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Abstract
We give a simple characterization of which functions can be computed deterministically by anonymous
processes in dynamic networks, depending on the number of leaders in the network. In addition,
we provide efficient distributed algorithms for computing all such functions assuming minimal
or no knowledge about the network. Each of our algorithms comes in two versions: one that
terminates with the correct output and a faster one that stabilizes on the correct output without
explicit termination. Notably, these are the first deterministic algorithms whose running times scale
linearly with both the number of processes and a parameter of the network which we call dynamic
disconnectivity (meaning that our dynamic networks do not necessarily have to be connected at all
times). We also provide matching lower bounds, showing that all our algorithms are asymptotically
optimal for any fixed number of leaders.

While most of the existing literature on anonymous dynamic networks relies on classical mass-
distribution techniques, our work makes use of a recently introduced combinatorial structure called
history tree, also developing its theory in new directions. Among other contributions, our results
make definitive progress on two popular fundamental problems for anonymous dynamic networks:
leaderless Average Consensus (i.e., computing the mean value of input numbers distributed among
the processes) and multi-leader Counting (i.e., determining the exact number of processes in the
network). In fact, our approach unifies and improves upon several independent lines of research on
anonymous networks, including Nedić et al., IEEE Trans. Automat. Contr. 2009; Olshevsky, SIAM J.
Control Optim. 2017; Kowalski–Mosteiro, ICALP 2019, SPAA 2021; Di Luna–Viglietta, FOCS 2022.
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1 Introduction

Dynamic networks. An increasingly prominent area of distributed computing focuses on
algorithmic aspects of dynamic networks, motivated by novel technologies such as wireless
sensors networks, software-defined networks, networks of smart devices, and other networks
with a continuously changing topology [9, 32, 34]. Typically, a network is modeled by a
system of n processes that communicate in synchronous rounds; at each round, the network’s
topology changes unpredictably.
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18:2 Optimal Computation in Anonymous Dynamic Networks

Disconnected networks. In the dynamic setting, a common assumption is that the network
is 1-interval-connected, i.e., connected at all rounds [30, 37]. However, this is not a suitable
model for many real systems, due to the very nature of dynamic entities (think of P2P
networks of smart devices moving unpredictably) or due to transient communication failures,
which may compromise the network’s connectivity. A weaker assumption is that the union
of all the network’s links across any T consecutive rounds induces a connected graph on the
processes [28, 39]. We say that such a network is T -union-connected, and we call T ≥ 1 its
dynamic disconnectivity.2

Anonymous processes. Several works have focused on processes with unique IDs, which
allow for efficient algorithms for many different tasks [8, 29, 30, 31, 34, 37]. However, unique
IDs may not be available due to operational limitations [37] or to protect user privacy:
A famous example are COVID-19 tracking apps, where assigning temporary random IDs
to users was not enough to eliminate privacy concerns [43]. Systems where processes are
indistinguishable are called anonymous. The study of static anonymous networks has a long
history, as well [6, 7, 10, 11, 12, 21, 42, 45].

Networks with leaders. It is known that several fundamental problems for anonymous
networks (a notable example being the Counting problem, i.e., determining the total number
of processes n) cannot be solved without additional “symmetry-breaking” assumptions. The
most typical choice is the presence of a single distinguished process called leader [1, 2, 3, 4,
16, 21, 23, 25, 33, 41, 46] or, less commonly, a subset of several leaders (and knowledge of
their number) [24, 26, 27, 28].

Apart from the theoretical importance of generalizing the usual single-leader scenario,
studying networks with multiple leaders also has a practical impact in terms of privacy.
Indeed, while the communications of a single leader can be traced, the addition of more
leaders provides differential privacy for each of them.

Leaderless networks. In some networks, the presence of reliable leaders may not always be
guaranteed: For example, in a mobile sensor network deployed by an aircraft, the leaders
may be destroyed as a result of a bad landing; also, the leaders may malfunction during
the system’s lifetime. This justifies the extensive existing literature on networks with no
leaders [14, 15, 35, 36, 38, 44, 47]. Notably, a large portion of works on leaderless networks
have focused on the Average Consensus problem, where the goal is to compute the mean of a
list of numbers distributed among the processes [5, 13, 14, 20, 39, 40].

1.1 Our Contributions
Summary. Focusing on anonymous dynamic networks, in this paper we completely elucidate
the relationship between leaderless networks and networks with (multiple) leaders, as well
as the impact of the dynamic disconnectivity T on the efficiency of distributed algorithms.
We remark that only a minority of existing works consider networks that are not necessarily
connected at all times.

The full version of this paper is found at [19].

2 We use the term “disconnected” to refer to T -union-connected networks in the sense that they may
not be connected at any round. It is worth noting that non-trivial (terminating) computation requires
some conditions on temporal connectivity to be met, such as a finite dynamic disconnectivity and its
knowledge by all processes (refer to Proposition 2).



G. A. Di Luna and G. Viglietta 18:3

Computability. We give an exact characterization of which functions can be computed
in anonymous dynamic networks with and without leaders, respectively. Namely, with
at least one leader, all the so-called multi-aggregate functions are computable; with no
leaders, only the frequency-based multi-aggregate functions are computable (see Section 2 for
definitions). Interestingly, computability is independent of the dynamic disconnectivity T .
Our contribution considerably generalizes a recent result on the functions computable with
exactly one leader and with T = 1 [17].

Complete problems. While computing the so-called Generalized Counting function FGC

was already known to be a complete problem for the class of multi-aggregate functions [17],
in this work we expand the picture by identifying a complete problem for the class of
frequency-based multi-aggregate functions, as well: the Frequency function FR (both FGC

and FR are defined in Section 2). By “complete problem” we mean that computing such
a function allows the immediate computation of any other function in the class with no
overhead in terms of communication rounds.

Algorithms. We give efficient deterministic algorithms for computing the Frequency function
(Section 3) and the Generalized Counting function (Section 4). Since the two problems are
complete, we automatically obtain efficient algorithms for computing all functions in the
respective classes.

For each problem, we give two algorithms: a terminating version, where each process
is required to commit on its output and never change it, and a stabilizing version, where
processes are allowed to modify their outputs, provided that they eventually stabilize on the
correct output.

The stabilizing algorithms for both problems run in 2Tn rounds regardless of the number
of leaders, and do not require any knowledge of the dynamic disconnectivity T or the number
of processes n. Our terminating algorithm for leaderless networks runs in T (n+N) rounds
with knowledge of T and an upper bound N ≥ n; the terminating algorithm for ℓ ≥ 1
leaders runs in (ℓ2 + ℓ+ 1)Tn rounds with no knowledge about n. The latter running time
is reasonable (i.e., linear) in most applications, as ℓ is typically a constant or very small
compared to n.

A comparison of our results with the state of the art on Average Consensus and Counting
problems is illustrated in Table 1 and discussed in Appendix A.

Negative results. Some of our algorithms assume processes to have a-priori knowledge of
some parameters of the network; in Section 5 we show that all of these assumptions are
necessary. We also provide lower bounds that asymptotically match our algorithms’ running
times, assuming that the number of leaders ℓ is constant (which is a realistic assumption in
most applications).

Multigraphs. All of our results hold more generally if networks are modeled as multigraphs,
as opposed to the simple graphs traditionally encountered in nearly all of the literature.
This is relevant in many applications: in radio communication, for instance, multiple links
between processes naturally appear due to the multi-path propagation of radio waves.

DISC 2023
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Table 1 Comparing results for Average Consensus and Counting in anonymous dynamic networks.
For algorithms that support disconnected networks, T indicates the dynamic disconnectivity.

Problem Reference Leaders Disconn. Term. Notes Running time

Average
Consensus

[35] ` = 0 X ✏-convergence, T unknown, upper bound
on processes’ degrees known

O(Tn
3 log(1/✏))

[14] ` = 0 ✏-convergence O(n4 log(n/✏))

[13] ` = 0 randomized Monte Carlo O(n)

[26] ` � 1 X ` known O(n5 log3(n)/`)

this work
` = 0 X T unknown 2Tn

` = 0 X X T and N � n known T (n + N)

(Generalized)
Counting

[17]
` = 1 2n � 2

` = 1 X 3n � 2

[28] ` � 1 X ` known O(n4 log3(n)/`)

[27] ` � 1 X X ` and T known, O(log n)-size messages eO(n2T+3
/`)

this work
` � 1 X ` known, T unknown 2Tn

` � 1 X X ` and T known (`2 + ` + 1)Tn

Table 1: Comparing results for Average Consensus and Counting in anonymous dynamic networks.
For algorithms that support disconnected networks, T indicates the dynamic disconnectivity.

Problem Reference Leaders Disconn. Term. Notes Running time

Average
Consensus

[41] ` = 0 X ✏-convergence, T unknown, upper bound
on processes’ degrees known

O(Tn
3 log(1/✏))

[16] ` = 0 ✏-convergence O(n4 log(n/✏))

[15] ` = 0 randomized Monte Carlo O(n)

[31] ` � 1 X ` known O(n5 log3(n)/`)

this work
` = 0 X T unknown 2Tn

` = 0 X X T and N � n known T (n + N)

(Generalized)
Counting

[24]
` = 1 2n � 2

` = 1 X 3n � 2

[33] ` � 1 X ` known O(n4 log3(n)/`)

[32] ` � 1 X X ` and T known, O(log n)-size messages eO(n2T+3
/`)

this work
` � 1 X ` known, T unknown 2Tn

` � 1 X X ` and T known (`2 + ` + 1)Tn

Table 1: Comparing results for Average Consensus and Counting in anonymous dynamic networks.
For algorithms that support disconnected networks, T indicates the dynamic disconnectivity.

connected network, [16] gives an algorithm that converges in O
�
n

4 log(n/✏)
�

rounds. We remark
that both algorithms are only ✏-convergent; therefore, not only does our stabilizing algorithm
improve on their running times, but it solves a more di�cult problem under weaker assumptions.

The algorithm in [15] stabilizes to the actual average in a linear number of rounds, but it is a
randomized Monte Carlo algorithm and requires the network to be connected at each round. In
contrast, our linear-time stabilizing algorithm is deterministic and works in disconnected networks.

As for terminating algorithms, the one in [31] terminates in O
�
n

5 log3(n)/`
�

rounds assuming
the presence of a known number ` of leaders and an always connected network. Since the number of
leaders is known, our terminating algorithm for Generalized Counting also solves Average Consensus
with a running time that improves upon [31] and does not require the network to be connected. We
remark that our algorithm terminates in linear time when ` is constant.

Generalized Counting. Our results on this problem are direct generalizations of [24] to the
case of multiple leaders and disconnected networks. The best previous counting algorithm with
multiple known leaders is the one in [33], which terminates in O

�
n

4 log3(n)/`
�

rounds and assumes
the network to be connected at each round. In the same setting, our stabilizing and terminating
algorithms have running times of 2n rounds and (`2 + ` + 1)n rounds, respectively.

The only other result for disconnected networks is the recent preprint [32], which gives an
algorithm that terminates in eO

�
n

2T+3
/`

�
rounds using O(log n)-sized messages. Our terminating

algorithm has a linear dependence on both n and T , which is an exponential improvement upon the
running time of [32], but it requires polynomial-size messages.

[27]

2 Definitions and Preliminaries

We will give preliminary definitions and results, and recall some properties of history trees from [24].

Processes and networks. A dynamic network is modeled by an infinite sequence G = (Gt)t�1,
where Gt = (V, Et) is an undirected multigraph whose vertex set V = {p1, p2, . . . , pn} is a system of
n anonymous processes and Et is a multiset of edges representing links between processes.

Each process pi starts with an input �(pi), which is assigned to it at round 0. It also has an
internal state, which is initially determined by �(pi). At each round t � 1, every process composes
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Figure 1: Comparing results for Average Consensus and Counting in anonymous dynamic networks.
For algorithms that support disconnected networks, T indicates the dynamic disconnectivity.

leader flag is set are called leaders (or supervisors). We will denote the number of leaders as `.
Each process also returns an output at the end of each round, which is determined by its current

internal state. A system is said to stabilize if the outputs of all its processes remain constant from a
certain round onward; note that a process’ internal state may still change even when its output is
constant. A process may also decide to explicitly terminate and no longer update its internal state.
When all processes have terminated, the system is said to terminate, as well.

We say that A computes a function F if, whenever the processes are assigned inputs �(p1), �(p2),
. . . , �(pn) and all processes execute the local algorithm A at every round, the system eventually
stabilizes with each process pi giving the desired output F (pi, �). A stronger notion of computation
requires the system to not only stabilize but also to explicitly terminate with the correct output.
The (worst-case) running time of A, as a function of n, is the maximum number of rounds it takes
for the system to stabilize (and optionally terminate), taken across all possible dynamic networks of
size n and all possible input assignments.
Classes of functions. Let µ� = {(z1, m1), (z2, m2), . . . , (zk, mk)} be the multiset of all processes’

2 Definitions and Preliminaries

We will give preliminary definitions and results, and recall some properties of history trees
from [17].

Processes and networks. A dynamic network is modeled by an infinite sequence G =
(Gt)t≥1, where Gt = (V,Et) is an undirected multigraph whose vertex set V = {p1, p2, . . . , pn}
is a system of n anonymous processes and Et is a multiset of edges representing links between
processes.

Each process pi starts with an input λ(pi), which is assigned to it at round 0. It also has
an internal state, which is initially determined by λ(pi). At each round t ≥ 1, every process
composes a message (depending on its internal state) and broadcasts it to its neighbors in Gt

through all its incident links. By the end of round t, each process reads all messages coming
from its neighbors and updates its internal state according to a local algorithm A. Note that
A is deterministic and is the same for all processes. The input of each process also includes
a leader flag. The processes whose leader flag is set are called leaders (or supervisors). We
will denote the number of leaders as ℓ.

Each process also returns an output at the end of each round, which is determined by its
current internal state. A system is said to stabilize if the outputs of all its processes remain
constant from a certain round onward; note that a process’ internal state may still change
even when its output is constant. A process may also decide to explicitly terminate and no
longer update its internal state. When all processes have terminated, the system is said to
terminate, as well.

We say that A computes a function F if, whenever the processes are assigned inputs
λ(p1), λ(p2), . . . , λ(pn) and all processes execute the local algorithm A at every round,
the system eventually stabilizes with each process pi giving the desired output F (pi, λ). A
stronger notion of computation requires the system to not only stabilize but also to explicitly
terminate with the correct output. The (worst-case) running time of A, as a function of n, is
the maximum number of rounds it takes for the system to stabilize (and optionally terminate),
taken across all possible dynamic networks of size n and all possible input assignments.
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Classes of functions. Let µλ = {(z1,m1), (z2,m2), . . . , (zk,mk)} be the multiset of all pro-
cesses’ inputs. That is, for all 1 ≤ i ≤ k, there are exactly mi processes pj1 , pj2 , . . . , pjmi

whose
input is zi = λ(pj1) = λ(pj2) = · · · = λ(pjmi

); note that n =
∑k

i=1 mi. A multi-aggregate
function is defined as a function F of the form F (pi, λ) = ψ(λ(pi), µλ), i.e., such that the
output of each process depends only on its own input and the multiset of all processes’ inputs.

The special multi-aggregate functions FC(pi, λ) = n and FGC(pi, λ) = µλ are called the
Counting function and the Generalized Counting function, respectively. It is known that,
if a system can compute the Generalized Counting function FGC , then it can compute any
multi-aggregate function in the same number of rounds: thus, FGC is complete for the class
of multi-aggregate functions [17].

For any α ∈ R+, we define α ·µλ as {(z1, α ·m1), (z2, α ·m2), . . . , (zk, α ·mk)}. We say that
a multi-aggregate function F (pi, λ) = ψ(λ(pi), µλ) is frequency-based if ψ(z, µλ) = ψ(z, α ·µλ)
for every positive integer α and every input z (see [22]). That is, F depends only on the
“frequency” of each input in the system, rather than on their actual multiplicities. Notable
examples include statistical functions such as mean, variance, maximum, median, mode,
etc. The problem of computing the mean of all input values is called Average Consensus
[5, 13, 14, 15, 20, 26, 35, 36, 38, 39, 40, 44, 47].

The frequency-based multi-aggregate function FR(pi, λ) = 1
n · µλ is called Frequency

function, and is complete for the class of frequency-based multi-aggregate functions, as stated
below (the proof is simple, and is found in [19]).

▶ Proposition 1. If FR can be computed (with termination), then all frequency-based multi-
aggregate functions can be computed (with termination) in the same number of rounds, as
well. ⌟

History trees. History trees were introduced in [17] as a tool of investigation for anonymous
dynamic networks; an example is found in Figure 1. A history tree is a representation of a
dynamic network given some inputs to the processes. It is an infinite graph whose nodes
are partitioned into levels Lt, with t ≥ −1; each node in Lt represents a class of processes
that are indistinguishable at the end of round t (with the exception of L−1, which contains a
single node r representing all processes). The definition of distinguishability is inductive:
at the end of round 0, two processes are distinguishable if and only if they have different
inputs. At the end of round t ≥ 1, two processes are distinguishable if and only if they were
already distinguishable at round t− 1 or if they have received different multisets of messages
at round t.

Each node in level L0 has a label indicating the input of the processes it represents. There
are also two types of edges connecting nodes in adjacent levels. The black edges induce an
infinite tree rooted at node r ∈ L−1 which spans all nodes. The presence of a black edge
{v, v′}, with v ∈ Lt and v′ ∈ Lt+1, indicates that the child node v′ represents a subset of the
processes represented by the parent node v. The red multi-edges represent communications
between processes. The presence of a red edge {v, v′} with multiplicity m, with v ∈ Lt and
v′ ∈ Lt+1, indicates that, at round t+ 1, each process represented by v′ receives m (identical)
messages from processes represented by v.

As time progresses and processes exchange messages, they are able to locally construct
finite portions of the history tree. In [17], it is shown that there is a local algorithm A∗

that allows each process to locally construct and update its own view of the history tree
at every round. The view of a process p at round t ≥ 0 is the subgraph of the history tree
which is spanned by all the shortest paths (using black and red edges indifferently) from
the root r to the node in Lt representing p (see Figure 1). As proved in [17, Theorem 3.1],
the view of a process at round t contains all the information that the process may be able

DISC 2023



18:6 Optimal Computation in Anonymous Dynamic Networks

BA

B

B

A

A B

C C

Network at round 0

BA

B

B

A

A B

C C

Network at round 1

BA

B

B

A

A B

C C

Network at round 2

Level

Level

Level

Level

0L

1L

2L

History tree

CBA

1a

1b

1a

2a

3a

4a

5a

6b

1b

5b

2b

22 2

r

2a 3a 4a 5a

2b 3b 4b 5b

6b

2

2

3b

4b

1−L

Figure 1 The first rounds of a dynamic network with n = 9 processes and the corresponding
levels of the history tree. Level Lt consists of all nodes at distance t + 1 from the root r. The
multiplicities of the red multi-edges of the history tree are explicitly indicated only when greater
than 1. The letters A, B, C denote processes’ inputs; all other labels have been added for the reader’s
convenience, and indicate classes of indistinguishable processes (non-trivial classes are also indicated
by dashed blue lines). Note that the two processes in b4 are still indistinguishable at the end of
round 2, although they are linked to the distinguishable processes b5 and b6. This is because such
processes were in the same class a5 at round 1. The subgraph in the green blob is the view of the
two processes in b1.

to use at that round. This justifies the convention that all processes always execute A∗,
constructing their local view of the history tree and broadcasting (a representation of) it
at every round, regardless of their task. Then, they simply compute their task-dependent
outputs as a function of their respective views.

We define the anonymity of a node v of the history tree as the number of processes
that v represents, and we denote it as a(v). It follows that

∑
v∈Lt

a(v) = n for all t ≥ −1,
and that the anonymity of a node is equal to the sum of the anonymities of its children.
Naturally, a process is not aware of the anonymities of the nodes in its view of the history
tree, unless it can somehow infer them from the view’s structure itself. In fact, computing
the Generalized Counting function is equivalent to determining the anonymities of all the
nodes in L0. Similarly, computing the Frequency function corresponds to determining the
value a(v)/n for all v ∈ L0.

Computation in disconnected networks. Although the network Gt at each individual round
may be disconnected, we assume the dynamic network to be T -union-connected. That is,
there is a dynamic disconnectivity parameter T ≥ 1 such that the sum of any T consecutive
Gt’s is a connected multigraph. Thus, for all i ≥ 1, the multigraph

(
V,

⋃i+T −1
t=i Et

)
is

connected (we remark that a union of multisets adds together the multiplicities of equal
elements).3 The next two results are easy to prove (see [19]).

3 Our T -union-connected networks should not be confused with the T -interval-connected networks
from [30]. In those networks, the intersection (as opposed to the union) of any T consecutive Et’s
induces a connected (multi)graph. In particular, a T -interval-connected network is connected at every
round, while a T -union-connected network may not be, unless T = 1. Incidentally, a network is
1-interval-connected if and only if it is 1-union-connected.
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▶ Proposition 2. Any non-trivial function is impossible to compute with termination unless
the processes have some knowledge about T . (A function is “trivial” if it can be computed
locally.) ⌟

▶ Proposition 3. A function F can be computed (with termination) within f(n) rounds
in any dynamic network with T = 1 if and only if F can be computed (with termination)
within T · f(n) rounds in any dynamic network with T ≥ 1, assuming that T is known to all
processes. ⌟

Relationship with the dynamic diameter. A concept closely related to the dynamic
disconnectivity T of a network is its dynamic diameter (or temporal diameter) D, which is
defined as the maximum number of rounds it may take for information to travel from any
process to any other process at any point in time [9, 32]. It is a simple observation that
T ≤ D ≤ T (n− 1).

We chose to use T , as opposed to D, to measure the running times of our algorithms for
several reasons. Firstly, T is well defined (i.e., finite) if and only if D is; however, T has a
simpler definition, and is arguably easier to directly estimate or enforce in a real network.
Secondly, Proposition 3, as well as all of our theorems, remain valid if we replace T with
D; nonetheless, stating the running times of our algorithms in terms of T is better, because
T ≤ D.

3 Computation in Leaderless Networks

We will give a stabilizing and a terminating algorithm that efficiently compute the Frequency
function FR in all leaderless networks with finite dynamic disconnectivity T . As a consequence,
all frequency-based multi-aggregate functions are efficiently computable as well, due to
Proposition 1. Moreover, Proposition 16 states that no other functions are computable in
leaderless networks, and Proposition 17 shows that our algorithms are asymptotically optimal.
All missing proofs are found in [19].

3.1 Stabilizing Algorithm
We will use the procedure in Listing 1 as a subroutine in some of our algorithms. Its purpose
is to construct a homogeneous system of k − 1 independent linear equations involving the
anonymities of all the k nodes in a level of a process’ view. We will first give some definitions.

In (a view of) a history tree, if a node v ∈ Lt has exactly one child (i.e., there is exactly
one node v′ ∈ Lt+1 such that {v, v′} is a black edge), we say that v is non-branching. We
say that two non-branching nodes v1, v2 ∈ Lt, whose respective children are v′

1, v
′
2 ∈ Lt+1,

are exposed with multiplicity (m1,m2) if the red edges {v′
1, v2} and {v′

2, v1} are present with
multiplicities m1 ≥ 1 and m2 ≥ 1, respectively. A strand is a path (w1, w2, . . . , wk) in (a
view of) a history tree consisting of non-branching nodes such that, for all 1 ≤ i < k, the
node wi is the parent of wi+1. We say that two strands P1 and P2 are exposed if there are
two exposed nodes v1 ∈ P1 and v2 ∈ P2.

Intuitively, the procedure in Listing 1 searches for a long-enough sequence of levels in the
given view V, say from Ls to Lt, where all nodes are non-branching. That is, the nodes in
Ls ∪ Ls+1 ∪ · · · ∪ Lt can be partitioned into k = |Ls| = |Lt| strands. Then the procedure
searches for pairs of exposed strands, each of which yields a linear equation involving the
anonymities of some nodes of Lt, until it obtains k − 1 linearly independent equations. Note

DISC 2023
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Listing 1 Constructing a system of equations in the anonymities of some nodes in a view.
1 # Input: a view V with levels L−1, L0, L1, . . ., Lh

2 # Output: (t, S), where t is an integer and S is a system of linear equations
3
4 Assign s := 0
5 For t := 0 to h

6 If Lt contains a node with no children, return (−1, ∅)
7 If Lt contains a node with more than one child, assign s := t + 1
8 Else
9 Let k = |Ls| = |Lt| and let ui be the ith node in Lt

10 Let Pi be the strand starting in Ls and ending in ui ∈ Lt

11 Let P = {P1, P2, . . . , Pk}
12 Let G be the graph on P whose edges are pairs of exposed strands
13 If G is connected
14 Let G′ ⊆ G be any spanning tree of G

15 Assign S := ∅
16 For each edge {Pi, Pj} of G′

17 Find any two exposed nodes v1 ∈ Pi and v2 ∈ Pj

18 Let (m1, m2) be the multiplicity of the exposed pair (v1, v2)
19 Add to S the equation m1xi = m2xj

20 Return (t, S)

that the search may fail (in which case Listing 1 returns t = −1) or it may produce incorrect
equations. The following lemma specifies sufficient conditions for Listing 1 to return a correct
and non-trivial system of equations for some t ≥ 0 (the proof is in [19]).

▶ Lemma 4. Let V be the view of a process in a T -union-connected network of size n taken
at round t′, and let Listing 1 return (t, S) on input V. Assume that one of the following
conditions holds:
1. t ≥ 0 and t′ ≥ t+ Tn, or
2. t′ ≥ 2Tn.

Then, 0 ≤ t ≤ Tn, and S is a homogeneous system of k − 1 independent linear equations
(with integer coefficients) in k = |Lt| variables x1, x2, . . . , xk. Moreover, S is satisfied by
assigning to xi the anonymity of the ith node of Lt, for all 1 ≤ i ≤ k. ⌟

▶ Theorem 5. There is an algorithm that computes FR in all T -union-connected anonymous
networks with no leader and stabilizes in at most 2Tn rounds, assuming no knowledge of T
or n. ⌟

3.2 Terminating Algorithm
We will now give a certificate of correctness that can be used to turn the stabilizing algorithm
of Theorem 5 into a terminating algorithm. The certificate relies on a-priori knowledge of
the dynamic disconnectivity T and an upper bound N on the size of the network n; these
assumptions are justified by Proposition 2 and Proposition 18, respectively.

▶ Theorem 6. There is an algorithm that computes FR in all T -union-connected anonymous
networks with no leader and terminates in at most T (n+N) rounds, assuming that T and
an upper bound N ≥ n are known to all processes.4 ⌟

4 If the dynamic diameter D of the network is known, the termination time improves to T n + D rounds.



G. A. Di Luna and G. Viglietta 18:9

4 Computation in Networks with Leaders

We will give a stabilizing and a terminating algorithm that efficiently compute the Generalized
Counting function FGC in all networks with ℓ ≥ 1 leaders and finite dynamic disconnectivity
T . Therefore, all multi-aggregate functions are efficiently computable as well, due to [17,
Theorem 2.1]. Moreover, Proposition 19 states that no other functions are computable in
networks with leaders, and Proposition 21 shows that our algorithms are asymptotically
optimal for any fixed ℓ ≥ 1.

4.1 Stabilizing Algorithm
We will once again make use of the subroutine in Listing 1, this time assuming that the number
of leaders ℓ ≥ 1 is known to all processes. This assumption is justified by Proposition 20.
The next theorem uses the same ideas as Theorems 5 and 6, and is proved in [19].

▶ Theorem 7. There is an algorithm that computes FGC in all T -union-connected anonymous
networks with ℓ ≥ 1 leaders and stabilizes in at most 2Tn rounds, assuming that ℓ is known
to all processes, but assuming no knowledge of T or n. ⌟

4.2 Terminating Algorithm
We will now present the main result of this paper. As already remarked, giving an efficient
certificate of correctness for the (Generalized) Counting problem with multiple leaders is a
highly non-trivial task for which a radically different approach is required. Note that it is
not possible to simply adapt the single-leader algorithm in [17] by setting the anonymity
of the leader node in the history tree to ℓ instead of 1. Indeed, as soon as some leaders
get disambiguated, the leader node splits into several children nodes whose anonymities are
unknown (we only know that their sum is ℓ). There is no way around this difficulty other
than developing a new technique.

Our algorithm is rather involved, and the proofs of several technical lemmas are provided
in [19], due to lack of space.

The subroutine ApproxCount. A large portion of this section is devoted to a subroutine
called ApproxCount, which will be repeatedly invoked by our main algorithm. The purpose
of ApproxCount is to compute an approximation n′ of the total number of processes n (or
report various types of failure). It takes as input a view V of a process, the number of
leaders ℓ, and two integer parameters s and x, representing the index of a level of V and the
anonymity of a leader node in Ls, respectively.

The subroutine roughly follows the general structure of the algorithm in [17, Section 4.2]:
namely, anonymities are first “guessed” and then proven correct when some “certificates” are
satisfied. However, the way these basic concepts are defined and the way the underlying
principles are implemented is entirely new, due to the added difficulty that here we have a
strand of leader nodes in the view V hanging from the first leader node τ in level Ls, where
the anonymity a(τ) is an unknown number not greater than ℓ (as opposed to a(τ) = 1, which
is assumed in [17]).

ApproxCount begins by assuming that a(τ) is the given parameter x, and then it makes
deductions on the anonymities of other nodes until it is able to make an estimate n′ > 0 on
the total number of processes, or report failure in the form of an error code n′ ∈ {−1,−2,−3}.
In particular, since the algorithm requires the existence of a long-enough strand hanging
from τ , it reports failure if some descendants of τ (in the relevant levels of V) have more
than one child.
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Another important difficulty that is unique to the multi-leader case is that, even if
V contains a long-enough strand of leader nodes, some nodes in the strand may still be
branching in the history tree (that is, the chain of leader nodes is branching, but only one
branch appears in V). We will have to keep this in mind when reasoning about V.

In the following, we give some preliminary definitions and results in order to formally state
our subroutine and prove its correctness and running time. We remark that ApproxCount
assumes that the network is 1-union-connected, as this is sufficient for our main algorithm to
work for any T -union-connected network (refer to the proof of Theorem 15).

Discrepancy δ. Suppose that ApproxCount is invoked with arguments V, s, x, ℓ, where
1 ≤ x ≤ ℓ, and let τ be the first leader node in level Ls of V (if τ does not exist, the procedure
immediately returns the error code n′ = −1). We define the discrepancy δ as the ratio x/a(τ).
Clearly, 1/ℓ ≤ δ ≤ ℓ. Note that, since a(τ) is not a-priori known by the process executing
ApproxCount, then neither is δ.

Conditional anonymity. ApproxCount starts by assuming that the anonymity of τ is x, and
makes deductions on other anonymities based on this assumption. Thus, we will distinguish
between the actual anonymity of a node a(v) and the conditional anonymity a′(v) = δa(v)
that ApproxCount may compute under the initial assumption that a′(τ) = x = δa(τ).

Guessing conditional anonymities. Let u be a node of a history tree, and assume that the
conditional anonymities of all its children u1, u2, . . . , uk have been computed: such a node
u is called a guesser. If v is not among the children of u but it is at their same level, and the
red edge {v, u} is present with multiplicity m ≥ 1, we say that v is guessable by u. In this
case, we can make a guess g(v) on the conditional anonymity a′(v):

g(v) = a′(u1) ·m1 + a′(u2) ·m2 + · · · + a′(uk) ·mk

m
, (1)

where mi is the multiplicity of the red edge {ui, v
′} for all 1 ≤ i ≤ k, and v′ is the parent

of v (possibly, mi = 0). Note that g(v) may not be an integer. Although a guess may be
inaccurate, it never underestimates the conditional anonymity:

▶ Lemma 8. If v is guessable, then g(v) ≥ a′(v). Moreover, if v has no siblings, g(v) =
a′(v). ⌟

Heavy nodes. The subroutine ApproxCount assigns guesses in a well-spread fashion, i.e.,
in such a way that at most one node per level is assigned a guess.

Suppose now that a node v has been assigned a guess. We define its weight w(v) as the
number of nodes in the subtree hanging from v that have been assigned a guess (this includes
v itself). Recall that subtrees are determined by black edges only. We say that v is heavy if
w(v) ≥ ⌊g(v)⌋.

▶ Lemma 9. Assume that δ ≥ 1. In a well-spread assignment of guesses, if w(v) > a′(v),
then some descendants of v are heavy (the descendants of v are the nodes in the subtree
hanging from v other than v itself). ⌟

Correct guesses. We say that a node v has a correct guess if v has been assigned a guess
and g(v) = a′(v). The next lemma gives a criterion to determine if a guess is correct.
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Listing 2 The subroutine ApproxCount invoked in Listing 3.
1 # Input: a view V and three integers s, x, ℓ

2 # Output: a pair of integers (n′, t)
3
4 Let L−1, L0, L1, . . . be the levels of V
5 Assign t := s

6 If Ls does not contain any leader nodes, return (−1, t)
7 Let τ be the first leader node in Ls

8 Mark all nodes in V as not guessed and not counted
9 Assign u := τ; assign a′(u) := x; mark u as counted

10 While u has a unique child u′ in V
11 Assign u := u′; assign a′(u) := x; mark u as counted
12 While there are guessable levels and a counting cut has not been found
13 Let v be a guessable non-counted node of smallest depth in V
14 Let Lt′ be the level of v; assign t := max{t, t′}
15 Assign a guess g(v) to v as in Equation (1); mark v as guessed
16 Let Pv be the black path from v to its ancestor in Ls

17 If there is a heavy node in Pv

18 Let v′ be the heavy node in Pv of maximum depth
19 If g(v′) is not an integer, return (−3, t)
20 Assign a′(v′) := g(v′); mark v′ as counted and not guessed
21 If v′ is the root or a leaf of a non-trivial complete isle I

22 For each internal node w of I

23 Assign a′(w) :=
∑

w′ leaf of I and descendant of w
a′(w′)

24 Mark w as counted and not guessed
25 If no counting cut has been found, return (−2, t)
26 Else
27 Let C be a counting cut between Ls and Lt

28 Let n′ =
∑

v∈C
a′(v)

29 Let ℓ′ =
∑

v leader node in C
a′(v)

30 If ℓ′ < ℓ, return (−1, t)
31 If ℓ′ > ℓ, return (−3, t)
32 Return (n′, t)

▶ Lemma 10. Assume that δ ≥ 1. In a well-spread assignment of guesses, if a node v is
heavy and no descendant of v is heavy, then v has a correct guess or the guess on v is not an
integer. ⌟

When the criterion in Lemma 10 applies to a node v, we say that v has been counted. So,
counted nodes are nodes that have been assigned a guess, which was then confirmed to be
the correct conditional anonymity.

Cuts and isles. Fix a view V of a history tree H. A set of nodes C in V is said to be a cut
for a node v /∈ C of V if two conditions hold: (i) for every leaf v′ of V that lies in the subtree
hanging from v, the black path from v to v′ contains a node of C, and (ii) no proper subset
of C satisfies condition (i). A cut for the root r whose nodes are all counted is said to be a
counting cut.

Let s be a counted node in V , and let F be a cut for v whose nodes are all counted. Then,
the set of nodes spanned by the black paths from s to the nodes of F is called isle; s is the
root of the isle, while each node in F is a leaf of the isle. The nodes in an isle other than the
root and the leaves are called internal. An isle is said to be trivial if it has no internal nodes.
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Listing 3 Solving the Counting problem with ℓ ≥ 1 leaders.
1 # Input: a view V and a positive integer ℓ

2 # Output: either a positive integer n or "Unknown"
3
4 Assign n∗ := −1 and s := 0 and c := 0
5 Let b be the number of leader branches in V
6 While c ≤ ℓ − b

7 Assign t∗ := −1
8 For x := ℓ downto 1
9 Assign (n′, t) := ApproxCount(V, s, x, ℓ) # see Listing 2

10 Assign t∗ := max{t∗, t}
11 If n′ = −1, return "Unknown"
12 If n′ = −2, break out of the for loop
13 If n′ > 0
14 If n∗ = −1, assign n∗ := n′

15 Else if n∗ ̸= n′, return "Unknown"
16 Assign c := c + 1 and break out of the for loop
17 Assign s := t∗ + 1
18 Let Lt′ be the last level of V
19 If t′ ≥ t∗ + n∗, return n∗

20 Else return "Unknown"

If s is an isle’s root and F is its set of leaves, we have a(s) ≥
∑

v∈F a(v), because s may
have some descendants in the history tree H that do not appear in the view V. This is
equivalent to a′(s) ≥

∑
v∈F a

′(v). If equality holds, then the isle is said to be complete; in
this case, we can easily compute the conditional anonymities of all the internal nodes by
adding them up starting from the nodes in F and working our way up to s.

Overview of ApproxCount. Our subroutine ApproxCount is found in Listing 2. It repeatedly
assigns guesses to nodes based on known conditional anonymities, starting from τ and its
descendants. Eventually some nodes become heavy, and the criterion in Lemma 10 causes
the deepest of them to become counted. In turn, counted nodes eventually form isles; the
internal nodes of complete isles are marked as counted, which gives rise to more guessers, and
so on. In the end, if a counting cut is created, the algorithm checks whether the conditional
anonymities of the leader nodes in the cut add up to ℓ.

Algorithmic details of ApproxCount. The algorithm ApproxCount uses flags to mark nodes
as “guessed” or “counted”; initially, no node is marked. Thanks to these flags, we can check
if a node u ∈ V is a guesser: let u1, u2, . . . , uk be the children of u that are also in V (recall
that a view does not contain all nodes of a history tree); u is a guesser if and only if it is
marked as counted, all the ui’s are marked as counted, and a′(u) =

∑
i a

′(ui) (which implies
a(u) =

∑
i a(ui), and thus no children of u are missing from V).

ApproxCount will ensure that nodes marked as guessed are well-spread at all times; if a
level of V contains a guessed node, it is said to be locked. A level Lt is guessable if it is not
locked and has a non-counted node v that is guessable, i.e., there is a guesser u in Lt−1 and
the red edge {v, u} is present in V with positive multiplicity.

The algorithm starts by assigning a conditional anonymity a′(τ) = x to the first leader
node τ ∈ Ls. (If no leader node exists in Ls, it immediately returns the error code −1,
Line 6.) It also finds the longest strand Pτ hanging from τ , assigns the same conditional
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anonymity x to all of its nodes (including the unique child of the last node of Pτ ) and marks
them as counted (Lines 7–11). Then, as long as there are guessable levels and no counting cut
has been found yet, the algorithm keeps assigning guesses to non-counted nodes (Line 12).

When a guess is made on a node v, some nodes in the path from v to its ancestor in
Ls may become heavy; if so, let v′ be the deepest heavy node. If g(v′) is not an integer,
the algorithm returns the error code −3 (Line 19). (As we will prove later, this can only
happen if δ ≠ 1 or some nodes in the strand Pτ have children that are not in the view V.)
Otherwise, if g(v′) is an integer, the algorithm marks v′ as counted (Line 20), in accordance
with Lemma 10. Furthermore, if the newly counted node v′ is the root or a leaf of a complete
isle I, then the conditional anonymities of all the internal nodes of I are determined, and
such nodes are marked as counted; this also unlocks their levels if such nodes were marked
as guessed (Lines 21–24).

In the end, the algorithm performs a “reality check” and possibly returns an estimate n′ of
n, as follows. If no counting cut was found, the algorithm returns the error code −2 (Line 25).
Otherwise, a counting cut C has been found. The algorithm computes n′ (respectively, ℓ′)
as the sum of the conditional anonymities of all nodes (respectively, all leader nodes) in C.
If ℓ′ = ℓ, then the algorithm returns n′ (Line 32). Otherwise, it returns the error code −1
if ℓ′ < ℓ (Line 30) or the error code −3 if ℓ′ > ℓ (Line 31). In all cases, the algorithm also
returns the maximum depth t of a guessed or counted node (excluding τ and its descendants),
or s if no such node exists.

Consistency condition. In order for our algorithm to work properly, a condition has to
be satisfied whenever a new guess is made. Indeed, note that all of our previous lemmas
on guesses rest on the assumption that the conditional anonymities of a guesser and all of
its children are known. However, while the node τ has a known conditional anonymity (by
definition, a′(τ) = x), the same is not necessarily true of the descendants of τ and all other
nodes that are eventually marked as counted by the algorithm. This justifies the following
definition.

▶ Condition 1. During the execution of ApproxCount, if a guess is made on a node v at
level Lt′ of V, then τ has a (unique) descendant τ ′ ∈ Lt′ and a(τ) = a(τ ′).

As we will prove next, as long as Condition 1 is satisfied during the execution of
ApproxCount, all of the nodes between levels Ls and Lt that are marked as counted do have
correct guesses (i.e., their guesses coincide with their conditional anonymities). Note that in
general there is no guarantee that Condition 1 will be satisfied at any point; it is up to the
main counting algorithm that invokes ApproxCount to ensure that the condition is satisfied
often enough for our computations to be successful.

Correctness. In order to prove the correctness of ApproxCount, it is convenient to show
that it also maintains some invariants, i.e., properties that are always satisfied as long as
some conditions are met.

▶ Lemma 11. Assume that δ ≥ 1. Then, as long as Condition 1 is satisfied, the following
hold.

(i) The nodes marked as guessed are always well spread.
(ii) Whenever Line 13 is reached, there are no heavy nodes.
(iii) Whenever Line 13 is reached, all complete isles are trivial.
(iv) The conditional anonymity of any node between Ls and Lt that is marked as counted

has been correctly computed. ⌟
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Running time. We will now study the running time of ApproxCount. We will prove two
lemmas that allow us to give an upper bound on the number of rounds it takes for the
algorithm to return an output, provided that some conditions are satisfied.

▶ Lemma 12. Assume that δ ≥ 1. Then, as long as Condition 1 holds, whenever Line 13 is
reached, at most δn levels are locked. ⌟

We say that a node v of the history tree H is missing from level Li of the view V if v is
at the level of H corresponding to Li but does not appear in V. Clearly, if a level of V has
no missing nodes, all previous levels also have no missing nodes.

▶ Lemma 13. Assume that δ ≥ 1. Then, as long as level Lt of V is not missing any nodes
(where t is defined and updated as in ApproxCount), whenever Line 13 is reached, there are
at most n− 2 levels in the range from Ls+1 to Lt that lack a guessable non-counted node. ⌟

Main lemma. The following lemma gives some conditions that guarantee that ApproxCount
has the expected behavior; it also gives some bounds on the number of rounds it takes for
ApproxCount to produce an approximation n′ of n, as well as a criterion to determine if
n′ = n.

▶ Lemma 14. Let ApproxCount(V, s, x, ℓ) return (n′, t). Assume that τ exists and x ≥ a(τ).
Let τ ′ be the (unique) descendant of τ in V at level Lt, and let Lt′ be the last level of V.
Then:

(i) If x = a(τ) = a(τ ′), then n′ ̸= −3.
(ii) If n′ > 0 and t′ ≥ t+ n′ and a(τ) = a(τ ′), then n′ = n.
(iii) If t′ ≥ s+ (ℓ+ 2)n−1, then s ≤ t ≤ s+ (ℓ+ 1)n−1 and n′ ≠ −1. Moreover, if n′ = −2,

then Lt contains a leader node with at least two children in V. ⌟

Terminating algorithm. We are finally able to state our main terminating algorithm. It
assumes that all processes know the number of leaders ℓ ≥ 1 and the dynamic disconnectivity
T . Again, this is justified by Proposition 20 and Proposition 2.

▶ Theorem 15. There is an algorithm that computes FGC in all T -union-connected anonym-
ous networks with ℓ ≥ 1 leaders and terminates in at most (ℓ2 + ℓ+ 1)Tn rounds, assuming
that ℓ and T are known to all processes, but assuming no knowledge of n.

Proof. Due to Proposition 3, since T is known and appears as a factor in the claimed running
time, we can assume that T = 1 without loss of generality. Also, note that determining n
is enough to compute FGC . Indeed, if a process determines n at round t′, it can wait until
round max{t′, 2Tn} and run the algorithm in Theorem 7, which is guaranteed to give the
correct output by that time.

In order to determine n assuming that T = 1, we let each process run the algorithm in
Listing 3 with input (V, ℓ), where V is the view of the process at the current round t′. We
will prove that this algorithm returns a positive integer (as opposed to “Unknown”) within
(ℓ2 + ℓ+ 1)n rounds, and the returned number is indeed the correct size of the system n.

Algorithm description. Let b be the number of branches in V representing leader processes
(Line 5). The initial goal of the algorithm is to compute ℓ − b + 1 approximations of n
using the information found in as many disjoint intervals L1, L2, . . . , Lℓ−b+1 of levels of V
(Lines 6–17).



G. A. Di Luna and G. Viglietta 18:15

If there are not enough levels in V to compute the desired number of approximations, or
if the approximations are not all equal, the algorithm returns “Unknown” (Lines 11 and 15).

In order to compute an approximation of n, say in an interval of levels Li starting at
Ls, the algorithm goes through at most ℓ phases (Lines 8–16). The first phase begins by
calling ApproxCount with starting level Ls and x = ℓ, i.e., the maximum possible value for
the anonymity of a leader node (Line 9). Specifically, ApproxCount chooses a leader node in
τ ∈ Ls and tries to estimate n using as few levels as possible.

Let (n′, t) be the pair of values returned by ApproxCount. If n′ = −1, this is evidence
that V is still missing some relevant nodes, and therefore “Unknown” is immediately returned
(Line 11). If n′ = −2, then a descendant of τ with multiple children in V was found, say at
level Lt, before an approximation of n could be determined. As this is an undesirable event,
the algorithm moves Li after Lt and tries again to estimate n (Line 12). If n′ = −3, then x

may not be the correct anonymity of the leader node τ (see the description of ApproxCount),
and therefore the algorithm calls ApproxCount again, with the same starting level Ls, but
now with x = ℓ− 1. If n′ = −3 is returned again, then x = ℓ− 2 is tried, and so on. After
all possible assignments down to x = 1 have failed, the algorithm just moves Li forward and
tries again from x = ℓ.

As soon as n′ > 0, this approximation of n is stored in the variable n∗. If it is different
from the previous approximations, then “Unknown” is returned (Line 15). Otherwise, the
algorithm proceeds with the next approximation in a new interval of levels Li+1, and so on.

Finally, when ℓ−b+1 approximations of n (all equal to n∗) have been found, a correctness
check is performed: the algorithm takes the last level Lt∗ visited thus far; if the current
round t′ satisfies t′ ≥ t∗ +n∗, then n∗ is accepted as correct; otherwise “Unknown” is returned
(Lines 18–20).

Correctness and running time. We will prove that, if the output of Listing 3 is not
“Unknown”, then it is indeed the number of processes, i.e., n∗ = n. Since the ℓ − b + 1
approximations of n have been computed on disjoint intervals of levels, there is at least
one such interval, say Lj , where no leader node in the history tree has more than one child
(because there can be at most ℓ leader branches). With the notation of Lemma 14, this implies
that a(τ) = a(τ ′) whenever ApproxCount is called in Lj . Also, since the option x = ℓ is tried
first, the assumption x ≥ a(τ) of Lemma 14 is initially satisfied. Note that ApproxCount
cannot return n′ = −1 or n′ = −2, or else Lj would not yield any approximation of n.
Moreover, by statement (ii) and by the terminating condition (Line 19), if n′ > 0 while
x ≥ a(τ), then n∗ = n′ = n. On the other hand, by statement (i), we necessarily have n′ > 0
by the time x = a(τ).

It remains to prove that Listing 3 actually gives an output other than “Unknown”
within the claimed number of rounds; it suffices to show that it does so if it is executed at
round t′ = (ℓ2 + ℓ+ 1)n. It is known that all nodes in the first t′ − n = ℓ(ℓ+ 1)n levels of
the history tree are contained in the view V at round t′ (cf. [17, Corollary 4.3]). Also, it is
straightforward to prove by induction that the assumption of statement (iii) of Lemma 14
holds every time ApproxCount is invoked. Indeed, in any interval of (ℓ+ 1)n levels, either a
branching leader node is found or a new approximation of n is computed. Since there can be
at most ℓ leader branches, at least one approximation of n is computed within ℓ(ℓ+1)n levels.
Because all nodes in these levels must appear in V, the condition a(τ) = a(τ ′) of Lemma 14
is satisfied in all intervals L1, L2, . . . , Lℓ−b+1. Reasoning as in the previous paragraph, we
conclude that all such intervals must yield the correct approximation of n. So, every time
Line 15 is executed, we have n∗ = n′, and the algorithm cannot return “Unknown”. ◀
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5 Negative Results

In this section we list several negative results and counterexamples, some of which are well
known (in particular, Proposition 16 is implied by [22, Theorem III.1]). The purpose is to
justify all of the assumptions made in Sections 3 and 4. All proofs are found in [19].

5.1 Leaderless Networks
▶ Proposition 16. No function other than the frequency-based multi-aggregate functions can
be computed with no leader, even when restricted to simple connected static networks. ⌟

▶ Proposition 17. No algorithm can solve the Average Consensus problem in a T -union-
connected leaderless network in less than 2Tn−O(T ) rounds. ⌟

▶ Proposition 18. No algorithm can solve the leaderless Average Consensus problem with
explicit termination if nothing is known about the size of the network, even when restricted
to simple connected static networks. ⌟

5.2 Networks with Leaders
▶ Proposition 19. No function other than the multi-aggregate functions can be computed
(with or without termination), even when restricted to simple connected static networks with
a known number of leaders. ⌟

▶ Proposition 20. No algorithm can compute the Counting function FC (with or without
termination) with no knowledge about ℓ, even when restricted to simple connected static
networks with a known and arbitrarily small ratio ℓ/n. ⌟

▶ Proposition 21. For any ℓ ≥ 1, no algorithm can compute the Counting function FC (with
or without termination) in all simple T -union-connected networks with ℓ leaders in less than
T (2n− ℓ) −O(T ) rounds. ⌟

6 Conclusions

We have shown that anonymous processes in disconnected dynamic networks can compute all
the multi-aggregate functions and no other functions, provided that the network contains a
known number of leaders ℓ ≥ 1. If there are no leaders or the number of leaders is unknown,
the class of computable functions reduces to the frequency-based multi-aggregate functions.
We have also identified the functions FGC and FR as the complete problems for each class.
Notably, the network’s dynamic disconnectivity T does not affect the computability of
functions, but only makes computation slower.

We also gave efficient stabilizing and terminating algorithms for computing all the above
functions. Some of our algorithms make assumptions on the processes’ a-priori knowledge
about the network; we proved that such assumptions are actually necessary. All our algorithms
have optimal linear running times in terms of T and the size of the network n.

In one case, there is still a small gap in terms of the number of leaders ℓ. Namely, for
terminating computation with ℓ ≥ 1 leaders, we have a lower bound of T (2n − ℓ) − O(T )
rounds (Proposition 21) and an upper bound of (ℓ2 +ℓ+1)Tn rounds (Theorem 15). Although
these bounds asymptotically match if the number of leaders ℓ is constant (which is a realistic
assumption in most applications), optimizing them with respect to ℓ is left as an open
problem.
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Observe that our stabilizing algorithms use an unbounded amount of memory, as processes
keep adding nodes to their view at every round. This can be avoided if the dynamic
disconnectivity T (as well as an upper bound on n, in case of a leaderless network) is known:
In this case, processes can run the stabilizing and the terminating version of the relevant
algorithm in parallel, and stop adding nodes to their views when the terminating algorithm
halts. It is an open problem whether a stabilizing algorithm for FGC or FR can use a finite
amount of memory with no knowledge of T .

Our algorithms require processes to send each other explicit representations of their
history trees, which have cubic size in the worst case [17]. It would be interesting to develop
algorithms that only send messages of logarithmic size, possibly with a trade-off in terms of
running time. We are currently able to do so for leaderless networks and networks with a
unique leader, but not for networks with more than one leader [18].
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A Impact on Fundamental Problems and State of the Art

As a byproduct of the results mentioned in Section 1.1, we are able to optimally solve two
popular fundamental problems: Generalized Counting for multi-leader networks (because
it is a multi-aggregate function) and Average Consensus for leaderless networks (because
the mean is a frequency-based multi-aggregate function). As summarized in Table 1 and as
discussed below, our results improve upon the state of the art on both problems in terms
of (i) running time, (ii) assumptions on the network and the processes’ knowledge, and
(iii) quality of the solution. Altogether, we settle open problems from ICALP 2019 [24],
SPAA 2021 [26], and FOCS 2022 [17]. For a more thorough discussion and a comprehensive
survey of related literature, refer to [19].
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Average Consensus. This problem has been studied for decades by the distributed control
and distributed computing communities [5, 13, 14, 15, 26, 35, 38, 40, 44, 47]. In the following,
we argue that our results directly improve upon the current state of the art on this problem.
A more detailed discussion can be found in the surveys [20, 36, 39] and in [19].

A convergent algorithm with a running time of O
(
Tn3 log(1/ϵ)

)
is given in [35]. The

algorithm works in T -union-connected networks with no knowledge of T , but it rests on the
assumption that the degree of each process in the network has a known upper bound. Assum-
ing an always connected network, [14] gives an algorithm that converges in O

(
n4 log(n/ϵ)

)
rounds. We remark that both algorithms are only ϵ-convergent; therefore, not only does
our stabilizing algorithm improve upon their running times, but it solves a more difficult
problem under weaker assumptions.

The algorithm in [13] stabilizes to the actual average in a linear number of rounds, but
it is a randomized Monte Carlo algorithm and requires the network to be connected at
each round. In contrast, our linear-time stabilizing algorithm is deterministic and works in
disconnected networks.

As for terminating algorithms, the one in [26] terminates in O
(
n5 log3(n)/ℓ

)
rounds

assuming the presence of a known number ℓ of leaders and an always connected network.
Since the number of leaders is known, our terminating algorithm for Generalized Counting
also solves Average Consensus with a running time that improves upon [26] and does not
require the network to be connected. We remark that our algorithm terminates in linear
time when ℓ is constant.

Generalized Counting. Our results on this problem are direct generalizations of [17] to the
case of multiple leaders and disconnected networks. The best previous counting algorithm
with multiple known leaders is the one in [28], which terminates in O

(
n4 log3(n)/ℓ

)
rounds

and assumes the network to be connected at each round. In the same setting, our stabilizing
and terminating algorithms have running times of 2n rounds and (ℓ2 + ℓ + 1)n rounds,
respectively.

The only other result for disconnected networks is the recent preprint [27], which gives
an algorithm that terminates in Õ

(
n2T +3/ℓ

)
rounds using O(logn)-sized messages. Our

terminating algorithm has a linear dependence on both n and T , which is an exponential
improvement upon the running time of [27], but it requires polynomial-sized messages.
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