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Abstract
Change detection is a well-established process of detaining spatial and temporal changes of entities
between two or more timesteps. Current advancements in digital map processing offer vast new
sources of multitemporal geodata. As the temporal aspect gains complexity, the dismantling of
detected changes on a pixel-based scale becomes a costly undertaking. In efforts to establish and
preserve the evolution of detected changes in long time series, this paper presents a method that
allows the decomposition of pixel evolution vectors into three dimensions of change, described as
directed change, change variability, and change magnitude. The three dimensions of change compile
to complex change analytics per individual pixels and offer a multi-faceted analysis of landscape
changes on an ordinal scale. Finally, the integration of class confidence from learned uncertainty
estimates illustrates the avenue to include uncertainty into the here presented change analytics, and
the three dimensions of change are visualized in complex change maps.
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1 Introduction

Change detection (CD) is the process of capturing the spatial and temporal changes of
individual pixels, objects, or larger phenomena. Requiring a minimum of two timesteps,
the most common types of change detection include pixel-based (PBCD) and object-based
change detection (OBCD). These differ in that PBCD is focused on pixel-wise changes and
usually on the spectral value of the individual pixel with no spatial relevance to its neighbors
[7], and OBCD on the object represented by the pixels and grouping/segmenting the pixels
into clusters of their respective categories [1]. Within the very mature field of CD, many
reviews have been published to organize the different CD types [1, 7] and the vast methods
and techniques used to detect changes within the various categories [2]. Current advances in
CD are mostly built on existing foundations and are focused on the development of automatic
change detection algorithms tailored to specific topics and based on complex neural networks
or other deep learning algorithms [5].
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A large application field of CD is in detecting land use and land cover (LULC) changes
[4, 13], including habitat changes in riverine environments [11], the topic of the here presented
study. Both PBCD and OBCD are used in LULC, mostly identifying changes between only
two or three timesteps and focused on satellite data or aerial imagery [4, 13]. While some
studies exist that incorporate multiple timesteps, such as in Tonolla et al. [11], there is a
general lack in CD application with a large temporal depth of more than three timesteps,
specifically in applying CD methods between individual timesteps of such large multitemporal
data. In addition, the majority of CD methods are focused on remote sensing based data
which reflect changes only since the 1940s and may already represent disrupted environments.
Historical maps offer a unique perspective on pre-digital and perhaps pre-modified times,
yet the application of CD methods on historical map sources is poorly represented within
the literature with only few scattered examples [8]. The establishment and preservation of
CD in longer time series is a costly undertaking and hence methods analytically exploiting
such data are rarely seen. However, efforts in conceptualizing PBCD are well underway as
space-time relationships are at the core of GIS research [3]. With rapid advancements in
utilizing machine learning based digital map processing [9], more extensive sources of time
series become available, offering new opportunities for exploiting such data, as shown in this
study.

Visualization of the CD between two or three timesteps are shown in several studies in
forms of change maps. These change maps of very few timesteps visualize changes on a
binary scale of either ‘change’ or ‘no change’ [5] or show separate maps of the conditions
per timestep [4, 13]. Visualization of larger temporal extent tend to show the change event
of largest magnitude of a pixel [6], resulting in a rather static perspective of the observed
changes. The visualization approaches of CD within the literature poorly represent the
potentially very rich dynamic nature of the changes through time.

This paper presents a novel approach for the quantitative analysis of rich raster data
time series, allowing an in depth analysis of detailed change evolution vectors per individual
pixel. The experimental part of the paper illustrates the methods for multitemporal PBCD
from Switzerland’s historical maps. The pixel-wise change analytics incorporate 6 timesteps
between 1876-1946. Change is decomposed into three dimensions that are visualized in three
separate maps. A pixel flow chart illustrates changes between landuse classes. In addition,
the change analytics also incorporate class confidence (learned uncertainty) per pixel, as
model-inherent uncertainty is introduced in the extraction process from historical maps.

2 Methods

Fig. 1 illustrates the conceptual workflow from the historical map inputs to the pixel-wise
change analytics. The components of the workflow are described in detail below.

Data pre-processing. The data inputs used in this study are classified pixel clusters
extracted from the historical Siegfried map series of Switzerland. Based on training data,
hydrological features (i.e. rivers, wetlands) are defined and grouped by certain criteria of
their appearance on the maps [10] for extraction. The pixels representing these features are
then extracted from the maps by deep learning algorithms [12] which output predictions in
form of classified pixel clusters (Fig. 1a). A type of model-inherent uncertainty based on
learned confidence estimates (LCE) are an additional output from the extraction process
(see [12] for details) and the basis to determine class confidence/ uncertainty in this study.
For further application in terms of habitat changes in ecohydrological environments, the
predictions are reclassified based on a hierarchical classification scheme from aquatic to
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Figure 1 Conceptual workflow for multi-temporal change detection and derivation of pixel-wise
change analytics (t = time).

terrestrial classes to determine their directed transition between the class types (Fig. 1b).
The terrestrial class 6 presents any pixel unclassified from the predictions. Although the
methods are presented here in the context of habitat succession, they are applicable for any
geodata time series with attributes on an ordinal scale.

Integration of model-inherent uncertainty. Learned confidence estimates (LCE) show
class uncertainty per pixel of the four hydrological feature classes of rivers, wetlands, lakes,
and streams. Each pixel thus has 4 confidence values between 0-1 which depicts the models’
uncertainty of that pixels predicted class. To integrate the LCE, the classified pixels in the
predictions and the uncertainty estimates of the class identified in the associated prediction,
hereafter class confidence, are extracted by a conditional evaluation. For each pixel in each
timestep, the associated class confidence is then represented in the change analytics. Based
on the available timesteps, the mean of the class confidence per pixel is calculated to depict
the average multitemporal class confidence per pixel from t1 → tn (Fig. 1c). Note, LCE were
available only for the first four timesteps. Thus, the represented class confidence of the time
series are based on the average of the first four timesteps.

Integration of multitemporal information. For computational purposes and to avoid
large amounts of terrestrial pixels, a shell of all possible multitemporal combinations was
derived. The shell can be described as a sparsely populated array which occupies a pixel
space when one classified pixel within any of the timesteps from t1 → tn occupies that
pixel space, either from the predictions or from the LCE (Fig. 1d). Based on their spatial
distribution, the information of the reclassified pixels were joined on to the shell. From a
multitemporal perspective, not all pixel spaces have an associated class within all timesteps as
the hydrological features represented by the classes change through time. Thus, pixel-spaces
with no associated class in a given timestep are assigned the terrestrial class. The new
dataset then holds information on the class of each pixel-space through time (Fig. 1e).

Change analytics and change vector analysis. A common CD method is the change
vector analysis which can be described as the difference between the spectral pixel vector
of two images [13]. The method is adapted and modified to identify the change direction
and magnitude of class memberships per pixel in a multitemporal dataset with 6 timesteps
(Fig. 1f). On an ordinal scale between aquatic and terrestrial, the directed change between
two timesteps is evaluated as DC =

∑i=1
n=1

xi+1−xi

|x1+1−xi| , where DC is the change vector and x
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Figure 2 Visualization of the three dimensions of change in the pixel-wise change analytics,
applied on a region of the Aare river in Switzerland. The background shows the 1876 Siegfried map
before channelization. The red outline in (c) highlights a section for which the pixel flow paths
through time are shown in Fig.3. Data source swisstopo.ch.

is a pixel of timestep i. In this equation, the difference between xi+1 and xi is divided by
the absolute value of that difference. This results in a value of +1 if xi+1 is greater than
xi (i.e., a change towards terrestrial) and -1 if xi+1 is less than xi (i.e., a change towards
aquatic). The expression evaluates to 0 if there is no change. The sum of the expression
from t1 → tn then results in a change vector presenting multitemporal directed changes, the
first dimension of the here presented change analytics.

The second dimension includes an evaluation of change magnitude (CM) of all changes
which occurred between consecutive timesteps, described by CM =

∑i=1
n=1 |xi+1 − xi| > 0.

For each timestep i, the expression |xi+1 − xi| > 0 evaluates to true if there was a class
change in x between i and i+1, and false if otherwise. The absolute values ensure a positive
expression regardless of the direction of change.

Lastly, true changes with direction are differentiated from change variability, where
frequent changes between individual classes occur with no clear direction. This difference
is evaluated by CV ar = [CM ] − [|DC|] and depicts the third dimension of change. As
exemplified in pixel (i) and (ii) in Figure 1(f), large differences between CM and |DC|
indicate that the class membership of the particular pixel frequently fluctuated between
specific classes, whereas small to no differences indicate true directional change of the class
towards aquatic or terrestrial. The change analytics per pixel can then be visualized by
the calculated difference to show pixels with multitemporal variability. Where CV ar > 0,
the DC values are visualized to show the relative magnitude and direction of pixels that
observed multitemporal change.

3 Results and Discussion

The detailed change analytics per individual pixel showed regions of directional change as
well as regions of variability over the investigated time series of 1876 to 1946, with a timestep
roughly every 14 years. The presented methods allowed the decomposition of pixel evolution
vectors into three dimensions of change. Fig. 2 visualizes these dimensions of change for a
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Table 1 Areas of directed change and change variability with averaged class confidence.

(1.25m/pixel) Area (m2) full map sheet Average confidence
High variability 94’139 0.65
Low variability 2’700’396 0.84
Change aquatic 881’232 0.93
Change terrestrial 2’294’343 0.91

section of the map sheet under study. Fig. 2(a) depicts the dimension of directed change
towards terrestrial or aquatic classes with the respective magnitude, regions where no changes
occurred are shown in white. Fig. 2(b) illustrates change variability, the change dimension
where pixels observed frequent alternations between specific classes (high). Some (low)
change variability is observed when the classes alternate at least twice over the time series,
differences of three (diff=3) or change variability higher than four variations (diff>4) where
not observed. Fig. 2(c) visualizes the change magnitude observed per pixel throughout the
time series, the third dimension of change.

Table 1 summarizes the areas which observed directed change and change variability, with
the averaged multitemporal class confidence per pixel from the change analytics, for the map
sheet TA 124 under study. The results show that the majority of pixels changed towards
the terrestrial class or observed low variability, meaning that class alternations were only
observed once or twice in those pixels. The class confidence was relatively low for regions
that observed high variability, indicating that high variability in class changes also introduces
larger uncertainties in class confidence as the class membership defined per timestep are less
certain and could likely be identified as other classes in the specific timestep.

The change analytics enabled us to quantify the path of changes of each individual pixel.
With six class types and 6 timesteps, over 1000 combinations of class changes were observed
within the change analytics. Figure 3 illustrates the observed paths of individual pixels and
their classes through time. The region of path combinations shown is outlined in red in Fig.
2c. Overall, the change history shows that terrestrial and lake classes steadily increased over
time. Rivers and streams overall decreased with small increases between individual timesteps
while gravel deposits and islands steadily decreased. Wetlands varied throughout the time
series but generally increased over time.

4 Conclusion and Outlook

In this article, we proposed a novel approach to investigate changes in raster based data
time series, generating multi-dimensional change analytics per individual pixels. The here
presented methods allowed the decomposition of pixel evolution vectors into three dimensions

Figure 3 Flow paths of pixels and their observed classes through time (R package parcats).
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of change: directed change, change variability, and change magnitude. The change analytics
can be visualized by complex change maps depicting the three dimensions of change observed
per pixel-space. With a unique application of PBCD on historical map sources, the change
analytics included 6 timesteps and incorporated class confidence per pixel. Overall, the
here presented methods offer differentiated insights in complex change dynamics, and do so
considering uncertainty.

In terms of future work, we aim to incorporate the LCE for the remaining timesteps and,
instead of viewing the averaged multitemporal class confidence, integrate the class confidence
per class type and timestep into the pixel level change analytics. In addition, to make further
use of the detail gained by the change histories, we intend to incorporate overall relative
change for DC and overall absolute change for CM to capture the absolute magnitude of
overall observed changes. Further timesteps and other map sheets will be investigated to
test the robustness of the CD approach. In general, the change analytics described in this
paper and its visualization of complex spatio-temporal data has great application potential
to other fields detecting changes in multitemporal time series.
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