
On the Composition of Randomized Query
Complexity and Approximate Degree
Sourav Chakraborty # Ñ

Indian Statistical Institute, Kolkata, India

Chandrima Kayal #

Indian Statistical Institute, Kolkata, India

Rajat Mittal #

Indian Institute of Technology Kanpur, India

Manaswi Paraashar #

Aarhus University, Denmark

Swagato Sanyal #

Indian Institute of Technology Kharagpur, India

Nitin Saurabh #

Indian Institute of Technology Hyderabad, India

Abstract
For any Boolean functions f and g, the question whether R(f ◦ g) = Θ̃(R(f) · R(g)), is known as the
composition question for the randomized query complexity. Similarly, the composition question for
the approximate degree asks whether d̃eg(f ◦ g) = Θ̃(d̃eg(f) · d̃eg(g)). These questions are two of
the most important and well-studied problems in the field of analysis of Boolean functions, and yet
we are far from answering them satisfactorily.

It is known that the measures compose if one assumes various properties of the outer function f

(or inner function g). This paper extends the class of outer functions for which R and d̃eg compose.
A recent landmark result (Ben-David and Blais, 2020) showed that R(f ◦g) = Ω(noisyR(f)·R(g)).

This implies that composition holds whenever noisyR(f) = Θ̃(R(f)). We show two results:
1. When R(f) = Θ(n), then noisyR(f) = Θ(R(f)). In other words, composition holds whenever the

randomized query complexity of the outer function is full.
2. If R composes with respect to an outer function, then noisyR also composes with respect to the

same outer function.
On the other hand, no result of the type d̃eg(f ◦ g) = Ω(M(f) · d̃eg(g)) (for some non-trivial
complexity measure M(·)) was known to the best of our knowledge. We prove that

d̃eg(f ◦ g) = Ω̃(
√

bs(f) · d̃eg(g)),

where bs(f) is the block sensitivity of f . This implies that d̃eg composes when d̃eg(f) is asymptotically
equal to

√
bs(f).

It is already known that both R and d̃eg compose when the outer function is symmetric. We
also extend these results to weaker notions of symmetry with respect to the outer function.
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1 Introduction

For studying the complexity of Boolean functions, a number of simple complexity measures
(like decision tree complexity, randomized query complexity, degree, certificate complexity
and so on) have been studied over the years. (Refer to the survey [15] for an introduction to
complexity measures of Boolean functions.) Understanding how these measures are related
to each other [1, 2, 4, 27], and how they behave for various classes of Boolean functions has
been a central area of research in complexity theory [34, 23, 42].

A crucial step towards understanding a complexity measure is: how does the complexity
measure behave when two Boolean functions are combined to obtain a new function (i.e.,
what is the relationship between the measure of the resulting function and the measures
of the two individual functions) [16, 12, 25, 44]? One particularly natural combination of
functions is called composition, and it takes a central role in complexity theory.

For any two Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, the composed
function f ◦ g : {0, 1}nm → {0, 1} is defined as the function

f ◦ g(x1, . . . , xn) = f(g(x1), . . . , g(xn)),

where xi ∈ {0, 1}m for i ∈ [n]. For the function f ◦ g, the function f is called the outer
function and g is called the inner function. See Definition 13 for a natural extension to
partial functions.

Let M(·) be a complexity measure of Boolean functions. A central question in complexity
theory is the following.

▶ Question 1 (Composition question for M). Is the following true for all Boolean functions
f and g:

M(f ◦ g) = Θ̃(M(f) · M(g))?

The notation Θ̃(·) hides poly-logarithmic factors of the arity of the outer function f .
Composition of Boolean functions with respect to different complexity measures is a very

important and useful tool in areas like communication complexity, circuit complexity and
many more. To take an example, a popular application of composition is to create new
functions demonstrating better separations (refer to [33, 44, 3, 25] for some other results of
similar flavour).

It is known that the answer to the composition question is in the affirmative for complexity
measures like deterministic decision tree complexity [37, 44, 31], degree [44] and quantum
query complexity [35, 29, 28]. While it is well understood how several complexity measures
behave under composition, there are two important measures (even though well studied)
for which this problems remains wide open: randomized query complexity (denoted by R)
and approximate degree (denoted by d̃eg) [38, 33, 3, 39, 17, 40]. (See Definition 30 and
Definition 31 for their respective formal definitions.)

For both R and d̃eg the upper bound inequality is known, i.e., R(f ◦ g) = Õ(R(f) · R(g))
(folklore) and d̃eg(f ◦ g) = O(d̃eg(f) · d̃eg(g)) [41]. Thus it is enough to prove the lower
bound on the complexity of composed function in terms of the individual functions. Most of
the attempts to prove this direction of the question have focused on special cases when the
outer function has certain special properties1.

1 We note that some works have also studied the composition of R and d̃eg when the inner functions have
special properties, for example, [1, 13, 6, 24, 30, 10].
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The initial steps taken towards answering the composition question for R were to show
a lower bound by using a weaker measure of outer function than the randomized query
complexity. In particular, it was shown that R(f ◦ g) = Ω(s(f) · R(g)) [26, 5], where s(f)
is the sensitivity of f (Definition 32). Since s(f) = Θ(R(f)) for any symmetric function2

f , these results show that R composes when the outer function is a symmetric function
(like OR, AND, Majority, Parity, etc.). The lower bound was later improved to obtain
R(f ◦ g) = Ω(fbs(f) · R(g)) [7, 8], where fbs(f) is the fractional block sensitivity of f

(Definition 33).
Unfortunately, at this stage, there could even be a cubic gap between R and fbs; the

best known bound is R(f) = O(fbs(f)3) [2]. Given that there are already known Boolean
functions with quadratic gap between fbs(f) and R(f) (e.g., BKK function [1]), it is natural
to consider composition question for randomized query complexity when R is big but fbs is
small. We take a step towards this problem by showing that composition for R holds when
the outer function has full randomized query complexity, i.e., R(f) = Θ(n), where n is the
arity of the outer function f .

For composition of d̃eg, Sherstov [38] already showed that d̃eg(f ◦ g) composes when the
approximate degree of the outer function f is Θ(n), where n is the arity of the outer function.
Thus approximate degree composes for several symmetric functions (having approximate
degree Θ(n), like Majority and Parity). Though, until recently it was not even clear if
d̃eg(OR ◦ AND) = Ω(d̃eg(OR) d̃eg(AND)) (arguably the simplest of composed functions). OR
has approximate degree O(

√
n), and thus the result of [38] does not prove d̃eg composition

when the outer function is OR (similarly for AND). In a long series of work by [33, 3, 39, 17, 40],
the question was finally resolved; it was later generalized to the case when the outer function
is symmetric [11].

In contrast to R composition, no lower bound on the approximate degree of composed
function is known with a weaker measure on the outer function. It is well known that for any
Boolean function f ,

√
s(f) ≤

√
bs(f) = O(d̃eg(f)) [33]. So a natural step towards proving

d̃eg composition is: prove a lower bound on d̃eg(f ◦ g) by
√

bs(f) · d̃eg(g). We show this
result by generalizing the approach of [11].

While the techniques used for the composition of R and d̃eg are quite different, one can
still observe similarities between the classes of outer functions for which the composition of
R and d̃eg is known to hold respectively. We further expand these similarities, by extending
the classes of outer functions for which the composition theorem hold.

2 Our Results and Techniques

It is well-known, by amplification, that R(f ◦ g) = O(R(f) · R(g) · log R(f)). In the case of
approximate degree, Shrestov [41] showed that d̃eg(f ◦ g) = O(d̃eg(f) · d̃eg(g)). So, to answer
the composition question for R (or d̃eg), we are only concerned about proving a lower bound
on R(f ◦ g) (or d̃eg(f ◦ g)) in terms of R(f) and R(g) (or d̃eg(f) and d̃eg(g)) respectively.

We split our results into three parts. In the first part we prove the tight lower bound
on R(f ◦ g) when the outer function has full randomized complexity. In the second part we
provide a tight lower bound on d̃eg(f ◦ g) in terms of bs(f) and d̃eg(g). Our results on the
lower bound of R(f ◦ g) and d̃eg(f ◦ g) are summarized in Table 1. Finally, we also prove
composition theorems for R and d̃eg when the outer functions have a slightly relaxed notion
of symmetry.

2 Functions that depend only on the Hamming weight of their input.

APPROX/RANDOM 2023
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Table 1 Composition of R and d̃eg depending on the complexity of the outer function in terms
of block-sensitivity and arity.

In terms of bs(f) In terms of arity of f

R R(f ◦ g) = Ω̃(bs(f) · R(g)) R(f ◦ g) = Ω̃(R(f) · R(g)) when R(f) = Θ(n)
[26] Theorem 2

d̃eg d̃eg(f ◦ g) = Ω̃(
√

bs(f) · d̃eg(g)) d̃eg(f ◦ g) = Ω̃(d̃eg(f) · d̃eg(g)) when d̃eg(f) = Θ(n)
Theorem 7 [38]

2.1 Lower bounds on R(f ◦ g) when the outer function has full
randomized query complexity

Sherstov [38] proved that d̃eg(f ◦ g) = Ω(d̃eg(f) · d̃eg(g)) when the approximate degree of
the outer function f is Θ(n), where n is the arity of f . Though, a corresponding result for
the case of randomized query complexity was not known. Our main result is to prove the
corresponding theorem for randomized query complexity.

▶ Theorem 2. Let f be a partial Boolean function on n-bits such that R(f) = Θ(n). Then
for all partial functions g, we have

R(f ◦ g) = Ω(R(f) · R(g)).

The proof of this theorem is given in Section 4. Notice, since R(f ◦ g) = O(R(f) ·
R(g) log R(f)) (by error reduction), Theorem 2 says that composition of R holds when the
randomized query complexity of the outer function, f , is Θ(n). Next, we give main ideas
behind the proof of the above theorem.

Ideas behind proof of Theorem 2

A crucial complexity measure that we use for the proof of Theorem 2 is called the noisy
randomized query complexity, first introduced by Ben-David and Blais [9] in order to study
randomized query complexity. Noisy randomized query complexity can be seen as a generaliz-
ation of randomized query complexity where the algorithm can query a bit with any bias and
only pays proportionally to the square of the bias in terms of cost (see Definition 16). They
give the following characterization of noisyR(f) (the noisy randomized query complexity
of f).

▶ Theorem 3 (Ben-David and Blais [9]). For all partial functions f on n-bits, we have

noisyR(f) = Θ
(

R(f ◦ GapMajn)
n

)
, (1)

where GapMajn is the Gap-Majority function on n bits whose input is promised to have
Hamming weight either (n/2 + 2

√
n) (in which case the output is −1) or (n/2 − 2

√
n) (in

which case the output is 1).

We want to point out that the arity of f and Gap-Majority is the same in Theorem 3.
Towards a proof of Theorem 2, we first make the following crucial observation.

▶ Observation 4. Let f be a partial Boolean function on n bits. If t(n) ≥ 1 is a non-decreasing
function of n and

noisyR(f) = Ω
(R(f ◦ GapMajt(n))

t(n)

)
,

then R(f ◦ g) = Ω((R(f) · R(g))/t(n)) for all partial functions g.
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In particular choosing t(n) to be (log n), if the outer function f satisfies

noisyR(f) = Ω
(R(f ◦ GapMajlog n)

log n

)
. (2)

then the above observation gives R(f ◦g) = Ω((R(f) ·R(g))/(log n)) for all partial functions g.
The Observation 4 allows us to approach the composition question for randomized query

complexity in a conceptually fresh manner. The goal of proving that randomized query
complexity composes for a function or a class of functions, say upto (log n)-factor, reduces to
showing that Equation 2 holds for that function or class of functions for t(n) = log n.

We are able to show that Equation 2 holds for all non-decreasing functions t(n) with a
slight overhead.

▶ Theorem 5. Let f be a partial function on n bits and let t ≥ 1, then R(f ◦ GapMajt) =
O (t · noisyR(f) + n).

Notice that this is a generalization of Ben-David and Blais’ characterization of noisyR
given by Theorem 3 in one direction. To give an idea of the proof, their characterization
(Theorem 3) shows that any noisy oracle algorithm for f can be simulated using only two
biases, 1 and 1/

√
n (where n is the arity of f), with only constant overhead. We generalize

this by showing that the same simulation works with a slight overhead even when the bias
1/

√
n is replaced by a bias 1/

√
t, for some t ≥ 1. A detailed proof the above theorem has

been included in the full version of this paper [20].
This seemingly inconsequential generalization allows us to complete the proof of Theorem 2,

i.e. if for an n-bit partial function f , R(f) = Θ(n), then R(f ◦ g) = Θ̃(R(f) · R(g)) for all
partial functions g (see Section 4 for details).

Furthermore, Theorem 5 even sheds light on the composition question for noisyR. A
corollary of this theorem is that if R composes with respect to an outer function, then noisyR
also composes with respect to the same outer function (see Section 4 for a proof).

▶ Corollary 6. Let f be a partial Boolean function. If R(f ◦ g) = Θ̃(R(f) · R(g)) for all
partial functions g then noisyR(f ◦ g) = Θ̃(noisyR(f) · noisyR(g)).

2.2 Lower bound on d̃eg(f ◦ g) in terms of block sensitivity of f and
d̃eg(g)

As discussed in the introduction, the composition question for d̃eg is only known to hold
when the outer function f is symmetric [11] or has high approximate degree [38]. There
are also no known lower bounds on d̃eg(f ◦ g) in terms of weaker measures of f and d̃eg(g).
Compare this with the situation with respect to composition of R. It was shown in [26] that
R(f ◦ g) = Ω(s(f) R(g)), where s(f) denotes the sensitivity of f . This was later strengthened
to Ω(fbs(f) R(g)) [7, 8], where fbs(f) is the fractional block sensitivity of f .

In this second part we show analogous lower bounds on approximate degree of composed
function f ◦ g. Our main result here is the following.

▶ Theorem 7. For all non-constant (possibly partial)3 Boolean functions f : {0, 1}n → {0, 1}
and g : {0, 1}m → {0, 1}, we have

d̃eg(f ◦ g) = Ω̃(
√

bs(f) · d̃eg(g)).

3 For definitions of block sensitivity and approximate degree in the context of partial functions, please see
Definitions 32 and 17.

APPROX/RANDOM 2023
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We first note that the above theorem is tight in terms of block sensitivity, i.e., we
cannot have d̃eg(f ◦ g) = Ω̃(bs(f)c · d̃eg(g)) for any c > 1/2. This is because the OR
function over n bits witnesses the tight quadratic separation between d̃eg and bs, i.e.,
d̃eg(ORn) = Θ(

√
n) = Θ(

√
bs(ORn)) [33].

We also get the following composition theorem as a corollary. It says that the composition
for d̃eg holds when the outer function has minimal approximate degree with respect to its
block sensitivity. Recall, d̃eg(f) = Ω(

√
bs(f)) [33].

▶ Corollary 8. For all Boolean function f : {0, 1}n → {0, 1} with d̃eg(f) = Θ(
√

bs(f)) and
for all g : {0, 1}m → {0, 1}, we have d̃eg(f ◦ g) = Θ̃(d̃eg(f) · d̃eg(g)).

This complements a result of Sherstov [38, Theorem 6.6], which shows that composition
of d̃eg holds when the outer function has maximal d̃eg with respect to its arity.

We further note that Corollary 8 covers new set of composed functions f ◦ g for which
the composition theorem for d̃eg doesn’t follow from the known results [11, 38]. For example,
consider the Rubinstein function RUB with arity n( see [36] for Definition ) as the outer
function f . It is clearly not a symmetric function. It also doesn’t have high approximate
degree, i.e., d̃eg(RUB) = O(

√
n log n) (see Lemma A.7 from [20]). Therefore, the composition

of d̃eg(RUB ◦ g) doesn’t follow from the existing results. However, it follows from Corollary 8,
since bs(RUB) = Ω(n) and so d̃eg(RUB) = Θ̃(

√
bs(RUB)).

Another example is the sink function SINK over
(

n
2
)

variables ([22]), which is also not
a symmetric function. Furthermore, its approximate degree is O(

√
n log n) (Lemma A.7

from [20]). Therefore, the composition of d̃eg(SINK ◦ g) also doesn’t follow from the existing
results. Again, it follows from Corollary 8, since bs(SINK) = Θ(n) (Observation A.4, [20])
and d̃eg(SINK) = Θ̃(

√
n).

Ideas behind proof of Theorem 7

We will first sketch the proof ideas in the case when f and g are total Boolean functions,
and then explain how to extend it to partial functions too.

Our starting point is the well known Nisan-Szegedy’s embedding of PrOR (see Definition 18)
over bs(f) many bits in a Boolean function f [33]. Carrying out this transformation in
f ◦ g embeds PrORbs(f) ◦ (g1, . . . , gbs(f)) into f ◦ g, where g1, . . . , gbs(f) are different partial
functions such that b̃deg(gi) ≥ d̃eg(g) for all i ∈ [bs(f)]4. Since the transformation is just
substitutions of variables by constants, we further have

d̃eg(f ◦ g) ≥ b̃deg(PrORbs(f) ◦ (g1, . . . , gbs(f))). (3)

It now looks like that we can appeal to the composition theorem for PrOR (Theorem 21)
[11] to obtain our theorem. However, there is a technical difficulty – Theorem 21 doesn’t
hold for different inner partial functions. It only deals with a single total inner function. We
therefore generalize the proof of Theorem 21 to obtain the following general version of the
composition theorem for PrOR.

▶ Theorem 9. For any partial Boolean functions g1, g2, . . . , gn, we have

b̃deg (PrORn ◦ (g1, g2, . . . , gn)) = Ω
(√

n · minn
i=1 b̃deg(gi)

log n

)
.

4 b̃deg is the notion of approximate degree in the context of partial functions. For a formal definition, see
Definition 17.
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We can now obtain Theorem 7 from Equation (3) and Theorem 9. The proof of Theorem 9
is a generalization of a result due to [11] (see Theorem 21). For lack of space, we present the
proof of this theorem in the complete version of this paper [20].

2.3 Composition results when the outer functions has some symmetry

The class of symmetric functions capture many important function like OR, AND, Parity
and Majority. Recall that a function is symmetric when the function value only depends on
the Hamming weight of the input; in other words, a function is symmetric iff its value on an
input remains unchanged even after permuting the bits of the input. As noted earlier, both
for R and d̃eg, composition was known to hold when the outer function was symmetric.

A natural question is, whether one can prove composition theorems when the outer
function is weakly symmetric (it is symmetric with respect to a weaker notion of symmetry).
In this paper we consider one such notion of symmetry – junta-symmetric functions.

▶ Definition 10 (k-junta symmetric function). A function f : {0, 1}n → {0, 1} is called a
k-junta symmetric function if there exists a set J of size k of variables such that the function
value depends on assignments to the variables in J as well as on the Hamming weight of the
whole input.

k-junta symmetric functions can be seen as a mixture of symmetric functions and k-juntas.
This class of functions has been considered previously in literature, particularly in [19, 14]
where these functions plays a crucial role. [19] even presents multiple characterisations of
k-junta symmetric functions for constant k. Note that by definition an arbitrary k-junta
(i.e., a function that depend on k variables) is also a k-junta symmetric function, since we
can consider the dependence on Hamming weight to be trivial. Thus, this notion loses out
on the symmetry of the function considered. We, therefore, consider the class of strongly
k-junta symmetric functions.

▶ Definition 11 (Strongly k-junta symmetric function). A k-junta symmetric function is called
strongly k-junta symmetric if every variable is influential. In other words, there exists a
setting to the junta variables such that the function value depends on the Hamming weight of
the whole input in a non-trivial way.

We prove that if the outer function is strongly
√

n-junta symmetric (“strongly” indicating
that the dependence on the Hamming weight is non-trivial) then d̃eg composes. On the other
hand, Theorem 2 implies that R composes for any strongly k-junta symmetric functions (as
long as n − k = Θ(n)).

▶ Theorem 12. For any strongly k-junta symmetric function f : {0, 1}n → {0, 1} and any
Boolean function g : {0, 1}m → {0, 1}, we have

d̃eg(f ◦ g) = Θ̃(d̃eg(f) · d̃eg(g)) where k = O(
√

n).
R(f ◦ g) = Θ̃(R(f) · R(g)) where n − k = Θ(n).

For the lack of space, the proof of the above theorem is given in Appendix C. Note
that if one is able to prove the above theorem for k-junta-symmetric functions (without the
requirement of “strongly”) for any non-constant k then we would have the full composition
theorem.

APPROX/RANDOM 2023
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Organization of the paper

We have formally defined complexity measures and Boolean functions needed for our results in
Section 3 and Appendix A. Section 4 contains proofs of our results related to the composition
of randomized query complexity (Theorem 2). In Section 5 we give the proof of our result for
the composition of approximate degree (Theorem 7). Finally, for the sake of space, the results
about the composition of functions with the weak notion of symmetry are in Appendix C.

3 Preliminaries

Notations: We will use [n] to represent the set {1, . . . , n}. For any (possibly partial) Boolean
function f : {0, 1}n → {0, 1, ∗} we will denote by Dom(f) the set f−1({0, 1}). The arity of f

is the number of variables - in this case n. A Boolean function f : {0, 1}n → {0, 1, ∗} is said
to be total if Dom(f) = {0, 1}n. Any function (not otherwise stated) will be a total Boolean
function.

For any x ∈ {0, 1}n, we will use |x| to denote the number of 1s in x, that is, the Hamming
weight of the string x. The string xi denotes the modified string x with the i-th bit flipped.
Similarly, xB is defined to be the string such that all the bits whose index is contained in
the set B ⊆ [n] are flipped in x.

Following is a formal definition of (partial) function composition.

▶ Definition 13 (Generalized composition of functions). For any (possibly partial) Boolean
function f : {0, 1}n → {0, 1, ∗} and n (possibly partial) Boolean functions g1, g2, . . . , gn,
define the (possibly partial) composed function

f ◦ (g1, g2, . . . , gn)(x1, x2, . . . , xn) = f(g1(x1), g2(x2), . . . , gn(xn)),

where gi’s can have different arities and, moreover, if xi /∈ Dom(gi) for any i ∈ [n] or the
string (g1(x1), g2(x2), . . . , gn(xn)) /∈ Dom(f), then the function f ◦ g outputs ∗.

In this paper we use the standard definitions of various complexity measures like ran-
domized query complexity, sensitivity, block-sensitivity, fractional block sensitivity and
approximate degree. We present the formal definitions in Appendix A.

3.1 Standard definitions and functions for the composition of R

The function Gap-Majority has played an important role in the study of composition of R.

▶ Definition 14 (Gap-Majority). The function GapMajt : {0, 1}t → {0, 1, ∗} is a partial
function with arity t such that

GapMajt(x) =


1 if |x| = t/2 + 2

√
t,

0 if |x| = t/2 − 2
√

t,

∗ otherwise.

It can be shown that R(GapMajt) = Θ(t) [9].
In regards to the composition question of R, one of the most significant complexity

measures (defined by Ben-David and Blais [9]) is that of noisyR. We first define the noisy
oracle model.
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▶ Definition 15 (Noisy Oracle Model and Noisy Oracle Access to a String ([9])). For b ∈ {0, 1},
a noisy oracle to b takes a parameter −1 ≤ γ ≤ 1 as input and returns a bit b′ such that
Pr[b′ = b] = (1 + γ)/2. The cost of one such query is γ2. Each query to noisy oracle returns
independent bits.

For x = (x1, . . . , xn) ∈ {0, 1}n, noisy oracle access to x is access to n independent noisy
oracles, one for each bit xi, i ∈ [n].

Next, we define the noisy oracle model of computation.

▶ Definition 16 (Noisy Oracle Model of Computation ([9])). Let f : {0, 1}n → {0, 1, ∗} be a
partial Boolean function. A noisyR query algorithm A computes f if for all x ∈ Dom(f),
Pr[A(x) ̸= f(x)] ≤ 1/3, where A is a randomized algorithm given noisy oracle access to x,
and the probability is over both noisy oracle calls and the internal randomness of the algorithm
A. The cost of the algorithm A for an input x is the sum of the cost of all noisy oracle calls
made by A on x, and the cost of A, cost(A), is the maximum cost over all x ∈ Dom(f). The
noisyR randomized query complexity of f , denoted by noisyR(f), is defined as

noisyR(f) = min
A computes f

cost(A).

Again, 1/3 in the above definition can be replaced by any constant < 1/2. If only queries
with γ = 1 are allowed in the noisy query model, then we obtain the usual randomized
algorithm for f , thus noisyR(f) = O(R(f)).

3.2 Standard definitions and functions for the composition of d̃eg
The definition of d̃eg can naturally be extended to partial functions f by restricting the
definition to hold only for inputs in Dom(f), but the approximating polynomial can take
arbitrarily large values on points outside the domain. However, for the purpose of under-
standing the composition of approximate degree of Boolean functions (or even total Boolean
functions) one need a measure of approximate degree of partial Boolean functions which is
bounded on all the points of the Boolean cube.

▶ Definition 17 (Bounded approximate degree (b̃deg)). For a partial Boolean function
f : {0, 1}n → {0, 1, ∗}, the bounded approximate degree of f (b̃deg(f)) is the minimum
possible degree of a polynomial p such that

|p(x) − f(x)| ≤ 1/3, ∀x ∈ Dom(f), and
0 ≤ p(x) ≤ 1 ∀x ∈ {0, 1}n.

In other words, we take the minimum possible degree of a polynomial which is bounded
for all possible inputs (p(x) ∈ [0, 1] for all x ∈ {0, 1}n), and it approximates f in the usual
sense over Dom(f).

Over the years people have tried to study the composition of d̃eg with different outer
functions. In this context the following restriction of OR is an important partial function:

▶ Definition 18 (Promise-OR). Promise-OR (denoted by PrORn) is the function PrORn :
{0, 1}n → {0, 1, ∗} such that PrORn(x) = 0 if |x| = 0, equals to 1 if |x| = 1, and ∗
otherwise.

Some useful previous results. We will also be crucially using a few results from prior works
in our proofs. The following are a couple of useful results on noisyR.

▶ Lemma 19 ([9]). Let f be a non-constant partial Boolean function then noisyR(f) = Ω(1).

APPROX/RANDOM 2023
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▶ Theorem 20 ([9]). For all partial functions f and g, R(f ◦ g) = Ω(noisyR(f) · R(g)).

We will also be using the following theorem of [11] regarding the composition question
of b̃deg when the outer function is PrORn. Informally, we will call it the Promise-OR
composition theorem.

▶ Theorem 21 ([11]). For any Boolean function g : {0, 1}m → {0, 1} we have,

b̃deg (PrORn ◦ g) = Ω
(√

n · d̃eg(g)/ log n
)

.

4 Results about composition of R

This section is devoted to the results related to the composition of randomized query
complexity. Our main result states that composition of R holds if the outer function has
full randomized query complexity (Theorem 2). As mentioned in the proof idea, the proof
critically depends on the notion of noisy randomized query complexity and its properties
(introduced by Ben-David and Blais [9]).

Recall the definition of noisy randomized query complexity of a function f from Defin-
ition 16. As mentioned in the introduction (Theorem 3), Ben-David and Blais [9] proved
that

noisyR(f) = Θ
(

R(f ◦ GapMajn)
n

)
, (4)

where GapMajn is the Gap-Majority function on n bits. Note that Ben-David and Blais
proved Equation 4 when the arity of functions f and Gap-Majority is the same. We show
that if Equation 4 can be generalized for Gap-Majority functions of arbitrary arity for some
outer function f , then randomized query complexity composes for the function f . We restate
the following observation from the introduction.

▶ Observation 4. Let f be a partial Boolean function on n bits. If t(n) ≥ 1 is a non-decreasing
function of n and

noisyR(f) = Ω
(R(f ◦ GapMajt(n))

t(n)

)
,

then R(f ◦ g) = Ω((R(f) · R(g))/t(n)) for all partial functions g.

Proof. Suppose noisyR(f) = Ω
(

R(f◦GapMajt(n))
t(n)

)
, since R(f ◦ GapMajt) ≥ R(f), we have

noisyR(f) = Ω(R(f)/(t(n)). Theorem 20 implies that a lower bound on noisyR translates to
a lower bound on R(f ◦ g). We have,

R(f ◦ g) = Ω(noisyR(f) · R(g)) (Theorem 20)

= Ω
(

R(f) · R(g)
t(n)

)
. ◀

Observation 4 follows from the above observation by choosing t(n) to be a small function
of n.

We restate from Section 1 our generalized characterization of noisyR (i.e., generalization
of Equation 4). For a complete proof of Theorem 5 we refer to the full version of this
paper [20].
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▶ Theorem 5. Let f be a partial function on n bits and let t ≥ 1, then R(f ◦ GapMajt) =
O (t · noisyR(f) + n).

This allows us to show that if for an n-bit partial function f , R(f) = Θ(n), then
R(f ◦ g) = Θ̃(R(f) · R(g)) for all partial functions g (Theorem 2).

The proof of Theorem 2 is discussed in Section 4.1. A corollary of this theorem is that if
R composes with respect to an outer function, then noisyR also composes with respect to
the same outer function (Corollary 6).

We give proof of Theorem 2 in the next section and prove Corollary 6 in Section 4.3. We
need the following theorem for these proofs, which lower bounds R(f ◦ g) in terms of R(f)
and R(g).

▶ Theorem 22 ([24]). Let f and g be partial functions then R(f ◦ g) = Ω(R(f) ·
√

R(g)).

4.1 Composition for functions with R(f) = Θ(n)
We restate the theorem below.

▶ Theorem 2. Let f be a partial Boolean function on n-bits such that R(f) = Θ(n). Then
for all partial functions g, we have

R(f ◦ g) = Ω(R(f) · R(g)).

Proof. From Theorem 22 we have a lower bound on the randomized query complexity of
(f ◦ GapMajt):

R(f ◦ GapMajt) = Ω(R(f) ·
√

t). (5)

On the other hand, Theorem 5 gives an upper bound of O (t · noisyR(f) + n) on R(f ◦
GapMajt). Thus, choosing t =

(
C·n

noisyR(f)

)
for a large enough constant C, we have

R(f) ·
√

n

noisyR(f) = O

(
n

noisyR(f) · noisyR(f) + n

)
.

This implies that

R(f) = O
(√

n · noisyR(f)
)

. (6)

Thus, if R(f) = Θ(n), then noisyR(f) = Ω(R(f)), which implies composition from The-
orem 20. ◀

Notice that Equation 6 is equivalent to the following observation.

▶ Observation 23. Let f be a partial Boolean function on n-bits. Then, noisyR(f) =
Ω
(

R(f)2

n

)
.

When R(f) = Θ(n), we have already seen that Observation 23 implies composition of
randomized query complexity when the outer function is f .

Though, Observation 23 implies a more general result. When R(f) is close to n (arity of
f), Observation 23 places a limit on the gap between R(f) and noisyR(f) (consequently on
the violation of composition with outer function being f). These implications are formally
discussed in Appendix 4.2.

Another implication of Theorem 2 is that composition of R for an outer function f implies
the composition of noisyR for outer function being f (Corollary 6).
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4.2 Additional implications of Observation 23
Without loss of generality we can assume R(f ◦ g) = Ω(R(g)) (note that this is true when f

is non-constant).
Ben-David and Blais [9] gave a counterexample for composition, but the arity of the used

function was very high compared to the randomized query complexity. They observed that
the composition can still be true in the weaker sense:

R(f ◦ g) = Ω
(

R(f) · R(g)
log n

)
.

Observation 23 shows that a much weaker composition result is true.

▶ Corollary 24. Let f and g be partial functions on n and m bits respectively. If R(f ◦ g) =
Ω(R(g)), then

R(f ◦ g) = Ω
(

R(f) · R(g)√
n

)
.

Proof.

R(f ◦ g) = Ω(noisyR(f) · R(g)) (Theorem 20)

= Ω
(

R(f)2 · R(g)
n

)
. (7)

Where the last equality follows from Observation 23 5 Now there are two cases:
Case 1. R(f) = O(

√
n). In this case R(f)/

√
n = O(1) and since we assumed R(f ◦ g) =

Ω(R(g)), the claim follows from Equation 7.
Case 2. R(f) = Θ(n1/2 · t(n)) where t(n) is a strictly increasing function of n. Thus,

R(f)2 · R(g)
n

= Ω
(
t(n)2 · R(g)

)
= Ω

(
R(f) · R(g)√

n

)
.

Again, the claim follows from Equation 7. ◀

The weaker composition, Corollary 24, implies that if R(f) and R(g) are comparable to
the arity of these functions, the randomized query complexity of f ◦ g is “not far” from the
conjectured randomized query complexity R(f) · R(g). In other words, if there is a large
polynomial separation between R(f ◦ g) and (R(f) · R(g)), then R(f) and R(g) can not be
too large.

▶ Corollary 25. Let f and g be partial functions such that f is a function on n-bits and
g is a function on t(n)-bits where t(n) is a strictly increasing function of n. If R(f) =
Θ(nβ), R(g) = Θ(nγ) and R(f ◦ g) = O((R(f) · R(g))α), where α < 1 is a constant, then
(1 − α)(α + β) < 1/2.

Proof. For some constants A and B we have

A · R(f) · R(g)√
n

≤ R(f ◦ g) ≤ B · (R(f) · R(g))α,

5 Sherstov [38] proved that for Boolean functions f and g, d̃eg(f ◦ g) = Ω((d̃eg(f)2d̃eg(g))/n). Thus in
Equation 7 we prove the same result but in the randomized world.



S. Chakraborty, C. Kayal, R. Mittal, M. Paraashar, S. Sanyal, and N. Saurabh 63:13

where the first inequality follows from Corollary 24 and second from assumption. Assigning
the values of R(f) and R(g) in terms on n we have,

A · nβ+γ−1/2 ≤ B · nα(β+γ)

n(1−α)(β+γ)−1/2 ≤ B

A
.

which implies, for large enough n, (1 − α)(β + γ) ≤ 1/2. ◀

A special case of the above corollary is when arity and randomized query complexity of g

are superpolynomial in n. In this case a polynomial gap between R(f ◦ g) and (R(f) · R(g)))
is not possible.

4.3 Proof of Corollary 6
First, we need the following lemma which follows from Theorem 5, Theorem 20 and Lemma 19.

▶ Lemma 26. Let f be a partial function on n bits and let t = Ω(n). Then

noisyR(f) = Θ
(

R(f ◦ GapMajt)
t

)
.

Proof. From Theorem 5 we have for all t ≥ 1, R(f ◦ GapMajt) = O(t · noisyR(f) + n). Since
we have assumed t = Ω(n) and noisyR(f) = Ω(1) (Lemma 19), we get R(f ◦ GapMajt) =
O(t · noisyR(f)). Thus, noisyR(f) = Ω

(
R(f◦GapMajt)

t

)
.

The upper bound noisyR(f) = O
(

R(f◦GapMajt)
t

)
follows from Theorem 20 and the fact

that R(GapMajt) = Θ(t). ◀

Now we prove that if R composes for f then noisyR composes for that f . For convenience,
we recall the statement of the corollary from the introduction.

▶ Corollary 6. Let f be a partial Boolean function. If R(f ◦ g) = Θ̃(R(f) · R(g)) for all
partial functions g then noisyR(f ◦ g) = Θ̃(noisyR(f) · noisyR(g)).

Proof. From Theorem 3, we have

noisyR(f ◦ g) = Θ
(

R ((f ◦ g) ◦ GapMajmn)
mn

)
.

Since (f ◦ g) ◦ h = f ◦ (g ◦ h), the right hand side of the above expression is equal to

Θ
(

R (f ◦ (g ◦ GapMajmn))
mn

)
.

The proof follows from the assumption that R composes and Lemma 26.

noisyR(f ◦ g) = Θ
(

R (f) · R (g ◦ GapMajmn)
mn

)
(assuming R composes)

= Θ (R(f) · noisyR(g)) (from Lemma 26)
= Θ (noisyR(f) · noisyR(g)) . (assuming R composes)

◀
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5 Composition of approximate degree in terms of block sensitivity

In this section we study the composition question for approximate degree. Recall that the
composition question asks: whether for all Boolean functions f and g

d̃eg(f ◦ g) = Ω̃(d̃eg(f) d̃eg(g))?

Following our discussion from the introduction, we know that the above composition is known
to hold for only two sub-classes of outer functions, namely symmetric functions [11] and
functions with high approximate degree [38]. It is thus natural to seek weaker lower bounds
to make progress towards the composition question. One way to weaken the expression on
the right-hand side would be to replace the measure d̃eg(f) by a weaker measure (like

√
s(f),√

bs(f) or
√

fbs(f)). Here we will establish one such lower bound of
√

bs(f) d̃eg(g).
We restate our theorem now.

▶ Theorem 7. For all non-constant (possibly partial)6 Boolean functions f : {0, 1}n → {0, 1}
and g : {0, 1}m → {0, 1}, we have

d̃eg(f ◦ g) = Ω̃(
√

bs(f) · d̃eg(g)).

We note that many analogous results are known in the setting of composition of R; see,
for example, [26, 7, 8, 13, 6, 24, 10]. To the best of our knowledge, this is the first such result
in the setting of d̃eg. We present only a proof sketch here; most of the technical parts of the
proof appear in Appendix B.

Further, we present the sketch of the proof in two parts. For simplicity, in the first part
we sketch a proof of the lower bound

√
s(f) d̃eg(g) for total function f , and then in the

second part we modify the arguments to obtain Theorem 7.
We begin with a proof sketch for a lower bound of

√
s(f) d̃eg(g). Let x ∈ {0, 1}n be an

input having the maximum sensitivity with respect to f , and S ⊆ [n] be the set of sensitive
bits at x (|S| = s(f)). Consider the subfunction f ′ obtained from f by fixing the set of
variables not in S according to x. By construction, f ′ is defined over s(f) many variables
and is fully sensitive at the input x|S given by x restricted to the indices in S. Since f ′ is a
subfunction of f and g is non-constant, we have d̃eg(f ◦ g) ≥ d̃eg(f ′ ◦ g).

Notice that f ′ at the neighbourhood of x, in the Boolean cube, is the partial function PrOR
(Definition 18) or its negation. Therefore, we have d̃eg(f ◦g) ≥ d̃eg(f ′ ◦g) ≥ b̃deg(PrOR|S| ◦g)
(see Definition 17 for a definition of the bounded approximate degree). We can now invoke
the composition theorem for PrOR (Theorem 21) [11] to obtain our lower bound:

d̃eg(f ◦ g) ≥ d̃eg(f ′ ◦ g) ≥ b̃deg(PrOR|S| ◦ g) = Ω̃(
√

s(f) d̃eg(g)).

However, there is a technical issue with our argument above. When we claimed that
f ′ looks like a PrOR function we were not quite correct. Technically, it is a Shifted-PrOR
function PrORx|S

|S| , where PrORa
n(y1, y2, . . . , yn) := PrORn(y1 ⊕ a1, y2 ⊕ a2, . . . , yn ⊕ an) for

a ∈ {0, 1}n. Formally, we have

d̃eg(f ◦ g) ≥ d̃eg(f ′ ◦ g) ≥ b̃deg(PrORx|S

|S| ◦ g) = b̃deg(PrOR|S| ◦ (g1, . . . , g|S|)), (8)

where gi = g or ¬g depending on the corresponding i-th bit in x|S .

6 For definitions of block sensitivity and approximate degree in the context of partial functions, please see
Definitions 32 and 17.
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We, therefore, need a composition theorem for PrOR with different inner functions, while
Theorem 21 requires that all the inner functions be same. In fact, we would need a more
general composition theorem with different inner partial functions, which we restate below.
This generalization is crucially used when dealing with block sensitivity.

▶ Theorem 9. For any partial Boolean functions g1, g2, . . . , gn, we have

b̃deg (PrORn ◦ (g1, g2, . . . , gn)) = Ω
(√

n · minn
i=1 b̃deg(gi)

log n

)
.

The proof of Theorem 9 is a generalization of proof of Theorem 21. For the sake of
completeness we have added a proof in the full version of the paper [20].

Now returning to Equation (8) and using Theorem 9, we obtain the desired lower bound:

d̃eg(f ◦ g) ≥ d̃eg(f ′ ◦ g) ≥ b̃deg(PrORx|S

|S| ◦ g) = Ω̃(
√

s(f) d̃eg(g)).

We are now ready to present the modifications required to improve the lower bound to
Ω̃(
√

bs(f) d̃eg(g)).

Proof of Theorem 7. Let b = bs(f) and a = (a1, a2, . . . , an) be an input where f achieves
the maximum block sensitivity. Further, let B1, B2, . . . , Bb be disjoint minimal sets of
variables that achieves the block sensitivity at a, i.e., f(a) ̸= f(aBi) for all i ∈ [b]. Recall,
aBi denotes the Boolean string obtained from a by flipping the bits at all the indices given
by Bi. Define a partial function f ′ : {0, 1}n → {0, 1, ∗} such that,

f ′(x) =


0 if x = a,

1 if x = aBi , for some i ∈ [b],
∗ otherwise.

Note that f contains f ′ or its negation as a sub function. Thus, d̃eg(f ◦ g) ≥ b̃deg(f ′ ◦ g).
Since g is non-constant, we can fix the indices not in

⋃b
i=1 Bi according to a to obtain

f ′′ ◦ g. We would now like to embed PrORb over the remaining variables in f ′′. For this
purpose we define the following partial functions: for every i ∈ [b], let Ii : {0, 1}Bi → {0, 1, ∗}
be such that

Ii(x) =


0 if x = a|Bi ,

1 if x = aBi |Bi
,

∗ otherwise.

Now observe that f ′′ ◦ g can be rewritten as PrORb ◦ (I1 ◦ g, . . . , Ib ◦ g). We therefore have

d̃eg(f ◦ g) ≥ b̃deg(f ′ ◦ g) ≥ b̃deg(f ′′ ◦ g) = b̃deg(PrORb ◦ (I1 ◦ g, . . . , Ib ◦ g))

= Ω
(√

b · mini b̃deg(Ii ◦ g)
log b

)
= Ω̃

(√
b · d̃eg(g)

)
,

where the second last equality follows from Theorem 9 and the last equality uses the fact
b̃deg(Ii ◦ g) ≥ d̃eg(g) for all i, which in turn follows from each Ii being non-constant. ◀

We end this section with few final remarks. As a corollary to Theorem 7 we have the
following composition for d̃eg when the outer function has minimal approximate degree with
respect to its block sensitivity.
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▶ Corollary 8. For all Boolean function f : {0, 1}n → {0, 1} with d̃eg(f) = Θ(
√

bs(f)) and
for all g : {0, 1}m → {0, 1}, we have d̃eg(f ◦ g) = Θ̃(d̃eg(f) · d̃eg(g)).

We also note that the set of Boolean functions with d̃eg(f) = Θ(
√

bs(f)) includes
examples of non-symmetric functions f with low approximate degree. In other words, when
such functions are outer function in a composed function then the composition of d̃eg doesn’t
follow from the known results [11, 38]. Such examples are described in Subsection 2.2.

As stated in the introduction, we recall that Theorem 7 is tight in terms of block-sensitivity,
i.e., the lower bound can not be improved to Ω̃(bs(f)c · d̃eg(g)) for some c > 1/2.

6 Conclusion

While our work makes progress on the composition problem for R and d̃eg, the main problems
of whether d̃eg and R composes for any pair of Boolean functions still remains open. In this
light, we would like to highlight some questions that can be useful stepping stones towards
the main questions.

We showed that the composition question for R is equivalent to the following open
question (which is a generalization of Ben-David and Blais [9] result):

▶ Open question 27. Let f : {0, 1}n → {0, 1, ∗} be a Boolean function. Then, is it true that
for arbitrary t, noisyR(f) = Θ (R(f ◦ GapMajt)/t)?

In case of approximate degree composition, a natural question is whether
√

bs(f) can be
replaced by some other complexity measures. In this regards we state the following open
problems:

▶ Open question 28. For all Boolean functions f and g, can we prove either of the following:
d̃eg(f ◦ g) = Ω(

√
deg(f) · d̃eg(g))? d̃eg(f ◦ g) = Ω(

√
fbs(f) · d̃eg(g))?

Recently, in [43, 42, 23, 18, 21], the classes of transitive functions got a lot of attention as
natural generalization of the classes of symmetric functions. Can the result for symmetric
functions be extended to transitive functions?

▶ Open question 29. Can we prove that d̃eg and R compose when the outer function is
transitive?
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▶ Definition 30 (Randomized query complexity (R)). Let f : {0, 1}n → {0, 1, ∗} be a (pos-
sibly partial) Boolean function. A randomized query algorithm A computes f if ∀x ∈
Dom(f), Pr[A(x) ̸= f(x)] ≤ 1/3, where the probability is over the internal randomness of the
algorithm. The cost of the algorithm A, cost(A), is the number of queries made in the worst
case over any input as well as internal randomness. The randomized query complexity of f ,
denoted by R(f), is defined as

R(f) = min
A computes f

cost(A).

▶ Definition 31 (Approximate degree (d̃eg)). A polynomial p : Rn → R is said to approximate
a Boolean function f : {0, 1}n → {0, 1} if |p(x) − f(x)| ≤ 1/3, ∀x ∈ {0, 1}n. The
approximate degree of f , d̃eg(f), is the minimum possible degree of a polynomial which
approximates f .

Note that the constant 1/3 in the above definitions can be replaced by any constant strictly
smaller than 1/2 which changes d̃eg(f) by only a constant factor.

Other than R and d̃eg, two important related measures are sensitivity (s(f)) and block
sensitivity (bs(f)). While the sensitivity and block sensitivity of a total function is well
defined, we note that for the case of partial functions there are at least two valid ways of
extending the definition from total functions to partial functions. All our results in this
paper will hold for partial functions with the following definitions of sensitivity and block
sensitivity.

▶ Definition 32. The sensitivity s(f, x) of a function f : {0, 1} → {0, 1, ∗} on x is the
maximum number s such that there are indices i1, i2, . . . , is ∈ [n] with f(xij ) = 1 − f(x),
for all 1 ≤ j ≤ s. Here xi is obtained from x by flipping the ith bit. The sensitivity of f is
defined to be s(f) = maxx∈Dom(f) s(f, x).

Similarly, the block sensitivity bs(f, x) of a function f : {0, 1} → {0, 1, ∗} on x is the
maximum number b such that there are disjoint sets B1, B2, . . . , Bb ⊆ [n] with f(xBj ) =
1 − f(x) for all 1 ≤ j ≤ b. Recall xBj is obtained from x by flipping all bits inside Bj. The
block sensitivity of f is defined to be bs(f) = maxx∈Dom(f) bs(f, x).

In the definition of block sensitivity, the constraint that the blocks has to be disjoint can be
relaxed by extending the definition to “fractional blocks”. This gives the measure of fractional
block sensitivity.

▶ Definition 33. The fractional block sensitivity fbs(f, x) of a function f : {0, 1} → {0, 1, ∗}
on x is the maximum value of

∑b
j=i pj such that there are sets B1, B2, . . . , Bb ⊆ [n] and

p1, . . . , pb ∈ (0, 1] satisfying the following two conditions.
For each 1 ≤ j ≤ b, f(xBj ) = 1 − f(x), and
For each 1 ≤ i ≤ n,

∑
j : i∈Bj

pj ≤ 1.
The fractional block sensitivity of f is defined to be fbs(f) = maxx∈Dom(f) fbs(f, x).

B Approximate degree of Promise-OR composed with different inner
functions

In this section we show that the approximate degree composes when the outer function
is PrOR and the inner functions are (possibly) different partial functions. The proof is
essentially a straightforward generalization of the proof of Theorem 21 [11, Theorem 16
(arXiv version)]. However, for the sake of completeness and reader’s convenience, we give an
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overview of the proof here. We will need some definitions and theorems from [11] which we
state now. We start with the definition of a problem called “singleton combinatorial group
testing”. It generalizes the combinatorial group testing problem.

▶ Definition 34 (Singleton CGT). Let D be the set of all w ∈ {0, 1}2n

for which there exists
an x ∈ {0, 1}n such that for all S ⊆ [n] satisfying

∑
i∈S xi ∈ {0, 1}, we have

∑
i∈S xi = wS.

Note that for all w ∈ D, the string x is uniquely defined by xi = w{i}. Let us denote this string
by x(w). we then define the partial function SCGT2n : D → {0, 1}n by SCGT2n(w) = x(w).

▶ Theorem 35 ([11, Theorem 19 (arXiv version)]). The bounded-error quantum query com-
plexity of SCGT2n is Θ(

√
n).

For a formal Definition of bounded error quantum query complexity we refer the survey
by [15]. Before we state the next result that we need from [11] we are defining robustness of
a polynomial to input noise.

▶ Definition 36 (Robustness to input noise). For any function f : {0, 1}n → {0, 1, ∗} we say
a polynomial p : {0, 1}n → R approximately computes f with δ-robustness where δ ∈ [0, 1

2 ) if
for any x ∈ Dom(f) and ∆ ∈ [−δ, δ]n, we have |f(x) − p(∆ + x)| ≤ 1

3 .

Now we are ready to state the next result.

▶ Theorem 37 ([11, Theorem 17 (arXiv version)]). For a partial Boolean function f , there exists
a bounded multilinear polynomial p of degree O(Q(f)) that approximates f with robustness
Ω(1/Q(f)2) where Q(f) is the bounded error quantum query complexity of the function f .

We refer [11] for more details about robustness of a polynomial induces by quantum
algorithm. We also need the existence of a multilinear robust polynomial for XORn ◦ SCGT2n ,
which follows from Theorems 35 and 37 above, where XORn ◦ SCGT2n is the parity of n

output bits of SCGT2n .

▶ Theorem 38 ([11, Theorem 20 (arXiv version)]). There is a real polynomial p of degree O(
√

n)
over 2n variables {wS}S⊆[n] and a constant c ≥ 10−5 such that for any input w ∈ {0, 1}2n

with XORn ◦ SCGT2n(w) ̸= ∗ and any ∆ ∈ [−c/n, c/n]2n ,

|p(w + ∆) − XORn ◦ SCGT2n(w)| ≤ 1/3.

Furthermore, p is multilinear and for all w ∈ {0, 1}2n

, p(w) ∈ [0, 1].

We also need the following result of Sherstov that shows composition holds for the approximate
degree of the parity of n different functions.

▶ Theorem 39 ([38, Theorem 5.9]). For any partial Boolean functions f1, . . . , fn, we have

b̃deg(XOR ◦ (f1, . . . , fn)) = Ω
(

n∑
i=1

b̃deg(fi)
)

.

Theorem 9 can be proved in the similar line of [11, Theorem 20 (arXiv version)], which
we are restating below. For the sake of completeness a detailed proof has been added in the
full version of the paper [20].

▶ Theorem 40. For any partial Boolean functions f1, f2, . . . , fn, we have

b̃deg (PrORn ◦ (f1, f2, . . . , fn)) = Ω
(√

n · minn
i=1 b̃deg(fi)

log n

)
.
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Furthermore the following upper bound also holds,

b̃deg (PrORn ◦ (f1, f2, . . . , fn)) = O
(√

n · nmax
i=1

b̃deg(fi) · log n
)

.

We will now use this weak bound to establish nearly optimal bound for the approximate
degree of PrOR composed with n different partial functions. This will again be a simple
generalization of OR composed with different functions [11, Theorem 37]. For the sake of
completeness, we work out some of the details.

▶ Theorem 41. For any partial Boolean functions f1, f2, . . . , fn, we have

b̃deg (PrORn ◦ (f1, f2, . . . , fn)) = Θ̃

√√√√ n∑
i=1

b̃deg(fi)2

 ,

when the lcm of b̃deg(fi)2 for i ∈ [n] is Θ(maxi b̃deg(fi)2).

Proof. As mentioned before, the proof is merely working out the details of [11, Theorem 37]
while keeping in mind that we are working with partial functions.

Let F = PrORn ◦ (f1, f2, . . . , fn), di = b̃deg(fi)2 for i ∈ [n], and ℓ be the lcm of di’s. Now
consider the function G = PrORℓ ◦ F . From Theorem 40, we have the following bounds on
b̃deg(G) up to constants

√
ℓ · b̃deg(F )

log ℓ
≤ b̃deg(G) ≤

√
ℓ · b̃deg(F ) · log ℓ. (9)

Now using the associativity of PrOR we can rewrite G as

G = PrORnℓ ◦ (f1, . . . , f1︸ ︷︷ ︸
ℓ times

, . . . , fn, . . . , fn︸ ︷︷ ︸
ℓ times

). (10)

Further regrouping fi’s, we can rewrite G as follows

G = PrORd ◦ (PrORℓ/d1 ◦ f1, . . . , PrORℓ/d1 ◦ f1︸ ︷︷ ︸
d1 times

, . . . , PrORℓ/dn
◦ fn, . . . , PrORℓ/dn

◦ fn︸ ︷︷ ︸
dn times

),

(11)

where d =
∑n

i=1 di. Now using Theorem 40 and
√

di = b̃deg(fi), we obtain following bounds
for PrORℓ/di

◦ fi (up to constants)
√

ℓ

log(ℓ/di)
≤ b̃deg(PrORℓ/di

◦ fi) ≤
√

ℓ · log(ℓ/di). (12)

Now consider (11) and using Theorem 40 along with (12), we obtain
√

dℓ

log d · log ℓ
≤ b̃deg(G) ≤

√
dℓ · log ℓ · log d (13)

Now from (13) and (9) it follows
√

d

log d · log2 ℓ
≤ b̃deg(F ) ≤

√
d · log2 ℓ · log d. ◀
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C Composition theorems for strongly-k-junta symmetric outer
functions

In this section we will prove the composition result of d̃eg and R when the outer function has
some amount of symmetry. Of course, there are various notion of symmetry. Traditionally
a function is said to have the maximum amount of symmetry when the function value is
invariant under any permutation of the variables. Such functions are called symmetric.
Symmetric functions are very well studied in the literature of Boolean function analysis. In
the terms of composition theorems of d̃eg and R it was proved in [11] and [26] that d̃eg and
R respectively composes when the outer function is symmetric.

In terms of weaker notions of symmetry there are various possible definitions. In this paper
we consider the case of strongly-k-junta symmetric functions. The composition theorem for
d̃eg when the outer function is strongly-k-junta symmetric (Theorem 12(Part(i)) is presented
in Appendix C.1. The proof of the composition theorem for R when the outer function is
strongly-k-junta symmetric (Theorem 12(Part(ii)) follows easily from Theorem 2.

▶ Observation 42. For any strongly k−junta symmetric function f : {0, 1}n → {0, 1}
and any Boolean function g : {0, 1}m → {0, 1}, we have R(f ◦ g) = Ω̃(R(f) · R(g)) where
n − k = Θ(n).

Proof. There exists an assignment of the k-bits such that the resulting function is a non-
constant symmetric function on (n − k) bits. Since the sensitivity of the restricted function
is Ω(n), the randomized query complexity is also Ω(n) (see [32]). Hence, from Theorem 2
the result follows. ◀

C.1 Composition of approximate degree for
√

n-junta symmetric
functions

In this section, first, we define Multiplexer Function or Addressing Function that will be
useful is the analysis.

▶ Definition 43 (Multiplexer Function or Addressing Function).
The function MUX : {0, 1}k+2k

→ {0, 1} with input (x0, . . . , xk−1, y0, . . . , y2k−1) outputs the
bit yt, where t =

∑k−1
i=0 xi2i.

A crucial result that we use in the prove of composition theorem of d̃eg is the following
result from [34].

▶ Theorem 44 ([34]). For any non-constant symmetric function f : {0, 1}n → {0, 1}, let k

be the closest integer to n/2 such that f takes different values on inputs of Hamming weight
k and k + 1. Define,

γ(f) =
{

k if k ≤ n/2,

n − k otherwise.

Then

d̃eg(f) = Θ
(√

n(γ(f) + 1)
)

.

Using the result of [34] we prove the following proposition about the approximate degree
of a k-junta symmetric function. Recall the multiplexer function from Definition 43.
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▶ Proposition 45. For any k-junta symmetric function f : {0, 1}n → {0, 1}, we have
d̃eg(f) = Ω

(√
(n − k)γmax

)
and d̃eg(f) = O

(
max{k,

√
(n − k)γmax}

)
, where γmax =

maxi∈{0,1}k {γ(fi)} such that fi is the symmetric function obtained by restricting the junta
variables according to i.

Proof. Fixing the junta variables in f we obtain a symmetric function on n − k variables
with approximate degree Ω(

√
(n − k)γmax) (Theorem 44), which in turn implies the same

lower bound on d̃eg(f).
For the upper bound, we obtain an approximating polynomial for f by composing

the (exact) polynomial for the multiplexer function MUX : {0, 1}k+2k

→ {0, 1} with the
approximating polynomials for different symmetric functions obtained by restricting the k

junta variables. Therefore, d̃eg(f) = k + O(
√

(n − k)γmax) = O
(

max{k,
√

(n − k)γmax}
)

.
◀

As mentioned earlier, the composition of d̃eg when the outer function is symmetric was
proved in [11]. The following is their result that we crucially use in the proof of Theorem 12.

▶ Theorem 46 ([11]). For any symmetric Boolean function f : {0, 1}n → {0, 1} and any
Boolean function g : {0, 1}m → {0, 1} we have,

d̃eg(f ◦ g) = Ω̃(d̃eg(f) · d̃eg(g))

We now present the proof of Part (i) of Theorem 12, that the proof of composition of d̃eg
when the outer function is strongly-k-junta symmetric.

Proof of Theorem 12(Part (i)). Since f is a strongly-k-junta symmetric function so there
exists a setting of the k junta variables such that the resulting function is a non-constant
symmetric function. Let f ′ be the symmetric function obtained by restricting the junta
variables of f so that f ′ is non-constant. Then by Theorem 44 the approximate degree of f ′

is Ω(
√

(n − k)γmax). Then clearly we have

d̃eg(f ◦ g) ≥ d̃eg(f ′ ◦ g) = Ω̃(d̃eg(f ′) · d̃eg(g)) = Ω̃(
√

(n − k)γmax · d̃eg(g)), (14)

where the first equality follows from Theorem 46. Now from Proposition 45 we know that
d̃eg(f) = O(

√
(n − k)γmax) if k = O(

√
(n − k)γmax), which is satisfied when k = O(

√
n).

Thus from (14) we obtain

d̃eg(f ◦ g) = Ω̃(d̃eg(f) · d̃eg(g)). ◀
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