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Abstract
We study the problem of extracting randomness from somewhere-random sources, and related
combinatorial phenomena: partition analogues of Shearer’s lemma on projections.

A somewhere-random source is a tuple (X1, . . . , Xt) of (possibly correlated) {0, 1}n-valued
random variables Xi where for some unknown i ∈ [t], Xi is guaranteed to be uniformly distributed.
An extracting merger is a seeded device that takes a somewhere-random source as input and outputs
nearly uniform random bits. We study the seed-length needed for extracting mergers with constant
t and constant error.

Since a somewhere-random source has min-entropy at least n, a standard extractor can also
serve as an extracting merger. Our goal is to understand whether the further structure of being
somewhere-random rather than just having high entropy enables smaller seed-length, and towards
this we show:

Just like in the case of standard extractors, seedless extracting mergers with even just one output
bit do not exist.
Unlike the case of standard extractors, it is possible to have extracting mergers that output a
constant number of bits using only constant seed. Furthermore, a random choice of merger does
not work for this purpose!
Nevertheless, just like in the case of standard extractors, an extracting merger which gets most
of the entropy out (namely, having Ω(n) output bits) must have Ω(log n) seed. This is the
main technical result of our work, and is proved by a second-moment strengthening of the
graph-theoretic approach of Radhakrishnan and Ta-Shma to extractors.

All this is in contrast to the status for condensing mergers (where the output is only required
to have high min-entropy), whose seed-length/output-length tradeoffs can all be fully explained by
using standard condensers.

Inspired by such considerations, we also formulate a new and basic class of problems in combinat-
orics: partition analogues of Shearer’s lemma. We show basic results in this direction; in particular,
we prove that in any partition of the 3-dimensional cube [0, 1]3 into two parts, one of the parts has
an axis parallel 2-dimensional projection of area at least 3/4.
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52:2 Extracting Mergers and Projections of Partitions

1 Introduction

We study the problem of extracting randomness from somewhere-random sources, and related
combinatorial phenomena: partition analogues of Shearer’s lemma on projections. For the
(completely self-contained) combinatorics, see Section 1.2, Section 6 and Section 7.

A t-part somewhere-random source is a tuple (X1, . . . , Xt) of (possibly correlated) {0, 1}n-
valued random variables Xi, where some unknown Xi is guaranteed to be uniformly distrib-
uted. We will take t to be constant and n growing throughout this paper. A merger is a
seeded device that takes a somewhere-random source and purifies its randomness. Mergers
have been extensively studied in the theory of extractors, and have played an important
role in their development. In fact, there were at least 3 distinct points in the history of
extractors [19, 15, 7] when the best known explicit extractor constructions were based on
new advances in explicit merger constructions.

An important observation is that t-part somewhere-random sources are special cases of
sources with (min) entropy rate 1/t. Thus any randomness purifying device (such as an
extractor, condenser or disperser) that can give guarantees when fed a source with entropy
rate at least 1/t is automatically some kind of merger for t-part somewhere-random sources.

In the literature, mergers have only been studied in the condensing regime: where their
output is required to have high entropy rate (rather than requiring the output to be near-
uniform). It turns out that information-theoretically, condensing mergers are completely
overshadowed by classical condensers. A condenser is a seeded device that takes in a source
with sufficient entropy rate and outputs a random variable with high entropy rate. Thus a
condenser that can operate on sources with entropy rate 1/t is automatically a condensing
merger for t-part somewhere-random sources. It turns out that whatever parameter ranges
are achievable by condensing mergers can be completely explained by condensers.

In this paper, we study mergers in the extracting regime: where their output is required
to be near-uniform. Our main result is a characterization of the seed-length needed for such
extracting mergers. Unlike the tragic case of condensing mergers and their relationship with
condensers, extracting mergers are able to step out of the shadow of extractors, and carve a
niche, albeit small, for themselves.

We also study extracting multimergers, where more random variables out of the given
tuple of random variables are required to be uniform and independent. This leads us to a
number of interesting combinatorial / geometric questions, for which we give some new and
basic combinatorial theorems (such as a partition analogue of Shearer’s lemma on projections
of a set in a product space).

1.1 Overview of results
Our results are best viewed in contrast to the situation with classical extractors and condensers.
An extractor takes a source with some min-entropy and an independent uniform seed, and
outputs a nearly-uniform distributed random variable. A condenser takes a source with
some min-entropy and an independent uniform seed, and outputs a source with higher
min-entropy-rate.

Both extractors and condensers are functions of the form:

F : {0, 1}n × {0, 1}d → {0, 1}m,

where d is the “seed-length” and m is the “output-length”.
Consider a random source X that is {0, 1}n-valued and has entropy rate 1/t (which means

that its min-entropy is ≥ n/t).
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In the case of extractors, for (1 − ϵ)-fraction of j ∈ {0, 1}d, the output F (X, j) is required
to be ϵ-close in statistical distance to the uniform distribution over {0, 1}m. In the case of
condensers, for (1 − ϵ)-fraction of j ∈ {0, 1}d, the output F (X, j) is required to be ϵ-close in
statistical distance to some {0, 1}m-valued random variable with min-entropy ≥ k′.

Extractors and condensers are qualitatively very different from the point of view of
seed-length. We summarize their salient features below:

There are no seedless extractors or condensers.
There are condensers with constant seed-length d = O(log 1

ϵ ) which are lossless (we
can take k′ as large as n

t + d), provided m > k′ + Ω(log 1
ϵ ).

The seed-length required for an extractor to extract one bit of entropy from a random
source ({0, 1}n)t is log n + 2 log 1

ϵ + O(1). Furthermore, this seed-length suffices to extract
almost all the entropy out of the source.

A merger takes in a t-part somewhere-random source (which is a special case of a source
with entropy rate 1

t ) and an independent uniform seed, and outputs a source with purer
randomness. This naturally creates two kinds of mergers - condensing mergers and extracting
mergers. To the best of our knowledge, only condensing mergers have been studied in the
literature, and the (non-constructive) existence results for condensing mergers all follow from
the existence results for condensers mentioned above.

Let E : ({0, 1}n)t × {0, 1}d → {0, 1}m be an extracting merger, namely its output is
guaranteed to be ϵ-close to uniform on {0, 1}m whenever given a t-part somewhere-random
source as input.

▶ Theorem A (Informal). We have the following:
There are no seedless extracting mergers, even with output length 1.
There are extracting mergers with constant seed length O(log 1

ϵ ), which can output a
constant number of nearly-uniform bits.
Nevertheless, if the seed length required for an extracting merger to extract almost all (or
even a constant fraction) the entropy out of a somewhere-random source is Θ(log n).

The first item is trivial. The second item is also not difficult, but it already gives a taste of
why things are different with extracting mergers. Indeed, randomly-chosen functions are not
extracting mergers. The third item in the above theorem is our main technical result. It is
proved by a second-moment strengthening of the graph-theoretic approach of Radhakrishnan
and Ta-Shma to extractors.

1.2 Projections of partitions
Our study of these questions about randomness extraction leads us to formulate and
make progress on a new and natural combinatorial question: the partition analogue of
the Shearer/Loomis-Whitney inequalities on volumes of projections. These questions arise
when we consider the problem of extracting randomness from t-part s-where random sources
(where s out of the t parts of the source are uniform and independent). We call devices
that do this extracting multimergers. For the rest of this subsection we only focus on the
combinatorial aspect.

Let A be an “nice” subset of the solid cube [0, 1]3 with (Lebesgue) volume α. Consider
the three axis-parallel 2-dimensional projections: ΠXY (A), ΠY Z(A), ΠXZ(A). The Shearer/
Loomis-Whitney inequality [5, 14] implies that at least one of these three projections has
area at least α2/3. This is tight, as witnessed by the case where A is a cube of side-length
α1/3 (and this is roughly the only such example).

APPROX/RANDOM 2023



52:4 Extracting Mergers and Projections of Partitions

Now consider the following partition variant: Let A, B be “nice” subsets of [0, 1]3 that
partition [0, 1]3. Consider the six axis-parallel 2-dimensional projections of these two sets:
ΠXY (A), ΠY Z(A), ΠXZ(A) and ΠXY (B), ΠY Z(B), ΠXZ(B). How large can we guarantee
that one of them is?

Using the previous inequality and the fact that at least one of A, B has volume at least
1/2, we get that one of these six 2-dimensional projections has area at least (1/2)2/3 ≥ 0.6299.
For this bound to be tight, we would need both A and B to have volume 1/2, and both A

and B to be tight examples for the Shearer/Loomis-Whitney inequality. This would require
us to be able to cover [0, 1]3 by two cubes of volume 1/2 – which is clearly impossible. This
suggests that there should be a better bound!

We show, using a delicate study of the sections of the cube and some seemingly lucky
inequalities, a tight bound for this problem.

▶ Theorem B (Informal). Let A, B be “nice” subsets of [0, 1]3 that partition [0, 1]3. Then at
least one of the six 2-dimensional projections

ΠXY (A), ΠY Z(A), ΠXZ(A), ΠXY (B), ΠY Z(B), ΠXZ(B),

has area at least 3/4.

Such “projections of partitions” questions can be formulated in great generality, and
apart from Theorem B (whose proof we find very interesting), we also make some general
observations and make some slightly non-trivial progress. We think these are very natural
combinatorial questions worthy of further study. Beyond having connections to mergers, these
questions turn out to be related to the KKL and BKKKL theorems/conjectures [12, 2, 10, 9]
on influences of Boolean functions on the solid cube [0, 1]n. For example, Theorem B implies
that any 3-variable Boolean function f : [0, 1]3 → {0, 1} has some variable and some bit b

such that the “influence towards b” of that variable is at least 1/4, and this is tight.
Another application of such results is to partition analogues of the Kruskal-Katona

theorem. For example, Theorem B implies that for any partition of
([n]

3
)

into two parts, one
of the two parts has shadow with size at least

( 3
4 − o(1)

) (
n
2
)
.

1.3 Related work
Mergers were introduced by Ta-Shma [19] in his thesis, and were used to construct state-of-
the-art extractors at the time (these were condensing mergers). Later, [15] proposed a new
condensing merger construction based on taking random linear combinations of vectors over
finite fields, and used it in their construction of the first extractors optimal upto constant
factors. This analysis was greatly improved by Dvir [6] through his solution to the finite
field Kakeya conjecture. Subsequently, [8, 7] defined a higher degree polynomial variant
of the [15] merger, and by developing the ideas from [6], were able to construct improved
(constant seed) mergers and state-of-the-art extractors. Subsequently [20] showed how to get
analogous explicit constructions of condensers (subsuming the [7] condensing mergers) by
improving the [11] condensers.

Another interesting constant seed condensing merger is by [18], which was constructed
on the way to multi-source extractors.

Our lower bounds for the seed length of extracting mergers are proved by developing
ideas from the paper of Radhakrishnan and Ta-Shma [17]. A recent beautiful proof of [1]
also achieved a similar result to [17] in a much cleaner way, but we were not able to adapt
this approach to our setting.
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Other papers relevant to the study of multimergers are related to resilient functions [3, 4,
16].

Finally, our combinatorial results are related to the KKL and BKKKL theorems/conjec-
tures [12, 2, 10, 9] on influences of Boolean functions on the solid cube [0, 1]n.

1.4 Organization
We give the basic definitions of extracting mergers and extracting multimergers in Section 2.
In Section 3 we start with a simple proof that seedless mergers do not exist. This is followed
by showing the existence of mergers and multimergers in the extracting regime with constant
seed-length. We prove our lower bound on the seed length of extracting mergers in Section 4,
which culminates in Theorem 9. In Section 5 we explore the connection between seedless
extracting mergers and projections of partition questions. Section 6 is devoted to proving
Theorem 17, our (optimal) lower bound on partitioning the unit cube into 2 parts, and
Section 7 is devoted to partitions of the cube into 3 parts.

2 Sources and Mergers

▶ Definition 1 (k-source). For any k, we say that a random variable X is a k-source if for
all x, Pr[X = x] ≤ 2−k

2.1 Somewhere and s-where Random Sources
▶ Definition 2 (Somewhere-Random Source). For a domain D, a tuple X = (X1, . . . , Xt) of
jointly distributed D-valued random variables is called a t-part somewhere random source if
for some i ∈ [t], the distribution of Xi is uniform over D.

▶ Definition 3 (s-where Random Source). For a domain D and an integer s > 0, a tuple
X = (X1, . . . , Xt) of jointly distributed D-valued random variables is called a t-part s-where
random source if for some distinct i1, . . . , is ∈ [t], the joint distribution of (Xi1 , Xi2 , . . . , Xis

)
is uniform over Ds.

2.2 Extracting Mergers and Multimergers
▶ Definition 4 (Extracting Mergers). Let n, t, d, m be integers, and let ϵ > 0.

A function E : ({0, 1}n)t × {0, 1}d → {0, 1}m is called an (n, t, d, m, ϵ)-extracting
merger if the following holds.

Suppose X = (X1, . . . , Xt) is a somewhere-random source where each Xi is {0, 1}n-valued.
Then for at least (1 − ϵ)-fraction of j ∈ {0, 1}d, the distribution of:

Z = E(X, j),

is ϵ-close to the uniform distribution on {0, 1}m.

We will sometimes refer to these as ϵ-extracting mergers (since n, d, t, m are related to
the shape of E).

▶ Definition 5 (Extracting Multimergers). Let n, t, s, d, m be integers, and let ϵ > 0.
A function E : ({0, 1}n)t × {0, 1}d → {0, 1}m is called an (n, d, t, m, ϵ, s)-extracting

multimerger if the following holds.

APPROX/RANDOM 2023



52:6 Extracting Mergers and Projections of Partitions

Suppose X = (X1, . . . , Xt) is an s-where random source where each Xi is {0, 1}n-valued.
Then for at least (1 − ϵ)-fraction of j ∈ {0, 1}d, the distribution of:

Z = E(X, j),

is ϵ-close to the uniform distribution on {0, 1}m.

We will sometimes refer to these as (ϵ, s)-extracting multimergers (since n, d, t, m are
related to the shape of E).

Observe that the s = 1 case in the above definition corresponds to extracting mergers.

Note on the definitions

In all our definitions, we chose to define the “strong” versions (where the output bits are
required to be independent of the seed) for simplicity. In fact, our existence result for mergers
is for the strong version, and our impossibility result is for the weak version.

3 Simple results about extracting mergers

For the rest of this paper, we only talk about extracting (not condensing) mergers and
multimergers.

3.1 Seedless Mergers do not exist
We begin with the simple observation that there are no seedless extracting mergers.

▶ Theorem 6 (There are no seedless mergers). Let n be an integer and ε < 1/2. There does
not exist a function M : {0, 1}n × {0, 1}n → {0, 1} that is an ε-merger.

Proof. Fix an ε < 1/2. Assume for the sake of contradiction there exists an ε-merger
M : {0, 1}n × {0, 1}n → {0, 1}.

In particular, this means for every function f : {0, 1}n → {0, 1}n, when X is distributed
uniformly over {0, 1}n, the distribution of M(X, f(X)) is ε-close to uniform on {0, 1} –
and in particular, it has full support on {0, 1}. We will now demonstrate a function
g : {0, 1}n → {0, 1}n such that M(g(Y ), Y ) is constant for uniformly distributed Y , thus
contradicting the merger assumption.

Fix any y ∈ {0, 1}n. Consider the constant function fy : {0, 1}n → {0, 1}n given by
fy(x) = y for all x. By our hypothesis above, the distribution of M(X, fy(X)) has full
support {0, 1}. Thus there exists x ∈ {0, 1}n such that M(x, y) = 0. Pick one such x and
call it g(x).

Thus we have M(g(y), y) = 0 for all y ∈ {0, 1}n. We conclude that for uniform Y ∈ {0, 1}n,
M(g(Y ), Y ) = 0, which is the desired contradiction. ◀

3.2 Extracting mergers with constant seed exist
We now show that constant seed extracting mergers with constant output length exist. While
the proof is quite simple, it is interesting because (1) constant seed extractors do not exist,
(2) a random choice of E : ({0, 1}n)t × {0, 1}d → {0, 1}m does not give a constant seed
extracting mergers, and most importantly (3) as we will later see, the seed length still needs
to be superconstant to produce a superconstant number of output bits, as we will see in the
next section.
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▶ Theorem 7. Let n, t be integers and ϵ > 0.
Then for any integer m ≤ n, setting:

d = log m + log(t − 1) + 2 log 1
ϵ

+ O(1),

there exists a function E : ({0, 1}n)t × {0, 1}d → {0, 1}m that is an ε-extracting merger.

Thus with O(log t + log 1
ϵ ) bits of seed, we can extract poly( 1

ϵ ) bits out.

Proof. We want to get an extracting merger E((x1, . . . , xt), j), where the xi ∈ {0, 1}n and
j ∈ {0, 1}d.

The nature of a somewhere-random source is that applying a truncation to each element
of the source yields a smaller somewhere-random source. The idea of our extracting merger
is to truncate our somewhere-random source, and to then apply a standard seeded extractor
to the entire truncated source. The truncation makes the instance size smaller, enabling us
to use a reduced seed length in the extractor.

We truncate each xi to the first m bits, thus obtaining x′
1, . . . , x′

t ∈ {0, 1}m.
We can verify that our truncation to the first m bits produces a source (X ′

1, . . . , X ′
t)

of length mt and min-entropy m. By the standard result on existence of extractors (See
Theorem 6.14 in [21]), there exists a strong (m, ϵ)-extractor Ext0 : {0, 1}mt × {0, 1}d →
{0, 1}m with seed length d = log m + log(t − 1) + 2 log 1

ϵ + O(1).
We can thus define the function E : ({0, 1}n)t × {0, 1}d → {0, 1}m:

E((x1, . . . , xt), j) = Ext0((x′
1, . . . , x′

t), j).

Observe that the function E is an ϵ-extracting merger that uses a seed j of length d and
outputs m bits as required. ◀

In contrast, a random E : ({0, 1}n)t × {0, 1}d → {0, 1} is not an extracting merger at all!
To see this, it suffices to fix t = 2. If E is chosen at random, then for every j ∈ {0, 1}d and
x ∈ {0, 1}n, it is very likely that there exists a y ∈ {0, 1}n such that E((x, y), j) = 0. Define
fj : {0, 1}n → {0, 1}n by fj(x) = any such y. Then for every j ∈ {0, 1}d, E(X, fj(X), j) is
constant when X is picked uniformly at random, showing that E is not a merger.

3.3 Extracting Multimergers
Using the same idea, we also get interesting multimergers.

▶ Theorem 8. Let n, t, s be integers with s < t, and ϵ > 0. Then for any integer a ≤ n,
setting m = s · a and:

d = log a + 2 log 1
ϵ

+ log(t − s) + Ω(1),

there exists a function E : ({0, 1}n)t × {0, 1}d → {0, 1}m that is an (ε, s)-extracting mul-
timerger.

Taking for example s = t − 1 and a = poly
( 1

ϵ

)
≪ n, we get that by investing O(log 1

ϵ )
bits of seed, we can extract poly

( 1
ϵ

)
· t bits of randomness from any t-part (t − 1)-where

random source X ∈ ({0, 1}n)t.
In this setting of parameters, the seed length does not even depend on t, and we could

take t to be growing superconstantly while preserving constant seed-length.

APPROX/RANDOM 2023
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3.4 Seedless Multimergers
Our final observation of this section is that for multimergers with large t and where s is a
large fraction of t, seedless multimergers with small error do exist. Indeed, if s = t − 1, and
we define E : ({0, 1}n)t → {0, 1} by

E(x1, . . . , xt) = Maj(x11, x21, . . . , xt1),

it is easy to see that E is a seedless (ϵ, t − 1)-multimerger for ϵ = O( 1√
t
). Replacing E with

any resilient function gives other examples of seedless multimergers (including with larger
output size).

Investigation of this phenomenon leads us to the projections of partitions question, and
we explicitly give the connection and some results about it in a later section. Nevertheless,
this seems like the tip of an iceberg.

4 Mergers with large output need large seed

In this section we show a lower bound on the seed-length for 2-source extracting mergers,
essentially showing that the dependence of the seed-length for extracting mergers in Theorem 7
on m and ϵ is tight.

▶ Theorem 9. Let ϵ < 1/40. Let E : ({0, 1}n)2 × {0, 1}d → {0, 1}m be a ε-extracting merger.
Then for ϵ ≥ 2−Ω(m), we have:

d ≥ log m + log 1
ϵ

− O(1).

and for ϵ < 2−Ω(m), we have:

d ≥ Ω(m).

For the proof of this theorem, the representation of the inputs and output of E in
terms of bits is a distraction. So, letting N = 2n, D = 2d, M = 2m and identifying
{0, 1}n, {0, 1}d, {0, 1}m with [N ], [D], [M ] respectively, we will view E as a function E :
[N ]2 × [D] → [M ].

Recalling the ϵ-extracting merger property, we have that E is such that whenever X, Y

are jointly distributed [N ]-valued random variables, with at least one of them uniformly
distributed, and J is picked uniformly from [D] and independently of (X, Y ), then the
distribution of E((X, Y ), J) is ϵ-close to the uniform distribution on [M ].

We will show that for ϵ ≥ M−Ω(1), we have:

D ≥ Ω
(

1
ϵ

log M

)
,

and for ϵ < M−Ω(1), we have:

D ≥ Ω
(

MΩ(1)
)

.

Our proof is based on the following idea. Consider a uniformly random subset S ⊆ [M ]
of size λM . For each y ∈ [N ], we look for an x such that for all j ∈ [D], E(x, y, j) ̸∈ S. If
there is such an x, then we define g(y) = x. If such an x exists for most y, then for uniformly
chosen Y ∈ [N ], J ∈ [D], we have PrY,J [E(g(Y ), Y, J) ∈ S] ≪ λ − ϵ, contradicting the merger
property. Thus for most S, for many y there is no such x; namely, for most S, for many y,
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for all x, there is some j, such that E(x, y, j) ∈ S. For this to happen for even one y turns
out to be very abnormal, and we derive our lower bound on D by digging into its structure.
This part uses a second moment variation of the Radhakrishnan-TaShma [17] approach to
extractor lower bounds.

4.1 Abnormal conductors
A map C : [N ] × [D] → [M ] is called a conductor (this is a general term capturing the shape
of seeded extractors and seeded condensers). We will also view this as a bipartite multigraph
with [N ] on the left, [M ] on the right and D labelled edges coming out of every left vertex.

If C is chosen at random, then for most S ⊆ [M ] of size λM and most x ∈ [N ], we expect
about λ fraction of the edges coming out of x to land in S. But we do not expect that this
will happen for all x! When C is chosen at random, then for most S there will be some
x ∈ [N ] for which a very small (≪ λ) fraction of edges coming out of x lie in S. We capture
this with the following definition.

▶ Definition 10. Let C : [N ] × [D] → [M ] be a conductor. Let S be a subset of [M ].
We say the vertex x ∈ [N ] totally misses S (under C) if

|{j ∈ [D] | C(x, j) ∈ S}| = 0.

We say the vertex x ∈ [N ] mostly misses S (under C) if

|{j ∈ [D] | C(x, j) ∈ S}| <
1
2

|S|
M

D.

▶ Definition 11 (Abnormal conductors). Let C : [N ] × [D] → [M ] be a conductor.
We say that C is (γ, λ)-abnormal if

Pr
S∈([M]

λM)
[∃x ∈ [N ] s.t. x mostly misses S] < 1 − γ.

▶ Lemma 12 (Extracting mergers contain abnormal conductors). Suppose 0 < γ < λ
2 − ϵ.

Suppose E : [N ]2×[D] → [M ] is an ϵ-extracting merger. For y ∈ [N ], let Ey : [N ]×[D] → [M ]
be the function E(·, y, ·). Then for some y ∈ [N ], Ey is (γ, λ)-abnormal.

Proof. Suppose not; namely that for all y ∈ [N ], we have that Ey is not (γ, λ)-abnormal.
Pick S ∈

([M ]
λM

)
uniformly at random.

Let By be the event that there exists some x ∈ [N ] that mostly misses S under Ey.
By our assumption, Pr[By] ≥ 1 − γ. So the expected number of y for which By happens

is at least (1 − γ)N .
Thus there exists some particular choice of S for which By happens for at least (1 − γ)N

many ys. Call this choice S0. Define f : [N ] → [N ] by defining f(y) as follows:

f(y) =
{

any x that mostly misses S0 under Ey By happened,
arbitrary By did not happen.

Then

Pr
Y ∈[N ],J∈[D]

[E(f(Y ), Y, J) ∈ S0] <
λ

2 (1 − γ) + γ < λ − ϵ.

But |S0| = λM , and thus we get a contradiction to the ϵ-extracting merger property of E.
This completes the proof. ◀
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4.2 The structure of abnormal conductors
The previous lemma gave us a y for which Ey is abnormal. We now use show that abnormal
conductors are very structured, and thus get a lower bound on D.

▶ Lemma 13. Let C : [N ]×[D] → [M ] be a (γ, λ)-abnormal conductor. Suppose 10ϵ < λ < 1
2 .

Suppose that for X ∈ [N ] and J ∈ [D] picked uniformly and independently, C(X, J) is
ϵ-close to the uniform distribution on [M ]. Then

D ≥ min
{

Ω
(

1
λ

log(λγM)
)

, Ω
(

λγM)1/4
)}

.

Proof. We begin with a pruning phase to remove the high degree vertices from the right
side. At first reading, it will be helpful to consider the case where B = ∅.

Let β = λ
5 −ϵ. Note that the average right degree is ND/M . Define the set of high-degree

right vertices by:

B = {z ∈ [M ] | there are at least 1
β

ND

M
edges to z}.

Thus |B| ≤ βM . By the hypothesis on C(X, J), we have

Pr
X∈[N ],J∈[D]

[C(X, J) ∈ B] ≤ β + ϵ.

Let G be the set of all vertices on the left that do not have too many edges to B; namely:

G = {x ∈ [N ] | x has at most 2(β + ϵ)D edges to B }.

Then |G| ≥ N/2.
Now pick S ∈

([M ]
λM

)
uniformly at random. If there is a vertex x ∈ G that totally misses

S \ B, then by choice of G:

|{j | C(x, j) ∈ S}| ≤ 2(β + ϵ)D <
1
2λD,

namely, x mostly misses S.
By our hypothesis on the abnormality of C, the existence of such an x cannot happen

too often. Thus:

Pr
S

[∃x ∈ G | x totally misses S \ B] < 1 − γ. (1)

For each x ∈ G, let Ax be the event that x totally misses S \ B under C.
We are interested in the event that some x ∈ G totally misses S \ B, namely, the event∨

x∈G Ax.
Observe that1

Pr[Ax] ≥
(

M−D
λM

)(
M

λM

) ≥ e−4λD =: p.

Define A =
∑

x∈G Ax. Then E[A] ≥ |G|p.

1 Here we use the observation that (1 − D
(1−λ)M ) < e

− 2D
(1−λ)M < e−4D/M , which follows from the fact that

1 − x < e−2x for x < 1/2.
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By the second moment method, we have:

Pr[A = 0] ≤ Var[A]
E[A]2 .

But Equation (1) tells us that Pr[A = 0] > γ.
Thus Var[A] ≥ γE[A]2 ≥ γ · p2|G|2.
We now extract some structure from this.
We have:

Var[A] =
∑

x,x′∈G

(Pr[Ax ∧ Ax′ ] − Pr[Ax] Pr[Ax′ ]) .

Two simple observations about this expression:
Each term in the sum above is at most 1.
Furthermore, if x, x′ have no common neighbors in [M ] \ B, then the corresponding term
of the sum above is ≤ 0. Indeed, if Ux, Ux′ ⊆ [M ] \ B are the neighborhoods of x and x′

in [M ] \ B, and if they are disjoint, then:

Pr[Ax] =
(

M−|Ux|
λM

)(
M

λM

) ,

Pr[Ax′ ] =
(

M−|Ux′ |
λM

)(
M

λM

) ,

Pr[Ax ∧ Ax′ ] =
(

M−|Ux∪Ux′ |
λM

)(
M

λM

) =
(

M−|Ux|−|Ux′ |
λM

)(
M

λM

) .

So

Pr[Ax ∧ Ax′ ]
Pr[Ax] Pr[Ax′ ] =

λM−1∏
i=0

(M − i) · (M − |Ux| − |Ux′ | − i)
(M − |Ux| − i) · (M − |Ux′ | − i) ≤ 1.

Combining the largeness of Var[A] with these two observations tells us that there are
many x, x′ ∈ G which have a common neighbor in [M ] \ B. Specifically:

γp2|G|2 ≤ Var[A] ≤
∑

x,x′∈G

1[x, x′ have a common neighbor in [M ] \ B].

Thus there are at least γp2|G|2 ≥ 1
4 γp2N2 pairs x, x′ from G that have a common

neighbor in [M ] \ B.
Now the initial pruning we did will help us. Since all the vertices in [M ] \ B have degree

at most 1
β

ND
M , we can bound the number of such pairs x, x′. For every vertex x ∈ G, there

are at most D · 1
β

ND
M vertices x′ such that x and x′ share a common neighbor in [M ] \ B.

Thus the total number of pairs x, x′ from G that have a common neighbor in [M ] \ B is at
most

N · D · 1
β

ND

M
= 1

β

D2

M
N2.

Thus 1
4 γp2 ≤ 1

β
D2

M . Since p = e−4λD, we get:

M ≤ 4
γβ

D2e8λD.

This means that either D ≥ Ω
(

(γβM)1/4
)

= Ω
(
(γλM)1/4)

, or else:

D ≥ Ω
(

1
λ

log(γβM)
)

≥ Ω
(

1
λ

log(γλM)
)

. ◀
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4.3 Putting everything together
We now prove Theorem 9.

Proof. Let E : [N ]2 × [D] → [M ] be an ϵ-extracting merger.
Set λ = 20ϵ and γ = ϵ. Lemma 12 tells us that there is some y := y0 for which Ey is

(λ, γ)-abnormal.
Now, since E is ϵ-extracting, we have that Ey(X, J) = E(X, y, J) is ϵ-close to the uniform

distribution on [M ] for uniform and independent X ∈ [N ] and J ∈ [D]. Thus Lemma 13
tells us that

D ≥ min
{

Ω
(

1
ϵ

log(ϵ2M)
)

, Ω
(

(ϵ2M)1/4
)}

.
If ϵ ≥ 1

M1/10 , then the first expression is smaller and

D ≥ Ω(1
ϵ

log M),

and if ϵ < 1
M1/10 , then E is also a 1

M1/10 -extracting merger, and thus using the above lower
bound for 1

M1/10 in place of ϵ, we get that:

D ≥ MΩ(1). ◀

5 Seedless Extracting Multimergers and Projections of Partitions

In this section, we study seedless multimergers. Here our understanding is far from complete,
and we suggest many directions for research.

We begin by observing a connection between seedless multimergers and a very natural
and clean geometric question: how do we partition the unit cube [0, 1]t into c parts to ensure
that all s-dimensional axis-parallel projections of all parts are small? We then prove some
interesting positive and negative results about special cases of this general question. We
conclude by collecting a number of observations and questions about this natural partitioning
problem.

5.1 Seedless Multimergers with 1 bit output
In Section 3.1 we have already seen that there are no seedless mergers (i.e., with s = 1). We
now look into seedless multimergers.

Let us consider the simplest nontrivial situation: t = 3 and s = 2, and m = 1 (we only try
to extract 1 bit of randomness), with n big. Suppose a given function E : ({0, 1}n)3 → {0, 1}
is known to be a (ϵ, s)-multimerger. For convenience, we identify {0, 1}n with [N ], for
N = 2n.

By the multimerger property, for every function f : [N ]2 → [N ], the distribution of
E(X, Y, f(X, Y )) should be ϵ-close to uniform. Let

PXY,0 = {(x, y) ∈ [N ]2 : ∃z | E(x, y, z) = 0}.

Notice that this is the projection of E−1(0) to two coordinates.
If PXY,0 is bigger than 1+ϵ

2 N2, then we can violate the multimerger property: we define
f : [N ]2 → [N ] by f(x, y) = z, if any, such that E(x, y, z) = 0”. Then E(X, Y, f(X, Y )) for
uniform and independent X, Y ∈ [N ] is ϵ-far from uniform.
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We have a similar observation for all the other two dimensional projections, and also for
the set E−1(1). Thus if a seedless one-bit output multimerger for 3-part 2-where random
sources exists, then there is a partition of [N ]3 into 2 parts such that each part has all its
2-dimensional axis parallel projections have size at most 1+ϵ

2 N2.
The connection also goes in reverse. Suppose we have a partition A, B of [N ]3 for which

each part has all its 2-dimensional axis parallel projections with size at most 1+ϵ
2 N2. Let

E : [N ]3 → {0, 1} be the unique function with E−1(0) = A and E−1(1) = B. Suppose
(X, Y, Z) is an [N ]3-valued random variable that is 2-where random. Then we claim that
E(X, Y, Z) is ϵ-close to the uniform distribution. Indeed, if (X, Y ) is uniformly distributed
over [N ]2 (the cases of (Y, Z) and (X, Z) being uniformly distributed are similar), then:

Pr[E(X, Y, Z) = 0] ≤ Pr
X,Y

[∃z ∈ [N ] s.t. E(X, Y, z) = 0]

≤ Pr
X,Y

[∃z ∈ [N ] s.t. (X, Y, z) ∈ A]

≤ |ΠXY (A)|
N2

≤ 1 + ϵ

2 ,

Pr[E(X, Y, Z) = 1] ≤ Pr
X,Y

[∃z ∈ [N ] s.t. E(X, Y, z) = 1]

≤ Pr
X,Y

[∃z ∈ [N ] s.t. (X, Y, z) ∈ B]

≤ |ΠXY (B)|
N2

≤ 1 + ϵ

2 ,

which implies the desired ϵ-closeness to uniform of E(X, Y, Z).
The exact same argument applies to general t, s. We record this below.

▶ Theorem 14. Let N = 2n. There exists a seedless (n, d, t, m, ϵ, s)-multimerger if and only
if there is a partition of [N ]t into two sets A, B such that for every subset U ⊆ [t] of size s,
the projections ΠU (A) and ΠU (B) onto the coordinates U are of size at most 1+ϵ

2 Ns.

Motivated by this, we consider general projections of partitions questions, where the set
[N ]t is partitioned into c parts, and we seek to minimize the maximum s-dimensional axis
parallel projection of all the parts2.

As noted in the introduction, there is a basic bound for this problem that comes from
Shearer’s lemma. It says that there is a lower bound of

( 1
c

)s/t
Ns on the size of some

projection. This bound is usually not tight – but it sometimes is! Whenever c is a perfect
t’th power, then this bound is tight, and is realized by a partition into product sets. But
for other c this kind of partition does not work, and very interesting questions ensue. In
particular, we would like to highlight the case of N gigantic, and c = poly(t) (so that c is
clearly not a perfect t’th power).

Here is one observation that gives a flavor of what happens for large t and s. When c is a
constant, and s = t − o(

√
t), there is a partition so that all s-dimensional projections of size

1
c + o(1). This comes by considering suitable threshold partitions. Extensions of this are
related to the BKKKL [2, 10] conjectures on low influence functions.

2 For c > 2, the problem of getting such partitions with c parts is somewhat related to the problem of
multimergers with log2(c) bit output, but the connection is not as tight as for the case of c = 2

APPROX/RANDOM 2023
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This question is also equivalent to a problem in the continuous domain about open covers
of [0, 1]t. Here we want to minimize the maximum s-dimensional projection size when we
cover [0, 1]t by c open sets.

In the following sections, we discuss two results on partitioning in three dimensions. For
the first result, we get (to our surprise!) the tight bound for partitioning the cube into two
parts. For the second result, we get nontrivial bounds (both upper and lower) for partitioning
the cube into three parts.

Apology

These questions are more naturally phrased as questions about covers rather than partitions.
However we stick to the partition language because of the particular sequence of events that
led us to these problems.

6 Partitioning the 3-dimensional cube into two parts

In this section, we prove a tight bound on the largest 2 dimensional axis parallel projection
of a part when partitioning [0, 1]3 into 2 parts.

Let πXY , πY Z , πXZ : [0, 1]3 → [0, 1]2 be the 2-dimensional projection maps.
The following example gives a nice partitioning with small projections.

▶ Definition 15 (Majority Partitioning Scheme). We define the function MAJ3 : [0, 1]3 →
{0, 1} as

MAJ3(x, y, z) = Maj(x1, y1, z1)

where Maj denotes the Majority function on 3 bits, and where x1, y1, z1 denote the indicator
variables for whether x > 1/2, y > 1/2, z > 1/2 respectively.

We refer to the partition naturally induced by the output of MAJ3 on the input space
[0, 1]3 i.e. {MAJ−1

3 (0), MAJ−1
3 (1)}, as the Majority Partitioning Scheme.

We next record the observation tha all 2-dimensional axis-parallel projections of all parts
in the majority partitioning scheme on [N ]3 are of size at most 3

4 N2, which is stated in the
following lemma:

▶ Lemma 16 (Majority Partitions Optimally). Every 2-dimensional projection of every partition
in the majority partitioning scheme MAJ3 on [0, 1]3 is of size at most 3

4 .

In the other direction, we first prove a lower bound on projection sizes for a discrete
version of the problem.

Let N be a large positive integer. We reuse notation and let πXY , πY Z , πXZ : [N ]3 → [N ]2
be the 2-dimensional projection maps.

▶ Theorem 17. Let A, B ⊆ [N ]3 be a partition.
Then one of the six 2-dimensional projections of A and B

πXY (A), πY Z(A), πXZ(A), πXY (B), πY Z(B), πXZ(B)

has size at least 3
4 N2.

Proof of Theorem 17 can be found in the appendix.
By a simple discretization argument, we get the following corollary:
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1
2

1
21

2
1
2

1
2

1
2

Figure 1 Majority Partitioning of the cube into 2 parts, where the partitioned sets are coloured
in red and blue. Observe that all projections of the red set and the blue set are of equal size 3

4 , and
Theorem 17 implies this partitioning is optimal.

▶ Corollary 18. Any cover of [0, 1]3 by two open sets A, B has one of the following 6 sets:

ΠXY (A), ΠY Z(A), ΠXZ(A), ΠXY (B), ΠY Z(B), ΠXZ(B)

having area at least 3/4.

Thus we get that MAJ3 is an optimal partition for partitioning [N ]3 into two parts.

7 Partitioning the 3-dimensional cube into three parts

In this section we study the case of partitioning the 3 dimensional cube [0, 1]3 into 3 parts.
We begin with a nice partition of [0, 1]3 into 3 parts so that each part has small 2-

dimensional axis-parallel projections.

▶ Definition 19 (Golden Ratio Partitioning Scheme). Let u be the positive root of x2 + x = 1.
We define the function GR3 : [0, 1]3 → {0, 1, 2} as

GR3(x, y, z) =


0, |x| > u, |y| > u

1, |x| ≤ u, |y| ≤ u, |z| ≤ 1
2

2, otherwise.

We refer to the partition into 3 parts naturally induced by the output of GR3 on the input
space [0, 1]3 i.e. {GR−1

3 (0), GR−1
3 (1), GR−1

3 (2)}, as the golden ratio partitioning scheme.

▶ Lemma 20 (Golden Ratio Partitioning Bound). Every 2-dimensional projection of every
partition in the golden ratio partitioning scheme GR3 on [0, 1]3 is of size u ≤ 0.619.

We do not know if this is the optimal partition into 3 parts. For the rest of this section,
we prove the best lower bound that we know. As in the previous section, we do this via an
analogous discrete problem.

Let η0 ≈ 0.5264 be the real number ∈ [0.5, 1.0] satisfying:

(2 − 3η0) ·
(

2 − 2
√

1 − η0

)
+ (3η0 − 1) = 1

6(4 − η0).
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u

1-u

u1-u

1
2

1
2

Figure 2 Golden Ratio Partitioning of the cube into 3 parts, where the partitioned sets are
coloured in red, green and blue. The green and red parts are just translates of each other. Here u is
the positive root of x2 + x = 1.

▶ Theorem 21. Let A, B, C ⊆ [N ]3 be a 3-partition of [N ]3. Then one of the nine 2-
dimensional projections of A, B and C, i.e.,

ΠXY (A), ΠXY (B), ΠXY (C), ΠY Z(A), ΠY Z(B), ΠY Z(C), ΠXZ(A), ΠXZ(B), ΠXZ(C) has
size at least η0N2.

Proof of Theorem 21 can be found in the appendix.
This gives us a corresponding result about covers of [0, 1]3 with 3 open sets.

▶ Corollary 22. Any cover of [0, 1]3 by three open sets A, B, C has one of the following 9
sets:

ΠXY (A), ΠY Z(A), ΠXZ(A), ΠXY (B), ΠY Z(B), ΠXZ(B), ΠXY (C), ΠY Z(C), ΠXZ(C)

having area at least η0.
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A Appendix

▶ Theorem 23 (Restatement of Theorem 17). Let A, B ⊆ [N ]3 be a partition.
Then one of the six 2-dimensional projections of A and B

πXY (A), πY Z(A), πXZ(A), πXY (B), πY Z(B), πXZ(B)

has size at least 3
4 N2.

Proof. Suppose πXY (A) and πXY (B) are both at most 3
4 N2.

Fix z ∈ [N ]. Let us consider the slice Sz = [N ]2 × {z}, and focus on the X and Y

projections of the sets A ∩ Sz and B ∩ Sz (so four projections in all, each being a subset
of [N ]).

Define3:

AXz = {x | ∀y ∈ [N ], (x, y, z) ∈ A}.

3 If A, B was merely a cover of [N ]3 rather than a partition, the correct definition would be
AXz = {x |̸ ∃y ∈ [N ] s.t. (x, y, z) ∈ B},

etc, and the rest of the proof would remain the same.
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BXz = {x | ∀y ∈ [N ], (x, y, z) ∈ B}.

AY z = {y | ∀x ∈ [N ], (x, y, z) ∈ A}.

BY z = {y | ∀x ∈ [N ], (x, y, z) ∈ B}.

Let αXz, βXz, αY z, βY z ∈ [0, 1] be their fractional sizes (= size divided by N).
Then we have the following:
AXz ∩ BXz = ∅ and AY z ∩ BY z = ∅. Thus:

αXz + βXz ≤ 1, (2)
αY z + βY z ≤ 1. (3)

((AXz × [N ]) ∪ ([N ] × AY z)) ⊆ πXY (A).
This is because any (x, y) ∈ (AXz × [N ]) has (x, y, z) ∈ A, and thus (x, y) ∈ πXY (A).
The fractional size of the left hand side is 1 − (1 − αXz)(1 − αY z), and the fractional size
of the right hand side is ≤ 3/4.
This gives us (after applying the AM-GM inequality4):

αXz + αY z ≤ 1. (4)

Similarly,

((BXz × [N ]) ∪ ([N ] × BY z)) ⊆ πXY (B),

βXz + βY z ≤ 1. (5)

At most one of AXz, BY z can be nonempty, and at most one of AY z, BX,z can be nonempty.
This is because x ∈ AXz and y ∈ BY z imply that (x, y, z) ∈ A and (x, y, z) ∈ B

respectively. Thus at most one of αXz, βY z, and at most one of αY z, βXz can be nonzero.

Putting everything together, we get that only two of the four numbers αXz, βXz, αY z, βY z

can be nonzero, and furthermore, the sum of those two is bounded above by 1.
Therefore, for each z ∈ [N ],

αXz + βXz + αY z + βY z ≤ 1.

Averaging in z, we get that

Ez[αXz + βXz + αY z + βY z] ≤ 1,

and thus one of the four numbers:

Ez[αXz], Ez[βXz], Ez[αY z], Ez[βY z]

is at most 1/4.
Finally, observe that (1 − Ez[αXz]) is the fractional size of πXZ(B) (and similarly for the

other three numbers), and so one of the four projections

πXZ(B), πXZ(A), πY Z(B), πY Z(A)

has size at least 3
4 N2. ◀

4 For any non-negative real numbers x and y, √
x · y ≤ x+y

2
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▶ Theorem 24 (Restatement of Theorem 21). Let A, B, C ⊆ [N ]3 be a 3-partition of [N ]3.
Then one of the nine 2-dimensional projections of A, B and C, i.e.,

ΠXY (A), ΠXY (B), ΠXY (C), ΠY Z(A), ΠY Z(B), ΠY Z(C), ΠXZ(A), ΠXZ(B), ΠXZ(C) has
size at least η0N2.

Before embarking on the proof of Theorem 21, we note down a simple set intersection
lemma that will be useful.

▶ Lemma 25 (Set intersection inequality). Suppose U, V, W be arbitrary sets which have union
equal to T .

Then

|U | + |V | + |W | ≥ 2|T | − (|U \ (V ∪ W )| + |V \ (W ∪ U)| + |W \ (U ∪ V )|) + |U ∩ V ∩ W |.

This lemma gives a way to get a lower bound on the average size of three sets U, V, W

that cover a set T by first proving an upper bound on the sizes of the “unique” parts
U \ (V ∪ W ), V \ (U ∪ W ), W \ (U ∪ V ). The proof is simple and omitted.

We now prove Theorem 21.

Proof. Consider any partition A, B and C of [N ]3 into 3 parts. Suppose ΠXY (A), ΠXY (B)
and ΠXY (C) are at most η0. (If not we are done).

Fix z ∈ [N ].
Our first step is to consider the slice Sz = [N ]2 × {z}, and focus on the X and Y

projections of the 3 sets A ∩ Sz, B ∩ Sz, C ∩ Sz (so six projections in all, each being a subset
of [N ]).

Define:

AXz = {x ∈ [N ] | ∃y ∈ [N ] s.t. (x, y, z) ∈ A}.

BXz = {x ∈ [N ] | ∃y ∈ [N ] s.t. (x, y, z) ∈ B}.

CXz = {x ∈ [N ] | ∃y ∈ [N ] s.t. (x, y, z) ∈ C}.

AY z = {y ∈ [N ] | ∃x ∈ [N ] s.t. (x, y, z) ∈ A}.

BY z = {y ∈ [N ] | ∃x ∈ [N ] s.t. (x, y, z) ∈ B}.

CY z = {y ∈ [N ] | ∃x ∈ [N ] s.t. (x, y, z) ∈ C}.

Note that:

AXz ∪ BXz ∪ CXz = [N ]

AY z ∪ BY z ∪ CY z = [N ]

since A, B, C is a partition of [N ]3.
Next we identify the “pure” parts of these projections, defined below:

ÃXz = AXz \ (BXz ∪ CXz)

B̃Xz = BXz \ (CXz ∪ AXz)

C̃Xz = CXz \ (AXz ∪ BXz)

ÃY z = AY z \ (BY z ∪ CY z)
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B̃Y z = BY z \ (CY z ∪ AY z)

C̃Y z = CY z \ (AY z ∪ BY z)

Furthermore, we have:

{x | Π−1
XZ(x, z) ⊆ A} ⊆ ÃXz

and five similar containments for B̃Xz, C̃Xz, ÃY z, B̃Y z, C̃Y z.
Let α̃Xz, β̃Xz, γ̃Xz, α̃Y z, β̃Y z, γ̃Y z ∈ [0, 1] be their fractional sizes.
Note that since the corresponding sets are disjoint, we have:

α̃Xz + β̃Xz + γ̃Xz ≤ 1 (6)

α̃Y z + β̃Y z + γ̃Zz ≤ 1 (7)

▶ Lemma 26. For any z ∈ [N ], out of the 6 variables α̃Xz, β̃Xz, γ̃Xz, α̃Y z, β̃Y z, γ̃Y z, let H be
the set of those variables that are nonzero. Then H is a subset of at least one of the following
sets of variables:

{α̃Xz, α̃Y z}, {β̃Xz, β̃Y z}, {γ̃Xz, γ̃Y z}, {α̃Xz, β̃Xz, γ̃Xz}, {α̃Y z, β̃Y z, γ̃Y z}

Proof. It is a consequence of the easy observation that α̃Xz and β̃Y z cannot both be nonzero
(and 5 similar easy observations). ◀

Let

δXz =
{

1 α̃Y z, β̃Y z, γ̃Y z > 0
0 otherwise

.

δY z =
{

1 α̃Xz, β̃Xz, γ̃Xz > 0
0 otherwise

.

Note that δXz depends on the projections in the Y direction (and vice versa). The reason
for this definition is the following observation: if δXz = 1, then we have

AXz ∩ BXz ∩ CXz = AXz = BXz = CXz = [N ], (8)

and similarly, if δY z = 1, then we have

AY z ∩ BY z ∩ CY z = AY z = BY z = CY z = [N ], (9)

which is something that our set intersection lemma can exploit.
Define

λXz = α̃Xz + β̃Xz + γ̃Xz − δXz,

λY z = α̃Y z + β̃Y z + γ̃Y z − δY z.

λz = λXz + λY z.

Note that by Equations (6), (7), for all z,

λXz ≤ 1. (10)
λY z ≤ 1. (11)
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By the set intersection lemma,

|AXz| + |BXz| + |CXz| ≥ 2N −
(

|ÃXz| + |B̃Xz| + |C̃Xz|
)

+ |AXz ∩ BXz ∩ CXz|

≥ (2 − λXz)N

Similarly,

|AY z| + |BY z| + |CY z| ≥ (2 − λY z)N

Summing over z ∈ [N ] and adding these two equations, we get:

ΠXZ(A) + ΠXZ(B) + ΠXZ(C) ≥ (2 − Ez[λXz]) N2, (12)

ΠY Z(A) + ΠY Z(B) + ΠY Z(C) ≥ (2 − Ez[λY z]) N2, (13)

ΠXZ(A) + ΠXZ(B) + ΠXZ(C) + ΠY Z(A) + ΠY Z(B) + ΠY Z(C) ≥ (4 − Ez[λz]) N2. (14)

Our goal is now to get an upper bound on Ez[λz].
To get our main result, we will show that Ez[λz] ≤ λ∗ := 4 − 6η0 ≈ 0.856 (or else we find

a large projection in some other way). This will show that one of the 6 projections on the
left hand side is at least η0N2, as desired.

If we just want to get a projection of size ≥ 1
2 N2, then it suffices to show that λ∗ ≤ 1,

and this turns out to be simpler.
Towards that end, we define αX to be the fraction of x for which {x} × [N ] ⊆ ΠXY (A).

Similarly define αY , βX , βY , γX , γY .
Note that since ÃXz × [N ] × {z} ⊆ A, we have:

αXz ≤ αX ,

and 5 similar inequalities.
Note that αX ≤ η, and 5 similar inequalities.
Define u : [0, 1] → [0, 2] by:

u(a) = 2 − 2
√

1 − a.

Using the argument used to arrive at Equation (4) (by the AM-GM inequality), we have

α̃Xz + α̃Y z ≤ u(η0) ( and thus αX + αY ≤ u(η0) ).

and 2 similar pairs of inequalities.
Let gX = max{αX + βX , βX + γX , αX + γX}., similarly qY .
By the inequalities above, we have: gX + gY ≤ 2η0 + u(η0).
Now let qX = Prz∈[n][exactly two of αXz, βXz, γXz are nonzero], similarly define qY .

q = Pr
z∈[n]

[at most one of αXz, βXz, γXz and at most one of αY z, βY z, γY z is nonzero]

We are now in a position to state a key lemma which will prove our lower bound:

▶ Lemma 27.

Ez[λz] ≤ q · u(η0) + qX · min(gX , 1) + qY · min(gY , 1)).

Proof. Let z ∈ [N ]. We take cases on which of the 6 numbers α̃Xz, β̃Xz, γ̃Xz, α̃Y z, β̃Y z, γ̃Y z

are nonzero. By Lemma 26, there only a few cases to consider.
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If the first three numbers are nonzero or the second three numbers are nonzero, then λz

is nonpositive because the sum of those three is at most 1 (by Equations (6), (7), and
δXz = 1 or δY z = 1.
If exactly two of the first three numbers are nonzero, then λz is at most min(gX , 1). This
happens for qX fraction of the z’s.
If exactly two of the second three numbers are nonzero, then λz is at most min(gY , 1).
This happens for qY fraction of the z’s
If at most one of the first three numbers and at most one of the second three numbers is
nonzero, then λz is at most 2 − 2

√
1 − η0. This happens for q fraction of the z’s. ◀

Now q+qX +qY ≤ 1. At this point, we already see that Ez[λz] ≤ 1 (since u(η0) ≈ 0.6237 ≤ 1),
and this gives us the result that some projection has size at least 1

2 N2.
To get our improved bound of η0N2, we need one more idea.

▶ Lemma 28. qX + Ez[λY z] ≤ 1 and qY + Ez[λXz] ≤ 1

Proof. We prove the first inequality, the second being similar. qX is the fraction of z for
which exactly two of {α̃Xz, β̃Xz, γ̃Xz} are nonzero. For such a z, we have α̃Y z = β̃Y z =
γ̃Y z = δY z = 0, and thus λY z = 0. Along with Equations (10), (11), this completes the
proof. ◀

By Equation (12), if Ez[λXz] is at most 2 − 3η0, then we get a projection onto the XZ plane
of size at least η0N2, and we are done. Similarly, by Equation (13), if Ez[λY z] is at most
2 − 3η0, then we get a projection onto the Y Z plane of size at least η0N2, and we are done.
Thus we may assume that both Ez[λXz] and Ez[λY z] are at least 2 − 3η0.

By the previous lemma, we thus get that qX , qY ≤ 3η0 − 1. Summarizing everything
we know: gX + gY ≤ 2η0 + u(η0), qX , qY ≤ 3η0 − 1. and q + qX + qY ≤ 1. Under these
constraints, we claim that: q · u(η0) + qX · min(gX , 1) + qY · min(gY , 1) ≤ λ∗. By inspection,
we see that the LHS is maximized when:

gX = 1, qX = 3η0 − 1, q = 1 − qX = 2 − 3η0,

which makes it evaluate to:

(2 − 3η0) · u(η0) + (3η0 − 1) = 1
6(4 − η0) = λ∗,

where the first equality is the defining equation of η0, and the second equality is the definition
of λ∗. This completes the proof. ◀
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