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—— Abstract

This paper proposes a data fusion framework that seeks to investigate joint mobility signals around
wildfires in relation to geographic scale of analysis (level of spatial aggregation), as well as spatial and
temporal extents (i.e. distance to the event and duration of the observation period). We highlight
the usefulness of our framework using intra-urban mobility data from Mapbox and SafeGraph for two
wildfires in California: Lake Fire (August-September 2020, Los Angeles County) and Silverado Fire
(October-November 2020, Orange County). We identify two distinct patterns of mobility behavior:
one associated with the wildfire event and another one - with the routine daily mobility of the nearby
urban core. Using the combination of data fusion and tensor decomposition, the framework allows us
to capture additional insights from the data, that were otherwise unavailable in raw mobility data.
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1 Introduction

The issue of geographic scale (i.e. level of detail / aggregation), geographic extent (i.e. area
of analysis, measured in terms of proximity to the phenomena of interest), and temporal
extent (i.e. the period of observation in relation to the phenomena of interest) has been
an important research topic in GIScience and in movement research within the last decade
[5, 3]. Many conventional methods of geographic analysis are traditionally designed for
univariate spatial or temporal series (e.g. geographically-weighted regression, local indicators
of spatial association, spatial scan statistics). Yet, data on human movement is increasingly
heterogeneous [1, 6], multivariate, and dependent on local land-use and transportation
patterns, necessitating further development of complex multivariate spatio-temporal methods
that can leverage and integrate numerous data sources.

We propose an analytical framework that allows to fuse various indicators of human
mobility (in this paper, only two are considered) at different geographic and temporal
scales to identify the impact zone of disruptive events, such as wildfires, on mobility. The
framework consists of several processes: 1) Multi-scale spatio-temporal matching of data to
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combine various types of geographic data (e.g. POI point vector data and regular grid-based
OpenStreetMap tiles) geographically and temporally. 2) Calculating mutual information
score combining the multiple data sets for different geographic and temporal scale and extent.
3) Fitting the fused data to PARAFAC2 tensor decomposition model [4] to elicit shared
patterns of movement at different locations. As a case study, we test this framework for
exploring mobility patterns around two wildfire events.

2 Methods

2.1 Multi-Scale Spatio-Temporal Matching and Aggregation

The first step in the proposed framework relies on the matching of the various data sources
(in this case two). These data sources vary in coverage, have different units of analysis and
units of measurement. The process of matching is described in Algorithm 1. In short, it
sequentially increases the spatial scale of the study area (unit of analysis), the spatial extent
(e.g. distance from the fire event), and the temporal extent of the observations (e.g. time
from fire ignition) to fuse the two mobility indices into a mutual information (MI) score as
described in the next section (see Figure 1c).

Algorithm 1 Multi-Scale Spatio-Temporal Matching.

Input :fire perimeter, mobility index 1 (M1), mobility index 2 (M2), spatial extent (distance
from fire perimeter - S;), temporal extent (days from the fire ignition - T}), spatial scale
/ zoom levels (OpenStreetMap zoom level tiles - Zy)

Output : Mutual information M., for various spatial extent (S € 1...5), temporal extent
(T € 1...7) and spatial scale (Z € 1...k)

Discretize study area using OSM tiles at level Zy, and aggregate mobility indices (M1, M2 ) at
selected spatial S; and temporal T; extent levels;
for z <+ 1 to k do
for t < 1 to j do
for s+ 1 to i do
1. Keep only spatial units that have non null values across M; and Mo;
2. Calculate mutual information M1.s; from M1,s and M2,s¢;
end
end
end
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2.2 Mutual Information (Ml)

Mutual information (MI) is a measure of the amount of information that two variables
share. In information theory, MI is defined as the reduction in uncertainty about one
variable (X) given knowledge of another variable (Y). In contrast to Pearson correlation,
the MI score is ideally suited to capture non-linear dependence between random variables.
Mathematically, the MI between two discrete random variables X and Y is defined as:
MI(X;Y)= H(X)—H(X|Y), where H(X) is the entropy of X, which measures the amount
of uncertainty in X, and H(X|Y") is the conditional entropy of X given Y, which measures
the remaining uncertainty in X when Y is known.

The rationale behind utilizing the mutual information of mobility is simple: the premise
is that in the presence of emergency events such as a natural disaster, all types of mobility
are affected. As such, variation in mobility will be manifested in various measured indices
of mobility. By utilizing mutual information across different geographical scales and spatio-
temporal extents, we hope to establish and characterize mutual dependence of mobility
indices and fuse movement data that may be different in coverage, uncertainty, and bias.
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Figure 1 POI location and OSM grid representation of the study areas. For demonstration
purpose only the zoom level 13 is illustrated, denoting the coarsest level of detail.

2.3 Tensor Decomposition

Tensors are multi-dimensional arrays and, as such, require multi-dimensional methods of
analysis. Tensor decomposition allows us to uncover hidden latent factors (clusters of
behavior) in multi-dimensional data. There are different types of tensor decomposition,
including Tucker, CANDECOMP, and Tensor-Train [7]. Of particular interest to this
study is the PARAFAC2 factorization [4], because it allows to jointly model data arrays
of different sizes (for instance, where the spatial extent of data varies), by aligning them
across a shared dimension (e.g. time). The multiset data can be decomposed as follows:
Xy = UrSKk VT, where R is the number of components derived from the decomposition,
U, e RXE S, e REXE and V € R7*®, The PARAFAC2 decomposition is fitted via an
alternating direction method of multipliers (AO-ADMM) [9] available through MatCouply
Python package [8]. Since MI scores are always non-negative, we impose non-negativity
constraints on the uncovered decomposition components (factors).

3 Case Study
3.1 Study Area

This study focuses on two major wildfires in California (Figure la, 1b) that happened in
2020: Lake Fire, which burned around 31,000 acres in Angeles National Forest in Los Angeles
County from August 12 to September 28 and Silverado Fire, which burned around 13,000
acres in Orange County from October 26 to November 7, 2020. The data for this study was
collected specifically for two months before and after the ignition date of the two wildfires:

Silverado Fire (August 26 - December 26, 2020) and Lake Fire (June 12 - October 12, 2020).

3.2 Data

SafeGraph published several mobility data products during the COVID-19 pandemic through
their Data for Good Initiative. One of such products is Weekly Patterns, which reports
raw visitor counts at the points of interest (POI) level daily. Mapbox provides gridded
data, representing the amount of mobility, at OpenStreetMap (OSM) tile level (with OSM

zoom level 18, finest resolution available, corresponding to a square grid of 100m x 100m).

The data is aggregated and delivered daily, and is available in the form of an activity

index, ranging from 0 to oo, where higher index values denote higher levels of mobility.
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To investigate the mutual information at various levels of aggregation using the proposed
framework, we utilize OSM zoom levels 1318, where zoom level 13 corresponds to a 1:70,000
screen scale (village level), and level 18 corresponds to a 1:2,000 scale (buildings/trees levels)?.
OpenStreetMap tiles are regular square tessellations that remain uniform across remote and
isolated areas where wildfires occur. Thus we can ascertain mobility at different spatial
scales, while minimizing modifiable areal unit problem [2]. To delineate the study area, we
create a bounding box from a 10km buffer around each of the wildfire perimeters and filter
the mobility data to this extent. We hypothesize that direct impact zone of wildfires will be
pronounced the most in close vicinity to the fire.

3.3 Data Tensorization

The mutual information values are shaped into a multiset data Xg, where X € RI*7 is
a matrix with spatial extent on the rows (I), temporal extent on the columns (J), and F
denotes a fire name (in Algorithm 1). The bins for spatial extent are calculated starting
from the centroid of the fire perimeter, and are incrementally increased by 1km, resulting in
a progressively expanding geographical area around the fire. The distance of 1km provides a
balanced binning for remote areas, when mobility data is sparse. The temporal extent (7})
is measured in the number of days before and after the fire. For instance, if j = 3 we have a
period of 6 days, starting 3 days before fire and terminating 3 days after the fire ignition.
These bins are progressively increased by the increment of 3 to the total of 21 bins (i.e. 62
days or roughly two months). Thus, the final dimensions of the multiset data are as follows:
Xiake € R*¥*21 and Xgiiverado € R?°*21. Since the fire perimeters vary in size and shape,
buffering and discretizing the study area will result in different number of spatial bins (X
rows): 43 rows for the Lake fire and 25 rows for the Silverado fire.
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Figure 2 Mutual information score curves for different levels of analysis (zoom levels) and
geographical extent (radii from the fire).

4 Results
The fitted curves of the matched mutual information scores are plotted against the distance

to the fire in Figure 2. For both fires the mutual information score decreases across various
zoom levels as the distance from the fire increases. This is logical: as we include more spatial

2 For more details see https://wiki.openstreetmap.org/wiki/Zoom_levels
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units into our area of interest, we are also capturing daily urban mobility signal and noise.
Since Lake Fire perimeter acreage is higher, the curves plateau around 20km from the fire
(Figure 2a). One important difference between the two sets of curves is the magnitude of
the fitted curves (noted in the different y-axis) which is largely due to drastically different
number of POI at the two locations: so much so that the the MI scores are dominated by
daily mobility, and not wildfire related mobility. This is supported by lack of relationship
between temporal extent and MI scores.
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(c) Temporal view of uncovered decomposition components for both fires.

Figure 3 PARAFAC2 modeling results.

PARAFAC2 decomposition allows us to analyze both fires jointly, identifying distinct
movement patterns (Figure 3) that are shared across two wildfires. A model with two
decomposition components (R = 2) fits the data very well (99% fit). Component 1 (denoted
in red) shows fire-related mobility signal and plots MI scores against the spatial extent
(Figure 3a, 3b). As we increase the geographic extent, the mutual information decreases
for both fires (with more rapid decrease for sparse Lake Fire data), pointing to the higher
dependence of mobility indices in close proximity to the fire event. On the temporal view for
Component 1 (Figure 3c) we notice that the MI scores are highest for the observation period
of 9-12 days before/after the ignition date of the fire, declining gradually. This might be an
indication that we need a relatively extended period of time to establish the effect of the
wildfire. Component 2 (denoted in blue) shows daily mobility associated with nearby urban
cores at two locations. For Lake Fire (Figure 3a) the closest urban area, Lancaster is located
approximately 15km to the Northwest of the fire (peak for blue line). For Silverado Fire
(Figure 3b) the urban area borders with the fire perimeter on the Southeast, and as such,
coincides with direct impact zone of the wildfire. On the temporal view for Component 2, the
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MI scores fall abruptly, approaching zero around 15 days before/after the fire. This is logical,
as we increase the observation period for two urban areas, there is no added information
about the fire event.

5 Conclusion

This paper demonstrated how the proposed framework can be used to fuse the data on
mobility at different spatial and temporal scale and establish relationships between mutual
dependence of mobility indices around disruptive events. The mutual information score
coupled with tensor decomposition is able to identify two clusters of behavior, which were
otherwise not traceable in raw mobility signals (e.g. SafeGraph visitor counts or Mapbox
activity index). The framework presented in this paper can be easily scaled up to incorporate
more locations, different event types (hurricanes, floods, etc.) and event duration, and
mobility indices. Future work will compare the methods laid out in the paper to other
clustering techniques for studying aggregate human movement.
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