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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 21181 “Computational
Geometry”. The seminar was held from May 2 to May 7, 2021. Because of COVID, the seminar
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Siu-Wing Cheng
Anne Driemel
Jeff M. Phillips

License Creative Commons BY 4.0 International license
© Siu-Wing Cheng, Anne Driemel, Jeff M. Phillips

Computational Geometry
The field of computational geometry is concerned with the design, analysis, and imple-
mentation of algorithms for geometric and topological problems, which arise naturally in a
wide range of areas, including computer graphics, CAD, robotics, computer vision, image
processing, spatial databases, GIS, molecular biology, sensor networks, machine learning,
data mining, scientific computing, theoretical computer science, and pure mathematics.
Computational geometry is a vibrant and mature field of research, with several dedicated in-
ternational conferences and journals and strong intellectual connections with other computing
and mathematics disciplines.

In the early years mostly theoretical foundations of geometric algorithms were laid and
fundamental research remains an important issue in the field. Meanwhile, as the field ma-
tured, researchers have started paying close attention to applications and implementations of
geometric and topological algorithms. Several software libraries for geometric computation
(e.g. leda, cgal, core) have been developed. Remarkably, this emphasis on applications and
implementations has emerged from the originally theoretically oriented computational geo-
metry community itself, so many researchers are concerned now with theoretical foundations
as well as implementations.
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Seminar Topics
The emphasis of this seminar was on presenting recent developments in computational
geometry, as well as identifying new challenges, opportunities, and connections to other fields
of computing. In addition to the usual broad coverage of new results in the field, the seminar
included broad survey talks on Computational Topology on Surfaces and Graphs as well as
Combinatorial Complexity of Geometric Structures.

Computational Topology on Surfaces and Graphs

Computational topology has seen exciting advances in a number of topics. Indeed, best
paper awards in several recent SoCGs went to papers on these topics. In 2019, Cohen-Addad
et al. give a lower bound to a cutting problem in embedded graphs, essentially matching the
running time of the fastest algorithm known and settling a 17-year old question. In 2018,
Goaoc et al. proved that it is NP-complete to decide if a d-dimensional simplicial complex
is shellable for d ≥ 2, resolving a question of Danaraj and Klee in 1978. In 2017, Despré
and Lazarus presented simple quasi-linear algorithms for questions regarding geometric
intersection number of a curve on a surface. Progress in these and related topics have had
influences in problems on graphs embedded on surfaces, maximum flows and multiple-source
shortest paths in planar graphs, collapsibility of simplicial complexes, metric learning, etc.
The seminar highlighted these topics with two overview talks. The first by Hsien-Chih Chang
was on Tightening Curves on Surfaces, and provided a overview of recent advancements in this
area, and exciting directions for future work on flipping triangulations and morphing planar
multicurves using electrical moves. The second by Uli Wagner discussed Embeddability of
Simplicial Compexes, and also the flurry of recent research in this area, and pinpointed the
several remaining questions and where the community has not yet been able to resolve the
embeddability and why the challenges remain. These talks, and other on recent advances,
helped summarize the state of this area, and generate new avenues towards moving the field
further forward.

Combinatorial Complexity of Geometric Structures

The understanding of the combinatorial properties of geometric structures is at the core
of computational geometry. A lot of these structures such as union of shapes, cuttings,
arrangements, Delaunay triangulation, Voronoi diagram have found numerous applications
in algorithm design. For example, the analysis of the complexity of the union of translates
of a convex body allows us to understand the complexity of the free space in planning
the motion of that convex body under translation. Their studies have also triggered the
development of new theoretical tools such as the polynomial method that has been gaining a
lot of attention lately. There are also new applications that require the modeling of uncertain
data and hence call for a study of many geometric structures under a stochastic setting.
The seminar promoted these topics via two overview talks. The first overview talk was by
Mikkel Abrahamsen on Minimum Fence Enclosure and Separation Problems; this line of
work generalizes the notion of convex hull by identifies other minimally enclosing structures
called fences, and the interesting combinatorial properties that arise. The second overview
talk by Evanthia Papadopoulou was on Problems in Voronoi and Voronoi-like diagrams.
This talk discussed the advancement in generalizations of the classic geometric object of
Voronoi diagrams to be defined among geometric objects beyond points, and to higher-order
complexes. In addition to providing snapshots of these exciting subareas, they provided
future directions for research within these topics and in how they can interact across the
broader computational geometry landscape.
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Participants and Participation
Dagstuhl seminars on computational geometry have been organized in a two year rhythm since
a start in 1990. They have been extremely successful both in disseminating the knowledge and
identifying new research thrusts. Many major results in computational geometry were first
presented in Dagstuhl seminars, and interactions among the participants at these seminars
have led to numerous new results in the field. These seminars have also played an important
role in bringing researchers together, fostering collaboration, and exposing young talent
to the seniors of the field and vice versa. They have arguably been the most influential
meetings in the field of computational geometry. The organizers held a lottery for the fifth
time this year; the lottery allows to create space to invite younger researchers, rejuvenating
the seminar, while keeping a large group of senior and well-known scholars involved. The
seminar has now a more balanced attendance in terms of seniority and gender than in the
past. This year, 36 researchers from various countries and continents attended the seminar,
despite the virtual nature due to COVID-19, showing the strong interest of the community
for this event.

Due to the COVID-19 pandemic, the seminar was held entirely virtually. Talks were held
over four days. Each day had 2 two-hour blocks of talks, separated by a 2-hour meal break.
They were held in the late-afternoon and evening in Europe, which allowed for participants
from North America to join in during their morning hours. Unfortunately, this timing
was late for those in Asia. The talks were held on Zoom, a Slack server was set up for a
more persistent text-based discussion, and a Wonder.me instance was arranged for dynamic
forming of group discussions before and after each session. All of these settings were used
to communicate research, form collaborations, and attack open problems. Although not as
wonderful as actually being at Schloss Dagstuhl, these online mechanisms provided for a
workable replacement for what a normal Dagstuhl seminar provides in this abnormal time.

The feedback from participants was very positive. The participants viewed the composition
of the group positively, remarking how it was well-balanced in terms of seniority and gender.
They also praised the quality of the talks as of very high quality – making the virtual-only
participation worthwhile.

We warmly thank the scientific, administrative and technical staff at Schloss Dagstuhl!
Dagstuhl made virtual hosting possible and easy in a time filled with complications. Despite
not providing a physical space to meet, socialize, and collaborate, their help in organizing
the event made it a success despite the less than ideal circumstances.
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3 Overview of Talks

3.1 Minimum Fence Enclosure and Separation Problems
Mikkel Abrahamsen (University of Copenhagen, DK)

License Creative Commons BY 4.0 International license
© Mikkel Abrahamsen

The classical problem of computing the convex hull of a given set of points in the plane can
be formulated in a natural way as a fence enclosure problem: Find the shortest fence that
encloses the points. In this talk, we survey our recent work on related problems that appear
when the formulation is changed slightly. We will touch upon the following problems:
1. Given a set of points in the plane, find the two fences of minimum total length that

together enclose all the points. We will outline an algorithm with O(n log2 n) running
time.

2. Given a set of points and a number k, find a system of at most k fences of minimum total
length that enclose the points. We will explain how this problem can be attacked via
dynamic programming, which leads to a polynomial-time, although very slow, algorithm.

3. Given a set of unit disks, find a system of fences of minimum total length that enclose all
the disks (with no restriction on the number of fences). We report on a near-linear time
algorithm for this and related problems.

4. Finally, we consider the problem where the input consists of pairwise interior-disjoint
polygons in the plane, and each polygon has a color. We want to compute the fence
of minimum total length that separates all pairs of polygons of different colors. This
problem can be solved in polynomial time when there are just two colors, but it becomes
NP-hard already for three colors. We report on an approximation algorithm. During the
talk, we will suggest directions for future research.

3.2 On the Union of Cubes in 3D
Pankaj Kumar Agarwal (Duke University – Durham, US)

License Creative Commons BY 4.0 International license
© Pankaj Kumar Agarwal

Joint work of Pankaj K. Agarwal, Micha Sharir, Alex Steiger
Main reference Pankaj K. Agarwal, Micha Sharir, Alex Steiger: “Decomposing the Complement of the Union of

Cubes in Three Dimensions”, in Proc. of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pp. 1425–1444, SIAM, 2021.

URL http://dx.doi.org/10.1137/1.9781611976465.86

Let C be a set of n axis-aligned cubes of arbitrary sizes in 3D, let K = R3 \ U(C) be
the complement of their union (i.e. free space). The complexity of K, denoted by k, can
vary between O(1) and O(n2). This talk presents two main results: (i) An output-sensitive
algorithm to compute K in time O(npolylog(n) + k) time; and (ii) an output-sensitive
algorithm to partition K into O((n + k)polylog(n)) boxes in the same time bound. These
results can be slightly improved if the cubes in C have roughly the same size or if they have
bounded depth (i.e. any point in R3 lies in O(1) cubes).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1137/1.9781611976465.86
http://dx.doi.org/10.1137/1.9781611976465.86
http://dx.doi.org/10.1137/1.9781611976465.86
http://dx.doi.org/10.1137/1.9781611976465.86
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3.3 Fine-grained Complexity of Nearest Neighbors for Fréchet Distance
Karl Bringmann (Universität des Saarlandes – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Karl Bringmann

Joint work of Karl Bringmann, Anne Driemel, André Nusser, Ioannis Psarros

Fine-grained complexity theory is the area of theoretical computer science that proves
conditional lower bounds based on the 3-SUM Hypothesis, the Strong Exponential Time
Hypothesis, and similar conjectures. This talk is an introduction to recent fine-grained
lower bounds in computational geometry, with a focus on lower bounds for polynomial-time
problems based on the Orthogonal Vectors Hypothesis. Specifically, we discuss conditional
lower bounds for nearest neighbor search under the Euclidean distance and Fréchet distance.
We see that lower bounds for the Bichromatic Closest Pair problem follow from the Orthogonal
Vectors Hypothesis by simple embeddings. This implies a near-linear lower bound for the
query time of nearest neighbor data structures. Then we see Unbalanced Orthogonal Vectors,
a simple trick to even rule out any polynomial preprocessing time and near-linear query time
for nearest neighbors. Finally, we discuss recent, unpublished work on approximate nearest
neighbor data structures for the Fréchet distance.

3.4 Around k-fold filtrations
Mickaël Buchet (TU Graz, AT)

License Creative Commons BY 4.0 International license
© Mickaël Buchet

Joint work of Mickaël Buchet, Bianca B. Dornelas, Michael Kerber

Given a point set P , a number k and a radius r, the k-fold cover is defined as the union of
all intersections of k balls of radius r around points of P . This cover has two parameters
(k and r) and defines a very natural bi-filtration of the space. This bi-filtration represents
one natural occurrence for multi-parameter persistent homology. Unfortunately, the usual
combinatorial objects used to represent the bi-filtration are not bi-filtration themselves
and are of larger size. I will talk about several ways to tackle this issue through various
approximations, constructions and sparsifications, mostly adapted from techniques used in
the one-parameter case but where the nature of the k-fold cover raises new challenges and
interesting open questions.

3.5 Computing the inverse geodesic length in graphs of bounded
treewidth

Sergio Cabello (University of Ljubljana, SI)

License Creative Commons BY 4.0 International license
© Sergio Cabello

Main reference Sergio Cabello: “Computing the inverse geodesic length in planar graphs and graphs of bounded
treewidth”, CoRR, Vol. abs/1908.01317, 2019.

URL https://arxiv.org/abs/1908.01317

The inverse geodesic length of a graph G is the sum of the inverse of the distances between
all pairs of distinct vertices of G. In some domains it is known as the Harary index or the
global efficiency of the graph. We show that, if G has n vertices and constant treewidth,
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then the inverse geodesic length of G can be computed in near-linear time. To achieve this
we use techniques developed for computing the sum of the distances, which does not have
“inverse” component, together with batched evaluations of rational functions.

3.6 Tightening Curves on Surfaces
Hsien-Chih Chang (Dartmouth College – Hanover, US)

License Creative Commons BY 4.0 International license
© Hsien-Chih Chang

In this talk we survey the recent advancements in tightening curves on surfaces under different
categories of curves and deformations in the past few decades. We then present two possible
directions for future research, one on computing geodesics by flipping triangulations and
the other on the complexity of morphing planar multicurves using electrical moves. Open
questions are provided for the curious to ponder.

3.7 Multicuts in planar and surface-embedded graphs
Éric Colin de Verdière (CNRS, LIGM, Marne-la-Vallée, FR)

License Creative Commons BY 4.0 International license
© Éric Colin de Verdière

Joint work of Vincent Cohen-Addad, Vincent, Éric Colin de Verdière, Dániel Marx, Arnaud de Mesmay

The Multicut problem is defined as follows. Given an edge-weighted graph G and pairs of
vertices (s1, t1), . . . , (sk, tk), compute a minimum-weight subset of edges whose removal
disconnects each pair (si, ti).

This problem is NP-hard, APX-hard, and W[1]-hard in the number of pairs of terminals,
even in very simple cases, such as planar graphs.

We will survey some recent results on this problem, on planar graphs and more generally
on graphs embedded on a fixed surface: An exact algorithm, whose running time is a
polynomial in the genus and the number of terminals [1]; a matching lower bound assuming
ETH [2]; and an approximation scheme with running time O(n log n) if the approximation
factor, the genus, and the number of terminals are fixed [3].

All these results rely on topological methods: The subgraph of the dual of G, made of
the edges dual to a multicut, has nice properties, which can be exploited using classical tools
from algebraic topology such as homotopy, homology, and universal covers of surfaces.

References
1 Éric Colin de Verdière. Multicuts in planar and bounded-genus graphs with bounded number

of terminals. Algorithmica, 78:1206–1224, 2017.
2 Vincent Cohen-Addad, Éric Colin de Verdière, Dániel Marx, and Arnaud de Mesmay. Almost

tight lower bounds for hard cutting problems in embedded graphs. In Proc. Int. Symp. on
Computational Geometry, pages 27:1–27:16, 2019. Full version to appear in J. ACM.

3 Vincent Cohen-Addad, Éric Colin de Verdière, and Arnaud de Mesmay. A near-linear
approximation scheme for multicuts of embedded graphs with a fixed number of terminals.
SIAM J. Comput., 50(1):1–33, 2021.

https://creativecommons.org/licenses/by/4.0/
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3.8 Fine-grained Complexity of the k-Shortcut Fréchet distance
Jacobus Conradi (Universität Bonn, DE)

License Creative Commons BY 4.0 International license
© Jacobus Conradi

Joint work of Jacobus Conradi, Anne Driemel

The Fréchet distance is a popular measure of dissimilarity for polygonal curves. It is defined
as a min-max formulation that considers all direction-preserving continuous bijections of the
two curves. Because of its susceptibility to noise, Driemel and Har-Peled introduced the
shortcut Fréchet distance in 2012, where one is allowed to take shortcuts along one of the
curves, similar to the edit distance for sequences. We analyse the parametrized version of this
problem, where the number of shortcuts is bounded by a parameter k. The corresponding
decision problem can be stated as follows: Given two polygonal curves T and B of at most n

vertices, a parameter k and a distance threshold δ, is it possible to introduce k shortcuts
along B such that the Fréchet distance of the resulting curve and the curve T is at most δ?
We study this problem for polygonal curves in the plane. We provide a complexity analysis
for this problem with the following results: (i) assuming the exponential-time-hypothesis
(ETH), there exists no algorithm with running time bounded by no(k); (ii) there exists a
decision algorithm with running time in O(kn2k+2 log n). In contrast, we also show that
efficient approximate decider algorithms are possible, even when k is large. We present a
(3 + ε)-approximate decider algorithm with running time in O(kn2 log2 n) for fixed ε. In
addition, we can show that, if k is a constant and the two curves are c-packed for some
constant c, then the approximate decider algorithm runs in near-linear time.

3.9 Contractibility on 3-manifold boundaries and compressed problems
on surfaces

Arnaud de Mesmay (University Paris-Est – Marne-la-Vallée, FR)

License Creative Commons BY 4.0 International license
© Arnaud de Mesmay

Joint work of Erin W. Chambers, Arnaud de Mesmay, Francis Lazarus, Salman Parsa
Main reference Erin Wolf Chambers, Francis Lazarus, Arnaud de Mesmay, Salman Parsa: “Algorithms for

Contractibility of Compressed Curves on 3-Manifold Boundaries”, CoRR, Vol. abs/2012.02352, 2020.
URL https://arxiv.org/abs/2012.02352

We show that the problem of deciding whether a closed curve on the boundary of a 3-
manifold is contractible is in NP, and furthermore we provide an algorithm that is FPT in the
complexity of the manifold. This relies on techniques to solve various topological problems
for curves on surfaces with compressed inputs. The talk assumes no topological background
and focuses on explaining why issues with compression appear naturally in this line of work.
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3.10 Practical volume approximation of H, V, and Z-polytopes
Ioannis Emiris (University of Athens & Athena Research Center, GR)

License Creative Commons BY 4.0 International license
© Ioannis Emiris

Joint work of Apostolos Chalkis, Ioannis Z. Emiris, Vissarion Fisikopoulos
Main reference Apostolos Chalkis, Ioannis Z. Emiris, Vissarion Fisikopoulos: “Practical Volume Estimation by a

New Annealing Schedule for Cooling Convex Bodies”, CoRR, Vol. abs/1905.05494, 2019.
URL http://arxiv.org/abs/1905.05494

We tackle the problem of efficiently approximating the volume of convex polytopes, when these
are given in 3 different representations: H-polytopes, which have been studied extensively, V -
polytopes, and zonotopes (Z-polytopes). We design a novel practical Multiphase Monte Carlo
(MMC) algorithm that leverages geometric random walks. Our algorithmic contributions
include: (i) a uniform sampler employing billiard walk for the first time in volume computation,
showing it mixes much faster than Hit-and-Run variants, (ii) a new simulated annealing
schedule, generalizing existing MMC, by introducing adaptive convex bodies which, moreover,
(iii) probabilistically restricts volume ratios to a target interval, thus drastically reducing
the number of bodies in MMC. Extensive experiments indicate that our method requires
about O(d2) oracle calls compared to the best theoretical bound of O∗(d3), where d is the
dimension. For zonotopes, we appropriately use centrally symmetric polytopes which yield
an MMC with constant number of phases, when the ratio of generators over dimension
is small. We present a detailed experimental evaluation of our algorithm using Birkhoff
polytopes and polytopes of all 3 classes. Our open-source C++ software offers the first
method that scales up to thousands of dimensions for H-polytopes and in the hundreds for
V - and Z-polytopes on moderate hardware. We illustrate it on SDP optimization, by means
of sampling spectrahedra, and on sampling structured polytopes obtained from modeling
financial portfolios.

3.11 Consistent Digital Line Segments
Matias Korman (Siemens EDA – Wilsonville, US)

License Creative Commons BY 4.0 International license
© Matias Korman

Joint work of Man-Kwun Chiu, Matias Korman, Martin Suderland, Takeshi Tokuyama
Main reference Man-Kwun Chiu, Matias Korman, Martin Suderland, Takeshi Tokuyama: “Distance Bounds for High

Dimensional Consistent Digital Rays and 2-D Partially-Consistent Digital Rays”, in Proc. of the
28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy
(Virtual Conference), LIPIcs, Vol. 173, pp. 34:1–34:22, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

URL http://dx.doi.org/10.4230/LIPIcs.ESA.2020.34

In this talk I will introduce the concept of “consistent digital segments”: In short, we look
for an axiomatic construction of segments in discrete spaces, akin to the construction that we
have in Euclidean segments. After discussing movivation, we will focus on known results in
two and higher dimensions. Each result will be followed with discussion on what are the big
open problems that remain and what are possible lines of research that could be followed.
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3.12 Approximating Maximum Independent Set in the Plane
Joseph S. B. Mitchell (Stony Brook University, US)

License Creative Commons BY 4.0 International license
© Joseph S. B. Mitchell

Main reference Joseph S. B. Mitchell: “Approximating Maximum Independent Set for Rectangles in the Plane”,
CoRR, Vol. abs/2101.00326, 2021.

URL https://arxiv.org/abs/2101.00326

We give a polynomial-time constant-factor approximation algorithm for maximum independ-
ent set for (axis-aligned) rectangles in the plane. Using a polynomial-time algorithm, the
best approximation factor previously known is O(log log n). The results are based on a new
form of recursive partitioning in the plane, in which faces that are constant-complexity and
orthogonally convex are recursively partitioned in a constant number of such faces.

3.13 Efficient Near-Neighbor Search via Average Distortion Embeddings
Aleksandar Nikolov (University of Toronto, CA)

License Creative Commons BY 4.0 International license
© Aleksandar Nikolov

Joint work of Deepanshu Kush, Aleksandar Nikolov, Haohua Teng
Main reference Deepanshu Kush, Aleksandar Nikolov, Haohua Tang: “Near Neighbor Search via Efficient Average

Distortion Embeddings”, CoRR, Vol. abs/2105.04712, 2021.
URL https://arxiv.org/abs/2105.04712

A recent series of papers by Andoni, Naor, Nikolov, Razenshteyn, and Waingarten (STOC
2018, FOCS 2018) has given approximate near neighbour search (ANN) data structures for
a wide class of distance metrics, including all norms. In particular, these data structures
achieve approximation on the order of p for ℓp norms with space complexity nearly linear in
the dataset size n and polynomial in the dimension d, and query time sub-linear in n and
polynomial in d. The main shortcoming is the exponential in d pre-processing time required
for their construction. In this talk, we describe a more direct framework for constructing ANN
data structures for general norms. More specifically, we show via an algorithmic reduction
that an efficient ANN data structure for a given metric is implied by an efficient average
distortion embedding of the metric into the Manhattan norm or into Euclidean space. In
particular, the resulting data structures require only polynomial pre-processing time, as long
as the embedding can be computed in polynomial time. As a concrete instantiation of this
framework, we give an ANN data structure for ℓp with efficient pre-processing that matches
the approximation factor, space and query complexity of the aforementioned data structure
of Andoni et al.
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3.14 Problems in Voronoi and Voronoi-like diagrams
Evanthia Papadopoulou (University of Lugano, CH)

License Creative Commons BY 4.0 International license
© Evanthia Papadopoulou

Joint work of Kolja Junginger, Evanthia Papadopoulou
Main reference Kolja Junginger, Evanthia Papadopoulou: “Deletion in Abstract Voronoi Diagrams in Expected

Linear Time”, in Proc. of the 34th International Symposium on Computational Geometry, SoCG
2018, June 11-14, 2018, Budapest, Hungary, LIPIcs, Vol. 99, pp. 50:1–50:14, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

URL http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.50
Main reference Kolja Junginger, Evanthia Papadopoulou: “Deletion in abstract Voronoi diagrams in expected linear

time”, CoRR, Vol. abs/1803.05372, 2018.
URL http://arxiv.org/abs/1803.05372

Differences between classical Voronoi diagrams of points, versus segments, circles, or polygons
are often forgotten or underestimated. Abstract Voronoi diagrams (AVDs) offer a unifying
framework for many such Voronoi diagrams in the plane; however, diagrams of points are not
a representative concrete structure for AVDs. In this talk, I will first survey fundamental
differences between higher order Voronoi diagrams of points and their counterparts of
segments or AVDs. I will then address the problem of site-deletion in abstract Voronoi
diagrams in expected linear time. Although linear-time algorithms for site-deletion in planar
point Voronoi diagrams had been well-known to exist since the late 80’s, the corresponding
problems for non-point Voronoi diagrams remained open, until recently. As a byproduct, I will
introduce abstract Voronoi-like diagrams, a relaxed Voronoi structure of independent interest,
which leads to a very simple randomized incremental technique to perform site-deletion in
abstract Voronoi diagrams. The technique extends to computing various tree-like Voronoi
diagrams such as constructing the farthest abstract Voronoi diagram, after the order of its
regions at infinity is known, constructing the order-(k + 1) subdivision within an order-k
Voronoi region, and others. The time analysis introduces a simple alternative to backwards
analysis applicable to order-dependent structures.

3.15 Stronger Bounds for Weak Epsilon-Nets in Higher Dimensions
Natan Rubin (Ben Gurion University – Beer Sheva, IL)

License Creative Commons BY 4.0 International license
© Natan Rubin

Main reference Natan Rubin: “Stronger Bounds for Weak Epsilon-Nets in Higher Dimensions”, CoRR,
Vol. abs/2104.12654, 2021.

URL https://arxiv.org/abs/2104.12654

Given a finite point set P in Rd, and ϵ > 0 we say that N ⊆ Rd is a weak ϵ-net if it pierces
every convex set K with |K ∩ P | ≥ ϵ|P |.

Let d ≥ 3. We show that for any finite point set in Rd, and any ϵ > 0, there exist a weak

ϵ-net of cardinality O

(
1

ϵd−1/2+γ

)
, where γ > 0 is an arbitrary small constant.

This is the first improvement of the bound of O∗
(

1
ϵd

)
that was obtained in 1993 by

Chazelle, Edelsbrunner, Grigni, Guibas, Sharir, and Welzl for general point sets in dimension
d ≥ 3.1

1 O∗(·)-notation hides multiplicative factors that are polylogarithmic in log 1/ϵ.
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3.16 Terrain prickliness: theoretical grounds for low complexity
viewsheds

Maria Saumell (The Czech Academy of Sciences – Prague & Czech Technical University in
Prague, CZ)

License Creative Commons BY 4.0 International license
© Maria Saumell

Joint work of Ankush Acharyya, Ramesh K. Jallu, Maarten Löffler, Gert G. T. Meijer, Maria Saumell, Rodrigo I.
Silveira, Frank Staals, Hans Raj Tiwary

Main reference Ankush Acharyya, Ramesh K. Jallu, Maarten Löffler, Gert G. T. Meijer, Maria Saumell, Rodrigo I.
Silveira, Frank Staals, Hans Raj Tiwary: “Terrain prickliness: theoretical grounds for low complexity
viewsheds”, CoRR, Vol. abs/2103.06696, 2021.

URL https://arxiv.org/abs/2103.06696

An important task when working with terrain models is computing viewsheds: the parts
of the terrain visible from a given viewpoint. When the terrain is modeled as a polyhedral
terrain, the viewshed is composed of the union of all the triangle parts that are visible
from the viewpoint. The complexity of a viewshed can vary significantly, from constant to
quadratic in the number of terrain vertices, depending on the terrain topography and the
viewpoint position.

In this work we study a new topographic attribute, the prickliness, that measures
the number of local maxima in a terrain from all possible perspectives. We show that
the prickliness effectively captures the potential of 2.5D terrains to have high complexity
viewsheds, and we present near-optimal algorithms to compute the prickliness of 1.5D and
2.5D terrains. We also report on some experiments relating the prickliness of real word 2.5D
terrains to the size of the terrains and to their viewshed complexity.

3.17 Guarding Problems
Christiane Schmidt (Linköping University, SE)

License Creative Commons BY 4.0 International license
© Christiane Schmidt

Joint work of Sarah Cannon, Ovidiu Daescu, Thomas Fai, Stephan Friedrichs, Justin Iwerks, Undine Leopold,
Hemant Malik, Bengt J. Nilsson, Valentin Polishchuk, Christiane Schmidt

The classical Art Gallery Problem (AGP) asks for the minimum number of guards that are
necessary to visually cover a polygon P , where visibility between two points is defined as the
line segment between these points being fully contained in P . In this talk, we highlight some
recent works and open problems for different variants of the AGP.

First, we consider k-transmitters, for which the definition of visibility is altered: two
points, p, q, can see each other if the line segment pq intersects P ’s boundary at most k

times. We review results on stationary point and edge k − /2-transmitters – Art Gallery
theorems and complexity results; we present several properties of k − /2-transmitters and
recent complexity results on 2-transmitter watchman routes. Finally, we highlight an open
problem on Art Gallery theorems for 2-transmitters in simple polygon: we have a lower
bound of ⌊n/5⌋ guards, but the best known upper bound essentially stems from “normal”
guards/0-transmitters: ⌊(n − 1)/3⌋.

We then consider guarding problems in special polygon classes (altering the environment
to be guarded rather than the capabilities of the guards). We show that we can find an
optimal guard set for uni-monotone polygons in linear time and that the size of a minimum
cardinality guard set equals the size of a maximum cardinality witness set for this class –
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uni-monotone polygons are perfect. We survey for which guarding problems discretizations
have been obtained. Finally, we review under which types of visibility definition and for
which polygon classes similar results on perfectness have been obtained and give the basic
idea of these results. This leads to an open question of AGP in monotone polygons: can we
show perfectness for, e.g., staircase or O-visibility. Can we discretize in this special polygon
class?

3.18 Sketching Persistence Diagrams
Donald Sheehy (North Carolina State University – Raleigh, US)

License Creative Commons BY 4.0 International license
© Donald Sheehy

Joint work of Donald R. Sheehy, Siddharth Sheth
Main reference Donald R. Sheehy, Siddharth Sheth: “Sketching Persistence Diagrams”, in Proc. of the 37th

International Symposium on Computational Geometry, SoCG 2021, June 7-11, 2021, Buffalo, NY,
USA (Virtual Conference), LIPIcs, Vol. 189, pp. 57:1–57:15, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

URL http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.57

Given a persistence diagram with n points, we give an algorithm that produces a sequence
of n persistence diagrams converging in bottleneck distance to the input diagram, the ith of
which has i distinct (weighted) points and is a 2-approximation to the closest persistence
diagram with that many distinct points. For each approximation, we precompute the optimal
matching between the ith and the (i + 1)st. Perhaps surprisingly, the entire sequence of
diagrams as well as the sequence of matchings can be represented in O(n) space. The main
approach is to use a variation of the greedy permutation of the persistence diagram to give
good Hausdorff approximations and assign weights to these subsets. We give a new algorithm
to efficiently compute this permutation, despite the high implicit dimension of points in a
persistence diagram due to the effect of the diagonal. The sketches are also structured to
permit fast (linear time) approximations to the Hausdorff distance between diagrams – a
lower bound on the bottleneck distance. For approximating the bottleneck distance, sketches
can also be used to compute a linear-size neighborhood graph directly, obviating the need
for geometric data structures used in state-of-the-art methods for bottleneck computation.

3.19 Optimal bounds for the colorful fractional Helly theorem
Martin Tancer (Charles University – Prague, CZ)

License Creative Commons BY 4.0 International license
© Martin Tancer

Joint work of Denys Bulavka, Afshin Goodarzi, Martin Tancer
Main reference Denys Bulavka, Afshin Goodarzi, Martin Tancer: “Optimal Bounds for the Colorful Fractional Helly

Theorem”, in Proc. of the 37th International Symposium on Computational Geometry, SoCG 2021,
June 7-11, 2021, Buffalo, NY, USA (Virtual Conference), LIPIcs, Vol. 189, pp. 19:1–19:14, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

URL http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.19

The well known fractional Helly theorem and colorful Helly theorem can be merged into the so
called colorful fractional Helly theorem. It states: for every α ∈ (0, 1] and every non-negative
integer d, there is β = β(α, d) ∈ (0, 1] with the following property. Let F1, . . . , Fd+1 be
finite nonempty families of convex sets in Rd of sizes n1, . . . , nd+1, respectively. If at least
αn1n2 · · · nd+1 of the colorful (d + 1)-tuples have a nonempty intersection, then there is
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i ∈ [d + 1] such that Fi contains a subfamily of size at least βni with a nonempty intersection.
(A colorful (d + 1)-tuple is a (d + 1)-tuple (F1, . . . , Fd+1) such that Fi belongs to Fi for
every i.)

The colorful fractional Helly theorem was first stated and proved by Bárány, Fodor,
Montejano, Oliveros, and Pór in 2014 with β = α/(d + 1). In 2017 Kim proved the theorem
with better function β, which in particular tends to 1 when α tends to 1. Kim also conjectured
what is the optimal bound for β(α, d) and provided the upper bound example for the optimal
bound. The conjectured bound coincides with the optimal bounds for the (non-colorful)
fractional Helly theorem proved independently by Eckhoff and Kalai around 1984.

We verify Kim’s conjecture by extending Kalai’s approach to the colorful scenario.
Moreover, we obtain optimal bounds also in a more general setting when we allow several
sets of the same color.

3.20 Light Euclidean Spanners
Csaba Tóth (California State University – Los Angeles, US)

License Creative Commons BY 4.0 International license
© Csaba Tóth

Main reference Sujoy Bhore, Csaba D. Tóth: “On Euclidean Steiner (1+ϵ)-Spanners”, in Proc. of the 38th
International Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-19,
2021, Saarbrücken, Germany (Virtual Conference), LIPIcs, Vol. 187, pp. 13:1–13:16, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021.

URL http://dx.doi.org/10.4230/LIPIcs.STACS.2021.13

Lightness is a fundamental parameter for Euclidean spanners; it is the ratio of the spanner
weight to the weight of the minimum spanning tree of a finite set of points in Rd. In a recent
breakthrough, Le and Solomon (2019) established the precise dependencies on ε > 0 and
d ∈ N of the minimum lightness of a (1 + ε)-spanner, and observed that additional Steiner
points can substantially improve the lightness. Le and Solomon (2020) constructed Steiner
(1 + ε)-spanners of lightness O(ε−1 log n) for n points in the plane. They also constructed
spanners of lightness Õ(ε−(d+1)/2) in dimensions d ≥ 3.

We established a lower bound of Ω(ε−d/2) for the lightness of Steiner (1 + ε)-spanners
in Rd, for all d ≥ 2. We also prove that this bound is the best possible for d = 2, that is,
for every finite set of points in the plane and every ε > 0, there exists a Euclidean Steiner
(1+ε)-spanner of lightness O(ε−1). We generalize the notion of shallow light trees, which may
be of independent interest, and use directional spanners and a modified window partitioning
scheme to achieve a tight weight analysis. (Joint work with Sujoy Bhore.)

3.21 Embeddability of Simplicial Complexes
Uli Wagner (IST Austria – Klosterneuburg, AT)

License Creative Commons BY 4.0 International license
© Uli Wagner

Consider the following decision problem in computational topology, which we refer to as the
embeddability problem: Given a finite k-dimensional simplicial complex K, does K admit
a (piecewise-linear) embedding into Rd? More generally, the extendability of embeddings
problem asks: Given K, a subcomplex A ⊆ K, and an embedding f : A → Rd, can f be
extended to an embedding F : K → Rd? (The embeddability problem is the special case
A = ∅.)
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We survey what is known about the decidability and computational complexity of these
problems in higher dimensions (for fixed positive integers k ≤ d). Some of the main results
and open questions are:

For d = 3, the embeddability problem is known to be algorithmically decidable [7] as well
as NP-hard [2]; the exact complexity of the problem (including whether it lies in NP)
remains unknown.
In the so-called metastable range d ≥ 3(k+1)

2 , both embeddability and extendability
of embeddings can be decided in polynomial time (for fixed k and d). Indeed, in
this dimension range, by classical work of Haefliger and Weber [4, 8], both problems
reduce to questions about the existence of equivariant maps from the deleted product
(K × K) \ {(x, x) : x ∈ K} to Sd−1, and the latter can be decided in polynomial time by
a series of works on computational homotopy theory culminating in [1].
Outside the metastable range, it is known that the embeddability problem is NP-hard
if d ≥ 4, and algorithmically undecidable if k + 1 ≥ d ≥ 5 [6]. Moreover, extendability
of embeddings is algorithmically undecidable for almost all dimensions outside the
metastable range, namely for 8 ≤ d < ⌊ 3(k+1)

2 ⌋ [3]. In [3], it is claimed that this also
implies undecidability of the embeddability problem in the same range of dimensions, but
the proof of this implication contains a gap [5]. Fixing this gap would require constructing
suitable so-called linking gadgets. E.g., in the special case k = 5, d = 8, this would require
constructing a 5-dimensional complex L containing copies of S5 and S2 as vertex-disjoint
subcomplexes, such that in any embedding of G, the images of S5 and S2 are linked with
linking number ±1. (Currently, it is only known that there are examples of complexes L

that force an odd linking number.)
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3.22 Comparing Embedded and Immersed Graphs
Carola Wenk (Tulane University – New Orleans, US)

License Creative Commons BY 4.0 International license
© Carola Wenk

Data in the form of one-dimensional structures, embedded or immersed in an ambient
space, arise in a variety of applications, including GIS analysis, trajectory clustering, protein
alignment, plant morphology, commodity networks such as electrical grids, and geographic
networks of roads or rivers. Often one is interested in comparing such structures. But since
data collection introduces noise and errors, distance measure need to be robust to different
issues in the data.In this talk we will focus on graphs and provide a survey of distance
measures suitable for comparing embedded or immersed graphs. Oftentimes these graphs are
not isomorphic, nor is one interested in true subgraph isomorphism. However, it is desirable
to have a mapping of one graph to the other, which should fulfill certain properties such as
continuity. And the distances should ideally measure differences in geometry and topology.
We will examine several distances from mathematical, algorithmic, and applied point of
views, and pose open problems for comparing embedded or immersed graphs.

4 Open problems

4.1 Twin-width of String Graphs
Édouard Bonnet (ENS – Lyon, FR)
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A tri-graph is a graph consisting of vertices, edges and red edges. Contractions on a tri-graph
of two vertices u and v recolour edges according to the following rules depending on the sets
of neighbours N(u) and N(v) of u and v: 1) edges from N(u)△N(v) to the new vertex are
always red 2) edges from N(u) ∩ N(v) to the new vertex are not red, only if both original
edges were not red. The twin-width of any graph G is then definied as the smallest integer d,
that allows a contraction sequence on G, where the maximum red degree during the sequence
is bound by d. Do Kt,t-free string graphs have bounded twin-width? Similarly, do Ht,t-free
string graphs have bounded twin-width?

4.2 Expected Volume of Stochastic Bounding Box
Sergio Cabello (University of Ljubljana, SI)

License Creative Commons BY 4.0 International license
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Given n points in Rd together with probabilities for each point, we want to compute the
expected volume of the bounding box of these points. Is this problem fixed parameter
tractible with respect to d? Is it #W [1]-hard w.r.t. d? Is the dependency on d in the degree
needed?
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4.3 Average Distortion Embeddings
Aleksandar Nikolov (University of Toronto, CA)
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Joint work of Deepanshu Kush, Aleksandar Nikolov, Haohua Tang
Main reference Deepanshu Kush, Aleksandar Nikolov, Haohua Tang: “Near Neighbor Search via Efficient Average

Distortion Embeddings”, CoRR, Vol. abs/2105.04712, 2021.
URL https://arxiv.org/abs/2105.04712

Suppose (M, dist) is a metric space, and P is a finite set of points in M . A function f : M → ℓ2
is called an embedding with average distortion D w.r.t. P , if ∥f(x)−f(y)∥2 ≤ dist(x, y) for all
x, y ∈ M , and

∑
x∈P

∑
y∈P ||f(x) − f(y)||22 ≥ D−2 ∑

x∈P

∑
y∈P dist(x, y)2. Naor [1] showed,

that for any d-dimensional normed space (X, ∥·∥), defining the metric dist(x, y) =
√

||x − y||X ,
then any P ⊂ X embeds into ℓ2 with average distortion O(

√
log d). Naor’s proof proceeds

via duality, and does not give an explicit embedding f . Can we find an explicit f given M

and P , and, in particular, can we find an f that is efficiently computable from P?
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Abstract
In this report the program and the outcomes of Dagstuhl Seminar 21192 “Approaches and
Applications of Inductive Programming” is documented. The goal of inductive programming
(IP) is to induce computer programs from data, typically input/output examples of a desired
program. IP interests researchers from many areas of computer science, including machine
learning, automated reasoning, program verification, and software engineering. Furthermore, IP
contributes to research outside computer science, notably in cognitive science, where IP can help
build models of human inductive learning and contribute methods for intelligent tutor systems.
Building on the success of previous IP Dagstuhl seminars (13502, 15442, 17382, and 19202), the
goal of this new edition of the seminar is to focus on IP methods which integrate learning and
reasoning, scaling up IP methods to be applicable to more complex real world problems, and
to further explore the potential of IP for explainable artificial intelligence (XAI), especially for
interactive learning. The extended abstracts included in this report show recent advances in IP
research. The included short report of the outcome of the discussion sessions additionally point
out interesting interrelation between different aspects and possible new directions for IP.
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The goal of Inductive Programming (IP) is to provide methods for induction of computer
programs from data. Specifically, IP is the automated (or semi-automated) generation of a
computer program from an incomplete information, such as input-output examples, demon-
strations, or computation traces.IP offers powerful approaches to learning from relational
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data and to learning from observations in the context of autonomous intelligent agents. IP is
a form of machine learning, because an IP system should perform better given more data
(i.e. more examples or experience). However, in contrast to standard ML approaches, IP
approaches typically only need a small number of training examples. Furthermore, induced
hypotheses are typically represented as logic or functional programs, and can therefore be
inspected by a human. In that sense, IP is a type of interpretable machine learning which goes
beyond the expressivity of other approaches of rule learning such as decision tree algorithms.
IP is also a form of program synthesis. It complements deductive and transformational
approaches. When specific algorithm details are difficult to determine, IP can be used to
generate candidate programs from either user-provided data, such as test cases, or from data
automatically derived from a formal specification. Most relevant application areas of IP
techniques is end-user programming and data wrangling.

This seminar has been the fifth in a series – building on seminars 13502, 15442, 17383, and
19202. In the wake of the recent interest in deep learning approaches, mostly for end-to-end
learning, it has been recognized that for practical applications, especially in critical domains,
data-intensive blackbox machine learning must be complemented with methods which can
help to overcome problems with data quality, missing or errouneous labeling of training data,
as well as providing transparency and comprehensibility of learned models. To address these
requirements, on the one hand, explainable artificial intelligence (XAI) emerged as a new
area of research and on the other hand, there is a new interest in bringing together learning
and reasoning. These two areas of research are in the focus of the 2021 seminar. Futhermore,
recent developments to scale up IP methods to be more applicable to complex real world
domains has been taken into account. Based on outcomes of the fourth seminar (19202), the
potential of IP as powerful approach for explainable artificial intelligence (“IP for XAI”) has
been be elaborated. Bringing together IP methods and deep learning approaches contributes
to neural-symbolic intergration research. While two years ago (seminar 19202) focus has
been on IP as interpretable surrogate model, in the 2021 seminar explainability of different
addressees of explanations and their need to different types of explanations (e.g. verbal or
example-based) are considered. For many real world applications, it is necessary to involve
the human as teacher and judge for the machine learned models. Therefore, a further topic of
the seminar has been to explore IP in the context of new approaches to interactive ML and
their applications to automating data science and joint human-computer decision making.
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3 Overview of Talks

3.1 Beneficial and harmful explanatory machine learning
Lun Ai (Imperial College London, GB), Mark Gromowski, Céline Hocquette (Imperial College
London, GB), Stephen H. Muggleton (Imperial College London, GB), and Ute Schmid
(Universität Bamberg, DE)
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Main reference Lun Ai, Stephen H. Muggleton, Céline Hocquette, Mark Gromowski, Ute Schmid: “Beneficial and
harmful explanatory machine learning”, Mach. Learn., Vol. 110(4), pp. 695–721, 2021.

URL https://doi.org/10.1007/s10994-020-05941-0

Given the recent successes of Deep Learning in AI there has been increased interest in the role
and need for explanations in machine learned theories. A distinct notion in this context is
that of Michie’s definition of ultra-strong machine learning (USML). USML is demonstrated
by a measurable increase in human performance of a task following provision to the human
of a symbolic machine learned theory for task performance. A recent paper demonstrates
the beneficial effect of a machine learned logic theory for a classification task, yet no existing
work to our knowledge has examined the potential harmfulness of machine’s involvement for
human comprehension during learning. This paper investigates the explanatory effects of a
machine learned theory in the context of simple two person games and proposes a framework
for identifying the harmfulness of machine explanations based on the Cognitive Science
literature. The approach involves a cognitive window consisting of two quantifiable bounds
and it is supported by empirical evidence collected from human trials. Our quantitative and
qualitative results indicate that human learning aided by a symbolic machine learned theory
which satisfies a cognitive window has achieved significantly higher performance than human
self learning. Results also demonstrate that human learning aided by a symbolic machine
learned theory that fails to satisfy this window leads to significantly worse performance than
unaided human learning.

3.2 A Declarative Framework for Knowledge-Based Explainable Link
Analysis

Martin Atzmüller (Universität Osnabrück, DE)

License Creative Commons BY 4.0 International license
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Joint work of Martin Atzmüller, Cicek Guven, Dietmar Seipel

Generating explanations is a prominent topic in artificial intelligence and data science, in
order to make methods and systems more transparent, interpretable and understandable
for humans. We focus on link analysis: Here, link prediction and anomalous link discovery
are challenging, e.g., in cold-start scenarios or when only sparse historic data is available
[2, 3]. We discuss how to apply answer set programming (ASP) in a declarative framework
for (1) formalizing knowledge-augmented link analysis in feature-rich networks [3], with (2)
explanation generation using ASP [1, 4]. We exemplify this via simple link predictors on
real-world network datasets.
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3.3 Inductively inferring human problem solving strategies from
observed behavior

Thea Behrens (TU Darmstadt, DE) and Frank Jäkel (TU Darmstadt, DE)

License Creative Commons BY 4.0 International license
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When people solve Sudokus, they can apply many different inference rules. In a series of
think-aloud studies we inferred these rules from participants’ behavior and their verbalizations
manually and implemented them as Prolog programs. In our studies just one general rule
would have been enough to fill all cells of a Sudoku puzzle, but we still saw a lot of rule
variability and flexibility in our participants. From the data we could estimate the preferences
for each rule and each participant. We found that these preferences differ markedly between
participants. The rules and rule preferences together form a probabilistic program that is a
good description of a participant’s problem solving strategy. Unfortunately, in our studies the
observed behavior alone was not enough to allow us to infer the rules that participants used
and we had to rely on think-aloud data. These natural language data are too unstructured
to serve as input to available inductive programming systems. Therefore, we developed a
user-interface for solving Sudokus that elicits all the information that participants use when
they apply a rule. Our hope is that these new data will allow for a more formal approach to
infer the rules that underlie the observed behavior.

3.4 Abductive Knowledge Induction from Raw Data
Wang-Zhou Dai (Imperial College London, GB) and Stephen H. Muggleton (Imperial College
London, GB)
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Main reference Wang-Zhou Dai, Stephen H. Muggleton: “Abductive Knowledge Induction From Raw Data”, CoRR,
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For many reasoning-heavy tasks involving raw inputs, it is challenging to design an appropriate
end-to-end learning pipeline. Neuro-Symbolic Learning, divide the process into sub-symbolic
perception and symbolic reasoning, trying to utilise data-driven machine learning and

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2010.03514
https://arxiv.org/abs/2010.03514
https://arxiv.org/abs/2010.03514


Andrew Cropper, Luc De Raedt, Richard Evans, and Ute Schmid 25

knowledge-driven reasoning simultaneously. However, they suffer from the exponential
computational complexity within the interface between these two components, where the
sub-symbolic learning model lacks direct supervision, and the symbolic model lacks accurate
input facts. Hence, most of them assume the existence of a strong symbolic knowledge
base and only learn the perception model while avoiding a crucial problem: where does
the knowledge come from? In this paper, we present Abductive Meta-Interpretive Learning
(MetaAbd) that unites abduction and induction to learn neural networks and induce logic
theories jointly from raw data. Experimental results demonstrate that MetaAbd not only
outperforms the compared systems in predictive accuracy and data efficiency but also induces
logic programs that can be re-used as background knowledge in subsequent learning tasks.
To the best of our knowledge, MetaAbd is the first system that can jointly learn neural
networks from scratch and induce recursive first-order logic theories with predicate invention.

3.5 From Statistical Relational to Neuro-Symbolic AI
Luc De Raedt (KU Leuven, BE)
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Neural-symbolic and statistical relational artificial intelligence both integrate frameworks for
learning with logical reasoning. This survey identifies several parallels across seven different
dimensions between these two fields. These cannot only be used to characterize and position
neural-symbolic artificial intelligence approaches but also to identify a number of directions
for further research.

3.6 Knowledge Refactoring for Inductive Program Synthesis
Sebastijan Dumancic (KU Leuven, BE), Andrew Cropper (University of Oxford, GB)
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URL https://ojs.aaai.org/index.php/AAAI/article/view/16893

Humans constantly restructure knowledge to use it more efficiently. Our goal is to give a
machine learning system similar abilities so that it can learn more efficiently. We introduce
the knowledge refactoring problem, where the goal is to restructure a learner’s knowledge base
to reduce its size and to minimise redundancy in it. We focus on inductive logic programming,
where the knowledge base is a logic program. We introduce Knorf, a system that solves the
refactoring problem using constraint optimisation. We evaluate our approach on two program
induction domains: real-world string transformations and building Lego structures. Our
experiments show that learning from refactored knowledge can improve predictive accuracies
fourfold and significantly reduce learning times.
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3.7 On Conditional Teaching Size and Minimal Curricula
Manuel Garcia-Piqueras (University of Castilla-La Mancha, ES) and José Hernández-Orallo
(Technical University of Valencia, ES)
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Main reference Jan Arne Telle, José Hernández-Orallo, Cèsar Ferri: “The teaching size: computable teachers and
learners for universal languages”, Mach. Learn., Vol. 108(8-9), pp. 1653–1675, 2019.

URL https://doi.org/10.1007/s10994-019-05821-2

Machine teaching, under certain integrative prior knowledge, enables the instruction of
any concept expressed in a universal language. Latest experiments show that there are
instructional sets surprisingly shorter than the concept description itself [1]. We delineate
a border for these remarkable experimental findings through teaching size and concept
complexity. Also, we study teaching curricula and find a new phenomenon that we call
interposition: certain prior knowledge generates simpler compatible concepts which increase
the teaching size of the concept that we want to teach. Far beyond, we provide an algorithm
which builds optimal curricula based on interposition avoidance. These results reveal
innovative curriculum design strategies for machines, but also for animals and humans.
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3.8 IP vs Humans: Learning from Machine Teaching Examples
Gonzalo Jaimovitch López (Technical University of Valencia, ES), Cesar Ferri Ramirez
(Technical University of Valencia, ES), and José Hernández-Orallo (Technical University of
Valencia, ES)
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Main reference Gonzalo Eduardo Jaimovitch López: “Comparison between machine learning and human learning
from examples generated with machine teaching”, 2020.
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Inductive programming has been singled out as one important approach to learning, where
background knowledge and simplicity priors together play a key role to infer patterns,
including algorithmic ones, from very few examples. Other machine learning techniques,
especially deep learning, require thousands, if not millions of examples, to reach the same
inference. This duality seems to be challenged by new massive models based on transformers
that are able to be pretrained from large datasets. These models capture vast amounts
of knowledge with very abstract representations and then make inferences from very few
examples, with little tuning or no retraining needed. In particular, large language models have
shown an impressive ability for few-shot learning. It seems relevant to ask now what kind of
patterns these models can capture and how many examples they need in their prompts. We
present this question as a machine teaching problem with strong priors [1, 2], and test whether
language models can learn simple algorithmic concepts from small witness sets. In particular,
we explore how several GPT architectures, inductive programming systems (the inductive
functional programming system MagicHaskeller and the inductive logic programming system
Louise) and humans perform in terms of the complexity of the concept and the number of
examples provided, and how much their behaviour diverge [3]. This first joint analysis of
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machine teaching and language models can address key questions for artificial intelligence
and machine learning, such as whether strong priors, and Occam’s razor in particular, can
be distilled from data, making learning from a few examples possible without the need of
providing domain knowledge or common sense knowledge about the world.
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3.9 Analyzing massive biomedical datasets with graph-based rule mining
for drug repurposing
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Large biomedical datasets containing structured data could contain hidden knowledge useful
for the response to the pandemic. In this talk, we present our attempt to apply a graph-based
rule mining system to the KG-Covid-19 dataset [2]. This RDF knowledge graph is a result of
ingestion of multiple specialized knowledge sources, such as DrugBank, as well as extraction
from COVID-19 research literature selected for their relevance for drug repurposing efforts.
The published version of the dataset contains 377,482 nodes and 21,433,063 edges. Due to
the large size of the dataset, we initially chose the AMIE+ rule mining algorithm, which
was shown to be orders of magnitude faster than the previous approaches. Due to the need
to search for highly specific patterns, our initial attempts to apply “vanilla” AMIE+ were
not successful due to the combinatorial explosion associated with mining of low support
rules and associated memory issues. We also experimented with AnyBURL [3], which had
excellent performance, but also lacked the possibility to finely define the sought pattern. We
finally settled on RDFRules [5], which is a comprehensive set of extensions for the AMIE+
that also includes the possibility to apply fine-grained patterns for constraining the search
space. Using RDFRules, it was possible to find rules with low support even on the full
KG-Covid-19 dataset (without metadata) on a single computer using less than 64 GB of
RAM. As an example use case, we described a mining task performed in Summer 2020 to
Fall 2020, using a Spring 2020 release of KG-Covid-19 as described in detail in [4]. This
task aimed to find drugs that “molecularly interact with” the ACE 1 receptor (UniProtKB
ID P12821) and at the same time they are connected through an arbitrary predicate to
an intermediary resource, which is using the “interact with” predicate connected to the
ACE 2 receptor (UniProtKB ID Q9BYF1). Note that “molecularly interact with” and
“interact with” are Biolink Model predicates. The task was thus to find rules complying to
the following RDFRules pattern: (<Any> <interacts_with> <Q9BYF1> ) ∧ [ ( <Any>
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<Any> <Any>) ] ⇒ ( <Any> <molecularly_interacts_with> <P12821> ). This task
executed with minsupp= 1 and mining with constants led to the discovery of a single logical
rule ( ?b <interacts_with> <Q9BYF1> ) ∧ ( ?a <molecularly_interacts_with> ?b ) → (
?a <molecularly_interacts_with> <P12821> ), whose instantiation resulted in five drugs.
These included a widely used antihypertensive drug “Telmisartan” for which a subsequent
literature search showed that it is a viable drug repurposing target. A recent open multicenter
randomized clinical trial has shown that Telmisartan could, through anti-inflammatory effects,
reduce mortality and morbidity in hospitalized patients infected with SARS-CoV-2 [1]. We
conclude that rule mining is a viable approach for finding “nuggets” in large knowledge
graphs. Our work was limited in that we have not explored the possibility to use the
embeddings-based approaches and we have not performed comparison with more direct
methods of analyzing graph data.
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3.10 Towards Robust, Data-Efficient, and Explainable Deep Learning
Pasquale Minervini (University College London, GB)

License Creative Commons BY 4.0 International license
© Pasquale Minervini

Deep Learning models are a class of Machine Learning models that use multiple processing
layers to progressively extract higher-level features from raw inputs. Over the past decade, it
has become one of the most impactful research areas in Artificial Intelligence, with many
notable commercially important applications. However, Deep Learning models still fall
short in terms of data efficiency, out-of-distribution generalisation, interpretability, and
complexity. We discuss several ways of overcoming such limitations, by increasing their
statistical robustness [1, 2, 3], incorporating prior knowledge [4, 5, 6], combining symbolic
and sub-symbolic computation models [7, 8, 9, 10], and developing more computationally
efficient neural models [11, 12, 13].
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3.11 Advances in Meta-Interpretive Learning/ILP and Cognitive
Artificial Intelligence
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Inductive logic programming (ILP) is a form of logic-based machine learning. The goal of
ILP is to induce a hypothesis (a logic program) that generalises given training examples
and background knowledge. As ILP turns 30, we survey recent work in the field. In this
survey, we focus on (i) new meta-level search methods, (ii) techniques for learning recursive
programs that generalise from few examples, (iii) new approaches for predicate invention, and
(iv) the use of different technologies, notably answer set programming and neural networks.
We conclude by discussing some of the current limitations of ILP and discuss directions for
future research.
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3.12 Generating Contrastive Explanations for Inductive Logic
Programming Based on a Near Miss Approach

Johannes Rabold (Universität Bamberg, DE), Ute Schmid (Universität Bamberg, DE)
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In recent research, human-understandable explanations of machine learning models have
received a lot of attention. Often explanations are given in the form of model simplifications
or visualizations. However, as shown in cognitive science as well as in early AI research,
concept understanding can also be improved by aligning a given instance for a concept with
a similar counterexample. Contrasting a given instance with a structurally similar example
which does not belong to the concept highlights what characteristics are necessary for concept
membership. Such near misses have been proposed by Winston (1970) as efficient guidance
for learning in relational domains. We introduce an explanation generation algorithm for
relational concepts learned with Inductive Logic Programming (GeNME). The algorithm
identifies near miss examples from a given set of instances and ranks them by their degree
of closeness to a specific positive instance. A modified rule which covers the near miss
but not the original instance is given as an explanation. We illustrate GeNME with the
well known family domain consisting of kinship relations, the visual relational Winston
arches domain and a real-world domain dealing with file management. We also present a
psychological experiment comparing human preferences of rule-based, example-based, and
near miss explanations in the family and the arches domains.

3.13 Learning Episodic Memory Retrieval Procedures Using First-Order
Ripple-Down Rules

Claude Sammut (UNSW – Sydney, AU)
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The long term memory of an agent can be separated into three categories: procedural,
declarative and episodic [4]. The distinguishing features of episodic memories is that they
store knowledge of specific events, including contextual information such, time, location and
participating agents. It is useful for an agent, such as a robot, to be able to recall past events
that are similar to one that has just been observed. The problem here is to define similarity
and how to retrieve similar events. A typical approach taken in many case-based reasoning
systems [3, 6, 5] is to create a geometric distance measure, where the dimensions in the
event space are the observed features. Devising such as measure becomes difficult when the
observations are complex, as is the case for a robot operating a complex environment such
as a real home or work place or in search and rescue operations. Flanagan [2] describes a
system that learns as matching procedure that is customised for each type of event and is
capable of matching structured object descriptions. It associates a Ripple-Down Rule [1]
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3.14 Ultra-strong machine learning with explanatory dialogs
Ute Schmid (Universität Bamberg, DE)
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At Dagstuhl AAIP 2017, Stephen Muggelton reminded us about Donald Michie’s criteria
which require a machine learning system (1) to show improved predictive performance with
increasing amounts of data (weak criterion), (2) additionally to present the learned model in
symbolic –human understandable– form (strong criterion), which (3) teach the model to a
human in such a way that the performance is increased to a level beyond that of the human
studying the training data alone (ultra-strong criterion). Michie’s ultra-strong criterion
corresponds to the main claim of current research on explainable AI (XAI). Our discussion
at Dagstuhl inspired us to empirically research whether models learned with inductive logic
programming (ILP) fulfill the ultra-strong criterion [1, 2]. We extended this work to applying
ILP to teaching best moves in game playing be generating verbal explanations from the
learned Prolog rules [3]. However, in this work, explanations are given once and in one
specific way. In contrast, when one human teaches another, explanations are often a process
based on a dialog between generator and receiver of the explanation. Currently, we realize
an approach to generate such explanatory dialogs from reasoning traces from Prolog and
combine such verbal explanations with prototypes and near miss examples.
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3.15 Generalized Planning as Heuristic Search
Javier Segovia-Aguas (UPF – Barcelona, ES)
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Generalized planning is a booming research topic in the automated planning community,
which aims at computing algorithm-like plans, e.g. plans that branch and loop, that solve a
possibly infinite set of planning instances of a given domain. Generalized planning is then a
fascinating meeting point for automated planning and program synthesis since both pursue a
well-founded integration of (i), knowledge representation with human-comprehensible models
(ii), model-based reasoning and (iii), the learning of such models from examples. In this
work we show that the heuristic search paradigm, that has traditionally shown successful
for classical planning, applies also to the computation of generalized plans using a Random
Access Machine, a best-first search algorithm, and different evaluation/heuristic functions
for guiding the search in a tractable (though combinatorial) solution space. We believe this
is a promising research direction for achieving a tighter integration of the representation,
reasoning and learning facets in Artificial Intelligence.
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Abstract
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computing services more accessible, fine-grained, and affordable, serverless computing has gained
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opportunities and challenges. Excellent collaboration between these fields in the next decade will
be critical in establishing serverless computing as a viable technology.

We organized this Dagstuhl seminar to bring together researchers, developers, and practitioners
across disciplines in serverless computing, to develop a vision and detailed answers to the timely
and relevant, open challenges related to the following topics:

Topic 1: design decisions for serverless systems, platforms, and ecosystems,
Topic 2: software engineering of serverless applications, but also systems, platforms, and
ecosystems
Topic 3: applications and domain requirements for serverless computing,
Topic 4: evaluation of serverless solutions,

and beyond (privacy, cyber-physical systems, etc.).
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by integrating diverse views and synthesizing a shared vision for the next decade of serverless
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Serverless computing holds a significant promise for the modern, digital society. For the past
seven decades, our society has increasingly required ever-cheaper, ever-more convenient, and
ever-faster computing technology. In the late-1950s, leasing time on an IBM 701 cost $15,000
per month ($135,000 in 2020 dollars). Today, we can lease many times this computing power
for mere pennies but need to be careful about the actual cost of doing so. Cloud computing,
that is, the utility providing IT as a service, on-demand and pay-per-use, is a widely used
computing paradigm that offers large economies of scale and promises extreme environmental
efficiency. Born from a need to make cloud computing services more accessible, fine-grained,
and affordable, serverless computing has garnered interest from both industry and academia.
In our vision, serverless computing can meet this need, but to do this it will have to overcome
its current status of emergent technology or risk its demise.

Cloud computing is already an established technology. Today, more than three-quarters
of the US and European companies, and many private individuals, use cloud computing
services1. The serverless market is blooming2 and has already exceeded $200 billion in 20203.
The cost of one hour on a cloud computer leased on-demand can be lower than a cent4 and
all the major cloud providers offer inexpensive access to diverse and state-of-the-art hardware.
However cheap, cloud computing still poses daunting operational challenges to software
professionals, in particular, how to manage the selection, operation, and other aspects of
using cloud infrastructure (in short, servers). Correspondingly, it poses significant challenges
to systems designers and administrators, related to keeping the cloud infrastructure efficient
and sustainable.

An emerging class of cloud-based software architectures, serverless computing, focuses
on providing software professionals the ability to execute arbitrary functions with low or
even no overhead in server management. Serverless computing leverages recent developments
in the miniaturization of software parts through microservice-based architectures, in the
operationalization of small self-contained execution units through containers, and in their
integration in service models such as Function-as-a-Service (FaaS). Truly, serverless is
more [12]. Early research successes [6, 15, 17, 18, 22] complement numerous industrial
applications [9], from business-critical to scientific computing, from DevOps to side-tasks.
Already, IT spending on serverless computing should exceed $8 billion per year, by 2021.5

However promising, serverless computing has yet to mature and presents many hard,
open challenges. There are numerous signs and reports [11, 14] that serverless computing
poses critical challenges in software engineering, parallel and distributed systems operation,

1 European Commission, Uptake of Cloud in Europe, Digital Agenda for Europe report by the Publications
Office of the European Union, Luxembourg, Sep 2014. and Flexera, State of the Cloud Report, 2020.

2 Gartner Inc. Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17% in 2020. Press Release.
3 Frank Gens. Worldwide and Regional Public IT Cloud Services 2019–2023 Forecast. Tech. Rep. by

IDC, Doc. #US44202119, Aug 2019.
4 Amazon AWS, Microsoft Azure, and Google Compute Engine offer VMs in this price range.
5 “Function-as-a-Service Market - Global Forecast to 2021,” marketsandmarkets.com, Feb 2017.
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and performance engineering [10]. For example, software engineering could help overcome
challenges in the developer experience [23], including testing, tooling, functionality, and
training and education. The systems side requires, among others, new approaches for
deployment, monitoring, and general operation, and also specific advances in security, cost
predictability, and life-cycle management for cloud functions. Performance engineering raises
many hard aspects, such as performance optimization, engineering for cost-efficiency, and
various forms of fast online scheduling. These combined challenges are distinctive from
the general challenges of cloud computing, for example, because the fine-grained, often
event-driven nature of serverless computing typically requires approaches that are lightweight
and able to respond without delay.

The goal of the seminar is to combine the views of a diverse and high-quality group of
researchers spanning three disciplines: software engineering, parallel and distributed systems,
and performance engineering. The Dagstuhl Seminar will be a catalyst. Attendees discussed
the open challenges and opportunities of serverless computing for the next decade, with a
focus on at least the following crucial aspects and questions:

Envision serverless systems and applications in the next decade. How to leverage the
freedom from operational concerns? How to overcome the challenge and enjoy the benefits
of fine granularity?
How to properly engineer serverless software and systems? What are the emerging
architectural patterns for serverless systems and applications? How to test and debug
serverless systems and applications?
How to characterize, model, and analyze serverless systems and applications? How to
understand the diverse serverless workloads?
How to manage the resources used in serverless operations? How to schedule and
orchestrate in this environment? How to manage specific application classes, such as
computer vision, enterprise workflows, HPC, DevOps?
How to deploy and manage the full lifecycle of serverless applications? How to add
ML-capabilities to feedback loops? How to break through the operational silos?
How to support privacy, security, dependability, and other desirable operational properties
for serverless applications and systems?
Beyond computer systems, how to consider serverless systems and applications from a
holistic, cyberphysical perspective?

Core topics
The seminar focussed on the following key topics related to serverless computing:

Topic 1. Design decisions for serverless systems, platforms, and ecosystems. As the
serverless model is increasingly being adopted in industry [9], the challenges of properly
designing these systems and the platforms on which they run are becoming more apparent.
These challenges include important problems [10], such as: how to reduce the serverless
overhead added by the platform to the (commonly lightweight) functions representing the
business logic of the application (e.g., see [20]), how to ensure proper performance isolation
while making efficient use of the shared infrastructure (e.g., see [1]), how to partition the
functions [5, 6], and how to properly schedule functions and route requests to these functions
(e.g., see [2]), in such a way that the service level objectives (SLO’s) are adequately met,
among other important challenges. There is also the question of running serverless workloads
alongside conventional applications, e.g., HPC, big data, machine learning. The experiences
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of the attendees to the seminar, some of which have already started working in these domain
and others with established experience in prior technologies from which we may learn and
transfer knowledge (e.g., grid computing), will enable us to focus on determining which
of these decisions the community should be focusing on, and how to establish adequately
prioritized research agendas.

Topic 2. Software engineering of serverless applications, but also systems, platforms,
and ecosystems. To increase the domain of application for serverless computing, the
functionality it can express needs to become increasingly more complex, which contrasts
with the perceived simplicity of the model [23]. What is the trade-off between simplicity
and expressiveness? Which composition models can ensure that serverless workflows can be
maintained and developed (and updated) long term? Serverless functions should become
increasingly interoperable, and applications should become able to leverage the services
of any serverless platform [6]. How to make serverless functions vendor-agnostic and how
to run serverless applications across cloud federations? Which architectural patterns are
useful for serverless applications? How to consider and support the legacy part of serverless
applications? The development processes, from the macro-view of how teams coordinate
to deliver applications that could operate in an external ecosystem, to the micro-view of
how to develop and test a serverless function, will have to consider the new aspects raised
by serverless computing. What are effective development processes? What tools and IDE
features are needed? What versioning and testing, and what CI/CD protocols should be
used? How to evolve legacy software toward serverless-native applications? How to ensure
open-source software becomes FAIR software [13]?

Topic 3. Applications and domain requirements for serverless computing. Preliminary
studies of serverless applications at large [9] have shown that there is a wide variety of
scenarios for which industry and academia are adopting serverless approaches. From business-
critical workloads, to automating DevOps, scientific computing, and beyond, the diversity of
the applications and domains for which serverless is being applied poses significant challenges
when attempting to optimally manage the resources and infrastructure on which these
applications depend. It is important to properly understand the variety of these applications
and domain requirements, engaging both academia and industry in the discussion.

These requirements should relate to various aspects in software engineering, parallel and
distributed systems, and performance engineering. For example, a domain-based approach
could help increase scalability [3]; considering the structure of packages in composing a
deployable serverless application could improve scheduling performance [2]; and serverless
functions and architectures should be considered during performance tests [8, 28].

Topic 4. Evaluation of serverless computing systems, platforms, and ecosystems. The
performance trade-offs of serverless systems are not yet well understood [28], thus highlighting
the importance of proper evaluation and benchmarking of these systems. However, the high
level of abstraction and the opaqueness of the operational-side make evaluating these platforms
particularly challenging. As recent efforts are starting to focus on this topic [24, 28], it
is important to engage the community on an early discussion on the best approaches to
tackle this problem. How to understand and engineer the performance of serverless systems?
How to translate the findings, when serverless systems are opened to external developers
(as platforms) or take part in much larger systems of systems (and even ecosystems)? How
to account for parts of the ecosystem being closed-source and even acting as black-boxes?
How to identify and even explain the performance bottlenecks such systems, platforms, and

21201



38 21201 – Serverless Computing

ecosystems experience? How to use evaluation results with other performance engineering
techniques to control and improve the performance of serverless systems, platforms, and
ecosystems?

An important focus of inquiry has recently become prominent in computer systems
research: the reproducibility of evaluation results and of experiments in general [19, 21].
Not doing so can result in misleading results [26], and in results that cannot be obtained
again [25] sometimes even under identical circumstances and by their original authors [7].
This leads to a possible loss of faith in the entire field [4, 27]. “How to benchmark serverless
solutions reproducibly?” is an important question to address with diverse expertise and fresh
ideas.

Synopsis and Planned Actions

We would like to thank the Dagstuhl staff and sponsors for this unique seminar opportunity
even under the constraints of the pandemic. During the seminar, we had almost 45h of
online meetings (not counting sub-meetings): some 9-10h of online meetings each seminar
day. Three 3h sessions per day were spread around the clock to allow participation from
various timezones. Even under these constraints, we experienced enormous participation and
active discussion involvement. In brief, the seminar week was structured as follows:

After each participant presented her/himself to the plenary, we formed four working
groups according to the topics above. The discussions were kick-started by four distinguished
keynotes, in plenary, with the respective talk abstracts included in this report:

“Serverless Predictions: 2021-2030” given jointly by Pedro García López (Universitat
Rovira i Virgili – Tarragona, ES) and Bernard Metzler (IBM Research-Zurich, CH)
“Developer Experience for Serverless: Challenges and Opportunities” given by Robert
Chatley (Imperial College London, GB)
“Federated Function as a Service” given jointly by Kyle Chard (University of Chicago,
US) and Ian T. Foster (Argonne National Laboratory – Lemont, US)
“Characterizing Serverless Systems” given by Mohammad Shahrad (University of British
Columbia – Vancouver, CA)

Each of the four working groups held five 3h sessions with their teams, including three 1h
one-on-one meetings with the other groups. The four working groups report individually on
their outcomes and list identified research challenges. In a consolidation phase, we identified
and planned nine focused topics for future joint research among the participants.

Complemented by a Slack workspace for the seminar participants, a focused continuation
of discussions beyond the seminar week was enabled: Among others, a discussion initiated
and led by Samuel Kounev on the notion of serverless computing, started during the seminar,
continued well beyond. We include the outcome of this “panel discussion” in Section 5.1 of
this report.

The organizers and participants decided to jointly work toward at least one high-profile
magazine article reporting on the seminar outcome and research agenda.

Furthermore, during the seminar the motion was raised to establish a conference series
on serverless computing. We see good potential for a new conference on “Serverless Software
and Systems” as a cross-community event embracing, at least, the disciplines of software
engineering, system engineering, and performance engineering. Working potentially in concert
with an existing workshop series in the field, we plan to initiate this step in the coming
months. We hope that one day in the future, we can proudly look back and say that this
Dagstuhl seminar 21201 was an important trigger event.
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3 Overview of Talks

3.1 Serverless Predictions: 2021-2030 (Keynote Abstract – Topic 1)
Pedro García López (Universitat Rovira i Virgili – Tarragona, ES) and Bernard Metzler
(IBM Research-Zurich, CH)

License Creative Commons BY 4.0 International license
© Pedro García López and Bernard Metzler

Joint work of Pedro García López, Aleksander Slominski, Michael Behrendt, Bernard Metzlert
Main reference Pedro García López, Aleksander Slominski, Michael Behrendt, Bernard Metzler: “Serverless

Predictions: 2021-2030”, CoRR, Vol. abs/2104.03075, 2021.
URL https://arxiv.org/abs/2104.03075

Within the next 10 years, advances on resource disaggregation will enable full transparency
for most Cloud applications: to run unmodified single-machine applications over effectively
unlimited remote computing resources. In this article, we present five serverless predictions
for the next decade that will realize this vision of transparency – equivalent to Tim Wagner’s
Serverless SuperComputer or AnyScale’s Infinite Laptop proposals.

The major hypothesis is that transparency will be achieved in the next ten years thanks
to novel advances in networking, disaggregation, and middleware services. The huge con-
sequence is the unification of local and remote paradigms, which will democratize distributed
programming for a majority of users. This will realize the old and ultimate goal of hiding
the complexity of distributed systems. The projected developments to reach the ultimate
goal (Serverless End Game) include the following:

Prediction 1: Serverless Clusters (Multi-tenant Kubernetes) will overcome the current
limitations of direct communication among functions, hardware acceleration, and time
limits.
Prediction 2: Serverless Granular computing will offer 1-10 µs microsecond latencies for
remote functions thanks to lightweight virtualization and fast RPCs.
Prediction 3: Serverless memory disaggregation will offer shared mutable state and
coordination at 2-10 µs microsecond latencies over persistent memory.
Prediction 4: Serverless Edge Computing platforms leveraging 6G’s ms latencies and AI
optimizations will facilitate a Cloud Continuum for remote applications.
Prediction 5: Transparency will become the dominant software paradigm for most
applications, when computing resources become standardized utilities.

We discuss the basis of these predictions as well as technical challenges and risks. The
predictions are mapped to phases to reach the final goal.

In conclusion, we argue that full transparency will be possible soon thanks to low
latency and resource disaggregation. The Serverless End Game will unify local and remote
programming paradigms, changing completely the way we currently create distributed
applications. This is the ultimate goal of distributed systems, to become invisible using
transparent middleware, and to simplify how users access remote resources.
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3.2 Developer Experience for Serverless: Challenges and Opportunities
(Keynote Abstract – Topic 2)

Robert Chatley (Imperial College London, GB)
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In this keynote talk we present a number of industrial case studies of building serverless
systems, from the developer point of view. We examine how economic aspects – for example
billing models – affect architectural design decisions for serverless applications, and also
how available tooling inhibits or enhances developer experience when building, running and
evolving serverless systems. We look at some current challenges, and propose some possible
future directions aiming to address these.

After completing his PhD, Robert spent many years working in industry as a senior
software engineer and a consultant before returning to university life. His work now bridges
industry and academia, focussing on developing skills and knowledge in software engineers to
build technical competence and improve developer productivity. His role at Imperial combines
a strong focus on education with industry-focussed research. Robert’s main interests are
in developer experience – trying to support and improve developer productivity through
advances in tools, technologies and processes.

3.3 Federated Function as a Service (Keynote Abstract – Topic 3)
Kyle Chard (University of Chicago, US) and Ian T. Foster (Argonne National Laboratory –
Lemont, US)
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Introduction
The serverless paradigm has revolutionized programming by allowing programmers to develop,
run, and manage scalable applications without needing to build and operate the infrastructure
that would normally be required to host those applications [5]. In particular, the popular
function as a service (FaaS) model reduces application development to two tasks: defining
and registering (or discovering) high-level programming language functions, and invoking
those functions. The underlying FaaS platform, traditionally operated by a cloud provider,
then deals with the complexities of provisioning and managing the servers, virtual machines,
containers, and programming environments needed to run those functions.

Most current FaaS offerings adopt the powerful simplifying assumption that functions
run on a single, centralized, and homogeneous platform, whether a commercial (public) cloud
like AWS, Azure, or Google, or a dedicated (private) cluster as in the case of OpenWhisk.
In such environments, FaaS systems provide simple and intuitive APIs that democratize
access to seemingly unlimited remote elastic computing capacity. But modern computing
environments are increasingly distributed and heterogeneous.
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For example, quasi-ubiquitous machine learning methods require access to specialized
hardware (e.g., AI accelerators) and introduce new workload patterns (e.g., large-memory
training and short-duration inference) and interactive and event-based computing models
(e.g., from automated laboratories and robots) that require instantaneous access to specialized
computing capabilities. Sensor network applications often require that data be processed
near to data sources to reduce bandwidth needs and/or enable rapid response.

To address these concerns, we propose a new federated FaaS model in which function
executions can be dispatched to arbitrary computing resources, chosen for example on the
basis of latency, cost, data locality, security, or other concerns. This new model preserves
and leverages powerful features of conventional FaaS (e.g., simple function registration and
invocation APIs, abstraction of infrastructure) while also allowing programmers to operate
effectively in a distributed computational continuum [2]. In effect, federated FaaS aims to
allow computation to flow to wherever makes sense for a particular purpose.

funcX: early experiences with federated FaaS
funcX [4] is a federated FaaS platform designed to address some of the challenges outlined
above. funcX adapts the traditional cloud-hosted FaaS model by enabling users to route
function invocations to a distributed set of user-deployed funcX endpoints. Thus, users can
add their own computing system (e.g., cluster, cloud, laptop) to the funcX ecosystem by
deploying an endpoint and they may then use those endpoints to execute functions. From a
user’s perspective, funcX looks like any other FaaS system: users register functions with the
cloud-hosted funcX service, they may then invoke that function by specifying input arguments
and the target endpoint. funcX manages the complexity of execution, authenticating with
the remote endpoint, reliably executing the function (optionally inside a container), and
caching results (or exceptions) until retrieved by the user.

Over the past year we have applied funcX to a range of research applications and as the
basis for building other services (e.g., DLHub [3]). We have found that funcX can effectively
abstract the complexity of using diverse computing resources, simplify authentication and
authorization, reduce the difficulties associated with scaling resources to support workloads,
remove the challenge of porting applications between different systems and data centers, and
enable new application modes such as event-based and interactive computing.

We have also identified limitations of the federated FaaS model as realized in our work
to date. For example, many applications cannot easily be mapped to the FaaS paradigm;
funcX’s centralized data and state management restrict the application patterns that can
be implemented, and require that the ratio of data size to compute must be reasonable
to keep transfer overheads manageable; containers fail to solve portability problems in
HPC environments; and the coarse-grained allocation models of HPC systems do not lend
themselves well to function execution. These are all topics that we are addressing in current
work.

Open challenges
The federated FaaS model introduces fascinating research challenges, including the following.

Data and State. Traditionally, FaaS functions are stateless. However, many applications
require that data be passed to, from, and between functions. (Indeed, data locality is one of
the main reasons to apply a federated model.) Conventional cloud-hosted FaaS platforms
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meet these needs via universal object storage; however, such storage is not generally accessible
in federated settings. There is a need to explore FaaS application communication patterns,
data-centric programming models for FaaS, transparent wide-are data staging, and shared
data substrates for low-latency data sharing.

Environment management. FaaS systems leverage containerized environments that enable
dependencies to be met while sandboxing execution in multi-tenant environments. Cloud
FaaS systems have developed new software container technologies with rapid startup time and
low cold start overheads [1]. The heterogeneous environments found in federated FaaS create
more challenges, such as diverse container technologies and slow resource provisioning [7].

Scheduling. Increasingly heterogeneous computing environments create a continuum of
computing capacity: from edge computing devices through to supercomputers. Federated
FaaS makes it easy to route functions to execute anywhere, and thus exposes a fabric on
which broad scheduling policies can be explored. Such scheduling polices may consider
data locations, transfer costs, resource provisioning time, resource costs (monetary and/or
availability), hardware performance, and function needs [6].

Security, policies, regulations. Federated FaaS is distinguished from conventional FaaS by
a quite different security model. In a federated environment, each computing endpoint may
be located in a distinct administrative domain with unique authentication and authorization
systems, policies, and regulations. Centralized FaaS systems typically operate within a
single administrative domain. Federated FaaS requires methods for bridging domains and
for ensuring that policies and regulations are enforced.

Summary
Federated FaaS provides a potential solution to long-standing remote computing challenges.
In so doing, it enables a range of new application scenarios and moves us closer to a truly
integrated treatment of local and remote computing. It also exposes fascinating new research
challenges that will only grow in importance as both application demands and technologies
continue to develop.
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3.4 Characterizing Serverless Systems (Keynote Abstract – Topic 4)
Mohammad Shahrad (University of British Columbia – Vancouver, CA)
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This keynote is dedicated to understanding the importance of characterizing serverless systems
from different perspectives. To make the case, two characterization studies will be presented:
1) a cluster-wide characterization of the entire serverless workload at Azure Functions [1],
and 2) a detailed micro-architectural study of Apache OpenWhisk [2]. The insights gained
by the first study lead to designing an adaptive scheduling policy reducing cold starts and
resource wastage, and the observations in the second study reveal inefficiencies in cloud-grade
processors in serving serverless workloads. The talk also emphasizes the importance of
reproducibility through open-sourcing traces or tools.
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3.5 Beyond Load Balancing: Package-Aware Scheduling for Serverless
Platforms
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Fast deployment and execution of cloud functions in Function-as-a-Service (FaaS) platforms is
critical, for example, for user-facing services in microservices architectures. However, functions
that require large packages or libraries are bloated and start slowly. An optimization is to
cache packages at the worker nodes instead of bundling them with the functions. However,
existing FaaS schedulers are vanilla load balancers, agnostic to packages cached in response
to prior function executions, and cannot properly reap the benefits of package caching. We
study the case of package-aware scheduling and propose PASch, a novel Package-Aware
Scheduling algorithm that seeks package affinity during scheduling so that worker nodes
can re-use execution environments with preloaded packages. PASch leverages consistent
hashing and the power of two choices, while actively avoiding worker overload. We implement
PASch in a new scheduler for the OpenLambda framework and evaluate it using simulations
and real experiments. We evaluated PASch with varying cluster sizes and skewness of
package popularity distribution, and found that it outperforms a regular balancer by as much
as 318x (median speedup). Furthermore, for the workloads studied in this paper, PASch
can outperform consistent hashing with bounded loads – a state-of-the-art load balancing
algorithm – by 1.3x (mean speedup), and a speedup of 1.5x at the 80th percentile.
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3.6 Accelerating Reads with In-Network Consistency-Aware Load
Balancing

Samer Al-Kiswany (University of Waterloo, CA)

License Creative Commons BY 4.0 International license
© Samer Al-Kiswany

Joint work of Hatem Takruri, Ibrahim Kettaneh, Ahmed Alquraan, Samer Al-Kiswany
Main reference Hatem Takruri, Ibrahim Kettaneh, Ahmed Alquraan, Samer Al-Kiswany: “FLAIR: Accelerating

Reads with Consistency-Aware Network Routing”, in Proc. of the 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), pp. 723–737, USENIX Association, 2020.

URL https://www.usenix.org/conference/nsdi20/presentation/takruri

Replication is the main reliability technique for many modern cloud services that process
billions of requests each day. Unfortunately, modern strongly-consistent replication protocols
– such as multi-Paxos, Raft, Zab, and Viewstamped replication (VR) – deliver poor read
performance. This is because these protocols are leader-based: a single leader replica (or
leader, for short) processes every read and write request, while follower replicas (followers for
short) are used for reliability only.

I present FLAIR, a novel approach for accelerating read operations in leader-based
consensus protocols. FLAIR leverages the capabilities of the new generation of programmable
switches to serve reads from follower replicas without compromising consistency. The core of
the new approach is a packet-processing pipeline that can track client requests and system
replies, identify consistent replicas, and at line speed, forward read requests to replicas that
can serve the read without sacrificing linearizability. An additional benefit of FLAIR is
that it facilitates devising novel consistency-aware load balancing techniques. Following the
new approach, the research team designed FlairKV, a key-value store atop Raft. FlairKV
implements the processing pipeline using the P4 programming language. We evaluate the
benefits of the proposed approach and compare it to previous approaches using a cluster
with a Barefoot Tofino switch. The evaluation indicates that, compared to state-of-the-art
alternatives, the proposed approach can bring significant performance gains: up to 42%
higher throughput and 35-97% lower latency for most workloads.

3.7 A tool set for serverless
Ahmed Ali-Eldin Hassan (Chalmers University of Technology – Göteborg, SE)
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Designing full stack serverless edge applications is a challenge. System dynamics of most edge
applications poses challenges to what application can be developed using the serverless model
to run on the edge. Specific challenges include function startup times, and state management.
In this line of research, our aim is to develop models, tools, and frameworks that can enable
programmers and system owners to harness the power of serverless computing for edge
systems. We will initially focus on the problem of startup times and state management. Our
aim is to eventually build an entire tool-base that enables for optimizes compiling applications
into serverless functions, optimizes the deployment of serverless based applications, and
optimizes the runtime on the edge.
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3.8 Serverless execution of scientific workflows
Bartosz Balis (AGH University of Science & Technology – Krakow, PL)
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Scientific workflows, consisting of a large number of tasks structured as a graph, are an
important paradigm for automation in scientific computing. We discuss the applicability of
serverless infrastructures to compute- and data-intensive workflows, and options for designing
serverless workflow execution architecture. We also present cost analysis and implications
with regard to resource management for scientific applications in the serverless paradigm.
The approach is experimentally evaluated using the HyperFlow workflow management system
and real workflow applications. Our findings indicate that the simple mode of operation
makes the serverless approach attractive and easy to use, although for larger workflows
traditional IaaS infrastructure is more cost-efficient. We conclude that a hybrid approach
combining VMs with cloud functions for small tasks could be a good execution model for
scientific workflows.

3.9 Using Severless Computing for Streamlining the Data Analytic
Process

André Bauer (Universität Würzburg, DE)
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The discipline of data analytics has grown significantly in recent years as a means to make
sense of the vast amount of data available. It has permeated every aspect of computer science
and engineering and is heavily involved in business decision-making. However, data analytics
projects are often done manually. To accelerate and improve such projects, there are, for
example, Federated Learning and the best practices of DataOps. Since such approaches need
a high degree of flexibility and should generate as little overhead as possible, I am interested
in how far Serverless Computing can be used to guarantee these conditions.

3.10 Challenges for Serverless Databases
A. Jesse Jiryu Davis (MongoDB – New York, US)
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Academic research into serverless platforms has focused primarily on FaaS, not on the backend
services such as databases that support FaaS applications. Furthermore, the literature mostly
discusses how to use serverless platforms from the application developer’s perspective, rather
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than how to implement them from the provider’s perspective. My research goal is to review
the state of the art for implementing serverless platforms, particularly serverless databases.
I am interested in methods for scaling and balancing tenants in multi-tenant serverless
databases, and moving tenants between servers efficiently and without disruption. I am also
interested in testing and validation methods for distributed systems algorithms, including
formal methods such as TLA+.

3.11 Using Serverless to Improve Online Gaming
Jesse Donkervliet (VU University Amsterdam, NL) and Alexandru Iosup (VU University
Amsterdam, NL)
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Serverless computing offers potential for the simpler and more cost-efficient deployment of
large-scale systems. Online games are a billion dollar industry supported by large-scale
distributed systems. How can these systems benefit from serverless computing? How to
design real-time online games for serverless platforms? How to meet the QoS requirements
of these systems? How to guarantee sufficient consistency between users? How to schedule
its components cost- and energy-efficiently? I am interested in learning more about these
questions and exploring their answers.

3.12 Understanding and optimizing serverless applications
Simon Eismann (Universität Würzburg, DE)
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Serverless application are a novel computing paradigmn with rapidly growing industry
adoption. However, there are still many open questions about the characteristics of serverless
applications, such as how many serverless functions does a typical serverless microservice
consist of. Additionally, there are still a number of manual configurations that developers
need to fine-tune in order to optimize their applications.

We collected 89 serverless applications from white literature, grey literature, open-source
projects, and scientific computing and analyze their characteristics to provide insight into
the current state of serverless applications. Further, we present approaches to model the
performance of serverless workflows and serverless functions with different sizes to enable the
automated optimization of serverless functions and workflows.
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3.13 Autonomous resource allocation methods for serverless systems
Erik Elmroth (University of Umeå, SE)
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With the overall research direction being on how to build autonomous or semi-autonomous
resource management systems for IT systems, we have done a lot of work on resource
allocation topics such as scaling, orchestration, scheduling, service differentiation and all kind
of techniques trying to control performance, efficiency, reliability, etc. And we have been
doing this for systems spanning from servers and clusters to rack-scale systems, datacenters,
edge environments, and so on. Serverless systems are obviously within scope for this.

In the past few years we have also spent more and more efforts on handling the situations
that cannot be controlled, by focusing on anomaly detection, primarily trying to identify
performance issues and their root causes but also considered functional and security anomalies,
which are not always easy to distinguish.

When looking more specifically into serverless systems, we have recently initiated a project
where we on one hand try to determine in advance what resources are needed and how
they should be allocated to meet particular performance requirements. As these systems
are increasingly building on machine learning models, we are also digging deeper into the
questions of when to retrain the models, what data to use for retraining, and ultimately what
data to save for future retraining of the machine learning models used in the management
systems.

3.14 Is Serverless an Opportunity for Edge Applications?
Nicola Ferrier (Argonne National Laboratory, US)
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Deploying AI at the edge creates an opportunity to develop software defined sensors, using
cameras and microphones, along with appropriate software to enable scientists to obtain
measurements specific to their application. Some processing methods may require resources
that exceed available edge resources. In addition, having multiple scientists seeking to use
the same edge device might require off-loading some computations. Serverless architecture
for these applications could support a seamless method to have methods run on the edge,
cloud, or high-performance computing centers.
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3.15 HyScale into Serverless: Vision and Challenges
Hans-Arno Jacobsen (University of Toronto, CA)
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Microservices, in contrast to traditional monolithic architectures, consist of several smaller
dedicated processes working together to provide services to users and are widely adopted
in industry due to better flexibility and reliability. Container technologies, such as Docker,
provide a lightweight environment for deploying the microservices in computing clusters.
Containers are independent units that package software and its dependencies together.
Similar to virtual machines (VMs), containers are a virtualization technology that allows a
single computing resource to be shared among multiple microservices. However, different
from VMs which virtualize resources at the hardware level, containers are virtualized at
the operating system level. Containers provide weaker isolation, but are much smaller in
size, take much less time to start/stop, and bear lower overhead. This results in improving
resource utilization in terms of the number of machines required to host a given workload on
the host.

The large-scale adoption of containers for hosting microservices requires the use of
container orchestration middleware, such as Kubernetes, to efficiently manage and deploy
them. Therefore, an important issue arises, which is to schedule and place containerized
applications on available hosts. When submitting an application for deployment, the container
orchestration middleware must place it on one of the available resources, considering the
limitations of the application and aiming to maximize the use of computing resources. From
a cost-efficient perspective, the container orchestration middleware should consider factors
such as the capacity of available machines, application performance, quality of service, energy
consumption, and operation costs. Typically, a container orchestration middleware provides
a unified control interface that is responsible for the whole cluster. The control interface,
which we call an autoscaler, runs the autoscaling algorithm to automatically scale up or down
the number of allocated resources of containers based on system usage, user requirements,
and costs. Our HyScale project is dedicated to solve this issue by building a cost-efficient,
SLO-aware autoscaler for container orchestration systems (service level objective-aware).

Going into the serverless era, we envision HyScale to have even more impact and prac-
tical use. First, since serverless services are widely adopting containers as the underlying
infrastructure, HyScale should be able to seamlessly work with any container-based serverless
frameworks to provide elasticity and scalability improvements. Second, the principle of
‘scaling from zero to infinity’ intrinsic to serverless computing and the fact that serverless
function executions are mostly short-lived and small in size, finer-grained and faster-reacting
autoscaling policies are required to meet the specific needs for this new paradigm. This also
puts challenges upon HyScale design to account for the faster autoscaling decision making
needs. Moreover, the problem of cold start becomes even more inevitable in the serverless
context, where higher requirements of the cooldown period are expected. This needs more
meticulous thinking in autoscaler design as it is usually difficult to find a balance between
cost efficiency and cooldown period reduction. All in all, autoscaling in serverless is definitely
an interesting and promising research area where HyScale can be devoted to in the near
future.
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3.16 Serverless Workflows for Sustainable High-Performance Data
Analytics

Nikolas Herbst (Universität Würzburg, DE)
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With the current serverless technologies like FaaS as early enabling technology, we see huge
potential for the next generation of serverless computing. Current technical limitations can
be overcome: among the current major limitations, we see in accordance with [1] [2] (1)
missing ways for direct low-latency communication of functions, (2) efficient state transfer
of intermediate results via dis-aggregated memory, (3) in-transparency in terms of real
resource consumption and apriori cost estimates, and (4) missing intelligence in placement
and scheduling of distributed serverless workflows in the cloud to edge continuum.

We envision a resource-efficient serverless computing platform enabling the specification,
management, and automated execution of high-performance data analytic workflows for
experts as well as non-experts. A low entry-barrier (NoOps) and flexibility (fine-granular
PayPerUse including scale-to-zero) of the envisioned platform could foster interdisciplinary
research across research domains based. Besides a sustainable serverless compute infrastruc-
ture, we envision a data analytic workflow engine that can leverage serverless technology
for ease of assembly, configuration, and efficient operation with a high degree of reusability
for distributed data sources. It should support end-to-end data analysis including steps
like initial data-quality assessment for a result confidence rating, feature selection, model
federation, tuning, method chaining, model-(re-)training, and more.
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3.17 Massivizing Computer Systems: Science, Design, and Engineering
for Serverless Computing
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The idea of enabling businesses, governments, scientific labs, and society at-large to use IT
infrastructure for fine-grained, daily operations, without detailed management of operational
logic, emerged in the 1950s and remains a grand challenge in computer science. After a
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hiatus between roughly the 1970s through the 2000s, in the 2010s the cloud has picked
up the challenge. In the 2020s instance of this challenge, serverless computing, the cloud
provider manages the resources, lifecycle, and execution of user-provided functions, all
packaged together into fine-grained applications (and fine-grained monitoring, accounting,
and billing). But, beyond the low-hanging fruits of this models, and the early emergence of
Function-as-a-Service (FaaS), the challenge remains largely untouched.

In this talk, we posit that the principles, challenges, and approach of massivizing
computer systems [1] could help. Massivizing computer systems is a multi-disciplinary,
mixed-methods approach, spanning at least distributed computer systems, performance
engineering, and software engineering. We highlight in this talk several points:
1. We do not have to start from scratch to understand why serverless is more (than PaaS

cloud) [2]: Using a historiographical approach focusing on technology, we can explain the
origins of serverless computing, and predict (envision) its evolution focusing on the most
important aspects and avoiding the common pitfalls of the past.

2. Building the serverless systems and applications of the future depends – much like the
containerization of transport did in its early decades – on modeling the architecture of
serverless operations. The SPEC RG reference architecture for FaaS [3] is an example of
this.

3. Designing new parts and composites is essential for serverless computing, because the
current technology raises many technical issues, and the interplay between non-functional
properties such as performance, elastic scalability, dependability, security, and sustainab-
ility (in particular, energy-efficiency) is complex. The task is daunting and will require
many different designers to be able to share and work together, so we need to also design
processes, in other words, to design the design of serverless systems and applications [4].
A similar argument can be made about optimization and tuning.

4. Understanding and analyzing serverless ecosystems is necessary – paraphrasing every
scientist and engineer ever, we cannot hope to use what we do not understand, lest it
collapses when we least expect it. Real-world experiments and benchmarking are important
activities here [5]. But real-world experimentation is too costly and time-consuming for
large-scale, long-term operations. Instead, simulation-based approaches, e.g., based on
simulators such as OpenDC [6], are important. Much like a single model cannot capture
entirely complex real-life situations, the community should provide multiple simulators
(models), and consider predictions based on ensembles of models. Reproducibility is another
important aspect of this line of work [7].

5. Last, but not least, we need a forum to discuss serverless-related topics, especially focusing
on the interplay between non-functionals. The SPEC RG Cloud Group provides such a
forum and is inclusive. Developing its flagship workshop, HotCloudPerf, and merging
it with others to form a serverless conference, could provide an annual selective event.
Sharing data and software artifacts, FAIRly, would benefit all and be greatly facilitated by
such a community/conference. We also envision here a Memex-like approach to preserve
diverse operational traces representative of serverless computing.
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Serverless computing offers cloud functions, a new type of cloud service that offers fine
granularity and lower latency. However, building systems with this new computing platform
comes with its challenges: (1) functions are stateless and may need to download large
amounts of code/data when they boot up, (2) functions have very limited runtime before
they are killed, (3) Storage is limited, but much faster comparing with outside services, (4)
the number of available cloud workers depends on the overall load of service providers and
the load can only be predicted, (5) node failures occur when running at a large scale, (6) the
dependencies differ in functions comparing with an on-premise machine, and (7) latency to
the cloud makes roundtrips costly. (8) the cost of acquiring and running a function may vary
over time and across providers.

Although researchers have addressed some of these challenges, I am, in particular,
interested in developing a vendor-agnostic framework that application developers can build
their serverless systems with functionalities such as load balancing between cloud providers
and reconfiguring the serverless pipeline to optimize the performance and reliability of the
system. The framework can also dynamically map functions to compute nodes based on
performance, reliability, and cost trade-off. In addition, automated fault detection and repair
will enable resilient and robust serverless application development. We rely on our recent
advancement in machine learning, particularly Causal AI (Causal Structure Learning, Causal
Inference, Counterfactual Reasoning, Causal Transfer Learning), to enable the proposed
capabilities in the serverless framework.
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3.19 Self-Aware Platform Operations and Resource Management
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In serverless computing, the responsibility for operation aspects, including application resource
management, is offloaded to the Cloud provider. This includes, for example, managing virtual
machines and containers, managing function execution runtimes (e.g., a Python runtime
environment with respective libraries), elastic scaling, reliability/fault tolerance, monitoring,
and logging. To manage such aspects, novel mechanisms for automated and proactive resource
management are required. We focus on the development of techniques for self-aware platform
operations including online learning and reasoning capabilities for efficient and scalable
workflow execution.

3.20 From design to migration and management: FaaS platforms for
application porting to optimized serverless implementation and
execution
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The availability of decentralized edge computing locations as well as their combination
with more centralized Cloud solutions enables the investigation of various trade-offs for
application component placement in order to optimize application behaviour and resource
usage. Key functionalities and operations needed by a middleware layer so that it can
serve as a generalized architectural and computing framework in the implementation of
a Cloud/Edge computing continuum are presented. As a primary middleware candidate,
FaaS frameworks are taken under consideration, given their significant benefits such as
flexibility in execution, event driven nature and enablement of incorporation of arbitrary and
legacy application components triggered by diverse actions and rules. Gaps and enablers for
three different layers (application design and implementation, semantically enriched runtime
adaptation/configuration and deployment optimization) are highlighted. The goal is to enable
abstracted application design and porting to the serverless paradigm, based on ready-made,
reusable and self-regulating pattern prototypes, semantic annotation of functions in order to
dictate deployment or runtime needs (based on goals and constraints), used by the underlying
management mechanisms, as well as runtime optimization of the candidate services selection
based on performance and configuration trade-offs. The talk highlights the main approach
and goals of the H2020 PHYSICS project (https://physics-faas.eu/).
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3.21 Software Development Using Serverless Systems
Philipp Leitner (Chalmers University of Technology – Göteborg, SE)

License Creative Commons BY 4.0 International license
© Philipp Leitner

Function-as-a-Service, and more generally serverless, is a massive area of research interest at
the moment. Most of this research deals with how to build, maintain, and scale serverless
infrastructure – a problem that few companies outside of a few large cloud providers actually
have. However, orders of magnitude more, from small start-ups to billion-dollar industries,
face the challenge of how to best make use of this new wave of cloud services to ideally serve
their customers. My interest is studying how software engineering research can best support
practitioners in this new world.

3.22 Running and Scheduling Scientific Workflows on Serverless Clouds:
From Functions to Containers

Maciej Malawski (AGH University of Science & Technology – Krakow, PL)
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Scientific workflows are an important class of applications, which consist of computing tasks
and data transfers connected into a dependency graph. Traditionally, they are executed
on HPC clusters, distributed infrastructures such as grids or clouds. Recent emergence of
serverless infrastructures drives us to explore the applicability of these platforms to scientific
workflows and associated research problems related to resource management.

Using HyperFlow, our workflow engine developed at AGH, we have evaluated the scientific
workflow execution using FaaS (AWS Lambda, Google Cloud Functions) and CaaS platforms
(AWS Fargate, Google Cloud Run). We have also performed performance evaluation of server-
less cloud infrastructures with a focus on scientific workflows. Based on these experiences,
we have recently started addressing scheduling challenges on highly-elastic infrastructures,
including cloud functions and containers. Moreover, we have also approached solving simple
scheduling problems using D-Wave quantum annealer, achieving quite promising preliminary
results for small graphs of tasks fitting entirely in the computer architecture.

Current experience with severless platforms leads to the conclusion that they provide a
viable solution for scientific applications, not only scientific workflows but also for large-scale
data processing tasks, which come, e.g., from High Energy Physics domain. Serverless
infrastructures provide excellent scalability, elasticity and high level of automation of resource
management, but as there are many decisions regarding selection of function of container
memory and CPU allocation, research on scheduling and performance optimization is still
needed.
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3.23 The case for a hybrid cloud model for serverless computing
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Distributed applications have traditionally been architected to run on a single cloud vendor,
using a combination of compute, storage, messaging, load balancing, orchestration, monitoring,
authentication, analytics, and numerous other platform capabilities offered by the cloud
vendor. Relying on a single vendor’s platform has the benefits of tight integration of these
capabilities but leads to vendor lock-in, making it difficult for application owners to migrate
to another cloud vendor, and challenging for new cloud vendors to compete without building
their own portfolio of services.

Hybrid cloud or multi-cloud architectures address the drawbacks of single-vendor cloud
platforms, building applications and tooling to allow distributed application components
to run on a mixture of private, on-premise, dedicated, and public cloud environments.
Application developers have the flexibility to easily migrate their entire applications to
another cloud vendor, or make fine-grained deployment decisions based on the performance,
cost, regulatory compliance, security policies, and other capabilities of the cloud vendor,
matched with the requirements of each application component.

Seen in this light, serverless computing is still in its infancy, with most serverless applica-
tions developed for and run on a single serverless platform. There are a class of enterprise
applications that aren’t amenable to run fully on a public cloud due to regulatory constraints,
and the vendor and platform lock-in in today’s most popular serverless platforms is holding
back these applications from being rearchitectured on serverless principles. As well, geo-
distributed applications, such as those architected for edge computing platforms, will benefit
from taking advantage of a variety of edge vendors; relying on a single vendor to offer edge
servers at all desired locations severely constrains the choice of vendors.

A hybrid serverless model brings with it a number of challenges across the stack, including
addressing the impedance mismatch when bridging across serverless platforms from multiple
providers, including the non-functional properties such as latency, scalability, availability, and
cost. For example, it is not clear what is the emergent cold-start behavior when a serverless
function running on one platform calls a function on another. There are also functional
mismatches, such as security policies, and messaging semantics that need to be reconciled.

As in conventional cloud applications, supporting serverless applications to run across
a multi-cloud or hybrid could environment will give developers more flexibility, enable a
new class of serverless applications held back by vendor lock-in constraints, support truly
geo-distributed serverless applications, and offer an opportunity for new serverless platform
vendors to compete with novel platform capabilities.
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3.24 Performance Evaluation in Serverless Computing
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In the last few years, obtaining reproducible performance in distributed systems is gaining a
lot of attention. This is due to the rapid adoption and diversification of cloud computing
technology. The emergence of serverless computing poses additional challenges to such a
problem.

Two opposite approaches can be adopted to assess the performance of these kinds of
systems. On the one hand, empirical approaches focus on the analysis of the measurable
performance of an existing system performing a series of experiments. In empirical studies,
sound experimental methodology, and in particular reliable, consistent, and meaningful
performance evaluation, is challenging but necessary [2]. On the other hand, theoretical
approaches can create reliable models of the system under study, allowing for a deeper
understanding of it [1]. Theoretical approaches typically require a design effort and may
abstract from certain parts of the system that may be difficult to model.

I am interested in discussing what type of guarantees can be provided on serverless
computing applications, and how such guarantees can be obtained through sound performance
evaluation.
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3.25 Federated AI on Serverless Edge Clusters Powered by Renewable
Energy

Panos Patros (University of Waikato, NZ)
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Artificial Intelligence (AI) applications for agritech, such as robotic harvest and pollination,
cannot be implemented without reliable and secure access to computing power. Adding extra
hardware on robots increases design complexity, power requirements and weight. Outsourcing
to unreliable and off-shore cloud providers increases operational risk and threatens data and
economic sovereignty.
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The proposed solution is to offer AI services locally via interconnected clusters powered
by locally generated renewable energy. Crucially, these Rural AI clusters will maintain a
reliable connection with robots, and will leverage advanced federated-learning algorithms
and a serverless architecture to store/compute sensitive data locally; thus, only connecting
to the cloud for low-risk operations.

A serverless architecture for federated edge learning will provide a seamless transition
between edge and cloud computation, while offering a much needed fine-grain allocation (and
costing) of scarce edge resources. Because of the limited resources of edge systems, platform
innovations will be required to enable these technologies, leveraging prior experience in cloud
computing [1, 2, 3, 4, 5, 6].
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3.26 Is serverless computing the holy grail of fog computing application
design paradigms?
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My research mostly focuses on the design of fog computing platforms. To process massive
volumes of data being produced far from the data centers, fog computing extends cloud
platforms with additional compute/storage/communication resources in the vicinity of the
main sources of data, where these data can be (pre-)processed before reaching the cloud.
Although this extension may seem trivial, it brings major new challenges in the way we
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design these platforms. In particular, fog computing resources are located close to the main
sources of data but necessarily far from each other. This means that it becomes much more
difficult to share state between multiple fog nodes taking part in the same application. In
this context, serverless computing provides an interesting programming paradigm which
neatly separates stateless functions from stateful data services. In the Serverless workshop
I tried to better understand the benefits and challenges brought about by this upcoming
paradigm shift.

3.27 Performance Evaluation of Serverless Applications
Joel Scheuner (Chalmers and University of Gothenburg, SE)
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Main reference Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes Grohmann,
Nikolas Herbst, Cristina L. Abad, Alexandru Iosup: “Serverless Applications: Why, When, and
How?”, IEEE Softw., Vol. 38(1), pp. 32–39, 2021.

URL https://doi.org/10.1109/MS.2020.3023302

Serverless applications typically combine event-triggered functions (i.e., FaaS) with scalable
backend services (i.e., BaaS). However, such event-based integrations can lead to long delays
that are difficult to debug in a distributed system. Therefore, my research aims to capture and
explain application-level serverless performance through detailed tracing and reproducible
experimentation.

My prior work consolidates 112 FaaS performance studies [1] and characterizes 89 serverless
applications [2] both from academic and industrial sources. In the future, I am interested in
performance-aware programming models where developers can indicate their performance-cost
trade-off preferences and serverless applications optimize themselves accordingly.
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1 J. Scheuner, P. Leitner, Function-as-a-Service Performance Evaluation: A Multivocal
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3.28 FaaS orchestration
Mina Sedaghat (Ericsson – Stockholm, SE)
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Container orchestrators are often influenced by the application architectural models and
their requirements. Modern applications (and their architectures) are getting more complex,
often distributed geographically over a continuum of resources, and have stricter performance
demands, i.e., on latency and data transfer. The evolution of the application architectures,
from monoliths, to microservices and recently to Function as a Service (FaaS), puts new
requirements on the orchestration systems and how the container deployment models should
look like.
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The current FaaS frameworks can only efficiently support a certain class of workloads,
such as serving static content, time-based batch jobs, and ETL 6 jobs. They currently have
a hard time supporting stateful applications with fine grain state sharing requirements. The
basic assumption in the FaaS model is that functions are stateless, and if needed, they store
their state using external storage. Therefore, stateful applications are currently constrained
by limitations on existing cloud storage services, e.g. due to limited IO throughput and
access latencies. I am, personally, interested in simplifying orchestration of Functions in a
FaaS framework, providing support for a stateful applications, answering questions around
data management, and finding solutions for a seamless orchestration of functions over a
continuum of resources.

3.29 LaSS: Running Latency Sensitive Serverless Computations at the
Edge

Prashant Shenoy (University of Massachusetts – Amherst, US) and Ahmed Ali-Eldin Hassan
(Chalmers University of Technology – Göteborg, SE)
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Computations at the Edge”, in Proc. of the HPDC ’21: The 30th International Symposium on
High-Performance Parallel and Distributed Computing, Virtual Event, Sweden, June 21-25, 2021,
pp. 239–251, ACM, 2021.

URL https://doi.org/10.1145/3431379.3460646

Serverless computing has emerged as a new paradigm for running short-lived computations
in the cloud. Due to its ability to handle IoT workloads, there has been considerable
interest in running serverless functions at the edge. However, the constrained nature of the
edge and the latency sensitive nature of workloads result in many challenges for serverless
platforms. In this paper, we present LaSS, a platform that uses model-driven approaches for
running latency-sensitive serverless computations on edge resources. LaSS uses principled
queuing-based methods to determine an appropri- ate allocation for each hosted function and
auto-scales the allocated resources in response to workload dynamics. LaSS uses a fair-share
allocation approach to guarantee a minimum of allocated resources to each function in the
presence of overload. In addition, it utilizes resource reclamation methods based on container
deflation and termination to reassign resources from over-provisioned functions to under-
provisioned ones. We implement a prototype of our ap- proach on an OpenWhisk serverless
edge cluster and conduct a detailed experimental evaluation. Our results show that LaSS
can accurately predict the resources needed for serverless functions in the presence of highly
dynamic workloads, and reprovision con- tainer capacity within hundreds of milliseconds
while maintaining fair share allocation guarantees.
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6 Extract, Transform and Load
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3.30 Fitting Serverless Abstractions and System Designs to
Next-Generation Application Needs

Josef Spillner (ZHAW – Winterthur, CH)
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Are today’s serverless systems appropriate for emerging applications such as nation-scale
digital services or massive IoT data stream processing? To answer that question, we need to
reconsider system designs, programming abstractions and development tools.

On the system level, we investigate more light-weight isolation techniques including
zero-coldstart microthreads. Software engineers can leverage these with syntactic constructs
they already know in terms of coroutines, asynchronous processing and workers/tasklets. The
aim is to reach beyond a few thousand instances per second to tens or hundreds of thousands
of invocations, including light-weight state handling like with function-level ring buffers.
We also study insights into application execution profiling and subsequent autotuning of
memory allocation and other configuration parameters. Such techniques can help to reduce
the overallocation of memory from the application engineer’s perspective, to some extent with
current statically allocated function instances and to an even greater extent with container
isolations permitting dynamic memory updates. This is technically possible even with Docker
containers, however the necessary APIs are not exposed by commercial FaaS/CaaS providers.

On the abstraction and tooling level, we explore the use of declarative code annotations
to extract functions suitable for offloading computation. The function requirements are
then matched as part of a FaaSification process against the cross-provider deployment and
execution constraints. Furthermore, we observe static and dynamic characteristics of software
artefacts representing serverless software – such as AWS SAM – to convey to software
engineers whether there will be any problems or flaws especially when the artefacts originate
from third-party dependencies.

3.31 Architectural Patterns for Serverless-Based applications
Davide Taibi (Tampere University, FI)

License Creative Commons BY 4.0 International license
© Davide Taibi

Main reference Davide Taibi, Nabil El Ioini, Claus Pahl, Jan Raphael Schmid Niederkofler: “Patterns for Serverless
Functions (Function-as-a-Service): A Multivocal Literature Review”, in Proc. of the 10th
International Conference on Cloud Computing and Services Science, CLOSER 2020, Prague, Czech
Republic, May 7-9, 2020, pp. 181–192, SCITEPRESS, 2020.

URL https://doi.org/10.5220/0009578501810192

Companies are increasingly adopting Serverless, by migrating existing applications to this new
paradigm. Different practitioners proposed patterns for composing and managing serverless
functions. However, some of these patterns offer different solutions to solve the same problem,
which makes it hard to select the most suitable solution for each problem.

In this work, we aim at supporting practitioners in understanding the different archi-
tectural patterns adopted by different companies, reporting benefits and issues of their
applications.
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This work proposal was initiated by a previous literature review [1] and is aimed at
collecting experiences directly from practitioners by means of interviews and surveys, and to
validate the resulting patterns with different collaborative empirical studies.
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1 Taibi D., El Ioini N., Pahl C., Niederkofler J.R.S. Patterns for serverless functions (function-

as-a-service): A multivocal literature review Proceedings of the 10th International Conference
on Cloud Computing and Services Science (CLOSER’20) (2020), 10.5220/0009578501810192

3.32 Continuous testing of serverless applications
André van Hoorn (Universität Stuttgart, DE)
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Quality assurance is a key software engineering activity to deliver high-quality software. The
way software is being developed has changed dramatically over the past years, due to emerging
cloud-native architectural styles, such as microservices and serverless, in combination with
modern software engineering paradigms such as DevOps. The frequency and velocity of
changes impose challenges to quality assurance, particularly for assessing runtime quality
attributes such as performance and resilience. On the other hand, the new developments
provide opportunities for novel quality assurance approaches, e.g., due to established technolo-
gies, a high degree of automation, and operational feedback from production. We investigate
the interplay of the mentioned topics in the DevOps Performance Working Group of the
SPEC RG. Concerning the seminar topic, my particular interest is in the question of “How to
seamlessly integrate quality-of-service assurance for serverless into the DevOps ecosystem?”.

Over the last year, I was involved in the EU Horizon 2020 project RADON on “Rational
decomposition and orchestration for serverless computing”. RADON provides an end-to-
end framework to develop serverless applications, building on the OASIS Topology and
Orchestration Specification for Cloud Applications (TOSCA). To assess whether applications
developed via the RADON methodology and framework meet their quality requirements,
RADON includes the continuous testing workflow, which particularly aims to support software
developers, QoS engineers, and release managers in producing high-quality applications. The
core component implementing the continuous testing workflow is the Continuous Testing
Tool (CTT). CTT enriches the TOSCA ecosystem by end-to-end support for continuous
testing of microservice-based (including FaaS) and data pipeline applications in DevOps.
CTT supports the whole workflow – from test specification over execution and reporting to
automated updates based on production data – that is also extensible to custom needs, e.g.,
integrating other types of tests or tools. A particular innovation lies in the integrative test
generation features for obtaining tailored tests, which fits into the constraints of DevOps-
based development settings with separate teams and delivery pipelines, and the goal of fast
and frequent releases.
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3.33 Serverless Compute Primitives as a Compilation Target
Soam Vasani (Stripe – San Francisco, US)
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FaaS is a compelling compute primitive: it has the best elasticity that cloud compute has so
far offered, and it abstracts away more infrastructure than any other compute primitive has so
far. However application developers must account for FaaS limitations on timing, networking,
artifact size, etc; these limitations have fundamental effects on application architectures.

This raises the question: can we have the elasticity and abstraction of FaaS without having
to learn new application architecture patterns? To this end I’m interested in borrowing ideas
from compilers: can we use FaaS and other serverless technologies (such as object stores
and workflow runtimes) as a compilation target? In other words, can we transform a source
program that is not serverless-specific to a set of functions, objects, and workflows? If this is
not universally possible, then is there a set of source programs for which this is both possible
as well as useful?

As a prototype, I’m exploring this question for the specific technologies of Python and
AWS serverless, transforming functions written in a subset of Python into a set of Lambdas,
Step Functions and S3 buckets.

3.34 Network Challenges in Serverless Computing
Florian Wamser (Universität Würzburg, DE)
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The serverless computing paradigm promises a number of advantages over conventional cloud-
or server-centered computing. Serverless computing offers the developer greater scalability
and more flexibility at a lower cost. From the developer’s point of view, one does not have
to worry about the dimensioning, provision and administration of backend servers and hosts.

To provide flexibility, scalability, and developer-friendliness, a serverless platform typically
manages and maintains the underlying resources. In addition to the computing resources, the
network also plays a decisive role here, connecting the computing resources and transporting
application requests to the serverless functions.

At the University of Würzburg we investigate the challenges for networks in connection
with serverless computing. The most important points are:
1. Elasticity and scalability of network resources
2. Dynamic addressing and forwarding of requests to computing resources
3. Provision of network resources for functionality and adaptability
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3.35 Decision Support for Modeling and Deployment Automation of
Serverless Applications

Vladimir Yussupov (Universität Stuttgart, DE)
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The term “serverless” gains more and more attention in the context of cloud-native application
development. Frequently being associated exclusively with the Function-as-a-Service (FaaS)
cloud service model, the idea of what a serverless application is keeps evolving, resulting in
more issues to decide on when engineering serverless applications. I am interested in the topic
of decision support for modeling and deployment of serverless architectures comprising various
kinds of components such as FaaS platforms, function orchestrators, serverless databases and
message queues. In particular, I am investigating which decisions need to be considered (also,
decisions captured in the form of patterns), and how to use them to support practitioners
in transitioning from abstract serverless application models to refined, provider-specific
deployment models that can be enacted using deployment automation technologies of choice.

Some related publications:
Yussupov, V.; Soldani, J.; Breitenbücher, U.; Brogi, A. and Leymann, F. (2021). From
Serverful to Serverless: A Spectrum of Patterns for Hosting Application Components.
In Proceedings of the 11th International Conference on Cloud Computing and Services
Science – CLOSER
Yussupov, V.; Soldani, J.; Breitenbücher, U.; Brogi, A.; Leymann, F. (2021). FaaSten
your decisions: A classification framework and technology review of function-as-a-Service
platforms, In Journal of Systems and Software, Volume 175

21201

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


68 21201 – Serverless Computing

4 Working groups

4.1 Design of Serverless Systems, Platforms, and Ecosystems (Topic 1)
Samer Al-Kiswany (University of Waterloo, CA), Ahmed Ali-Eldin Hassan (Chalmers Uni-
versity of Technology – Göteborg, SE), André Bauer (Universität Würzburg, DE), André B.
Bondi (Software Performance and Scalability Consulting LL, US), Ryan L. Chard (Argonne
National Laboratory – Lemont, US), Andrew A. Chien (University of Chicago, US), A. Jesse
Jiryu Davis (MongoDB – New York, US), Erik Elmroth (University of Umeå, SE), Alexandru
Iosup (VU University Amsterdam, NL), Hans-Arno Jacobsen (University of Toronto, CA),
Samuel Kounev (Universität Würzburg, DE), Vinod Muthusamy (IBM TJ Watson Research
Center – Yorktown Heights, US), Guillaume Pierre (University & IRISA – Rennes, FR),
Mina Sedaghat (Ericsson – Stockholm, SE), Prashant Shenoy (University of Massachusetts –
Amherst, US), Davide Taibi (Tampere University, FI), Douglas Thain (University of Notre
Dame, US), Erwin van Eyk (VU University Amsterdam, NL), and Soam Vasani (Stripe –
San Francisco, US)
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Organization
Co-chairs: Alexandru Iosup and Samer Al-Kiswany
Rapporteurs: Mina Sedaghat and Doug Thain

Opening Statement
This topic focuses on the design of serverless systems, platforms, and ecosystems. We
organized the discussion for this topic around sessions, aiming to first obtain a diverse set of
sub-topics, then to refine our own views about a focused set of sub-topics, then to take in
new perspectives and share our own in discussion with the groups working on other topics,
and, last, to refine our views toward a vision. Our sessions proceeded as follows:

First session: We focused on scoping, discussing possible sub-topics for the design topic
and trying to have as many ideas represented as possible.
Second session: We focused on choosing and discussing 3 sub-topics, and on finalizing the
scoping effort with ideas that arrived from the cross-pollination with other topics. We
discussed requirements, including geo-distributed operation, the impact of state and data
streams, predictable performance, energy awareness, security, and auditability through
provenance provisions; we further discussed the actual complexity when automating the
operational concerns for the user. We further discussed operational techniques for workload
and resource management at runtime, and ensuring SLAs and SLOs while still being
able to “make it easy for the user”. We discussed lessons learned from cloud computing,
especialy from PaaS (e.g., “We wanted all applications to be equally supported, with
one simple and unified interface, but every significant application has at least something
different”).
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Third session: We analyzed existing serverless definitions, benefiting from discussion
with other topics, and concluded on the key aspects of a good serverless definition. This
allowed us to focus on a programming model, a reference architecture, non-functional
requirements, patterns and anti-patterns in serverless applications in practice, and on
toolchains. We also discussed programmability, portability, and interoperation.
Fourth session: We had joint discussions with Topics 2 (software engineering) and 3
(application requirements). Main aspects discussed: What are the application domains
and domain verticals? How to think about the user? What applications are the most
important? What is the lifecycle of a serverless application? What sort of application
architecture should be adopted? What is a good definition for serverless? How to think
about managerial, policy, cloud, and resource-level metrics?
Fifth and sixth sessions: concluding on the core definition, vision, challenges, etc.

Link to other topics
There is a strong link to the other topics, both conceptually and, following the joint sessions,
practically:

Questions related to representative use cases and applications, and to requirements related
to them, are essential for the design topic and link strongly to Topic 3.
Questions related to implementing and realizing the software of serverless systems,
platforms, and ecosystems, including both the software patterns and the engineering
process, are linked strongly with Topic 2.
Questions related to testing and evaluating serverless systems, platforms, and ecosystems
are linked strongly to topic 4.

A reference architecture for serverless computing
We discussed and agreed on a reference architecture for serverless computing. The reference
architecture considers the following main layers:
1. Compute, memory, storage, and networking infrastructure, consisting primarily of (pro-

grammable) hardware devices and of corresponding virtualized devices.
2. Operating services, providing foundational services such as messaging, coordination, and

authentication.
3. Resource managers, providing collections of (distributed) resources, physical and/or

virtual, with pre-configured operating services, under a convenient programming interface.
4. Runtime engines, providing capabilities for executing simple and composite functions, up

to orchestrating entire dataflows and workflows, and automating the back-end management
of transient state and persistent data.

5. Front-end core, providing a programming model for serverless applications, specializations
of this programming model for specific application domains, high-level programming
languages for convenient programming, and portal and command-line high-level interfaces.

6. Across all layers, a toolchain of compilers, monitors, profilers, and benchmarks for
serverless computing, helping optimize each aspect and making all levels observable.

Our main insight from the reference architecture is that the automated operation for
serverless applications is an ecosystem, with many different parts developed and operated by
different and autonomous organizations; this is very different from a single integrated system
and leads to different design challenges and practices.
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Another insight is that the designs of all the systems at different layers are highly
influenced by the programming model, but currently no single programming model exists
for serverless computing, and it is likely such a programming model will only be possible if
it is very abstract and generic. We expect high levels of specialization and that serverless
applications will use a special runtime stack as well as will often rely on back end services
offered by the cloud providers.

We acknowledge that the serverless computing paradigm is in its infancy and many of
the layers, especially the runtime engines, front-end core, and toolchains, will provide many
radically different alternatives that will take time to mature and perhaps not converge.

Vision on the design of serverless systems, platforms, and ecosystems
We envision that serverless systems, platforms, and ecosystems should aim to:

Ensure (nearly) complete automation of operational concerns and
high programmability, portability, and interoperability, for
diverse application domains and use cases, where
many parts are defined once but used many times, with
on-demand deployment, (geo-)distributed operation, and utilization-proportional cost, by
offering diverse operational techniques (Rethinking resource management and scheduling),
supporting and enforcing non-functional requirements, controlling for variability,
rethinking observability and providing serverless-related monitoring,
rethinking the static and dynamic toolchain, and
ensuring integration with a diverse, evolving technology ecosystem.

Next to many challenges, which we list in the following, there are also uncomfortable
questions, such as:
1. The question is not can we make remote execution as easy as local execution, but can we

make it easier and more beneficial?
2. Industry is ahead and facing immediate challenges, so how should academics engage so

they have impact in this field?
3. What is new, over the problems of full automation of 70 years ago (utility computing),

20 years ago (grid), 10 years ago (cloud)? (Serverless is not the entire cloud and should
not try to do everything.)

Challenges in the design of serverless systems, platforms, and ecosystems
Related to the reference architecture:

C1 Capturing the multi-level architectural features and emerging architectural patterns
of this rapidly evolving serverless computing field

C2 Predicting which architectural features and patterns will succeed, and explaining why
(and why not others)

Related to full automation of operational concerns:
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C3 Agreeing on a serverless definition and making it operational

Can we make it easy to run applications remotely? Can we achieve full transparency, in
Coulouris’ sense, a sort of “cloud button”? Can we achieve near-zero waste, scale to zero
(cost)? (See also Section 5.1.)

C4 Understanding system-level, operational requirements

This includes understanding the stakeholders of serverless operations, the users of specific
applications, and the systems-level requirements raised by industry verticals, application
domains, and applications. Focus on both functional and non-functional requirements, and
for non-functionals consider metrics at different levels of interest, from hardware resources to
organization-wide managerial decisions. Focus on energy efficiency, but also on sustainability
awareness (e.g., how the electricity used for serverless workloads is produced and consumed,
how much greenhouse gas emissions and water consumption occurs here).

C5 Programming model from a systems perspective

What sort of application architecture should be adopted? What is the right granularity of
the function? How to trade-off between providing control and simplicity? How to express
and manage workflows (and is there a new way needed, or are workflow abstractions already
sufficient)? What can we learn from decades of programming parallel and distributed
systems?

C6 Workload and resource management for serverless, and overall routing and scheduling

How to extend and apply traditional techniques for workload and resource management?
How to consider the full compute continuum (i.e., IoT/fog/edge/cloud)? How to replicate,
cache, partition, consolidate, migrate, offload, etc. the functions and/or the data? How to
provision, allocate, elastically scale, load-balance the resources? How to schedule and route
across the whole (eco)system? How to consider resource provisioning over short periods of
time (e.g., auto-scaling) and also long-term (e.g., capacity planning)?

C7 Practical needs in serverless orchestration

How to mix serverless with other computational models, i.e., run mixtures of workloads
instead of merely serverless? How to achieve near-zero waste, even under complex deployment
scenarios (e.g., geo-distributed scenarios)? How to reduce the serverless overhead added by
the platform to the (commonly lightweight) functions representing the business logic of the
application? How to ensure proper performance isolation while making efficient use of the
shared infrastructure?

C8 Manage ecosystem instability

How to limit the impact of, e.g., performance variability, the impact of (correlated, even
cascading) component downtime, multiple versions of the same service, service continuity
under transience of various providers?

Related to the toolchain:
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C9 Create the serverless toolchain

How does the traditional toolchain – Compiler, Linker, Loader Static Analysis, Dynamic
Analysis, Dependency Detection, Testing, Debugging, Mocking, Tracing, Replaying – need to
change for serverless, starting with FaaS? How to use self-descriptive metadata to improve (i)
safety (type signature, semantics, version, dependencies, non-functional requirements, etc.),
and (ii) efficiency (performance, resource requirements, co-location with other functions,
etc.)? Process-wise, how to engage both toolchain and application developers, to motivate
incremental deployment and interoperation of both metadata and tools, while accepting
incomplete information?

C10 Support for patterns and anti-patterns, both functional and non-functional

What are the serverless patterns and anti-patterns, both functional and non-functional,
that systems designers can work with? For example, what are the performance patterns
and anti-patterns for serverless operations? How to support enterprise patterns, e.g., for
integration or for distributed operation? How to support specific industry verticals or
application domains, e.g., matching Topic 3: for scientific computing, for machine learning
and artificial intelligence, for online gaming, and for mobile and telco operations?

Next steps and takeaway for the community
We have discussed the topic of design for serverless computing systems, platforms, and
ecosystems. Linking to the other topics in this Dagstuhl Seminar, we have considered a
definition for serverless computing, requirements from various application domains and use
cases, software engineering concepts and processes, etc. We have provided in this section a
summary of several critical aspects for design, including a reference architecture, a vision,
and several uncomfortable questions and challenges.

The main takeaway for the community is that serverless computing poses hard, even
grand challenges, related to full automation of operational concerns under hard constraints.
The design of serverless systems, platforms, and ecosystems is an essential part of achieving
the promise of serverless computing. The challenges we have listed here shape the task ahead,
but there is more on the horizon.

As indicated by the value of the discussion we had with other topics in this seminar,
designers should make sure the collaboration between computer systems, software engineering,
performance engineering, and beyond to cross-disciplinary collaborations.
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4.2 Software Engineering of Serverless Applications, but also Systems,
Platforms, and Ecosystems (Topic 2)

Simon Eismann (Universität Würzburg, DE), Robert Chatley (Imperial College London,
GB), Nikolas Herbst (Universität Würzburg, DE), Georgios Kousiouris (Harokopion Univer-
sity – Athens, GR), Philipp Leitner (Chalmers University of Technology – Göteborg, SE),
Pedro García López (Universitat Rovira i Virgili – Tarragona, ES), Bernard Metzler (IBM
Research-Zurich, CH), Davide Taibi (University of Tampere, FI), Vincent van Beek (Solvinity,
Amsterdam and Delft University of Technology, NL), André van Hoorn (Universität Stuttgart,
DE), Guido Wirtz (Universität Bamberg, DE), and Vladimir Yussupov (Universität Stuttgart,
DE)
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García López, Bernard Metzler, Davide Taibi, Vincent van Beek, André van Hoorn, Guido Wirtz,
and Vladimir Yussupov

Opening Statement
The group discussed the topic of serverless from the perspective of software engineers in
DevOps teams that are responsible for the development and operation of software systems
running on serverless cloud platforms. The group decided to use the established stages of
the software life-cycle to guide the discussion. For each stage, the group discussed how this
stage is different from traditional software development when building serverless applications
and what the resulting challenges are.

Changes to the Software Engineering Lifecycle
This section highlights the major differences in the engineering process when building
serverless applications, compared to engineering traditional software architectures. Based
on these differences, the group collected a number of software engineering challenges for
serverless applications, which are discussed in the next section.

Planning

During the planning phase, the requirements of the application need to be collected and
based on them the fundamental decisions about the application are made. For serverless
applications, two additional decisions need to be made during the planning phase. The
first one is whether serverless is actually well suited for this task. As there are still several
limitations to serverless, it is not a suitable solution for every application, yet. The second
decision that needs to be made is the selection of a cloud provider. While this was also a
decision for traditional cloud applications, it’s impact is far larger for serverless applications.
The IaaS and container offerings of most cloud providers offer very similar features. However
there are significant differences in the serverless offerings of different providers. While they
all offer a function-as-a-service solution, there are large differences when it comes to the
managed services. As cloud providers work to increase the number of specialized managed
services, these differences will increase further.
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Design

The key objective of the design phase is to come up with a suitable software architecture for
the planned application. In this phase, the serverless application is split into coarse-grained,
individual units (called microservices, components, or service). Within such a serverless
microservice, there is a second, explicit architecture layer that describes the separation of
code into serverless functions, incorporated external services, and the triggers that define the
control flow within the application. This architecture within a service also implicitly exists
within a traditional application in the form of software classes. However serverless makes
this architecture explicit and forces developers to think of this low-level architecture before
the implementation. This change increases the awareness of developers for the architecture
of their application, and makes architecture diagrams for this second architecture level
commonplace (in contrast to the often neglected UML diagrams).

Implementation

In the implementation phase, developers start implementing according to the requirements
and the software architecture discussed in previous phases. A serverless application contains
significantly less code than a traditional application, as much of the control flow and business
logic is handled by managed services. However, these managed services and triggers need
to be configured in the form of infrastructure-as-code (IaC) files. Therefore, developers
spend a lot of time working on IaC files when building serverless applications. This means
developers frequently need to context-switch between the actual code and the IaC file, as
the functionality of the application is spread across both. While the tooling around code
development is mature, the tooling around IaC and the integration of IaC and code is
quite immature. This currently makes the development of serverless applications quite
cumbersome.

Testing

The testing phase for serverless architectures must cover both functional and non-functional
aspects. Unit tests can be implemented with relative ease due to the smaller granularity
of functions and tested as usual for the chosen programming language. Integration tests
become more important for serverless applications as the majority of behavior to test is
located outside of the functions. However, integration testing also becomes more difficult
as serverless applications rely on integration of multiple fine-grained components hosted
using provider-managed services. Integration tests can be executed in a local environment
using service emulators and available tooling, testing remotely on the provider’s side, or
a combination of both options. In practice, the hybrid testing option is currently quite
common, since the local testing is limited w.r.t. available tooling and is not representative
enough, whereas only remote testing incurs additional costs and takes longer as applications
need to be redeployed with each update.

Deployment

During the deployment phase, all components and configurations of their interactions must be
deployed to a target environment, meaning that not only the packaged source code has to be
deployed, but also required event bindings need to be created, security policies configured, etc.
As a result, a large part of the deployment requirements is at least partially addressed during
the design and implementation phases: required component bindings are established either
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in the source code or configuration files of the chosen deployment automation technology.
The choice of the underlying deployment technology also defines which components can be
deployed by it and in certain cases a combination of several technologies needs to be used,
e.g., infrastructure deployment and configuration management using different automation
tools.

Identified Challenges
Based on the changes to the software engineering lifecycle, the group identified a number of
software engineering challenges for serverless applications. The table below shows how the
identified challenges map to the software engineering lifecycle phases.

Table 1 Identified Challenges in the Lifecycle.

Lifecycle Phase C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Planning X X X X
Design X X X X X
Implementation X X X X
Testing X X
Deployment

C1 Identifying whether a use case is serverless-ready

Serverless is quickly evolving and more and more use cases are becoming suitable. However,
there are still limitations to serverless, which means it is not a suitable solution for every
application, yet. There are currently no guidelines on how to identify whether serverless is
suitable for a specific use case, which hinders the adoption of serverless.

C2 Testing serverless applications

Integration testing of serverless applications includes testing the configuration of managed
services and function triggers. Local emulators for managed services and function integrations
are difficult to build and maintain as serverless platforms are quickly evolving. Running
integration tests directly on the cloud platform requires time-intensive deployments, which
slows down the feedback cycle for developers.

C3 Debugging serverless applications

Triaging the cause of bugs in serverless applications is currently quite difficult. As a feature
is often implemented by multiple functions and managed services, understanding what
happened for a single request requires the logs from the multiple functions and services
involved in the processing of the request. The non-standardized logging schemas of managed
services and immature observability tooling makes this quite cumbersome.

21201



76 21201 – Serverless Computing

C4 Predicting the costs of serverless applications

On the surface, the serverless billing model – pay-per-use – seems predictable. However,
estimating the cost per request for a serverless API requires developers to understand the
pricing models of all involved services. This is further complicated by the fact that many of
the costs are dependent on data volumes and execution times which are often challenging to
estimate.

C5 Determining function size

With serverless computing, applications are broken down into many serverless functions that
are connected via managed services and event triggers. Developers often need to make the
decision if a function is too large and should be split into two or more functions. There are
currently few, and often conflicting guidelines on how to determine the appropriate size of a
serverless function.

C6 Managing state in serverless functions

In their current state, serverless functions are stateless, which means that applications that
require state can not be built purely from serverless functions. Instead, stateful information
is currently stored in managed services such as databases or messaging services. Enabling
functions to have some fast, shared state would not eliminate the need for databases or
messaging services, but simplify the development of serverless applications and enable new
use cases.

C7 Finding suitable abstract languages/models

Serverless applications are currently designed as architecture diagrams and implemented in
the form of code and infrastructure as code definitions. Serverless could benefit from an
intermediate language or model that could bridge the gap between the very coarse-grained,
non-standardized architecture diagrams and the hard to understand combination of code
and infrastructure as code.

C8 Reusing serverless functions

Serverless applications are broken down into small parts (functions) which can enable the reuse
of existing functions in new contexts. However, managing functions within an organization
at scale is currently challenging. Open questions here include how to determine what
requirements and assumptions an existing function makes and whether reusing a function
should include a separate deployment or the routing of requests to the existing function
deployment.

C9 Migrating existing applications to serverless

Many existing applications could benefit from a partial or full migration towards serverless.
However, many of these applications are not migrated, as developers are unaware of how to
structure the migration, which parts to migrate first, and how to manage a serverless/serverful
hybrid application. Additionally, this poses the challenge of how to train developers that are
used to the serverful model in the skill required to build serverless applications.
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C10 Vendor lock-in

Migrating a serverless application from one cloud provider to another cloud provider is very
time-intensive and often requires partial rearchitecting of the application. Serverless offerings
are mostly built on top of proprietary software instead of open-source solutions. This means
that there is little to no compatibility between, e.g., the blob storage offerings of two cloud
providers, which leads to the commonly reported vendor lock-in for serverless applications.

Closing Statement
The group discussed the changes to the traditional software engineering lifecycle from the
perspective of software engineers that are responsible for the development and operation of
software systems running on serverless cloud platforms. Based on these changes, the group
identified a number of challenges for the planning, design, implementation and operation of
serverless applications. While the discussion focussed mostly on these challenges, the group
is confident that they can be overcome by a combined effort from industry and academia.

4.3 Serverless Applications and Requirements (Topic 3)
Josef Spillner (ZHAW – Winterthur, CH), Bartosz Balis (AGH University of Science &
Technology – Krakow, PL), Jesse Donkervliet (VU University Amsterdam, NL), Nicola Ferrier
(Argonne National Laboratory, US), Ian T. Foster (Argonne National Laboratory – Lemont,
US), Maciej Malawski (AGH University of Science & Technology – Krakow, PL), Panos
Patros (University of Waikato, NZ), Omer F. Rana (Cardiff University, GB), and Florian
Wamser (Universität Würzburg, DE)
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© Josef Spillner, Bartosz Balis, Jesse Donkervliet, Nicola Ferrier, Ian T. Foster, Maciej Malawski,
Panos Patros, Omer F. Rana, and Florian Wamser

Why/when should applications be serverless?

As it stands, Serverless Computing expands on state-of-the-art cloud computing by further
abstracting away software operations (ops) and larger parts of the hardware/software stack.
One could consider functions, the execution unit of serverless computing, as “lightweight”
containers, invoked with a set of inputs and expected to produce a set of outputs, when
triggered.

From a user perspective, Serverless reduces system operation effort, simplifies development,
supports highly variable and unpredictable workload patterns, enables the complete removal
from dynamic memory of applications not in use – referred to as Scale to zero – and, under
the right circumstances, can reduce software operation cost. From an operator perspective,
it reduces costs by increasing resource efficiency and crucially, it incentivizes innovation for
sustainability because the operator bears the cost of idleness.

Considering both the current state-of-the-art of serverless computing as well as its
expected evolution over the year, this report aims to identify the types of applications
that are currently well-supported by today’s serverless platforms, and then, move on to
discuss novel and upcoming applications with challenging characteristics, which would require
serverless to evolve in order to satisfy them.
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What are the unique characteristics?

We identified the following four unique characteristics (UC) for current serverless:
UC-1 Stateless/Idempotency, which describes the pure-function behavior of invocations;
UC-2 Fixed Memory, which limits the amount of resident memory an invocation is allowed
to have;
UC-3 Short Running, enforcing a short time limit on the execution of invocations;
UC-4 Little Control, referring to the abstraction of ops, such as scheduling and autoscaling,
from the user.

The transparency trade-off

However, are software engineers and problem owners ready to relinquish all this control
of their applications? We identified a tradeoff between resource abstraction and resource
control, essentially a tug-of-war between ease of programming vs. efficiency and cost.

This could be mitigated by exposing tuning knobs, such as resource management, to use
by FaaS developers, a concept inspired by “open implementation analysis and design” [Maeda,
Murphy, Kizales, 1997]. For a more technical example, consider the developer passing hints
from the application through an interface exposed by the backend stack. This could be
incarnated by pragmas, event interface, rate-limiting contracts, etc.

All in all, is it worthwhile to exchange ease of programming, deployment, maintenance
and operation, to enable fine-grained control for developer customization? From a platform
design perspective, such a requirement endangers efficiency in application and backend.
However, it could help FaaS providers with resource allocation and scheduling decisions,
while saving cost. Thus, the question persists if serverless should be even enabling any type
of ops.

Scoping applications on their path towards serverless

The suitability of serverless computing concepts to deliver application functionality opens a
maturity-chronology spectrum associated with application enablement. This spectrum can be
roughly divided into three serverless phases: “Serverless 1.0” starting around 2014, “Serverless
1.5” representing the state of commercially available technology in 2021, “Serverless 2.0”,
bringing finer granularity and control in the coming years. Potentially more phases (3.0,
4.0, ...) will follow that are currently unclear but may nevertheless still not be sufficient for
certain types of applications.

For some early adopter applications in the “serverless 1.0” phase, the initial serverless
concepts around FaaS (λ, OW/ICF, GCF, AF) in the mid-2010s were already suitable. Further
applications have been enabled recently by an expanded set of serverless computing offerings
including FaaS-alike flavours of CaaS [GCR, Fargate, IBM CodeEngine, ACS/Dapper that
permit stateful tasks/inter-instance communication/multiple CPUs, academic approaches like
funcX], relaxed limits in FaaS invocations, and low-latency BaaS that characterise “serverless
1.5”.

In the near future, based on recent scientific progress, “serverless 2.0” will make it easier
to build applications that currently require unaffordable effort [e.g. ExCamera, deep learning,
NumPyWren], and will furthermore allow for new classes that are currently unreachable [e.g.
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online gaming, federated learning, agritech on the edge]. This trend will be driven primarily
by four factors:
1. Hardware advances such as disaggregation and continuums; including better heterogeneity,

specialised hardware (GPUs, TPUs), storage, networking (mobile radio heads)
2. Changes in BaaS, primarily the ubiquitous ability to run functions next to data (fusing

the concepts of FaaS, stored procedures in DBs, UDFs in big data tools)
3. Autonomic middleware assisting the decomposition and placement of application code

into managed services
4. Improvements in the design of serverless platforms, including

a. selected control knobs for applications (possibly with some declarative language),
b. including “only” a maximum runtime instead of a fixed short runtime (see “elastic”

execution time for applications),
c. differentiated and guaranteed quality (QoS or QoE guarantees) including real-time

constraints (see also [RTserverless]), as well as
d. aligned mature toolsets to convey the platform benefits directly to software engineers

including testing, tracing and debugging, covering the entire DevOps cycle.

Application domains

The main application domains we discussed are:
1. Scientific Computing
2. Machine Learning and Artificial Intelligence
3. Online Gaming
4. Mobile Serverless and Telecommunication
5. Big Data Analysis
6. IoT, Agriculture and Cyber Physical Systems
7. Web Services

Below we focus on the selected four domains as representing the key challenges for current
and future serverless platforms.

Domain: Scientific computing

Why use serverless?

Modern science relies on large scale experiments, simulations and data-driven analysis
methods. Scientists analyze time series of global archives, often on the order of hundreds of
Terabytes up to Petabytes, and hundreds of thousands of data images in order to generate a
single layer of global, sometimes geospatial, information with added value. For this processing,
extreme performance and often local processing is required. Computational requirements
cover the full spectrum – from functions providing “support” for HPC environments to initial
(approximate) analysis closer to the point of data capture. Many tasks are available as
functions, can be reused and are available in R, R-Shiny Apps, Python, while we can think
of larger HPC-jobs as “fat” functions that can be also considered serverless.
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What can serverless provide today?

The serverless model is appealing for scientists because of the ease of programming, whereby
scientists can focus on implementing scientific procedures, easily collaborate on function
development, and reuse existing functions. Many scientific applications include fine-grained
tasks, e.g. high-throughput scientific workflows, machine learning tasks, or interactive
analytics.

Scheduling of tasks

Resource allocation associated with serverless platforms is highly dynamic and elastic, so the
scientists can gain quick on-demand access to computing resources suitable for exploratory
interactive data analysis, processing of streaming data from instruments etc. It is noteworthy
that in the context of scientific computing the cold-start problem or high start-up times
typical, e.g., for serverless containers, are less significant in comparison to job queue wait
times in HPC systems. Accelerated time-to-science is thus another potential advantage of
serverless computing applied to scientific use cases. Scientific applications are diverse in
terms of software, complex dependencies on libraries, and packages, often requiring legacy
software, so current approach to containerisation, deployable to serverless CaaS, is a perfect
solution to these problems.

Challenging application requirements

Dynamic provisioning (on-demand access) is radically different from the typical batch-queue
model used in scientific computing. Moreover, scientific computing often involves long-running
tasks with high memory usage, while cloud functions currently are not suited to run as long
as batch jobs and have fixed memory limits. Scientific applications often rely on specialized
hardware, including all types of accelerators (GPU, potentially TPU for tensor tasks) and
fast I/O (burst buffers, nvram) which are available in state-of-the-art HPC systems but not
in cloud datacenters. For large-scale tightly-coupled parallel simulations fast interconnects
and communication substrates are required (MPI), for which workarounds like using cloud
storage or other means are now developed (NumPyWren), but need better solutions in the
future. Scientific pipelines (workflows) benefit from data locality, difficult to achieve with
stateless functions.

Ultimate vision

We envision that with Serverless 2.0 some of these requirements will be soon fulfilled, but the
ultimate goal of “Serverless Supercomputer” will be possible not earlier than with the advent
of “Serverless 4.0” era, where intra-datacenter latency will match the current leadership HPC
interconnects and the distinction between a datacenter and supercomputer will disappear.

Domain: Machine learning and artificial intelligence

What are the characteristics of this domain?

Machine Learning is an emerging area in function-based processing, combining both learning
on edge devices combined with inference-based models (MobileNetV1, MobileNetV2 and
Faster R-CNN – i.e. pretrained models on cloud systems) that can be deployed on such
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devices.7 These computationally reduced versions of machine learning algorithms provide
great opportunities for deploying function-based processing. Conversely, a number of hardware
vendors (e.g. NVidia, Huawei, Intel, etc) are increasingly developing hardware accelerators
aimed at improving the performance of machine learning algorithms, these range in complexity
from support for specialist data structures (e.g. matrices and matrix/vector manipulation),
to inclusion of specialist dedicated hardware that can be used to improve processing of
data associated with machine learning algorithms (e.g. video analysis). Understanding
how serverless approaches can be used to deploy (sustainably – combining both energy and
economic efficiency) ML functions can be used to support a variety of different types of
applications. To provide an example: the size of the models, number of parameters and
computational complexity of these two MobileNet models include: MobileNetV1 (570M
Multiply-Accumulate (MACs) and 4M parameters (which can include weights connecting
layers and other model parameters such as learning rate)); MobileNetV2 (300M MACS, 3M
parameters). Understanding benchmarks that can be used to characterise performance (and
accuracy) of ML algorithms, realised as functions on edge devices is also being undertaken
within the MLCommons Consortium (bringing together academia and industry). The
benchmarks being proposed in this work could directly be used to undertake capacity
planning for serverless implementations of ML functions.

ML functions can also vary in their computational time requirements – from algorithms
that need to execute over long time frames (e.g. multiple days) to process different input data,
to others that can be used to pre-process data prior to processing (<1min). Additionally,
other ML pre-processing functions can be triggered by events observed in the environment
(e.g. availability of sensor data, movement of people etc). Understanding where the serverless
paradigm aligns with ML function implementation is an important consideration – as not all
of these functions may be suitable to be realised using the serverless paradigm (especially
when considering the economics of deployment). The following diagram demonstrates the
possible mechanisms for distributing ML functions using serverless approaches: (i) we can
partition the data (sharding of a data stream); (ii) partitioning a model (e.g. with the use of
federated learning, where multiple models are independently constructed, and then integrated
at a central site); (iii) aggregating the outcome of multiple functions and combining this
with additional parameter optimisation using a cloud-based backend server.

What could serverless provide today?

Today’s serverless can or, with modest system tweaks, could support ML and open up a
number of opportunities in providing:

Function-based implementation of ML algorithms at different levels of complexity, from
ML that can be deployed within a data centre to functions at the edge;
Programming support for implementing ML functions and developing software libraries
that can be used to realise functions. A variety of libraries already exist – such as TF-Lite,
use of “distillation” and quantization approaches to reduce the complexity of learned
models to deploy over resource constrained environments. Another similar approach is
the ability to migrate functions between edge and cloud resources – e.g. use of Osmotic
computing approaches that enable migration of functions as lightweight containers;
Deployment mechanisms that can be used to place ML functions across the IOT-edge-
cloud continuum. Function placement driven by performance, cost and energy constraints
can provide a useful basis for making more effective use of these within other application
areas;

7 https://dl.acm.org/doi/10.1145/3398020

21201



82 21201 – Serverless Computing

Serverless utilising increasingly available hardware accelerators – support for “hardware
aware” function optimisation
Specialist compilers that are able to create serverless functions that can be adapted to
hardware characteristics

Challenging application requirements

Some of the characteristics and limitations of available serverless systems remain important
open challenges, such as:

Need to support often long-running functions that may have high memory and I/O
requirements. Understanding whether a serverless approach would be most relevant in his
context, and where alternative approaches may be more suitable for such deployments.
Another challenge in this context would be understanding how to partition machine
learning algorithms or general workloads across the iot-edge-cloud continuum.
Need to support observability and manageability of functions, especially if these ML
functions are part of other applications, for instance using a learning algorithm that is
used as a component within a larger workflow. In this context, understanding the level
of “control” a user has on configuring and deploying these ML functions remains an
important overall consideration
A deployment environment, e.g. as used in funcX/Parsl to dynamically deploy ML
functions based on user demand, and aligned with the characteristics of the hardware
platform. Matchmaking between function characteristics and hardware device properties
also remains an important research challenge to increase adoption.
Secure and privacy-aware ML functions, especially when dealing with sensitive data that
may have GDPR/data privacy constraints, is also an important requirement for serverless
deployment. Using encrypted data (e.g. using fully or partially homomorphic encryption)
or utilising functions that carry particular security credentials also remains an important
requirement for some ML applications. The research challenge here lies in identifying
mechanisms for certifying ML functions based on “certificate servers” prior to their use.

Domain: Online Gaming

Gaming is a massive industry, generating a revenue of $180 billion in 2020.8 But despite its
size, developing and operating games and their surrounding ecosystems is challenging. We
envision today’s and future serverless technology addressing these challenges. In this section,
we argue why online gaming can benefit from serverless, how today’s serverless technology
can help, and in which direction serverless technology needs to develop to better support the
online gaming domain.

Benefits

The characteristics of serverless is promising for the online gaming domain. Without being
comprehensive, we discuss here three areas where serverless can help. First, online games
typically have large workload variance over time.9 The popularity of games is difficult to

8 https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-
combined-thanks-to-the-pandemic-11608654990

9 https://atlarge-research.com/pdfs/2011-nae-dynamic.pdf
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predict, but can be the difference between attracting tens or tens of millions of players.
Importantly, the number of players in an online game typically goes down over time, and
many games fail to attract a significant number of players. To manage this risk, game
developers need the ability to scale to zero. At the same time, successful games that attract
large numbers of users have significant daily, weekly, and yearly workload variation patterns.
Games and their ecosystem services require strong scalability to support this. Second,
Successful online games require continuous operational support to provide a service to players
and meet QoS and other NFR constraints. Because such support is labor intensive, it requires
risky and costly investments from development companies and individual developers. Third,
online games operate as parts of a large ecosystem, and as such require good integration (e.g.,
high availability, scalability, fault tolerance) with other services. Using serverless applications
can simplify development effort required to meet these goals.

Technology assessment

Today’s serverless platforms are a promising technology for several areas of the online
gaming ecosystem. Using the house-like metaphor from Iosup et al.,10 we envision serverless
technology to automatic content generation (e.g., generating worlds on demand), game
analytics (e.g., analyzing player behavior and detecting toxicity), the social meta game
(e.g., web apps where users share player-created content), and the virtual world (e.g., player
authentication, matchmaking).

Future directions

While these applications are promising, we identify several challenges that require serverless
to develop beyond its current capabilities. We briefly describe three such challenges here.
First, games can have stringent QoS requirements such as low jitter and latency in the range
of tens of milliseconds, which requires low (cold) start times and guarantees on tail latencies,
and good performance isolation to prevent performance variability in areas that will result
in reduced player experience. Second, using an architecture with large numbers of small
components can make keeping consistent state between players will become more difficult.
Third, the gaming ecosystem contains parts (such as game server instances) that do not use
a programming model that fits easily with the request/reply model used by today’s FaaS
platforms.

Domain: Mobile and telco serverless

Overview

The mobile networking area is currently seeing a significant increase in connected devices,
including IoT devices and smart mobile devices. Due to the operators’ business models and
the potential for additional revenue models for network and telcos, operators are forced to
act efficiently and in line with the demands. In particular, this means being efficient in the
direction of scaling and elasticity. More precisely, mobile networks are typically geographically
distributed and have to deal with a highly variable amount of device messages at the edge and
on central entities. This requires a massive scaling in both directions, spatially and in terms of

10 https://arxiv.org/pdf/1802.05465.pdf
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resources – all things that Serverless entails. Contrary to requirements, Mobile Serverless also
has some inherent functionality that conforms to the serverless paradigm: many network core
functions are sold today as software to avoid large, rigid hardware boxes. Cellular functions
are already available today as separate functions (virtual network functions, especially with
the use of Software-Defined Networking (SDN) environments). These functions are usually
already short-running and often even already stateless.

Benefits

The most important points that can be envisioned for Mobile Serverless are: it leverages the
efficient and scalable architecture, which provides benefits from reduced operational costs
and function isolation. Mobile core network functions are expected to be fully integrated
into or partially merged with user functions. Besides these specific points, Mobile Serverless
can generally benefit from better maintainability and updatability as mobile functions are
encapsulated in atomic tasks or functions, including better resilience with the replication of
functions for fallback purposes and chaos monkey functions.

Challenges

For the next generation of Serverless Computing the challenging application requirements
include runtime and latency guarantees for network and signaling processing functions, the
cold start problem (especially with distributed deployment), and locality, since some functions
must be performed in specific locations. Ultimately, more and more security and privacy
requirements play a role in the discussion with Serverless, as mobile networks typically offer
larger attack surfaces and have many common elements where sensitive information about
users is stored.

Anti-Hypothesis: What is “not” serverless, and why/when should
applications sometimes not be serverless?

Having the above mentioned application domains in mind, significant assumptions exist in
current vendor-based serverless models regarding function execution time, memory constraints,
“cold start” overhead, and execution costs (e.g. per unit time execution costs ≫ VM/container
execution costs).

The question arises if these constraints are inherent to the serverless model or just
technical limitations which will be relaxed in the future?

Are they really constrained or just driven by economic models?
What is not serverless, i.e. when should we just not use serverless?
What is the anti-pattern equivalent for serverless? (Definition: “An anti-pattern is a
common response to a recurring problem that is usually ineffective and risks being highly
counterproductive.”)

From a general point of view:
1. The first obvious thing that strikes against the use of serverless for some applications is

the fact that partitioning an application into functions may take too long or can even be
counterproductive.



Cristina Abad, Ian T. Foster, Nikolas Herbst, and Alexandru Iosup 85

2. Sometimes applications depend on a strong requirement of I/O or other hardware
components like shared or fast memory, which is hardly possible to achieve in serverless
at the moment.

3. In addition to the last point, heterogeneity given by functions across multiple hardware
and infrastructure can also lead to severe challenges in resilience and coordination.

4. There is furthermore limited reproducibility in serverless computing, which also applies
to the performance of these functions.

5. It is also important to note that applications can require particular QoS and QoE
guarantees (e.g. gaming) that have to be supported across multiple executions of these
functions.

6. Finally, there are also restrictions from the architecture and platform side in direction to
elasticity for applications – consider for example that the “unlimited resource” assumption
does not completely hold for edge devices in case your platform spans over heterogeneous
computing devices.

From a technical point of view, typical restrictions and the ones above arise from the
fact that Serverless Computing is based on a number of paradigms, including the fact that
simple direct communication between functions is not normally possible. Often there is also
only a limited amount of synchronization possible and serverless commonly only allows few
modifications and control of the workflow and scheduling of functions, which is required by
some applications. One severe problem, regarding the performance point of view, is also
that shared memory capabilities and heavy memory optimization is not possible. Ideas like
OpenMP will not be possible since such approaches require strict locality of the memory.

Next steps – Takeaway for the wider community

We ask interested research communities (cloud and systems, software engineering, perform-
ance) to reflect on better application enablement. This encompasses concrete actions such
as:
1. Helping to complete the transition to “Serverless 2.0” by measuring and optimising the

recently introduced prototypes, both from industry and from academia, to overcome
current limits in massive scalability and startup latency.

2. Understanding the cost and economics of using Serverless functions in applications, and
developing a “cost calculator” that is able to make effective assessment of potential costs
for an application user (along similar lines to AWS Cost Calculator).

3. Performing more empirical research with companies to also learn from failures and
hesitation in addition to success cases. This will uncover current system limitations and
turn that into common knowledge, not confined to the serverless platform product owners.

4. Support for serverless functions that can co-exist and meet different types of application
requirements – such as security, performance, usability etc. Security remains an important
challenge and will become increasingly important as new platforms and applications
communities make use of Serverless.

5. Answering fundamental questions such as the “greenness” and cost efficiency of serverless
computing in a way that practical advice for application engineers can be derived.

6. Co-designing forward-looking serverless architectures that abstract from the underlying
isolation layers (container, µ-VM, WASM) and are prepared to work in heterogeneous
hardware environments. The co-design should be conducted in conjunction with “bor-
derline applications” that are not just yet enabled but might be with the new design.
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This way, progress into the next stages of serverless computing can be documented
with timestamped examples. Examples include smart edge-based systems with dynamic
resource autodiscovery, uniform management interfaces, and awareness about end-to-end
characteristics such as networked invocation duration to account for latency variations,
interrupted connections and other QoS concerns, for instance in connected vehicles.

4.4 Evaluation of Serverless Systems (Topic 4)
Cristina Abad (ESPOL – Guayaquil, EC), Kyle Chard (University of Chicago, US), Pooyan
Jamshidi (University of South Carolina – Columbia, US), Alessandro Vittorio Papadopoulos
(Mälardalen University – Västerås, SE), Robert P. Ricci (University of Utah – Salt Lake
City, US), Joel Scheuner (Chalmers and University of Gothenburg, SE), Mohammad Shahrad
(University of British Columbia – Vancouver, CA), and Alexandru Uta (Leiden University,
NL)

License Creative Commons BY 4.0 International license
© Cristina Abad, Kyle Chard, Pooyan Jamshidi, Alessandro Vittorio Papadopoulos, Robert P.
Ricci, Joel Scheuner, Mohammad Shahrad, and Alexandru Uta

Opening Statement
The group discussed the topic of serverless computing from the perspective of performance
evaluation and benchmarking of the serverless platforms and applications that can be built
on those platforms.

Reproducibility in serverless
One of the overarching challenges in computer science is reproducibility [1, 2, 3]. Previ-
ous studies focusing on cloud computing [4] have already shown that results, especially
performance data [5] are difficult to reproduce across studies. We expect this behavior
to be exacerbated in serverless scenarios: On the one hand, from the client perspective,
the underlying system is opaque. On the other hand, cloud providers have a clear view of
the system design and implementation, but the client workloads are opaque to them. We
believe this is an opportunity for the two parties to work together toward achieving better
experimental reproducibility.

Directions
The performance evaluation of serverless systems can be classified into six types of evaluations,
according to their goal. We describe each, next.

Evaluation of existing platforms and reverse-engineering:

Performed when we want to know well a serverless platform performs; for example, as in [6].
This type of evaluation primarily employs micro-benchmarks to measure a very specific
resource such as CPU speed for floating-point operations. The evaluation results can be
used to choose a suitable service, optimize configurations, guide design decisions of serverless
applications, or parametrize a theoretical performance model.

https://creativecommons.org/licenses/by/4.0/
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Application-level benchmarks:

Application benchmarks focus on explaining the performance behavior of a known application
under a serverless system. These benchmarks select representative applications motivated by
real-world use cases and test them under realistic workloads. An example evaluation of a
serverless application is presented in the ExCamera paper [7].

Middleware/frameworks:

Researchers and developers need a way to evaluate the performance of middlewares or
frameworks, layers that are built on top of Function-as-a-Service platforms but are not
user-focused (e.g., a workflow manager). The goal being, frequently, to preserve performance
and reliability, while decreasing cost. An example of this type of evaluation can be seen
in [8].

Workload characterization:

Like other cloud services, serverless offerings host a wide range of users running various
applications. Characterizing the serverless workload enables discovering usage patterns,
modeling resource consumption, and understanding the composition of serverless applications.
For example, Microsoft’s characterization study [9] came with open-source traces on invocation
times alongside function duration and memory usage distributions for each application.

Systems design / development / solution evaluations:

Frequently, changes are made to the inner workings of serverless platforms like OpenWhisk
or OpenFaaS. These studies seek to improve parts of the stack, like the scheduler (maybe
while stubbing/simulating other parts); for example, as in [10]. Such inner working can be at
different layers in the computer system stack including software, computer architecture, and
hardware.

Other:

In the other category, we include any study that does not fit in the prior five categories; for
example, software engineering papers decomposing monoliths, or papers that use serverless
to test/validate something else. The former includes case studies showing how (typically
monolithic) applications can be re-architected to work with a serverless design. For a concrete
study that illustrates this category, consider [11].

Performance evaluation approaches
In addition to the classification of performance evaluation of serverless systems according
to their goal, the group also discusses the different performance evaluation approaches that
researchers can take. Empirical evaluations employ an observation-based approach in which
the system is deployed in a testbed, a workload issued, and results observed and analyzed.
Theoretical evaluations start with a model and try to reason about a system through
analysis or simulations: What are the inputs and how do these inputs affect the performance?
Theoretical approaches are particularly useful for predictions, and real-time decisions (e.g.,
scheduling, offloading). Hybrid approaches that combine the two prior approaches can be
used for sensitivity analysis, to identify the top x parameters to configure or tune.
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Next steps and takeaway for the community
To enable better evaluations, industry should release traces that can be analyzed, modeled,
and replayed. The community would also benefit significantly if cloud providers were to
publish how their serverless systems work internally. We need platform and application
benchmarks, and we need these to be based on a solid understanding of how actual applications
use serverless frameworks. Less explored and equally important are analytical frameworks
that can be used to explore pricing policies that can be beneficial for providers and consumers.
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5 Panel discussions

5.1 Toward a Definition for Serverless Computing
Samuel Kounev (Universität Würzburg, DE), Cristina Abad (ESPOL – Guayaquil, EC),
Ian T. Foster (Argonne National Laboratory – Lemont, US), Nikolas Herbst (Universität
Würzburg, DE), Alexandru Iosup (VU University Amsterdam, NL), Samer Al-Kiswany
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DE), Erik Elmroth (University of Umeå, SE), Nicola Ferrier (Argonne National Laboratory,
US), Hans-Arno Jacobsen (University of Toronto, CA), Pooyan Jamshidi (University of
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Philipp Leitner (Chalmers University of Technology – Göteborg, SE), Pedro García López
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Bernard Metzler (IBM Research-Zurich, CH), Vinod Muthusamy (IBM TJ Watson Research
Center – Yorktown Heights, US), Alessandro Vittorio Papadopoulos (Mälardalen University –
Västerås, SE), Panos Patros (University of Waikato, NZ), Guillaume Pierre (University &
IRISA – Rennes, FR), Omer F. Rana (Cardiff University, GB), Robert P. Ricci (University
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SE), Mina Sedaghat (Ericsson – Stockholm, SE), Mohammad Shahrad (University of British
Columbia – Vancouver, CA), Prashant Shenoy (University of Massachusetts – Amherst, US),
Josef Spillner (ZHAW – Winterthur, CH), Davide Taibi (Tampere University, FI), Douglas
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A definition is the first principle of any field of human inquiry. As for many other complex
issues, for serverless computing the semantics have become source of commentary and debate.
So, what is the object of our inquiry, what is serverless computing?

Many of this Dagstuhl Seminar attendees engaged in early discussions around this question.
Early definitions include aspects such as: the deployment model of Function-as-a-Service
and Backend-as-a-Service being key to operate complex serverless applications [1]; granular
billing matching actual use, event-driven operation, and (almost) complete lack of operational
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logic [1]; (almost) no concerns about operation for the user, function lifecycle management
including events as triggers, operations including performance isolation and prediction,
operations to trade-off cost and performance under guidance from the user [2]; the details of
FaaS operation that users can expect to encounter, as a reference model spanning functions
to workflows [3]; etc.

With so many aspects to consider, a definition remained elusive. During the seminar,
an intense discussion thread started resulting in an improved common understanding of the
notion of “serverless computing”, around notions such as:
1. NoOps: Hiding/abstracting complexity of execution environment (physical and virtual

machines, hypervisors, operating systems, containers, etc.) as well as system/operation
aspects, such as resource management, component/instance deployment, instance lifecycle,
elasticity/autoscaling, reliability/fault-tolerance, ...

2. Utilization-based billing: a billing model that only charges for the resources actually
used both with respect to time and space, for example, for Function-as-a-Service (FaaS)
this translates into “pay only for function execution (space dimension) in fine-granular
time units (time dimension)”.

Based on this, we formulate the following definition of serverless computing:

Definition: Serverless computing is a cloud computing paradigm offering a high-level
application programming model that allows one to develop and deploy cloud applications
without allocating and managing virtualized servers and resources or being concerned about
other operational aspects. The responsibility for operational aspects, such as fault tolerance
or the elastic scaling of computing, storage, and communication resources to match varying
application demands, is offloaded to the cloud provider. Providers apply utilization-based
billing: they charge cloud users in proportion to the resources that applications actually
consume from the cloud infrastructure, such as computing time, memory, and storage
space.

Today, Function-as-a-Service (FaaS) platforms are the most prominent example of server-
less computing offerings. Current FaaS platforms focus on the function as a unit of com-
putation assumed to be small, stateless, and event-driven (i.e., executed asynchronously
in response to certain triggers or events). The short runtime and stateless nature of FaaS
functions makes it easier for FaaS cloud providers to implement autoscaling in a generic
manner, while applying a fine-granular utilization-based cost model that bills customers
based on the actual time functions are running. Given its popularity and rapid adoption,
today FaaS is often used interchangeably with serverless computing.

We believe that the current assumptions of the FaaS model (small, stateless, and event-
driven units of computation) might eventually be relaxed, as platforms evolve to support
a wider set of applications. In addition to FaaS platforms, our broad notion of serverless
computing also explicitly includes modern Backend-as-a-Service (BaaS) offerings, which are
focused on specialized cloud application components, such as object storage, databases, or
messaging. Finally, some Software-as-a-Service (SaaS) platforms support the execution of
user-provided functions tightly coupled to the specific application domain. In summary, the
serverless ecosystem includes a growing set of technologies and evolving programming models
(e.g., FaaS, BaaS, some PaaS and SaaS), which, taken together, will provide the basis for
building (end-to-end) next-generation serverless cloud applications.
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