
Practical Large-Scale Proof-Of-Stake
Asynchronous Total-Order Broadcast
Orestis Alpos
University of Bern, Switzerland

Christian Cachin
University of Bern, Switzerland

Simon Holmgaard Kamp
Aarhus University, Denmark

Jesper Buus Nielsen
Aarhus University, Denmark

Abstract
We present simple and practical protocols for generating randomness as used by asynchronous
total-order broadcast. The protocols are secure in a proof-of-stake setting with dynamically changing
stake. They can be plugged into existing protocols for asynchronous total-order broadcast and
will turn these into asynchronous total-order broadcast with dynamic stake. Our contribution
relies on two important techniques. The paper “Random Oracles in Constantinople: Practical
Asynchronous Byzantine Agreement using Cryptography” [Cachin, Kursawe, and Shoup, PODC
2000] has influenced the design of practical total-order broadcast through its use of threshold
cryptography. However, it needs a setup protocol to be efficient. In a proof-of-stake setting with
dynamic stake this setup would have to be continually recomputed, making the protocol impractical.
The work “Asynchronous Byzantine Agreement with Subquadratic Communication” [Blum, Katz,
Liu-Zhang, and Loss, TCC 2020] showed how to use an initial setup for broadcast to asymptotically
efficiently generate sub-sequent setups. The protocol, however, resorted to fully homomorphic
encryption and was therefore not practically efficient. We adopt their approach to the proof-of-stake
setting with dynamic stake, apply it to the Constantinople paper, and remove the need for fully
homomorphic encryption. This results in simple and practical proof-of-stake protocols.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Total-Order Broadcast, Atomic Broadcast, Proof of Stake, Random Beacon

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.31

Related Version Full Version: https://eprint.iacr.org/2023/1103

Funding This work has received funding from the Swiss National Science Foundation (SNSF) under
grant agreement Nr. 200021_188443 (Advanced Consensus Protocols). Simon Holmgaard Kamp
and Jesper Buus Nielsen are partially funded by The Concordium Foundation.

1 Introduction

State of the art. It is well known that Asynchronous Total-Order Broadcast (ATOB) cannot
be deterministic [25]. The necessary randomness is usually modelled as a common coin
scheme [33], informally defined as a source random values observable by all participants but
unpredictable for the adversary [10]. Common coins are most practically implemented using
threshold cryptography [11, 23, 32, 10]. This approach has many benefits. It is conceptually
simple and efficient, it achieves optimal resilience t < n/3, where n the number of parties
running the protocol, and it results in a perfect coin, meaning that it is uniformly distributed
and agreed-upon with probability 1. The drawback, however, is that it requires a trusted

© Orestis Alpos, Christian Cachin, Simon Holmgaard Kamp, and Jesper Buus Nielsen;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 31; pp. 31:1–31:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.AFT.2023.31
https://eprint.iacr.org/2023/1103
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

setup or an Asynchronous Distributed Key Generation (ADKG) protocol. Current state
of the art ADKG protocols [20, 1, 2] have communication cost of O(λn3), where λ is the
security parameter.

Given that state-of-the-art ATOB protocols have communication complexity O(λn2), or
even amortized O(λn), it is evident that the communication cost of ADKG becomes the
bottleneck. In a permissioned setting with a static set of parties, it is common to proactively
refresh the threshold setup [9]. In a Proof-of-Stake (PoS) setting, particularly, where the
stake is constantly evolving and parties may dynamically join or leave the protocol, the
ADKG protocol must be run periodically. Recent literature on asynchronous consensus
uses committees, which contain only a subset of the parties, reducing the communication
complexity of BA even further to O(λn log n) at the cost of tolerating only t < (1 − ϵ)n/3
corruptions for any ϵ > 0 [5, 18]. As the protocol run by the committee assumes an honest
supermajority, this paradigm comes with one of two significant drawbacks. Either the
sampled committee has to be very large, so that its maximal corruption remains below n/3
with overwhelming probability [22]. Otherwise, in order to keep the committee size small, the
corruption level in the ground population must be assumed lower than n/3 by a considerable
margin. Directly porting this idea to ADKG results in the same drawbacks. Finally, existing
DKG protocols support only flat structures, where every party has the same weight and in
total t < n/3 parties are corrupted. They do not readily work for a setting where every party
holds a different share of the stake.

Seeds in PoS protocols. PoS-based ATOB protocols and blockchains require, apart from
common coins, a second type of randomness, usually referred to as a seed. In PoS blockchains
there is the notion of accounts with stake on them, of roles, such as “produce the 42-nd
block”, and of a lottery, through which accounts win the right to execute roles. This is
typically [21, 26] implemented using a Verifiable Pseudo-Random Function (VRF) [30]: each
account has a private key for a VRF and applies it to the role, producing a pseudorandom
value. If this value is above a threshold then the account wins the right to execute the role.
However, for this approach to work the lottery needs as input not only a role but also a seed.
Without the seed, a party can operate with several accounts and move all its stake to the
luckiest account. By including a seed in the lottery and using the stake distribution from a
point in time when the seed was unpredictable one can mitigate this attack [21].

In practice one can use a common-coin protocol to produce the seeds. We remark, however,
that the two randomness-generation protocols have different requirements. A common-coin
scheme does not have to be always unpredictable and agreed-upon, but only with some
constant probability [31, 12]. It should, however, be efficient, as it is used in every agreement
instance within the broadcast protocol. On the other hand, the seed-generation protocol must
always be unpredictable and agreed upon, but it can be slow, as it is only run periodically
(e.g., once per epoch).

Related work. Multiple common-coin constructions without a trusted dealer have been
proposed in the literature. Ben-Or [4] presents a simple protocol, where every party flips a
local coin. As a result, parties agree on the value of the coin only with probability Θ(2−n), A
common-coin scheme from verifiable secret sharing has been shown by Canetti and Rabin [12],
but their resulting Byzantine agreement protocol has communication complexity O(n11).
Patra, Choudhury, and Rangan [31] bring this down to O(n3).

A different approach constructs common coins from publicly verifiable secret sharing. The
resulting protocols [13, 14, 19, 36, 38] are efficient, yet they all make synchrony assumptions.
RandShare [38] has been formalized in the asynchronous communication setting but it is

O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:3

not scalable, as it requires O(n3) communication per party. Another line of work is based
on time-based cryptography. Protocols in this category [29, 16] employ verifiable delay
functions [7] and rely on the assumption that certain functions (such as exponentiation in
groups of unknown order [35]) can only be computed serially. None of the aforementioned
works explicitly mentions the network assumptions. Overviews of random beacon protocols
are given by Raikwar and Gligoroski [34], and by Choi, Manoj, and Bonneau [17].

Multiple works that circumvent ADKG exist in the literature, but they either make more
assumptions, have non-optimal resilience, or result in inefficient protocols. Existing PoS
blockchains rely on the timely delivery of honestly generated blocks, hence make timing
assumptions. Ouroboros Praos [21] implements a randomness beacon protocol, used as seed in
their leader-election algorithm, by hashing a large number of VRF outputs. Partial-synchrony
assumptions assure that the honestly generated VRF outputs cannot be delayed arbitrarily
by the adversary. King and Saia [27, 28] propose a synchronous common-coin protocol that
makes uses of pseudorandomly selected committees, but achieves non-optimal resilience. This
is improved in the protocol of Algorand [26, 15], where each committee member applies a
VRF on the seed of previous block, and then the smallest valid VRF value sent by some
committee member is kept. The protocol is first described in the synchronous model [26] and
later extended to the partially synchronous [15]. Cohen, Keidar, and Spiegelman [18] extend
this idea to the asynchronous model, but their protocol achieves an n = 4.5t resilience. In all
these protocols the coins are not reusable and the whole coin-generation algorithm has to be
run repeatedly.

Blum et al. [5] also generate randomness without ADKG. Their ATOB protocol works
in the following way. Assume first that a trusted dealer publishes on a ledger all the setup
material required for one instance of Byzantine agreement and one instance of a Multiparty
Computation (MPC) protocol. Then, on every invocation of the agreement protocol, parties
use the Byzantine-agreement setup in the agreement protocol and the MPC setup in a
tailor-made MPC protocol that refreshes the whole setup. Finally, they replace the trusted
dealer with a standard MPC protocol, executed once in a distributed setup phase. This
blueprint solves the problem of dynamic stake elegantly, but, the proposed MPC protocol for
refreshing the setup, which has to be executed for every Byzantine agreement instance, is not
efficient: it employs Threshold Fully Homomorphic Encryption (TFHE), digital signatures,
and zero-knowledge proofs.

Contributions. In this paper we address all the aforementioned limitations of randomness
generation for the first time. We present asynchronous seed-generation and common-coin
protocols that

require no trusted setup,
support optimal resilience t < n/3,
employ small committees and are concretely efficient,
directly support the PoS setting and dynamic participation,
are modular and can be generically used in any ATOB broadcast.

Our methods. We are motivated by the question whether one can use the simple, practical,
and efficient approach of getting common coins from threshold setup without running
inefficient and complicated protocols whenever the stake has shifted. Building on the idea of
Blum et al. [5], we rely on the fact that there already exists a functional ATOB: we generate
the setup assuming that we already have the ATOB, and then use the generated setup to

AFT 2023

31:4 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

Figure 1 The high level idea of our protocols. A proposers committee is elected, and we wait
until w proposers broadcast a setup. Assuming 2/3 honesty in the ground population, a proposer is
honest with probability 2/3. Each proposer is assigned a holding committee of size n and creates an
(n, τ) threshold setup for it. A committee is hiding if it contains at most τ corrupted parties, and
live if it contains at most n− τ − 1 corrupted parties. A setup is good if its proposer in honest and
its holding committee is hiding and live. We set w so as to have enough honest proposers, and n

and τ so that each holding committee is hiding with constant probability β and live with all but
negligible probability. As a result, we get good setups with a constant probability γ.

keep the ATOB running. To maintain practical efficiency the crucial step is to avoid FHE.
We achieve this by generating weaker setups than Blum et al. [5], nonetheless still strong
enough for the continued execution of the ATOB.

A crucial observation is that coins consumed by Byzantine agreement do not need to be
perfect, i.e., always unpredictable and agreed upon [12, 31]. Hence, instead of generating a
single, perfect threshold setup, we generate several candidate setups, such that some constant
fraction of them are good. Many DKG protocols can be seen as doing this as their first step,
but their next step is to combine them into a single perfect setup. In order to be combinable,
the setups must be of a particular form, and the committee that holds the setup must be
good (that is, contain less than a threshold corruptions) except with negligible probability.
As our setups are not combined and our committees only need to be good with a constant
probability, our protocols are simpler and more efficient, and use smaller committees.

Both seed, our seed-generation protocol, and wMDCF, our common-coin protocol, follow
the approach depicted in Figure 1. They elect a proposers committee, each member of which
is expected to create a setup (a VSS setup or a coin setup, for seed and wMDCF, respectively).
Each elected proposer is assigned a holding committee, for which it creates the threshold setup.
For this, the proposer acts as a dealer, encrypts the private setup material under the keys
of the holding committee, and broadcasts these encryptions and the required verifications
keys with a single message on the ATOB. We use a VRF-based lottery to determine both
the proposers and the holding committees, where each party is elected with probability
proportional to its stake. To open a seed value in the seed protocol, each of the holding
committees reveals its shares and these are all added together. To flip a coin cid in the
wMDCF protocol we first open a new seed value and then hash cid with the seed to obtain a
pointer to one of the published setups, which is used to obtain the value of cid.

As we show in Section 7, we can have a proposers committee of size 653 and holding
committees of size 359, resulting in approx. 85K encrypted values posted on Ledger. For 60
bits of security and assuming optimal corruption 1/3 in the ground population, our protocols

O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:5

are live with all but negligible probability, and our common-coin protocol is unpredictable and
agreed-upon with probability approx. 31.8%. It is instructive to compare these results against
previous literature, particularly against the approach that runs the randomness-generation
protocols in committees with honest supermajority. Algorand [26, Figure 3] requires a
committee of size approx. 2000, assuming corruption 0.2 in the ground population, and larger
than 4000, assuming corruption 0.24, to get good committees with probability 5 · 10−9, or
approx. 28 bits of security. Extending this approach to a ground population with corruption
0.3, which is still sub-optimal, and 60 bits of security, the authors of GearBox [22, Table 1]
show that committees of size 16037 are needed. We remark that asynchronous distributed
key generation protocols, the state-of-the-art approach for threshold-setup generation, require
honest supermajority, hence one would require a committee of similar sizes and sub-optimal
resilience in the ground population.

Organization. The rest of this paper is organized as follows. Section 2.1 presents the formal
model used in the schemes and Section 2.2 presents the primitives used in our schemes.
Then, each of the seed-generation and common-coin protocols are presented in modular way,
in two steps. Section 3 presents wVSS, a weak verifiable secret sharing scheme, which is
then used in Section 4 to build the seed-generation protocol. Section 5 presents wHDCF, a
weak honest-dealer coin-flip protocol, which is then used in Section 6 to build the wMDCF
common-coin protocol. All of these schemes are parameterized over committee sizes and
thresholds, and secure bounds for these are computed in Section 7.

2 Preliminaries

2.1 Model
We assume a model with asynchronous authenticated point-to-point channels. In addition
we assume an asynchronous persistent total-order broadcast channel. We denote by Ledger
the totally-ordered sequence of messages that have been delivered on the channel. We point
out that if a blockchain has a distinction between final and non-final messages, then Ledger
denotes the final messages. We assume that when a protocol is started all the parties taking
part in the protocol agree on a session identifier sid and an existing point on the ledger,
p ≤ |Ledger|. We think of p as the starting point of the protocol, which gives consensus on
the context of the protocol like stake distribution and lottery as discussed below. Protocols
can have public output which might not be explicitly posted on the ledger, but will have a
well-defined value and virtual point p at which they happened.

▶ Definition 1 (Public output). We say that PubOutF is a public output function if it
computes a public output from a ledger Ledger and a session identifier sid, where either
PubOutF(Ledger, sid) = y ∈ {0, 1}∗ or PubOutF(Ledger, sid) = ⊥. We require that if
PubOutF(Ledger, sid) ̸= ⊥ then PubOutF(Ledger∥m, sid) = PubOutF(Ledger, sid) for all m.
We say that sid gave public output y at position p if |Ledger| ≥ p and PubOutF(Ledger[1, p −
1], sid) = ⊥ and PubOutF(Ledger[1, p], sid) = y. Unless multiple sid’s are in scope, we omit
the sid parameter. Finally, we informally say that some protocol gives public output PubOutF
when additionally the ledger is implicit or when it is an eventual property of the ledger.

Dynamic Stake. We consider proof-of-stake defined via the ledger. For each Ledger there
is a stake distribution Σ(Ledger) : P → R0 which may change as the ledger grows, can be
computed in poly-time, and which gives for each party P its stake Σ(Ledger)(P). For each
point p there is also a stake distribution Σp, which is the stake distribution used by protocols
with p as starting point. It may be different from Σ(Ledger[1, p]), as discussed below.

AFT 2023

31:6 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

Lotteries. In PoS based protocol it is common that parties are selected at random for
carrying out a role in the protocol, like serving on a committee or producing the next block in
a blockchain. To keep the model simple we assume that this is done via a random oracle. To
keep the model simple we assume that for each point p on the ledger there is a random oracle
Γp : {0, 1}∗ → {0, 1}λ. We assume that Γp is sampled and made available to the parties at
some point after Σp can be computed from Ledger. This ensures that Γp is independent of
Σp. If Γp was made available before Σp was fixed, then corrupted parties would be able to
update Σp based on Γp (e.g., by moving their stake to parties “lucky” in Γp). We implement
this by iteratively generating random and unpredictable seeds, appearing as public outputs,
with our seed protocol. Then, for a given point p, let seedp be the latest seed on Ledger[1, p],
let Γp(x) = R(seedp, x), for a random oracle R, let p′ < p be the latest point where seedp

was unpredictable, and let Σp = Σ(Ledger[1, p′]).
Our protocols include steps where a party samples a committee cid of size n. We

model this as a function SampleCommitteep(cid, n) →
(
Hi

)
i∈[n] that uses Γp to sample

(with replacement) n parties from P with probability proportional to the stake Σp. As the
input is public, the output can be verified by a function VerifyCommitteep(cid,

(
Hi

)
i∈[n])

that reruns SampleCommitteep(cid, n) and verifies that it matches
(
Hi

)
i∈[n]. We assume

SampleCommitteep(cid, n) is locally computable by every party. Using our lottery abstraction
this could be implemented by calling Γp(cid, i), for some committee cid and for i ∈ [n], to
obtain a number ri ∈ {0, 2λ − 1}, and then deterministically mapping ri to a party Pi ∈ P
based on Σp. Observe that a party with relatively large stake can appear multiple times in
the committee.

2.2 Primitives
Our schemes make use of the following primitives.

2.2.1 Public-Key Encryption with Full Decryption
There are keys (dki, eki), for all Pi ∈ P, for an IND-CPA encryption scheme with full
decryption, PKE. Encrypting a message m ∈ PKE.M using randomness r ∈ PKE.R results
in a ciphertext c = Enceki

(m; r) ∈ PKE.C. Given a ciphertext c ∈ PKE.C the decryption
algorithm Decdki(c) returns both m ∈ PKE.M and r ∈ PKE.R. The triple (m, r, c) can then
be verified by anyone holding eki by checking if Enceki

(m; r) = c. Given an invalid ciphertext
a zero knowledge proof that the ciphertext is invalid can be obtained using the secret key.

Construction using El Gamal. We first show that we can obtain the properties above in
the random oracle model, as long as only encryptions of random messages are needed. This
can then be lifted to a complete encryption scheme by symmetrically encrypting the message
under a freshly sampled random key.

To encrypt a random value r, use El Gamal with H(r) as randomness. I.e. if dk = x

and ek = h = gx, then you encrypt r as c = (A, B) = (gH(r), r · hH(r)). To decrypt you first
compute r = B/(Ax), then check if re-encrypting using H(r) as randomness gives back c. If
verification checks out you can simply send r as proof. If the re-encryption does not match,
you provide a proof that r was obtained by decrypting c. Note that (A, B) decrypts to r

(under (g, h)) iff DLg(h) = DLA(B/r), so this proof can be constructed using the Fiat-Shamir
transform of the Σ-protocol for equality of discrete logarithms.

In the full scheme, in order to encrypt m using randomness r, you encrypt r as above and
additionally include a symmetric encryption of m using r as key. To decrypt you first use
regular El Gamal decryption to obtain r and verify it by re-encrypting. If it was encrypted
correctly you use it to decrypt m and return (m, r), otherwise return (⊥, r).

O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:7

2.2.2 Threshold Coin Flip
We use a (n, t)-threshold coin-flip (CF) scheme, where n is the total number of parties, t

is the corruption threshold, and the reconstruction threshold is t + 1. The scheme has the
following interface.

Setup(n, t) → (vk, sk1, . . . , skn): The dealer generates a verification key vk and secret key
shares ski of Pi. The secret keys can be used to create coin shares of multiple coins.
VerifyKeyShare(vk, i, ski) → b ∈ {0, 1}: Given the verification keys vk, it verifies ski.
Flip(ski, coin) → (si, wi): Given a coin identifier coin and secret key ski, it returns a coin
share si for coin and potentially a correctness proof wi, i.e., a proof that the coin share
has been computed correctly using ski.
VerifyCoinShare(vk, coin, si, wi) → b ∈ {0, 1}: It verifies coin share si for coin identifier
coin using the correctness proof wi and verification key vk.
Combine(coin, {sij

}j∈[t+1]) → s ∈ {0, 1}λ: Given t + 1 valid coin shares sij
, for j ∈ [t + 1],

it returns the value s of the coin identifier coin.
VerifyCoin(vk, coin, s) → b ∈ {0, 1}: It verifies s as the value of coin identifier coin using
the verification key vk.

Security properties. Assuming an honest dealer, i.e., that Setup() is correctly executed,
and that there are no more than t corrupted parties, the scheme satisfies the following.
Completeness If the dealer is honest then all key shares generated with Flip(ski, coin) will

verify with VerifyCoinShare.
Agreement For any t + 1 valid key shares the value Combine(coin, {sij }j∈[t]) is the same,

which define the value scoin.
Unpredictability The value scoin is unpredictable without honest shares, i.e., for a set C =

{Pij
}j∈[t+1] of corrupted parties, if a poly-time adversary has been given vk and ski for

Pi ∈ C for a random setup and has not been given Flip(ski, coin) for Pi ̸∈ C, then it
cannot guess scoin better than at random. This holds even if it has access to an oracle
giving Flip(ski, coin′) for all honest Pi for all coin′ ̸= coin.

Instantiation. Scheme CF can be instantiated with any non-interactive unique threshold
signature scheme, such as BLS threshold signatures [8, 6]. The dealer picks a random secret

key sk and shares it among all n parties using a polynomial ϕ(X) =
t∑

k=0
ϕkXk, such that

ϕ0 = sk. The only difference from threshold BLS is in Setup(): it runs the key generation
algorithm of the threshold signature scheme, but it does not return the verification keys in
the form gski

2 ∈ G2, where i ∈ [n] and g2 is the generator of G2, as in the original scheme.
Instead, it returns a vector (V0, . . . , Vt), where Vk = gϕk ∈ G2, for k ∈ {0, . . . , t}, i.e., it
returns Feldman commitments [24] to the coefficients of ϕ. This allows us to implement
VerifyKeyShare(), so Pi can verify that its key share ski is indeed a point on polynomial ϕ by
checking whether

gski
2

?=
t∏

k=0
(Vk)ik

. (1)

Observe that the original verification keys can still be obtained using (1) with input vk and
i, hence VerifyCoinShare() and VerifyCoin() need no modification. Algorithm Flip() returns a
signature share si on message coin using the key share ski of party Pi. Algorithm Combine()
creates the threshold signature s from t + 1 valid signature shares, which can then be hashed

AFT 2023

31:8 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

to get a value in {0, 1}. Algorithms VerifyCoinShare() and VerifyCoin() invoke the signature
verification algorithm, which, in the case of BLS, only takes as input the message coin and a
signatures share si or signature s, i.e., wi = ⊥, and uses a pairing function. Alternatively,
one can use the common-coin scheme of Cachin, Kursawe, and Shoup [10], but VerifyCoin()
would additionally need as input the t + 1 valid coin shares and proofs {sij

, wij
}j∈[t+1].

2.2.3 Secret sharing
We require a secret-sharing scheme TSS with threshold t with the following interface.
1. Share(s; r) → (s1, . . . , sn): It shares a secret s using randomness r to n secret shares

(s1, . . . , sn).
2. Reconstruct({sij

}t
j=1) → s′: Given t shares it reconstructs some secret s′.

The hiding property says that the joint distribution of t shares si is independent of s.
We can instantiate TSS with Shamir’s secret sharing scheme [37].

2.2.4 Digital Signature
Finally, there are keys (skP, vkP), for all P ∈ P, for a digital signature scheme DS with unique
signatures.

3 Weak Verifiable Secret Sharing

In this section we define a weak VSS protocol. It is weak in the sense that it is sometimes
not hiding. But it is always binding and live (allows reconstruction). There is a designated
dealer D, which is one of the participating parties. We assume D is given as part of session
identifier, sid = (D, sid′), and hence is known by all parties when the instance is created.

Syntax. The syntax of wVSS is as follows.
Commit On input (commit, sid, m) to D it starts running the commitment protocol and

may as a result help produce a public output (see Definition 1) PubOutVSSCommit. On
input (commit, sid) to a participating party P ̸= D it starts running the commitment
protocol and may as a result help produce a public output PubOutVSSCommit.

Open On input (open, sid) after PubOutVSSCommit(sid, LedgerP) ̸= ⊥, a party P starts
running the open protocol and may as a result output (done-open, sid, mP, π), where π

is a proof that mP is the output. The proof can be checked by any party P′ for which
PubOutVSSCommit(sid, LedgerP′) ̸= ⊥ using wVSSVerify(π, m).

Security. The security properties of wVSS are as follows.
Termination

(1) If D is honest and gets input (commit, sid, m), and all other honest parties get input
(commit, sid) then eventually there is a public output PubOutVSSCommit.

(2) If PubOutVSSCommit occurred and all honest parties get input (open, sid) then even-
tually all honest parties give an output (done-open, sid, ·).

(3) If any honest party gives an output (done-open, sid, ·) then eventually all honest
parties give output (done-open, sid, ·).

Validity If D is honest and had input (commit, sid, m) and some honest P gave output
(done-open, sid, mP, π), then mP = m and ∀m′ : wVSSVerify(π, m′) = ⊤ ⇔ m′ = m.

O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:9

Binding If D is corrupted, then the following holds. When the first honest party observes
public output PubOutVSSCommit then one can in poly-time compute from the view of the
adversary up to this point, a message m such that if later an honest party P gives output
(done-open, sid, mP, π) then mP = m and ∀m′ : wVSSVerify(π, m′) = ⊤ ⇔ m′ = m.

β-Weak Hiding If D is honest then for each session sid it holds with probability β > 0 at
a point in time t before any honest party got input (open, sid) that m is hidden in the
view of the adversary at time t, i.e., if m = mb for (m0, m1) picked by the adversary and
a uniformly random bit b, then the adversary cannot guess b better than at random.

Construction. The central idea of our wVSS construction is to have a dealer choose a
secret seed σ and secret share it unto a random holding committee and put on the ledger an
encryption of each of the shares under the public key of the holder, this vector of encryptions
is called the setup. If this was done correctly any t + 1 honest parties can decrypt their shares
and use them to reconstruct σ. All randomness for the secret sharing and the encryption will
be generated from σ using a PRG. This allows the committee to rerun the setup procedure
and check consistency with the published setup after reconstruction. This ensures that if
anyone t+1 parties can reconstruct to some value σ, then all shares are correct, and therefore
all subsets of t + 1 shares reconstruct to the same σ. We also use randomness derived from σ

to encrypt m and include the encryption in the setup. We cannot let the dealer pick the
holding committee as we need enough honest parties on it to avoid deadlock of reconstruction.
Therefore the holding committee is sampled pseudorandomly from the session identifier sid.

We use nvss and τvss to define the size of the holding committee sampled by the dealer,
and the reconstruction threshold in the holding committee, respectively. To ensure weak
hiding these parameters should be chosen such that the sampled committee has at most τvss
corruptions with constant probability at least β, and to ensure liveness less than nvss − τvss
should be corrupted except with negligible probability. The scheme makes use of a signature
scheme DS (Section 2.2.4), an encryption scheme PKE with full decryption (Section 2.2.1), a
threshold secret-sharing scheme TSS (Section 2.2.3), a pseudorandom generator PRG, and a
hash function H modelled as a random oracle.

Algorithm 1 Scheme wVSS, algorithm Commit, where an instance sid of wVSS is created at point
p on Ledger. Code for process Pi.

1: function commit_value(σ, C)
2: ρ = PRG(H(σ))
3: mmask

$ρ← {0, 1}λ

4: (s1, . . . , snvss)
$ρ← TSS.Share(σ)

5: for j in C do
6: rj

$ρ← {0, 1}λ; ej ← PKE.Encekj (sj , rj)
7: return ((e1, . . . , envss), mmask)

8: upon input (commit, sid, π, m) where sid = (D, sid′) and Pi = D do // only dealer D
9: (H1, . . . , Hnvss)← SampleCommitteep(sid, nvss)
10: σ ← DS.SignskD

(sid)
11: ((e1, . . . , envss), mmask)← commit_value(σ, (H1, . . . , Hnvss))
12: broadcast (sid, π, (e1, H1) . . . , (envss , Hnvss), m⊕mmask) on Ledger

We implement Commit in Algorithm 1. In order to commit to a chosen value m, D first
pseudorandomly samples a holding committee of size nvss (line 9). We say that the committee
is “assigned” to D, as D cannot influence it without getting rejected as public output. The

AFT 2023

31:10 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

dealer then computes a signature σ on sid, obtaining a unique and unpredictable value. Then
D commits to σ by secret-sharing it to the committee. This logic is extracted in an auxiliary
function commit_value. It computes a random tape ρ = PRG(H(σ)). This random tape
is used in all subsequent steps that require randomness. Specifically, in line 3 a random
message mmask is sampled, in line 4 the value σ is secret-shared to the members of the
holding committee C using an (nvss, τvss)-TSS, and in lines 5– 6 the shares of σ are encrypted
to the committee members. Each of these values are sampled pairwise independently from ρ.
Finally, D broadcasts its VSS setup on Ledger (line 12). This VSS setup serves as a public
output signalling that the message is committed and can at this point only be opened to some
unique value–which could be ⊥. We define the function PubOutVSSCommit(Ledger, (D, sid′))
as the earliest (in Ledger) message

(
(D, sid′), π, (e1, H1) . . . , (envss , Hnvss), m

)
which is signed

by D, where VerifyCommittee((D, sid′), H1, . . . , Hnvss) = 1. If no such message exists in Ledger,
then PubOutVSSCommit(Ledger, sid) = ⊥.

Algorithm 2 Scheme wVSS, algorithm Open, where an instance sid of wVSS is created at point p

on Ledger. Code only for process Pi is in the committee of instance sid, i.e., Pi is one of the Hj in
the VSS-setup (sid, (e1, H1) . . . , (envss , Hnvss), mmasked) published on Ledger.

State:
13: validShares[sid]← []

14: upon input (open, sid) such that PubOutVSSCommit(LedgerPi
, sid) ̸= ⊥ do

15: let ((e1, H1) . . . , (envss , Hnvss), mmasked) = PubOutVSSCommit(LedgerPi
, sid)

16: let C = {H1, . . . , Hnvss}
17: (s′

i, r′
i)← Decdki (ei)

18: e′
i ← Enceki (s′

i, r′
i)

19: if e′
i = ei then

20: send (share, s′
i, r′

i) to parties in C
21: else
22: create zk-proof Wi that ei decrypts to (s′

i, r′
i)

23: send (complaintEncryption, sid, Wi, s′
i, r′

i) to parties in C

24: upon deliver (share, sj , rj) from Pj do
25: if ej = Encekj (sj , rj) then
26: append sj to validShares[sid]

27: upon |validShares[sid]| = τvss + 1 do
28: let

(
sj1 , . . . , sjτvss+1

)
= validShares[sid]

29: σ′ ← TSS.Reconstruct({sjk}j∈[τvss+1])
30: if DS.VervkD (σ′, sid) = 0 then
31: output (done-open, sid,⊥, validShares[sid])
32: ((e′

1, . . . , e′
nvss), mmask)← commit_value(σ′)

33: if (e′
1, . . . , e′

nvss) ̸= (e1, . . . , envss) then
34: output (done-open, sid,⊥, validShares[sid])
35: else
36: output (done-open, sid, mmask ⊕mmasked, σ′)

37: upon deliver c = (complaintEncryption, sid, Wj , sj , rj) do
38: e′

j ← PKE.Encekj ((sj , rj))
39: if e′

j ̸= ej and Wj is valid then
40: output (done-open, sid,⊥, c)

O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:11

We implement Open in Algorithm 2. On input open, and after
PubOutVSSCommit(Ledger, sid) ̸= ⊥, a party in the holding committee of the sid in-
stance parses the output as a VSS setup. Party Pi then decrypts ei to get its share and
the randomness used for encryption, (si, ri) (line 17). It then re-encrypts (si, ri) (line 18)
to verify that the encryption was done correctly (line 19). If the encryption is valid they
send (si, ri) to the other parties, otherwise it sends a verifiable complaint (lines 22–23). The
complaint includes a that ei decrypts to (s′

i, r′
i).

Upon receiving a share from Pj (line 24), party Pi verifies that the share sent by Pj

indeed corresponds to the value ej published on Ledger. If this is the case, the share is
considered valid. Observe that the share the dealer created for Pj might be wrong in the
first place. This is detected upon reconstruction. Specifically, once τvss + 1 valid shares
are received (line 27), Pi runs the reconstruction of TSS to get back some σ′, which should
be a signature on sid computed by D. Party Pi first verifies the signature and, if valid, it
repeats the steps performed by D to secret-share σ′ (line 32). Observe that, given σ′, all
steps in commit_value() are deterministic. Hence, if the reconstructed σ′ is the same as the
σ computed by the dealer, then commit_value(σ′) will return the same values as the ones
posted on Ledger by D or we detect that the dealer cheated and output ⊥. This is checked
in line 33. Finally, upon delivering a complaint, sent by some party Pj , party Pi verifies
the complaint and, if valid, outputs ⊥. Note that no party can produce a valid complaint if
the check in line 33 goes through. The wVSSVerify check can simply be implemented by a
function that when given an encryption complaint checks if it is valid as in line 37, and when
given a set of shares checks that they are all valid and treats them as input to the activation
rule in line 27 to see that the same output is obtained. When the output of wVSS needs to
be distributed to the full set of parties, each party on the committee simply forwards their
(done-open, sid, mP, π) message to the remaining parties. Note that even though the proof
of the outputs can differ, an outside party only needs to receive one. Hence, in gossiping
networks the output messages can be deduplicated by only forwarding the first valid one to
lower communication complexity.

4 Generating an Unpredictable Seed

In this section we define a seed-generation protocol seed. A seed can be thought of as a
perfect coin flip: there is agreement on the output and its value is unpredictable before the
protocol starts.

Syntax. The syntax of seed is as follows:
Commit On input (seed, sid) in a session with session identifier sid a party starts running

the commit protocol and may as a result public output PubOutSeedCommit.
Open On input (seed-open, sid), which must be given after public output

PubOutSeedCommit, in a session with id sid a party starts running the opening pro-
tocol and may as a result output (done-seed, sid, c), for c ∈ {0, 1}λ.

Security. The security properties of seed are as follows:
Termination If all honest parties get inputs (seed, sid) then eventually all honest parties

get public output PubOutSeedCommit.
If all honest parties get correct inputs (seed-open, sid) then eventually all honest parties
give an output (done-seed, sid, ·).

AFT 2023

31:12 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

Agreement If two honest parties have outputs (done-seed, sid, cP) and (done-seed, sid, cQ)
then cP = cQ. Call the common value csid.

Unpredictability For each session sid it holds that csid is unpredictable before the first honest
party gets input (seed-open, sid).

Algorithm 3 Scheme seed, algorithm Commit, where an instance sid of seed is created at some
point p on Ledger. Code for process Pi.

41: upon input (seed, sid) do
42: C ← SampleCommittee(sid, mseed)
43: for j ∈ [mseed] such that C[j] = Pi do
44: r

$← {0, 1}λ

45: wVSS(commit, ((Pi, j), sid), r)

Algorithm 4 Scheme seed, algorithm Open, where an instance sid of seed is created at some point
p on Ledger. Code for process Pi.

46: State:
47: openings[sid]← []

48: upon input (seed-open, sid) such that PubOutSeedCommit(sid, Ledger) ̸= ⊥ do
49: setups← PubOutSeedCommit(sid, Ledger)
50: for j ∈ [wseed] do
51: sidj ← setups[j]
52: wVSS(open, sidj)

53: upon deliver (done-open, sidj , r, π) do
54: if j ∈ [wseed] ∧ wVSSVerify(π, r) then
55: append m to openings[sid]

56: upon |openings| = wseed

57: output (done-seed, sid,
⊕

r∈openings[sid] r)

Construction. The protocol uses parameters mseed and wseed. The idea is to sample mseed
parties in P to contribute a wVSS setup, asynchronously wait for the first wseed setups and
use the XOR of them as a seed. We discuss in Section 7 how to set these parameters, such
that at least one good setup (that is, from an honest proposer and with a committee with at
most τvss corrupted members) appears on the ledger, except with negligible probability.

The protocol is started at some starting point p of Ledger, with associated stake Σp and
committee sampling mechanism SampleCommitteep(). We implement Commit in Algorithm 3
and Open in Algorithm 4. A party that is elected to contribute a wVSS setup (line 42)
picks a random r and starts an instance of wVSS to share r (lines 44–45). Once wseed wVSS
protocols with session identifiers sidj = (Pj , k, sid), where C[k] = Pj , have given public output
PubOutVSSCommit on Ledger, then we define PubOutSeedCommit to be the ordered tuple
of the session identifiers of the first wseed such outputs. After this point, the value of the
nonce is implicitly defined by the state of the ledger, and on input (seed-open, sid), parties
start running the Open algorithm on these wseed instances of wVSS (lines 48–52). By design,
the holding committee of each of these instances has enough honest members for wVSS to
terminate. The final seed value is defined as the XOR of the values output by each Open
(line 57).

O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:13

5 Weak Honest-Dealer Coin-Flip

In this section we define the weak honest-dealer coin-flip (wHDCF) protocol. In wHDCF
there is a designated dealer D, which is one of the participating parties. We assume D is
given as part of session identifier, sid = (D, sid′), and hence is known by all parties when
the instance is created. The scheme is weak in the sense that parties may output ⊥ as the
value of the coin, but if two honest parties output a value in {0, 1}, then it will be the same.
It is honest-dealer as the coin value becomes predictable for a corrupted D. The scheme
makes use of a committee verification mechanism SampleCommitteep() proportional to stake
at point p (Section 2.1), an encryption scheme with full decryption PKE (Section 2.2.1), and
an (ncoin, τcoin)-threshold weak coin flip scheme CF (Section 2.2.2). Here ncoin and τcoin are
protocol parameters, for which we choose specific values in Section 7.

Syntax. The syntax of weak honest-dealer coin-flip is as follows:
Deal On input (deal, sid) a participating party starts running the dealing protocol of CF

and may as a result produce a public output PubOutSingleDeal.
Flip On input (flip, sid, cid), for coin identifier cid, after PubOutSingleDeal(sid, Ledger) ̸= ⊥,

a party starts running the flip protocol of CF and outputs (done-flip, sid, cid, s, π), where
s ∈ {⊥} ∪ {0, 1}λ and π is a proof that s is the output of the coinflipping protocol. The
proof can be checked by any party P′ for which PubOutSingleDeal(sid, LedgerP′) ̸= ⊥
using wHDCFVerify(π, m).

Security. The security properties of wHDCF are as follows.
Termination

(1) If D is honest and all honest parties get input (deal, sid), then eventually
PubOutSingleDeal(sid, Ledger) ̸= ⊥.

(2) If, after PubOutSingleDeal(sid, Ledger) ̸= ⊥, all honest parties get input (flip, sid, cid),
then eventually all honest parties give output (done-flip, sid, cid, ·), except with
negligible probability.

Weak Agreement If two honest parties output (done-flip, sid, cid, cP, π) and
(done-flip, sid, cid, cQ, π), such that cP ≠ ⊥ and cQ ̸= ⊥, then cP = cQ, except
with negligible probability. The same holds if cQ ≠ ⊥ and wHDCFVerify(π, cQ) ̸= ⊥.
Moreover, if D is honest, then no honesty party P outputs cP = ⊥.

Honest-Dealer β-Unpredictability If dealer D of session sid is honest, then each coin flip cid
is independently unpredictable with some constant probability β > 0, where β is defined
when PubOutSingleDeal(sid, Ledger) ̸= ⊥ and is independent of cid.

In the full version of this work [3] we formalize the Honest-Dealer β-Unpredictability
property and show the proofs.

Construction. In a high level, the scheme works as follows. Dealer D is assigned a coin-
holding committee of size ncoin and creates a coin setup for an (ncoin, τcoin)-threshold
coin scheme CF for this committee. Termination is achieved by appropriately setting the
parameters and from the pseudorandom nature of the committee: if the dealer completes the
setup, there are at least τcoin + 1 honest parties in the committee, except with negligible
probability. The weak agreement property is achieved by verifiable complaints against a
corrupted dealer. Upon receiving a valid complaint, a party terminates the Flip protocol
outputting ⊥. If, additionally, D is honest, then our protocol guarantees unpredictability
with constant probability β, defined as the probability of having at most τcoin corruptions in
the committee, and depending only on ncoin and τcoin.

AFT 2023

31:14 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

Algorithm 5 Scheme wHDCF, algorithm Deal, where an instance sid of wHDCF is created at point
p on Ledger. Code for process Pi.

58: upon input (deal, sid) where sid = (D, sid′) and Pi = D do // only dealer D
59: (H1, . . . , Hncoin)← SampleCommitteep(sid, ncoin),
60: (vk, sk1, . . . , skncoin)← CF.Setup(ncoin, τcoin)
61: for j ∈ [ncoin] do
62: rj

$← {0, 1}λ; ej = PKE.Encekj ((skj , rj))
63: broadcast (sid, vk, (H1, e1), . . . , (Hncoin , encoin)) on Ledger

In Algorithm 5 we implement Deal. The dealer first (line 59) samples the coin-holding
committee of size ncoin and then (line 60) uses CF to create a coin setup for it. The coin setup
includes secret keys sk1, . . . , skncoin and verification key vk. Each secret key ski is encrypted to
party’s Pi long term private key eki using a fresh randomness ri (lines 61–62). The coin setup
is broadcast on Ledger. When a coin-setup is included in Ledger we define the public output
PubOutSingleDeal(sid, Ledger) as (vk, (H1, e1), . . . , (Hncoin , encoin)) if the included committee
verifies using VerifyCommittee. Otherwise the output is ⊥.

In Algorithm 6 we implement Flip. Only parties in the coin-holding committee run it.
When Pi gets input (flip, sid, cid) and PubOutSingleDeal(sid, LedgerPi

) ̸= ⊥, it first reads the
coin setup and tries to decrypt ei to obtain its key share (line 70). Scheme PKE returns sk′

i

and the randomness r′
i that D is supposed to have used at encryption time. Party Pi checks

whether D has indeed done so by re-encrypting (sk′
i, r′

i) and checking the result against ei. If
it is different, Pi sends a complaintEncryption message that includes a zero-knowledge
proof that ei decrypts to (sk′

i, r′
i) (lines 71–73) and stops handling the Flip event. Otherwise,

Pi can prove correct decryption of ei in a complaint message by sending (sk′
i, r′

i). Party Pi

then verifies its key share against the verification vector vk published in the coin setup, and,
if it is invalid, sends a complaintKeyShare message to C (lines 74–75) and returns. If
the check passes, it creates a coin share using the threshold-coin scheme CF (line 76) and
sends to the committee C. All complaints are verifiable: complaintEncryption is valid
if the zk-proof Wj , proving that the published ej decrypts to (skj , rj)), is valid, and the
re-encryption of (skj , rj) gives something different from ej (lines 81–84). complaintShare
is valid if the re-encryption of (skj , rj) gives the published ej and the key share skj is deemed
invalid by the CF scheme (lines 85–88). Party Pi outputs in two cases, whichever comes first.
First, upon collecting τcoin + 1 valid coin shares (line 89), in which case the value of the coin
is reconstructed using the underlying CF scheme. Second, upon receiving a valid complaint
(line 94), in which case a ⊥ value is output. The wHDCFVerify check can be implemented by
a function that when given a complaint checks if it is valid according to the activation rules
in line 81 or line 85, and when given a set of shares checks that they are valid and reruns the
activation rule in line 89.

6 Weak Multiple-Dealer Coin-Flip

In this section we define the weak multiple-dealer coin-flip (wMDCF) protocol. It is weak
as it inherits the agreement property from wHDCF: parties may output ⊥, but if two
honest parties output a value in {0, 1}, then it will be the same. It is called multiple-dealer
as there are multiple dealers, forming a proposers committee, selected pseudorandomly
using SampleCommitteep(). The protocol uses parameters mwMDCF and wwMDCF. Parameter
mwMDCF refers to the size of the proposers committee, i.e., the number of parties that are

O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:15

Algorithm 6 Scheme wHDCF, algorithm Flip (cid), where an instance sid of wHDCF is cre-
ated at point p on Ledger. Code for process Pi, Pi is one of the Hj in the coin-setup
(sid, vk, (H1, e1), . . . , (Hncoin , encoin)) published on Ledger.

State:
64: validShares[sid][cid]← [], for each sid and cid
65: justifiedComplaint[sid][cid]← ⊥, for each sid and cid
66: terminated[sid][cid]← 0, for each sid and cid

67: upon input (flip, sid, cid) such that PubOutSingleDeal(sid, Ledger) ̸= ⊥ do
68: (vk, (H1, e1), . . . , (Hncoin , encoin))← PubOutSingleDeal(sid, Ledger)
69: let C = {H1, . . . , Hncoin}
70: (sk′

i, r′
i) = PKE.Decdki (ei)

71: if ei ̸= PKE.Enceki ((sk′
i, r′

i)) then
72: create zk-proof Wi that ei decrypts to (sk′

i, r′
i)

73: send (complaintEncryption, sid, cid, Wi, sk′
i, r′

i) to parties in C; return
74: if CF.VerifyKeyShare(vk, i, sk′

i) = 0 then
75: send (complaintKeyShare, sid, cid, sk′

i, r′
i) to parties in C; return

76: si = CF.CreateShare(sk′
i, cid)

77: send (coinShare, sid, cid, si) to parties in C

78: upon deliver (coinShare, sid, cid, sj) from Pj do
79: if CF.VerifyCoinShare(vk, cid, sj) = 1 then
80: append sj to validShares[sid][cid]

81: upon deliver c = (complaintEncryption, sid, cid, Wj , skj , rj) do
82: e′

j ← PKE.Encekj ((skj , rj))
83: if e′

j ̸= ej and Wj is valid then
84: justifiedComplaint[sid][cid]← c

85: upon deliver c = (complaintKeyShare, sid, cid, skj , rj) do
86: e′

j ← PKE.Encekj ((skj , rj))
87: if e′

j = ej and CF.VerifyKeyShare(vk, j, skj) = 0 then
88: justifiedComplaint[sid][cid]← c

89: upon |validShares[sid][cid]| = τcoin + 1 and terminated[sid][cid] = 0 do
90: let

(
sj1 , . . . , sjτcoin+1

)
= validShares[sid][cid]

91: s← CF.Combine(cid, {sjk}k∈[τcoin+1])
92: terminated[sid][cid]← 1
93: output (done-flip, sid, cid, s, validShares[sid][cid])

94: upon justifiedComplaint[sid][cid] ̸= ⊥ and terminated[sid][cid] = 0 do
95: terminated[sid][cid]← 1
96: output (done-flip, sid, cid,⊥, justifiedComplaint[sid][cid])

selected to act as a dealer in an instance of wMDCF. Parameter wwMDCF refers to the number
of parties in the proposers committee we asynchronously wait for. In Section 7 we show how
to set these parameters, such that at least one good setup appears on the ledger, except with
negligible probability, and a constant rate γ of the setups are good.

Syntax. The syntax of weak Multiple-Dealer Coin-Flip (wMDCF) is as follows:
Deal On input (deal, sid) a participating party starts running the dealing protocol and may

as a result help produce a public output PubOutMultiDeal.

AFT 2023

31:16 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

Flip On input (flip, sid, cid) for a coin identifier cid, after PubOutMultiDeal(sid, Ledger) ̸= ⊥,
a party starts running the coin-flip protocol and outputs (done-flip, sid, cid, s), where
s ∈ {⊥} ∪ {0, 1}λ.

Security. The security properties of honest-dealer coin-flip are as follows. For the agreement
and unpredictability properties we use a probability γ > 0, called the good-setup probability,
which depends on the parameter wwMDCF and on the hiding probability β of wHDCF, and is
constant and independent of sid and cid.
Termination

(1) If all honest parties get input (deal, sid) then eventually there is public output
PubOutMultiDeal(sid, Ledger) ̸= ⊥, except with negligible probability.

(2) If all honest parties get input (flip, sid, cid) then eventually all honest parties give an
output (done-flip, sid, cid, ·), except with negligible probability.

γ-Agreement For each session sid and coin identifier cid it holds that, if two honest parties
output (done-flip, sid, cid, cP) and (done-flip, sid, cid, cQ), such that cP ≠ ⊥ and cQ ≠
⊥, then cP = cQ, except with negligible probability. Moreover, with probability γ it holds
that no honest party outputs ⊥ as the value of the coin. All together, this means that,
if two honest parties have outputs (done-flip, sid, cid, cP) and (done-flip, sid, cid, cQ),
then cP = cQ ̸= ⊥ with probability γ.

γ-Unpredictability For each session sid and coin identifier cid it holds that the value of coin
cid is unpredictable with probability γ.

In the full version of this work [3] we formalize the agreement and unpredictability
properties and show the proofs.

Algorithm 7 Scheme wMDCF, algorithm Deal, where an instance sid of wMDCF is created at
some point p on Ledger. Code for process Pi.

State:
97: setups[wwMDCF]← []

98: upon input (deal, sid) do
99: C ← SampleCommittee(sid, mwMDCF)
100: for j ∈ [mwMDCF] such that C[j] = Pi do
101: wHDCF(Deal, ((Pi, j), sid))

102: upon wwMDCF setups PubOutMultiDeal(((Pj , k), sid), Ledger) ̸= ⊥ where C[k] = Pj

103: Let setups contain the identifiers which gave public output sorted deterministically
104: seed(seed, sid)

Construction. On Algorithm 7 we implement Deal. On input (deal, sid), a protocol
instance is created with some starting point p. For each time Pi is sampled to be a dealer
in a wHDCF instance (line 99), it creates a new instance of wHDCF and runs the Deal
algorithm. Every party waits for wwMDCF instances of the wHDCF protocol (started by
the dealers sampled in line 99) to give public output on the Ledger. When this happens,
parties run an instance of the seed protocol (line 104). This seed will be later used in the
Flip algorithm of wMDCF to pseudorandomly choose one of the wwMDCF setups. We define
PubOutMultiDeal = PubOutSeedOpen, so the output of the seed protocol signals the end of
the dealing phase.

O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:17

Algorithm 8 Scheme wMDCF, algorithm Flip (cid), where an instance sid of wMDCF is created
at some point p on Ledger. Code for process Pi.

105: upon input (flip, sid, cid) such that PubOutMultiDeal(sid, Ledger) ̸= ⊥ do
106: j ← H(sid, cid, seed)
107: wHDCF(flip, setups[j], cid)

108: upon deliver (done-flip, sid, cid, s, π)
109: if wHDCFVerify(π, s) then
110: output (done-flip, sid, cid, s)

In Algorithm 8 we implement Flip. On input (flip, sid, cid) and after observing public
output PubOutMultiDeal every party Pi uses a cryptographic hash function H, to hash
(sid, cid, seed) into j ∈ {1, . . . , wwMDCF} (line 106). Then, the algorithm Flip of the wHDCFj

instance is used to compute the value of coin cid. We assume that each party on the committee
of the selected wHDCF instance disseminate the output to the ground population.

7 Setting the Parameters

▶ Definition 2 (Binomial distribution). Let X a random variable counting the number of
successes out of n trials, where success happens with probability p. Then X follows the
binomial distribution, i.e., X ∼ B(n, p) and the probability that exactly k successes happen is

Pr[X = k] = Pr[B(n, p) = k] =
(

n

k

)
pk(1 − p)(n−k). (2)

7.1 Sampling a holding committee for wVSS and wHDCF
Let n denote the size of a holding committee and τ < n/2 denote a number, such that
the holding committee has at most τ corruptions with a constant probability β, and more
than n − τ corruptions only with a negligible probability ϵ = 2−λ, where λ is the security
parameter. The idea is the following. If we use a (n, τ)-secet-sharing or common-coin scheme
in the committee, then the committee is hiding with probability β and live with probability
1 − ϵ. These capture the parameters of both the wVSS and the wHDCF schemes. In wVSS
we have n ≜ nvss and τ ≜ τvss, and in wHDCF we have n ≜ ncoin and τ ≜ τcoin.

As discussed earlier, we model a committee-election mechanism as a black-box function
SampleCommittee(), which samples parties with probability proportional to their stake at some
well-defined point on the ledger. As SampleCommittee() does sampling with replacement, it
can be modelled with a binomial distribution. Using (2) we have that β =

τ∑
k=0

Pr[B(n, 1−p) =

k] and ϵ =
n∑

k=n−τ+1
Pr[B(n, 1 − p) = k], for p = 2/3. In Table 1 we show various combinations

for n and τ , such that ϵ ≤ 2−λ for λ = 60, and the resulting hiding probability β.

7.2 Sampling a proposer committee for seed and wMDCF
In protocols seed and wMDCF parties have a chance to participate in the proposers committee,
i.e., to win the right to become a dealer in a wVSS or wHDCF instance, respectively. Parties
are again sampled using SampleCommittee (Section 7.1), which returns a committee of size

AFT 2023

31:18 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

m, but the protocols only wait for the first w setups to appear on Ledger and only use those.
In seed, we have m ≜ mseed and w ≜ wseed, and in wMDCF we have m ≜ mwMDCF and
w = wwMDCF.

Necessary conditions. As before, we need to make sure that, except with negligible
probability ϵ = 2−λ, there are at least w honest parties on the committee to ensure termination.
This is bounded as ϵ in Section 7.1 but with n and τ replaced by m and w − 1 respectively.
But now we additionally need to make sure that, except with negligible probability at least
one of the w setups that appear on Ledger is a good setup, that is, from an honest party who
sampled a committee with less than τ corruptions. This condition corresponds exactly to the
setup in Section 7.1 being hiding, but with the probability p changed to account for the fact
that we are interested in the probability of an honest party who provided a good setup. Since
an honest dealer has a β (which depends on the parameters of the subprotocol) probability

of providing a good setup, we set p = β · 2/3 and require
w−1∑
k=0

Pr[B(m, 1 − p) = k] ≥ 1 − 2−λ.

Good-setup probability. Finally, specifically for wMDCF, we calculate the probability γ,
defined in Section 6, that a setup published on Ledger is good, i.e., the probability of getting
an unpredictable and agreed upon value in each coin flip. We derive this from the expected
number of bad setups, which (by linearity of expectation) is m · (1 − β · 2

3), and from the fact
that the adversary can schedule the order of messages, causing all bad setups and, hence,
only w − m · (1 − β · 2

3)) good setups, to appear on Ledger. This gives us the fraction of good
setups that in expectation appear on the ledger as

γ =
w − (m · (1 − β · 2

3))
w

. (3)

Putting it all together. We show the resulting parameters with λ = 60 bits of security
in Table 1. As an example, for a holding committee with size n = 259 and reconstruction
threshold τ = 103, we get hiding probability β = 98.7%. Then we can sample a proposers
committee of size m = 653 and wait for w = 327. This results in 84, 693 encrypted shares
being posted on the Ledger, and for wMDCF it gives a good-setup probability γ = 31.8%.

8 Analysis of Communication Complexity

To demonstrate the power of being able to sample concretely small committees, we analyze
the concrete complexity of our protocols. Note that a purely asymptotic analysis would not
show any gains over simply using a state of the art ADKG protocol with subset sampling
and near optimal resilience. We give all sizes in bits, but for simplicity we treat group and
field elements as λ bits. For instance, we use 3λ as the size of an encrypted share, which
(using Section 2.2.1) consists of 2 group elements and a symmetrically encrypted share of
a secret of size λ. This would not be precise for concrete instantiations, but it would only
change our estimates by a small constant factor which depends, for example, on the concrete
curves being employed.

We define ATOB complexity as the cost of including a message of a given size in Ledger.
In the following “broadcast” refers to broadcasting through the ATOB and “multicast” refers
to a party sending a message to all parties. As the communication cost of a broadcast and
multicast depend on the implementation, we keep these costs opaque and report results as
a number of broadcasts and multicasts required. For inter-committee communication we
assume point-to-point channels and give results in total number of bits sent.

O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:19

Table 1 This table shows possible values (subject to conditions in Section 7.1) for the holding
committee parameters, n and τ , and the resulting hiding probability β. For each obtainable β, it
shows possible values (subject to conditions in Section 7.2) for the proposers committee parameters,
m and w, and the resulting good-setup probability γ. In both seed and wMDCF schemes, each of
the w dealers encrypts keys for a committee of size n, which gives a total of m ∗ w encryptions.

n τ β m w γ n · w
653 320 > 1− 260 653 321 32.2% 209.6K

300 125 99.9% 653 322 32.3% 96.6K

280 114 99.6% 653 323 32.1% 90.4K

275 111 99.4% 653 324 32.0% 89.1K

271 109 99.3% 653 325 32.0% 88.1K

265 106 99.0% 653 326 31.9% 86.4K

261 104 98.8% 653 327 31.9% 85.3K

259 103 98.7% 653 327 31.8% 84.7K

257 102 98.6% 659 330 31.6% 84.8K

256 101 98.3% 672 337 31.3% 86.3K

254 100 98.1% 682 342 31.1% 86.9K

252 99 98.0% 692 347 30.8% 87.4K

The wVSS protocol has an ATOB complexity of 1 message of size nvss · 3λ + λ with
the encrypted shares and masked message in the setup. To distribute the output either
the secret of size λ is multicast or a complaint of size at most (τvss + 1) · 2λ (in case of
correctly encrypted shares reconstructing an inconsistent setup) is multicast. A priori, every
member of the committee needs to multicast the output, giving a multicast complexity of
nvss messages of size λ (or of size at most (τvss + 1) · 2λ, in which case the dealer can be
slashed). The remaining interaction consists of nvss committee members sending one message
with a decrypted share or a complaint of total size at most 4λ to the rest of the committee,
resulting in a total message complexity of at most nvss

2 · 4λ.
The seed protocol does not add any interaction besides running mseed instances of wVSS.

Only the first wseed of those to make it onto the ledger will result in interaction between
committe members, so the communication complexity is at most mseed ·nvss

2 ·4λ. The ATOB
complexity of the deal phase of seed is mseed messages of size nvss · 3λ + λ. To disseminate
the outputs there is an additional (wseed − s) · nvss multicasts of size λ and s · nvss multicasts
of size at most (τvss + 1) · 2λ, where s is the number of parties that can be slashed.

The wHDCF protocol has an ATOB complexity of 1 message of size ncoin · 3λ + λ and
no additional communication in the initial setup phase. The message complexity of each
coin flip is at most ncoin

2 · 4λ to reconstruct the coin (or ⊥) in the committee, and then
to disseminate the value to the ground population each committee member multicasts the
reconstructed coin or a complaint of size at most 4λ, resulting in at most ncoin

2 · 4λ bits
communicated in addition to ncoin multicasts of size 4λ. The deal phase of the wMDCF
protocol has the same complexity as mwMDCF deal phases of wHDCF and a single run of the
seed protocol. That is, an ATOB complexity of mwMDCF messages of size ncoin · 3λ + λ and
mseed messages of size nvss · 3λ + λ, and a multicast complexity of wseed · nvss messages of
size at most (τvss + 1) · 2λ, in addition to a communication complexity of mseed · nvss

2 · 4λ

bits. Whenever a coin needs to be flipped using wMDCF, the message complexity is that of
running the selected wHDCF protcol.

AFT 2023

31:20 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

To refresh the setup after the stake distribution has changed, one would need to first
run an instance of the seed protocol and then the deal phase of the wMDCF protocol. Using
the best parameters in Table 1 the concrete cost of refreshing the setup is 1959 messages of
size 778λ, and 169, 386 multicasts of size at most 208λ. The communication complexity of
flipping a coin and disseminating it to all parties is 2592 · 4λ in addition to 259 multicasts
of 4λ bits. Employing the optimizations in Remark 3 reduces the multicast complexity of
refreshing the setup to 654 messages of size at most (τvss + 1) · 2λ. Similarly the cost of
distributing a coin becomes the same as 1 multicast of size 4λ.

If we were to assume t < 0.3n in the paradigm of “subset sampling with almost optimal
resilience” [5], and need a committee with honest supermajority with probability 1−2−60, then
one would need to sample a committee with 16037 parties [22, Table 1]. If we then instantiate
a state of the art ADKG protocol with O(n3λ) communication using the committee, assuming
for the sake of an example the concrete cost is n3λ, then we get a complexity of > 4 · 1012λ.
It is then clear that our approach is far cheaper for all but extremely large values of n.

▶ Remark 3 (Deduplicating multicasts). Notice that each party only needs to receive a
single proof of output for each of the wseed wVSS setups. Since large-scale P2P networks
usually employ gossiping with deduplication of previously forwarded messages, each node
can consider different output justifications from the same wVSS as identical for the purpose
of decuplication. We conjecture that in most gossip-based P2P networks this results in a
communication cost which is less than that of a single multicast, as it can be seen as a
multicast from a single source which has gotten a headstart by being predistributed to O(λ)
nodes. With this instantiation the cost of disseminating the wVSS outputs from the seed
protocol becomes the same as multicasting wseed messages of size at most (τvss + 1) · 2λ over
the gossip network. The same deduplication trick can be employed when disseminating the
coin flips, reducing the cost of distributing the coin to the same as 1 multicast of size 4λ.

9 Conclusion

In this work we have presented protocols for generating randomness in an asynchronous PoS
setting with dynamic participation. They are practical and concretely efficient, employ no
trusted setup, and they make use of small committees. We have computed concrete numbers
for the committees. Specifically, we can have a committee of m = 653 proposers, each
generating a setup for n = 359 holders, resulting in approx. 85K encrypted values posted
on Ledger. For κ = 60 bits of security and assuming optimal corruption 1/3 in the ground
population, our protocols are live with all but negligible probability. Our common-coin
protocol is unpredictable and agreed-upon with probability approx. 31.8%, and, as it is based
on threshold cryptography, the setup can be used for a flipping a polynomial number of coins.
These committee sizes result from the fact that we require not all but only a constant factor
of our setups to be good.

References

1 Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad Stern. Bingo:
Adaptively secure packed asynchronous verifiable secret sharing and asynchronous distributed
key generation. IACR Cryptol. ePrint Arch., page 1759, 2022.

2 Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin
Tomescu. Reaching consensus for asynchronous distributed key generation. In PODC, pages
363–373. ACM, 2021.

O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:21

3 Orestis Alpos, Christian Cachin, Simon Holmgaard Kamp, and Jesper Buus Nielsen. Practical
large-scale proof-of-stake asynchronous total-order broadcast. IACR Cryptol. ePrint Arch.,
page 1103, 2023.

4 Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols (extended abstract). In PODC, pages 27–30. ACM, 1983.

5 Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous byzantine
agreement with subquadratic communication. In TCC (1), volume 12550 of Lecture Notes in
Computer Science, pages 353–380. Springer, 2020.

6 Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-diffie-hellman-group signature scheme. In Public Key Cryptography, volume 2567 of
Lecture Notes in Computer Science, pages 31–46. Springer, 2003.

7 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
CRYPTO (1), volume 10991 of Lecture Notes in Computer Science, pages 757–788. Springer,
2018.

8 Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J.
Cryptol., 17(4):297–319, 2004.

9 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In CRYPTO, volume 2139 of Lecture Notes in Computer
Science, pages 524–541. Springer, 2001.

10 Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople:
Practical asynchronous byzantine agreement using cryptography. J. Cryptol., 18(3):219–246,
2005.

11 Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet, Victor Shoup, and
Dominic Williams. Internet computer consensus. In PODC, pages 81–91. ACM, 2022.

12 Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In STOC, pages 42–51. ACM, 1993.

13 Ignacio Cascudo and Bernardo David. SCRAPE: scalable randomness attested by public
entities. In ACNS, volume 10355 of Lecture Notes in Computer Science, pages 537–556.
Springer, 2017.

14 Ignacio Cascudo and Bernardo David. ALBATROSS: publicly attestable batched randomness
based on secret sharing. In ASIACRYPT (3), volume 12493 of Lecture Notes in Computer
Science, pages 311–341. Springer, 2020.

15 Jing Chen, Sergey Gorbunov, Silvio Micali, and Georgios Vlachos. ALGORAND AGREE-
MENT: super fast and partition resilient byzantine agreement. IACR Cryptol. ePrint Arch.,
page 377, 2018.

16 Kevin Choi, Arasu Arun, Nirvan Tyagi, and Joseph Bonneau. Bicorn: An optimistically
efficient distributed randomness beacon. IACR Cryptol. ePrint Arch., page 221, 2023.

17 Kevin Choi, Aathira Manoj, and Joseph Bonneau. Sok: Distributed randomness beacons.
IACR Cryptol. ePrint Arch., page 728, 2023.

18 Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a coincidence: Sub-quadratic
asynchronous byzantine agreement WHP. In DISC, volume 179 of LIPIcs, pages 25:1–25:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

19 Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. Spurt: Scalable distributed
randomness beacon with transparent setup. In IEEE Symposium on Security and Privacy,
pages 2502–2517. IEEE, 2022.

20 Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias, and Ling
Ren. Practical asynchronous distributed key generation. In IEEE Symposium on Security and
Privacy, pages 2518–2534. IEEE, 2022.

21 Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In EUROCRYPT (2), volume
10821 of Lecture Notes in Computer Science, pages 66–98. Springer, 2018.

AFT 2023

31:22 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

22 Bernardo David, Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel Tschudi.
Gearbox: Optimal-size shard committees by leveraging the safety-liveness dichotomy. In CCS,
pages 683–696. ACM, 2022.

23 Drand. A distributed randomness beacon daemon, 2022. URL: https://drand.love.
24 Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In FOCS,

pages 427–437. IEEE Computer Society, 1987.
25 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus

with one faulty process. In PODS, pages 1–7. ACM, 1983.
26 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:

Scaling byzantine agreements for cryptocurrencies. In SOSP, pages 51–68. ACM, 2017.
27 Valerie King and Jared Saia. Byzantine agreement in expected polynomial time. J. ACM,

63(2):13:1–13:21, 2016.
28 Valerie King and Jared Saia. Correction to byzantine agreement in expected polynomial time,

JACM 2016. CoRR, abs/1812.10169, 2018.
29 Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn, and trx. IACR

Cryptol. ePrint Arch., page 366, 2015.
30 Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In FOCS,

pages 120–130. IEEE Computer Society, 1999.
31 Arpita Patra, Ashish Choudhury, and C. Pandu Rangan. Asynchronous byzantine agreement

with optimal resilience. Distributed Comput., 27(2):111–146, 2014.
32 Protocol Labs. Filecoin: A decentralized storage network. https://filecoin.io/filecoin.

pdf, 2017.
33 Michael O. Rabin. Randomized byzantine generals. In FOCS, pages 403–409. IEEE Computer

Society, 1983.
34 Mayank Raikwar and Danilo Gligoroski. Sok: Decentralized randomness beacon protocols. In

ACISP, volume 13494 of Lecture Notes in Computer Science, pages 420–446. Springer, 2022.
35 David A. Wagner Ronald L. Rivest, Adi Shamir. Time-lock puzzles and timed-release crypto.

Technical report, Massachusetts Institute of Technology, 1996.
36 Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar R. Weippl. Hydrand:

Efficient continuous distributed randomness. In IEEE Symposium on Security and Privacy,
pages 73–89. IEEE, 2020.

37 Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
38 Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus Gasser, Ismail

Khoffi, Michael J. Fischer, and Bryan Ford. Scalable bias-resistant distributed randomness. In
IEEE Symposium on Security and Privacy, pages 444–460. IEEE Computer Society, 2017.

https://drand.love
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf

	1 Introduction
	2 Preliminaries
	2.1 Model
	2.2 Primitives
	2.2.1 Public-Key Encryption with Full Decryption
	2.2.2 Threshold Coin Flip
	2.2.3 Secret sharing
	2.2.4 Digital Signature

	3 Weak Verifiable Secret Sharing
	4 Generating an Unpredictable Seed
	5 Weak Honest-Dealer Coin-Flip
	6 Weak Multiple-Dealer Coin-Flip
	7 Setting the Parameters
	7.1 Sampling a holding committee for wVSS and wHDCF
	7.2 Sampling a proposer committee for seed and wMDCF

	8 Analysis of Communication Complexity
	9 Conclusion

