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Abstract
We study the mixing time of the single-site update Markov chain, known as the Glauber dynamics,
for generating a random independent set of a tree. Our focus is obtaining optimal convergence results
for arbitrary trees. We consider the more general problem of sampling from the Gibbs distribution
in the hard-core model where independent sets are weighted by a parameter λ > 0; the special case
λ = 1 corresponds to the uniform distribution over all independent sets. Previous work of Martinelli,
Sinclair and Weitz (2004) obtained optimal mixing time bounds for the complete ∆-regular tree for
all λ. However, Restrepo et al. (2014) showed that for sufficiently large λ there are bounded-degree
trees where optimal mixing does not hold. Recent work of Eppstein and Frishberg (2022) proved a
polynomial mixing time bound for the Glauber dynamics for arbitrary trees, and more generally for
graphs of bounded tree-width.

We establish an optimal bound on the relaxation time (i.e., inverse spectral gap) of O(n) for
the Glauber dynamics for unweighted independent sets on arbitrary trees. Moreover, for λ ≤ .44
we prove an optimal mixing time bound of O(n log n). We stress that our results hold for arbitrary
trees and there is no dependence on the maximum degree ∆. Interestingly, our results extend (far)
beyond the uniqueness threshold which is on the order λ = O(1/∆). Our proof approach is inspired
by recent work on spectral independence. In fact, we prove that spectral independence holds with
a constant independent of the maximum degree for any tree, but this does not imply mixing for
general trees as the optimal mixing results of Chen, Liu, and Vigoda (2021) only apply for bounded
degree graphs. We instead utilize the combinatorial nature of independent sets to directly prove
approximate tensorization of variance/entropy via a non-trivial inductive proof.
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33:2 Optimal Mixing for Independent Sets on Arbitrary Trees

1 Introduction

This paper studies the mixing time of the Glauber dynamics for the hard-core model assuming
that the underlying graph is an arbitrary tree. In the hard-core model, we are given a graph
G = (V, E) and an activity λ > 0. The model is defined on the collection of all independent
sets of G (regardless of size), which we denote as Ω.

Each independent set σ ∈ Ω is assigned a weight w(σ) = λ|σ| where |σ| is the number of
vertices contained in the independent set σ. The Gibbs distribution µ is defined on Ω: for
σ ∈ Ω, let µ(σ) = w(σ)/Z where Z =

∑
τ∈Ω w(τ) is known as the partition function. When

λ = 1 then every independent set has weight one and hence the Gibbs distribution µ is the
uniform distribution over (unweighted) independent sets.

Our goal is to sample from µ (or estimate Z) in time polynomial in n = |V |. Our
focus is on trees. These sampling and counting problems are computationally easy on trees
using dynamic programming algorithms. Nevertheless, our interest is to understand the
convergence properties of a simple Markov Chain Monte Carlo (MCMC) algorithm known as
the Glauber dynamics for sampling from the Gibbs distribution.

The Glauber dynamics (also known as the Gibbs sampler) is the simple single-site update
Markov chain for sampling from the Gibbs distribution of a graphical model. For the hard-
core model with activity λ, the transitions Xt → Xt+1 of the Glauber dynamics are defined
as follows: first, choose a random vertex v. Then, with probability λ

1+λ set X ′ = Xt ∪ {v}
and with the complementary probability set X ′ = Xt \ {v}. If X ′ is an independent set, then
set Xt+1 = X ′ and otherwise set Xt+1 = Xt.

We consider two standard notions of convergence to stationarity. The relaxation time
is the inverse spectral gap, i.e., (1 − λ∗)−1 where λ∗ = max{λ2, |λN |} and 1 = λ1 > λ2 ≥
· · · ≥ λN > −1 are the eigenvalues of the transition matrix P for the Glauber dynamics. The
relaxation time is a key quantity in the running time for approximate counting algorithms
(see, e.g., [29]). The mixing time is the number of steps, from the worst initial state, to reach
within total variation distance ≤ 1/2e of the stationary distribution, which in our case is the
Gibbs distribution µ.

We say that O(n) is the optimal relaxation time and that O(n log n) is the optimal
mixing time (see Hayes and Sinclair [18] for a matching lower bound for any constant degree
graph). Here, n denotes the size of the underlying graph. More generally, we say the Glauber
dynamics is rapidly mixing when the mixing time is poly(n).

We establish bounds on the mixing time of the Glauber dynamics by means of approximate
tensorization inequalities for the variance and the entropy of the hard-core model. Interestingly,
our analysis utilizes nothing further than the inductive nature of the tree, e.g., we do not
make any assumptions about spatial mixing properties of the Gibbs distribution. As a
consequence, the bounds we obtain have no dependence on the maximum degree of the graph.

To be more specific we derive the following two group of results: We establish approximate
tensorization of variance of the hard-core model on the tree for all λ < 1.1. This implies
optimal O(n) relaxation time for the Glauber dynamics. Notably this also includes the uniform
distribution over independent sets, i.e., λ = 1. Furthermore, we establish approximate
tensorization of entropy for the hard-core model on any tree for all λ < 0.44. In turn, this
implies optimal mixing time O(n log n) for the Glauber dynamics.

We can now state our main results.

▶ Theorem 1. For any n-vertex tree, for any λ < 1.1 the Glauber dynamics for sampling
λ-weighted independent sets in the hard-core model has an optimal relaxation time of O(n).
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Moreover, when λ ≤ 0.44 then we can prove an optimal bound on the mixing time. (This
extends to λ ≤ 1.05 under an intriguing conjecture that we can numerically verify.)

▶ Theorem 2. For any n-vertex tree, for any λ ≤ 0.44 the Glauber dynamics for sampling
λ-weighted independent sets in the hard-core model has an optimal mixing time of O(n log n).

We believe the optimal mixing results of Theorems 1 and 2 are related to the reconstruction
threshold, which we describe now. Consider the complete ∆-regular tree of height h; this is
the rooted tree where all nodes at distance ℓ < h from the root have ∆ − 1 children and all
nodes at distance h from the root are leaves. We are interested in how the configuration at
the leaves affects the configuration at the root.

Consider fixing an assignment/configuration σ to the leaves (i.e., specifying which leaves
are fixed to occupied and which are unoccupied), we refer to this fixed assignment to the
leaves as a boundary condition σ. Let µσ denote the Gibbs distribution conditional on this
fixed boundary condition σ, and let pσ denote the marginal probability that the root is
occupied in µσ.

The uniqueness threshold λc(∆) measures the affect of the worst-case boundary condition
on the root. For all λ < λc(∆), all σ ̸= σ′, in the limit h → ∞, we have pσ = p′

σ; this is known
as the (tree) uniqueness region. In contrast, for λ > λc(∆) there are pairs σ ̸= σ′ (namely, all
even occupied vs. odd occupied) for which the limits are different; this is the non-uniqueness
region. The uniqueness threshold is at λc(∆) = (∆ − 1)∆−1/(∆ − 2)∆ = O(1/∆).

In contrast, the reconstruction threshold λr(∆) measures the affect on the root of a
random/typical boundary condition. In particular, we fix an assignment c at the root and
then generate the Gibbs distribution via an appropriately defined broadcasting process.
Finally, we fix the boundary configuration σ and ask whether, in the conditional Gibbs
distribution µσ, the root has a bias towards the initial assignment c. The non-reconstruction
region λ < λr(∆) corresponds to when we cannot infer the root’s initial value, in expectation
over the choice of the boundary configuration σ and in the limit h → ∞, see Mossel [24] for
a more complete introduction to reconstruction.

The reconstruction threshold is not known exactly but close bounds were established by
Bhatnagar, Sly, and Tetali [3] and Brightwell and Winkler [5] who showed that:
C1 log2 ∆/ log log ∆ ≤ λr(∆) ≤ C2 log2 ∆ for sufficiently large ∆, and hence λr(∆) is
“increasing asymptotically” with ∆ whereas the uniqueness threshold is a decreasing function
of ∆. Martin [21] showed that λr(∆) > e − 1 for all ∆. As a consequence, we conjecture
that Theorems 1 and 2 holds for all trees for all λ < e − 1, which is close to the bound we
obtain. A slowdown in the reconstruction region is known: as described below, Restrepo et
al. [26] showed that there are trees for which there is a polynomial slow down for λ > C for
a constant C > 0; an explicit constant C is not stated in [26] but using the Kesten-Stigum
bound one can show C ≈ 28.

For general graphs the appropriate threshold is the uniqueness threshold, which is
λc(∆) = O(1/∆). In particular, for bipartite random ∆-regular graphs the Glauber dynamics
has optimal mixing in the uniqueness region [13], and is exponentially slow in the non-
uniqueness region [25, 17]. Moreover, for general graphs there is a computational phase
transition at the uniqueness threshold: optimal mixing on all graphs of maximum degree ∆
in the uniqueness region [13, 9, 10], and NP-hardness to approximately count/sample in the
non-uniqueness region [27, 17, 28].

There are a variety of mixing results for the special case on trees, which is the focus of
this paper. In terms of establishing optimal mixing time bounds for the Glauber dynamics,
previous results only applied to complete, ∆-regular trees. Seminal work of Martinelli,
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Sinclair, and Weitz [22, 23] proved optimal mixing on complete ∆-regular trees for all λ. The
intuitive reason this holds for all λ is that the complete tree corresponds to one of the two
extremal phases (all even boundary or all odd boundary) and hence it does not exhibit the
phase co-existence which causes mixing. As mentioned earlier, Restrepo et al. [26] shows
that there is a there is a fixed assignment τ for the leaves of the complete, ∆-regular tree
so that the mixing time slows down in the reconstruction region; intuitively, this boundary
condition τ corresponds to the assignment obtained by the broadcasting process.

For more general trees the following results were known. A classical result of Berger et
al. [2] proves polynomial mixing time for trees with constant maximum degree [2]. A very
recent result of Eppstein and Frishberg [16] proved polynomial mixing time nC(λ) of the
Glauber dynamics for graphs with bounded tree-width which includes arbitrary trees, however
the polynomial exponent is roughly C(λ) = 11 + 6 log(λ) for trees. For other combinatorial
models, rapid mixing for the Glauber dynamics on trees with bounded maximum degree was
established for k-colorings in [20] and edge-colorings in [15].

Spectral independence is a powerful notion in the analysis of the convergence rate of
Markov Chain Monte Carlo (MCMC) algorithms. For independent sets on an n-vertex
graph G = (V, E), spectral independence considers the n × n pairwise influence matrix IG

where IG(v, w) = Probσ∼µ(v ∈ σ | w ∈ σ) − Probσ∼µ(v ∈ σ | w /∈ σ); this matrix is closely
related to the vertex covariance matrix. We say that spectral independence holds if the
maximum eigenvalue of IG′ for all vertex-induced subgraphs G′ of G are bounded by a
constant. Spectral independence was introduced by Anari, Liu, and Oveis Gharan [1]. Chen,
Liu, and Vigoda [13] proved that spectral independence, together with a simple condition
known as marginal boundedness which is a lower bound on the marginal probability of a valid
vertex-spin pair, implies optimal mixing time of the Glauber dynamics for constant-degree
graphs. This has led to a flurry of optimal mixing results, e.g., [14, 4, 19, 12, 11].

The limitation of the above spectral independence results is that they only hold for
graphs with constant maximum degree ∆. There are several noteworthy results that achieve
a stronger form of spectral independence which establishes optimal mixing for unbounded
degree graphs [9, 10]; however all of these results for general graphs only achieve rapid mixing
in the tree uniqueness region which corresponds to λ = O(1/∆) whereas we are aiming for
λ = Θ(1).

The inductive approach we use to establish approximate tensorization inequalities can also
be utilized to establish spectral independence. In fact, we show that spectral independence
holds for any tree when λ < 1.3, including the case where λ = 1, see Appendix A of the full
version of this paper. Applying the results of Anari, Liu, and Oveis Gharan [1] we obtain
a poly(n) bound on the mixing time, but with a large constant in the exponent of n. For
constant degree trees we obtain the following optimal mixing result by applying the results
of Chen, Liu, and Vigoda [13] (see also [4, 9, 10]).

▶ Theorem 3. For all constant ∆, all λ ≤ 1.3, for any tree T with maximum degree ∆, the
Glauber dynamics for sampling λ-weighted independent sets has an optimal mixing time of
O(n log n).

In the next section we recall the key functional definitions and basic properties of
variance/entropy that will be useful later in the proofs. In Section 3 we prove approximate
tensorization of variance which establishes Theorem 1. Then in Section 4 we prove Theorem 2.
We establish spectral independence and prove Theorem 3 in Appendix A of the full version
of this paper.
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2 Preliminaries

2.1 Standard Definitions
Let P be the transition matrix of a Markov chain {Xt} with a finite state space Ω and
equilibrium distribution µ. For t ≥ 0 and σ ∈ Ω, let P t(σ, ·) denote the distribution of Xt

when the initial state of the chain satisfies X0 = σ. The mixing time of the Markov chain
{Xt}t≥0 is defined by

Tmix = max
σ∈Ω

min
{

t > 0 | ∥P t(σ, ·) − µ∥TV ≤ 1
2e

}
. (1)

The transition matrix P with stationary distribution µ is called time reversible if it satisfies
the so-called detailed balance relation, i.e., for any x, y ∈ Ω we have µ(x)P (x, y) = P (y, x)µ(y).
For P that is time reversible the set of eigenvalues are real numbers and we denote them as
1 = λ1 ≥ λ2 ≥ . . . λ|Ω| ≥ −1. Let λ∗ = max{|λ2|, |λ|Ω||}, then we define the relaxation time
Trelax by

Trelax(P ) = 1
1 − λ∗ . (2)

The quantity 1 − λ∗ is also known as the spectral gap of P . We use Trelax to bound Tmix by
using the following inequality

Tmix(P ) ≤ Trelax(P ) · log
(

2e

minx∈Ω µ(x)

)
. (3)

2.2 Gibbs Distributions and Functional Analytic Definitions
For a graph G = (V, E) and λ > 0, let µ = µG,λ be the hard-core model on this graph with
activity λ, while let Ω ⊆ 2V be the support of µ. For any Λ ⊆ V and any τ ⊆ Λ, we let µΛ,τ

be the distribution µ conditional on that from Λ we choose exactly the vertices in τ . When
there is no danger of confusion, we omit Λ. We let Ωτ ⊆ Ω be the support of µΛ,τ , while we
call τ feasible if Ωτ is nonempty.

For any subset S ⊆ V , let µS denote the marginal of µ at S, while let ΩS ⊆ 2S denote
the support of µS . That is, for any σ ⊆ S, we have that

µS(σ) =
∑

η∈2V

1{η ∩ S = σ}µ(η) . (4)

In a natural way, we define the conditional marginal. That is, for Λ ⊆ V \ S and τ ⊆ Λ, we
let µΛ,τ

S denote the marginal at S conditional on the configuration at Λ being τ . Similarly to
what we had before, when there is no danger of confusion, we omit Λ. We let Ωτ

S denote the
support of µτ

S .
For any function f : Ω → R≥0, we let µ(f) is the expected value of f with respect to µ,

i.e.,

µ(f) =
∑
σ∈Ω

µ(σ)f(σ) .

Analogously, we define variance of f with respect to µ by

Var(f) = µ(f2) − (µ(f))2
. (5)

APPROX/RANDOM 2023
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We are also using the following equation for Var(f),

Var(f) = 1
2

∑
σ,τ∈Ω µ(σ)µ(τ) (f(σ) − f(τ))2

. (6)

For any S ⊆ V , for any τ ∈ ΩV \S , we define the function fτ : Ωτ
S → R≥0 such that

fτ (σ) = f(τ ∪ σ) for all σ ∈ Ωτ
S . Let Varτ

S(fτ ) denote the variance of fτ with respect to the
conditional distribution µτ

S :

Varτ
S(fτ ) = µτ

S(f2
τ ) − (µτ

S(fτ ))2 (7)

= 1
2

∑
σ,η∈Ω

1{σ \ S = τ, η \ S = τ}µ(σ)µ(η)(∑
σ̂∈Ω 1{σ̂ \ S = τ}µ(σ̂)

)2 (f(σ) − f(η))2
. (8)

Furthermore, we let

µ(VarS(f)) =
∑

τ∈ΩV \S

µV \S(τ) · Varτ
S(fτ ) , (9)

i.e., µ(VarS(f)) is the average of Varτ
S(fτ ) with respect to the τ being distributed as in

µV \S(·). For the sake of brevity, when S = {v}, i.e., the set S is a singleton, we use
µ(Varv(f)).

Similarly to µ(f) and Var(f) we define the entropy with respect to µ by

Ent(f) = µ
(

f log f
µ(f)

)
, (10)

where we use the convention that 0 log 0 = 0. Analogously to µ(VarS(f)), we let

µ(EntS(f)) =
∑

τ∈ΩV \S

µV \S(τ)Entτ
S(fτ ) . (11)

That is, µ(EntS(f)) is the average of the entropy Entτ
S(fτ ) with respect to the measure

µV \S(·).
When X is a Bernoulli random variable, i.e.,

X =
{

A with probability p

B with probability 1 − p,

one formulation for the variance that will be convenient for us is

Var(X) = p(1 − p)(A − B)2. (12)

2.3 Approximate Tensorization of Variance/Entropy
To bound the convergence rate of the Glauber dynamics we consider the approximate
tensorization of variance/entropy as introduced in [7].

We begin with the definition of approximate tensorization of variance.

▶ Definition 4 (Variance Tensorization). A distribution µ with support Ω ⊆ {±1}V satisfies
the approximate tensorisation of Variance with constant C > 0, denoted using the predicate
V T (C), if for all f : Ω → R≥0 we have that

Var(f) ≤ C ·
∑
v∈V

µ (Varv(f)) .
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For a vertex x, recall that Varx[f ] =
∑

σ µV \{x}(σ)Varσ
x [fσ]. Variance tensorization V T (C)

yields the following bound on the relaxation time of the Glauber dynamics [7, 6]:

Trelax ≤ Cn. (13)

We continue with the analog for entropy, which is the key step in our proofs establishing
optimal mixing bounds of the Glauber dynamics.

▶ Definition 5 (Entropy Tensorization). A distribution µ with support Ω ⊆ {±1}V satisfies
the approximate tensorisation of Entropy with constant C > 0, denoted using the predicate
ET (C), if for all f : Ω → R≥0 we have that

Ent(f) ≤ C ·
∑
v∈V

µ (Entv(f)) .

For a vertex x, recall that Entx[f ] =
∑

σ µV \{x}(σ)Entσ
x [fσ]. Entropy tensorization ET (C)

immediately yields the following mixing time bound for the Glauber dynamics [7, 6]:

Tmix ≤ Cn (log(log(1/µ∗)) + log 2 + 2) . (14)

2.4 Decomposition of Variance/Entropy
We use the following basic decomposition properties for entropy and variance. The following
lemma follows from a decomposition of relative entropy, see [8, Lemma 3.1] (see also [4,
Lemma 2.3]).

▶ Lemma 6. For any S ⊂ V , for any f ≥ 0:

Var(f) = µ[VarS(f)] + Var(µS(f)) , (15)
Ent(f) = µ[EntS(f)] + Ent(µS(f)) . (16)

We utilize the following decomposition of a product measure, see [6, Eqn (4.7)].

▶ Lemma 7. Consider U, W ⊂ V where dist(U, W ) ≥ 2. Then for all f ≥ 0 we have:

µ[VarU (µW f)] ≤ µ[VarU (f)] , (17)
µ[EntU (µW f)] ≤ µ[EntU (f)] . (18)

Proof. We apply [6, Eqn (4.7)], which reaches the same conclusion under the assumptions
that U ∩ W = ∅ and µU µW = µW µU . In the current context, the reason these conditional
expectation operators commute here is that, because dist(U, W ) ≥ 2, if we let S be an
independent set sampled according to distribution µ, then the random variables S ∩ U and
S ∩ W are conditionally independent given S \ (U ∪ W ). ◀

3 Variance Factorization

In this section we prove Theorem 1, establishing an optimal bound on the relaxation time for
the Glauber dynamics on any tree for λ < 1.1. We will prove this by establishing variance
tensorization, see Definition 4.

APPROX/RANDOM 2023
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Let T ′ = (V ′, E′) be a tree, let {λ′
w}w∈V ′ be a collection of fugacities and let µ′ be the

corresponding hard-core measure. We will establish the following variance tensorization
inequality: for all f ′ : 2V ′ → R

Var(f ′) ≤
∑

x∈V ′

F (λ′
x)µ′(Varx(f ′)), (19)

where F : R≥0 → R≥0 is a function to be determined later (in Lemma 8). We refer to Var(f ′)
as the “global” variance and we refer to µ′(Varx(f ′)) as the “local” variance (of f ′ at x).

We will establish (19) using induction. Let v be a vertex of degree 1 in T ′ and let u be
the unique neighbor of v. Let T = (V, E) be the tree which is the induced subgraph of G′

on V = V ′ \ {v}. Let {λw}w∈V be a collection of fugacities where λw = λ′
w for w ≠ u and

λu = λ′
u/(1 + λ′

v). Let µ be the hard-core measure on T with fugacities {λw}w∈V .
Note that for S ⊆ V we have

µ(S) = µ′(S) + µ′(S ∪ {v}) = µ′
V (S). (20)

Fix a function f ′ : 2V ′ → R. Let f : 2V → R be defined by

f(S) = µ′(S)f ′(S) + µ′(S ∪ {v})f ′(S ∪ {v})
µ′(S) + µ′(S ∪ {v}) = EZ∼µ′ [f ′(Z) | Z∩V = S] = µ′

v(f ′)(S). (21)

Note that f ′ is defined on independent sets of the tree T ′ and f is the natural projection of
f ′ to the tree T . Since f = µ′

v(f ′), then by Lemma 6 we have that:

Var(f ′) = µ′(Varv(f ′)) + Var(f). (22)

When we condition on the configuration at u then µ′ becomes a product measure on
V \ {u} and {v}. Hence, from Equation (17) then for any x ̸∈ {u, v} (by setting U = {x}
and W = {v}) we have:

µ′(Varx(f)) ≤ µ′(Varx(f ′)).

Since by (20) we have µ(Varx(f)) = µ′(Varx(f)), the above implies that

µ(Varx(f)) ≤ µ′(Varx(f ′)). (23)

The following lemma is the main technical ingredient. It bounds the local variance at u

for the smaller graph T in terms of the local variance at u and v in the original graph T ′.

▶ Lemma 8. For F (x) = 1000(1 + x)2 exp(1.3x) and any λv, λu ∈ (0, 1.1] we have:

F (λu)µ(Varu(f)) ≤ (F (λ′
v) − 1)µ′(Varv(f ′)) + F (λ′

u)µ′(Varu(f ′)). (24)

We now utilize the above lemma to prove the main theorem for the relaxation time. We
then go back to prove Lemma 8.

Proof of Theorem 1. Note Equation (24) is equivalent to:

µ′(Varv(f ′)) + F (λu)µ(Varu(f)) ≤ F (λ′
v)µ′(Varv(f ′)) + F (λ′

u)µ′(Varu(f ′)). (25)
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We can prove variance tensorization by induction as follows:

Var(f ′) = µ′(Varv(f ′)) + Var(f)

≤ µ′(Varv(f ′)) +
∑
x∈V

F (λx)µ(Varx(f))

≤ µ′(Varv(f ′)) + F (λu)µ(Varu(f)) +
∑

x∈V \{u}

F (λ′
x)µ′(Varx(f ′))

≤ F (λ′
v)µ′(Varv(f ′)) + F (λ′

u)µ′(Varu(f ′)) +
∑

x∈V \{u}

F (λ′
x)µ′(Varx(f ′))

=
∑

x∈V ′

F (λ′
x)µ′(Varx(f ′)),

where the first line follows by by Equation (22), the second line by induction, the third line
by Equation (23), and the fourth line by Equation (25). ◀

Our task now is to prove Lemma 8. The following technical inequality will be useful.

▶ Lemma 9. Let p ∈ [0, 1]. Suppose s1, s2 > 0 satisfy s1s2 ≥ 1. Then for all A, B, C ∈ R
we have

(C − pA − (1 − p)B)2 ≤ (1 + s1)(C − A)2 + (1 − p)2(1 + s2)(B − A)2. (26)

The proof of Lemma 9 is in Appendix B of the full version of this paper. We can now
prove the main lemma.

Proof of Lemma 8. Our goal is to prove Equation (24), let us recall its statement:

F (λu)µ(Varu(f)) ≤ (F (λ′
v) − 1)µ′(Varv(f ′)) + F (λ′

u)µ′(Varu(f ′)). (24)

We will consider each of these local variances µ(Varu(f)), µ′(Varv(f ′)), and µ′(Varu(f ′)).
We will express each of them as a sum over independent sets S of V ′. We can then
establish Equation (24) in a pointwise manner by considering the corresponding inequality
for each independent set S.

Let us begin by looking at the general definition of the expected local variance µ′(Varx(f ′))
for any x ∈ V ′. Applying the definition in Equation (9) and then simplifying we obtain the
following (a reader familar with the notation can apply Equation (12) to skip directly to the
last line):

µ′(Varx(f ′))

=
∑

S⊆V ′\{x}

µ′
V ′\{x}(S) · VarS

x (fS)

=
∑

S⊆V ′\{x}

 ∑
T ⊆{x}

µ′(S ∪ T )

 1
2

∑
T,U⊆{x},T ̸=U

µ
′S
x (T )µ

′S
x (U)(f ′(S ∪ T ) − f ′(S ∪ U))2


=

∑
S⊆V ′\{x}

 ∑
T ⊆{x}

µ′(S ∪ T )

 (
µ

′S
x (x)µ

′S
x (∅)(f ′(S) − f ′(S ∪ {x}))2

)
=

∑
S⊆V ′\{x}

(
µ′(S) + µ′(S ∪ {x})

)
µ′(S)µ′(S ∪ {x})

(µ′(S) + µ′(S ∪ {x}))2

(
f ′(S) − f ′(S ∪ {x})

)2
. (27)
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Notice in Equation (27) that the only S ⊂ V ′ \ {x} which contribute are those where x is
unblocked (i.e., no neighbor of x is included in the independent set S) because we need that
S and S ∪ {x} are both independent sets and hence have positive measure in µ′.

Let us now consider each of the local variances appearing in Equation (24) (expressed
using carefully chosen summations that will allow us to prove (24) term-by-term in terms
of S).

Let Q1 := µ(Varu(f)) denote the expected local variance of f at u. We will use (27);
note that only S where u is unblocked (that is, when no neighbor of u is occupied) contribute
to the local variance. Such an S where u is unblocked and u ̸∈ S has the same contribution
as S ∪ {u} times 1/λu (since µ(S ∪ {u}) = λuµ(S)). Hence the expected local variance of f

at u is given by

Q1 := µ(Varu(f)) =
∑

S⊆V ;u∈S

µ(S)
(

1 + 1
λu

)
λu

1 + λu

1
1 + λu

(f(S \ {u}) − f(S))2
.

We have f(S) = f ′(S) (since u ∈ S) and f(S \{u}) = 1
1+λ′

v
f ′(S \{u})− λ′

v

1+λ′
v
f ′(S \{u}∪{v}).

Plugging these in and simplifying we obtain the following:

Q1 = 1 + λ′
v

1 + λ′
u + λ′

v

∑
S⊆V ;u∈S

µ(S)
(

f ′(S) − 1
1 + λ′

v

f ′(S − u) − λ′
v

1 + λ′
v

f ′(S − u + v)
)2

. (28)

We now consider Q2 := µ′(Varu(f ′)). To compute the expected local variance of f ′ at
u we need to generate Z from µ′ but only Z where u is unblocked contribute to the local
variance. We can generate Z by first generating S from µ and if u ̸∈ S adding v with
probability λ′

v/(1 + λ′
v). The S where u ̸∈ S contribute only if u is unblocked; contributing

the same amount as S ∪ {u} multiplied by 1/λ′
u (since µ′(S ∪ {u}) = λ′

uµ′(S)) and by
1/(1 + λ′

v) (since they only contribute if we do not add v). Hence, we have the following:

Q2 := µ(Varu(f ′)) =
∑

S⊆V ;u∈S

µ(S)
(

1 + 1
λ′

u

1
1 + λ′

v

)
λ′

u

1 + λ′
u

1
1 + λ′

u

(f ′(S − u) − f ′(S))2

=
(

λ′
u + 1

1 + λ′
v

)
1

(1 + λ′
u)2

∑
S⊆V ;u∈S

µ(S) (f ′(S) − f ′(S − u))2
. (29)

Finally, we consider µ′(Varv(f ′)), the expected local variance of f ′ at v. We will establish
a lower bound which we will denote by Q3 (note, Q1 and Q2 were identities but here we will
have an inequality).

To compute µ′(Varv(f ′)), the expected local variance of f ′ at v, we need to generate an
independent set Z from µ′. Only those Z where v is unblocked (that is where u is missing)
contribute to the local variance. We can generate Z by generating S from µ (whether we add
or do not add v does not change the contribution to the local variance). As in Equation (27),
we obtain the following:

µ′(Varv(f ′)) =
∑

S⊆V ;u̸∈S

µ(S) 1
1 + λ′

v

λ′
v

1 + λ′
v

(f ′(S ∪ {v}) − f ′(S))2

≥
∑

S⊆V ;u∈S

µ(S) 1
λ′

u

1
1 + λ′

v

λ′
v

1 + λ′
v

(f ′(S ∪ {v} \ {u}) − f ′(S \ {u}))2
,

where in the summation in the second line we effectively sum over a subset of sets not
containing u (the ones that can be obtained by removing u from a set containing u).
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Let Q3 denote the lower bound we obtained above:

Q3 := 1
λ′

u

1
1 + λ′

v

λ′
v

1 + λ′
v

∑
S⊆V ;u∈S

µ(S) (f ′(S ∪ {v} \ {u}) − f ′(S \ {u}))2 ≥ µ′(Varv(f ′)).

(30)

Plugging in (28), (29), (30) we obtain that Equation (24) follows from the following
inequality:

F (λu)Q1 ≤ (F (λ′
v) − 1)Q3 + F (λ′

u)Q2. (31)

We will establish (31) term-by-term, that is, for each S in the sums of (28), (29), (30). Fix
S ⊆ V such that u ∈ S and let A = f ′(S − u), B = f ′(S − u + v), and C = f ′(S). We need
to show

1 + λ′
v

1 + λ′
u + λ′

v

(
C − 1

1 + λ′
v

A − λ′
v

1 + λ′
v

B

)2
F

(
λ′

u

1 + λ′
v

)
≤ 1 + λ′

v + λ′
u

1 + λ′
v

1
(1 + λ′

u)2 (C − A)2
F (λ′

u) + 1
λ′

u(1 + λ′
v)2 (B − A)2 (F (λ′

v) − 1) . (32)

Let p = 1/(1 + λ′
v). We will match (26) to (32), by first dividing both sides of (32) by

1+λ′
v

1+λ′
u+λ′

v
F

(
λ′

u

1+λ′
v

)
and then choosing

1 + s1 =
(

1 + λ′
u + λ′

v

(1 + λ′
v)(1 + λ′

u)

)2
· F (λ′

u)
F

(
λ′

u

1+λ′
v

) and 1 + s2 = 1 + λ′
u + λ′

v

λ′
u(1 + λ′

v)λ′
v

2 · F (λ′
v) − 1

F
(

λ′
u

1+λ′
v

) .

Note that with this choice of s1 and s2 equations (26) and (32) are equivalent, and hence to
prove (32) it is enough to show s1s2 ≥ 1.

▷ Claim 10. s1s2 ≥ 1.

We defer the proof of this technical inequality to Appendix B of the full version of this
paper. This completes the proof of the lemma. ◀

4 Entropy Factorization

Here we will prove Theorem 2 establishing O(n log n) mixing time for λ ≤ .44. We will
accomplish this task by proving the following approximate tensorization inequality:

Ent(f ′) ≤
∑

x∈V ′

F (λ′
x)µ′(Entx(f ′)), (33)

where F : R≥0 → R≥0 is a function to be determined later. By Equation (14) this implies a
mixing time bound of O(n log n) and hence Theorem 2 follows from Equation (33).

We use the same notation as Section 3. Let T ′ be a tree and µ′ be the hard-core measure
on T ′ with fugacities {λ′

w}w∈V ′ . Let v be a vertex of degree 1 in T ′ and u is the unique
neighbor of v. Let v be a vertex of degree 1 in T ′ and let u be the unique neighbor of v. Let
T = (V, E) be the tree which is the induced subgraph of G′ on V = V ′ \ {v}. Let {λw}w∈V

be a collection of fugacities where λw = λ′
w for w ̸= u and λu = λ′

u/(1 + λ′
v). Let µ be the

hard-core measure on T with fugacities {λw}w∈V .
Fix a function f ′ : 2V ′ → R≥0. Let f : 2V → R≥0 be defined by f(S) = EZ∼µ′ [f ′(Z) |

Z ∩ V = S] = µ′
v(f ′)(S), which is the same definition as in Equation (21).

Our main technical lemma is the following.
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▶ Lemma 11. For F (x) = 1000(1+x) exp(x) and λu, λ′
v, λ′

u ∈ [0, 0.44] we have the following.

F (λu)µ(Entu(f)) ≤ (F (λ′
v) − 1)µ′(Entv(f ′)) + F (λ′

u)µ′(Entu(f ′)). (34)

Using the above lemma we will establish (33) using induction as done in Section 3 for
variance.

Proof of Theorem 2.

Ent(f ′) = µ′(Entv(f ′)) + Ent(f) by Equation (16)

≤ µ′(Entv(f ′)) +
∑
x∈V

F (λx)µ(Entx(f)) by induction

≤ µ′(Entv(f ′)) + F (λu)µ(Entu(f)) +
∑

x∈V \{u}

F (λ′
x)µ′(Entx(f ′)) by Equation (18)

=
∑

x∈V ′

F (λ′
x)µ′(Varx(f ′)) by Equation (34).

Hence, Theorem 2 follows from Lemma 11. ◀

Let

G(p, A, B) = pA ln A + (1 − p)B ln B − (pA + (1 − p)B) ln(pA + (1 − p)B).

Let Q1 := µ(Entu(f)). Then we have the following analog of Equation (28):

Q1 =
(

1 + 1 + λ′
v

λ′
u

) ∑
S⊆V ;u∈S

µ(S)G
(

1 + λ′
v

1 + λ′
v + λ′

u
,

f ′(S \ {u})
1 + λ′

v
+ λ′

vf ′(S ∪ {v} \ {u})
1 + λ′

v
, f ′(S)

)
.

(35)

Let Q2 := µ′(Entu(f ′)) denote the expected local entropy of f ′ at u. Then we have the
analog of Equation (29):

Q2 =
(

1 + 1
λ′

u(1 + λ′
v)

) ∑
S⊆V ;u∈S

µ(S)G
(

1
1 + λ′

u

, f ′(S − u), f(S)
)

. (36)

Finally, as in Equation (30), we use Q3 for a lower bound on the expected local entropy of
f ′ at v. We prove µ′(Entv(f ′)) ≥ Q3 where:

Q3 = 1
λ′

u

∑
S⊆V ;u∈S

µ(S)G
(

1
1 + λ′

v

, f ′(S − u), f(S − u + v)
)

. (37)

Plugging in (35), (36), (37) we obtain that Equation (34) follows from the following
inequality

F (λu)Q1 ≤ F (λ′
u)Q2 + (F (λ′

v) − 1)Q3. (38)

We will establish (34) term-by-term, that is, for each S in the sums of (35), (36), (37). Fix
S ⊆ V such that u ∈ S and let A = f ′(S − u), B = f ′(S − u + v), and C = f ′(S). We need
to show(

1 + 1 + λ′
v

λ′
u

)
G

(
1 + λ′

v

1 + λ′
v + λ′

u

,
1

1 + λ′
v

A + λ′
v

1 + λ′
v

B, C

)
F

(
λ′

u

1 + λ′
v

)
≤(

1 + 1
λ′

u(1 + λ′
v)

)
G

(
1

1 + λ′
u

, A, C

)
F (λ′

u) + 1
λ′

u

G

(
1

1 + λ′
v

, A, B

)
(F (λ′

v) − 1) . (39)
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We will show that the following lemma implies an optimal mixing time bound of O(n log n)
for all λ ≤ .44.

▶ Lemma 12. Let b, p ∈ (0, 1). For any A, B, C ≥ 0 we have

G (b, A, C) + (1 − b)G (p, A, B) − (b + p − bp)G
(

b

b + p − bp
, pA + (1 − p)B, C

)
≥ 0. (40)

The proof of Lemma 12 appears in Appendix D of the full version of this paper.
Before finishing the proof of Lemma 11 using Lemma 12, we have the following conjecture

which is a generalization of Lemma 12. This conjecture implies (39) for all λ ≤ 1.05 and
hence an optimal mixing time bound of O(n log n) for all λ ≤ 1.05. Lemma 12 corresponds
to Conjecture 13 “around” W = 1 (note that for W = 1 both sides of the below inequality
are zero). We can numerical verify the conjecture.

▶ Conjecture 13. Let b, p ∈ (0, 1). For any W ∈ (1 − b, 1/(1 − p)) and any A, B, C ≥ 0 we
have ∣∣∣ ln W

∣∣∣(b + p − bp)G
(

b

b + p − bp
, pA + (1 − p)B, C

)
≤

p
∣∣∣ ln pW

pW − W + 1

∣∣∣G (b, A, C) + b
∣∣∣ ln W + b − 1

bW

∣∣∣G (p, A, B) .

In Appendix C of the full version of this paper we prove that Conjecture 13 implies a
strengthening of Lemma 11 with the interval [0, 1.05] and hence O(n log n) mixing time.

4.1 Proof of Lemma 11
Here we prove that Lemma 12 implies Equation (39), and hence Lemma 11. Recall, F (x) =
1000(1 + x) exp(x).

Let

p = 1
1 + λ′

v

and b = 1
1 + λ′

u

and α = 1
p(1 − b)F

(
p(1 − b)

b

)
.

Note that

1 + 1 + λ′
v

λ′
u

= b + p − bp

p(1 − b) ,
1 + λ′

v

1 + λ′
v + λ′

u

= b

b + p − bp
,

λ′
u

1 + λ′
v

= p(1 − b)
b

.

We aim to prove (39) using the following sequence of inequalities(
1 + 1 + λ′

v

λ′
u

)
G

(
1 + λ′

v

1 + λ′
v + λ′

u

,
1

1 + λ′
v

A + λ′
v

1 + λ′
v

B, C

)
F

(
λ′

u

1 + λ′
v

)
= α(b + p − bp)G

(
b

b + p − bp
, pA + (1 − p)B, C

)
(41)

≤ αp
(1

p

)
G (b, A, C) + αb

(1 − b

b

)
G (p, A, B) (42)

≤
(

1 + 1
λ′

u(1 + λ′
v)

)
G

(
1

1 + λ′
u

, A, C

)
F (λ′

u) + 1
λ′

u

G

(
1

1 + λ′
v

, A, B

)
(F (λ′

v) − 1) ,

(43)

Here, Eq. (41) follows from the definitions.
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Inequality (42) follows from Lemma 12 (we avoided simplifying (42) in order to make the
match to Lemma 12 easier).

Inequality (43) follows from the following two inequalities:

αp
(1

p

)
≤ b + p − bp

p(1 − b) F
(1 − b

b

)
, and (44)

αb
(1 − b

b

)
≤ b

1 − b

(
F

(1 − p

p

)
− 1

)
. (45)

Replacing α by its definition, equations (44) and (45) become

F

(
p(1 − b)

b

)
≤ (b + p − bp)F

(1 − b

b

)
, and (46)

F

(
p(1 − b)

b

)
(1 − b) ≤ bp

(
F

(1 − p

p

)
− 1

)
. (47)

Let x and y be such that b = 1/(1 + x) and p = 1/(1 + y). Equations (46) and (47) simplify
to the following

F

(
x

1 + y

)
≤ 1 + x + y

(1 + x)(1 + y)F (x) and F

(
x

1 + y

)
x ≤ F (y) − 1

1 + y
.

Note that F (y) ≥ 1000 and hence it is enough to satisfy the following inequalities.

F

(
x

1 + y

)
≤ 1 + x + y

(1 + x)(1 + y)F (x) and F

(
x

1 + y

)
x ≤ 999

1000
F (y)
1 + y

.

Recalling the definition of F , the constraints further simplify to:

exp
(

x

1 + y

)
≤ exp(x) and exp

(
x

1 + y

)
(1 + x + y)x

1 + y
≤ 999

1000 exp(y). (48)

Note that the first constraint follows from the fact that exp() is increasing and x, y > 0. The
second constraint is addressed in the following lemma.

▶ Lemma 14. For x, y ∈ [0, u], where u = 0.44, we have

exp
(

x

1 + y

)
(1 + x + y)x

1 + y
≤ 999

1000 exp(y). (49)

Proof. Let

Q = 999
1000 exp(y) − exp

(
x

1 + y

)
(1 + x + y)x

1 + y
.

We have

∂

∂y
Q = 999

1000 exp(y) +
x2(x + 2y + 2) exp

(
x

1+y

)
(1 + y)3 > 0,

that is, Q is increasing in y and hence we only need to prove (49) for y = 0. We need to
show

999
1000 ≥ exp (x) (1 + x)x. (50)

Note that RHS of (50) is increasing in x and hence we need to check (50) for x = u. For
x = u = 0.44 we have that (50) is satisfied (checked using interval arithmetic). ◀
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▶ Remark 15. In order for (48) to hold for x, y ∈ [0, u] we need it to hold for x = y(y +1) ≤ u.
Equation (48) then simplifies to

(1 + y)2y ≤ 1.

For (48) to hold (for all x, y ∈ [0, u]) we need y ≤ 0.47 which in turn implies u ≤ 0.7. This
means that if we want to prove rapid mixing for unweighted independent sets (λ = 1) we
have to go beyond Lemma 12, see Conjecture 13.
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