
Volume 3, Issue 4, April 2013

Formal Verification of Distributed Algorithms (Dagstuhl Seminar 13141)
Bernadette Charron-Bost, Stepahn Merz, Andrey Rybalchenko, and Josef Widder 1

Correct and Efficient Accelerator Programming (Dagstuhl Seminar 13142)
Albert Cohen, Alastair F. Donaldson, Marieke Huisman, and Joost-Pieter Katoen 17

Drawing Graphs and Maps with Curves (Dagstuhl Seminar 13151)
Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud . 34

Interface of Computation, Game Theory, and Economics (Dagstuhl Seminar 13161)
Sergiu Hart, Éva Tardos, and Bernhard von Stengel . 69

Pointer Analysis (Dagstuhl Seminar 13162)
Ondrej Lhotak, Yannis Smaragdakis, and Manu Sridharan . 91

Customizing Service Platforms (Dagstuhl Seminar 13171)
Luciano Baresi, Andreas Rummler, and Klaus Schmid . 114

VaToMAS – Verification and Testing of Multi-Agent Systems (Dagstuhl Seminar 13181)
Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 151

Meta-Modeling Model-Based Engineering Tools (Dagstuhl Seminar 13182)
Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 188

Dagstuh l Rep or t s , Vo l . 3 , I s sue 4 ISSN 2192-5283

http://dx.doi.org/10.4230/DagRep.3.4.1
http://dx.doi.org/10.4230/DagRep.3.4.17
http://dx.doi.org/10.4230/DagRep.3.4.34
http://dx.doi.org/10.4230/DagRep.3.4.69
http://dx.doi.org/10.4230/DagRep.3.4.91
http://dx.doi.org/10.4230/DagRep.3.4.114
http://dx.doi.org/10.4230/DagRep.3.4.151
http://dx.doi.org/10.4230/DagRep.3.4.188

ISSN 2192-5283

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany.
Online available at http://www.dagstuhl.de/dagrep

Publication date
August, 2013

Bibliographic information published by the Deutsche
Nationalbibliothek
The Deutsche Nationalbibliothek lists this publica-
tion in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at
http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons
Attribution 3.0 Unported license: CC-BY.

In brief, this license authorizes each
and everybody to share (to copy,

distribute and transmit) the work under the follow-
ing conditions, without impairing or restricting the
authors’ moral rights:

Attribution: The work must be attributed to its
authors.

The copyright is retained by the corresponding au-
thors.

Digital Object Identifier: 10.4230/DagRep.3.4.i

Aims and Scope
The periodical Dagstuhl Reports documents the
program and the results of Dagstuhl Seminars and
Dagstuhl Perspectives Workshops.
In principal, for each Dagstuhl Seminar or Dagstuhl
Perspectives Workshop a report is published that
contains the following:

an executive summary of the seminar program
and the fundamental results,
an overview of the talks given during the seminar
(summarized as talk abstracts), and
summaries from working groups (if applicable).

This basic framework can be extended by suitable
contributions that are related to the program of the
seminar, e.g. summaries from panel discussions or
open problem sessions.

Editorial Board
Susanne Albers
Bernd Becker
Karsten Berns
Stephan Diehl
Hannes Hartenstein
Stephan Merz
Bernhard Mitschang
Bernhard Nebel
Han La Poutré
Bernt Schiele
Nicole Schweikardt
Raimund Seidel
Michael Waidner
Reinhard Wilhelm (Editor-in-Chief)

Editorial Office
Marc Herbstritt (Managing Editor)
Jutka Gasiorowski (Editorial Assistance)
Thomas Schillo (Technical Assistance)

Contact
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Dagstuhl Reports, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
reports@dagstuhl.de

www.dagstuhl.de/dagrep

http://www.dagstuhl.de/dagrep
http://www.dagstuhl.de/dagrep
http://dnb.d-nb.de
http://creativecommons.org/licenses/by/3.0/legalcode
http://dx.doi.org/10.4230/DagRep.3.4.i
http://www.dagstuhl.de/dagrep

Report from Dagstuhl Seminar 13141

Formal Verification of Distributed Algorithms
Edited by
Bernadette Charron-Bost1, Stephan Merz2, Andrey Rybalchenko3,
and Josef Widder4

1 École polytechnique, Palaiseau, FR, charron@lix.polytechnique.fr
2 INRIA, Nancy, FR, stephan.merz@loria.fr
3 TU München, DE, rybal@in.tum.de
4 TU Wien, AT, widder@forsyte.tuwien.ac.at

Abstract
The Dagstuhl Seminar 13141 “Formal Verification of Distributed Algorithms” brought together
researchers from the areas of distributed algorithms, model checking, and semi-automated proofs
with the goal to establish a common base for approaching the many open problems in verification
of distributed algorithms. In order to tighten the gap between the involved communities, who
have been quite separated in the past, the program contained tutorials on the basics of the
concerned fields. In addition to technical talks, we also had several discussion sessions, whose
goal was to identify the most pressing research challenges. This report describes the program
and the outcomes of the seminar.

Seminar 1.–5. April, 2013 – www.dagstuhl.de/13141
1998 ACM Subject Classification C.2 Computer-Communication Networks, D.3.1 Formal Defin-

itions and Theory, D.2.4 Software/Program Verification, F.3 Logics and Meanings of Pro-
grams

Keywords and phrases Distributed algorithms, semi-automated proofs, model checking
Digital Object Identifier 10.4230/DagRep.3.4.1
Edited in cooperation with Thomas Nowak

1 Executive Summary

Bernadette Charron-Bost
Stephan Merz
Andrey Rybalchenko
Josef Widder

License Creative Commons BY 3.0 Unported license
© Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder

While today’s society depends heavily on the correct functioning of distributed computing
systems, the current approach to designing and implementing them is still error prone. This
is because there is a methodological gap between the theory of distributed computing and the
practice of designing and verifying the correctness of reliable distributed systems. We believe
that there are two major reasons for this gap: On the one hand, distributed computing
models are traditionally represented mainly in natural language, and algorithms are described
in pseudo code. The classical approach to distributed algorithms is thus informal, and it is
not always clear under which circumstances a given distributed algorithm actually is correct.
On the other hand, distributed algorithms are designed to overcome non-determinism due to
issues that are not within the control of the distributed algorithm, including the system’s

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Formal Verification of Distributed Algorithms, Dagstuhl Reports, Vol. 3, Issue 4, pp. 1–16
Editors: Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/DagRep.3.4.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

2 13141 – Formal Verification of Distributed Algorithms

timing behavior or faults of some components. Such issues lead to a huge executions space
which is the major obstacle in applying verification tools to distributed algorithms.

The rationale behind our Dagstuhl seminar was that closing the methodological gap
requires collaboration from researchers from distributed algorithms and formal verification. In
order to spur the interaction between the communities, the program contained the following
overview talks on the related subjects:

Distributed algorithms: Eric Ruppert (York University)
Semi-automated proofs: John Rushby (SRI)
Parameterized model checking: Muralidhar Talupur (Intel)

In addition to the tutorials, we organized several open discussion rounds. The seminar
participants identified modeling issues as a central question, which confirmed one of our
motivation for the seminar, namely, the lack of a universal model for distributed algorithms.
Hence, one of the discussion rounds was exclusively devoted to this topic. Unlike sequential
programs, whose semantics is well understood and closely follows the program text, the
executions of distributed algorithms are to a large extent determined by the environment,
including issues such as the distribution of processes, timing behavior, inter-process com-
munication, and component faults. Models of distributed algorithms and systems embody
different assumptions about how the environment behaves. These hypotheses are often left
implicit but are of crucial importance for assessing the correctness of distributed algorithms.
The discussions during the seminar raised the awareness of these issue among the researchers,
and showed that research in this area is a necessary first step towards a structured approach
to formal verification of distributed algorithms. In addition to modeling, we discussed
issues such as benchmarks, implementation of distributed algorithms, or application areas of
distributed algorithms.

To round-off the technical program, we had several short presentations by participants who
presented their past and current work in the intersection of formal methods and distributed
algorithms, and a joint session with the other seminar going on concurrently at Dagstuhl on
Correct and Efficient Accelerator Programming. The topics of the talks spanned large parts
of the concerned areas, for instance, there were talks on model checking techniques such as
partial order reductions or abstractions, and their applications to distributed algorithms;
several talks focused on proof assistants, and how they can be used to verify distributed
algorithms; some talks considered concurrent systems, and some focused on transactional
memory. The atmosphere during these sessions was very constructive, and the short talks
were always followed by elaborate and insightful discussions.

Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder 3

2 Table of Contents

Executive Summary
Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder . 1

Overview of Talks
Partial-Order Reductions: Landscape & Practice
Péter Bokor . 5

Automated Repair of Distributed Systems: Beyond Verification
Borzoo Bonakdarpour . 5

Formal Proofs in Coq of Local Computation Systems
Pierre Castéran . 5

Semantics of Eventually Consistent Systems
Alexey Gotsman . 6

A Fault-tolerant Communication Mechanism for Cooperative Robots
Serge Haddad . 6

Scaling Up Interactive Verification
Gerwin Klein . 7

Parameterized Model Checking of Fault-Tolerant Broadcasting Algorithms
Igor Konnov . 7

Verification of a Quasi Certification Protocol over a DHT
Fabrice Kordon . 7

Finding Non-terminating Executions in Distributed Asynchronous Programs
Akash Lal . 8

A Framework for Formally Verifying Software Transactional Memory (and Other
Concurrent Algorithms)
Victor Luchangco . 8

Verification of Fault-Tolerant Distributed Algorithms in the Heard-Of Model
Stephan Merz . 9

Verifying Consensus . . . Using Process Calculi, State Machines, and Proof Checkers
Uwe Nestmann . 10

Tutorial on Distributed Algorithms
Eric Ruppert . 10

Getting the Best out of General-Purpose Tools: Theorem Provers and Infinite-
Bounded Model Checker
John Rushby . 11

An Epistemic Perspective on Consistency of Concurrent Computations
Andrey Rybalchenko . 11

Unidirectional Channel Systems Can Be Tested
Philippe Schnoebelen . 11

Formal Verification of Distributed Algorithms at TTTech
Wilfried Steiner . 12

13141

4 13141 – Formal Verification of Distributed Algorithms

Tutorial on Parameterized Model Checking
Murali Talupur . 12

Correctness without Serializabilty: Verifying Transactional Programs under Snap-
shot Isolation
Serdar Tasiran . 13

(Dis)Proof Automation: What We Can Do, What We Could Do and What Is
Needed?
Christoph Weidenbach . 13

Efficient Checking of Link-Reversal-Based Concurrent Systems
Josef Widder . 14

Panel Discussions
Session 1: What are the problems? . 14

Session 2: Modeling . 15

Session 3: Follow-up . 15

Participants . 16

Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder 5

3 Overview of Talks

3.1 Partial-Order Reductions: Landscape & Practice
Péter Bokor (ALTEN Engineering, Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Péter Bokor

Joint work of Bokor, Péter; Kinder, Johannes; Serafini, Marco; Suri, Neeraj
Main reference P. Bokor, J. Kinder, M. Serafini, N. Suri, “Supporting domain-specific state space reductions

through local partial-order reduction,” in Proc. of the 26th IEEE/ACM Int’l Conf. on Automated
Software Engineering (ASE’11), pp. 113–122. IEEE Press, New York City, 2011.

URL http://dx.doi.org/10.1109/ASE.2011.6100044

This talk is about mainstream partial-order reductions (such as DPOR), their extensions
(LPOR), new approaches (our current ongoing work Ostrich), and applications (to fault-
tolerant distributed protocols).

3.2 Automated Repair of Distributed Systems: Beyond Verification
Borzoo Bonakdarpour (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Borzoo Bonakdarpour

Although verification of concurrent and distributed applications has recently made consider-
able attention in the recent years, correct construction of such applications still remains a
challenge. This is simply due to the inherently complex structure of concurrent applications
caused by non-determinism and occurrence of faults (in a distributed setting). To deal
with the subtleties of developing concurrent applications, my position is to focus on formal
methods that automatically build such applications that are correct-by-construction. In
this talk, I briefly describe the efforts made for achieving correctness by construction for
concurrent/distributed applications in the area of automated repair of concurrent models.

3.3 Formal Proofs in Coq of Local Computation Systems
Pierre Castéran (University of Bordeaux, FR)

License Creative Commons BY 3.0 Unported license
© Pierre Castéran

Joint work of Castéran, Pierre; Filou, Vincent; Fontaine, Allyx
Main reference P. Castéran, V. Filou, “Tasks, types and tactics for local computation systems,” Studia Informatica

Universalis 9(1):39–86, 2011.
URL http://studia.complexica.net/index.php?option=com_content&view=article&id=186%3Atasks-

types-and-tactics-for-local-computation-systems-pp-39-86-

We present a library written for the Coq proof assistant, for reasoning about a quite abstract
model of distributed computing based on graph rewriting: Local Computations Systems. A
first development allowed us to prove some facts about the expressive power of several sub-
classes of such systems, e.g., impossibility results and certified transformations. Directions
for future evolutions will be also discussed, in particular reasoning on dynamic graphs and
self-stabilizing systems.

13141

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ASE.2011.6100044
http://dx.doi.org/10.1109/ASE.2011.6100044
http://dx.doi.org/10.1109/ASE.2011.6100044
http://dx.doi.org/10.1109/ASE.2011.6100044
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://studia.complexica.net/index.php?option=com_content&view=article&id=186%3Atasks-types-and-tactics-for-local-computation-systems-pp-39-86-
http://studia.complexica.net/index.php?option=com_content&view=article&id=186%3Atasks-types-and-tactics-for-local-computation-systems-pp-39-86-
http://studia.complexica.net/index.php?option=com_content&view=article&id=186%3Atasks-types-and-tactics-for-local-computation-systems-pp-39-86-
http://studia.complexica.net/index.php?option=com_content&view=article&id=186%3Atasks-types-and-tactics-for-local-computation-systems-pp-39-86-

6 13141 – Formal Verification of Distributed Algorithms

3.4 Semantics of Eventually Consistent Systems
Alexey Gotsman (IMDEA Software, Madrid, ES)

License Creative Commons BY 3.0 Unported license
© Alexey Gotsman

Joint work of Burckhardt, Sebastian; Gotsman, Alexey; Yang, Hongseok
Main reference S. Burckhardt, A. Gotsman, H. Yang, “Understanding Eventual Consistency,” Technical Report

MSR-TR-2013-39, Microsoft Research, 2013.
URL http://software.imdea.org/~gotsman/papers/distrmm.pdf

Modern geo-replicated databases underlying large-scale Internet services guarantee immediate
availability and tolerate network partitions at the expense of providing only weak forms
of consistency, commonly dubbed eventual consistency. At the moment there is a lot of
confusion about the semantics of eventual consistency, as different systems implement it
with different sets of features and in subtly different forms, stated either informally or using
disparate and low-level formalisms.

We address this problem by proposing a framework for formal and declarative specification
of the semantics of eventually consistent systems using axioms. Our framework is fully
customisable: by varying the set of axioms, we can rigorously define the semantics of systems
that combine any subset of typical guarantees or features, including conflict resolution policies,
session guarantees, causality guarantees, multiple consistency levels and transactions. We
prove that our specifications are validated by an example abstract implementation, based
on algorithms used in real-world systems. These results demonstrate that our framework
provides system architects with a tool for exploring the design space, and lays the foundation
for formal reasoning about eventually consistent systems.

This is joint work with Sebastian Burckhardt (MSR Redmond) and Hongseok Yang
(Oxford).

3.5 A Fault-tolerant Communication Mechanism for Cooperative
Robots

Serge Haddad (ENS Cachan, FR)

License Creative Commons BY 3.0 Unported license
© Serge Haddad

Joint work of El Haddad, Joyce; Haddad, Serge
Main reference J. El Haddad, S. Haddad, “A fault-tolerant communication mechanism for cooperative robots,”

International Journal of Production Research, 42(14):2793–2808, 2004.
URL http://dx.doi.org/10.1080/00207540410001705185

Operations in unpredictable environments require coordinating teams of robots. This coordin-
ation implies peer-to-peer communication between the team’s robots, resource allocation, and
coordination. We address the problem of autonomous robots which alternate between execu-
tion of individual tasks and peer-to-peer communication. Each robot keeps in its permanent
memory a set of locations where it can meet some of the other robots. The proposed protocol
is constructed by two layered modules (sub-algorithms: a self-stabilizing scheduling and a
construction of a minimum-hop path forest). The first self-stabilizing algorithm solves the
management of visits to these locations ensuring that, after the stabilizing phase, every visit
to a location will lead to a communication. We model the untimed behaviour of a robot by a
Petri net and the timed behaviour by an (infinite) Discrete Time Markov Chain. Theoretical
results in this area are then combined in order to establish the proof of the algorithm. The
second self-stabilizing algorithm computes the minimum-hop path between a specific robot’s
location and the locations of all the other robots of the system inorder to implement routing.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://software.imdea.org/~gotsman/papers/distrmm.pdf
http://software.imdea.org/~gotsman/papers/distrmm.pdf
http://software.imdea.org/~gotsman/papers/distrmm.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1080/00207540410001705185
http://dx.doi.org/10.1080/00207540410001705185
http://dx.doi.org/10.1080/00207540410001705185

Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder 7

3.6 Scaling Up Interactive Verification
Gerwin Klein (NICTA & UNSW, Sydney, AU)

License Creative Commons BY 3.0 Unported license
© Gerwin Klein

This talk gives a brief overview of the formal verification of the seL4 microkernel. I will
cover the proof of functional correctness, later high-level security properties, the extension of
the proof to the binary level, and the effect of maintenance on the verification. After this,
the idea is to open the floor to a more free-form discussion on the experience of large-scale
software verification and the applicability of our experience to the distributed algorithms
section.

3.7 Parameterized Model Checking of Fault-Tolerant Broadcasting
Algorithms

Igor Konnov (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Igor Konnov

Joint work of John, Annu; Konnov, Igor; Schmid, Ulrich; Veith, Helmut; Widder, Josef
Main reference A. John, I. Konnov, U. Schmid, H. Veith, J. Widder, “Counter Attack on Byzantine Generals:

Parameterized Model Checking of Fault-tolerant Distributed Algorithms,” arXiv:1210.3846v2
[cs.LO], 2013.

URL http://arxiv.org/abs/1210.3846v2

We introduce an automated parameterized verification method for fault-tolerant distributed
algorithms (FTDA). FTDAs are parameterized by both the number of processes and the
assumed maximum number of Byzantine faulty processes. At the center of our technique
is a parametric interval abstraction (PIA) where the interval boundaries are arithmetic
expressions over parameters. Using PIA for both data abstraction and a new form of
counter abstraction, we reduce the parameterized problem to finite-state model checking.
We demonstrate the practical feasibility of our method by verifying several variants of the
well-known distributed algorithm by Srikanth and Toueg. Our semi-decision procedures are
complemented and motivated by an undecidability proof for FTDA verification which holds
even in the absence of interprocess communication. To the best of our knowledge, this is the
first paper to achieve parameterized automated verification of Byzantine FTDA.

3.8 Verification of a Quasi Certification Protocol over a DHT
Fabrice Kordon (UPMC, Lab. LIP6, Paris, FR)

License Creative Commons BY 3.0 Unported license
© Fabrice Kordon

Joint work of Kordon, Fabrice; Bonnaire, Xavier; Cortés, Rudyar; Marin, Olivier

Building a certification authority that is both decentralized and fully reliable is impossible.
However, the limitation thus imposed on scalability is unacceptable for many types of
information systems, such as e-government services. We propose a solution to build an highly
reliable certification authority, based on a distributed hash table and a dedicated protocol
ensuring a very low probability of arbitrary failure. Thus, in practice, false positives should
never occur. This talk briefly presents the protocol and shows its verification in two steps:
(1) a formal model to assess that the protocol behaves as expected in an “ideal world” where

13141

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1210.3846v2
http://arxiv.org/abs/1210.3846v2
http://arxiv.org/abs/1210.3846v2
http://arxiv.org/abs/1210.3846v2
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

8 13141 – Formal Verification of Distributed Algorithms

communications are reliable, and, (2) a probabilistic analysis to evaluate the probability of
failure of the certification.

3.9 Finding Non-terminating Executions in Distributed Asynchronous
Programs

Akash Lal (Microsoft Research India, Bangalore, IN)

License Creative Commons BY 3.0 Unported license
© Akash Lal

Joint work of Emmi, Michael; Lal, Akash
Main reference M. Emmi, A. Lal, “Finding non-terminating executions in distributed asynchronous programs,” in

Proc. of the 19th Int’l Symp. on Static Analysis (SAS’12), LNCS, Vol. 7460, pp. 439–455, Springer,
2012.

URL http://dx.doi.org/10.1007/978-3-642-33125-1_29

Programming distributed and reactive asynchronous systems is complex due to the lack of
synchronization between concurrently executing tasks, and arbitrary delay of message-based
communication. As even simple programming mistakes have the capability to introduce
divergent behavior, a key liveness property is eventual quiescence: for any finite number of
external stimuli (e.g., client-generated events), only a finite number of internal messages are
ever created.

In this work we propose a practical three-step reduction-based approach for detecting
divergent executions in asynchronous programs. As a first step, we give a code-to-code
translation reducing divergence of an asynchronous program P to completed state-reachability,
i.e., reachability to a given state with no pending synchronous tasks, of a polynomially-sized
asynchronous program P ′. In the second step, we give a code-to-code translation under-
approximating completed state-reachability of P ′ by state-reachability of a polynomially-sized
recursive sequential program P ′′(K), for the given analysis parameter K. Following Emmi
et al.’s delay-bounding approach, P ′′(K) encodes a subset of P ′, and thus of P , by limiting
scheduling nondeterminism. As K is increased, more possibly divergent behaviors of P are
considered, and in the limit as K approaches infinity, our reduction is complete for programs
with finite data domains. As the final step we give the resulting state-reachability query to
an of-the-shelf SMT-based sequential program verification tool.

We demonstrate the feasibility of our approach by implementing a prototype analysis
tool called Alive, which detects divergent executions in several hand-coded variations of
textbook distributed algorithms.

3.10 A Framework for Formally Verifying Software Transactional
Memory (and Other Concurrent Algorithms)

Victor Luchangco (Oracle Corporation, Burlington, US)

License Creative Commons BY 3.0 Unported license
© Victor Luchangco

Joint work of Lesani, Mohsen; Luchangco, Victor; Moir, Mark
Main reference M. Lesani, V. Luchangco, M. Moir, “A framework for formally verifying software transactional

memory algorithms,” in Proc. of the 23rd Int’l Conf. on Concurrency Theory (CONCUR’12),
LNCS, Vol. 7454, pp. 516–530. Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-32940-1_36

We present a framework for verifying transactional memory (TM) algorithms. Specifications
and algorithms are specified using I/O automata, enabling hierarchical proofs that the

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-33125-1_29
http://dx.doi.org/10.1007/978-3-642-33125-1_29
http://dx.doi.org/10.1007/978-3-642-33125-1_29
http://dx.doi.org/10.1007/978-3-642-33125-1_29
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-32940-1_36
http://dx.doi.org/10.1007/978-3-642-32940-1_36
http://dx.doi.org/10.1007/978-3-642-32940-1_36
http://dx.doi.org/10.1007/978-3-642-32940-1_36

Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder 9

algorithms implement the specifications. We have used this framework to develop what we
believe is the first fully formal machine-checked verification of a practical TM algorithm: the
NOrec algorithm of Dalessandro, Spear and Scott. Our framework is available for others
to use and extend. New proofs can leverage existing ones, eliminating significant work and
complexity.

3.11 Verification of Fault-Tolerant Distributed Algorithms in the
Heard-Of Model

Stephan Merz (LORIA, Nancy, FR)

License Creative Commons BY 3.0 Unported license
© Stephan Merz

Joint work of Débrat, Henri; Merz, Stephan
Main reference H. Debrat, S. Merz, “Verifying fault-tolerant distributed algorithms in the Heard-Of model,”

Archive of Formal Proofs, 2012.
URL http://afp.sf.net/entries/Heard_Of.shtml

Distributed algorithms are quite subtle, both in the way they function and in the hypotheses
assumed for their correctness. Moreover, many different computational models exist in the
literature, but comparisons between algorithms expressed in different models is difficult.
Formal verification can help ascertain the correctness of a given algorithm w.r.t. well-
specified hypotheses. We present work on the formal verification of fault-tolerant distributed
algorithms in the Heard-Of model introduced by Charron-Bost and Schiper [1, 2]. In this
model, algorithms execute in communication-closed rounds and are subject to hypotheses
expressed in terms of Heard-Of sets, i.e., the sets of processes from which messages are
received in a given round. We formally prove a reduction theorem that justifies verifying
these algorithms in a coarse-grained (synchronous) model of execution. In this way, entire
system rounds become the unit of atomicity, and verification becomes much simpler than
when interleavings of individual process actions are considered. We have verified six different
Consensus algorithms that differ with respect to the presence of a coordinator, the types and
numbers of faults they tolerate (both benign and Byzantine failures are considered), and
the degree of synchrony that is required for correctness. Both the reduction proof and the
verification of the various algorithms are carried out in the proof assistant Isabelle/HOL [3],
and they are available online [4].

References
1 Bernadette Charron-Bost and André Schiper. The Heard-Of model: computing in distrib-

uted systems with benign faults. Distributed Computing 22(1):49-71, 2009.
2 Martin Biely, Bernadette Charron-Bost, Antoine Gaillard, Martin Hutle, André Schiper,

and Josef Widder. Tolerating corrupted communication. Proc. 26th Annual ACM Sym-
posium on Principles of Distributed Computing (PODC’07), pp. 244–253. ACM, New York
City, 2007.

3 Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL. A Proof Assistant
for Higher-Order Logic. LNCS 2283, Springer, 2002.

4 Henri Debrat and Stephan Merz. Verifying fault-tolerant distributed algorithms in the
Heard-Of model. Archive of Formal Proofs, http://afp.sf.net/entries/Heard_Of.shtml,
2012.

13141

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://afp.sf.net/entries/Heard_Of.shtml
http://afp.sf.net/entries/Heard_Of.shtml
http://afp.sf.net/entries/Heard_Of.shtml
http://afp.sf.net/entries/Heard_Of.shtml

10 13141 – Formal Verification of Distributed Algorithms

3.12 Verifying Consensus . . . Using Process Calculi, State Machines,
and Proof Checkers

Uwe Nestmann (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Uwe Nestmann

We focus on the gap between pseudo code, as often used for the description of distributed
algorithms, and correctness proofs, as usually written in math-enhanced natural language.
Trying to bridge the gap, we discuss the use of process calculi and state machines, as well
as their connection. We also briefly report on the mechanisation of state-machine-based
correctness proofs within the proof assistant Isabelle.

References
1 R. Fuzzati, M. Merro and U. Nestmann. Distributed Consensus, Revisited. Acta Inf.,

44(6):377–425, 2007.
2 M. Kühnrich and U. Nestmann. On Process-Algebraic Proof Methods for Fault Tolerant

Distributed Systems. In D. Lee, A. Lopes and A. Poetzsch-Heffter, eds, FMOODS/FORTE,
volume 5522 of Lecture Notes in Computer Science, pages 198–212. Springer, 2009.

3 P. Küfner, U. Nestmann and C. Rickmann. Formal Verification of Distributed Algorithms
– From Pseudo Code to Checked Proofs. In J. C. M. Baeten, T. Ball and F. S. de Boer, eds,
IFIP TCS, volume 7604 of Lecture Notes in Computer Science, pages 209–224. Springer,
2012.

4 U. Nestmann and R. Fuzzati. Unreliable Failure Detectors via Operational Semantics In
V. A. Saraswat, ed, ASIAN, volume 2896 of Lecture Notes in Computer Science, pages
54–71. Springer, 2003.

5 U. Nestmann, R. Fuzzati and M. Merro. Modeling Consensus in a Process Calculus. In
R. M. Amadio and D. Lugiez, eds, CONCUR, volume 2761 of Lecture Notes in Computer
Science, pages 393–407. Springer, 2003.

3.13 Tutorial on Distributed Algorithms
Eric Ruppert (York University, Toronto, CA)

License Creative Commons BY 3.0 Unported license
© Eric Ruppert

I gave some background information on the way distributed algorithm designers model
distributed systems and define correctness properties. I briefly described some of the
challenges faced in designing distributed algorithms and some techniques used to overcome
them, with examples of algorithms that use the techniques. These techniques include quorums,
repeated reads to obtain consistent views, timestamps, helping, using CAS to synchronize,
pointer swinging and locks.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder 11

3.14 Getting the Best out of General-Purpose Tools: Theorem Provers
and Infinite-Bounded Model Checker

John Rushby (SRI, Menlo Park, US)

License Creative Commons BY 3.0 Unported license
© John Rushby

In traditional “by hand” formal verification of distributed algorithms it is often beneficial to
work with a model of computation specialized to the issue of primary concern (e.g., timed
automata). But the best developed, most powerful mechanized verification tools tend to
be general-purpose (or specialized to a different model than the one you want). I describe
and demonstrate some techniques for getting the best out of general-purpose tools through
adjustments to (the representation of) models that better exploit the underlying automation.
I cover representation of nondeterminism in a theorem prover (illustrated using Byzantine
Agreement in PVS) and timed systems in an infinite bounded model checker (illustrated
using Biphase Mark in SAL). I also briefly describe computational reflection, and some
prospects and hopes for the future.

3.15 An Epistemic Perspective on Consistency of Concurrent
Computations

Andrey Rybalchenko (TU München, DE)

License Creative Commons BY 3.0 Unported license
© Andrey Rybalchenko

Joint work of von Gleissenthal, Klaus; Rybalchenko, Andrey
Main reference K. v. Gleissenthall, A. Rybalchenko, “An Epistemic Perspective on Consistency of Concurrent

Computations,” arXiv:1305.2295v1 [cs.LO], 2013.
URL http://arxiv.org/abs/1305.2295

Consistency properties of concurrent computations, e.g., sequential consistency, linearizability,
or eventual consistency, are essential for devising correct concurrent algorithms. In this
paper, we present a logical formalization of such consistency properties that is based on a
standard logic of knowledge. Our formalization provides a declarative perspective on what
is imposed by consistency requirements and provides some interesting unifying insight on
differently looking properties.

3.16 Unidirectional Channel Systems Can Be Tested
Philippe Schnoebelen (ENS Cachan, FR)

License Creative Commons BY 3.0 Unported license
© Philippe Schnoebelen

Joint work of Jančar, Petr; Karandikar, Prateek; Schnoebelen, Philippe
Main reference P. Jančar, P. Karandikar, P. Schnoebelen, “Unidirectional channel systems can be tested,” in Proc.

of the 7th IFIP TC1/WG2.2 Int’l Conf. on Theoretical Computer Science (TCS’12), LNCS,
Vol. 7604, pp. 149–163, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-33475-7_11

“Unidirectional channel systems” (Chambart & Schnoebelen, CONCUR 2008) are systems
where one-way communication from a sender to a receiver goes via one reliable and one
unreliable (unbounded fifo) channel. Equipping these systems with the possibility of testing

13141

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1305.2295
http://arxiv.org/abs/1305.2295
http://arxiv.org/abs/1305.2295
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-33475-7_11
http://dx.doi.org/10.1007/978-3-642-33475-7_11
http://dx.doi.org/10.1007/978-3-642-33475-7_11
http://dx.doi.org/10.1007/978-3-642-33475-7_11

12 13141 – Formal Verification of Distributed Algorithms

regular properties on the contents of channels makes verification undecidable. Decidability is
preserved when only emptiness and nonemptiness tests are considered: the proof relies on
a series of reductions eventually allowing us to take advantage of recent results on Post’s
Embedding Problem.

3.17 Formal Verification of Distributed Algorithms at TTTech
Wilfried Steiner (TTTech Computertechnik, Vienna, AT)

License Creative Commons BY 3.0 Unported license
© Wilfried Steiner

System design for safety-critical systems and mixed-criticality systems, such as aerospace or
space applications, is inherently complex and demands a level of quality assurance often only
to be met by the use of formal methods. This is due to the tightly interwoven requirements
of fault tolerance, the ability to sustain partial failures of the system, and real-time control.
One key element of a safety-critical system is its communication infrastructure, which more
and more determines the overall system architecture. With its central role, the correct
design of the communication infrastructure, and in particular the distributed algorithms
that the infrastructure implements, is a crucial pre-requisite for mission success. In this
talk we discuss how formal methods have been used during the design of the TTEthernet
communication infrastructure and their general use at TTTech.

3.18 Tutorial on Parameterized Model Checking
Murali Talupur (Intel SCL, Hillsboro, US)

License Creative Commons BY 3.0 Unported license
© Murali Talupur

With the move towards multi-core processors and SoCs (systems-on-chip) parameterized
verification of distributed protocols has taken on a new urgency. Protocols like cache
coherence protocols, bus lock protocols form the bedrock on which these processors are
built and verifying them is a challenging task. In this talk I will describe a highly scalable
and automated method, called the CMP+ Flows method, for formally and parametrically
verifying protocols. As the name indicates the method has two components. The first
component, the CMP method, is a compositional reasoning technique that uses abstraction
to reduce an unbounded parameterized verification problem to a finite problem that can then
be model checked. The abstraction operation is completely automatic but the user has to
supply lemmas (or candidate invariants) to progressively refine the abstraction. Though the
CMP method imposes less manual burden than pure theorem proving, supplying lemmas is
still a non-trivial task, especially for large industrial protocols. The second component of our
method addresses this gap by showing how to derive invariants automatically from informal
design artifacts called Flows. Flows are essentially partial orders on system events, such as
sending and receiving of messages, that architects typically use to conceive the protocols.
These are readily available in design documents and as we show they yield powerful invariants.
The combined CMP+ Flows method is extremely scalable while imposing minimal burden
on the user. Using this method we have verified multiple industrial strength cache coherence
protocols and other co-ordination protocols. To our knowledge no other method has been
used successfully to verify protocols of such sizes.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder 13

3.19 Correctness without Serializabilty: Verifying Transactional
Programs under Snapshot Isolation

Serdar Tasiran (Koc University, Istanbul, TR)

License Creative Commons BY 3.0 Unported license
© Serdar Tasiran

We present a static verification approach for programs running under snapshot isolation
(SI) and similar relaxed transactional semantics. In a common pattern in distributed and
concurrent programs, transactions each read a large portion of shared data, perform local
computation, and then modify a small portion of the shared data. Requiring conflict
serializability in this scenario results in serial execution of transactions or worse, and
performance suffers. To avoid such performance problems, relaxed conflict detection schemes
such as snapshot isolation (SI) are used widely. Under SI, transactions are no longer
guaranteed to be serializable, and the simplicity of reasoning sequentially within a transaction
is lost. In this paper, we present an approach for statically verifying properties of transactional
programs operating under SI. Differently from earlier work, we handle transactional programs
even when they are designed not to be serializable.

In our approach, the user first verifies his program in the static verification tool VCC
pretending that transactions run sequentially. This task requires the user to provide program
annotations such as loop invariants and function pre- and post-conditions. We then apply
a source-to-source transformation which augments the program with an encoding of the
SI semantics. Verifying the resulting program with transformed user annotations and
specifications is equivalent to verifying the original transactional program running under
SI—a fact we prove formally. Our encoding preserves the modularity and scalability of
VCC’s verification approach. We applied our method successfully to benchmark programs
from the transactional memory literature. In each benchmark, we were able to verify the
encoded program without manually providing any extra annotations beyond those required
for verifying the program sequentially. The correctness argument of the sequential versions
generalized to SI, and verification times were similar.

3.20 (Dis)Proof Automation: What We Can Do, What We Could Do
and What Is Needed?

Christoph Weidenbach (MPI für Informatik, Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Christoph Weidenbach

After an introduction to the underlying principles of designing automated reasoning systems,
I discuss FOL(T), the hierarchic combination of a theory T and first-order logic. In particular
for the case where T is a language of arithmetic, e.g., linear rational arithmetic. I show that
this language is expressive enough to represent timed, hybrid, and probabilistic automata.
Superposition-based reasoning delivers a decision procedure for known decidable reasoning
challenges and beyond. The language also strictly generalizes the SMT setting as it considers
universally quantified variables in addition to constants.

13141

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

14 13141 – Formal Verification of Distributed Algorithms

3.21 Efficient Checking of Link-Reversal-Based Concurrent Systems
Josef Widder (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Josef Widder

Joint work of Függer, Matthias; Widder, Josef
Main reference M. Függer, J. Widder, “Efficient checking of link-reversal-based concurrent systems,” in Proc. of

the 23rd Int’l Conf. on Concurrency Theory (CONCUR’12), LNCS, Vol. 7454, pp. 486–499,
Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-32940-1_34

Link reversal is an algorithmic method with various applications. Originally proposed by
Gafni and Bertsekas in 1981 for routing in radio networks, it has been later applied also
to solve concurrency related problems as mutual exclusion, resource allocation, and leader
election. For resource allocation, conflicts can be represented by conflict graphs, and link
reversal algorithms work on these graphs to resolve conflicts. In this talk I explain that
executions of link reversal algorithms on large graphs are similar (a notion which I make
precise) to executions on smaller graphs. This similarity then allows to verify linear time
temporal properties of the large systems, by verifying a smaller one.

4 Panel Discussions

The tentative program included three time slots for discussions. It was intended to have
several working groups in parallel where specific topics would be discussed, and then report
on the outcomes in a joint session. However, just listing the topics for the working groups
sparked a lively discussion, in which most of the participants participated actively. Because
the format of seminar-wide discussions turned out to be fruitful, we decided to stick with
seminar-wide, moderated sessions.

In the first session, participants were asked what they considered the major open questions
in the area of formal verification of distributed algorithms, and what kind of information
from the other community they would need to make progress in this area. We identified
modeling as the most urgent point: While the formal methods community is used to have
a precise description of the object they consider (programming languages, input languages
of model checking tools, etc.), distributed algorithms are typically given in pseudo code
only. This formalization gap appeared to be crucial, and it was decided to devote the second
discussion session to this subject. The final discussion session was devoted to the next steps
we could take to bring the concerned communities together. We list the major topics that
were discussed:

4.1 Session 1: What are the problems?
There exists a large variety of modeling frameworks, corresponding to different classes
of systems. The DA community usually presents models and algorithms informally
(using text and pseudo-code), whereas FM researchers and tools require formal semantics
definitions. Is formalization just a tedious detail or is it a contribution in itself? Is there
a classification of relevant computational models and their relationships?
A collection of benchmark problems could give some guidance to the FM community.
Different formal methods could tackle these problems at different levels of abstraction,

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-32940-1_34
http://dx.doi.org/10.1007/978-3-642-32940-1_34
http://dx.doi.org/10.1007/978-3-642-32940-1_34
http://dx.doi.org/10.1007/978-3-642-32940-1_34

Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder 15

enabling their comparison over practically relevant case studies. These should include
novel paradigms of the DA field and different application areas. A collection of verified
algorithms, as well as results of verification competitions would help DA researchers
evaluate the potential and the usability of FM methods and tools.
Within the FM community, an important line of research is about the integration of
different techniques such as model checking, proof assistants, SMT solving, etc. Doing
so requires consistent semantic models and raises the issue of trust in the results obtained
in this way.
Beyond the verification of distributed algorithms at a high level of abstraction, issues
of verified implementation of distributed systems, as well as formal assurances on
non-functional properties such as performance or security are of great interest. To
what extent can formal verification play a role in certification processes that are used
in safety-critical settings? Is it possible to obtain guarantees on systems that integrate
verified and unverified components?

4.2 Session 2: Modeling
The main purpose of a formal model is to clearly express the semantics of an algorithm
or system. There is a tradeoff between models expressed in natural language and pseudo-
code (concise and readable but potentially ambiguous) and formal semantics description
(complete and precise but maybe cluttered with too much detail).
Different models are geared towards different purposes. For example, there is a tradeoff
between efficient checking vs. the ease of expressing distributed algorithms.
For distributed algorithms that are intended to operate continually, specifying initial
states can be problematic. For example, there is a subtle difference between the Consensus
problem where all nodes start from scratch, and the repeated Consensus problem where
nodes may start at vastly different times.
The DA community should provide a catalogue of the most important existing models
for distributed algorithms. This includes variations of shared memory vs. message passing
models, round-based vs. asynchronous models, failure models etc. The system model
should be distinguished from the computational model.

4.3 Session 3: Follow-up
A follow-up seminar should be organized in a few years, presenting progress on research
into the issued raised during the seminar. Besides another Dagstuhl seminar, a workshop
gathering researchers from the DA and FM communities could be organized as a satellite
of a major conference, such as FLOC 2014 in Vienna. It would also be useful to raise the
awareness of the topics discussed in this seminar by inviting DA researchers to give talks
at FM conferences, and vice versa.
The topic of models was identified as the most important one, and it would be useful to
work out a catalogue or classification, as mentioned above.
Research about the application of FM methods and tools on interesting distributed
algorithms would benefit from maintaining a list of verified algorithms, e.g. in the form
of a Wiki page to which different people could contribute.

13141

16 13141 – Formal Verification of Distributed Algorithms

Participants

Béatrice Bérard
UPMC, Lab. LIP6 – Paris, FR

Péter Bokor
ALTEN Engineering – Berlin, DE

Borzoo Bonakdarpour
University of Waterloo, CA

Pierre Castéran
University of Bordeaux, FR

Bernadette Charron-Bost
Ecole Polytechnique –
Palaiseau, FR

Marie Duflot
LORIA & INRIA Nancy, FR

Cormac Flanagan
University of California – Santa
Cruz, US

Matthias Függer
TU Wien, AT

Alexey Gotsman
IMDEA Software – Madrid, ES

Serge Haddad
ENS – Cachan, FR

Gerwin Klein
NICTA & UNSW – Sydney, AU

Igor Konnov
TU Wien, AT

Fabrice Kordon
UPMC, Lab. LIP6 – Paris, FR

Akash Lal
Microsoft Research India –
Bangalore, IN

Victor Luchangco
Oracle Corporation –
Burlington, US

Stephan Merz
LORIA – Nancy, FR

Uwe Nestmann
TU Berlin, DE

Thomas Nowak
Ecole Polytechnique –
Palaiseau, FR

Eric Ruppert
York University – Toronto, CA

John Rushby
SRI – Menlo Park, US

Andrey Rybalchenko
TU München, DE

André Schiper
EPFL – Lausanne, CH

Klaus Schneider
TU Kaiserslautern, DE

Philippe Schnoebelen
ENS – Cachan, FR

Wilfried Steiner
TTTech Computertechnik –
Wien, AT

Murali Talupur
Intel SCL – Hillsboro, US

Serdar Tasiran
Koc University – Istanbul, TR

Helmut Veith
TU Wien, AT

Christoph Weidenbach
MPI für Informatik –
Saarbrücken, DE

Jennifer L. Welch
Texas A&M University –
College Station, US

Josef Widder
TU Wien, AT

Karsten Wolf
Universität Rostock, DE

Report from Dagstuhl Seminar 13142

Correct and Efficient Accelerator Programming
Edited by
Albert Cohen1, Alastair F. Donaldson2, Marieke Huisman3, and
Joost-Pieter Katoen4

1 ENS – Paris, FR, Albert.Cohen@inria.fr
2 Imperial College London, GB, alastair.donaldson@imperial.ac.uk
3 University of Twente, NL, Marieke.Huisman@ewi.utwente.nl
4 RWTH Aachen University, DE, katoen@cs.rwth-aachen.de

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13142 “Correct and
Efficient Accelerator Programming”. The aim of this Dagstuhl seminar was to bring together
researchers from various sub-disciplines of computer science to brainstorm and discuss the the-
oretical foundations, design and implementation of techniques and tools for correct and efficient
accelerator programming.

Seminar 1.–4. April, 2013 – www.dagstuhl.de/13142
1998 ACM Subject Classification C.1.4 Processor Architectures: Parallel Architectures, D.1.3

Programming Techniques: Concurrent Programming, D.3.4 Programming Languages: Pro-
cessors – Compilers, Optimization, F.3.1 Logics and Meanings of Programs: Specifying and
Verifying and Reasoning about Programs

Keywords and phrases Accelerator programming, GPUs, Concurrency, Formal verification, Com-
pilers, Memory models, Architecture, Parallel programming models

Digital Object Identifier 10.4230/DagRep.3.4.17
Edited in cooperation with Jeroen Ketema

1 Executive Summary

Albert Cohen
Alastair F. Donaldson
Marieke Huisman
Joost-Pieter Katoen

License Creative Commons BY 3.0 Unported license
© Albert Cohen, Alastair F. Donaldson, Marieke Huisman, and Joost-Pieter Katoen

In recent years, massively parallel accelerator processors, primarily GPUs, have become
widely available to end-users. Accelerators offer tremendous compute power at a low cost, and
tasks such as media processing, simulation and eye-tracking can be accelerated to beat CPU
performance by orders of magnitude. Performance is gained in energy efficiency and execution
speed, allowing intensive media processing software to run in low-power consumer devices.
Accelerators present a serious challenge for software developers. A system may contain one
or more of the plethora of accelerators on the market, with many more products anticipated
in the immediate future. Applications must exhibit portable correctness, operating correctly
on any configuration of accelerators, and portable performance, exploiting processing power
and energy efficiency offered by a wide range of devices.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Correct and Efficient Accelerator Programming, Dagstuhl Reports, Vol. 3, Issue 4, pp. 17–33
Editors: Albert Cohen, Alastair F. Donaldson, Marieke Huisman, and Joost-Pieter Katoen

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13142
http://dx.doi.org/10.4230/DagRep.3.4.17
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

18 13142 – Correct and Efficient Accelerator Programming

The seminar focussed on the following areas:
Novel and attractive methods for constructing system-independent accelerator programs;
Advanced code generation techniques to produce highly optimised system-specific code
from system-independent programs;
Scalable static techniques for analysing system-independent and system-specific accelerator
programs both qualitatively and quantitatively.

The seminar featured five tutorials providing an overview of the landscape of accelerator
programming:

Architecture – Anton Lokhmotov, ARM
Programming models – Lee Howes, AMD
Compilation techniques – Sebastian Hack, Saarland University
Verification – Ganesh Gopalakrishnan, University of Utah
Memory models – Jade Alglave, University College London

In addition, there were short presentations from 12 participants describing recent results
or work-in-progress in these areas, and two discussion sessions:

Domain specific languages for accelerators;
Verification techniques for GPU-accelerated software.

Due to the “correctness” aspect of this seminar, there was significant overlap of interest
with a full week seminar on Formal Verification of Distributed Algorithms running in parallel.
To take advantage of this overlap a joint session was organised, featuring a talk on verification
of GPU kernels by Alastair Donaldson, Imperial College London (on behalf of the Correct
and Efficient Accelerator Programming seminar) and a talk on GPU-accelerated runtime
verification by Borzoo Bonakdarpour, University of Waterloo, on behalf of the Formal
Verification of Distributed Algorithms seminar.

Albert Cohen, Alastair F. Donaldson, Marieke Huisman, and Joost-Pieter Katoen 19

2 Table of Contents

Executive Summary
Albert Cohen, Alastair F. Donaldson, Marieke Huisman, and Joost-Pieter Katoen . 17

Overview of Talks
Weak Memory Models: A Tutorial
Jade Alglave . 21

Estimating the WCET of GPU-Accelerated Applications using Hybrid Analysis
Adam Betts . 21

GPUVerify: A Verifier for GPU Kernels
Alastair F. Donaldson . 22

Bulk Synchronous Streaming Model for the MPPA-256 Manycore Processor
Benoît Dupont de Dinechin . 22

Analysis of Shared Memory and Message Passing Parallel Programs
Ganesh L. Gopalakrishnan . 23

Compilation Techniques for Accelerators Tutorial
Sebastian Hack . 23

Accelerator Programming Models
Lee Howes . 24

Specification and Verification of GPGPU Programs using Permission-Based Separa-
tion Logic
Marieke Huisman . 24

Interleaving and Lock-Step Semantics for Analysis and Verification of GPU Kernels
Jeroen Ketema . 25

On the Correctness of the SIMT Execution Model of GPUs
Alexander Knapp . 25

Using early CARP technology to implement BLAS on the Mali GPU series
Alexey Kravets . 26

Accelerator architectures and programming
Anton Lokhmotov . 26

Efficient Code Generation using Algorithmic Skeletons and Algorithmic Species
Cedric Nugteren . 26

Formal Analysis of GPU Programs with Atomics via Conflict-Directed Delay-
Bounding
Zvonimir Rakamarić . 27

Code Generation for GPU Accelerators in the Domain of Image Preprocessing
Oliver Reiche . 27

Compositional Analysis of Concurrent Timed Systems with Horn Clauses and
Interpolants (work in progress)
Philipp Rümmer . 28

Performance Portability Investigations for OpenCL
Ana Lucia Varbanescu . 28

13142

20 13142 – Correct and Efficient Accelerator Programming

Accelerating Algorithms for Biological Models and Probabilistic Model Checking
Anton Wijs . 29

Discussion Sessions . 30

Domain specific languages for accelerators
Albert Cohen . 30

Verification techniques for GPU-accelerated software
Alastair F. Donaldson . 30

Participants . 33

Albert Cohen, Alastair F. Donaldson, Marieke Huisman, and Joost-Pieter Katoen 21

3 Overview of Talks

3.1 Weak Memory Models: A Tutorial
Jade Alglave (University College London, GB)

License Creative Commons BY 3.0 Unported license
© Jade Alglave

In this talk I presented several behaviours observed on current processors such as Intel x86,
IBM Power and ARM. These behaviours demonstrate that one cannot assume Sequential
Consistency (SC) to model executions of concurrent programs.

I also explained which synchronisation one should use to enforce an SC behaviour on
these examples. I concluded with an excerpt of the PostgreSQL database software which
features two idioms that do not behave in an SC manner if not synchronised properly.

3.2 Estimating the WCET of GPU-Accelerated Applications using
Hybrid Analysis

Adam Betts (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Adam Betts

Joint work of Betts, Adam; Donaldson, Alastair F.

Gaining good performance from applications running on GPUs remains very challenging.
One approach is to generate several kernel variants and then choose the best among this set
using performance analysis techniques. Most approaches to performance analysis focus on
average-case behaviour, but this sometimes yields ties between several kernels. In this talk,
we present work performed in the context of the CARP project which focuses on estimating
an outlier execution time, namely the Worst-Case Execution Time (WCET), in order to
break ties and to estimate performance from a worst-case perspective. The technique we
present is based on a mixture of dynamic and static analyses, which operates by collecting
execution times of small program segments from measurements and then combining the
data using a static program model. The talk focuses on extensions needed to incorporate
concurrency into the timing model, in particular how to model the stalls experienced by
warps (groups of threads on NVIDIA hardware) while other warps are in flight. We present
our tool to estimate the WCET of GPU kernels, which is based on GPGPU-sim, and results
when analysing several benchmarks from the CUDA SDK.

This work was supported by the EU FP7 STREP project CARP.

13142

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

22 13142 – Correct and Efficient Accelerator Programming

3.3 GPUVerify: A Verifier for GPU Kernels
Alastair F. Donaldson (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Alastair F. Donaldson

Joint work of Betts, Adam; Chong, Nathan; Collingborne, Peter; Donaldson, Alastair F.; Ketema, Jeroen;
Kyshtymov, Egor; Qadeer, Shaz; Thomson, Paul;

Main reference A. Betts, N. Chong, A.F. Donaldson, S. Qadeer, P. Thomson, “GPUVerify: a Verifier for GPU
Kernels,” in Proc. of the 27th Annual ACM SIGPLAN Conf. on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’12), pp. 113–132, ACM, 2012.

URL http://dx.doi.org/10.1145/2398857.2384625

The motivation for general-purpose computing on using graphics processing units (GPUs) is
performance, thus GPU programmers work hard to write highly-optimised low-level kernels
in OpenCL and CUDA. It is hard to write such optimised code correctly, thus there is wide
scope for bugs, especially data races, in GPU kernels.

In this talk I presented GPUVerify, a technique and tool for verifying race-freedom of
GPU kernels. GPUVerify performs analysis of GPU kernels by reducing the verification task
to that of verifying a sequential program. This is achieved by exploiting (a) the fact that
data race-freedom is a pairwise property, allowing a reduction to an arbitrary pair of threads,
and (b) the observation that as long as data races are not tolerated, it is sufficient to consider
a single, canonical schedule between pairs of barriers. Combined with source-level predicated
execution, this allows a GPU kernel to be transformed into a sequential program that models
round-robin execution of a pair of threads, equipped with instrumentation to perform data
race detection. Proving data race freedom then amounts to proving correctness of this
sequential program; in GPUVerify this is achieved by reusing the Boogie verification system.

During the talk I gave a demo of GPUVerify, and also illustrated manually how the
automatic translation into Boogie is achieved.

This work was supported by the EU FP7 STREP project CARP.

3.4 Bulk Synchronous Streaming Model for the MPPA-256 Manycore
Processor

Benoît Dupont de Dinechin (Kalray – Orsay, FR)

License Creative Commons BY 3.0 Unported license
© Benoît Dupont de Dinechin

The Kalray MPPA-256 is an integrated manycore processor manufactured in 28nm CMOS
technology that consumes about 10W for 230GFLOPS at 400MHz. Its 256 data processing
cores and 32 system cores are distributed across 16 shared-memory clusters and 4 I/O
subsystems, themselves connected by two networks-on-chip (NoCs). Each Kalray core
implements a general-purpose Very Long Instruction Word (VLIW) architecture with 32-bit
addresses, a 32-bit/64-bit floating-point unit, and a memory management unit.

This talk explains the motivations and the directions for the development of a streaming
programming model for the MPPA-256 processor. Like the IBM Cell/BE or the Intel SCC,
the Kalray MPPA-256 architecture is based on clusters of general-purpose cores that share a
local memory, where remote memory accesses require explicit communication. By comparison,
GP-GPU architectures allow direct access to the global memory and hide the resulting latency
with massive hardware multithreading. On-going port of OpenCL to the MPPA-256 processor

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2398857.2384625
http://dx.doi.org/10.1145/2398857.2384625
http://dx.doi.org/10.1145/2398857.2384625
http://dx.doi.org/10.1145/2398857.2384625
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Albert Cohen, Alastair F. Donaldson, Marieke Huisman, and Joost-Pieter Katoen 23

may only reach limited performances and gives up run-time predictability, as the global
memory has to be emulated by software with a Distributed Shared Memory (DSM) technique.

The alternative we propose is to develop a stream-oriented programming model called
‘Bulk Synchronous Streaming’ (BSS), by adapting the classic Bulk Synchronous Parallel
(BSP) model. The BSP model belongs to the family of symmetric parallel programming
models for distributed memory supercomputers, like Cray SHMEM and Co-Array Fortran.
The adaptations envisioned for the BSS include: maintaining the global data objects in the
DDR memory, instead of distributing them across the local memories; enabling execution of
BSP-like programs with a number of processing images larger than the number of clusters, by
streaming their execution onto the available clusters; extending the precise BSP performance
model to the BSS model. The result can be characterized as a generalized vector execution
model, since the global data updates are not visible until after the superstep synchronizations.

3.5 Analysis of Shared Memory and Message Passing Parallel Programs
Ganesh L. Gopalakrishnan (University of Utah, US)

License Creative Commons BY 3.0 Unported license
© Ganesh L. Gopalakrishnan

In this tutorial, a general introduction to shared memory and distributed memory program-
ming is provided. It is important to have well-structured concurrent systems so that their
debugging becomes easier. After a discussion of the general nature of large-scale computa-
tional frameworks such as Utah’s Uintah system, the discussion shifts to the specifics of GPU
programming. The University of Utah GPU formal correctness checking tool GKLEE. Various
issues pertaining to the correctness of GPU programs are discussed including race detection,
resource utilization checking using symbolic methods, and finally memory consistency issues
and floating-point accuracy. A discussion of message passing verification around the ISP tool
then follows. The tutorial ends with a discussion of how to make tangible impact by lowing
expectations in a productive way: pick problems such as determinism and reproducibility if
overall correctness is too difficult to achieve, or to even state clearly.

3.6 Compilation Techniques for Accelerators Tutorial
Sebastian Hack (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
© Sebastian Hack

I gave an overview over four compilation techniques that are relevant to accelerators.
Type-based vectorization uses the type system to guide the compiler’s vectorization

choices. This way, SIMD programming can be done in a portable yet efficient way because
the programmer is relieved of using intrinsics or other half-hearted language extensions.

Another approach uses abstract interpretation to decide which parts of a kernel have to
be vectorized or not. This is important for accelerators that use explicit SIMD instruction
sets. On such machines, retaining scalar computations is essential to mediate the overhead
of vectorization.

The polyhedral model uses polyhedra to represent loop nests of a certain kind. Using
integer linear programming techniques, many existing loop transformations can be rephrased

13142

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

24 13142 – Correct and Efficient Accelerator Programming

to the problem of finding an affine schedule of a dependence graph annotated with dependence
polyhedra and iteration space polyhedra.

Finally, I briefly spoke about the rapid development of domain-specific languages (DSLs)
using language virtualization. Here, one embeds the DSL in a host language by hijacking its
syntactic analysis. On top of that a custom compiler infrastructure is being built which then
generates code for accelerators.

3.7 Accelerator Programming Models
Lee Howes (AMD – Sunnyvale, US)

License Creative Commons BY 3.0 Unported license
© Lee Howes

Main reference B.R. Gaster, L. Howes, “Can GPGPU Programming be Liberated from the Data Parallel
Bottleneck?” IEEE Computer, 45(8):42–52, IEEE, 2012.

URL http://dx.doi.org/10.1109/MC.2012.257

Accelerator devices have become increasingly capable over time and will continue to do so.
With increasing flexibility of scheduling, shared virtual memory across SoCs, device context
switching and more there is a much wider range of programming models that such devices
will be able to support. In this talk we discuss some of the limitations of current accelerator
programming models that have arisen due to limitations in hardware capabilities or early
design decisions, and some ways they may evolve to become more flexible. If time allows we
will also look at some of the current leading edge models to give a broader view of what is
currently available.

3.8 Specification and Verification of GPGPU Programs using
Permission-Based Separation Logic

Marieke Huisman (University of Twente, NL)

License Creative Commons BY 3.0 Unported license
© Marieke Huisman

Joint work of Huisman, Marieke; Mihelčić, Matej

Graphics Processing Units (GPUs) are increasingly used for general-purpose applications
because of their low price, energy efficiency and computing power. Considering the importance
of GPU applications, it is vital that the behaviour of GPU programs can be specified and
proven correct formally. This talk presents our ideas how to verify GPU programs written in
OpenCL, a platform-independent low-level programming language. Our verification approach
is modular, based on permission-based separation logic. We present the main ingredients of
our logic, and illustrate its use on several example kernels. We show in particular how the
logic is used to prove data-race- freedom and functional correctness of GPU applications.

This work was supported by the EU FP7 STREP project CARP.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/MC.2012.257
http://dx.doi.org/10.1109/MC.2012.257
http://dx.doi.org/10.1109/MC.2012.257
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Albert Cohen, Alastair F. Donaldson, Marieke Huisman, and Joost-Pieter Katoen 25

3.9 Interleaving and Lock-Step Semantics for Analysis and Verification
of GPU Kernels

Jeroen Ketema (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Jeroen Ketema

Joint work of Collingbourne, Peter; Donaldson, Alastair F.; Ketema, Jeroen; Qadeer, Shaz
Main reference P. Collingbourne, A.F. Donaldson, J. Ketema, S. Qadeer, “Interleaving and Lock-Step Semantics

for Analysis and Verification of GPU Kernels,” in Proc. of the 22nd European Symp. on
Programming (ESOP 2013), LNCS, Vol. 7792, pp. 270–289, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-37036-6_16

In this talk I present a semantics of GPU kernels the parallel programs that run on Graphics
Processing Units (GPUs). We provide a novel lock-step execution semantics for GPU kernels
represented by arbitrary reducible control flow graphs and compare this semantics with a
traditional interleaving semantics. We show for terminating kernels that either both semantics
compute identical results or both behave erroneously.

The result induces a method that allows GPU kernels with arbitrary reducible control
flow graphs to be verified via transformation to a sequential program that employs predicated
execution. We implemented this method in the GPUVerify tool and experimentally evaluated
it by comparing the tool with the previous version of the tool based on a similar method for
structured programs, i.e., where control is organised using if and while statements.

This work was supported by the EU FP7 STREP project CARP.

3.10 On the Correctness of the SIMT Execution Model of GPUs
Alexander Knapp (Universität Augsburg, DE)

License Creative Commons BY 3.0 Unported license
© Alexander Knapp

Joint work of Knapp, Alexander; Habermaier, Axel; Ernst, Gidon
Main reference A. Habermaier, A. Knapp, “On the Correctness of the SIMT Execution Model of GPUs,” in Proc.

of the 21st European Symposium on Programming Languages and Systems (ESOP’12), LNCS,
Vol. 7211, pp. 316–335, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-28869-2_16

GPUs use a single instruction, multiple threads (SIMT) execution model that executes
batches of threads in lockstep. If the control flow of threads within the same batch diverges,
the different execution paths are scheduled sequentially; once the control flows reconverge,
all threads are executed in lockstep again. Several thread batching mechanisms have been
proposed, albeit without establishing their semantic validity or their scheduling properties. To
increase the level of confidence in the correctness of GPU-accelerated programs, we formalize
the SIMT execution model for a stack-based reconvergence mechanism in an operational
semantics and prove its correctness by constructing a simulation between the SIMT semantics
and a standard interleaved multi-thread semantics. We discuss an implementation of the
semantics in the K framework and a formalization of the correctness proof in the theorem
prover KIV. We also demonstrate that the SIMT execution model produces unfair schedules
in some cases.

13142

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-37036-6_16
http://dx.doi.org/10.1007/978-3-642-37036-6_16
http://dx.doi.org/10.1007/978-3-642-37036-6_16
http://dx.doi.org/10.1007/978-3-642-37036-6_16
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-28869-2_16
http://dx.doi.org/10.1007/978-3-642-28869-2_16
http://dx.doi.org/10.1007/978-3-642-28869-2_16
http://dx.doi.org/10.1007/978-3-642-28869-2_16

26 13142 – Correct and Efficient Accelerator Programming

3.11 Using early CARP technology to implement BLAS on the Mali
GPU series

Alexey Kravets (ARM Ltd. – Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Alexey Kravets

Joint work of Kravets, Alexey; van Haastregt, Sven; Lokhmotov, Anton

We have demonstrated how early CARP technology can implement BLAS (Basic Linear
Algebra Subprograms) on accelerators. We presented a high-level (DSL) description of a
BLAS subroutine and PENCIL (Platform-Neutral Compute Intermediate Language) code
for this subroutine. Finally we showed how OpenCL code could be generated through the
DSL-PENCIL workflow.

This work was supported by the EU FP7 STREP project CARP.

3.12 Accelerator architectures and programming
Anton Lokhmotov (ARM Ltd. – Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Anton Lokhmotov

Special-purpose processors can outperform general-purpose processors by orders of magnitude,
importantly, in terms of energy efficiency as well as execution speed. This talk overviews
the key architectural techniques used in parallel programmable accelerators such as GPUs:
vector processing and fine-grained multithreading, and challenges associated with correct
and efficient accelerator programming.

3.13 Efficient Code Generation using Algorithmic Skeletons and
Algorithmic Species

Cedric Nugteren (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Cedric Nugteren

Joint work of Nugteren, Cedric; Corporaal, Henk
Main reference C. Nugteren, P. Custers, H. Corporaal, “Algorithmic species: A classification of affine loop nests

for parallel programming,” ACM Transactions on Architecture and Code Optimization (TACO),
9(4), 40 pp., ACM, 2013.

URL http://dx.doi.org/10.1145/2400682.2400699

We presented a technique to fully automatically generate efficient and readable code for
parallel processors. We base our approach on skeleton-based compilation and ‘algorithmic
species’, an algorithm classification of program code. We use a tool to automatically annotate
C code with species information where possible. The annotated program code is subsequently
fed into the skeleton-based source-to-source compiler ‘Bones’, which generates OpenMP,
OpenCL or CUDA code. This results in a unique approach, integrating a skeleton-based
compiler for the first time into an automated compilation flow. We demonstrated the benefits
of our approach using the PolyBench suite by presenting average speed-ups of 1.4x and 1.6x
for CUDA kernel code compared to PPCG and Par4All, two state-of-the-art polyhedral
compilers.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2400682.2400699
http://dx.doi.org/10.1145/2400682.2400699
http://dx.doi.org/10.1145/2400682.2400699
http://dx.doi.org/10.1145/2400682.2400699

Albert Cohen, Alastair F. Donaldson, Marieke Huisman, and Joost-Pieter Katoen 27

3.14 Formal Analysis of GPU Programs with Atomics via
Conflict-Directed Delay-Bounding

Zvonimir Rakamarić (University of Utah, US)

License Creative Commons BY 3.0 Unported license
© Zvonimir Rakamarić

Joint work of Chiang, Wei-Fan; Gopalakrishnan, Ganesh; Li, Guodong; Rakamarić, Zvonimir
Main reference W.-F. Chiang, G. Gopalakrishnan, G. Li, Z. Rakamaric, “Formal Analysis of GPU Programs with

Atomics via Conflict-Directed Delay-Bounding,” in Proc. of the 5th NASA Formal Methods
Symposium (NFM’13), LNCS, Vol. 7871, pp. 213–228, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-38088-4_15

GPU based computing has made significant strides in recent years. Unfortunately, GPU
program optimizations can introduce subtle concurrency errors, and so incisive formal bug-
hunting methods are essential. This paper presents a new formal bug-hunting method for
GPU programs that combine barriers and atomics. We present an algorithm called Conflict-
directed Delay-bounded scheduling algorithm (CD) that exploits the occurrence of conflicts
among atomic synchronization commands to trigger the generation of alternate schedules;
these alternate schedules are executed in a delay-bounded manner. We formally describe
CD, and present two correctness checking methods, one based on final state comparison, and
the other on user assertions. We evaluate our implementation on realistic GPU benchmarks,
with encouraging results.

3.15 Code Generation for GPU Accelerators in the Domain of Image
Preprocessing

Oliver Reiche (Universität Erlangen-Nürnberg, DE)

License Creative Commons BY 3.0 Unported license
© Oliver Reiche

Joint work of Reiche, Oliver; Membarth, Richard; Hannig, Frank; Teich, Jürgen

This talk presented the Heterogeneous Image Processing Acceleration (HIPAcc) Framework
that allows automatic code generation for algorithms from the domain of image preprocessing
on GPU accelerators. By decoupling the algorithm from its schedule in a domain-specific
language (DSL), efficient code can be generated that leverages the computational power of
such accelerators. The decoupling allows to map the algorithm to the deep memory hierarchy
found in today’s GPUs based on domain knowledge and an architecture model of the target
machine. Based on the same algorithm description, tailored code variants can be generated
for different target architectures, improving programmer productivity significantly. The
generated low-level CUDA, OpenCL and Renderscript codes allow to achieve competitive
performance on GPU accelerators from NVIDIA, AMD and ARM compared to hand written
codes while preserving high productivity and portability.

13142

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-38088-4_15
http://dx.doi.org/10.1007/978-3-642-38088-4_15
http://dx.doi.org/10.1007/978-3-642-38088-4_15
http://dx.doi.org/10.1007/978-3-642-38088-4_15
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

28 13142 – Correct and Efficient Accelerator Programming

3.16 Compositional Analysis of Concurrent Timed Systems with Horn
Clauses and Interpolants (work in progress)

Philipp Rümmer (Uppsala University, SE)

License Creative Commons BY 3.0 Unported license
© Philipp Rümmer

Joint work of Hojjat, Hossein; Kuncak, Viktor; Rümmer, Philipp; Subotic, Pavle; Yi, Wang

Timed automata are a well established theory for modelling and verifying real-time systems,
with many applications both in industrial and academic context. Although model checking of
timed automata has been studied extensively during the last two decades, scalability of tools
for analysing timed automata remains a concern, in particular when applied to instances
of industrial size. When verifying networks of (concurrent) timed automata, the size of the
combined state space can be a limiting factor. In this paper we present an interpolation-based
predicate abstraction framework which encodes timed automata as sets of Horn clauses, with
the help of Owicki-Gries and Rely-Guarantee encoding schemes.

3.17 Performance Portability Investigations for OpenCL
Ana Lucia Varbanescu (TU Delft, NL)

License Creative Commons BY 3.0 Unported license
© Ana Lucia Varbanescu

Joint work of Fang, Jianbin; Shen, Jie; Varbanescu, Ana Lucia

Multi- and many-core processors have become ubiquitous, as we — as software designers and
developers — find them in all modern devices, from mobile phones to desktops, servers, and
supercomputers. Their goal is to accelerate software applications, sometimes with additional
constraints (like low power consumption or real-time guarantees).

To program these platforms, the users often use native, hardware-centric programming
models, where applications are mapped directly in a platform-friendly form and mapped
in unintuitive ways on the platform. We argue that accelerator programming needs tools
that can raise the programmability (where programmability is a combination of performance,
portability, and productivity). One such tool is OpenCL, a programming model aiming to
tackle the problem of accelerator programming in a standardized way: it exposes a virtual
computing platform to allow for functional portability, uses platform-specific backends to
allow for high performance, and it provides a higher-level model of computation to help
productivity.

In this talk, we present studies for three different performance portability aspects of
OpenCL.

First, we compare the performance of OpenCL to that of alternative languages. When
comparing OpenCL agains CUDA, we find that the results are very similar: 8 out of 12
applications have less than 10% difference in performance when programmed in the two
different models. The remaining applications exhibit either compiler or programmer corner-
cases, which we are able to solve and therefore match the performance of the two languages.
When comparing OpenCL with OpenMP for multi-core CPUs, we expect to find much
larger differences in performance. This is not always the case. In fact, about a third of the
benchmarks we have used (self-made and from the Rodinia benchmark) perform better in
OpenCL, the others being similar or better in OpenMP. In other words, OpenCL codes can
perform well on multi-core CPUs. We are also able to show that when the performance

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Albert Cohen, Alastair F. Donaldson, Marieke Huisman, and Joost-Pieter Katoen 29

diverges significantly in favor of OpenMP, the causes are in the GPU-friendly optimizations
that have been applied to the OpenCL code. Finally, we show how GPU OpenCL codes
can be ported systematically to CPUs, thus gaining a parallel implementation with definite
performance gain, only at the cost of systematic, pseudo-standard code changes. Specifically,
the GPU-friendly optimizations that need undoing are: extreme fine-grained tasks, memory
access patterns for coalescing, local memory usage, and vectorization. We show that these
changes can be done in the form of code specialization, and do not affect the core of the
‘naive’ implementation. Thus, we conclude that OpenCL can be performance portable from
GPUs to CPUs, and the degree of this portability depends on code specialization.

Second, we zoom in on one of the performance gaps between the CPU and GPU versions
of OpenCL: local memory. In theory, using the OpenCL local memory for GPUs is considered
an optimization, while using it on the CPUs is considered a mistake. However, in our
extensive experimental work, we have seen a large variation in the behavior of applications
that use local memory. Therefore, we considered a microbenchmarking approach, where we
tested a whole set (over 40!) memory access patterns and their impact on the performance
of local memory for GPUs and CPUs. The results are stored into a performance database.
Given that we are able to formalize the memory access patters, we are then able to query this
database and find out the predicted impact of using local memory for various applications,
and decide whether applying this optimization will pay off or not. We conclude that such an
approach is a viable alternative for performance prediction for local memory behavior.

Third, we present our contribution in combining the strength of OpenCL on both GPUs
and CPUs: Glinda. Our Glinda framework allows (pseudo-)automated workload distribution
of imbalanced applications on heterogeneous platforms, thus combining (only when needed)
the execution of the same application on both CPUs and GPUs, concurrently. We briefly
discuss the modules of Glinda, focusing more on the workload characterization and the
auto-tuning, and show our results on acoustic ray tracing for fly-over noise. We conclude
that OpenCL’s functional and (partial) performance portability are both instrumental for
such an integrated solution.

3.18 Accelerating Algorithms for Biological Models and Probabilistic
Model Checking

Anton Wijs (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Anton Wijs

Joint work of Bošnački, Dragan; Edelkamp, Stefan; Hilbers, Peter; Ligtenberg, Willem; Odenbrett, Max;
Sulewski, Damian; Wijs, Anton

In this talk, I will discuss two applications using GPU computation capabilities from different
domains. In the first application, biological networks resulting from genetic perturbation
experiments are reduced in order to extract the vital information. We show that this boils
down to computing the transitive reduction of weighted graphs. This can be performed
ideally using GPUs. We explain how an extended version of the Floyd-Warshall algorithm
can be parallelised effectively for the GPU. Through experimentation, we recorded speedups
up to 92 times compared to a sequential implementation.

In the second application, we capitalize on the fact that most of the probabilistic
model checking operations involve matrix-vector multiplication and solving systems of linear
equations. Since linear algebraic operations can be implemented very efficiently on GPGPUs,

13142

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

30 13142 – Correct and Efficient Accelerator Programming

the new parallel algorithms show considerable runtime improvements compared to their
counterparts on standard architectures. We implemented our parallel algorithms on top
of the probabilistic model checker PRISM. The prototype implementation was evaluated
on several case studies in which we observed significant speedup over the standard CPU
implementation of the tool.

References
1 D. Bošnački, S. Edelkamp, D. Sulewski and A.J. Wijs,Parallel Probabilistic Model Check-

ing on General Purpose Graphics Processors, International Journal on Software Tools for
Technology Transfer 13(1):21–35, (2011).

2 D. Bošnački, M.R. Odenbrett, A.J. Wijs, W.P.A. Ligtenberg and P.A.J. Hilbers,Efficient
Reconstruction of Biological Networks via Transitive Reduction on General Purpose Graph-
ics Processors,BMC Bioinformatics 13:281 (2012).

4 Discussion Sessions

4.1 Domain specific languages for accelerators
Albert Cohen (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Albert Cohen

The discussion covered three main questions:
1. Understanding the rationale for using or designing DSLs in the context of hardware

accelerators.
2. Listing the most successful frameworks and illustrations of the approach, sharing and

collecting people’s experience.
3. Digging into the design and implementation of DSLs, including language embedding,

staging, debugging.

The participants came from different horizons and included end-users (applications),
language and compiler designers, and hardware accelerator experts. The field, the motivations,
and experiences appeared to be very diverse. But some fundamentals and general lessons
could be identified, aiming to maximize the usability of hardware accelerators, and to simplify
the design of programming and development flows.

4.2 Verification techniques for GPU-accelerated software
Alastair F. Donaldson (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Alastair F. Donaldson

The aim of this session, involving roughly half the seminar participants, was to brainstorm
the key issues surrounding verification techniques for GPU-accelerated software, to gather
opinions about: the most important kinds of bugs that occur when programming GPUs, how
verification technology might help in optimization of GPU kernels, and what infrastructure
is most appropriate to use in building analysis tools. In additional we discussed a wish list
for future developments in this area.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Albert Cohen, Alastair F. Donaldson, Marieke Huisman, and Joost-Pieter Katoen 31

The following is a rough summary of the discussion.

Bugs affecting GPU programmers

Data races: There was consensus that this is one of the most important classes of defect
to be checked, with anecdotal evidence that engineers working for major GPU vendors
also share this view. We discussed the problem of distinguishing erroneous data races from
benign data races, and the idea of providing annotation facilities so that programmers
could mark certain accesses as participating in benign races, to suppress false positives.
Bugs caused by compiler behaviour related to data races: The discussion of
benign races led to comments that even if the programmer intends a race to occur, this
may lead to unpredictable behaviour from the compiler, since the semantics for racy code
is in general not defined.
Barrier divergence: It was suggested that this is not such a serious class of defect
because it is usually fairly obvious when a barrier has been accidentally placed in non-
uniform conditional code, but that nevertheless it is valuable to have techniques to check
for this issue as barrier divergence can lead to deadlocks.
Bugs inherited from sequential programming: Out-of-bounds accesses, accessing
uninitialised memory, problems related to pointer type casting, etc., are just as problematic
in GPU kernels as in sequential programs.
Floating point issues: We discussed a bit the problems that can arise when discrete de-
cisions are based on floating point computations; how this can lead to subtle problems and
may be affected due to re-association of operations as a result of thread nondeterminism.
We also debated the extent to which there is standardised floating point precision across
architectures, and noted the inclusion of implementation-defined ‘fast’ transcendental
functions in OpenCL.

Using verification techniques to help with code optimisation

The idea of using verification and symbolic execution to check for issues like memory bank
conflicts in CUDA kernels has already been explored through the PUG and GKLEE tools
at the University of Utah. We discussed the possibility for using verification to identify
redundant synchronisation caused by cautious programming; i.e., figuring out that a particular
barrier can be removed without inducing data races.

Infrastructure for building analysis tools

We discussed the advantages and disadvantages of analysis techniques that work at low-
level program representations. Working at a ‘close-to-the-metal’ representation level for
architecture X may help to find subtle bugs related to X, including bugs introduced by
compilers, but may not be meaningful for other architectures. Working at a level such as
LLVM IR allows the reuse of existing infrastructure (in this case CLANG/LLVM), but means
that analysis is being performed with respect to one particular compiler framework, whereas
a kernel may be compiled using a different framework. Source code is a common ancestor for
all architectures, but does not take into account compiler effects at all; additionally source
level analysis carries significant front-end implementation overhead which is avoided when
working at the level of IR. A pragmatic compromise is to perform analysis on the “lowest-level
common ancestor” representation. It was suggested that SPIR might be a suitable candidate.

13142

32 13142 – Correct and Efficient Accelerator Programming

The Ocelot framework1 was also discussed as a promising base on which to build analysis
tools.

Areas for future investigation

The following is a list of ideas and questions related to future work that were raised during
the discussion.

It is likely that future architectures and programming models will allow an increased
level of dynamic memory allocation, meaning that techniques for heap analysis, such as
separation logic, might play a larger role in GPU kernel verification.
Relatedly, we discussed the role of linked data structures in kernel programming, including
tricks programmers use to copy linked data structures into GPU global memory without
re-wiring pointers; this seems like a challenging target for static analysis.
Better techniques for analysis of floating point properties were mentioned several times;
there is also wide demand for this in sequential program analysis.
Can verification techniques be used for program repair, e.g., to suggest where to place
barriers to eliminate data races, or to suggest where to move barriers to avoid barrier
divergence?
Most techniques so far have focussed on lightweight properties such as race-freedom. It
would be interesting to look at functional verification, either of kernels themselves, or
of applications that use kernels. In the latter case, modular verification would require
specifications to be written describing the effects of a kernel.
Race analysis of data-dependent kernels (to reason about, e.g., accesses of the form
A[B[e]] where A and B are shared memory arrays) may require some level of functional
verification, even if this is not the ultimate goal.
It could be interesting and useful to provide a mechanism for programmers to annotate
barriers with light-weight assertions, to specify the intended use of a barrier.
Can static analysis techniques help in understanding performance issues of GPU kernels,
such as the possible gains from offloading, or the worst case execution time of a kernel?
Techniques for cross-checking GPU and CPU implementations of an algorithm could be
very useful; this has been explored to some extent through the KLEE-CL project.
Can abduction be used to infer preconditions for kernels that are sufficient for ensuring
race-freedom (or other properties)?

1 https://code.google.com/p/gpuocelot/

https://code.google.com/p/gpuocelot/

Albert Cohen, Alastair F. Donaldson, Marieke Huisman, and Joost-Pieter Katoen 33

Participants

Jade Alglave
University College London, GB

Adam Betts
Imperial College London, GB

Albert Cohen
ENS – Paris, FR

Christian Dehnert
RWTH Aachen, DE

Dino Distefano
Queen Mary University of
London, GB

Alastair F. Donaldson
Imperial College London, GB

Jeremy Dubreil
Monoidics Ltd. – London, GB

Benoit Dupont de Dinechin
Kalray – Orsay, FR

Ganesh L. Gopalakrishnan
University of Utah, US

Sebastian Hack
Universität des Saarlandes, DE

Lee Howes
AMD – Sunnyvale, US

Marieke Huisman
University of Twente, NL

Christina Jansen
RWTH Aachen, DE

Joost-Pieter Katoen
RWTH Aachen, DE

Jeroen Ketema
Imperial College London, GB

Alexander Knapp
Universität Augsburg, DE

Georgia Kouveli
ARM Ltd. – Cambridge, GB

Alexey Kravets
ARM Ltd. – Cambridge, GB

Anton Lokhmotov
ARM Ltd. – Cambridge, GB

Roland Meyer
TU Kaiserslautern, DE

Cedric Nugteren
TU Eindhoven, NL

Zvonimir Rakamaric
University of Utah, US

Oliver Reiche
Univ. Erlangen-Nürnberg, DE

Philipp Rümmer
Uppsala University, SE

Ana Lucia Varbanescu
TU Delft, NL

Sven Verdoolaege
INRIA, FR

Jules Villard
University College London, GB

Heike Wehrheim
Universität Paderborn, DE

Anton Wijs
TU Eindhoven, NL

Marina Zaharieva-Stojanovski
University of Twente, NL

Dong Ping Zhang
AMD – Sunnyvale, US

13142

Report from Dagstuhl Seminar 13151

Drawing Graphs and Maps with Curves
Edited by
Stephen Kobourov1, Martin Nöllenburg2, and Monique Teillaud3

1 University of Arizona – Tucson, US, kobourov@cs.arizona.edu
2 KIT – Karlsruhe Institute of Technology, DE, noellenburg@kit.edu
3 INRIA Sophia Antipolis – Méditerranée, FR, Monique.Teillaud@inria.fr

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13151 “Drawing
Graphs and Maps with Curves”. The seminar brought together 34 researchers from different
areas such as graph drawing, information visualization, computational geometry, and cartography.
During the seminar we started with seven overview talks on the use of curves in the different
communities represented in the seminar. Abstracts of these talks are collected in this report.
Six working groups formed around open research problems related to the seminar topic and we
report about their findings. Finally, the seminar was accompanied by the art exhibition Bending
Reality: Where Arc and Science Meet with 40 exhibits contributed by the seminar participants.

Seminar 07.–12. April, 2013 – www.dagstuhl.de/13151
1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, G.2.2

Graph Theory, F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases graph drawing, information visualization, computational cartography,

computational geometry
Digital Object Identifier 10.4230/DagRep.3.4.34
Edited in cooperation with Benjamin Niedermann

1 Executive Summary

Stephen Kobourov
Martin Nöllenburg
Monique Teillaud

License Creative Commons BY 3.0 Unported license
© Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud

Graphs and networks, maps and schematic map representations are frequently used in many
fields of science, humanities and the arts. The need for effective visualization and aesthetically
pleasing design is attested by the numerous conferences and symposia on related topics,
and a history that is several centuries old. From Mercator’s maps dating to the 1500’s,
to interactive services such as Google Earth, geography and cartography have generated
and solved many theoretical and practical problems in displaying spatial data effectively
and efficiently. From Euler’s visualization of the bridges of Königsberg in the 1700’s, to
Facebook’s social networks, graph drawing has also proven a fertile area for theoretical and
practical work. More recent is the notion of highly schematized maps and graphs, with the
classic examples of statistical value-by-area cartograms by Raisz and Henry Beck’s London
Tube map, both dating back to the 1930’s.

A key challenge in graph and cartographic visualization is designing cognitively useful
spatial mappings of the underlying data that allow people to intuitively understand the

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Drawing Graphs and Maps with Curves, Dagstuhl Reports, Vol. 3, Issue 4, pp. 34–68
Editors: Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13151
http://dx.doi.org/10.4230/DagRep.3.4.34
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 35

Figure 1 Lombardi graph drawings [1]: Brinkman graph, Dyck graph, and F40 (dodecahedron
double cover).

Figure 2 One of Mark Lombardi’s pieces: George W. Bush, Harken Energy, and Jackson Stevens
ca. 1979–90, 1999. Graphite on paper, 20 × 44 inches. Courtesy Pierogi Gallery and Donald
Lombardi. Photo credit: John Berens.

displayed information. Such work draws on the intellectual history of several traditions,
including information visualization, human-computer interaction, psychology, cognitive
science, graphic design, cartography, and art. The synthesis of relevant ideas from these
fields with new techniques can lead to new and better visualizations to help us keep pace
with the torrents of data confronting us.

Although a great deal is known, both in theory and in practice, about drawing graphs
and maps with straight-line segments, there are few corresponding results about circular-arc
drawings in particular, and curve drawings in general. The use of circular arcs in place of
straight-line segments opens a new chapter in drawing graphs and maps from both theoretical
and practical points of view. Specifically, we are interested in the interplay between practical
requirements of drawing with curves, arising in cartography and GIS, and theoretical results
in computational geometry and graph drawing. Such work is motivated by perception
research which indicates that representing paths with smooth geodesic trajectories aids in
comprehension, as well as by the aesthetic appeal of smooth curves; see Fig. 1 and Fig. 2.

Aims of the Seminar
The main goal of this seminar was to bring together researchers with interests in drawing
graphs and maps with curves coming from information visualization, psychology, cognitive
science, human-computer interaction, graph drawing, computational geometry, cartography,
and GIS. It follows in a tradition of several previous similarly structured Dagstuhl seminars

13151

36 13151 – Drawing Graphs and Maps with Curves

on graph drawing and map visualization. From April 7th to April 12th a group of 34 junior
and senior researchers from eight different countries gathered in Dagstuhl. Being a small
seminar with a target participation of 30 persons, the seminar was fully booked, which shows
that this seemingly narrow topic still raises a lot of interest in the different communities.
We all came together to discuss open research questions and engage in new collaborations
around visualizations that replace straight lines with circular arcs and curves. This topic
opens a great deal of theoretical and practical possibilities and with this in mind, the specific
aims of the Dagstuhl seminar were:

To learn about the state of the art of the use of curves in the different research areas. We
invited a small number of survey lectures to define a common ground for interdisciplinary
work.
To organize an exhibition of art and visual designs on the common theme of curves
contributed by participants and artists, and use this to stimulate discussion.
To identify specific theoretical and practical open problems that need to be solved in
order to make it possible to draw graphs and maps with circular arcs and curves.
To form smaller working groups around some of the identified problems and to initiate a
collaborative research process for finding answers and solutions to these problems.
To report about the progress made in the working groups in a plenary session for getting
feedback and further input from members of the other groups.
To continue the joint research efforts beyond the seminar week and eventually publish
those results.

Achievements of the Seminar
The achievements in the seminar were numerous and varied. The subsequent chapters of this
report summarize the more important ones.

1. On Monday and Tuesday, we enjoyed seven survey lectures; see Section 3 for the abstracts.
David Eppstein opened with a broad overview of the use of curves in visualization of graphs
and networks. Günter Rote talked about algorithms for approximating polygonal curves
by simpler curves and sequences of biarcs. Sylvain Lazard illustrated connections with
algebra and geometry when dealing with curves. Jo Wood surveyed the use of curves in
cartography and information visualization. Helen Purchase discussed perception theories
and empirical studies on the use of curves in visualization, and Maxwell Roberts discussed
the question whether curvilinear metro maps have cognitive benefits over traditional
straight-line schematic maps. Finally, Monique Teillaud and Michael Hemmer overviewed
the history of the open source project CGAL, the Computational Geometry Algorithms
Library, and then discussed specific CGAL packages that are relevant for drawing circular
arcs and smooth algebraic curves. Beyond the survey and review talks, we also heard a
presentation by Wouter Meulemans about the use of curved schematization of geometric
shapes, where the results were obtained via a user study of the participants in the seminar.

2. We also had two short impromptu presentations and software demos. In particular,
Günter Rote presented an ipelet to transform polygons into splines in the drawing editor
ipe. Jan-Henrik Haunert reported about work in progress and showed a demo on morphing
polygonal lines so that edge lengths and angles behave as consistently as possible over
time.

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 37

3. A number of relevant open problems were formulated early in the seminar and six working
groups formed around some of the problems. The groups then worked by themselves,
formalizing and solving their specific theoretical and practical challenges. Section 4
contains the working group reports summarizing the problem and sketching the current
progress made by the groups. Below is a list of the working group topics.
a. Smooth Orthogonal Drawings: What is the complexity of recognizing whether a

given 4-planar graph admits a smooth orthogonal drawing of edge complexity 1?
b. Confluent Drawing: What is the complexity of determining whether a given graph

has a so-called strict confluent drawing?
c. Automated Evaluation of Metro Map Usability: What are good, objective,

quantifiable criteria by which curvilinear metro maps can be evaluated? Can such
criteria be used so that linear maps can likewise be compared both with each other
and also with curvilinear maps?

d. Universal Point Sets for Planar Graph Drawings with Circular Arcs: What
can be said about universal point sets for drawing planar graphs if curves are used
instead of straight-line segments?

e. Labeling Curves with Curved Labels: How can points on a smooth curve be
labeled automatically using curved labels?

f. Graphs with Circular Arc Contact Representation: Which graphs can be
represented by contacts of circular arcs?

The remaining open problems collected during the seminar are listed in Section 5.
4. We had an excellent exhibition entitled “Bending Reality: Where Arc and Science Meet”;

see Section 6. This exhibition is the third one in a series of exhibitions that accompany
Dagstuhl seminars where aesthetics and art are naturally part of the scientific topics. It
was on display from April 8 to April 21, 2013. Moreover, for the first time in Dagstuhl
history, this exhibition is made permanently available as a virtual exhibition that can be
accessed at http://www.dagstuhl.de/ueber-dagstuhl/kunst/13151.

The last three days of the seminar were dedicated to working group efforts. Several of
the groups kept their focus on the original problems as stated in the open problem session,
while other groups modified and expanded the problems; see Section 4. On the last day of
the seminar we heard progress reports from all groups. The results of two of the groups have
recently been accepted to international conferences, and we are expecting further research
publications to result directly from the seminar.

Arguably the best, and most-appreciated, feature of the seminar was the opportunity
to engage in discussion and interactions with experts in various fields with shared passion
about curves. The aforementioned exhibition “Bending Reality” helped make the topics
of the seminar more visible and raised new questions. In summary, we regard the seminar
as a great success. From the positive feedback that we got it is our impression that the
participants enjoyed the unique scientific atmosphere at Schloss Dagstuhl and profited from
the scientific program. We are grateful for having had the opportunity to organize this
seminar and thank the scientific, administrative, and technical staff at Schloss Dagstuhl. We
also thank Benjamin Niedermann for helping us to put this report together.

References
1 Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov, and

Martin Nöllenburg. Lombardi drawings of graphs. J. Graph Algorithms and Applications,
16(1):85–108, 2012.

13151

http://www.dagstuhl.de/ueber-dagstuhl/kunst/13151

38 13151 – Drawing Graphs and Maps with Curves

2 Table of Contents

Executive Summary
Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 34

Overview of Talks
A Brief History of Curves in Graph Drawing
David Eppstein . 40

Algorithms for Curve Approximation
Günter Rote . 47

Algebraic Curves in Computational Geometry
Sylvain Lazard . 47

Curved Lines in Cartography and Information Visualization
Jo Wood . 48

Some Brief Notes on Perceptual Theories — in Relation to Empirical Studies
Helen C. Purchase . 48

Do We Need Curvilinear Metro Maps?
Maxwell J. Roberts . 49

Curves in CGAL
Michael Hemmer and Monique Teillaud . 49

Curved Schematization – User Study Results
Wouter Meulemans . 49

Working Groups
Smooth Orthogonal Drawings
Michael A. Bekos, Martin Gronemann, and Sergey Pupyrev 50

Confluent Drawing
David Eppstein, Danny Holten, Maarten Löffler, Martin Nöllenburg, Bettina
Speckmann, and Kevin Verbeek . 52

Automated Evaluation of Metro Map Usability
Michael Hemmer, Wouter Meulemans, Lev Nachmanson, Helen Purchase, Andreas
Reimer, Max Roberts, Günter Rote, and Kai Xu 53

Universal Point Sets for Planar Graph Drawings with Circular Arcs
Patrizio Angelini, David Eppstein, Fabrizio Frati, Michael Kaufmann, Sylvain
Lazard, Tamara Mchedlidze, Monique Teillaud, and Alexander Wolff 55

Labeling Curves with Curved Labels
Jan-Henrik Haunert, Herman Haverkort, Benjamin Niedermann, Arlind Nocaj,
Aidan Slingsby, and Jo Wood . 57

Graphs with Circular Arc Contact Representation
David Eppstein, Éric Fusy, Stephen Kobourov, André Schulz, and Torsten Ueckerdt 59

Open Problems
Drawing r-partite hypergraphs
Günter Rote . 61

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 39

Characterization of Planar Lombardi Graphs
David Eppstein . 61

Small Path Covers in Planar Graphs
André Schulz . 61

Self-approaching Networks on Planar Point Sets
Fabrizio Frati . 62

Improving Curved Drawings with Edge Direction and Curvature Optimization
Kai Xu . 63

Improving Graph Readability by Spatial Distortion of Node-Link-Based Graph
Depictions within Geographical Contexts
Maxwell J. Roberts . 63

Exhibition: Bending Reality
Maxwell J. Roberts

Curved Annotations of the World . 65

Curving the World . 65

Early Metro Maps . 65

Metro Maps Using Freeform Béziers . 66

Metro Maps Using Concentric Circles . 66

Curved Relationships . 66

Mathematical Abstractions . 66

Participants . 68

13151

40 13151 – Drawing Graphs and Maps with Curves

3 Overview of Talks

3.1 A Brief History of Curves in Graph Drawing
David Eppstein (University California – Irvine)

License Creative Commons BY 3.0 Unported license
© David Eppstein

“It is not the right angle that attracts me, nor the straight line, hard and inflexible,
created by man. What attracts me is the free and sensual curve—the curve that I
find in the mountains of my country, in the sinuous course of its rivers, in the body of
the beloved woman.”

—Oscar Niemeyer [45]

3.1.1 Early Directions

Hand-generated graph drawings have long used curves, independently of graph drawing
research. Examples can be found, for instance, in the works of Listing [38] and Peterson [46].
Mark Lombardi (1951–2000) raised hand-made curved graph drawings to an art form with
his diagrams of connections between the actors in global financial, criminal, and political
conspiracies, or as he called them, narrative structures [31]. Hand-drawn graphs have also
been the subject of graph drawing research: Plimmer et al. [48] describe techniques for the
automated rearrangement of hand-drawn graphs, taking care to preserve the features that
make these graphs look hand-drawn such as the curvature of their edges.

The earliest research on the mathematics and algorithmics of curved graph drawing
concerned a drawing style that is now called an arc diagram. These are drawings in which the
vertices are placed on a line, and the edges are drawn on one or more semicircles, either above
or below the line. Drawings with these styles were first used by Saaty [54] and Nicholson [44]
as a way to formalize and attempt to solve the problem of minimizing crossing numbers
of graphs. Finding the minimum number of crossings of a graph in this style turns out
to be NP-hard [41], although if crossing-free diagrams exist they may be found by solving
a 2-satisfiability problem once the vertex ordering has been determined [17]. Djidjev and
Vrt’o [10] and Cimikowski [8] developed heuristics to reduce the number of crossings in
drawings of this type without guaranteeing to find the minimum. For st-planar graphs (and
also for undirected planar graphs) it is always possible to find drawings in this style in which
edges are drawn as smooth curves formed of at most two semicircles (oriented left to right in
the st-planar case) with at most one crossing of the spine on which the vertices are placed
[29, 3].

3.1.2 Uses of Curvature

One use of curvature, in drawings with edges that are curved but that do not have inflection
points, is to indicate directionality: if each edge is oriented in clockwise from source to
destination, then this orientation will be unambiguously indicated by the curve of the edge
without having to use other visual techniques to show it such as arrowheads or line thickness
variation [22]. This style is a good fit for arc diagrams [49] but for other layout styles, user
studies have shown that it can be confusing to readers [34].

Curved edges may also be used to help edges avoid obstacles that a straight edge would
run into. This can already be seen in the work of Peterson [46], who used circular arcs to

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 41

represent distinct edges connecting the same two vertices in a multigraph. In Sugiyama-style
layered graph drawing [58], vertices are assigned to layers and edges are subdivided by
dummy vertices so that each connection is between consecutive layers. The dummy vertices
(which are used to route edges between the other vertices on each layer) may then be used to
guide the placement of spline curves so that the edges may be drawn as smooth curves [28].
A simplified version of this spline calculation by Sander [55] was used by him to win the
graph drawing contest at GD 1994 GD. Another obstacle-avoiding drawing style, by Dobkin
et al. [11], involves placing the vertices of the drawing first, and then in a second stage of
the algorithm routing the edges around the vertices. In their algorithm, each edge is routed
first as a shortest obstacle-avoiding polyline, which is then smoothed by a spline curve, and
finally the curves are adjusted locally to eliminate any intersections with obstacles caused by
the smoothing step. There has also been much related work in motion planning on finding
smooth curves for a fixed obstacle-avoiding route; see e.g. Lutterkort and Peters [40].

The two ideas of curvature indicating directionality and curvature to avoid obstacles
were combined in PivotGraph [60], a system for displaying graphs whose vertices have other
numerical or categorical data associated with them. The vertices are placed into a grid using
this additional data as Cartesian coordinates, but this placement would lead to many edges
that pass directly through vertices if drawn as straight lines. By using curves (oriented
clockwise by directionality) they avoid these bad edge-vertex intersections as well as showing
the orientation of the edges graphically. In another visualization system, NodeXL [57], a
“polar” layout places vertices on concentric circles; curved edges are used to connect vertices
on consecutive circles without passing through the inner circle, cf. [1].

3.1.3 Focus + Context

Sarkar and Brown [56] suggested interactive fisheye views of graphs that could be used to
simultaneously zoom in on a point of interest and showing its surrounding context. The
Poincaré model of hyperbolic geometry (with edges drawn as circular arcs) automatically has
this effect [37] and has the additional advantage that there is a natural way to morph from
one focus to another, “maintaining the mental map”. Mohar [42] proves a version of Fáry’s
theorem (stating that the existence of non-crossing drawings in which each edge follows a
geodesic path) for graphs in the hyperbolic plane or on surfaces of negative curvature.

In later work on highlighting points of interest, Wong et al. [62] use edge curvature to
bend edges locally away from a part of a drawing without distorting the vertex placements
in the drawing. A related technique called edge plucking allows interactive user control of
local bending of bundles of edges [61].

3.1.4 Edge Complexity

Much research in graph drawing has focused on drawing styles with angular bends but low
curve complexity (bends per edge). However, graph drawing researchers have long known
that bends can be replaced by smoothed curves [16]. Bekos et al. [3] formalize the edge
complexity of graphs drawn with piecewise-circular-arc smooth curves, as the maximum
number of arcs and straight segments per edge. They observe that edge complexity is always
within a constant factor of bend complexity but that in many cases it is actually possible to
achieve lower edge complexity than bend complexity.

Goodrich and Wagner [30] achieve low edge complexity in a planar graph drawing. They
modify the (straight line) planar drawing algorithm of Fraysseix et al. [25] by surrounding
each vertex with a protected region of radius proportional to its degree, and placing equally

13151

42 13151 – Drawing Graphs and Maps with Curves

spaced “ports” on the boundary of this region. Spline curves through the ports have constant
edge complexity, near-optimal angular resolution, and do not cross. Similar ideas have also
been used by Cheng et al. [6] and Duncan et al. [12] for drawings with piecewise circular
edges, again achieving high angular resolution.

3.1.5 Force-directed Graph Drawing (Spring Systems)

Force-directed methods have long been a mainstay of practical graph drawing. These methods
use forces (which may be visualized as springs) to attract adjacent pairs of vertices and
repel other pairs. Despite being somewhat slow they are very flexible, as they allow the
implementer great freedom of choice in modifying the system to add other forces beyond
these basic attractive and repulsive ones. Force-directed methods began with Tutte [59],
who showed that springs can automatically generate planar straight line drawings of planar
graphs. Other important early research in this area (also using straight edges) was done by
Eades [15], Kamada and Kawai [36], and Fruchterman and Reingold [26].

The combination of curves and forces was made by Brandes and Wagner [5], as part of a
system for drawing graphs that represent train systems. In these graphs, vertices represent
train stations and edges connect consecutive stops on the same train route. The vertex
placement is fixed by the geographic position of the stations, and in many cases involves
sets of nearly-collinear stations spaced out along the same train line. However, the edges
representing express trains skip some of these vertices, representing local train stations, and
(if drawn as straight) would overlap the positions of these stations. The solution of Brandes
and Wagner [5] is to use force-directed methods, with forces on the control points of splines,
to bend these edges outwards. In another application to train systems, Fink et al. [23] use
force-directed drawing to schematize train system maps, by replacing paths of degree-two
vertices by spline curves. Bending outwards can also be used in 3d to separate edges of
geographic graphs from the Earth’s surface [43].

For arbitrary graphs, Finkel and Tamassia [24] place a new vertex in the middle of each
edge of a given graph, apply force-directed layout, and then use the new vertices as spline
control points. They report that this gives significant improvements in angular resolution
and modest improvements in crossings compared to straight line drawings. Similar ideas
were used by Chernobelskiy et al [7] to spread out the edges in drawings with circular-arc
edges.

3.1.6 Edge Bundling

Edge bundling is a technique that, as initially developed, was used to simplify drawings of
large graphs with a hierarchically clustered vertex structure. This technique groups edges
that connect the same two clusters (at some level of the hierarchy) into “bundles” drawn as
nearly-parallel curves, making the set of edges both visually distinctive and more compact
than if they were all drawn separately. This idea was introduced by Holten [32] based on
a physical analogy to electrical wiring bundles; it is also closely related to flow maps for
numerical geographic data [47], and since the initial work on this style there have been
hundreds of successor papers.

Some of the many variations on bundling that have been considered include:

Non-hierarchical bundling by modeling edges as springs that attract each other [33].
A circular vertex layout, with unbundled edges outside the circle chosen to minimize
crossings, and with edges grouped into bundles inside the circle using a heuristic that
attempts to minimize the total amount of ink used for the drawing [27].

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 43

Edge bundling in Sugiyama-style layered drawing [50].
Forbidding crossings within the edges of a bundle, and routing the edges of each bundle
on parallel tracks resembling metro maps, so that individual edges are easier to follow [4].

For a taxonomy of bundling-related curved edge techniques see Riche et al. [53].

3.1.7 Confluent Drawing

Although visually similar to bundled drawing, and often co-cited with it, confluent drawing
[9] is semantically very different. In confluent drawing, one represents a graph using train
tracks (sets of smooth curves meeting at points called junctions) rather than drawing the
edges as individual curves. Two vertices are adjacent in the underlying graph if and only if
they can be connected by a smooth curve through the curves and junctions of the drawing.
Thus, each curve carries a set of edges, similar to bundling, but in an unambiguous way.

The graphs with crossing-free confluent drawings form a strict superset of the planar
graphs, and include for example the interval graphs [9] and distance-hereditary graphs [20, 35].
A partially ordered set has an upward-planar confluent Hasse diagram if and only if its order
dimension is at most two [19].

Confluent edge routing (allowing crossings between pairs of confluent tracks) has been
combined with Sugiyama-style layered drawing, by finding complete bipartite subgraphs
within the sets of edges that connect consecutive layers and replacing these subgraphs by
confluent tracks [21]; this style was used for a winning entry in the 2003 graph drawing
contest. Confluence has also been used as a way to achieve axis-parallel edges for high-degree
planar graphs [52].

3.1.8 Lombardi Drawing

Inspired by the art of Mark Lombardi, graph drawing researchers have defined Lombardi
drawing to be a very strict layout style in which edges must be drawn as circular arcs, meeting
at equal angles at each vertex. This allows plane trees to be drawn in balloon style (with
their subtrees drawn recursively in disks surrounding the root node) with polynomial area,
in contrast to straight line drawing styles for which drawing plane trees with equally spaced
edges at each vertex may sometimes require exponential area [14].

Lombardi drawing may also be used for regular graphs and symmetric graphs [13], planar
graphs with maximum degree three [18], and some other special cases [39]. However, not
every graph has a Lombardi drawing, causing researchers in this area to resort to force-based
approximations [7] or multi-arc relaxations [12]. User studies on the aesthetics and usability
of force-based Lombardi-like drawings have had mixed results [63, 51] perhaps indicating
that additional constraints (such as restricting edges to arcs that cover less than half of their
circles) are necessary to make this style more effective.

A related result is that every 3-connected 4-regular planar graph may be represented as
the graph of an arrangement of circles [2]; however, the arcs of this representation will not in
general be equally spaced around each vertex.

3.1.9 Conclusions

Curves have been used very widely in graph drawing: almost every method of graph drawing
that has been studied, has been studied with curves. There are still many remaining technical
challenges (for instance on the edge complexity needed for 1-planar drawings, or on the
existence of outerplanar Lombardi drawings) but the biggest future challenge for curved

13151

44 13151 – Drawing Graphs and Maps with Curves

drawing is more general, and still has not been completely achieved: designing methods for
curved drawing that are general (applicable to every graph and not just specialized graph
classes), usable (as measured in user studies), and consistently beautiful.

References
1 Christian Bachmaier, Hedi Buchner, Michael Forster, and Seok-Hee Hong. Crossing minim-

ization in extended level drawings of graphs. Discrete Appl. Math., 158(3):159–179, 2010.
2 Michael A. Bekos and Chrysanthi N. Raftopoulou. Circle-representations of simple 4-regular

planar graphs. In Graph Drawing 2012, volume 7704 of LNCS, pages 138–149. Springer,
2013.

3 Michael A. Bekos, Michael Kaufmann, Stephen G. Kobourov, and Antonios Symvonis.
Smooth orthogonal layouts. In Graph Drawing 2012, volume 7704 of LNCS, pages 150–161.
Springer, 2013.

4 Sergey Bereg, Alexander E. Holroyd, Lev Nachmanson, and Sergey Pupyrev. Edge routing
with ordered bundles. In Graph Drawing 2011, volume 7034 of LNCS, pages 136–147.
Springer, 2012.

5 Ulrik Brandes and Dorothea Wagner. Using graph layout to visualize train interconnection
data. J. Graph Algorithms and Applications, 4(3):135–155, 2000.

6 Christine C. Cheng, Christian A. Duncan, Michael T. Goodrich, and Stephen G. Kobourov.
Drawing planar graphs with circular arcs. Discrete Comput. Geom., 25(3):405–418, 2001.

7 Roman Chernobelskiy, Kathryn I. Cunningham, Michael T. Goodrich, Stephen G. Ko-
bourov, and Lowell Trott. Force-directed Lombardi-style graph drawing. In Graph Drawing
2011, volume 7034 of LNCS, pages 320–331. Springer, 2012.

8 Robert Cimikowski. Algorithms for the fixed linear crossing number problem. Discrete
Appl. Math., 122(1-3):93–115, 2002.

9 Matthew T. Dickerson, David Eppstein, Michael T. Goodrich, and Jeremy Yu Meng. Con-
fluent drawings: visualizing non-planar diagrams in a planar way. In Graph Drawing 2003,
volume 2912 of LNCS, pages 1–12. Springer, 2004.

10 Hristo Djidjev and Imrich Vrt’o. An improved lower bound for crossing numbers. In Graph
Drawing 2001, volume 2265 of LNCS, pages 96–101. Springer, 2002.

11 David P. Dobkin, Emden R. Gansner, Eleftherios Koutsofios, and Stephen C. North. Im-
plementing a general-purpose edge router. In Graph Drawing 1997, volume 1353 of LNCS,
pages 262–271. Springer, 1997.

12 Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov, and
Maarten Löffler. Planar and poly-arc Lombardi drawings. In Graph Drawing 2011, volume
7034 of LNCS, pages 308–319. Springer, 2012.

13 Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov, and
Martin Nöllenburg. Lombardi drawings of graphs. J. Graph Algorithms and Applications,
16(1):85–108, 2012.

14 Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov, and
Martin Nöllenburg. Drawing trees with perfect angular resolution and polynomial area.
Discrete Comput. Geom., 49(2):183–194, 2013.

15 Peter Eades. A heuristic for graph drawing. Congressus Numerantium, 42(11):149–160,
1984.

16 Peter Eades and Roberto Tamassia. Algorithms For Drawing Graphs: An Annotated
Bibliography. Technical Report CS-89-09, Computer Science Dept., Brown University,
1989.

17 Alon Efrat, Cesim Erten, and Stephen G. Kobourov. Fixed-location circular arc drawing
of planar graphs. J. Graph Algorithms and Applications, 11(1):145–164, 2007.

18 David Eppstein. Planar Lombardi drawings for subcubic graphs. In Graph Drawing 2012,
volume 7704 of LNCS, pages 126–137. Springer, 2013.

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 45

19 David Eppstein and Joseph A. Simons. Confluent Hasse diagrams. In Graph Drawing 2011,
volume 7034 of LNCS, pages 2–13. Springer, 2012.

20 David Eppstein, Michael T. Goodrich, and Jeremy Yu Meng. Delta-confluent drawings. In
Graph Drawing 2005, volume 3843 of LNCS, pages 165–176. Springer, 2006.

21 David Eppstein, Michael T. Goodrich, and Jeremy Yu Meng. Confluent layered drawings.
Algorithmica, 47(4):439–452, 2007.

22 Jean-Daniel Fekete, David Wang, Niem Dang, Aleks Aris, and Catherine Plaisant. Over-
laying graph links on treemaps. In IEEE Symp. on Information Visualization, Poster
Compendium, pages 82–83, 2003.

23 Martin Fink, Herman Haverkort, Martin Nöllenburg, Maxwell Roberts, Julian Schuhmann,
and Alexander Wolff. Drawing metro maps using Bézier curves. In Graph Drawing 2012,
volume 7704 of LNCS, pages 463–474. Springer, 2013.

24 Benjamin Finkel and Roberto Tamassia. Curvilinear graph drawing using the force-directed
method. In Graph Drawing 2004, volume 3383 of LNCS, pages 448–453. Springer, 2005.

25 Hubert de Fraysseix, János Pach, and Richard Pollack. Small sets supporting Fary em-
beddings of planar graphs. In 20th ACM Symp. on Theory of Computing, pages 426–433,
1988.

26 Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed
placement. Software: Practice and Experience, 21(11):1129–1164, 1991.

27 Emden R. Gansner and Yehuda Koren. Improved circular layouts. In Graph Drawing 2006,
volume 4372 of LNCS, pages 386–398. Springer, 2007.

28 Emden R. Gansner, Stephen C. North, and Kiem-Phong Vo. DAG—a program that draws
directed graphs. Software: Practice and Experience, 18(11):1047–1062, 1988.

29 Francesco Giordano, Giuseppe Liotta, Tamara Mchedlidze, and Antonios Symvonis. Com-
puting upward topological book embeddings of upward planar digraphs. In Proc. Int.
Symp. Algorithms and Computation (ISAAC 2007), volume 4835 of LNCS, pages 172–183.
Springer, 2007.

30 Michael T. Goodrich and Christopher G. Wagner. A framework for drawing planar graphs
with curves and polylines. J. Algorithms, 37(2):399–421, 2000.

31 Robert Hobbs. Mark Lombardi: Global Networks. Independent Curators, 2003.
32 Danny Holten. Hierarchical edge bundles: Visualization of adjacency relations in hierarch-

ical data. IEEE Trans. Visualization and Computer Graphics, 12(5):741–748, 2006.
33 Danny Holten and Jarke J. van Wijk. Force-directed edge bundling for graph visualization.

Computer Graphics Forum, 28(3):983–990, 2009.
34 Danny Holten and Jarke J. van Wijk. A user study on visualizing directed edges in graphs.

In Proc. SIGCHI Conf. on Human Factors in Computing Systems, pages 2299–2308, 2009.
35 Peter Hui, Michael J. Pelsmajer, Marcus Schaefer, and Daniel Štefankovič. Train tracks

and confluent drawings. Algorithmica, 47(4):465–479, 2007.
36 Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general undirected graphs.

Information Processing Letters, 31(1):7–15, 1989.
37 John Lamping and Ramana Rao. Laying out and visualizing large trees using a hyperbolic

space. In Proc. 7th ACM Symp. on User Interface Software and Technology, pages 13–14,
1994.

38 Johann Benedikt Listing. Vorstudien zur Topologie. Vandenhoeck und Ruprecht, 1848.
39 Maarten Löffler and Martin Nöllenburg. Planar Lombardi drawings of outerpaths. In Graph

Drawing 2012, volume 7704 of LNCS, pages 561–562. Springer, 2013.
40 David Lutterkort and Jörg Peters. Smooth paths in a polygonal channel. In Proc. 15th

ACM Symp. on Computational Geometry, pages 316–321, 1999.

13151

46 13151 – Drawing Graphs and Maps with Curves

41 Sumio Masuda, Kazuo Nakajima, Toshinobu Kashiwabara, and Toshio Fujisawa. Crossing
minimization in linear embeddings of graphs. IEEE Trans. Computing, 39(1):124–127,
1990.

42 Bojan Mohar. Drawing graphs in the hyperbolic plane. In Graph Drawing 1999, volume
1731 of LNCS, pages 127–136. Springer, 1999.

43 Tamara Munzner, Eric Hoffman, K. Claffy, and Bill Fenner. Visualizing the global topology
of the MBone. In IEEE Symp. on Information Visualization, pages 85–92, 1996.

44 T. A. J. Nicholson. Permutation procedure for minimising the number of crossings in a
network. Proc. IEE, 115:21–26, 1968.

45 Oscar Niemeyer. The Curves of Time: the memoirs of Oscar Niemeyer. Phaidon, 2000.
As quoted at http://en.wikiquote.org/wiki/Oscar_Niemeyer.

46 Julius Peterson. Die Theorie der regulären Graphen. Acta Mathematica, 15(1):193–220,
1891.

47 Doantam Phan, Ling Xiao, Ron Yeh, Pat Hanrahan, and Terry Winograd. Flow map
layout. In IEEE Symp. on Information Visualization, pages 219–224, 2005.

48 Beryl Plimmer, Helen C. Purchase, Hong Yul Yang, Laura Laycock, and James Milburn.
Preserving the hand-drawn appearance of graphs. In Int. Worksh. Visual Languages and
Computing, 2009.

49 A. Johannes Pretorius and Jarke J. van Wijk. Bridging the semantic gap: Visualizing
transition graphs with user-defined diagrams. IEEE Computer Graphics and Applications,
27(5):58–66, 2007.

50 Sergey Pupyrev, Lev Nachmanson, and Michael Kaufmann. Improving layered graph lay-
outs with edge bundling. In Graph Drawing 2010, volume 6502 of LNCS, pages 329–340.
Springer, 2011.

51 Helen C. Purchase, John Hamer, Martin Nöllenburg, and Stephen G. Kobourov. On the
usability of Lombardi graph drawings. In Graph Drawing 2012, volume 7704 of LNCS,
pages 451–462. Springer, 2013.

52 Gianluca Quercini and Massimo Ancona. Confluent drawing algorithms using rectangular
dualization. In Graph Drawing 2010, volume 6502 of LNCS, pages 341–352. Springer, 2011.

53 Nathalie Henry Riche, Tim Dwyer, Bongshin Lee, and Sheelagh Carpendale. Exploring the
design space of interactive link curvature in network diagrams. In Proc. Int. Working Conf.
on Advanced Visual Interfaces (AVI ’12), pages 506–513, 2012.

54 Thomas L. Saaty. The minimum number of intersections in complete graphs. Proc. National
Academy of Sciences, 52:688–690, 1964.

55 Georg Sander. Graph layout through the VCG tool. In Graph Drawing 1994, volume 894
of LNCS, pages 194–205. Springer, 1995.

56 Manojit Sarkar and Marc H. Brown. Graphical fisheye views of graphs. In Proc. SIGCHI
Conf. on Human Factors in Computing Systems, pages 83–91, 1992.

57 Marc A. Smith, Ben Shneiderman, Natasa Milic-Frayling, Eduarda Mendes Rodrigues,
Vladimir Barash, Cody Dunne, Tony Capone, Adam Perer, and Eric Gleave. Analyzing
(social media) networks with NodeXL. In Proc. 4th Int. Conf. Communities and Technolo-
gies, pages 255–264, 2009.

58 Kozo Sugiyama, Shôjirô Tagawa, and Mitsuhiko Toda. Methods for visual understanding
of hierarchical system structures. IEEE Trans. Systems, Man, and Cybernetics, SMC-11
(2):109–125, 1981.

59 William T. Tutte. How to draw a graph. Proc. London Math. Society, 13(52):743–768,
1963.

60 Martin Wattenberg. Visual exploration of multivariate graphs. In Proc. SIGCHI Conf. on
Human Factors in Computing Systems, pages 811–819, 2006.

http://en.wikiquote.org/wiki/Oscar_Niemeyer

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 47

61 Nelson Wong and Sheelagh Carpendale. Interactive poster: Using edge plucking for inter-
active graph exploration. In IEEE Symp. on Information Visualization, 2005.

62 Nelson Wong, Sheelagh Carpendale, and Saul Greenberg. EdgeLens: an interactive method
for managing edge congestion in graphs. In IEEE Symp. on Information Visualization,
pages 51–58, 2003.

63 Kai Xu. A user study on curved edges in graph visualization. IEEE Trans. Visualization
and Computer Graphics, 18(12):2449–2556, 2012.

3.2 Algorithms for Curve Approximation
Günter Rote (FU Berlin)

License Creative Commons BY 3.0 Unported license
© Günter Rote

Joint work of Scott Drysdale, Günter Rote, Astrid Sturm
Main reference R.L.S. Drysdale, G. Rote, A. Sturm, “Approximation of an open polygonal curve with a minimum

number of circular arcs and biarcs,” Computational Geometry, Theory and Applications 41 (2008),
31-47.

URL http://dx.doi.org/10.1016/j.comgeo.2007.10.009

This is a survey of algorithms for approximating a curve by a simpler curve, mostly by a
polygon with few edges. In the last part I also mention an algorithm of Drysdale, Rote, and
Sturm [1] for smooth (tangent-continuous) approximation by biarcs. I discuss the problem
definition, the variations and different objectives, and the pitfalls. I also survey the classical
algorithms of Douglas and Peucker; Imai and Iri; and of Chan and Chin.

References
1 R. L. Scot Drysdale, Günter Rote und Astrid Sturm: Approximation of an open poly-

gonal curve with a minimum number of circular arcs and biarcs. Computational Geometry,
Theory and Applications 41 (2008), 31–47. doi:10.1016/j.comgeo.2007.10.009

3.3 Algebraic Curves in Computational Geometry
Sylvain Lazard (INRIA Grand Est – Nancy, FRA)

License Creative Commons BY 3.0 Unported license
© Sylvain Lazard

Joint work of Yacine Bouzidi, Sylvain Lazard, Marc Pouget, Fabrice Rouillier

I will survey some recent results on the problem of drawing, in a certified way, algebraic
curves in the plane given by their implicit equation. I will focus on the problem of computing
the topology of such curves and their critical points. The talk will mostly be centered on
the presentation of the standard tools and main classes of methods for this problem. I will
also present some recent results (joint with Y. Bouzidi, M. Pouget and F. Rouillier) on the
problem of computing the critical points of the curve or, more precisely, on the problem of
solving bivariate algebraic systems by means of rational univariate representations. I will
show that computing such representations can be done in O(d8 + dτ) bit operations modulo
polylogarithmic factors, where d is the degree of the input curve and τ is the maximum
bitsize of its coefficients. This decreases by a factor d2 the best known complexity for this
problem. I will finally present some experiments and comparisons between state-of-the-art
software for computing the topology of plane algebraic curves.

13151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
 http://dx.doi.org/10.1016/j.comgeo.2007.10.009
 http://dx.doi.org/10.1016/j.comgeo.2007.10.009
 http://dx.doi.org/10.1016/j.comgeo.2007.10.009
http://dx.doi.org/10.1016/j.comgeo.2007.10.009
http://dx.doi.org/10.1016/j.comgeo.2007.10.009
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

48 13151 – Drawing Graphs and Maps with Curves

3.4 Curved Lines in Cartography and Information Visualization
Jo Wood (City University – London)

License Creative Commons BY 3.0 Unported license
© Jo Wood

Calling on examples from the history of cartography and information visualization this talk
shows where curved lines have been used to carry information in visual depiction. Examples
range from terrain analysis, through sketchy rendering, to flows of people, bicycles and
money. The role of metaphor in visual depiction in both maps and information visualization
is considered and related to the geometric properties of curved lines.

3.5 Some Brief Notes on Perceptual Theories — in Relation to
Empirical Studies

Helen C. Purchase (University of Glasgow)

License Creative Commons BY 3.0 Unported license
© Helen C. Purchase

In trying to understand how people understand information visualisations, we can use
two sources; empirical data collected through experiments, or theories of perception. Of
course, the two are necessarily intertwined: data suggests theory, theory is validated by data.
Conducting experiments is costly and the results are not easily generalisable outside the
experimental parameters. What we would like to be able to do is predict the effectiveness of
a visualisation prior to its use, and existing theories of perception and cognition can help us
do this.

This presentation introduces some common theories of perception that can help in pre-
experiment assessment of visualisation effectiveness. It takes as a starting point a paper
by Peebles (2004) where the effect of a commonly-known visual illusion was investigated
in data plots used for comparing the performance of local councils with respect to several
issues (e.g. education, leisure, housing). This example demonstrates how existing perceptual
theories can be used to predict the effectiveness of a visualisation – and how, in this case, the
predictions were confirmed through an empirical study (and as a result, a better visualisation
was proposed).

Several perceptual theories are introduced in this presentation, with focus on the Gestalt
theories, and visual acutity. These theories are then related to graph drawings, showing,
for example, that the existance of non-symmetric edges can overcome the preception of
symmetric nodes. The relative visual priority of visual features like colour, shape, texture
etc., is demonstrated through the process of ‘pop-out’.

Finally, an experiment comparing the effectiveness of graphs with straight line edges
vs curved edges is presented as an example of a study explicitly addressing the limits of
visual acuity. The results, surprisingly, showed better performance with the straight-line
graph, suggesting that visual acuity is not as problematic in graph-reading tasks as might be
expected.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 49

3.6 Do We Need Curvilinear Metro Maps?
Maxwell J. Roberts (University of Essex)

License Creative Commons BY 3.0 Unported license
© Maxwell J. Roberts

The topics of cognitive load and cognitive capacity are related to metro map usage and,
in relation to this, the following optimisation criteria are identified: simplicity; coherence;
balance; harmony, and topographicity. It is suggested that as long as these criteria are
fulfilled, the design ruses do not matter, and that in certain circumstances it may be necessary
to design a curvilinear metro map. Three types of such map are identified: freeform Bézier,
concentric circles, and Lombardi, each with strengths and weaknesses likely to suit networks
with different qualities. Generally, curvilinear maps may be particularly suited to dense,
interconnected networks with complex line trajectories, where linear maps have high angular
density and poor coherence (e.g., Paris, Tokyo).

3.7 Curves in CGAL
Michael Hemmer (TU Braunschweig) and Monique Teillaud (INRIA Sophia Antipolis –
Méditerranée)

License Creative Commons BY 3.0 Unported license
© Michael Hemmer and Monique Teillaud

CGAL, the Computational Geometry Algorithms Library, followed the evolution of Compu-
tational Geometry, progressively offering more and more curved objects and functionality on
them.

The talk first quickly overviews the history of the CGAL open source project, the
development process and the contents of the library. It recalls how CGAL solves robustness
issues, following the so-called exact geometric computing paradigm pioneered by Chee Yap.

Then packages in CGAL that should be relevant within the context of graph drawing
with curves are examined. In particular, support for circles, spheres, triangulations and
Voronoi diagrams involving circular arcs, planar arrangements of arbitrary algebraic curves
and the algebraic kernel are discussed in more detail.

3.8 Curved Schematization – User Study Results
Wouter Meulemans (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Wouter Meulemans

Joint work of Arthur van Goethem, Wouter Meulemans, Bettina Speckmann, Jo Wood

We invited the participants of the seminar to also participate in an online user study related
to curved schematization. Curved schematization is the task of obtaining a low-complexity
representation of a detailed shape using curves. In particular, we use circular arcs. We had
three hypotheses: curved schematization is better than straight-line schematization in terms
of (1) aesthetics, (2) visual simplicity, and (3) recognizability. To verify these hypotheses in
the user study, we had a single algorithm generate schematizations according to four different
styles. One style admitted only straight-line edges; the other three styles used circular

13151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

50 13151 – Drawing Graphs and Maps with Curves

arcs. The latter differentiated themselves in the degree of “curviness” (measured as central
angle) they strive for. The user study itself consisted of three tasks, one for each hypothesis.
For each task, the participant was given a random set of questions about either aesthetics,
simplicity, or recognizability. The study had 303 participants. We concluded that the three
curved styles were preferred over the straight-line style, but there was no clear preference
for any particular curved style. Hence we accept hypothesis (1). In terms of simplicity, the
straight-line style and the curved style with low curviness (i.e. using arcs that are almost a
straight line) were the best. Therefore we reject hypothesis (2). As for recognizability, we
observed that the curved styles performed better than the straight-line style in a range of
“medium complexity” (approximately 10 arcs). Thus we accept hypothesis (3).

4 Working Groups

4.1 Smooth Orthogonal Drawings
Michael A. Bekos (National TU – Athens)
Martin Gronemann (Universität Köln)
Sergey Pupyrev (University of Arizona – Tucson)

License Creative Commons BY 3.0 Unported license
© Michael A. Bekos, Martin Gronemann, and Sergey Pupyrev

4.1.1 Introduction

Smooth orthogonal drawings were recently introduced in the graph drawing literature as
a response to the problem of smoothening orthogonal drawings (of graphs of maximum
degree 4), by “replacing” bends with smooth circular arcs. It is expected that such drawings
are of improved readability and more aesthetic appeal, since it is widely accepted that bends
interrupt the eye movement and require sharp changes of direction. Smooth orthogonal
drawings follow the paradigms of traditional orthogonal drawings, in which each vertex
is drawn as a point on the plane and each edge is drawn as an alternating sequence of
axis-aligned line-segments. However, they also allow for circular arc-segments. We are
particularly interested in providing theoretical guarantees about graphs that admit smooth
orthogonal drawings of edge complexity 1, where the edge complexity of a drawing is given
by the maximum number of segments forming any of its edge. Formally, we say that a graph
has smooth complexity k if it admits a smooth orthogonal drawing of edge complexity at
most k.

The work of Bekos, Kaufmann, Kobourov and Symvonis [1] was the first on the problem
of creating smooth orthogonal drawings of 4-planar graphs. They presented an infinite class
of 4-regular planar graphs generated from the octahedron graph that do not admit smooth
orthogonal drawings of edge complexity 1. They also proved that biconnected 4-planar
graphs admit drawings of smooth complexity 3. For triconnected 3-planar graphs and
Hamiltonian 3-planar graphs, they gave algorithms to produce smooth orthogonal drawings
of edge complexity 1. Finally, they showed that there exist graphs whose smooth complexity-1
drawings needs exponential drawing area (assuming a quite restricted drawing model that
requires fixed embedding and fixed ports).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 51

4.1.2 Results

As already stated, not all 4-planar graphs admit smooth orthogonal drawings of smooth
complexity 1. What if crossings are allowed in the resulting drawing? The following theorem
answers this question in a positive way.

I Theorem 1. Any graph of maximum degree 4 admits a (not necessary planar) drawing of
smooth complexity 1.

The input graph is augmented such that it is 4-regular. Based on the work of Peterson [2], a
cycle cover decomposition is used to create a book-embedding-like drawing. The cycle cover
decomposition guarantees that the port constraints are respected. However, the resulting
drawing is not necessarily planar.

Bekos et al. [1] have proven that triconnected 3-planar graphs admit drawings of smooth
complexity 1. Their approach is based on canonical ordering, hence, the requirement for
triconnectivity. We are able to strengthen this result by using the BC (Block-Cutpoint) and
SPQR-tree data structures to decompose the graph into its bi- and triconnected components,
respectively.

I Theorem 2. Any 3-planar graph admits a (planar) drawing of smooth complexity 1.

The proof is constructive and provides an algorithm that exploits the special structure of
the BC- and SPQR-trees on 3-planar graphs. The approach uses a slightly modified version
of the algorithm in Bekos et al. [1] to deal with the triconnected components. Similar to
Eppstein [3] who uses these properties to create Lombardi-style drawings of sub cubic graphs,
we are able to maintain smooth complexity 1 while reassembling the components into one
drawing. However, the approach relies heavily on the degree restriction, hence, does not
easily extend to higher degree.

4.1.3 Open Problems & Ongoing Work

While working on the aforementioned problems during the seminar, it seemed tempting to
use a book embedding style drawing as a basis for a layout. Especially when considering the
Kandinsky model, i.e. one drops the port constraints, the two seem to be related. Besides
the results of the seminar, a list of open problems has been compiled.

What is the complexity of recognizing whether a given 4-planar graph admits a smooth
orthogonal drawing of edge complexity 1?
Is it possible to determine a universal point set so that any 4-planar graph can be
embedded on it with a certain smooth complexity (e.g., SC 2 or SC 3)?
The algorithm that we currently have for drawing any graph of maximum degree 4
with smooth complexity 1 does not take care of the crossings that arise. So, crossing
minimization for non planar graphs is of importance.

References
1 Michael A. Bekos, Michael Kaufmann, Stephen G. Kobourov, and Antonios Symvonis.

Smooth orthogonal layouts. In Graph Drawing 2012, volume 7704 of LNCS, pages 150–161.
Springer, 2013.

2 Julius Peterson. Die Theorie der regulären Graphen. Acta Mathematica, 15(1):193–220,
1891.

3 David Eppstein. Planar Lombardi drawings for subcubic graphs. In Graph Drawing 2012,
volume 7704 of LNCS, pages 126–137. Springer, 2013.

13151

52 13151 – Drawing Graphs and Maps with Curves

4.2 Confluent Drawing
David Eppstein (University of California, Irvine, US)
Danny Holten (SynerScope BV)
Maarten Löffler (Utrecht University)
Martin Nöllenburg (KIT – Karlsruhe Institute of Technology)
Bettina Speckmann (TU Eindhoven)
Kevin Verbeek (University of California – Santa Barbara)

License Creative Commons BY 3.0 Unported license
© David Eppstein, Danny Holten, Maarten Löffler, Martin Nöllenburg, Bettina Speckmann, and
Kevin Verbeek

Confluent drawing [1] is a style of graph drawing in which edges are not drawn explicitly;
instead vertex adjacency is indicated by the existence of a smooth path through a system of
arcs and junctions that resemble train tracks. These types of drawings allow even very dense
graphs, such as complete graphs and complete bipartite graphs, to be drawn in a planar way.
We introduce a subclass of confluent drawings, which we call strict confluent drawings. Strict
confluent drawings are confluent drawings with the additional restrictions that between any
pair of vertices there can be at most one smooth path, and there cannot be any paths from
a vertex to itself. Figure 3 illustrates the forbidden configurations. We believe that these
restrictions may make strict drawings easier to read, by reducing the ambiguity caused by
the existence of multiple paths between vertices.

Our results are as follows:

It is NP-complete to determine whether a given graph has a strict confluent drawing. To
prove this, we reduce from planar 3-SAT and we use the fact that K4 has exactly two
strict confluent drawings.
For a given graph, with a given cyclic ordering of its n vertices, there is an O(n2)-time
algorithm to find an outerplanar strict confluent drawing, if it exists: this is a drawing in
a (topological) disk, with the vertices in the given order on the boundary of the disk (see
Figure 4). We define a canonical diagram which is a unique representation of all possible
outerplanar strict confluent drawings, where some of the faces are marked as cliques. We
compute a canonical diagram by first computing its junctions, and then computing the
arcs between them. From a canonical diagram we can easily derive an outerplanar strict
confluent drawing.
When a graph has an outerplanar strict confluent drawing, an algorithm based on circle
packing can construct a layout of the drawing in which every arc is drawn using at most
two circular arcs (again, see Figure 4).

The full version of this abstract will appear (under the title Strict Confluent Drawing) in
the proceedings of the 21st International Symposium on Graph Drawing 2013. The most
pressing problem left open by this research is to recognize the graphs that have outerplanar
strict confluent drawings, without imposing a fixed vertex order. Can we recognize these
graphs in polynomial time?

(a) (b)

Figure 3 (a) A drawing with a duplicate path. (b) A drawing with a self-loop.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 53

Figure 4 Two outerplanar strict confluent drawings.

References
1 Matthew T. Dickerson, David Eppstein, Michael T. Goodrich, and Jeremy Yu Meng. Con-

fluent drawings: Visualizing non-planar diagrams in a planar way. Journal of Graph Al-
gorithms and Applications, 9(1):31–52, 2005.

4.3 Automated Evaluation of Metro Map Usability
Michael Hemmer (TU Braunschweig)
Wouter Meulemans (TU Eindhoven)
Lev Nachmanson (Microsoft Corp. – Redmond)
Helen Purchase (University of Glasgow)
Andreas Reimer (Universität Heidelberg)
Max Roberts (University of Essex)
Günter Rote (FU Berlin)
Kai Xu (Middlesex University)

License Creative Commons BY 3.0 Unported license
© Michael Hemmer, Wouter Meulemans, Lev Nachmanson, Helen Purchase, Andreas Reimer, Max
Roberts, Günter Rote, and Kai Xu

The problem addressed by this workgroup concerns devising objective quantifiable criteria by
which curvilinear metro maps can be evaluated and, subsequently, broadening the applicability
of the criteria so that linear maps can likewise be compared both with each other and also
with curvilinear maps. In the first instance, the intention was to predict journey planning time
differences between maps, as per those revealed in usability studies (for example, comparing
freeform Bézier maps with official octolinear designs, for London a curvilinear design is
equivalent to the official map, but for Paris a curvilinear design is 50% faster for journey
planning than the official map). Ultimately, the development of successful evaluation routines
would curtail the need for usability studies.

The methodology adopted was to identify criteria for good design of curvilinear maps,
based on exemplars of extreme difference in simplification to line trajectories (a Madrid
curvilinear map devised by the first author and one devised by the designers of the current
tetralinear official map). From this, the following criteria for good design were identified and
attempts made to quantify them independently of each other.

Lower order criteria concern the trajectories of individual lines in isolation of each other.
These contribute to the overall simplicity of the design.

13151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

54 13151 – Drawing Graphs and Maps with Curves

Curve inflections (number and severity).
Curvature (quantity of change, and severity of change).
Symmetry of curvature (at Bézier control points).

Higher order criteria concerning relationships between line trajectories. These contribute
to the overall coherence of the design.

Parallel Bézier curves within defined fields.
Few edge crossings.
Good angular resolution at edge crossings, especially at line interchanges where the line
trajectories are typically part-obscured by the addition of a symbol.

Higher order criteria concerning relationships between line trajectories and stations. These
also contribute to the overall coherence of the design.

Adequate distance between stations and edge crossings (a station too close to an edge
crossing is the most frequent source of planning errors in usability studies).
Continuity of station density (a balanced design should not have abrupt changes in station
density in nearby regions of the map).
Horizontal/vertical alignment of stations.

The first objective was to assemble criteria that would predict differences in basic usability
between designs: the mean time necessary to plan a journey (station location time is another
variable of interest in evaluating usability). Purely aesthetic criteria were not identified.
Aesthetic judgement will be related to the usability criteria outlined above, but other aesthetic
criteria (such as a preference for straight lines versus curves) may impact only upon user-
acceptance of a design (an important consideration, albeit one that is vulnerable to individual
differences in preference). Measures of topographical accuracy were also not implemented.
These may affect user acceptance of a design, but their prime influence on usability is their
potential to affect journey choices: whether an efficient or inefficient journey is planned. Any
such algorithm should penalise a map more for distorted relative positions of nearby stations
than distant stations. Finally, the relationship between label placement and usability was not
considered. These are an important element of map usability, and future work will address
criteria for effective placement.

4.3.1 Specific Criteria Quantifications

Quantified evaluations of lower order criteria for line curvature were fully implemented on
an individual line-by-line basis, derived from plots of curvature versus distance. From this,
aspects of poor design could easily be identified visually and numerically. The main challenge
now is to weight the relative importance of these.

Parallelism and angular resolution were implemented together, the former on the basis
of constancy of distance between lines within a defined distance of each other. Angular
resolution was incorporated by not subjecting lines to a parallelism analysis if their crossing
was greater than a pre-determined angle.

Station density plots were created which enabled hotspots and coldspots to be identified.
Designs were penalised on the basis of distance between these. Station placement was
evaluated by identifying x-co-ordinates and y-co-ordinates, and for each of these determining
the number of aligned stations.

Scores for various criteria were obtained for a variety of curvilinear and linear Madrid
maps (high scores are bad for all measures)

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 55

1. total inflections
2. overall extent of curvature (variation of curvature over the whole line)
3. symmetry of curvature (sum of the squares of the vertical jumps in curvature–ie: extreme

changes in curvature–over the whole line)
4. “lack of parallelism” penalty (not yet normalised for number of lines)
5. number of edge crossings (not yet normalised for complexity = stations x lines)
6. spacing discontinuity of stations
7. vertical/horizontal mis-alignment of station symbols

Simplified curvilinear map: 1) 19; 2) 1.23; 3) 0.006; 4) 5.76; 5) 42; 6) 0.21; 7) 0.19
Tetralinear (rectilinear) map: 1) NYC; 2) NYC; 3) NYC; 4) NYC; 5) 46; 6) 0.26; 7) 0.11
Hexalinear map: 1) NYC; 2) NYC; 3) NYC; 4) NYC; 5) 47; 6) 0.19; 7) 0.16
Complex curvilinear map: 1) 80; 2) 4.02; 3) NYC; 4) 6.94; 5) 42; 6) 0.28; 7) 0.21
Concentric circles map: 1) NYC; 2) NYC; 3) NYC; 4) NYC; 5) 43; 6) 0.18; 7) 0.18
NYC = not yet computed

4.3.2 Future work

Having identified methods of quantification, the next step is to extend them so that relative
predictions can be made for linear versus curvilinear maps, and to combine and weight them
so that they make predictions that match usability study data. The latter are, unfortunately,
relatively course: typically all that can be identified is a relative difference in journey planning
time between pairs of maps. This can be mitigated by comparing as may different maps
as possible using different design techniques from a variety of cities. Once available data
has been modelled, this will then enable future usability studies to be identified so that
predictions can be tested and refined. In addition to this, the availability of these criteria
will enable particular defects with maps to be identified, and possibly resolved automatically
via a simulated annealing process.

4.4 Universal Point Sets for Planar Graph Drawings with Circular Arcs
Patrizio Angelini (Università di Roma III)
David Eppstein (University California – Irvine)
Fabrizio Frati (The University of Sydney)
Michael Kaufmann (Universität Tübingen)
Sylvain Lazard (INRIA Grand Est – Nancy)
Tamara Mchedlidze (KIT – Karlsruhe Institute of Technology)
Monique Teillaud (INRIA Sophia Antipolis – Méditerranée)
Alexander Wolff (Universität Würzburg)

License Creative Commons BY 3.0 Unported license
© Patrizio Angelini, David Eppstein, Fabrizio Frati, Michael Kaufmann, Sylvain Lazard, Tamara
Mchedlidze, Monique Teillaud, and Alexander Wolff

It is well known that every planar graph has a drawing on the plane where vertices are mapped
to points of an O(n) × O(n) integer grid, and edges to straight-line segments connecting
the corresponding points. To generalize this result, Mohar (according to Pach [1]) posed
the following question: What is the smallest size f(n) (as a function of n) of a point set S
such that every n-vertex planar graph G admits a planar straight-line drawing in which the
vertices of G are mapped to points in S? Such a point set S is called universal point set.

13151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

56 13151 – Drawing Graphs and Maps with Curves

Despite more than twenty years of research efforts, the best known lower bound for the value
of f(n) is linear in n, while the best known upper bound is quadratic in n. The question is
listed as problem #45 in the Open Problems Project [1].

Given the topic of our seminar, we are interested in understanding whether drawing edges
as circular arcs rather than straight-line segments helps to answer the corresponding question.
Our starting point is a result of Everett et al. [2] saying that, for any natural number n,
there is a universal set of size n if edges are drawn as one-bend polygonal chains.

It turns out that we can get the same result for drawings with circular arcs. More
specifically, we prove the existence of a set S of n points on the parabolic arc P = {(x, y) : x ≥
0, y = −x2} such that every n-vertex planar graph G can be drawn such that its vertices
are mapped to S and its edges are mapped to pairwise non-crossing circular arcs connecting
points in S. We start with a sequence of n2 points, q0, . . . , qn2−1, on P such that x0 ≥ 1 and
xi ≥ 2xi−1 for i = 1, . . . , n2 − 1. For our universal point set S, we take the n points pi = qni
with i = 0, . . . , n− 1. We call the points in q0, . . . , qn2−1 that are not in the universal point
set helper points. In the same spirit as Everett et al. [2], we draw G in two steps.

In the first step, we construct a monotone topological book embedding of G. This is a
drawing of G such that the vertices lie on a horizontal line, called spine, and the edges are
represented by non-crossing curves, monotonically increasing in the direction of the spine.
Di Giacomo et al. [3] have shown that every planar graph has a monotone topological book
embedding where each edge crosses the spine exactly once and consists of two semi-circles,
one below and one above the spine.

In the second step, we map the vertices of G and the crossings with the spine to the
points in q0, . . . , qn2−1 in the same order as they appear on the spine of the book embedding,
so that the vertices of G are mapped to points in S and the crossings with the spine to
helper points. Each edge of G is then drawn as a circular arc that passes through two points
of S and a helper point between them. By exploring geometrical properties of circular arcs
through three points of q0, . . . , qn2−1, we show that the constructed drawing is planar.

Our n-point universal point set uses an area of 2O(n2). Hence, it would be interesting
to investigate whether there exist universal point sets of size n (or o(n2)) for circular arc
drawings that fit in polynomial area.

The full version of this abstract will appear (under the same title) in Proc. 25th Canadian
Conference on Computational Geometry 2013, see also http://hal.inria.fr/hal-00846953.

References
1 Erik. D. Demaine, Joseph. S. B. Mitchell, and Joseph O’Rourke. The open problems project.

Website, 2001. URL cs.smith.edu/˜orourke/TOPP, accessed May 5, 2012.
2 Hazel Everett, Sylvain Lazard, Giuseppe Liotta, and Stephen Wismath. Universal sets of

n points for one-bend drawings of planar graphs with n vertices. Discrete Comput. Geom.,
43(2):272–288, 2010.

3 Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Stephen K. Wismath. Curve-
constrained drawings of planar graphs. Comput. Geom. Theory Appl., 30:1–23, 2005.

http://cs.smith.edu/~orourke/TOPP/P45.html#Problem.45
https://cs.uwaterloo.ca/conferences/cccg2013/
https://cs.uwaterloo.ca/conferences/cccg2013/
http://hal.inria.fr/hal-00846953
http://cs.smith.edu/~orourke/TOPP
http://dx.doi.org/10.1007/s00454-009-9149-3
http://dx.doi.org/10.1007/s00454-009-9149-3
http://dx.doi.org/10.1016/j.comgeo.2004.04.002
http://dx.doi.org/10.1016/j.comgeo.2004.04.002

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 57

4.5 Labeling Curves with Curved Labels
Jan-Henrik Haunert (Universität Würzburg)
Herman Haverkort (TU Eindhoven)
Benjamin Niedermann (KIT – Karlsruhe Institute of Technology)
Arlind Nocaj (Universität Konstanz)
Aidan Slingsby (City University – London)
Jo Wood (City University – London)

License Creative Commons BY 3.0 Unported license
© Jan-Henrik Haunert, Herman Haverkort, Benjamin Niedermann, Arlind Nocaj, Aidan Slingsby,
and Jo Wood

enonoitats
noitats

owt
s2

s3

s4

s5

s1

p1
p2

p3
p4

p5

C
(a)

s2

s3

s4

s5

station
one

station
two

station threest
at

io
n

fo
ur

st
at

io
n

fiv
e

s1
C

(b)

s1
s2

s3

s4

s5

station onestation two

station three

station four
station five

C
(c)

a

b

s · b

s · a s ∈ [0, 1]

C

si

pi
p′i

s′i
ci

(d)

Figure 5 (a)–(c) Different types of labels for the same metro line C. (a) Curved labels connecting
stops of curve C with ports to the left of C. (b) Using straight labels perpendicular to C yields
unavoidable clashes. (b) Straight labels can become cluttered when aligned horizontally. (c) Control
points of a curved label.

Laying out metro maps automatically is a challenging question in research that in
particular comprises finding an appropriate labeling of the metro lines and their stops
automatically. We focus on the problem of labeling already embedded metro lines having
a smooth curved shape. To the best of our knowledge we present the first considerations
towards labeling smooth curved metro lines automatically. So far only labeling of metro
lines represented by polygonal chains has been discussed in previous work, for example
see [1, 2, 3, 4]. In order to simplify the problem of laying out metro maps with curves we
started with only one metro line and assume that its shape is already given by a directed,
smooth, non-self-intersecting curve C in the plane, for example described by a Bézier curve.
Further, the stops of the metro line are given by n ordered points s1, . . . , sn on C, which we
hence call stops. Going along C from its beginning to its end we assume that these stops
appear in the order s1, . . . , sn. Depending on the specific problem formulation one may
assume that the stops are not fixed on C, but that we need to find their concrete positions
maintaining their order. For each stop si we are further given a label that should be placed
closely to it. We do not follow traditional map labeling abstracting from the given text by
bounding boxes, but we use fat curves prescribing the shape of the labels; see Fig. 5b. We
identified the following criteria, which motivated us to consider curved text.

For aesthetic reasons the labels should integrate into the curved style of the metro map.
More labels can be placed without intersections when considering curved labels; see
Fig. 5a–5c.

Hence, we want to find directed fat curves c1, . . . , cn of fixed width such that for each ci,
1 ≤ i ≤ n it is true that 1. ci begins at si, 2. ci does not intersect C, and 3. ci does not

13151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

58 13151 – Drawing Graphs and Maps with Curves

intersect any other curve cj , 1 ≤ j ≤ n. We call these curves curved labels. To avoid labels
describing wavy lines we assume that c1, . . . , cn are cubic Bézier curves. Thus, we need to
specify the four control points si, s′i, p′i and pi as depicted in Fig 5d. Using the notion of
boundary labeling we call the second endpoint pi of ci the port of ci. We considered different
choices of those control points, e.g., pi and si are given, s′i is located on the perpendicular line
to C through si, p′i is located on the horizontal line through pi and the distance of si and s′i
is equals to the distance of pi and p′i. Thus, in that example only one degree of freedom
remains, namely the distance between si and s′i. We think that force-directed methods could
be a reasonable way to determine those parameters. However, we still need to identify an
appropriate system of forces that also respects conditions 1–3 mentioned above.

To tackle the problem from a more algorithmic point of view we make the assumption that
the locations of the stops are given and the ports of the curves are located on a vertical line `
that lies to one side of C. To test whether curves c1, . . . , cn exist with respect to condition 1–3,
we developed basic algorithms that either follow a greedy strategy or a dynamic-programming
approach. For the greedy strategy we assume that the number of stops and ports coincide.
Thus, going along ` from bottom to top the assignment between stops and ports is unique.
If the number of ports is greater than the number of stops we apply a dynamic-programming
approach using the observation that a curve ci of a solution partitions the instance into two
independent sub-instances. We think that these algorithms can be used for finding an initial
solution, which later can be refined with a force-directed algorithm as described above.

For future work we identified the following questions to be answered. How can the
approaches be extended if ports lie on both sides of the given metro line C? Where should
ports be placed? How can the case be handled that several metro lines are given? How to
define an appropriate system of forces in order to fine-tune the parameters of the Bézier
curves?

References
1 Maria Angeles Garrido, Claudia Iturriaga, Alberto Márquez, José Ramón Portillo, Pedro

Reyes, and Alexander Wolff. Labeling subway lines. In Peter Eades and Tadao Takaoka, ed-
itors, ISAAC, volume 2223 of Lecture Notes in Computer Science, pages 649–659. Springer,
2001.

2 Martin Nöllenburg and Alexander Wolff. Drawing and labeling high-quality metro maps by
mixed-integer programming. IEEE Transactions on Visualization and Computer Graphics,
17(5):626–641, May 2011.

3 Jonathan Stott, Peter Rodgers, Juan Carlos Martinez-Ovando, and Stephen G. Walker.
Automatic metro map layout using multicriteria optimization. IEEE Transactions on Visu-
alization and Computer Graphics, 17(1):101–114, January 2011.

4 Alexander Wolff. Drawing subway maps: A survey. Inform., Forsch. Entwickl., 22(1):23–44,
2007.

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 59

4.6 Graphs with Circular Arc Contact Representation
David Eppstein (University California – Irvine)
Éric Fusy (Ecole Polytechnique – Palaiseau)
Stephen Kobourov (University of Arizona – Tucson)
André Schulz (Universität Münster)
Torsten Ueckerdt (University of California – Santa Barbara)

License Creative Commons BY 3.0 Unported license
© David Eppstein, Éric Fusy, Stephen Kobourov, André Schulz, and Torsten Ueckerdt

An arc is an open connected subset of a circle. For an arc a the two points in the closure of
a that are not on a are called its endpoints. If a has only one endpoint, i.e., it is a circle
with one point removed, then this endpoint is counted with multiplicity two. Let A be an
arrangement of disjoint circular arcs in the plane. We say that an arc a1 touches an arc a2,
if one of the endpoints of a1 lies on a2. A graph G is represented by A if there is a bijection
between the vertices of G and the arcs in A with the property that two arcs touch in the
arrangement exactly if their corresponding vertices are adjacent in G. We call A a circular
arc contact representation of G, arc-representation for short. Notice that G might contain
parallel edges but no self-loops. Fig. 6 shows an example of a circular arc arrangement and
its associated graph.

a

b

c

d

e

f

f d

e a

c

b

Figure 6 A graph (on the left) and one of its arc-representation (on the right).

We study the question of which graphs can be represented by an arc-representation. In
every arc-representation each arc touches at most two other arcs with its endpoints. Hence,
there are at most twice as many edges in G as there are vertices. This observation is not
only true for the full arrangement, but also for every subset of it. Furthermore, since the
arrangement is non-intersecting, the graph G has to be planar as well. In terms of the
following notation, graphs with arc-representation are (2, 0)-sparse and planar.

I Definition 1 (Lee and Streinu [3]). A graph G = (V,E) is called (k, `)-tight for some
natural numbers k, `, if

1. |E| = k|V | − `,
2. for every subset X ⊆ V with induced edge set E[X] we have that |E[X]| ≤ k|V | − `.
If only condition 2. is fulfilled we call the graph (k, `)-sparse.

Every planar (2, 3)-sparse graph has contact representation with straight line segments [1],
and therefore an arc-representation. On the other hand, every graph with a segment contact
representation is necessarily (2, 3)-sparse. We claim the following:

13151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

60 13151 – Drawing Graphs and Maps with Curves

I Theorem 2. Every planar (2, 1)-sparse graph has an arc-representation.

Since graphs with arc-representations are closed under taking subgraphs, it clearly suffices
to prove Theorem 2 for (2, 1)-tight graphs. Our main tool for the proof is a construction
sequence that produces G by sequentially adding a vertex with low vertex degree, while
maintaining the planarity and the tightness constraint of the graph. These local operations
are called Henneberg steps [2]. When introducing a vertex of degree k + 1, we have to
add k − 1 edges, such that tightness constraint remains fulfilled. If the new vertex has
degree k + 1 the modification is called a Henneberg-k step, Hk step for short. In general
Henneberg steps do not have to preserve planarity. However, in our setting it suffices to
consider planarity-preserving planar Henneberg steps.

Every planar (2, 2)-tight graph can be constructed by a series of planar H1 and H2 steps
starting from a graph with two vertices and a double edge. Similarly, every planar (2, 1)-tight
graph can be constructed by a series of planar H1 and H2 steps starting from a graph with
two vertices and a triple edge. In the (2, 0)-tight case we have to allow three Henneberg
steps, H1, H2 and H3. Here the base case is any plane graph each of whose components
consists of two vertices and 4 parallel edges.

To show that every planar (2, 1)-tight graph G has an arc-representation we follow its
construction sequence. We start with an arc-representation of the triple edge and then apply
the Henneberg steps that lead to G. All these steps are carried out geometrically in the
arc-representation. This way we finally construct an arc-representation of G. The same
strategy can be used to show that all (2, 2)-tight graphs have an arc-representation. The
only difference is the base case.

To carry out the Henneberg steps in the arc-representation we need one more tool. When
adding an arc to the arc-representation we have to ensure that we can establish the desired
connectivity between the arcs. To guarantee this we enhance the arc-representation with so
called corridors as spatial certificates for the circular arc visibility. We can show that each
Henneberg step in the construction sequence maintains a required set of corridors. Some
more technical parts of the proposed proof still need to be checked.

Our techniques do not apply for general planar (2, 0)-tight graphs yet. The main difference
to the previous cases is that during the construction the graph might become disconnected.
However, if the construction sequence maintains the connectivity we can prove that the
graph has an arc-representation.

References
1 Muhammad Jawaherul Alam, Therese Biedl, Stefan Felsner, Michael Kaufmann, and

Stephen G. Kobourov. Proportional contact representations of planar graphs. In Proc.
19th Symposium on Graph Drawing (GD ’11), volume 7034 of LNCS, pages 26–38. Springer,
2012.

2 Lebrecht Henneberg. Die graphische Statik der starren Systeme. B.G. Teubner, Leipzig,
1911.

3 Audrey Lee and Ileana Streinu. Pebble game algorithms and sparse graphs. Discrete
Mathematics, 308(8):1425–1437, 2008.

5 Open Problems

Apart from the six problems, for which working groups formed during the seminar, we
collected several additional open problems during the two open problem sessions. They are
briefly summarized in this section.

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 61

5.1 Drawing r-partite hypergraphs
Günter Rote (FU Berlin)

License Creative Commons BY 3.0 Unported license
© Günter Rote

A 3-uniform 3-partite hypergraph is a subset of A×B ×C for three disjoint sets A,B,C. It
can be drawn by placing points for the vertices in A,B,C on three vertical lines and drawing
each triplet (hyperedge) (a, b, c) as a quadratic function (parabolic arc) joining the three
corresponding points. The hypergraph can, in principle, be reconstructed uniquely from
this drawing, even if different arcs going through a vertex have the same tangent direction.
The open question is to define quality criteria for the visual appearance, beauty, clarity, or
clutteredness of such a drawing and to see whether one can optimize the drawing by placing
the vertices suitably. The problem extends to r-uniform r-partite hypergraphs by using
curves of degree r − 1.

5.2 Characterization of Planar Lombardi Graphs
David Eppstein (UC Irvine)

Lombardi drawings are drawings of graphs that use circular arcs to represent edges and
require that every vertex v has perfect angular resolution 2π/deg(v), see Section 3.1.8 and [1].
A graph that admits a planar Lombardi drawing is called a planar Lombardi graph. Not every
planar graph has a planar Lombardi drawing [12] and it is an open question to characterize
the planar Lombardi graphs. In particular, it is unknown whether every outerplanar graph
has a planar Lombardi drawing.

References
1 Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov, and

Martin Nöllenburg. Lombardi drawings of graphs. J. Graph Algorithms and Applications,
16(1):85–108, 2012.

5.3 Small Path Covers in Planar Graphs
André Schulz (Uni Münster)

Let G = (V,E) be a graph of a graph class G with |E| = m edges. A path-cover P =
{P1, . . . , Pk} is a partition of E into edge-disjoint simple paths. The size of the cover is
σ(P) = k. I am interested in upper and lower bounds for the quantity

pc(G) := min
G∈G

max
P is path-cover of G

m/σ(P).

In other words, how large is the average path length in the smallest path-cover in the
worst case. The graphs classes G I am interested in are (1) planar 3-connected graphs, and
(2) triangulations.

There is a simple observation for an upper bound: In every odd-degree vertex one path
has to start/end. By Euler’s formula a planar graph can have up to 3|V | − 6 edges. So when
all vertices in a triangulation G have odd degree then pc(G) ≤ 6− ε. The variable ε > 0 can

13151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

62 13151 – Drawing Graphs and Maps with Curves

be made arbitrarily small by considering larger triangulations. The same bound follows from
the fact that d(|V | − 1)/2e paths have to pass through a vertex of degree |V | − 1.
I Problem 1. Does any 3-connected planar graph (triangulation) G = (V,E) have a path-cover
of size pc(G) ≥ 6− c/|V |, for c > 0 being a constant.
The problem might be related to the linear arboricity conjecture. This conjecture claims
that the number of linear forests (disjoint unions of paths) of any graph is either d∆/2e or
d(∆ + 1)/2e, where ∆ denotes the maximal vertex degree of the graph. It was proven for
planar graphs by Wu [3].

If the graph is a triangulation it can be decomposed into edge-disjoint simple paths that
have all exactly three edges [2]. The same is true for cubic bridge-less graphs [1]. So in both
cases we have a lower bound of pc(G) ≥ 3 for those graph classes.
I Problem 2. Does there exist for every planar 3-connected graph a path-cover in which
every path has exactly three edges, with the exception of one path that might be shorter?

These questions are motivated from proving lower bounds for certain problems in graph
drawing with circular arcs.

References
1 André Bouchet and Jean-Luc Fouquet. Trois types de décompositions d’un graphe en

chaînes. In C. Berge, D. Bresson, P. Camion, J. Maurras, and F. Sterboul, editors, Com-
binatorial Mathematics Proceedings of the International Colloquium on Graph Theory and
Combinatorics, volume 75, pages 131 – 141. North-Holland, 1983.

2 Roland Häggkvist and Robert Johansson. A note on edge-decompositions of planar graphs.
Discrete Mathematics, 283(1-3):263–266, 2004.

3 Jian Liang Wu. On the linear arboricity of planar graphs. J. Graph Theory 31:129–134,
1999.

5.4 Self-approaching Networks on Planar Point Sets
Fabrizio Frati (University of Sydney)

A curve C in the plane with end-points u and v is called self-approaching from u to v if,
for every three points a, b, and c in this order along C from u to v, the Euclidean distance
between a and c is greater than the Euclidean distance between b and c. A drawing D of
a graph G is called self-approaching if, for every ordered pair (u, v) of vertices of G, there
exists a path in G whose drawing in D is a self-approaching curve from u to v.

The problem asks whether, for every point set P in the plane, there exists a planar
drawing D of a graph G that spans the points in P and that is self-approaching. The problem
has been defined by Alamdari et al. [1].

References
1 Soroush Alamdari, Timothy M. Chan, Elyot Grant, Anna Lubiw, and Vinayak Pathak.

Self-approaching Graphs. In Proc. 20th Symposium on Graph Drawing (GD ’12), volume
7704 of LNCS, pages 260–271. Springer, 2013.

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 63

5.5 Improving Curved Drawings with Edge Direction and Curvature
Optimization

Kai Xu (Middlesex University)

We presented three related problems on improving Lombardi-like drawings:

1. The first is how to choose the edge curve direction to improve the layout. Different criteria
can be applied here. Examples are to reduce edge crossing or improve the continuity of
paths between nodes.

2. The second one is weighting between angular resolution and other aesthetics criteria.
A method that considers different criteria may produce a layout that is better than a
method that only focuses on angular resolution. The research question is how to find the
right balance, which may vary from graph to graph.

3. The last one is to have both straight and curved edges in a drawing. Curved edges are
only used if they can improve certain aesthetic metrics, for example less edge crossings.
The research questions are when to use curved edges and how to do this efficiently.

5.6 Improving Graph Readability by Spatial Distortion of
Node-Link-Based Graph Depictions within Geographical Contexts

Danny Holten (SynerScope BV)

A multitude of layout algorithms exists for the generation of 2D/3D node-link-based graph
layouts. Most of these algorithms are fairly unrestricted in the sense that they have a high
degree of freedom with respect to the final placement of nodes and/or links within the 2D/3D
space into which the layout is embedded. However, there are situations in which additional
and sometimes stringent restrictions are applicable to (mostly) node placement, which can
severely limit the generation of an optimized and easily readable layout due to the presence of
node clutter. A typical example is when node positions are determined by, e.g., locations on
a geographical map; this does not really allow for optimized placement of nodes for improved
readability through uncluttered positioning. In such cases, (mild) continuous distortions can
be applied to the layout to unclutter the graph and, hence, improve readability by utilizing
spatial graph sparsity as a measure, e.g., by locally contracting (parts of) the graph where
node/link density is low and locally expanding (parts of) the graph where node/link density
is high.

13151

64 13151 – Drawing Graphs and Maps with Curves

6 Exhibition: Bending Reality

Maxwell J. Roberts (University of Essex)

License Creative Commons BY 3.0 Unported license
© Maxwell J. Roberts

Previous seminars concerned with graph drawing and mapping have been staged in conjunction
with successful exhibitions which have highlighted the visual nature of the subject matter
[10461 – Schematization in Cartography, Visualization, and Computational Geometry –
Underground Maps Unravelled; 12261 – Putting Data on the Map – Beyond the Landscape].
Continuing with this tradition, an exhibition was staged in conjunction with this seminar:
Bending Reality: Where Arc and Science Meet.

The exhibition comprised works directly relevant to the theme of the seminar, demonstrat-
ing the use of smooth curves of any kind in order to depict spatial or abstract relationships
in the arts and science. The intention was that by showcasing relevant drawings and
other visual works this would provide an attractive environment in which to work, and
stimulate discussion amongst seminar participants. Exhibits were solicited from seminar
members and were reviewed by the exhibition committee. Part of the seminar program
comprised an unofficial opening, in which participants toured the exhibits and artists de-
scribed their own works. In the meantime, the exhibition is available online. Please visit
http://www.dagstuhl.de/ueber-dagstuhl/kunst/13151.

Exhibition Synopsis
Nature is curved. From tangled branches to meandering rivers and irregular coastlines, there
is barely a straight line to be seen. In centuries past, information designers have sought to
emulate this, with tree-like diagrams and twisting connections, but others have objected to
the inefficiency of curves. Straight lines are direct, simple and easy to follow, so why take
pointless diversions?

Straight lines can play a part in simplifying the world, highlighting routes and connections,
but they can only go so far, and sometimes curves may be better suited. Whether these are
free-form Béziers or regular geometric patterns, in some circumstances they can be more
effective or more aesthetic, and the task of the information designer is to take a flexible
approach, identifying the best tools and techniques for the particular task to hand.

This exhibition presents information from a variety of contexts, the linking theme is
that the designers have investigated the use of curves in order to show routes, structures,
movement, time and connections.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/ueber-dagstuhl/kunst/13151

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 65

The exhibition was divided into seven sections, as described below. It has now been
implemented online, and those artworks that are now part of the online exhibition are listed.
All listed exhibits were contributed by seminar participants.

6.1 Curved Annotations of the World
The world is a sphere, but even when it is shown as a flat projection, curves are often used,
especially to show movement.

The German war society 1939 to 1945. Exploitation, interpretations, exclusion. Andreas
Reimer. 2005
The Flow of Whisky. Kevin Buchin, Bettina Speckmann, and Kevin Verbeek. 2010
A Bicycle’s Journey. Jo Wood. 2013
Airline graph after several steps of an edge bundling algorithm. Emden Gansner, Yifan
Hu, Stephen North and Carlos Scheidegger. 2011

6.2 Curving the World
Curves in the world are rarely simple, whether twisted gnarled branches or a fractal coastline.
Even man-made structures such as railway lines can have complex, uncertain trajectories.
These can be smoothed and simplified, but sometimes there is a temptation to go further,
turning the world into alien geometric shapes.

O-ZONE III. Arthur van Goethem, Wouter Meulemans, Andreas Reimer, Herman
Haverkort, and Bettina Speckmann. 2013
Curve Limit IV. Arthur van Goethem, Wouter Meulemans, Bettina Speckmann, and Jo
Wood. 2013
Countries in Southeast Asia, with straight edges, Bézier curves, and circular arcs. Arthur
van Goethem, Wouter Meulemans, Andreas Reimer, Herman Haverkort, and Bettina
Speckmann. 2013
Circular-arc cartograms of the states of Germany. Martin Nöllenburg. 2013

6.3 Early Metro Maps
The most widely used examples of the curves of reality being converted into straight lines
are metro maps worldwide. This information design technique is relatively recent, first used
in Berlin (1931) and London (1933). Before this, curves on maps generally were used in an
attempt to represent reality. However, there are also examples of attempts to simplify, even
going as far as using a regular circle.

London Underground map based upon designs by F.H. Stingemore, 1925-1932. Maxwell
J. Roberts. 2009
Metropolitan Line carriage diagram from the early 1920s. Maxwell J. Roberts. 2012
Berlin S-Bahn map based upon a 1931 design. Maxwell J. Roberts. 2012
London Underground map based upon a 1933 design by Henry Beck. Maxwell J. Roberts.
2009
Paris Metro map based upon a 1939 design by Loterie Nationale, France. Maxwell J.
Roberts. 2012
Moscow Metro schema based upon 1970s designs. Maxwell J. Roberts. 2009

13151

http://www.dagstuhl.de/ ueber-dagstuhl/kunst/13151

66 13151 – Drawing Graphs and Maps with Curves

6.4 Metro Maps Using Freeform Béziers
Sometimes, straight lines fail to simplify reality. In the case of a complex highly interconnected
network, gentle curves smooth away harsh zigzags, potentially revealing the underlying
structure of the networks.

The Madrid Metro: An all-curves design. Maxwell J. Roberts. 2009
Berlin all-curves U- and S-Bahn network map. Maxwell J. Roberts. 2012
Automatically Generated Drawing of the London Underground using Bézier curves.
M. Fink, H. Haverkort, M. Nöllenburg, M. Roberts, J. Schuhmann, and A. Wolff. 2013
An all-curves map of the Paris Metro. Maxwell J. Roberts. 2007
Curvy tube map. Maxwell J. Roberts. 2008
Subway network of Vienna drawn by a force-Directed method using Bézier curves. A. Wolff,
M. Fink, H. Haverkort, M. Nöllenburg, and J. Schuhmann. 2013

6.5 Metro Maps Using Concentric Circles
Highly abstract and stylised, this new way of showing networks does not necessarily offer
simplified line trajectories, but nonetheless presents a highly organised view of the network,
which many people find striking.

The Vienna U-Bahn in minimalist style. Therese Biedl and Maxwell J. Roberts. 2012
The Madrid Metro: A concentric circles design. Maxwell J. Roberts. 2013
A concentric circles map of the Moscow Metro. Maxwell J. Roberts. 2013
Berlin concentric circles U- and S-Bahn network map. Maxwell J. Roberts. 2013
A map of the London Underground based upon concentric circles, spokes, and tangents.
Smooth corners version. Maxwell J. Roberts. 2013

6.6 Curved Relationships
In theory, the display of abstract concepts such as time and relatedness need not be constrained
by preconceptions derived from our experience of nature. In practice, use of curves can add
an aesthetic dimension, or even assist in the presentation of information.

Mark Lombardi: Kunst und Konspiration. Film poster. 2012
The collaboration network between Jazz bands. S. Pupyrev, L. Nachmanson, S. Bereg,
and A.E. Holroyd. 2011
40 Jahre Universität Konstanz. Ulrik Brandes. 2006
Poster for 21st International Symposium on Graph Drawing. David Auber. 2013
Spaghetti à la Wehrli. Mereke van Garderen and Bettina Speckmann. 2013

6.7 Mathematical Abstractions
Curves are no stranger to the mathematical world, and sometimes enable combinatorial
structures, abstract graphs and other concepts to be visualised more efficiently than with
straight lines.

Iterated Möbius-transformations. André Schulz. 2013
Random confluent Hasse diagram on 222 points. David Eppstein. 2013

http://www.realfictionfilme.de/filme/mark-lombardi/index.php

Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud 67

Flowerpot. Günter Rote. 2013
Lombardi drawings. C. Duncan, D. Eppstein, M. Goodrich, S. Kobourov, and M. Löffler.
2011
The Petersen family. David Eppstein. 2010
Lombardi drawing of the full binary outertree on 1025 vertices (in a non-standard
embedding). Maarten Löffler. 2012
A selection of graphs from the Rome library drawn using a Lombardi force-directed
algorithm. Stephen Kobourov. 2011
Hyperbolic tessellation generated by a Fuchsian group with genus 1 and a period of 3.
Jakob von Raumer. 2013
Covering of the hyperbolic plane. Mikhail Bogdanov, Olivier Devillers, and Monique
Teillaud. 2013
The Nauru graph in 3d. David Eppstein. 2008

13151

68 13151 – Drawing Graphs and Maps with Curves

Participants

Patrizio Angelini
Università di Roma III, IT

Michael Bekos
National TU – Athens, GR

David Eppstein
Univ. of California – Irvine, US

Fabrizio Frati
The University of Sydney, AU

Eric Fusy
Ecole Polytechnique –
Palaiseau, FR

Martin Gronemann
Universität Köln, DE

Jan-Henrik Haunert
Universität Würzburg, DE

Herman J. Haverkort
TU Eindhoven, NL

Michael Hemmer
TU Braunschweig, DE

Danny Holten
SynerScope BV, NL

Michael Kaufmann
Universität Tübingen, DE

Stephen G. Kobourov
Univ. of Arizona – Tucson, US

Sylvain Lazard
INRIA Grand Est – Nancy, FR

Maarten Löffler
Utrecht University, NL

Tamara Mchedlidze
KIT – Karlsruhe Institute of
Technology, DE

Wouter Meulemans
TU Eindhoven, NL

Lev Nachmanson
Microsoft Corp. – Redmond, US

Benjamin Niedermann
KIT – Karlsruhe Institute of
Technology, DE

Arlind Nocaj
Universität Konstanz, DE)

Martin Nöllenburg
KIT – Karlsruhe Institute of
Technology, DE

Sergey Pupyrev
Univ. of Arizona – Tucson, US

Helen C. Purchase
University of Glasgow, GB

Andreas Reimer
Universität Heidelberg, DE

Maxwell J. Roberts
University of Essex, GB

Günter Rote
FU Berlin, DE

André Schulz
Universität Münster, DE

Aidan Slingsby
City University – London, GB

Bettina Speckmann
TU Eindhoven, NL

Monique Teillaud
INRIA Sophia Antipolis –
Méditerranée, FR

Torsten Ueckerdt
KIT – Karlsruhe Institute of
Technology, DE

Kevin Verbeek
University of California – Santa
Barbara, US

Alexander Wolff
Universität Würzburg, DE

Jo Wood
City University – London, GB

Kai Xu
Middlesex University, GB

Report from Dagstuhl Seminar 13161

Interface of Computation, Game Theory, and Economics
Edited by
Sergiu Hart1, Éva Tardos2, and Bernhard von Stengel3

1 Hebrew University, Jerusalem, IL, hart@huji.ac.il
2 Cornell University – Ithaca, US, eva@cs.cornell.edu
3 London School of Economics, GB, stengel@nash.lse.ac.uk

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13161 “Interface of
Computation, Game Theory, and Economics”. The workshop was strongly interdisciplinary, on
the leading edge of current topics generally connected to algorithmic game theory: Mechanism
design and auctions, interactions in networks, social models, and dynamics and equilibrium
in games and markets. We summarize these topics, give the talk abstracts, and comment on
experiences related to the organization of the workshop.

Seminar 14.–19. April, 2013 – www.dagstuhl.de/13161
1998 ACM Subject Classification J.4.1. Computer Applications – Economics
Keywords and phrases Algorithmic Game Theory, Economics, Internet, Nash Equilibrium, Mech-

anism Design, Auctions
Digital Object Identifier 10.4230/DagRep.3.4.69

1 Executive Summary

Sergiu Hart
Éva Tardos
Bernhard von Stengel

License Creative Commons BY 3.0 Unported license
© Sergiu Hart, Éva Tardos, and Bernhard von Stengel

The aim of this seminar was to study research issues at the interface of computing, game
theory and economics. It facilitated discussions among people working in different disciplines.
The majority of participants were academics from computer science departments, and the
others (about one third) from other disciplines such as economics or corporate research
departments of Google or Microsoft. All have strong cross-disciplinary interests.

Economic transactions on the internet are of ever-increasing importance. In order to
execute and support them algorithmically, it is important to understand the agents’ incentives
on one hand and computational constraints on the other hand. This is studied in approaches
to mechanism design and auctions, which formed a large part of the topics of this workshop.

Theoretical and practical issues of mechanism design were topics of the following present-
ations: epistemic implementations with belief levels (Jing Chen), translating agent-provided
inputs to optimization (Constantinos Daskalakis), reward schemes (Shahar Dobzinski), the
difficulties of allocating more than one good (Sergiu Hart), advertisement exchanges (Vahab
Mirrokni), mechanisms for the private supply of a public good (Rudolf Müller), truthfulness
versus privacy (Aaron Roth), composing mechanisms (Vasilis Syrgkanis), and allocating
indivisible objects (Rakesh V. Vohra).

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Interface of Computation, Game Theory, and Economics, Dagstuhl Reports, Vol. 3, Issue 4, pp. 69–90
Editors: Sergiu Hart, Éva Tardos, and Bernhard von Stengel

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13161
http://dx.doi.org/10.4230/DagRep.3.4.69
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

70 13161 – Interface of Computation, Game Theory, and Economics

Aspects of auctions concerned “expressiveness” about preferences (Paul Dütting), the
approximate optimality of marginal revenue maximization (Jason D. Hartline), improving the
design of online advertising auctions (Kevin Leyton-Brown), commitment (Katrina Ligett),
inefficiency of multi-unit auctions (Vangelis Markakis), symmetric auctions (Mallesh Pai),
interdependent values (Tim Roughgarden), and spectrum auctions (Ilya Segal).

Understanding the interconnectedness of complex economic systems requires models and
theories for the underlying network structures and their dynamics. Networks were studied
with respect to social segregation (Nicole Immorlica), practical market applications (Ramesh
Johari), online creation (Thomas Kesselheim), competition (Brendan Lucier), and social
contagion (Sigal Oren).

Social models, with bridges to mechanism design, were studied in presentations on division
protocols (Simina Branzei), randomized social choice (Markus Brill), ranking methods
(Gabrielle Demange), power changes in voting games (Edith Elkind), and incentives beyond
selfishness (Guido Schäfer).

Achieving and computing an equilibrium in dynamic models of large interactions such
as games and market models was studied for large aggregative games (Yakov Babichenko),
new price updating in markets (Nikhil R. Devanur), payoff queries for games (Paul W. Gold-
berg), limit processes for evolutionary games (Bill Sandholm), and tournament competitions
(Bernhard von Stengel).

The topics were chosen by the presenters, not by the organizers. The rather strong
emphasis on mechanism design and auctions (which may have caused one single critical
feedback comment on “too much groupthink”) reflects the strong current interest in this
area, in line with its economic importance, for example as the source of the riches of Google
and other internet search engines.

Sergiu Hart, Éva Tardos, and Bernhard von Stengel 71

2 Table of Contents

Executive Summary
Sergiu Hart, Éva Tardos, and Bernhard von Stengel 69

Overview of Talks
Best-Reply Dynamics in Large Aggregative Games
Yakov Babichenko . 73

Equilibria of Generalized Cut and Choose Protocols
Simina Branzei . 73

On the Tradeoff between Economic Efficiency and Strategyproofness in Randomized
Social Choice
Markus Brill . 73

Epistemic Implementation
Jing Chen . 74

Reductions from Mechanism to Algorithm Design
Constantinos Daskalakis . 74

A Ranking Method Based on Handicaps
Gabrielle Demange . 74

Tatonnement Beyond Gross Substitutes? Gradient Descent to the Rescue
Nikhil R. Devanur . 75

Shared Resource Management via Reward Schemes
Shahar Dobzinski . 75

Expressiveness and Robustness of First-Price Position Auctions
Paul Dütting . 76

Dynamic Coalitional Games
Edith Elkind . 76

Payoff Queries
Paul W. Goldberg . 76

Two(!) Good To Be True
Sergiu Hart . 77

The Simple Economics of Approximately Optimal Auctions
Jason D. Hartline . 77

An Analysis of One-Dimensional Schelling Segregation
Nicole Immorlica . 77

The Engineer as Economist: The Design of Online Market Platforms
Ramesh Johari . 78

Online Independent Set Beyond the Worst-Case: Secretaries, Prophets, and Periods
Thomas Kesselheim . 78

Revenue Optimization in the Generalized Second-Price Auction
Kevin Leyton-Brown . 79

Preplay Commitment in First-Price Auctions
Katrina Ligett . 79

13161

72 13161 – Interface of Computation, Game Theory, and Economics

A Model of Bertrand Price Competition in Networks
Brendan Lucier . 80

On the Inefficiency of Standard Multi-unit Auction Formats
Vangelis Markakis . 80

Mechanism Design Problems in Ad Exchanges and Budget Constraints
Vahab Mirrokni . 80

Optimal Mechanism Design for the Private Supply of a Public Good
Rudolf Müller . 81

Selection and Influence in Cultural Dynamics
Sigal Oren . 81

Symmetric Auctions
Mallesh Pai . 82

Mechanism Design in Large Games and Differential Privacy
Aaron Roth . 82

Optimal Ex Post and Prior-Independent Auctions with Interdependent Values
Tim Roughgarden . 83

Large Deviations and Stochastic Stability in the Large Population Limit
Bill Sandholm . 83

Altruism and Spite in Games
Guido Schäfer . 83

Heuristic Auctions and U.S. Spectrum Repurposing
Ilya Segal . 84

Composable and Efficient Mechanisms
Vasilis Syrgkanis . 84

Rounding and the Allocation of Indivisible Objects
Rakesh V. Vohra . 85

Equilibria in the Challenge Tournament
Bernhard von Stengel . 85

Further Participants and Session Chairs . 85

Open Problems . 86

Fair Division of a Max-Flow
Hervé Moulin . 86

Organizational Issues . 87

Invitations . 87

During the Workshop . 88

Participants . 90

Sergiu Hart, Éva Tardos, and Bernhard von Stengel 73

3 Overview of Talks

3.1 Best-Reply Dynamics in Large Aggregative Games
Yakov Babichenko (CalTech, US, babich@caltech.edu)

License Creative Commons BY 3.0 Unported license
© Yakov Babichenko

We consider small-influence aggregative games with a large number of players n. For this
class of games we present a best-reply dynamic with the following two properties. First,
the dynamic reaches Nash approximate equilibria fast (in at most cn log(n) steps for some
constant c > 0). Second, Nash approximate equilibria are played by the dynamic with a
limit frequency that is exponentially close to 1 (at least 1− e−c′n for some constant c′ > 0).

3.2 Equilibria of Generalized Cut and Choose Protocols
Simina Branzei (Aarhus University, DK, simina@cs.au.dk)

License Creative Commons BY 3.0 Unported license
© Simina Branzei

Classic cake cutting protocols – which fairly allocate a divisible good among agents with
heterogeneous preferences – are susceptible to manipulation. Do their strategic outcomes
still guarantee fairness? We model the interaction among agents as a game and study its
Nash equilibria. We show that each protocol in the novel class of generalized cut and choose
protocols – which includes the most important discrete cake cutting protocols – is guaranteed
to have an ε-equilibrium for all ε > 0. Moreover, we observe that the (approximate) equilibria
of proportional protocols – which guarantee each of the n agents a 1/n-fraction of the cake
– must be (approximately) proportional. Finally, we design a generalized cut and choose
protocol where all equilibrium outcomes satisfy the stronger fairness notion of envy-freeness.

3.3 On the Tradeoff between Economic Efficiency and
Strategyproofness in Randomized Social Choice

Markus Brill (TU München, DE, brill@in.tum.de)

License Creative Commons BY 3.0 Unported license
© Markus Brill

Two fundamental notions in microeconomic theory are efficiency – no agent can be made
better off without making another one worse off – and strategyproofness – no agent can
obtain a more preferred outcome by misrepresenting his preferences. When social outcomes
are probability distributions (or lotteries) over alternatives, there are varying degrees of
these notions depending on how preferences over alternatives are extended to preference over
lotteries. We show that efficiency and strategyproofness are incompatible to some extent
when preferences are defined using stochastic dominance (SD) and therefore introduce a
natural weakening of SD based on Savage’s sure-thing principle (ST). While random serial
dictatorship is SD-strategyproof, it only satisfies ST-efficiency. Our main result is that
strict maximal lotteries – an appealing class of social decision schemes due to Kreweras and
Fishburn – satisfy SD-efficiency and ST-strategyproofness.

13161

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

74 13161 – Interface of Computation, Game Theory, and Economics

3.4 Epistemic Implementation
Jing Chen (IAS and Stony Brook, US, jingchen@csail.mit.edu)

License Creative Commons BY 3.0 Unported license
© Jing Chen

In a setting of incomplete information, we model the hierarchy of the players’ beliefs about
each other’s payoff types in a set-theoretic way. A player’s beliefs can be totally arbitrary, and
the beliefs of different players can be inconsistent with each other. In single-good auctions, for
k = 0, 1, . . ., we define a revenue benchmark Gk on the players’ belief hierarchy. Intuitively,
Gk ≥ v if and only if there exist at least two players “believing that there exists a player
. . . ” (k times) valuing the good at least v. We construct an interim individually rational
mechanism M that, without any clue about the players’ beliefs and their rationality level,
virtually guarantees revenue Gk whenever the players happen to be level-(k+ 1) rational. We
also separate the revenue achievable with level-k and level-(k + 1) rational players. For every
k ≥ 0, we show that no interim individually rational mechanism can virtually guarantee
revenue Gk when the players’ rationality level is k instead of k + 1.

3.5 Reductions from Mechanism to Algorithm Design
Constantinos Daskalakis (MIT, US, costis@csail.mit.edu)

License Creative Commons BY 3.0 Unported license
© Constantinos Daskalakis

Algorithmic mechanism design centers around the following question: How much harder is
optimizing an objective function over inputs that are furnished by rational agents compared to
when the inputs are known? We provide a computationally efficient, black-box reduction from
mechanism design (i.e. optimizing over rational inputs) to algorithm design (i.e. optimizing
over known inputs) in general Bayesian settings. As an application of our reduction, we
extend Myerson’s celebrated auction to the multi-item setting.

3.6 A Ranking Method Based on Handicaps
Gabrielle Demange (Paris School of Economics, FR, demange@pse.ens.fr)

License Creative Commons BY 3.0 Unported license
© Gabrielle Demange

Ranking methods are a fundamental tool in many areas. Popular methods are based on
the statements of “experts” and aggregate them in some way. As such, there is a variety of
meaningful ranking methods, more or less adapted to the environment under consideration.
We introduce and characterizes a new method, called the handicap-based method. The
method assigns scores to the items and weights to the experts. Scores and weights form an
equilibrium for a relationship based on the notion of handicaps. The method is, in a sense
that we make precise, the counterpart of the counting method in environments that require
intensity-invariance. Intensity-invariance is a desirable property when the intensity of the
experts’ statements has to be controlled. Otherwise, both the counting and handicap-based
methods satisfy a property called homogeneity, which is a desirable property when cardinal
statements matter, as is the case in many applications.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sergiu Hart, Éva Tardos, and Bernhard von Stengel 75

3.7 Tatonnement Beyond Gross Substitutes? Gradient Descent to the
Rescue

Nikhil R. Devanur (Microsoft, Redmond, US, nikdev@microsoft.com)

Main reference Y.K. Cheung, R. Cole, N.R. Devanur, “Tatonnement beyond gross substitutes?: Gradient descent
to the rescue,” in Proc. of the 45th Annual ACM Symp. on Symposium on Theory of Computing
(STOC’13), pp. 191–200, ACM, 2013.

URL http://dx.doi.org/10.1145/2488608.2488633
License Creative Commons BY 3.0 Unported license

© Nikhil R. Devanur

Tatonnement is a simple and natural rule for updating prices in exchange (Arrow-Debreu)
markets. We define a class of markets for which tatonnement is equivalent to gradient
descent. This is the class of markets for which there is a convex potential function whose
gradient is always equal to the negative of the excess demand and we call it Convex Potential
Function (CPF) markets. We show the following results. CPF markets contain the class
of Eisenberg Gale (EG) markets, defined previously by Jain and Vazirani. The subclass
of CPF markets for which the demand is a differentiable function contains exactly those
markets whose demand function has a symmetric negative semi-definite Jacobian. We define
a family of continuous versions of tatonnement based on gradient descent using a Bregman
divergence. As we show, all processes in this family converge to an equilibrium for any
CPF market. This is analogous to the classic result for markets satisfying the Weak Gross
Substitutes property. A discrete version of tatonnement converges toward the equilibrium
for the following markets of complementary goods; its convergence rate for these settings is
analyzed using a common potential function. Fisher markets in which all buyers have Leontief
utilities. The tatonnement process reduces the distance to the equilibrium, as measured by
the potential function, to an ε fraction of its initial value in O(1/ε) rounds of price updates.
Fisher markets in which all buyers have complementary CES utilities. Here, the distance to
the equilibrium is reduced to an ε fraction of its initial value in O(log(1/ε)) rounds of price
updates.

This shows that tatonnement converges for the entire range of Fisher markets when
buyers have complementary CES utilities, in contrast to prior work, which could analyze
only the substitutes range, together with a small portion of the complementary range.

3.8 Shared Resource Management via Reward Schemes
Shahar Dobzinski (Weizmann Institute, Rehovot, IL, dobzin@gmail.com)

Joint work of Dobzinski, Shahar; Ronen, Amir;
License Creative Commons BY 3.0 Unported license

© Shahar Dobzinski

We study scenarios in which consumers have several options of using a shared resource (e.g.,
truck operators that can drive either in peak or off peak hours). Our goal is to design reward
schemes that, in equilibrium, minimize the cost to society and the total sum of rewards. We
introduce a simple reward scheme which does not require any knowledge of the private values
of the consumers, yet its cost in equilibrium is always within a factor of

√
α of the cost of

the optimal scheme that has complete knowledge of the consumers’ valuations. Here, alpha
is the ratio between the costs of the worst and best alternatives. We show the optimality of
our scheme in various settings by providing lower bounds.

13161

http://dx.doi.org/10.1145/2488608.2488633
http://dx.doi.org/10.1145/2488608.2488633
http://dx.doi.org/10.1145/2488608.2488633
http://dx.doi.org/10.1145/2488608.2488633
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

76 13161 – Interface of Computation, Game Theory, and Economics

3.9 Expressiveness and Robustness of First-Price Position Auctions
Paul Dütting (EPFL Lausanne, CH, paul.duetting@epfl.ch)

License Creative Commons BY 3.0 Unported license
© Paul Dütting

It has been argued that increasing the expressiveness of an auction increases the quality
of the outcomes it is able to support. Intuitively, more expressive auctions should allow
agents to more accurately reveal their preferences in the presence of uncertainty. We study
this issue in the context of a position auction in which valuations are one-dimensional but
the designer is uncertain about the relative values of the positions. In this setting, efficient
equilibria may fail to exist for simplified auctions that solicit only a single bid from each
agent, but existence can be restored by increasing expressiveness. In particular, we show
this to be the case for a generalized first-price (GFP) auction. In addition to the existence
of an efficient Bayes-Nash equilibrium, the GFP auction is robust to varying assumptions
about the information available to agents while second-price and VCG auctions are not.
Technically, our main result is interesting because the Bayes-Nash equilibrium is constructed
for a multi-dimensional bid space. The structure of the equilibrium bids moreover provides
an intuitive explanation for why first-price payment rules may be able to support equilibria
in a wider range of scenarios than second-price payment rules.

3.10 Dynamic Coalitional Games
Edith Elkind (Nanyang Technical University, Singapore, SG, eelkind@ntu.edu.sg)

Joint work of Elkind, Edith; Pasechnik, Dmitrii V.; Zick, Yair;
Main reference E. Elkind, D.V. Pasechnik, Y. Zick, “Dynamic weighted voting games,” in Proc. of the Int’l Conf.

on Autonomous Agents and Multi-Agent Systems (AAMAS’13), pp. 515-522, IFAAMAS, 2013.
URL http://dl.acm.org/citation.cfm?id=2485003

License Creative Commons BY 3.0 Unported license
© Edith Elkind

We define and study dynamic weighted voting games – weighted voting games where the
weight of each player and the quota may change as a function of time. We investigate
computational aspects of such games under the assumption that all weights and the quota
are given by polynomials with integer coefficients. We focus on two types of algorithmic
questions: computing a given solution concept at a particular point in time, and checking
that a certain function of the game (e.g., the Shapley value of a given player or the value of
the least core) remains within given bounds during a particular time interval. We provide
pseudopolynomial algorithms for both types of problems, for a variety of solution concepts.
We then use our results to investigate the changes in power distribution in the Council of
the European Union over the next 50 years.

3.11 Payoff Queries
Paul W. Goldberg (University of Liverpool, UK, P.W.Goldberg@liverpool.ac.uk)

License Creative Commons BY 3.0 Unported license
© Paul W. Goldberg

I give an informal introduction to “payoff query” algorithms, where an algorithm can specify
a pure profile of a game (with initially unknown payoffs) and get told the payoffs for that
pure profile. Given a class of games, and a solution concept, the challenge is to figure out
the query complexity of solving an initially-unknown game from that class.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dl.acm.org/citation.cfm?id=2485003
http://dl.acm.org/citation.cfm?id=2485003
http://dl.acm.org/citation.cfm?id=2485003
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sergiu Hart, Éva Tardos, and Bernhard von Stengel 77

3.12 Two(!) Good To Be True
Sergiu Hart (Hebrew University, Jerusalem, IL, hart@huji.ac.il)

License Creative Commons BY 3.0 Unported license
© Sergiu Hart

How to sell goods optimally? While the mechanism-design literature has solved this problem
neatly when there is only one good, the multiple goods case turns out to be extremely
difficult, mathematically and conceptually. Much of what is true for one good does not
extend to multiple goods. We will try to explain the difficulties, show what can go wrong,
and then present some universal approximation results. The talk is essentially self-contained;
no background in mechanism design is necessary.

3.13 The Simple Economics of Approximately Optimal Auctions
Jason D. Hartline (Northwestern University, Evanston, US, hartline@eecs.northwestern.edu)

License Creative Commons BY 3.0 Unported license
© Jason D. Hartline

The intuition that profit is optimized by maximizing marginal revenue is a guiding principle
in microeconomics. In the classical auction theory for agents with quasi-linear utility and
single dimensional preferences, Bulow and Roberts (1989) show that the optimal auction
of Myerson (1981) is in fact optimizing marginal revenue. In particular Myerson’s virtual
values are exactly the derivative of an appropriate revenue curve. We consider mechanism
design in environments where the agents have multi-dimensional and non-linear preferences.
Understanding good auctions for these environments is considered to be the main challenge
in Bayesian optimal mechanism design. In these environments maximizing marginal revenue
may not be optimal, and furthermore, there is sometimes no direct way to implementing
the marginal revenue maximization mechanism. Our contributions are twofold: we give
procedures for implementing marginal revenue maximization in general, and we show that
marginal revenue maximization is approximately optimal. Our approximation factor smoothly
degrades in a term that quantifies how far the environment is from an ideal one (i.e., where
marginal revenue maximization is optimal).

3.14 An Analysis of One-Dimensional Schelling Segregation
Nicole Immorlica (Northwestern University, Evanston, US, nickle@eecs.northwestern.edu)

License Creative Commons BY 3.0 Unported license
© Nicole Immorlica

We analyze the Schelling model of segregation in which a society of n individuals live in a
ring. Each individual is one of two races and is only satisfied with his location so long as at
least half his 2w nearest neighbors are of the same race as him. In the dynamics, randomly-
chosen unhappy individuals successively swap locations. We consider the average size of
monochromatic neighborhoods in the final stable state. Our analysis is the first rigorous
analysis of the Schelling dynamics. We note that, in contrast to prior approximate analyses,
the final state is nearly integrated: the average size of monochromatic neighborhoods is
independent of n and polynomial in w.

13161

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

78 13161 – Interface of Computation, Game Theory, and Economics

3.15 The Engineer as Economist: The Design of Online Market
Platforms

Ramesh Johari (Stanford University, US, ramesh.johari@stanford.edu)

License Creative Commons BY 3.0 Unported license
© Ramesh Johari

Markets are an ancient institution for matching those willing to provide a good or service with
those who want it. Physical markets were typically slow to evolve, with simple institutions
governing trade, and trading partners generally facing a daunting challenge in finding the
“right” partner.

Online marketplaces dramatically disrupt this tradition. Such markets – from eBay, to
Google’s sponsored search auction, to online labor markets such as oDesk and TaskRabbit
– can rapidly respond to evolving market trends, and “engineer” in fine grained ways the
interactions of their participants with the platform. Further, the traditional difficulty of
finding even one trading partner has been replaced with a new difficulty: how to narrow down
a plethora of choices? Motivated by this new landscape, this talk will discuss some of the
challenges that engineers face in designing and implementing emerging online marketplaces.

3.16 Online Independent Set Beyond the Worst-Case: Secretaries,
Prophets, and Periods

Thomas Kesselheim (Cornell University, US, kesselheim@cs.cornell.edu)

License Creative Commons BY 3.0 Unported license
© Thomas Kesselheim

We investigate online algorithms for maximum (weight) independent set on graph classes with
bounded inductive independence number like interval and disk graphs with applications to,
e.g., task scheduling and spectrum allocation. In the online setting, it is assumed that nodes
of an unknown graph arrive one by one over time. An online algorithm has to decide whether
an arriving node should be included into the independent set. Unfortunately, this natural and
practically relevant online problem cannot be studied in a meaningful way within a classical
competitive analysis as the competitive ratio on worst-case input sequences is lower bounded
by Ω(n). This devastating lower bound holds even for randomized algorithms on unweighted
interval graphs and, hence, for the most restricted graph class under consideration.

As a worst-case analysis is pointless, we study online independent set in a stochastic
analysis. Instead of focussing on a particular stochastic input model, we present a generic
sampling approach that enables us to devise online algorithms achieving performance guaran-
tees for a variety of input models. In particular, our analysis covers stochastic input models
like the secretary model, in which an adversarial graph is presented in random order, and the
prophet-inequality model, in which a randomly generated graph is presented in adversarial
order. Our sampling approach bridges thus between stochastic input models of quite different
nature. In addition, we show that the same performance guarantees can be obtained for a
period-based input model that is inspired by practical admission control applications.

Our sampling approach yields an online algorithm for maximum independent set on
interval and disk graphs with competitive ratio O(1) with respect to all of the mentioned
stochastic input models. More generally, for graph classes with inductive independence
number ρ, the competitive ratio is O(ρ2). The approach can be extended towards maximum

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sergiu Hart, Éva Tardos, and Bernhard von Stengel 79

weight independent set by losing only a factor of O(logn) in the competitive ratio with n
denoting the (expected) number of nodes. This upper bound is complemented by a lower
bound of Ω(logn/ log2 logn) showing that our sampling approach achieves nearly the optimal
competitive ratio in all of the considered models. Furthermore, we generalize our analysis to
address several practically motivated extensions of the independent set problem, e.g., arrival
and departure times of nodes or edge-weighted graphs capturing SINR-type interference
conflicts in wireless networks.

3.17 Revenue Optimization in the Generalized Second-Price Auction
Kevin Leyton-Brown (University of British Columbia, Vancouver, CA, kevinlb@cs.ubc.ca)

License Creative Commons BY 3.0 Unported license
© Kevin Leyton-Brown

We consider the question of how to optimize revenue in advertising auctions without departing
from the generalized second-price. We consider several different GSP variants (including
squashing and different types of reserve prices), and how to set their parameters optimally.
Our main finding is that unweighted reserve prices (i.e., where each advertiser has the same
per-click reserve price) are dramatically better than the quality-weighted reserve prices that
have become common practice in the last few years. This result is extremely robust, arising
from theoretical analysis as well as multiple computational experiments. Our work also
includes one of the first studies of how squashing and reserve prices interact, and of how
equilibrium selection affects the revenue of GSP when features such as reserves or squashing
are applied.

3.18 Preplay Commitment in First-Price Auctions
Katrina Ligett (CalTech, Pasadena, US, katrina@caltech.edu)

License Creative Commons BY 3.0 Unported license
© Katrina Ligett

We study a variation of the standard single-item sealed-bid first-price auction wherein all
bidders know one another’s valuations, and one bidder (the leader) publicly commits to a
(possibly mixed) strategy before the others submit their bids. We formulate the auction
as a two-stage Stackelberg game, and study the impact of commitment on the utilities of
the bidders and the auctioneer. For the case where the leader’s valuation is the highest
or the second highest (including, e.g., when there are only two bidders), we characterize
the commitment that maximizes the expected payoff of the leader. In this case, both the
leader and the bidder with the highest valuation among the other bidders strictly benefit
from the commitment—each obtains an expected payoff higher than that achieved at a Nash
equilibrium of the standard first-price auction. For an important variant of our model where
the leader’s commitment is restricted to be a discrete random variable (and thus a credible
commitment may be more practically implemented), we characterize the leader’s optimal
commitment as a solution to an optimization problem. There, we study the extent to which
a discrete-valued commitment can approximate the maximum expected payoff achievable
under committing to arbitrary mixed strategies.

13161

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

80 13161 – Interface of Computation, Game Theory, and Economics

3.19 A Model of Bertrand Price Competition in Networks
Brendan Lucier (Microsoft Research, Cambridge, US, brlucier@microsoft.com)

License Creative Commons BY 3.0 Unported license
© Brendan Lucier

We study scenarios where multiple sellers of a homogeneous good compete on prices, where
each seller can only sell to some subset of the buyers. Crucially, sellers cannot price-
discriminate between buyers. We model the structure of the competition by a graph (or
hyper-graph), with nodes representing the sellers and edges representing populations of
buyers. We study equilibria in the game between the sellers, prove that they always exist,
and present various structural, quantitative, and computational results about them. We also
analyze the equilibria completely for a few cases. Many questions are left open.

3.20 On the Inefficiency of Standard Multi-unit Auction Formats
Vangelis Markakis (Athens University of Economics and Business, GR, markakis@gmail.com)

Joint work of de Keijzer, Bart; Markakis, Vangelis; Schaefer, Guido; Telelis, Orestis;
License Creative Commons BY 3.0 Unported license

© Vangelis Markakis

We study two standard multi-unit auction formats for allocating multiple units of a single
good to multi-demand bidders. The first one is the Discriminatory Price Auction, which
charges every winner his winning bids. The second is the Uniform Price Auction, which
determines a uniform price to be paid per unit. Variants of both formats find applications
ranging from the allocation of bonds to investors, to online sales over the internet, facilitated
by popular online brokers.

For these multi-unit auction formats, we consider two bidding interfaces: (i) standard
bidding, which is most prevalent in the scientific literature, and (ii) uniform bidding, which is
the most widely used interface in practical applications. We evaluate the economic inefficiency
of the two formats for both bidding interfaces, by means of upper and lower bounds on
the Price of Anarchy for pure equilibria and mixed Bayes-Nash equilibria. Our results for
bidders with submodular valuations improve upon bounds that have been obtained recently
in [Markakis, Telelis, SAGT 2012] and [Syrgkanis, Tardos, STOC 2013]. Moreover, we also
consider for the first time bidders with subadditive valuation functions and obtain constant
upper bounds there as well.

3.21 Mechanism Design Problems in Ad Exchanges and Budget
Constraints

Vahab Mirrokni (Google, New York, US, mirrokni@google.com)

License Creative Commons BY 3.0 Unported license
© Vahab Mirrokni

I will give a survey of mechanism design problems motivated by ad exchanges and budget
constraints in online advertising. For each problem, I will present preliminary/known results
and pose open problems and research directions. Some topics that are discussed are auctions
in the presence of intermediaries, optimal revenue-sharing double auctions, and pareto-optimal
polyhedral clinching auctions.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sergiu Hart, Éva Tardos, and Bernhard von Stengel 81

3.22 Optimal Mechanism Design for the Private Supply of a Public
Good

Rudolf Müller (Maastricht University, NL, r.muller@maastrichtuniversity.nl)

License Creative Commons BY 3.0 Unported license
© Rudolf Müller

We study the problem of finding the profit-maximizing mechanism for a monopolistic provider
of a single, non-excludable public good. This problem has been well studied for the case
when agents’ signals are independently distributed, but the literature is almost silent about
the case of general joint distributions. Our model covers the most general setting, namely,
we allow for correlation in the signal distribution as well as for informational externalities.
We investigate the problem from an automated mechanism design perspective, meaning that
we want to understand the algorithmic complexity of finding the optimal mechanism when
we are given a finite set of signal profiles and their distribution.

We show that the optimal deterministic, ex-post incentive compatible, ex-post individual
rational mechanism can be computed in polynomial time by reducing the problem to finding
a maximal weight closure in a directed graph. Node weights in the graph correspond to
conditional virtual values. When valuations are independent and independently distributed,
the constructed mechanism is also optimal among all Bayes-Nash implementable and interim
individual rational mechanisms. In contrast, for dependent valuations strictly higher profit
can be achieved if one allows for interim individual rationality or Bayes-Nash implementability.
By invoking techniques due to Cremer and McLean [1988], we show that optimal determ-
inistic, interim individual rational, ex-post implementable mechanisms still can be found
in polynomial time if the joint distribution of signals satisfies certain regularity conditions.
Finally, we demonstrate that our techniques can be adapted for the excludable public good
problem as well.

3.23 Selection and Influence in Cultural Dynamics
Sigal Oren (Cornell University, US, sigal@cs.cornell.edu)

License Creative Commons BY 3.0 Unported license
© Sigal Oren

One of the fundamental principles driving diversity or homogeneity in domains such as
cultural differentiation, political affiliation, and product adoption is the tension between two
forces: influence (the tendency of people to become similar to others they interact with) and
selection (the tendency to be affected most by the behavior of others who are already similar).
Influence tends to promote homogeneity within a society, while selection frequently causes
fragmentation. When both forces are in effect simultaneously, it becomes an interesting
question to analyze which societal outcomes should be expected.

In order to study the joint effects of these forces more formally, we analyze a natural
model built upon active lines of work in political opinion formation, cultural diversity, and
language evolution. Our model posits an arbitrary graph structure describing which “types”
of people can influence one another: this captures effects based on the fact that people are
only influenced by sufficiently similar interaction partners. In a generalization of the model,
we introduce another graph structure describing which types of people even so much as come

13161

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

82 13161 – Interface of Computation, Game Theory, and Economics

in contact with each other. These restrictions on interaction patterns can significantly alter
the dynamics of the process at the population level.

For the basic version of the model, in which all individuals come in contact with all others,
we achieve an essentially complete characterization of (stable) equilibrium outcomes and
prove convergence from all starting states. For the other extreme case, in which individuals
only come in contact with others who have the potential to influence them, the underlying
process is significantly more complicated; nevertheless we present an analysis for certain
graph structures.

3.24 Symmetric Auctions
Mallesh Pai (University of Pennsylvania, US, mallesh@econ.upenn.edu)

License Creative Commons BY 3.0 Unported license
© Mallesh Pai

Real-world auctions are often restricted to being symmetric (anonymous and nondiscriminat-
ory) due to practical or legal constraints. We examine when this restriction prevents a seller
from achieving his objectives. In an independent private value setting, we characterize the
set of incentive compatible and individually rational outcomes that can be implemented via
a symmetric auction. Our characterization shows that symmetric auctions can yield a large
variety of discriminatory outcomes such as revenue maximization and affirmative action. We
also characterize the set of implementable outcomes when individual rationality holds in an
ex post rather than an interim sense. This additional requirement may prevent the seller
from maximizing revenue.

3.25 Mechanism Design in Large Games and Differential Privacy
Aaron Roth (University of Pennsylvania, US, aaroth@cis.upenn.edu)

License Creative Commons BY 3.0 Unported license
© Aaron Roth

We study the design of mechanisms satisfying two desiderata – incentive compatibility and
privacy. The first, requires that each agent should be incentivized to report her private
information truthfully. The second, privacy, requires the mechanism not reveal “much” about
any agent’s type to other agents. We propose a notion of privacy we call Joint Differential
Privacy. It is a variant of Differential Privacy, a robust notion of privacy used in the
Theoretical Computer Science literature. We show by construction that such mechanisms,
i.e. ones which are both incentive compatible and jointly differentially private exist when
the game is “large”, i.e., there are a large number of players, and any player’s action affects
any other’s payoff by at most a small amount. Our mechanism adds carefully selected noise
to no-regret algorithms similar to those studied in Foster-Vohra and Hart-Mas-Colell. It
therefore implements an approximate correlated equilibrium of the full information game
induced by players’ reports.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sergiu Hart, Éva Tardos, and Bernhard von Stengel 83

3.26 Optimal Ex Post and Prior-Independent Auctions with
Interdependent Values

Tim Roughgarden (Stanford University, US, tim@cs.stanford.edu)

License Creative Commons BY 3.0 Unported license
© Tim Roughgarden

We study optimal and approximately-optimal mechanism design questions in the interdepend-
ent values model, which generalizes the standard setting of independent and private values.
We focus our attention on ex post incentive compatible and individually rational mechanisms,
and develop an analog of Myerson’s optimal auction theory that applies to many interde-
pendent settings of interest. We demonstrate two applications for specific interdependent
settings: First, a parallel result to the well-known optimality of the second-price auction with
reserve for i.i.d. bidders, where the English auction replaces the second-price one. Second,
we identify good prior-independent auctions – auctions with near-optimal expected revenue
across a wide range of priors – for certain interdependent value settings.

3.27 Large Deviations and Stochastic Stability in the Large Population
Limit

Bill Sandholm (University of Wisconsin, Madison, US, whs@ssc.wisc.edu)

License Creative Commons BY 3.0 Unported license
© Bill Sandholm

In this talk I will give an overview about new tools for equilibrium selection in games in the
framework of stochastic evolutionary game theory. In this project we investigate stochastic
stability theory from a new angle. We elaborate on the precise role of the parameters in this
game theoretic model, which are the population size and the level of noise in the agents’
updating decisions. Stochastic stability theory is concerned with understanding the long-run
properties of the stochastic evolutionary game dynamics when these parameters are taken to
their respective limits separately, or simultaneously. For each possible way of taking limits,
we present the appropriate technique to understand the long-run of the game dynamics. This
requires a novel and interesting combination of various mathematical techniques, such as
large deviations theory and optimal control. We also discuss the computational problem of
stochastic stability in simple game settings.

3.28 Altruism and Spite in Games
Guido Schäfer (Guido Schäfer, CWI, Amsterdam, NL, G.Schaefer@cwi.nl)

License Creative Commons BY 3.0 Unported license
© Guido Schäfer

In most game-theoretical studies it is assumed that the decision makers base their decisions
on purely selfish grounds. This assumption is in stark contrast with a large body of research
in experimental economics and the social sciences, which suggest that decision makers are
often motivated by other-regarding preferences such as altruism, spite or fairness. Very little
attention has been given to the analysis of the impact of such alternative behaviors. In
this talk, we review some recent advances in the study of the inefficiency of equilibria when
players are (partially) altruistic or spiteful and highlight a few counter-intuitive results.

13161

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

84 13161 – Interface of Computation, Game Theory, and Economics

3.29 Heuristic Auctions and U.S. Spectrum Repurposing
Ilya Segal (Stanford University, US, ilya.segal@stanford.edu)

License Creative Commons BY 3.0 Unported license
© Ilya Segal

We examine a novel class of procurement auctions for single-minded bidders, in which the
auctioneer selects a set of bids to be accepted subject to complicated feasibility constraints
that preclude optimization-based winner determination. (This setting is inspired by the
U.S. Federal Communication Commission’s problem of buying out a subset of broadcast TV
licenses to clear spectrum for broadband use while retuning the remaining stations into the
remaining TV spectrum subject to interference constraints and a possible budget constraint.)
Instead, we propose a class of computationally feasible “greedy deferred-acceptance heuristic”
auctions for calculating both a feasible set of winning bids and “threshold” payments which
induce strategy-proof bidding. The calculation iteratively rejects the “highest-scoring” bid
that could still be feasibly rejected, with a bidder’s score based on its bid value and possibly
on the bids already rejected. (The latter dependence could be used to ensure that the
total “threshold payments” satisfy the auctioneer’s budget constraint, or that the winners do
not get excessive payments.) This class of “deferred acceptance” heuristic auctions differs
from the previously studied “deferred rejection/instance acceptance” heuristic auctions. In
particular, we show that deferred-rejection heuristic auctions with threshold payments: (1)
are equivalent to clock auctions with descending bidder-specific prices in which bidders who
haven’t quit are acquired at their final clock prices; (2) are (weakly) group strategy-proof,
and so are the corresponding clock auctions for any information disclosure policy; (3) are
outcome-equivalent to their paid-as-bid counterparts with the same allocation rule under full
information: A paid-as-bid heuristic auction has a Nash equilibrium with the same outcome
as its threshold-auction counterpart, which is a unique outcome surviving iterated deletion
of weakly dominated strategies. In contrast, the Vickrey auction generally fails properties
(1)–(3), except when bidders are substitutes, in which it can be implemented as a heuristic
or clock auction.

3.30 Composable and Efficient Mechanisms
Vasilis Syrgkanis (Cornell University, US, vasilis@cs.cornell.edu)

License Creative Commons BY 3.0 Unported license
© Vasilis Syrgkanis

Online markets require simple, and well-designed systems that work well even if users
participate in multiple ones in parallel. Traditional mechanism design has considered
mechanisms only in isolation, and the mechanisms it proposes tend to be complex and
impractical. In contrast, players typically participate in various mechanisms that are run by
different principals (e.g. different sellers on eBay or different ad-exchange platforms) and
coordinating them to run a single combined mechanism is infeasible or impractical. Even
the simple and elegant Vickrey auction loses some of its appeal when not in isolation: when
the overall value of each player is a complex function of the outcomes of different Vickrey
auctions, the global mechanism is no longer truthful.

We initiate the study of efficient mechanism design with guaranteed good properties even
when players participate in multiple different mechanisms simultaneously or sequentially. We

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sergiu Hart, Éva Tardos, and Bernhard von Stengel 85

define the class of smooth mechanisms, related to smooth games defined by Roughgarden,
that can be thought of as mechanisms that generate approximately market clearing prices.
We show that smooth mechanisms result in high quality outcome in equilibrium both in the
full information setting and in the Bayesian setting with uncertainty about participants, as
well as in learning outcomes. Our main result is to show that such mechanisms compose
well: smoothness locally at each mechanism implies efficiency globally.

3.31 Rounding and the Allocation of Indivisible Objects
Rakesh V. Vohra (Northwestern University, Evanston, US, r-vohra@kellogg.northwestern.edu)

License Creative Commons BY 3.0 Unported license
© Rakesh V. Vohra

The problem of allocating indivisible objects arises in the allocation courses, spectrum
licenses, landing slots at airports and assigning students to schools. We propose a technique
for making such allocations that is based on rounding a fractional allocation. Under the
assumption that no agent wants to consume more than k items, the rounding technique can
be interpreted as giving agents lotteries over approximately feasible integral allocations that
preserve the ex-ante efficiency and fairness properties of the initial fractional allocation. The
integral allocations are only approximately feasible in the sense that upto k − 1 more units
than the available supply of any good is allocated.

3.32 Equilibria in the Challenge Tournament
Bernhard von Stengel (London School of Economics, stengel@nash.lse.ac.uk)

License Creative Commons BY 3.0 Unported license
© Bernhard von Stengel

Arad and Rubinstein (2013) describe a challenge tournament where n players have a binary
choice and play a round-robin tournament where they score against each other randomly
for a stake that depends on their choices. The player with the highest total score wins,
with ties resolved randomly. They conjecture that for n > 3 the only equilibrium is that all
players take the riskier choice. We propose an elementary proof of this conjecture based on a
dominance argument.

4 Further Participants and Session Chairs

In addition to the speakers listed above, the following researchers participated in this Dagstuhl
workshop, often co-authors of the given presentations:

Giorgos Christodoulou (University of Liverpool, GB)
Michal Feldman (Hebrew University, Jerusalem, IL) – session chair Thursday afternoon
Felix Fischer (University of Cambridge, GB)
Yannai A. Gonczarowski (Hebrew University, Jerusalem, IL)
Penélope Hernández (University of Valencia, ES) – session chair Friday morning
Martin Höfer (MPI für Informatik – Saarbrücken, DE)

13161

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

86 13161 – Interface of Computation, Game Theory, and Economics

Max Klimm (TU Berlin, DE)
Elias Koutsoupias (University of Oxford, GB) – session chair Tuesday afternoon
Jeffrey MacKie-Mason (University of Michigan, US) – session chair Tuesday morning
Hervé Moulin (Rice University – Houston, US) – session chair Wednesday morning
Dimitrii V. Pasechnik (Nanyang Technical University, Singapore, SG)
Rahul Savani (University of Liverpool, GB)
Michael Schapira (Hebrew University, Jerusalem, IL)
Éva Tardos (Cornell University, US) – session chair Monday afternoon
Berthold Vöcking (RWTH Aachen, DE) – session chair Thursday morning
Jens Witkowski (Universität Freiburg, DE)

5 Open Problems

Two open problem sessions were held on Tuesday and Thursday afternoon after the afternoon
talks. Of the discussed research questions, the following is published here (the open problem
is stated at the end of the following exposition; the topic was not presented in a talk but in
the open problem session).

5.1 Fair Division of a Max-Flow
Hervé Moulin (Rice University, Houston, US, moulin@rice.edu)

License Creative Commons BY 3.0 Unported license
© Hervé Moulin

The problem of fairly dividing a max-flow has a long history, going back to the work of
Megiddo, Brown, Hall and Vohra, and others. In all applications there is a distribution
network that is capacity constrained (capacities may be on nodes or edges), and agents need
to be allocated different amounts of the commodity based on objective or subjective needs.
While standard models of flows in networks are typically concerned with the optimization
of an exogenous objective, there is a substantial subset of that literature where the goal
is to not only maximize the quantity distributed, but also to ensure that the distribution
is equitable. As an example, Brown (O.R., 1979) discussed a sharing problem motivated
by the equitable distribution of coal during a prolonged coal strike. Other settings where
similar problems come up is in distributing aid or relief during a catastrophic event (e.g.,
food during a famine).

The classical papers of Megiddo and Brown call a max-flow fair if it equalizes the allocation
of shares between the relevant agents (located on some nodes or edges); they typically use
the lexicographic ordering to select the fairest max-flow, and design efficient algorithms to
find it. Crucially, they take an ethically neutral view of the structure of the graph: if we
can give equal shares of the flow to all agents, we should do it, ignoring the differences in
their connectivity altogether. This is appropriate in contexts where agents should not be
held responsible for their connections/capacities, such as the distribution of relief supplies
mentioned above. It is not appropriate when agents should be held responsible for their
connections in the network, so that a “better connected”, “more central”, agent ought to
receive a greater share of the resources. Think of the distribution of a workload between
contractors with different abilities to perform certain jobs.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sergiu Hart, Éva Tardos, and Bernhard von Stengel 87

The formal property of “consistency” captures the influence of the network structure
on the final division of the flow: each agent has a claim only on the subflows that he is
connected to, and the division of a given subflow relies on the residual claims of the relevant
agents (total claim minus shares in other subflows; as in the bargaining model of Kleinberg
and Tardos). Consistency is a key component of several other axiomatic fair division models.

Jay Sethuraman and I have developed a fairly complete model for the case of bipartite
graphs but extending the approach to a general flowgraph raises several conceptual difficulties
that I would like to discuss with the workshop participants.

6 Organizational Issues

The following comments about the organization of the workshop and lessons learnt may be
of general interest.

6.1 Invitations
By far the most time-consuming organizational issue was whom to invite and when. In the
end, the seminar had 48 participants, which were well accommodated (very few junior people
sharing rooms) while a second smaller seminar took place in parallel at Schloss Dagstuhl.

The selection of invitees was difficult because of the broad scope of the workshop across
economics and computer science.

In order to explain the workshop to economists, Sergiu Hart as the organizer closest to
economics sent a separate email to them explaining the “by invitation only” and funding
model. In addition, we asked for a subjective probability of attendance in order to estimate
the number of participants. Both were very helpful.

One suggestion we have is the possibility to “overbook” the seminar even if confirmation
numbers are relatively high (within small limits, of course). The number of people confirming
after the first round of invitations was higher than expected. This left almost no room for a
second round of invitations until a few months before the start of the workshop when people
had to decide (and, as expected, some could not come after all). At this point (about six
months before the meeting), it would have been good if we had been allowed to invite one or
two senior researchers that we had not invited in the first round or which were suggested to
us by colleagues, because in the end we did have the space and at worst could have asked
more people to share rooms. For one person the eventual invitation came too late. However,
the high caliber of those who had confirmed continued to make the workshop very attractive.
The overall coordination with the Dagstuhl service team (Annette Beyer) was excellent.

In the end, we were happy with the selection that we could make: If in doubt, preferring an
early-career researcher to a more established one. In addition, PhD students of the organizers
could fill last-minute open places (in the feedback for the workshop, one participant suggested
not to allow this because of a perceived restriction of the diversity of the group, but we think
this is one of the privileges the organizers should enjoy, and because it allows to use free
spaces with flexibility).

Moreover, the suggested “affirmative action” of Dagstuhl was successful in the sense that
we had a relative large number of female participants (10 out of 48). In addition, three of
them had a baby or small child looked after by the nanny of the Center, so families were
well accommodated. Dagstuhl is exemplary here!

13161

88 13161 – Interface of Computation, Game Theory, and Economics

6.2 During the Workshop
We wanted to have a workshop with sufficient free time for informal talks and collaboration.
For that purpose, we wrote about two months before the workshop an email to the effect of
“if you really want to give a talk, please send us your suggested topic”. This was deliberately
not very encouraging and resulted in 12 suggested topics, not enough to fill the workshop.

We separately encouraged those whom we knew as particularly good speakers to propose
a topic.

A second, more short-term email resulted in over 20 further suggestions, so that we had
to make a choice but in the end accommodated nearly everyone.

We allocated 32 talks (with the abstracts above) of 30 minutes each to the following slots
(morning + afternoon): 1+5 (Monday), 5+3 (Tuesday), 5+0 (Wednesday), 5+3 (Thursday),
5+0 (Friday), plus 2 open problem sessions at the end of the afternoons of Tuesday and
Thursday.

Monday morning started with a “lightning talk” session where every speaker sent in
advance one or two PDF slides about themselves and introduced themselves for at least one
minute but no longer than two minutes. This worked very well and was considered a success.
One suggestion is a large countdown clock (maybe in software) that would have helped to
put the speakers more at ease that they use their time properly, because a talk time of at
most two minutes is unfamiliar to most people. Only the very junior participants talked
about themselves not long enough (i.e., less than one minute). The length restriction allowed
the lightning talks to proceed in two sessions of about one hour each; five minutes per talk
would have been too much.

In fact, the lightning talk already provided information about the quality of a speaker.
One suggestion was to let participants vote on the permitted time of a talk for each speaker
after the lightning talks, which could work as follows: Standard slot speaking time is 20
minutes, but, say, 10 slots of 30 minutes are also available, and everybody would vote for
their most preferred speakers for those longer slots. In that way, winning a longer slot time
would be an honour, rather than a shorter time an embarrassment. (The full vote count
would not be made public, only the winners.)

Because of the lightning talks, Monday had one scientific talk in the morning and five
afternoon talks. Every other day had five morning talks, and the only other afternoon talks
were three each (plus an open problems session) on Tuesday and Thursday from 16:00, so
that a large part of the afternoon and every evening was free for personal collaboration. This
was highly appreciated.

In retrospect, we could have possibly been more selective and dictatorial in reducing
or lengthening individual talk times, or inviting longer tutorials (apart from the suggested
vote after the lightning talks). On the other hand, the equal talk length allowed us to
make these decisions at the workshop with ease (with a Google Docs spreadsheet for joint
editing). Only the Monday schedule was decided shortly in advance of the meeting. At the
workshop, we could also discuss the content of some presentations with those participants
who wanted advice, which was helpful. In addition, the topics followed in relatively random
order, which gave each day variety and allowed everyone to listen regularly to a topic close
to their interests.

All talk topics and most abstracts were sent to us ahead of time, but only about half of
them were uploaded as system-wide materials. As suggested in the feedback for the workshop,
we should have made this mandatory for being allowed to give a talk, for the benefit of the
participants. On the other hand, people attended most talks, despite of limited advance
information.

There was no need for working groups or parallel sessions because the group was largely
interested in and listening to all topics.

Sergiu Hart, Éva Tardos, and Bernhard von Stengel 89

The free Wednesday afternoon was used for a local hike, and we were very lucky to
have good weather throughout the workshop. Most took part and liked it. A small number
of participants would have preferred a more exciting sightseeing tour of, for example, the
Völklinger Hütte, but the long bus journey and the fact that a few had already seen it made
us decide against it. The site office was very helpful with advice and local maps.

The quality of talks was very high, in line with our expectations and selection of the
participants.

13161

90 13161 – Interface of Computation, Game Theory, and Economics

Participants
Yakov Babichenko

CalTech, US
Simina Branzei

Aarhus University, DK
Markus Brill

TU München, DE
Jing Chen

Institute of Advanced Study –
Princeton, US

Giorgos Christodoulou
University of Liverpool, GB

Constantinos Daskalakis
MIT, US

Gabrielle Demange
Paris School of Economics, FR

Nikhil R. Devanur
Microsoft – Redmond, US

Shahar Dobzinski
Weizmann Inst. – Rehovot, IL

Paul Dütting
EPFL – Lausanne, CH

Edith Elkind
Nanyang TU – Singapore, SG

Michal Feldman
The Hebrew University of
Jerusalem, IL

Felix Fischer
University of Cambridge, GB

Paul W. Goldberg
University of Liverpool, GB

Yannai A. Gonczarowski
The Hebrew University of
Jerusalem, IL

Sergiu Hart
The Hebrew University of
Jerusalem, IL

Jason D. Hartline
Northwestern University –
Evanston, US

Penelope Hernandez Rojas
University of Valencia, ES

Martin Hoefer
MPI für Informatik –
Saarbrücken, DE

Nicole Immorlica
Northwestern University –
Evanston, US

Ramesh Johari
Stanford University, US

Thomas Kesselheim
Cornell University, US

Max Klimm
TU Berlin, DE

Elias Koutsoupias
University of Oxford, GB

Kevin Leyton-Brown
University of British Columbia –
Vancouver, CA

Katrina Ligett
CalTech – Pasadena, US

Brendan Lucier
Microsoft Research New England
– Cambridge, US

Jeffrey MacKie-Mason
University of Michigan, US

Vangelis Markakis
Athens University of Economics
and Business, GR

Vahab Mirrokni
Google – New York, US

Hervé Moulin
Rice University – Houston, US

Rudolf Müller
Maastricht University, NL

Sigal Oren
Cornell University, US

Mallesh Pai
University of Pennsylvania, US

Dimitrii V. Pasechnik
Nanyang TU – Singapore, SG

Aaron Roth
University of Pennsylvania, US

Tim Roughgarden
Stanford University, US

William H. Sandholm
University of Wisconsin –
Madison, US

Rahul Savani
University of Liverpool, GB

Guido Schäfer
CWI – Amsterdam, NL

Michael Schapira
The Hebrew University of
Jerusalem, IL

Ilya R. Segal
Stanford University, US

Vasilis Syrgkanis
Cornell University, US

Éva Tardos
Cornell University, US

Berthold Vöcking
RWTH Aachen, DE

Rakesh V. Vohra
Northwestern University –
Evanston, US

Bernhard von Stengel
London School of Economics, GB

Jens Witkowski
Universität Freiburg, DE

Report from Dagstuhl Seminar 13162

Pointer Analysis
Edited by
Ondřej Lhoták1, Yannis Smaragdakis2, and Manu Sridharan3

1 University of Waterloo, CA, olhotak@uwaterloo.ca
2 University of Athens, GR, yannis@smaragd.org
3 IBM TJ Watson Research Center – Yorktown Heights, US,

msridhar@us.ibm.com

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13162 “Pointer Ana-
lysis”. The seminar had 27 attendees, including both pointer analysis experts and researchers
developing clients in need of better pointer analysis. The seminar came at a key point in time,
with pointer analysis techniques acquiring sophistication but still being just beyond the edge
of wide practical deployment. The seminar participants presented recent research results, and
identified key open problems and future directions for the field. This report presents abstracts
of the participants’ talks and summaries of the breakout sessions from the seminar.

Seminar 14.–19. April, 2013 – www.dagstuhl.de/13162
1998 ACM Subject Classification F.3.2 Logics and Meanings of Programs: Semantics of Pro-

gramming Languages: Program Analysis, D.3.4. Programming Languages: Processors: Com-
pilers

Keywords and phrases pointer analysis, points-to analysis, alias analysis, static analysis, pro-
gramming languages

Digital Object Identifier 10.4230/DagRep.3.4.91
Edited in cooperation with Gogul Balakrishnan

1 Executive Summary

Ondřej Lhoták
Yannis Smaragdakis
Manu Sridharan

License Creative Commons BY 3.0 Unported license
© Ondřej Lhoták, Yannis Smaragdakis, Manu Sridharan

The Dagstuhl seminar on Pointer Analysis brought together experts in pointer analysis and
researchers building demanding clients of pointer analysis, with the goal of disseminating
recent results and identifying important future directions. The seminar was a great success,
with high-quality talks, plenty of interesting discussions, and illuminating breakout sessions.

Research Context
Pointer analysis is one of the most fundamental static program analyses, on which virtually
all others are built. It consists of computing an abstraction of which heap objects a program
variable or expression can refer to. Due to its importance, a large body of work exists on
pointer analysis, and many researchers continue to study and develop new variants. Pointer
analyses can vary along many axes, such as desired precision, handling of particular language

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Pointer Analysis, Dagstuhl Reports, Vol. 3, Issue 4, pp. 91–113
Editors: Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13162
http://dx.doi.org/10.4230/DagRep.3.4.91
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

92 13162 – Pointer Analysis

features, and implementation data structures and optimizations. Given the subtle implica-
tions of these design choices, and the importance of low-level details often excluded from
conference-length papers, it can be difficult even for pointer analysis experts to understand
the relationship between different analysis variants. For a non-expert aiming to use pointer
analysis in a higher-level client (for verification, optimization, refactoring, etc.), choosing the
right analysis variant can be truly daunting.

Pointer analysis is a mature area with a wealth of research results, at a temptingly close
distance from wide practical applicability, but not there yet. The breakout application of
precise analysis algorithms has seemed to be around the corner for the past decade. Although
research ideas are implemented and even deployed in limited settings, several caveats always
remain. These include assumptions about client analyses (i.e., the pointer analysis algorithm
is valid only under assumptions of how the information will be used), assumptions about the
analyzed program (e.g., that some language features are absent or that their presence does
not affect the analysis outcome), assumptions about modularity (e.g., that the code to be
analyzed constitutes the whole program), etc. The right engineering packaging of pointer
analysis algorithms as well as a convenient characterization of their domain of applicability
are still elusive.

In this light, the seminar aimed to emphasize the relationship of pointer analysis algorithms
with client analyses, as well as practical deployment issues. The seminar brought together
researchers working on pointer analysis for various programming languages with researchers
working on key analysis clients. Our main goals were (1) to deepen understanding of
the relationships between existing pointer analysis techniques, and (2) to gain a better
understanding of what pointer analysis improvements are required by clients, thereby setting
an exciting agenda for the area going forward.

Seminar Format
Our seminar employed a somewhat unusual format for participant talks, intended to encourage
a deeper discussion of each participant’s work. Each participant was alloted a 40-minute
slot to present their work, consisting of 20 minutes of presentation and 20 minutes of
discussion. The presentation and discussion times in each slot were enforced using a chess
clock: when a question arose during a talk, the clock was “flipped” to discussion time, and
after the discussion, it was flipped back to speaker time. (The times were not very strictly
enforced; in some cases, the audience would “donate” time to the speaker to complete his/her
presentation.) This format had two key benefits:

It enabled discussion to freely occur during the talk, removing the worry that the speaker
would have no time left to complete his/her presentation.
It encouraged the audience to ask more questions, in order to “use up” the alloted audience
time.

Overall, the format was very successful in encouraging good discussion, and most participants
enjoyed it.

In addition to talks, we held four 90-minute breakout sessions. The session topics were
proposed by participants before and during the seminar and voted on by participants. The
sessions were scheduled two at a time, and participants could choose which session to attend.
The discussions held in these sessions were quite illuminating, and are summarized in Section 4
of this report. Finally, the last half-day of the seminar was spent on additional discussion of
the breakout session topics, and on an initial effort to collectively improve the Wikipedia
article on pointer analysis.1

1 See http://en.wikipedia.org/wiki/Pointer_analysis.

http://en.wikipedia.org/wiki/Pointer_analysis

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 93

Seminar Results
Recent advancements in pointer analysis have come from several different directions:

Formulations (CFL, Datalog)—highly-complex analyses have been specified in terms of
consise specifications, by utilizing declarative notations.
Greater precision—interesting analyses that maintain finer-grained abstractions while
maintaining scalability have been invented.
Optimizations—data structures such as BDDs have been used to make complex analyses
feasible.
Demand-driven, refinement—the analysis problem has been specialized effectively when
pointer information only needs to be computed for select program sites.
Partial programs—analyses have been formulated to work without fully analyzing all
libraries, or even all application code.

Such advances were discussed in detail during many participant talks in the seminar, and in
the breakout sessions.

Recent work in pointer analysis has been driven by new clients for the analysis and by new
programming languages. Along with ongoing use of pointer analysis in traditional optimizing
compilers, recent years have seen many other clients emerge that require effective pointer
analysis, e.g., in the areas of program verification and bug finding, refactoring, and security.
These clients were well-represented by seminar attendees, who gave many interesting talks
on novel uses of pointer analysis (particularly in the security domain). The rich exchanges
between researchers building novel clients and those with pointer analysis expertise were one
of the most valuable aspects of the seminar. Additionally, one breakout session covered the
difficulties in designing an effective general pointer-analysis API that is suitable for a wide
variety of clients.

Mainstream programming has been transitioning to increasingly heap-intensive languages:
from C-like languages to object-oriented languages like Java and C#, and more recently to
scripting languages like JavaScript and Ruby. As languages become more heap-intensive, the
need for effective pointer analysis is greater, motivating continuing work in this area. The
seminar talks covered a wide and diverse set of languages, each with its own considerations.
A few talks covered pointer analysis for higher-level languages such as JavaScript and
MATLAB. Such languages are becoming increasingly popular, and they are very heap-
intensive compared to C-like languages, motivating the need for better pointer analysis. A
couple of talks presented techniques for control-flow analysis of functional languages like
Scheme. While the pointer analysis and control-flow analysis communities often use similar
techniques, the relationships between the techniques is often obscured by differing terminology
and presentation styles. The presentations on control-flow analysis and the corresponding
discussions were helpful in bridging this gap.

The seminar included a good deal of discussion on practical issues with pointer analysis,
including evaluation methodologies and issues arising in real-world deployments. A key
theme that arose from these discussions was the need for pointer analysis to be at least
partially unsound to be useful in practice, and how this need for unsoundness has not
been explained properly in the literature. Analyses that made soundness compromises for
practicality were deemed “soundy,” a tongue-in-cheek term that caught on quickly among
participants. Recently, some seminar participants presented a well-received PLDI Fun and
Interesting Topics (FIT) talk on the notion of “soundiness,” and several participants have
agreed to collectively co-author a publishable document on the topic.

13162

94 13162 – Pointer Analysis

Conclusions
Overall, the Pointer Analysis Dagstuhl seminar was a great success. The seminar brought
together 27 researchers from both academia and industry (including Google, IBM, Microsoft,
NEC), with a good mix of junior and senior researchers. There were many interesting talks,
with deep discussion facilitated by the chess clock time maintenance. The seminar facilitated
interaction between pointer analysis experts and researchers building novel clients (a key goal
for the seminar from the beginning), and also between researchers working on analyses for
a variety of languages. Breakout sessions enabled further discussion of certain particularly
interesting topics. In particular, there were invaluable discussions of many practical issues
that often get short shrift in conference papers. These discussions sparked the notion of
“soundiness,” which may have broader impact via a future publication.

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 95

2 Table of Contents

Executive Summary
Ondřej Lhoták, Yannis Smaragdakis, Manu Sridharan 91

Overview of Talks
Does it have to be so hard?
José Nelson Amaral . 97

Scalable and Precise Program Analysis at NEC
Gogul Balakrishnan . 97

Challenges in vulnerability detection for the Java runtime library
Eric Bodden . 98

Precise Heap Reachability by Refutation Analysis
Bor-Yuh Evan Chang . 98

Precise and Fully-Automatic Verification of Container-Manipulating Programs
Isil Dillig and Thomas Dillig . 98

The End of Pointer Analysis?
Julian Dolby . 99

The Business of Pointer Analysis
Samuel Z. Guyer . 100

Pointer analysis for dynamic information flow control
Christian Hammer . 100

Pointer Analysis Meets MATLAB
Laurie J. Hendren . 100

The Approximations vs. Abstractions Dilemma in Pointer Analysis
Uday Khedker . 101

Incomplete Program Analysis
Ondřej Lhoták . 101

Challenges in Pointer Analysis of JavaScript
Benjamin Livshits . 101

Comparing Different Points-To Analyses
Welf Löwe . 102

Towards a Quantitative Understanding of Heap Structure and Application to
Analysis Design
Mark Marron . 102

Control-flow analysis of higher-order programs
Matt Might . 103

Inference and Checking of Context-sensitive Pluggable Types
Ana Milanova . 103

Pointer Analysis for Refactoring JavaScript Programs
Anders Møller . 103

New Search Techniques for Query-Driven Dataflow Analysis
Mayur Naik . 104

13162

96 13162 – Pointer Analysis

Sparse Analysis Framework
Hakjoo Oh . 104

Empirical Evaluation of Points-To Analyses
Erhard Plödereder . 104

Set-Based Pre-Processing for Points-To Analysis
Yannis Smaragdakis . 106

Pointer Analysis for Probabilistic Noninterference
Gregor Snelting . 106

Pointer Analysis and Reflection
Manu Sridharan . 107

Modular combination of shape abstraction with numeric abstraction
Xavier Rival . 107

Scaling flow analysis using big-step semantics
Dimitris Vardoulakis . 108

Breakout Sessions
Better APIs for Clients
José Nelson Amaral . 108

Pointer analyses for open programs (libraries/frameworks)
Eric Bodden . 110

Shape Analysis and Pointer Analysis: Working Together
Bor-Yuh Evan Chang . 110

Practical Aspects of Pointer Analysis
Manu Sridharan . 112

Participants . 113

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 97

3 Overview of Talks

3.1 Does it have to be so hard?
José Nelson Amaral (University of Alberta, CA)

License Creative Commons BY 3.0 Unported license
© José Nelson Amaral

The brightest and most capable students are the ones that undertake research in the area of
pointer and reference analysis. Yet, often they take a long time to graduate, and sometimes
they produce fewer research results than students that undertake research in different areas.
Moreover, often the outcome of their research is incomplete and unsatisfying. On the other
hand, many of the papers published in the area — even the best ones that appear in the
top venues — leave readers and reviewers with a sense of a good work that is incomplete.
In this discussion we look at several shortcomings in currently published papers in pointer
and reference analysis. Then we will talk about some undertakings by the community that
could change this situation, making research in analysis more rewarding and productive for
students and practicioners, and accelerating the speed of innovation in this area.

3.2 Scalable and Precise Program Analysis at NEC
Gogul Balakrishnan (NEC Laboratories America, Inc. – Princeton, US)

License Creative Commons BY 3.0 Unported license
© Gogul Balakrishnan

Joint work of Balakrishnan, Gogul;Ganai, Malay; Gupta, Aarti; Ivancic, Franjo; Kahlon Vineet, Li, Weihong;
Maeda, Naoto; Papakonstantinou, Nadia; Sankaranarayanan, Sriram; Sinha, Nishant; Wang, Chao

Main reference G. Balakrishnan, M. K. Ganai, A. Gupta, F. Ivancic, V. Kahlon, W. Li, N. Maeda,
N. Papakonstantinou, S. Sankaranarayanan, N. Sinha, C. Wang, “Scalable and precise program
analysis at NEC,” in Proc. of 10th Int’l Conf. on Formal Methods in Computer-Aided Design
(FMCAD’10), pp. 273–274, IEEE, 2010.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770960

In this talk, I will briefly present the program analysis tools that we have developed at NEC
Labs, and describe how pointer analysis is used in these tools. Specifically, I will talk about
Varvel and ARC++. Varvel is tool for finding bugs in C and C++ programs, and is based
on static analysis and model checking. ARC++ is a tool to find bugs in C++ programs
based on user-specified error patterns.

References
1 G. Balakrishnan, M. K. Ganai, A. Gupta, F. Ivancic, V. Kahlon, W. Li, N. Maeda,

N. Papakonstantinou, S. Sankaranarayanan, N. Sinha, and C. Wang. Scalable and pre-
cise program analysis at nec. In FMCAD, pages 273–274, 2010.

2 F. Ivancic, G. Balakrishnan, A. Gupta, S. Sankaranarayanan, N. Maeda, H. Tokuoka,
T. Imoto, and Y. Miyazaki. Dc2: A framework for scalable, scope-bounded software veri-
fication. In ASE, pages 133–142, 2011.

3 P. Prabhu, N. Maeda, G. Balakrishnan, F. Ivancic, and A. Gupta. Interprocedural exception
analysis for C++. In ECOOP, pages 583–608, 2011.

4 J. Yang, G. Balakrishnan, N. Maeda, F. Ivancic, A. Gupta, N. Sinha, S. Sankaranarayanan,
and N. Sharma. Object model construction for inheritance in C++ and its applications to
program analysis. In CC, pages 144–164, 2012.

13162

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770960
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770960
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770960
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770960
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770960

98 13162 – Pointer Analysis

3.3 Challenges in vulnerability detection for the Java runtime library
Eric Bodden (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Eric Bodden

Joint work of Bodden, Eric; Hermann, Ben; Lerch, Johannes

In this talk I will discuss a recent client analysis that we use to detect vulnerabilities in the
Java runtime library. I will discuss challenges this analysis poses in terms of managing calling
contexts and different analysis directions. In particular, it currently appears challenging to
synchronize with each other a forward and backward analysis in such a way that they both
only consider common calling contexts.

3.4 Precise Heap Reachability by Refutation Analysis
Bor-Yuh Evan Chang (University of Colorado – Boulder, US)

License Creative Commons BY 3.0 Unported license
© Bor-Yuh Evan Chang

Joint work of Blackshear, Sam; Chang, Bor-Yuh Evan; Sridharan, Manu
Main reference S. Blackshear, B.-Y.E. Chang, M. Sridharan, “Thresher: Precise Refutations for Heap

Reachability,” in Proc. of the ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI’13), pp. 275–286, ACM, 2013.

URL http://doi.acm.org/10.1145/2462156.2462186

Precise heap reachability information that can be provided by a points-to analysis is needed
for many static analysis clients. However, the typical scenario is that the points-to analysis
is never quite precise enough leading to too many false alarms in the client. Our thesis is not
that we need more precise up-front points-to analyses, but rather we can design after-the-fact
triage analyses that are effective at refuting facts to yield targeted precision improvements.
The challenge that we explore is to maximally utilize the combination of the up-front and
the after-the-fact analyses.

We have investigated refutation analysis in the context of detecting statically a class of
Android memory leaks. For this client, we have found the necessity for an analysis capable
of path-sensitive reasoning interprocedurally and with strong updates–a level of precision
difficult to achieve globally in an up-front manner. In contrast, our approach applies a
refutation analysis that mixes a backwards symbolic execution with results from the up-front
points-to analysis to prune infeasible paths quickly.

3.5 Precise and Fully-Automatic Verification of
Container-Manipulating Programs

Isil Dillig and Thomas Dillig (College of William and Mary)

License Creative Commons BY 3.0 Unported license
© Isil Dillig and Thomas Dillig

One of the key challenges in automated software verification is obtaining a conservative
yet sufficiently precise understanding of the contents of data structures in the heap. A
particularly important and widely-used class of heap data structures is containers, which

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://doi.acm.org/10.1145/2462156.2462186
http://doi.acm.org/10.1145/2462156.2462186
http://doi.acm.org/10.1145/2462156.2462186
http://doi.acm.org/10.1145/2462156.2462186
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 99

support operations such as inserting, retrieving, removing, and iterating over elements.
Examples of containers include arrays, lists, vectors, sets, maps, stacks, queues, etc.

In this talk, we will describe a sound, precise, scalable, and fully-automatic static analysis
technique for reasoning about the contents of container data structures. This technique
is capable of tracking position-value and key-value correlations, supports reasoning about
arbitrary nestings of these data structures, and integrates container reasoning directly
into a heap analysis, allowing, for the first time, the verification of complex programs that
manipulate heap objects through container data structures. More specifically, we will describe
a symbolic heap abstraction that augments a graph representation of the heap with logical
formulas and that reduces some of the difficulty of heap reasoning to standard logic operations,
such as existential quantifier elimination and satisfiability. I will present experimental results
demonstrating that our technique is very useful for verifying memory safety in complex heap-
and container-manipulating C and C++ programs that use arrays and other container data
structures from the STL and QT libraries.

3.6 The End of Pointer Analysis?
Julian Dolby (IBM TJ Watson Research Center, Hawthorne, USA)

License Creative Commons BY 3.0 Unported license
© Julian Dolby

Pointer analysis means computing an approximation of the possible objects to which any
program variable may refer; it has traditionally been done by conservatively approximating
all possible data flow in the program, resulting in a conservative approximation of the objects
held by any variable. This has always been a bit fake—no tools soundly approximates all
possible reflective and JNI behavior in Java, for instance—but even the comforting illusion
of soundness has become unsustainable in the world of framework- and browser-based Web
applications. The frameworks are built on ubiquitous complex reflective behavior, and the
browser appears as a large, complex, poorly-specified native API; the frameworks and the
applications themselves are written in JavaScript, the lingua franca of the Web, the dynamic
nature of which gives pointer analysis no help. Whether this world can be analyzed soundly
is perhaps technically still an open problem, but the prognosis seems grim at best.

We have been exploring deliberately unsound analyses which make no attempt to approx-
imate all possible data flow in a program; certain constructs are ignored not because they
are unimportant, but simply because they are too hard. The tradeoff is now between how
much can we ignore and still provide useful information versus how little can we ignore and
still be tractable in practice. The good news so far is that there appear to be good tradeoffs,
at least for a range of applications supporting IDE services. I will discuss recent and ongoing
work in providing key information for IDE services: callgraphs and smart completions.

13162

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

100 13162 – Pointer Analysis

3.7 The Business of Pointer Analysis
Samuel Z. Guyer (Tufts University)

License Creative Commons BY 3.0 Unported license
© Samuel Z. Guyer

Over the past few years I have had the opportunity to work with a company that relies
on pointer analysis as part of its core business – finding security vulnerabilities in software.
I have worked closely with them to select and implement algorithms from the literature,
and I have been able to see how these algorithms work (or don’t work) at an industrial
scale. Some of the most interesting issues I have encountered, however, are not related to
the question of “Does it work on real software?” In this talk I will describe some of the
challenges of deploying sophisticated analyses for commercial purposes. They are important
and research-worthy problems that have not, to my knowledge, received much attention in
the academic community.

3.8 Pointer analysis for dynamic information flow control
Christian Hammer (Universität des Saarlandes)

License Creative Commons BY 3.0 Unported license
© Christian Hammer

Dynamic information flow control is a powerful technique to ensure that confidential data
cannot leak illicitly, and that untrusted data must not be used for trusted computations.
However, since the standard security policy noninterference is a 2-trace-property, it cannot
be enforced soundly and precisely by looking at one execution trace alone. One must either
use conservative approximations or resort to static analysis about variables that might be
modified in an alternative branch. This talk will present these challenges and how pointer
analysis for a dynamic language like JavaScript, while challenging, is imperative to improve
the precision of dynamic information flow.

3.9 Pointer Analysis Meets MATLAB
Laurie J. Hendren (McGill University, CA)

License Creative Commons BY 3.0 Unported license
© Laurie J. Hendren

Joint work of Hendren, Laurie J.; Lameed, Nurudeen, Doherty, Jesse; Dubrau, Anton; Radpour, Soroush
URL http://www.sable.mcgill.ca/mclab

MATLAB is a dynamic array-based language commonly used by students, scientists and
engineers. Although MATLAB has call-by-value semantics and no explicit pointers, there
are many flow analysis problems that are similar to pointer analysis. In this talk I discussed
why it is important for our research community to work on programming languages like
MATLAB. I then outlined the key flow analysis problems that need to be solved and gave a
summary of what my research group has accomplished and what we plan to work on in the
future (http://www.sable.mcgill.ca/mclab).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.sable.mcgill.ca/mclab
http://www.sable.mcgill.ca/mclab

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 101

3.10 The Approximations vs. Abstractions Dilemma in Pointer Analysis
Uday Khedker (Indian Institute of Technology, Mumbai, India)

License Creative Commons BY 3.0 Unported license
© Uday Khedker

Given the vital importance of pointer analysis and the inherent difficulty of performing
precise pointer analysis for practical programs, a large fraction of pointer analysis community
has come to believe that compromising on precision is necessary for scalability and efficiency.
This is evidenced by the fact that a large number of reported investigations in pointer analysis
involve a significant amount of engineering approximations.

We find it hard to accept this assumption as the final inevitability. We believe that a lot
could be gained by exploring a science of pointer analysis that tries to build clean abstractions.
In our opinion, this is a road less travelled in pointer analysis. Without undermining the
engineering efforts, we propose that a search for approximations should begin only after
building clean abstractions and not before it. The talk describes our efforts in this direction.

3.11 Incomplete Program Analysis
Ondřej Lhoták (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Ondřej Lhoták

Joint work of Lhotak, Ondrej; Ali, Karim; Naeem, Nomair

Points-to analyses requiring the whole program are inefficient, hard to get right, non-modular,
and fragile. This severely hinders development of client analyses and practical adoption.
I discuss two possible solutions: the access path abstraction, which does not require the
analysis to know about all allocation sites in the program, and the separate compilation
assumption, which enables sound yet precise analysis of an application without analysis of
its separately compiled libraries.

3.12 Challenges in Pointer Analysis of JavaScript
Benjamin Livshits (Microsoft Research – Redmond)

License Creative Commons BY 3.0 Unported license
© Benjamin Livshits

This talk two specific challenges that arise in the process of doing – or attempting to do –
static analysis for JavaScript programs. The first is that JavaScript programs on the web are
not static – far from it – they’re in fact streaming. As such, the notion of whole program
analysis needs to be reevaluated and perhaps discarded in favor of incrementality. Incremental
pointer analysis for JavaScript is addressed in the Gulfstream project.

The second challenge is that of analyzing programs surrounded by complex environments,
such as the DOM API, or node.js. Understanding the surrounding frameworks is both
challenging and necessary. This is the topic of this talk and an upcoming FSE 2013 paper.

13162

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

102 13162 – Pointer Analysis

3.13 Comparing Different Points-To Analyses
Welf Löwe (Linnaeus University – Växjö)

License Creative Commons BY 3.0 Unported license
© Welf Löwe

Comparing the accuracy of different points-to analysis approaches is important for us as
the research community: it allows us to focus on successful approaches and to drop the less
successful ones. However, comparing accuracy only works if the analyses are either strictly
conservative or strictly optimistic. Unfortunately, only few such analyses exist in practice;
most of them are conservative only on a subset of the languages they are designed for and,
hence, neither conservative nor optimistic in general. Practical issues add to the problem of
comparability: analyses are defined for different languages and versions and run-time systems
thereof, and there are no commonly accepted standard benchmarking suites nor accuracy
metrics defined. This makes it often impossible to take two research publications and reliably
tell which one describes the more accurate points-to analysis.

In this talk, we discuss theoretical and practical issues with comparing points-to analyses
and we suggest a methodology on how to benchmark them. We then and argue for a Gold
Standard, i.e., a set of benchmark programs with known exact analysis results. Such a Gold
Standard would allow assessing the exact accuracy of points-to analysis. Since such a Gold
Standard cannot be computed automatically, it needs to be created semi-automatically by
the research community. We suggest a methodology on how this could be achieved.

3.14 Towards a Quantitative Understanding of Heap Structure and
Application to Analysis Design

Mark Marron (Microsoft Research, Redmond, USA)

License Creative Commons BY 3.0 Unported license
© Mark Marron

This talk looks at two related questions (1) what kinds of heap structures and sharing
relations appear in object-oriented programs and (2) how can this information be used to
guide the design of a heap analysis. I will show results which indicate that in practice the
heap is a relatively simple structure where the vast majority of sharing (aliasing) and shapes
that are present can be described by a small number of simple concepts that are closely
related to standard programming idioms. I will also outline a hybrid shape/points-to analysis,
which is both precise and computationally lightweight, that was designed based on these
quantitative results. These initial results demonstrate the potential for leveraging empirical
data during the design, or evaluation, of a heap analysis and demonstrate the potential for
further work on the quantitative characterization of the heaps that appear in real-world
programs.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 103

3.15 Control-flow analysis of higher-order programs
Matt Might (University of Utah, US)

License Creative Commons BY 3.0 Unported license
© Matt Might

URL http://matt.might.net/

Control-flow analysis of higher-order programs and pointer analysis share much in common
with each other. This talk serves as a tutorial on the basic method in higher-order control-flow
analysis–the modern formulation of Shivers k-CFA. It discusses one common enhancement–
abstract garbage collection. The talk concludes with cultural differences between the
control-flow analysis and pointer analysis communities, noting the years- or decades-long lag
between problem discovery, decidability, tractability, feasibility and evaluation in the CFA
community.

3.16 Inference and Checking of Context-sensitive Pluggable Types
Ana Milanova (Rensselaer Polytechnic, US)

License Creative Commons BY 3.0 Unported license
© Ana Milanova

Joint work of Milanova, Ana; Huang, Wei

We develop a framework for inference and checking of pluggable types, also known as type
qualifiers. The framework allows us to formulate context-sensitive pluggable type systems
(e.g., Ownership, Immutability, Taint, others) and infer and check types on large Java codes.
The key novelty is 1) support for context sensitivity, and 2) a scalable inference engine, which
allows type inference with zero or small number of user annotations. We formulate two
analyses, traditionally powered by pointer analysis: 1) purity inference and 2) taint analysis,
as type inference problems in our framework, and discuss our results.

3.17 Pointer Analysis for Refactoring JavaScript Programs
Anders Møller (Aarhus University, DK)

License Creative Commons BY 3.0 Unported license
© Anders Møller

Joint work of Møller, Anders; Feldthaus, Asger; Millstein, Todd; Schäfer, Max; Tip, Frank

Modern IDEs support automated refactoring for many programming languages, but for
dynamic languages, such as JavaScript, the tools are still primitive. This talk presents two
approaches toward tool supported renaming refactoring for JavaScript: 1) using (almost
sound) pointer-analysis for fully automatic refactorings, and 2) using a pragmatic variant of
Steensgaard-style analysis for semi-automatic refactorings.

13162

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://matt.might.net/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

104 13162 – Pointer Analysis

3.18 New Search Techniques for Query-Driven Dataflow Analysis
Mayur Naik (Georgia Institute of Technology)

License Creative Commons BY 3.0 Unported license
© Mayur Naik

A central problem in static analysis concerns how to balance its precision and cost. A
query-driven analysis seeks to address this problem by searching for an abstraction that
discards program details that are unnecessary for proving an individual query. I will describe
our results and experience over the past four years addressing this problem in the context of
query-driven dataflow analyses that are parametric in the abstraction. The abstraction is
chosen from a large family that allow abstracting different parts of a program with varying
precision. A large number of fine-grained abstractions enables an analysis to specialize to a
query but poses a hard search problem in practice. Our main result is a set of new search
techniques (black-box and white-box approaches, deterministic and randomized approaches,
purely static and hybrid dynamic-static approaches) for new problems (minimal abstractions,
necessary conditions, impossibility results) that show promise for realistic pointer-related
analyses on medium-to-large Java programs from the Dacapo suite.

3.19 Sparse Analysis Framework
Hakjoo Oh (Seoul National University, KR)

License Creative Commons BY 3.0 Unported license
© Hakjoo Oh

Joint work of Oh, Hakjoo; Heo, Kihong; Lee, Wonchan; Lee, Woosuk; Yi, Kwangkeun
Main reference H. Oh, K. Heo, W. Lee, W. Lee, K. Yi, “Design and Implementation of Sparse Global Analyses for

C-like Languages,” in Proc. of the ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI’12), pp. 229–238, ACM, 2012.

URL http://dx.doi.org/10.1145/2254064.2254092

In this talk, I present a general method for achieving global static analyzers that are precise,
sound, yet also scalable. Our method, on top of the abstract interpretation framework, is a
general sparse analysis technique that supports relational as well as non-relational semantics
properties for various programming languages. Analysis designers first use the abstract
interpretation framework to have a global and correct static analyzer whose scalability
is unattended. Upon this underlying sound static analyzer, analysis designers add our
generalized sparse analysis techniques to improve its scalability while preserving the precision
of the underlying analysis. Our method prescribes what to prove to guarantee that the
resulting sparse version should preserve the precision of the underlying analyzer.

3.20 Empirical Evaluation of Points-To Analyses
Erhard Plödereder (Universität Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
© Erhard Plödereder

Joint work of Frohn, Simon; Staiger-Stoehr, Stefan; Plödereder, Erhard

Over the years, we have run several experiments to evaluate the performance and precision
of various points-to analyses in the context of global program analyses. The results have

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2254064.2254092
http://dx.doi.org/10.1145/2254064.2254092
http://dx.doi.org/10.1145/2254064.2254092
http://dx.doi.org/10.1145/2254064.2254092
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 105

significantly influenced the approach taken towards points-to analyses in the Bauhaus program
analysis framework. In a first part, this talk reports on the results of a comparative study
(work by Simon Frohn) of the three well-known algorithms by Andersen, Das, and Steensgaard.
The evaluation showed that the Das algorithm ran in near-linear time and was hardly more
expensive than Steensgaard’s but produced considerably more precise results. The Anderson
algorithm lived up to its worst-case cubic performance, while not improving precision by
much over the Das algorithm. Field sensitivity added considerable precision but also added a
(small) factor to the execution time. An important insight was that the size of the points-to
sets clearly correlated with the size of the test programs, refuting the hypothesis that locality
would put constant bounds on the size of these sets. Quantitative results are shown in
comparative charts both on execution time and performance metrics of the three algorithms
including some variations. The second part of the talk describes the principles of our best-yet
algorithm developed by Stefan Staiger-Stoehr in his Ph.D. thesis partly in response to the
findings of Simon Frohn. As a flow-sensitive analysis it combines control flow analysis, call
graph construction, SSA-construction and points-to analysis. It starts out presuming no
data-flow effects from dereferenced pointers and then iterates towards a conservative fix-point
using the gradually constructed points-to sets. Strong indirect updates are recognized and
exploited. Proven to be of cubic complexity in MOP-accuracy and of bi-quadratic complexity
in MOVP-accuracy, the algorithm is efficient enough to allow the analysis of programs of a
quarter of a million lines of code in less than one hour, and often in less than 10 minutes.
Again, empirical data on execution time and precision are presented, comparing variants that
are flow-insensitive, flow-sensitive, and flow-sensitive with strong indirect updates. The data
shows considerable reduction of the average size of points-to sets by flow-sensitive analysis
but only marginalreductions from strong indirect updates. Execution time measurements
were not entirely conclusive between linear and quadratic behavior for tests with up to
250.000 lines of code. Surprisingly, the strong indirect updates make a significant difference
on the number of SSA-nodes generated (the algorithm uses Phi-nodes to represent weak
updates). Compared to flow-insensitive analysis, up to 25% of SSA-nodes are avoided by
flow-sensitive analysis, and up to 40% of strong indirect updates are recognized. A factor of
5 in execution time between the least and the most discriminating analyses makes the added
effort well worthwhile, as the SSA-form is subsequently processed by various user-oriented
program analyses.

References
1 Simon Frohn. Konzeption und Implementierung einer Zeigeranalyse für C und C++. Dip-

loma thesis, University of Stuttgart, Stuttgart, Germany, 2006
2 Stefan Staiger-Stoehr. Kombinierte statische Ermittlung von Zeigerzielen, Kontroll- und

Datenfluss. doctoral dissertation, University of Stuttgart, Stuttgart, Germany, 2009
3 Stefan Staiger-Stoehr. Practical Integrated Analysis of Pointers, Dataflow and Control

Flow. ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article
5, April 2013

13162

106 13162 – Pointer Analysis

3.21 Set-Based Pre-Processing for Points-To Analysis
Yannis Smaragdakis (University of Athens, GR)

License Creative Commons BY 3.0 Unported license
© Yannis Smaragdakis

Joint work of Smaragdakis, Yannis; Balatsouras, George; Kastrinis, George
Main reference Y. Smaragdakis, G. Balatsouras, G. Kastrinis, “Set-Based Pre-Processing for Points-To Analysis,”

in Proc. of the 28th Annual ACM SIGPLAN Conf. on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’13), to appear.

We present set-based pre-analysis: a virtually universal optimization technique for flow-
insensitive points-to analysis. Points-to analysis computes a static abstraction of how object
values flow through a program’s variables. Set-based pre-analysis relies on the observation that
much of this reasoning can take place at the set level rather than the value level. Computing
constraints at the set level results in significant optimization opportunities: we can rewrite the
input program into a simplified form with the same essential points-to properties. This rewrite
results in removing both local variables and instructions, thus simplifying the subsequent
value-based points-to computation. Effectively, set-based pre-analysis puts the program in a
normal form optimized for points-to analysis.

Compared to other techniques for off-line optimization of points-to analyses in the
literature, the new elements of our approach are the ability to eliminate statements, and
not just variables, as well as its modularity: set-based pre-analysis can be performed on
the input just once, e.g., allowing the pre-optimization of libraries that are subsequently
reused many times and for different analyses. In experiments with Java programs, set-based
pre-analysis eliminates 30% of the program’s local variables and 30% or more of computed
context-sensitive points-to facts, over a wide set of benchmarks and analyses, resulting in an
over 20% average speedup.

3.22 Pointer Analysis for Probabilistic Noninterference
Gregor Snelting (KIT – Karlsruhe Institute of Technology, DE)

License Creative Commons BY 3.0 Unported license
© Gregor Snelting

Joint work of Dennis Giffhorn; Gregor Snelting
Main reference D. Giffhorn, G. Snelting, “A New Algorithm for Low-Deterministic Security,” Karlsruhe Reports in

Informatics 06/2012, revised 2013.
URL http://pp.info.uni-karlsruhe.de/publication.php?id=giffhorn13lsod

Information Flow Control (IFC) analyses program source or machine code to discover possible
violations of confidentiality (i.e. secret information is leaked to public ports) or integrity (i.e.
critical computations are manipulated from outside). IFC algorithms must handle realistic
programs in e.g. full Java; they must be provably sound (discover all potential leaks) and
precise (produce no false alarms). For full Java, this not only requires flow- context- object-
and field-sensitive analysis of explicit and implicit information flow, but also a precise pointer
analysis, in particular for nested objects and exception handling. For concurrent programs,
all potential leaks exploiting scheduling or interleaving effects must be discovered.

Probabilistic noninterference (PN) is the established technical criterion for IFC of con-
current programs operating on shared memory. IFC and PN algorithms can be based on
non-standard type systems, or on program dependence graphs (PDGs). In any case, PN
requires precise May-Happen-in-Parallel (MHP) information, which in turn requires precise
pointer and alias analysis.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
Y. Smaragdakis, G. Balatsouras, G. Kastrinis, ``Set-Based Pre-Processing for Points-To Analysis,'' in Proc. of the 28th Annual ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA'13), to appear.
Y. Smaragdakis, G. Balatsouras, G. Kastrinis, ``Set-Based Pre-Processing for Points-To Analysis,'' in Proc. of the 28th Annual ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA'13), to appear.
Y. Smaragdakis, G. Balatsouras, G. Kastrinis, ``Set-Based Pre-Processing for Points-To Analysis,'' in Proc. of the 28th Annual ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA'13), to appear.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://pp.info.uni-karlsruhe.de/publication.php?id=giffhorn13lsod
http://pp.info.uni-karlsruhe.de/publication.php?id=giffhorn13lsod
http://pp.info.uni-karlsruhe.de/publication.php?id=giffhorn13lsod

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 107

The talk presents basic examples for IFC and precision issues, and sketches PDG-based
PN, as recently introduced by Giffhorn & Snelting. It then discusses challenges for pointer
analysis in PN and MHP. It is shown that dynamic pushdown networks, as introduced by
Müller-Olm et al., allow for lock-sensitive IFC and PN analysis, but require precise must-alias
information.

References
1 C. Hammer, G. Snelting: Flow-Sensitive, Context-Sensitive, and Object-sensitive Informa-

tion Flow Control Based on Program Dependence Graphs. International Journal of Inform-
ation Security, Vol. 8 No. 6, 2009, pp. 399–422.

2 D. Giffhorn, G. Snelting: A New Algorithm for Low-Deterministic Security. Karlsruhe
Reports in Informatics 06/2012, revised 2013, submitted for publication.

3.23 Pointer Analysis and Reflection
Manu Sridharan (IBM TJ Watson Research Center – Yorktown Heights, US)

License Creative Commons BY 3.0 Unported license
© Manu Sridharan

Joint work of Sridharan, Manu; Dolby, Julian; Fink, Stephen J.; Chandra, Satish; Schaefer, Max; Tip, Frank

Over the last several years, our group at IBM Research has put considerable effort into
building industrial-strength pointer analyses for Java and JavaScript programs. For both
languages, one of the biggest challenges we faced was handling reflective code, particularly
in libraries and frameworks. In my talk, I presented some of the problems we have faced,
approaches we have tried, the strengths and weaknesses of these approaches, and some ideas
on how to make progress going forward.

References
1 Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Dynamic determinacy analysis.

In PLDI, 2013.
2 Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp, and Ryan

Berg. F4F: taint analysis of framework-based web applications. In OOPSLA, 2011.
3 Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. Correlation

tracking for points-to analysis of JavaScript. In ECOOP, 2012.
4 Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman. TAJ:

effective taint analysis of web applications. In PLDI, 2009.

3.24 Modular combination of shape abstraction with numeric
abstraction

Xavier Rival (ENS, Paris)

License Creative Commons BY 3.0 Unported license
© Xavier Rival

In this talk, we will discuss techniques to combine in a single static analysis pointer abstract
domains with value abstract domains. Such combinations are required whenever pointer
information is required in order to discover value (numeric, boolean...) properties and vice
versa. We will show an abstract domain combination technique, which allows to build static
analyzers in a modular manner, and let domains that abstract different kinds of elements
exchange information.

13162

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

108 13162 – Pointer Analysis

3.25 Scaling flow analysis using big-step semantics
Dimitris Vardoulakis (Google Inc. – Mountain View, US)

License Creative Commons BY 3.0 Unported license
© Dimitris Vardoulakis

Joint work of Vardoulakis, Dimitris; Shivers, Olin
Main reference CFA2: a Context-Free Approach to Control-Flow Analysis, ESOP 2010.

URL http://www.ccs.neu.edu/home/dimvar/papers/cfa2-lmcs11.pdf

Traditional flow analyses for higher-order languages, such as k-CFA, approximate programs
as control-flow graphs. This approximation does not allow precise analysis of function calls
and returns; during the analysis, a function may be called from one program point and return
to a different one.

I will argue that call/return mismatch is undesirable in a flow analysis, especially in a
higher-order setting, where function call and return is the central mechanism for control-flow
transfer. Pushdown flow analyses, such as CFA2, offer greater precision than traditional
analyses because they can match an unbounded number of calls and returns.

The increased precision of CFA2 is not obtained at the expense of scalability. I will discuss
how to implement CFA2 as an abstract interpretation of a big-step operational semantics.
The use of big-step semantics minimizes caching of abstract states (and thus memory usage)
because it does not require one to remember the analysis results for each sub-expression in
the program. It also makes the analysis faster because it requires fewer comparisons between
abstract states than summarization-based analyses. I have implemented this analysis for
JavaScript and used it to analyze all Firefox add-ons, with promising results.

References
1 Dimitrios Vardoulakis. CFA2: Pushdown Flow Analysis for Higher-Order Languages. PhD

dissertation, Northeastern University, August 2012.

4 Breakout Sessions

4.1 Better APIs for Clients
José Nelson Amaral (University of Alberta, CA)

License Creative Commons BY 3.0 Unported license
© José Nelson Amaral

This breakout session was motivated by the observation that it is difficult for a single
person/group to design and implement a significant pointer/alias/reference analysis and then
also implement meaningful clients to use the analysis and test its effectiveness on creating
new opportunities for optimization based on the analysis results.

The initial idea is that if an interface could be defined between the analyses and the
clients, then a new analysis could be tested on several existing clients and a new client could
try to use several existing analyses.

However, after discussing the initial idea, we realised that we would need not a single
interface, but rather two interfaces and a query system as shown in Fig. 1:

Client API: interfaces with the clients and answers the questions that a client may ask
Analyzer API: provides the fact that are generated by the analysis to the query system
Query System: translate analysis facts into answers to client queries.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.ccs.neu.edu/home/dimvar/papers/cfa2-lmcs11.pdf
http://www.ccs.neu.edu/home/dimvar/papers/cfa2-lmcs11.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 109

Query

System

Client API

Analyzer API

Analyzer A Analyzer B Analyzer K

Client 1 Client 2 Client N

Figure 1 Interfaces and the Query System for Pointer Analysis Clients.

The ensuing discussion made it obvious that the problem is significantly more complicated
than the motivation and initial idea implied: both the analyzer and the client representations
are usually tied to some intermediate representation of the code.

Client API: Examples of Possible Functions

must_alias(x, y, pi, cj)
must_not_alias(x, y, pi, cj)
points_to_set(x,pi, cj)

where:
x, y: variables in the program (how to represent abstraction of heap locations?)
pi: a point in the program (can we represent a point in a program without tying it to a

specific intermediate representation?)
cj: a context (how should contexts be represented?)

This simple notation does not address either path sensitivity or field sensitivity.

Analyzer API

The analyzer API seems to need to be more complex than the client API and we did not
look into it in detail.

Fairness

While such a system could potentially be built to measure the effect of an analysis outcome
on clients, it would probably be unwise to use it to measure how fast an analysis works with

13162

110 13162 – Pointer Analysis

a client. For instance, if the client specifies a point in the program but the analyzer is flow
insensitive, there is an overhead incurred by the framework that would not exist in a direct
connection of the client with the analyzer without going through the APIs.

4.2 Pointer analyses for open programs (libraries/frameworks)
Eric Bodden (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Eric Bodden

We talked about two possible problem cases, one being the situation where one wants to
summarize library information for speeding up client analyses, effectively preventing the
library from being analyzed over and over again. The question is how to pre-analyze a library
as much as possible, even though nothing is known about possible clients. One idea was to
use Class Hierarchy Analysis (CHA) but it was noted that even this would be unsound, as
types may be missing. Regular allocation-site-based analyses yield similar problems, also
causing call edges to be missed. It was hence suggested to simply proceed as follows:

perform a points-to analysis on a best-effort basis, persisting the points-to information
that can be computed without any client code
then, as the client code is analyzed, simply load the persisted analysis facts and continue
the fixed point iteration from there

We also noted that summaries for points-to analyses might be hard to store and interpret,
as they would probably need to involve specifications with complex access paths. Summaries
for client analyses may make more sense but to date there is no efficient system for computing
such summaries. Another problem with summaries in general is that callbacks create holes
which the summary must accommodate for.

The second application scenario was analyzing a library for internal code vulnerabilities
that could be exploited by malicious client code. Interestingly, in this scenario any sound
analysis must make worst-case assumptions; so if there is a callback that could execute client
code then the analysis better assume that this code could call any library code it has a handle
to because that’s exactly what an attacker could do. A correct but imprecise assumption
would hence be that the callback could call any method at all in the library. Of course, this
would not lead one anywhere. The art is hence to find out what object handles the client
could get access to, and based on this information what functions the client could possibly
call. An interesting observation was that in turn the library itself can only call methods it
knows about, i.e., methods that are defined in some interface that is part of the library itself
(unless the library uses reflection, that is).

4.3 Shape Analysis and Pointer Analysis: Working Together
Bor-Yuh Evan Chang (University of Colorado – Boulder, US)

License Creative Commons BY 3.0 Unported license
© Bor-Yuh Evan Chang

This session focused on identifying the characteristics that would typically define an analysis
as either a shape analysis or a pointer analysis. While both are static program analyses that

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 111

infer relationships about memory addresses, they are mostly considered distinct sub-areas
today. The intent of this session was first to better understand the technical and cultural
differences between these two kinds of memory analyses and then by doing so to explore how
to leverage the two perspectives together.

We first summarize the discussion about defining these two kinds of memory analyses.
In the following, we try to speak in general terms, as certainly there are specific analysis
algorithms that blend characteristics.

An initial, strawman definition of the difference was raised that is oversimplifying but still
informative. Pointer analysis infers relationships about “stack pointers.” Or more precisely,
it infers relationships about static, named addresses (e.g., global and local variables). Shape
analysis infers relationships about “heap pointers.” Or more precisely, it infers relationships
about dynamic, unnamed addresses (e.g., malloced addresses).

Of course, both kinds of analyses can derive relationships about both stack and heap
pointers, and the most significant challenges for both arise from dynamically-allocated
addresses.

Pointer analysis abstracts the heap of dynamically-allocated memory cells with an up-
front, static partitioning. For a standard context-insensitive allocation site-based abstraction,
the partitioning is clear: every dynamically-allocated address is bucketed into its allocation
site and every partition is named by its allocation site. Adding context-sensitivity still fits
this definition even though it seems a bit less clear: the partitions are more refined and not
all partitions are necessarily named during the course of the analysis, but the partition to
which a concrete memory cell belongs does not change during the course of the analysis.
Overall, we called the pointer analysis approach “staticifying the dynamic.”

Shape analyses typically vary the heap abstraction during the course of the analysis (e.g.,
the partitioning of the heap may vary across program points). Though not necessarily a
prerequisite, materialization and summarization operations that change the heap partitioning
arise from this perspective. Materialization decides how a heap partition should be split,
while summarization decides how heap partitions should be merged.

An important point raised was that the differences described above are orthogonal to the
distinction between store-based versus store-less abstractions, even though some combinations
are less represented in the literature than others.

We identified some cultural differences. A sub-area, often tied to shape analysis, tends to
focus on what’s possible with no or little loss of precision. For example, it is not uncommon
for such analyses to simply halt when a strong update is not possible (i.e., the concrete cell
being updated cannot be identified). Another sub-area, often tied to pointer analysis, tends
to focus on handling all programs and all language features with a best-effort approach to
precision: weak updates must be supported even if we wish to avoid them. An important
observation is that these perspectives need not be tied to whether an analysis is deriving
shape or pointer information.

In summary, it is oversimplifying to say that “shape analysis is more precise pointer
analysis” or “pointer analysis is more scalable shape analysis.” These clichés have a kernel of
truth, but it seems likely that further advances can be made by borrowing perspectives and
ideas from each sub-area.

13162

112 13162 – Pointer Analysis

4.4 Practical Aspects of Pointer Analysis
Manu Sridharan (IBM TJ Watson Research Center - Yorktown Heights, US)

License Creative Commons BY 3.0 Unported license
© Manu Sridharan

This breakout session focused on discussion of aspects of pointer analysis typically not
discussed in conference papers, such as negative results and low-level details. A number of
interesting topics were covered, as summarized below:

For Java points-to analysis, differences in reflection handling can make a dramatic impact
on scalability, which can be non-obvious just from reading a paper.
Although BDDs are essential in making some straightforward analysis specifications
scalable, the participants could find no compelling case for using BDDs in highly tuned
points-to analysis, at the present time. (This is a delicate balance that may shift in the
future, however.) BDDs have high constant-factor overheads that can have a significant
performance impact, and other techniques, such as careful writing of Datalog rules or
a shared bit-vector repository, can be as effective in eliminating redundancy from the
results.
Cycle elimination seems to yield little to no benefit for Java points-to analysis, as type
filters lead to many fewer cycles than for large C programs. However, other opportunities
for compression of the constraint graph remain, as discussed, e.g., by Hardekopf and
Lin [1].
The topic of debugging point-to analysis implementations and tracking down the root
cause of imprecision was discussed. Suggestions included:

standard practices for good software engineering (unit tests and assertions)
comparing analysis variants with well-known precision relationships, e.g., ensuring that
a context-sensitive analysis is strictly more precise than the context-insensitive version.
comparing results from different analysis frameworks; while this may involve significant
work due to differing handling of language constructs, the work can be worthwhile.
Additionally, it was suggested that a good fuzz testing harness for pointer analyses
would be highly useful. For tracking down imprecision, delta debugging was suggested,
though this becomes tricky in the presence of multiple files.

For points-to analysis of JavaScript and other dynamic languages, differing string handling
was identified as another obscure source of very large differences in analysis precision and
performance.
Finally, participants listed known production systems making use of sophisticated points-
to analysis. Examples included link-time optimization in some commercial compilers,
the JavaScript JIT compiler in Mozilla Firefox,2 Veracode’s analysis engine,3 JavaScript
taint analysis in IBM Security AppScan Source Edition,4 and in an architecture analysis
system.

References
1 Ben Hardekopf and Calvin Lin. Exploiting Pointer and Location Equivalence to Optimize

Pointer Analysis. In SAS, 2007.

2 https://wiki.mozilla.org/IonMonkey
3 http://www.veracode.com
4 http://www-03.ibm.com/software/products/us/en/appscan-source/

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://wiki.mozilla.org/IonMonkey
http://www.veracode.com
http://www-03.ibm.com/software/products/us/en/appscan-source/

Ondřej Lhoták, Yannis Smaragdakis, and Manu Sridharan 113

Participants

Jose Nelson Amaral
University of Alberta, CA

Gogul Balakrishnan
NEC Lab. America, Inc. –
Princeton, US

Eric Bodden
TU Darmstadt, DE

Bor-Yuh Evan Chang
University of Colorado –
Boulder, US

Isil Dillig
College of William and Mary, US

Thomas Dillig
College of William and Mary, US

Julian Dolby
IBM TJ Watson Res. Center –
Hawthorne, US

Samuel Z. Guyer
Tufts University, US

Christian Hammer
Universität des Saarlandes, DE

Laurie J. Hendren
McGill University, CA

Uday Khedker
Indian Institute of Technology –
Mumbai, IN

Ondrej Lhotak
University of Waterloo, CA

Benjamin Livshits
Microsoft Res. – Redmond, US

Welf Löwe
Linnaeus University – Växjö, SE

Mark Marron
Microsoft Res. – Redmond, US

Matt Might
University of Utah, US

Ana Milanova
Rensselaer Polytechnic, US

Anders Moeller
Aarhus University, DK

Mayur Naik
Georgia Inst. of Technology, US

Hakjoo Oh
Seoul National University, KR

Erhard Plödereder
Universität Stuttgart, DE

Xavier Rival
ENS – Paris, FR

Yannis Smaragdakis
University of Athens, GR

Gregor Snelting
KIT – Karlsruhe Institute of
Technology, DE

Manu Sridharan
IBM TJ Watson Research Center
– Yorktown Heights, US

Bjarne Steensgaard
Microsoft Res. – Redmond, US

Dimitris Vardoulakis
Google Inc. –
Mountain View, US

13162

Report from Dagstuhl Seminar 13171

Customizing Service Platforms
Edited by
Luciano Baresi1, Andreas Rummler2, and Klaus Schmid3

1 Politecnico di Milano, IT, luciano.baresi@polimi.it
2 SAP Research Center – Dresden, DE, andreas.rummler@sap.com
3 Universität Hildesheim, DE, schmid@sse.uni-hildesheim.de

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13171 “Customizing
Service Platforms”. The aim of the seminar was to bring together researchers from different areas
of academia and industry that are related to the seminar topic and typically do not intensively in-
teract with each other. These communities are Product Line Engineering, Software Architecture,
Service Engineering, and Cloud Computing.

The ambition of the seminar was to work on the topic of “Customization of Service Platforms”,
which is related to all of these areas, in a synergistic and cooperative way to identify new research
challenges and solution approaches. As part of the seminar, we identified a number of key areas
which provided the basis for highly interactive working groups.

Seminar 21.–26. April, 2013 – www.dagstuhl.de/13171
1998 ACM Subject Classification D.2.2 Design Tools and Techniques, D.2.11 Software Archi-

tectures, D.2.13 Reusable Software
Keywords and phrases Service-Oriented Architectures, Service Platforms / Cloud Computing,

Product Line Engineering, Variability Management
Digital Object Identifier 10.4230/DagRep.3.4.114

1 Executive Summary

Luciano Baresi
Andreas Rummler
Klaus Schmid

License Creative Commons BY 3.0 Unported license
© Luciano Baresi, Andreas Rummler, and Klaus Schmid

Background

Service-orientation has become a major trend in computer science over the last decade. More
recently cloud computing is leading into the same direction: a virtualization of resources
and service offerings. Especially cloud computing is getting very significant attention by
companies. While the initial idea in service orientation was to have the relevant services
standardized and distributed across the internet, we also see that an increasing amount
of customization must be done to really meet customer needs. As in traditional system
development, one size fits all is not enough.

This seminar focused on the notion of service platforms, a concept including, but not
limited to, cloud computing. A service platform is a combination of technical infrastructure
along with domain-specific or business-specific services built according to the service-oriented

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Customizing Service Platforms, Dagstuhl Reports, Vol. 3, Issue 4, pp. 114–150
Editors: Luciano Baresi, Andreas Rummler, and Klaus Schmid

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13171
http://dx.doi.org/10.4230/DagRep.3.4.114
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Luciano Baresi, Andreas Rummler, and Klaus Schmid 115

development paradigm. Especially the latter in practice often requires significant custom-
ization in order to be practically useful. Providing such customizations on a massive scale
cost-effectively is an extremely demanding task. This is a lesson that has been learned hard
by a number of companies in traditional software engineering. As a consequence the concept
of product line engineering was conceived.

The focus of this seminar was to explore the range of different approaches towards
customized service offerings in current —- and future —- service-based environments. In
particular, it was a goal to address the potential for a combination of service-orientation
with product line engineering ideas. In this regard, this seminar was the first of its kind.

Diversity of Topics

The expected diversity of inputs that was desired for the seminar was well achieved. This
is shown by the diversity of individual presentations summarized in chapter 3. Also the
working groups that were established had participants from multiple communities. These
working groups discussed the following topics:

Quality Assurance and Validation in the Context of Customization: Here, a broad range
of different problems and techniques could be identified, related both to problems of
varying of the object of the quality assurance as well as to the variation of the expections
(qualities).

Mobility Devices and Customization: This working group focused particularly on the dif-
ficulties that arise from a mobile context with a lot of variation over time and limited
resources.

Architecting for Platform Customization: Architectures are fundamental to any software
system, so this group addressed what architectural techniques are important to create
customizable platforms.

Energy-Aware Customization: Here, the focus was on the issue of energy-awareness and,
in particular, energy-efficiency, which is particularly relevant to mobile platforms. By
adequate customization, this can be improved for a platform.

Customizing Service Platforms for Cloud Computing: Modern cloud computing environ-
ments pose new challenges and provide new opportunities for customizing service platforms.
It turned out that the cloud context provides a number of very special problems and
technologies for addressing them.

Customizing Service Platforms for Agile Networked Organizations: The organizational con-
text of service platform needs to be taken into account as well as a platform needs to fit
to the relevant business context. Hence customization needs to be done on both levels in
a synchronized manner.

Binding time aspects of service platform customization: This working group focused on
when (i.e., in which lifecycle phase) the customization is done, as this has significant
impact on the details of the technologies that can be used.

Reflections on the Format

A main goal of the seminar was to have a significant portion of the time for discussion. In
order to achieve this, we decided to not require presentations from everyone associated with

13171

116 13171 – Customizing Service Platforms

a long introduction round. Rather, we decided to ask everyone for a poster to present her-
or himself and describe the personal interest and relation to the topic. Overall this novel
approach was well received by the participants. The poster walls were set up in the coffee
break area outside the room. (Thanks to everyone at Dagstuhl for their support.) This
allowed for a casual browsing of the posters in every coffee break during the seminar. Each
poster also had a picture of the participant, this also helped to get to know each other.

Luciano Baresi, Andreas Rummler, and Klaus Schmid 117

2 Table of Contents

Executive Summary
Luciano Baresi, Andreas Rummler, and Klaus Schmid 114

Overview of Talks
Imperative versus Declarative Process Variability: Why Choose?
Marco Aiello . 119

My View on Customizing Service Platforms
Luciano Baresi . 119

Dynamic Product Lines using the HATS framework
Karina Barreto Villela . 120

Quality-Aware Product Configuration
Karina Barreto Villela . 120

Customization of existing industrial plants to achieve modernization
Deepak Dhungana . 121

Forward Recovery for Web Service Environments
Peter Dolog . 121

Customizing Service Platforms
Holger Eichelberger . 122

SPASS-Meter – Monitoring Resource Consumption of Services and Service Platforms
Holger Eichelberger . 123

On-the-Fly Computing – Individualized IT Services in Dynamic Markets
Gregor Engels . 123

Multi-level Service Management
Sam Guinea . 124

Customizable Reliability and Security for Data-Centric Applications in the Cloud
Waldemar Hummer . 125

Adaptation in complex service ecosystems
Christian Inzinger . 126

A Library for Green Knowledge
Patricia Lago . 126

Cloud Computing as a Service Platform for Mobile Systems
Grace Lewis . 127

Cloudlet-Based Cyber-Foraging
Grace Lewis . 127

Customizing Platforms by Higher-Order Process Modeling: Product-Lining, Vari-
ability Modeling and Beyond
Tiziana Margaria . 127

Platform Architectures
Nenad Medvidovic . 128

Variability Modeling & Management
Nanjangud C. Narendra . 128

13171

118 13171 – Customizing Service Platforms

Customized Mashups with Natural Language Composition
Cesare Pautasso . 129

Challenges of offering customizable domain-specific business processes as a service
Manuel Resinas Arias de Reyna . 129

Customization of Large, Complex Systems
Klaus Schmid . 130

Service Networks for Development Communities
Damian Andrew Tamburri . 130

Customizing Science Gateway Platforms via SaaS Approach
Wenjun Wu . 131

Service-based Platform Integration and Customization
Uwe Zdun . 131

Customizing Service Platforms — new or have we seen this before?
Frank van der Linden . 132

Working Groups
Quality Assurance and Validation in Customizable Service Platforms
Deepak Dhungana . 132

Mobility and Service Platform Customization
Grace Lewis . 139

Architecting for Platform Customization
Damian Andrew Tamburri . 142

Energy-Aware Customization
Patricia Lago . 143

Customizing Service Platforms for Cloud Computing
Cesare Pautasso . 144

Customizing Service Platforms for Agile Networked Organizations
Damian Andrew Tamburri . 144

Binding time aspects of service platform customization
Customizing Service Platforms - Development time vs. Compile time vs. Runtime
Holger Eichelberger . 146

Open Problems . 149

Participants . 150

Luciano Baresi, Andreas Rummler, and Klaus Schmid 119

3 Overview of Talks

3.1 Imperative versus Declarative Process Variability: Why Choose?
Marco Aiello (University of Groningen, NL)

License Creative Commons BY 3.0 Unported license
© Marco Aiello

Joint work of Aiello, Marco; Groefsema, Heerko; Bulanov, Pavel

Variability is a powerful abstraction in software engineering that allows managing product
lines and business processes requiring great deals of change, customization and adaptation.
In the field of Business Process Management (BPM) the increasing deployment of workflow
engines having to handle an increasing number of instances has prompted for the strong
need for variability techniques.

The idea is that parts of a business process remain either open to change, or not fully
defined, in order to support several versions of the same process depending on the intended
use or execution context. The goal is to support two major challenges for BPM: re-usability
and flexibility. Existing approaches are broadly categorized as Imperative or Declarative.
We propose Process Variability through Declarative and Imperative techniques (PVDI), a
variability framework which utilizes temporal logic to represent the basic structure of a
process, leaving other choices open for later customization and adaptation. We show how both
approaches to variability excel for different aspects of the modeling and we highlight PVDI’s
ability to take the best of both worlds. Furthermore, by enriching the process modeling
environment with graphical elements, the complications of temporal logic are hidden from
the user. To show the practical viability of PVDI, we present tooling supporting the full
PVDI lifecycle and test its feasibility in the form of a performance evaluation.

3.2 My View on Customizing Service Platforms
Luciano Baresi (Polytechnic University of Milano, IT)

License Creative Commons BY 3.0 Unported license
© Luciano Baresi

A service platform is a set of related services supplied by the same provider under a common
umbrella and together with some shared qualities of service. Platforms as a service are a
special class of the more general concept.

My interests in the customization of service platforms come from different motivations.
Since I have been working on services at application level for years, moving to platforms
provides a nice complement. The work done on eliciting the requirements for (self-)adaptive
service applications easily fits the customization problem since it helps one understand what
the platform is supposed to provide, and how it should be tailored to the different needs
and situations. Similarly, the work done on adapting service compositions may provide
interesting insights towards the definition of suitable customization means for the different
service platforms. In these days, I am also interested in mobile applications and in the
frameworks (platforms) that provide the bases to implement them. Since the resources of
these devices are still limited, the customization of these platforms may help preserve them,
and thus it may help the user keep the device (e.g., a smartphone) alive longer.

I am still a bit concerned, or confused, about the use of many different terms, like
customization, adaptation, evolution, and maintenance, to mean similar and possibly related

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

120 13171 – Customizing Service Platforms

concepts, but I am very interested in how the diverse services, and the infrastructure that
operates them, can evolve in the different phases of the platform’s life-cycle. Run-time
changes, and the correctness of the new platform, are also particularly intriguing.

3.3 Dynamic Product Lines using the HATS framework
Karina Barreto Villela (Fraunhofer IESE, DE)

License Creative Commons BY 3.0 Unported license
© Karina Barreto Villela

Typical Software Product Lines (SPL) approaches do not focus on dynamic aspects, and
the reconfiguration of products occurs mainly statically at development time. Dynamic
Software Product Lines (DSPL) enable a product to be reconfigured dynamically at runtime,
which can be understood as the transformation of a product into another valid product
without any kind of interruption in its execution. The reconfiguration, in this context,
takes place without the need to halt the system, recompile and redeploy. From a technical
perspective, dynamic reconfiguration is a challenging task due to reasons such as ensuring
that dynamically updated systems will behave correctly or ensuring that no state data is
lost. Moreover, from the Product Line (PL) perspective, not all technically possible changes
in a running system are valid and make sense. In order to preserve the consistency of the PL
products when reconfigured at runtime, there must be a way to restrict the adaptations that
can be performed at runtime.

Fraunhofer IESE has added support for runtime product reconfiguration to ABS (an
abstract but executable modeling language developed in the HATS project), by adding a
dynamic representation of the possible product reconfigurations at runtime and a state
update element responsible for data transfer, and by using the metaABS tool developed by
the University of Leuven, which allows deltas to be applied at runtime.

3.4 Quality-Aware Product Configuration
Karina Barreto Villela (Fraunhofer IESE, DE)

License Creative Commons BY 3.0 Unported license
© Karina Barreto Villela

The configuration of concrete products from a product line infrastructure is the process
of resolving the variability captured in the product line according to a company’s market
strategy or specific customer requirements. Several aspects influence the configuration of a
product, such as dependencies and constraints between features, the different stakeholders
involved in the process, the desired degree of quality, and cost constraints. Fraunhofer IESE
has developed a quality-aware configurator in which the user specifies the key product features
and its quality concerns and cost constraints, and the configurator gives close to optimal
configurations based on the user’s input. The configurator is based on the assumption that
the selection of a feature has an impact in the quality attributes of the final product, as
well as the interaction among the selected features. This work included the integration of
COSTABS (a static performance analyzer developed by the University of Madrid) to provide
performance annotations to features and the first steps towards a reusable security feature
model, which includes security feature implementations in ABS (an abstract but executable
modeling language developed in the HATS project).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid 121

3.5 Customization of existing industrial plants to achieve
modernization

Deepak Dhungana (Siemens AG-Wien, AT)

License Creative Commons BY 3.0 Unported license
© Deepak Dhungana

Industrial plants are complex and costly software-intensive systems that are operated over long
periods of time. The modernization of plants with new technologies can significantly increase
productivity while at the same time reducing energy consumption and environmental impact.
Unfortunately, it is a daunting task to find out which new technologies are appropriate
for an existing plant and to calculate the modernization costs and time. This process in
practice today relies mainly on the experience and knowledge of key employees and is not
well defined. Currently, there is no standardized method or tool for systematically eliciting
customer requirements and plant data. In our ongoing work, we are developing methods
and tools to support planning the modernization of complex industrial plants, which need
to be adapted to meet new customer requirements and environmental constraints. In this
project we first analyzed the current modernization process based on concrete scenarios and
examples (e.g., improvement of a cooling system in a steel plant, in order to reduce the water
consumption) to clearly define the requirements for tool development. The next step was to
develop tools supporting the modeling of expert knowledge, the definition and formalization
of modernization goals, as well as the definition of available resources. The optimization with
regard to global constraints and objectives like productivity, quality, and economic impact is
a complex task. We thus develop tools for capturing and modeling expert knowledge with the
goal to assist in the selection of modernization packages based on customer requirements and
in the creation of sales offers. The tools further support optimizing selected modernizations,
for example, by comparing different modernization scenarios. The tools are flexible to allow
their use within industrial plants in various domains.

3.6 Forward Recovery for Web Service Environments
Peter Dolog (Aalborg University, DK)

License Creative Commons BY 3.0 Unported license
© Peter Dolog

In web service environments there are web services which are often long running. In this
situation, typical properties known from transactional management in databases, such as
atomicity or isolation, are relaxed. This impacts on the transactions so that when some of
the participants fail, they cannot easily undo outcomes of the web services participating
in such transactions. We have studied this problem and designed an environment where
we allow for forward recovery which means we allow for replacing failed web services with
different ones which can deliver the work required to finish the transactions. The candidate
web services are selected based on features which have been defined similarly as in product
lines methodology, with mandatory and optional features. We compare and rank suitability
of services according to matching between required feature model and those provided. The
score is higher if there are more optional features satisfied with provided candidate service.

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

122 13171 – Customizing Service Platforms

3.7 Customizing Service Platforms
Holger Eichelberger (University of Hildesheim, GE)

License Creative Commons BY 3.0 Unported license
© Holger Eichelberger

Customization of service-based systems is current practice in industry to meet the needs
of customers in a qualitative and timely manner, e.g., to introduce novel functionality, to
optimize the quality of service (QoS), or to realize integrations with existing systems. While
many customizations can be implemented using service-oriented mechanisms such as (late)
service bindings, several situations require the customization of existing services or the
underlying service platforms, e.g., to develop domain-specific platforms. Here, systematic
customization of services and service platforms can lower development effort and increase
reusability.

Software Product Line Engineering (SPLE) is an industry best practice to achieve system-
atic customization in software systems. The key idea of SPLE is to focus on the differences
(called variabilities) among similar systems. However, the existing methods and techniques
for describing and realizing variabilities must be refined or extended to provide adequate
support for service-based systems, including heterogeneity, open-world scenarios and runtime
dynamicity which are common in service orientation. Thus, current challenges in customizing
services and service platforms are: a) variability modeling for heterogeneous environments
and, moreover, for entire software ecosystems, b) unified approaches to variability realization
in service-based systems (in contrast to current individual and unrelated techniques), and
for both, variability modeling and instantiation support for c) openness and extensibility
and d) runtime variability.

Currently, we work on methods and techniques for addressing the challenges sketched
above, in particular on

Large-scale variability modeling, in particular in terms of the INDENICA variability
modeling language (IVML), a textual language which provides concepts for variability
modeling, runtime variabilities, openness, extensibility and QoS constraints.
Generalizing and unifying the implementation of variabilities. Currently, we work on
designing and realizing a common Variability Implementation Language (VIL).
Increasing the flexibility of variability instantiations by separating the binding of variabil-
ities and their functional code so that even the binding can vary according to properties
of variabilities (meta-variability), e.g., to flexibly shift the binding time (currently applied
in physical manufacturing of embedded systems).
Observing the resource consumption of individual software parts at runtime, including
services, components and variabilities. Our approach called SPASS-meter is designed
for quality assurance for SPLE and, in particular, for supporting and simplifying the
development of resource-adaptive software systems.

Future work is planned in particular on a) dynamic software product lines based on resource
measurements and enhanced meta-variability, b) quality and resource aware variability
modeling and c) large-scale variability modeling as well as supporting techniques.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid 123

3.8 SPASS-Meter – Monitoring Resource Consumption of Services and
Service Platforms

Holger Eichelberger (University of Hildesheim, GE)

License Creative Commons BY 3.0 Unported license
© Holger Eichelberger

Monitoring the resource consumption of a system supports the operationalization of quality
requirements, supports quality assurance, provides a basis for the estimation of energy
consumption and supports the realization of (resource-aware) adaptive systems. Currently,
resource consumption is typically measured on application level, on operating system level
or, in contrast, on the level of individual classes. As also expressed in discussions during this
seminar, there is a clear need to provide such measurements also for units within programs
such as individual application services, for the underlying service platform or for technical
services within the service platform.

In this talk, we present SPASS-meter, a novel monitoring approach, which enables the
observation of resource consumptions for user-specified semantic units of software systems
such as services, components or variabilities. In SPASS-meter, these semantic units are
defined in the so-called monitoring scope specification, including the individual resources
to be monitored as well as the monitoring depth, i.e., whether dependent functionality in
related services, the service platform or in libraries shall be considered or not. SPASS-
meter aggregates the resources consumption of these semantic units at runtime and allows
comparing the consumptions with those on application and system level. Currently, SPASS-
meter supports the monitoring of Java applications and, in particular, of Android Apps. As
monitoring tools such as SPASS-meter execute additional code for probing and analysis, they
cause a certain memory overhead. We conclude that the monitoring overhead created by
SPASS-meter is reasonably small compared to the overhead of recent tools such as OpenCore
or Kieker, in particular regarding the provided flexibility and functionality of SPASS-meter.

3.9 On-the-Fly Computing – Individualized IT Services in Dynamic
Markets

Gregor Engels (University of Paderborn, GE)

License Creative Commons BY 3.0 Unported license
© Gregor Engels

Due to a steadily increasing market and budget pressure, the development and maintenance
of IT systems have to become more efficient and more effective in the future. The tradi-
tional approach of software procurement by employing expensive and inflexible standard
IT solutions or by purchasing individually developed software systems is obviously not a
solution in the future. The new approach of cloud-based services allows an on-demand
usage of software solutions and might be a first step in the direction of a more efficient and
effective procurement of IT solutions. Combining this with the paradigm of service-oriented
architectures, individualized IT services might be composed and used to fulfill certain business
demands.

This service-oriented paradigm combined with the idea of deploying services in the
cloud was one of the motivating starting points of the Collaborative Research Center

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

124 13171 – Customizing Service Platforms

(CRC) 901 On-The-Fly Computing (OTF Computing), which is funded by the Deutsche
Forschungsgemeinschaft (DFG) and conducted at the University of Paderborn since 2011.

The objective of CRC 901 – On-The-Fly Computing (OTF Computing) – is to develop
techniques and processes for automatic on-the-fly configuration and provision of individual
IT services out of base services that are available on world-wide markets. In addition to the
configuration by special OTF service providers and the provision by what are called OTF
Compute Centers, this involves developing methods for quality assurance and the protection
of participating clients and providers, methods for the target-oriented further development of
markets, and methods to support the interaction of the participants in dynamically changing
markets.

In order to reach these objectives, computer scientists from different areas like software
engineering, algorithms, artificial intelligence, distributed systems, networks, and security
cooperate with scientists from the economics department, who are experts in organizing
world-wide markets.

The CRC 901 is structurally divided into three scientific project areas: Project area A
is devoted to the algorithmic and economic basic principles for the organization of large,
dynamic markets. It concerns on the one hand the algorithmic procedures for the organization
of large nets in general and for the interaction from participants in nets in particular; and on
the other hand the economic concepts for incentive systems to the control of participants in
markets.

Project area B investigates procedures for the modeling, composition and quality analysis
of services and service configurations with the goal of an on-the-fly development of high-quality
IT services.

Project area C develops reliable execution environments for the On-The-Fly Computing,
and is concerned with questions of the robustness and security of markets, the organization
of high-grade heterogeneous OTF Compute Centers and the execution of configured services
by such Centers. In addition, there is an integrated application project which is concerned
with optimization systems for supply and logistics networks and acts on a long-term basis as
an application domain for the work of the SFB.

More detailed information about the CRC 901 can be found at http://sfb901.uni-paderborn.
de/sfb-901.

3.10 Multi-level Service Management
Sam Guinea (Politecnico di Milano, IT)

License Creative Commons BY 3.0 Unported license
© Sam Guinea

Due to the growing pervasiveness of the service paradigm, modern systems are now often built
as Software as a Service, and tend to exploit underlying platforms (Platform as a Service)
and virtualized resources (Infrastructure as a Service). Managing such systems requires that
we are aware of the behaviors of all the different layers, and of the strong dependencies that
exist between them. This way we will be able to perform run-time customization and ensure
that the functional and non-functional aspects of the overall system are always preserved,
even in the wake of profound changes in the stakeholders’ requirements and in the context of
execution.

To accomplish this we are studying how to apply the traditional MAPE-K (Monitoring

http://sfb901.uni-paderborn.de/sfb-901
http://sfb901.uni-paderborn.de/sfb-901
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid 125

– Analysis – Planning – Execution) control loop to such multi-level systems. We advocate
that this will require novel data collection, analysis, planning, and execution mechanisms.
Indeed we will need to collect runtime data from multiple levels at the same time, and be
able to correlate them to build more detailed information of what is actually occurring inside
the system. To this extent we have developed the Multi-layer Collection and Constraint
Language. It allows us to define how to collect, aggregate, and analyze runtime data in
a multi-layered system. We also present ECoWare, a framework for event correlation and
aggregation that supports the Multi-layer Collection and Constraint Language, and provides
a dashboard for on line and off-line drill-down analyses of collected data. Our initial empirical
assessment shows that the impact of the approach on runtime performance is negligible.

In the future we will further pursue this research by evaluating our results in concrete
real-world examples, through the collaboration with key cloud-based industrial partners. We
will also study how the understanding that we gather of the system at runtime can be used
to plan coordinated recovery actions at multiple levels. Indeed, we expect that the most
cost-effective customization solutions would require coordinated intervention at multiple
levels.

3.11 Customizable Reliability and Security for Data-Centric
Applications in the Cloud

Waldemar Hummer (TU Vienna, AT)

License Creative Commons BY 3.0 Unported license
© Waldemar Hummer

Service-oriented computing (SOC) has become a prevalent paradigm for creating loosely
coupled distributed applications and workflows. In parallel to SOC, Event-Based Systems
(EBS) in various fashions (e.g., data stream processing) are gaining considerable momentum as
a means for encoding complex business logic on the basis of correlated, temporally decoupled
event messages. More recently, advanced virtualization and resource allocation techniques
advocated by Cloud computing have further shaped the implementation possibilities of SOC
and EBS. Clouds have proven to be an ideal environment for flexible and elastic applications
which provide scalability, resource optimization, and built-in support for multi-tenancy.
Ongoing trends in the area of Data-as-a-Service (DaaS) have spurred further research efforts
towards robust data processing services, leveraging the benefits of the Cloud.

Distributed computing systems in general, and applications in the Cloud in particular,
are often burdened with stringent requirements concerning reliability and security, dictated
by business objectives (e.g., cost-benefit tradeoffs), contractual agreements (e.g., service
level agreements, SLAs), or laws. Customized support for reliability and security in service
platforms is a key issue. One approach to reliability is software testing, which attempts to
identify and avoid software-induced faults in the first place. A second important aspect of
reliability is adaptability and fault-tolerance, which involves different runtime challenges such
as fault detection, isolation, or recovery. Additionally, due to the multi-tenancy inherently
encountered in Cloud environments, security and access control play a crucial role for
application provisioning. Consideration of these aspects in the software development and
validation process requires precise knowledge about the type and nature of potential threats
to reliability.

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

126 13171 – Customizing Service Platforms

Within our work we tackle the aforementioned challenges and present novel techniques
for reliable and secure provisioning of data-centric service platforms and applications in the
Cloud. We strive for a robust, scalable, and secure execution environment for applications
to integrate services and data from a plurality of sources, generating added value for
service consumers. During the development phase, applications are systematically tested
for incompatibilities and integration issues. At runtime, platforms should leverage Cloud
virtualization to ensure reliability and efficiency (elastic scaling, minimal resource allocation,
optimized load distribution). Moreover, customized security policies need to be enforced to
assure responsibilities and avoid unauthorized access.

3.12 Adaptation in complex service ecosystems
Christian Inzinger (TU Vienna, AT)

License Creative Commons BY 3.0 Unported license
© Christian Inzinger

Our current research deals with customization through adaptation of complex service ecosys-
tems operating in dynamic environments such as cloud computing systems. Based on our
work on fault detection and identification we model monitoring and adaptation behavior of
complex applications in a unified manner to allow for optimized deployment of necessary
control infrastructure.

3.13 A Library for Green Knowledge
Patricia Lago (VU University Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Patricia Lago

Joint work of Lago, Patricia; Gu, Qing

In spite of the investments in green ICT, industry and research both lack reusable green
practices including operational actions to re-green ICT, metrics, and examples of achieved
results. Such green action can include optimizations in customized cloud provisioning, but
also reusable patterns for engineering software exploiting service oriented principles.

Another problem is the lack of alignment between economic impact and environmental
effect in green practices. If green practices do not lead to an explicit (and significant)
reduction of costs (hence increase in revenues) they are nice but not part of the business
strategy of the company.

To address these two problems, in this project an online-library for green practices
has been built. This library provides a collection of 258 reusable green ICT practices with
explicitly documented environmental effects and economic impacts, based on which companies
are able to select and justify green ICT practices that fit best their needs.

While green practices so far mainly focus on non-software related actions, research is
maturing toward energy efficient and environmental sustainable software service engineering.
Future optimizations (green actions) will hopefully focus on how to achieve green services
and how to combine them in greener service-based applications.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid 127

3.14 Cloud Computing as a Service Platform for Mobile Systems
Grace Lewis (SEI, USA)

License Creative Commons BY 3.0 Unported license
© Grace Lewis

Cloud computing infrastructures are used by organizations to provide access to large public
data sets such as maps and images from mobile devices, and to host mobile applications
outside of the enterprise to support front-line employees such as sales personnel. An additional
use case that is at the intersection of mobile and cloud computing is to use the cloud to
perform computation-intensive activities on behalf of mobile devices such as is currently
done by Apple Siri, Google Glass, and the coming soon Apple iWatch. The latter use
case is the one that is of interest from the perspective of customizing service platforms.
This presentation discusses cloud computing as a service platform for mobile systems in
the context of cyber-foraging – the leverage of external, nearby resource-rich surrogates
to augment the capabilities of resource-limited mobile devices. It presents two types of
cyber-foraging – code/computation offload and data staging – as well as the challenges of
customizing surrogates as service platforms.

3.15 Cloudlet-Based Cyber-Foraging
Grace Lewis (SEI, USA)

License Creative Commons BY 3.0 Unported license
© Grace Lewis

Cloudlet-Based Cyber-Foraging is a strategy for extending the computation power of mobile
devices by offloading resource-intensive computation to cloudlets – discoverable, generic
servers located in single-hop proximity of mobile devices. We present the basic of cloudlet-
based cyber-foraging in addition to future work in this area to address system-wide quality
attributes beyond energy, performance and fidelity of results.

3.16 Customizing Platforms by Higher-Order Process Modeling:
Product-Lining, Variability Modeling and Beyond

Tiziana Margaria (University of Potsdam, GE)

License Creative Commons BY 3.0 Unported license
© Tiziana Margaria

Joint work of Margaria, Tiziana; Steffen, Bernhard; Neubauer, Johannes

(Business) Process modeling languages like BPMN2 are static in the sense that they determine
at modeling time which activities may be invoked at runtime and where. We overcome this
limitation by presenting a graphical and dynamic framework for binding and execution of
(business) process models. This framework is tailored to integrate
1. ad hoc processes modeled graphically,
2. third party services discovered in the (Inter)net, and
3. (dynamically) synthesized process chains that solve situation-specific tasks, with the

synthesis taking place not only at design time, but also at runtime.

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

128 13171 – Customizing Service Platforms

Key to our approach is the introduction of type-safe stacked second-order execution contexts,
that allow for higher-order process modeling. Tamed by our underlying strict service-oriented
notion of abstraction, this approach is tailored also to be used by application experts with
little technical knowledge: users can select, modify, construct and then pass (component)
processes during process execution as if they were data. The approach has been applied
to a concrete, realistic (business) process modeling scenario: the development of Springer’s
browser-based Online Conference Service (OCS).

The most advanced feature of our new framework allows one to combine online synthesis
with the integration of the synthesized process into the running application. This ability leads
to a particularly flexible way of implementing self-adaption, and to a particularly concise
and powerful way of achieving (re-)configuration via variability not only at design time, but
also at runtime.

3.17 Platform Architectures
Nenad Medvidovic (USC – Los Angeles, USA)

License Creative Commons BY 3.0 Unported license
© Nenad Medvidovic

The talk explores different views of service platform from the perspective of architectural
style and architectural building blocks (specifically, connectors). An argument is made that
a platform in this context is a middleware platform or a framework. Customization, then,
boils down to customizing the middleware or framework. These are software systems in
their own right and suffer from many architectural problems common to software systems.
Grid service platforms are presented as an example case study. A number of open issues are
identified as research challenges.

3.18 Variability Modeling & Management
Nanjangud C. Narendra (IBM India – Bangalore, IN)

License Creative Commons BY 3.0 Unported license
© Nanjangud C. Narendra

Our work is motivated by the need to improve productivity of software development solutions,
in particular, SOA-based solutions, in the IT services industry. Traditional approaches have
involved the development of solutions from scratch in every customer engagement. To that end,
we have developed the Variation Oriented Engineering (VOE) approach towards developing
reusable SOA-based solutions, by modeling variations in those solutions as first-class entities.
Currently our work has spanned the following topics:

Variation Oriented Service Design for deriving variants from Business Process specifica-
tions
Automated change impact propagation
Variability Modeling for determining legal variants
Variant and Version Management in Business Process Repositories

We foresee the following challenges in Variability Management:
Formalizing Variability via algebraic approaches
Integration with Business Process Management
Lifecycle-based approach towards Variability Management
Variability Management at runtime

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid 129

Our future work will comprise (but not be limited to) the following:
Variability Algebra
Integration with adaptive workflow
Variability at runtime
Integrating variability into service ecosystems

3.19 Customized Mashups with Natural Language Composition
Cesare Pautasso (University of Lugano, CH)

License Creative Commons BY 3.0 Unported license
© Cesare Pautasso

End-User Development (EUD) is an emerging research area aiming at empowering non-
technical users to somehow create or design software artifacts. Web mashups provide a high
potential for EUD activities on the Web. Users on the Web can tap into a vast resource
of off-the- shelf components in order to rapidly compose new, custom-made, lightweight
software applications called mashups. In this presentation we have demonstrated JOpera
(http://www.jopera.org) a visual service composition tool for Eclipse and NaturalMash a
natural mashup composition tool that combines WYSIWYG, programming by demonstration
and constrained natural language within a live programming environment that lets end users
interactively specify the behavior of custom-made mashups that are built on-the-fly.

More information:
S. Aghaee, C. Pautasso, Live Mashup Tools: Challenges and Opportunities, accepted at
the First ICSE International Workshop on Live Programming (LIVE 2013), San Francisco,
USA, May 2013.
S. Aghaee, C. Pautasso, EnglishMash: usability design for a natural mashup composi-
tion environment, 4th International Workshop on Lightweight Integration on the Web
(ComposableWeb2012) at ICWE 2012, Berlin, Germany, July 2012

3.20 Challenges of offering customizable domain-specific business
processes as a service

Manuel Resinas Arias de Reyna (University of Sevilla, ES)

License Creative Commons BY 3.0 Unported license
© Manuel Resinas Arias de Reyna

Joint work of Resinas Arias de Reyna, Manuel; Ruiz Cortés, Antonio

The growing demand of business–driven IT systems as well as the rise of Software as a Service
(SaaS) has led to the creation of a category of SaaS known as Business Process as a Service
(BPaaS). In them, service users can access a set of domain-specific processes, customize them
according to their needs and enact them in the cloud. In this scenario, several challenges
arise. On the one hand, current mechanisms to manage the variability in business processes
should be extended to allow the customization not only of the control flow, but also of other
perspectives of the process such as the organizational or the performance perspective. On the
other hand, compliance with regulations, best practices and internal policies is a key aspect
in organizations nowadays and may vary significantly from one organization to another.

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.jopera.org
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

130 13171 – Customizing Service Platforms

Therefore, BPaaS must provide their users with mechanisms to ensure their processes are
customized and enacted according to the regulations that are relevant for the users. Our
current work focus on facing these challenges leveraging the work we have done on business
process compliance management systems and on models and techniques for the management
of process performance indicators and human resources

3.21 Customization of Large, Complex Systems
Klaus Schmid (University of Hildesheim, GE)

License Creative Commons BY 3.0 Unported license
© Klaus Schmid

The major thrust of our work is on the customization of large, complex systems and
in particular software ecosystems. We are in particular using product line engineering
technologies to perform the necessary kinds of customizations. A particular challenge in
the service platform is the need to support a range of very different artifacts and the need
also to go to later binding times like initialization time or runtime. This requires on the
hand a complex coordination among individual customizations to support the integrated
customization. On the other hand it requires different techniques to address the later binding
times.

A further challenge is the overall size and complexity of the platforms, which may often
give rise to many thousand variation points.

3.22 Service Networks for Development Communities
Damian Andrew Tamburri (VU University Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Damian Andrew Tamburri

Communities of developers have rapidly become global, encompassing multiple timezones
and cultures alike. In previous work we investigated the possible shapes of communities
for software development. In addition, we explored mechanisms to uncover communities
emerging during development. However, we barely scratched the surface. We found that
development communities yield properties of dynamic change and organic evolution. Much
work is still needed to support such communities with mechanisms able to proactively react
to community dynamism. We argue that service-networks can be used to deliver this support.
Service-networks are sets of people and information brought together by the internet.

The missing keystone is to support social communities with an innovative and pro-active
mechanism operating through services. The research hypothesis that drives the work in
this paper is quite simple and equally intriguing: social communities of developers can be
supported by a global network of software and socio-technical services, spanning different
organisations, sites, timezones and cultures. The result is a service-network that blends
the internet of services with large-scale, adaptable choreographies to deliver a powerful and
scalable solution that adapts to the changes of a community. On one hand, software services
are pieces of software operating under a service-dominant logic. These pieces of software
collaborate together across the web using standard protocols, to deliver complex, adaptable
functionality (e.g. cloud-based functionalities such as GoogleDocs). Much literature in service

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid 131

sciences provide ways to identify, monitor and adapt software services On the other hand,
socio-technical services are hybrid human and software services, i.e. services that explicitly
mediate the collaborative work of people within a social community, e.g. by fostering relevant
community aspects or by increasing situation awareness of community members.

http://www.dagstuhl.de/mat/Files/13/13171/13171.TamburriDamianAndrew.Paper.pdf

3.23 Customizing Science Gateway Platforms via SaaS Approach
Wenjun Wu (Beihang University – Beijing, CN)

License Creative Commons BY 3.0 Unported license
© Wenjun Wu

A Science Gateway is a computational web portal that includes a community-developed set
of tools, applications, and data customized to enable scientists to run scientific simulations,
data analysis, and visualization through their web browsers. Because scientists always have
different requirements for their data processing pipeline, science gateway developers have
to cope with the customization of GUI, workflow, applications and runtime environment.
So the research problem is how to effectively support multi-tenant customization in science
gateway platforms.

The talk introduces a SaaS framework to enable customization of life science gateway
through four levels: GUI, workflow, bio-application and workspace.

It allows users to rapidly generate Web GUI and deploy their pipelines in heterogeneous
environments

3.24 Service-based Platform Integration and Customization
Uwe Zdun (University of Vienna, AT)

License Creative Commons BY 3.0 Unported license
© Uwe Zdun

In service-based integration, platform customization, and similar areas, our research group
addresses the following challenges: understand and support architecture and design decision
making; link architectures, designs, and implementations; automate recurring tasks; base
these solutions on time-proven architectural knowledge; provide empirical evidence. Our
work and interests in this area concerns

reusable decision models and corresponding tools
design patterns; model-driven techniques (MDD) to bridge between architectural decisions
and designs
view-based architecture for service platform
MDD generators
full traceability
empirical studies

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

132 13171 – Customizing Service Platforms

3.25 Customizing Service Platforms — new or have we seen this
before?

Frank van der Linden (Philips Medical Systems – Best, NL)

License Creative Commons BY 3.0 Unported license
© Frank van der Linden

I have the feeling that, although the problems are new, I have seen this before. Over the
year people have struggled with customization or variability at higher levels of abstraction.
The initial programming languages tamed the variability into a few constructs: if, case,
while, ... and goto. When the programs became complex, functions and subroutines were
introduced. This added parameters and recursion to the palette of variability. Separate
compilation added IFDEF. Again systems became complex, and again variability needed to
be tamed. Functions were grouped into object classes, and related data into objects. This
added inheritance to the mechanisms variability. A next step added configurations of object
classes into components.

Each time, the new concept reduced the choices of how variability can be used. Special
configurations were supported others were not. Sometimes a new mechanism was introduced,
but it also kept the programs comprehensible, because the mechanism provided abstraction
and hiding of internal details. Presently configurations of components are combined into
services. This provides, again, abstraction and hiding of internal details. The situation is
somewhat different because now it is apparent that services can and will be provided by
different providers. This was also the case for previous mechanisms, as there are third party
libraries, object frameworks, and COTS. However, the services structure is getting complex,
and we cannot track, control or trust all the code will be executed. As in previous times we
have to apply the mechanisms we have used before – variability management, negotiation,
service configuration modeling, reduction of configurations that will be allowed to those for
which the trust can be assessed. This still needs partially to be done, and that is the goal of
this seminar.

4 Working Groups

4.1 Quality Assurance and Validation in Customizable Service
Platforms

Deepak Dhungana (Siemens, AT)

Participants: Deepak Dhungana, Waldemar Hummer, Georg Leyh, Frank van der Linden,
Antonio Ruiz Cortés

License Creative Commons BY 3.0 Unported license
© Deepak Dhungana

4.1.1 Introduction

With the increasing importance of service oriented applications in many businesses and new
application fields such as cloud computing, many new challenges are arising in this area. The
initial effort required for customization of a service platform or associated services is already
very high, but at the same time the nature of these applications requires them to consider
customizations at runtime, too. Apart from the technical difficulties related to customization

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid 133

of the functionality, we see serious needs to discuss the impact of developing and deploying
customizable services on the quality of the overall system.

4.1.1.1 Quality Assurance

Software quality assurance is often defined as a means of monitoring the software engineering
processes and methods used to ensure quality. Quality assurance therefore needs to consider
both how such services can be developed or deployed and the runtime monitoring to ensure
required quality.

Service based applications (SBA) are described by functional and non-functional properties.
Non-functional properties include some QoS dimensions such as accuracy, coverage, network-
related QoS, performance, reliability, robustness, and scalability. Our discussion in this
section is focused on the relationship between customizability of applications and the impact
on the quality attributes.

4.1.1.2 Open Questions

We summarize the key issues related to customization of SBA and quality of the overall
system.

What is the effect of customizability (having a flexible and customizable platform)
on the quality of the system? What kind of activities is additionally (as opposed to
fixed/monolithic environments) needed during development and runtime to ensure required
quality?
What support can be provided to different stakeholders (which roles do they have?) in
customizing a service based application to achieve the required quality?
How can variability of the quality attributes of a SBA be defined, so that the customization
processes and tools can deal with them?

4.1.2 Case Studies

In oder to demonstrate the industrial need for “quality-aware” service based applications, we
present two case studies.

4.1.2.1 Case Study 1 – Image Processing Service Platform

The first case study is about an image processing service platform at Philips medical systems.
The platform provides image processing services to clients that are, in general, hospitals.
Dependent of the hospital infrastructure, but also to the terminal capabilities, more or less
processing can be done at the client side. A solution for this is to split the service platform in
several abstraction layers and provide services in between the abstraction layers. Dependent
on the situation, the client can take one or more top level abstraction layers and the server
provides the remainder. Note, that the client platforms are not in control of the service
provider and can be very diverse. The hospital pays for the services provided. It is the
business model that determines how this is done, and will not be part of this description.

This all needs to be done in an environment where several quality concerns are important.
These are related to performance, latency, throughput, but also to security, privacy and legal
rules. All these quality requirements may vary dependent on the customer. In addition, the
user expects personalization.

In summary, the customization deals with personalization, quality requirements, and the
level of abstraction that will be provided.

13171

134 13171 – Customizing Service Platforms

4.1.2.2 Case Study 2 – Logistics Management Platform

The second case study is about a platform for logistics, e.g., Warehouse Management solutions
or solutions for spare parts logistics. Usually, the platform vendor provides (delivers) many
variants of the platform based on domain specific service platforms. The goal is to reuse the
service platforms for different customers, however, different users usually have a different
prioritization of qualities (e.g., a small warehouse may prefer a very cost-efficient solution,
which may be based on open source software, while a big warehouse needs a solution that is
available 24/7). Therefore, we need to customize the prioritization of qualities.

In spare parts logistics, the platform usually makes heavy use of existing legacy systems
installed at the end-users site. Sometimes, different legacy systems are deployed e.g. in
different countries. Here we need a uniform customization, even if the services use different
legacy platforms / data.

4.1.3 Identified Challenges

Based on the case studies, we have identified the following challenges related to quality
assurance in customizable service platforms.

4.1.3.1 Quality Monitoring

Many service platforms use resources from existing legacy systems. Those systems usually
have no formal SLAs. To model qualities of systems that include legacy systems, at least the
quality monitoring for legacy systems is necessary. The monitoring information can be used
instead of a formal SLA, e.g. to calculate the overall availability of the SBA.

4.1.3.2 Quality(-Driven) Adaptation

As seen in case study 2, for reusing domain specific service platforms it is necessary to adapt
the prioritization of different qualities. Since the qualities of the SBA need to be adjusted, a
check whether these qualities can be achieved with the existing base services needs to be
made. If the base services cannot be used to achieve the necessary quality, other services
must be checked for conformance.

4.1.3.3 Quality Assurance in the Development Lifecycle

Quality assurance has to be performed at several stages in the development lifecycle. Already
at development time software engineering has to provide the right mechanisms to do quality
assurance. In addition, certain development patterns may be used to ensure a level of
quality assurance upfront. A candidate service needs to be tested. For instance, it has to
become clear whether it performs according to its SLA (see below). This action is similar to
acceptance tests for COTS integration in the software. However, run-time testing needs to
be added, as the service provision may change unexpectedly. In this case a fault tolerance
mechanism needs to be added. In the case that a service fails to perform with the right
quality, this should be repaired. There are several options for this: renegotiation, adding a
similar service to the configuration, or escalating the fault to the higher level – i.e. announce
on-conformance to the own SLA to the client.

Luciano Baresi, Andreas Rummler, and Klaus Schmid 135

4.1.3.4 SLA Modeling

An SLA (Service Level Agreement) is the interface of a service towards its clients. Based on
the SLA a client decides whether to use the service. An SLA describes the function that
is provided; in addition it describes the level of relevant qualities the function is delivered.
Today a SLA is usually static, which means that for each quality a certain quality range is
given. Note, that this implies that there is a metric to measure the quality level. Sometimes
a few configurations are offered that the client might select.

At the client side the situation is less simple. Quality levels might be related by conditions,
such as: if quality A is less than level U then quality B must be more than level V. Also
qualities might have priorities: If one of the quality levels needs to be dropped than C is
the last one to choose from. The client also might have quality requirements that cannot be
measured, e.g. data quality (such as: does the picture show the right features).

This all asks for a model to incorporate all the qualities that are relevant for the client
and this needs to be used for SLA management. A model will describe a region in a multi-
dimensional space, where qualities are dimensions. The region is the level of acceptable
quality. Note that in this model cost is just one of the quality dimensions.

4.1.3.5 SLA Management

SLA management deals with negotiating and monitoring the services provided. Negotiation
deals with finding a service configuration that provides the service fitting in the acceptable
region defined by the model. Note that we may need a configuration, as it might be the
case that a single service cannot provide the right SLA; e.g. if two services both have an
availability of 98%, using them both for 50% of the time we can get an availability level of
99%. Note that finding the right configuration can be posed as an optimization problem. In
the case that a standard modeling language exists for SLA, it might be expected that service
providers might offer more complex service offerings, which makes negotiation more complex
as well.

The importance of temporal awareness is rising in SOA solutions. Temporal awareness
refers to managing service demands and offers which are subject to validity periods, i.e. their
evaluation depends not only on QoS values, but also on time. For example, the QoS of some
web services can be considered critical in working hours (9:00 to 17:00 from Monday to Friday)
and irrelevant at any other moment. Until now, the expressiveness of such temporal–aware
specifications has been quite limited. This issue also makes negotiation and monitoring more
complex.

After negotiation the SLA management is not finished. At run-time SLA monitors the
services for several reasons:

Does the service work according to its SLA? If not, then fault management needs to
be incorporated to manage the fault, which might lead to re-negotiation, changing the
service configuration, or escalation to the client.
Establish levels of qualities that are not mentioned in the SLA, or that might be difficult
to measure

4.1.4 Possible Solutions

Some possible solutions to deal with the identified challenges could be summarized as follows.
However, these are rather open issues, that need to be elaborated further and are topics for
future research.

13171

136 13171 – Customizing Service Platforms

4.1.4.1 SLA Management Facilities

There are a number of activities that may be performed one or more times during the SLA
management lifecycle and the operation of a SLA-aware service platform such as:

Prior to advertising an offer (quality guaranteed by the service provider) and issuing a
demand (customer quality requirements), they both should be checked for consistency,
i.e. to check that they do not have any internal contradictions.
Checking whether an offer fulfills a given demand, i.e. checking them for conformance
a.k.a compliance.
Finding the optimal offer out of a set of offers conformant to a given demand, mandatory
if we want to automatically create the optimum SLA.
Checking whether an SLA has been violated.
Finding out all the SLAs which are ‘outside the law’ defined by a set of governance
policies.
Finding out the set of SLAs that may be violated during a given time window with a
cost below a given amount.
Giving explanations about why an offer or demand is not consistent, why there is no
possibility to reach an agreement, why the SLA has been violated, etc.

The degree of difficulty of implementing these facilities depends on the degree of express-
iveness of the SLA model used. Furthermore, implementing some of these facilities may lead
to NP-hard problems, especially if features such as conditional terms, temporal-awareness,
non-linear selection criteria are allowed.

These activities could be organized by using a catalogue of common operations a.k.a
facilities (this approach has been widely accepted in the Automated Analysis of Software
Product Lines). In this catalogue it would be possible to distinguish between basic and
composite operations (only if it is possible to define it as a combination of basic operations)
as well as to provide a reference implementation.

4.1.4.2 Support during development

The issue of customization and service quality assurance influences all phases of the service
engineering lifecycle, including design, implementation, validation, deployment, and runtime.
We categorize this lifecycle into development phases (design, implementation, validation)
and runtime phases (deployment, execution time). To assure quality in service environments,
it needs to be clearly understood which quality parameters are influenced by different parts
of the lifecycle.

During the development phase, all aspects related to quality assurance need to be collected
and encoded in a multi-dimensional quality model. The quality model should capture the
requirements, goals, and risks associated with different quality assurance scenarios. The
quality model then serves as the basis to derive measurable quality metrics as well as potential
actions to take in case of quality issues (e.g., SLA violations). We distinguish between static
consistency checks and dynamic conformance checks. Static consistency checks are required
to determine whether the quality model can generally satisfy important properties such
as soundness, completeness or satisfiability. Dynamic conformance checks are employed
to determine, for concrete instantiations of service platforms, whether the current state
corresponds to the target quality requirements and goals.

The development phase is particularly important for quality assurance, for two main
reasons. Firstly, certain quality characteristics like correctness, availability, consistency, or
fault tolerance need to be modeled and systematically tested for. Secondly, all capabilities

Luciano Baresi, Andreas Rummler, and Klaus Schmid 137

required to assure quality at runtime (e.g., monitoring, optimization, adaptation) need to be
accounted for during the development phase.

4.1.4.3 Runtime Support

During runtime, one of the key concerns is to monitor the conformance of the service platform
to customized quality metrics, in order to timely react to occurring SLA violations or potential
upcoming quality issues. In recent years, event-based monitoring based on the complex event
processing (CEP) paradigm has emerged as the key technology to support loosely coupled
monitoring infrastructures. CEP leverages the concept of complex events, which aggregate
and correlate streams of raw events to provide higher-level knowledge about the current
quality and health status of a system, i.e., service platform. Efficiency and non-intrusiveness
are among the core research questions related to monitoring of service quality.

Certain quality problems allow timely correction by adapting the system within the current
phase of the provisioning lifecycle. For instance, a service platform which is configured to
react to load bursts should be able to acquire new computing resources as soon as a quality
degradation is measured at runtime due to high request load. However, if elasticity is not
correctly implemented and runtime monitoring detects that the acquired resources are not
released once the load decreases, the problem needs to be escalated and fixed in previous
phases, re-iterating through the development phases of design/implementation/validation.
As of today, the research community still lacks a deep understanding of how to support this
type of escalation by systematically modeling the connections between quality metrics and
different development lifecycle phases.

4.1.4.4 Domain-Specific Solutions

In recent years, research and industry have experienced the emergence of new paradigms
related to service platforms and service-oriented computing.

Arguably one of the most important trends is Cloud Computing, which introduces
advanced virtualization and resource allocation techniques, providing for a new class of
applications with a high degree of dynamism, scalability, and elasticity. These elastic
applications often require non-trivial re-configurations, because once the elasticity state
is changed (i.e., a resource gets added or removed), the connections and dependencies on
potentially many other resources need to be updated and re-configured. To ensure that the
transitions between elasticity states function properly, comprehensive testing and verification
efforts need to be undertaken. Moreover, quality agreements in Cloud Computing are
inherently related to multiple tenants. To avoid redundant detection and enforcement efforts,
quality assurance mechanisms should be efficiently tailored to multiple tenants, for instance
by grouping together tenants with similar or overlapping quality requirements.

A second important trend is the increasing integration of humans in the service delivery
process. Novel concepts like crowd-sourcing or human-provided services (HPS) are finding
adoption in service-based applications. Since humans operate distinctly different from
machines, advanced quality characteristics and metrics such as trust, skills, or reputation
need to be taken into account.

4.1.5 Open Issues

Some issues need further discussions and more industrial cases to support their practical
relevance.

13171

138 13171 – Customizing Service Platforms

4.1.5.1 Variability in SLA Definitions

Currently, it is not possible to describe variability in SLAs. In addition, it is not possible to
check SLAs that contain variability information for conformance with other SLAs. E.g., a
variable SLA may state that it has a const / availability variation point. 99% availability
with 0.01 EUR per call for low budget, 99.99% availability with 0.05 EUR per call for high
availability customers. Three services are available: Service A with 99.999% availability and
0,03 EUR / call, Service B with 99.9% availability and 0,005 EUR per call, Service C with
99,99% availability and 0,01 EUR per call.

Service A would partially comply (only high availability customers), Service B would
partially comply (only low budget customers), Service C would fully comply to the variable
SLA. A formal language and calculus for this kind of problems is currently missing.

4.1.5.2 Systematic Decision Support

Quality assurance, in customizable service platforms, requires decision making in complex
multi-dimensional spaces. This implies that automatic decision support is requested. It
is needed in static and run-time SLA management during negotiation and configuration
selection to decide which offering fits best to the request. Decision support needs optimization
algorithms to execute its ask.

The decision making has to find matches of regions in multi-dimensional spaces, where
certain dimensions are described as ranges, others are described as a probability distribution,
and others are even not really measurable, but are based on human “expert” based decisions.
In addition there are relationships between different dimensions, and there are dimensions
that have higher priority than others. Optimization algorithms exist, but they often are
restricted to certain kinds of input only.

The main issue here is to find algorithms that deal with the complexity above. In addition,
it needs to be made clear in which form the regions in the spaces can be described. This latter
point is related to SLA modeling, but modeling needs to address the issue of decidability as
well.

The output of decision support will be the best offer that fits the requirement, but it
should also indicate margins between the solution and the best fit. This margin should be
expressed in such a way that it can be understood by the human client.

4.1.5.3 Integrated Tooling for SLA Languages and Models

Probably it makes no sense to design a universal (domain-independent) language to describe
SLAs. In fact, the WS-Agreement specification identifies up to nine regions where for each
and every region a DSL (Domain Specific Language) must be provided by the SLA editor.
Thus, it is possible to have an unbounded number of different WS-Agreement compliant
DSLs. Probably, this circumstance may explain at a given extent why the WS-Agreement
has not been (widely) used.

However, it does not seem reasonable to implement the SLA management facilities
(see above) from scratch to the management of the SLAs of each SBA, especially for very
expressive SLAs. Therefore, there is an important room for improvement in this issue.

4.1.5.4 Bootstrapping

In this document we have discussed various aspects of quality assurance, including modeling,
monitoring, adaptation, decision support, and more. An additional complexity dimension is

Luciano Baresi, Andreas Rummler, and Klaus Schmid 139

the question of how quality requirements can be introduced into an (existing) platform in
the first place. Assume that the current state of quality provided by a service platform is
expressed as X, and that the provider plans to achieve the customized quality level Y. First,
the delta between X and Y needs to be identified. In order to enact the required changes, a
semi-automated procedure can be employed to identify the required steps to be taken. For
high-availability applications the key concern is that these quality adaptation steps should
be enforced with the shortest possible downtime. Moreover, since these steps may involve
non-trivial re-configurations and adjustments within the platform, a critical aspect of the
adaptation procedure is to maintain correctness and not to introduce any new issues (e.g.,
bugs, misconfigurations).

4.1.5.5 Maturity Model for Customizability

In general terms, a maturity model can be viewed as a set of structured levels that describe
how well the behaviors, practices and processes of an organization can reliably and sustainably
produce required outcomes. In this sense, a maturity model can be used as a benchmark for
comparison and as an aid to understanding – for example, for comparative assessment of
different organizations where there is something in common that can be used as a basis for
comparison. In the case of the CMM, for example, the basis for comparison would be the
organizations’ software development processes. (from Wikipedia)

Assuming that service platforms have a considerable number of customization points that
may crosscut different perspectives implies that the customization degree may vary signific-
antly among service platforms. Moreover, the existing dependencies among customization
degree and other quality factors such as maintainability increase the complexity of this issue.

In these circumstances having a maturity model to assess the service platform’s customiz-
ation capabilities could be really useful for both customers and providers.

4.2 Mobility and Service Platform Customization
Grace Lewis (SEI, USA)

Participants: Luciano Baresi, Schahram Dustdar, Sam Guinea, Grace Lewis, Tiziana Mar-
garia, Andreas Rummler, Karina Villela, Wenjun Wu, Uwe Zdun

License Creative Commons BY 3.0 Unported license
© Grace Lewis

Mobile computing is transforming the way in which people interact with the world and
with each other far beyond the simple use of a smartphone as a communication device. In
recent years, there has also been a rapid explosion of mobile devices and sensors that are not
only pervasive but often interconnected. Mobility and ubiquity therefore create a potential
for mobile devices to (1) become service platforms for local applications as well as service
platforms for other nearby mobile devices and (2) extend their computational capabilities
by taking advantage of service platforms in the cloud. This working group explores both
options.

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

140 13171 – Customizing Service Platforms

4.2.1 Mobile Devices and Customization

We define mobile device as any device that is battery-powered, has wireless capabilities, and
a small form factor. Examples of mobile devices therefore include smartphones, tablets,
wearable devices (e.g., Google Glass, iWatch), devices built on top of small single-board
computers (e.g., RaspberryPi), sensors, drones, sports devices (e.g., FitBit), medical devices,
and navigation devices.

Examples of design-time and runtime customization for service platforms deployed on
mobile devices to serve local applications as well as other mobile devices include:

Sensors to enable/disable
Exploitation of context-awareness to adjust sensor sampling rates to drive energy efficiency
or data quality/precision
Data consumed and provided
Definition of swarming behavior for groups of mobile devices
Location of deployed sensors
User interaction (e.g., touch, gesture) or action patterns based on specific applications or
content
Add/remove computation or change algorithms
Communication mechanisms to enable/disable (e.g., WiFi, Bluetooth)

As can be seen in the previous examples, it is difficult to differentiate between services
that are provided by the operating system, services that are provided as part of a more
traditional service platform, and the applications themselves. This is probably due to the
small form factor but also because mobile applications are tied to a specific platform/OS
and typically make use of sensors that are part of the platform.

4.2.2 Mobility and Service Platforms

There are two areas related to mobility and service platforms that are interesting from a
customization perspective:
1. Mobile device as a service platform: These are mobile devices that act as mobile limited-

resource service platforms that can exploit on-board sensors and humans for data collection
or collections of devices combining to form a single platform.

2. Cloud computing as a service platform for mobile systems: Mobile devices can use service
platforms in the cloud in multiple ways:

Mobile device as a data collection platform that is uploaded to a service in a surrogate
or the cloud
Surrogates as a service platform for multiple mobile platforms
Mobile devices connecting directly to services in the cloud

4.2.3 Sample Scenario: First Responders

There are multiple scenarios that would benefit from customizable mobile service platforms:
First Responders: Personnel operating in emergency situations can use a variety of mobile

devices to support dynamic mission activities such as situational awareness, exploration
of unsafe areas and medical assistance.

Asset tracking: Mobile devices can be attached to any asset to determine location, usage
patterns, or environment characteristics. An example of an asset is a container that can
be tracked from origin to destination, varying the data sampling and rate according to
location.

Luciano Baresi, Andreas Rummler, and Klaus Schmid 141

Smart homes/cities: Data collected and potentially pre-processed by mobile devices that
are spread throughout homes or cities can help in task automation, emergency detection
and response, surveillance,

Remote locations: Mobile devices can be located or dispatched to locations where it is
difficult, impossible or dangerous for a human to go to.

The first responder scenario is of particular interest from a customization perspective
because of the dynamic nature of the environment as a disaster or emergency situation
evolves from panic to medical attention to supplies to connecting people.

Imagine a scenario in which a bomb detonates in a very public place leaving lots of
people trapped and hurt. In addition, the bomb damages the communication network. In
this situation, first responders are equipped with smartphones and tablets with sensors
and communication mechanisms that are particular to the type of emergency and network
situation and can receive and install services on-the-fly. Disposable surrogates that can
execute expensive computations and have access to the cloud are deployed in strategic
locations. Robots with mounted cameras are sent in to explore the damaged areas and
throwable cameras are used to create a picture of the damaged areas. Surveillance cameras in
the area are automatically configured to capture high-resolution video of the affected areas.

As the scenario unfolds, first responder mobile devices use contextual information to
adjust sensor sampling rates to extend battery life. Nearby mobile devices create an adhoc
network to deal with the damaged network and combine to form a single platform where
each devices performs certain tasks according to their capabilities. These mobile devices also
reconfigure (manually or automatically) as deployed devices gather information about the
context.

4.2.4 Open Challenges

Satisfying the scenario that was just described requires addressing a number of open challenges
related to the customization of mobile service platforms:

Challenges introduced by mobility: The main challenge is ephemerality — they don’t
last long and you don’t know when they will fail. Because of limited resources, platforms
and applications have to be very efficient in terms of energy and bandwidth usage and
have to deal with unstable connection.
Privacy, Security and Trust: Mobile devices that act as customizable service platforms
have many issues related to data privacy and trust in new features.
Multiple stakeholders have different concerns that could be in conflict — users, mobile
peers, providers (platform, apps, network, storage), government agencies, and certification
organizations.
Multiple Roles: In a multi-platform scenario, devices may play multiple roles at different
points in time — consumer, provider, host. Switching between roles requires, in addition,
continuous discovery and coordination.
Business models: Creating a business model that motivates users to add services on-the-fly
is a challenge. There may be the need for third-party certifiers that certify that services
do what they say they do.

13171

142 13171 – Customizing Service Platforms

4.3 Architecting for Platform Customization
Damian Andrew Tamburri (VU University Amsterdam, NL)

Participants: Florian Rosenberg, Cesare Pautasso, Damian Andrew Tamburri, Leonardo
Passos, Nenad Medvidovic, Manuel Resinas Arias de Reyna, Patricia Lago, Peter Dolog,
Gregor Engels, Nanjangud C. Narendra, Klaus Schmid1

License Creative Commons BY 3.0 Unported license
© Damian Andrew Tamburri

The group discussed the architectural implications and underpinning of platform custom-
ization problems. First, the group explored the architecture decision to adopt certain
technologies as opposed to others, for adaptation and architecture flexibility. These technolo-
gies include: REST vs JSON/RPC vs SOAP/RPC vs MQ. These decisions are revisited when
needs arise for (re-)integration of platforms for networked organizations. These scenarios
require a customization cutting across service definitions. The following discussions rotated
around the following research questions:

RQ 1: What is customization?
Depends on the context (service consumer, provider, platform)
From consumer perspective it is: “Service selection, service configuration, platform
configuration/constraint”
From consumer/provider perspective it is: “Negotiable, flexible billing/accounting
model”
From platform: “Resource allocation, platform service selection”

RQ 2: How is customization expressed at the interface/service abstraction level?
Request/job submission metadata/constraints
Platform feature selection, activate/deactivate services for which you will be charged
Product lines?

RQ 3: What are the platform mechanisms to allow customization?
Strategy pattern: one abstract interface with multiple implementations
Extension point: plugin additional implementations
Architectural patterns for customization such as?
Tuning/controller component for self-adaptive architectures

RQ 4: How can you design an architectural style for service-oriented architectures that
facilitates customization?

Loose coupling -> easier to customize
Granularity of services: small -> easy to recompose
Formalize customization with a customization algebra

RQ 5: How are existing services/platforms customizable? How are customization done
today? — How is this unique to services/service platforms? How are different “features”
of the platform customized and exposed?

Separate branches in the code, then compile and deploy separate branches to enable
different customizations
One branch with feature toggles and turn toggles on and off at runtime through
configuration

1 Further information can be found at http://ep.sonyx.net:9000/dagstuhl

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://ep.sonyx.net:9000/dagstuhl

Luciano Baresi, Andreas Rummler, and Klaus Schmid 143&XVWRPL]DWLRQ�FRQWH[W

Figure 1 Architecture of the SBA.

UI-level composition of widgets
#ifdef
if (config)
Interface o = Class.new(config)
Dynamic discovery and composition as a form of customization
AOP for Devops languages

What are typical binding times:
Very early (design time, select-integrate-test)
Early (compile, deploy)
Late (deploy, runtime)
Very late (runtime after failure)

It is important to include the customization context as shown in Figure 1.

4.4 Energy-Aware Customization
Patricia Lago (VU University Amsterdam, NL)

Participants: Patricia Lago, Luciano Baresi, Sam Guinea, Grace Lewis, Marco Aiello, Holger
Eichelberger, Nenad Medvidovic, Antonio Ruiz Cortez, Jacek Serafinski, Wenjun Wu

License Creative Commons BY 3.0 Unported license
© Patricia Lago

The group discussed what energy-aware customizations from the platform level up to the
application level should entail. Requirements include measure, platform self-optimization,
and mapping of the elements that belong to an energy context, both within and across levels.
The unanimous conclusion was that:

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

144 13171 – Customizing Service Platforms

1. past research in optimizations driven by scarcity of resources could be partially applicable
for reducing energy consumption, and that

2. new research is needed due to the complexity of the current IT contexts, and due to
the fact that energy efficiency requires tradeoffs between optimization costs and energy
savings.

While promising, this area needs much more research in the future.

4.5 Customizing Service Platforms for Cloud Computing
Cesare Pautasso (University of Lugano, CH)

Participants: Florian Rosenberg, Waldemar Hummer, Christian Inzinger, Cesare Pautasso,
Manuel Resinas, Peter Dolog, Klaus Schmid

License Creative Commons BY 3.0 Unported license
© Cesare Pautasso

Service Platforms for Cloud Computing are highly customizable. In this working group
we have analyzed the variability points for Infrastructure-as-a-Service (IaaS) offerings and
performed a practical comparison of concrete public cloud platforms (Amazon EC2, Microsoft
Azure, Google Compute) and also the OpenStack framework for private clouds.

The variability points concern:
the mechanism used for the compute, storage, and network abstraction offered by the
platform
the possibility of configuring image flavours (and how these flavours are defined)
the way images are managed and whether it is possible to bring-your-own customized
images for deployment
the possibility to customize images upon their activation
the structure of the metering and billing model of the provider (whereas most providers
differ in the way they charge for using their infrastructure, it is not always possible to
negotiate customized billing agreements with a provider)
the mechanism used for offering elastic scalability (and whether it is possible to customize
it with specific policies)
the set of security mechanisms that can be enabled and the corresponding policies
the presence of explicit “geographic regions” and how these are represented.

4.6 Customizing Service Platforms for Agile Networked Organizations
Damian Andrew Tamburri (VU University Amsterdam, NL)

Participants: Uwe Zdun, Georg Leyh, Karina Villela, Gregor Engels, Tiziana Margaria,
Andreas Rummler, Deepak Dhungana, Nanjangud Narendra, Frank van der Linden, Damian
Andrew Tamburri

License Creative Commons BY 3.0 Unported license
© Damian Andrew Tamburri

The group explored the challenge of understanding how to customise service platforms to
allow IT-intensive organizations to network with each other. Organizational networking

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid 145What+we+discussed…+

•  Industrial+Needs++
•  Markets’+Speed+
•  Customiza9on+Info+Missing+in+
SoVware+Architectures+

•  Common+PaWerns+
•  Solu9on(?):+Architecture+
Viewpoints+

Organizational
and Social
Structure

Business

Software
Architectures

Enterprise)

IT)
Figure 2 Relationship of Business, Organization, and Architecture in Networked Organizations.

scenarios include any situation in which a set of organizaitons partner up to achieve shared
business goals. Similarly, organizations need to network when one organization subsumes or
merges with another one. Making this transition into an “agile”, i.e., adaptable, smooth,
and painless transition is still a big challenge.

The group agrees that the customization problem at hand is a “Business-IT alignment”
problem, since the agile networked organization stems to align business drivers with IT-
Architecture and vice versa. Also, the problem is strongly affected by market speed, key
driver for organizational dynamism. The organizational artefact, which is being adapted in
the process of organizational networking, is the organizational and social structure emerging
between networked organizations.

To evaluate strategies and approaches currently adopted by companies to tackle this
problem, the group evaluated industrial scenarios of networked organizations during companies
merging.

SCENARIO 1: when Philips Corp. acquires companies, architects from both companies
use software architecture as a brokering artefact to decide which IT infrastructure in either
company needs adaptation to the other one. The “best” architecture between the two com-
panies is used as a basis for integration/customization to support the networked organization.
This process also requires to “decorate” the software architecture with business (e.g. business
processes, business requirements, etc.) and organizational/social structure information (roles,
responsibilities, locations, governance guidelines, etc.). Reference frameworks exist within
Philips to drive this process but are currently an industrial secret. NEED: research into
networked organizations creation and governance.

SCENARIO 2: when IBM acquires a company, they integrate the company’s software
products into IBM’s product portfolio via a process known as “blue washing”. This makes
the creation of the networked organization much simpler and smoother, but has the potential
to create social and organizational integration issues. NEED: research into understanding
and mitigation of social aspects for networked organizations.

The group agrees that additional requirements come from the intense and increasing
presence of service-based and cloud-based technologies. The problem of networked organiza-
tions in the cloud is still an open problem. Also, architecting for networked organizations is
still an open problem. Both problems require the definition of architectural viewpoints and
reference frameworks to specify and analyse software architectures from four perspectives:

13171

146 13171 – Customizing Service Platforms

1. Business
2. IT
3. Organization
4. Organizational Process

4.7 Binding time aspects of service platform customization
Customizing Service Platforms - Development time vs. Compile time vs. Runtime

Holger Eichelberger (Universität Hildesheim, DE)

Participants: Marco Aiello, Christian Inzinger, Jacek Serafinski, Holger Eichelberger

License Creative Commons BY 3.0 Unported license
© Holger Eichelberger

This group discussed temporal aspects of the customization of service platforms, in particular,
the role of (self-)adaptation as a customization technique. This section summarizes the main
findings of the group discussions in terms of (agreed) terminology, examples and scenarios
for customizations at different points in time as well as research challenges.

4.7.1 Main Questions and Terminology

Several questions and terminology issues were discussed:
What is the system being configured, i.e., what shall be subject to configuration? In
this discussion, the group considered traditional systems (software product lines), service
platforms, as well as service ecosystems.
What is the semantics of time with respect to a customization? The group discussed two
alternatives:

Application time: This denotes the point during the software production process
when the customization is (actually) applied.
Binding time: The latest point in time when the decision for a customization must
be made. This complies with the typical notion of binding time in Software Product
Lines. In particular, a customization may be applicable at multiple binding times.

During the discussion, the group adopted the binding time semantics.
Which types of customizations are relevant and can those types be (partially) ordered?
The group identified the following types:

Configuration: Simple as well as sophisticated mechanisms to configure a system,
its settings or its code. Although pre-runtime configuration is frequently applied in
traditional software product lines, configuration techniques may also be applied at
runtime.
Adaptation: An external mechanism defines the configuration of the system at
runtime. This does not imply that the adaptation mechanism itself can also be
configured (through appropriate configuration approaches).
Self-adaptation: The system itself determines and applies appropriate configura-
tions during its runtime. Thus, the adaptation mechanism itself may be subject to
configurations within the same system.

The group agreed that the given sequence expresses a (partial) order of increasing
flexibility (and typically also complexity) of the underlying configuration mechansisms.
While some work, e.g., [1, 2, 4, 7], make the distinction between adaptive and self-adaptive

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid 147

systems, the group finally decided to focus only on two types, namely Configuration and
Self-adaptation.
Can a combination of customization type and the time aspect be used to classify exist-
ing systems and their applied customization mechanisms, in particular with respect to
the timing aspects discussed by the group? The implied space can be considered as a
coordinate-system with two axis, namely customization time and binding time. As dis-
cussed, the customization type depends on the (binding) time aspect, i.e., (self-)adaptation
can only be applied during runtime of the system, e.g., for startup, initialization, or
runtime customizations.

4.7.2 Examples / Scenarios

The group identified several examples and scenarios for applying customizations at different
(binding) times. In particular, the group focused on service-based systems, service platforms,
and service ecosystems. These examples were classified as shown below:

Configuration at development time: Decisions in architecture, manual customiza-
tions in code, the build process, etc. The group considered this as a typical approach to
the customization of systems and did not discuss specific scenarios.
Configuration at compile time: This is most frequently applied in traditional software
product lines. However, customization at compile time is not uncommon in service-oriented
systems as well [3]. In particular, the group discussed the approach of the SAS-LeG
project (Software As Service for the varying needs of Local eGovernments)2, where (static)
customization at compile time is applied to customize services for the needs of several
municipalities in the Netherlands.
Configuration at deployment time: In the INDENICA warehouse management case
study [5], customizations are applied prior to or at deployment time so that the customized
service platform and the services become active at deployment.
Configuration at startup time: Software in this category reads configuration files
and binds the customization with specific values at that point in time, i.e., during early
runtime. Examples for traditional software systems are Apache httpd3 or relational
database management systems such as MySQL4. Further, all three service-based case
studies in the INDENICA-project [5], namely the warehouse management system, the
yard management system or the remote management system also rely on startup time
mechanisms.
Configuration at runtime: One particular example is the INDENICA warehouse
management case study [5], where the user may determine and change the actual binding
of customizations at runtime (although these capabilities are introduced at compile time).
Adaptation at runtime: Here, in particular semi-automated or automated mechanisms
such as adaptivity managers may change the actual customization of a system at runtime.
This is for example applied in the SM4ALL project (Smart Homes for All)5 on an
embedded middleware for pervasive and immersive environments in order to enable a
continuous adaptation of sensors, devices, services and appliances to user context and
habits. Further, the virtual service platform researched in the INDENICA-project6, which

2 http://www.sas-leg.net/web/
3 http://httpd.apache.org/
4 http://www.mysql.com
5 http://http://www.sm4all-project.eu/
6 http://www.indenica.eu

13171

http://www.sas-leg.net/web/
http://httpd.apache.org/
http://www.mysql.com
http://http://www.sm4all-project.eu/
http://www.indenica.eu

148 13171 – Customizing Service Platforms

integrates the INDENICA case studies mentioned above, contains an adaptation manager
[6], which affects the configurations of the integrated customizable platforms, in particular
the remote management system.
Customization at late runtime: This class encompasses systems, which enable (open)
customizations during runtime, which may even extend the system. Basically, this class
includes multi-tenant systems or concepts relized by user-programmable systems such as
Cloud97 or the Heroku8 ecosystem.

The group assigned the examples and scenarios listed in this section to the two-dimensional
coordinate system sketeched above. All examples and scenarios in this section are located
below the bisecting line, which separates static from dynamic customizations. According to
our findings, there is a clear relationship between binding time and flexibility, i.e., the later
the binding time, the more flexibility is supported by the customizations, while extremely
dynamic and flexible customizations are not applied at early binding times such as design or
compile time.

4.7.3 Challenges

During the discussion we identified the following challenges:
Quantify the trade-offs among different (binding) times in order to determine
(relative) benefits, impacts or even risks. This quantification may happen in terms of
metrics such as costs, revenue or downtime. Such tradeoffs enable the objective selection
among available binding times for an individual customization opportunity, to support
(risk) mitigation strategies or even to support temporal relationships across applied
customizations, e.g., to trace failures to (combinations of) customizations applied at
different points in time.
Support understandability of managing customizations at different points in
time: Are the actual capabilities sufficient for modeling and managing customizations
which apply at different points in time? How can the different roles in the software
development process be supported in understanding the effect (and the impact) of
temporal customization aspects, in particular in the dynamic and open environment of
service platforms?
Ensure semantically meaningful configurations when temporal aspects be-
come customization alternatives. This includes consistency issues (avoid selecting
the wrong service, the wrong service interface or wrong data) or means to show the
correctness of configurations.
Combine platform evolution and service platform lifecycle management with
temporal configuration aspects. How can upgrades of services and service platforms
with temporal customizations be upgraded? How can staged upgrades be supported?
How can integrity and consistency of service bindings and data be guaranteed?
Analyze the mutual influence of temporal customization aspects on the open-
ness of service platforms. By construction, service platforms support open-world
scenarios, e.g., services can be discovered and bound at runtime. Do temporal aspects
introduce another dimension of openness? How can openness be considered in the chal-
lenges state above, for example, how do customizations interrelate with openness and

7 https://c9.io
8 https://www.heroku.com

https://c9.io
https://www.heroku.com

Luciano Baresi, Andreas Rummler, and Klaus Schmid 149

extensibility, e.g., in terms of customizable extension bundles with own development
lifecycle?
Analyze the impacts of temporal aspects in customizing multi-tenant envir-
onments, e.g., with respect to tenant-specific isolation mechanisms (regarding resource
usage, data and tenant-specific functions) or mapping of functionality or resources to
physical infrastructures. Shall (temporal) customization be available for tenant-specific
extensions (e.g., as part of a development introduce new temporal customization aspects
such as a replication of binding times (a “development” time as part of runtime) or can
this be considered as views (the system is still at runtime while the tenant has its own
time scale).

References
1 N. Abbas. Towards autonomic software product lines. In Proceedings of the 15th Interna-

tional Software Product Line Conference, Volume 2, SPLC ’11, pages 44:1–44:8, New York,
NY, USA, 2011. ACM.

2 N. Abbas, J. Andersson, and D. Weyns. Knowledge evolution in autonomic software product
lines. In Proceedings of the 15th International Software Product Line Conference, Volume 2,
SPLC’11, pages 36:1–36:8, New York, NY, USA, 2011. ACM.

3 H. Eichelberger, C. Kröher, and K. Schmid. Variability in Service-Oriented Systems: An
Analysis of Existing Approaches. In Conf. on Service-Oriented Computing (ICSOC’12),
pages 516–524, 2012.

4 D. Garlan, B. Schmerl, and S.-W. Cheng. Software architecture-based self-adaptation. In
Y. Zhang, L. T. Yang, and M. K. Denko, editors, Autonomic Computing and Networking,
pages 31–55. Springer US, 2009.

5 INDENICA project consortium. Description of Feasible Case Studies. Technical Report
Deliverable D5.1, 2011. http://www.indenica.eu [validated: April 2013].

6 INDENICA project consortium. Report Describing a Framework for Deployment, Monit-
oring & Controlling of Virtual Service Platforms. Technical Report Deliverable D4.1, 2012.
http://www.indenica.eu [validated: April 2013].

7 M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research challenges.
ACM Trans. Auton. Adapt. Syst., 4(2):14:1–14:42, May 2009.

5 Open Problems

Open problems were described throughout the previous sections, in particular, in the working
group summaries.

13171

http://www.indenica.eu
http://www.indenica.eu

150 13171 – Customizing Service Platforms

Participants

Marco Aiello
University of Groningen, NL

Luciano Baresi
Polytechnic Univ. of Milan, IT

Karina Barreto Villela
Fraunhofer IESE –
Kaiserslautern, DE

Deepak Dhungana
Siemens AG – Wien, AT

Peter Dolog
Aalborg University, DK

Schahram Dustdar
TU Wien, AT

Holger Eichelberger
Universität Hildesheim, DE

Gregor Engels
Universität Paderborn, DE

Sam Guinea
Politecnico di Milano, IT

Waldemar Hummer
TU Wien, AT

Christian Inzinger
TU Wien, AT

Patricia Lago
Free Univ. of Amsterdam, NL

Grace A. Lewis
Carnegie Mellon University, US

Georg Leyh
Siemens AG – Erlangen, DE

Tiziana Margaria
Universität Potsdam, DE

Nenad Medvidovic
USC – Los Angeles, US

Nanjangud C. Narendra
IBM India – Bangalore, IN

Leonardo Passos
University of Waterloo, CA

Cesare Pautasso
University of Lugano, CH

Manuel Resinas Arias de
Reyna
University of Sevilla, ES

Florian Rosenberg
IBM TJ Watson Res. Center –
Yorktown Heights, US

Antonio Ruiz Cortés
University of Sevilla, ES

Andreas Rummler
SAP Research Center –
Dresden, DE

Klaus Schmid
Universität Hildesheim, DE

Jacek Serafinski
NextDayLab Sp. z o.o. –
Poznan, PL

Damian Andrew Tamburri
VU – Amsterdam, NL

Frank van der Linden
Philips Medical Systems –
Best, NL

Wenjun Wu
Beihang University – Beijing, CN

Uwe Zdun
Universität Wien, AT

Report from Dagstuhl Seminar 13181

VaToMAS – Verification and Testing of Multi-Agent
Systems
Edited by
Alessio R. Lomuscio1, Sophie Pinchinat2, and Holger Schlingloff3

1 Imperial College London, GB, A.Lomuscio@imperial.ac.uk
2 IRISA – Rennes, FR, sophie.pinchinat@irisa.fr
3 HU Berlin, DE, hs@informatik.hu-berlin.de

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13181 “VaToMAS –
Verification and Testing of Multi-Agent Systems”.

Seminar 28. April–03. May, 2013 – www.dagstuhl.de/13181
1998 ACM Subject Classification I.2.11 Distributed Artificial Intelligence, F.3.1 Specifying and

Verifying and Reasoning about Programs, I.2.4 Knowledge Representation Formalisms and
Methods

Keywords and phrases Model checking, Specification-based testing, Multi-agent systems, Con-
troller synthesis, Temporal logic

Digital Object Identifier 10.4230/DagRep.3.5.151
Edited in cooperation with Bastien Maubert

1 Executive Summary

Alessio R. Lomuscio
Sophie Pinchinat
Holger Schlingloff

License Creative Commons BY 3.0 Unported license
© Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff

Multi-agent systems (MAS) are distributed computing systems in which the individual
components, or agents, interact with each other by means of communication, negotiation,
cooperation etc., in order to meet private and common goals. The agent model finds
applications in a variety of key applications of high-impact to society including web-services,
autonomous vehicles, and e-government. But if MAS are to deliver on their promise to drive
future applications, they need to be reliable.

MAS are typically specified and reasoned about by a variety of modal formalisms, including
a variety of different logics. There are presently several, compartmented communities tackling
questions pertaining to the correctness of MAS: researchers in model checking, model based
testing, and controller synthesis. There presently is very little personal interaction among the
scientists from different communities. The aim of this seminar was to bring these communities
together, get exposure to each others’ solutions to similar aims, and ultimately enhance their
future interaction.

The topics concentrated on the intersection of the fields:
Model checking of temporal-epistemic logic, alternating logics, and BDI logics
Model based test generation for embedded systems
Controller synthesis for self-organizing systems

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

VaToMAS – Verification and Testing of Multi-Agent Systems, Dagstuhl Reports, Vol. 3, Issue 4, pp. 151–187
Editors: Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13181
http://dx.doi.org/10.4230/DagRep.3.5.151
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

152 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

In model checking, usually a model of the system and a property to be verified are
given. In model based test generation, the goal is to construct a test suite from a model
which establishes confidence in a certain property. In synthesis, a property and a model of
computation are given, from which a strategy (a system model) is to be built. Both the test
generation and the controller synthesis problem are closely related to model checking – in
order to check the satisfiability of certain alternating time temporal logic (ATL) formulas in
a model, one needs to construct a strategy for the participating agents.

The purpose of the seminar was to establish a common understanding of the problems
in the different technologies of these application areas. It was expected that increased
interaction between these three fields would stimulate new results and techniques of both
theoretical relevance and practical usefulness.

Besides survey talks (60 minutes) on common technologies, attendees gave short contri-
butions (30 minutes) and lightening presentations (15 minutes) on current research results
and discussion rounds on open problems and research agendas. Additional technical sessions,
including software demos, were organised spontaneously by the attendees for two of the
evenings.

Attendees also contributed to the seminar by taking part in the lively discussions organised
on topics of importance in the area. These were held in some of the afternoons but also at
during informal occasions outside the usual seminar hours such as after dinner. This helped
bridge some of the gaps between the subdisciplines and rectify some misconception about
each other’s work.

Specifically, research topics of the seminar included:
Logics and specification formalisms for MAS
Verification and model checking for interactive systems
Model-based testing for MAS
Explicit, symbolic, and SAT-based algorithms for module checking
Test case generation and synthesis
Synthesis of winning strategies for games

The goals of the seminar were
to obtain a common understanding of base technologies and intersections between these
topics
to collect a state-of-the-art picture of recent research results in the fields
to confront methods from model checking and test generation for MAS
to clarify terminology, research agendas and open problems
to define a set of benchmark problems for verification and testing of MAS
to bring together different communities formerly not interacting

The research topics were also discussed in relation with embedded systems applications
such as:

Verification of cyber-physical systems
Validation of autonomous robots

It was felt that the seminar helped the participants to reach a common and shared
understanding on the roles of logic, verification and testing as well as their interplay in the
context of multi-agent systems

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 153

2 Table of Contents

Executive Summary
Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 151

Overview of Talks
The Social Laws Paradigm for Coordinating Multi-Agent Systems
Thomas Ågotnes . 156

(Really) Dynamic Modal Logics
Carlos Areces . 156

From Control Theory to Game Theory via LTLKc
Guillaume Aucher . 157

On Decentralized Runtime Verification Techniques
Ezio Bartocci . 157

Automatic Verification of Equational Knowledge in MAS
Ioana Boureanu . 158

Protocol Descriptions to Interpreted Systems
Ioana Boureanu . 158

Alternating Epistemic Mu-Calculus: Fixed-point Abilities under Incomplete Inform-
ation
Nils Bulling . 159

Combining quantitative and qualitative strategic reasoning. Part II: some compar-
isons and preliminary results
Nils Bulling . 159

Using AJPF to generate models of agent programs for input into other Model
Checkers
Louise A. Dennis . 160

Verifying Autonomous Systems
Michael Fisher . 160

Resolution for Temporal Logics of Knowledge
Michael Fisher . 160

Information values in multi-agent bargaining scenarios
Tim French . 161

The synthesis and actuation of informative events
Tim French . 161

Combining quantitative and qualitative strategic reasoning. Part I: framework
Valentin Goranko . 161

A few remarks about related work in Pretoria
Stefan Gruner . 162

Yet Another Modal Notation for Strategy Contexts
Dimitar Guelev . 162

The grand game of testing
Yuri Gurevich . 163

13181

154 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

Managing Policies and Trust
Yuri Gurevich . 163

Logics for Multi-Agent Systems
Andreas Herzig . 164

Concepts, Agents, Strategies... and Coalitions. ATL goes (monadic) first order
Wojtek Jamroga . 164

ATL with strategy contexts – part 1
François Laroussinie . 164

ATL with strategy contexts – part 2
Nicolas Markey . 165

Uniform Strategies
Bastien Maubert . 165

A Poor Man’s Technique for Reasoning About Knowledge
Stephan Merz . 165

Reasoning About Strategy
Aniello Murano . 166

Bounded model checking for LTLK
Wojciech Penczek . 167

Abstract planning using genetic algorithms
Wojciech Penczek . 167

Tools for MAS verification: where do we go next?
Franco Raimondi . 167

Doomsday Equilibria for Omega-Regular Games
Jean-François Raskin . 168

Specification based testing in an institutional setting
Markus Roggenbach . 168

Efficient Testing of Software Product Lines
Ina Schaefer . 169

On the specification and analysis of contracts (normative texts)
Gerardo Schneider . 169

Flatland logic
François Schwarzentruber . 169

Before the announcement
Hans van Ditmarsch . 170

Scaling up Test Data Generation
Ramanathan Venkatesh . 171

Show me your friends and I tell you who you are
Karsten Wolf . 171

Synthesis of Knowledge-Based Program Implementations
Ron van der Meyden . 171

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 155

Working Groups
Case Study Description: Elevators
Working Group 2 . 172

Case Study Description: Access Control
Dimitar P. Guelev . 174

Case Study Description: Earthquake Rescue Mission
Working Group 1 . 175

Case Study Description: Examples from dialog/social systems
Working Groups 3 and 4 . 176

Case Study Description: Avionic scenario
Franco Raimondi . 180

Discussion about the testing of MAS
Working Group 7 . 185

Discussion concerning logics for knowledge, time and strategies
Working Group 5 . 186

Participants . 187

13181

156 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

3 Overview of Talks

3.1 The Social Laws Paradigm for Coordinating Multi-Agent Systems
Thomas Ågotnes (University of Bergen, NO)

License Creative Commons BY 3.0 Unported license
© Thomas Ågotnes

Joint work of Ågotnes, Thomas; van der Hoek, Wiebe; Wooldridge, Michael

Social laws (or normative systems) have emerged as a natural and powerful paradigm for
coordinating such systems, exposing the whole spectrum between fully centralised and fully
decentralised coordination mechanisms. A social law is, intuitively, a constraint on the
behaviour of agents, which ensures that their individual behaviours are compatible. In a
standard multi-agent state transition diagram (where transitions are labelled with the name
of the agent effecting the transition), a social law is simply a labelling of the transitions
saying whether or not they are “legal”, or “desirable”. An illegal transition could, for example,
correspond to a component malfunctioning. Different social laws give rise to different global
system properties, assuming that the social law is complied with. Such properties can be
specified and verified using temporal modal logic and model checking. In the talk I will
introduce and motivate the idea of social laws, and show how many key social laws verification
problems can be solved using model checking. Key questions involve the notion of compliance.
First, when is it rational for an agent to comply? Since the properties of the resulting system
depend on compliance of all the agents in the system (think of the social law “drive on the
right side of the road”), this requires a game theoretic analysis. Second, how can we identify
the most important agents/components in the system, the agents whose compliance is crucial
for the proper functioning of the system? I will talk about some resulting decision problems,
combining logic, game theory, voting theory and complexity theory.

3.2 (Really) Dynamic Modal Logics
Carlos Areces (Universidad Nacional de Cordoba, AR)

License Creative Commons BY 3.0 Unported license
© Carlos Areces

Different Dynamic Modal Logics have been investigated in the literature (e.g., Propositional
Dynamic Logics). Interestingly, the semantics of most of these logics is actually static: the
model over which a formula is evaluated never changes. We are interested in logics with
operators that can actually alter the model during evaluation. We will present a number of
these operators, discuss their expressive power, and the complexity of the model checking
and satisfiability problems.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 157

3.3 From Control Theory to Game Theory via LTLKc
Guillaume Aucher (INRIA Bretagne Atlantique – Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Guillaume Aucher

Supervisory control theory as initiated by Ramadge and Wonham has been developed
independently from game theory. In this talk, we show that it is possible to embed infinite
two-player games with imperfect information and safety objective into an extension of
supervisory control theory with infinite words. In order to do so, we use an epistemic
temporal logic as a lingua franca, and we reformulate the problems of supervisory control
theory and infinite games with imperfect information into this logic. As a result of this
embedding, we are able to compute and characterize completely in terms of model checking
problems the set of winning strategies in a two-player game with imperfect information and
safety objectives.

This talk is based on a paper available as a technical report at the HAL archive http:
//hal.inria.fr/.

3.4 On Decentralized Runtime Verification Techniques
Ezio Bartocci (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Ezio Bartocci

Most of computing devices produced nowadays are embedded systems employed to monitor
and control physical processes: cars, airplanes, automotive highway systems, air traffic
management, etc. In all these scenarios, computing and communicating devices, sensors
monitoring the physical processes and the actuators controlling the physical substratum are
distributed and interconnected together in dedicated networks. The formal verification of
these systems consists in proving that their execution satisfies a given specification of what
their possible behaviors should be. When a system model is available and has a finite number
of states, an answer is provided by applying the classical Model Checking technique. In this
case, if the system is found to violate the property, a counterexample in the form of a system
execution is generated and it can be used to debug the system model or property. The main
drawback of this technique is that usually the number of states of a model grows exponentially
in the number of its parameters. Furthermore, often the models are not available, leading us
to consider them simply as black-boxes where only input and output can be observed. In
this case, monitoring their execution provides a still valid alternative verification technique.
Decentralized runtime verification refers to a monitoring technique, where each component
must infer, based on a set of partial observations, if the global property is satisfied. In this
talk I will present an overview of the problem, the available techniques, some of my research
results and points of discussion.

13181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://hal.inria.fr/
http://hal.inria.fr/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

158 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

3.5 Automatic Verification of Equational Knowledge in MAS
Ioana Boureanu (EPFL – Lausanne, CH)

License Creative Commons BY 3.0 Unported license
© Ioana Boureanu

Security protocols can be executed concurrently, their participants and their runs describing a
MAS. However, as we may know, the knowledge of these agents is subject to the cryptographic
abilities and, roughly speaking, to the cryptographic material that they hold. We would
like to be able to describe this knowledge in a formal way. Per se, this is not novel. The
element of originality is two-fold: 1) being able to treat many primitives, i.e., beyond
simple encryption/decryption and, namely, the full class of subterm convergent equational,
cryptographic theories; 2) finding a solution that lends itself to automation and then to
unsupervised verification. We introduce a modality called rewriting knowledge that operates
on local equational congruences. We discuss the conditions under which its interpretation
can be approximated by a second modality called empirical knowledge. We report an
implementation of a technique to verify this modality inside the open source model checker
MCMAS. We evaluate the approach by verifying MAS models of electronic voting protocols
automatically extracted from high-level descriptions.

3.6 Protocol Descriptions to Interpreted Systems
Ioana Boureanu (EPFL – Lausanne, CH)

License Creative Commons BY 3.0 Unported license
© Ioana Boureanu

Main reference I. Boureanu, A. Lomuscio, “PD2IS Tool”. May, 2013.
URL http://www.dagstuhl.de/mat/Files/13/13181/13181.BoureanuIoana2.ExtAbstract.pdf

PD2IS (Protocol Descriptions to Interpreted Systems) is a toolkit that we developed to
generate MAS models upon standard security protocol semantics, e.g., we embedded the
multiset rewriting semantics into IS models. The input to PD2IS is a file designating a
CAPSL (Common Authentication Protocol Specification Language) protocol description
together with some additional parameters to define a MAS instantiation. The output
is an interpreted system in ISPL (Interpreted Systems Programming Language). PD2IS
systematically generates a full taxonomy of propositions and temporal- epistemic formulae
corresponding to expressions of the CAPSL goals. PD2IS automatically inserts these temporal-
epistemic formulae in the ISPL file for the model under generation. MCMAS is called for
each ISPL file produced by PD2IS. MCMAS returns the calls either by certifying that the
specifications are satisfied or by returning detailed counterexamples. These are used by PD2IS
to report details of the attack found on the protocol (i.e., the failure of one or more of formulae
corresponding to the goals). PD2IS was used together with MCMAS and proved effective
in verifying authentication, key-establishment (e.g., the Clark-Jacobs, SPORE libraries),
e-voting protocols (FOO’92, Okamoto protocols), against classical security specifications
(secrecy, authentication, vote-privacy, receipt-freeness, coercion-resistance, etc.), as well as
novel, intrinsically epistemic security requirements, like attack-detectability.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/13/13181/13181.BoureanuIoana2.ExtAbstract.pdf
http://www.dagstuhl.de/mat/Files/13/13181/13181.BoureanuIoana2.ExtAbstract.pdf

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 159

3.7 Alternating Epistemic Mu-Calculus: Fixed-point Abilities under
Incomplete Information

Nils Bulling (TU Clausthal, DE)

License Creative Commons BY 3.0 Unported license
© Nils Bulling

Main reference N. Bulling, W. Jamroga, “Alternating epistemic mu-calculus,” in Proc. of the 22nd Int’l Joint Conf.
on Artificial Intelligence (IJCAI’11), pages 109–114, Barcelona, Spain, July 2011.

URL http://ijcai.org/papers11/Papers/IJCAI11-030.pdf

The alternating-time temporal logic ATL is a well-known logic for reasoning about strategic
abilities of agents. An important feature that distinguishes the variants of ATL for imperfect
information scenarios is that the standard fixed-point characterizations of temporal modalities
do not hold anymore. In this talk, I present the alternating epistemic mu-calculus [1]. The
logic allows to capture abilities that could not be expressed in ATL. The new kind of ability
allows agents to always recompute their strategy while executing it. Thus, the agents are
not assumed to remember their strategy by definition. I will also briefly address the model
checking problem and show that the verification of such abilities can be cheaper than for all
the variants of “ATL with imperfect information” considered so far.

References
1 Nils Bulling and Wojciech Jamroga. Alternating epistemic mu-calculus. In Proceedings of

the 22nd International Joint Conference on Artificial Intelligence (IJCAI), pages 109–114,
Barcelona, Spain, July 2011.

3.8 Combining quantitative and qualitative strategic reasoning. Part II:
some comparisons and preliminary results

Nils Bulling (TU Clausthal, DE)

License Creative Commons BY 3.0 Unported license
© Nils Bulling

Joint work of Bulling, Nils; Goranko, Valentin
Main reference N. Bulling, V. Goranko, “How to be both rich and happy: Combining quantitative and qualitative

strategic reasoning about multi-player games (extended abstract),” in Proc. of the 1st Int’l
Workshop on Strategic Reasoning, EPTCS, Vol. 112, pp. 33–41, 2013.

URL http://dx.doi.org/10.4204/EPTCS.112.8

In this talk I take our framework on quantitative and qualitative reasoning [1] (presented
in Part I) up and propose the logic Quantitative ATL*. I present some preliminary model
checking results and briefly discuss related work.

References
1 Nils Bulling and Valentin Goranko. How to be both rich and happy: Combining quantit-

ative and qualitative strategic reasoning about multi-player games (extended abstract). In
Proceedings of the 1st International Workshop on Strategic Reasoning, Electronic Proceed-
ings in Theoretical Computer Science, pages 33–41, Rome, Italy, March 2013.

13181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://ijcai.org/papers11/Papers/IJCAI11-030.pdf
http://ijcai.org/papers11/Papers/IJCAI11-030.pdf
http://ijcai.org/papers11/Papers/IJCAI11-030.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4204/EPTCS.112.8
http://dx.doi.org/10.4204/EPTCS.112.8
http://dx.doi.org/10.4204/EPTCS.112.8
http://dx.doi.org/10.4204/EPTCS.112.8

160 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

3.9 Using AJPF to generate models of agent programs for input into
other Model Checkers

Louise A. Dennis (University of Liverpool, GB)

License Creative Commons BY 3.0 Unported license
© Louise A. Dennis

AJPF is a program model checker for reasoning about agent systems programmed in BDI
style languages. Following recent work from Raimondi et al., this has been adapted so that
it can be used to generate a model of the system under test, and that model then used as
the input for a more traditional model-checker. This presentation will give a quick overview
of the AJPF adaptations, look at some preliminary results and discuss possible uses of the
system.

3.10 Verifying Autonomous Systems
Michael Fisher (University of Liverpool, GB)

License Creative Commons BY 3.0 Unported license
© Michael Fisher

Joint work of Fisher, Michael; Dennis, Louise

As the internal architectures of autonomous systems become more complex, the need for their
activities to be both understandable and explainable is increasing. This, combined with the
development of agent model-checking techniques, is beginning to allow practical autonomous
systems to be verified. Beyond straightforward analysis of functional requirements of
autonomous systems, it is increasingly important to (logically) specify and verify both legal
and ethical aspects. In this talk, we describe the problems (and partial solutions) associated
with these aspects.

3.11 Resolution for Temporal Logics of Knowledge
Michael Fisher (University of Liverpool, GB)

License Creative Commons BY 3.0 Unported license
© Michael Fisher

Joint work of Fisher, Michael; Dixon, Clare; Nalon, Claudia

I will briefly outline our work on automated proof methods, particularly clausal resolution
methods, for deciding temporal logics of knowledge, belief, etc. The short talk will also touch
on current implementation technology for such systems.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 161

3.12 Information values in multi-agent bargaining scenarios
Tim French (University of Western Australia – Nedlands, AU)

License Creative Commons BY 3.0 Unported license
© Tim French

This talk will discuss ongoing work investigating the role information and uncertainty has
in multi-agent bargaining scenarios. Game theoretic analyses of bargaining and auctions
are well-established. We are interested in the interaction between the bargaining process
and epistemic state of the agents involved. In one direction we may consider the question
of releasing sufficient information to enable agents to find a stable bargaining solution. In
the other direction we can consider the problem of determining and quantifying the amount
of information an agent acquires by participating in a bargaining process. We will describe
some related work and some broad goals in terms of assigning value to information, and
evaluating economic processes with respect to the relative uncertainty of the participating
agents.

3.13 The synthesis and actuation of informative events
Tim French (University of Western Australia – Nedlands, AU)

License Creative Commons BY 3.0 Unported license
© Tim French

This talk will describe some recent and ongoing work in the area of synthesising information
updates, and executing informative updates through message passing systems. Particularly,
James Hales has recently completed work on the synthesis of uniform action models to realise
a given epistemic property within the multi-modal K. We will discuss this result, extensions
and applications that it may have.

3.14 Combining quantitative and qualitative strategic reasoning.
Part I: framework

Valentin Goranko (Technical University of Denmark, DK)

License Creative Commons BY 3.0 Unported license
© Valentin Goranko

There are several traditions in studying strategic abilities of agents to achieve objectives in
multi-player games, coming from game theory, logic and computer science. Game theory
studies rational behavior of players, relevant for their achievement of quantitative object-
ives: optimizing payoffs (e.g., maximizing rewards or minimizing cost) or, more generally,
preferences on outcomes. On the other hand, logic mainly deals with abilities of players
for achieving qualitative objectives of players: reaching or maintaining game states with
desired properties, e.g., winning states or safe states. Put as a slogan, the former tradition is
concerned with how a player can become maximally rich, or pay the least possible price, in
the game, while the latter tradition – with how a player can achieve a state of ‘happiness’,
or avoid reaching a state of ‘unhappiness’, in the game. Studies in computer science have
involved both quantitative and qualitative objectives, usually considered separately, but

13181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

162 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

there is an increasingly active recent trend to consider games with combined objectives. We
propose a logical framework, first presented in [1], combining the two traditions by enriching
concurrent game models with payoffs for the normal form games associated with the states
and with guards on the actions available to players in terms of their payoffs. Respectively, we
propose a quantitative extension of the logic ATL* enabling the combination of quantitative
and qualitative reasoning. In the Part I of this presentation I introduce and discuss the
framework. Part II of the talk, presented by Nils Bulling, discusses the model-checking
problem for the Quantitative ATL* on concurrent game models with payoffs, mentions some
decidability and undecidability results and some related work.

References
1 Nils Bulling and Valentin Goranko. How to be both rich and happy: Combining quantit-

ative and qualitative strategic reasoning about multi-player games (extended abstract). In
Proceedings of the 1st International Workshop on Strategic Reasoning, Electronic Proceed-
ings in Theoretical Computer Science, pages 33–41, Rome, Italy, March 2013.

3.15 A few remarks about related work in Pretoria
Stefan Gruner (University of Pretoria, ZA)

License Creative Commons BY 3.0 Unported license
© Stefan Gruner

I am currently not working in the field of multi-agent systems (MAS). In a very short
statement on the last day of the seminar I mentioned that I had only two older publications
in the context of MAS, namely [1] [2]; however the ‘agents’ in those publications need not be
‘intelligent’ in the sense of AI. With my main interest in software engineering methodology I
participated in the seminar’s discussion sub-group on the topic of a to-be-developed MAS-
specific theory of software testing that must reach beyond the theory of testing for classical
(non-MAS) software systems.

References
1 Bilel Derbel, Mohamed Mosbah, Stefan Gruner. Mobile Agents implementing Local Com-

putations in Graphs. Lecture Notes in Computer Science 5214, pp. 99-114, Springer-Verlag,
2008.

2 Stefan Gruner. Mobile Agent Systems and Cellular Automata. Journal for Autonomous
Agents and Multi-Agent Systems 20/2, pp. 198-233, Springer-Verlag, 2010.

3.16 Yet Another Modal Notation for Strategy Contexts
Dimitar Guelev (Bulgarian Academy of Sciences – Sofia, BG)

License Creative Commons BY 3.0 Unported license
© Dimitar Guelev

I highlight an extension of ATL with knowledge [3] and both knowledge and contexts [2]. It
admits some interesting instances of a proof rule which was introduced for PDL∩ [1]. To
make the transition to strategy-context enabled semantics, just one truly specific axiom,
which is taken from [4], appears necessary. Comparison with some other existing ATL-based

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 163

notations for strategy contexts shows them to be of the same expressive power in the case of
complete information.

Dimitar P. Guelev was partially supported by Bulgarian NSF Grant DID02/32/2009.
He is grateful to the organizers, and especially to Bernd-Holger Schlingloff for his careful
guidance.

References
1 Philippe Balbiani and Dimiter Vakarelov. Iteration-free PDL with Intersection: a Complete

Axiomatization. Fundam. Inform., 45(3):173–194, 2001.
2 Dimitar P. Guelev and Catalin Dima. Epistemic ATL with Perfect Recall, Past and Strategy

Contexts. In Michael Fisher, Leon van der Torre, Mehdi Dastani, and Guido Governatori,
editors, CLIMA, volume 7486 of Lecture Notes in Computer Science, pages 77–93. Springer,
2012.

3 Dimitar P. Guelev, Catalin Dima, and Constantin Enea. An Alternating-time Temporal Lo-
gic with Knowledge, Perfect Recall and Past: Axiomatisation and Model-Checking. Journal
of Applied Non-Classical Logics, 21(1):93–131, 2011.

4 Dirk Walther, Wiebe van der Hoek, and Michael Wooldridge. Alternating-time Temporal
Logic with Explicit Strategies. In Dov Samet, editor, TARK, pages 269–278, 2007.

3.17 The grand game of testing
Yuri Gurevich (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Yuri Gurevich

We present testing as a game between the Programmer and the Tester. While the game is
usually more cooperative than antagonistic, Tester’s goal is different from that of Programmer.
We discuss when the game is over and address Myers’s paradox: “The number of uncovered
bugs in a program section is proportional to the number of discovered bugs in the section.”

3.18 Managing Policies and Trust
Yuri Gurevich (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Yuri Gurevich

Joint work of Blass, Andreas; Guido de Caso; Gurevich, Yuri
Main reference A. Blass, G. de Caso, Y. Gurevich, “An introduction to DKAL,” Microsoft Research Tech Report

MSR-TR-2012-108.
URL http://research.microsoft.com/en-us/um/people/gurevich/Opera/216.pdf

With the advent of cloud computing, the necessity arises to manage policies and trust
automatically and efficiently. In a brick-and-mortar (B&M) setting, clerks learn unwritten
policies from trustworthy peers. And if they don’t know a policy, they know whom to ask. In
the B&M-to-cloud transition, the clerks disappear. Policies have to be explicit and managed
automatically. The more challenging problem yet is how to handle the interaction of the
policies of distrustful principals, especially in federated scenarios where there is no central
authority. The DKAL project (Distributed Knowledge Authorization Language) was created
to deal with such problems. The new language, new logics and tools keep evolving. We
discuss the current state of the project.

13181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://research.microsoft.com/en-us/um/people/gurevich/Opera/216.pdf
http://research.microsoft.com/en-us/um/people/gurevich/Opera/216.pdf
http://research.microsoft.com/en-us/um/people/gurevich/Opera/216.pdf

164 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

3.19 Logics for Multi-Agent Systems
Andreas Herzig (Université Paul Sabatier – Toulouse, FR)

License Creative Commons BY 3.0 Unported license
© Andreas Herzig

I classify various logics for MAS according to the epistemic and the action dimension. I
highlight problematic aspects of each of the standard accounts, including the frame problem,
strategy contexts and uniform strategies.

3.20 Concepts, Agents, Strategies... and Coalitions. ATL goes
(monadic) first order

Wojtek Jamroga (University of Luxembourg, LU)

License Creative Commons BY 3.0 Unported license
© Wojtek Jamroga

Main reference W. Jamroga, “Concepts, Agents, and Coalitions in Alternating Time,” in Proc. of the 20th
European Conf. on Artificial Intelligence (ECAI’12), Frontieres in Artificial Intelligence and
Applications, Vol. 242, pp. 438–443, IOS Press, 2012.

URL http://dx.doi.org/10.3233/978-1-61499-098-7-438
URL http://icr.uni.lu/wjamroga/papers/atl+dl12ecai.pdf

I consider a combination of the strategic logic ATL with the description logic ALCO. In order
to combine the logics in a flexible way, I assume that every individual can be (potentially) an
agent. I also take the novel approach to teams by assuming that a coalition has an identity
on its own, and hence its membership can vary. In terms of technical results, I show that the
logic does not have the finite model property, though both ATL and ALCO do. I conjecture
that the satisfiability problem may be undecidable. On the other hand, model checking of
the combined logic is decidable and even tractable. Finally, I define a particular variant of
realizability that combines satisfiability of ALCO with model checking of the ATL dimension,
and I show that this new problem is decidable.

References
1 Wojciech Jamroga. Concepts, Agents, and Coalitions in Alternating Time. Proceedings of

the 20th European Conference on Artificial Intelligence ECAI 2012, pp. 438–443, IOS Press,
2012.

3.21 ATL with strategy contexts – part 1
François Laroussinie (Université Paris-Diderot – Paris, FR)

Joint work of Laroussinie, François; Markey, Nicolas
License Creative Commons BY 3.0 Unported license

© François Laroussinie

ATLsc is an extension of ATL with strategy contexts: the agents are committed to their
strategies during the evaluation of formulas. This makes a huge difference with standard
ATL. In this first talk, we will discuss the expressive power of ATLsc. In particular we will
give several examples of properties that can be expressed with this formalism.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.3233/978-1-61499-098-7-438
http://dx.doi.org/10.3233/978-1-61499-098-7-438
http://dx.doi.org/10.3233/978-1-61499-098-7-438
http://dx.doi.org/10.3233/978-1-61499-098-7-438
http://icr.uni.lu/wjamroga/papers/atl+dl12ecai.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 165

3.22 ATL with strategy contexts – part 2
Nicolas Markey (ENS Cachan, FR)

Joint work of Laroussinie, François; Markey, Nicolas
License Creative Commons BY 3.0 Unported license

© Nicolas Markey

This second talk (the first one is proposed by François Laroussinie) will focus on the decision
procedures for ATLsc and its complexity (for model checking and satisfiability). For this we
will use an extension of CTL with quantifications over atomic propositions (QCTL). Indeed
we will see that (1) verification problems for ATLsc (or Strategy Logic) can be naturally
reduced to a problem over QCTL, and (2) decision procedures can be described in a simpler
way for QCTL.

3.23 Uniform Strategies
Bastien Maubert (Université de Rennes 1, FR)

License Creative Commons BY 3.0 Unported license
© Bastien Maubert

Joint work of Maubert, Bastien; Pinchinat, Sophie
Main reference B. Maubert, S. Pinchinat, L. Bozzelli, “The Complexity of Synthesizing Uniform Strategies,” in

Proc. of the 1st Int’l Workshop on Strategic Reasoning, EPTCS, Vol. 112, pp. 115-122, 2013.
URL http://dx.doi.org/10.4204/EPTCS.112.17

We study a general notion of uniform strategies that subsumes several existing notions of
strategies subject to some uniformity constraints, like for example in games with imperfect
information or model checking games for dependence logic. We present a logical language
to specify such uniformity constraints. This language is basically LTL augmented with
a knowledge-like operator R, where Rϕ means that ϕ holds in all related plays. One
particularity of this work concerns the semantics of the R modality. Instead of choosing
a specific relation over plays, like synchronous perfect-recall for example, we allow for any
binary rational relation. This class of relations is very general, and in particular it contains
all relations classically used in games with imperfect information and logics of knowledge
and time (perfect/imperfect recall, synchronous/asynchronous...). Rational relations are
recognized by finite state transducers, which allows us to study the decidability and complexity
of synthesizing uniform strategies for different subclasses of rational relations. Our results
imply the decidability of the model checking of LTLKn with asynchronous perfect recall,
and more generally we have that the strategy problem in games with a winning condition
expressed in LTLK is decidable as long as the relation that represents the knowledge is
rational.

3.24 A Poor Man’s Technique for Reasoning About Knowledge
Stephan Merz (LORIA – Nancy, FR)

License Creative Commons BY 3.0 Unported license
© Stephan Merz

Representing and reasoning about knowledge is fundamental for modeling and analyzing
multi-agent systems. Several logics have been proposed that combine epistemic and temporal

13181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4204/EPTCS.112.17
http://dx.doi.org/10.4204/EPTCS.112.17
http://dx.doi.org/10.4204/EPTCS.112.17
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

166 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

or dynamic operators, and that support reasoning about the state of knowledge of agents
based on the information they observe, e.g. resulting from updates due to point-to-point
communication or broadcasts. Specialized model checkers such as DEMO [3] implement
efficient procedures for evaluating formulas written in logics such as Dynamic Epistemic
Logic (DEL, [1]). We report on an experiment on encoding the semantics of DEL directly in
a constraint solver and using that encoding for solving the well-known “Sum and Product”
puzzle [2]. The models are written in TLA+ and are evaluated using the constraint solving
techniques implemented in ProB [4]. The running times compare very favorably with those
reported for DEMO, indicating that general-purpose solvers may in certain cases be quite
competitive, at least for prototyping verification engines for new logics.

References
1 H. van Ditmarsch, W. van der Hoek, B. Kooi. Dynamic Epistemic Logic. Synthese Library

337. Springer (2007).
2 H. van Ditmarsch, J. Ruan, R. Verbrugge. Sum and Product in Dynamic Epistemic Logic.

J. Log. Comput. 18(4): 563-588 (2008).
3 Jan van Eijck. DEMO – A Demo of Epistemic Modelling. In: Interactive Logic. Proc. 7th

Augustus de Morgan Workshop (J. van Benthem, D. Gabbay, B. Löwe, eds.) Texts in Logic
and Games 1:305–363 (2007).

4 M. Leuschel, M. J. Butler: ProB: an automated analysis toolset for the B method. STTT
10(2): 185-203 (2008)

3.25 Reasoning About Strategy
Aniello Murano (University of Napoli, IT)

License Creative Commons BY 3.0 Unported license
© Aniello Murano

Joint work of Mogavero, Fabio; Perelli, Giuseppe ; Sauro, Luigi; Vardi, Moshe
Main reference F. Mogavero, A. Murano, M.Y. Vardi, “Reasoning About Strategies,” in Proc. of the IARCS

Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’10), LIPIcs, Vol. 8, pp. 133–144, Schloss Dagstuhl, 2010.

URL http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.133

In open systems verification, to formally check for reliability, one needs an appropriate
formalism to model the interaction between agents and express the correctness of the system
no matter how the environment behaves. An important contribution in this context is given
by modal logics for strategic ability, in the setting of multi-agent games, such as ATL, ATL*,
and the like. In this talk, I will introduce Strategy Logic as a powerful logic framework for
reasoning explicitly about strategies in multi-agent concurrent games. As a key aspect, SL
uses first-order quantifications over strategies, where strategies are not glued to a specific
agent, but an explicit binding operator allows to bind an agent to a strategy variable. This
allows agents to share strategies or reuse one previously adopted. In this talk, I will discuss
about the model checking and the satisfiability decision problems for SL and show that
they are undecidable and NonElementarySpace-hard, respectively. This negative result has
successfully spurred us to investigate syntactic fragments of SL, strictly subsuming ATL*,
with elementary decision problems. In this talk I will present some of these fragments and
discuss their properties.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.133
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.133
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.133
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.133

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 167

3.26 Bounded model checking for LTLK
Wojciech Penczek (Siedlce University of Natural Sciences and Humanities, PL)

License Creative Commons BY 3.0 Unported license
© Wojciech Penczek

We present a novel approach to verification of multi-agent systems by bounded model
checking for Linear Time Temporal Logic extended with the epistemic component (LTLK).
The systems are modelled by two variants of interpreted systems: standard and interleaved
ones. Our method is based on binary decision diagrams (BDD). We describe the algorithm
and provide its experimental evaluation together with the comparison with another tool.
This allows to draw some conclusions concerning which semantics is preferable for bounded
model checking LTLK properties of multi-agent systems.

3.27 Abstract planning using genetic algorithms
Wojciech Penczek (Siedlce Univ of Natural Sciences and Humanities, PL)

License Creative Commons BY 3.0 Unported license
© Wojciech Penczek

Joint work of Niewiadomski, Artur; Penczek, Wojciech; Skaruz Jaroslaw
Main reference A. Niewiadomski, W. Penczek, J. Skaruz, “Towards automated abstract planning based on a

genetic algorithm,” Technical Report 1026, ICS PAS, Warsaw, 2012.
URL http://artur.ii.uph.edu.pl/papers/rep1026.pdf

The lecture is based on joint work [1], which discusses a new approach based on nature
inspired algorithms to an automated abstract planning problem, which is a part of the web
service composition problem. An abstract plan is defined as an equivalence class of sequences
of service types that satisfy a user query. Intuitively, two sequences are equivalent if they are
composed of the same service types, but not necessarily occurring in the same order. The
objective of our genetic algorithm (GA) is to return representatives of abstract plans without
generating all the equivalent sequences. The lecture presents experimental results, which
show that GA finds solutions for very large sets of service types in a reasonable time.

References
1 A. Niewiadomski, W. Penczek, and J. Skaruz. Towards automated abstract planning based

on a genetic algorithm. Technical Report 1026, ICS PAS, 2012. http://artur.ii.uph.edu.pl/
papers/rep1026.pdf.

3.28 Tools for MAS verification: where do we go next?
Franco Raimondi (Middlesex University – London, UK)

License Creative Commons BY 3.0 Unported license
© Franco Raimondi

A number of software tools are available for MAS verification, and their performance has
improved by orders of magnitude in the past decade. However, most tools have their own
input language and often specialize in one verification technology, or only support checking
a specific type of property. As a result, the adoption of MAS verification tools is still very
limited in the “real world”. In this presentation we suggest a different approach to MAS

13181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://artur.ii.uph.edu.pl/papers/rep1026.pdf
http://artur.ii.uph.edu.pl/papers/rep1026.pdf
http://artur.ii.uph.edu.pl/papers/rep1026.pdf
http://artur.ii.uph.edu.pl/papers/rep1026.pdf
http://artur.ii.uph.edu.pl/papers/rep1026.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

168 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

verification: tools should be moved closer to real systems by means of (re-usable) connectors
and libraries, and should be seen as components of a more general framework. We provide
an example of this framework using the Brahms modelling language for MAS, and various
model checkers to perform verification.

3.29 Doomsday Equilibria for Omega-Regular Games
Jean-François Raskin (Université Libre de Bruxelles, BE)

License Creative Commons BY 3.0 Unported license
© Jean-François Raskin

Two-player games on graphs provide the theoretical framework for many important problems
such as reactive synthesis. While the traditional study of two-player zero-sum games has been
extended to multi-player games with several notions of equilibria, they are decidable only for
perfect-information games, whereas several applications require imperfect-information games.
In this paper we propose a new notion of equilibria, called doomsday equilibria, which is
a strategy profile such that all players satisfy their own objective, and if any coalition of
players deviates and violates even one of the players objective, then the objective of every
player is violated. We present algorithms and complexity results for deciding the existence of
doomsday equilibria for various classes of ω-regular objectives, both for imperfect-information
games, as well as for perfect-information games. We provide optimal complexity bounds for
imperfect-information games, and in most cases for perfect-information games.

3.30 Specification based testing in an institutional setting
Markus Roggenbach (Swansea University, UK)

License Creative Commons BY 3.0 Unported license
© Markus Roggenbach

Joint work of Phillip James; Faron F Moller; Hoang Nga Nguyen; Markus Roggenbach; Steve Schneider; Helen
Treharne

Main reference F. Moller, H.N. Nguyen, M. Roggenbach, S. Schneider, H. Treharne, “Defining and Model Checking
Abstractions of Complex Railway Models Using CSP||B,” in Proc. of the Haifa Verification
Conference (HVC’12), LNCS, Vol. 7857, pp. 193–208, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-39611-3_20
Main reference P. James, M. Trumble, H. Treharne, M. Roggenbach, S. Schneider, “OnTrack: An Open Tooling

Environment for Railway Verification,” in Proc. of the 5th Int’l NASA Symp. on Formal Methods,
LNCS, Vol. 7871, pp. 435–440, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-38088-4_30

It is becoming common industrial practice to utilize Domain Specific Languages (DSLs) for
designing systems. Such DSLs offer constructs native to the specific application area. Formal
methods often fail to be easily accessible for engineers, but designs formulated in DSLs are
open for systematic and, possibly, automated translation into formal models for verification.

In this talk, we show that DSLs also allow abstractions to be formulated at the domain
level. We demonstrate on the example of the Railway domain that (1) such abstractions
exists over the boundary of different specification languages (CSP, CSP||B, CASL) and (2)
and demonstrate by the means of our tool OnTrack how to support & automatize such
abstractions.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-39611-3_20
http://dx.doi.org/10.1007/978-3-642-39611-3_20
http://dx.doi.org/10.1007/978-3-642-39611-3_20
http://dx.doi.org/10.1007/978-3-642-39611-3_20
http://dx.doi.org/10.1007/978-3-642-38088-4_30
http://dx.doi.org/10.1007/978-3-642-38088-4_30
http://dx.doi.org/10.1007/978-3-642-38088-4_30
http://dx.doi.org/10.1007/978-3-642-38088-4_30

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 169

3.31 Efficient Testing of Software Product Lines
Ina Schaefer (TU Braunschweig, DE)

License Creative Commons BY 3.0 Unported license
© Ina Schaefer

Joint work of Schaefer, Ina; Malte Lochau; Sascha Lity
Main reference M. Lochau, I. Schaefer, J. Kamischke, S. Lity, “Incremental Model-Based Testing of Delta-Oriented

Software Product Lines,” in Proc. of the 6th Int’l Conf. on Tests and Proofs (TAP’12), LNCS,
Vol. 7305, pp. 67–82, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-30473-6_7

Testing software product lines by considering each product variant in isolation is impracticable
due to the high number of potential product configurations. Therefore, applying reuse
principles also to test artifacts in a concise way for efficient testing is essential. In this talk, I
address this open issue by presenting a novel, model-based SPL testing framework based on
reusable test models and incremental test suite evolution. Test artifacts are incrementally
evolved for every product variant by explicitly considering commonality and variability
between two subsequent products under test. I illustrate the framework by means of an
automotive case study and compare our experimental results with alternative SPL testing
strategies with respect to efficiency improvements.

3.32 On the specification and analysis of contracts (normative texts)
Gerardo Schneider (University of Gothenburg, SE)

License Creative Commons BY 3.0 Unported license
© Gerardo Schneider

Our general aim is to be able to provide a formal language to specify and analyze normative
texts in general, and electronic contracts in particular. In this talk we introduce the idea of
a framework where normative texts could be translated into a Controlled Natural Language
(CNL) and then into a formal language, in order to be analyzed both statically and at
runtime. As a step towards such an ambitious aim, we present AnaCon, a framework where
a restricted version of normative texts are written in a CNL and automatically translated
into the formal language CL using the Grammatical Framework (GF). In AnaCon such CL
expressions are analyzed for normative conflicts (i.e., whether there are conflicting obligations,
permissions and prohibitions) by the tool CLAN which gives a counter-example in case a
conflict is found. We finally discuss research challenges and future directions in the area.

3.33 Flatland logic
François Schwarzentruber (ENS Cachan Brittany extension – Rennes, FR)

License Creative Commons BY 3.0 Unported license
© François Schwarzentruber

There are possible needs in applications such as video games for reasoning about knowledge
and perception of agents. Unfortunately the behaviour of artificial agents is still nowadays
often described using imperative languages such as JAVA (or script languages such as Lua).
But the use of knowledge programs is a high-level option. We propose a grounded variant of
Dynamic epistemic logic called Flatland logic where we can express properties about what

13181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-30473-6_7
http://dx.doi.org/10.1007/978-3-642-30473-6_7
http://dx.doi.org/10.1007/978-3-642-30473-6_7
http://dx.doi.org/10.1007/978-3-642-30473-6_7
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

170 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

a

b

cd

e a

b

c

e

d

world w world u

Figure 1 Two possible 2–dimensional worlds that are indistinguishable for agent a.

agents perceive and know about the world. The semantics is built on top of a Kripke model.
A possible world in the Kripke model is a mapping that assigns a location to each agent in
the space. An agent sees a half-space. Two worlds are indistinguishable for agent a if, and
only if, agent a sees the same thing in both worlds. Figure 1 shows two possible worlds w
and u that are indistinguishable for agent a. For instance, agent d sees e in world w and
agent d does not see e in world u. Agent a knows that agent b sees agent c.

We then give results about its axiomatisation and the complexity of its model checking
and satisfiability problems. In the one-dimensional case, agents are placed on a line. The
one-dimensional case is axiomatized and the corresponding model checking and satisfiability
problems are both PSPACE-complete. Concerning the two-dimensional case, we do not know
whether there exists a finite axiomatization. We know that both the corresponding model
checking and satisfiability problems are decidable but we do not know the exact complexity.
There are many open issues concerning implementation and expressiveness of the logic.

3.34 Before the announcement
Hans van Ditmarsch (LORIA – Nancy, FR)

License Creative Commons BY 3.0 Unported license
© Hans van Ditmarsch

This concerns ongoing (but so far very tentative) work with Andreas Herzig and Philippe
Balbiani. The well-known logic of public announcement models the effect of public events on
information states: [ϕ]ψ stands for ‘after public announcement of ϕ, ψ is true’. Suppose you
want to go in the other direction: [ϕ]cψ stands for ‘before the announcement of ϕ, ψ was true’.
What is the logic of that? For example, [p]cp is valid: before (truthful) public announcement
of p, p must already have been considered possible. This logic is quite different from the
history operators in the work of Joshua Sack, where one goes back one step in time, given
history-based structures. Instead, in this ‘before the announcement’ logic, any structure
with ‘more uncertainty’ than the current state can have led, after an announcement, to that
current state of information. So in that sense the [ϕ]c operator has aspects of propositional
quantification. Dual to the ‘refinement quantifier’ in ‘Refinement Modal Logic’ by Bozzelli et
al., we seem to be looking in this case for a ’simulation quantifier’: [ϕ]cψ is true in state s of
model M now, if ψ is satisfied in any simulation of (M, s) . . . plus something else. Simulation
quantifiers would be more proper for ‘before the event’ logic, the dual of event model (action
model) logic. The case of ‘before the announcement’ is more restricted.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 171

3.35 Scaling up Test Data Generation
Ramanathan Venkatesh (Tata Consultancy Services – Pune, IN)

License Creative Commons BY 3.0 Unported license
© Ramanathan Venkatesh

Joint work of R Venkatesh; Anand Yeolekar; Divyesh, Unadkat
Main reference A. Yeolekar, D. Unadkat, V. Agarwal, S. Kumar, R. Venkatesh, “Scaling Model Checking for Test

Generation using Dynamic Inference,” in Proc. of the 2013 IEEE 6th Int’l Conf. on Software
Testing, Verification and Validation (ICST’13), pp. 184–191, IEEE, 2013.

URL http://dx.doi.org/10.1109/ICST.2013.29

Structural test coverage criteria are very effective in finding bugs and also required by
standards such as DO 178B. Model checkers can be used to generate test data to achieve the
required coverage but model checkers unfortunately do not scale up to industry size code.
To address this problem of scalability we combine dynamic analysis with model checking.
We employ dynamic analysis to determine a pre-/post- condition pair for complex functions.
Then we use a model checker after replacing complex functions by their pre-/post- conditions.
This technique has given us much better scalability than using plain model checkers.

3.36 Show me your friends and I tell you who you are
Karsten Wolf (Universität Rostock, DE)

License Creative Commons BY 3.0 Unported license
© Karsten Wolf

For an open system S (e.g. a MAS), and a desired property ϕ, a ϕ-partner is another open
system such that the composition S + P satisfies ϕ. For many properties ϕ, we can compute
a finite characterization of the (typically infinite) set of ϕ-partners. It can be used for several
interesting applications:

Safe exchange of S by S’ is possible if partners(S) is a subset of partners(S’); we can
decide that using the finite characterization
From the set of partners, test cases may be selected; the characterization offers some
notion of partner coverage
Correction of P in a collaboration with S is possible: Select, among the partners of S,
the one that is most similar to P; the finite characterization helps to reason about the
infinite set of candidates.

In the talk, we sketch the work we have done and address some challenges in the MAS
area, e.g. declarative representations of internal state.

3.37 Synthesis of Knowledge-Based Program Implementations
Ron van der Meyden (University of New South Wales – Sydney, AU)

License Creative Commons BY 3.0 Unported license
© Ron van der Meyden

Knowledge-based programs are a representation of agent behaviour, in which agent’s actions
are conditioned on formulas expressing properties of the agent’s knowledge. This provides a
useful level of abstraction that yields protocol descriptions that are independent of assumptions

13181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICST.2013.29
http://dx.doi.org/10.1109/ICST.2013.29
http://dx.doi.org/10.1109/ICST.2013.29
http://dx.doi.org/10.1109/ICST.2013.29
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

172 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

about the environment in which the protocol runs, and disentangles the question of what
the agent needs to know in order to perform its task from the questions of how it obtains
and represents that knowledge. On the other hand, knowledge-based programs are more
like specifications than like executable code. To execute a knowledge-based program in a
concrete environment it is necessary to determine conditions on the agent’s local state that
are equivalent to the knowledge properties.

The talk reviewed early work on the topic, which studied the computational complexity
of finding implementations, and then addressed the question of how implementation may be
found in practice. Two approaches were discussed: a partially automated approach based on
epistemic model checking [3, 1, 2] and current work that aims to develop a fully automated
approach based on symbolic representations of knowledge [4].

References
1 Omar I. Al-Bataineh and Ron van der Meyden. Epistemic model checking for knowledge-

based program implementation: An application to anonymous broadcast. In Sushil Jajodia
and Jianying Zhou, editors, SecureComm, volume 50 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pages 429–
447. Springer, 2010.

2 Omar I. Al-Bataineh and Ron van der Meyden. Abstraction for epistemic model checking of
dining cryptographers-based protocols. In Krzysztof R. Apt, editor, TARK, pages 247–256.
ACM, 2011.

3 Kai Baukus and Ron van der Meyden. A knowledge based analysis of cache coherence.
In Jim Davies, Wolfram Schulte, and Michael Barnett, editors, ICFEM, volume 3308 of
Lecture Notes in Computer Science, pages 99–114. Springer, 2004.

4 Xiaowei Huang and Ron van der Meyden. Symbolic synthesis of knowledge-based program
implementations with synchronous semantics. pages 121–130, 2013.

4 Working Groups

4.1 Case Study Description: Elevators
Working Group 2

License Creative Commons BY 3.0 Unported license
© Working Group 2

Real-Life setting: Elevators in skyscrapers with decentralized control. We assume that there
is a group of n elevators serving m floors. All lift controllers (and, hence, the strategies of
all lifts) are essentially the same, except for the following configuration parameter: Not all
elevators stop at all floors (the elevators can travel at different speeds). Passengers arrive at
the different floors at an unpredictable rate.

4.1.1 What can passengers do?

Variant 1: Passengers have a “call” button to call for an elevator.
Variant 2: Passengers have “up” and “down” buttons indicating the direction where they

want to go.
Variant 3: Passengers have a “request” button for each floor indicating the floor they want

to reach.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 173

In Variant 1) and 2), each elevator has an internal set of buttons where passengers can
indicate where they want to go.
Variant 4: On each floor, there is a sensor sensing how many people are waiting at that

floor.
Variant 5: There may be a time-dependent scheme according to which elevators are being

requested, e.g., before 9 am it may be mainly upwards and after 5 pm it may be mainly
downwards.

Variant 6: Certain requests may have to be served with high priority, e.g., the president
arriving at the park deck always has to find a lift waiting for him. Other high-priority
calls may be for firefighter mode and emergency journeys.

4.1.2 What can elevators do?

Each lift knows its current position/direction and notices all passenger requests. The elevators
have to communicate and negotiate which requests to serve in which order. Each elevator
has a decentralized control of its own and can communicate with the others:
Variant 1: via broadcast,
Variant 2: to each other lift individually,
Variant 3: to “adjacent” lifts (where the adjacency relation is to be defined).

Each elevator can communicate the following information:
its own position,
its own direction,
maybe also its current plan about floors to serve.

The lift may be able to predict the calls or may move to a “standard” position when idle.

4.1.3 Goals:

The overall goal is to serve all passengers “fairly” (task: define what that means), with a
minimal number of moves (or equivalently, a minimal amount of energy) and/or a minimal
waiting time. An additional requirement is that there should not be a single request not
served for a certain amount of time, e.g., 10 min.

Goals for the individual elevator are:
It could be lazy, e.g., want to move as little as possible;
or it could be eager, trying to serve as many requests as possible;
or optimize the travel according to some other criterion.
Variant: There may exist malicious elevators, e.g., an elevator may be faulty or send false
messages.

Each elevator should be able to reason about his decisions, e.g., there are cost and reward
functions to support the argument. A cost function could be, e.g., the number and distance
of moves, fast travel is more expensive than slow travel, etc. A reward could also be given
for each passenger served.

13181

174 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

4.2 Case Study Description: Access Control
Dimitar P. Guelev

License Creative Commons BY 3.0 Unported license
© Dimitar P. Guelev

4.2.1 Description:

An automated conference review system, for being well understood infrastructure in academia.

Agents: The system designer, the program chairs, the programme committee members, the
authors of submissions, some external reviewers. These groups need not be all disjoint.

Actions: Those which take place through the automated system, subject to history-dependent
permissions, include appointing PC members, submitting papers, assigning papers to
review, uploading reviews, various queries, etc.

Goals: The system designer (see also Section 4.2.3 Challenge below) must select permission
conditions which implement common express requirements on the reviewing process such
as anonymity of reviewing and avoid recognized forms of conflict of interest, e.g., an
author cannot interfere in the reviewing of her own submissions, and, unless a PC member,
can follow only her own submissions; a PC decision normally requires a full set of reviews,
etc. Overly restricted access may cause unwanted unease.

For (groups of) agents who are modelled in the system, goals include:
1. The PC want to collect the due sets of reviews and reach decisions within the promised

deadlines.
2. Everyone is interested in influencing the conference programme.
3. Everyone is interested in broadening their grasp on the reviewing process as much and as

soon as possible.
4. (Un)deniability.

4.2.2 Comments:

The scenario is partly collaborative and partly competitive. Goal 1 is collaborative, but
may face shortage of external subreviewers and thus fail independent reviewing. Goals of
group 3 are typically competitive and relate to inferred knowledge, which can jeopardize,
e.g. anonymity. Goals 2 are typically in the reach of PC members, with the appointment of
subreviewers in their powers. Goal 4 is primarily competitive; its collaborative aspects are
by far less trivial.

4.2.3 Challenge:

Analyses must assist the designer in choosing, maintaining and evolving implementations of
the system such that:

each agent, possibly jointly with other agents, can achieve his or her legitimate goals by
following preferably simple guidelines, and
no schemes for reaching illegitimate goals (as understood for peer-reviewed conferences)
are conceivable.

The scenario has been used previously, to illustrate research on and test algorithms for
verifying access control systems in [1, 3, 2] and elsewhere, in a form that enables clear cut
correspondence with the technical matter therein.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 175

References
1 Dimitar P. Guelev, Mark Ryan, and Pierre-Yves Schobbens. Model-Checking Access Con-

trol Policies. In Kan Zhang and Yuliang Zheng, editors, ISC, volume 3225 of Lecture Notes
in Computer Science, pages 219–230. Springer, 2004.

2 Masoud Koleini, Eike Ritter, and Mark Ryan. Model Checking Agent Knowledge in Dy-
namic Access Control Policies. In Nir Piterman and Scott A. Smolka, editors, TACAS,
volume 7795 of Lecture Notes in Computer Science, pages 448–462. Springer, 2013.

3 Nan Zhang, Mark Ryan, and Dimitar P. Guelev. Synthesising verified access control systems
through model checking. Journal of Computer Security, 16(1):1–61, 2008.

4.3 Case Study Description: Earthquake Rescue Mission
Working Group 1

License Creative Commons BY 3.0 Unported license
© Working Group 1

4.3.1 Description of the example

An earthquake occurs in a city, making many casualties, and incidentally destroying all the
Internet connections. Robots are sent for a rescue mission.

Instead of sending a single type of robots that would be able to achieve all the necessary
tasks (it would be too big/complicated, and some tasks may require opposite features), it seems
reasonable to use robots of various kinds, with different capabilities/roles (communications,
observations/detections/perception, path clearing, lifting, etc.), and also to send multiple
robots of each kind, in order to parallelize the rescue mission.

Relevance for using MAS techniques:
Dangerous environment: not safe to send humans do the job
Poor communications: no centralized approach
Diversity of tasks to perform
Time pressure

4.3.2 Modeling as a MAS

Each robot is an autonomous agent. We describe the features of such an agent.
Actions

observe

13181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

176 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

send/receive messages
move
lift
clean
collect

Imperfect information The robots may have a map in memory, but it may be inaccurate
(the earthquake modifies the area) or local (limited to what they observe/learn from other
robots). Sensors may be unreliable (robots may be damaged). This leads to:

Uncertainty concerning its own location
Uncertainty concerning the health of human casualties

Goals
One main goal: rescue people.
Subgoals, possibly dynamically chosen: look for human beings, route finding and
cleaning, establish communications, agreements among a coalition of robots, inform
other robots (position of a victim. . .), find human assistants. . .

Human interaction Robots should be able to interact with humans they meet during the
rescue (basic health diagnosis, take orders from survivors. . .).

Testing and verification Difficult to define the goal (to rescue the maximum number of
victims?)

4.4 Case Study Description: Examples from dialog/social systems
Working Groups 3 and 4

License Creative Commons BY 3.0 Unported license
© Working Groups 3 and 4

We explore the possibility of testing the four following application domains with MAS
techniques: dialog systems, social networks, stability and resilience analysis in social systems
and stock markets.

Tasks:
Find existing benchmarks
For each topic achieve the following.

Develop a concrete example
Give a description taking the following features into account

Uncertainty:
more than 1 agent
strategies involved
autonomous control
objectives and intentions
communication
information (K&B)
human interaction

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 177

4.4.1 Previous Benchmarks & Competitions

What is a benchmark? A concrete scenario in which the agents compete against each other
with well defined goals.

Can we borrow from Benchmarks for Security Protocols? They are so big and so real
that it is hard to test the proposal. Possibility of having good enough simulations to test
systems against them.

Trading Agent Competition: Designed to promote and encourage high quality research into
the trading agent problem. Currently uses two scenarios: TAC Classic, a “travel agent”
scenario based on complex procurement on multiple simultaneous auctions, and TAC
SCM, a PC manufacturer scenario based on sourcing of components, manufacturing of
PC’s and sales to customers.
http://tac.sics.se/page.php?id=1
Comments/Critics: Use of machine learning.

General Game Playing Description: General Game Playing is a project of the Stanford
Logic Group of Stanford University, California, which aims at creating a platform for
general game playing. The games are defined by sets of rules represented in the Game
Description Language. In order to play the games, players interact with a game hosting
server that monitors moves for legality and keeps players informed of state changes.
Since 2005, there have been annual General Game Playing competitions at the AAAI
Conference. The winner of the competition is awarded with US$10,000.
http://en.wikipedia.org/wiki/General_game_playing

Robocup Rescue Description: The intention of the RoboCupRescue project is to promote
research and development in this socially significant domain at various levels involving
multi-agent team work coordination, physical robotic agents for search and rescue,
information infrastructures, personal digital assistants, a standard simulator and decision
support systems, evaluation benchmarks for rescue strategies and robotic systems that
are all integrated into a comprehensive systems in future.
http://www.robocup.org/robocup-rescue/

Generating Instructions in Virtual Environments – GIVE: Systems should guide a human
user to navigate a virtual environment to a certain location. The systems generate natural
language instructions, but they can monitor the actions taken by the user. The user
cannot make queries, only navigate the environment.
http://www.give-challenge.org/research/
Comments/Critics: No real use (yet) of knowledge or beliefs. Main concern “grounding”
(connected to common knowledge, but never made explicit). But systems need to include
some modelling of the user. All systems include a planning component. No SAT or Model
Checking involved. Reasoning is compiled in the actions taken.

General qualities of existing agents:
High connectivity
Low level of reasoning
General decisions for the definition of examples.
Qualitative vs. Quantitative
Specify agents
Specify actions
Specify goals

We now describe five proposals of concrete examples for the domains of applications
considered.

13181

http://tac.sics.se/page.php?id=1
http://en.wikipedia.org/wiki/General_game_playing
http://www.robocup.org/robocup-rescue/
http://www.give-challenge.org/research/

178 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

4.4.2 Property Market

Description: The general framework is that of buying and selling houses. Buyers have
preferences (certain area) and limitations (amount of money).

Agents:
Buyers,
Sellers,
Estate agents,
Banks

Goals:
Sellers want to get higher price
Buyers have a private utility
Banks want to give a loan to the most reliable buyer

Actions:
Announce a price
Bidding for a house
Securing a loan (for a Buyer)
Give a loan (for a Bank)
Negate a loan (for a Bank)

Type:
Qualitative Information: Give the largest possible loan to prospective worthy agents.
Quantitative Information: Location, price

Prediction:
Creation of a bubble
Equilibria Happiness

Comments:
No clear separation between buyers and sellers (a buyer might be a seller)
State agent misinformation
Intervention: the state intervenes to fix problems (change payoff, include taxes). They
can fix the problem or make it harder.

4.4.3 Concert Going

Description: A concert is being announced in a given location. People can announce whether
they expect to go or not (e.g., via their facebook pages). Other agents (e.g., hotel and
restaurants in the area of the concert) have access to the information and can use it for their
planning. (e.g., do I go or not in the end?, how much food do I order, how much do I charge
for parking?).

Agents:
Concert goers
Restaurants
Hotels

Goals:
Restaurants do not run out of food
Concert goer: I finally go only if some other people actually go.

Actions:
Announce going to the concert
Check

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 179

Comments:
Quite Complex
Multi-Agent planning problem
Friends provide network: the network is not accessible to everybody

Perspective of the city hall: Cooperatively make the system reach some goal.

4.4.4 Stock Market

Description: Only one stock

Agents: Finite number of agents not determined.
Actions:

Sell
Buy

Aim: Have a system that prevents certain problems from occurring. Intervention. Relation
to Thomas Ågotnes’ ideas on social laws.

Comments: Mainly qualitative, no probabilities. But includes quantities (price of the stock).

4.4.5 Book Prices

Description: book buying/selling, with the constraint (legal obligation) that the prices must
remain below a certain threshold. Assumption: unlimited supply of books.

Agents:
Book sellers
Book buyers

Goal: Sell the books for the best possible price
Actions:

Buy a book
Raise the price of the book
Look at the price of a book

Beliefs: They don’t have access to the actual demand
Comment: A step towards the complex one.

4.4.6 Really asymmetric example

Description: The set up of the GIVE challenge.

Agents:
Human following instructions
System giving instructions

Actions:
Navigation actions (for the User)
Instruction generation (for the System)
User Monitoring (for the System)

13181

180 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

4.5 Case Study Description: Avionic scenario
Franco Raimondi

License Creative Commons BY 3.0 Unported license
© Franco Raimondi

4.5.1 Description of scenario and Modeling as MAS

An aeroplane is composed of a number of agents, such as one or more (human) pilots,
autopilot, Traffic Collision Avoidance System (TCAS), etc. Also, a number of sensors are
present, and each agent has access to a subset of these. Sensors may be noisy and could
fail. A number of actuators are present as well, aeroplanes are coordinated by Air Traffic
Controllers (ATC) on ground. ATCs have access to sensors, actuators, and other agents
(such as the ground equivalent of TCAS). Figure 2 represents the aeroplane diagram, and
Figure 3 represents the ATC diagram (100 means “a good amount of”, and 1000 means “a
lot”).

Figure 2 Diagram of an aeroplane.

4.5.2 State of the art

Some tools are available to model similar scenarios. See
1) J. Hunter, F. Raimondi, N. Rungta, R. Stocker, A Synergistic and Extensible Framework

for Multi-Agent System Verification, to appear in Proceedings of AAMAS 2013
2) N. Rungta, G. Brat, W. Clancey, C. Linde, F. Raimondi, Chin S. and M. Shafto,

Aviation Safety: Modeling and Analyzing Complex Interactions between Humans and
Automated Systems, in Proceedings of ATACCS 2013

Papers available at http://www.rmnd.net/publications/
These papers use Brahms, see http://www.dagstuhl.de/Materials/Files/07/07122/07122.

SierhuisMaarten.Other.pdf

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.rmnd.net/publications/
http://www.dagstuhl.de/Materials/Files/07/07122/07122.SierhuisMaarten.Other.pdf
http://www.dagstuhl.de/Materials/Files/07/07122/07122.SierhuisMaarten.Other.pdf

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 181

Figure 3 Diagram of an ATC.

4.5.3 Relevant requirements for verification

There are a number of possibilities. Check that safety rules are respected even in presence of
noisy sensors:

Autopilot needs to be engaged while landing in fog, and pilot has a strategy to achieve
this
What is the probability of reaching a certain state?
If the autopilot is not engaged, the pilot knows it
If the pilot believes that a sensor is not functioning, then the pilot has a strategy to
deploy a backup sensor, etc.

Other possibilities include the encoding of interesting properties from existing procedures
or from proposed standards (see NextGen and SESAR, available respectively at http://en.
wikipedia.org/wiki/Next_Generation_Air_Transportation_System and http://en.wikipedia.
org/wiki/Single_European_Sky_ATM_Research for examples of Air Traffic Management
systems).

4.5.4 Existing tools

The source code of a very simple example using MCMAS (supports CTLK+ATL) is provided
below. The scenario encodes take-off and landing of an aeroplane in random weather
conditions (fog, wind, clear). If the weather is foggy, the autopilot should be engaged while
landing, but it should be disengaged in case of wind. It is possible to check these properties
and an epistemic one such as “if it is windy, the pilot knows it” (false, because a noisy
wind sensor is modelled). Also, it is possible to check ATL properties such as “the pilot has
a strategy to keep the autopilot on” (false because the aeroplane could be stuck at gate).
Figure 4 shows some examples of formulas model checked on the scenario example using
MCMAS. When a formula is not true on a model, MCMAS can give an example of behaviour
that does not verify it (see Figure 5).

13181

http://en.wikipedia.org/wiki/Next_Generation_Air_Transportation_System
http://en.wikipedia.org/wiki/Next_Generation_Air_Transportation_System
http://en.wikipedia.org/wiki/Single_European_Sky_ATM_Research
http://en.wikipedia.org/wiki/Single_European_Sky_ATM_Research

182 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

Agent Environment
Vars:

aeroplane1_status : {atgate, taxiing, takingoff, climbing,
enroute, descending, landing};

weather_conditions : { clear, wind, fog};
end Vars
Actions = {wind,clear,fog,none};
Protocol:

weather_conditions=clear: {clear};
weather_conditions=wind : {wind};
weather_conditions=fog : {fog};
Other : {none};

end Protocol
Evolution:

weather_conditions = clear if Action=clear;
weather_conditions = wind if Action=wind;
weather_conditions = fog if Action=fog;
aeroplane1_status=taxiing if aeroplane1_status=atgate;
aeroplane1_status=takingoff if aeroplane1_status=taxiing;
aeroplane1_status=climbing if aeroplane1_status=takingoff;
aeroplane1_status=enroute if aeroplane1_status=climbing;
aeroplane1_status=descending if aeroplane1_status=enroute;
aeroplane1_status=landing if aeroplane1_status=descending;

end Evolution
end Agent

Agent pilot1
Lobsvars = {aeroplane1_status};
Vars:

perceived_weather : {clear,wind,fog};
end Vars

Actions = {pushback,takeoff,engageAP,disengageAP,none};

Protocol:
perceived_weather=clear and !(Environment.aeroplane1_status=taxiing or

Environment.aeroplane1_status=atgate): {engageAP,disengageAP};
perceived_weather=wind and !(Environment.aeroplane1_status=taxiing or

Environment.aeroplane1_status=atgate) : {disengageAP};
perceived_weather=fog and !(Environment.aeroplane1_status=taxiing or

Environment.aeroplane1_status=atgate) : {engageAP};
Other : {none};

end Protocol
Evolution:

perceived_weather=clear if (Environment.Action=clear or Environment.Action=wind);
perceived_weather=fog if (Environment.Action=fog);
perceived_weather=wind if (Environment.Action=wind);

end Evolution
end Agent

Agent autopilot1
Lobsvars = {aeroplane1_status};
Vars:

engaged : boolean;
end Vars

Actions = {none};
Protocol:

Other : {none};
end Protocol
Evolution:

engaged = true if pilot1.Action=engageAP;
engaged = false if pilot1.Action=disengageAP;

end Evolution
end Agent

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 183

Evaluation
windy if Environment.weather_conditions=wind;
foggy if Environment.weather_conditions=fog;
APengaged if autopilot1.engaged = true;
in_landing_mode if (Environment.aeroplane1_status=descending) or

(Environment.aeroplane1_status=landing);
end Evaluation

InitStates
(Environment.aeroplane1_status=atgate) and autopilot1.engaged=false;

end InitStates

Groups
pilot = {pilot1};

end Groups

Fairness
-- in_landing_mode;

end Fairness

Formulae
AG((in_landing_mode and foggy) -> AX(AX(APengaged)));
AG((in_landing_mode and windy) -> AX(AX(!APengaged)));
<pilot>G(APengaged);
AG(windy -> K(pilot1,windy));

end Formulae

13181

184 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

Figure 4 Model checking some formulas on the example scenario.

Figure 5 Counterexample for Formula 2.

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 185

4.6 Discussion about the testing of MAS
Working Group 7

License Creative Commons BY 3.0 Unported license
© Working Group 7

Main questions:
Commonalities between testing and model checking for MAS ⇒ not discussed
Do we need special techniques for testing autonomous system?
What are the testing goals for MAS?

General considerations:
Output not deterministically predictable: no “right” or “wrong” of individual decisions.
Goals and reasoning must be included in the test harness.
Agents must be able to explain and give rationale for decisions (i.e., no black-box
testing is possible)
Difference to verification? ⇒ considers only a selected number of runs
Test oracle problem becomes harder (maybe even undecidable)

Completeness of testing? How to do the testing?
Test case problem: find a scenario with a well-defined reaction philosophical issue:
“highly intelligent” and “defective” cannot be easily distinguished.
Often “just” random experimentation is done
Make (random?) experiment and check whether the behaviour can be explained by
the overall goals
Differentiate between high-level goals (on the level of agent groups) and low-level goals
(on the level of individual agents)
Low-level goals are probably easier to check or verify
Coverage criteria are hard to define.
Maybe a new coverage criterion. “Strategy coverage” must be defined. Meaning: cover
all strategies or cover all strategic decisions? This is different from path coverage (all
path with all strategies).

How to deal with the change of strategies?
Is a meta-strategy just another strategy?
Example: cellular-automata game with cats, birds and dogs [(C): Stefan Gruner and
his students in Pretoria]
Can learn strategies
Evolving strategies are a challenge for MAS
Testing knowledge and belief versus testing strategies?
⇒ Probably knowledge and belief are already represented in the strategy.
Is there a theory of strategy testing?
Apparently not (yet); e.g. ioco cannot be transferred. Maybe there is a connection to
model checking here: evaluation of the quality of testing just by statistical evaluation
⇒ Simulation environments with random testing coverage of environment vs. coverage
of SUT.
We need a test strategy for testing strategies :-)
We need suitable criteria for this purpose. One such criterion could be “Robustness”: if
the environment changes only little, the agent’s behaviour should typically also change
only little.

What about learning systems?
MAS vs. von Neumann’s cellular automata

13181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

186 13181 – VaToMAS – Verification and Testing of Multi-Agent Systems

Programs writing programs?
Distinguishing a highly intelligent and a defect system can be hard
Machine learning on two levels:

parameter optimization
strategy learning

Learning systems are out of scope at the moment; how about adaptive systems?

OUTLOOK: For the meta theory (Methodology) of testing, can we learn anything from
the social sciences or from pedagogics? How do sociologists or school-teachers do their
“experiments” with people or pupils? Scientificness of the Methodology must be kept in mind
(e.g. Mario Bunge)

4.7 Discussion concerning logics for knowledge, time and strategies
Working Group 5

License Creative Commons BY 3.0 Unported license
© Working Group 5

Logics Extensions Limitations Open questions /
Possible solutions

Epistemic Logic

Temporal
DEL
Memory
Synchronous/Asynchronous

Unrealistic w.r.t resources
Models are about uncertainty
→ Awareness?
Knowledge de dicto/de re

Alternative semantics

Strategic Logics
ATL

Imperfect information
Recall
Type of strategy
Explicit strategies/actions
Quantitative aspects

Complexity/Undecidability
Where are the
“killer” applications?
ATL + dynamics
Mixed strategies/
probabilistic settings

Security protocols
e-voting
Plant controller
Modelling (translating
from semi-formal
to formal)
More tools
Encoding real problems
Connection between
ATL and game theory

DEL Connection to
LTL + knowledge

Perfect recall unavoidable
Asynchronous semantics
for DEL

DEL with imperfect
recall
DEL for planning

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff 187

Participants

Thomas Ågotnes
University of Bergen, NO

Carlos Areces
Universidad Nacional de
Córdoba, AR

Guillaume Aucher
INRIA Bretagne Atlantique –
Rennes, FR

Alexandru Baltag
University of Amsterdam, NL

Ezio Bartocci
TU Wien, AT

Ioana Boureanu
EPFL – Lausanne, CH

Nils Bulling
TU Clausthal, DE

Louise A. Dennis
University of Liverpool, GB

Michael Fisher
University of Liverpool, GB

Tim French
The University of Western
Australia – Nedlands, AU

Valentin Goranko
Technical Univ. of Denmark, DK

Stefan Gruner
University of Pretoria, ZA

Dimitar Guelev
Bulgarian Academy of Sciences –
Sofia, BG

Yuri Gurevich
Microsoft Res. – Redmond, US

Andreas Herzig
Paul Sabatier University –
Toulouse, FR

Wojtek Jamroga
University of Luxembourg, LU

François Laroussinie
University Paris-Diderot, FR

Alessio R. Lomuscio
Imperial College London, GB

Nicolas Markey
ENS – Cachan, FR

Bastien Maubert
INRIA Bretagne Atlantique –
Rennes, FR

Stephan Merz
LORIA – Nancy, FR

Aniello Murano
University of Napoli, IT

Wojciech Penczek
Siedlce University of Natural
Sciences and Humanities, PL

Sylvain Peyronnet
GREYC – Caen, FR

Jerzy Pilecki
Polish Academy of Science, PL

Sophie Pinchinat
IRISA – Rennes, FR

Franco Raimondi
Middlesex University, GB

Jean-François Raskin
Université Libre de Bruxelles, BE

Markus Roggenbach
Swansea University, GB

Ina Schaefer
TU Braunschweig, DE

Holger Schlingloff
HU Berlin, DE

Gerardo Schneider
University of Gothenburg, SE

Henning Schnoor
Universität Kiel, DE

François Schwarzentruber
IRISA – Rennes, FR

Dmitry Shkatov
University of the Witwatersrand –
Johannesburg, ZA

Ron van der Meyden
UNSW – Sydney, AU

Hans Van Ditmarsch
LORIA – Nancy, FR

Ramanathan Venkatesh
Tata Consultancy Services –
Pune, IN

Karsten Wolf
Universität Rostock, DE

13181

Report from Dagstuhl Seminar 13182

Meta-Modeling Model-Based Engineering Tools
Edited by
Tony Clark1, Robert B. France2, Martin Gogolla3, and
Bran V. Selic4

1 Middlesex University, GB, t.n.clark@mdx.ac.uk
2 Colorado State University, US, france@cs.colostate.edu
3 Universität Bremen, DE, gogolla@informatik.uni-bremen.de
4 Malina Software Corp. – Nepean, CA, selic@acm.org

Abstract
Model-based engineering (MBE) is a software development approach in which abstraction via
modeling is used as the primary mechanism for managing the complexity of software-based sys-
tems. An effective approach to software development must be supported by effective technologies
(i.e., languages, methods, processes, tools). The wide range of development tasks that effective
MBE approaches must support leads to two possible tooling scenarios. In the first scenario a
federated collection of tools is used to support system development. Each tool in the collection
provides specialized services. Tool interoperability and consistency of information across the tools
are major concerns in this scenario. These concerns are typically addressed using transformations
and exposed tool interfaces. Defining and evolving the transformations and interfaces requires
detailed low-level knowledge of the tools and thus leads to complex tooling environments that are
difficult to configure, learn, use, and evolve. In the second scenario, a single tool is used to sup-
port the complete modeling lifecycle. This avoids the inter-tool transformation and consistency
problems, but the resulting multi-featured tool is a monolithic entity that is costly to develop
and evolve. Furthermore, the large number of non-trivial features can make learning and using
such tools difficult.

Successful uptake of MDE in industry requires supporting tools to be, at least, useful and
usable. From a tool developer’s perspective, there is also a need to significantly reduce the
cost and effort required to develop and evolve complex MBE tools. This seminar brings together
experts in the areas of MBE, meta-modeling, tool development, and human-computer interactions
to map out a research agenda that lays a foundation for the development of effective MBE tools.
Such a foundation will need to support not only interoperability of tools or tool features, but also
the implementation of high quality MBE tools. The long-term objective is to foster a research
community that will work on a foundation that can be expressed in the form of standard tool
(meta-)models that capture and leverage high quality reusable MBE tool development experience.

Seminar 28. April–03. May, 2013 – www.dagstuhl.de/13182
1998 ACM Subject Classification D.2 Software Engineering, H.1 Models and Principles
Keywords and phrases meta-modeling, model-based engineering, models, tools, domain specific

modeling languages
Digital Object Identifier 10.4230/DagRep.3.4.188
Edited in cooperation with Dustin Wüest

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Meta-Modeling Model-Based Engineering Tools, Dagstuhl Reports, Vol. 3, Issue 4, pp. 188–227
Editors: Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13182
http://dx.doi.org/10.4230/DagRep.3.4.188
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 189

1 Executive Summary

Tony Clark
Robert B. France
Martin Gogolla
Bran V. Selic

License Creative Commons BY 3.0 Unported license
© Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic

The 33 participants at the Meta-Modeling Model-Based Engineering Tools (M3BET) Dagstuhl
Seminar were brought together to explore how model-based engineering (MBE) techniques
can be used to improve the quality of software modeling tools. The participants included
expert researchers, practitioners and tool developers in the software/system modeling and
the human computer interaction communities. The discussions aimed to answer the following
question: Can MBE techniques be used to produce more effective MBE tools, and, if so, how
should it be done?

The vision underlying the seminar is one in which technologists create tool models that
specify desired tool features, and tool modeling frameworks that are used to analyze, compose,
transform, simulate and otherwise manipulate the tool models. In the vision, tool developers
will use tool models and frameworks to produce useful, usable and cost-effective software
modeling tools.

Seminar Organization

!"#$%&''()*+ ,)*-"#+ ./&'-"#+ 0&-*&'-"#+ .1/2'-"#+ 32(-"#+
,)2*(*4+ !"#$#%&'&()%*

'%+*+($,-$$()%*
).*$#/(%'"*
)01#,&(2#$*'%+*
)-&,)/#$3*
4%&")+-,&()%$**

56)"&*
7"#$#%&'&()%$3*
8)"/'&()%*).*
9)":(%;*;")-7$*

!<#%'"=*$#$$()%3*
>)":(%;*;")-7*
$#$$()%$*

>)":(%;*;")-7*
$#$$()%$*

?"'.&(%;*
$#/(%'"*
,)%,<-$()%$*
'%+*7<'%$*

567&2*))*+ @*/(%-&#*
7"#$#%&'&()%$*
0=*7'"&(,(7'%&$*

>)":(%;*;")-7*
$#$$()%$*

?#/)$3**
5),('<*#2#%&*

?#/)$3*!<#%'"=*
$#$$()%*

5#/(%'"*
,<)$-"#*

*
Figure 1 The Final Seminar Program.

The final seminar program is given in Figure 1. On the first day the seminar objective and
outcomes were presented. The seminar objectives, as presented on that day, was to better
understand the “what, why, and how” of tool models, and initiate work on (1) languages
for tool modeling, (2) MBE methods and technologies for tool development, and (3) tool
modeling frameworks.

The planned outcomes were (1) reports on the results of group discussions, (2) a research
roadmap for achieving the tool modeling vision, (3) potential solutions for achieving the
vision, and (4) initiation of new research collaborations among participants.

To help shape and initiate the discussions, the organizers proposed the following as an
initial set of breakout group topics:

Tool capabilities – The intent was that discussions in this group would focus on
identifying the software tool capabilities that should be captured in tool models, and on

13182

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

190 13182 – Meta-Modeling Model-Based Engineering Tools

how these capabilities could be captured in tool metamodels. This covers discussions on
(1) how metamodels can be used to describe tool capabilities in a manner that supports
generation of high-quality tool components, (2) the utility and feasibility of defining tool
metamodels, (3) potential benefits associated with and purposes served by a tool metamodel,
and (4) challenges associated with developing an effective metamodel (i.e., a metamodel that
is fit-for-purpose).

Tool qualities – Discussions in this group would aim to answer questions about desirable
tool qualities (e.g., What issues determine tool adoption and why?). This includes key
questions related to, for example, usability/human factors, scalability, interoperability, as
well as non-technical but important considerations related to organization goals, culture, and
processes.

Tool ecosystems – A tool framework can be thought of as a technological ecosystem
that involves both tools as well as tool users. Discussions in this group would seek answers
to questions such as: What are the features of a good tools framework? Are there candidate
frameworks available? If so, are they sufficient or do they need to be extended?

Tool development methods – Discussions in this group would focus on answering the
following questions: How can MBE be applied to the development of MBE tools? What
types of languages are suitable for describing tools? How can tool quality issues be addressed
by such methods?

Working Groups

During the discussions on group topics it was decided to base the groups on tool concerns
and issues that the participants had some stake in. It turned out that the concerns and
issues that arose from the discussions were mostly derived from those underlying the groups
proposed by the organizers.

The concerns and issues were then clustered into two groups based on participant
interests. Group A consisted of usability, utility, and broader non-technical concerns (e.g.,
designing tools that support how developers work and think, designing and performing
usability studies, adapting tool features to user expertise and desired level of formality,
marketing/business/cultural concerns). Group B consisted of the more technical concerns, for
example, concerns related to tool development methods, scalability, support for separation of
concerns, tool quality assessment and benchmarking.

Group B concerns were further grouped into two categories: Composition, and Methods
and Quality concerns. The Composition concerns included issues related to tool, language,
and model composition, and the use of multi-models with heterogeneous semantics.

Three Working Groups, each focusing on one of the above concern groups, were formed
on the seminar’s first day. A summary of the discussions that took place in each group is
included in the report.

Summary and Future Work

One of the major insights gained during the seminar was that a good understanding of the
utility of tool models and the identification of appropriate forms of tool models/metamodels
requires one to first address more fundamental tool development and assessment concerns.
On hindsight, this should not have been a surprising result; effective tool models would
have to capture significant tool development and assessment experience and knowledge and
thus such experience and knowledge needs to be distilled first. The seminar provided a
good forum for discussing and organizing the experience and knowledge of the participants.

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 191

Post-seminar collaborations that will utilize these results to develop an initial set of tool
models/metamodels were initiated at the seminar.

In addition to the planned collaborations on tool models, the participants also agreed to
engage in the following post-seminar activities:

Publications: The following publications are planned
A special issue of the Software and System Modeling (SoSyM) journal that will include
articles that focus on the concerns and issues discussed at the seminar.
A paper that discusses problems associated with current software modeling tools.

Workshops: Workshops in which participants will discuss and develop tool models/meta-
models will be held at conferences such as MODELS 2014 and ICSE 2014.

13182

192 13182 – Meta-Modeling Model-Based Engineering Tools

2 Table of Contents

Executive Summary
Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 189

Overview of Talks
Towards Truly View-Based Software Engineering Environments
Colin Atkinson . 195

Meta-Models for Model Based Engineering Tools
Tony Clark . 196

MDE and SLE Cross Fertilization
Benoit Combemale . 197

Human Activity Modeling of Human Modeling Activities
Larry Constantine . 197

Abstract Modeling for Interaction Design
Larry Constantine . 197

Lessons from Human Tool Use
Larry Constantine . 198

Towards More Reliable Tools
Catherine Dubois . 198

Megamodels in Model-Based Engineering Tools
Michalis Famelis . 198

Demo Abstract: Typed Megamodeling with the Model Management Tool Framework
Michalis Famelis . 199

Towards Empathetic Tool Design
Robert B. France . 199

Flexible Modeling
Martin Glinz . 200

Some Challenges and Expectations on Tool Support for Model-Based Engineering
Martin Gogolla . 201

MBE Tools and Evolving Environments
Lars Hamann . 201

Make Good Languages
Øystein Haugen . 202

Engineering Tool Integration: Patterns
Gabor Karsai . 202

MetaEdit+: Faster Meta-Modeling by Design
Steven Kelly . 203

Demo Abstract for MetaEdit+
Steven Kelly . 203

Finding Tool Paradigms
Thomas Kühne . 204

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 193

Towards Greater Adoption of MDE by Industry Practice
Vinay Kulkarni . 204

Servicing IT Needs of Future Enterprises
Vinay Kulkarni . 208

Methods, not Models
Stephen J. Mellor . 209

Computer Automated Multiparadigm Modeling for the Design of Software Systems
in a Physical World
Pieter J. Mosterman . 209

The Original Sin – Using Current Computers for Modeling Software
Pierre-Alain Muller . 210

The Other Face of Models
Leonel Domingos Telo Nóbrega . 211

The MetaSketch Workbench
Leonel Domingos Telo Nóbrega . 211

Improving the Usability of Formal Verification Techniques Through Customizable
Visualizations
Ileana Ober . 212

Empirical Studies of Expert Software Design (Cuckoo or Canary?)
Marian Petre . 213

Bridging the Gap Between Software Models and Analysis (Performance, Reliability,
etc.) Models
Dorina C. Petriu . 213

The Need for Scalable and Flexible Model-Based Engineering
Louis Rose . 214

EuGENia Live: A Flexible Graphical Modelling Tool
Louis Rose . 215

Compositional Model Based Software Development
Bernhard Rumpe . 215

Formal Verfication and Model-Based Engineering
Martina Seidl . 216

MBE Tools: Effective Automation Where It Helps
Bran V. Selic . 217

Models in Software Engineering
Perdita Stevens . 218

Tool Building Using Language Composition
Laurence Tratt . 218

Generic Tools, Specific Languages
Markus Völter . 218

The Tool’s The Thing
Jon Whittle . 219

13182

194 13182 – Meta-Modeling Model-Based Engineering Tools

Flexible, Lightweight Metamodeling
Dustin Wüest . 219

Liberating Software Engineers from the Tyranny of a Strict Modeling Language
Dustin Wüest . 220

Design and Design Thinking
André van der Hoek . 221

Overview of Working Groups
Working Group A: Summary of Discussions and Conclusions
Bran V. Selic . 221

Working Group B.1: Composition Issues in MBE Languages and Tools
Tony Clark . 222

Working Group B.2: Research Questions for Validation and Verification in the
Context of Model-Based Engineering
Martin Gogolla . 225

Participants . 227

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 195

3 Overview of Talks

3.1 Towards Truly View-Based Software Engineering Environments
Colin Atkinson (Universität Mannheim, DE)

License Creative Commons BY 3.0 Unported license
© Colin Atkinson

Main reference C. Atkinson, D. Stoll, C. Tunjic, and J. Robin, “A Prototype Implementation of an Orthographic
Software Modeling Environment”, VAO 2013, Montpellier 2013.

URL http://swt.informatik.uni-mannheim.de

Ensuring the coherence of all the data, artifacts and relationships generated during a software
development project has always been an important aspect of software engineering, even
in the days when software systems were typically written in a single language, but with
modern development languages, paradigms and processes maintaining artifact coherence
has arguably become one of the biggest challenges in software engineering. Without a
continual campaign of “management” activities (e.g. configuration management, change
management, version management, release management, traceability management etc.) the
coherence of software engineering artifacts inevitably degrades over time. At the concrete
level of individual projects this coherence challenge is often experienced as an integration
problem – more specifically, as the problem of integrating data, tools, and processes within a
single environment. The software industry therefore has tended to tackle this challenge with
“integration” or “interoperability” solutions (e.g. the Open Services for Lifecycle Collaboration
(OSLC)). While such initiatives undoubtedly alleviate some of the immediate problems faced
in using traditional tool suites, they do not really address the underlying problems. In
particular, the number of pairwise consistency relationships that need to be maintained grows
rapidly with the number of tool/views involved (n(n-1)/2) where n is the number of tools).

This talk takes the position that in order to address the root causes of the aforementioned
problems, the next generation of software engineering environments and method should be
based on the following three principles. The first principle is that the information edited
and portrayed within the “artifacts” should be regarded as “views” derived from a single
centralized description of the system a “Single Underling Model (SUM)”. The most important
consequence of this shift in perspective from artifact/tool centric handling of information to
view/SUM centric handling of information is that no lifecycle management activities must
be carried out at the artifact level (as is typically the case today). In other words, there
must be no versions/variants of artifacts (e.g. code modules, PIMs etc), there must only be
versions/variants of the system (and its components) as described in the SUM.

The second principle is that the best modeling architecture to realize such an approach
is a multi-level-model approach that allows languages and services to be applied uniformly
across multiple classification levels. Such an architecture is often referred to as an Orthogonal
Classification Architecture (OCA). It is important to stress that the term “model” here is
intended in a more general sense than the typical types of diagram used in model-driven
development (i.e. class diagram or state diagrams etc.). In this context the term “model”
refers to any form of information representation including all traditional software engineering
artifacts such code and models of the kind commonly used in model-driven development.

The final principle is that a software engineering environment based on such an infra-
structure should be “view” agnostic in the sense that it should be based on a method or
development “paradigm” that is not driven by, or biased towards, any particular kind of
view. In particular, this means that no particular kind of view such as “code” or “PIMs”
should dominate the development process. This will make it possible to merge today’s

13182

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://swt.informatik.uni-mannheim.de/
http://swt.informatik.uni-mannheim.de/
http://swt.informatik.uni-mannheim.de

196 13182 – Meta-Modeling Model-Based Engineering Tools

advanced software engineering paradigms such as model- driven development, aspect-oriented
development, product-line engineering and agile development in a much more fundamental
way than has so far been possible.

3.2 Meta-Models for Model Based Engineering Tools
Tony Clark (Middlesex University, GB)

License Creative Commons BY 3.0 Unported license
© Tony Clark

Model Based Engineering claims to address issues including efficiency and quality of the
Software Engineering process through the use of abstraction in terms of models. Models
represent an aspect of a system and allow the engineer to design, analyze and manipulate
the system aspect without needing to deal with implementation details that might otherwise
impede progress.

Successful Model Based Engineering relies on tools that construct, analyze and transform
models. There are many such tools, some free and come commercial, that are currently
available. Unfortunately, the usability of such tools is generally viewed to be less than ideal,
and has been claimed to be part of the reason why MBE has not become more widespread
within the SE industry.

The lack of MBE tool usability may be attributed to various factors. These include the
sheer size and complexity of typical MBE tool functionality where menus proliferate and
reach many levels of nesting. It is often the case that a tool tries to support many (in some
cases all) the actors in the software development life-cycle leading to tools that, for each
individual user, offer a vast array of redundant features. Furthermore, such tools are often
developed by software engineers who are not experts in design issues, leading to awkward or
unintuitive interactions.

A proposal to address this problem is to apply MBE principles to the development of
MBE tools. A meta-language for tool development would allow features such as design
principles to be expressed and captured for families of tools. The resulting tool models could
be processed by tool engines that make the development of smaller tools more economically
attractive. MBE techniques such as slicing, transformation and merging could be applied
to tool models thereby allowing tool fragments to be reused so that building larger tools is
achievable by smaller groups, and can benefit from earlier tool verification efforts.

Over time, it may be possible to produce a standard model for expressing MBE tools
leading to a marketplace in terms of meta-frameworks that process tool-models and in terms
of tool fragments. Companies can have proprietary implementations of a meta-framework
that produce a product-line of MBE tools tailored for a specific domain.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 197

3.3 MDE and SLE Cross Fertilization
Benoit Combemale (IRISA – Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Benoit Combemale

URL http://www.combemale.fr

Domain Specific Modeling Languages (DSMLs) are widely adopted to capitalize on business
domain experiences. Consequently, DSML implementation is becoming a recurring activity,
whether newly defined language or by specialization of a more general language (e.g., UML).
To be effective, a DSML requires an associate dedicated modeling environment including
tools such as editors, simulators, and code generators. In practice, the implementation of
such a modeling environment is a complex and time consuming task. However, it is commonly
realized from scratch for each DSML, even for languages which share some concepts and
could share bits of tool support. A major obstacle is that there is no opportunity to
capitalize the work, even if the different modeling languages and their respective tools are
very closed or should be coordinated. In this talk, we explore the challenges associated to
the cross-fertilization of Software Language Engineering, Global Software Engineering and
Model Driven Engineering to support a Coordinated Model-Driven Language engineering.
In particular, we focus on a uniform approach for language reuse, variability, composability
and coordination.

3.4 Human Activity Modeling of Human Modeling Activities
Larry Constantine (University of Madeira – Funchal, PT)

License Creative Commons BY 3.0 Unported license
© Larry Constantine

Human Activity Modeling (hAM) is a systematic formalism based on activity theory. Activity
theory is a well-established framework for describing and understanding human activities of
all kinds. The systematic notation of hAM provides simplified conventions that support user
experience and interaction design and builds a shared vocabulary that bridges to software
engineering. Recent work extends the range of applications to include social sciences research
and organization analysis. In this presentation, hAM is applied recursively to the activities
that analysts, designers, and engineers carry out when using models.

3.5 Abstract Modeling for Interaction Design
Larry Constantine (University of Madeira – Funchal, PT)

License Creative Commons BY 3.0 Unported license
© Larry Constantine

Recent work has extended Canonical Abstract Prototypes (CAPs) to support the design of
large, complex multi-modal, multi-media, multi-channel systems and services. The resulting
dynamic, distributed CAPs (ddCAPs) accomplish a separation of concerns that facilitates
fuller specification of dynamic and behavioral aspects of user interfaces at an abstract level.
The notation of ddCAP models provides a simpler, more effective platform for communication
between interaction designers and software engineers.

13182

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.combemale.fr
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

198 13182 – Meta-Modeling Model-Based Engineering Tools

3.6 Lessons from Human Tool Use
Larry Constantine (University of Madeira – Funchal, PT)

License Creative Commons BY 3.0 Unported license
© Larry Constantine

Findings from ethnographic and social science investigations of tool use are reviewed for
concrete guidelines for design and construction of better modeling tools. Informed by activity
theory inquiries into how humans organize and use tools in complex, skilled activities, a
dozen specific recommendations are presented for enhancing user performance in modeling
and use of modeling tools.

3.7 Towards More Reliable Tools
Catherine Dubois (ENSIIE – Evry, FR)

License Creative Commons BY 3.0 Unported license
© Catherine Dubois

Tools are fundamental when using formal methods and when applying a model based
engineering approach. And they are many MBE tools. However a question arises: do you
trust your tools ? The position I try to defend is that we can adopt a formal approach to verify
and/or develop the MBE tools. In particular a formalized semantics of a modeling language
is necessary to build tools in order to provide them with a basis as solid as possible. Several
researchers have tackled this problem, using Coq, Isabelle or Maude, either to provide sound
mathematical foundations for the study and the validation of MDE technologies or to verify
some model transformations. However it is a challenging task (and hard work) to develop
such formalizations in proof assistants like Coq or Isabelle. We can notice that modeling
languages often share some notions or components. Consequently a research perspective
could be to develop a framework allowing to define the semantics of these common component
together with a way of combining them in order to define formally the mechanized semantics
of a modeling language and thus verify tools and model transformations. DSL, aspects,
variability etc. are, according to me, ingredients of such a framework.

3.8 Megamodels in Model-Based Engineering Tools
Michalis Famelis (University of Toronto, CA)

License Creative Commons BY 3.0 Unported license
© Michalis Famelis

I briefly introduced the ideas of my research group regarding the use of typed megamodeling
to improve model management in model-based engineering tools. Through the explicit
management of models, their metamodels, and relations and transformations between them,
we aim to create support for ecosystems of modular, reusable tools. Typed megamodels
can be used at tool runtime for online tool extension and reconfiguration, while providing
semantic consistency for tasks such as language extension and adaptation. Tooling tasks can
also be better supported by leveraging the megamodel type system, by taking into account
type casting, polymorphism, type safety, etc. I illustrated these ideas using the Model

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 199

Management Tool Framework (MMTF), an Eclipse-based pluggable infrastructure developed
at the University of Toronto. Megamodels can also be used to support collaboration and
knowledge transfer among multiple users of tools. I illustrated this using the example of
Modelepedia, a semantic-wiki companion to MMTF.

3.9 Demo Abstract: Typed Megamodeling with the Model
Management Tool Framework

Michalis Famelis (University of Toronto, CA)

License Creative Commons BY 3.0 Unported license
© Michalis Famelis

Model management has emerged as an important approach to addressing the complexity
introduced by the use of many interrelated models in Software Engineering. In this tool
demonstration, I highlighted the capabilities of the Model Management Tool Framework
(MMTF) – an Eclipse-based pluggable infrastructure for rapidly developing model manage-
ment tools. MMTF differs from other model management frameworks through its emphasis on
interactive model management, graphical megamodeling and strong typing. Using examples
from automotive software development, I illustrated how MMTF can be used as a runtime
typed megamodel to enhance the capabilities of modeling tools.

3.10 Towards Empathetic Tool Design
Robert B. France (Colorado State University, US)

License Creative Commons BY 3.0 Unported license
© Robert B. France

There is no doubt that research in model driven (software) development (MDD) has advanced
the state-of-art in software modeling and yielded revealing insights into the challenging
problems that developers of complex software-based systems face. Yet, sustainable use
of MDD technologies in industry is still elusive. While many practitioners have some
appreciation of the benefits associated with proper use of MDD approaches, technologists
(tool architects and developers) have fallen short of providing the types of tools needed to
fully support MDD practices. Specifically, a pesky point of friction is the limited number of
usable MDD tools that are available today.

Practitioners understandably judge the effectiveness of MDD approaches in terms of tool
quality: If the tool is bad then the approach it supports is perceived as being bad. While
this perception may be logically flawed, it is understandable; tools are at the front-end of the
battle to manage software complexity through MDD approaches, and thus their failure to
support MDD practices and the work styles of MDD practitioners has a significant impact
on how well MDD practices can be supported in a sustainable manner. In other words, tools
should make the power of MDD readily accessible to developers.

Poor tool support can contribute to accidental complexity. This gives rise to the perception
that MDD adds complexity to the software development process. In many cases, tools are too
heavyweight, that is, they have many features that support a broad spectrum of development
activities, in addition to a complex infrastructure for managing the features and for extending
the tool with new features. The problem with such broad-spectrum tools is that it can take
considerable effort to, for example, (1) identify and get to the subset of features needed
to support a particular activity, (2) learn how to effectively use a desired feature, and (3)

13182

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

200 13182 – Meta-Modeling Model-Based Engineering Tools

learn how to use a combination of features to support development workflows that cut across
different development phases (e.g., to support coordinated use of models at the requirements,
architecture, and detailed design stages). This effort is a significant contributor to the
accidental complexity associated with many heavyweight MDD tool environments.

The above problems stem from a lack of attention to tool usability. Rather than build tools
that fit the working style of MDD practitioners, it seems that tool developers/technologists
arbitrarily impose particular working styles on tool users. The problem stems from a failure
on the part of the tool developers to perform usability studies in which MDD practitioners at
different skill levels perform their work using the tools and provide feedback on how well tools
support their work. More specifically, tool developers need to practice what is sometimes
called empathetic design, where tool design activities are centered on the practitioners that
technologists seek to influence. MDD technologists need to put practitioners at the “front
and center” of their tool design activities. Currently, technologists work with a model of
practitioners that is often not validated, that is, they may be working with flawed models
of practitioners. It is thus not surprising that tools often do not fit the working styles of
practitioners and thus are perceived as adding to the complexity of developing software-based
systems.

There is a need for MDD tools that amplify a modeler’s skills and good working habits.
The antithesis is that a tool should not force a practitioner to change good working styles,
nor get in the way of skillful use of modeling concepts. If a tool imposes a particular working
style on practitioners it should be done in a manner that makes the benefits clearly apparent
to practitioners (i.e., the effort required to use a tool should be significantly offset by gains
in productivity or product quality). Both researchers and technologists are needed to realize
this vision of usable tools. Researchers need to conduct studies of how practitioners at
various skill levels work. Such empirical results can help technologists build more accurate
models of their target audience. Technologists also need to continually evaluate the usability
of their tools using representative sets of practitioners, and to evolve their tools accordingly.

In closing, I would also like encourage technologists to consider incorporating features
that practitioners can use to develop their modeling skills (i.e., not just support current
practices or amplify skills). This can take the form of, for example, suggestions for improving
models based on modeling “bad smells” and on the detection of anti-patterns in models.
Such tools would be particularly useful in classrooms where next-generation modelers are
molded.

3.11 Flexible Modeling
Martin Glinz (Universität Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Martin Glinz

Joint work of Glinz, Martin; Wüest, Dustin
URL http://www.ifi.uzh.ch/rerg/research/flexiblemodeling.html

In my research group at the University of Zurich, we are working on flexible modeling,
developing the FlexiSketch tool as a major constituent of our research. We try to understand
what’s the essence of a flexible modeling tool that makes it a must-have thing. We also
investigate the problem of metamodeling by end- users, empowering them to metamodel
without knowing it. Future work will investigate how to organize and navigate large collections
of sketches, text fragments and model fragments.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.ifi.uzh.ch/rerg/research/flexiblemodeling.html

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 201

3.12 Some Challenges and Expectations on Tool Support for
Model-Based Engineering

Martin Gogolla (Universität Bremen, DE)

License Creative Commons BY 3.0 Unported license
© Martin Gogolla

This position statement is formulated from the viewpoint of having some experience in
various fields like algebraic specification, temporal logic, entity-relationship modeling, graph
transformation, and syntax and semantics of modeling languages. Furthermore, our consider-
ations are influenced by a current work focus on OCL (i.e., a textual expression language) as
part of UML (i.e., a modeling language with graphical and textual syntax being able to be
used as a general purpose and domain specific language and allowing the characterization of
design time and runtime phenomena). Our previous work concentrated on validation and
verification techniques for assuring model properties and profits from the development of an
academic UML and OCL tool during recent years which is currently used within a larger
German project.

Key challenges for MBE tool support include (a) bridging the gap between modeling and
programming, (b) efficiently and automatically transforming descriptive models into efficient
programs (which may be viewed as prescriptive models) respecting properties assured for
source models, (c) enabling communication between modeling tools which have different
capability focus, and (d) developing benchmarks (test suites) for models and for modeling
tools in order to compare functionality, efficiency, usability, exchangeability, learnability (and
other criteria) of modeling techniques and tools. As possible outcomes of future work we
identify (a) formal comparison criteria for and modeling features of validation and verification
modeling tools and their quality assurance, (b) connecting validation and verification modeling
tools with modeling tools having different focus (e.g., transformation tools, code generation
tools, performance analysis tools, process management tools, teaching tools), and (c) formal
criteria for rating the capabilities of modeling tools.

3.13 MBE Tools and Evolving Environments
Lars Hamann (Universität Bremen, DE)

License Creative Commons BY 3.0 Unported license
© Lars Hamann

Years back I worked as a “non-MBE” developer, but also in this past, models were all around.
However, they were only used for specific domains during different development phases, like
for example, the relational model of an information system. Unfortunately, these models
containing so much information ended up as a historical artifact pinned at a wall. The
modeling tools used to generate these artifacts were all well suited to create models in their
particular domain, but considered a small part of their surrounding world only. Either, they
transformed (called export those days) their model into something with lesser abstraction
loosing all the semantic of the higher abstraction or they simply could export it to another
(established) tool for the same domain (to be honest, to import data from an established
tool was the more common case, because the user should use the importing tool).

In present days, import and export are called model transformation and common data
formats like EMF, support transferring models. However, tools still consider only a small part

13182

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

202 13182 – Meta-Modeling Model-Based Engineering Tools

of their surrounding world (call it ecosystem if you like). They define their requirements on
the ecosystem in a self-serving way ignoring changes to their outside or, in my opinion, much
more important they require modification to the outside. This makes it nearly impossible
to compose a tool-set of specialized tools. One future challenge in making MBE-based
tools more accepted is to build tools in a more solidary way. To relate the aforementioned
observations to a possible meta-model of model-based engineering tool, a possible future
meta-model for MBE-tools should support this composition of evolving and not evolving
tools. A simple, but important feature would be to integrate versioning of tools and their
used meta-models. In a strong sense, it could require a tool to provide model-transformations
between versions.

3.14 Make Good Languages
Øystein Haugen (SINTEF – Oslo, NO)

License Creative Commons BY 3.0 Unported license
© Øystein Haugen

If Model-Based Engineering Tools should be meta-modeled, then their success will be
dependent on the means for meta-modeling. Meta- modeling is dependent on meta-languages
such as MOF (standardized by OMG), but experience shows that even extremely well
qualified and competent people fail to be able to express their intent in MOF. MOF is not a
good domain-specific language for describing languages which is what it should have been
to make meta-modeling simpler. We need a better standardized meta-language such that
those tools and techniques that are built on the meta-models will have better quality, be
more precise and unambiguously interpreted. Let good people make good languages for good
tooling.

3.15 Engineering Tool Integration: Patterns
Gabor Karsai (Vanderbilt University, US)

License Creative Commons BY 3.0 Unported license
© Gabor Karsai

Model-driven development of systems and software implies that many, different types of
models are used. Models can represent anything and everything about the system being
constructed, and arguably there is no single model-based engineering tool that can cover all
aspects of the process. The MDE community has developed various techniques, standards,
and tools for model representation, manipulation, management, transformation, etc. and the
problem of model integration has been recognized and appreciated. Model-based engineering
tools support an engineering process, where different types of models are used for different
purposes. Unless the seamless integration of such models is solved, model-based processes
and tools will always be difficult to use and will meet resistance from the practitioners of the
traditional, document-oriented processes. A couple of requirements for model integration are
straightforward. For model integration we need well-defined interfaces between modeling
languages, although the precise nature of such interfaces is a subject of research at this point.
Arguably mapping between model elements in different modeling languages is a part of the
solution, but the interface is probably more complex. A specific model element (unit of

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 203

knowledge) must be entered during the engineering process only once, and all derived and
dependent elements must be related to that single instance. Models must undergo semantics-
preserving transformations – for analysis, code generation, verification, testing, etc., purposes.
Frequently transformations must be bi-directional: for instance, analysis models should be
derived from design models, but the results of the analysis must be translated back into the
language of the design. There has been several model and tool integration patterns developed
since model-driven development started. Hub-and-spoke, point-to-point translation, and
fine-grain linking of model elements across models are the three major examples. It is a
major research challenge to make such model integration approaches usable and scalable.
Arguable, the most challenging aspect is the tool semantics: if models are to be translated (or
linked) between two tools, there has to be some semantic mapping between the metamodels
of these tools. The precise, yet actionable specification and efficient implementation of this
semantic mapping remains a continuing research problem. Another challenging aspect is the
specific process support: engineering processes are often designed and tooled for a specific
product family. In other words, the model integration and its executable manifestation
should be customizable to specific processes and tools – we need reusable model integration
frameworks that allow this. Finally, there are several implementation-related issues: efficient
and robust synchronization of models among the tools, distributed version control, support
for collaborative work, and usability are the main issues in this area.

3.16 MetaEdit+: Faster Meta-Modeling by Design
Steven Kelly (MetaCase – Jyväskylä, FI)

License Creative Commons BY 3.0 Unported license
© Steven Kelly

Empirical research has shown that using UML does not lead to a significant increase in
productivity over coding: plus or minus 15%. MDA tool manufacturers claim 20-40%
productivity increases with their tools. Using Domain-Specific Modeling languages in
MetaEdit+ has shown productivity improving to 500-1000% of that for coding, consistently
across a number of different cases and domains. The design and implementation of the DSM
language and generators has been found to take only 2-3 person weeks with MetaEdit+.
Recent research by Eclipse modelling project committers (tinyurl.com/gerard12) showed that
implementing a modelling language is 10-50 times faster with MetaEdit+ than with other
graphical language workbenches, both commercial (RSA, Obeo) and open source (GMF,
GME). As yet, it is an open research question as to which features in MetaEdit+ contribute
most to this difference.

3.17 Demo Abstract for MetaEdit+
Steven Kelly (MetaCase – Jyväskylä, FI)

License Creative Commons BY 3.0 Unported license
© Steven Kelly

MetaEdit+ is a modeling, meta-modeling and generation tool targeting the creation and
use of Domain-Specific Modeling languages. MetaEdit+ applies DSM to itself: the GOPRR
language used for defining languages is itself a Domain-Specific Language designed from

13182

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

204 13182 – Meta-Modeling Model-Based Engineering Tools

scratch for this task. In the demo we showed how with MetaEdit+ you can quickly and
easily incrementally build a language – including abstract syntax, concrete syntax and
transformational semantics: draw models in the language, and automatically generate full
code for the modeled system.

3.18 Finding Tool Paradigms
Thomas Kühne (Victoria University – Wellington, NZ)

License Creative Commons BY 3.0 Unported license
© Thomas Kühne

In tool design there is a tension between serving users in ways they ask for and prescribing
paradigms that the tool designers believe are in the best interest of the user.

While it may take considerable effort on behalf of users to adapt to imposed paradigms,
it may be an investment that will produce significant pay-off. An unsatisfied tool user should
therefore not only ask “What is wrong with the tool?” but also “What is wrong with me?”.
Conversely, tool builders need to ask themselves not only “What can I build?” but also
“What should I build?” trying to answer the latter question by thoroughly analysing what
users need rather than what they want.

3.19 Towards Greater Adoption of MDE by Industry Practice
Vinay Kulkarni (Tata Consultancy Services – Pune, IN)

License Creative Commons BY 3.0 Unported license
© Vinay Kulkarni

Introduction. Model-driven software engineering has been around since mid-90s. Launch of
OMG’s MDA in 2000 generated widespread interest in MBSE. Today it can justifiably be said
that model-driven development has proved beneficial in certain niche domains if not all. There
is ample evidence of models being used in many ways viz., as pictures, as documentation
aids, as jump-start SDLC artefacts, as primary SDLC artefacts etc [1, 2]. When used as
primary SDLC artefacts, models shift the focus of software development from coding (in
terms of the desired implementation technology primitives) to specifications at a higher level
of abstraction [3]. These specifications can be kept independent of implementation technology
platforms and hence can be targeted for delivery into multiple technology platforms through
platform-specific code generation. Being closer to the problem domain, models present a more
intuitive mechanism for domain experts to specify requirements. Being more abstract, size of
application specification in terms of models is significantly smaller than its implementation
and hence easier to review manually. Being rich in structure, models are amenable for
constraints to be specified such that certain errors can be altogether eliminated and certain
errors can be detected at modeling stage itself. Model-based code generators can be made to
encode best coding practices and standards so as to deliver uniformly high code quality in a
person-independent manner. Moreover, it is possible to bootstrap model- driven development
so that model-based code generator implementation can be generated from its specification in
model form [4]. Intuitiveness demand on models dictate they be domain-specific. Since there
can be infinitely many domains with each domain possibly ever- expanding, it is impossible
to think of a universal modeling language that can effectively cater to them all. Furthermore,

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 205

1

Meta meta
model

Meta
model

Model

M2T
spec

M2M
spec

Semantic
map

Constraints

Symbols &
connectors

S&C
map

0..*

1

1

1

1

1

1

1

1
1 0..*

0..*

0..*

0..*

0..*

0..*
0..*

conformsTo

from

to

from

to

0..* m2t

conformsTo
constraint
s

constraint
s

Palette
editor

Map
editor

M2T
editor

M2T
executor

Validator Diagrammin
g editor

Text-based
editor

Map
validator

Map
editor

Map
validator

1

1 1 1

1

1 1

0..* 0..* 0..*

M2M
executor

M2M
editor

0..* 0..*

0..* 0..* 0..* 0..* 0..*

0..* 0..*

0..*

0..*

Figure 2 Meta-Model of Modeling Language Engineering Platform.

models are purposive and hence it is impossible to conceive a single modeling language
that can cater to all possible purposes. Therefore, multiplicity of modeling languages is a
reality. Separation of concerns principle makes the need for a cluster of related modeling
languages (one for each concern in a domain) and a mechanism to relate the separately
modeled concerns (say to compose a unified model) apparent. The need to relate otherwise
separate models demands expressibility of one in terms of the other. Thus emerges the need
for a common language capable of defining all possible modeling languages of interest. There
are multiple stakeholders for a model each possibly having a limited view being presented
in the form a suitable diagramming notation. From the above discussion, it follows there
could be as many diagramming notations as there are modeling languages. And thus emerges
the need for a language to define all possible visualizations of a model. For models to be
used as primary SDLC artefacts, there needs to be an execution engine for the models – say
an interpreter or a transformer to (say) text format that is executable e.g. a programming
language. Plus, separation of concerns leading to a cluster of relatable models indicates the
need for transforming one model into another and another and so on. Therefore, it can be
justifiably claimed that minimal capabilities to comprehensively address the development
aspect of software engineering using model driven techniques are: A language to define all
possible modeling languages, A language to define all possible visualizations of a model, A
language to specify transformation of one model into another, and A language to specify
transformation of a model into text artefacts. As a result, with models being the primary
SDLC artefacts, software development gets transformed into language engineering endeavour
wherein the focus is on defining the most intuitive and expressive modeling language[s] for a
given purpose and the necessary execution machinery.

13182

206 13182 – Meta-Modeling Model-Based Engineering Tools

Modeling language engineering platform. Figure 1 describes a meta model for configurable
extensible modeling language platform. Meta objects coloured grey can be viewed as tool
implementations that can be plugged into the platform through a well- defined handshake. The
platform should come with inbuilt meta meta model (which is read-only) and model-editing
primitives such as InstantiateMetaObject, ConnectTwoMetaObjectsWithAnAssociation,
AnnotateMetaObjectWithProperties and corresponding primitives for modification and
deletion for the meta objects and associations in the meta meta model. The platforms should
also provide a symbols and connectors palette which users can extend further. Primitives for
mapping symbols and connectors with user-defined meta model entities should be available
out- of-the-box. Platform should enable users specify constraints both at meta model
and model levels. It should be possible to plug in suitable validators through well-defined
handshake. To ensure easy extensibility, the platform should not make any assumptions about
implementation of the tool being plugged in. The platform-to-tool handshake protocol should
be externalized, well-defined and stateless. Much of the core technology to implement such
a platform is already available. For instance, Eclipse [5] can provide the backbone plug-in
architecture for the platform. Eclipse’s eCore is a good starting point for the reflexive meta
meta model. Text-based [meta] model editors can be realized with little modification, if at all,
to the various model editors available. OMG QVT [16] and OMG MOFM2T [7] should suffice
as specification languages for model-to-model and model-to-text transformation respectively.
Both have many implementations available – licensed as well as freeware variety. In OCL [8],
there exists a sophisticated declarative mechanism to specify model constraints. However,
it is possible to imagine a situation where a new constraint specification language seems
appropriate. Therefore, platform should have the capability to define another constraint
specification and execution mechanisms. Enabling diagramming based model editors is
a relatively more involved task in absence of externally stated semantics. Plus, there is
dependence on presentation manager for rendering the graphics. Ideal solution, that avoids
technology lock-in, is to generate platform-specific implementation of the modeling language
engineering platform from its specification in model form. This may not be as far out in
the future as it seems. A step in this direction has already been accomplished through
model-based generation of model-based code generators [4]. Though to be used essentially
by knowledgeable users the platform needs to pass minimal usability standards. A graphical
user interface providing access to the relevant information through minimal ‘clicks’ and
presenting it in uncluttered manner is the minimal requirement. Ideally, model content
accompanying the platform should come organized in the form of a searchable repository. It
should be possible to organize the content in the form of components ensuring modularity,
high internal cohesion, and explicitly stated coupling. It would be desirable for the component
abstraction to support family or software product line concept leading to compact models
that can be configured easily [9, 10, 11]. However, the proposed architecture has a significant
limitation in absence of a mechanism for specifying semantics (of the models), as a result,
the onus of ensuring semantic correctness would be entirely on implementers of the model
processing infrastructure. Thus, modeling language engineering platform of Fig. 1 can be
viewed as the minimal tooling infrastructure needed for improving productivity of current
MDD practitioners. Also, its existence is likely to make MDD enthusiasts to ‘take the
plunge’ so to say. International standards do exist for the key constituents namely i) meta
meta model in MOF [12], ii) model to model transformation in QVT [6], and iii) model to
text transformation in MOFM2T [7]. Eclipse’s plug-in architecture [5] has become defacto
standard. The high level of standardization should help develop MDD community for and
around the proposed platform. Development (and continuous maintenance) of the proposed
platform using open source community model seems the best approach.

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 207

Need to shift the focus. Focus of modeling community as regards software-intensive systems
for enterprises has so far been restricted to achieve platform independence and uniform code
quality through model-based code generation. As a result, what gets modeled can at best be
said as abstract description of the desired implementation of application under consideration.
The very purpose of these models is automatic derivation of the desired implementation
through code generation wherein the details regarding design strategies, implementation
architecture and technology platform are filled in [3]. The models can also help in computing
impact of a change and reflect the change into implementation with minimal side-effects thus
optimizing code generation as well as testing effort. Thus, current model- driven development
infrastructure is at best equivalent to a language compiler in code-centric development.
However, support available there in terms of analyzers, debuggers, profilers etc is missing.
The higher level of abstraction makes these shortcomings even more striking in case of model
driven development. Ever-increasing penetration of internet and rapid advance of technology
are subjecting enterprises to increased dynamics. As a result, enterprise IT systems need to
be agile in adapting to the changes in their operating environment. For instance, business
applications need to conform to new regulatory compliances such as Sarbane-Oxley [13],
HiPAA [14] etc; global banks need to cater to recently opened up developing economies;
insurance companies need to introduce right-fit products from time to time; financial services
organization decides to cut down total IT cost through infrastructure virtualization; and so on.
Only very few of these changes are crisply evident e.g. Sarbane-Oxley compliance. Majority
of the changes need deep understanding of the current state of the enterprise IT systems and
analysis capabilities to decide what change to introduce where and when. Having decided
what needs to be done, comes the how part. However, modeling community has so far focused
solely on building the right kind of business applications from their high level specifications
– a subset of how part above. The harder problem of identifying what change needs to be
introduced where and what would be the likely benefits of this adaptation is largely ignored.
In absence of relevant information, management is left to resort to ill-informed decision
making. Business- critical nature of enterprise systems means heavy price to pay for wrong
decisions. It is not surprising to find that vast majority of enterprise transformation projects
are either abandoned early in project life cycle or greatly exceed estimated budget and hardly
ever deliver the desired returns on investment [15]. Therefore, modeling community needs to
focus on what to model and not how to model. For instance, enterprise wide consistent data
views is an important requirement of all enterprises. Current solution is to formulate this as
a schema integration problem which adequately addresses static (or structural) aspect but
forces one to rely on the program control flows for dynamic aspect. The latter is principally
due to lack of suitable enterprise models. The models should help capture core properties
such as ‘Every credit entry must have a debit entry’ in double book accounting. Then these
models can be analyzed for such properties. Ability to come up with the right models and
the ability to analyze them for properties of interest, we think, will provide a better handle
on identifying what needs to change where. Simulation (or interpretive execution) capability
of models, say on a representative input data, will help, say, get a more realistic feel of likely
benefits. Thus, use of models and model-based techniques can bring more certainty to hard
problems such as enterprise transformation [15].

References
1 John Hutchinson, Mark Rouncefield and Jon Whittle. Model-Driven Engineering Practices

in Industry. ICSE’11 pp 633–642.
2 Hailpern, B. and Tarr, P. Model driven development: the good, the bad and the ugly. IBM

Systems Journal, 2006, Vol 45, Issue 3, pp 451–461.

13182

208 13182 – Meta-Modeling Model-Based Engineering Tools

3 Vinay Kulkarni, R. Venkatesh, Sreedhar Reddy. Generating Enterprise Applications from
Models. OOIS Workshops 2002: 270–279.

4 Vinay Kulkarni, Sreedhar Reddy. An abstraction for reusable MDD components: model-
based generation of model-based code generators. GPCE 2008: 181–184.

5 Eclipse – http://www.eclipse.org
6 Query, View and Transformation – http://www.omg.org/spec/qvt
7 MOF Models to Text Transformation language – http://www.omg.org/spec/MOFM2T
8 Object Constraint Lanaguage – http://www.omg.org/spec/OCL/2.0/
9 D E Parnas. Designing software for ease of extension and contraction. ICSE 1978: 264–277.

10 Vinay Kulkarni. Raising family is a good practice. FOSD 2010: 72–79.
11 Vinay Kulkarni, Souvik Barat. Business Process Families Using Model-Driven Techniques.

Business Process Management Workshops 2010: 314–325.
12 Meta Object Facility – http://www.uml.org/mof
13 The Sarbanes-Oxley act – http://www.soxlaw.com
14 HiPAA – http://www.hipaa.com
15 W B Rouse. Enterprise Transformation: understanding and enabling fundamental change.

John Wiley and sons. 2006.
16 Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT) – http://www.omg.

org/spec/QVT/

3.20 Servicing IT Needs of Future Enterprises
Vinay Kulkarni (Tata Consultancy Services – Pune, IN)

License Creative Commons BY 3.0 Unported license
© Vinay Kulkarni

We have delivered large business applications using model driven development approach
supported by home-grown standards compliant MDD toolset. In our view the basic tech-
nological pieces for supporting model-driven development are in place. Many tools with a
varying degree of sophistication exist. Other important aspects such as usability, learnability,
performance need to be improved which in essence is a continuous process. However, full
potential of model-driven development cannot be realized in absence of ready-to-use models
supported by domain ontologies providing the semantic and reasoning basis. This aspect
is poorly addressed at present. Inability to translate benefits accruable due to MDE in
quantitative terms seems to be a serious stumbling block for adoption of model-driven
approach.

Focus of MDE community has been on developing technologies that address how to model.
Barring the domain of safety-critical systems, these models are used only for generating
a system implementation. Rather, modelling language design/definition is influenced very
heavily by its ability to be transformed into an implementation that can be executed on
some platform. Modern enterprises face wicked problems most of which are addressed in ad
hoc manner. Use of modelling can provide a more scientific and tractable alternative. For
which, modelling community needs to shift the focus on analysis and simulation of models.
Results from random graphs, probabilistic graphical models, belief propagation and statistics
seem applicable here. We believe, it is possible to model at least a small subset of modern
complex enterprises so as to demonstrate that model is the organization.

http://www.eclipse.org
http://www.omg.org/spec/qvt
http://www.omg.org/spec/MOFM2T
http://www.omg.org/spec/OCL/2.0/
http://www.uml.org/mof
http://www.soxlaw.com
http://www.hipaa.com
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/QVT/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 209

3.21 Methods, not Models
Stephen J. Mellor (Evesham, UK)

License Creative Commons BY 3.0 Unported license
© Stephen J. Mellor

Main reference Pick any “methods” book you like from the Eighties and Nineties.

Model-based engineering depends, unsurprisingly, on models. What tends to be emphasized
less is how we go about building those models, and how we go about determining the target
into which we shall transform those models. In other words, MBE depends on methods.

A method is a defined, but flexible, definition of an approach to building models and
their subsequent translation into something else, most importantly, executables. However,
since the advent of the UML, methods have taken a back seat to notation. Latterly, with
increased interest in DSLs and technology for transforming (any) models, methods have been
deprecated further to the point that they have all but disappeared. (Save, perhaps, agile
“methods”, though these can mostly be distilled into social techniques and coding strategies.)

As a consequence, we have tools (MBE all its forms), but little or no guidance on how to
use them. Improving the tools so that they produce better code or have better interfaces is
clearly of value–and may even induce more people to use them–but without ways to use the
tools properly so as to grind though a customer problem and truly understand it, the tools
are doomed to fail. We need methods, not models.

3.22 Computer Automated Multiparadigm Modeling for the Design of
Software Systems in a Physical World

Pieter J. Mosterman (The MathWorks Inc. – Natick, US)

License Creative Commons BY 3.0 Unported license
© Pieter J. Mosterman

Joint work of Mosterman, Pieter J.; Biswas, Gautam; Vangheluwe, Hans; Zander, Justyna; Denckla, Ben; Zhao,
Feng; Nicolescu, Gabriela; Hamon, Gregoire; Bouldin, Don; Rucinski, Andrzej; Ghidella, Jason;
Friedman, Jon

URL http://msdl.cs.mcgill.ca/people/mosterman/publications.html

To provide computational support for multiple paradigms in engineering of software systems
it is essential that the semantics are well defined in a computational sense, for which semantic
anchoring holds great promise. Further value derives from a theoretical formulation vs.
a computational implementation. Models of a physical world often rely on abstractions
and so it is essential to have these approximations well defined and analyzable so that
they can be consistent within a design stage as well as between design stages. Moreover,
model exchange such as via model repositories derives much benefit from computationally
formulated semantics. With graphical models, the transformations between design stages
as well as for semantic anchoring requires efficient graph transformation methods which in
addition enables domain-specific languages. Models are very promising to (re)solve system
integration issues. For system-level analyses, domain-specific languages for modeling the
physics requires consideration of (i) how the physics domain constraints can be formalized,
(ii) what good semantic domains are, and (iii) how the information domain interplays with
the physics.

13182

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
Pick any ``methods'' book you like from the Eighties and Nineties.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://msdl.cs.mcgill.ca/people/mosterman/publications.html

210 13182 – Meta-Modeling Model-Based Engineering Tools

References
1 Ben Denckla and Pieter J. Mosterman. Stream- and state-based semantics of hierarchy in

block diagrams. In Proceedings of the 17th IFAC World Congress, pages 7955–7960, Seoul,
Korea, July 2008.

2 Pieter J. Mosterman. Implicit Modeling and Simulation of Discontinuities in Physical
System Models. In S. Engell, S. Kowalewski, and J. Zaytoon, editors, The 4th International
Conference on Automation of Mixed Processes: Hybrid Dynamic Systems, pages 35–40,
Dortmund, Germany, September 2000.

3 Pieter J. Mosterman and Gautam Biswas. Formal Specifications from Hybrid Bond Graph
Models. In Proceedings of the Qualitative Reasoning Workshop, pages 131–142, Cortona,
Italy, June 1997.

4 Pieter J. Mosterman, Don Bouldin, and Andrzej Rucinski. A peer reviewed online compu-
tational modeling framework. In Proceedings of the CDEN 2008 Conference, CD– ROM.
paper ID pmo131763, Halifax, Canada, July 2008.

5 Pieter J. Mosterman, Feng Zhao, and Gautam Biswas. An ontology for transitions in phys-
ical dynamic systems. In: Proceedings of the National Conference on Artificial Intelligence
(AAAI-98), pages 219–224, Madison, WI, July 1998.

6 Pieter J. Mosterman, Jason Ghidella, and Jon Friedman. Model-based design for system
integration. In Proceedings of The Second CDEN International Conference on Design Edu-
cation, Innovation, and Practice, pages CD– ROM: TB–3–1 through TB–3–10, Kananaskis,
Alberta, Canada, July 2005.

7 Pieter J. Mosterman and Hans Vangheluwe. Guest editorial: Special issue on computer
automated multi- paradigm modeling. ACM Transactions on Modeling and Computer
Simulation, 12(4):249–255, 2002.

8 Pieter J. Mosterman and Justyna Zander. Advancing model-based design by modeling
approximations of computational semantics. In Proceedings of the 4th International Work-
shop on Equation-Based Object-Oriented Modeling Languages and Tools, pages 3–7, Zürich,
Switzerland, September 2011.

9 Gabriela Nicolescu and Pieter J. Mosterman, editors. Model-Based Design for Embedded
Systems. CRC Press, Boca Raton, FL, 2009. ISBN: 9781420067842.

10 Justyna Zander, Pieter J. Mosterman, Gréegoire Hamon, and Ben Denckla. On the struc-
ture of time in computational semantics of a variable-step solver for hybrid behavior analysis.
In Proceedings of the 18th IFAC World Congress, Milan, Italy, September 2011.

3.23 The Original Sin – Using Current Computers for Modeling
Software

Pierre-Alain Muller (University of Mulhouse, FR)

License Creative Commons BY 3.0 Unported license
© Pierre-Alain Muller

Computers are supposed to be able to do anything, I guess, and this is why computer
scientists one day got the idea that computers could be used for developing software as well.
And this might be wrong.

My new thesis is that current computers are not capable of supporting the informal,
unstructured, emerging, global, creative process that goes on when people think about the
software which should be developed for a given (often partially unknown) purpose.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 211

This is also the reason why programmers do not model. They are using wonderfull
computerized tools for programming, and naturally stop to use computers when they “feel”
that computers are not appropriate anymore.

If modeling could be automated by computers with the same kind of efficiency than
programming, I’m sure that they would use computers (for modeling).

So the real issue is: “can we come up with that ideal computerized system for modeling”?
(in other words, the meta-model for model-based engineering tools, which this seminar is all
about).

3.24 The Other Face of Models
Leonel Domingos Telo Nóbrega (University of Madeira – Funchal, PT)

License Creative Commons BY 3.0 Unported license
© Leonel Domingos Telo Nóbrega

TModels are traditionally used in software engineering for documenting aspects of design
and implementation, and, in some cases, to generate the code for the system. Though there
remains debate about this type of approaches and the role, qualities and properties that
models should have, the existence of models that conforms to well-defined modeling languages
allows other types of uses that goes beyond the aforementioned. Visualization techniques
can enable the mining of information about the models and give an innovative perspective
that will contributes positively to a better understanding, analysis and validation of models.

3.25 The MetaSketch Workbench
Leonel Domingos Telo Nóbrega (University of Madeira – Funchal, PT)

License Creative Commons BY 3.0 Unported license
© Leonel Domingos Telo Nóbrega

Main reference L. Nóbrega, N.J. Nunes, H. Coelho, “The Meta Sketch Editor,” in G. Calvary, C. Pribeanu, G.
Santucci, J. Vanderdonckt (Eds.), Computer-Aided Design of User Interfaces V, ISBN
978-1-4020-5819-6, pp. 201–214, Springer Netherlands.

URL http://dx.doi.org/10.1007/978-1-4020-5820-2_17

The MetaSketch is a modeling language workbench that allows the rapid development of
modeling languages, creating new possibilities and opportunities in the context of the Model-
Based Development approach. The technology behind the MetaSketch is based on OMG
standards like MOF 2.0, OCL 2.0 and XMI 2.1, and is specially tailored for creating new
members of the UML family of languages. Currently, this workbench comprises a set of
tools – the Editor, the Merger, the Comparer, the Visualizer and the Designer – and all of
them are in a pre-beta release stage:

MetaSketch Editor – The editor is the heart of the workbench and is simultaneously a
modeling and a metamodeling editor. In a practical sense, this means that the same
editor can be used to create the metamodel and the models that conforms to the created
metamodel.
MetaSketch Merger – This tool is only applicable on a metamodel and basically resolves
all the Package Merge’s used on the definition of the metamodel. In addition, all hierarchy
of package is flattened, resulting in a metamodel with only one package that contains all
language constructs definition merged.

13182

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-1-4020-5820-2_17
http://dx.doi.org/10.1007/978-1-4020-5820-2_17
http://dx.doi.org/10.1007/978-1-4020-5820-2_17
http://dx.doi.org/10.1007/978-1-4020-5820-2_17

212 13182 – Meta-Modeling Model-Based Engineering Tools

MetaSketch Comparer – Tool to compare easily two models described in XMI.
MetaSketch Visualizer – This tool was originally developed for improve the navigability
of modeling Editor. The base idea is to use any kind of relationship within model’s
elements to create views different than existing diagrams. Further, it is possible to
visualize quantitative data extracted forma models through charts. To query engine to
generate the data for the visualization use an Imperative OCL interpreter.
MetaSketch Designer – This is a work in progress and will allow graphically create
the definition of the concrete syntax for each language constructs and type of diagram.
Currently, these definitions have to be done directly in the XML files.

3.26 Improving the Usability of Formal Verification Techniques
Through Customizable Visualizations

Ileana Ober (Paul Sabatier University – Toulouse, FR)

License Creative Commons BY 3.0 Unported license
© Ileana Ober

Joint work of Ober, Ileana; Ober, Iulian; Aboussoror, El Arbi
Main reference E.A. Aboussoror, I. Ober, I. Ober, “Significantly Increasing the Usability of Model Analysis Tools

Through Visual Feedback,” in Proc. of the 16th Int’l SDL Forum on Model-Driven Dependability
Engineering (SDL’13), LNCS, Vol. 7916, pp. 107–123, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-38911-5_7

One of the in hallmarks of the massive and rigorous introduction of the use of models
in software development life cycles, is the openings they offer towards early model based
verification and validation. During the last decades, the formal methods communities have
developed interesting and powerful theoretical results that allow for advanced model checking
and proving capabilities. Their usage is hindered by the complexity of information processing
demanded from the modeler in order to apply them and to effectively exploit their results.

One of the research directions that we are about to explore in my research group concerns
the definition of mechanisms that decrease the cognitive effort demanded from the user in
order to use traditional model checking tools. This consists in defining flexible and carefully
selected visual presentations of the feed-backs provided by classic model checking tools used
in the context of high- level (UML and SysML) models. This ranges from simple presentation
adjustments (highlighting new information or coloring things that change their values) to
defining, based on feed-backs from domain experts, new diagrams (such as message exchange
diagrams). Offering flexible visualization customizations opens the way to new types of
scenario visualizations, improving scenario understanding and exploration. This approach
was implemented in our UML/SysML analyzer and was validated in a controlled experiment
that shows a significant increase in the usability of our tool, both in terms of task performance
speed and in terms of user satisfaction.

Our thesis is that still a lot of effort is needed in order to make available tools and
techniques allowing the user to take benefit of the use of modeling and abstraction without
requiring. The results we obtained [1], in terms of tool functionalities and user evaluation,
make us confident in the feasibility of this objective.

References
1 El Arbi Aboussoror, Ileana Ober and Iulian Ober. Seeing Errors: Model Driven Simulation

Trace Visualization. In Proceedings of the 15th International Conference, MODELS 2012,
Innsbruck, Austria, September 30-October 5, 2012, LNCS 7590

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-38911-5_7
http://dx.doi.org/10.1007/978-3-642-38911-5_7
http://dx.doi.org/10.1007/978-3-642-38911-5_7
http://dx.doi.org/10.1007/978-3-642-38911-5_7

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 213

3.27 Empirical Studies of Expert Software Design (Cuckoo or Canary?)
Marian Petre (The Open University – Milton Keynes, GB)

License Creative Commons BY 3.0 Unported license
© Marian Petre

Based on empirical studies of professional software developers, this talk identifies key features
of the notations developers actually use for early design, and remarks, from a cognitive
perspective, on fundamental challenges arising from the complex nature of ‘modeling’. What
software designers produce when they’re unconstrained has some commonalities and emphas-
ises movement between perspectives, between representations, between levels of abstraction,
and between alternatives. Their sketches also preserve indications of provisionality. Similar
characteristics – fluidity, ease of annotation, ability to change representation, expressive
juxtaposition, escape from formalism, provisionality, indications of history – facilitate design
discussions. One of the things that has struck me over time is that we keep finding new
contexts, without quite answering the deep questions that cut across them. How can we
support: reasoning across levels of abstraction; understanding the consequences of design
decisions; deriving operational models; managing the tradeoff between what information
a representation makes accessible and what it obscures; reasoning about interactions and
emergent behaviours; preserving rationale, provenance and provisionality? From a cognitive
perspective, modeling is not one activity, and addressing the needs of one constituent may
be problematic for another. Moreover, possibly the most reliable result in the psychology of
programming is the impact of individual differences. One size does not fit all.

3.28 Bridging the Gap Between Software Models and Analysis
(Performance, Reliability, etc.) Models

Dorina C. Petriu (Carleton University – Ottawa, CA)

License Creative Commons BY 3.0 Unported license
© Dorina C. Petriu

Joint work of Petriu, Dorina C.; Alhaj, Mohammad; Tawhid, Rasha
Main reference D.C. Petriu, M. Alhaj, R. Tawhid, “Software Performance Modeling,” in Proc. of the 12th Int’l

School on Formal Methods for the Design of Computer, Communication, and Software Systems
(SFM’12), LNCS, Vol. 7320, pp. 219–262, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-30982-3_7

Many formalisms and tools (such as queueing networks, stochastic Petri nets, stochastic
process algebras, fault trees, probabilistic time automata, etc.) for the analysis of different
nonfunctional properties (NFPs) of systems and software (such as performance, reliability,
availability, scalability, security, etc.) have been developed over the years. Traditionally,
analysis models used to be built “by hand” by the analyst. More recently, in the MBE
context, the following approach for the analysis of different NFPs has emerged in literature:
a) extend the software model to be analyzed with annotations specific to the respective
NFP; b) apply a model transformation to derive an analysis model expressed in the selected
formalism from the annotated software model; c) analyze the NFP model using existing
solvers; and d) interpret the results and give feedback to the software developers.

In the case of UML-based software development, the extensions required for NFP-specific
annotations are defined as UML profiles, which have the advantage to be processed by
standard UML tools without any change in the tool support. For instance, two standard
UML profiles provide, among other features, the ability to define performance annotations:

13182

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-30982-3_7
http://dx.doi.org/10.1007/978-3-642-30982-3_7
http://dx.doi.org/10.1007/978-3-642-30982-3_7
http://dx.doi.org/10.1007/978-3-642-30982-3_7

214 13182 – Meta-Modeling Model-Based Engineering Tools

the UML Profile for Schedulability, Performance and Time (SPT) defined for UML 1.X
versions (OMG, 2005) and the UML Profile for Modeling and Analysis of Real-Time and
Embedded systems (MARTE) defined for UML2.X versions (OMG, 2009).

An important research challenge is to hide, as much as possible, the analysis formalism
and the complexity of the analysis models from the software developers, while at the same
time providing analysis results and advice for improvement in the context of the software
model. A list of research questions is as follows:

Model transformation from software model to analysis model: keep the separation of
concerns between the platform-independent model (PIM) of the software under develop-
ment and the underlying platform model. Platform modeling requirements are: provide
support for reusable, generic, parametric platform models; provide support for flexible
deployment models (because resource allocation is important for many NFPs).
Bridging the gap between the software model and the analysis model trough trace-links
between the elements of the two models. Such trace-links will be used, for instance, for
providing analysis feedback to software developers (analysis results, advice).
Integrate multiple NFP analyses in the software development process (e.g., performance,
reliability and security): a) For each NFP, explore the parameter space for different
design alternatives, configurations, workload parameters, etc., in order to find the “best
solution”; b) Toolset should provide support for an experiment controller for exploring
the parameter space; c) Software process issue: how integrate the evaluation of multiple
NFP in the software development process.
Tool interoperability: Input and output format of the analysis tools (many created a long
time ago) are tool specific and often unfriendly to automated processing.
Impact of software model changes on the NFP analysis: it is desirable to be able to
propagate changes incrementally, rather than re-building the analysis models from scratch
every time the software model is changed.

3.29 The Need for Scalable and Flexible Model-Based Engineering
Louis Rose (University of York, GB)

License Creative Commons BY 3.0 Unported license
© Louis Rose

I briefly summarised recent work in my research group on improving the scalability of
modelling tools and techniques, and on increasing the degrees of flexibility in modelling
tools and techniques. I argued in favour of better supporting iterative and incremental
development in model-based engineering tools by, for example, favouring dynamic and weakly
typed environments. Finally, I spoke about the way in which I believe that model-based
engineering does and does not address issues of software maintenance, which remains one of
the most costly elements of software engineering.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 215

3.30 EuGENia Live: A Flexible Graphical Modelling Tool
Louis Rose (University of York, GB)

License Creative Commons BY 3.0 Unported license
© Louis Rose

Joint work of Rose, Louis; Kolovos, Dimitrios S.; Paige, Richard F.
Main reference L.M. Rose, D.S. Kolovos, R.F. Paige, “EuGENia Live: A Flexible Graphical Modelling Tool,” in

Proc. of the Extreme Modeling Workshop (XM’12), pp. 15–20, ACM, 2012.
URL http://dx.doi.org/10.1145/2467307.2467311
URL http://www.di.univaq.it/diruscio/sites/XM2012/xm2012_submission_6.pdf

Designing a domain-specific language is a collaborative, iterative and incremental process that
involves both domain experts and software engineers. Existing tools for implementing DSLs
produce powerful and interoperable domain-specific editors, but are resistant to language
change and require considerable technical expertise to use. I presented EuGENia Live, a tool
for rapidly prototyping and designing graphical DSLs. EuGENia Live runs in a web browser,
supports on-the-fly metamodel editing, and produces DSLs that can be exported and used
to produce an initial implementation in the Eclipse Modeling Framework. EuGENia Live
draws on existing work from the fields of flexible modelling and model-driven engineering.

3.31 Compositional Model Based Software Development
Bernhard Rumpe (RWTH Aachen, DE)

License Creative Commons BY 3.0 Unported license
© Bernhard Rumpe

URL http://monticore.de

Model based software development promises to strongly improve efficiency and quality in
software development projects. However, MBSE has not yet delivered it’s promises yet.

In the talk, we examine the current state and problems of MBSE and discuss a number
of approaches to tackle those. In particular, we discuss how to make use of models in large
development projects, where a set of heterogenous models of different languages needs is
developed and needs to fit together.

A model based development process (both with UML as well as a domain specific modeling
language (DSML)) heavily relies on modeling core parts of a system in a redundant free
form, having compositional generators to early and repeatedly cut code and tests from these
models.

We in detail discuss compositionality on models and heterogeneous modeling languages
and how it supports agile development as well as reuse of language and tooling infrastructures.

And we show what the current status of compositionality is vs. a bunch of interesting
languages given.

We finally demonstrate what has already been achieved in the language workbench
MontiCore developed in our group over the recent years.

13182

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2467307.2467311
http://dx.doi.org/10.1145/2467307.2467311
http://dx.doi.org/10.1145/2467307.2467311
http://www.di.univaq.it/diruscio/sites/XM2012/xm2012_submission_6.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://monticore.de

216 13182 – Meta-Modeling Model-Based Engineering Tools

3.32 Formal Verfication and Model-Based Engineering
Martina Seidl (University of Linz, AT)

License Creative Commons BY 3.0 Unported license
© Martina Seidl

As in traditional hardware and software system development, also in model-based engineering
formal techniques find many applications within the development process in order to verify
that certain properties of the system under development hold. In the context of the Austrian
research project FAME (supported by the Vienna Science Fund under grant ICT10-018;
www.modelevolution.org), we currently investigate how different verification techniques may
be used to support the evolution process of software models. Therefore, we use various
reasoning engines like SAT solvers and model checkers not only to verify that evolution does
not violate any constraints but also for calculating correctly evolved models. For example,
the satisfiability problem of propositional logic is used to encode consistent merging of
concurrently evolved versions of one sequence diagram with respect to a given set of state
machines [1]. The SAT solver is used to suggest the modeler a set of correct solutions from
which the most convenient approach may be selected. During this work, we encountered
several challenges. First of all, we need a concise semantics in order to specify the verification
problem. Having an exact formulation of the verification problem, the encoding in the
respective formalism almost directly derivable. Second, there is a huge gap between the
representation in the modeling language and the input of the verification tool. For example,
in the case of a SAT solver, the problem is encoded as a sequence of numbers. In order
to make the output interpretable for humans, it has to be translated back to the model
representation. In order to highlight the solutions found by the SAT solver, we annotate
the solution with colors for directing the human modeler’s attention to the particular point
in the model where modifications have been performed in order to ensure the consistency.
The third major challenge involves the testing of our approach. On the one hand we took
manually engineered models from the literature. These models allowed us to test the basic
functionality of our approach, but they were too small to evaluate the performance of our
approach. Therefore, we implemented a random generator which allows us to generate
suitable input models of arbitrary size. These models showed not only valuable to improve
the performance of our approach, but it helped us also to find bugs in our implementation
which were not triggered by the manually engineered test models. Besides investigating how
formal verification techniques support various evolution tasks in model-based engineering,
we are also investigating how models can support the development of verification backends
like SAT solvers. A model-based testing approach [2] shows to be be extremely valuable for
building modern SAT solvers, which consists of strongly optimized code (usually in C) in
order to be able to tackle verification problems of practical size. Such systems are too complex
to be verified and therefore, much emphasize has to spend on testing their correctness. We
propose to describe correct sequences of API calls, input data, and option configurations in
terms of state machines which may then be used for grammar-based blackbox fuzzing as well
as for delta debugging. Whereas the former technique generates the test cases, the latter
reduces an error triggering test case such that manual debugging is feasible. By this means
an automatic test chain is realized. In future work, we plan to extend this approach to other
solving systems like SMT solvers. To sum up, both model-based engineering techniques and
formal verification techniques can benefit from each other and an exchange of ideas and
approaches of the different fields may bring valuable insights and advances to both research
fields.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 217

References
1 Magdalena Widl, Armin Biere, Petra Brosch, Uwe Egly, Marijn Heule, Gerti Kappel, Mar-

tina Seidl, Hans Tompits. Guided Merging of Sequence Diagrams. SLE 2012. 164–183.
2 Cyrille Artho, Armin Biere and Martina Seidl. Model-Based Testing for Verification

Backends. Accepted for Tests and Proofs (TAP) 2013.

3.33 MBE Tools: Effective Automation Where It Helps
Bran V. Selic (Malina Software Corp. – Nepean, CA)

License Creative Commons BY 3.0 Unported license
© Bran V. Selic

Main reference B. Selic, “What will it take? A view on adoption of model-based methods in practice,” Journal of
Software and System Modeling, October 2012, Volume 11, Issue 4, pp. 513–526.

URL http://dx.doi.org/10.1007/s10270-012-0261-0

Increased levels of computer-supported automation are considered as one of the key enablers
to the higher levels of productivity and product quality promised by model-based engineering
(MBE) . However, practical experience with present-day MBE tools indicates that we are
still far from this ideal. In fact, if anything, these tools are proving to be an impediment to
productivity; they are complex, difficult to learn, and difficult to use. Users of these tools
often find themselves in frustrating situations where the tools are blocking their progress,
forcing them into workarounds and constrained operating modes and procedures which are
not conducive to free expression of ideas.

Much of this can be attributed to the tool designers’ poor understanding of their users,
how they work and what motivates them. There is often a naïve and implicit image of
a “typical user”, based on very shallow analysis and a distressing lack of awareness of the
complexities involved in human-machine interaction. (This is a problem even when tool
developers are users of their own tools – something that, unfortunately, does not happen
often enough for MBE tools – since in those cases developers often lose sight of the fact that
their users do not have the same deep understanding of a tool’s architecture as they do.) In
such settings, usability is rarely considered an architectural-level concern, but as something
that is merely a presentation issue to be solved by a ‘suitable” user interface.

To get the full benefits that we expect from the automation potential of MBE tools, we
must not only understand how and where it should be applied, but equally importantly,
knowing where it is inappropriate. (Just because something can be automated does not
mean it should be.) A key research issue related to this is finding ways to support the
transition between an informal and provisional mode of operation, which is conducive to
design exploration, and the formal mechanistic world required for computer-based design
capture. Ideally, this should not be a one-time one-way transition, which could lead to
premature commitment, but a continuous back-and-forth interplay of these modes as design
progresses.

13182

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s10270-012-0261-0
http://dx.doi.org/10.1007/s10270-012-0261-0
http://dx.doi.org/10.1007/s10270-012-0261-0

218 13182 – Meta-Modeling Model-Based Engineering Tools

3.34 Models in Software Engineering
Perdita Stevens (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
© Perdita Stevens

I gave an abbreviated version of a talk I have given in Edinburgh in the series of Hamming
Seminars, whose remit is to discuss what were the major problems in a given field. Here is
the abstract for the original talk.

A model is (for purposes of this talk) an abstract, usually graphical, representation of
some aspect of a software-intensive system. Software engineering has, since its invention,
involved the use of models. In recent decades, a perceived need for greater automation of
processes in software engineering, the wish to develop software faster and more cheaply, and
the drive for higher quality have motivated ever more reliance on models. Languages for
modelling and techniques for working with models have struggled to keep pace, hindered
in some cases by conflicting requirements arising from the different motivations. We are
currently in a dangerous state in which models sometimes endanger rather than support the
developers’ aims. I will explain some of the problems, and discuss the progress that I think
we will/may/should/must/cannot expect to see in the coming years

3.35 Tool Building Using Language Composition
Laurence Tratt (King’s College London, GB)

License Creative Commons BY 3.0 Unported license
© Laurence Tratt

URL http://soft-dev.org/

Language composition allows users to mix languages together in a fine-grained manner. It
can complement modelling by giving the possibility to mix together modelling and non-
modelling languages. We presented a new language composition editor that allows arbitrary
language composition to feel like using a normal text editor. It also allows textual and
non-textual languages to be composed and edited together.

3.36 Generic Tools, Specific Languages
Markus Völter (Völter Ingenieurbüro – Heidenheim, DE)

License Creative Commons BY 3.0 Unported license
© Markus Völter

In my talk, and in the mbeddr tool demo, I introduced an new approach to developing
domain-specific software engineering tools. It promises a significant increase in the fidelity
of adapting generic tools to specific domains, while significantly reducing the effort of the
adaptation. The approach, called Generic Tools, Specific Languages, shifts the focus from the
engineering tool to the underlying languages. Recent advances in language engineering – and
the language workbenches that support these advances – enable the modular, incremental
extension of languages. Projectional editing supports increased notational freedom, such as
tables or mathematical symbols. These two ingredients enable the shift in focus for developing
domain-specific engineering tools: a generic tool, the language workbench, hosts arbitrary

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://soft-dev.org/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 219

languages and provides IDE support such as syntax coloring, code completion, go-to-definition
and find-references as well as model search, refactoring, debugging or visualization. On top
of this platform, a set of very specific languages adapt the tool to a given domain. Some
actual tool adaptations (windows, buttons, context menus) are sometimes necessary, but
they are few and far between and are always related to languages or language extensions.
mbeddr (http://mbeddr.com) is an example implementation of this approach for embedded
software engineering. It builds on top of the JetBrains MPS language workbench (http:
//jetbrains.com/mps)

3.37 The Tool’s The Thing
Jon Whittle (Lancaster University, UK)

License Creative Commons BY 3.0 Unported license
© Jon Whittle

In this talk, I review literature on tools from psychology, sociology, philosophy, management
studies and computer science. Tool use has been studied for centuries and MDE researchers
should try, as much as possible, to take such literature into account when developing new
MDE tools. The talk also presents a recent study by Whittle, Hutchinson, Rouncefield,
Burden and Heldal, which carried out 40 interviews will companies applying MDE tools in
practice. Interview data was analyzed using a grounded approach to identify emergent themes
related to MDE tool use. The result is a taxonomy of 30 technical, social and organizational
factors of MDE tools which affect their adoption in practice.

3.38 Flexible, Lightweight Metamodeling
Dustin Wüest (Universität Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Dustin Wüest

Joint work of Wüest, Dustin; Seyff, Norbert; Glinz, Martin
Main reference D. Wüest, N. Seyff, M. Glinz, “FlexiSketch: A Mobile Sketching Tool for Software Modeling,” in

D. Uhler, K. Mehta, J.L. Wong, (Eds.), Mobile Computing, Applications, and Services, LNICST,
Vol. 110, pp. 225–244, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-36632-1_13

Current metamodeling tools provide the technical means for constructing all kinds of domain
specific languages (DSLs), but they have two disadvantages. First, they are hard to learn
and require experts in both the problem domain and metamodeling. Second, they neglect
the processes used in practice to come up with good DSLs. Tools are not adjusted to the
methods how practitioners create DSLs. Creators of metamodeling tools assume that the
users know what they are doing and have the completed DSLs already in their minds when
they start to use the tools. In contrast, creating good DSLs is often an iterative process,
where engineers interleave between constructing a DSL and creating model examples of it.
These models can help to show weak spots in a DSL, and the DSL evolves over time.

We argue for the need of flexible metamodeling tools that enable users with only basic
metamodeling knowledge to incrementally build DSLs based on concrete model examples.
Domain experts should be able to create modeling languages step by step and repeatedly
test them by drawing example models. This also implies that tools must support different

13182

http://mbeddr.com
http://jetbrains.com/mps
http://jetbrains.com/mps
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-36632-1_13
http://dx.doi.org/10.1007/978-3-642-36632-1_13
http://dx.doi.org/10.1007/978-3-642-36632-1_13
http://dx.doi.org/10.1007/978-3-642-36632-1_13

220 13182 – Meta-Modeling Model-Based Engineering Tools

level of details for language definitions and do not require a complete language description
before it can be tested in a productive environment. At the beginning, it must be possible to
define individual elements of a modeling language at different abstraction levels, depending
on how much detail is needed or already known. Metamodeling tools should foster creativity
and allow trying out different design ideas by providing fast feedback cycles. To achieve this,
it must be possible to quickly change a metamodel and try out the new version. It helps if a
model editor is generated or updated on the fly.

For being able to come up with better metamodeling support in practice, we have to
know i) who the typical users are, ii) how much they know about metamodeling, iii) what
methods and processes they use to perform metamodeling in practice, and iv) what their
requirements for metamodeling tools are. In addition, we should exploit the possibilities that a
tool-supported approach gives for guiding less experienced users in performing metamodeling.

3.39 Liberating Software Engineers from the Tyranny of a Strict
Modeling Language

Dustin Wüest (Universität Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Dustin Wüest

Joint work of Wüest, Dustin; Seyff, Norbert; Glinz, Martin
Main reference D. Wüest, N. Seyff, M. Glinz, “Flexible, lightweight requirements modeling with FlexiSketch,” in

Proc. of the 20th IEEE Int’l Requirements Engineering Conf., pp. 323–324, IEEE, 2012.
URL http://dx.doi.org/10.1109/RE.2012.6345826

Creativity and discussing different design alternatives play central roles in early phases of
software development. Many modeling tools do not provide adequate support for these
phases, because they restrict users in utilizing a particular modeling language and level of
detail. Having to think about how to express ideas in a particular language while coming
up with the ideas hinders the creative flow. Also, different ideas may be expressed at
different levels of detail, while a modeling language typically only supports one level of detail.
Therefore, whiteboards and flip charts are still dominant tools for early software design
phases. Engineers have to accept the drawback of manually re-creating the information from
a whiteboard in a software modeling tool if they want to re-use and refine the information.

We presented FlexiSketch, a flexible and lightweight modeling tool for mobile devices.
The tool allows freeform sketching and the creation of nodes-and-edges diagrams. Modeling
and metamodeling can be performed in a single environment. Engineers do not have to
adhere to a predefined modeling language. Instead, they can quickly sketch different design
ideas. Metamodel information can be added to individual diagram elements on demand,
which enables a step-wise formalization and refinement of model sketches. This also means
that domain specific languages can be built in an iterative, incremental way. Short feedback
cycles foster creativity and invite to try out different design alternatives.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/RE.2012.6345826
http://dx.doi.org/10.1109/RE.2012.6345826
http://dx.doi.org/10.1109/RE.2012.6345826

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 221

3.40 Design and Design Thinking
André van der Hoek (University of California – Irvine, US)

License Creative Commons BY 3.0 Unported license
© André van der Hoek

Main reference M. Petre, A. van der Hoek, (Eds.), “Software Designers in Action: A Human-Centric Look at
Design Work,” Chapman and Hall/CRC, forthcoming Sep 2013.

URL http://sdcl.ics.uci.edu/research/calico

Model-driven engineering requires software developers to design. A large body of literature
concerns itself with design thinking – ways in which designers work through a design problem.
To date, this literature has not been examined from the perspective of software design. This
talk makes the case for taking a design thinking look at software design, and highlights some
of the dimensions of what such an exploration would look like.

4 Overview of Working Groups

4.1 Working Group A: Summary of Discussions and Conclusions
Bran V. Selic (Malina Software Corp. – Nepean, CA)

License Creative Commons BY 3.0 Unported license
© Bran V. Selic

Joint work of Larry Constantine, Robert B. France, Martin Glinz, Lars Hamann, Steven Kelly, Thomas Kühne,
Vinay Kulkarni, Stephen J. Mellor, Pierre-Alain Muller, Leonel Domingos Telo Nóbrega, Marian
Petre, Dorina C. Petriu, Louis Rose, Bran V. Selic, Perdita Stevens, André van der Hoek, Jon
Whittle, Dustin Wüest

The participants agreed to separate the issues to be addressed into two broad categories. One
category dealt primarily with technical issues related to modeling and modeling tools. The
second category addressed topics related to the use of modeling tools in context. This included
a wide spectrum of concerns, from recognizing end-user business needs, to understanding how
domain experts do design, to identifying and overcoming tool usability issues. Fortunately,
among the participants were a number of researchers who specialized in studying software
design practices and usability, who helped provide the necessary multi-disciplinary perspective.

A general consensus quickly emerged that the flaws of the current generation of rigidly
conceived modeling tools were standing in the way of agile design, and thereby impeding
broader adoption of models and modeling in industrial practice. One of the root causes of this
seems to be lack of support for provisionality in design, that is, the ability not only to tolerate
but to actively support the type of informal processes and ambiguous artifacts produced
during design exploration. Case studies of industrial projects have shown that design involves
a myriad of aspects that are not easily replicated by computer-based automation, including
non-verbal communications, analogies, and the use of ad hoc informal notations and terms.
Collaboration is a key ingredient in such processes that should be supported by tools, but
without imposing undue structure that blocks active discourse. This raises the issue of
understanding what should (and what should not) be automated in this process and, if
so, how? A closely related challenge is determining how best to transition back and forth
between the informal and highly flexible world of creative thinking and the much more formal
world of design capture and implementation, or between different purposes of models, such
as descriptive and prescriptive uses of models.

From these considerations, the notion of tools that are “fit for purpose” emerged as a
useful formulation and desirable objective. This, of course, implies a highly human-centric

13182

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://sdcl.ics.uci.edu/research/calico
http://sdcl.ics.uci.edu/research/calico
http://sdcl.ics.uci.edu/research/calico
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

222 13182 – Meta-Modeling Model-Based Engineering Tools

approach to the design of such tools. There are many different uses of and many different
perspectives on models that must be accommodated. One way of achieving this is to focus
less on users per se and more on their activities, purposes, and expertise levels (expert users
work in very different ways from novices). This means highly adaptable and customizable
tools, allowing users to organize them according to the task and situation at hand, rather
than based on some preconceived hardwired workflow or, worse yet, on some automated
inference strategy built into the tool (experience has shown that such inferences are often
wrong and annoying). Workflows should not be interrupted by petty and inflexible formal
rules.

Finally, an additional topic discussed in this context was how to create and popularize a
modeling culture among software practitioners by teaching the value and use of models early
in software engineering curricula.

At the end of the workshop, a number of key research questions were identified that
related to the issues described above (NB: many of these questions are closely related and
even overlap):
1. Investigate the transitions that occur in model-based development (e.g., between the

informal and formal domains, between models for different purposes, between models at
different levels of abstraction) and how this can be supported by tools.

2. Identify the various modeling purposes and what would be required to construct corres-
ponding “fit for purpose” tools.

3. Study how to specify and manage the relationships between different models intended for
different purposes.

4. Understand how a model intended to support one purpose can be retargeted for a different
purpose.

5. Understand the actual and potential end-user value propositions and if and how they can
be supported by models and modeling.

6. Collecting evidence of the value of models in practice (industry and research).
7. Study what to (and what not to) automate in modeling. (When? Why?)
8. How can tools help us capture and exploit the provisionality inherent in design.
9. Investigate ways of fostering new generations of model-aware practitioners. (How should

we teach modeling? How do we make it relevant?)
10. Understand how model-based engineering fits into modern agile development processes.
11. Investigate and clarify the differences (social, cultural, technical, etc.) between practition-

ers of “traditional” software development methods and those using models and modeling;
Based on that understand why so many practitioners resist model-based methods.

4.2 Working Group B.1: Composition Issues in MBE Languages and
Tools

Tony Clark (Middlesex University, GB)

License Creative Commons BY 3.0 Unported license
© Tony Clark

Joint work of Colin Atkinson, Tony Clark, Benoit Combemale, Lukas Diekmann, Øystein Haugen, Gabor Karsai,
Steven Kelly, Vinay Kulkarni, Stephen J. Mellor, Pieter J. Mosterman, Dorina Petriu, Bernhard
Rumpe, Laurence Tratt, Markus Völter.

The hypothesis of group B.1 is that the problem of complexity (and therefore usability)
of Model Based Engineering tools can be addressed through composition. Methods and
technologies for modularity and composition can help by providing a basis for reuse of tool
elements and a basis for understanding otherwise highly complex technologies.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 223

Figure 3 Finding a Common Semantic Domain.

Figure 4 Categories of Language Composition.

Figure 5 A Proposal for a Composable Language Module.

13182

224 13182 – Meta-Modeling Model-Based Engineering Tools

Figure 6 A Spectrum of Tool Composition.

The group identified four different facets of composition that were discussed over several
sessions leading to the identification of a series of key research questions:
Semantic Heterogeneity arises because MBE languages and tools often consist of multiple

sub-components each of which has a specific semantics all of which must be made consistent
in order for the tools to work together. Figure 3 (proposed by Bernhard Rumpe) shows
an approach to composition which seeks to identify a single common semantic domain SD
through multiple refinement transformations of individual language semantic domains.
The group also discussed whether it would be possible to produce a small number of
agreed models of computation that are reused as a semantic basis for modelling languages.
By agreeing such a set of domains, maturity and well-understood relationships between
them would evolve over time.

Language Composition often occurs when a tool offers the ability to model multiple system
aspects, and is key to language reuse. The group spent time trying to identify differ-
ent types of language composition and produced the categorization shown in Figure 4
(proposed by Markus Völter) where languages can be integrated to different levels. The
group also discussed what an ideal composable language module might look like as shown
in Figure 5 together with a likely set of composition operators including union and
embedding.

Tool Composition occurs when building tool-chains or reusing modular tool components.
Several aspects of tool composition were identified and described as a spectrum of
integration from not integrated to fully integrated as shown in Figure 6 (proposed by
Steven Kelly).

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 225

4.3 Working Group B.2: Research Questions for Validation and
Verification in the Context of Model-Based Engineering

Martin Gogolla (Universität Bremen, DE)

License Creative Commons BY 3.0 Unported license
© Martin Gogolla

Joint work of Catherine Dubois, Michalis Famelis, Martin Gogolla, Leonel Nóbrega, Ileana Ober, Martina Seidl,
Markus Völter

Notions ‘Validation’ and ‘Verification’ (V&V): The goal of the using validation and veri-
fication techniques is to better understand models and to uncover model properties which
are stated implicitly in the model (see Fig. 7). Validation and verification serves to inspect
models and to explore modeling alternatives. Model validation answers the question ‘Are
we building the right product’ whereas model verification answers ‘Are we building the
product right’. Validation is mainly an activity by the developer demonstrating model
properties to the client, whereas in verification the developer uncovers properties relevant
within the development process. Verification covers testing as well as automatic and
semi-automatic proving techniques.

Figure 7 Validation and Verification of Models and Transformations.

Relationships between Client, Developer and V&V Engine: How do we express properties
at the level of models in a way understandable to clients? How do we formulate models
and properties in a single language transparent to clients? How do we report the validation
and verification results and diagnostics in an appropriate form to clients? How do we
bridge the gap between formally expressed and verified properties on one side and client
attention on the other side? Can modeling language extensions help in making explicit
the needs of validation and verification machines?

Design VS Time-Runtime: How do we obtain during the validation and verification phase
an initial model instanciation on the model runtime level which is determined by the
model design time description? How do we obtain consequent runtime instanciations?
How do we connect design time and runtime artifacts? How do we deal with the scalability
issue in the context of validation and verification tools? How do we handle time and
space concerns wrt design time and runtime artifacts? How do we automatically or
semi-automatically manage the validation and verification machine configuration?

Model Transformation: What verification techniques are meaningful for verifying model
transformations? How do we analyse properties like confluence and termination for
transformations which are composed from transformation units? How do we analyse

13182

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

226 13182 – Meta-Modeling Model-Based Engineering Tools

correctness of model transformations wrt a transformation contract? How do we infer a
transformation contract from a model transformation?

Methods: How do we integrate validation and verification in the overall development and
modeling process? On the technical level of tool exchange? On the methodological level
of using the right technique at the right time for the right task? When are techniques
like animation, execution, symbolic evaluation, testing, simulation, proving or test case
generation used efficiently during development (see Fig.8)? For which model and model
transformation properties can they be employed?

Figure 8 V&V Techniques and their Relationship to Stakeholders.

Informal VS Formal VS Incomplete Modeling: How do we leverage informal assumptions
found in sketches for exploratory validation and verification? Are informal sketches close
enough to validation and verification at all? What are appropriate relaxation mechanisms
for different degrees of formality? How do we handle incomplete or partial models wrt
validation and verification? How do we deactivate and activate model units? How do we
handle the exploration of model properties and alternatives?

Comparison and Benchmarking: How do we compare existing validation and verification
tools employed for modeling wrt functionality, coverage, scalability, expressiveness, execut-
ing system (i.e., for models at runtime)? Which criteria are appropriate for comparison?
Can the broad and diverse spectrum of validation and verification machines (like B, Coq,
HOL/Isabelle, SAT, SMT, CSP solvers, Relational logic and enumerative techniques) be
globally compared in a fair way at all?

Properties: How do we handle model and model transformation properties relevant in valid-
ation and verification like consistency, reachability, dependence, minimality, conformance,
safety, liveness, deadlock freeness, termination, confluence, correctness? How do we search
for such properties in models and model transformations? What are the benefits and
tradeoffs between expressing these properties on more abstract modeling levels in contrast
to expressing them on more concrete levels? How do we find the right techniques for
uncovering static and dynamic model properties? Which techniques are appropriate for
uncovering static modeling language inherent properties, which for static model-specific
properties? Which techniques are appropriate for uncovering dynamic generic properties,
which for dynamic model-specific properties? Which high-level features are needed in
the property description language in order to query and to determine modeling level
concepts?

Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic 227

Participants

Colin Atkinson
Universität Mannheim, DE

Tony Clark
Middlesex University, GB

Benoit Combemale
IRISA – Rennes, FR

Larry Constantine
University of Madeira –
Funchal, PT

Lukas Diekmann
King’s College London, GB &
University of Konstanz, DE

Catherine Dubois
ENSIIE – Evry, FR

Michalis Famelis
University of Toronto, CA

Robert B. France
Colorado State University, US

Martin Glinz
Universität Zürich, CH

Martin Gogolla
Universität Bremen, DE

Lars Hamann
Universität Bremen, DE

Øystein Haugen
SINTEF – Oslo, NO

Gabor Karsai
Vanderbilt University, US

Steven Kelly
MetaCase – Jyväskylä, FI

Thomas Kühne
Victoria Univ. – Wellington, NZ

Vinay Kulkarni
Tata Consultancy Services –
Pune, IN

Stephen J. Mellor
Evesham, UK

Pieter J. Mosterman
The MathWorks Inc. –
Natick, US

Pierre-Alain Muller
University of Mulhouse, FR

Leonel Domingos Telo Nóbrega
Univ. of Madeira – Funchal, PT

Ileana Ober
Paul Sabatier University –
Toulouse, FR

Marian Petre
The Open University – Milton
Keynes, GB

Dorina C. Petriu
Carleton Univ. – Ottawa, CA

Louis Rose
University of York, GB

Bernhard Rumpe
RWTH Aachen, DE

Martina Seidl
University of Linz, AT

Bran V. Selic
Malina Software Corp. –
Nepean, CA

Perdita Stevens
University of Edinburgh, GB

Laurence Tratt
King’s College London, GB

André van der Hoek
Univ. of California – Irvine, US

Markus Völter
Völter Ingenieurbüro –
Heidenheim, DE

Jon Whittle
Lancaster University, UK

Dustin Wüest
Universität Zürich, CH

13182

	dagrep-v003-i004-pi-frontmatter
	dagrep_v003_i004_p001_s13141
	Executive Summary Bernadette Charron-Bost, Stephan Merz, Andrey Rybalchenko, and Josef Widder
	Table of Contents
	Overview of Talks
	Partial-Order Reductions: Landscape & Practice Péter Bokor
	Automated Repair of Distributed Systems: Beyond Verification Borzoo Bonakdarpour
	Formal Proofs in Coq of Local Computation Systems Pierre Castéran
	Semantics of Eventually Consistent Systems Alexey Gotsman
	A Fault-tolerant Communication Mechanism for Cooperative Robots Serge Haddad
	Scaling Up Interactive Verification Gerwin Klein
	Parameterized Model Checking of Fault-Tolerant Broadcasting Algorithms Igor Konnov
	Verification of a Quasi Certification Protocol over a DHT Fabrice Kordon
	Finding Non-terminating Executions in Distributed Asynchronous Programs Akash Lal
	A Framework for Formally Verifying Software Transactional Memory (and Other Concurrent Algorithms) Victor Luchangco
	Verification of Fault-Tolerant Distributed Algorithms in the Heard-Of Model Stephan Merz
	Verifying Consensus …Using Process Calculi, State Machines, and Proof Checkers Uwe Nestmann
	Tutorial on Distributed Algorithms Eric Ruppert
	Getting the Best out of General-Purpose Tools: Theorem Provers and Infinite-Bounded Model Checker John Rushby
	An Epistemic Perspective on Consistency of Concurrent Computations Andrey Rybalchenko
	Unidirectional Channel Systems Can Be Tested Philippe Schnoebelen
	Formal Verification of Distributed Algorithms at TTTech Wilfried Steiner
	Tutorial on Parameterized Model Checking Murali Talupur
	Correctness without Serializabilty: Verifying Transactional Programs under Snapshot Isolation Serdar Tasiran
	(Dis)Proof Automation: What We Can Do, What We Could Do and What Is Needed? Christoph Weidenbach
	Efficient Checking of Link-Reversal-Based Concurrent Systems Josef Widder

	Panel Discussions
	Session 1: What are the problems?
	Session 2: Modeling
	Session 3: Follow-up

	Participants

	dagrep_v003_i004_p017_s13142
	Executive Summary Albert Cohen, Alastair F. Donaldson, Marieke Huisman, and Joost-Pieter Katoen
	Table of Contents
	Overview of Talks
	Weak Memory Models: A Tutorial Jade Alglave
	Estimating the WCET of GPU-Accelerated Applications using Hybrid Analysis Adam Betts
	GPUVerify: A Verifier for GPU Kernels Alastair F. Donaldson
	Bulk Synchronous Streaming Model for the MPPA-256 Manycore Processor Benoît Dupont de Dinechin
	Analysis of Shared Memory and Message Passing Parallel Programs Ganesh L. Gopalakrishnan
	Compilation Techniques for Accelerators Tutorial Sebastian Hack
	Accelerator Programming Models Lee Howes
	Specification and Verification of GPGPU Programs using Permission-Based Separation Logic Marieke Huisman
	Interleaving and Lock-Step Semantics for Analysis and Verification of GPU Kernels Jeroen Ketema
	On the Correctness of the SIMT Execution Model of GPUs Alexander Knapp
	Using early CARP technology to implement BLAS on the Mali GPU series Alexey Kravets
	Accelerator architectures and programming Anton Lokhmotov
	Efficient Code Generation using Algorithmic Skeletons and Algorithmic Species Cedric Nugteren
	Formal Analysis of GPU Programs with Atomics via Conflict-Directed Delay-Bounding Zvonimir Rakamaric
	Code Generation for GPU Accelerators in the Domain of Image Preprocessing Oliver Reiche
	Compositional Analysis of Concurrent Timed Systems with Horn Clauses and Interpolants (work in progress) Philipp Rümmer
	Performance Portability Investigations for OpenCL Ana Lucia Varbanescu
	Accelerating Algorithms for Biological Models and Probabilistic Model Checking Anton Wijs

	Discussion Sessions
	Domain specific languages for accelerators Albert Cohen
	Verification techniques for GPU-accelerated software Alastair F. Donaldson

	Participants

	dagrep_v003_i004_p034_s13151
	Executive Summary Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud
	Table of Contents
	Overview of Talks
	A Brief History of Curves in Graph Drawing David Eppstein
	Algorithms for Curve Approximation Günter Rote
	Algebraic Curves in Computational Geometry Sylvain Lazard
	Curved Lines in Cartography and Information Visualization Jo Wood
	Some Brief Notes on Perceptual Theories — in Relation to Empirical Studies Helen C. Purchase
	Do We Need Curvilinear Metro Maps? Maxwell J. Roberts
	Curves in CGAL Michael Hemmer and Monique Teillaud
	Curved Schematization – User Study Results Wouter Meulemans

	Working Groups
	Smooth Orthogonal Drawings Michael A. Bekos, Martin Gronemann, and Sergey Pupyrev
	Confluent Drawing David Eppstein, Danny Holten, Maarten Löffler, Martin Nöllenburg, Bettina Speckmann, and Kevin Verbeek
	Automated Evaluation of Metro Map Usability Michael Hemmer, Wouter Meulemans, Lev Nachmanson, Helen Purchase, Andreas Reimer, Max Roberts, Günter Rote, and Kai Xu
	Universal Point Sets for Planar Graph Drawings with Circular Arcs Patrizio Angelini, David Eppstein, Fabrizio Frati, Michael Kaufmann, Sylvain Lazard, Tamara Mchedlidze, Monique Teillaud, and Alexander Wolff
	Labeling Curves with Curved Labels Jan-Henrik Haunert, Herman Haverkort, Benjamin Niedermann, Arlind Nocaj, Aidan Slingsby, and Jo Wood
	Graphs with Circular Arc Contact Representation David Eppstein, Éric Fusy, Stephen Kobourov, André Schulz, and Torsten Ueckerdt

	Open Problems
	Drawing r-partite hypergraphs Günter Rote
	Characterization of Planar Lombardi Graphs David Eppstein
	Small Path Covers in Planar Graphs André Schulz
	Self-approaching Networks on Planar Point Sets Fabrizio Frati
	Improving Curved Drawings with Edge Direction and Curvature Optimization Kai Xu
	Improving Graph Readability by Spatial Distortion of Node-Link-Based Graph Depictions within Geographical Contexts Maxwell J. Roberts

	Exhibition: Bending Reality Maxwell J. Roberts
	Curved Annotations of the World
	Curving the World
	Early Metro Maps
	Metro Maps Using Freeform Béziers
	Metro Maps Using Concentric Circles
	Curved Relationships
	Mathematical Abstractions

	Participants

	dagrep_v003_i004_p069_s13161
	Executive Summary Sergiu Hart, Éva Tardos, and Bernhard von Stengel
	Table of Contents
	Overview of Talks
	Best-Reply Dynamics in Large Aggregative Games Yakov Babichenko
	Equilibria of Generalized Cut and Choose Protocols Simina Branzei
	On the Tradeoff between Economic Efficiency and Strategyproofness in Randomized Social Choice Markus Brill
	Epistemic Implementation Jing Chen
	Reductions from Mechanism to Algorithm Design Constantinos Daskalakis
	A Ranking Method Based on Handicaps Gabrielle Demange
	Tatonnement Beyond Gross Substitutes? Gradient Descent to the Rescue Nikhil R. Devanur
	Shared Resource Management via Reward Schemes Shahar Dobzinski
	Expressiveness and Robustness of First-Price Position Auctions Paul Dütting
	Dynamic Coalitional Games Edith Elkind
	Payoff Queries Paul W. Goldberg
	Two(!) Good To Be True Sergiu Hart
	The Simple Economics of Approximately Optimal Auctions Jason D. Hartline
	An Analysis of One-Dimensional Schelling Segregation Nicole Immorlica
	The Engineer as Economist: The Design of Online Market Platforms Ramesh Johari
	Online Independent Set Beyond the Worst-Case: Secretaries, Prophets, and Periods Thomas Kesselheim
	Revenue Optimization in the Generalized Second-Price Auction Kevin Leyton-Brown
	Preplay Commitment in First-Price Auctions Katrina Ligett
	A Model of Bertrand Price Competition in Networks Brendan Lucier
	On the Inefficiency of Standard Multi-unit Auction Formats Vangelis Markakis
	Mechanism Design Problems in Ad Exchanges and Budget Constraints Vahab Mirrokni
	Optimal Mechanism Design for the Private Supply of a Public Good Rudolf Müller
	Selection and Influence in Cultural Dynamics Sigal Oren
	Symmetric Auctions Mallesh Pai
	Mechanism Design in Large Games and Differential Privacy Aaron Roth
	Optimal Ex Post and Prior-Independent Auctions with Interdependent Values Tim Roughgarden
	Large Deviations and Stochastic Stability in the Large Population Limit Bill Sandholm
	Altruism and Spite in Games Guido Schäfer
	Heuristic Auctions and U.S. Spectrum Repurposing Ilya Segal
	Composable and Efficient Mechanisms Vasilis Syrgkanis
	Rounding and the Allocation of Indivisible Objects Rakesh V. Vohra
	Equilibria in the Challenge Tournament Bernhard von Stengel

	Further Participants and Session Chairs
	Open Problems
	Fair Division of a Max-Flow Hervé Moulin

	Organizational Issues
	Invitations
	During the Workshop

	Participants

	dagrep_v003_i004_p091_s13162
	Executive Summary Ondrej Lhoták, Yannis Smaragdakis, Manu Sridharan
	Table of Contents
	Overview of Talks
	Does it have to be so hard? José Nelson Amaral
	Scalable and Precise Program Analysis at NEC Gogul Balakrishnan
	Challenges in vulnerability detection for the Java runtime library Eric Bodden
	Precise Heap Reachability by Refutation Analysis Bor-Yuh Evan Chang
	Precise and Fully-Automatic Verification of Container-Manipulating Programs Isil Dillig and Thomas Dillig
	The End of Pointer Analysis? Julian Dolby
	The Business of Pointer Analysis Samuel Z. Guyer
	Pointer analysis for dynamic information flow control Christian Hammer
	Pointer Analysis Meets MATLAB Laurie J. Hendren
	The Approximations vs. Abstractions Dilemma in Pointer Analysis Uday Khedker
	Incomplete Program Analysis Ondrej Lhoták
	Challenges in Pointer Analysis of JavaScript Benjamin Livshits
	Comparing Different Points-To Analyses Welf Löwe
	Towards a Quantitative Understanding of Heap Structure and Application to Analysis Design Mark Marron
	Control-flow analysis of higher-order programs Matt Might
	Inference and Checking of Context-sensitive Pluggable Types Ana Milanova
	Pointer Analysis for Refactoring JavaScript Programs Anders Møller
	New Search Techniques for Query-Driven Dataflow Analysis Mayur Naik
	Sparse Analysis Framework Hakjoo Oh
	Empirical Evaluation of Points-To Analyses Erhard Plödereder
	Set-Based Pre-Processing for Points-To Analysis Yannis Smaragdakis
	Pointer Analysis for Probabilistic Noninterference Gregor Snelting
	Pointer Analysis and Reflection Manu Sridharan
	Modular combination of shape abstraction with numeric abstraction Xavier Rival
	Scaling flow analysis using big-step semantics Dimitris Vardoulakis

	Breakout Sessions
	Better APIs for Clients José Nelson Amaral
	Pointer analyses for open programs (libraries/frameworks) Eric Bodden
	Shape Analysis and Pointer Analysis: Working Together Bor-Yuh Evan Chang
	Practical Aspects of Pointer Analysis Manu Sridharan

	Participants

	dagrep_v003_i004_p114_s13171
	Executive Summary Luciano Baresi, Andreas Rummler, and Klaus Schmid
	Table of Contents
	Overview of Talks
	Imperative versus Declarative Process Variability: Why Choose? Marco Aiello
	My View on Customizing Service Platforms Luciano Baresi
	Dynamic Product Lines using the HATS framework Karina Barreto Villela
	Quality-Aware Product Configuration Karina Barreto Villela
	Customization of existing industrial plants to achieve modernization Deepak Dhungana
	Forward Recovery for Web Service Environments Peter Dolog
	Customizing Service Platforms Holger Eichelberger
	SPASS-Meter – Monitoring Resource Consumption of Services and Service Platforms Holger Eichelberger
	On-the-Fly Computing – Individualized IT Services in Dynamic Markets Gregor Engels
	Multi-level Service Management Sam Guinea
	Customizable Reliability and Security for Data-Centric Applications in the Cloud Waldemar Hummer
	Adaptation in complex service ecosystems Christian Inzinger
	A Library for Green Knowledge Patricia Lago
	Cloud Computing as a Service Platform for Mobile Systems Grace Lewis
	Cloudlet-Based Cyber-Foraging Grace Lewis
	Customizing Platforms by Higher-Order Process Modeling: Product-Lining, Variability Modeling and Beyond Tiziana Margaria
	Platform Architectures Nenad Medvidovic
	Variability Modeling & Management Nanjangud C. Narendra
	Customized Mashups with Natural Language Composition Cesare Pautasso
	Challenges of offering customizable domain-specific business processes as a service Manuel Resinas Arias de Reyna
	Customization of Large, Complex Systems Klaus Schmid
	Service Networks for Development Communities Damian Andrew Tamburri
	Customizing Science Gateway Platforms via SaaS Approach Wenjun Wu
	Service-based Platform Integration and Customization Uwe Zdun
	Customizing Service Platforms — new or have we seen this before? Frank van der Linden

	Working Groups
	Quality Assurance and Validation in Customizable Service Platforms Deepak Dhungana
	Mobility and Service Platform Customization Grace Lewis
	Architecting for Platform Customization Damian Andrew Tamburri
	Energy-Aware Customization Patricia Lago
	Customizing Service Platforms for Cloud Computing Cesare Pautasso
	Customizing Service Platforms for Agile Networked Organizations Damian Andrew Tamburri
	Binding time aspects of service platform customization Customizing Service Platforms - Development time vs. Compile time vs. Runtime Holger Eichelberger

	Open Problems
	Participants

	dagrep_v003_i004_p151_s13181
	Executive Summary Alessio R. Lomuscio, Sophie Pinchinat, and Holger Schlingloff
	Table of Contents
	Overview of Talks
	The Social Laws Paradigm for Coordinating Multi-Agent Systems Thomas Ågotnes
	(Really) Dynamic Modal Logics Carlos Areces
	From Control Theory to Game Theory via LTLKc Guillaume Aucher
	On Decentralized Runtime Verification Techniques Ezio Bartocci
	Automatic Verification of Equational Knowledge in MAS Ioana Boureanu
	Protocol Descriptions to Interpreted Systems Ioana Boureanu
	Alternating Epistemic Mu-Calculus: Fixed-point Abilities under Incomplete Information Nils Bulling
	Combining quantitative and qualitative strategic reasoning. Part II: some comparisons and preliminary results Nils Bulling
	Using AJPF to generate models of agent programs for input into other Model Checkers Louise A. Dennis
	Verifying Autonomous Systems Michael Fisher
	Resolution for Temporal Logics of Knowledge Michael Fisher
	Information values in multi-agent bargaining scenarios Tim French
	The synthesis and actuation of informative events Tim French
	Combining quantitative and qualitative strategic reasoning. Part I: framework Valentin Goranko
	A few remarks about related work in Pretoria Stefan Gruner
	Yet Another Modal Notation for Strategy Contexts Dimitar Guelev
	The grand game of testing Yuri Gurevich
	Managing Policies and Trust Yuri Gurevich
	Logics for Multi-Agent Systems Andreas Herzig
	Concepts, Agents, Strategies... and Coalitions. ATL goes (monadic) first order Wojtek Jamroga
	ATL with strategy contexts – part 1 François Laroussinie
	ATL with strategy contexts – part 2 Nicolas Markey
	Uniform Strategies Bastien Maubert
	A Poor Man's Technique for Reasoning About Knowledge Stephan Merz
	Reasoning About Strategy Aniello Murano
	Bounded model checking for LTLK Wojciech Penczek
	Abstract planning using genetic algorithms Wojciech Penczek
	Tools for MAS verification: where do we go next? Franco Raimondi
	Doomsday Equilibria for Omega-Regular Games Jean-François Raskin
	Specification based testing in an institutional setting Markus Roggenbach
	Efficient Testing of Software Product Lines Ina Schaefer
	On the specification and analysis of contracts (normative texts) Gerardo Schneider
	Flatland logic François Schwarzentruber
	Before the announcement Hans van Ditmarsch
	Scaling up Test Data Generation Ramanathan Venkatesh
	Show me your friends and I tell you who you are Karsten Wolf
	Synthesis of Knowledge-Based Program Implementations Ron van der Meyden

	Working Groups
	Case Study Description: Elevators Working Group 2
	Case Study Description: Access Control Dimitar P. Guelev
	Case Study Description: Earthquake Rescue Mission Working Group 1
	Case Study Description: Examples from dialog/social systems Working Groups 3 and 4
	Case Study Description: Avionic scenario Franco Raimondi
	Discussion about the testing of MAS Working Group 7
	Discussion concerning logics for knowledge, time and strategies Working Group 5

	Participants

	dagrep_v003_i004_p188_s13182
	Executive Summary Tony Clark, Robert B. France, Martin Gogolla, and Bran V. Selic
	Table of Contents
	Overview of Talks
	Towards Truly View-Based Software Engineering Environments Colin Atkinson
	Meta-Models for Model Based Engineering Tools Tony Clark
	MDE and SLE Cross Fertilization Benoit Combemale
	Human Activity Modeling of Human Modeling Activities Larry Constantine
	Abstract Modeling for Interaction Design Larry Constantine
	Lessons from Human Tool Use Larry Constantine
	Towards More Reliable Tools Catherine Dubois
	Megamodels in Model-Based Engineering Tools Michalis Famelis
	Demo Abstract: Typed Megamodeling with the Model Management Tool Framework Michalis Famelis
	Towards Empathetic Tool Design Robert B. France
	Flexible Modeling Martin Glinz
	Some Challenges and Expectations on Tool Support for Model-Based Engineering Martin Gogolla
	MBE Tools and Evolving Environments Lars Hamann
	Make Good Languages Øystein Haugen
	Engineering Tool Integration: Patterns Gabor Karsai
	MetaEdit+: Faster Meta-Modeling by Design Steven Kelly
	Demo Abstract for MetaEdit+ Steven Kelly
	Finding Tool Paradigms Thomas Kühne
	Towards Greater Adoption of MDE by Industry Practice Vinay Kulkarni
	Servicing IT Needs of Future Enterprises Vinay Kulkarni
	Methods, not Models Stephen J. Mellor
	Computer Automated Multiparadigm Modeling for the Design of Software Systems in a Physical World Pieter J. Mosterman
	The Original Sin – Using Current Computers for Modeling Software Pierre-Alain Muller
	The Other Face of Models Leonel Domingos Telo Nóbrega
	The MetaSketch Workbench Leonel Domingos Telo Nóbrega
	Improving the Usability of Formal Verification Techniques Through Customizable Visualizations Ileana Ober
	Empirical Studies of Expert Software Design (Cuckoo or Canary?) Marian Petre
	Bridging the Gap Between Software Models and Analysis (Performance, Reliability, etc.) Models Dorina C. Petriu
	The Need for Scalable and Flexible Model-Based Engineering Louis Rose
	EuGENia Live: A Flexible Graphical Modelling Tool Louis Rose
	Compositional Model Based Software Development Bernhard Rumpe
	Formal Verfication and Model-Based Engineering Martina Seidl
	MBE Tools: Effective Automation Where It Helps Bran V. Selic
	Models in Software Engineering Perdita Stevens
	Tool Building Using Language Composition Laurence Tratt
	Generic Tools, Specific Languages Markus Völter
	The Tool's The Thing Jon Whittle
	Flexible, Lightweight Metamodeling Dustin Wüest
	Liberating Software Engineers from the Tyranny of a Strict Modeling Language Dustin Wüest
	Design and Design Thinking André van der Hoek

	Overview of Working Groups
	Working Group A: Summary of Discussions and Conclusions Bran V. Selic
	Working Group B.1: Composition Issues in MBE Languages and Tools Tony Clark
	Working Group B.2: Research Questions for Validation and Verification in the Context of Model-Based Engineering Martin Gogolla

	Participants

