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Abstract
Deep generative models, such as variational autoencoders, generative adversarial networks,

normalizing flows, and diffusion probabilistic models, have attracted a lot of recent interest.
However, we believe that several challenges hinder their more widespread adoption: (C1) the
difficulty of objectively evaluating the generated data; (C2) challenges in designing scalable
architectures for fast likelihood evaluation or sampling; and (C3) challenges related to finding
reproducible, interpretable, and semantically meaningful latent representations. In this Dagstuhl
Seminar, we have discussed these open problems in the context of real-world applications of
deep generative models, including (A1) generative modeling of scientific data, (A2) neural data
compression, and (A3) out-of-distribution detection. By discussing challenges C1–C3 in concrete
contexts A1–A3, we have worked towards identifying commonly occurring problems and ways
towards overcoming them. We thus foresee many future research collaborations to arise from this
seminar and for the discussed ideas to form the foundation for fruitful avenues of future research.
We proceed in this report by summarizing the main results of the seminar and then giving an
overview of the different contributed talks and working group discussions.
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Premise
Since the inception of variational autoencoders, generative adversarial networks, normalizing
flows, and diffusion models, the field of deep generative modeling has grown rapidly and
consistently over the years. Especially in recent years, this has led to great advances in
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generating images, speech and text, as well as great promises in generating structured data
such as 3D objects, videos, and molecules. However, we believe that current research has
not sufficiently addressed several fundamental challenges related to evaluating and scaling
these models, as well as interpreting their latent structure. These challenges have different
manifestations in different applications. For example, while a variational autoencoder’s
sensitivity to changing data distributions can induce long code lengths and poor image
reconstructions in neural compression, the same feature can be a positive attribute in
detecting anomalies.

We believe that it is most beneficial to understand the challenges of deep generative
models in their practical contexts. For this reason, we have invited a combination of re-
searchers working on foundations of generative models and researchers working on specialized
applications to this Dagstuhl Seminar. Thus, by integrating different communities, we have
made a step towards identifying generalizable solutions across domains that spur innovation
and new research.

As the main challenges of current deep generative modeling approaches we have identified
the evaluation of generative models, performing scalable inference in such models, and
improving the interpretability and robustness of the models’ learned latent representations.

As example applications, we have considered three application areas that draw on
generative modeling and that show various manifestations of the aforementioned challenges.
Concretely, we consider applications in modeling scientific data, neural data compression,
and out-of-distribution detection.

Structure of the seminar
We have created an open and inclusive atmosphere where participants from different com-
munities could mingle and exchange ideas, leaving enough room for serendipitous encounters
and ad-hoc discussions. We have catalyzed this process by inviting the participants to give
short talks on either models (for the researchers) or problems (for the practitioners) as a
basis for subsequent discussions. We then had panel discussions and round-tables regarding
different topics that the participants could self-assign to, in order to match their common
interests.

To promote interactions among researchers especially between those who may have not
known each other, we have randomly paired researchers and practitioners into pairs and
small groups and assigned them small tasks, such as coming up with a short abstract that
would combine their interests. These types of activities have ultimately planted the seeds for
different future collaborations and fostered a sense of togetherness among the participants.

Main observations from the talks
The content of the talks is covered in more detail in the next section, but we want to take
the opportunity here to highlight recurring patterns and topics that emerged.

One main observation was that while large generative models, such as diffusion models
or large language models, yield impressive performance and can solve many tasks that we
would naïvely not have expected them to solve well (e.g., diffusion models sorting lists or
solving sudokus and large language models performing logical reasoning), we lack a proper
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theoretical understanding of these models and can thus not guarantee their safety or reliability.
This makes it particularly dangerous to use these models in critical applications, such as
healthcare.

Moreover, many domains have specific requirements that are well-known to practitioners,
but often ignored by machine learning researchers, e.g., non-iid data, safety constraints, prior
knowledge, interpretability, or causal assumptions. While there are sub-fields of machine
learning research studying these problems, most off-the-shelf methods do not readily provide
solutions.

Finally, generative modeling holds great promise for areas such as neural compression or
anomaly/out-of-distribution detection, but the practical improvements achieved by generative
approaches in these domains remain limited. We will need more targeted collaborations
between experts in generative modeling and these problem settings to make tangible real-world
progress, some of which will have hopefully been sparked by this seminar.

Main takeaways from the working groups
Our working group sessions self-assembled spontaneously around key topics of interest that
had emerged from the talks and informal discussions during the breaks. They focused on
prior knowledge, continual learning, and anomaly detection.

Firstly, when it comes to domain knowledge, one working group tried to develop a
categorization of different types and came up with physical constraints, symmetries, logic,
ontologies, and factual knowledge. All of these require different approaches to incorporate
them into generative models, so the developers of the model should be cognizant of the type
of domain knowledge the practitioners might have. Moreover, eliciting the prior knowledge
from the experts can be hard and cumbersome, and an elicitation strategy should be designed
together with the model itself.

Secondly, continual learning is well-studied in the supervised setting, but less so in the
unsupervised one. However, in the age of large generative models that are very expensive to
train, continually expanding their generative abilities without having to retrain them from
scratch becomes paramount. Since no explicit supervised objective function is available to
measure the learning progress or potential forgetting, new solutions need to be developed to
efficiently learn continually without catastrophic forgetting in the generative context.

Lastly, anomaly detection is a hard problem that has been studied in the statistical
literature for decades, but novel powerful generative models harbor the promise of estimating
quantities such as the compressibility or Kolmogorov complexity of data points, which might
be used to more effectively detect outliers, out-of-distribution examples, and anomalous
inputs.
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3 Overview of Talks

3.1 Large Language Models vs. Large AI Models
Gerard de Melo (Hasso-Plattner-Institut, Universität Potsdam, DE)

License Creative Commons BY 4.0 International license
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Language models and other generative models of symbolic sequences have a long history
that can be traced back to early studies on prediction probabilities for written language such
as those by Shannon [6]. Later on, in the 1980s, their statistics started becoming crucial
components of systems for machine translation, speech recognition, and optical character
recognition. In the 2000s, the widespread availability of Web-scale word n-gram statistics
opened up many new opportunities for language model-driven applications [3].

To generate outputs that resemble human-written text remarkably well at a superficial
level, it suffices to sample from very simple n-gram language models. With the advent of
neural network-driven language models [1], the generalization abilities improved further.
Finally, the series of milestone successes of large language models, most notably the powerful
GPT family of neural models [4], has led to generative models of language with unprecedented
abilities to generalize to new tasks simply by following instructions.

Along with these improved prediction capabilities, I argue that another notable paradigm
shift has emerged. Early studies had already shown that language models are not just mere
models of linguistic well-formedness, but rather valuable sources of knowledge [7, 8]. With
the powerful capabilities of the GPT models, people started to expect them to serve as
universal engines for question answering and broader AI tasks.

While language models are normally supposed to produce plausible text, current models
are increasingly expected to satisfy a number of additional desiderata. For instance, there
is a need for models that provide only statements that are deemed factually accurate and
trustworthy [2]. There are widespread calls for such models to avoid toxicity and bias [5].
With their deployment in commercial search engines and other mainstream applications,
current models are expected to avoid outputs that may lead to harmful effects, for instance
by refraining from responding in ways that could pose a risk for the mental health of human
interlocutors and by refusing to carry out tasks related to illegal activities.

Thus, large language models are no longer just models of language but general-purpose AI
models, leading to an urgent need for us to develop improved generative modeling techniques
with substantially better constraint satisfaction and uncertainty estimation.
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3.2 Image membership in generative models
Sina Däubener (Ruhr-Universität Bochum, DE)
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Images from current state-of-the-art generative models have unarguably led to impressive
results. However, this comes with potential threats such as the spread of misinformation
through generated images or unauthorized style imitations of certain artists.

To tackle the first problem, I’ll first present works from our group and collaborators,
which do successful deep fake detection in the frequency domain of images. In the second
part, I’ll talk about current work in progress where we try to (invisibly) watermark images,
such that a model fine tuned on these images picks up on the watermark. This would allow
us to certify that works from a certain artist have in fact been used.

3.3 Disentangling Style and Content for Neural Topic Models
Sophie Fellenz (RPTU – Kaiserslautern, DE)
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Neural topic models are used to quickly get an overview of the central themes in large text
corpora. They are typically trained only on content words, whereas other words related to
syntax or style of the text are removed in preprocessing. Rather than relying on manually
curated and static stop word lists, we propose a data-driven way of dynamically identifying the
style component in text data. The idea is to differentiate between long-range and short-range
dependencies in text data. Following previous work in linguistics and cognitive science we
posit that content words tend to have long-range dependencies whereas style or syntax words
have short-range dependencies. Topic models are good at learning topics by disregarding
sequential information, exclusively focusing on long-range dependencies. Language models
however process text sequentially to predict the next word given the immediate short-range
context. In this talk I present a method for combining both types of models to automatically
distinguish syntactic and semantic words. Instead of simply removing the syntactic words, we
can also group them and use them for the text analysis alongside the semantic words. Results
show that this data-driven way of separating the words leads to higher topic quality and
better feature selection on a range of datasets. This may lead to better ways of disentangling
content and style in text data in the future, aiding controlled text generation for longer
texts and overcoming the current bottleneck in text generation which is the size of input
prompt. It was discussed how the topics in neural topic models can be seen as experts and
the topic distribution of each document as a product of experts. This view point could help
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to develop topic models with a flexible number of topics where topics could be added as
new experts. An interesting direction might be to look at hierarchical topic models as a
collection of experts where more general experts are located at the top of the hierarchy and
combinations of experts or more specific experts would be at the bottom of the hierarchy.
Furthermore, topic models could be integrated with foundation models for language. To do
this, the tokenization and input format for topic models need to be unified and a general
mechanism for conditioning on and extracting topics during text generation needs to be
developed.

3.4 Modeling mixed-tailed distributions with Normalizing Flow and
convergence of the ELBO of VAEs to a sum of three entropies

Asja Fischer (Ruhr-Universität Bochum, DE)
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This talk highlights two recent theoretical results about deep generative models.
The first part is based on the work of Laszkiewicz et al. (2022) and introduces an

approach for normalizing flows that allows to model distributions with heavy- as well as
light-tailed marginals. We prove that the marginal tailedness of an autoregressive flow can be
controlled via the tailedness of the marginals of its base distribution (i.e. the distribution of
the hidden variables). This theoretical insight leads us to a novel type of flows that are based
on a three-step procedure: first, estimating the marginal tail indices, second, accordingly
defining a set of heavy-tailed and a set of light-tailed base distribution, and third, training a
normalizing flow with data-driven linear layers.

The second part is based on recent work Damm et al. (2023). Here we show that for
standard (i.e., Gaussian) VAEs the ELBO converges to a value given by the sum of three
entropies: the (negative) entropy of the prior distribution, the expected (negative) entropy
of the observable distribution, and the average entropy of the variational distributions (the
latter is already part of the ELBO). The result implies that the ELBO can for standard
VAEs often be computed in closed-form at stationary points while the original ELBO requires
numerical approximations of integrals.

Both works serve as illustrative examples of the importance of improving our theoretical
understanding of deep generative models to gain robust, exact, and efficient generative
models.
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3.5 Gaussian Process Variational Autoencoders
Vincent Fortuin (University of Cambridge, GB)
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Variational autoencoders (VAEs) are performant deep generative models, based on principled
Bayesian inference techniques. However, in practice, people often use them with isotropic
Gaussian priors over the latents, which makes all the different data points independent from
each other. This often does not match our true prior beliefs, especially when working with
time series data. In this talk, I gave a brief overview of some recent approaches using Gaussian
processes (GPs) as priors in VAEs, highlighting their tradeoffs and historical development.
During the discussion, we discussed some newer follow-up work that uses Kalman filters for
the GP inference in the latent space. We also discussed the choice of kernel and what the
computational tradeoffs are between a full variational GP and a variational Gauss-Markov
process.

3.6 Active search in structured spaces with domain-specific similarities
Thomas Gärtner (Technische Universität Wien, AT)
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Generating structured data has many important real-world applications such as generating
molecular graphs for (de novo) drug discovery or genome sequences of bacteriophages to
combat antibiotic resistant bacteria. The design space of potentially interesting structures in
such applications is typically huge, it has, for instance, been estimated that there are more
than 1030 different phages and even more small, drug-like molecules. This is in stark contrast
to the amount of structures known to have desired properties in these domains which is often
less than one hundred; in a lead discovery task for an antagonist of a particular integrin
thought to play a key role in idiopathic pulmonary fibrosis 24 compounds were known to bind
well from previous biological assays. For such applications, we propose an efficient active
learning algorithm for generative models with domain-specific similarity measures. Similarity
measures defined by domain experts are often not positive semi-definite and thus cannot be
utilised by Hilbert-space kernel methods. They instead require more general Krein-space
kernel methods which admit efficient learning by adapting Nyström approximations. Our
active learning algorithm adapts the distribution of generated structures using a learned
conditional exponential family model and leads to diverse sets of novel structures.
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3.7 Deep Generative Models in Healthcare
Julia Vogt (ETH Zürich, CH)
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In recent years, enormous progress has been made to gather as much information as possible
about an individual patient. The continuous adoption and integration of electronic medical
records, linkage of data sources, and the advent of new diagnostic and digital monitoring
technologies have led to an overwhelming amount of heterogeneous and multimodal clinical
data. The ultimate aim is to utilize all this vast information for a medical treatment tailored
to an individual patient’s needs. To achieve this goal, we develop new generative machine
learning techniques capable of dealing with the challenges arising in the medical application
domain. The methods we develop cover for example multimodal data integration, transparent
model development, or probabilistic clustering models.

3.8 Do we care about non-iid data for generative models?
Matthias Kirchler (Hasso-Plattner-Institut, Universität Potsdam, DE)
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Current learning algorithms for generative models generally assume that data points are
sampled independently, an assumption that is frequently violated in practice. We propose
a likelihood objective of normalizing flows incorporating dependencies between the data
points, for which we derive a flexible and efficient learning algorithm suitable for different
dependency structures. Respecting dependencies between observations can improve empirical
results on synthetic and real-world data, leading to higher statistical power in a downstream
application to genome-wide association studies. So far, we have focused on normalizing flows
due to their explicit likelihood modeling, but we can extend similar modeling approaches to
other generative models. We have also assumed that the dependency structure is at least
partially known in advance – we work on relaxing that assumption and learning low-rank
approximations of dependency structure from the data.

3.9 CMSSG: Heterogeneous image data integration with Causal
Multi-Source StyleGAN

Christoph Lippert (Hasso-Plattner-Institut, Universität Potsdam, DE)
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Introduction: Generative Adversarial Networks (GANs) have emerged as powerful tools for
generating realistic images, with conditional and causal models enabling fine-grained control
over latent factors. In the medical domain, data scarcity and the need to integrate information
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from diverse sources present challenges for existing generative models, often resulting in
low-quality images ill-suited for medical applications. To address this issue, we propose the
Causal Multi-Source StyleGAN (CMSSG), an algorithm that leverages prior knowledge over
the data distribution in the form of causal graphs over image covariates and conditioning
to integrate heterogeneous data sources with differing underlying distributions. CMSSG
learns from multiple data sources with divergent causal structures in parallel, effectively
synthesizing the learned distributions for data generation. We present a proof-of-concept
experiment demonstrating CMSSG’s ability to generate hand-written digit images with
varying morphological features. Additionally, we apply CMSSG to generate brain MR
images with heterogeneous characteristics from the UK Biobank and the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) datasets, illustrating its capacity to capture brain anatomical
variations. Our proposed algorithm offers a promising direction for unbiased data generation
from disparate sources.

Methodology: Our approach consists of two components: the causal component and the
multi-source component. The causal component learns causal relationships between clinical
and demographic characteristics and brain MRI features, facilitating the synthesis of images
with specific attributes. The multi-source component enables the generation of synthetic data
from multiple datasets with distinct causal models, fostering the creation of more diverse
data with various characteristics from different distributions.

CMSSG learns from multiple data sources with divergent causal structures in parallel,
effectively synthesizing the learned distributions for data generation. To the best of our
knowledge, our work is the first to address multi-source heterogeneity in GANs within a
principled causal framework.

Experiments and Results: We validate our CMSSG method by generating hand-written
digits with distinct morphological features. We then apply CMSSG to generate brain
MRIs with specific clinical and demographic characteristics. We train our model to learn
causal relationships from two datasets in parallel: the UK Biobank dataset, focusing on the
relationships between demographic characteristics and MRIs, and the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort, examining the relationships between clinical dementia
features and MRIs. Using CMSSG, we generate synthetic brain MRIs with controlled age,
sex, brain volumes, and cognitive function (normal or impaired).

Our results demonstrate that CMSSG can synthesize high-resolution brain MRIs while
realistically manipulating causal structures within the images. Although the Frechet Inception
Distance (FID) score from CMSSG does not outperform CausalStyleGANs with a single
causal model, it provides a new opportunity to manipulate multi-source causal covariates.

Conclusion: In conclusion, the Causal Multi-Source StyleGAN (CMSSG) represents a
novel approach to address the challenges of data scarcity and biased datasets in medical image
generation. By leveraging causal graphs and conditioning, CMSSG integrates heterogeneous
data sources with differing underlying distributions to generate high-quality, diverse medical
images. Our experiments demonstrate the efficacy of CMSSG in generating hand-written
digit images and brain MRIs with specific clinical and demographic characteristics.

Future work will involve collaboration with medical experts for comprehensive quality
assessment and exploration of potential applications of synthetic medical images. Additionally,
further experiments should be conducted to improve the quality of synthetic images from
joint causal covariates and design appropriate metrics for evaluating the causality of GANs in
respect to anatomical factors. This will ensure that the model learns the correct anatomical
pattern with the aging process.
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3.10 Self-Supervised Learning beyond Vision and Language
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Self-supervised learning has emerged as a powerful paradigm for machine learning, especially
for drawing insights from unlabeled data. The key idea is to introduce auxiliary prediction
tasks and to train a deep model to solve these auxiliary tasks. If the tasks are designed
well, the trained model will be useful for a number of purposes, such as anomaly detection,
feature extraction, and forecasting. Unfortunately, most successful approaches for SSL rely
on domain-specific indictive biases and are, therefore, limited to individual use cases. In
this talk, I present advanced self-supervised learning losses that facilitate domain-general
self-supervised learning beyond images and text. Exponential family embeddings, for example,
generalize word embeddings to provide insight into a wide range of applications. They are
a useful tool for studying zebrafish brains in neuroscience, studying shopping behavior in
economics, or studying language evolution in computational social science. Similarly, neural
transformation learning (NTL) is a new general-purpose tool for self-supervised anomaly
detection. While related methods in computer vision typically require image transformations
such as rotations, blurring, or flipping, NTL automatically learns the best transformations
from the data and generalizes self-supervised AD to almost any data type.

3.11 Towards Runtime-Efficient Neural Compression
Stephan Mandt (University of California – Irvine, US)
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Neural image and video compression models have proven superior performance in rate-
distortion and rate-perception tradeoffs compared to their classical counterparts. However,
while most research still focuses on improving rate-distortion tradeoffs, neural compression
models are currently much too resource-inefficient to deploy in real-world environments. This
talks seeks to review strategies to maintain the strong performance of neural compression
methods while aiming to reduce their runtime efficiency by 1-2 orders of magnitude. To this
end, we propose three modeling and algorithmic improvements: (1) introducing lightweight
decoders, (2) improving encoding at training time using semi-amortized variational inference,
and (3) establishing probabilistic circuits as new models for efficient entropy coding in lossy
compression.

Background: The internet and the world’s IT systems could not exist in their current
form without data compression. With video streaming dominating consumer internet traffic,
every percent of gained performance improvement will have a large economic impact. Neural
codecs are potentially also better suited for new data formats, such as light fields for AR/VR
applications, lidar data, or multi-view video. These technologies’ fast evolution will demand
rapid prototyping, making learnable codecs appealing. Neural codecs also lack the common
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block-coding visual artifacts and can be “supervised” to allocate more bits to certain features
of interest. Neural codecs are more flexible than traditional codecs and can be optimized for
superior perceptual quality or other custom metrics at much lower bitrates.

While the focus of the neural compression community has been largely on improving the
tradeoff between bitrate and distortion (or perceptual quality), neural compression methods
are currently 1-2 orders of magnitude slower than their classical counterparts. This makes
their real-time deployment highly impractical, e.g., downloading and unpacking a large
machine learning data set such as ImageNet or decoding video in real-time. By drawing on
resource-efficient architectures, iterative inference, and new entropy coding schemes based
on parsimonious models, we argue that the community should seek to maintain the strong
performance of neural compression methods while increasing their runtime efficiency ideally
by 1-2 orders of magnitude, removing one of the major obstacles from widespread deployment
of neural codecs in the real world.

Many compression applications, such as video streaming on Youtube, impose strict
runtime limitations upon decoding while allowing a much larger computational budget upon
encoding. In “Improving Inference for Neural Image Compression” [Yang, Bamler, Mandt,
NeurIPS 2020], we exploited this asymmetry by improving the encoding process using a
larger computational budget while leaving the decoder untouched. To this end, we searched
for an improved discrete latent representation at test time using an annealing scheme. This
way, we obtained 15-20% rate savings without modifying the decoder. Our result suggests
that iterative inference may achieve state-of-the-art compression performance with more
lightweight decoders.

In contrast to most existing work focusing on architectural improvements in non-linear
transform coding, we stress the importance of algorithmic advances that have broad ap-
plicability to existing methods, e.g., by exploiting the asymmetrical resource budgets for
encoding and decoding via iterative inference and/or by developing new paradigms for
entropy coding. Ways to improve the resource efficiency of neural codecs include drawing
on lightweight decoders, iterative encoding at training time, and advances in parsimonious
generative models. Our goals are to accelerate transform coding while also proposing new
architectures for efficient entropy coding based on recent work on lossless compression with
probabilistic circuits.

3.12 Informed Representation Learning with Deep Generative Models
Laura Manduchi (ETH Zürich, CH)
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One of the most popular frameworks to extract meaningful information from a vast amount of
unlabeled datasets is representation learning. The latter should encode valuable information
for downstream tasks, such as classification, regression, and visualization. However, there are
many circumstances where purely data-driven approaches lead to unsatisfactory results that
are inconsistent with the domain knowledge. On the other hand, deep generative models
can encode physical laws and constraints into their generative process to obtain preferred
representations of data, enabling exploratory analysis of complex data types. In this talk, I
explored several approaches to incorporate domain knowledge, in the form of constraints,
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probabilistic relations, and prior distributions, in VAEs for static and temporal data with a
focus on clustering. First, I introduced two different gaussian mixture prior distributions
used in VAEs to enforce a clustering structure in the latent space. The first one [1] employs
a categorical prior distribution on the clusters, while the second one /citehypergeometric
uses a differentiable hypergeometric distribution to overcome the i.i.d. assumption of the
input data. I then introduced the inclusion of domain knowledge in the form of probabilistic
relations and survival information to obtain representations with a clear clustering structure
for time series and survival data, using a mixture of Weibull distributions [3]. I then focused
on instance-level constraints to guide the learning process toward a preferred configuration
using high-dimensional data, using a Conditional Gaussian Mixture Model [4]. Last but
not least, I showed how the proposed techniques can. be applied to real-world medical
applications with a focus on cardiology. In cardiovascular medicine, to correctly quantify
cardiac function and diagnose dysfunction, expensive and time-consuming medical imaging
methods are often required. This might lead to a lack of available diagnostic modalities
and inadequate patient care. The use of machine learning models based on affordable and
minimally invasive diagnostics, such as echocardiography, might serve as a valuable assistant
tool to enhance health care for people with cardiovascular diseases. However, a lack of large
labeled datasets in the medical field prevents the use of supervised deep learning techniques.
Therefore, there is a need for informed representation learning algorithms to leverage prior
information on unlabeled datasets of cardiac ultrasound videos. The learned representation
can then be used to solve further downstream tasks, such as diagnosis, anomaly detection,
and denoising [5], [6].
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Predictive models often need to be evaluated in dynamic, uncertain computational conditions.
For example, a model deployed to a mobile device should be useful, despite a lack of
computational power. Moreover, the same model ideally should provide better performance
on devices with richer computational resources. Hence, there is a need for “early-exit”
architectures that allow computation to be halted early, before the model has run to
completion. Current architectures provide little-to-no strong guarantees about how these
intermediate predictions relate to the final prediction produced by the full model.

In this talk, I describe a construction that provide one such guarantee. Specifically, we
guarantee that the probability of the mode under the full model monotonically increases in the
intermediate solutions as more computation is done. This is achieved by a product-of-experts
approach, as its predictive distribution takes the form of an intersection of the experts.
We demonstrate that this architecture can be realized for both real-valued regression and
multi-class classification.

3.14 The Future (R)evolution of Generative AI
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Recently, deep generative modeling has become the most prominent paradigm for learning
powerful representations of our (visual) world and for generating novel samples thereof.
Consequently, this has already become the main building block for numerous algorithms
and practical applications. This talk will contrast the most commonly used generative
models to date with a particular focus on denoising diffusion probabilistic models, the core
of the currently leading approaches to visual synthesis. Despite their enormous potential,
these models come with their own specific limitations. We will then discuss a solution,
latent diffusion models, a.k.a. “Stable Diffusion”, that significantly improves the efficiency
of diffusion models. Now billions of training samples can be summarized in compact
representations of just a few gigabytes so that the approach runs on consumer GPUs. We
will then discuss recent extensions that cast an interesting perspective on future generative
models. In particular, retrieval augmentation during inference promises to significantly
reduce model sizes by having powerful likelihood models focus on the composition of a scene
rather than learning the training data. We will then highlight key aspects in which generative
modeling will change in the future.
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Generative models have been making large leaps in both quantitative fidelity and qualitative
appeal. One class of models that has been a driving force behind these leaps is diffusion-based
generative models. Diffusion-based generative models, or diffusions models for short, work
by first corrupting data towards a known, fixed stationary distribution and training a model
to undo those corruptions, and thus providing a means to generate data by uncorrupting a
sample from the stationary distribution. The choice of corruption or inference process affects
both likelihoods and sample quality. For example, it has been shown that extending the
inference diffusion with auxiliary variables, making them multivariate, leads to improved
sample quality. However, deriving training algorithms for each new inference diffusion is
onerous requiring manually deriving stationary distributions and transition kernels. To
simplify the training, we provide a recipe for likelihood training of multivariate diffusion
models. In the first step, we derive a lower bound on the likelihood. Next, we show how
the terms in the lower bound can be automatically computed and show how to parametrize
inference diffusions using results from Markov chain Monte Carlo to target a specific stationary
distribution. We study several different inference diffusions and demonstrate how to learn
and the value of learning inference diffusions.

3.16 Universal Critics
Lucas Theis (Google – London, GB)
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What distinguishes a realistic image from an unrealistic image? Despite tremendous progress
in our ability to generate realistic images, we still lack functions that can reliably detect
artifacts in images. Such a function would be of great interest in a variety of applications such
as outlier detection, perceptual quality evaluation, neural compression, or neural rendering.
The field of algorithmic probability provides many insights on a closely related question;
namely, when is data a plausible sample from a distribution P? However, these results are
not widely known in the machine learning community. In this short presentation, I will
discuss how Kolmogorov complexity can inspire “universal critics” – functions that are able
to detect unrealistic images without being trained on corrupted data.
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The goal of source compression is to map any outcome of a discrete random variable
x ∼ pd(x) in a finite symbol space x ∈ S to its shortest possible binary representation. Given
a tractable model probability mass function (PMF) p(x) that approximates pd(x), entropy
coders provide such an optimal mapping. As a result, the task of source compression is
simplified to identifying a good model PMF for the data at hand.

Even though the setup as described is the most commonly used one, there are restrictions
to it. Entropy coders can only process one dimensional variables and process them sequentially.
Hence the structure of the entropy coder implies a sequential structure of the data. This is a
problem when compressing sets instead of sequences. In the first part of the talk, I present
an optimal codec for sets [1]. The problem we encounter for sets can be generalized for many
other structural priors in data. In the second part of the talk I thus investigate the problem.
We generalize rate distortion theory for structural data priors and develop a strategy to learn
codecs for this data [2].
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3.18 Interventional causal representation learning with deep generative
models
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Causal representation learning seeks to extract high-level latent factors from low-level sensory
data. Most existing methods rely on fitting deep generative model to observational data,
leveraging structural assumptions (e.g., conditional independence) to identify the latent
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factors. However, interventional data is prevalent across applications. Can interventional
data facilitate causal representation learning? We explore this question in this talk. The
key observation is that interventional data often carries geometric signatures of the latent
factors’ support (i.e. what values each latent can possibly take). For example, when the
latent factors are causally connected, interventions can break the dependency between the
intervened latents’ support and their ancestors’. Leveraging this fact, we prove that the
latent causal factors can be identified up to permutation and scaling given data from perfect
do interventions. Moreover, we can achieve block affine identification, namely the estimated
latent factors are only entangled with a few other latents if we have access to data from
imperfect interventions. These results highlight the unique power of interventional data
in causal representation learning; they can enable provable identification of latent factors
without any assumptions about their distributions or dependency structure.

3.19 Assaying Out-Of-Distribution Generalization in Transfer Learning
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Since out-of-distribution generalization is a generally ill-posed problem, various proxy targets
(e.g., calibration, adversarial robustness, algorithmic corruptions, invariance across shifts)
were studied across different research programs resulting in different recommendations.
While sharing the same aspirational goal, these approaches have never been tested under
the same experimental conditions on real data. In this paper, we take a unified view of
previous work, highlighting message discrepancies that we address empirically, and providing
recommendations on how to measure the robustness of a model and how to improve it. To
this end, we collect 172 publicly available dataset pairs for training and out-of-distribution
evaluation of accuracy, calibration error, adversarial attacks, environment invariance, and
synthetic corruptions. We fine-tune over 31k networks, from nine different architectures
in the many- and few-shot setting. Our findings confirm that in- and out-of-distribution
accuracies tend to increase jointly, but show that their relation is largely dataset-dependent,
and in general more nuanced and more complex than posited by previous, smaller scale
studies.
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3.20 Trading Information between Latents in Hierarchical Variational
Autoencoders
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Motivated by the recent success stories of generative modeling with diffusion models, we
reconsider the training objective of hierarchical variational autoencoders (VAEs). By keeping
the so-called forward process (from data to latent representations) fixed and recurrent,
diffusion models are able to efficiently scale up training to very deep probabilistic models with
many layers of latents, leading to impressive generative modeling performances. However,
it is not so clear how to use diffusion models for applications that make use of the forward
process, such as representation learning or data reconstruction tasks, as the fixed forward
diffusion process progressively reduces mutual information with the original data up to the
point of almost no correlation. For these types of applications, VAEs with their learned
inference models are often a more natural choice of model architecture. Motivated by the
empirical observation that deep hierarchies of layers of latent variables are crucial to the
performance of diffusion models, we reconsider the trade-off between reconstruction error
(“distortion”) and information content of the latents (“rate”) in hierarchical VAEs, i.e., VAEs
with more than one layer of latents.

We observe first that the general rate/distortion trade-off of beta-VAEs [Alemi et al.,
ICML 2018] can be refined by splitting up the rate term into a sum of contributions from each
layer of latents. Importantly, however, this separation is only possible if the inference model
proceeds in the same direction as the generative model, i.e., opposite to the direction of the
otherwise analogous forward process in diffusion models. Splitting the rate into layer-wise
contributions allows practitioners to control the information content of each layer individually
by introducing individual layer-wise Lagrange multipliers (“beta hyperparameters”). We
argue that this increased control is useful in practice by grouping application domains
of (hierarchical) VAEs into three categories depending on whether they use (i) only the
generative model (generative tasks), (ii) only the inference model (representation learning
tasks), or (iii) both (reconstruction tasks). We show both by deriving theoretical performance
bounds, as well as by large-scale empirical evaluations that the optimal distribution of rate
between layers of latents is different for the three categories of applications, and we provide
practical guidance for choosing reasonable values for the beta hyperparameters for each
category.

The main open question that we will consider in the future is if the proposed hierarchical
rate/distortion theory can be used to train VAEs where the size of the latent representation
does not necessarily match between the inference and the generative process. Here, the
highest-level latents could represent the length of the next lower-level latent representation.
Such a variable-length information bottleneck would allow training VAEs with transformer
architectures for text, e.g., building on the work by Henderson and Fehr (arXiv:2207.13529).
Treating the length as a (higher-level) latent variable would allow training scenarios where
the length of the reconstructed text does not necessarily match the length of the original text.
The hope is that this would allow a VAE to more freely rephrase text, and that the individual
beta-hyperparameters would allow controlling the length and the diversity of reconstructed
text separately.
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3.21 Challenges in Generative Language Modeling
Alexander Rush (Cornell University – Ithaca, US)
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My talk will argue that Generative models are the defining element of modern NLP. I
will describe some of the recent usage of generative models for NLP. Specifically the now
popular knowledge that they are extremely impressive tools that are central to the field.
Understanding that this is different in spirit than the main focus of the seminar, I will try to
start a discussion as to why NLP generative models are somehow less powerful than other
generative approaches. Given this context, I will describe some of the remaining modeling
challenges in using these systems. Specifically, language models have demonstrated the
ability to generate highly fluent text; however, they still require additional scaffolding to
maintain coherent high-level structure (e.g., story progression). Using the model criticism in
latent space we can evaluate the high-level structure by comparing distributions between
real and generated data in a latent space obtained according to an assumptive generative
process. Different generative processes identify specific failure modes of the underlying
model. We perform experiments on three representative aspects of high-level discourse –
coherence, coreference, and topicality – and find that transformer-based language models are
able to capture topical structures but have a harder time maintaining structural coherence
or modeling coreference structures. Based on these conclusions, I pose questions about how
we might update our models for language and ask whether richer generative processes might
better capture some aspects of language current systems are missing.

3.22 Fun with Foundation Models and Amortized Inference
Frank Wood (University of British Columbia – Vancouver, CA)
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In this talk, I will discuss the work of my UBC PLAI group and spin-out Inverted AI on
foundation models of behavior, images, and video. In particular, I will talk about ways to get
such models to “do what you want them to do” via amortized inference after they have been
trained. I will spend most of my time introducing and talking about ITRA, a model I think
can become the GPT of behavior, and how we use inference, including a novel algorithm
called “critic SMC,” alongside reinforcement learning as inference techniques, to “tune” ITRA
to stay on the road in new places, not collide with other agents, and produce trajectories
that are achievable in the dynamics sense by specific vehicle classes. I will then discuss
very related techniques for amortized conditional inference in image and video generative
models, work that has led to state-of-the-art inpainting and conditional image generation
results requiring no fine-tuning of a pre-trained VAE image model and stunning recent results
on very long duration photorealistic video generation arising from meta-learning a flexible
conditioning DDPM-based video generative model architecture.
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3.23 Languages for the Next 700 Application Domains in AI
Jan-Willem van de Meent (University of Amsterdam, NL)
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This will be a talk about where AI has arrived today, where we could be going in the next few
years, and the role that probabilistic approaches to AI have to play in these developments.
I will discuss where I see opportunities in applications of AI to computational design in
the physical sciences, and I will discuss how programming language design can help realize
these opportunities, with particular attention to our recent work on languages for inference
programming, which opens up opportunities for new model and inference designs, both in
the context of simulation-based inference and in the context of deep generative models.

4 Working groups

4.1 Continual learning of deep generative models
Sophie Fellenz (RPTU – Kaiserslautern, DE), Sina Däubener (Ruhr-Universität Bochum,
DE), Gerard de Melo (Hasso-Plattner-Institut, Universität Potsdam, DE), Florian Wenzel
(Amazon Web Services – Tübingen, DE), and Frank Wood (University of British Columbia –
Vancouver, CA)
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Given that foundation models are increasing in size, the training time for these models is
also increasing, which makes frequent retraining impractical. A more desirable alternative
would be to continually update existing models with new data. This way we could build
agents that learn continuously (life-long learning) and make learning more efficient. The
main challenge we identified here is “catastrophic forgetting”. How can we make sure that
the model incorporates new information without forgetting what it already knows? Many
techniques have been proposed in the supervised setting where new labels can be added
over time, but we posit that in order to solve continual learning in the supervised setting,
it first needs to be solved in the unsupervised setting. We discussed techniques such as
fine-tuning, functional regularization, context augmentation, storing part of the data (core
sets) or storing a part of learned parameters. None of these are satisfactory solutions as they
cannot guarantee to prevent catastrophic forgetting and are hard to optimize or control in
practice. Sequential Monte Carlo or streaming variational Bayes are theoretically possible
but do not scale in practice. We also discussed hybrid approaches that learn representations
using neural networks and apply a Kalman Filter or similar on the condensed representations.
As interesting directions we furthermore identified active learning on prompts and adversarial
interactions.
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4.2 Priors in deep generative modeling
Vincent Fortuin (University of Cambridge, GB), Thomas Gärtner (Technische Universität
Wien, AT), Matthias Kirchler (Hasso-Plattner-Institut, Universität Potsdam, DE), and Eric
Nalisnick (University of Amsterdam, NL)
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This group discussed the problem of how to elicit priors for deep generative models from
domain experts and how to encode them in the model. The running example was the problem
of learning a generative model for antibiotic drugs from a small set of existing molecules
(on the order of a few hundred). Standard deep generative modeling would probably not
be data-efficient enough to learn a sufficiently expressive model from such a small dataset,
but the hope would be to use prior knowledge from domain experts, such as chemists. The
problem is that this knowledge is often rather vague in the chemist’s mind, for instance,
some rough intuition for what kind of funtional groups typical antibiotics should have, or
how large or aromatic they are. One promising idea to elicit this prior knowledge from
the expert is to show them molecules and then query their beliefs about them, either by
asking them whether this looks like an antibiotic (binary feedback) or how much it looks
like an antibiotic (continuous feedback). The molecules to show them can be samples from
the model before training, so essentially from the prior predictive, which would then allow
directly tuning the prior of the model based on the feedback. Alternatively, we can use a
large dataset of unlabeled chemicals to collect feedback on and then use that to distill a
prior. Both of these approaches have the disadvantage that most of the molecules we would
show the expert would probably not look like antibiotics, so we would waste a lot of their
time for not a lot of information. One would probably need to use some acquisition function,
similar to active learning, to try and only ask about the most informative compounds in
each iteration. We also discussed in this vein that the process could be made easier by
treating the expert knowledge as a likelihood instead of a prior, that is, first training the
generative model based on the small dataset and then finetuning its generations with the
human feedback, which would hopefully create more interesting structures than the prior
predictive. Moreover, if we ask the expert to make changes to the generated molecules to
make them more drug-like, we could use a distribution over these changes as a prior for
the score function in score-based models such as diffusion models. We also discussed that
we could try to use weak supervision signals such as human-defined similarity measures
or hand-designed features to build a classifier from the human feedback and then train
the generative model with classifier-guidance instead of a proper prior. As a mechanism
to incorporate the prior knowledge into the model, except for the aforementioned proper
prior distributions or classifier-guidance, we also discussed rejection sampling, importance
sampling, and probabilistic circuits. Overall, we concluded that directly incorporating vague
human knowledge into a proper prior distribution seems hard and that approaches based on
iterative human feedback are probably more promising.
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4.3 The role of domain knowledge in deep generative models
Vincent Fortuin (University of Cambridge, GB), Thomas Gärtner (Technische Universität
Wien, AT), Matthias Kirchler (Hasso-Plattner-Institut, Universität Potsdam, DE), Christoph
Lippert (Hasso-Plattner-Institut, Universität Potsdam, DE), Laura Manduchi (ETH Zürich,
CH), Guy Van den Broeck (UCLA, US), Julia Vogt (ETH Zürich, CH), and Florian Wenzel
(Amazon Web Services – Tübingen, DE)
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In this working group we discussed different types of domain knowledge and how it can
be incorporated into deep generative models. Firstly, we disussed why it can be useful
to incorporate domain knowledge and agreed that it might improve data-efficiency, en-
able extrapolation beyond the training dataset, and increase trustworthiness of the model.
Secondly, we discussed different kinds of domain knowledge and how they could respectively
be implemented in deep generative models. Knowledge about causality can be incorporated
using causal graphs or structural equation models in some latent space, which then implies
disentanglement of the latent factors corresponding to causal factors. More generally, known
probabilistic relationships can be represented in the form of prior distributions, either in the
latent space or the data space directly. Physical constraints, invariances, and symmetries can
often be incorporated directly through the choice of model architecture, for instance, CNNs
in the case of images. Facts about the world can be incorporated via knowledge graphs
or database retrieval mechanisms, while logical statements can be incorporated through
fuzzy or probabilistic logic. Finally, ontologies can be incorporated via hierarchical modeling.
Overall, we concluded that one of the main challenges is still to design a latent space in which
representations carry semantic meaning, since many of these types of domain knowledge
would need to be incorporated into such a latent space. This is loosely related to the problem
of symbol grounding from continuous distributed representations.

4.4 Anomaly detection using Kolmogorov complexities
Marius Kloft (RPTU – Kaiserslautern, DE), Asja Fischer (Ruhr-Universität Bochum, DE),
and Lucas Theis (Google – London, GB)
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Ideally, one would threshold the log-(pseudo)likelihood ratio s = log(p/q) of the distribution of
the normal data p and the distribution of the anomalous data q for provably optimal anomaly
detection. In practice, q is unknown, and one resorts to thresholding log(p). Steinwart
(2005) showed that this could be equivalent to thresholding log(p/q) where q is a uniform
distribution of anomalies. In practice, however, it has been observed that anomalies typically
are “simpler” (easier to compress) – a phenomenon known as “Occam’s razor”. We propose to
replace log(q) in s by an approximation of k, the Kolmogorov complexity, which – intuitively
speaking – measures the likeliness of an instance occurring in nature. Furthermore, as an
extension, one could integrate the Kolmogorov complexity with an estimate of q based on
some observed anomalies.
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