Modular Recoverable Mutual Exclusion Under
System-Wide Failures

Sahil Dhoked =
Department of Computer Science, The University of Texas at Dallas, Richardson, TX, USA

Wojciech Golab =

Department of Electrical and Computer Engineering, University of Waterloo, Canada

Neeraj Mittal =
Department of Computer Science, The University of Texas at Dallas, Richardson, TX, USA

—— Abstract

Recoverable mutual exclusion (RME) is a fault-tolerant variation of Dijkstra’s classic mutual exclusion
(ME) problem that allows processes to fail by crashing as long as they recover eventually. A growing
body of literature on this topic, starting with the problem formulation by Golab and Ramaraju
(PODC’16), examines the cost of solving the RME problem, which is quantified by counting the
expensive shared memory operations called remote memory references (RMRs), under a variety of
conditions. Published results show that the RMR complexity of RME algorithms, among other
factors, depends crucially on the failure model used: individual process versus system-wide. Recent
work by Golab and Hendler (PODC’18) also suggests that explicit failure detection can be helpful in
attaining constant RMR solutions to the RME problem in the system-wide failure model. Follow-up
work by Jayanti, Jayanti, and Joshi (SPAA’23) shows that such a solution exists even without
employing a failure detector, albeit this solution uses a more complex algorithmic approach.

In this work, we dive deeper into the study of RMR-optimal RME algorithms for the system-wide
failure model, and present contributions along multiple directions. First, we introduce the notion of
withdrawing from a lock acquisition rather than resetting the lock. We use this notion to design a
withdrawable RME algorithm with optimal O(1) RMR complexity for both cache-coherent (CC)
and distributed shared memory (DSM) models in a modular way without using an explicit failure
detector. In some sense, our technique marries the simplicity of Golab and Hendler’s algorithm with
Jayanti, Jayanti and Joshi’s weaker system model. Second, we present a variation of our algorithm
that supports fully dynamic process participation (i.e., both joining and leaving) in the CC model,
while maintaining its constant RMR complexity. We show experimentally that our algorithm is
substantially faster than Jayanti, Jayanti, and Joshi’s algorithm despite having stronger correctness
properties. Finally, we establish an impossibility result for fully dynamic RME algorithms with
bounded RMR complexity in the DSM model that are adaptive with respect to space, and provide a
wait-free withdraw section.

2012 ACM Subject Classification Theory of computation — Concurrent algorithms

Keywords and phrases mutual exclusion, shared memory, persistent memory, fault tolerance, system-
wide failure, RMR complexity, dynamic joining, dynamic leaving

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.17

Funding Wojciech Golab: Researcher supported in part by an Ontario Early Researcher Award, a
Google Faculty Research Award, as well as the Natural Sciences and Engineering Research Council
(NSERC) of Canada.

Acknowledgements We thank the anonymous reviewers for their helpful feedback and insightful

suggestions.

© Sahil Dhoked, Wojciech Golab, and Neeraj Mittal;

37 licensed under Creative Commons License CC-BY 4.0
37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 17; pp. 17:1-17:24

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:sahil.dhoked@utdallas.edu
https://orcid.org/0000-0003-2893-377X
mailto:wgolab@uwaterloo.ca
https://orcid.org/0000-0002-8891-256X
mailto:neerajm@utdallas.edu
https://orcid.org/0000-0002-8734-1400
https://doi.org/10.4230/LIPIcs.DISC.2023.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2

Modular Recoverable Mutual Exclusion Under System-Wide Failures

1 Introduction

One of the most common techniques to mitigate race conditions in a concurrent system is to
use mutual exclusion (ME), which establishes a critical section (CS) in which a program can
access a shared resource without risking interference from other processes. Correct use of
mutual exclusion or mutex locks ensures that the system always stays in a consistent state,
and produces correct outcomes. The ME problem was first defined by Dijkstra more than
half a century ago in [16], later formalized by Lamport [35, 36], and then widely studied in
scientific literature (e.g., see [4, 41]) under a variety of assumptions regarding both the degree
of synchrony and the set of synchronization primitives available for accessing shared memory.
The vast majority of research in this area in recent years emphasizes so-called local spin
algorithms, which incur a bounded number of remote memory references (RMRs) — expensive
memory operations that trigger communication on the interconnect joining processors with
memory — in each attempt to acquire and release the lock. Whether or not a memory
operation incurs an RME depends on the underlying shared memory model — cache-coherent
(CC) or distributed shared memory (DSM) (e.g., see [38, 12, 20]).

Over decades of research, the study of shared memory algorithms has started to shift
away from traditionally strong modelling assumptions, such as a failure-free execution
environment where processes agree ahead of time on a set of named shared objects, toward
richer models based on faulty shared memories [1, 40], anonymous systems [42, 47], and faulty
processes [7, 8, 23, 39]. Alternative models are particularly interesting and important for
the ME problem in asynchronous environments since solutions rely intrinsically on blocking
synchronization, and failures can have undesirable and even disastrous ripple effects. For
example, if one process crashes in the critical section, or even while acquiring or releasing a
mutex lock, several other processes who are contending for the same lock can potentially
stall. Although such failures are not common, they can occur in the real world due to
software bugs, or even hardware failures in large scale platforms where processing elements
are interconnected in complex ways.

The recoverable mutual exclusion (RME) problem, formulated recently by Golab and
Ramaraju [23, 24], is the most recent attempt to marry resilience against process failures with
mathematical rigour in the ongoing study of lock-based synchronization. The RME problem
involves designing an algorithm that ensures mutual exclusion under the assumption that
processes may fail at any point during their execution, either independently or simultaneously.
Since a slow process cannot be distinguished reliably from a crashed process in an asynchronous
environment [11, 18], one expects informally that an RME algorithm must receive some
help from the environment in responding to a failure. The primary mechanism for this in

L eventually

Golab and Ramaraju’s model is the crucial assumption that a crashed process
recovers and cleans up the internal state of the RME lock by attempting to acquire and
release it again, which can be regarded as an implicit form of failure detection. Golab and
Hendler’s work on system-wide failures [22] adds an explicit epoch-based failure detector
that helps synchronize a cohort of recovering processes, which simplifies the RME problem
to the point where it can be solved for n processes using common synchronization primitives
with (optimal) O(1) RMR complexity for both CC and DSM models.

The growing body of work on the RME problem focuses primarily on fundamental
correctness properties of RME and techniques for implementing these properties, with little
attention paid to how RME locks could be used in practice to implement fault-tolerant data
structures. Results are especially sparse for RMR-efficient algorithms in the system-wide

L More precisely, a process that crashes outside of the lock’s non-critical section.

S. Dhoked, W. Golab, and N. Mittal

Algorithm 1 Process execution model.

while true do
Non-Critical Section (NCS)
Recover();
Enter();
Critical Section (CS)
Exit();

OR Withdraw();

failure model, which is arguably the more practical failure model; in a well-designed software
system, processes are more likely to fail together due to a power outage than individually
due to software bugs. Somewhat surprisingly, only two studies have been published in this
space so far, namely work by Golab and Hendler (GH) [22], and Jayanti, Jayanti and Joshi
(JJJ) [28, 29]. Both works follow roughly the same algorithmic technique, which starts with
a conventional mutex algorithm (base mutex), and applies a transformation to reset the base
mutex carefully after a system-wide failure. GH is a black box technique that uses a single
instance of the base mutex and requires an explicit failure detector (as explained earlier),
whereas JJJ avoids the failure detector but uses a somewhat complex arrangement of three
instances of a base mutex (with wait-free exit) and provides a weaker fairness guarantee.
In this work, we advance the state of the art with respect to RME locks for system-wide
failures along several directions. First, we introduce a new algorithmic technique called
withdrawing whereby a process can remove itself from a queue of waiting processes upon
failure without resetting the entire queue to its initial state. This technique allows us to

combine the simplicity of the GH algorithm with the weaker assumptions of the JJJ model.

We demonstrate the power of our approach by constructing a novel RME lock with optimal
O(1) RMR complexity for both CC and DSM models using the well-known Mellor-Crummey
and Scott’s (MCS) mutex lock [38, 17] as the building block. Our algorithm requires only one
instance of this base mutex and provides first-come-first-served (FCFES) fairness, like GH, and
yet does not rely on a failure detector, similar to JJJ. Furthermore, we make the argument
that the ability to withdraw is a useful feature for an RME lock to not only use internally, but
also expose to the application, and formulate the withdrawable recoverable mutual exclusion
problem. In particular, we show in Appendix A that withdrawability alone can be sufficient
for an application’s recovery goals using the example of a lock-based concurrent linked-list
presented in [25]. We also advocate for modular algorithmic designs that separate optional
features like Golab and Ramaraju’s critical section re-entry (CSR) property from the core
functions of an RME lock. Second, we present a variation of our RME algorithm for the CC
model that supports fully dynamic process participation (i.e., support for both joining and
leaving) while maintaining its most desirable features. Our algorithmic approach not only
allows for a separation of concerns but, as we show experimentally, also gives us a substantial
performance advantage over JJJ, which relies crucially on critical section ownership state to
achieve correct recovery. Finally, we establish an impossibility result for fully dynamic RME
algorithms that are RMR-efficient in the DSM model, adaptive with respect to space, and
provide a wait-free withdraw section.

Roadmap. The rest of the text is organized as follows. We present our system model
and formulate the withdrawable RME problem in Section 2. We present an RMR-optimal
RME lock with a wait-free withdraw section assuming system-wide failures for both CC and
DSM models in Section 3, a transformation to add the CSR property in Section 4, and a
fully dynamic variant for the CC model in Section 5. Section 6 describes an impossibility
result about designing a fully dynamic RME algorithm with a wait-free withdraw section for

17:3

DISC 2023

17:4

Modular Recoverable Mutual Exclusion Under System-Wide Failures

the DSM model under certain conditions. We discuss related work in Section 7. Section 8
summarizes our conclusions and outlines directions for future research. Discussion of a use case
for withdrawable locks, detailed experiments, and an equivalence result for withdrawability
and abortability are presented in Appendix A, B, and C, respectively.

2 System Model

Our model is based on [22, 23, 24]. We consider an asynchronous shared memory system in
which processes communicate by performing single-word read, write and read-modify-write
(RMW) operations on shared variables, and also have access to private variables. Our
algorithms use two RMW primitives: (i) Fetch-And-Store (FAS), which retrieves the old
value and blindly writes a new value, and (ii) Compare-And-Swap (CAS), which conditionally
writes a new value if the old value matches a given comparison value, and returns a boolean
success indicator.

We assume the crash-recover failure model, meaning that a process may fail at any time
during its execution by crashing, and may recover by resuming execution from the beginning
of its program. Failures are system-wide [22], meaning that all processes crash simultaneously,
as opposed to the individual failure model considered in [23, 24, 15]. Upon crashing, a process
loses its call stack, and its private variables (including the program counter) are reset to
their initial values; however shared variables are stored in persistent memory and retain their
most recently written value prior to the crash.

The execution model of a process with respect to a recoverable lock is depicted in
algorithm 1. A process typically executes the NCS (non-critical section), Recover, Enter,
CS (critical section) and Exit sections, in that order, and then returns to the NCS. The
internal structure of the lock is cleaned up, if needed, inside the Recover section, then the
Enter section is used to acquire the lock, and the Exit section releases it. A process can also
execute the NCS and Withdraw sections, which bypasses the CS and yet allows the internal
structure of the lock to be cleaned up after a failure if needed inside the Withdraw section.
A system-wide failure returns every process to the NCS by resetting its program counter to
the initial value.

The Withdraw section is a new feature in our model, as compared to [23, 24], that provides
the application more flexibility in using the recoverable lock. This becomes especially useful
when an RME lock is used as a component to build another more advanced RME lock
satisfying additional desirable properties, as illustrated in this work; the specific execution
path taken by a process depends on the needs of the program using the lock. A trivial way
to implement Withdraw section is to simply execute the Recover, Enter and Exit sections
in order, with an empty CS (e.g., as on Line 50 in Figure 6 of [21]). However, this naive
implementation is inherently blocking, and can cause deadlock in the application if not
used carefully. On the other hand, as we show in this work, it is possible to implement the
Withdraw section efficiently in a wait-free manner (i.e., bounded number of steps).

A system execution is modeled as a sequence of process steps called a history. In each
step, a process performs some local computation affecting only its private variables, and
executes at most one shared memory operation. A process p is said to be live in a history H
if it leaves the NCS at least once, meaning that H contains at least one step by p. We also
consider crash steps that represent system-wide failures and do not belong to any process,
but we do not model executions of the NCS and CS as steps. The projection of a history H
onto a process p, denoted H |p, is the maximal subsequence of H comprising all steps of p as
well as crash steps. The concatenation of histories G and H is denoted G o H. An epoch is a
contiguous subhistory of a history H between (and excluding) two consecutive crash steps.

S. Dhoked, W. Golab, and N. Mittal

A c-passage of a process p is a sequence of steps by p from the first step of the Recover
section to the last step of the Exit section, or a crash failure, whichever occurs first. A
w-passage of a process p is a sequence of steps by p from the first step of the Withdraw

section to the last step of the Withdraw section, or a crash failure, whichever occurs first.

A passage is either a c-passage or a w-passage. A passage is failure-free unless a process
crashes before completing the last step of the Exit or Withdraw section. A super-passage of
a process p is a maximal non-empty sequence of consecutive passages executed by p, where
only the last passage in the sequence can be failure-free. A history H is fair if it is finite, or
it is infinite and every process that is live in H either takes infinitely many steps or stops
taking steps after completing a failure-free passage and returning to the NCS.

Two passages interfere if their respective super-passages overlap (i.e., neither ends before
the other starts). A passage by a process p is 0-failure-concurrent (0-FC) if p crashes in the
respective super-passage. A passage is k-failure-concurrent (k-FC), k > 0, if it interferes

with some (k — 1)-FC passage (possibly itself). Clearly, k-FC implies (k + 1)-FC for all k¥ > 0.

Intuitively, the parameter k£ in the notion of failure-concurrency measures the maximum
“distance” of a given passage from any failure, where two interfering passages are said to be
at a “distance” of one from each other.

Unless otherwise stated, we allow dynamic participation of processes. A new process can
join the system at run time and use the lock to execute a CS, referred to as dynamic joining
[28, 29]. As part of joining, a process may need to allocate some memory — shared as well as
private — needed to synchronize with other processes. We also consider the dual problem in
which any existing process can leave the system at run time after completing a failure-free
passage, referred to as dynamic leaving. In this case, the departing process needs to know
that it can safely reclaim its memory (unless a separate garbage collection mechanism is
being used). We say that an algorithm is fully dynamic if it supports dynamic joining as well

as dynamic leaving. The original MCS algorithm (without wait-free exit) is fully dynamic.

The RME algorithms in [28, 29] only support dynamic joining but not dynamic leaving.

2.1 RME Correctness and Other Properties Reformulated

This section summarizes the correctness properties of RME, reformulated as needed to
accommodate Withdraw section and w-passage. New additions are typeset in italics.

Mutual Exclusion (ME) At most one process is in the CS at any point in any history.

Starvation Freedom (SF) Let H be an infinite fair history in which every process fails only
a finite number of times during each of its super-passages. If a process p leaves the NCS
in some step of H, then p eventually either enters the CS or begins executing Withdraw
section.

If a process fails inside the CS, then a shared resource (e.g., a data structure) may be
left in an inconsistent state. In such cases, it may be desirable to allow the same process to
re-enter CS and “fix” the shared resource, if needed, before any other process can enter the
CS (e.g., [24, 21, 22, 27]). This property is referred to as critical section re-entry (CSR). We
use a stronger variant of CSR in this work, which is defined as:

Bounded Critical Section Reentry (BCSR) For any history H, if a process p crashes inside
the CS, then, until p has reentered the CS or begun erecuting Withdraw, any subsequent
execution of Recover and Enter sections by p either completes within a bounded number
of p’s own steps or ends with p crashing.

17:5

DISC 2023

17:6

Modular Recoverable Mutual Exclusion Under System-Wide Failures

In addition to the above qualitative properties, it is also desirable for an RME algorithm
to satisfy the following:

Bounded Exit (BE) For any infinite history H, any execution of Exit by any process p
either completes in a bounded number of p’s own steps or ends with p crashing.

Bounded Recovery (BR) For any infinite history H, any execution of Recover by process
p either completes in a bounded number of p’s own steps or ends with p crashing.

Bounded Withdraw (BW) For any infinite history H, any execution of Withdraw by process
p either completes in a bounded number of p’s own steps or ends with p crashing.

Note that the Withdraw section can in some cases serve an application’s recovery goals
better than Golab and Ramaraju’s CSR property [23, 24], which we reformulated earlier. As
a specific example, consider the linked list in Chapter 9 of Herlihy and Shavit [25], which
we reproduce in Appendix A along with a discussion of recoverability. The Add and Remove
methods both use hand-over-hand locking to traverse the list, and both operations take effect
atomically at a single line of code that writes a pointer (Line 163 and Line 178, respectively).
Since garbage collection is used to reclaim list nodes, strict linearizability [2, 6] can be
achieved easily by simply repairing the locks (via either Recover/Enter/Exit or Withdraw).
Re-entering the CS in this case is unnecessary since the linked list structure itself cannot be
corrupted by a crash failure, not to mention that the application would need to determine
specifically which linked list operation was interrupted by a failure to reach the correct CS
as each node-level lock protects multiple critical sections.

Many applications require a lock to provide some guarantees about fairness. Intuitively,
a fairness property imposes a constraint on when and/or how often a process trying to enter
the CS can be overtaken by another process. Definitions of such properties refer to a doorway,
which is a bounded prefix of the Enter section, and intuitively determines the order in which
processes acquire the lock. We consider the following two notions of fairness, the first of
which has novel formulation for the system-wide failure model:

First-Come-First-Served (FCFS) For any two concurrent c-passages m and 7’ belonging
to processes p and p’, respectively, if p completes its doorway in 7 before p’ starts its
doorway in 7/, then p’ does not enter the CS in 7’ before p enters the CS in 7.

k-First-Come-First-Served (k-FCFS), where k > 0 For any two c-passagees m and 7’ be-
longing to processes p and p’, respectively, where neither passage is k-FC, if p completes
its doorway in 7 before p’ starts its doorway in 7/, then p’ does not enter the CS in 7/
before p enters the CS in 7.

Intuitively, FCFS imposes constraints on all c-passages, whereas k-FCFS imposes constraints
only on those c-passages that are sufficiently far away from any failure. Note that FCFS
implies 0-FCFS and k-FCFS implies (k + 1)-FCFS for all k£ > 0. Further, FCFS and (B)CSR
are mutually incompatible properties. An RME algorithm can satisfy at most one of these
properties; but it can simultaneously satisfy k-FCFS, for some k, as well as BCSR.

2.2 Complexity Measures

In terms of complexity measures, we are concerned in this work with time and space. Time
complexity is quantified by counting remote memory references (RMRs), which are defined
in an architecture-dependent manner. In the cache-coherent (CC) model, we conservatively
count every shared memory operation as an RMR, except where a process p reads a variable
that p has already read earlier, and which has not been updated (i.e., accessed by any means
other than a read) since p’s most recent read. In the distributed shared memory (DSM)

S. Dhoked, W. Golab, and N. Mittal

Algorithm 2 MCS algorithm with wait-free exit (adapted from [17, 15]).

1 struct QNode { 13 Procedure Enter()

2 locked: boolean variable, initially FALSE; 14 | MINE, := &P0OOL,[CURRy];
3 next: reference to QNode, initially null; 15 MINEy, .locked := TRUE;
4} 16 MINEy,.next := null;

5 global shared variables 17 | pred := FAS(TAIL, MINE);
6 | TAIL: reference to QNode, initially null; 18 | if pred = null then return;

19 if CAS(pred.next, null, MINE,) then
20 | await —MINEy.locked;

7 per-process shared/persistent variables
8 | PooLy: array [0, 1] of QNode, all elements

initially {FALSE, null}; 21 Procedure Exit()

9 | MINE,: reference to QNode, initially &PooL[0]; 22 | if CAS(TAIL, MINE,, null) then return;
10 CURRyp: integer variable € {0, 1}, initially 0; 23 CAS (MINE,.next, null, MINE,);
11 private variables 24 if MINE,.next # MINE, then

12 | pred: reference to QNode; 25 | MINE,.next.locked := FALSE;

26 | CURRp := 1— CURRy;

model, each shared variable is statically allocated to a memory module that is local to exactly
one process and remote to all others. Space complexity is simply the number of memory
words used per process.

3 An RMR-Optimal RME Algorithm with Dynamic Joining for CC and
DSM Models

In this section, we present an RME algorithm for system-wide failures that satisfies the ME

and SF correctness properties, and has O(1) RMR complexity in both CC and DSM models.

Later, we describe a separate transformation to add the BCSR property to any RME lock.

3.1 Background: MCS Algorithm with Wait-Free Exit

The MCS algorithm is a queue-based ME algorithm that has optimal O(1) RMR complexity
in both the CC and DSM models. It maintains a (single) queue of all outstanding requests
for critical section; requests are satisfied in the order in which they are inserted into the
queue. Pseudocode for the algorithm is given in algorithm 2, and has been modified from
the original version [38] to also satisfy the BE property as described in [17].

A request is represented using a QNode, which consists of two fields: (i) a boolean variable,
locked, to indicate whether the node is currently locked and thus its owner does not have
permission to enter its critical section, and (ii) a reference to QNode, next, to store the address
of the successor node.

To enter its critical section, a process first appends its node to the queue (Line 17). If
the queue was not empty (implying that it has a predecessor), it tries to create a forward
link from its predecessor’s node to its own node (Line 19). If successful, it waits for its node
to be unlocked by its predecessor (Line 20). If it either did not have a predecessor (Line 18)
or failed to create the link (Line 19), then it implies that the process holds the lock; in this
case the process simply returns.

When leaving its critical section, a process first attempts to remove its node from the
queue (Line 22). The attempt will fail if another process has already appended its node to
the queue. In that case, the process notifies its successor that the critical section is now
empty by either writing a special value to the next field of its node (if the link has not been
created yet) (Line 23) or unlocking its successor’s node (if the link has already been created)
(Line 25).

17:7

DISC 2023

17:8

Modular Recoverable Mutual Exclusion Under System-Wide Failures

In the original MCS algorithm, a process can reuse the same node immediately after
completing its exit section for its next CS request. However, in the wait-free exit version,
immediate reuse may create a deadlock. Using a pool of two nodes and alternating between
them [17] solves this problem (Line 26). Intuitively, once a process is “enabled” to enter
its critical section, then it can be inferred indirectly that the node it used for its previous
request has served its purpose and no process would access its fields anymore; thus, it can be
reclaimed for its next request. Similar techniques have been used to achieve the wait-free
exit property in other queue-based locks [12, 43, 37, 26], but our particular RME algorithm
is derived from the queue-based ME lock described in [17].

3.2 The Main ldea

We modify the augmented MCS algorithm described in Section 3.1 to obtain an RMR~optimal
RME algorithm under the system-wide failure model that satisfies the ME and SF but not
the BCSR property. Assume, for now, that processes do not reuse queue nodes. The key idea
is that, if a process crashes while executing its passage, it terminates or aborts its interrupted
attempt to use the lock (for executing its critical section), and initiates a new attempt to
use the lock using a fresh node. A process aborts its attempt by basically executing steps
of the exit section and unlocking its successor node, if any. Note that a process aborts its
attempt even if it crashed in its critical section. Intuitively, this “clears” the queue of any
“old” nodes, which is then “repopulated” using “new” nodes.

Note that, in the (augmented) MCS algorithm used for solving the ME problem, queue
nodes are unlocked in a serial manner in the same order in which they were appended to the
queue. However, in the RME variant, queue nodes associated with aborted attempts may be
unlocked out of order and even concurrently. This out-of-order unlocking of queue nodes
associated with aborted attempts does not violate the ME property because none of these
queue nodes, which were appended to the queue before the failure, can be used by its owner
now to execute its critical section.

However, the above approach interferes with the node reuse mechanism used in the
augmented MCS algorithm. A slow process p may erroneously unlock a reused node owned
by a fast process ¢ because ¢’s node was the successor of p’s node in an earlier epoch. To
address this problem, we replace the locked field in a queue node with a field that stores
the address of the predecessor node. A process unlocks its successor node by replacing the
contents of this field in its successor’s node with a null value using a CAS instruction, which
will succeed only if the (successor) node has not been reused.

3.3 A Formal Description

Pseudocode of the RMR-~optimal RME algorithm for system-wide failures is presented in
algorithm 3. To avoid repetition, we only describe the differences between algorithm 2
(augmented MCS) and algorithm 3.

As explained earlier, the locked field in QNode (Line 2) has been replaced with the pred
field (Line 28); a process stores the address of its predecessor node in pred (Line 55). The
steps of the Exit section in algorithm 2 have been abstracted into a Cleanup method in
algorithm 3, which is then invoked from the Exit, Recover and Withdraw sections. A process
unlocks its successor node by clearing the pred field of the (successor) node using a CAS
instruction (Line 50). At the beginning of the Cleanup method, a process also deletes the
link from its predecessor node to its own node (Lines 45-46). This step is required to prevent
too many “older” predecessors from performing a CAS instruction on the pred field of its
node. Although these CAS instructions will fail, they may still cause the process to incur an
RMR while spinning on pred field in the CC model.

S. Dhoked, W. Golab, and N. Mittal

Algorithm 3 An RMR-optimal RME algorithm for tolerating system-wide failures that
satisfies the ME and SF properties.

27 struct QNode { 144 Procedure Cleanup()
28 pred: reference to QNode, initially null; 45 if MINE,.pred # null then
29 next: reference to QNode, initially null; 46 L CAS (MINEy,.pred.next, MINE,, null);
so }; 47 | CAS(TAIL, MINE,, null);
31 global shared variables CAS (MINE " 1. MINE,):
32 | TaIL: reference to QNode, initially null; 48 ¢ p-nETE, UL, 25
a9 | if MINE,.next # MINE, then
33 per-process shared/persistent variables 50 | CAS(MINE,.next.pred, MINE,, null);
34 | PooL,: array [0, 1] of QNode, all elements -
initially {null, null}; 51 Procedure Enter()
35 | MINE,: reference to QNode, initially &PooL[0]; 52 | MINE, := &POOL,[CURR,];
53 MINEy,.pred := null;
36 | CURR,: integer variable € {0, 1}, initially O; 54 | MINEy.next := null;
37 private variables 55 | pred := FAS(TAIL, MINE;);
38 Lpred: reference to QNode; 56 MINE,.pred := pred;
3o Procedure Withdraw() s7 | if MINE,.pred = null then return;
40 | Cleanup(); s8 | if CAS(MINE,.pred.nezt, null, MINE,) then
59 | await MINE,.pred = null;
41 Procedure Recover () L

a2 L Cleanup();

CURR, = 1— CURRp; 60 Procedure Exit()

61 | Cleanup();

Recall that, in the ME algorithm described in algorithm 2, a process alternates between
two nodes. The same idea works in the recoverable version, except that we perform the node
switch at the end of the Recover section.

We refer to the algorithm described in algorithm 3 as MCS-SW (SW stands for system-
wide). The doorway of MCS-SW consists of Lines 52-55. We have:

» Theorem 1. MCS-SW satisfies the ME, SF, BE, BR, BW and FCFS properties of the
RME problem. It has O(1) RMR complezity in both CC and DSM models, as well as O(1)
space complexity per process. Finally, it uses bounded variables and supports dynamic joining.

4 Adding the BCSR Property

To our knowledge, two RMR-preserving transformations have been proposed to add the
BCSR property to an RME lock that only satisfies the ME and SF properties. The first
transformation, given by Golab and Ramaraju [23, 24|, assumes the individual failure model.
The second transformation, given by Golab and Hendler [22], assumes the system-wide failure
model. Neither transformation can be applied to the RME lock described in Section 3.

The first transformation works under the assumption that a process cannot detect the
failure of another process. This implies that, if a process p has entered its CS during a
passage, then no other process can gain entry into its CS even if p fails during its CS until p
has started its exit section, possibly in a future passage. While this assumption holds for
any RME lock designed for independent failure model without explicit failure detection, it
may not hold for an RME lock designed for the system-wide failure model (with or without
explicit failure detection). Specifically, the RME lock in Section 3 exploits the property that
one’s own failure also implies the failure of every other process in the system. So, a process
p can gain entry into its CS after another process ¢ fails while executing its CS without
requiring ¢ to start its exit section. The second transformation, on the other hand, requires
an explicit epoch-based failure detector.

Note that the transformation for the CC model is relatively straightforward and involves
spinning on a global variable. However, the one for the DSM model is non-trivial because
spinning on a global variable may incur unbounded RMRs in the worst case. In this section,

17:9

DISC 2023

17:10

Modular Recoverable Mutual Exclusion Under System-Wide Failures

we present a new transformation that can be applied to any RME lock for system-wide
failures without using an explicit failure detector, and incurs only O(1) RMRs in both CC
and DSM models. Additionally, it preserves all properties of MCS-SW except for fairness
which now weakens to 0-FCFS, a direct consequence of CSR.

4.1 The Main ldea

The RMR-optimal RME algorithm described in Section 3 does not satisfy the BCSR property.
This is because, when processes append new nodes to the queue after aborting their interrupted
attempts, these new nodes may be appended to the queue in a different order. As a result, a
process that crashes while executing its critical section may need to wait for one or more
processes to complete their critical sections before it can reenter its own because nodes of
other processes now precede its own node in the queue.

To add the BCSR property, we maintain a global variable that stores the identifier of the
process currently in CS. A process writes its identifier to the variable when it gains entry
into the CS and resets it upon leaving the CS. If a process crashes during its CS, then, upon
starting a new c-passage, it can return from Recover and Enter methods of the target lock
immediately if the variable contains its own identifier. We refer to this path to enter the
CS as legacy path. Otherwise, it first acquires the base lock and then possibly waits for the
process with legacy admission into the CS to leave, if applicable. We refer to this path to
enter the CS as regular path.

Jayanti, Jayanti and Joshi define a capturable object that can be used to synchronize
access to the CS between processes taking the two paths, while incurring only O(1) RMRs
in both CC and DSM models [29]. However, their capturable object uses an unbounded
sequence number as well as a read-modify-write instruction. We use a similar, but simpler,
approach that avoids the two limitations. Our approach exploits the fact that any legacy
admission can only happen at the beginning of an epoch (period between two consecutive
system-wide failures), after which all admissions are regular.

The main idea is that a process that takes the regular path, say p, uses its own memory
location (basically a boolean variable) to spin and stores the address of its spin location in
another global variable before spinning (provided that the CS is already occupied). The
process leaving the CS is responsible for signalling p by writing to the location provided by p.

4.2 A Formal Description

Pseudocode of the transformation to attain the BCSR property is presented in algorithm 4.
We refer to the transformation as CSR-SW.

The algorithm uses the following shared variables: (i) base RME lock, BLOCK, that
satisfies the ME and SF properties (e.g., the lock in algorithm 3), (ii) integer, CSOWNER,
to store the identifier of the process that currently owns the CS, (iii) location, CSWAIT,
to store the address of the boolean variable on which a process will spin, (iv) per process
boolean variable, LOCKED, for spinning until signalled, and (v) per process variable, skipRE,
to track whether a process skipped acquiring the base RME lock in this current passage.

In the Recover method, a process first checks if it already owns the CS (Line 71). If yes,
it makes a note of it (Line 72) and completes the super-passage of the base lock by invoking
its Withdraw method (Line 73) (legacy path). Otherwise, it starts a new passage of the base
lock by invoking its Recover method (Line 76) (regular path).

S. Dhoked, W. Golab, and N. Mittal

Algorithm 4 An RMR-optimal transformation to achieve the BCSR, property.

62 global shared variables 77 Procedure Enter()
63 BLoOCK: instance of recoverable (base) lock; 78 if CSOWNER = p then return,;
64 CSOWNER: process identifier, initially L; 79 BLOCK.Enter();
65 | CSWAIT: reference to a boolean variable, 8o | LoCkED, := TRUE;
initially null; 81 CSWAIT := &LOCKED;

82 | if CSOWNER = | then LoCKED, := FALSE;

66 per-process shared/persistent variables 83 await not(LOCKED,,);

67 L LOCKED,: boolean variable, initially null;
84 | CSOWNER := p;
68 private variables

69 | skipRE: boolean variable; 85 Procedure Exit()
86 CSOWNER := 1;

70 Procedure Recover () 87 if CSWAIT # null then *CSWAIT := FALSE;
71 if CSOWNER = p then 88 | if —skipRE then BLOCK.Exit();
72 skipRE := TRUE;
73 BLOCK.Withdraw(); 89 Procedure Withdraw()
74 else 20 if CSOWNER = p then

kinRE = FALSE: 91 CSOWNER := L;
o L %ﬁ%@mecoverfy’ 02 if CSWAIT # null then *CSWaIT := FALSE;

93 | BLOCK.Withdraw();

In the Enter method, if a process already owns the CS, it returns immediately (Line 78)
(legacy path). Otherwise, it acquires the base lock (Line 79). It next initializes its spin
location (Line 80), announces the address of its spin location (Line 81) and busy-waits if
the CS is already occupied (Lines 82 and 83). Finally, it claims the ownership of the CS
(Line 84) (regular path).

In the Exit method, a process releases the ownership of the CS (Line 86) and signals the
waiting process if any (Line 87). If it took the regular path, it completes the super-passage
of the base lock by invoking its Exit method (Line 88).

In the Withdraw method, if a process currently owns the CS, it releases its ownership
(Line 91) and signals the waiting process if any (Line 92). It then invokes the Withdraw
method of the base lock (Line 93).

The doorway of the target lock consists of Line 78 along with the doorway of the base
lock if acquired. We have:

» Theorem 2. CSR-SW preserves the ME, SF, BR, BE, BW and k-FCFES for k > 0 properties
of the base lock, and adds the BCSR property to the target lock. It uses bounded variables
and supports dynamic joining. Finally, it preserves the RMR and space complexities of the
base lock.

Intuitively, the ME property holds for the following reasons. First, regular admissions
to the CS are serialized using the base lock. Second, there is at most one legacy admission
to the CS during an epoch. Third, a regular admission can only occur if the process with
legacy admission has vacated the CS.

Intuitively, the SF property holds for the following reasons. First, the base lock satisfies
the SF property. Second, only a process that takes the regular path, after acquiring the base
lock, needs to busy-wait for the CS to become empty due to legacy admission. If such a
process, say p, finds CSOWNER to have a non-bottom value implying that another process,
say q, is currently in the CS, then p would have already written the address of its spin
location to CSWAIT. Clearly, upon leaving CS, ¢ is guaranteed to find the address of p’s
spin location and signal p to quit its busy-wait loop.

» Corollary 3. The target lock obtained by applying CSR-SW to MCS-SW satisfies the ME,
SF, BCSR, BE, BR, BW and 0-FCFS properties. It uses bounded variables and supports
dynamic joining. Finally, it has O(1) RMR complezity in both CC and DSM models, and
uses O(1) space per process.

17:11

DISC 2023

17:12

Modular Recoverable Mutual Exclusion Under System-Wide Failures

5 A Fully Dynamic RMR-Optimal RME Algorithm for the CC Model

The RME algorithms in [29] as well as those presented in Sections 3 and 4 support dynamic
joining. While a process can leave the system if it has no super-passage in progress, it cannot
reclaim its memory since other processes may still dereference one of its locations (e.g., the
next field of its queue node). A separate garbage collection mechanism is required to identify
nodes whose memory can be safely reclaimed. We describe an RMR-optimal RME algorithm
for the CC model that allows a process to not only join the system at any time but also leave
at any time and safely deallocate its memory when leaving. The algorithm, however, uses an
unbounded sequence number.

Our RME algorithm is derived from Lee’s ME lock [37, 29], which is specifically designed
for the CC model, and uses the idea described in Section 3. Like the MCS lock, Lee’s lock
is also queue-based and requests are satisfied in the order in which they are appended to
the queue. However, the queue is implicit and a queue node does not store next pointers. A
process instead spins on a memory location in its predecessor’s node until it is signalled by
the predecessor. Further, unlike in the MCS lock, a process does not attempt to remove its
node from the queue.

Algorithm 5 describes the pseudocode of the RME algorithm with support for dynamic
leaving, based on Lee’s ME lock. We refer to the algorithm as LeeDL-SW. Note that the
original Lee’s lock consists of Lines 118-121 for acquiring the lock and Line 112 for releasing
the lock. To acquire the lock, a process switches its queue node (Line 118), initializes it
(Line 119), appends it to the queue (Line 120) and waits until signalled by its predecessor
(Line 121). To release the lock, a process simply signals its successor (Line 112).

We now describe adding recoverability, as well as the optional critical section re-entry
and dynamic leaving properties to Lee’s lock, while preserving its RMR optimality. For
convenience, the code lines used to achieve critical section re-entry and dynamic leaving
properties are tagged with one and two “«” symbols, respectively, at the end of each line.

Adding recoverability. We define a Cleanup method in which a process attempts to remove
its node from the queue (Lines 110 and 111) and then signal its successor in case it has one
(Line 112). The Cleanup method is invoked from the Recover, Exit and Withdraw methods.

Adding critical section re-entry. We use a shared variable to keep track of the process
currently executing its CS (CSOWNER). Once a process has been signalled by its predecessor
(i.e., it has acquired Lee’s lock), the process has to wait until the CS has become empty
(Line 122) and then claims the ownership of the CS (Line 123). A process releases the
ownership of the CS as part of the Cleanup method (Line 109). If a process fails during its
CS, it can immediately return from the Recover and Enter methods if it already owns the
CS (Lines 114 and 117).

Adding dynamic leaving. A process can leave the system only if it has no super-passage in
progress. Moreover, before leaving the system, the process must invoke the SafeToReclaim
method. It then either waits for the method to complete or for a system-wide failure to
occur. Once either of these two events has occurred, it can safely reclaim all its memory.
We use a sequence number to keep track of the rough number of times the CS has
been occupied (CSBUSY). A process increments this sequence number after obtaining the
ownership of the CS (Line 124). Note that the count need not be exact due to failures. The
purpose of the SafeToReclaim method is to ensure that the caller does not have a successor

S. Dhoked, W. Golab, and N. Mittal

Algorithm 5 An RMR-optimal RME lock for the CC model that supports dynamic
joining as well as dynamic leaving. Code in red color is only required for the CSR property.

94 struct QNode{ 116 Procedure Enter()

95 locked: boolean variable, initially FALSE; 117 if CSOWNER = p then return; <
96 }; 118 | FACE, := 1— FACEy;

o7 global shared variables 119 | POOL,[FACE,).locked := TRUE;

98 TAIL: reference to QNode, initially null; 120 pred = FAS(TAIL, &POOL,[FACE,]);

29 CSOWNER: process identifier, initially L; < 121 if pred # null then await not(pred.locked) ;
100 | CSBusy: integer variable, initially 0; << 122 await CSOWNER = L; <
123 CSOWNER := p; <

101 per-process shared/persistent variables)
102 | PooL,: array [0, 1] of QNode, all elements 124 | CSBusy := CSBusy + 15 <

initially {FALSE};
initially { b 125 Procedure Exit ()
103 FACE,: integer variable, initially 0; 126 L Cleanup();

104 LEAVING,: boolean variable, initially .
FALSE ; << 127 Procedure Withdraw()

- 128 | Cleanup();
105 private variables

106 pred, tail: reference to QNode; 129 Procedure SafeToReclaim() <<

R . 130 | if not(LEAVING) then <«
107 | busy: integer variable; 131 LEAVING := TRUE; <«
108 Procedure Cleanup() 132 }‘ail = TAIL; <<
109 if CSOWNER = p then CSOWNER := 1; < 133 if tail = null then return; <«
110 | if TAIL = &PoOL,[FACE,] then 134 busy := CSBUSY; <
111 | | CAS(TAIL, &POOLy [FACE,], null) 135 await (TAIL # tail) or

(CSBuUSY > busy); <<

112 | PooLy[FACE,].locked := FALSE; 156 if TAIL = null then return:; p
113 Procedure Recover () 137 await (CSBUSY > busy); <<
114 if CSOWNER = p then return; < L -
115 Cleanup();

that is still executing its Enter method and thus may dereference one of its queue nodes.
Clearly, the condition holds if the queue is empty (é.e., the tail pointer is null). Note that,
when a process invokes the SafeToReclaim method, the tail pointer cannot point to any of
its two queue nodes since the process would have completed a failure-free instance of the
Cleanup method with respect to each of its nodes. Thus, if a process finds that the queue
is not empty when leaving, it can infer that one or more nodes have been appended to the
queue after its most recent append operation. The issue is that some of these nodes may have
been appended to the queue before the last failure, and thus will be eventually abandoned
by their owners.

In the SafeToReclaim method, the process first reads the tail pointer and returns if the
queue is empty (Lines 132 and 133). Otherwise, it reads the sequence number mentioned
earlier (Line 134). It then waits until either the tail pointer or the sequence number has
advanced (Line 135). It next re-reads the tail pointer and returns if the queue is now empty
(Line 136). If not, it implies that a new node has been added to the queue since the last
system-wide failure. Thus, either the sequence number will eventually advance (Line 137) or
the system will crash (Lines 130 and 131). The process can safely reclaim its memory in
either case.

It is possible that a process may incur multiple RMRs while spinning on the tail pointer.
This may happen when the same node is appended to the queue again or when a failed CAS
instruction is executed on the tail pointer. In the first case, we can show that the sequence
number has also advanced. In the second case, we can show that failed CAS instructions can
generate at most three RMRs for a spinning process. This is because a process signals its
successor only after trying to remove its node from the queue.

17:13

DISC 2023

17:14

Modular Recoverable Mutual Exclusion Under System-Wide Failures

» Theorem 4. LeeDL-SW satisfies the ME, SF, BCSR, BE, BR, BW and 0-FCFS properties.
It supports dynamic joining as well as dynamic leaving. Finally, it has O(1) RMR complezity
in the CC model, and uses O(1) space per process.

We implemented the RME algorithm from this section and compared it against the
CC-specific version of Jayanti, Jayanti and Joshi’s (JJJ) RME algorithm (Section 3 of [29]).
With BCSR property, our algorithm provided 50-75% better throughput than JJJ at low
levels of parallelism, and around 15% better throughput at higher levels of parallelism.
Without BCSR property, our algorithm was roughly 2-3x faster than JJJ. Details of our
experiments are provided in Appendix B.

6 On Achieving Dynamic Joining and Leaving, Wait-Free Withdraw,
Adaptive Space, and Bounded RMR Complexity in the DSM Model

In this section, we present an impossibility result for the DSM model (without explicit failure
detection), and for a particular class of RME algorithms characterized according to the
following combination of properties:

1. Bounded RMR complexity per passage. A process can only busy-wait by spinning on a
variable that is local to it in the DSM model, and can only access a bounded number of
remote memory locations per passage.

2. Adaptive space complexity with external memory allocation. The algorithm’s state com-
prises O(1) memory words shared by all processes, called the global state, and O(1)
additional memory words per process called process-local state. The process-local state
for process p is allocated by process p externally (i.e., outside of the RME algorithm)
and is local to process p in the DSM model.

3. Memory safety. Externally allocated memory can be accessed by the RME algorithm
only after it has been allocated and before it has been freed (i.e., use-after-free is not
permitted).

4. Dynamic joining and leaving. Any process can become active in an execution history
after allocating its process-local state. Any active process can leave after a failure-free
passage, meaning that it can free its process-local state in a bounded number of its own
steps and then halt in the NCS.

5. Wait-free withdraw: Any process can complete any invocation of the Withdraw method in
a bounded number of its own steps.

We now present the main result of this section:
» Theorem 5. No RME algorithm can satisfy properties 1-5 simultaneously.

Proof. Suppose for contradiction that some RME algorithm A does satisfy each of the
properties 1-5. Since the algorithm’s global state comprises only O(1) memory words by
property 2, it is easy to find two processes p and ¢ such that all the global state is remote to
q. We first construct a finite failure-free execution history Hy involving these two processes
and having the structure Hy = G¥ o G{ where p begins a c-passage and enters the CS in G,
and ¢ begins a c-passage in G and enters a busy-wait loop since it cannot enter the CS
concurrently with p. It follows that ¢ must be spinning on its local memory at the end of G
since A has bounded RMR complexity (property 1) and since every variable in the global
state is remote to ¢ by our choice of q. Next, observe that since Hy exists, the execution
H; = Gho f oGl is also possible where f is a crash step (system-wide failure). This is
because ¢ cannot distinguish between the prefixes Gf and G% o f without an explicit failure

S. Dhoked, W. Golab, and N. Mittal

detector. We extend H; to the history Hy = G o f o G{ o G} where p calls the Withdraw
method in G} and ¢ takes no additional steps. It follows that p must eventually access ¢’s
local memory in some step s of G} as otherwise ¢ is stuck in a busy-wait loop forever if we
extend Hj by interleaving steps of p and ¢ in a fair order. Next, we transform G} to G5 by
truncating this suffix at the step immediately before p accesses ¢’s memory in step s, and
observe that the history Hs = Gf o G o f o G} is also possible, once again because there is
no explicit failure detector. Process ¢ cannot distinguish between the prefixes Gf) and G{, o f,
as explained earlier, and p cannot distinguish between GE o f o G{ and G¥ o G{ o f since only
q takes steps in G{. Finally, we transform Hs to Hy = G% oGl o f o G o GI where g executes
the Withdraw method in GY, frees its local memory, and leaves the execution (property 4)
while p takes no additional steps. Such a history is possible since the Withdraw method is
bounded (property 5). Extending Hy by p’s step s, which it is poised to execute at the end
of fragment G%, leads to a contradiction of memory safety (property 3) as p accesses ¢’s local
memory after g has already freed it. <

7 Related Work

Golab and Ramaraju’s formulation of the RME problem [23, 24] is a theoretical take on the
practical problem of making mutual exclusion locks robust against crash failures, which can
be traced back to several earlier works [7, 8, 39, 46]. A pervasive pattern in this area of
shared memory research is that fault-tolerant locks rely in various ways on support from the
execution environment, for example where a centralized recovery process is invoked after a
crash to clean up the internal state of the lock, where an explicit failure detector allows a
waiting process to usurp a critical section held by a crashed process, or where shared variables
are reset automatically to specific values during a failure. The RME problem formulation
avoids such specific assumptions, and instead considers that a crashed process recovers and
resumes execution eventually, unless it failed in the NCS.

Both classic ME algorithms and more recent RME algorithms are evaluated primarily
with respect to remote memory reference (RMR) complexity in the cache-coherent (CC)
and distributed shared memory (DSM) multiprocessor architectures, space complexity, as

well as the set of correctness properties (e.g., starvation freedom and fairness) achieved.

In terms of worst-case RMR bounds for the individual process failure model, Golab and
Ramaraju [23] established that RME can be solved for n processes using reads and writes
with O(logn) RMRs per passage, which matches the lower bound of Attiya, et al. [5]. The
latter bound applies to both ME and RME, and can be generalized for ME to comparison
primitives using the RMR-efficient construction of Golab, et al. [20]. For algorithms that
use other read-modify-write primitives, such as Fetch-And-Store or Fetch-And-Increment,
a sub-logarithmic (i.e., O(l987/loglogn)) upper bound was established jointly by Golab and
Hendler [21] as well as Jayanti, Jayanti, and Joshi [27], and proven to be tight by Chan and
Woelfel [10]. Katzan and Morrison [34] also proposed an O(log,, n) RMRs solution using
w-bit Fetch-And-Add, which matches [21, 27] when w € ©(logn) and reduces to O(1) in the
extreme case when w € ©(n); it was recently shown to be tight by Chan et al. in [9].

Most RME algorithms that tolerate individual process failures work correctly and achieve
the same RMR complexity in the system-wide failure model. Golab and Hendler [22] solved
the problem directly for system-wide failures using a failure detector and commonly supported
primitives, and showed that the RMR complexity can be reduced to O(1) using O(logn)-bit
Fetch-And-Store or Fetch-And-Increment primitives. Jayanti, Jayanti, and Joshi [33, 29] were
the first to present RMR~optimal RME algorithms for system-wide failures that do not use
an explicit failure detector. Their approach is presented as a way to transform a traditional

17:15

DISC 2023

17:16

Modular Recoverable Mutual Exclusion Under System-Wide Failures

ME lock into an RME lock (under certain conditions) by maintaining three copies of the ME
lock and using an intricate synchronization mechanism to guide requesting processes to an
uncorrupted copy while concurrently resetting a possibly corrupted copy.

Some (ME) locks support the abort feature, which allows a process to abandon — within
a bounded number of its own steps — its attempt to acquire the lock [19, 3, 30, 31]. This
is useful in situations when a process may only wish to wait for a fixed amount of time to
acquire the lock, and, if unable to do so, would prefer to cancel the attempt and perform
some other task before reattempting to acquire the lock. The notion of abortability has
been extended to RME locks as well in [32, 34]. We show in Appendix C that abortable
RME and withdrawable RME are equivalent problems under individual failures and certain
assumptions by giving RMR-preserving transformations that convert one type of lock into
the other. Surprisingly, the two problems may not be same under system-wide failures. In
particular, as we show in this work, it is possible to design an RMR-optimal RME lock
that supports a wait-free withdraw section assuming system-wide failures. Note that any
abortable RME lock under system-wide failures will also implement an abortable ME lock in
a failure-free environment. However, the best known abortable ME lock has Q(logn/loglog n)
RMR complexity in the worst-case [3]. Intuitively, the reason for this gap is that a process
may receive the abort signal at any time during its passage, whereas a process can execute
the withdraw section only at the beginning of its passage after a failure to simplify recovery.

A comprehensive discussion of the RME problem and its solutions can be found in [14].

8 Conclusion and Future Work

In this work, we have presented a modular way to design an RMR-optimal RME lock for both
CC and DSM models under system-wide failures without relying on an explicit failure detector.
Our approach is flexible in the sense that an application can pick and choose the properties
the RME lock should satisfy depending on its needs (e.g., CSR, FRF?, etc.). Further, we
have proposed the notion of withdrawing from a lock acquisition as opposed to resetting the
lock after a failure. The latter is more complex and requires greater synchronization among
processes. Moreover, withdrawable RME locks make it easier in some scenarios to write
fault-tolerant application programs for persistent memory.

In the future, we plan to conduct more comprehensive experiments to compare the
performance of different RME lock alternatives to better understand how their features (e.g.,
correctness properties, reliance on a failure detector) impact performance. We also plan to
design a fully dynamic RMR-optimal RME algorithm for the DSM model, and investigate
whether the blocking synchronization used in our dynamic algorithm for the CC model is
inherently necessary.

—— References
1 Yehuda Afek, David S. Greenberg, Michael Merritt, and Gadi Taubenfeld. Computing with
faulty shared objects. Journal of the ACM (JACM), 42(6):1231-1274, 1995.

2 Marcos K. Aguilera and Svend Frglund. Strict linearizability and the power of aborting.
Technical Report HPL-2003-241, Hewlett-Packard Labs, 2003.

2 FRF refers to failure-robust fairness, a type of fairness property defined in [22] for the system-wide
failure model, which constraints the number of times a given process can be overtaken by other processes
as regard to their super-passages. It is possible to provide a general transformation that adds the FRF
property to any RME lock similar to that for the BCSR property [13].

S. Dhoked, W. Golab, and N. Mittal

10

11

12

13

14

15

16

17

18

19

20

21

Adam Alon and Adam Morrison. Deterministic abortable mutual exclusion with sublogarithmic
adaptive RMR complexity. In Proc. of the 87th ACM Symposium on Principles of Distributed
Computing (PODC), pages 27-36, 2018.

James H. Anderson, Yong-Jik Kim, and Ted Herman. Shared-memory mutual exclusion: major
research trends since 1986. Distributed Computing (DC), 16(2-3):75-110, 2003.

Hagit Attiya, Danny Hendler, and Philipp Woelfel. Tight RMR lower bounds for mutual
exclusion and other problems. In Proc. of the 40th ACM Symposium on Theory of Computing
(STOC), pages 217-226, 2008.

Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. Robust shared objects for non-
volatile main memory. In Proc. of the 19th International Conference on Principles of Distributed
Systems (OPODIS), pages 20:1-20:17, 2016.

Philip Bohannon, Daniel Lieuwen, and Avi Silberschatz. Recovering scalable spin locks. In
Proc. of the 8th IEEE Symposium on Parallel and Distributed Processing (SPDP), pages
314-322, 1996.

Philip Bohannon, Daniel Lieuwen, Avi Silberschatz, S. Sudarshan, and Jacques Gava. Re-
coverable user-level mutual exclusion. In Proc. of the 7th IEEE Symposium on Parallel and
Distributed Processing (SPDP), pages 293-301, 1995.

David Yu Cheng Chan, George Giakkoupis, and Philipp Woelfel. Word-size rmr trade-offs
for recoverable mutual exclusion. In Proc. of the 438rd ACM Symposium on Principles of
Distributed Computing (PODC), 2023.

David Yu Cheng Chan and Philipp Woelfel. A tight lower bound for the RMR complexity
of recoverable mutual exclusion. In Proc. of the 40th ACM Symposium on Principles of
Distributed Computing (PODC), 2021.

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM (JACM), 43(2):225-267, 1996.

Travis S. Craig. Building FIFO and priority-queuing spin locks from atomic swap. Technical
Report 93-02-02, Department of Computer Science, University of Washington, 1993.

Sahil Dhoked. Synchronization and Fault Tolerance Techniques in Concurrent Shared Memory
Systems. PhD thesis, The University of Texas at Dallas, 2022.

Sahil Dhoked, Wojciech Golab, and Neeraj Mittal. Recoverable Mutual Exclusion. Springer
Nature, 2023.

Sahil Dhoked and Neeraj Mittal. An adaptive approach to recoverable mutual exclusion. In
Proc. of the 39th ACM Symposium on Principles of Distributed Computing (PODC), pages
1-10, New York, NY, USA, 2020. doi:10.1145/3382734.3405739.

Edsger W. Dijkstra. Solution of a problem in concurrent programming control. Communications
of the ACM (CACM), 8(9):569, 1965.

Rotem Dvir and Gadi Taubenfeld. Mutual exclusion algorithms with constant RMR complexity
and wait-free exit code. In James Aspnes, Alysson Bessani, Pascal Felber, and Jodo Leitao,
editors, Proc. of the International Conference on Principles of Distributed Systems (OPODIS),
volume 95, pages 17:1-17:16, Dagstuhl, Germany, October 2017. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32:374-382, 1985.

George Giakkoupis and Philipp Woelfel. Randomized abortable mutual exclusion with constant
amortized RMR complexity on the CC model. In Proc. of the 36th ACM Symposium on
Principles of Distributed Computing (PODC), pages 221-229, 2017.

Wojciech Golab, Vassos Hadzilacos, Danny Hendler, and Philipp Woelfel. RMR-efficient
implementations of comparison primitives using read and write operations. Distributed
Computing (DC), 25(2):109-162, 2012.

Wojciech Golab and Danny Hendler. Recoverable mutual exclusion in sub-logarithmic time.
In Proc. of the 36th ACM Symposium on Principles of Distributed Computing (PODC), pages
211-220, 2017.

17:17

DISC 2023

https://doi.org/10.1145/3382734.3405739

17:18

Modular Recoverable Mutual Exclusion Under System-Wide Failures

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Wojciech Golab and Danny Hendler. Recoverable mutual exclusion under system-wide failures.
In Proc. of the 37th ACM Symposium on Principles of Distributed Computing (PODC), pages
17-26, 2018.

Wojciech Golab and Aditya Ramaraju. Recoverable mutual exclusion. In Proc. of the 35th
ACM Symposium on Principles of Distributed Computing (PODC), pages 65-74, 2016.
Wojciech Golab and Aditya Ramaraju. Recoverable mutual exclusion. Distributed Computing
(DC), 32(6):535-564, 2019.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming, Revised Reprint.
Morgan Kaufman, 2012.

Prasad Jayanti, Siddhartha Jayanti, and Sucharita Jayanti. Towards an ideal queue lock. In
Proc. of the 21st International Conference on Distributed Computing and Networking (ICDCN),
January 2020.

Prasad Jayanti, Siddhartha Jayanti, and Anup Joshi. A recoverable mutex algorithm with
sub-logarithmic RMR on both CC and DSM. In Proc. of the 38th ACM Symposium on
Principles of Distributed Computing (PODC), pages 177-186, 2019.

Prasad Jayanti, Siddhartha Jayanti, and Anup Joshi. Constant rmr recoverable mutex under
system-wide crashes, 2023. arXiv:2302.00748.

Prasad Jayanti, Siddhartha Jayanti, and Anup Joshi. Constant RMR system-wide failure
resilient durable locks with dynamic joining. In Proc. of the 85th ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 227-237, 2023.

Prasad Jayanti and Siddhartha V. Jayanti. Constant amortized RMR complexity deterministic
abortable mutual exclusion algorithm for CC and DSM models. In Proc. of the 38th ACM
Symposium on Principles of Distributed Computing (PODC), pages 167176, 2019.

Prasad Jayanti and Anup Joshi. Recoverable mutual exclusion with abortability. In Mo-
hamed Faouzi Atig and Alexander A. Schwarzmann, editors, Proc. of the International
Conference on Networked Systems (NetSys), pages 217-232, 2019.

Prasad Jayanti and Anup Joshi. Recoverable mutual exclusion with abortability. In Proc. of
7th International Conference on Networked Systems (NETYS), pages 217-232, 2019.

Anup Joshi. Recoverable Mutual Ezclusion Algorithms for Crash-Restart Shared-Memory
Systems. PhD thesis, Dartmouth College, May 2020.

Daniel Katzan and Adam Morrison. Recoverable, abortable, and adaptive mutual exclusion
with sublogarithmic RMR complexity. In Proc. of the 24th International Conference on
Principles of Distributed Systems (OPODIS), pages 15:1-15:16, 2021.

Leslie Lamport. The mutual exclusion problem: part I —a theory of interprocess communication.
Journal of the ACM (JACM), 33(2):313-326, 1986.

Leslie Lamport. The mutual exclusion problem: part II — statement and solutions. Journal of
the ACM (JACM), 33(2):327-348, 1986.

Hyonho Lee. Local-spin mutual exclusion algorithms on the DSM model using fetch-&-store
objects. Master’s thesis, University of Toronto, 2003.

John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems (TOCS), 9(1):21-65,
1991.

Maged M. Michael and Yong-Jik Kim. Fault tolerant mutual exclusion locks for shared memory
systems, 2009. US Patent 7,493,618.

Thomas Moscibroda and Rotem Oshman. Resilience of mutual exclusion algorithms to transient
memory faults. In Proc. of the 30th ACM Symposium on Principles of Distributed Computing
(PODC), pages 69-78, 2011.

Michel Raynal. Algorithms for Mutual Exclusion. MIT, 1986.

Michel Raynal and Gadi Taubenfeld. Mutual exclusion in fully anonymous shared memory
systems. Information Processing Letters, 158:105938, 2020.

I. Rhee. Optimizing a FIFO, scalable spin lock using consistent memory. In Proc. of the 17th
IEEE Real-Time Systems Symposium (RTSS), pages 106-114, December 1996.

https://arxiv.org/abs/2302.00748

S. Dhoked, W. Golab, and N. Mittal

44 Andy Rudoff. Re: cascade lake doesn’t support clwb? [discussion post]. https://groups.
google.com/g/pmem/c/DRAYIc70RHc/m/TtoP681rAAAT, 2021. Google Groups.

45 Andy Rudoff and the Intel PMDK Team. Persistent memory development kit, 2020. [last
accessed 2/11/2021]. URL: https://pmem.io/pmdk/.

46 Gadi Taubenfeld. Synchronization Algorithms and Concurrent Programming. Prentice Hall,
2006.

47 Gadi Taubenfeld. Coordination without prior agreement. In Elad Michael Schiller and
Alexander A. Schwarzmann, editors, Proc. of the 36th ACM Symposium on Principles of
Distributed Computing (PODC), pages 325-334, 2017.

A A Recoverable Lock-Based Concurrent Linked List

We begin with a non-recoverable linked list algorithm adapted from Chapter 9 of Herlihy
and Shavit’s book [25], and shown below in algorithm 6. The list uses two sentinel nodes —
head and tail — which ensures that a traversal can always acquire locks on consecutive nodes.
The items stored in these sentinel nodes are minimum and maximum values from the domain
of values stored in the list, and cannot be added or removed once the list is initialized.

Algorithm 6 A concurrent linked list based on fine-grained locking.

138 struct LLNode { 167 boolean Procedure Remove (item)
139 item: value stored in this node; 168 pred := head;
140 next: reference to next linked list node; 169 pred.M .Enter();
141 M: mutex lock; 170 curr = pred.next;
142 }; 171 curr.M .Enter ();
143 globa] shared variables 172 while curr.item < item do
144 head: reference to head sentinel node of 173 pred. M .Exit ();

linked list; 174 pred := curr;

175 curr = curr.nezt;

145 private variables 176 curr.M .Enter();

146 L pred, curr, newNode: reference to LLNode;
177 if curr.item = item then

147 boolean Procedure Add(item) 178 pred.next := curr.next;
148 pred := head; 179 curr.M.Exit Q);

149 pred.M .Enter(); 180 pred. M .Exit ();

150 curr := pred.next; .

151 curr.M .Enter(); 181 L return TRUE;

152 while curr.item < item do 182 curr.M .Exit ();

153 pred. M .Exit (); 183 pred.M.Exit ();

154 pred = curr; 184 | return FALSE;

155 curr = curr.nect; =

156 | curr.M .Enter();

157 if curr.item = item then

158 curr.M .Exit ();

159 pred. M .Exit();

160 | return FALSE;

161 newNode := new LLNode;
162 newNode.next := curr;
163 pred.next := newNode;

164 curr.M.Exit();
165 pred. M .Exit ();

166 | return TRUE;

A recoverable (i.e., strictly linearizable [2]) version of the above algorithm is obtained by
allocating the node structure and program variables (including curr and pred) in persistent
memory, replacing the node-level ME locks with RME locks, and adding a recovery procedure
that cleans up any locks that may have been corrupted by a crash. Program variables that
were private before the transformation now need appropriate initial values since they may be
accessed by the recovery procedure before they can be explicitly initialized. A value of null
is appropriate for the linked list since the variables are all pointers to LLNode.

17:19

DISC 2023

https://groups.google.com/g/pmem/c/DRdYIc70RHc/m/rtoP681rAAAJ
https://groups.google.com/g/pmem/c/DRdYIc70RHc/m/rtoP681rAAAJ
https://pmem.io/pmdk/

17:20

Modular Recoverable Mutual Exclusion Under System-Wide Failures

Algorithm 7 Recovery protocol based on withdrawable RME locks.

185 Procedure Recover ()
186 if pred # null then pred. M .Withdraw();
187 if curr # null and curr # pred then curr.M Withdraw();

Recovery Using Withdrawable RME Locks. We begin by explaining how recovery can be
achieved using the withdrawable RME locks introduced in this work. The recovery procedure
executed by a process after a failure (or at the start of every execution) is presented in
algorithm 7. The idea is to clean up any locks a process may have held at the time of a
crash failure by executing the Withdraw section, and allow a garbage collector to deal with
memory leaks. No further action is required since the fundamental structure of the linked
list cannot be corrupted by a system-wide failure. The relevant locks are identified by the
curr and pred variables, which usually point to the last two linked list nodes accessed, and
sometimes to a single node (e.g., if a crash occurs immediately after Line 174). The entire
recovery protocol is wait-free as long as the locks provide wait-free Withdraw sections, which
means that it cannot possibly introduce deadlock.

Recovery Using RME Locks in the Style of Jayanti, Jayanti, and Joshi. For comparison,
we consider an alternative design of the recovery procedure based on Jayanti, Jayanti, and
Joshi’s RME lock [29], which lacks a Withdraw section and uses a slightly different interface
in which the Recover section directs a process to either return to the NCS or proceed to
the CS via its return value. As explained in Section 7, the JJJ algorithm can be used to
simulate a Withdraw section, but that would go against the intent of their reformulation
of the RME problem, which is to resume execution of the CS if that is where the failure
occurred. Applying the latter principle to the linked list, we immediately run into difficulties.
To begin with, the recovery procedure must consider different cases depending on the return
values of the Recover section: IN_ REM wvs. IN__ CS. With two locks to recover, there are
four principal cases to analyze:

1. pred.M Recover () returns IN_REM and curr.M .Recover() returns IN._REM (e.g.,
crash at line 148): nothing to do

2. pred.M.Recover () returns IN_REM and curr.M.Recover() returns IN_CS (e.g.,
crash at line 153): resume traversal

3. pred.M.Recover () returns IN_CS and curr.M .Recover() returns IN_REM (e.g.,
crash at line 155): resume traversal

4. pred.M Recover () returns IN__CS and curr.M .Recover () returns IN__CS (e.g., crash
at line 161): resume traversal

Upon closer inspection of the above four cases, we note additional complications. First,
the traversal may need to be resumed either inside the Add procedure or inside the Remove
procedure, and so the algorithm must be augmented with additional state to keep track of
which procedure the process was executing; this hurts performance and effectively increases
the number of cases during recovery from four to seven as the traversal may need to resume
at slightly different points in cases 2-4 (case 1 applies equally well to both Add and Remove).
Moreover, in case 4 alone we must consider separately the subcase when pred = curr and
the subcase when pred # curr, which increases the total number of cases from seven to nine.
Without fleshing out the recovery protocol in full detail, we conclude that the solution would
be substantially more complex than our solution in algorithm 7.

S. Dhoked, W. Golab, and N. Mittal

Figure 1 Illustration of deadlock scenario with coarse-grained idempotent actions.

Recovery Using RME Locks in the Style of Golab and Ramaraju. Finally, we consider
recovery using plain RME locks, as defined by Golab and Ramaraju [23, 24]. Such locks
lack a Withdraw section, and are based on the classic concept of idempotent actions: a
process recovers by simply repeating its entire passage. A course-grained interpretation of
this paradigm has each process repeating the entire linked list operation it was performing at
the time of failure, which easily leads to deadlock. In the example structure illustrated below
in Figure 1, process p could crash in the CS of lock Mp, at the same time process g could
crash in the CS of another lock Mp closer to the head of the list, then p could block while
entering Mp during recovery because it is effectively still held by ¢, and ¢ could subsequently
block while entering the lock M4 in the predecessor node, which is still held by p due to
hand-over-hand locking.

A more fine-grained interpretation of idempotent actions has each process recovering
only the one or two locks it was accessing at the time of failure, similarly to algorithm 7 but

with a sequence of calls to Recover, Enter, and Exit in place of a single call to Withdraw.

However, once again we run into the possibility of deadlock. If a process p tries to recover
pred first and then curr, as in algorithm 7, then consider what happens if the system-wide
failure occurred immediately after p released pred.M at line 153: another process ¢ could
race ahead and traverse the linked list after the crash, acquire the same lock pred.M, then
block on curr.M where p effectively still holds the CS, and cause p to block forever while
trying to enter pred.M. We achieve a better outcome in this scenario if p tries to recover
curr first and then pred, however even this strategy can cause deadlock if processes access
multiple linked list structures and recover them in conflicting orders. This holds even if the

RME locks provide wait-free Recover and Exit sections since a process can block in Enter.

To summarize, although we can envision correct recovery protocols for linked data structures
that use plain RME locks in the style of Golab and Ramaraju, such protocols are much
harder to design than algorithm 7 as actions must be ordered carefully to avoid deadlocks.

B Experimental Evaluation

This section presents an empirical comparison of RME algorithms designed specifically for
system-wide failures that do not use an explicit failure detector. The hardware platform
is a 20-core 2nd generation Intel Xeon processor with Optane Persistent Memory, which
supports the CC model. We compare Jayanti, Jayanti and Joshi’s RME algorithm for the
CC model (Section 3 of [29]), hereby referred to as JJJ, with a simplified version of our
RME algorithm from Section 5 that lacks dynamic leaving. Both RME algorithms are based
on Lee’s ME algorithm [37]. Both algorithms were implemented in C++ using the Intel
Persistent Memory Development Kit [45] on Linux. Shared variables were implemented
using the std::atomic template class, and memory operations were applied with sequential
consistency for simplicity. The libpmemobj library was used for memory allocation to ensure
that shared variables are mapped to persistent memory, and for persistent pointers to deal
with address space relocation across failures.

The cache system on our hardware platform is not part of the persistent domain and
hence volatile. As a result, if the most recent value of a variable that is meant to be persistent
has not been flushed to the persistent memory before a failure, then it will be lost. To

17:21

DISC 2023

17:22 Modular Recoverable Mutual Exclusion Under System-Wide Failures

‘ —+— JJJ’s Algorithm —— Our Algorithm

.10° -108
< [] j <
E sl oty s - =
O e Q
? } @
8 4l . g
&, 2
92} 1 n
) [}
&0 &b
< 2 - o
? @
s | R 3
~ I T R SO Y N | ~ Y I R SO Y N BN
0 0
12 4 6 8 10 12 14 16 18 20 12 4 6 g8 10 12 14 16 18 20
Number of threads (one thread per core) Number of threads (one thread per core)
(a) System throughput with CSR property. (b) System throughput without CSR prop-
erty.

Figure 2 Scalability comparison of RME algorithms on one processor in failure-free execution.

run correctly on our hardware platform, recoverable algorithms designed for the CC model
must be annotated by judicious placement of persistence instructions in the source code.
The PMDK provides the pmem_persist function for this purpose, which internally applies a
cache line write-back and store fence. Naively persisting variables after every shared memory
operation is sufficient to ensure correctness with respect to fundamental correctness properties
that refer to the program’s state (e.g., ME, SF, CSR), but does not preserve the RMR
complexity of busy-wait loops. This is because our hardware platform implements the cache
line write-back instruction in a simplistic way that always invalidates the cache line [44]. The
naive approach is easily optimized for algorithms that use simple busy-wait loops, namely
ones that spin on a single variable until it reaches a specific value, by persisting the spin
variable only after the last iteration of the loop.® Even this final persistence instruction can
be skipped in the entry section of Lee’s ME algorithm since the value of the spin variable is
not relevant for recovery when this algorithm is used as a building block of an RME algorithm.
It is also safe to omit the persistence instruction when a process reads a single-writer shared
variable owned by that process, such as an element of the FACE array in Lee’s algorithm.
We apply these optimizations to both our and JJJ’s algorithm.

Figure 2 presents the scalability of the two algorithms on our hardware platform. Each
point plotted is the average of five repetitions, each lasting 5s. The error bars represent
the sample standard deviation, and are imperceptibly small in most cases. The throughput
numbers (total number of passages completed per second) presented include the overhead of
persistence instructions and the higher latency of persistent memory over DRAM. Figure 2a
presents data for variations of the two RME algorithms that satisfy the CSR property, while
Figure 2b considers variations of the same algorithms that do not satisfy the CSR. property.
The non-CSR version of our algorithm is obtained by deleting lines of pseudocode that track
CS ownership (specifically, code ending with one “«4”). JJJ’s algorithm, in contrast, relies on
CS ownership state to achieve mutual exclusion among recovering processes, and so the same
transformation is not applicable. Note that Line 14 in Figure 3 of [29] is safe to remove and
Line 26 in Figure 3 of [29] must be adjusted.

3 This also applies for the two spin loops executed in parallel in the entry section of JJJ’s algorithm.

S. Dhoked, W. Golab, and N. Mittal

17:23

Algorithm 8 Equivalence between an RME lock that supports a wait-free Withdraw
method and an abortable RME lock that supports a wait-free Exit method under individual

failures.

a : Abortability to Withdrawability.

global shared variables
L M: instance of abortable RME lock;

per-process shared/persistent variables
| ABORT,: abort flag;

188

189 206

190 207

191 208

209
Procedure Withdraw()

ABORT,, := TRUE;
if M.Recover() then
Lif M.Enter () then

| M.Exit(O);
| ABORT, := FALSE;

192
193
194
195
196

210
211

212
213
197 214
Procedure Recover ()
if ABORT, then

| Withdraw();

198
199
200

216
217

218
219
220
221

201 | M.Recover();

Procedure Enter ()
| M.Enter();

202
203

Procedure Exit ()
| M.Exit();

204
205

222
223

b : Withdrawability to Abortability.

global shared variables
L M: instance of withdrawable RME lock;

per-process shared/persistent variables
| ABORT,: abort flag;

boolean Procedure Recover ()
M.Recover() || await ABORT,;
if ABORT, then
M.Withdraw();
return FALSE;

else return TRUE;

boolean Procedure Enter ()
M.Enter() || await ABORT);
if ABORT, then
M.Withdraw();
return FALSE;

else return TRUE;

Procedure Exit ()
| M.Withdraw();

As the graphs show, with the CSR property,
higher throughput than JJJ’s algorithm for one

our algorithm has around 75% and 50%
and two threads, respectively. The gap

stabilizes to around 15% at higher levels of parallelism. Without the CSR. property, the gap
between the two algorithm is much higher; specifically, our algorithm is 2-3 times faster than
JJJ’s algorithm. Further, while the performance of JJJ’s algorithm is immune to whether or
not the CSR property holds, our algorithm sees a significant speedup by a factor of 2-3 when

the CSR property is not required.

C Abortability and Withdrawability

To support the notion of abortability in our execution model, we modify the Recover and
Enter methods to return a boolean value. A return value of true indicates that the method
was executed to completion, whereas a return value of false indicates the attempt to acquire
the lock was abandoned and the method terminated prematurely. An application indicates
its desire to abort by raising a boolean flag. Note that an attempt to acquire the lock can
only be abandoned if the flag is raised. A process typically executes a passage by invoking the
Recover, Enter and Exit methods in order. However, if either Recover or Enter returns
false (which would only happen if the abort flag was raised), then the passage is considered
to be complete and subsequent methods are not invoked.

In this section, we show the following equivalence between the two types of RME locks

under the individual failure model.

An RME lock that supports a wait-free Withdraw

method can be transformed into an abortable RME lock that supports a wait-free Exit

method. Conversely, an abortable RME lock that

supports a wait-free Exit method can be

transformed into an RME lock that supports a wait-free Withdraw method. Further, both
transformations only incur O(1) additional RMRs and thus are RMR preserving.

DISC 2023

17:24

Modular Recoverable Mutual Exclusion Under System-Wide Failures

Abortability to withdrawability. The transformation is given in algorithm 8a. In the
Withdraw method of the target lock, a process attempts to execute the Recover, Enter and
Exit methods of the base abortable lock in sequence with the abort flag raised (by the
algorithm). If either Recover or Enter returns false (indicating that the attempt to acquire
the lock was abandoned), the method immediately returns without invoking the remaining
methods. Otherwise, the process completes the super-passage of the base abortable lock by
executing the Exit method. Clearly, all three methods are wait-free in the presence of the
abort signal.

Withdrawability to abortability. The transformation is given in algorithm 8b. The main idea
is that, in the Recover (respectively, Enter) method of the target lock, the process invokes
the Recover (respectively, Enter) method of the base withdrawable lock and concurrently
monitors the abort flag. If the abort flag is raised (by the environment), the process simulates
a failure by prematurely terminating the method, and executes the Withdraw method instead
to complete the super-passage of the base lock.

	1 Introduction
	2 System Model
	2.1 RME Correctness and Other Properties Reformulated
	2.2 Complexity Measures

	3 An RMR-Optimal RME Algorithm with Dynamic Joining for CC and DSM Models
	3.1 Background: MCS Algorithm with Wait-Free Exit
	3.2 The Main Idea
	3.3 A Formal Description

	4 Adding the BCSR Property
	4.1 The Main Idea
	4.2 A Formal Description

	5 A Fully Dynamic RMR-Optimal RME Algorithm for the CC Model
	6 On Achieving Dynamic Joining and Leaving, Wait-Free Withdraw, Adaptive Space, and Bounded RMR Complexity in the DSM Model
	7 Related Work
	8 Conclusion and Future Work
	A A Recoverable Lock-Based Concurrent Linked List
	B Experimental Evaluation
	C Abortability and Withdrawability

