the number of points in parent(c) (See Figure 1 for the illustration
of a light cell and its parent.) The reason that we do the telescoping sampling based on
nparent(c) not nc = |c ∩ P | is that the cells in Λ are light, but their parents (and ancestors)
are heavy, so heavy parents have a minimum number of points that helps us to use known
concentration bounds [3, 32] to analyze the telescoping sampling.

For a grid Gi, we implement the telescoping sampling as follows. We start with the unique
cell c′ in grid Glog(n)+1 and split it into 4 sub-cells c1, c2, c3, c4 and query the number of
points inside each of them. Then, we sample the sub-cell cj for j ∈ [4] with probability ncj

nc′
.

Suppose we sample c1. We let c′ = c1 and recursively repeat the same process till we end up
with the parent of a cell c ∈ Gi. By the telescoping argument, a cell c ∈ Gi is sampled with
probability Pr [c] = nparent(c)

n .
Once we sample a cell c in a grid Gi with probability Pr [c] = nparent(c)

n , we test if c is a heavy
or a light cell using algorithm HeavyTester(c). If c is heavy or both c and parent(c) are
light, we do not do anything. If c is a light cell and its parent is a heavy cell, the cell c must be
in Λ. In this case, the tester returns set Fc of facilities that (1 + ϵ)-approximates the optimal
facility location cost of the instance c∩P . Let costϵ

F L(c, Fc, f) =
∑

p∈P ∩c dist(p, Fc)+ |Fc| ·f
be the facility location cost of c with respect to facility set Fc.

Next, we would like to assign a weight to the sampled cell c that is in Λ. For that, one
option would be to multiply costϵ

F L(c, Fc, f) by the term n
nparent(c)

. However, this may not
be possible. The problem is nparent(c) might be very small and so, the weight n

nparent(c)
may

be Ω(n) which essentially means if we want to use known concentration bounds such as the
Hoeffding bound [22], we need Ω(n) samples to approximate the optimal cost OPTF L(P, c).

We develop a novel sampling technique that samples (almost uniformly at random) those
light cells in a grid Gi whose parents have roughly the same number of points. To this end,
we first observe that from set Λ, we only need to consider those cells whose cost is at least

APPROX/RANDOM 2023



6:6 Facility Location in the Sublinear Geometric Model

τf where τ = O( ϵ
log(n) ). We call these cells significant light cells and we let Ψ be the set of

significant light cells of Λ. We show that in order to develop a (1 + ϵ)-estimator for facility
location, we can safely ignore insignificant light cells (those with cost less than τf) of Λ.

We then partition Ψ into likelihood classes Ψj
i , where Ψj

i is the set of those significant
light cells that are in the grid Gi and their parents have at least (1 + ϵ)j points and less
than (1 + ϵ)j+1. We consider only those likelihood classes Ψj

i whose size is |Ψj
i | ≥ β

√
n

where β = ( ϵ
log(n) )O(1). We call these classes contributing likelihood classes. We show that

non-contributing likelihood classes can be safely ignored.
We follow the steps below to show that if a likelihood class Ψj

i is contributing, we can
approximate the facility location cost of it within (1 + ϵ)-factor.

Step 1: We first show that if we sample any arbitrary cell c ∈ Ψj
i with probability

Pr [c] = nparent(c)
n , cell c is sampled almost uniformly at random from the set Ψj

i .
Step 2: Next, we prove that with high probability, we sample at least
poly(ϵ−1 log(n)) significant light cells from Ψj

i .
Step 3: We finally develop an estimator that (1 + ϵ)-approximates the size of Ψj

i .

Putting everything together, we obtain an estimator that (1+ϵ)-approximates the optimal
cost OPTF L(P, f) in the sublinear geometric model using Õ(

√
n) range counting queries.

1.3 Related Work
Sublinear algorithms have been studied extensively for problems in metric spaces. Czumaj
and Sohler [16] showed that we can (1 + ϵ)-approximate the weight of minimum spanning
tree in metric space in time Õ(n) = O(npoly(ϵ−1 log n)). Badoiu, Czumaj, Indyk, and
Sohler [8] showed that we can approximate the cost of facility location in metric space within
constant factor in time Õ(n), and Indyk [23] showed that we can return a constant factor
approximation of the k-median problem in metric spaces in time Õ(n). Interestingly, all
sublinear algorithms that we are aware of in metric spaces have Õ(n) running times. One
may ask if there exists any sublinear algorithm that is truly sublinear in n?

For sparse graphs this is indeed possible. Chazelle, Rubinfeld, and Trevisan [12] in a
seminal work showed that given a connected graph G (that is represented by adjacency lists)
of average degree d with edge weights in the set {1, ..., w}, we can (1 + ϵ)-approximate the
weight of the minimum spanning tree (MST) of G in time O(dwϵ−2 log( dw

ϵ )). Observe that
a graph with average degree d is a sparse graph as it can have at most O(nd) edges. Later,
Nguyen and Onak [33] in another seminal work initiated the study of sublinear algorithms for
Vertex Cover, Maximum Matching, Maximum Weight Matching, and Set Cover problems in
bounded-degree graphs. As an example, for the problem of estimating the size of maximum
matching, they showed how to approximate the size of the maximum matching up to an
additive error ϵn in time 2dO(1/ϵ) , where d is the maximum degree of a vertex in the graph G.
They obtained similar bounds for the aforementioned problems that approximate their size or
cost up to an (ϵn)-additive term. Yoshida, Yamamoto, and Ito[38] and then Behnezhad [10]
improve the running time (in fact, the query complexity) of Nguyen and Onak’s algorithm
for estimating the size of maximum matching and minimum vertex cover. As an example,
Behnezhad showed that we can approximate the size of maximal matching (i.e., 2-approximate
maximum matching) to within (ϵn)-additive error in time Õ((d + 1)/ϵ2).

What do we know for Euclidean spaces? Interestingly, very few sublinear algorithms have
been developed for optimization problems in Euclidean spaces. Indeed, we are aware of two
sublinear algorithms for problems in Euclidean spaces. The first work is due to Czumaj,
Ergün, Fortnow, Magen, Newman, Rubinfeld, and Sohler [14] who studied the problem of
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approximating the weight of Euclidean minimum spanning trees (EMST) in a sublinear time.
The authors show that if we are provided with oracle access to basic data structures in the
Euclidean space, we can estimate the weight of a EMST within (1 + ϵ)-factor.

In particular, they assume that we do not have access to a point set, but we can make
queries and there is an oracle that answers our queries. The type of queries that they are
allowed to make are minimum bounding box queries, range queries and approximate nearest
neighbor queries. They show that in order to (1 + ϵ)-approximate the weight of the Euclidean
minimum spanning tree in the plane (i.e., R2), we need to make Õ(

√
n) such queries.

The second sublinear algorithm that we are aware is for the minimum Euclidean bi-
chromatic matching due to Indyk [25]. This algorithm is more of a linear-time constant
factor approximation algorithm than a sublinear algorithm. Indyk assumed that we have
access to points, but the main issue is solving the minimum Euclidean bichromatic matching
problem using classical algorithms known for the maximum matching problem, say Hungarian
method takes O(n3) time. (See [37]). He showed we can approximate the cost of minimum
bichromatic matching within constant factor in near linear time and he showed that in time
Õ(n), we are able to do that. Later, Raghvendra and Agarwal [34] showed that in time Õ(n)
we can in fact, compute (1 + ϵ)-approximate Euclidean bichromatic matching.

The sublinear geometric model that we study in this paper is closely related to the
dynamic geometric streaming model [24, 19] and the Massively Parallel Computations
(MPC) model [27, 20]. In the the dynamic geometric streaming model [24, 19], Frahling
and Sohler [19] in a groundbreaking work showed that given a (polynomially in n bounded)
stream of insertions and deletions of points from an underlying space [∆]2 (where ∆ =
nO(1)), we can compute a (1 + ϵ)-approximate solution for the k-median, k-means, MaxCut,
maximum travelling salesperson, maximum spanning tree and average distance problems using
poly(kϵ−2 log(n)) space. Frahling, Indyk and Sohler [18] studied the problem of approximating
the weight of the Euclidean minimum spanning tree within (1 + ϵ) in the dynamic geometric
streaming model. Later, Czumaj, Lammersen, Monemizadeh, and Sohler [15] developed a
(1 + ϵ)-estimator for the cost of the Euclidean facility location using poly(ϵ−1 log(n)) space.

The Massively Parallel Computations (MPC) model was first introduced by Karloff, Suri,
and Vassilvitskii [27] and later extended by [9, 20]. Andoni, Nikolov, Onak, Yaroslavtsev [4]
studied the Euclidean minimum spanning tree and the minimum Euclidean bichromatic
matching problems in the MPC model. They showed O(1)-round MPC (1 + ϵ)-algorithm
for the Euclidean minimum spanning tree that uses Õ(

√
n) machines each one having local

space Õ(
√

n). For the minimum Euclidean bichromatic matching problem, they showed that
we can approximate the cost of minimum bichromatic matching within (1 + ϵ)-factor using
similar number of communication rounds, number of machines, and the space per machine.

2 Preliminaries

Rounding notations. For the sake of simplicity, we assume that the logarithm of a number
is always rounded down or up in an appropriate manner. As an example, if we want to
use a range [⌊log(a)⌋, · · · ] or a range [· · · , ⌈log(a)⌉] where a ∈ R, we write [log(a), · · · ] and
[· · · , log(a)] to simplify the notation, respectively.

Randomly shifted grids. Let P ⊆ [n]2 be a point set of size n. We consider log(n) + 1
grids Glog(n)+1, Glog(n), · · · , G1, G0 where the grid Gi consists of cells of side length 2i that
we impose on the space [n]2. We randomly shift the border lines of the grids as follows.
We choose two random real numbers v1, v2 ∈ [0, n] and we let v = (v1, v2) be the random
vector. Then, we shift every border line ℓ of every grid Gi using v. Observe that after this

APPROX/RANDOM 2023



6:8 Facility Location in the Sublinear Geometric Model

shift process, the point set P is enclosed in a rectangle of side length [2n]2. In the sublinear
geometric model, whenever we make range queries for ranges that are axis-aligned rectangles,
we first shift these rectangles using v and then query them.

We let G≥i = {Gi, Gi+1, · · · , Glog(n)} and G≤i = {Gi, Gi−1, · · · , G0}. Let c ∈ Gi be a cell
in a grid Gi. We denote by c ∩ P the subset of points that are inside the cell c or on the
border lines of c. We denote the number of points in c by nc = |c ∩ P |. We let ℓc be the side
length of c which is 2i in the grid Gi. We denote the parent of c which is in the grid Gi+1 by
parent(c). Let c′ ∈ G≥i be a cell that contains c (i.e., c ⊆ c′). We say c′ is an ancestor of c.
We denote the ancestor of c at a grid Gj≥i by ancestor(c, j). If c′ ∈ G>i, we say that c′ is a
proper ancestor of c. Similarly, let c′ ∈ G<i be a cell that is contained in the cell c. We say
c′ is a descendant of c. We denote the descendant of c at a grid Gj<i by descendant(c, j).

2.1 Space partitioning and PTAS of [15]
Let P ⊆ [2n]2 be a point set of size n and f > 0 be a positive real number. Let 0 < ϵ ≤ 1 be
the error parameter. As we explained in the introduction of this paper, Czumaj, Lammersen,
Monemizadeh, and Sohler [15] show a construction for the facility location problem that
partitions the space [2n]2 into a set Λ of disjoint cells for which we can solve the facility
location problem independently. We denote this algorithm by Algϵ

F L(P ) whose pseudocode
is given below.

Algorithm 1 Algϵ
F L - Czumaj, Lammersen, Monemizadeh, and Sohler [15].

Data: A point set P ⊆ [n]2, an opening cost f > 0, and a parameter 0 < ϵ ≤ 1.
1 Let c be the square [2n]2. Let Γ = {c} and Λ = ∅;
2 while Γ has a heavy cell c do
3 Let Γ = Γ\{c};
4 Let c1, c2, c3, c4 be children of c ; /* If c ∈ Gi, its children are in Gi−1 */
5 for ci ∈ {c1, c2, c3, c4} do
6 if ci is a heavy cell then
7 Γ = Γ ∪ {ci};
8 else
9 Λ = Λ ∪ {ci} ; /* ci is light */

10 for c ∈ Λ do
11 Let Fc be the set of facilities returned by the PTAS [30] for the point set P ∩ c;
12 Let costϵ

F L(c, Fc, f) =
∑

p∈P ∩c dist(p, Fc) + |Fc| · f be the cost of c ∩ P ;

13 return Set Λ and for every cell c ∈ Λ, set Fc of opened facilities and costϵ
F L(c, Fc, f);

The PTAS [15] is based on partitioning heavy cells and detecting light cells, two notions
that we define them next. Let c be an arbitrary cell in a grid Gi. We use the 3-approximation
algorithm due to Jain and Vazirani [26] to determine if c is heavy or light.

Heavy and light cells. Let c be a cell in a grid Gi. Let δF L = 220 · ( log n
ϵ )2. Let Fc be the

set of facilities returned by Alg3
F L(P ∩ c). We say c is a heavy cell if cost3

F L(c, Fc, f) =∑
p∈P ∩c dist(p, Fc) + |Fc| · f ≥ δF L · f ; otherwise it is a light cell.

▶ Lemma 4 ([15]). Let P ⊆ [2n]2 be a point set of size n and f ∈ R+ be a positive real
number. Let 0 < ϵ ≤ 1 be the error parameter. For the output of Algϵ

F L(P ) we have
For every cell c ∈ Λ, we have costϵ

F L(c, Fc, f) ≤ (1 + ϵ) · OPTF L(P ∩ c, f).
(1 − ϵ) · OPTF L(P, f) ≤ costϵ

F L(Λ, f) =
∑

c∈Λ costϵ
F L(c, Fc, f) ≤ (1 + ϵ) · OPTF L(P, f).
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3 Sublinear algorithm for facility location problem

In this section, we develop our sublinear algorithm for the facility location problem and prove
Theorem 2. We break this algorithm into four steps as follows:
1. Heavy tester: We first develop a tester algorithm for heavy cells.
2. Telescoping sampling: Then, we explain the telescoping sampling.
3. O(

√
n)-estimator: In the third step, we explain a

√
n-estimator for the Euclidean

facility location problem in the sublinear geometric model.
4. (1 + ϵ)-estimator: In the final step, we describe our (1 + ϵ)-estimator in the sublinear

geometric model and analyze it.

3.1 A tester algorithm for heavy cells

Here, we develop a tester algorithm in the sublinear geometric model that given an arbitrary
cell c in a grid Gi, makes poly(ϵ−1 · log(n)) RangeCount queries to distinguish between the
case that c is a heavy cell or a light one. The proof of the following lemma is in Appendix A.

▶ Lemma 5 (Heavy Tester). Let c be a cell in a grid Gi. Then, there exists a deterministic
tester algorithm that we call HeavyTester(c) so that

Testing heaviness: It makes O(ϵ−8 · log6(n)) RangeCount queries to determine if the
cell c is heavy or light.
Approximating a solution: If c is a light cell in set Λ, then HeavyTester(c) returns
a set Fc of facilities that (1 + ϵ)-approximates the optimal facility location cost of c.

3.2 O(
√

n)-approximate sublinear algorithm

Now, we explain an algorithm that distinguishes between the case that the facility location
cost of P is at most

√
n · f or it is greater than

√
n · f . For the former case, we return

(1 + ϵ)-approximate solution and for the latter, we obtain a lower bound
√

n · f for the cost.

Algorithm 2
√

n-Estimator.

Data: The discrete space [2n]2, an opening cost f > 0, and an error parameter
0 < ϵ ≤ 1.

Result: A
√

n-estimator Z for the facility location cost of a point set P ⊆ [2n]2.
1 Let c be the square [2n]2 and let Γ be an empty set. Let H = {c};
2 At any time, let costϵ

F L(Γ, f) =
∑

c′∈Γ costϵ
F L(c, Fc, f), where Fc is the set of

facilities that the randomized algorithm [15] Algϵ
F L returns for each cell c ∈ Γ;

3 while costϵ
F L(Γ, f) ≤

√
n · f and H ̸= ∅ do

4 Take an arbitrary cell c ∈ H and delete it from H;
5 if HeavyTester(c) returns that c is a heavy cell then
6 Let Cc = {c1, c2, c3, c4} be the four children of c in the grid Gi−1;
7 Let H = H ∪ Cc;
8 else
9 Add c to the set Γ;

10 Return Γ;

APPROX/RANDOM 2023



6:10 Facility Location in the Sublinear Geometric Model

Lemma 6 is similar to Lemma 22 and we explain Lemma 22 in detail later.

▶ Lemma 6. Let P ⊆ [∆]2 be a point set of size n. Let f > 0 be the opening cost and
0 < ϵ ≤ 1 be the error parameter. Then, the sublinear algorithm

√
n-Estimator uses

O(ϵ−9 log7(n) ·
√

n)) RangeCount queries and distinguishes between the following cases:
If the optimal facility location cost of P is O(

√
n · f), then this sublinear algorithm returns

a set of facilities that (1 + ϵ)-approximates the optimal facility location cost of P .
If the optimal facility location cost of P is Ω(

√
n · f), then this sublinear algorithm

O(
√

n)-approximates the optimal facility location cost OPT (P, f) of P . Moreover, it finds
an Ω(

√
n · f) lower-bound for the optimal facility location cost OPTF L(P, f) of P .

3.3 Telescoping sampling
In this section we develop a sampling mechanism that samples a cell c with probability
pc = nc

n . This will be used as a basic primitive that we later use for our (1 + ϵ)-estimator.

Algorithm 3 TelescopingSampling.

Data: A grid Gi

Result: A sampled cell c′ ∈ Gi such that the probability that any cell c′′ ∈ Gi is c′ is
Pr [c′ = c′′] = nc′′

n .
1 Let c be the cell in the grid Glog(n) and let j = log(n) ;
2 while j > i do
3 Split c into its four sub-cells c1, c2, c3, c4 that are in the grid Gj−1 and query the

number of points inside each of them using the subroutine RangeCount;
4 Sample the sub-cell ci for i ∈ [4] with probability nci

nc
;

5 Let c′ be the cell that is sampled in Step 4; // c′ is one of c1, c2, c3, c4.
6 Let c = c′ and j = j − 1;
7 Return c;

The proofs of the following lemmas are given in Appendix B.

▶ Lemma 7. Assume that we invoke Subroutine TelescopingSampling(Gi). Then, a cell
c that is returned by this subroutine is sampled with the probability that Pr [c] = nc

n .

▶ Lemma 8. Given a grid Gi, the number of RangeCount queries that we make in
Subroutine TelescopingSampling(Gi) is O(log n).

3.4 (1 + ϵ)-approximate sublinear algorithm
In this section, we prove Theorem 2. We first give the pseudocode of our main sublinear
algorithm. Next, we prove the correctness of our algorithm and analyze its query complexity.

3.5 Analysis
Let P be a point set of n points in discrete space [2n]2. Now, for the sake of the analysis,
assume that we run the following two processes.

In the first process, for point set P , we run the quadtree construction (for the facility
location problem) that we presented in Lemma 4 and it returns a set Λ of light cells.
In the second process, given RangeCount query access to point set P , we invoke
Algorithm 4 (1 + ϵ)-Estimator and it returns the estimator Z = A + B.
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Algorithm 4 (1 + ϵ)-Estimator.

Data: The discrete space [2n]2, an opening cost f > 0, and an error parameter 0 < ϵ.
Result: A (1 + ϵ)-estimator Z for the facility location cost of a point set P ⊆ [2n]2.

1 Let Z = 0, A = 0, and B = 0 ;
2 for i = log(n) + 1 down to 3

4 · log(n) do
3 for each cell c ∈ Gi do
4 if HeavyTester(c) returns that c is a heavy cell then
5 Let Cc = {c1, c2, c3, c4} be the four children of c in the grid Gi−1;
6 Invoke HeavyTester for the sub-cells Cc to find out which ones are

heavy;
7 for each light sub-cell c′ ∈ Cc if there exists any light cell do
8 Let costϵ

F L(c′, Fc′ , f) be the cost that the algorithm Algϵ
F L(c′) returns

for c. Let A = A + costϵ
F L(c, Fc′ , f);

9 for i = 3
4 · log(n) down to 1 do

10 Let Wi−1 = 0;
11 Let Xi−1 and Yi−1 be two vectors of length log1+ϵ(n) initialized to zero;
12 for ℓ = 1 to z = 214δ2

F L log5(n)ϵ−6 ·
√

n do
13 Let c be a cell sampled using Subroutine TelescopingSampling(Gi);
14 if HeavyTester(c) returns that c is a heavy cell then
15 Let Cc = {c1, c2, c3, c4} be the four children of c in the grid Gi−1;
16 Invoke HeavyTester for the sub-cells Cc to find out which ones are

heavy;
17 if at least one of the sub-cells Cc is a significant light cell then
18 Let j be the power of (1 + ϵ) where (1 + ϵ)j ≤ nc < (1 + ϵ)j+1;
19 Let C ′

c be the sub-cells in Cc that are significant light cells;
20 Let Yi−1[j] = Yi−1[j] + |C ′

c|;
21 for each significant light sub-cell c′ ∈ C ′

c do
22 Let costϵ

F L(c′, , Fc′ , f) be the cost that Algorithm Algϵ
F L(c′)

returns for c′. Let Xi−1[j] = Xi−1[j] + costϵ
F L(c′, Fc′ , f);

23 for j = 1 to log1+ϵ(n) do
24 Let wj

i = n
z(1+ϵ)j · Yi−1[j]. Let Wi−1 = Wi−1 + wj

i · Xi−1[j];

25 Let B = B + Wi−1;
26 Return Z = A + B;

Recall that for the quadtree construction in Lemma 4, we randomly shift the border lines of
cells of the quadtree using a random vector v. In the sublinear geometric model, we randomly
shift the border lines of axis-aligned rectangles (using v) that we use in RangeCount queries.
Lemma 4 shows that (1−ϵ) ·OPTF L(P, f) ≤

∑
c∈Λ costϵ

F L(c, Fc, f) ≤ (1+ϵ) ·OPTF L(P, f) .

We further split the set Λ into two subsets ΛA and ΛB. In particular, let ΛA be the
subset of light cells in Λ that are in the grids G 3

4 ·log(n), · · · , Glog(n)+1. Let ΛB = Λ\ΛA be
the subset of light cells in Λ that are in G1, · · · , G 3

4 ·log(n)−1. Our goal in this section is to
show that with a probability greater than 1 − 1/n5, the following three claims are correct:

The number of queries that Algorithm 4 (1 + ϵ)-Estimator makes is Õ(
√

n).
The term A is the cost of light cells of the set ΛA. That is, A =

∑
c∈ΛA

costϵ
F L(c, Fc, f) .
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6:12 Facility Location in the Sublinear Geometric Model

The term B is an (1 + ϵ)-estimator for the cost of light cells of the set ΛB. That is,
(1 − ϵ) ·

∑
c∈ΛB

costϵ
F L(c, Fc, f) ≤ B ≤ (1 + ϵ) ·

∑
c∈ΛB

costϵ
F L(c, Fc, f) .

Once we prove these three claims, we have shown that Z is an (1 + ϵ)-estimator of the
optimal facility location cost OPTF L(P, f) what proves Theorem 2.

3.5.1 The estimator term A
The following two lemmas (whose proofs are given in Appendix C) show that (1) the number
of RangeCount queries that we make to compute estimator A is Õ(

√
n), and (2) the term

A approximates the facility location cost of light cells of set ΛA.

▶ Lemma 9. Let ΛA be the subset of light cells in Λ that are in the grids G≥ 3
4 ·log(n). Then,

All light cells of ΛA are detected by Algorithm 4 (1 + ϵ)-Estimator.
To compute estimator A, we make O(ϵ−8 · log6(n) ·

√
n) RangeCount queries.

▶ Lemma 10. A =
∑

c∈ΛA
costϵ

F L(c, Fc, f) .

3.5.2 The estimator term B
In this section, we prove that estimator B approximates the cost of light cells of ΛB within
(1 + ϵ)-factor. Let c ∈ Λ be an arbitrary light cell in the set Λ. Suppose that c is in a grid Gi.
Then, the parent of c that we denote it by parent(c) is a heavy cell in grid Gi+1.

▶ Definition 11 (Significant Light Cells). Let τ = ϵ
9 log(n) . We say a light cell c ∈ Λ is a

significant light cell if costϵ
F L(c, Fc, f) ≥ τf ; otherwise, we say c′ is an insignificant light cell.

We let Ψ = {c ∈ Λ : costϵ
F L(c, Fc, f) ≥ τf} be the set of light cells in Λ that are significant.

We denote by Ψi = {c ∈ Ψ : c ∈ Gi} the set of significant light cells in the grid Gi.

▶ Definition 12 (Heavy Parents of Significant Light Cells). We denote the set of heavy parents
of significant light cells Ψi by Γ(Ψi) = {c′ ∈ Gi+1 : ∃c ∈ Ψi such that c′ is parent(c)} .

Note that up to 4 cells in Ψi can have the same heavy parent.

▶ Definition 13 (Likelihood Classes). We partition Ψi into ϵ−1 log(n) likelihood classes Ψj
i

where a cell c ∈ Ψj
i if the number of points in its parent(c) is in the range (1 + ϵ)j ≤

nparent(c) < (1 + ϵ)j+1.

We denote the set of heavy parents of significant light cells that are in the class Ψj
i by

Γ(Ψj
i ) = {c′ ∈ Gi+1 : ∃c ∈ Ψj

i such that c′ = parent(c)} .

▶ Definition 14 (Contributing Likelihood Classes). Let β = ϵ2

2δF L·log2(n) . We say a class Ψj
i is

a contributing likelihood class if |Ψj
i | ≥ β

√
n ; otherwise, it is a non-contributing class.

Roadmap of the proof of Theorem 2. We first prove (in Lemma 22) that the cost of
significant light cells of Ψ = {c ∈ Λ : costϵ

F L(c, Fc, f) ≥ τf} is an (1 + ϵ)-approximation
of OPTF L(P, f). Therefore, when we develop a (1 + ϵ)-estimator for the facility location
problem, we can ignore insignificant light cells of Λ.

On the other hand, all significant light cells of Ψ are partitioned into likelihood classes Ψj
i .

Now imagine we have the lower bound OPTF L(P, f) ≥
√

n · f for OPTF L(P, f). Otherwise,
the estimator

√
n-Estimator of Lemma 6 makes O(ϵ−9 log7(n) ·

√
n)) RangeCount queries

and returns a set of facilities that (1 + ϵ)-approximates the optimal facility location cost
of P . Lemma 27 shows that we can safely ignore the contribution of the non-contributing
likelihood classes Ψj

i . Let us fix a contributing likelihood classes Ψj
i .
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In Lemma 15 we show that with probability at least 1 − 2/n5, the estimator wj
i in

Algorithm 4 (1 + ϵ)-Estimator is a (1 + ϵ)-approximation of the size of Ψj
i .

Lemma 16 shows that if we sample any arbitrary cell c ∈ Ψj
i with probability Pr [c] =

nparent(c)
n , the cell c is sampled almost uniformly at random from the set Ψj

i .
Lemma 17 proves that with probability at least 1−1/n20, Algorithm 4 (1+ϵ)-Estimator
samples at least poly(ϵ−1 · log(n)) significant light cells from Ψj

i .
In Lemma 18, we use these three tools to show that if a likelihood class Ψj

i is contributing,
we can approximate the facility location cost costϵ

F L(Ψj
i , f) to within (1 + ϵ)-factor. Putting

everything together, the estimator Z that is computed in Algorithm 4 (1 + ϵ)-Estimator is
an (1 + ϵ)-approximation of OPTF L(P, f) what proves Theorem 2.

The statements of Lemmas 22 and 27, and their proofs are given in Appendix D.

Approximating the number of cells of a contributing class. In this section, we show
that with high probability, the estimator wj

i in Algorithm 4 (1 + ϵ)-Estimator is a (1 + ϵ)-
approximation of the size of the contributing likelihood class Ψj

i .

▶ Lemma 15. Let Ψj
i be a contributing class. Then, with probability at least 1 − 2/n5, the

estimator wj
i in Algorithm 4 (1 + ϵ)-Estimator is a (1 + ϵ)-approximation of |Ψj

i |. That is,
Pr

[
(1 − ϵ) · |Ψj

i | ≤ wj
i ≤ (1 + ϵ) · |Ψj

i |
]

≥ 1 − 1/n5 .

Proof. We define z runs R1, · · · , Rz where during a run Rℓ we sample a cell c ∈ Gi+1. We
define a random variable Yℓ corresponding to the number of significant light sub-cells of a
heavy cell c ∈ Γ(Ψj

i ) that is sampled in the run Rℓ. Note that a heavy cell can have 0, 1, 2, 3, 4
significant light sub-cells. If a heavy cell c from the set Γ(Ψj

i ) is sampled using Subroutine
TelescopingSampling(Gi+1), the random variable Yℓ will be the number of significant
light sub-cells of c; otherwise Yℓ is zero. Then, we have E[Yℓ] =

∑
c∈Γ(Ψj

i
) Pr [c] · |C ′

c|, where
C ′

c is the set of significant light sub-cells of a heavy cell c ∈ Γ(Ψj
i ).

Recall that the likelihood class Ψj
i contains those cells c ∈ Ψi for which (1 + ϵ)j ≤

nparent(c) < (1 + ϵ)j+1 . Then, (1+ϵ)j

n ·
∑

c∈Γ(Ψj
i
) |Cc| ≤ E[Yℓ] ≤ (1+ϵ)j+1

n ·
∑

c∈Γ(Ψj
i
) |Cc| .

Next, we define the random variable Y = n
z(1+ϵ)j ·

∑z
ℓ=1 Yℓ for which we have |Ψj

i | =∑
c∈Γ(Ψj

i
) |Cc| ≤ E[Y ] ≤ (1 + ϵ) ·

∑
c∈Γ(Ψj

i
) |Cc| = (1 + ϵ) · |Ψj

i | .

Since the likelihood class Ψj
i is contributing, Lemma 28 tells us that for α = ϵ3

18δF L log3(n)

we have costϵ
F L(Ψj

i , f) =
∑

c∈Ψj
i

costϵ
F L(c, Fc, f) ≥ α

√
n · f . All cells in the likelihood

class Ψj
i are light which means that costϵ

F L(c, Fc, f) ≤ δF L · f . This essentially means that
|Ψj

i | ≥ α
√

n·f
δF L·f = α

δF L
·
√

n. We can assume that n ≥ 212ϵ−4 log2(n)( δF L

α )2, otherwise the facility
location instance of the point set P has at most poly(ϵ−1 log(n)) points, that can be (1 + ϵ)-
approximately solved using poly(ϵ−1 log(n)) RangeCount queries. Therefore, E[Y ] ≥ α

δF L
·√

n ≥ 60ϵ−2 log(n). Now, we use the Hoeffding bound [22] where we set M = 4 to obtain we
have Pr

[
|wj

i − |Ψj
i || ≥ ϵ · |Ψj

i |
]

= Pr
[∣∣E[Y ] − Y |

∣∣ ≥ ϵ · E[Y ]
]

≤ 2 exp(−( ϵ2·E[Y ]
12 )) ≤ 2/n5 .

Thus, with probability at least 1 − 2/n5, the estimator wj
i is within (1 + ϵ)-approximation

of |Ψj
i |. This proves the lemma. ◀

Almost uniformly sampling from a contributing class. Let Ψj
i be a contributing likelihood

class. Here we show that if we sample any arbitrary cell c ∈ Ψj
i with probability Pr [c] =

nparent(c)
n , the cell c is sampled almost uniformly at random. We later show that with

high probability, Algorithm 4 (1 + ϵ)-Estimator samples significant light cells from each
contributing likelihood class Ψj

i .
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▶ Lemma 16. Suppose we sample a cell c ∈ Ψj
i with probability Pr [c] = nparent(c)

n . Then, the
cells in Ψj

i are sampled almost uniformly at random. That is, the probability that we sample
a cell c ∈ Ψj

i is (1 − ϵ) · 1
|Ψj

i
|

≤ Pr [c] ≤ (1 + ϵ) · 1
|Ψj

i
|

.

Proof. Recall that for every light cell c ∈ Ψj
i , we have (1 + ϵ)j ≤ nparent(c) < (1 + ϵ)j+1.

Thus (1+ϵ)j

n ≤ Pr [c] = nparent(c)
n ≤ (1+ϵ)j+1

n . We conclude that the probability of sampling
light cells Ψj

i is within (1 + ϵ) of (1+ϵ)j

n . ◀

▶ Lemma 17. Let Ψj
i be a contributing class. Then, with probability at least 1 − 1/n20, a set

of at least x = 29δF Lϵ−3 log2(n) heavy cells are sampled from the set Γ(Ψj
i ).

Proof. Recall that z = 214δ2
F L log5(n)ϵ−6 ·

√
n. We define z runs R1, · · · , Rz where during

a run Rℓ we sample a cell c ∈ Gi+1. Next we study the probability of sampling a heavy cell
c ∈ Γ(Ψj

i ). We define an indicator random variable Yℓ corresponding to the run Rℓ which is
one if a heavy cell c ∈ Γ(Ψj

i ) is sampled using Subroutine TelescopingSampling(Gi+1) in
Line 14 (of Algorithm 4 (1 + ϵ)-Estimator) and zero otherwise. Then, we have E[Yℓ] =
Pr [Yℓ = 1] = 1

n ·
∑

c∈Γ(Ψj
i
) nc .

Based on Lemma 29, the number of points in the contributing likelihood class Ψj
i

must be at least n(Ψj
i ) =

∑
c∈Ψj

i
nc ≥ α

√
n

(1+ϵ) , for α = ϵ3

18δF L log3(n) . Therefore, E[Yℓ] =

1
n ·

∑
c∈Γ(Ψj

i
) nc ≥

α
√

n
(1+ϵ)

n ≥ α
(1+ϵ) · 1√

n
. Next, we define the random variable Y =

∑z
ℓ=1 Yℓ

whose expectation is E[Y ] =
∑z

ℓ=1
1
n ·

∑
c∈Γ(Ψj

i
) nc ≥ 210δF Lϵ−3 log2(n) .

Using the Chernoff bound [13] and since δF L = 220 · ( log n
ϵ )2, we obtain

Pr
[∣∣E[Y ] − Y |

∣∣ ≥ ϵ · E[Y ]
]

≤ 2 exp(−(ϵ2 · 210δF Lϵ−3 log2(n)
3 )) ≤ 1/n20 .

Thus, with probability at least 1 − 1/n20, we sample at least (1 − ϵ) · 210δF Lϵ−3 log2(n) ≥
29δF Lϵ−3 log2(n) heavy cells from the set Γ(Ψj

i ). Note that up to 4 cells in Λj
i can have the

same heavy parent and they are sampled together. This proves this lemma. ◀

An unbiased estimator for contributing classes. Next, we prove that having an estimation
of the size of a contributing likelihood class Ψj

i and assuming that we can sample cells in Ψj
i

almost uniformly at random, we can then (1 + ϵ)-approximate the facility location cost of
the contributing likelihood class Ψj

i .

▶ Lemma 18 (Estimator for Contributing Classes). Let Ψj
i be a contributing class. Suppose

we can sample a cell from Ψj
i almost uniformly at random. That is, the probability that we

sample a cell c ∈ Ψj
i is (1 − ϵ) · 1

|Ψj
i
|

≤ Pr [c] ≤ (1 + ϵ) · 1
|Ψj

i
|

. Let S be a sampled set of

x ≥ 29δF Lϵ−3 log2(n) light cells S = {c1, · · · , cx} ⊆ Ψj
i that are sampled almost uniformly

at random. Let y be an arbitrary number in the range [ |Ψj
i
|

(1−ϵ) ,
|Ψj

i
|

(1+ϵ) ]. Then, with probability
at least 1 − 1/n5, we have (1 − ϵ) ·

∑
c∈Ψj

i
costϵ

F L(c, Fc, f) ≤ y
x ·

∑x
ℓ=1 costϵ

F L(cℓ, Fcℓ
, f) ≤

(1 + ϵ) ·
∑

c′∈Ψj
i

costϵ
F L(c, Fc, f) .

Proof. We define x random variables X1, · · · , Xx where Xℓ corresponds to the cost of the
light cell cℓ sampled from Ψj

i . Then, since E[Xℓ] =
∑

c∈Ψj
i

Pr [c] · costϵ
F L(c, Fc, f), we have

(1 − ϵ) · 1
|Ψj

i
|

· costϵ
F L(Ψj

i , f) ≤ E[Xℓ] ≤ (1 + ϵ) · 1
|Ψj

i
|

· costϵ
F L(Ψj

i , f), where costϵ
F L(Ψj

i , f) =∑
c∈Ψj

i
costϵ

F L(c, Fc, f). By the linearity of expectation for the random variable X =
∑x

ℓ=1 Xℓ,
we obtain (1 − ϵ)2 · costϵ

F L(Ψj
i , f) ≤ y

x · E[X] ≤ (1 + ϵ)2 · costϵ
F L(Ψj

i , f).
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Recall that the minimum and the maximum facility location cost of a significant light cell
c ∈ Ψj

i are τ · f and δF L · f , respectively, where τ = ϵ
9 log(n) and δF L = 220 · ( log n

ϵ )2. Thus,
Xℓ ≤ δF L ·f . Also, E[Xℓ] ≥ (1− ϵ) · 1

|Ψj
i
|
·costϵ

F L(Ψj
i , f) ≥ (1− ϵ) · 1

|Ψj
i
|
·τ ·f |Ψj

i | = (1− ϵ)τf .

Therefore, E[X] ≥ x(1 − ϵ)τf ≥ 25δF Lϵ−2 log(n) · f . We use the Hoeffding bound [22]
where we set M = δF L · f and since f > 0 to obtain

Pr
[
(1 − ϵ)3 · costϵ

F L(Ψj
i , f) ≤ y

x
· E[X] ≤ (1 + ϵ)3 · costϵ

F L(Ψj
i , f)

]
= Pr [|X − E[X]| ≥ ϵ · E[X]] ≤ 2 · exp(−E[X] · ϵ2

3 · M
) ≤ 2 · exp(−25δF Lϵ−2 log(n) · fϵ2

3δF L · f
) ≤ 2

n5 .

We replace ϵ by ϵ/3 to finish the proof of this lemma. ◀

Finishing Proof of Theorem 2. Now we are ready to finish the proof of Theorem 2.
Lemma 18 shows that if a likelihood class Ψj

i is contributing, we can approximate the facility
location cost costϵ

F L(Ψj
i , f) to within (1 + ϵ)-factor if (1) we can sample x significant light

cells of Ψj
i almost uniformly at random, and (2) we can (1 + ϵ)-approximate the size |Ψj

i |.
Lemma 16 shows that if we sample any arbitrary cell c ∈ Ψj

i with probability Pr [c] =
nparent(c)

n , the cell c is sampled almost uniformly at random. Lemma 17 proves that with
probability at least 1 − 1/n20, Algorithm 4 (1 + ϵ)-Estimator samples at least x significant
light cells from each contributing likelihood class Ψj

i . Finally, Lemma 15, with probability at
least 1 − 2/n5, the estimator wj

i in Algorithm 4 (1 + ϵ)-Estimator is a (1 + ϵ)-approximation
of the size of the contributing likelihood class Ψj

i .
Recall that in Lemma 22 we proved that the cost of significant light cells of Ψ = {c ∈ Λ :

costϵ
F L(c, Fc, f) ≥ τf} is an (1+ ϵ)-approximation of OPTF L(P, f). Therefore, we can ignore

insignificant light cells of Λ. All significant light cells of Ψ are partitioned into likelihood
classes Ψj

i . Using Lemma 27, we can safely ignore the contribution of the non-contributing
likelihood classes Ψj

i . Putting everything together, the estimator Z that is computed in
Algorithm 4 (1 + ϵ)-Estimator is an (1 + ϵ)-approximation of OPTF L(P, f).

As for the query complexity of Algorithm 4 (1 + ϵ)-Estimator. In Lemma 9, to compute
the estimator A we use O(ϵ−8 · log6(n) ·

√
n) RangeCount queries. For the estimator B, we

sample z = 214δ2
F L log5(n)ϵ−6 ·

√
n cells using Subroutine TelescopingSampling(Gi) for

each grid Gi≤ 3
4 log(n). Therefore, we invoke the tester HeavyTester for less than 5z log(n)

cells (z times for the sampled cells and 4z for their children) where each such a call makes
O(ϵ−8 · log6(n)) RangeCount queries as is shown in Lemma 5. Therefore, in total, the
query complexity of the (1 + ϵ)-estimator Z is Õ(

√
n). This finishes the proof of Theorem 2.

4 Hard instance for the sublinear geometric model

In this section, we prove Lemma 3. See Figure 2 for the illustration of the hard instance that
we explain next.

Suppose the opening cost is f = n3/4. In the grid G 3
4 ·log(n), we have n1/2 cells each one

having side length n3/4. We choose a set A ⊂ G 3
4 ·log(n) of n1/4 cells arbitrarily and assign

n3/4 points to each such a cell. Observe that the sparsity of the grid G 3
4 ·log(n) is n1/4. That

is in average from every n1/4 cells in this grid, only one of them has n3/4 points and the rest
are empty. Note that every cell in A is heavy since it has at least f

n3/4 = 1 points.
At grids Gi and Gj for i = log(n)

2 and j = log(n)
4 , a cell has side length n1/2 and n1/4. We

sample a subset B ⊂ A of log(n) cells uniformly at random. A cell c ∈ B has a set Dc of√
n descendants in the grid G 1

2 ·log(n), each one having n
1
4 points equally distant (at distance
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Figure 2 In this figure, cells of B are colored gray and cells in the set A\B are shown with a
net of dash-dotted lines. The rest of cells that are shown as white cells are empty cells. The cell
c ∈ B has

√
n descendants in the grid G 1

2 ·log(n) that are all heavy cells. The cell c′ ∈ A\B has n

descendants in the grid G 1
4 ·log(n) out of which n1/4 of them are heavy and the rest are empty cells.

n
3
8 ) from its top, bottom, left and right points. Every cell in Dc has n

1
4 = f

n1/2 points,
so it is a heavy cell in the grid G 1

2 ·log(n). In the optimal solution for the facility location
problem, we must open at least one facility within distance n1/2 of each heavy cell in the
grid G 1

2 ·log(n). Thus, the optimal cost of the facility location problem for the cell set B is at
least L = log(n) · n1/2

9 · f where in the denominator we have 9 since the points inside at most
9 cells (i.e., a grid of 3 × 3) in the grid G 1

2 ·log(n) can be assigned to one open facility that we
open in one of them, say the center one.

Each cell c′ ∈ A\B has n descendants in the grid Gj , but only n1/4 of them that are
chosen uniformly at random are heavy, i.e., has f

n1/4 = n1/2 points and the rest are empty
cells. Suppose that for each heavy descendant (in the grid Gj) of each cell c′ ∈ A\B,
we open at most one facility. The total cost of cells of the set A\B would be at most
U ≤ |A\B| · n1/4 · f

n1/4 · n1/4√
2 ≤

√
2n1/2 · f

Now, observe that with respect to the grids G≥ 3
4 ·log(n), all the cells in the set A look

exactly the same and they all have n3/4 points each. Since |B| = log(n) and |A| = n1/4, in
expectation we need to sample |A|

|B| = n1/4

log(n) cells so that we can have at least one cell from B

in the sampled set; otherwise, we cannot estimate the number of cells and the cost of each
cell in the set B and thus, we cannot approximate the cost of the facility location problem
within a factor better than Ω( L

U ) = Ω(log(n)).
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A Missing proof of Subsection 3.1

Proof of Lemma 5. Testing whether a cell c is a heavy or a light cell needs to find out
if c has a facility location cost of at least δF Lf or lower than this quantity. To this end,
we first develop a deterministic sublinear algorithm for the k-median problem that using
O(kϵ−4 log2(n)) RangeCount queries returns a (1+ϵ)-approximate solution. We then show
how we can use this sublinear algorithm to develop the tester algorithm HeavyTester.

What is interesting is the difference between the query complexity of the k-median and
the facility location problems in the sublinear geometric model. For the k-median problem,
we can report a (1 + ϵ)-approximate solution (not the cost) in the sublinear model using
O(kϵ−4 log2(n)) RangeCount queries. However, for the facility location, Lemma 3 shows
that we do not hope to o(log n)-approximate the cost of the facility location problem in the
sublinear geometric model using Ω(

4√n
log n ) RangeCount queries.

▶ Definition 19 (k-median problem). In the k-median problem, we are given a point set P ⊂
[2n]2 of size n in a discrete space and a number k ∈ N of centers. The goal is to return a set
C∗ ⊂ [2n]2 of k centers that minimizes the cost function costk-med(P, C∗) =

∑
p∈P dist(p, C∗),

where dist(p, C∗) = minc∈C∗ dist(p, c) is the Euclidean distance of p to its nearest center in
C∗. We denote the optimal k-median cost of the point set P by OPTk-med(P, k).

▶ Lemma 20 (Sublinear algorithm for k-median). Let P be a point set of size n in [2n]2. Let
k > 0 be the number of centers and 0 < ϵ ≤ 1 be the error parameter. Then, there exists a
deterministic sublinear algorithm that returns a (1 + ϵ)-approximate solution of the k-median
problem for P in the sublinear geometric model using O(kϵ−4 log2(n)) RangeCount queries.

Assume for a moment that this lemma is correct. We next explain the tester algorithm.

Algorithm HeavyTester(c). For every choice k ∈ {1, 2, · · · , δF L = 220 · ( log n
ϵ )2}, we run

the sublinear algorithm of Lemma 20 on the input set P ∩ c that reports a set Ck of k centers.
We then compute the k-median cost of P ∩ c using the center set Ck and add the opening
cost kf to the k-median cost to compute the facility location cost. Among all δF L runs, we
find the one that has the lowest facility location cost. If the lowest facility location cost is
less than δF L, we report that the cell c is a light cell, otherwise we report it as a heavy cell.
This finishes the description of the algorithm HeavyTester(c).
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Query complexity of HeavyTester(c). We invoke δF L parallel runs each choice k ∈ [δF L].
Each such a run needs O(kϵ−4 log2(n)) RangeCount queries using Lemma 20. Thus, using
O(δ2

F L · ϵ−4 log2(n)) = O(ϵ−8 · log6(n)) RangeCount queries, we can detect if the cell c is
a heavy cell or a light one. This finishes the proof of the first part of Lemma 5.

Now we prove the second part of this lemma. Imagine the case when c is a cell in the
set Λ. Recall that c ∈ Λ if c is a light cell and its parent(c) is a heavy cell. We run the
tester HeavyTester for c and parent(c). This tester is a deterministic algorithm and so,
it correctly reports c is a light cell and parent(c) is a heavy cell. Lemma 4 ensures that
for the correct guess of the number of facilities in c, the set Fc of facilities that the tester
HeavyTester(c) returns will satisfy the following what finishes the proof of Lemma 5.
costϵ

F L(c, Fc, f) =
∑

p∈P ∩c dist(p, Fc) + |Fc| · f ≤ (1 + ϵ) · OPTF L(P ∩ c, f) .

Proof of Lemma 20. We prove this lemma using a modification that we do to the quadtree
construction that Frahling and Sohler [19] developed for the k-median problem. The quadtree
construction in [19] is based on the notions of dense and sparse cells.

Dense and sparse cells: Let P be a point set of size n in [2n]2. Let 0 < ϵ ≤ 1 be
an error parameter. Let δk-med = 220 · k log(n)

ϵ3 . We say a cell c ∈ Gi of side length 2i is
dense if it contains nc ≥ δk-med · OP Tk-med(P,k)

2i points; otherwise it is a sparse cell.

Observe that for the definition of dense and sparse cells, we assume we know the optimal
k-median cost OPTk-med(P, k). In general, we can (1 + ϵ)-approximate OPTk-med(P, k) using
log(1+ϵ)(4n2) = O(ϵ−1 log(n)) guesses. To see this, observe that in the discrete space [2n]2,
the maximum pairwise distance between two points is at most 4n and the minimum distance
is 1. The set P has n points, so the ratio between the maximum and the minimum k-median
costs is at most n × 4n = 4n2. We then consider t = log(1+ϵ)(4n2) = O(ϵ−1 log(n)) parallel
guesses r0, · · · , rt for the optimal k-median cost OPTk-med(P, k) where rj = (1 + ϵ)j . We
must have an index j ∈ [t] for which (1 + ϵ)j ≤ OPTk-med(P, k) < (1 + ϵ)j+1 .

Sublinear algorithm for k-median based on quadtree construction of [19]. We run
the following algorithm for all O(ϵ−1 log(n)) guesses of OPTk-med(P, k) in parallel. Let us
consider the jth guess rj = (1 + ϵ)j for OPTk-med(P, k). We create a run j for the jth guess
for which we do the following.

Let Kj and Rj be two empty sets. Given the single square c = [2n]2 in the grid Glog(n)+1,
we build a tree similar to the quadtree as follows. In particular, suppose that we have a
cell c ∈ Gi. If c is sparse, we add c to Kj and stop; otherwise, (i.e., if c is dense), we split it
into 4 equal sub-cells c1, c2, c3, c4 (they are in the grid Gi−1) of the same side length and
recurse for those sub-cells that are dense. We add all non-empty sparse cells that are
constructed in this way to Kj . If during the run j, the size of Kj is more than O(kϵ−3 log(n)),
we immediately stop that run because that run corresponds to the guess (1 + ϵ)j that is
much smaller than the optimal k-median cost OPTk-med(P, k). At the end of this recursive
procedure, for each cell c ∈ Kj , we consider the center of c as the representative point rc of c

and assign the weight w(rc) = nc = |P ∩ c| to rc. Observe that for every cell c ∈ Kj , we need
one RangeCount query to find out w(rc) = nc = |P ∩ c|. Let Rj be the set of weighted
representative points that we compute in this way for the run j.

Next, we need to compute the k-median cost of the representative set Rj . To this
end, we use the deterministic (1 + ϵ)-approximation algorithm that Har-Peled and Ma-
zumdar [21] develop for the k-median problem. The running time of this algorithm is
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O(n + 2O((1+1/ϵ)kO(1) logO(1)(n)). We denote this algorithm by Algϵ
k-med. For the weighted

representative set Rj , we then invoke the Algϵ
k-med(Rj) that returns a set Cj of k cen-

ters and its k-median cost Γj = costk-med(Rj , Cj) =
∑

rc∈Rj
w(rc) · dist(p, Cj) , where

dist(p, Cj) = minc∈Cj dist(p, c) is the distance of p to its nearest center in Cj .
Among all parallel guesses r0, · · · , rt where [t = O(ϵ−1 log(n))], we choose the smallest

guess rj∗ = (1 + ϵ)j∗ for which we have (1 + ϵ)j∗ ≤ Γj∗ < (1 + ϵ)j∗+1. Let Kj∗ and Rj∗ be
the set of non-empty sparse cells and the set of representative points that correspond to the
guess (1 + ϵ)j∗ , respectively. We then have the following guarantee.

▶ Lemma 21 ([19]). Let P ⊆ [2n]2 be a point set of size n and k ∈ N be a natural number.
Let 0 < ϵ ≤ 1 be the error parameter. Then:

The number of non-empty sparse cells in Kj∗ (or, the number of representative points in
Rj∗) that are found using the above construction is |Kj∗ | = |Rj∗ | = O(kϵ−3 log(n)).
The output of Algorithm [21] Algϵ

k-med on input set Rj∗ is a set Cj∗ of k centers such
that (1 − ϵ)OPTk-med(P, k) ≤ Γj∗ = costk-med(Rj∗ , Cj∗) ≤ (1 + ϵ)OPTk-med(P, k) .

Query Complexity of sublinear algorithm for k-median. Let us consider a run j. Recall
that if during the run j, the size of Kj is more than O(kϵ−3 log(n)), we immediately stop
this run. Observe that for every cell c ∈ Kj , we need one RangeCount query to find out
its weight w(rc) = nc = |P ∩ c|. Thus, the number of RangeCount queries that we make
to build the set Kj is O(kϵ−3 log(n)). In addition, observe that the algorithm Algϵ

k-med(Rj)
does not make any RangeCount query. We have t = O(ϵ−1 log(n)) guesses for the optimal
k-median cost OPTk-med(P, k). Thus, the number of RangeCount queries that we make to
develop our sublinear algorithm for the k-median problem is O(kϵ−4 log2(n)). This finishes
the proof of Lemma 20. ◀

◀

B Missing proofs of Subsection 3.3

Proof of Lemma 7. Let us consider the ancestors ci+1, · · · , cj , · · · , clog(n) where cell cj for
i + 1 ≤ j ≤ log(n) is the ancestor of cell c in grid Gj . Observe that the probability that we
sample the cell c is Pr [c] = Pr

[
clog(n)−1|clog(n)

]
· Pr

[
clog(n)−2|clog(n)−1

]
· · · Pr [ci+1|ci+2] ·

Pr [c|ci+1] =
nclog(n)−1

n ·
nclog(n)−2
nclog(n)−1

· · · nci+1
nci+2

· nc

nci+1
= nc

n . ◀

C Missing proofs of Subsection 3.5.1

Proof of Lemma 9. Recall that the estimator A is for the contribution of those light cells in
Λ that are in the grids G 3

4 ·log(n)≤i≤log(n)+1. Let S be the set of all cells in G 3
4 ·log(n)≤i≤log(n)+1.

In total, all these grids have at most |S| ≤ 2n2

n6/4 + 1
4 · 2n2

n6/4 + · · · + 1
4i · 2n2

n6/4 + · · · + 1 ≤ 4
√

n

cells. For every heavy cell c ∈ S, its sub-cells c1, c2, c3, c4 are created and tested if they are
heavy or light cell. Recall that we run the HeavyTester algorithm for those sub-cells to
determine which ones are heavy or light. Using Lemma 5, to detect if a cell c is heavy or
light, the tester algorithm HeavyTester(c) uses O(ϵ−8 · log6(n)) RangeCount queries.

Let us consider an empty set T in the beginning. For each heavy cell c ∈ S, we add
its light sub-cells to the set T . The first claim of this lemma is proven by observing that
|T | ≤ 4|S| = 16

√
n. As for the second claim, we invoke the HeavyTester algorithm for

|S| + |T | ≤ 20
√

n cells each one uses O(ϵ−8 · log6(n)) RangeCount queries. ◀
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Proof of Lemma 10. Based on Lemma 5, the tester algorithm HeavyTester is a determin-
istic algorithm that correctly detects if an arbitrary cell c is heavy or light. Thus, Algorithm 4
(1 + ϵ)-Estimator detects all light cells ΛA. For every light cell c ∈ ΛA, Lemma 5 shows
that the Tester algorithm (1 + ϵ)-approximates the optimal cost OPT ϵ

F L(P ∩ c, f). Thus,
the term A is a (1 + ϵ)-estimator for the cost of light cells of the set ΛA. ◀

D Missing proofs of Subsection 3.5.2

The following lemma shows that we can safely remove insignificant light cells from the set Λ
and only consider significant light cells Ψ.

▶ Lemma 22. Let τ = ϵ
9 log(n) . Let Ψ = {c ∈ Λ : costϵ

F L(c, Fc, f) ≥ τf} be the set of light
cells in Λ that are significant. Then,

OPTF L(P, f) ≤ costϵ
F L(Ψ, f) =

∑
c∈Ψ

costϵ
F L(c, Fc, f) ≤ (1 + ϵ) · OPTF L(P, f) .

Proof. In order to prove Lemma 22, we first define charging heavy cells. We prove that at
most 3 log(n) insignificant light cells are created during the construction of any charging
heavy cells. We can assign all these insignificant light cells to the charging heavy cell whose
construction creates these cells. We show that the cost of a charging heavy c is at least
Ω(δF L · f). On the other hand, overall the total facility location cost of the insignificant light
cells that are assigned to c is at most ϵ · f that can be charged to costϵ

F L(c, Fc, f).

▶ Definition 23 (Charging heavy cell). Let c be a heavy cell having children c1, c2, c3, c4. We
say c is a charging heavy cell if all children c1, c2, c3, c4 are light.

▶ Lemma 24. Let c be a heavy cell. Then, either c is a charging heavy cell or at least one
of its descendants is a charging heavy cell.

Proof. For the sake of contradiction assume that c is not a charging heavy cell. As otherwise,
we have nothing to prove. Let c′ be a copy of c. Let c1, c2, c3, c4 be the four children of c′.
Let CH

c′ be the set of heavy children of c′. By our assumption, |CH
c | > 0. Let us pick a heavy

child of c′ from CH
c , say c1 is heavy. We let c′ = c1. Recursively, either all children of c′

are light or at least one of the children of c′ is heavy for which we recurse. This recursion
repeats for O(log n) times. At the end we either find a charging heavy cell or arrive at a cell
c ∈ G0 that has side length one and can store only one point pc. If that cell c is still heavy,
we can open a facility at pc of cost f which contradicts with the fact that the cost of c must
be at least δF L · f . Thus, the recursion will end by outputting a charging heavy cell. ◀

Let us fix a charging heavy cell c at a grid Gi. Let us consider the quadtree construction
that we explained for the facility location problem in Section 2.1. Starting from the root
of the quadtree that corresponds to the square [2n]2 going down to the cell c, we see the
ancestors of c. At any grid Gj>i, the ancestor(c, j) of c creates 4 children. At most 3 of
them are insignificant light cells and one is the ancestor(c, j − 1) of c at grid Gj−1 which is a
heavy cell. Suppose we assign all the insignificant light cells that ancestor(c, j) creates to c.
If there are more than one heavy cell among the children of ancestor(c, j), we can arbitrarily
assign the insignificant light children of ancestor(c, j) to either of them. Let Oc be the set of
all insignificant light cells that are assigned to c. We have the following bound for |Oc|.

▶ Corollary 25. Let c be a charging heavy cell. Let Oc be the set of all insignificant light
cells that are assigned to c. Then, |Oc| ≤ 3 log(n).
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▶ Corollary 26. Let c be a charging heavy cell. Let Oc be the set of all insignificant light
cells that are assigned to c. Then, the total facility location cost of insignificant light cells Oc

is costϵ
F L(Oc, f) =

∑
c′∈Oc

costϵ
F L(c′, Fc′ , f) ≤ ϵ

3 · f .

Now we finish the proof of Lemma 22. Recall that the charging heavy cell c has
cost costϵ

F L(c, Fc, f) ≥ δF L · f . On the other hand, the four children Cc = {c1, c2, c3, c4}
of c are light that are in the set Λ as we have seen in Lemma 4. This lemma shows
that for each cell c′ ∈ Cc we must have costϵ

F L(c′, Fc, f) ≤ (1 + ϵ) · OPTF L(P ∩ c′, f).
However,

∑
c′∈Cc

costϵ
F L(c′, Fc, f) ≥ δF L·f

4 . Otherwise, we can upper bound costϵ
F L(c, Fc, f)

by
∑

c′∈Cc
costϵ

F L(c′, Fc, f) ≤ δF L·f
4 which essentially means that c is light cell contradicting

our assumption that c is a charging heavy cell. Thus, δF L·f
4(1+ϵ) ≤

∑
c′∈Cc

costϵ
F L(c′,Fc,f)

(1+ϵ) ≤
min(

∑
c′∈Cc

OPTF L(P ∩ c′, f), OPTF L(P ∩ c′, f)) . Using Corollary 26, for the set Oc of
insignificant light cells that are assigned to c we have costϵ

F L(Oc, f) ≤ ϵ
3 · f which is less

than ϵ-fraction of the optimal facility location cost OPTF L(c, f) of c. Therefore, the overall
facility location cost of insignificant light cells in Λ is at most ϵ · OPTF L(P, f). Thus, for
set Ψ = {c ∈ Λ : costϵ

F L(c, Fc, f) ≥ τf} of significant light cells we have OPTF L(P, f) ≤
costϵ

F L(Ψ, f) =
∑

c∈Ψ costϵ
F L(c, Fc, f) ≤ (1 + ϵ) · OPTF L(P, f) . ◀

Next lemma shows that the cost of non-contributing classes Ψj
i is only ϵ

2 -fraction of the
optimal facility location cost of point set P . Thus, when we develop a sublinear algorithm
that (1 + ϵ)-approximates OPTF L(P, f), we can ignore the cost of non-contributing classes.

▶ Lemma 27. Suppose we know that OPTF L(P, f) ≥
√

n · f . Let Ψj
i be a likelihood class

that is non-contributing, i.e., |Ψj
i | < β

√
n, where β = ϵ2

2δF L·log2(n) . We can safely ignore the
contribution of the class Ψj

i toward the optimal facility location cost of the point set P .

Proof. Recall that the class Ψj
i consists of only light cells and that a cell c is light if

costϵ
F L(c, Fc, f) < δF L · f . Recall that we test whether a cell is light or heavy using the

tester algorithm HeavyTester of Lemma 5. Since |Ψj
i | < β

√
n, for β = ϵ2

2δF L·log2(n) , the
overall cost of the class Ψj

i is upper-bounded by costϵ
F L(Ψj

i , f) =
∑

c∈Ψj
i

costϵ
F L(c, Fc, f) ≤

ϵ2

2δF L·log2(n) ·
√

n · δF L · f ≤ ϵ2

2 log2 n
· OPTF L(P, f) .

Note that based on Definition 13, we can have at most ϵ−1 · log(n) classes for every grid
Gi and we have at log(n) + 1 grids. Thus, the total cost of non-contributing classes is at
most

∑log(n)+1
i=1

∑ϵ−1·log(n)
j=1 costϵ

F L(Ψj
i , f) ≤ ϵ

2 · OPTF L(P, f) . Thus we can safely ignore the
contribution of these grids toward the optimal facility location cost of the point set P . ◀

We first find a lower bound for the cost of contributing classes. Next, we obtain a lower
bound for the minimum number of points in a contributing likelihood class.

▶ Lemma 28. Let α = ϵ3

18δF L log3(n) and β = ϵ2

2δF L·log2(n) . Let Ψj
i be a likelihood class that is

contributing, i.e., |Ψj
i | ≥ β

√
n. Then, costϵ

F L(Ψj
i , f) =

∑
c∈Ψj

i
costϵ

F L(c, Fc, f) ≥ α
√

n · f .

Proof. A class Ψj
i is contributing if |Ψj

i | ≥ β
√

n. Moreover, every class Ψj
i consists of light

cells that are significant. A light cell c ∈ Λ is significant if costϵ
F L(c, Fc, f) ≥ τf , where

τ = ϵ
9 log(n) . Thus, we have the following lower bound for the facility location cost of the

class Ψj
i : costϵ

F L(Ψj
i , f) =

∑
c′∈Ψj

i
costϵ

F L(c′, f) ≥ |Ψj
i | · τ · f ≥ ϵ3

18δF L log3(n) ·
√

n · f . ◀

Next, using the lower bound that we obtained for the cost of contributing classes, we find
a lower-bound on the number of points in every contributing class. This will help us to prove
that can sample cells of contributing classes almost uniformly at random.
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▶ Proposition 29. For a contributing likelihood class Ψj
i we have n(Ψj

i ) =
∑

c∈Ψj
i

nc ≥ α
√

n
(1+ϵ) .

Proof. Let us consider a significant light cell c ∈ Ψj
i . Since Algorithm [15] Algϵ

F L is a
(1 + ϵ)-approximation algorithm for the facility location problem, we have costϵ

F L(c′, f) ≤
(1+ϵ)·OPTF L(P ∩c, f). This essentially means that OPTF L(P ∩c, f) ≥ costϵ

F L(c′,f)
(1+ϵ) ≥ τ

(1+ϵ) ·f .
Now we take the sum over the cells of Ψj

i , apply Lemma 28, and let α = ϵ3

18δF L log3(n) to

obtain
∑

c∈Ψj
i

OPTF L(P ∩ c, f) ≥
∑

c∈Ψj
i

costϵ
F L(c′,f)
(1+ϵ) ≥ |Ψj

i | · τ
(1+ϵ) · f ≥ α

√
n

(1+ϵ) · f .

We claim that n(Ψj
i ) =

∑
c∈Ψj

i
nc ≥ α

√
n

(1+ϵ) . As for the contradiction, suppose this claim is

not correct. That is assume that n(Ψj
i ) < α

√
n

(1+ϵ) . Then, imagine that we open one facility for
each point in Ψj

i . Since we assume that n(Ψj
i ) ≤ α

√
n

(1+ϵ) , the overall opening cost (in fact, the
facility location cost since the connection cost is zero) of Ψj

i is less than α
√

n
(1+ϵ) · f which can

not be the case. Thus, overall the cells in Ψj
i must have at least α

√
n

(1+ϵ) points. ◀
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