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Abstract
Interval temporal logic plays a critical role in various applications, including planning, scheduling,
and formal verification; recently, interval temporal logic has also been successfully applied to learning
from temporal data. Halpern and Shoham’s interval temporal logic, in particular, stands out as a
very intuitive, yet expressive, interval-based formalism. To address real-world scenarios involving
uncertainty and imprecision, Halpern and Shoham’s logic has been recently generalized to the fuzzy
(many-valued) case. The resulting language capitalizes on many-valued modal logics, allowing for a
range of truth values that reflect multiple expert perspectives, but inherits the bad computational
behaviour of its crisp counterpart. In this work, we investigate a sound and complete tableau
system for fuzzy Halpern and Shoham’s logic, which, although possibly non-terminating, offers a
semi-decision procedure for the finite case.
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1 Introduction

Temporal logic is an essential framework for representing and reasoning about time. To
accurately represent time, it is crucial to adopt suitable primitive ontological entities, usually
categorized into point-based and interval-based ones. In this work, we take intervals as
primary semantic objects. Halpern and Shoham’s Modal Logic for Time Intervals (HS) [14]
is one of the most influential logical languages for time intervals, providing a robust and
expressive formalism for reasoning about temporal relations between events with duration.
Its applications range from planning, to scheduling, to formal verification; more recently,
it has been shown how transparent and explainable interval temporal logic theories can
be extracted from temporal data by exploiting the integration of HS in machine learning
systems, including decision trees (e.g., see [6, 19]) and random forests (e.g., see [15, 16]).
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9:2 A Sound and Complete Tableau System for FHS

As it turns out, the satisfiability problem for HS is undecidable in all interesting cases
of underlying linear order. Various strategies have been studied to obtain fragments of HS
with better computational behaviour, such as restricting the set of modal operators [1, 3],
constraining the underlying temporal structure [17], restricting the propositional power of
the languages [5], and considering coarser logics based on relations that describe a less precise
relationship between intervals [18]. On a more practical side, a few attempts to devise
practical reasoning systems for HS and its fragments have been made; among them there are
sound and complete procedures, respectively for the fragment of HS known as PNL [12, 4],
and the coarser version of HS called HS3 [18], among a few others; moreover, it has also been
devised a similar procedure for the interval temporal logic CDT, introduced in [20], which
generalizes HS to the case of ternary relations [11].

A unifying aspect of the work on interval temporal logic as we have presented it is the
crisp (that is, based on the classic two-values Boolean algebra) semantics of all mentioned
logics. In order to enhance the applicability and effectiveness in addressing real-world
scenarios, it has been recently proposed to generalize the syntax and semantics of HS to
accommodate the inherent uncertainty and imprecision when dealing with real-world data,
including (multivariate) time series. A natural way to accomplish such a generalization is
following the pioneering work of Fitting on fuzzy modal logics [8], in which both propositions
and accessibility relations are no longer just true or false but can have different truth values.
As a consequence, the definition of a fuzzy logic rests on a specific class of algebras. Typical
choices are Heyting algebras and Łukasiewicz algebra; in the former case, the resulting
logic embodies the perspectives of multiple experts whose opinions may not necessarily be
independent, while in the latter case the idea is to represent intrinsic vagueness of data.

Fuzzy Halpern and Shoham’s Modal Logic for Time Intervals (FHS) [7] is precisely the
Fitting-style generalization of HS in the case of Heyting algebras. FHS inherits the bad
computational behaviour of its crisp counterpart. In particular, in the case of chain Heyting
algebras and the class of all (fuzzy) linearly ordered sets, the (fuzzy generalisation of the)
satisfiability problem for FHS is undecidable, as well as in the case of all finite (fuzzy) linearly
ordered sets, and it is believed so in the other two natural sub-classes of Heyting algebras,
that is, the class of finite and the class of Boolean Heyting algebras. However, satisfiability
of interval temporal logic formulas is much less studied in the fuzzy case than it is in its crisp
counterpart. In this sense, there is a general lack of reasoning tools that are able to deal
with fuzzy interval temporal logics, and with FHS in particular.

This work is a first step towards filling in this gap. In particular, we consider FHS in the
case of finite Heyting algebras, and, following (again) Fitting [9], we study a tableau system
for FHS in the case of all (fuzzy) linear orders. We shall prove that our tableau system,
which generalizes tableau systems for crisp interval logics such as those proposed in [11, 12],
is sound and complete for satisfiability (at a certain degree of truth or more), and that it is
a semi-decision procedure for the case of all finite (fuzzy) linear orders.

This paper is organized as follows. In Section 2 we give some necessary background on
HS, Heyting algebras and their properties, and FHS. Then, in Section 3 we present our
tableau system, and prove its soundness and completeness, before concluding.

2 Background

While several different interval temporal logics have been proposed in the recent literat-
ure [13], Halpern and Shoham’s Modal Logic for Time Intervals (HS) [14] is certainly the
formalism that has received the most attention. Let D = ⟨D,<⟩ be a linear order with
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Table 1 Allen’s interval relations and HS modalities.

HS modality Definition w.r.t. the interval structure Example

x y

z t

z t

z t

z t

z t

z t

⟨A⟩ (after) [x, y]RA[z, t] ⇔ y = z

⟨L⟩ (later) [x, y]RL[z, t] ⇔ y < z

⟨B⟩ (begins) [x, y]RB [z, t] ⇔ x = z ∧ t < y

⟨E⟩ (ends) [x, y]RE [z, t] ⇔ y = t ∧ x < z

⟨D⟩ (during) [x, y]RD[z, t] ⇔ x < z ∧ t < y

⟨O⟩ (overlaps) [x, y]RO[z, t] ⇔ x < z < y < t

domain D; in the following, we shall use D and D interchangeably. A strict interval over D
is an ordered pair [x, y], where x, y ∈ D and x < y. If we exclude the identity relation, there
are 12 different binary ordering relations between two strict intervals on a linear order, often
called Allen’s interval relations [2]: the six relations RA (adjacent to), RL (later than), RB
(begins), RE (ends), RD (during) and RO (overlaps), depicted in Tab. 1, and their inverses,
that is, RX = (RX)−1, for each X ∈ {A,L,B,E,D,O}. We interpret interval structures as
Kripke structures, with Allen’s relations playing the role of accessibility relations. Thus,
we associate an existential modality ⟨X⟩ with each Allen’s relation RX . Moreover, for each
X ∈ {A,L,B,E,D,O}, the transpose of modality ⟨X⟩ is the modality ⟨X⟩ corresponding
to the inverse relation RX of RX . Now, let X = {A,A,L, L,B,B,E,E,D,D,O,O}; well-
formed HS formulas are built from a set of propositional letters P, the classical connectives
∨ and ¬, and a modality for each Allen’s interval relation, as follows:

φ ::= p | ¬φ | φ ∨ φ | ⟨X⟩φ,

where p ∈ P and X ∈ X . The other propositional connectives and constants (i.e., ψ1 ∧ ψ2 ≡
¬ψ1 ∨ ¬ψ2, ψ1 → ψ2 ≡ ¬ψ1 ∨ ψ2 and ⊤ = p ∨ ¬p), as well as, for each X ∈ X , the universal
modality [X] (e.g., [A]φ ≡ ¬⟨A⟩¬φ), can be derived in the standard way. The set of all
subformulas of a given HS formula φ is denoted by sub(φ).

The strict semantics of HS is given in terms of interval models of the type M = ⟨I(D), V ⟩,
where D is a linear order, I(D) is the set of all strict intervals over D, and V is a valuation
function V : P → 2I(D) which assigns to every atomic proposition p ∈ P the set of intervals
V (p) on which p holds. The truth of a formula φ on a given interval [x, y] in an interval
model M , denoted by M, [x, y] ⊩ φ, is defined by structural induction on the complexity of
formulas, as follows:

M, [x, y] ⊩ p if and only if [x, y] ∈ V (p), for each p ∈ AP,
M, [x, y] ⊩ ¬ψ if and only if M, [x, y] ̸⊩ ψ,

M, [x, y] ⊩ ψ1 ∨ ψ2 if and only if M, [x, y] ⊩ ψ1 or M, [x, y] ⊩ ψ2,

M, [x, y] ⊩ ⟨X⟩ψ if and only if there exists [w, z] s.t. [x, y]RX [w, z] and M, [w, z] ⊩ ψ,

where X ∈ X . Given a model M = ⟨I(D), V ⟩ and a formula φ, we say that M satisfies φ if
there exists an interval [x, y] ∈ I(D) such that M, [x, y] ⊩ φ. A formula φ is satisfiable if there
exists an interval model that satisfies it. Moreover, a formula φ is valid if it is satisfiable at
every interval of every (interval) model or, equivalently, if its negation ¬φ is unsatisfiable.

TIME 2023
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Figure 1 Graphical representation of finite, Boolean, and chain algebras. Some examples have
well-known names: Gs are Göedel algebras, Bs are Boolean algebras, and ℘(N) is the powerset of N.

A Heyting algebra is a structure of the type

H = (H,∩,∪, ↪→, 0, 1),

where (H,∩,∪, 0, 1) is a bounded lattice with domain H, with top (resp., bottom) element 1
(resp., 0); in the following, we shall use H and H interchangeably. Recall that a bounded
lattice is a set with internal operations ∩ (meet1) and ∪ (join), both commutative, associative,
and connected by the absorption law, in which a partial order can be defined, as follows:

α ⪯ β iff α ∩ β = α iff α ∪ β = β.

It is well-known that Heyting algebras are always distributive. In the following we use
⋂

(resp.,
⋃

) to indicate the generalized ∩ (resp., ∪), and we assume them to have the lowest
priority in algebraic expressions; moreover, we omit the quantification domains when it is
clear from the context. The symbols 0 and 1 denote, respectively, least and the greatest
elements of H. In other words, a Heyting algebra is a bounded distributive lattice in which
the relative pseudo-complement of α w.r.t. β, defined as⋃

{γ | α ∩ γ ⪯ β},

and denoted by α ↪→ β (it is also called Heyting implication), exists for every α and β [10].
For instance, consider the Heyting algebra B3 in Fig. 1. Then, as expected, 0 ↪→ 0 = 1 and
1 ↪→ 0 = 0, where 0 is ∅ and 1 is {a, b, c} (and, in general, this is true for every Heyting algebra,
since it generalizes the Boolean case); moreover, we have that, for example, {a, c} ↪→ 0 = {b}.
A Heyting algebra is said to be complete if for every subset H ′ ⊆ H, both its least upper

1 This is the classical nomenclature in lattice theory, and it should not be confused with Allen’s relation
meets.



W. Conradie, R. Monego, E. Muñoz-Velasco, G. Sciavicco, and I. E. Stan 9:5

bound
⋃
H ′ and its greatest lower bound

⋂
H ′ exist. Moreover, a Heyting algebra is finite if

its domain is finite, Boolean if it is isomorphic to a nonempty set of subsets of a given set
closed under the set operations of union, intersection, and complement relative to that set,
and a chain if ⪯ is total. Graphical examples of such algebras can be found in Figure 1.

As in [7], assuming that H is a complete Heyting algebra with domain H we define an
adequate fuzzy strictly linearly ordered set as a structure of the type

D̃ = ⟨D, <̃, =̃⟩,

where D is a domain (and, again, we identify D with D) enriched with two functions
<̃, =̃ : D ×D 7→ H, for which the following conditions apply for every x, y, and z:

=̃(x, y) = 1 iff x = y,

=̃(x, y) = =̃(y, x),
<̃(x, x) = 0,
<̃(x, z) ⪰ <̃(x, y) ∩ <̃(y, z),
if <̃(x, y) ≻ 0 and <̃(y, z) ≻ 0 then <̃(x, z) ≻ 0,
if <̃(x, y) = 0 and <̃(y, x) = 0 then =̃(x, y) = 1,
if =̃(x, y) ≻ 0 then <̃(x, y) ≺ 1.

An adequate fuzzy linear order is finite when D is finite. The above conditions are called
adequate fuzzy linear order axioms.

Now, let us fix a complete Heyting algebra H. Similarly to the crisp case, well-formed
Fuzzy Halpern and Shoham’s Modal Logic for Time Intervals (FHS) formulas are built from
a set of propositional letters P, the classical connectives ∨ and ¬, and a modality for each
Allen’s interval relation, as follows:

φ ::= α | p | φ ∨ ψ | φ ∧ ψ | φ → ψ | ⟨X⟩φ | [X]φ,

where α ∈ H, p ∈ P, and, as in the crisp case, X ∈ X . As before, the set of all subformulas
of a given FHS formula φ is denoted by sub(φ).

As for the semantics of FHS formulas, given an adequate fuzzy strictly linearly ordered
set we define the set of fuzzy strict intervals in D̃ as

I(D̃) = {[x, y] | <̃(x, y) ≻ 0},

and, generalizing classical Boolean evaluation, propositional letters are directly evaluated in
the underlying algebra by defining a fuzzy valuation function, as follows:

Ṽ : P × I(D̃) 7→ H.

On top of the fuzzyfication of valuations we need to define how accessibility relations behave
in the fuzzy context. The definition of fuzzy Allen’s relations is obtained by generalizing the
original, crisp definition, and substituting every = with =̃ and every < with <̃:

R̃A([x, y], [z, t]) = =̃(y, z),
R̃L([x, y], [z, t]) = <̃(y, z),
R̃B([x, y], [z, t]) = =̃(x, z) ∩ <̃(t, y),
R̃E([x, y], [z, t]) = <̃(x, z) ∩ =̃(y, t),
R̃D([x, y], [z, t]) = <̃(x, z) ∩ <̃(t, y),
R̃O([x, y], [z, t]) = <̃(x, z) ∩ <̃(z, y) ∩ <̃(y, t),

and similarly for the inverse relations. Finally, we say that an H-valued interval model (or
fuzzy interval model) is a tuple of the type:

M̃ = ⟨I(D̃), Ṽ ⟩

TIME 2023



9:6 A Sound and Complete Tableau System for FHS

where D̃ is a fuzzy strictly linearly ordered set and Ṽ is a fuzzy valuation function. We
interpret an FHS formula in a fuzzy interval model M̃ and an interval [x, y] by extending
the valuation Ṽ of propositional letters as follows, where X ∈ X and [z, t] varies in I(D̃):

Ṽ (α, [x, y]) = α,

Ṽ (φ ∧ ψ, [x, y]) = Ṽ (φ, [x, y]) ∩ Ṽ (ψ, [x, y]),
Ṽ (φ ∨ ψ, [x, y]) = Ṽ (φ, [x, y]) ∪ Ṽ (ψ, [x, y]),
Ṽ (φ → ψ, [x, y]) = Ṽ (φ, [x, y]) ↪→ Ṽ (ψ, [x, y]),
Ṽ (⟨X⟩φ, [x, y]) =

⋃
{R̃X([x, y], [z, t]) ∩ Ṽ (φ, [z, t])},

Ṽ ([X]φ, [x, y]) =
⋂

{R̃X([x, y], [z, t]) ↪→ Ṽ (φ, [z, t])}.

We say that a formula of FHS φ is α-satisfied at an interval [x, y] in a fuzzy interval model
M̃ if and only if

Ṽ (φ, [x, y]) ⪰ α.

The formula φ is α-satisfiable if and only if there exists a fuzzy interval model and an interval
in that model where it is α-satisfied. A formula is satisfiable if it is α-satisfiable for some
α ∈ H, α ̸= 0. A formula is α-valid if it is α-satisfied at every interval in every model, and
valid if it is 1-valid. Observe that since a Heyting algebra, in general, does not encompass
classical negation, and since our definition of satisfiability is graded, instead of absolute, then
the usual duality of satisfiability and validity does not hold anymore.

As shown in [7], α-satisfiable of FHS formulas is undecidable in the case of chain algebras.
Such a result cannot be immediately generalized to the case of all Heyting algebras, but,
since as crisp HS is undecidable in every class of linearly ordered sets, one can expect that
FHS is too, regardless the underlying algebra.

3 A Tableau System for FHS

In this section we consider the problem of reasoning with FHS formulas. Tableau systems
have been introduced in [4, 11, 12, 18] for variants, fragments, and generalizations of crisp
HS, and in [9] for fuzzy modal logics; as in the latter case, we limit ourselves to the case of
finite Heyting algebras as truth value algebras.

A tableau for a FHS formula is a directed tree, in which every node is associated to a
truth judgment, to a pair formula/interval, and to a finite constraint system. In Fitting’s
terminology, a truth judgement, as we use it, is a signed formula with bounding implications [9].
Such a system represents an adequate fuzzy linearly ordered set; its constraints come from
both the formula whose satisfiability has to be checked and the axioms that every adequate
fuzzy linear order must meet. It may be possible that such a constraint system cannot be
satisfied at some node: this will cause the branch that contain that node to be closed.

▶ Definition 1 (fuzzy constraint system). Given a finite Heyting algebra H, a fuzzy constraint
system C is a finite set of elements {x, y, . . .} associated to a finite set of constraints of the
following types:

=̃(x, y) ▷◁ α,
<̃(x, y) ▷◁ α,
F F is an adequate fuzzy linear order axiom,

where α ∈ H and ▷◁∈ {⪯,⪰,≺,≻}.
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For the sake of convenience, when describing a constraint system we shall omit to include
adequate fuzzy linear order axioms (as they do not vary from system to system). It is
immediate to see that any fuzzy constraint system can be checked for satisfiability using a
first-order reasoner, and that termination is guaranteed by the fact that the system is finite.
In the following, we shall use x ∈ C to indicate that a certain element is mentioned in the
fuzzy constraint system C. Intuitively, C represent a possibly incomplete adequate fuzzy
linear order; if C can be satisfied, then it can be extended to a complete adequate fuzzy
linear order. In the following, we say that C is solved if a value for =̃ and a value for <̃ has
been chosen for every pair x, y ∈ C in such a way that all constraints are met; moreover, we
say that C is inconsistent if a solution cannot be found. We assume that a constraint system
C (once solved) can be queried, so that, for example, at any given time, we can know the
value of the relation RX([x, y], [z, t]) for any points x, y, z, t ∈ C. In particular, for a given
constraint system C, we assume that a function o(C) (resp., n(C)) is defined that returns a
list of all possible old intervals [x, y] that can be formed with points in C (resp., all possible
new intervals that can be formed in C using one or two points not currently in C); clearly,
o(C) ∩ n(C) = ∅. Finally, observe that for a given non-inconsistent system C there may be
more than one solution. The set of all possible constraint systems is denoted by C.

Because classic negation is not available in the fuzzy case, following Fitting, our tableau
is designed to answer the question of whether a given formula φ can be satisfied to a degree
at least α in H-valued interval model, for a given finite Heyting algebra H.

▶ Definition 2 (decoration). Given a Heyting algebra H, an FHS formula φ, and a fuzzy
constraint system C, a decoration is an object of the type

Q(α → φ, [x, y], C), or Q(φ → α, [x, y], C),

where α ∈ H and Q ∈ {T, F} is a judgment. The expression α → φ (φ → α) is an assertion
on [x, y] ∈ o(C). The universe of all possible decorations is denoted by D.

Intuitively, the assertion α → φ (resp., φ → α) on an interval [x, y] means that there exists
a fuzzy model M̃ with valuation function Ṽ such that Ṽ (φ, [x, y]) ⪰ α (resp., for every
fuzzy model M̃ and valuation functions Ṽ it is the case that Ṽ (φ, [x, y]) ⪯ α); associating
a judgment T (resp., F ) to an assertion can be interpreted as (trying to) proving that the
assertion holds (resp., does not hold).

▶ Definition 3 (tableau for FHS). Given an FHS formula φ and a finite Heyting algebra H,
the tableau τ for φ and α ∈ H is an object of the type

τ = (V, E , d, f, c),

where (V, E) is a tree with vertices (or nodes) in V and edges in E. The nodes in τ are
partially ordered by the relation ◁ (induced by the edges) and whose set of branches is denoted
by B,

d : V → D,

is a node labeling function, which associates a decoration Q(ψ → α, [x, y], C) or Q(α →
ψ, [x, y], C) to any node ν, where ψ ∈ sub(φ) and x, y ∈ C, and

f : V → {0, 1}

is a node flag function, which determines which nodes have been already expanded,

c : B → C

TIME 2023



9:8 A Sound and Complete Tableau System for FHS

is a branch labeling function, which associates every branch to the constraint system in the
decoration of its leaf, and it has been obtained starting from the initial tableau τ0

({ν0}, ∅, {(ν0, T (α → φ, [x, y], {x, y, <̃(x, y) ≻ 0}))}, {(ν0, 0)}, {(ν0, {x, y, <̃(x, y) ≻ 0})})

by iteratively applying the branch expansion rule in Fig. 2 to the closest-to-the-root node ν
such that f(ν) = 0 and every leaf ν′ such that ν ◁ ν′, until no further application is possible
or all branches have been closed. The tableau is closed (resp., open) if all its branches (resp.,
at least one of its branches) are (resp., is) closed ✗ by some condition in Fig. 3 (resp., open
✓).

Following the original terminology, the first four rules in Fig. 2 are referred to as reverse
rules, the rules for nodes with a decoration that contain a propositional formula in the
assertion are referred to as propositional rules, and the rules for nodes with a decoration that
contain a temporal formulas in the assertion are referred to as temporal rules. Observe that
the set actually covers all cases; those that are not covered can be treated by (the application
of) a reverse rule.

The application of the branch expansion rule to a specific branch B in a tableau defined
as above works as follows. First, the closest-to-the-root node ν of B, such that f(ν) = 0 is
chosen. Then, the consequent of the rule produces a new tree which is attached to the leaf of
B; observe that the constraint system used in the application is always the one currently
at the leaf. Finally, the application is not possible if the nodes produced by it are already
present on the branch.

Now, we move to proving that the tableau system is sound.

▶ Lemma 4 (soundness). Let φ be an FHS formula and α ∈ H a constant of a finite Heyting
algebra. Then, if φ is α-satisfiable, then the tableau τ for φ and α is open.

Proof. Consider an FHS formula φ. Assume that τ is the tableau for φ and α ∈ H, where
H is a fixed finite Heyting algebra. We proceed contrapositively to prove that if τ is closed
then φ is not α-satisfiable. Given a node ν in τ such that C is the constraint system in d(ν),
we define the set

S(ν) = {ν′ | ν′ ◁ ν}

and we say that is S(ν) is α-satisfiable if and only if there is an H-valued interval model

M̃ = ⟨I(C∗), Ṽ ⟩,

where C∗ is a fuzzy strictly linearly ordered set that extends C, such that
for each node ν′ ∈ S(ν) such that d(ν′) = T (β → ψ, [x, y], C ′) (resp., F (ψ → β, [x, y], C ′)),
it is the case that Ṽ (ψ, [x, y]) ⪰ β (resp., Ṽ (ψ, [x, y]) ⪰ γ, for some minimal γ not below
β), and
for each node ν′ ∈ S(ν) such that d(ν′) = T (ψ → β, [x, y], C ′) (resp., F (β → ψ, [x, y], C ′)),
it is the case that Ṽ (ψ, [x, y]) ⪯ β (resp., Ṽ (ψ, [x, y]) ⪯ γ for some maximal γ not above
β).

Observe that M̃ depends on α since ν0 ∈ S(ν), for every ν. Moreover, if S(ν0) is α-satisfiable,
then φ is α-satisfiable. Now, we prove the following stronger statement: if every branch
containing a node ν is closed, then the set S(ν) is not α-satisfiable. Let us proceed by
induction on the height h of the node ν.
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T (α → ψ, [x, y], C)
(T ⪰)

F (ψ → γ, [x, y], c(B))
where α ̸= 0 and γ is any maximal

element not above α, i.e., γ ̸⪰ α

F (α → ψ, [x, y], C)
(F ⪰)

T (ψ → βi, [x, y], c(B)) | . . . | T (ψ → βn, [x, y], c(B))
where α ̸= 0 and β1, . . . , βn are all maximal
elements not above α, i.e., β1, . . . , βn ̸⪰ α

T (ψ → α, [x, y], C)
(T ⪯)

F (γ → ψ, [x, y], c(B))
where α ̸= 1 and γ is any minimal
element not below α, i.e., γ ̸⪯ α

F (ψ → α, [x, y], C)
(F ⪯)

T (βi → ψ, [x, y], c(B)) | . . . | T (βi → ψ, [x, y], c(B))
where α ̸= 1 and β1, . . . , βn are all minimal
elements not below α, i.e., β1, . . . , βn ̸⪯ α

(a) Reverse rules.

T (α → (ψ ∧ ξ), [x, y], C)
(T∧)

T (α → ψ, [x, y], c(B))
T (α → ξ, [x, y], c(B))

where α ̸= 0

F (α → (ψ ∧ ξ), [x, y], C)
(F∧)

F (α → ψ, [x, y], c(B)) | F (α → ξ, [x, y], c(B))
where α ̸= 0

T ((ψ ∨ ξ) → α, [x, y], C)
(T∨)

T (ψ → α, [x, y], c(B))
T (ξ → α, [x, y], c(B))

where α ̸= 1

F ((ψ ∨ ξ) → α, [x, y], C)
(F∨)

F (ψ → α, [x, y], c(B)) | F (ξ → α, [x, y], c(B))
where α ̸= 1

T (α → (ψ → ξ), [x, y], C)
(T →)

F (γ → ψ, [x, y], c(B) | T (γ → ξ, [x, y], c(B))
where α ̸= 0 and γ is any element
below α except 0, i.e., 0 ̸= γ ⪯ α

F (α → (ψ → ξ), [x, y], C)
(F →)

T (β1 → ψ, [x, y], c(B)) | . . . | T (βn → ψ, [x, y]c(B))
F (β1 → ξ, [x, y], c(B)) | . . . | F (βn → ξ, [x, y], c(B))

where α ̸= 0 and β1, . . . , βn are all elements
below α except 0, i.e., 0 ̸= β1, . . . , βn ⪯ α

(b) Propositional rules.

T (α → [X]ψ, [x, y], C)
(T□)

T ((α ∩ β1) → ψ, [z1, t1], c(B))
. . .

T ((α ∩ βn) → ψ, [zn, tn], c(B))
T (α → [X]ψ, [x, y], c(B))

where βi = RX ([x, y], [zi, ti]), [zi, ti] ∈ o(c(B)),
βi ≻ 0, and α ∩ βi ̸= 0

T (⟨X⟩ψ → α, [x, y], C)
(T♢)

T ((ψ → (β1 ↪→ α), [z1, t1], c(B))
. . .

T (ψ → (βn ↪→ α), [zn, tn], c(B))
T (⟨X⟩ψ → α, [x, y], c(B))

where βi = RX ([x, y], [zi, ti]), [zi, ti] ∈ o(c(B)),
βi ≻ 0, and βi ↪→ α ̸= 1

F (α → [X]ψ, [x, y], C)
(F□)

F ((α ∩ β1) → ψ, [z1, t1], c(B)) | . . . | F ((α ∩ βn) → ψ, [zn, tn], c(B))
where βi = RX ([x, y], [zi, ti]),[zi, ti] ∈ o(c(B)) ∪ n(c(B)),

βi ≻ 0, and α ∩ βi ̸= 0

F (⟨X⟩ψ → α, [x, y], C)
(F♢)

F (ψ → (β1 ↪→ α), [z1, t1], c(B)) | . . . | F (ψ → (βn ↪→ α), [zn, tn], c(B))
where βi = RX ([x, y], [zi, ti]),[zi, ti] ∈ o(c(B)) ∪ n(c(B)),

βi ≻ 0, and βi ↪→ α ̸= 1

(c) Temporal rules.

Figure 2 Branch expansion rules for a branch B, to be applied to ν ∈ B under the conditions
specified below each rule. The node flag is 0 when a rule is applied on a node with label at the top,
modified into 1 after the application, and set to 0 on every produced node. When applying the rules
(F□) and (F♢), the constraint system C is first solved, and, queried for o(C), and finally, for n(C),
returning all possible (old and new) intervals relevant for the application.
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T (α → β, [x, y], C)
(✗1)

✗

where α ̸⪯ β

F (α → β, [x, y], C)
(✗2)

✗

where α ⪯ β

F (0 → ψ, [x, y], C)
(✗3)

✗

F (ψ → 1, [x, y], C)
(✗4)

✗

T (β → ψ, [x, y], C)
F (α → ψ, [x, y], C)

(✗5)
✗

where α ⪯ β

Q(·, ·, C)
(✗6)

✗

where C is inconsistent

Figure 3 Branch closing conditions.

If h = 0, then there is exactly one branch that contains it. Since such branch is closed, one
of the following must hold. First, for some ν′ ∈ S(ν), d(ν′) = T (β → γ, [x, y], C ′) but β ̸⪯ γ

(condition (✗1)), or d(ν′) = F (β → γ, [x, y], C ′) but β ⪯ γ (condition (✗2)). Second, for some
ν′ ∈ S(ν), d(ν′) = F (0 → ψ, [x, y], C ′) (condition (✗3)), or F (ψ → 1, [x, y], C ′) (condition
(✗4)). Third, for some ν′ ∈ S(ν), d(ν′) = Q(·, ·, C) but C is inconsistent (condition (✗6)). Or,
fourth, for some ν′, ν′′ ∈ S(ν), d(ν′) = F (β → ψ, [x, y], C ′) and d(ν′′) = T (γ → ψ, [x, y], C ′′),
but γ ⪯ β (condition (✗5)). In all such cases, M̃ cannot be realized, so S(ν) is not α-satisfiable,
as we wanted.

Suppose, now, that h > 0. First, observe that if every branch that contains ν is closed,
then every branch that contains any of its successors must be closed too, so that the
inductive hypothesis applies to them. Then, consider the node ν′ ∈ S(ν) that has been
expanded when ν was a leaf, and let us analyze the possible rules that have been applied
at ν′. If d(ν′) = T (ψ → β, [x, y], C ′), then the immediate successor ν′′ of ν is such that
d(ν′′) = F (γ → ψ, [x, y], C ′′), where γ is some minimal element of H such that γ ̸⪰ β (rule
(T ⪯)); by inductive hypothesis, S(ν′′) is not α-satisfiable, but this implies that S(ν) cannot
be α-satisfiable either. If d(ν′) = F (β → ψ, [x, y], C ′), then all immediate successors νi
of ν are such that d(νi) = T (ψ → γi, [x, y], Ci), where γi is a maximal element of H such
that γi ̸⪰ β (rule (F ⪰)); by inductive hypothesis, S(νi) is not α-satisfiable for any i, but
this implies that S(ν) cannot be α-satisfiable either. The cases in which another reverse
rule has been applied to ν are similar. If d(ν′) = T (β → (ψ ∧ ξ), [x, y], C ′), then ν has an
immediate successor ν1 with d(ν1) = T (β → ψ, [x, y], C1), which in turn has an immediate
successor ν2 with d(ν2) = T (β → ξ, [x, y], C2) (rule (T∧)). By inductive hypothesis, S(ν2),
in particular, is not α-satisfiable, but this implies that S(ν) is not α-satisfiable either. If
d(ν′) = F (β → (ψ∧ξ), [x, y], C ′), then ν has two immediate successors ν1 and ν2 with d(ν1) =
F (β → ψ, [x, y], C1) and d(ν2) = F (β → ξ, [x, y], C2) (rule (F∧)). By inductive hypothesis,
both S(ν1) and S(ν2) are not α-satisfiable, but this implies that S(ν) is not α-satisfiable
either. The cases in which another propositional rule has been applied to ν are similar.
If d(ν′) = T (β → [X]ψ), [x, y], C ′) then ν has a chain of successors ν1, . . . , νn, such that
d(νi) = T ((β ∩γi) → ψ, [zi, ti], Ci) and γi = RX([x, y], [zi, ti]), for all [zi, ti] ∈ o(c(B)), where
1 ≤ i ≤ n (rule (T□)). Observe that asking that the evaluation of [X]ψ is above β is equivalent
to asking that the evaluation of ψ is above β∩γi on every interval [zi, ti]. Since, in particular,
S(νn) is not α-satisfiable by inductive hypothesis, S(ν) is not α-satisfiable as well. The case
in which (T♢) has been applied to ν is similar. Finally, if d(ν′) = F (⟨X⟩ψ → β), [x, y], C ′)
then every immediate successor νi of ν is such that d(νi) = F (ψ → (γi ↪→ β), [zi, ti], Ci)
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and γi = RX([x, y], [zi, ti]), for all [zi, ti] ∈ o(c(B)) ∪ n(c(B)), where 1 ≤ i ≤ n (rule (F♢)).
Observe that asking that the evaluation of ⟨X⟩ψ is below β is equivalent to asking that the
evaluation of ψ is below γi ↪→ β on some interval [zi, ti]. Since all S(νi) are not α-satisfiable
by inductive hypothesis, S(ν) is not α-satisfiable as well. The case in which (F□) has been
applied to ν is similar. ◀

Finally, we turn our attention to proving completeness.

▶ Lemma 5 (completeness). Let φ be an FHS formula and α ∈ H a constant of a finite
Heyting algebra. If τ is an open tableau for φ and α, then φ is α-satisfiable.

Proof. Consider an FHS formula φ, and assume that τ is the tableau for φ and α. Consider
an open branch B in τ , let Cµ =

⋃
ν∈B Cν , where Cν is the constraint system in the label

d(ν), and let C∗ the complete extension of Cµ. Then, consider the model

M̃ = ⟨I(C∗), Ṽ ⟩,

where Ṽ is the following fuzzy valuation function, defined for every propositional letter p
and fuzzy strict interval [x, y] in I(C∗):

Ṽ (p, [x, y]) =
{
β if d(ν) = T (β → p, [x, y], C), for some ν ∈ B;
γ if d(ν) = F (β → p, [x, y], C), for some ν ∈ B and γ ̸⪰ β.

The model M̃ is the direct translation of the branch B into an (fuzzy) interval model; in
particular, is an coherent assignment of truth values of all propositional letters on all intervals.
As much as the case of the judgment F (β → p, [x, y], C) is considered we need to associate
any truth value γ such that γ ̸⪰ β. We want to prove that, for every ν ∈ B,

if d(ν) = T (β → ψ, [z, t], C), then Ṽ (ψ, [z, t]) ⪰ β,
if d(ν) = T (ψ → β, [z, t], C), then Ṽ (ψ, [z, t]) ⪯ β,
if d(ν) = F (β → ψ, [z, t], C), then Ṽ (ψ, [z, t]) ̸⪰ β, and
if d(ν) = F (ψ → β, [z, t], C), then Ṽ (ψ, [z, t]) ̸⪯ β.

Observe that the above implies that φ is α-satisfiable on [x, y] in M̃ , that is, it is α-satisfiable.
Also, observe that M̃ is constructible and well-defined because B is open. Consider a node
ν ∈ B such that d(ν) is a decoration with a judgment for a formula ψ on some interval [z, t].
We proceed by structural induction on ψ.

If ψ = p or ψ = β, then the claim is trivial.
If ψ = ξ ∧ χ, then suppose, first, that d(ν) = T (β → (ξ ∧ χ), [z, t], C). Since τ is fully

expanded, rule (T∧) has been applied to ν. It follows that B contains two nodes ν1 and
ν2 such that d(ν1) = T (β → ξ, [z, t], C) and d(ν2) = T (β → χ, [z, t], C). By inductive
hypothesis, Ṽ (ξ, [z, t]) ⪰ β and Ṽ (χ, [z, t]) ⪰ β, which is equivalent to Ṽ (ψ, [z, t]) ⪰ β.
Suppose, now, that d(ν) = F (β → (ξ ∧ χ), [z, t], C). Since τ is fully expanded, rule (F∧) has
been applied to ν. It follows that B contains a node ν′ such that d(ν′) = F (β → ξ, [z, t], C)
or d(ν′) = T (β → χ, [z, t], C). By inductive hypothesis, Ṽ (ξ, [z, t]) ̸⪰ β or Ṽ (χ, [z, t]) ̸⪰ β,
which is equivalent to Ṽ (ψ, [z, t]) ̸⪰ β. The remaining propositional cases are similar.

Finally, if ψ = [X]ξ, then suppose, first, that d(ν) = T (β → [X]ξ, [z, t], C). Since τ
is fully expanded, rule (T□) has been applied to ν. This entails that, for every interval
[zi, ti] in I(C∗), B contains a node νi such that d(νi) = T ((β ∩ γi) → ξ, [zi, ti], Ci), that
is, d(νi) = T ((β ∩RX([z, t], [zi, ti])) → ξ, [zi, ti], Ci); observe that this is guaranteed by the
fact that the rule has been applied at a certain point of the construction on the n possible
intervals that are constructible at that point, but then an additional (n + 1)-th node is
also created at the end of the branch with the same decoration, ensuring that, should more
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points be added at some later moment, the rule is applied, again, on them. By inductive
hypothesis, Ṽ (ξ, [zi, ti]) ⪰ (β ∩ γi). Therefore, Ṽ (ψ, [z, t]) =

⋂
[zi,ti]{RX([z, t], [zi, ti]) ↪→

Ṽ (ξ, [zi, ti])} ⪰ β. Suppose, now, that d(ν) = F (β → [X]ξ, [z, t], C). Since τ is fully
expanded, rule (F□) has been applied to ν. This entails that, for some interval [zi, ti] in
I(C∗), B contains a node νi such that d(νi) = F ((β ∩ γi) → ξ, [zi, ti], Ci), that is, d(νi) =
F ((β ∩ RX([z, t], [zi, ti])) → ξ, [zi, ti], Ci). By inductive hypothesis, Ṽ (ξ, [zi, ti]) ̸⪰ β ∩ γi.
Therefore, Ṽ (ψ, [z, t]) =

⋂
[zi,ti]{RX([z, t], [zi, ti]) ↪→ Ṽ (ξ, [zi, ti])} ̸⪰ β. The remaining

temporal cases are similar. ◀

▶ Theorem 6 (semi-decision procedure). The tableau system for FHS is sound and complete.
Moreover, it is also a semi-decision procedure in the case of finite domains.

A semi-decision procedure for the problem of establishing if a given FHS formula φ

is α-satisfiable for some truth value α of a given Heyting algebra, as stated by the above
theorem, emerges naturally as the systematic application of the expansion rules (see Fig. 2)
to the initial tableau. Termination is not guaranteed as there may exist formulas that are
α-satisfiable but only on an infinite domain: in such a case, no contradiction would be found
within a finite amount of time.

We conclude this part with an example of application of the tableau system, illustrated
in Fig. 4. In this example, we consider the formula ⟨A⟩p ∧ [A](p → 0) and 1 ∈ G3, where G3
is the Göedel algebra from Fig. 1. To show how the system is applied, we tested if the truth
value of the above formula is at least 1, that is, T (1 → ⟨A⟩p ∧ [A](p → 0), [x, y], C) on the
interval [x, y] with C = {<̃(x, y) ≻ 0}; since all branches are closed, we verified, as expected,
that it cannot. In the figure, only two branches are displayed.

4 Conclusion

Interval temporal logic is a crucial tool for planning, scheduling, and formal verification,
and are also particular interesting for learning tasks, especially from continuous data. To
deal with the uncertainty of real data, a fuzzy (many-valued) generalization of the most
representative interval temporal logic (HS), called FHS, had been recently introduced and
studied. The computational properties of FHS strongly depend on the underlying algebra on
which it is based. Within the context of Heyting algebras, we considered, here, the finite
case, and we devised a sound and complete tableau system for it. Our method builds on
previous work by Fitting, and it is the first case of an implementable deduction procedure
for fuzzy interval temporal logic, which could be applied as a reasoning system, for example,
on formulas learned from real data in order to combine them with expert knowledge.

As future work, we plan to design an efficient implementation of the proposed tableau
system. Observe that, in particular, such an implementation would be a generalization of its
crisp counterpart. The experiments that have been carried on so far seem to indicate that
the best implementation strategies are those based on the naive approaches as in [18], which
is essentially different from the point-based case; therefore, in order to obtain a truly useful
tool, an effort should be made to optimize the construction of such a tableau system in the
crisp and fuzzy case alike.
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ν0 : T (1 → ⟨A⟩p ∧ [A](p → 0), [x, y], C) C = {<̃(x, y) ≻ 0}

ν1 : T (1 → ⟨A⟩p), [x, y], C)

ν2 : T (1 → [A](p → 0), [x, y], C)

ν3 : F (⟨A⟩p → 1
2 , [x, y], C)

ν4 : T (1 → [A](p → 0), [x, y], C)

ν5 : F (p → (1 ↪→ 1), [z, t], C′) C′ = C ∪ {=̃(x, y) = 0, <̃(z, t) ≻ 0, =̃(y, z) = 1}

ν6 : T ((1 ∩ 1) → (p → 0), [z, t], C′)

ν7 : T (1 → [A](p → 0), [x, y], C′)

ν8 : T ( 1
2 → p, [z, t], C′)

ν9 : F ( 1
2 → p, [z, t], C′) ν10 : T ( 1

2 → 0, [z, t], C′)

✗ ✗

(T∧)

(T∧)

(T ≥)

(T□)

(F♢)

(T□)

(T□)

(F ≤)

(✗5)

(✗5) (✗1)

Figure 4 Some closed branches of the tableau for ⟨A⟩p ∧ [A](p → 0) and 1 ∈ G3.
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