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Preface

The Schloss Dagstuhl seminars on Scientific Visualization provide a dynamic setting for
ongoing and future research in visualization. Numerous contributions in this active field
originated at Schloss Dagstuhl, and were extended to large-scale collaborative research and
high-impact works. This volume of the Dagstuhl Follow-Ups series contains the proceedings
from two seminars in 2005 and 2007, as well as updated papers on topics related to talks
from the 2007 seminar. Many of these works represent updated research and results on the
topics that were initiated in the 2005 and 2007 seminars.1

Scientific Visualization (SV) is concerned with the use of computer-generated images
to aid the understanding, analysis and manipulation of data. Since its beginning in the
early 90’s, the techniques of SV have aided scientists, engineers, medical practitioneers, and
others in the study of a wide variety of data sets including, for example, high performance
computing simulations, measured data from scanners (CAT, MR, confocal microscopy ),
internet traffic, and financial records. Somewhat as a result of these past successes, matters
are changing for research in SV. The data sets are becoming massive in size, complex and
multi-dimensional in nature and the goals and objectives of the visualization much less
precisely defined, but yet the results are needed with higher urgency and importance. The
multi-resolution and hierarchical methods of today do not scale to these new data sets. The
segmentation and knowledge extraction methods of today need to be completely revamped
in order to be useful. Because of the changes that are taking place in SV, it was and is
important that a group of senior researchers meet with select junior researchers to map out
the future research agenda for this critical area.

One of the important themes being nurtured under the aegis of Scientific Visualization
is the utilization of the broad bandwidth of the human sensory system in steering and
interpreting complex processes and simulations involving voluminous data sets across diverse
scientific disciplines. Since vision dominates our sensory input, strong efforts have been
made to bring the mathematical abstraction and modeling to our eyes through the mediation
of computer graphics. This interplay between various application areas and their specific
problem solving visualization techniques was emphasized in the seminars.

Reflecting the heterogenous structure of Scientific Visualization, the selected papers of
this Dagstuhl Follow-Ups volume focus on the following topics:

Visual Analytics: The fields of information analysis and visualization are rapidly
merging to create a new approach to extracting meaning from massive, complex, evolving
data sources and stream. Visual analytics is the science of analytical reasoning facilitated
by interactive, visual interfaces. The goal of visual analytics is to obtain insight into
massive, dynamic and often conflicting pieces and formats of information; to detect the
expected and to discover the unexpected; and to yield timely assessments with evidence
and confidence levels.
Quality Measures: It is vital for the visualization field to establish quality metrics. An
intrinsic quality metric will tremendously simplify the development and evaluation of

1 See http://www.dagstuhl.de/05231 and http://www.dagstuhl.de/07291 for details on the corres-
ponding Dagstuhl Seminars.
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x Preface

various algorithms. The establishment of quality metrics will also advance the acceptance
and use of visualization in industrial and medical applications.
Ubiquitous Visualization: As ubiquitous computing is getting increased attention, also
visual display of everywhere available data is necessary. Challenges include: heterogeneous
output devices, novel interaction metaphors, network bandwidth (availability, reliability),
graceful degradation of algorithms with respect to largely varying resources, in vivo
visualization (real time, no pre-processing, robust).
Multifield and Multiscale Visualization: The output of the majority of computa-
tional science and engineering simulations is typically a combination of fields, so called
multifield data, involving a number of scalar fields, vector fields, or tensor fields. Similarly,
data collected experimentally is often multifield in nature (and from multiple sources). The
ability to effectively visualize multiple fields simultaneously, for both computational and
experimental data, can greatly enhance scientific analysis and understanding. Multiscale
problems with scale differences of several orders of magnitude in CFD, nanotechnology,
biomedical engineering and proteomics pose challenging problems for data analysis. The
state of the art in multiscale visualization considerably lags behind that of multiscale
simulation. Novel solutions to multiscale and multifield visualization problems have the
potential for a large impact on scientific endeavors.
Categorical Visualization: Information and knowledge is extremely difficult to extract
from multi-valued, multi-dimensional, multi-modal and multi-layered categorical data.
These data sets abound today and the pay-offs for understanding them are substantial.
Mathematical techniques based upon functional relationships break down requiring
completely new paradigms to visualize these types of data sets.
Intelligent/Automatic Visualization: Ever-increasing data sizes require semi-auto-
matic methods that concentrate on the typically very small portion of the relevant
information in the data. Techniques include model- and knowledge-based segmentation,
classification in abstract feature spaces, computation of saliency information from derived
data characteristics, automatic detection of important isosurfaces, automatic creation
of expressive transfer functions, automatic landmark selection and automatic path and
navigation guidance.
Point-based/Mesh-free Visualization: A typical strategy to visualize unorganized
multidimensional data sets is to transform the data into standard geometric primitives
of triangles and triangular mesh surfaces prior to rendering. This intermediate step is
time consuming, but necessary to map the data set to standard (hardware and software)
graphics primitives. With the recent advances in point-based rendering, new efficient
and creative approach for visualizing scattered and unorganized data sets are potentially
possible.

Hans Hagen



Generalized Hyper-cylinders: a Mechanism for
Modeling and Visualizing N-D Objects
Matthew O. Ward1 and Zhenyu Guo1

1 Computer Science Department, Worcester Polytechnic Institute
100 Institute Rd., Worcester, MA 01609 USA
{matt,zyguo}@cs.wpi.edu

Abstract
The display of surfaces and solids has usually been restricted to the domain of scientific visual-
ization; however, little work has been done on the visualization of surfaces and solids of dimen-
sionality higher than three or four. Indeed, most high-dimensional visualization focuses on the
display of data points. However, the ability to effectively model and visualize higher dimensional
objects such as clusters and patterns would be quite useful in studying their shapes, relation-
ships, and changes over time. In this paper we describe a method for the description, extraction,
and visualization of N-dimensional surfaces and solids. The approach is to extend generalized
cylinders, an object representation used in geometric modeling and computer vision, to arbitrary
dimensionality, resulting in what we term Generalized Hyper-cylinders (GHCs). A basic GHC
consists of two N-dimensional hyper-spheres connected by a hyper-cylinder whose shape at any
point along the cylinder is determined by interpolating between the endpoint shapes. More com-
plex GHCs involve alternate cross-section shapes and curved spines connecting the ends. Several
algorithms for constructing or extracting GHCs from multivariate data sets are proposed. Once
extracted, the GHCs can be visualized using a variety of projection techniques and methods to
convey cross-section shapes.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases N-Dimensional Visualization, Cluster Visualization

Digital Object Identifier 10.4230/DFU.SciViz.2010.1

1 Introduction

Visualization has been identified as a critical component to the process of interactive
exploration and mining of large data repositories. The essential problems that need to
be addressed when developing tools for interactive visual data analysis include:

How to structure and process the data into a format and size that is manageable within
the visualization environment, yet retains most, if not all the significant information
content of the original data;
How to best display information on the screen so as to provide users with useful insights
into their data given the constraints of visual perception, screen resolution, and processing
speed; and
How to provide users the ability to effectively interact with the visualization to extract
meaning from the data.

The field of data visualization can be roughly divided into two distinct subfields. Scientific
visualization concentrates predominantly on the display of one, two, or three-dimensional
spatial/physical data, while information visualization generally assumes data sets of arbitrary

© M.O. Ward and Z. Guo;
licensed under Creative Commons License NC-ND
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2 Generalized Hyper-cylinders

dimensionality, usually without a spatial attribute but often with one or more relations
defined between data items.

The display of surfaces and solids has usually been restricted to the domain of scientific
visualization; however, little work has been done on the visualization of surfaces and solids of
dimensionality higher than three. The primary focus in most high-dimensional visualization
has been on the display of data points, rather than surfaces and solids. However, the ability to
effectively visualize higher dimensional objects, whether defined analytically or derived from
data samples, would be quite useful in studying the shapes and relationships of these so-called
hyper-objects. For example, the richness of the description of a cluster of N-dimensional
data points could be greatly enhanced beyond commonly used methods, which often just
consist of the cluster center along with the hyper-box or hyper-ellipsoid encapsulating the
data. Likewise, descriptions of differences or changes in these clusters over time would benefit
from richer representations.

The focus of this paper is to describe a novel method for the description, extraction,
visualization, and interactive exploration of N-dimensional surfaces and solids. The general
concept is to extend generalized cylinders [8, 9], an object representation regularly used in
geometric modeling and computer vision, to arbitrary dimensionality, resulting in what we
term Generalized Hyper-cylinders (GHCs). In its simplest form, a GHC consists of two
N-dimensional hyper-spheres connected by a hyper-cylinder (spine) whose shape at any point
along the cylinder is determined by interpolating between the shapes of the endpoints. A
broader class of GHCs can be defined by using alternate cross-section shapes as well as curved
spines. We describe several algorithms for extracting GHCs from large multivariate data sets,
with user-controllable parameters to adjust the accuracy at which the GHCs approximate
the real data. Once extracted, the GHCs can be visualized in 2-D or 3-D using a variety of
techniques, such as projecting the endpoints into the display space using PCA or MDS. A
variety of object types to represent the shape of the GHC are being explored and evaluated.
Finally, a suite of tools is being implemented for interactively exploring data displayed with
GHCs, including operations for navigation, selection, filtering, and distortion.

This paper is organized as follows. Section 2 describes the work of others in visualizing
N-dimensional points and objects. Section 3 defines generalized cylinders and their extension
to generalized hyper-cylinders. Section 4 describes methods for visualizing GHCs, while
Section 5 focuses on methods to extract GHCs from datasets via manual, semi-automated,
and fully automated techniques. We conclude in Section 6 with a summary and a list of
potential future research directions.

2 Related Work

Multivariate data can be found in most, if not all, disciplines of study, and a wide range of
techniques have been developed for the visualization of such data. Popular techniques include
scatterplot matrices, projected point methods [1], parallel coordinates [2, 13], and tabular
views [7]. Other techniques that have been proposed include glyphs [12], pixel-oriented
techniques [3], and dimensional stacking [5]. While these are useful for examining individual
data records, they are less effective at providing a high-level description of the entire dataset
or selected subsets of the data.

For example, if one were interested in describing the shape of a cluster in a 5-dimensional
dataset, what techniques would be applicable? Most cluster descriptions in common use
consist of a small number of attributes, such as the location of the cluster center, its
population, and perhaps its dominant axis. Others represent a cluster by a representative
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Figure 1 Two hyper-boxes in Parallel Coordinates. Two clusters have been isolated based on
the second dimension. The brown and grey regions indicate the surrounding hyper-boxes for the
clusters. Image generated with XmdvTool [6, 11].

Figure 2 The same clusters in Scatterplot Matrices. Image generated with XmdvTool.

sampling of the data points contained in it. However, this is not a good representation for
tasks such as comparing cluster shapes.

A simple approach to representing and visualizing N-dimensional clusters is to use the
axis-aligned hyper-box that contains the points of the cluster. For example, in Figures 1 and
2, two clusters of points have been selected in the parallel coordinates and scatterplot matrix
displays, respectively [6, 11]. The shaded regions indicate the extents in each dimension that
contain the selected points (yellow points in the brown region, red points in the blue region).
As can be seen, these regions overlap, so the user can only see the full extents of one of the
clusters. Clearly an axis-aligned hyper-box is not a very accurate description of a cluster’s
shape.

Another approach is to decompose the N-dimensional space into a (potentially large)
number of N-dimensional blocks or subspaces and represent the cluster as the set of subspaces
that contain at least one data point. This is akin to the spatial enumeration technique for
3-D solid modeling [8], where a 3-D volume is represented by an array of volume elements

Chapte r 1



4 Generalized Hyper-cylinders

Figure 3 Spatial enumeration with dimensional stacking. Each bin represents a hyper-box in N
dimensions. Those in red represent an isolated cluster [5, 4].

(voxels). One way to visualize this hyper-volume is with dimensional stacking [5, 4], where
each dimension is divided into a small number of bins and the display space is recursively
partitioned using pairs of dimensions. Figure 3 shows an example of a 5-dimensional dataset
with one cluster (red) isolated. While separated in display space, the red bins are contiguous
in N dimensions. The dark and light grid lines show the first two levels of nesting. Each
dimension has four bins. This representation is not very compact, and in order to increase
the accuracy of the representation the number of bins per dimension must be high. Also,
for high dimensional data the number of occupied bins tends to be very small (the curse of
dimensionality).

A method that is more accurate than hyper-boxes and more efficient than dimensional
stacking is the H-BLOB method as described by Sprenger et al. [10]. They represent clusters
via hierarchically nested hyper-spheres, which are then projected to three dimensions and
visualized using implicit surfaces (see Figure 4). This generates a closed, smooth surface
around each cluster, and thus provides a rich description of the shape. H-BLOBs have some
similarities to GHCs; however, it would take a potentially large number of hyper-spheres to
represent a shape that can be captured with a single hyper-cylinder, and we feel there are
many shape features that can be derived from GHCs that would be difficult to extract with
the H-BLOB representation.

3 Generalized Cylinders and Hyper-cylinders

Hyper-boxes and hyper-spheres are relatively coarse primitives to use in modeling shapes,
especially those defined by groups of scattered points. In each case, there can be a significant
amount of space within the model where there are no data points. In 3-D, a tapered cylinder
can often come closer to encapsulating the points in a cloud, as the endpoints and radius can
be adjusted to better fit the data. In geometric modeling and computer vision, this approach
is known as generalized cylinders (GC) [9], which can be used to model axis-symmetric
objects or object parts. A GC consists of two endpoints, a spine (straight or curved), and a
cross-section (often a circle or ellipse). Many variants on GCs have been proposed over the
years, including the use of non-convex cross-sections and varying the cross-section shape or
size as one moves from one endpoint to the other. A wide range of complex object shapes
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Figure 4 Implicit surfaces generated as hyper-spheres in N dimensions and projected to three
dimensions. Image from [10] (used with permission).

can be represented using a small set of GCs. While GCs have been widely used in 2-D and
3-D, to the best of our knowledge, they have not been extended to higher dimensions.

In fact, it is not hard to imagine this extension, which we call a generalized hyper-cylinder
(GHC). It is clear one can define two N-dimensional endpoints, along with a straight or curved
spine connecting them. The shape of the cross-section, however, is not so straightforward.
In the simplest form, we can use an (N-1)-dimensional hyper-sphere orthogonal to the spine,
with either a constant or variable radius as one moves along the spine. This would result
in hyper-planes at the ends of the GHC. Another alternative is to use an N-dimensional
hyper-sphere at each end, similar to H-BLOBs, with an interpolated radius along the spine.
As with GCs, we can also use ellipses for the cross-section shape. This can allow the GHC
to fit a given dataset with increased accuracy. Finally, while it might be possible to use an
arbitrary (N-1)-dimensional shape as a cross-section (e.g., represented as a GHC with one
less dimension), we feel the resulting complexity would make interpretation, rendering, and
analysis difficult.

4 Visualizing GHCs

There are many ways one could consider to render a set of GHCs; indeed. most multivariate
data visualization techniques could be extended to convey the endpoints, spines, and cross-
sections. As our initial attempt, we focused on GHCs with a straight spine and a hyper-sphere
cross-section. For M GHCs we draw M 2-D scatterplots, each aligned with a particular
GHC. Each GHC is represented as a trapezoid, where the width of the top and bottom are
proportional to the radii at the two endpoints and the length of the trapezoid is proportional
to the N-D distance between the endpoints. The endpoints are connected to represent the
spine. All other GHCs in a given view are drawn relative to the focus GHC.

In the following, we describe how to generate a 2-D scatterplot to represent and visualize
a hyper-cylinder. For each data point, we project it onto a scatterplot view by calculating the
x and y coordinates relative to the two endpoints and the spine. Assume the two endpoints
are A1 and A2, respectively, in N-dimensional space and Am is the middle point of A1A2.
For any data point Bi, it can be projected onto the spine A1A2. Assume the projection point
is Bp, i.e., Bp is on A1A2 and BiBp is perpendicular to A1A2. The point Bp is calculated as

Chapte r 1



6 Generalized Hyper-cylinders

Figure 5 The perspec-
tive scatterplot view before
rotating.

Figure 6 The perspec-
tive scatterplot view after
rotating 1/3π.

Figure 7 The perspec-
tive scatterplot view after
rotating 2/3π.

follows:

Bp = A1 + (Bi −A1) · (A2 −A1)
||A2 −A1||

A2 −A1

||A2 −A1||
The value of the y coordinate is the distance between Am and Bp. If Bp is nearer A2, the

value is positive; if Bp is nearer A1, the value is negative. The value of the x coordinate is
computed as ||Bi −Bp||cosθ, where ||Bi −Bp|| is the Euclidean distance from the data point
and its projection point, and θ is the angle between vector Bi − Bp and any fixed vector
that is orthogonal to A1A2, say T − Tp (T is any point in N-dimensional space and Tp is the
projection point as described before):

θ = arccos( (O −Op) · (T − Tp)
||O −Op||||T − Tp||

)

Thus the x coordinate is the rotated distance from a data point to the spine which
simulates a perspective view effect. When interactively increasing or decreasing all the
angles by an offset, analysts are able to simulate viewing the hyper-cylinder from different
orientations, i.e. by rotating the hyper-cylinder around the spine. Figures 5 to 7 show
an example of the different perspective views from different orientations when viewing a
hyper-cylinder in a three dimensional space. Point T is selected as the first data point of the
dataset.

To visualize multiple GHCs in a single scatterplot view, we map the two endpoints of
each non-focus GHC and connect them to represent the spine. We draw two perpendicular
lines whose lengths are proportional to the two radii and connect the four corners (the end
of the two perpendicular lines) to get a trapezoid. We fill the trapezoids with different colors
to denote different GHCs.

Figure 8 shows a set of three GHCs for a 4-dimensional dataset. Each view is centered
on one GHC (outlined), while the others are shown as filled colored trapezoids. The view
with the red boundary indicates the GHC that is currently being edited (the focus GHC).
The first GHC contains all of the data points; the amount of empty space indicates that this
GHC does not fit the dataset accurately. The second and the third GHCs contain the two
clusters, which are more accurate than the first GHC as they have smaller radii and shorter
spine lengths. It is very easy to discover how well the data points fit the cluster and examine
outliers that do not fit well in either GHC.

This representation is simple, yet flexible. Curved spines can easily be accommodated, as
can cross-sections that change in a non-linear way. There are also many possible variations
on this simple view, including:
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Figure 8 Visual representation of a set of GHCs .

Placing endpoints, as well as intermediate axis points for curved spines, using dimension-
ality reduction techniques such as PCA and MDS.
Rendering in 3-D, which can reduce the amount of occlusion.
Using colored stripes to represent how each dimension is changing along the length of the
spine.
Extruding a 2-D star glyph along a 3-D spine, where the length of each branch of the
star conveys the dimension size (for hyper-ellipsoidal cross-section).

We are experimenting with these and other variations for visualizing GHCs.

5 Extracting GHCs from Data

One of the biggest challenges with GHCs is deriving them from data, as a given dataset
could be represented with varying degrees of accuracy, leading to varying numbers and
shapes of GHCs. We can categorize potential approaches as either manual, automated, or
semi-automated. In the manual case, the user defines the endpoints for each GHC as well as
the cross-section size and shape. Data that fall within these specifications are assigned to the
GHC being constructed. By coloring the points as they get covered by the GHC, the user
can interactively adjust the position, shape, and orientation of the GHC to best fit the data.
In this case, it is up to the user to decide when multiple GHCs are needed. Figure 9 shows
such an interface for manual GHC specification. A subset of 5 dimensions are selected in
the parallel coordinates view, and the endpoints of the GHC are specified in the scatterplot
matrix view. In the projected view the user can adjust the radii of the GHC at each end.

In a semi-automatic approach, the user might specify pairs of endpoints and allow the
system to compute the best cross-section size and shape to use. It would also be possible to
automate the fitting of a curved spine, based on the distribution of points. Again, it would
be up to the user to indicate how many GHCs should be used and approximately where they
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Figure 9 Interactive creation of GHCs to represent a dataset.

are located. Automated techniques could also be used to refine the endpoint location using a
localized search.

A fully automatic method could start with a clustering of the data. It would then be
assumed that each cluster could be represented by a single curved GHC or a set of connected
linear GHCs. Starting with the extreme points of a cluster, the spine could be initialized to
the straight line connecting the endpoints. Each point in the cluster would then be projected
to this line to ascertain if any gaps exist that should result in the division of the cluster into
multiple GHCs. Assuming no gaps exist, the distances and directions to each cluster point
from the spine could be used to bend the spine towards the center of the data that project
to that neighborhood of the spine. One challenge would be to identify where forks and joins
must occur, e.g., when few points are close to the spine and there are two or more groups of
points that share an approximate direction from the spine. One problem with this approach
is that the initial choice of endpoints is critical; it is important to not choose outliers, and
rather choose points that represent the dominant axis of the cluster.

We are studying ways to enhance our manual GHC creation tool as well as exploring
algorithmic alternatives to some or all of the stages of extraction and refinement.

6 Summary and Conclusions

In this paper we have introduced a new method for approximately describing objects of
dimensionality greater than three. By extending the notion of Generalized Cylinders from
3-D to N-D we can describe clusters and other patterns in multivariate datasets in a compact,
yet descriptive form. GHCs can be useful for not only compressing a dataset, but also for
comparing multiple datasets for change analysis and in specifying queries on data.

There are many unsolved problems and avenues for research in the definition, extraction,
and use of GHCs. While space limitations prohibit us from going into detail here, a partial
list of such topics includes:

What forms of interaction should be available to create and explore GHCs? These might
include navigation in data space, feature space, or display space, drill-down and roll-up to
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get more or less detail on demand, and distortions such as bending, moving, and scaling
to see objects more clearly without losing context.
Are there other shapes that would capture the shape more accurately or that would be
easier to extract with comparable shape accuracy?
What error measures could be used?
What object configurations would not be suitable for GHCs?

It is anticipated that a wide range of disciplines will benefit from this research, including
bioinformatics, computational modeling, telecommunications, health care, and other scientific
and industrial domains where the analysis of high dimensional data and models is important.
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Abstract
Many visual representations for trees have been developed in information and software visualiza-
tion. One of them are cone trees, a well-known three-dimensional representation for trees. This
paper is based on an approach for constructing cone trees bottom-up. For this approach, an
optimal layout for these trees is given together with a proof that based on the assumptions, there
can be no better layouts. This comprises special cases, an optimal constant for the general case,
and a post-processing step improving the layout.
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1 Introduction

Cone trees are a well-known three-dimensional representation for trees. Based on the original
work by Robertson et al. in 1991 [4], several different methods for the computation of the
layout have been proposed. While the original approach implemented a top-down approach,
in [1] a bottom-up approach was chosen to layout the cone tree. Unfortunately, some details of
the algorithm were not published. A compensation factor for the computation was motivated
and introduced, but its value or computation has not been given explicitely.

In this paper, we build upon this work. We show how special cases can be computed and
prove a tight bound for the compensation factor of the general case.

The paper is structured as follows. In Section 2, we review the ideas of [4], [1], and
other related work. In Section 3, the general setting and the assumptions for the layout are
described. In Section 4, the special cases are introduced, while in Section 5 the general case
is described. There, a tight bound for the compensation factor needed is proven. Further, an
optimization step is introduced in this Section, too. Finally, in Section 6, open problems are
given before we conclude this paper.

2 Related Work

This work is based on [4], [1], and [3]. Cone trees were first introduced in [4] (see Section 2.1).
Based on this work, a different approach for constructing cone trees was proposed in [1] (see
Section 2.2). In [3], reconfigurable disk trees were proposed as an enhancement to cone trees
(see Section 2.3).
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12 Computing an Optimal Layout for Cone Trees

Figure 1 Counterexample.

2.1 Cone Trees
Cone trees were first presented by Robertson et al. in 1991 [4]. They are very well suited to
layout trees with a large number of children. Based on the available screen size, the layout is
produced in a top-down manner. Details are given in Section 3.

An evaluation of cone trees was performed by Cockburn and McKenzie in 2000 [2]. They
found that for certain tasks, the participants were significantly slower than when using a
2D tree interface. Possible reasons for the bad performance of cone trees mentioned in their
study comprise less familiarity with cone trees and a comparatively crude 3D interface.

2.2 Beyond Cone Trees
In [1], a different approach was chosen to layout the cone tree. The computation of the
respective cones is done bottom-up. Our approach is based on this work. The details are
given in Sections 3 and 5.1.

2.3 Reconfigurable Disk Trees
In [3], so-called RDTs (Reconfigurable Disk Trees) are presented. They define a reference
point and an apex point together with apex height, reference height, and reference length.
These additional parameters allow different cone shapes and layouts. Additionally, they
provide an evaluation of the node density.

In the implementation, explicit values are given for the compensation factor introduced
in [1]. Unfortunately, there are special cases where this computation will result in overlaps.
One of these cases is depicted in Figure 1.

Consider four children with the radius 1. Moving them together as closely as possible
leads to a square with edge length 2. Considering the triangle depicted in Figure 1, the
radius is the largest edge of a triangle with a right angle and the smaller edges being 1 unit
long. Thus, rc can be computed as

rc =
√

12 + 12 =
√

2 > 1.414

This is the minimal radius.
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According to [3], the radius will be computed as follows:

inner_sum = 2 ·
∑
k

out_radk

= 2 · (1 + 1 + 1 + 1)
= 8

max_child_radius = max
k
{out_radk}

= max(1, 1, 1, 1)
= 1.

It follows that

inner_sum = 8 > 2 · π · 1 = 2 · π ·max_child_radius.

Thus, the radius will be approximated as

rad = inner_sum
2 · π = 8

2 · π < 1.28.

Thus, rad < rc, which leads to overlapping circles for this case.

3 General Setting

Cone trees are essentially built as follows. The root of the tree is placed on top. All children
of a node are placed at a fixed distance below this node forming a circle. If the node is
projected onto the plane of this circle, it will be projected onto the center of the circle
(see also Figure 2). In Figure 3, one cone of a tree is shown. The parent node (yellow) is
connected to its children using a transparent cone.

The approach chosen in [4] takes a fixed 3D space and fits the cone tree into this space.
The height is divided by the depth of the tree giving the height of each cone. The radius of
each circle is progressively reduced from top to bottom. The disadvantage of this approach is
that the size of the children will have to be adapted to the size of the circle. For large trees,
the circles containing the leaf nodes will be either very small or will not be visible at all.

Another approach was taken in [1]. There, a bottom-up approach was chosen. Each leaf
element of the tree has a bounding circle. This circle gives the size of the leaf element. All
leaf elements are arranged in a circle such that they do not overlap. The bounding circle of
all elements arranged in the bottom circle of the cone gives the size of the cone. The whole
cone, leaves plus parent node, is placed in the bottom circle of the next cone one level higher.

Here, we describe the adaptation of the ideas presented in [1]. We describe the construction
of one cone. In Figure 2, a 2D view of the circle at the base of the cone is given. The radii
of the bounding circles of the children determine the radius of the circle of this cone. In
Figure 3, a 3D view is given. The parent node is placed at the top of the cone. All cone
elements and variables are described next.

Given are a parent node Np of the cone and its n child nodes N1 . . . Nn. The size of each
node is given by its radius rp, r1, . . . , rn. The cone is described by the radius rc of the circle
at its base and its height hc. Further, the radius rb of the bounding circle of the children is
needed. In the Table 1, these entities are summarized.

Currently, the height of the cone is always set to a predefined constant value hc = const.

Chapte r 2
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Figure 2 Construction of one cone element: 2D view.

Figure 3 Construction of one cone element: 3D view.
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Table 1 Abbreviations.

Abbreviation Element

N Node
S Shape representing a node
R Radius
H Height
ϕ Angle between two child nodes
C Circumference
p subscript Parent node
1 . . . n subscript Child node number 1 . . . n
c subscript Cone
b subscript Boundary
G subscript Glyph representing a node

4 Special Cases

4.1 No Children
If there are no children, then the radius and the bounding radius of the cone are set to the
bounding radius of the glyph rG representing the parent node Np of the cone:

rc = rb = rG.

4.2 One Child Node
If the number of child nodes is n = 1, then the child node is positioned directly below the
parent node. Placing a child at a certain position either means placing a leaf at this position
or placing the parent node of the cone representing the subtree at this position. See Figure 4
for a depiction of this situation.

The bounding radius of the cone is set to the maximum of the radius of the cone and the
bounding radius rG of the glyph representing the parent node Np of the cone:

rb = max(rG, rc).

4.3 Two Child Nodes
If the number of children is n = 2, then an optimal radius and an optimal bounding radius
can be computed (see Figure 5).

The cone can be computed as

rc = r1 + r2

2
rb = rc + max(r1, r2)
ϕ1 = 0◦

ϕ2 = 180◦.

The position of the first child is at an angle of ϕ1 = 0◦ and at a distance of rc from the
center of the circle. The position of the second child is at an angle of ϕ2 = 180◦ and at a
distance of rc from the center of the circle.

Chapte r 2
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Figure 4 One child node.

Figure 5 Two child nodes
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Remark: If the radii are different, then the bounding circle is not the smallest bounding
circle containing both children. Its radius is

|r1 − r2|
2

larger. One possible optimization would be to use the radius

r′b = r1 + r2.

Then, the parent node has to be put at the position between the two child nodes that is the
center of the bounding circle. But then the cone would no longer be a right circular cone but
an oblique cone.

4.4 Three Child Nodes
If the number of children n = 3, then an optimal radius and an optimal bounding radius
can be computed, too. Let r1, r2, r3 be the radii of the children, such that without loss of
generality r1 ≥ r2 ≥ r3. Let A, B, C be the corners of a triangle with the edges of that
triangle being

a = r1 + r2

b = r1 + r3

c = r2 + r3.

That is, A is the center of the child having radius r3, B is the center of the child having
radius r2, and C is the center of the child having radius r1.

A triangle is acute if it satisfies the following set of inequalities:

a2 + b2 > c2

b2 + c2 > a2

c2 + a2 > b2.

If the triangle is acute, then the circumcenter of the triangle lies inside the triangle. Otherwise,
it lies outside. If the circumcenter lies inside the triangle, then the children can be positioned
on the circumcircle (see Figure 6). In this case, the order of the radii is not important. Let
A denote the first child N1, B denote the second child N2, and C denote the third child N3.
The following equations can be used to compute the radius of the circumcircle and the angles
of the child positions:

β = arccos a
2 + c2 − b2

2 · a · c

rc = b

2 · sin β
ϕ1 = 0◦

ϕ2 = arccos r
2
c + r2

c − b2

2 · rc · rc

= arccos 2 · r2
c − b2

2 · r2
c

ϕ3 = arccos r
2
c + r2

c − c2

2 · rc · rc

= arccos 2 · r2
c − c2

2 · r2
c

.
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Figure 6 Three child nodes forming an acute triangle: Computation.

Figure 7 Three child nodes forming a non-acute triangle: Moving the circumcenter on the triangle
edge.

If the circumcenter of the triangle lies outside the triangle, we get the situation depicted
in Figure 7.

Consider the triangle 4UMB where U denotes the circumcenter of the triangle and M
the midpoint of the edge BC. As U lies on the perpendicular bisector of BC, the triangle has
a right angle at the corner M . Therefore, |MB| < |UB|. Thus, using M as center and |MB|
as the radius of the cone’s circle results in a smaller circle. This smallest circle containing all
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Figure 8 Three child nodes forming a non-acute triangle: Computation.

children can be constructed as follows (see also Figure 8):

rc = a

2
rb = rc + r1

ϕ1 = 0◦

ϕ2 = 180◦

ϕ3 = arccos x
2 + r2

c − c2

2 · x · rc

with

cosβ = a2 + c2 − b2

2 · a · c
x2 = c2 + r2

c − 2 · c · rc · cosβ

= c2 + r2
c −

rc · (a2 + c2 − b2)
a

.

In this case, the smallest child with its center A will be moved away from M along a
line through M and A (see Figure 9). With respect to the closeness of the children, the
circumcircle would be the better solution. But then the radius would be larger.

4.5 Equally Sized Child Nodes

Another special case that can be easily computed is all children having equal size, that is

∀i : ri = r.

Then, the children can be placed at the vertices of an equilateral polygon (see Figure 10).
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Figure 9 Moving A onto the circle.

Figure 10 Circumcircle of an equilateral polygon.

The radius of the cone can be computed directly using the following equations:

r

sinϕ = rc
sin 90◦

ϕ = 2 · π
2 · n

= π

n
⇓

rc = r

sin π
n

.
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Remark: A comparison with the approximation given in Section 5.2 yields:

r′c =
2 ·

∑n
i=1 ri

2 · π · π2 = n · r
2

r′′c = r

sin π
n

⇓
r′c
r′′c

=
n·r
2
r

sin π
2

=
n · r · sin π

2
2 · r =

n · sin π
2

2

⇓

lim
n→∞

r′c
r′′c

= lim
n→∞

n · sin π
2

2 = π

2 .

This corresponds to the approximation of a circle through an equilateral polygon. Finally, in
the limit the circumference of the polygon is equal to the circumference of the circle and
thus the error is equal to the compensation factor introduced. On the other hand, for n = 2,
the quotient is equal to 1 and thus the compensation factor is needed.

5 General Case

The general case allows computing only an approximation of the cone. First, the construction
of the circle is given in Section 5.1. In order to compute the radius, a compensation factor
is used. A tight bound of this compensation factor is motivated and proven in Section
5.2. Finally, it is possible to improve the construction with a post-processing step. This
optimization is presented in Section 5.3.

5.1 Introduction
In case a parent node has more than three children, n > 3, an exact computation of the
inner circle is no longer possible, except for special cases. One special case would be that
all children have the same bounding radius (see Section 4.5). In general, the cone and the
positions of the children can be computed as follows (see also Figure 11 and [1]).

The circumference of the cone’s base circle can be approximated as

c̃c=̃2 ·
n∑
i=1

ri.

An approximation of the radius of the cone’s base circle can then be computed as

r̃c = c̃c
2 · π .

The radius used for the cone’s base circle is obtained by multiplying the approximated
radius by a compensation factor f

rc = r̃c · f.

If the number of children is small or if there is a large difference between the radii
of the smallest and the largest child, then the circumference will be underestimated. The
compensation factor f was motivated and introduced in [1], but no formula for its computation
has been given. The special cases for less than four children, n < 4, have already been
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Figure 11 Cone with more than three children.

addressed in Section 4. Here, the maximal error between approximated and minimal
circumference needed is computed. It is given by the following equation (see Section 5.2):

ε = cc
c̃c
≤ π

2 .

Therefore, choosing

f = π

2 .

as compensation factor is sufficient.
The radius of the bounding circle is computed using the following equation:

rb = rc + max
i=1...n

{ri}.

Each child is positioned at distance rc from the center of the cone’s circle. The first child
is always positioned at ϕ1 = 0◦. The angle ϕi between two children Ni and Ni−1, i > 1 is
computed as

ϕi = ri−1 + ri
rc

.

Hence, the children Ni, i > 1 are positioned at

ϕi =
i∑

j=1
ϕj .
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Figure 12 Identification of π as bound of the compensation factor; line-up of the children.

Figure 13 Explanation of π as bound of the compensation factor; moving children onto the
boundary.

5.2 Computation of the Compensation Factor

The compensation factor needed in the previous section can be estimated as follows. First of
all, we consider the situation depicted in Figure 12. All children are lined up yielding the
diameter d of a circle

d = 2 ·
n∑
i=1

ri.

Now, the children can be moved perpendicular to the line from the line onto the boundary
of the circle (see Figure 13). That is, all children can be placed on a circle having radius rc
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and circumference cc, such that

rc = d

2 =
n∑
i=1

ri

cc = 2 · π · rc = 2 · π ·
n∑
i=1

ri.

The quotient between the chosen circumference cc and the estimated circumference c̃c is

cc
c̃c

=
2 · π ·

∑n
i=1 ri

2 ·
∑n
i=1 ri

= π.

As can be seen from Figure 13, only one half of the circle is used for placing the children.
Thus, the compensation factor is much too large. The conjecture is that using

f = π

2

as compensation factor would be sufficient.
Consider the following inequalities:

cc
c̃c
≤ π

2 ⇔ 2 · π · rc
2 ·

∑n
i=1 ri

≤ π

2

⇔ 2 · π · rc ≤
π

2 · 2 ·
n∑
i=1

ri

⇔ 4 · rc ≤ 2 ·
n∑
i=1

ri.

In order to show the latter relation, consider the following situations. All children are
arranged such that the centers of their bounding circles form a convex polygon. The distance
between two children is the sum of their radii. Compute a minimal bounding circle around
this convex polygon. Please note that this construction can always be performed. Then,
there are two possible situations:
1. Exactly two vertices of the convex polygon are lying on the border of the minimal

bounding circle (see Figure 14).
2. Three or more vertices of the convex polygon are lying on the border of the minimal

bounding circle (see Figure 15).

If no or only one vertex lies on the border of the circle, then the circle would not be
minimal.

Considering the first case, if exactly two vertices of the convex polygon are lying on
the border of the bounding circle, then the distance between these vertices is equal to the
diameter of the circle. Otherwise, the bounding circle would not be minimal.

Let A and B be the vertices lying on the minimal bounding circle. Then, we get

rc = |AB|2

and the above equation is certainly fulfilled:

4 · rc = 4 · |AB|2 = 2 · |AB| ≤ 2 ·
n∑
i=1

ri.
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Figure 14 Explanation of the compensation factor: first case.

Figure 15 Explanation of the compensation factor: second case.
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Figure 16 Explanation of the compensation factor: second case.

This holds because the path from A to B using lines of the polygon is certainly longer than
the direct path between A and B (triangle inequality).

If three or more vertices are lying on the boundary of the minimal bounding circle, then
the result is obtained as follows. Consider any triangle with all vertices lying on the boundary.
Then, the bounding circle is also the circumcircle of the triangle. There is at least one
triangle with the circumcenter lying inside the triangle or on one of its sides. Otherwise, for
each triangle, the circumcenter lies outside the triangle. This is the second situation of the
special case described in Section 4.4 and the circle would not be minimal.

Now, choose a triangle such that the circumcenter lies inside the triangle or on one of its
sides. If the center of the circumcircle lies on one of the sides of the triangle, then this side is
the diameter of the circle and we have the same situation as in the first case. Otherwise, let
a, b, c be the sides of the triangle and A, B, C its vertices.

If

4 · rc ≤ |a|+ |b|+ |c|

then

4 · rc ≤ |a|+ |b|+ |c| ≤ 2 ·
n∑
i=1

ri.

The last inequality holds because a, b, and c are the shortest connections between A, B, and
C. Every path on the polygon is longer (triangle inequality). Thus, it is sufficient to show
that the first inequality holds.

Consider Figure 16. First of all, the law of sines implies the following equations:

|a|+ |b|+ |c| = 2 · rc · sinα+ 2 · rc · sin β + 2 · rc · sin γ
= 2 · rc · (sinα+ sin β + sin γ).

Thus, it is sufficient to show

sinα+ sin β + sin γ ≥ 2
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because then

|a|+ |b|+ |c| = 2 · rc · (sinα+ sin β + sin γ)
≥ 2 · rc · 2
= 4 · rc.

In order to show that the sum of the sine of the angles is greater or equal to two, consider
the following conditions. As the triangle is acute, we have

A,B,C ≤ 90◦.

Therefore, we get

A+B ≥ 90◦ ⇒ A ≥ 90◦ −B.

From this follows

sinα ≥ cosβ
sin β ≥ cosα.

Using these, we get

sinα + sin β + sin γ
= sinα+ sin β + sin(180◦ − (α+ β))
= sinα+ sin β + sin(α+ β)
= sinα+ sin β + sinα · cosβ + cosα · sin β
≥ sinα+ sin β + cos2 β + cos2 α

= sinα+ sin β + 1− sin2 β + 1− sin2 α

= 2 + sinα · (1− sinα) + sin β · (1− sin β)
≥ 2.

From this follows the claim about the compensation factor at the beginning of this section.

5.3 Optimization Step
Having computed the layout as described in Section 5.1, an optimization step can be
performed (see Figure 17). This is done by computing for each child an optimization factor

fi = ri + ri+1

d(ri, ri+1)

= ri + ri+1√
rc · rc + rc · rc − 2 · rc · rc · cosϕ

= ri + ri+1√
(2− 2 · cosϕ) · r2

c

.

where d(ri, ri+1) denotes the distance between ri and ri+1. Then, an optimized radius can
be computed and used for the layout of the children:

r̂c = max(fi) · rc.
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Figure 17 Optimization step.

6 Future research and open problems

Although the layout computed is optimal under the assumptions presented in Section 3 and
Section 5.1, there is still space for improvements.

First of all, the proof for the general case is quite long. The question is whether there is
a more elegant proof of the bound for this case.

The second question is whether there is an easy way to extend the special cases. Further,
only a small number of special cases have been considered, namely, zero to three children and
equally sized children. There might be further special cases, leading to simple and efficient
solutions.

While this paper focused on the computation of the circle parameters, another parameter
is the height of the cone. The question is whether there is an elegant way to compute an
optimal height.

Finally, the implications of this work on RDTs can be researched, too.

7 Conclusion

Performing a bottom-up construction of cone trees, formulas for the optimal computation
of the cone’s base circles have been proposed. This includes special cases for zero to three
children and for equally sized children as well as the general case. For the latter, an optimal
compensation factor has been motivated and proven. Further, an optimization step has been
introduced for this case. This allows implementing cone trees bottom-up in an optimal way.
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Abstract
Mesh optimization of 2D and 3D triangulations is used in multiple applications extensively. For
example, mesh optimization is crucial in the context of adaptively discretizing geometry, typi-
cally representing the geometrical boundary conditions of a numerical simulation, or adaptively
discretizing the entire space over which various dependent variables of a numerical simulation
must be approximated. Together with operations applied to the vertices the so-called edge or
face swap operations are the building block of all optimization approaches. To speed up the
optimization or to avoid local minima of the function measuring overall mesh quality these swaps
are combined to generalized swap operations with a less local impact on the triangulation.

Despite the fact that these swap operations change only the connectivity of a triangulation,
it depends on the geometry of the triangulation whether the generalized swap will generate
inconsistently oriented or degenerate simplices. Because these are undesirable for numerical
reasons, this paper is concerned with geometric criteria that guarantee the generalized swaps for
a 3D triangulation to yield only valid, non-degenerate triangulations.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases 3D Triangulation, Geometric Conditions, Swap Operations

Digital Object Identifier 10.4230/DFU.SciViz.2010.30

1 Introduction

Triangulations of points in 2D space for a mesh of triangles or points in 3D space for
a mesh of tetrahedra are crucially important for numerous applications encountered in
scientific and engineering application, including numerical simulation, shape approximation,
or visualization. In scattered data approximation [15, 8, 20] 2D triangulations are used
to define a piecewise linear coarse approximation of a dense data set, assigning a “height
value” for every vertex. This technique can also be used for image compression [5, 4, 21, 18]
and video compression [19, 17]. For reverse engineering [12, 9, 6, 1], the 2-manifold surface
to be reconstructed is approximated by a 3D triangulation that contains no tetrahedra.
For mechanical engineering and physical simulations [24, 14], 3D triangulations are used as
meshes for finite element methods.

For all of these applications the triangulation needs to be optimized with respect to
an application-dependent cost function measuring mesh quality based on a multitude of
proper mesh quality variables, including, for example, point distribution, approximation
error [7, 18], triangle shape [10], dihedral angles [14], etc. The optimization process is usually
based on simple, local changes in the triangulations such as repositioning of vertices [15],
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insertions and removal of vertices [7, 11] and edge and face swaps [22]. While the first of these
operations change geometry and connectivity of the triangulation the swaps change only
the connectivity of a triangulation. To speed up the optimization or to avoid local minima
during mesh optimization multiple edge and face swaps are combined to generalized swap
operations that change the connectivity of more than three tetrahedra of the triangulation
[13, 25, 23, 17], see Section 2.

However, it depends on the geometry of the triangulation if a generalized swap will
generate flipped or degenerate simplices. We present in this paper geometric criteria that
guarantee that a generalized swap operation in a 3D triangulation will generate only valid,
non-degenerate triangulations.

2 Related Work

In general, a swap operation replaces d-dimensional simplices of a triangulation (d ≥ 1) by
other simplices. It usually affects only a local area of the triangulation, and changes the
connectivity of the triangulation without changing the number or position of the vertices.

Lawson [16] was was among the first scientists studying and publishing swap operations
systematically. He showed that d + 2 points in d dimensions, which do not all lie in a
hyper-plane, have either one unique triangulation T or two possible triangulations T1 and
T2. Which case happens depends on the vertex positions, see Figure 1 for the 2D case. In
the latter case, T1 and T2 differ only in connectivity and the transformation from T1 to
T2 is called swap operation s1→2(T1) = T2. The opposite transformation is s2→1(T2) = T1.
Because s1→2 ◦ s2→1 = s2→1 ◦ s1→2 = id, s1→2 and s2→1 are inverse operations.

a
aa

a

bbb
b c

cc

c

dddd
s1→2

s2→1

Figure 1 Triangulations of four points in the 2D case.

If T1 is a subset of a larger triangulation T , the swap operation can be applied by replacing
only the simplices of T1 with those of T2, and leaving all simplices of T unchanged, i.e.,
T ′ = (T \ T1) ∪ T2. Note that the subset T1 has to be a triangulation, i.e. it has to fill the
convex hull of its vertices, and must be convex.

Additionally to these basic swaps, one can construct generalized swap operations that
replace a set of simplices C of the triangulation by a different set of simplices C ′. Thus, C
and C ′ are not required to cover the convex hull of their vertices. Since the generalized swaps
are usually more powerful, they can lead to a good triangulation with less swap operations,
but are often less efficient.

One way to construct a generalized swap operation is to combine a sequence of basic
swap operations to a so-called composed swap operation. For the 2D case Yu et al. [25] use a
combination of two edge swap operations. If a simple edge swap does not reduce the cost
function, they swap the edge and one of its adjacent edges. Thus, the affected faces do not
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Figure 2 The different settings of five points in the 3D case.

need to form a convex polygon for the composed swap operations. Using the composed swap
operations can improve the optimization results significantly.

Concerning the 3D case, the set of swap operations is larger and more varied than in
the 2D case. Again, we can categorize them into basic swap operations and composed
swap operations. According to Lawson [16], there are five different settings of five points
a, b, c, d and e in 3D space, only two of which have two different triangulations and therefore
provide swap operations, see Figure 2. If three points are collinear, or four points a, b, c, d are
coplanar with d ∈ conv(a, b, c), or e ∈ conv(a, b, c, d) there is only one possible triangulation,
see Figures 2 I., III., and V. If exactly four points are coplanar and form a convex quadrilateral
q there are two possible triangulations with flipped diagonals of q, see Figure 2 II. Because
the triangulation consists of two cells before and after the swap, the swap is called a 2-2
swap. For the most general case in which all five points are corners of conv(a, b, c, d, e) there
are also two possible triangulations, see Figure 2 IV. Because this swap replaces three cells
by two and vice versa, it is called a 3-2 swap or 2-3 swap, respectively.

When applied to a subset of a triangulation T , the 2-2 swap is only possible if the two
faces {a, b, d} and {b, c, d} are border faces of T . If they are interior faces, the incident two
cells also have to be swapped, see Figure 3. This leads to the 4-4 swap, which replaces four
cells with four other cells.

In 3D also a combination of basic swap operations can be more powerful. Joe [13]
systematically analyzed the possible settings. Every face of a triangulation is assigned to nine
different categories, describing their local setting and their status of being transformable by a
basic swap operation. He proposes a set of composed swap operations to transform faces that
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aa

bb cc

dd

ee

ff

4-4 swap

4-4 swap

Figure 3 The 4-4 swap is used if the faces of the 2-2 swap are no border faces.

are initially not transformable, by first swapping adjacent faces. For every composed swap
operation, he lists the cells that are removed and created. From this list, he provides criteria
in [13] to compute the change of a cost function c resulting from each of the operations, if c
is the minimum of the costs of the individual cells.

Another class of composed swap operations is the class defined by the generalizations of
the 3-2 and 2-3 swaps, see [24, 3].

Generalized 3-2 swap (G32) A generalized 3-2 swap (G32) can be applied to an edge e =
{a, b} with n ≥ 3 incident cells C = {c1, . . . , cn}, with ci = {a, b, vi, vi+1} and vn+1 ≡
v1, see Figure 4 (left). The loop (v1, . . . , vn) is split into a set of n − 2 connected
faces F = {f1, . . . , fn−2}. Note that the choice of F is not unique. G32 replaces the
edge e with the faces F , where the n cells C are replaced by the 2(n − 2) cells C ′ =
{c′a,1, c

′
b,1, . . . , c

′
a,n−2, c

′
b,n−2} with c′a,i = fi ∪ {a} and c′b,i = fi ∪ {b}.

Generalized 2-3 swap (G23) We say a face f = {v1, v2, v3} is sandwiched between vertices
a and b, if the two cells incident to f are c1 = {a, v1, v2, v3} and c2 = {b, v1, v2, v3}. A
generalized 2-3 swap (G23) is applied to a set F = {f1, . . . , fn−2} of faces, which are
sandwiched between two points a and b, see Figure 4 (right). A new edge e = {a, b}
is inserted into the triangulation, and the border edges of F are connected to the new
edge e to form the new cells. Let C ′ = {c′a,1, c

′
b,1, . . . , c

′
a,n−2, c

′
b,n−2} be the set of cells

incident to the faces c′a,i = fi ∪ {a} and c′b,i = fi ∪ {b} of F , and (v1, . . . , vn) be the loop
of vertices defined by the border edges of F . G23 replaces the faces of F by the edge
e = σ{a,b}, and the 2(n− 2) cells of C ′ are replaced by the n cells C = {c1, . . . , cn}, with
ci = {a, b, vi, vi+1}, and vn+1 ≡ v1.

G23 is the inverse of G32. Since the choice of faces is not unique in either direction,
applying the one swap operation after the other leads to the start triangulation only if for
both swaps the same faces are chosen. Also note that the 2-3 swap is a special case of G23,
the 3-2 swap of G32, and the 4-4 swap a special case of G23 and G32.

The execution of G32 and G23 can result in invalid triangulations. In Sections 4 and 5 we
discuss necessary and sufficient geometric conditions to ensure the validity of the resulting
triangulation. Shewchuk [23] notes that these swaps can be replaced by a series of 2-3 and
3-2 swaps, where the intermediate triangulations are topologically correct, but may contain
degenerate or inverted cells. In Section 6 we show that there is always a sequence of 2-3, 3-2,
and 4-4 swaps to replace a G23 or G32 swap without degenerate or inverted cells.

Chapte r 3



34 Generalized Swap Operation for Tetrahedrizations

aa

bb

v1v1

v2v2 v3v3

v4v4 v5v5

e
f1

f2

f3

G32

G23

Figure 4 The generalized 3-2 and 2-3 swaps.

3 Notation

In order to define the generalized swap operation in terms of connectivity changes and
associated geometric conditions, we first adjust our notation properly.

A 3D triangulation T = (V, E ,F , C) (tetrahedrization) consists of a set of vertices V,
edges E ⊂ V2, faces F ⊂ V3 (triangles), and cells C ⊂ V4 (tetrahedra). Thus, an edge is
a pair of vertices, a face a triple of vertices, and a cell a quadruple of vertices. All these
entities are ordered such that T is an oriented simplicial 3-complex, where the edges of
adjacent faces and the faces of adjacent cells are order reversely. In this case, we call T a
valid triangulation. We will use set operations to define new faces and cells, i.e., for v1 ∈ V,
e = (v2, v3) ∈ E , f = (v2, v3, v4) ∈ F and c ∈ C we define

e ∪ {v1} = (v1, v2, v3) ∈ F ,
f ∪ {v1} = (v1, v2, v3, v4) ∈ C

and

e ∈ f ⇐⇒ (v2, v3) is a sub-tuple of f,
f ∈ c ⇐⇒ (v2, v3, v4) is a sub-tuple of c.

While V, E , F , and C describe only the connectivity of the triangulation, a geometric
realization of T is defined by associating a point v ∈ R3 to every vertex v ∈ V . The geometric
realizations of an edge e ∈ V2, a face f ∈ V3, or a cell c ∈ V4 are then defined as the convex
hull of the geometric realizations of their vertices, and are also denoted in boldface letters e,
f , and c, respectively. Furthermore, for a set M of edges, faces, or cells, we denote by M the
union of the geometric realizations of the elements of M . Throughout this paper, geometric
realizations of elements of a triangulation are denoted by boldface letters.
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We say a valid triangulation T is consistently oriented, when the geometric realizations
of all cells have the same geometric orientation. The orientation of a cell induces a notion
of orientation on all of its contained k-sub-simplices for k = 1, 2. A k-sub-simplex is called
positively oriented if it is positively oriented in the k-dimensional hyperplane bounding the
enclosing (k + 1)-sub-simplex with outward pointing normal. This means in particular, that
all faces of a cell are positively oriented with respect to the half-plane bounding the cell with a
normal pointing to the outside of the cell. If the vertices of a cell are not affinely independent,
it is called degenerate, and if a cell or any of its k-sub-simplices are not positively oriented,
we call it inconsistently oriented.

Border faces are faces of a triangulation T that are incident to only one cell in T , all
other faces are called inner faces. Analogously, border edges are incident to only one inner
face, all other edges are called inner edges The border of a triangulation T is the set of all
its border faces. If T is a valid, consistently oriented triangulation, the geometric realization
of its border is a 2-manifold.

The boundary ∂S of a subset S of a manifold M are the points in S for which every ε-ball
in M contains points in M \ S. Note that the term border is an attribute of the connectivity
of a triangulation, whereas boundary is a property of its geometric realization.

We need to provide some definitions concerning spherical projections, which we will use
to establish geometric conditions for allowable swap operations.

I Definition 1. The spherical projection of a point p ∈ R3 onto the sphere Sq with center
q ∈ R3 and radius r is defined as

Πq(p) = q + r(p− q)/‖p− q‖2, p 6= q.

A projection of a set of points P ⊂ R3 \ {q} is the set of the projected points,

Πq(P ) = {Πq(p)|p ∈ P}.

Some properties of the spherical projection (without proof) are:
If P is a line, Πq(P ) is either two antipodal points (for q ∈ P ), or a half great circle (for
q /∈ P ) of Sq.
If P is a plane, Πq(P ) is either a great circle (for q ∈ P ), or an open half sphere (for
q /∈ P ) of Sq.
If P = conv(p1,p2,p3) is a triangle and the plane defined by P does not contain q,
Πq(P ) is a spherical triangle, bounded by the projection of the edges Πq(conv(p1,p2)),
Πq(conv(p2,p3)), Πq(conv(p3,p1)), which are segments of great circles of Sq.

4 Geometric Conditions for G32

For the geometric conditions to be satisfied for a G32-swap as defined in Section 2 we have
an edge e = (a, b) with n incident cells that is swapped. The triangulation before and after
the G32-swap is denoted by T and T ′.
I Condition 1. The triangulation T = (V, E ,F , C) is valid, and all cells of T have positive
orientation.
I Condition 2. The edge e is an inner edge of T , i.e., every face f incident to e is incident to
exactly two cells cf,1 6= cf,2.
Note that the last condition implies that e is not on the border of T . Furthermore, these
conditions induce an order of the faces incident to e.
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I Lemma 2. All faces containing e can be ordered to form a cyclic sequence G = (g1, . . . , gn),
i.e., the index i = 1, . . . , n of gi is understood modulo n. Furthermore, the dihedral angles θi

between gi and gi+1 (in the direction a to b) are in the interval (0, π), and sum to 2π.

Proof. Due to Condition 2, a face g = (a, b, v) incident to e is incident to two cells cg,1, cg,2.
Both have two faces incident to e, one of the two is g, the other ones are g′1 and g′2, respectively.
The successor of g is the face g′k of cell cg,k on the positive side of g (in the direction a to b),
k = 1, 2. The predecessor of g is the other face. Due to Condition 2 this relation determines
a cyclic successor-graph without branches.

The dihedral angle θi between a face gi and its successor gi+1 is the dihedral angle at e
of the cell that contains both faces. Therefore, 0 < θ < π, because otherwise the cell would
be inverted or degenerate, contradicting Condition 1.

Since the sequence of faces is cyclic, it surrounds e. It can only cycle exactly once around
e, because otherwise cells between the faces would intersect in their interior, which contradicts
Condition 1. The sum of the dihedral angles between the faces is therefore 2π. J

We denote the cell between gi and gi+1 as ci, and the third vertex of gi as vi. Thus,
Lemma 2 induces also a cyclic order on the cells C = (c1, . . . , cn) and vertices V = (v1, . . . , vn)
around e. Because G32 replaces the cells of C by other cells, we call C the affected region,
and the border faces of it are given by

∂C := {(a, v2, v1), (b, v1, v2), . . . , (a, v1, vn), (b, vn, v1)},

i.e., ∂C =
⋃

f∈∂C f . The line through a and b is denoted by

l = {a + λ(b− a)|λ ∈ R}. (1)

I Lemma 3. There is a closed loop of edges B = {b1, . . . , bn} that winds around l exactly
once.

Proof. This follows from Lemma 2, where bi is the edge of ci opposite to e. J

For the sphere Sa around a contained in the convex hull of all cells containing a we
set taI = Πa(b) and denote by taO the antipodal point of taI . Let Ba = Πa(B) the spherical
projection of B onto Sa. Since Ba is a closed loop on Sa, it splits Sa into two parts Sa

I and
Sa

O, which are characterized by taI ∈ Sa
I and taO ∈ Sa

O, see Figure 5. Analogously, Sb, tbI , tbO,
Bb, Sb

I , and Sb
O are defined.

I Definition 4. A partition of B is a set F = {f1, . . . , fm} of faces fi /∈ F , where
1. all vertices of fi belong to edges of B, i.e., fi ⊂ V ,
2. all edges of fi are either edges of B or inner edges I, and
3. a. every edge of B is incident to exactly one face of F ,

b. every edge of I is incident to exactly two faces of F .

I Lemma 5. Every partition F of B has n− 3 inner edges and m = n− 2 faces.

Proof. As a consequence of Lemma 2 partitioning B is equivalent to a triangulation of a
simple polygon B′ in a plane perpendicular to l without introducing new vertices. This
polygon is the orthogonal projection of B along direction l. Since every simple polygon with
n vertices can be triangulated with n− 2 triangles (see [2]), i.e., n− 3 inner edges, the claim
follows. J
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Figure 5 Terms used in spherical projection with B in blue and Ba in green.

The partition F of B defines the cells that are created by the G32-swap. Every face
of the partition is connected to a and b to form two new cells. The set of new cells is
C ′ = {c′a,1, c

′
b,1, . . . , c

′
a,m, c

′
b,m} with c′a,j = fj ∪{a} and c′b,j = fj ∪{b} for fj ∈ F . Note that

for n > 3 the partitions and also the G32-swap is not unique.
It can happen that C ′ contains inconsistently oriented or degenerate cells. Therefore, the

G32-swap would result in an invalid triangulation and must not be applied. Whether this is
happens depends on e and B and also on the choice of F . We call F a valid partition if all
cells in C ′ are valid.

Depending on the geometry, there are three different cases. For every case we present
an example for n = 4, so that two different partitions exist: F1 = {(v1, v2, v3), (v1, v3, v4)}
and F2 = {(v1, v2, v4), (v2, v3, v4)}. For every example, a = (0, 0, 1) and b = (0, 0,−1).
Furthermore, the x and y coordinates of v1 to v4 are (−0.3,−0.3), (0.7,−1.3), (1.7,−0.3),
and (0.7, 0.7), respectively.

Every partition is valid For every partition F , all cells in C ′ are valid. For our example, we
choose the z coordinates to be z1 = z2 = z3 = z4 = 0. Both partitions F1 and F2 are
valid in this case. Note, that every partition is valid as long as the affected region C is
convex. which is only the case if (as in this example) all vi are coplanar. But also for a
non-convex affected region all partitions can be valid.

Some partitions are invalid For some partitions, there are cells in C ′ that are inverted or
degenerate. But other partitions are valid. For a concrete example, set the z coordinates
to z1 = z2 = z3 = 0.8 and z4 = −0.8. Here, F1 is an invalid partition, because the cell
(a,v1,v3,v4) is inverted, while partition F2 is valid.

All partitions are invalid It can also happen that no valid partition exists at all. In this case,
G32 cannot be applied to e. An example for this case is z1 = z3 = 0.8 and z2 = z4 = −0.8.
Here, F1 is invalid because of the inverted cell (b,v2,v4,v3), F2 is invalid because of the
inverted cell (a,v1,v3,v4).
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These examples show that we need another condition that ensures that F is a valid
partition. Under the assumption that Conditions 1 and 2 are satisfied, we found four
equivalent formulations 3.2., 3.1., 3.3., and 3.4. for the missing condition. Will prove their
equivalence later in Theorem 11. Before we describe the missing condition in detail we need
to define the supporting plane pl(t) of a triangle t as the affine hull of its vertices.

I Condition 3.
3.1. All cells c′a,j and c′b,j have positive orientation.
3.2. Every fi has a on its positive side, and b on its negative side.
3.3. The spherical projection of the faces fi onto Sa is contained in Sa

I ∪ Ba, and the
interior of the inner edges is projected into Sa

I (for Sb analogously),

Πp(fi) ⊂ Sp
I ∪Bp, for all i = 1, . . . , n, (2)

Πp(̊d) ⊂ Sp
I , for all d ∈ I,

for p ∈ {a,b}.
(3)

3.4. The interior of the inner edges is a subset of the interior of the affected region, and
the supporting planes of all faces fi intersects the line l in the interior of e,

d̊ ⊂ C \ ∂C, for all d ∈ I, (4)
pl(fi) ∩ l ∈ e̊. (5)

I Theorem 6. If Conditions 1, 2, and 3 are met, the triangulation T ′ = (V, E ′, F ′, C′) with
C′ = (C \ C) ∪ C ′ (and E ′ and F ′ accordingly) is valid.

Proof. Due to Conditions 1 and 3.1., all cells of C′ have positive orientation. To prove that
there are no holes in C ′, we check for border faces of the cells of C ′:

The faces bi ∪ {p} for p ∈ {a, b} are border faces of both C and C ′.
The faces fj are incident to c′a,j and c′b,j , i.e., fj is not on the border of C ′.
For the faces f = d ∪ {p}, d ∈ I, p ∈ {a, b}, the edge d is incident to two f aces fj and fk,
i.e., f is incident to c′p,j and c′p,k. So, f is not on the border of C ′.

Thus, there are no new border faces, i.e., there are no holes in C ′. J

I Lemma 7. Condition 3.1. and Condition 3.2. are equivalent.

Proof. By definition, a is on the positive side of fi if and only if the cell c′a,i has positive
orientation. Furthermore, b is on the negative side of fi if and only if the cell c′b,i has positive
orientation. J

I Lemma 8. Conditions 3.1. and 3.2. imply Condition 3.3.

Proof. To prove (2) we first show that Πa(F) is a connected region on Sa that is bounded
by Ba. Then we show that taI ∈ Πa(F).

Due to Condition 3.1. a is not in F, since this would cause degenerate cells, and Πa(F)
is a connected region on Sa. For fi, fj ∈ F with common edge d ∈ I, the spherical triangles
Πa(fi) and Πa(fj) share the spherical edge Πa(d). Due to Condition 3.1. the both cells c′a,i

and c′a,j have positive orientation, so they are on opposite sides of the plane P through d

and a. Therefore, Πa(fi) and Πa(fj) are also on opposite sides of Πa(d), see Figure 6. This
implies that the interior of all inner edges of I is not projected to the boundary of Πa(F).
The same holds true for all interior points of F. Thus, the boundary of Πa(F) consists of
projections of the border edges of B. Consequently, the interior of Πa(F) is not intersected
by Ba, so Πa(F) is either completely in Sa

I ∪Ba, or in Sa
O ∪Ba.
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a
d

P

fi
fj

Figure 6 The projections of fi and fj are on opposite sides of the projection of the edge d.

Since B winds around l once, the l line intersects F in at least one face fi. Let p = l ∩ fi.
Because a is on the positive side of fi (Condition 3.2.), Πa(p) = taI . Therefore, Πa(F) ⊂
Sa

I ∪Ba. Analogously, one can show Πb(F) ⊂ Sb
I ∪Bb.

Especially, the interior of Πa (̊d) does not intersect Ba, which implies (3). J

I Lemma 9. Condition 3.3. implies Condition 3.4.

Proof. Let d ∈ I be an inner edge of F , and p ∈ d̊ be an interior point of d. Due to Condition
3.3., pa = Πa(p) ∈ Sa

I . We split Sa
I into spherical triangles by adding edges from Πa(vi) to

taI . At least one of these triangles contains pa. Let this triangle be t = (taI ,Πa(vl),Πa(vl+1)),
see Figure 7. The boundary Ba (green) is partitioned into spherical triangles (red lines),
d is (v1,v4) (blue line) and p ∈ d̊. In this case, Πa(p) is within the spherical triangle
t = (taI ,Πa(v4),Πa(v5)).

The set of points that are projected into t is defined as the intersection of the half
spaces defined by the planes spanned by a and one of the edges of t, i.e., g1 = (a, b, vl),
g2 = (a, vl+1, b), and g3 = (a, vl, vl+1), which contains the fourth point {a, b, vl, vl+1} \ gi.
The point p cannot be on the negative side of g1, g2 or g3, as this would mean that its
image is not in t. Also, it cannot be in the plane defined by a and g3, as this would mean
that it is projected to Ba.

With the same argument for Πb, we obtain the faces g4 = (b, vl, a), g5 = (b, vl+1, a), and
g6 = (b, vl+1, vl). Removing the redundant faces g4 ≡ g1 and g5 ≡ g2, we can conclude that
p is not on the negative side of g1 and g2, and it is on the positive side of g3 and g6. These
four faces define the cell ci. Thus, p ∈ C, and p /∈ ∂C, proving (4).

We still have to prove (5). Assume there exists a face f in F with {q} = pl(f) ∩ l 6∈ e̊
and, without loss of generality, λ ≤ 0. This face has at least one interior edge d ∈ I and we
chose an arbitrary point p ∈ d̊. Now, p is projected to pa which lies outside of Sa

I . This
contradicts (3) and, thus, proves (5). J

I Lemma 10. If Conditions 1 and 2 are satisfied, Condition 3.4. implies Condition 3.2.

Proof. For n = 3 we have I = ∅ and F = {f1}. Since B circles around l, there must be an
intersection of l and f1. Due to Condition 3.4., this is between a and b, and because of the
order of the vertices of f1 as induced by Lemma 2, a is on the positive and b on the negative
side of f1, and Condition 3.2. is satisfied.
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Figure 7 Sa
I is divided into spherical triangles

(red lines), one of which contains Πa(p).
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qq′
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d

Figure 8 The intersection of the extension of
segment vk to q with l is between a and b.

We now consider n > 3. The partition F contains n− 2 faces, the border B has n edges
(see Lemma 3). If every face of F had at most one edge of B, there would be at least two
edges in B left. Since no face of F can have three edges of B (otherwise B would have a
sub-cycle of three edges), at least two faces of F must have two edges of B. Let F̂ ⊂ F be
the set of faces with two edges in B.

The line l intersects either one face of F in its interior, or it intersects an inner edge of I
and therefore two faces of F on their border.

In the case that l intersects an inner edge, and the adjacent faces of F are the only two
faces in F̂ , there can be no other faces in F , due to the following: if two faces with each two
edges in B and both sharing a common inner edge, their edges in B already define a cycle.
Since B does not contain any sub-cycles, there can be no further edges in B. In this case we
have n = 4. Since the intersection of l with f1 and f2 is between a and b (Condition 3.4.),
and because of the order of the vertices of f1 and f2, a is on the positive side of f1 and f2,
and b is on the negative side. Thus, in this case Condition 3.2. is satisfied.

For the remaining case there is at least one face f in F̂ that has no intersection with l,
because otherwise Conditions 1 and 2 were violated. Let f = (vk−1, vk, vk+1). Because f
does not intersect l, θk−1 + θk < π. Thus, the inner edge d = (vk−1, vk+1) cannot cross any
other cell besides ck−1 and ck. Due to Condition 3.4., d̊ ⊂ ck−1 ∪ ck. With gk = (a, b, vk),
the intersection d ∩ gk = {q}, with q in g̊k. When extending the line segment from vk to q,
it intersects the segment e in its interior in point q′, because of (5) (see Figure 8). Since vk

and q are points in f , the line through vk and q is also in the plane of f , and so is q′. From
these considerations and the vertex order of f , it follows that a is on the positive and b is
on the negative side of f . Thus, f fulfills Condition 3.2..

Now we remove f from F , i.e., F becomes F \ {f}, B becomes (B \ {bk−1, bk)}) ∪ {d},
and I becomes I \ {d}. This new edge cycle B still satisfies Conditions 1 and 2, but has one
edge less. This procedure can be repeated until n = 3, or n = 4 and l intersects both faces in
F . J

I Theorem 11. If Conditions 1 and 2 are satisfied, Conditions 3.2., 3.1., 3.3., and 3.4. are
equivalent.
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(a) Violating Condition 5.
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(b) Violating Condition 5.
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(c) Violating Condition 5.

f1

f2

f3
f4

f5

(d) Violating Condition 6.

Figure 9 Examples of sets F violating Conditions 5 or 6.

Proof. This follows directly from Lemmata 7, 8, 9, and 10. J

5 Geometric Conditions for G23

We use the same notation as in Section 4, i.e., F = {f1, . . . , fm} is a set of faces sandwiched
between a and b, such that F is a connected 2-manifold. The edge set B = {b1, . . . , bn} are
the border edges of F . The order of edges in B is induced by the order of boundary edges in
∂F.

The triangulation before and after the G23-swap is denoted by T ′ and T . We define the
orientation of fi so that a is on the positive side of fi. The cells incident to these faces are
C ′ = {c′a,1, c

′
b,1, . . . , c

′
a,m, c

′
b,m} with c′p,i = fi ∪ {p} for i = 1, . . . ,m and p ∈ {a, b}. The new

edge in T is e = (a, b).
Next we define the conditions for which G23 will result in a valid triangulation.

I Condition 4. The triangulation T ′ = (V, E ′,F ′, C′) is valid, and all cells of T ′ have positive
orientation.
I Condition 5. The edges of B form exactly one simple cycle (v1, . . . , vn).

This condition ensures that the faces in F are connected via edges, that there is only one
connected component of faces, and that the faces form a bounded 2-manifold without holes.
Examples of sets F that violating Condition 5 are shown in Figures 9a, 9b, and 9c.
I Condition 6. All vertices incident to a face in F are on the border B.

Condition 6 the absence of interior vertices in F that are not part of B. Those interior
vertices would be removed by G23, but a swap may only modify the connectivity, but not add,
remove, or move vertices. Figure 9d shows an example of a set F that violates Condition 6
due to an interior vertex.

I Lemma 12. If Condition 6 is satisfied, the number of vertices in B is n = m+ 2.

Proof. If Condition 6 is satisfied, F is a partition of B. Considering Lemma 5 we can
conclude m = n− 2. Therefore, n = m+ 2. J

The G23-swap will now replace the cells C ′ by the cells C = {c1, . . . , cn} with

ci = (a, b, vi, vi+1)

and faces gi = (a, b, vi), where the index i is understood modulo n.
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I Condition 7. One of the equivalent following conditions holds:
7.1. All cells ci have positive orientation.
7.2. The dihedral angle θi between the faces gi and gi+1 (in counterclockwise direction,

seen from a in direction b) is in (0, π).

I Lemma 13. Condition 7.1. and Condition 7.2. are equivalent.

Proof. ci has positive orientation if and only if ci is consistently oriented or non-degenerate.
This is true if and only if the inner dihedral angle θi is in (0, π). J

I Theorem 14. If Conditions 4, 5, 6, and 7 are met, the triangulation T = (V, E , F , C)
with C = (C \ C ′) ∪ C (and E and F accordingly) is valid.

Proof. Due to Conditions 4 and 7.1., all cells of C have positive orientation. To prove that
there are no holes in C, we check for border faces of the cells of C:

The faces bi ∪ {p} for p ∈ {a, b} are border faces of both C ′ and C.
The faces gi are incident to ci−1 and ci, i.e., gi is not on the border of C.

Thus, there are no new border faces, i.e., there are no holes in C. J

6 Replacing Generalized Swaps by a Series of Basic Swaps

In [23] Shewchuk showed that the “multi-face removal” (equivalent to G23) and “edge removal”
(equivalent to G32) can be replaced by a series of basic 2-3 and 3-2 swaps. The intermediate
triangulations are topologically correct, but may contain inconsistently oriented or degenerate
tetrahedra.

We will show that there always exists a series of basic 2-3, 3-2, and 4-4 swaps to mimic
the effect of a G23- and a G32-swap, where all intermediate triangulations are valid. This
result shows that the G23- and G32-swaps do not add additional potential that is not already
possible with 2-3, 3-2 and 4-4 swaps. An optimization procedure like simulated annealing
should theoretically be able to find a near-optimal solution also without utilizing G23 and
G32. In practice, the convergence rate can be increased by implementing G23 and G32.

6.1 Replacing G32

Let e be an inner edge of triangulation T , B the set of border edges, and F a valid partition
of B, so that the Conditions 1, 2, and 3 for G32 are satisfied.

I Theorem 15. The same effect as the G32 swap operation of e and partition F can be
obtained by a series of either

n− 3 basic 2-3 swaps followed by a 3-2 swap, or
n− 4 basic 2-3 swaps followed by a 4-4 swap, for n ≥ 4.

Proof. We use the same arguments as in the proof of Lemma 10.
For n = 3, F consists of exactly one face f1, and the vertices of f1 circle around e exactly

once. Therefore, the conditions are satisfied to apply a 3-2 swap to e, so we can substitute
G32 by a single 3-2 swap.

For n = 4, and the single inner edge d = (vi, vi+2) with i ∈ {1, 2} intersects with e, the
quadrilateral (vi,a,vi+2,b) is planar and convex, fulfilling the conditions of a 4-4 swap. This
4-4 swap replaces e by d and the four cells of C with the four cells of C ′. Thus, the G32 swap
can be replaced by a single 4-4 swap.

If n = 4 and d and e do not intersect, or if n > 4, there is at least one face in F with
two edges in B that does not intersect e. Let this face be fj = (vi−1, vi, vi+1). As in
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the proof for Lemma 10, the edge d = (vi−1, vi+1) intersects the face gi in its interior, so
the cells ci−1 and ci fulfill the condition for a 2-3 swap. This swap removes ci−1 and ci

from the triangulation, adds c′a,j and c′b,j and a temporary new cell c = (a, b, vi−1, vi+1).
The remaining cells (C \ {ci−1, ci}) ∪ {c} together with the reduced partition F \ {fj} and
the reduced border (B \ {(vi−1, vi), (vi, vi+1)}) ∪ {d} fulfill Conditions 1–3. So, G32 can be
applied to the reduced setting. By induction, the reduced setting can be processed with
either (n− 1)− 3 2-3 swaps, followed by a 3-2 swap, or with (n− 1)− 4 2-3 swaps, followed
by a 4-4 swap. Adding the 2-3 swap to remove fj , the claim follows. J

6.2 Replacing G23

Since the G23 operation is the inverse of the G32 operation for the same partition F , G23 can
be replaced by a series of basic swaps.

I Theorem 16. The same effect as a G23 operation of a partition F sandwiched between a
and b can be obtained by a series of either

a single 2-3 swap, followed by n− 3 3-2 swaps, or
a single 4-4 swap, followed by n− 4 3-2 swaps.

Proof. While G23 replaces the cells C ′ by cells C, G32 does the inverse. G32 can be substituted
by a series of basic swap operations G32 = s1 ◦ s2 ◦ · · · ◦ sm, with m being either n− 2 (sm

being a 3-2 swap) or n− 3 (sm being a 4-4 swap), as in Theorem 15. For the same choice of
F , we have

G23 = G32
−1 = (s1 ◦ · · · ◦ sm)−1 = s−1

m ◦ · · · ◦ s−1
1 .

The inverse of a 3-2 swap is a 2-3 swap and vice versa, and the inverse of a 4-4 swap is a
corresponding 4-4 swap. We start in G23 with s−1

m , which is either a 2-3 swap or a 4-4 swap.
Then we proceed with either n− 3 or n− 4 3-2 swaps. J

7 Conclusions

We have presented different geometric conditions for generalized swap operations a 3D
triangulation. These conditions are proved to be equivalent, such that one can use that
particular condition in practice that is most appropriate given the specific needs of an
implementation. In a mesh optimization application these swap operations are used to speed
up the optimization process and to attenuate "getting stuck" in local minima.

Furthermore, we have shown that the generalized swap operations can be realized by
simple 3-2, 2-3, and 4-4 swaps, which simplifies the implementation significantly. This
decomposition of the generalized swap guarantees at the same time, that all intermediate
triangulations are consistently oriented and do not contain degenerate cells, causing numerical
problems in certain applications.

Based on these conditions, our future research plans are focused on applications of 3D mesh
optimizations, e.g., in video compressions or bio-medical and bio-mechanical simulations.
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Abstract
We present a method for hierarchical data approximation using curved quadratic simplicial ele-
ments for domain decomposition. Scientific data defined over two- or three-dimensional domains
typically contain boundaries and discontinuities that are to be preserved and approximated well
for data analysis and visualization. Curved simplicial elements make possible a better represen-
tation of curved geometry, domain boundaries, and discontinuities than simplicial elements with
non-curved edges and faces. We use quadratic basis functions and compute best quadratic simpli-
cial spline approximations that are C0-continuous everywhere except where field discontinuities
occur whose locations we assume to be given. We adaptively refine a simplicial approximation
by identifying and bisecting simplicial elements with largest errors. It is possible to store mul-
tiple approximation levels of increasing quality. Our method can be used for hierarchical data
processing and visualization.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Approximation, Bisection, Grid Generation, Finite Elements, Hierarchi-
cal Approximation, Simplicial Decomposition, Spline

Digital Object Identifier 10.4230/DFU.SciViz.2010.45

1 Introduction

Scalar and vector field data often contain discontinuities that should be preserved for data
approximation and analysis purposes. It is important to represent domain boundaries—
including geometry such as a car body, an aircraft, or a ship hull—and the locations of field
discontinuities, represented by curves and surfaces. To better approximate these curves and
surfaces we investigate the use of curved quadratic simplicial elements. We do not address
the problem of extracting discontinuities from a given scalar or vector field data set; we
assume that this information is known. We consider data defined over two-dimensional (2D)
and three-dimensional (3D) domains.

We utilize only curved simplicial elements that are quadratic. In the 2D case, we use curved
triangles whose edges may be straight line segments or parabolae; in the 3D case, we use curved
tetrahedral elements whose edges/faces may be straight line segments/planar triangles or
curved. Generally, we refer to both non-curved and curved simplicial elements as just simplicial
elements. We use a quadratic polynomial transformation to map the so-called standard simplex
to the corresponding simplicial region in 2D/3D space. Furthermore, we use a quadratic
polynomial defined over each simplicial element to locally approximate the dependent
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variable(s). We use curved elements with curved edges/faces to better approximate domain
boundaries and discontinuities. All simplicial elements that do not “touch” geometry, domain
boundaries, or discontinuities are non-deformed elements. Nevertheless, the polynomials we
use over all simplicial elements are all quadratic.

Our overall goal is the construction of a hierarchical data over 2D or 3D domains using
a best approximation approach based on curved quadratic finite elements and quadratic
polynomials defined over these elements. We start with a coarse decomposition of the
domain, using a relatively small number of simplicial elements and placing curved simplices
in areas where boundaries and discontinuities occur. We then compute a (globally) best
least squares approximation, a quadratic spline approximation for the dependent variable(s)
that is C0-continuous. (Due to the C0 continuity requirement we can place simplices with
curved edges/faces only along boundaries and where discontinuities occur, i.e., in areas
where the curved edges/faces are not shared by other elements. The physical locations
of discontinuities play the same roles as domain boundaries: Two simplicial elements may
share the—geometrically—same edge/face defining the locus of a discontinuity, but the field
function defined over the two elements is discontinuous along/on the shared edge/face.) Based
on local errors that we compute for each simplicial element, we bisect a certain percentage of
the elements with largest errors, update the simplicial domain decomposition accordingly,
and compute a new best quadratic spline approximation. We iterate this process until a
specified error condition is met or the number of simplicial elements exceeds some threshold.

Our approach belongs to the class of refinement methods. These methods are based on
the principle of refining intermediate data approximations by inserting additional points or
elements until a certain termination criterion is satisfied. We have developed our method
with a focus on the needs of massive scientific data analysis and visualization, see [22, 39, 45].
To enable interactive frame rates for massive data visualization, for example, it is possible
to use low-resolution best approximations everywhere or adaptively insert high-resolution
approximations locally into an otherwise relatively coarse approximation. The overall
approximation algorithm is based on these steps:

Initial simplicial domain decomposition. Assuming that either a polygonal/poly-
hedral or an analytical definition is known for all boundaries and discontinuities in the
2D/3D domain of interest, we construct a coarse simplicial decomposition of this domain.
We use curved edges/faces only in areas where they are needed to better approximate
curved boundaries and/or discontinuities. (The quadratic transformations, mapping the
standard simplex defined in so-called parameter space to deformed simplices in so-called
physical space, are defined by specifying corresponding point pairs in the two spaces
such that one obtains a one-to-one, bijective mapping.) Figure 1 shows a possible initial
simplicial decomposition, including curved elements, of space around a wing cross section.
Best approximation. In the 2D case, each simplicial element has six associated knots,
one knot per corner and one knot per edge. Six knots in parameter space are associated
with six points in physical space, and this defines the needed quadratic mapping for a
simplex. (Accordingly, the number of knots is ten in the 3D case.) For simplicity, we
consider only knots that are uniformly distributed along the edges of the standard simplex,
see Appendix A. We associate a quadratic polynomial with each simplicial element, which
approximates the dependent variable(s) over the corresponding region in space. We
represent each quadratic basis polynomial in so-called Bernstein-Bézier form, see [12, 41].
Assuming that the function to be approximated, a scalar- or vector-valued function, is
known in analytical form, it is possible to compute the unique best quadratic spline
approximation defined as a linear combination of the set of quadratic basis functions.
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discontinuity

boundary
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x
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Figure 1 Decomposition of space around wing using curved 2D simplices (geometry, domain
boundary, and discontinuity shown in bold).

The best approximation, understood in a least squares sense, is the result of solving the
normal equations, see [9].
Adaptive bisection. We compute a local error value for each simplicial element once
a best approximation is known. We use the L2 norm to compute simplex-specific error
values. The set of simplices is ordered according to the simplex-specific, local error values.
To compute a next-level best quadratic approximation we determine a certain percentage
of simplices with largest error values and bisect them by splitting them at the mid point
of their longest edge. If a simplex’ longest edge is not unique, we choose the edge to be
split randomly. In the case of curved edges we use arc length to determine the longest
edge to be bisected. Splitting a specific simplex into two simplices induces additional
splits for all those simplices that share the split edge. We update a simplicial domain
decomposition by considering all edge bisections and compute a new best approximation.
We repeat the process of identifying simplices with largest errors, bisecting these simplices,
and computing a new best approximation until we obtain an approximation for which
the maximal simplex-specific error is below a certain error threshold or until a maximal
number of simplices is reached.
Hierarchical data representation. To support hierarchical data processing and
visualization, for example, we can store multiple best approximations of different simplicial
resolutions. For each best approximation, we need to store the polynomial coefficients of
each simplicial element—for its shape and the polynomial defined over it. Considering a
non-curved simplicial element, we only need to store its three (four) corner points and the
coefficients of the quadratic polynomial defined over the element. Considering a curved
element, we need to store all polynomial coefficients defining the shape of the element
in addition to the coefficients of the quadratic polynomial defined over the element. We
store a fixed number of best approximations such that either the number of simplices
increases in a specified fashion or the maximal simplex-specific error decreases in a certain
way from one resolution to the next.

We discuss these steps in more detail in the sections to follow.
Related work in the areas of hierarchical data representation and approximation is

discussed in [1, 4, 5, 6, 7, 11, 16, 17, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 38, 48,
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Figure 2 Mapping standard triangle to arbitrary curved triangle (iso-parametric lines shown in
parameter and physical space).

51, 52, 59]. Best-approximation methods are described in [53, 55], and effective processing
and visualization approaches for data approximated by higher-order elements are covered in
[19, 55, 56, 57]. So-called data-dependent triangulation schemes, i.e., schemes concerned with
the construction of piecewise linear approximations using near-optimal simplicial elements,
are described in [10, 36, 43]. In [46, 47] various data structures are covered in-depth that can
be used for efficient storage of hierarchical data approximations. From a broader perspective,
our work is related to grid generation, and references for this area are [14, 32, 49, 50]. Finite
element methods, which also are closely related to our work, are discussed in detail in [60].

2 Mapping the Standard Simplex

In the 2D case, the standard simplex in parameter space is the triangle with corners (0, 0),
(1, 0), and (0, 1). The triangle with these three corners is mapped to a curved triangular
region in physical space by mapping the six knots ui = (ui,j , vi,j) =

(
i
2 , j

2

)
, i, j ≥ 0, i+ j ≤ 2

(abbreviated in multi-index notation as |i| = 2), in parameter space to six corresponding
points xi = (xi,j , yi,j) in physical space, using a quadratic mapping. The quadratic mapping
in the 2D case, using Bernstein-Bézier polynomials B2

i (u) as basis functions, see [12, 41] and
Appendix A, is given by

x(u) =
(

x(u, v)
y(u, v)

)
=
∑
|i|=2

bi B2
i (u) =


∑
|i|=2

ci,j B2
i,j(u, v)∑

|i|=2
di,j B2

i,j(u, v)

 . (1)

The mapping between parameter and physical space must be one-to-one. Figure 2 depicts
the general mapping of the standard triangle in parameter space to a curved triangle in
physical space.

In the same way, we define the mapping of the standard tetrahedron with corners
(0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) to a curved tetrahedron in physical space, mapping
the ten knots ui = (ui,j,k, vi,j,k, wi,j,k) =

(
i
2 , j

2 , k
2

)
, |i| = 2, to ten corresponding points

xi = (xi,j,k, yi,j,k, zi,j,k) in physical space. Thus, the quadratic mapping in the 3D case is
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Figure 3 Mapping standard tetrahedron to arbitrary curved tetrahedron.

given by

x(u) =

 x(u, v, w)
y(u, v, w)
z(u, v, w)

 =
∑
|i|=2

bi B2
i (u) =


∑
|i|=2

ci,j,k B2
i,j,k(u, v, w)∑

|i|=2
di,j,k B2

i,j,k(u, v, w)∑
|i|=2

ei,j,k B2
i,j,k(u, v, w)

 . (2)

Figure 3 depicts the general mapping of the standard tetrahedron to a curved tetrahedron.
We use quadratic Bernstein-Bézier polynomials as basis functions for the approximation of

a field function defined over non-curved simplicial elements as well. We denote these quadratic
basis functions as B2

i (x) = B2
i,j(x, y) (= B2

i,j,k(x, y, z) in the 3D case). A generalization of
the standard Bernstein-Bézier polynomials is necessary for curved simplicial elements. We
define the needed generalized quadratic basis polynomials for curved elements in Appendix
A. Figure 4 shows the graph of a quadratic polynomial defined over its associated curved
triangular domain.

3 Initial Simplicial Domain Decomposition

The main objective driving the development of our method is the hierarchical representation of
very large scientific data sets enabling real-time and adaptive data processing and visualization.
Data sets resulting from computational simulations are typically defined on a grid, and the
dependent variables are associated with either the vertices, also called nodes in the finite
element literature, or the elements defining the grid. We assume that a data set is provided
on a high-resolution grid. The original grid, its boundaries, and possibly known locations of
field discontinuities (in the dependent variables) influence how we define an initial simplicial
decomposition of the relevant 2D/3D domain.

The objective is to initially represent the 2D/3D domain with a relatively small number of
curved simplicial elements, using curved elements only where they help to better approximate
domain boundaries and known field discontinuities. In the 2D case, the grid points discretizing
the domain boundary represent curves, while they represent surfaces in the 3D setting. For
practical purposes we proceed as follows: First, we compute the bounding box of the original
set of grid points and decompose this box into two (five) non-curved triangles (tetrahedra).
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Figure 4 Graph of quadratic polynomial over its curved simplicial domain (Bernstein-Bézier
control net shown for curved domain simplex).

Second, we clip these non-curved simplices against the curves (surfaces) defining the domain
boundaries. Third, we identify the portion of the initial two (five) simplices that lies inside
the domain over which the dependent variable(s) must be approximated; we represent this
portion by using initially non-curved simplices only.

We consider perpendicular distance values to determine the quality of a simplicial domain
decomposition. We compute the distances of the original grid boundary points from the
boundary edges (faces) of the initially non-curved (boundary) simplices. If these distance
values are larger than a certain threshold, we must solve a local optimization problem, i.e.,
we deform an edge/face of a non-curved simplex in a quadratic fashion such that the original
grid points in the affected areas are (nearly) optimally approximated by quadratic curves
(surfaces). We can solve this problem locally as a univariate (bivariate) approximation
problem by considering the distances of original grid points in normal direction of the
associated edges/faces of the simplicial boundary elements. We note that the construction
of a globally optimal boundary curve/surface approximation is a subject in its own right,
but it is not the focus of this paper. We continue our discussion by assuming that boundary
approximation schemes suitable for incorporation into our overall scheme are available.

Geometry and domain boundaries can be identified easily from an originally supplied grid.
One simply needs to identify elements with edges/faces that are not shared by other elements.
It is much harder to identify the locations in 2D/3D space where field discontinuities, i.e.,
discontinuities of the functions describing the dependent variables, occur. Such discontinuities
should be preserved in a simplicial approximation as much as possible. Such discontinuities,
once there locations are known, can be treated by curved simplicial elements just like domain
boundaries.



B. Hamann 51

z
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Figure 5 Shared face of two simplicial elements in 3D space is planar but may have curved edges.

The detection of discontinuities of scalar-valued functions over 2D/3D domains has
been an active research area in several disciplines, including digital image analysis, pattern
recognition/feature extraction from satellite imagery, and scientific data visualization. We
refer to the methods described in [2, 40] for more detail. For our purposes, we assume that
discontinuities can effectively be extracted from a given data set and that curves/surfaces are
used to represent them in the 2D/3D domain. Topologically, we treat these curves (surfaces)
in the same way as we treat boundary curves (surfaces) by using simplices with curved
edges/faces where they touch these discontinuities. Thus, every discontinuity is approached
from two sides, and the simplicial elements touching a discontinuity do not share vertices.
(The geometrical information of vertices of these elements is shared by vertices along/on
field discontinuities, but the coefficients used for field function approximation are different.)
Once an initial decomposition of the domain is constructed, we compute the implied best
quadratic spline approximation, which we describe in the next section.

In the 3D case, we ensure that each face that is shared by two simplices is planar.
Nevertheless, certain edges of a shared planar face may be curved whenever these edges
belong to a simplex face that approximates the domain boundary geometry (surface) or a
discontinuity in the 3D domain. This situation is illustrated in Figure 5.

4 Best Approximation

We assume that the field/function to be approximated over a 2D/3D domain is known
analytically. Should this not be the case, e.g., in the case of scattered data (randomly
distributed points with associated function values but without connectivity information),
it is always possible to construct an analytical representation by performing a prior data
interpolation or approximation step, see [13, 37]. In the case that a data set is defined
on a grid, the required analytical definition is given by a piecewise linear function for a
simplicial (triangular, tetrahedral) grid and a piecewise bilinear/trilinear function in the case
of quadrilateral/hexahedral grid cells. (We assume that function values are associated with
grid vertices.) We denote the analytical function to be approximated over the domain by
F (x). Based on an initial simplicial domain decomposition, we compute the corresponding
best piecewise quadratic approximation of F (x) by solving the normal equations, see [9].
The normal equations determine the set of coefficients for the desired quadratic spline
representation, a best approximation in the least squares sense.

Corner vertices of simplicial elements may be shared by any number of simplices, and we
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Figure 6 Types of basis functions. Basis function associated with shared corner (left) and shared
edge (right).

denote the basis function that we associate with a corner vertex vi by fi(x). An edge of a
simplicial element may be shared by no more than two simplices in the 2D case and by an
arbitrary number of simplices in the 3D case. We denote a basis function that we associate
with a simplex edge ej by gj(x). We refer to the set of simplices sharing a common corner
vertex as the platelet of this corner, and we call the set of simplices sharing a common edge
edge neighbors. Thus, a set of platelet simplices defines the region in space over which a
basis function associated with the corresponding corner vertex is non-zero. Edge neighbors,
associated with a particular edge, define the region in space over which a basis function
associated with this edge is non-zero. Instead of providing a formal definition for these two
types of basis functions, we refer to Figure 6 that depicts the types for the bivariate case.

We denote a best approximation as a(x), and we write it as a linear combination of the
basis functions associated with all distinct simplex corners and simplex edges. Assuming
that there are m distinct corners and n distinct edges, we can write a best approximation as

a(x) =
m∑

i=1
ci fi(x) +

n∑
j=1

dj gj(x). (3)

We must solve the normal equations to obtain the unknown coefficients ci and dj . In matrix
form, the normal equations are

〈f1, f1〉 . . . 〈f1, fm〉 〈f1, g1〉 . . . 〈f1, gn〉
...

...
〈fm, f1〉 . . . 〈fm, fm〉 〈fm, g1〉 . . . 〈fm, gn〉
〈g1, f1〉 . . . 〈g1, fm〉 〈g1, g1〉 . . . 〈g1, gn〉

...
...

〈gn, f1〉 . . . 〈gn, fm〉 〈gn, g1〉 . . . 〈gn, gn〉





c1
...

cm

d1
...

dn


=



〈F, f1〉
...

〈F, fm〉
〈F, g1〉

...
〈F, gn〉


, (4)

where 〈G, H〉 denotes the inner product of the two functions G and H, i.e.,

〈G, H〉 =
∫

common domain of G and H

G(x) H(x) dx. (5)

We must compute inner products involving curved and non-curved simplices. Since all
simplicial elements in physical space are defined as quadratic (or linear) mappings of the
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standard simplex, we can simplify integration by making use of the change-of-variables
theorem, see [34], which relates integration in physical space to integration in parameter
space for parametrically defined regions. In the 2D case, integrals are computed according to
the formula∫

curved simplex

G(x, y) dx dy =
∫

standard simplex

G
(

x(u, v), y(u, v)
)

J(u, v) du dv, (6)

where J(u, v) denotes the Jacobian associated with the mapping of the standard simplex to
the corresponding simplex in physical space. The Jacobian is the determinant

J(u, v) = |xu| =
∣∣∣∣ xu xv

yu yv

∣∣∣∣ =

∣∣∣∣∣∣
∂

∂u x(u, v) ∂
∂v x(u, v)

∂
∂u y(u, v) ∂

∂v y(u, v)

∣∣∣∣∣∣ . (7)

(The 3D case is a straightforward extension.) When using a simple linear transformation to
map the parameter space knots ui to associated physical space points xi, the Jacobian has a
constant value C. This constant value is given by the determinant

C =
∣∣ d2,0 d0,2

∣∣ (8)

in the 2D case and

C =
∣∣ d2,0,0 d0,2,0 d0,0,2

∣∣ (9)

in the 3D case, where the column vectors di are given by di = xi − x0.
The matrices resulting for the best approximation problems for different levels of simplicial

resolution are sparse, and several methods exist for bandwidth reduction, efficient factorization,
and inversion of such sparse matrices, see [8, 15, 18, 42, 44]. Matrix bandwidth is related
to the indexing scheme used for the set of basis functions, i.e., the indexing used for
simplex corners and simplex edges. We apply a bandwidth reduction step prior to matrix
factorization/inversion.

The computation of the inner products appearing in the normal equations requires
multi-dimensional integration over non-curved and curved simplicial elements. While the
change-of-variables theorem reduces this integration to integration over the standard simplex,
we still need to perform numerical integration for the calculation of the inner products
appearing on the right-hand side of the normal equations, i.e., integrals of the types 〈F, fi〉
and 〈F, gj〉, since F (x) can be any integrable function. We use Romberg integration for the
computation of these right-hand-side inner products, see [3, 27]. Appendix B lists some of
the needed inner product values for quadratic Bernstein-Bézier polynomials.

Once we have computed a best approximation for a particular simplicial domain decom-
position, we analyze the local approximation quality to identify those simplices that should
be refined (bisected) to further improve approximation quality. In the following section, we
discuss the general principles used for adaptive bisection.

5 Adaptive Bisection

For each simplicial element in a particular domain decomposition, we compute a local
approximation error. We define this error as

E(Si) =
∫

curved simplex Si

(
F (x)− a(x)

)2
dx. (10)

Chapte r 4



54 On Curved Simplicial Elements ...

Figure 7 Bisection of simplices in bivariate and trivariate cases.

We order the set {Si} of simplicial elements in decreasing order of their associated error
values E(Si). To construct a new, refined best approximation we specify a percentage of
simplices to be bisected and choose the simplices with largest approximation errors.

We bisect a simplicial element marked for refinement by identifying an edge of maximal
length, using arc length in the case of curved edges, and split this element by using the
midpoint of the split edge as a new simplicial corner vertex. The bisection step is shown in
Figure 7. All simplices sharing the split edge are bisected as well to avoid so-called hanging
nodes and thus preserve a conforming mesh. The bisection steps lead to a new simplicial
domain decomposition, and we must compute a new best quadratic spline approximation.

We continue to bisect a certain percentage of simplices in the resulting intermediate
simplicial domain decompositions until either the number of simplices in a decomposition
exceeds some threshold or an approximation is obtained whose maximal simplex-specific
error value is smaller than some tolerance. In principle, it is possible to store all intermediate
best quadratic spline approximations in addition to the originally supplied data, possibly
including a grid. For practical purposes, this might not always be possible due to storage
limitations. Therefore, the number of different best approximations that one stores usually
depends on the original resolution of a given data set and its underlying grid, the “complexity”
of a given analytical field function, the amount of storage available, and the criterion used
to terminate adaptive bisection. The final result of our method is a set of independent
best quadratic spline approximations to be used for the purposes of real-time, adaptive, or
hierarchical analysis and visualization.

6 Data Visualization Issues

Our data approximation method based on curved simplicial elements must also be considered
in the context of visualization techniques applied to data sets defined over 2D and 3D domains.
In the case of scalar-valued data sets, the particularly relevant visualization approaches to
be considered are (i) extraction and visualization of isocurves/isosurfaces or contours; (ii)
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slicing the data domain with lines/planes (slicing lines/planes); and (iii) ray casting, see
[19, 55, 56]. Applying these types of visualization techniques to curved simplicial elements
over which the dependent variable varies in a quadratic fashion requires us to generalize
standard visualization methods that often can deal only with elements with planar faces and
linearly or trilinearly varying dependent scalar value.

It is reasonable to view an approximation consisting of curved quadratic simplicial
elements to be competitive with a representation consisting of only non-curved, linear
simplicial elements when the higher-degree polynomial representation can be rendered nearly
as efficiently as the linear one. To study the competitiveness of the piecewise quadratic
approximation scheme one must compare rendering efficiency and simplicity for two types
of approximation: a piecewise quadratic approximation based on a combination of non-
curved and curved simplices and a piecewise linear approximation based on only non-curved
simplices. In order to compare two approximation schemes properly, one must require that
their respective overall approximation errors are nearly the same.

The application of slicing methods, contouring techniques, and ray casting to non-curved
quadratic elements is done routinely. As discussed in [58], for example, the intersection of
a ray with an isosurface inside a non-curved 3D simplicial quadratic element, for example,
reduces to solving a univariate quadratic equation. The volume rendering integral along a
ray segment, see [35], is generally too complex to be integrated in closed form, and it is
therefore computed numerically. A cut plane intersects a non-curved simplicial element in a
polygon on which the scalar field is a quadratic function. Quadratic texture coordinates can
be computed in software, or in hardware by taking advantage of texture look-up tables.

Visualization of curved simplicial elements is much more difficult. A quadratic mapping
from parameter to physical space must be inverted prior to evaluating a scalar field function
at a point in physical space. In the case of curved tetrahedral elements, this requires one to
solve three quadratic equations in three variables simultaneously, which can be done with
numerical techniques. One could require that a tetrahedral face shared by two tetrahedra
is planar, and thus it would be possible to define the field function directly in terms of
physical space. The construction of the necessary basis functions for this case is described in
Appendix A. Similar problems arise when intersecting a ray with an isosurface or a curved
simplex face. We intend to investigate in the future how to render curved simplices directly
by solving the involved algebraic equations most elegantly and most efficiently.

A simple solution is to subdivide a curved simplex adaptively, depending on a view, and
approximate a curved simplex by non-curved simplices resulting from a properly chosen
subdivision scheme. One can replace edge endpoints with the respective edge midpoints. A
reasonable criterion to use when deciding when to terminate the subdivision process could
be based on the image-space projected maximal deviation of the (union of) the non-curved
simplices from their curved “parent” simplex, to allude to just one possibility. Since we
represent curved simplicial elements in Bernstein-Bézier form, one could also apply subdivision
techniques used in computer-aided geometric design, see [12]. An algorithm like the one
described in in [58] could then be applied to the set of non-curved simplices, having quadratic
variation only in scalar value.

7 Conclusions

We have described a method for the construction of hierarchical approximations of functions
over 2D and 3D domains. The method uses curved simplicial elements to represent the
finite domain of a function to be approximated and constructs a best piecewise quadratic
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approximation in the least squares sense. Curved simplicial elements are promising in the
context of approximating complicated 2D or 3D domains and the dependent functions defined
over these domains. Such higher-order elements allow one to construct approximations with
relatively smaller error when compared to lower-order and non-curved elements.

8 Acknowledgments

This work was supported by the National Science Foundation under contracts ACI 9624034
(CAREER Award), through a Large Scientific and Software Data Set Visualization (LSSDSV)
grant under contract ACI 9982251, and an Information Technology Research (ITR) sub-award.
We thank the members of the Visualization and Computer Graphics Research Group at the
Institute for Data Analysis and Visualization (IDAV)) at the University of California, Davis.

References
1 Bajaj, C. L, Pascucci, V. and Zhuang, G. (1999), Progressive compression and transmis-

sion of arbitrary triangular meshes, in: Gross, M., Ebert, D. S. and Hamann, B., eds.,
Visualization ’99, IEEE Computer Society Press, Los Alamitos, California, pp. 307–316.

2 Ballard, D. H. and Brown, C. M. (1982), Computer Vision, Prentice-Hall, Inc., Englewood
Cliffs, NJ.

3 Boehm, W. and Prautzsch, H. (1993), Numerical Methods, A K Peters, Ltd., Wellesley,
MA.

4 Bonneau, G. P., Hahmann, S. and Nielson, G. M. (1996), BLaC-wavelets: A multiresolution
analysis with non-nested spaces, in: Yagel, R. and Nielson, G. M., eds., Visualization ’96,
IEEE Computer Society Press, Los Alamitos, CA, pp. 43–48.

5 Bonneau, G. P. (1999), Optimal triangular Haar bases for spherical data, in: Gross, M.,
Ebert, D. S. and Hamann, B., eds., Visualization ’99, IEEE Computer Society Press, Los
Alamitos, California, pp. 279–284.

6 Cignoni, P., De Floriani, L., Montani, C., Puppo, E. and Scopigno, R. (1994), Multiresolu-
tion modeling and visualization of volume data based on simplicial complexes, in: Kaufman,
A. E. and Krüger, W., eds., 1994 Symposium on Volume Visualization, IEEE Computer
Society Press, Los Alamitos, CA, pp. 19–26.

7 Cohen-Or, D., Levin, D. and Remez, O. (1999), Progressive compression of arbitrary trian-
gular meshes, in: Gross, M., Ebert, D. S. and Hamann, B., eds., Visualization ’99, IEEE
Computer Society Press, Los Alamitos, California, pp. 67–72.

8 Cuthill, E. and McKee, J. (1969), Reducing the bandwidth of sparse symmetric matrices,
in: Proceedings of the ACM National Conference, Association for Computing Machinery,
New York, NY, pp. 157–172.

9 Davis, P. J. (1975), Interpolation and Approximation, Dover Publications, Inc., New York,
NY.

10 Dyn, N., Levin, D., and Rippa, S. (1990), Algorithms for the construction of data dependent
triangulations, in: Mason, J. C. and Cox, M. G., eds., Algorithms for Approximation II,
Chapman and Hall, New York, NY, pp. 185–192.

11 Eck, M., DeRose, A. D., Duchamp, T., Hoppe, H., Lounsbery, M. and Stuetzle, W. (1995),
Multiresolution analysis of arbitrary meshes, in: Cook, R., ed., Proceedings of SIGGRAPH
1995, ACM Press, New York, NY, pp. 173–182.

12 Farin, G. (2001), Curves and Surfaces for CAGD: A Practical Guide, fifth edition, Morgan
Kaufmann Publishers, Inc., San Francisco, CA.

13 Franke, R. (1982), Scattered data interpolation: Tests of some methods, Math. Comp. 38,
pp. 181–200.



B. Hamann 57

14 George, P. L. (1991), Automatic Mesh Generation, Wiley & Sons, New York, NY.
15 Gibbs, N. E., Poole, W. G. and Stockmeyer P. K. (1976), An algorithm for reducing the

bandwidth and profile of a sparse matrix, SIAM J. Numer. Anal. 13(2), pp. 236–250.
16 Gieng, T. S., Hamann, B., Joy, K. I., Schussman, G. L. and Trotts, I. J. (1997), Smooth

hierarchical surface triangulations, in: Yagel, R. and Hagen, H., eds., Visualization ’97,
IEEE Computer Society Press, Los Alamitos, CA, pp. 379–386.

17 Gieng, T. S., Hamann, B., Joy, K. I., Schussman, G. L. and Trotts, I. J. (1998), Constructing
hierarchies for triangle meshes, IEEE Transactions on Visualization and Computer Graphics
4(2), pp. 145–161.

18 Golub, G. H. and Van Loan, C. F. (1989), Matrix Computations, second edition, Johns
Hopkins University Press, Baltimore, MD.

19 Gregorski, B. F., Wiley, D. F, Childs, H. R., Hamann, B. and Joy, K. I. (2006), Adaptive
contouring with quadratic tetrahedra, in: Bonneau, G.-P., Ertl, T. and Nielson, G. M., eds.,
Scientific Visualization: The Visual Extraction of Knowledge from Data, Springer-Verlag,
Heidelberg, Germany, pp. 3–15.

20 Gross, M. H., Gatti, R. and Staadt, O. (1995), Fast multiresolution surface meshing, in:
Nielson, G. M. and Silver, D. eds., Visualization ’95, IEEE Computer Society Press, Los
Alamitos, CA, pp. 135–142.

21 Grosso, R., Lürig, C. and Ertl, T. (1997), The multilevel finite element method for adaptive
mesh optimization and visualization of volume data, in: Yagel, R. and Hagen, H., eds.,
Visualization ’97, IEEE Computer Society Press, Los Alamitos, CA, pp. 387–394.

22 Hagen, H., Müller, H. and Nielson, G. M., eds. (1993), Focus on Scientific Visualization,
Springer-Verlag, New York, NY.

23 Hamann, B. (1994), A data reduction scheme for triangulated surfaces, Computer Aided
Geometric Design 11(2), pp. 197–214.

24 Hamann, B. and Chen, J. L. (1994a), Data point selection for piecewise linear curve ap-
proximation, Computer Aided Geometric Design 11(3), pp. 289–301.

25 Hamann, B. and Chen, J. L. (1994b), Data point selection for piecewise trilinear approxi-
mation, Computer Aided Geometric Design 11(5), pp. 477–489.

26 Hamann, B. and Jordan, B. W. (1998), Triangulations from repeated bisection, in: Dæhlen,
M., Lyche, T. and Schumaker, L. L., eds., Mathematical Methods for Curves and Surfaces
II, Vanderbilt University Press, Nashville, TN, pp. 229–236.

27 Hamann, B., Jordan, B. W. andWiley, D. A. (1999), On a construction of a hierarchy of best
linear spline approximations using repeated bisection, IEEE Transactions on Visualization
and Computer Graphics 5(1/2), pp. 30–46, p. 190 (errata).

28 Heckel, B., Weber, G. H., Hamann, B. and Joy, K. I. (1999), Construction of vector field
hierarchies, in: Gross, M., Ebert, D. S. and Hamann, B., eds., Visualization ’99, IEEE
Computer Society Press, Los Alamitos, California, pp. 19–25.

29 Hoppe, H. (1996), Progressive meshes, in: Rushmeier, H., ed., Proceedings of SIGGRAPH
1996, ACM Press, New York, NY, pp. 99–108.

30 Hoppe, H. (1997), View-dependent refinement of progressive meshes, in: Whitted, T., ed.,
Proceedings of SIGGRAPH 1997, ACM Press, New York, NY, pp. 189–198.

31 Hoppe, H. (1999), New quadric metric for simplifying meshes with appearance attributes,
in: Gross, M., Ebert, D. S. and Hamann, B., eds., Visualization ’99, IEEE Computer
Society Press, Los Alamitos, California, pp. 59–66.

32 Knupp, P. M. and Steinberg, S. (1993), Fundamentals of Grid Generation, CRC Press,
Boca Raton, FL.

33 Kreylos, O. and Hamann, B. (1999), On simulated annealing and the construction of linear
spline approximations for scattered data, in: Gröller, E., Löffelmann, H. and Ribarsky, W.,
eds., Data Visualization ’99, Springer-Verlag, Vienna, Austria, pp. 189–198.

Chapte r 4



58 On Curved Simplicial Elements ...

34 Marsden, J. E. and Tromba, A. J. (1988), Vector Calculus, third edition, W. H. Freeman
and Company, New York, NY.

35 Max, N. L. (1995), Optical models for direct volume rendering, IEEE Transactions on
Visualization and Computer Graphics 1(2), pp. 99–108.

36 Nadler, E. (1986), Piecewise linear best L2 approximation on triangulations, in: Ward,
J. D., ed., Approximation Theory V, Academic Press, Inc., San Diego, CA, pp. 499–502.

37 Nielson, G. M. (1993), Scattered data modeling, IEEE Computer Graphics and Applica-
tions 13(1), pp. 60–70.

38 Nielson, G. M., Jung, I.-H. and Sung, J. (1997a), Haar wavelets over triangular domains
with applications to multiresolution models for flow over a sphere, in: Yagel, R. and Hagen,
H., eds., Visualization ’97, IEEE Computer Society Press, Los Alamitos, CA, pp. 143–149.

39 Nielson, G. M., Müller, H. and Hagen, H., eds.(1997b), Scientific Visualization: Overviews,
Methodologies, and Techniques, IEEE Computer Society Press, Los Alamitos, CA.

40 Pavlidis, T. (1980), Structural Pattern Recognition, second printing, Springer-Verlag, New
York, NY.

41 Piegl, L. A. and Tiller, W. (1996), The NURBS Book, second edition, Springer-Verlag, New
York, NY.

42 Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992), Numerical
Recipes in C, second edition, Cambridge University Press, New York, NY.

43 Rippa, S. (1992), Long and thin triangles can be good for linear interpolation, SIAM J.
Numer. Anal. 29(1), pp. 257–270.

44 Rosen, R. (1968), Matrix bandwidth minimization, in: Proceedings of the ACM National
Conference, ACM publication no. P-68, Brandon Systems Press, Princeton, NJ, pp. 585–
595.

45 Rosenblum, L. J., Earnshaw, R. A., Encarnação, J. L., Hagen, H., Kaufman, A. E.,
Klimenko, S., Nielson, G. M., Post, F. and Thalmann, D., eds. (1994), Scientific
Visualization—Advances and Challenges, IEEE Computer Society Press, Los Alamitos, CA.

46 Samet, H. (1990), The Design and Analysis of Spatial Data Structures, Addison Wesley,
New York, NY.

47 Samet, H. (2006), Foundations of Multidimensional and Metric Data Structures, Elsevier
B. V., Amsterdam, The Netherlands.

48 Staadt, O. G., Gross, M. H. and Weber, R. (1997), Multiresolution compression and re-
construction, in: Yagel, R. and Hagen, H., eds., Visualization ’97, IEEE Computer Society
Press, Los Alamitos, CA, pp. 337–346.

49 Thompson, J. F., Warsi, Z. U. A. and Mastin, C. W. (1985), Numerical Grid Generation,
North-Holland, New York, NY.

50 Thompson, J. F., Soni, B. K. and Weatherill, N. P., eds. (1999), Handbook of Grid Gener-
ation, CRC Press, Boca Raton, FL.

51 Trotts, I. J., Hamann, B. and Joy, K. I. (1999), Simplification of tetrahedral meshes with
error bounds, IEEE Transactions on Visualization and Computer Graphics 5(3), pp. 224–
237.

52 Trotts, I. J., Hamann, B., Joy, K. I. and Wiley, D. F. (1998), Simplification of tetrahedral
meshes, in: Ebert, D. S., Hagen, H. and Rushmeier, H. E., eds., Visualization ’98, IEEE
Computer Society Press, Los Alamitos, California, pp. 287–295.

53 Wiley, D. F., Bertram, M. and Hamann, B. (2004), On a construction of a hierarchy of
best linear spline approximations using a finite element approach, IEEE Transactions on
Visualization and Computer Graphics 10(5), pp. 548–563.

54 Wiley, D. F., Bertram, M., Jordan, B. W., Hamann, B., Joy, K. I., Max, N. L. and
Scheuermann, G. (2003), Hierarchical spline approximation, in: Farin, G., Hamann, B. and



B. Hamann 59

Hagen, H., eds., Hierarchical and Geometrical Methods in Scientific Visualization, Springer-
Verlag, Heidelberg, Germany, pp. 63–88.

55 Wiley, D. F., Childs, H. R., Gregorski, B. F., Hamann, B. and Joy, K. I. (2003), Contouring
curved quadratic elements, in: Bonneau, G.-P., Hahmann, S. and Hansen, C. D., eds., Data
Visualisation 2003, Eurographics Association, Aire-la-Ville, Switzerland, pp. 167–176.

56 Wiley, D. F., Childs, H. R., Hamann, B. and Joy, K. I. (2004), Ray casting curved-quadratic
elements, in: Deussen, O., Hansen, C. D., Keim, D. A. and Saupe, D., eds., Data Visual-
ization 2004, Eurographics Association, Aire-la-Ville, Switzerland, pp. 201–209.

57 Wiley, D. F., Childs, H. R., Hamann, B., Joy, K. I. and Max, N. L. (2002), Best quadratic
spline approximation for hierarchical visualization, in: Ebert, D. S., Brunet, P. and Navazo,
I., eds., Data Visualisation 2002, Eurographics Association, Aire-la-Ville, Switzerland,
pp. 133–140.

58 Williams, P. L., Max, N. L. and Stein, C. M. (1998), A high accuracy volume renderer
for unstructured data, IEEE Transactions on Visualization and Computer Graphics 4(1),
pp. 37–54.

59 Xia, J. C. and Varshney, A. (1996), Dynamic view-dependent simplification for polygonal
meshes, in: Yagel, R. and Nielson, G. M., eds., Visualization ’96, IEEE Computer Society
Press, Los Alamitos, CA, pp. 327–334.

60 Zienkiewicz, O. C. and Taylor, R. L. (2006), The Finite Element Method, sixth edition,
Elsevier B. V., Amsterdam, The Netherlands.

A Quadratic Basis Polynomials

Our method requires quadratic basis polynomials for non-curved and curved simplicial
elements. We review the definition of the standard Bernstein-Bézier polynomials used for
non-curved elements before generalizing these polynomials for curved elements.

The quadratic Bernstein-Bézier polynomial basis functions, defined for the standard
simplex in parameter space, are

B2
i (u) = 2!

(2− i− j)! i! j! (1− u− v)2−i−j ui vj (11)

in the bivariate case and

B2
i (u) = 2!

(2− i− j − k)! i! j! k! (1− u− v − w)2−i−j−k ui vj wk (12)

in the trivariate case. Through a linear parameter transformation we can evaluate these
quadratic polynomials over all non-curved simplices in physical space. Figure 8 illustrates
the graphs of two quadratic Bernstein-Bézier basis functions in the 2D case over the standard
triangle.

We must define quadratic basis polynomials for field function approximation over curved
simplices in a different way. These more general polynomials are not the result of applying a
simple linear parameter transformation. We define quadratic basis polynomials for curved
simplices in a way such that they are a generalization of the standard Bernstein-Bézier
polynomials for non-curved simplices and guarantee continuity in function value along/on the
shared edges/faces of all simplices. We define these generalized quadratic basis polynomials in
physical space: In the 2D case, it is possible to think of a set of six simplex-specific quadratic
basis polynomials, denoted as {Qi,j(x, y)}, as a set of six quadratic polynomials satisfying
certain interpolation conditions. We specify interpolation conditions at points (xk,l, yk,l)
that are distributed uniformly with respect to arc length along the edges of a curved simplex.
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Figure 8 Graphs of quadratic Bernstein-Bézier basis polynomials.

Using the short-hand notation Qk,l
i,j for Qi,j(xk,l, yk,l), the interpolation conditions, when

written in matrix form, are given by



Q0,0
0,0 Q1,0

0,0 Q2,0
0,0 Q0,1

0,0 Q1,1
0,0 Q0,2

0,0
Q0,0

1,0 Q1,0
1,0 Q2,0

1,0 Q0,1
1,0 Q1,1

1,0 Q0,2
1,0

Q0,0
2,0 Q1,0

2,0 Q2,0
2,0 Q0,1

2,0 Q1,1
2,0 Q0,2

2,0
Q0,0

0,1 Q1,0
0,1 Q2,0

0,1 Q0,1
0,1 Q1,1

0,1 Q0,2
0,1

Q0,0
1,1 Q1,0

1,1 Q2,0
1,1 Q0,1

1,1 Q1,1
1,1 Q0,2

1,1
Q0,0

0,2 Q1,0
0,2 Q2,0

0,2 Q0,1
0,2 Q1,1

0,2 Q0,2
0,2


= 1

4



4 1 0 1 0 0
0 2 0 0 0 0
0 1 4 0 1 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 1 1 4


. (13)

These interpolation conditions lead to the standard Bernstein-Bézier polynomials when
applied to a non-curved simplex. The construction of the basis polynomials in the 3D case is
based on the same principle.

Each generalized quadratic basis polynomial is zero outside the particular simplex for which
it is defined. The quadratic basis polynomials associated with curved simplices are not as
easily constructed and evaluated as those associated with non-curved simplices. Nevertheless,
once the generalized quadratic basis polynomials are determined for all curved simplices, we
can still compute inner products involving them by applying the change-of-variables theorem.

B Inner Products of Basis Polynomials

In the following, we define some of the required values of inner products of quadratic
polynomials. We only consider the case of these polynomials being defined over the standard
simplex in parameter space. For the quadratic Bernstein-Bézier basis polynomials B2

i (u)
defined for knots spaced uniformly along the edges of the standard simplex one obtains these
values for inner products Ik,l

i,j = 〈Bi,j , Bk,l〉 in the 2D case:



I0,0
0,0 I1,0

0,0 I2,0
0,0 I0,1

0,0 I1,1
0,0 I0,2

0,0
I0,0

1,0 I1,0
1,0 I2,0

1,0 I0,1
1,0 I1,1

1,0 I0,2
1,0

I0,0
2,0 I1,0

2,0 I2,0
2,0 I0,1

2,0 I1,1
2,0 I0,2

2,0
I0,0

0,1 I1,0
0,1 I2,0

0,1 I0,1
0,1 I1,1

0,1 I0,2
0,1

I0,0
1,1 I1,0

1,1 I2,0
1,1 I0,1

1,1 I1,1
1,1 I0,2

1,1
I0,0

0,2 I1,0
0,2 I2,0

0,2 I0,1
0,2 I1,1

0,2 I0,2
0,2


= 1

180



6 3 1 3 1 1
3 4 3 2 2 1
1 3 6 1 3 1
3 2 1 4 2 3
1 2 3 2 4 3
1 1 1 3 3 6


. (14)
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In the 3D case, the needed values of inner products I l,m,n
i,j,k = 〈Bi,j,k, Bl,m,n〉 are

I0,0,0
0,0,0 I1,0,0

0,0,0 I2,0,0
0,0,0 I0,1,0

0,0,0 I1,1,0
0,0,0 I0,2,0

0,0,0 I0,0,1
0,0,0 I1,0,1

0,0,0 I0,1,1
0,0,0 I0,0,2

0,0,0
I0,0,0

1,0,0 I1,0,0
1,0,0 I2,0,0

1,0,0 I0,1,0
1,0,0 I1,1,0

1,0,0 I0,2,0
1,0,0 I0,0,1

1,0,0 I1,0,1
1,0,0 I0,1,1

1,0,0 I0,0,2
1,0,0

I0,0,0
2,0,0 I1,0,0

2,0,0 I2,0,0
2,0,0 I0,1,0

2,0,0 I1,1,0
2,0,0 I0,2,0

2,0,0 I0,0,1
2,0,0 I1,0,1

2,0,0 I0,1,1
2,0,0 I0,0,2

2,0,0
I0,0,0

0,1,0 I1,0,0
0,1,0 I2,0,0

0,1,0 I0,1,0
0,1,0 I1,1,0

0,1,0 I0,2,0
0,1,0 I0,0,1

0,1,0 I1,0,1
0,1,0 I0,1,1

0,1,0 I0,0,2
0,1,0

I0,0,0
1,1,0 I1,0,0

1,1,0 I2,0,0
1,1,0 I0,1,0

1,1,0 I1,1,0
1,1,0 I0,2,0

1,1,0 I0,0,1
1,1,0 I1,0,1

1,1,0 I0,1,1
1,1,0 I0,0,2

1,1,0
I0,0,0

0,2,0 I1,0,0
0,2,0 I2,0,0

0,2,0 I0,1,0
0,2,0 I1,1,0

0,2,0 I0,2,0
0,2,0 I0,0,1

0,2,0 I1,0,1
0,2,0 I0,1,1

0,2,0 I0,0,2
0,2,0

I0,0,0
0,0,1 I1,0,0

0,0,1 I2,0,0
0,0,1 I0,1,0

0,0,1 I1,1,0
0,0,1 I0,2,0

0,0,1 I0,0,1
0,0,1 I1,0,1

0,0,1 I0,1,1
0,0,1 I0,0,2

0,0,1
I0,0,0

1,0,1 I1,0,0
1,0,1 I2,0,0

1,0,1 I0,1,0
1,0,1 I1,1,0

1,0,1 I0,2,0
1,0,1 I0,0,1

1,0,1 I1,0,1
1,0,1 I0,1,1

1,0,1 I0,0,2
1,0,1

I0,0,0
0,1,1 I1,0,0

0,1,1 I2,0,0
0,1,1 I0,1,0

0,1,1 I1,1,0
0,1,1 I0,2,0

0,1,1 I0,0,1
0,1,1 I1,0,1

0,1,1 I0,1,1
0,1,1 I0,0,2

0,1,1
I0,0,0

0,0,2 I1,0,0
0,0,2 I2,0,0

0,0,2 I0,1,0
0,0,2 I1,1,0

0,0,2 I0,2,0
0,0,2 I0,0,1

0,0,2 I1,0,1
0,0,2 I0,1,1

0,0,2 I0,0,2
0,0,2



= 1
1260



6 3 1 3 1 1 3 1 1 1
3 4 3 2 2 1 2 2 1 1
1 3 6 1 3 1 1 3 1 1
3 2 1 4 2 3 2 1 2 1
1 2 3 2 4 3 1 2 2 1
1 1 1 3 3 6 1 1 3 1
3 2 1 2 1 1 4 2 2 3
1 2 3 1 2 1 2 4 2 3
1 1 1 2 2 3 2 2 4 3
1 1 1 1 1 1 3 3 3 6


. (15)

We use Romberg integration to compute inner products of quadratic basis polynomials fi(x)
and gj(x) and the function F (x) to be approximated.
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Abstract
Visualizations are well suited to communicate large amounts of complex data. With increasing resolution
in the spatial and temporal domain simple imaging techniques meet their limits, as it is quite difficult to
display multiple variables in 3D or analyze long video sequences. Feature detection techniques reduce the
data-set to the essential structures and allow for a highly abstracted representation of the data. However,
current feature detection algorithms commonly rely on a detailed description of each individual feature.
In this paper, we present a feature-based visualization technique that is solely based on the data. Using
concepts from computational mechanics and information theory, a measure, local statistical complexity,
is defined that extracts distinctive structures in the data-set. Local statistical complexity assigns each po-
sition in the (multivariate) data-set a scalar value indicating regions with extraordinary behavior. Local
structures with high local statistical complexity form the features of the data-set. Volume-rendering and
iso-surfacing are used to visualize the automatically extracted features of the data-set. To illustrate the
ability of the technique, we use examples from diffusion, and flow simulations in two and three dimen-
sions.
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Complexity
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1 Introduction

When analyzing their data-sets, one of the important questions of researchers is: Did I see everything
that is relevant? Usually the domain experts can name several structures that they are interested
in and that have significant influence on the system’s evolution. Commonly, such structures are
called features. In fluid dynamics, for example, they comprise structures like vortices, separation
and attachment lines, cycles, and stagnation points. Detecting and visualizing these structures
automatically is of great help for the domain experts. They get a simplified description of the system
and can immediately understand basic properties of their data-set.

In order to detect these prominent structures in a data-set automatically, mathematical descriptions
are required. Some features like stagnation points can be detected very easily, as they are simply
zeros in the vector field. Other features like vortices, however, are very hard to define mathematically.
Several different detection methods based on vorticity, λ2, or the Sujudi and Haimes algorithm exist,
but neither is capable of detecting vortices in all scenarios (Galilean invariance). The vortex example
illustrates that more complex features are often hard to describe with a simple algorithm or formula,
which gets even tougher in an unsteady setting. Here, a less restrictive feature definition would be
beneficial.
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A second problem that arises when looking for features is the fact that there is no general definition
of a feature. In general, features are phenomena, structures or objects in a data set of interest for
the underlying problem [19]. Thus, features strongly depend on the application and the user. Users
from computational fluid dynamics (CFD), magnetic resonance imaging (MRI) and biological system
simulation will be looking for different features and for each field a different set of tools is required
to detect the structures the domain experts are interested in.

Even when provided with the appropriate set of tools, the user still has to run several algorithms
to detect all the different features and usually has to specify parameters for each of them. Hence, the
user has to start five to ten algorithms, set parameters, wait for the results, check whether something
has been found, verify the results and look for structures that are not included in the list of standard
features. Doing this entire procedure for several data-sets can become quite wearisome and much
easier feature detection process would be desirable.

Summarizing these last three scenarios, we found the following weak points of the standard
feature detection procedure:

Most features can be found without domain knowledge even by a novice. Why can’t computers
do this?
A feature may depend on the application. User dependence sounds weird in natural sciences (or
engineering).
If the data describes a physical simulation, a feature should depend only on the data.

To deal with these problems, the feature detection procedure described in the last scenario has to be
highly simplified. The algorithm for the identification of relevant structures we think of, should look
something like this:
1. Load the simulation data.
2. Run the feature detection algorithm.
3. Get a visualization with highlighted features (i.e. the most important regions).
Moreover, we want the logic behind the algorithm to be easy to understand and that the algorithm does
not need a definition or name for all the different types of features it detects. The second requirement
ensures that new structures can be found that have not been identified as features before.

Hence, the goal of the paper is to present a new way towards a feature-based visualization that
does not need a priori definitions of structures that are considered relevant. On the contrary, relevance
is to be directly defined by the data itself and the user is presented those structures that differ from the
basic patterns in the data-set, i.e., the features of the data-set.

2 Related work

Much work has been done in the field of feature detection and visualization. In general four different
concepts can be distinguished: image processing, topological analysis, physical characteristics, and
partition-based approaches. Image processing techniques, e.g. Ebling et al. [6], Schlemmer et al. [24]
and Heiberg et al. [9], often apply pattern matching approaches. Here a two or three-dimensional
pattern is predefined and similar structures are found in the data-set. Although these techniques
are very flexible with respect to finding certain patterns with different scale and/or orientation, the
user still has to define a sample pattern as reference for each of the structures he/she is looking
for. Topological analysis clusters regions of similar behavior/structure. Examples in this area can
be found in the survey by Scheuermann et al. [23]. The topological analysis of a data-set provides
an automatic simplification. However, there is no classification of the importance of the different
structures that have been identified. Many feature detection methods are based on the analysis of
physical characteristics (e.g. Garth et al. [7], Roth [20]), as these are the most intuitive descriptions
for domain experts. Though many excellent methods fall into this category, they all have the problem
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that they are very restrictive concerning the definition. A detailed description of flow feature detection
techniques that fall into these three categories can be found in the survey by Post et al. [19]. The
idea behind partition-based approaches is to separate the domain into regions of similar structure or
behavior. Streamline predicates [22] and pathline attributes [28], for example, cluster integral lines in
the data-set with given properties. The method we are going to present falls into this category, as it
partitions the domain into areas that feature distinct structures and those that do not. Partitioned-based
approaches are summarized in the paper by Salzbrunn et al. [21].

As mentioned before, these standard feature detection methods commonly rely on a given
definition or description of the feature to be found. What we are looking for is a feature description
given by the data-set itself. The third step of the algorithm we have in mind (Section 1) already reveals
the direction we are aiming at. We do not want to provide exact feature definitions, but are looking for
regions of high importance in the data-set. Important is to be understood in an information-theoretic
way, i.e. we want to identify the regions with the highest information content or complexity.

In the literature, a large variety of complexity measures are available, e.g., [2, 4, 8, 16, 27].
Common measures originating from the analysis of strings of data are Shannon entropy [27] and
algorithmic information [1]. Shannon entropy is a measure of the uncertainty associated with a
random variable, whereas the algorithmic information is roughly speaking the length of the shortest
program capable of generating a certain string. Both measures have in common that they are measures
of randomness. In complex systems however, randomness is commonly not considered to be complex.
Likewise, Hogg and Huberman [11] state that complexity is small for completely ordered and
completely disordered patterns and reaches a maximum inbetween. A different approach was taken
by Grassberger [8], who defined complexity as the minimal information that would have to be stored
for optimal predictions. Based on this idea, statistical complexity [4] was introduced identifying
the complexity of a system with the amount of information needed to specify its causal states, i.e.,
its classes of identical behavior. In order to analyze random fields, a point-by-point version was
formulated by Shalizi [25] called local statistical complexity.

3 Specifications

The following work is based on the ideas by Shalizi et al. [26], which assumes the following properties
of a data-set:

1. The data stems from a PDE simulation (in engineering or natural sciences).

2. The solver is based on a finite difference scheme on a Cartesian grid.

3. The data is unsteady and all time-steps and independent variables are available.

The first requirement ensures that the process creating the data is the same at each position in
the resulting field. As PDEs are the standard definition of physical systems, e.g. the Navier-Stokes
equations for fluid flow, this demand sets no limitations. The second requirement allows for the
comparison of local neighborhoods. A sample Cartesian grid is given in Figure 1a. Using finite
difference schemes as solver, clearly defines a local neighborhood that is used to compute the value
in the next time-step as illustrated in Figure 1b. Moreover, initial conditions and boundary conditions
are required for the computation. In the results section we will use data-sets that were computed
using more sophisticated solvers and show that this is no crucial restriction. The third requirement
ensures that exact conclusions about the influence of different positions and variables can be made.

Looking closer at these three requirements, we see that they correspond to the construction rules
of cellular automata, which are well researched.
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(a) Cartesian grid.

(b) Finite difference.

(c) Light-cone configurations.

Figure 1 Different structures in a Cartesian grid: (a) Empty grid. (b) Sample neighborhood used to compute
finite differences. (c) Light-cone structures used for the computation of local statistical complexity.

4 Cellular Automata

A cellular automaton (CA) is a discrete model of a system, with the game of life being the best-known
example. The automaton consists of a regular uniform lattice with a discrete variable at each cell.
The configuration of an automaton at a certain time step is completely specified by the values of the
variables at each site. Following predefined local rules the configuration can change at each discrete
time step. A rule defines which value a cell will take in the next step, depending on the values of
its neighborhood in the present. Typically, the neighborhood of a cell consists of the cell itself and
all immediately adjacent cells. An example for a rule is: If the cell has value 0 and at least two of
its neighbors have value 1, change the cell’s value to 1. For each time step all values are updated
simultaneously.

An example of a 1D cellular automaton is given in Figure 2. The domain can be separated into two
different classes: stable local patterns and defects. The stable local patterns are the areas, that look
like the background of the image. The defects are the triangles in different sizes that move across the
image. Although the stable patterns dominate after some time, the defects are the ones that determine
the long term behavior. Shalizi et al. [26] proposed a filter for the automatic extraction of coherent
structures, i.e. defects, in CA. Their filter is called local statistical complexity and automatically
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Figure 2 Cellular automaton in 1D (top) and corresponding local statistical complexity field (bottom).

detects prominent formations of arbitrary size and shape in unsteady data-sets. Figure 2(bottom)
shows the filtered image of the 1D cellular automaton, highlighting the defects that move around in
the original data-set.

5 Local Statistical Complexity

Local statistical complexity extracts those regions in an unsteady field, where a lot of information
from the local past is required to predict the dynamics in the local future. This happens where the
temporal evolution is very unusual compared to what happens in the rest of the field. In general, users
are interested in a subset of these distinctive regions, as they know the basic structure of their data-set
and want to find regions that behave differently. Especially for large intricate and little understood
data-sets local statistical complexity is a helpful tool to guide the user to regions that might be relevant
for him or her.

Local statistical complexity focuses on the local temporal evolution of the field. The local past of
position p in the field consists of all the points that might influence p. As effects propagate at finite
speed, the past has the shape of a light-cone that is directed towards the past. The apex is located at p.
This concept is likewise used when computing simulations using finite differences or finite elements.
Here the value at position ~x in time-step t is computed from the neighborhood of the point in the
previous time-step t− 1 (Fig. 1c). (An exception is pressure in incompressible flow.) The future
is given by a light-cone that is directed in the opposite direction, i.e., the future. Each light-cone
comprises a set of positions. The values at these positions together with the neighborhood information
are called a configuration. A configuration can be thought of as a pattern that extends in time, space
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and if appropriate over multiple variables. By definition future configurations contain the value at the
apex, past configurations do not.

For each past-cone configuration we would like to be able to predict, what might happen in the
future. The only value that we can predict exactly, is the one at the future-cone apex, as it results from
the calculation rule of the simulation method (remember Fig. 1b). To predict the remaining values
in the future-cone, we need statistics. We group several similar past-configurations and compute
a histogram over the different futures that occur. This estimated distribution tells us which future
configurations are likely for this particular class of behavior in the past. This procedure is repeated
for all different groups of past-configurations.

Analyzing the histograms we computed in the previous step, we will observe that some of them
are very similar. This means that the differences we detected in the past-configurations have no
significant influence on the dynamics in the future. Thus, we merge all those past groups that have
very similar histograms. The different groups that result after the merging are called causal states. A
causal state represents a cause-and-effect relationship between what was observed in the past and
what might happen in the future. So, if we have a past configuration and can determine its causal
state, we can estimate the most probable future dynamics.

Now that we can predict the dynamics in the future given the past configuration, we want to find a
minimal lossless encoding for this information. The code with the shortest expected length is given by
a Huffman-code. A Huffman-code assigns frequent symbols short codewords and rare symbols longer
ones. The entropy H[X ] is a measure of the smallest average codeword length that is theoretically
possible for the given alphabet X . For functions f (x) x ∈ X , mutual information I[ f (X),X ] equals
entropy H[ f (X)]. In order to find an optimal encoding for the past-configurations, we have to find
a function f that minimizes the mutual information I[ f (PastCon f );PastCon f ]. Shalizi et al. [26]
showed that the unique function that minimizes the mutual information is the mapping to the causal
states. Thus, if we store at each position the Huffman-code of the corresponding causal state, we
resolve the file with shortest expected length that still gives us all informations about the dynamics in
the local future.

The encoded file can finally be used to detect distinctive regions. The Huffman-code assigns each
causal state a codeword whose length depends on the number of positions that are assigned to it.
Causal states with a very long codeword feature dynamics in the future that occur very rarely in the
field. Local statistical complexity measures for a past-configuration the length of the codeword of
the corresponding causal state, i.e., the amount of information that is needed to predict the causal
state/the dynamics in the future. The longer the codeword, the more likely it is that something
extraordinary is going to happen in the local future of this position. More information on the theory
and implementation of local statistical complexity and causal states can be found in [26, 14].

6 Application to Finite Difference Schemes

Complexity analysis using local statistical complexity can be applied to scientific simulations as
finite difference schemes, a direct analog to CA rules, can be used to discretize PDEs. The following
simple example of an isotropic diffusion, e.g., ion concentration in water, is used for illustrations.
Given a concentration f (~x, t0) at each position ~x ∈ B at time t0, the temporal development of this
concentration f (~x, t) is observed. The governing PDE is

∂ f
∂ t

(~x, t) = D∆ f (~x, t) (1)

with a constant diffusion coefficient D, time derivative ∂ f
∂ t (~x, t) and Laplacian ∆ f (~x, t). As boundary

conditions constant concentrations are assumed: f (~x, t) = f (~x, t0) for x ∈ ∂B. A simple finite
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(a) Configuration. (b) Config space. (c) Discretization.

(d) Region growing (e) Voronoi cells.

Figure 3 Density-driven Voronoi tessellation: (a) A past configuration extracted from the data-set consisting
of eight variables. (b) This configuration marked in high-dimensional configuration space (only first two of the
eight variables illustrated). (c) Initial fine-grained discretization of the configuration space. (d) Density-driven
region growing starting in densest regions. (e) Final Voronoi tessellation of the configuration space. (f) Final
partitioning of the domain.

difference scheme in the plane consists of a Cartesian lattice L = {0, . . . ,255}×{0, . . . ,255}, a given
concentration f0 : L→ R, and the difference equation

f (x1,x2, t +1) =
1

16
f (x1−1,x2 +1, t)+

1
8

f (x1,x2 +1, t)+
1

16
f (x1 +1,x2 +1, t)+

1
8

f (x1−1,x2 +0, t)+
1
4

f (x1,x2 +0, t)+
1
8

f (x1 +1,x2 +0, t)+ (2)

1
16

f (x1−1,x2−1, t)+
1
8

f (x1,x2−1, t)+
1

16
f (x1 +1,x2−1, t)

which is also known as applying a binomial 3×3 filter to a digital image in image processing [12]. In
this example L is the lattice of the CA, f contains the values over time and Eq. 2 gives the complete
rule. As c = 1, the configurations are as illustrated in Fig. 1c. The reader familiar with either finite
difference schemes or image processing might imagine a larger stencil or filter for c > 1. Similar
schemes can be applied to any PDE, allowing for analysis using local statistical complexity.

7 Computation of Local Statistical Complexity

The first step in visualizing the local statistical complexity of a data-set consists of the computation of
causal states. Causal states are defined by:

Causal State = ε(l−) = {λ : P(l+|λ ) = P(l+|l−)}. (3)



H. Jänicke and G. Scheuermann 69

Hence, a causal state is the equivalence class of all past-cones (l−) that have the same distribution
(P(l+|l−)) over possible futures (l+), i.e., each causal state predicts a certain future and the possible
futures of different causal states differ.

To determine the causal states that occur within a data-set, the conditional probabilities P(l+|l−)
have to be estimated. As exactly the same pattern l+ or l− commonly only occurs once in a scientific
data-set, the probabilities cannot be estimated directly, but similar configurations have to be grouped
for the estimation. The grouping has to fulfill two requirements. First, all samples in the data-set have
to be assigned to a group and second, the size of each group in high-dimensional space (dimensionality
is given by the number of entries in the cone, cf. Fig. 1c) has to be the same to allow for a correct
estimation.

In [13], Jänicke et al. proposed a fast strategy to estimate probabilities with a single sweep through
the data. We use this approach based on density-driven Voronoi tessellation, which consists of three
steps:

1. Discretization: Compute the past- and future-cone (Fig. 3a) at each position and store the
discretized cones in two trees.

2. Density-driven Voronoi Tessellation: Partition the high-dimensional discrete cone space (Fig. 3b)
using a Voronoi tessellation (Fig. 3(c-e)) that takes the underlying distribution of cone configura-
tions into account. This step is performed for the past and future tree separately. Resulting IDs
are stored for each leaf in the two trees.

3. Probability Estimation: For each past cell, the corresponding future cells are counted and used to
estimate the probabilities.

The idea behind density-driven Voronoi Tessellation is to let the discretization adapt to the structure
of the high-dimensional data. The initial discretization in Step 1. is used to estimate a local density.
Starting from densest regions, a region growing algorithm is applied that iteratively captures the entire
space. The method ensures that the Voronoi cells have equal size and that clusters are well preserved.

To identify causal states, the conditional probabilities have to be estimated. This is achieved by
counting the number of occurrences of different future classes per past Voronoi cell. Dividing by the
total number of configurations per past cell, gives the conditional probability P(l+|l−). In a last step,
those Voronoi past cells are grouped that feature a similar distribution over futures using a χ2-test
[10]. The resulting grouped classes are the causal states of the process.

Each of these causal states represents a spatio-temporal pattern, indicating what might happen
next if a certain past was observed. After the identification of the causal states, new fields that hold
the ID of the causal state at each position are created. As we are not interested in the local pattern but
in the complexity of the current position, we have to evaluate the local statistical complexity of each
causal state and assign appropriate values to the field of causal state IDs.

Local statistical complexity measures how much information from the local past is required to
predict the dynamics in the local future at a certain position. If the dynamics of a configuration
match the average behavior in the data-set, only little information is required. On the contrary if
something unusual happens, more information is required. To measure how extraordinary some
local dynamics are, Shalizi et al. [26] proposed local statistical complexity, which was extended to
scientific simulation data by Jänicke et al. ([14, 13]). The local statistical complexity at a certain
position p in the field is defined as the mutual information between the corresponding configuration’s
past (l−) and its causal state (ε(l−)):

LSC(p) = I[ε(l−); l−]. (4)

Mutual information is a measure from information theory, which tells how much information one
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random variable contains about another one:

I[A;B] = ∑
a∈A;b∈B

P(a,b) log2
P(a,b)

P(a)P(b)
(5)

where P(a) is the probability that the random variable A takes the value a and P(a,b) is the corre-
sponding joint probability of variables A and B. Using this definition, the local statistical complexity
of a cone configuration tells how much information from the past is required to identify its causal
state. If one knows the causal state, the dynamics in the future are clear as well. Hence, if a lot of
information is required to identify the causal state, the local dynamics are extraordinary compared to
what is happening in the rest of the data-set.

8 Results

The three data-sets we are going to analyze have increasing complexity. The first one is an isotropic
diffusion which is a perfect analogon to CA. In the second example we will analyze swirling flow.
This 2d examples consists of multiple variables and contains different features experts are interested
in. The third test-case is a simulation of the flow around a delta wing. In this large 3d example several
intricate features are present. The results of local statistical complexity will be compared to standard
feature detection techniques for both CFD examples to verify the correctness of the automatic detected
features.

8.1 Isotropic Diffusion
An isotropic diffusion, simulated using finite differences as explained in Section 6, is a simple example
of a large variety of diffusion processes, i.e., equalization of differences in concentration, heat, matter
or momentum, appearing in nature. The dataset is simulated by repeated filtering using a binomial
filter. In the diffusion field, the cells at the left border are set to 1, and those at the right border to
0. Upper and lower boundaries are initialized with linearly decreasing values that range from 1 to 0.
The inner part is initialized with random values between 0.0 and 1.0. The process displayed in the
upper row of Fig. 4, is defined on a square lattice with 150 cells in each direction. 800 time-steps are
simulated.

The left half of the images in Figure 4 shows the evolution of the diffusion. In time-step 1 the
image consists of many small coherent structures that still feature a large variety of values. After 20
time-steps these homogeneous regions have become much larger and the range of values has shrunk.
At the boundaries small bands with the extremal values are visible. This process continues in time-step
50. While the center becomes more homogeneous, the gradients starting from the boundaries grow.
In time-step 800 half of the domain has reached the equilibrium of the diffusion process.

On the right hand-side of this series of snapshots, the corresponding complexity fields are depicted.
In the first time-step the entire domain is covered by small black and gray spots. The areas that appear
in light gray, are those that hold values close to 0.5, the most common value in this data-set. Black
cells hold formations that have either very different or extremal values in their configurations. In
time-step 20 the diffusion has formed larger homogeneous regions, which are found by local statistical
complexity. Again, black areas indicate extreme values and gray areas normal ones. These areas grow
(time-step 50) until in time-step 200 the entire center of the data-set holds value 0.5. Thus, this pattern
is the basic one and considered to be uninteresting. In time-step 800 the gradient covers half of the
data-set. As we only analyze those time-steps in which the gradient evolves, these configurations
with increasing/decreasing values are something extraordinary, whereas configurations containing
only value 0.5, the standard result of the diffusion process, are considered to be normal.
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(a) Time-step 1.

(b) Time-step 20.

(c) Time-step 50.

(d) Time-step 800.

Figure 4 Evolution of the diffusion data-set (left - original values, right - lsc field): (a) (left) Random
initialization in time-step 1. (right) Local patterns that are close to equilibrium occur in light-gray in the lsc-field,
which indicates small complexity. Pixels colored in black include extremal values which seldom occur in the
entire unsteady data-set. (b) Time-step 20: Coherent structures start to form. (c) Time-step 50: Coherent
structures in the center grow. Large areas reach equilibrium (light-gray in center). The gradient grows starting
from the boundary. (d) Time-step 800: The center has reached equilibrium (value 0.5) and the boundary gradient
grows further.
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(a) Original. (b) Norm of velocity.

(c) Vorticity. (d) Local statistical complexity.

Figure 5 Swirling flow: In each image the line integral convolution (LIC) of the velocity field is overlayed
with an additional quantity. (a) The conical shear region (blue) outlines the region where the flow enters the
domain. Two red points mark one of the ring-like vortex structures. (b) The norm of velocity overlay highlights
regions with a strong current and reveals the relevant structures. (c) Vorticity indicates strong swirling motion.
The color-coding gives the orientation. (d) Local statistical complexity automatically extracts analog structures.

8.2 Swirling Flow
The development of a recirculation zone in a swirling flow is investigated by numerical simulation.
This type of flow is relevant to several applications where residence time is important to enable mixing
and chemical reactions.

The unsteady flow in a swirling jet is simulated with an accurate finite-difference method. The
Navier-Stokes equations for an incompressible, Newtonian fluid are set up in cylindrical coordinates
assuming axi-symmetry in terms of streamfunction and azimuthal vorticity. All equations are dimen-
sionless containing the Reynolds number Re and the swirl number S as defined by Billant et al. [3]

Re≡ vz(0,z0)D
ν

S≡ 2vθ (R/2,z0)

vz(0,z0)
(6)

where z0 = 0.4D, D = 2R is the nozzle diameter and ν the kinematic viscosity, as dimensionless
parameters.

The PDEs are discretized with fourth order central difference operators for the non-convective
terms and with a fifth order, upwind-biased operator [17] for the convective terms. The time integrator
is an explicit s-stage, state space Runge-Kutta method ([5], [15]), the present method is fourth order
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accurate with s = 5. The time step is controlled by the minimum of two criteria: The limit set
by linearized stability analysis and the limit set by the error norms of an embedded third order
Runge-Kutta scheme [5]. The Helmholtz PDE for streamfunction Ψ̃(r,z, t) is solved with an iterative
method using deferred corrections and LU-decomposition of the coefficient matrix. The deferred
corrections method is designed to reduce the bandwidth of the coefficient matrix. It converges rapidly
using about ten to twenty steps.

The flow domain is the meridional plane D = {(r,z) : 0≤ r≤ R,0≤ z≤ L} with R = 5D, L = 8D
and D denoting the nozzle diameter at the entrance boundary. The flow domain is mapped onto the
unit rectangle which is discretized with constant spacing. The mapping is separable and allows to a
limited extent crowding of grid points in regions of interest. The present simulation uses nr = 91 and
nz = 175 grid points in radial and axial directions. The boundary conditions are of Dirichlet type at
the entrance section and the outer boundary and at the exit convective conditions are imposed for the
azimuthal vorticity. The initial conditions are stagnant flow and the entrance conditions are smoothly
ramped up to their asymptotic values within four time units.

The simulation results for Re = 103, S = 1.1 (within the range of the experiments [3], [18]) used
for the complexity analysis are ten time steps after the formation of the recirculation bubble (which
forms at t = 6.02) at times t = 33.63092 to t = 33.70560. The flow is unsteady and does not approach
a steady asymptotic state as the velocity and vorticity fields show (Fig. 5(a-c)).

Figure 5(a) shows a line integral convolution (LIC) of the velocity field, featuring several vortices.
Relevant features are highlighted in this image. The structure outlined in blue is the conical shear
region surrounding the inlet of the swirling flow. The two red dots indicate one ringlike vortex
structure. The coreline of this vortex lies in a plane orthogonal to displayed cross-section and passed
through the red points. Comparing this image to the one overlayed with the norm of velocity (Fig.
5b), we see that the simple LIC image gives a misleading impression of the flow as several of the
clearly visible vortices are detected in regions close to noise.

The vorticity overlay in Figure 5c results in a similar image as norm of velocity. Basically the
same structures are highlighted. Differences occur at the inlet, where, as expected by the technique,
only the shear flow is highlighted. Moreover, the ring-like vortex structures are more pronounced
than the connecting structures. The color-coding provides an additional hint telling the orientation of
the rotation.

Local statistical complexity is computed for the combination of velocity and vorticity and layed
over the original LIC to provide context (Fig. 5d). Both features, the shear region and the ring-like
vortex structures, are automatically detected by local statistical complexity. Unlike vorticity, local
statistical complexity marks both features as equally complex. Both, the conical shear region, as well
as the vortex structure are assigned highest complexity, while the vortices exhibit only small vorticity,
compared to the shear flow.

8.3 Delta Wing
This data-set represents the airflow around a delta wing at low speeds with an increasing angle
of attack. Multiple vortex structures form on the wing due to the rolling-up of the viscous shear
layers that separate from the upper surface. These formations of three vortices can be observed
on either side of the wing (Fig. 6a). With increasing angle of attack the intensity of the primary
vortices (purple) increases until in time-step 700 a vortex breakdown occurs. This phenomenon is
characterized by rapid deceleration of both the axial and tangential mean velocity components inside
the vortex. During breakdown, the axial mean velocity component vanishes and becomes negative
on the axis of the vortex, corresponding to appearance in the flow structure of a stagnation point
followed by a recirculation bubble. The analysis of vortex breakdown is highly interesting, as it is one
of the limiting factors of extreme flight maneuvers. The extraction and visualization of the individual
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(a) Streamsurfaces (b) Sujudi-Haimes

(c) λ2 < -1,500,000 (d) Vorticity > 5,000

(e) LSC > 10 (f) LSC > 12

Figure 6 Delta Wing: (a) Streamsurfaces to indicate the vortices above the delta-wing. (b) Sujudi-Haimes
vortex detection algorithm applied to the vector field. (c) Isosurface in the λ2-field (isovalue = -1,500,000). (d)
Isosurface in the vorticity field (isovalue = 5000). (e,f) Isosurface in the local statistical complexity field of the
norm of velocity (Isovalue = 10 (e), Isovalue = 12 (f)).
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structures, however, is still a challenging task as the different structures are nested and interact with
each other. The unstructured grid was resampled on a 292x224x75 grid (∼ 4.1 Million positions) and
consists of more than 1000 time-steps. The images in Figure 6 depict time-step 700.

Images 6(b-d) give an overview over standard vortex detection techniques. The algorithm by
Sujudi and Haimes [29] (Fig. 6b) is a technique that detects vortex core-lines. Applied to the delta
wing, this method perfectly extracts the core-line of the major vortices. However, we only get a
vague indication of the core-lines close to the surface, whose vortices are less dominant and interact
with each other. The λ2-criterion extracts the “hull” of the vortex. Finding an appropriate isovalue
(-1,500,000) to separate the two minor vortices without missing the recirculating bubble takes some
time. The isosurface of the magnitude of the vorticity (Fig. 6d) gives approximately the same result.

Figures 6(d–f) show the local statistical complexity of the norm of velocity. Figure 6e shows
all positions that are assigned a complexity value greater than 10 (maximum: 14.7). The visualized
structures do not only comprise the vortices and the recirculation bubble, but also the regions at the
outer corners of the wing, where the flow from the smaller vortices and the flow from underneath the
wing interact and form a swirling motion that is classified by the other techniques as vortex. Increasing
the complexity value further (Fig. 6f), we see that the individual vortices are better separated. The
major vortices are no longer visible as their complexity value is smaller than those of the small
vortices. This observation means, that the local temporal evolution of the norm of the velocity is
very distinct for vortices and for the recirculating bubble. The exceptional behavior of the norm of
the velocity is a typical characteristic for recirculating bubbles, as was explained earlier. With our
method we can extract these distinctive formations automatically without defining a definite pattern
beforehand. This feature is an important characteristic of our method, as it is capable of identifying
structures that exhibit an extraordinary formation without precisely describing its pattern.

9 Conclusion

In this paper we described a filter called local statistical complexity based on concepts from informa-
tion theory which automatically extracts coherent structures from unsteady multi-fields. It assigns
each position in the data-set a scalar value whose magnitude depends on how extraordinary the local
dynamics at the current position are. Color-mapping or isosurfacing can be used to visualize the most
distinct structures in the data-set.

Local statistical complexity is intrinsic to unsteady multi-field visualization as this is required by
the theory and quantities of different type (scalar, tensor, vector valued) can be used simultaneously
in the computation. The process reduces the multi-field to a single scalar field giving the importance
of each position. The entire process is fully automatic and requires no application-specific knowledge.
(The user has to provide two parameters for the Voronoi tessellation, which could be estimated as
well.)

Current problems arise, when analyzing divergence-free flow, as the concept of local influence
propagation is not preserved. When the dynamics are too turbulent, memory costs increase a lot, as
many different configurations have to be stored. The alternative is to compute coarser causal states,
which makes the results more inaccurate.

In our future work we would like to work on a complete mathematical basis in the continuous case.
More research has to be done regarding the influence of the parameters in the Voronoi tessellation
process. The original concept was designed for PDEs solved using finite differences. Extending the
theory to other numerical schemes is a further task that should be addressed in the future.
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Abstract
We apply Knoll et al.’s algorithm [9] to interactively ray-cast constructive solid geometry (CSG) objects
of arbitrary primitives represented as implicit functions. Whereas modeling globally with implicit sur-
faces suffers from a lack of control, implicits are well-suited for arbitrary primitives and can be combined
through various operations. The conventional way to represent union and intersection with interval arith-
metic (IA) is simply using min and max but other operations such as the product of two forms can be
useful in modeling joints between multiple objects.

Typical primitives are objects of simple shape, e.g. cubes, cylinders, spheres, etc. Our method handles
arbitrary primitives, e.g. superquadrics or non-algebraic implicits. Subdivision and interval arithmetic
guarantee robustness whereas GPU ray casting allows for fast and aesthetic rendering. Indeed, ray casting
parallelizes efficiently and trivially and thus takes advantage of the continuous increasing computational
power of hardware (CPUs and GPUs); moreover it lends itself to multi-bounce effects, such as shadows
and transparency, which help for the visualization of complicated objects. With our system, we are able
to render multi-material CSG trees of implicits robustly, in interactive time and with good visual quality.
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1 Introduction

Constructive solid geometry objects involving implicit surfaces can be an effective geometric repre-
sentation. Arbitrary-form implicit surfaces can be used to model a wide variety of shapes, as well as
perform interpolation and smoothing filters of multiple varieties of data. Constructive solid geometry
allows for generalized trimming of these surfaces. Moreover, CSG implicits make for a compact
and flexible model, in which the CSG object itself can be represented simply by implicit functions
consisting of min and max operators.

Interactive, pixel-exact rendering of implicits poses a challenge to extraction and rasterization
methods. Ray casting methods employing interval arithmetic have conventionally been among the
most robust solutions for rendering general-form implicit surfaces, but also among the slowest.
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However, recent SIMD techniques for the CPU [10] and GPU [9] have shown that IA bisection can
be a practical method for interactive rendering. The contribution of this paper is to show how, in
addition to conventional closed-form implicit functions, interval arithmetic methods can be employed
in efficiently rendering constructive solid geometry.

2 Related work

In 1982, Roth [17] presented the first algorithm for directly rendering CSG without precomputing
the combined boundary representations. His algorithm used the CSG operators to classify the
intersections found by ray casting. Goldfeather et al. [2] showed in 1986 how an initial restructuring
of the tree could allow CSG to be directly rendered using Z-buffer rasterization. In 1992 Duff [1]
demonstrated the use of IA and subdivision for rendering CSG implicits. Nielson [14] presented
applications of implicits and CSG in the context of scattered data interpolation. Kirsch et al. [8]
provided an enhancement of Goldfeather’s algorithm. Günter et al. [3] performed CSG modeling in
real-time while Romeiro et al. [16] focused on large CSG models. Not directly related to CSG, the
community Hyperfun [6] builds models using the F-rep representation which includes the CSG one.

3 Background

3.1 Ray casting implicits: a root-finding problem
An implicit surface S in 3D is defined as the set of solutions of an equation

f (x,y,z) = 0 (1)

where f : Ω⊆ R3→ R. In ray casting, we seek the intersection of a ray

~p(t) =~o+ t~d (2)

with this surface S. By simple substitution of these position coordinates, we derive a unidimensional
expression

ft(t) = f (ox + tdx,oy + tdy,oz + tdz) (3)

and solve where ft(t) = 0 for the smallest t > 0. Therefore ray casting a 3D implicit function reduces
to a 1D root-finding problem.

Approaches for arbitrary implicits include:

Closed-form solutions, which although fast, may suffer from numerical problems in 32-bit float
arithmetic.
Point-sampling [4] evaluates the function at interval endpoints and exploits the rule of signs.
This is typically fast, but not generally robust (see Fig. 1(a)).
Sturm sequences [18] break the ray segment into monotonic intervals by recursively bracketing
zeros of all derivatives. This is slow and requires differentiability.
Piecewise algebraic surfaces [11], though efficient, are limited to low-degree algebraics when
relying on an analytical root-finding scheme.
Lipschitz methods [7] which rely on bounding Lipschitz constants to determine where root-
finding methods will converge. This works on a subclass of algebraics.
Distance functions [5] require derivation of a signed distance function from an arbitrary point in
space to the surface, and also requires Lipschitz.
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Figure 1 The inclusion property. (a) Left: When a function f is non-monotonic on an interval I, evaluating
the lower and upper components of a domain interval is insufficient to determine a convex hull over the range.
(b) Right: This is not the case with an inclusion extension F , which, when evaluated, will enclose all minima
and maxima of the function within that interval. Ideally, F(I) is equal or close to the bounds of the convex hull,
CH(I).

Inclusion algebra methods which evaluate an inclusion extension of the implicit (see Fig. 1(b)),
and use that for spatial rejection or determining monotonicity. These work for any computable
function, but require implementation of an inclusion arithmetic library.

This paper will focus on the latter approach, as it is robust and general, and requires nothing
more than a function definition. Historically, it has also been the slowest, primarily due to inefficient
implementation and impractical numerical assumptions.

3.2 CSG and implicits
The three basic operators in constructive solid geometry are the boolean union, intersection and
difference. Considering two solid objects A and B respectively represented by the implicit functions
fA and fB and with the following convention: f < 0 inside the solid and f > 0 outside the solid (here
f = 0 defines the solid), we can easily express those operations in terms of implicit functions. Indeed
the union between A and B is defined by

A∪B = min( fA, fB). (4)

The intersection between A and B is defined by

A∩B = max( fA, fB). (5)

Finally the difference between A and B is defined by

A\B = max( fA,− fB). (6)

Thus the construction of a complex CSG object using n boolean operators reduces to the expression
of a single implicit function formed by min, max, and the implicit primitives.

3.3 Interval Arithmetic
Interval arithmetic (IA) was introduced by Moore [13] as an approach to bounding numerical rounding
errors in floating point computation. The same way classical arithmetic operates on real numbers,
interval arithmetic defines a set of operations on intervals. We denote an interval as x = [x,x], and the
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Algorithm 1 min and max in IA with Cg.

typedef float2 interval ;

interval imin( interval a, interval b)
{

return interval (min(a.x,b.x),min(a.y,b.y));
}

interval imax( interval a, interval b)
{

return interval (max(a.x,b.x),max(a.y,b.y));
}

base arithmetic operations are as follows:

x+ y = [x+ y,x+ y], (7)

x− y = [x− y,x− y], (8)

x× y = [min(xy,xy,xy,xy),max(xy,xy,xy,xy)]. (9)

Moore’s fundamental theorem of interval arithmetic [13] states that for any function f defined by
an arithmetical expression, the corresponding interval evaluation function F is an inclusion function
of f (where F is the interval extension of f ):

F(x)⊇ f (x) = { f (x) | x ∈ x}. (10)

The inclusion property provides a robust rejection test, i.e.

0 /∈ F(x)⇒ 0 /∈ f (x). (11)

Inclusion operations are powerful in that they are composable: if each component operator
preserves the inclusion property, then arbitrary compositions of these operators will as well. As
a result, in practice any computable function may be expressed as inclusion arithmetic [12]. For
example, the two IA functions we are mostly interested in for performing CSG are min and max (see
Algorithm 1).

3.4 Ray Casting CSG implicits with IA
The inclusion property extends to multivariate implicits as well, making it suitable for a spatial
rejection test in ray casting. Moreover, by substituting the inclusion extension of the ray equation
(Equation 2) into the implicit extension CSG(x,y,z), we have a univariate extension CSGt(X ,Y,Z).
To check whether any given ray interval t = [t, t] possibly contains our surface, we simply check if
0 ∈CSGt(t). As a result, once the inclusion library is implemented, any function composed of its
operators can be rendered robustly.

4 Ray Casting CSG implicits with IA on the GPU: results and
discussion

Previously we showed how a complex CSG object reduces to a single implicit function. To render
these objects efficiently, we turn to the GPU implicit IA bisection algorithm of Knoll et al. [9]. This
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Figure 2 Toy examples. First row: union, intersection and difference of a cube and a sphere (20, 160, and
28 fps). Second row: union, intersection and difference of three cylinders (91, 84, 127 fps).

method employs simple floating-point modulus to effect a stackless recursion method, bisecting along
the ray and computing the interval extension of the implicit function along each bisected segment.
The following CSG examples are obtained using this technique with relatively small ε (in the order of
1e−5 ). Indeed, when dealing with multiple implicits, a precision of 1e−3 (typically sufficient for
non-CSG objects) is too large for guaranteeing good visual quality, especially around the intersections
areas between the primitives (see Section 4.6). All benchmarks are measured in frames per second on
an NVIDIA 8800 GTX, at 1024x1024 frame buffer resolution. The equations of the CSG primitives
are provided in Table 1 of the Appendix.

4.1 Basic CSG operations
Figure 2 shows a simple example of implicit CSG functionality, using a cube (modeled as a high-order
superquadric) and a sphere. We have added transparency in some figures for a better understanding of
the resulting object.

4.2 More difficult examples
We can handle implicits defined by arbitrary complicated functions in the same way as simpler forms.
Figure 3 demonstrates two more difficult functions: the citrus and the heart. CSG requires that its
components be closed manifolds (i.e. without boundary); in other words their combination defines a
solid object.

Figure 7 (in the Appendix) demonstrates a panel of CSG objects involving several primitives such
as the tangle, the decocube, superquadrics, ellipsoids, etc.

4.3 Arbitrary blending and dynamic CSG
Arbitrary blending: Implicits inherently support blending operations between multiple basis func-
tions. Such forms need only be expressed as an arbitrary 4D implicit f (x,y,z,w), where w varies over
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Figure 3 CSG of citrus and heart. Left: union (50 fps). Right: intersection (48 fps).

time. As ray-casting is performed purely on-the-fly with no precomputation, we have great flexibility
in dynamically rendering these functions. Useful morphing methods include product implicits, linear
interpolation between surfaces, the hyperbolic and super-elliptic blends; and gaussian or sigmoid
blending, shown in Fig. 8 (see Appendix) between the decocube and the sphere. As the blending
scheme is also represented as an implicit function in our method, we are able to construct any blend
we want.

Dynamic CSG: By setting variables in the CSG objects instead of fixed values, e.g. for a radius, we
are able to model time-varying CSG operations. Figure 4 shows a dynamic CSG object: the union of
a cube and a radius-varying sphere.

Figure 4 Dynamic CSG: union of a cube and a radius-varying sphere, running at 48-117 fps.
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4.4 Multi-material CSG

In addition to using the IA minimum and maximum operators to directly compute the interval
extensions of CSG objects, we can evaluate the extensions separately and employ boolean arithmetic
to determine which surfaces are intersected by a given ray interval. In addition, we can specify
level-set conditions on the individual implicit components, similarly to the CSG methods described in
F-rep literature [15]. Given an implicit f (ω) and a condition g(ω), inclusion arithmetic allows us
to verify g+ = {g(ω)≥ 0} or g− = {g(ω)≤ 0}, given the interval form of the inclusion extension
G over an interval domain ω ⊆Ω. Then, one can render f ∩g+ or f ∩g− for arbitrary level sets of
g. Boolean evaluation of 3-manifold level sets allows us to perform many of the same CSG effects,
and at the same time determine which component object is intersected. This allows us to shade
components differently as desired (Fig. 5). In addition, increased algorithmic sensitivity near CSG
joints due to wider bounds (see Section 4.6) is not an issue using this method.

Figure 5 CSG objects using level-set conditions. Left: icos.csg (13 fps). Right: sesc.csg (9 fps).

4.5 Ray casting effects

As our algorithm relies purely on ray-casting, we can easily support per-pixel lighting models and
multi-bounce effects, many of which would be difficult with rasterization (Fig. 6). We briefly describe
those modalities.
Transparency: Transparency is useful in visualizing implicits (see Fig. 2 and 6(a)), particularly
functions with odd connectivity or disjoint features. It costs around 3× as much as one primary ray
per pixel.

Reflections: Reflections are a good example of how built-in features of rasterization hardware can
be seamlessly combined with the implicit ray casting system. Looking up a single reflected value
from a cubic environment map invokes no performance penalty. Tracing multiple reflection rays in an
iterative loop is not significantly more expensive (20−30%), and yields clearly superior results (see
Fig. 6(a)(d)).

Gradient shading: Gradient shading is one example of features that can easily be extracted from
a ray-casted object; it can help understand its topology. The gradient is computed approximately
using central differences. Figure 6(b) shows the gradient shading on an intermediate blend between a
decocube and a sphere.
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Figure 6 Shading Effects. Top left to bottom right: (a) reflections and transparency on multiple-unions
CSG object (11 fps); (b) gradient shading on a decocube/sphere blending (41 fps); (c) shadows on 4-Bretzel ∪
torus (30 fps); and (d) tangle ∪ torus with up to six reflection rays (11.5 fps).

Shadows: Shadows often entail around 20−50% performance penalty. One can equally use a coarser
precision for casting shadow rays than primary rays. An example of shadows is illustrated in Fig. 6(c).

4.6 Algorithmic Sensitivity
Much efficiency of the IA bisection technique is owed to the fact that fairly low sensitivity is required
for accurate rendering. For many implicit forms without CSG, a termination criterion such as
ε = 2−11 ≈ 0.0005 is sufficient for accurate rendering. However, in the case of CSG objects, the
use of IA minimum and maximum operators cause local bounds to expand, particularly near joints.
As a result, a finer discretization is required by our rendering technique to reconstruct the correct
surface. Generally, this requirement is not significantly greater (ε = 2−16 ≈ 1e−5 typically suffices);
however this constraint is view-dependent as well as dependent on the form of the implicit itself.
Nonetheless, we find IA ray bisection is less sensitive to CSG joints than to fine features in the
implicit itself (for example the asymptotic features of the Steiner surface shown in [9]). Moreover,
despite the moderately finer ε required to render CSG objects, this sensitivity has little impact on the
frame rate (perhaps 10%-20%) compared to the costs of additional IA computation. We note that
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greater algorithmic sensitivity is not an issue for multi-material objects computed using the boolean
evaluation method of Section 4.4.

5 Conclusions and Future Work

We have demonstrated a system which can render multi-material CSG objects of implicits robustly, in
interactive time and with good visual quality. Moreover we can add multi-bounce effects, such as
shadows and transparency, which help for the understanding of complicated objects. Our system is
general: it handles arbitrary primitives; robust: it relies on robust techniques; and efficient: it exploits
recent GPU’s capabilities.

There are several directions for future work. One desirable direction would be to develop a CSG
language similar to [6] and adapt the existing GUI to be able to model large multi-material CSG
objects. Extending the ray casting system with a bounding volume hierarchy traversal would allow
for a scene graph of piecewise implicit primitives for use in modeling or visualization, and would
accelerate rendering. Also comparing interval and (reduced) affine arithmetic as in [9] for the task
of CSG modeling may lead to interesting observations. Another direction would be to work on
the interaction paradigm of the system so that the user could intuitively build primitives, including
free-form surfaces using control points. Using this system to prototype trimmed moving least squares
implicits, for example, would be an interesting application. Finally, a virtual reality environment
would be perfectly well-suited for such a direct-interaction CSG modeling system.
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A Equations of the implicit primitives

Table 1 Formulas of the CSG primitives.

sphere
x2 + y2 + z2− r2

pseudo-cube
x500 + y500 + z500− r2

cylinder
x2 + y2−1

torus
(1−

√
(x2 + y2))2 + z2− .125

4-bretzel 1
10 (x

2(1.21− x2)2(3.8− x2)3−10y2)2 +60z2−2

tangle
x4− rx2 + y4−5y2 + z4−5z2 +11.8

decocube
((x2 + y2−0.82)2 +(z2−1)2)((y2 + z2−0.82)2+

(x2−1)2)((z2 + x2−0.82)2 +(y2−1)2)−0.02

superquadric
x200 +(.5y4 + .5z4)4−1

ellipsoid
.25x2 + .25y2 + z2−1

heart
(2x2 + y2 + z2−1)3− (.1x2 + y2)z3

citrus
x2 + z2−4y3(1− .5y)3

trigonometric
(1−

√
(x2 + y2))2 + sin(z)3− .125

icos.csg ic(x,y,z) = 2− (cos(x+ τy)+ cos(x− τy)+ cos(y+ τz)+
cos(y− τz)+ cos(z− τx)+ cos(z+ τx)) , τ = 1+

√
5

2

CSG condition (on inclusion intervals):
(0 ∈ ic) and sphereinner < 0 and sphereouter > 0

sesc.csg CSG of superellipsoid (se) and sinusoid convolution (sc):
se(x,y,z) = x6 + 1

2 (y
4 + z4)4−20

sc(x,y,z) = xy+ cos(z)+1.741sin(2x)sin(z)cos(y)+ sin(2y)sin(x)cos(z)
+sin(2z)sin(y)cos(x)− cos(2x)cos(2y)

+cos(2y)cos(2z)+ cos(2z)cos(2x)+0.05

CSG condition (on inclusion intervals):
((sc > 0) and (0 ∈ se)) or ((se < 0) and (0 ∈ sc))

multiple-unions csg
min(min(min(min(min(x500 + y500 + z500− .25,

(x−1)2 +(y−1)2 +(z−1)2− .2),((x2 + y2−0.82)2 +(z2−1)2)

((y2 + z2−0.82)2 +(x2−1)2)((z2 + x2−0.82)2 +(y2−1)2)−0.02),
(2x2 + y2 + z2−1)3− (.1x2 + y2)z3),

(1−
√
(x2 + y2))2 + z2− .125),(x+1)2 +(y+1)2 +(z+1)2− .1)
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B More examples of CSG implicits

Figure 7 CSG with arbitrary primitives. First row: tangle ∪ sphere (12.7 fps), decocube ∪ heart (22 fps)
and trigonometric function ∪ sphere (16 fps). Second row: superquadric ∪ ellipsoid (41 fps), superquadric \
ellipsoid (60 fps) and multiple-unions CSG object (21 fps).

Figure 8 4D sigmoid blending of the decocube and a sphere running at 33−50 fps.
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Abstract
Applications of complex variables and related manifolds appear throughout mathematics and
science. Here we review a family of basic methods for applying visualization concepts to the
study of complex variables and the properties of specific complex manifolds. We begin with
an outline of the methods we can employ to directly visualize poles and branch cuts as complex
functions of one complex variable. CP2 polynomial methods and their higher analogs can then be
exploited to produce visualizations of Calabi-Yau spaces such as those modeling the hypothesized
hidden dimensions of string theory. Finally, we show how the study of N-boson scattering in dual
model/string theory leads to novel cross-ratio-space methods for the treatment of analysis in two
or more complex variables.
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1 Introduction

Mathematical visualization of issues involving complex variables is a fundamental problem
that, sooner or later, is related to almost any problem in science. Our goal here is to review
some general methods that can be used to make the abstract features of complex variables
more concrete by exploiting computer graphics technology, and to illustrate these methods
with some interesting applications. We begin with a number of general concepts, and conclude
with some examples related to problems of mathematical physics motivated by string theory.

The basic methods for the representation of the shapes of homogeneous polynomial
equations in CP2 were explored in detail in ([3]), and this will be the starting point for
many of our basic visualizations. We will also briefly summarize some more recent results of
([4]) treating some geometric objects arising naturally in the complex analysis of integrals
appearing in the N-boson scattering amplitudes of the dual models of early string theory.

2 Visualizing Complex Analysis

Complex Numbers

We may think of a complex number in several ways. The most traditional form comes from
the observation that, while the trivial equation x2 = 1 can be solved in the domain of real
numbers, the closely related equation x2 = −1 cannot: one must introduce an “imaginary
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number” obeying i2 = −1 in order to be able to represent the solutions to all algebraic
equations of a single variable.

The most general form of the solution to an algebraic equation in one variable thus has
two parts, a real part and an imaginary part, which can be written in terms of two real
numbers x and y as

z = x+ iy . (1)

We also introduce the complex conjugation operation,

z = x− iy , (2)

which in turn leads to the concept of the modulus-squared,

zz ≡ |z|2 = x2 + y2 . (3)

The essential properties of products of complex numbers follow directly from the properties
of the symbol i, yielding

z1z2 = (x1 + iy1) (x2 + iy2) = (x1x2 − y1y2) + i (x1y2 + x2y1) . (4)

A more formal way of writing this would be to consider Eq. (4) as a realization of an abstract
algebra relating pairs of numbers, where the corresponding (commutative, associative) algebra
is defined as

(x1, y1) ? (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1) . (5)

Equations (4) and (5) are indistinguishable in any mathematical sense, though some practi-
tioners may feel strongly about being more comfortable with one or the other.

For completeness, we note that another unique property of complex numbers is that,
besides the trivial case of real multiplication, only complex multiplication is both commutative
and preserves the value of the modulus under multiplication,

|z1z2| = |z1| |z2| . (6)

2.0.0.1 Visualizing a Complex Point

Once we have Eq. (1), we may ask immediately how we visualize a complex point. One
approach is that of Figure 1(a), which simply treats x and y as Cartesian variables, and so
every complex number is depicted as a point in the 2D plane. However, this does not allow
us to easily treat infinity, which is a critical element in the mathematical analysis of functions
of a complex variable. Thus Figure 1(a) is only a local view of the actual manifold that
mathematicians refer to as “the complex line” because of its one-dimensional complex nature,
and that physicists and engineers, for example, would refer to as the “complex plane” because
of its two-dimensional real nature. In order to treat the space of one complex variable in a
way that infinity is no longer a special point, and can be included naturally in all the tasks
of complex analysis, we must find a way to express coordinates on the space in a way that is
more general than simple Cartesian coordinates. The solution to this problem is to treat the
representation of one complex variable using one-dimensional complex projective space or
CP1, which is the space of pairs of complex numbers (z0, z1) that are taken to be equivalent
under multiplication by any nonvanishing complex number λ, which is to say

(z0, z1) ∼ (λz0, λz1) . (7)
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0 = (1,0)

 = (0,1)8

(a) (b)

Figure 1 (a) The complex plane. (b) The full space of one complex variable, the one-dimensional
complex projective space CP1, which is topologically the same as an ordinary sphere, and is thus
also known as the Riemann sphere.

Note that this is a two-ended ray of equivalences, since λ may take either sign. We see that
in Figure 1(a) we have chosen, e.g., the local coordinates z0 = 1 and z = z1/z0 = z1. The
point at ∞ now has a precise realization as the coordinate that results when we let z0 → 0;
however, in the context of complex projective space, we never allow this to happen, since we
can always write “infinity” as the finite homogenous pair (0, z1). There are thus essentially
two patches in the coordinate system, one where z0 is allowed to be zero, but not z1, so the
coordinate system is (z, 1), and a second where z1 is allowed to be zero, but not z0, so the
coordinate system is (1, z). The origin of each of these coordinate systems is the infinity of
the other, and the two coordinate systems at all other points are related by multiplication
by z1/z0 or by z0/z1.

When we make local pictures, therefore, we must choose one of these two coordinate
systems, and accept that we cannot draw at infinity until we change coordinate systems.
The entire complex plane thus consists of two parts:

North pole. (z1 = 0 → OK, but z0 6= 0).
South Pole. (z0 = 0 → OK, but z1 6= 0).

When we patch these two neighborhoods together around the equator, we find that the result
is a topological sphere, so CP1 ∼ S2, as shown schematically in Figure 1(b).

2.0.0.2 Fixing the coordinate system

Complex projective space admits a standard group of transformations, PGL(2,C) or the
linear-fractional transformations, that parameterize all possible transformations of the coor-
dinate system on CP1. The specific transformation on the homogeneous coordinates can be
written using the PGL(2,C) matrix elements

[M ] =
[
α β

γ δ

]
, (8)

with detM 6= 0, as[
z′0
z′1

]
= M ·

[
z0
z1

]
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or

(z′0, z′1) = (αz0 + βz1, γz0 + δz1) , (9)

in the homogeneous, ray-equivalent coordinates, or as

z′ = αz0 + βz1

γz0 + δz1
(10)

in the γz0 + δz1 6= 0 set of inhomogeneous coordinates.
The group of linear fractional transformations thus has three free complex parameters

that can be used to map any three complex points in the complex plane to any chosen
points to fix the degrees of freedom under the map. As illustrated in Figure 1(b), these are
conventionally chosen in the following way:

“0” is projective (1, 0),
“1” is projective (1, 1), and
“∞” is projective (0, 1).

2.1 Cross Ratios and Cross-Ratio Coordinates
An important feature of complex projective space is that there is a family of invariants under
the linear fractional transformations (9) known as the cross ratios, defined as follows:

u(w, x, y, z) = (w − y)
(w − z)

/
(x− y)
(x− z) = (w − y)(x− z)

(w − z)(x− y) . (11)

In particular, one can verify that there are two distinct cross ratios of four variables,

u1 = u(z, z1, z0, z2) = (z − z0)(z1 − z2)
(z − z2)(z1 − z0) (12)

u2 = u(z1, z2, z, z0) = (z1 − z)(z2 − z0)
(z1 − z0)(z2 − z)

(13)

that are related by the constraint

1 = u1 + u2 . (14)

Since there are three remaining complex degrees of freedom in the PGL(2,C) matrix
[M ] after accounting for projective equivalence, we can exhaust those degrees of freedom
by choosing a coordinate system on CP1 that fixes three complex points. This fact ties in
with the definition of the group-invariant cross ratios because it allows us to fix three of the
variables in the cross ratio to be, for example, 0, 1, and ∞, thus fixing

u1 = u(z, 1, 0,∞) = z (15)
u2 = u(1,∞, z, 0) = 1− z . (16)

2.1.0.3 Cross-ratio space

However, even this is not the whole story. As pointed out in ([4]), from Eq. (14) we can
deduce the existence of yet another projective space, the cross-ratio space, which results from
creating a new set of homogeneous coordinates, this time in CP2, by realizing that we must
add a third variable, u0, to Eq. (14) to make it homogenous:

u0 = u1 + u2 . (17)
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This equation can be solved projectively in three different sets of variables, corresponding to
choosing the local coordinates u0 = 1, u1 = 1, or u2 = 1, and three intervals in inhomogeneous
coordinates as A = [0, 1], B = [1,∞], and C = [−∞, 0]. The triples of variables solving the
constraint equation (17) can then be written

A(t) : [1, t, (1− t)]
B(t) : [(1− t), 1, −t] (18)
C(t) : [−t, (1− t), −1] .

The variables of region A solve 1 = u1 + u2 with u1 = t, B solves 1 = u1 + u2 with
u1 = 1/(1− t) when all is multiplied by (1− t), and C solves 1 = u1 + u2 with u1 = (t− 1)/t
when all is multiplied by t. We note that C(1) = −A(0), so that in fact we have a double
covering of the constraint space: the constraint equation solutions must be adjoined to their
negatives to form a piecewise continuous curve in CP2.

This concludes our introduction to the basic concepts we need to build various visual-
izations related to a single complex variable. Next we work out some examples in complex
analysis.

2.2 Visualizing a Simple Pole
The simplest example of a complex function is a constant function,

z = a+ ib.

Choosing a particular local CP1 coordinate system allows us to plot this as a point in a
plane as in Figure 1(a). However, even this is not quite as simple as it looks. First we recall
that ordinary real graphs of functions are written as

y = f(x) ,

so that we use one space dimension to graph the value of the independent variable and a
second one to graph the result. Thus the correct complex analog would involve two complex
variables: z describing the value of the independent variable, and, say,

w = f(z) = Re f(z) + i Im f(z)

to describe the (complex) result of evaluating the function. Thus, we might consider the
graphing process to be described more clearly using two variables, z1 = x1 + iy1 and
z2 = x2 + iy2, where

z2 = f(z1) . (19)

We can easily see how this works with the classic example of a simple pole at the origin,

1
z

= x− iy
x2 + y2 .

Using the two-variable form, we find that the result involves four variables, (x1, y1, x2, y2),
and one complex or two real equations, so the shape described is a surface with components
given by the real and imaginary parts of the following:

z2 = x2 + iy2 = 1
z1

= x1 − iy1

x2
1 + y2

1
. (20)
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Figure 2 (a) Conventional picture of a complex pole f(z) = 1/(z − z0) at z0, indicating the
positive sense of a contour to pick up the residue. (b) Visualizing the geometric shape of a complex
pole w = 1/z showing Re w as a function of z. The imaginary part looks basically the same.

The result must be projected from 4D to 3D to be rendered using standard graphics methods.
In Figure 2, we show the location of a general pole f(z) = 1/(z − z0) using a textbook 2D
complex analysis plot, and then show the visualization of the complex surface corresponding
to the pole using Re z2 = x2 as the third axis.

Remark: The analysis of a pole typically involves one more step, namely the description
of a circular contour integral surrounding the pole. From the classic theorems of complex
analysis, this integral∫

closed circle

dz

z

vanishes if the contour does not enclose the pole, and has the constant value 2πi as long as
the contour encloses the pole. The proof is trivial in polar coordinates with z = r exp(iθ):∫

circle with radius r

dz

z
=
∫ 2π

0

ireiθdθ

reiθ
= 2πi .

2.3 Integrating with Branch Cuts
Moving on from simple poles, we next examine functions with multiple roots, and hence
multiple branches of the Riemann surfaces that are needed to precisely define the functions.
The square root already has ample complexity to challenge our visualization technology.
If we consider the contour integral of the function w =

√
1− z2 along a path that passes

around z = +1, we find the standard textbook drawing in Figure 3 describing the integral∫
a+b

dz
√

1− z2 .

The main characteristic distinguishing a branch cut in analysis is that, while, e.g., the
phase of the function changes by a full (2π) along a path going around a pole, it changes by a
precise fraction, namely 2π/n, along a path going from one side of an n-th root branch point
to the other. Thus, for example, the relative phase between the integrand on the path of the

Chapte r 7



96 Exploring Visualization Methods for Complex Variables

i y

Square Root Riemann Surface

z=−1 z=+1

a

x
b

Figure 3 Complex contour integral around the square-root branch point of
√

1− z2 at z = +1.

a branch and the path of the b branch for the square root branch cut shown in Figure 3 is

e2πi/2 = −1 .

Here, once again, we need to go beyond conventional diagrams such as Figure 3 to create
a useful visualization. One approach to functions with multiple branch points is to realize
that the Riemann surface to be displayed should not just represent a single branch, e.g.,

w = +
√

1− z2 (21)

or

w = −
√

1− z2 , (22)

but should represent all branches. With a little thought we can see that everything is
summarized nicely in the equation

w2 + z2 = 1 . (23)

There are many different ways to plot this surface (remember, 4 real variables, with 2 real
equations means it is a surface), including just using the separate pieces from Eqs. (21) and
(22) directly. We typically prefer the methods introduced in ([3]), which will be described
shortly, and which recreate the entire surface from a very simple fundamental domain via
complex phase transformations around the fixed points of the surface. The basic problem
goes back once again to the difference between homogeneous and inhomogeneous coordinates:
we should really be looking at Eq. (23) as a homogeneous equation in CP2 of the form

z 2
0 + z 2

1 + z 2
2 = 0 . (24)

Choosing any one of the CP2 variables (z0, z1, z2) to be a constant (z0 = i is just as good
as z0 = 1) gives a partial shape that does not include infinity (where the constant variable
vanishes, e.g., z0 → 0). Thus we are left with holes in the surface that are represented as
rings that go off to infinity when we plot the surface using a local pair of inhomogeneous
variables as in Figure 4. The square root branch points and cuts can be explicitly seen in
the projection of Figure 4 as the ending points of the X-shaped crossings.

2.4 Visualizations of Homogeneous Polynomials in CP2

The square root Riemann surface is a special case of a general family of polynomials that
are of interest. Here we review the properties and visualization methods for the simplest
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Figure 4 Assorted views of the full square-root Riemann surface with Re w projected to the 3rd
axis. The surface is a topological sphere, but the local inhomogeneous coordinates obscure that
fact since there are two rings going off to the surface at infinity. The inner ends of the X-shaped
crossings are the branch points.

homogeneous polynomials that arise in the study of CP2. Starting from the n-th root of a
polynomial of one complex variable with zeros at the n roots of unity, that is

w = (1− zn)1/n (25)

and following the same procedure as for the square root, we arrive at the corresponding
homogeneous polynomial in CP2:

z n
0 + z n

1 + z n
2 = 0 . (26)

As we have noted, there are a variety ways to solve this equation, including:
n roots: Set z n

0 = −1 and solve for the n roots of (1 − zn)1/n (which are found by
multiplying by a phase exp(2πik/n), k = 0, . . . , n− 1).
Spinor variables: Parameterize the solution using the variables typically used to define
null spinors, w 2

0 + w 2
1 + w 2

2 = 0 ([1]):
z0 =

(
i(x2 + y2)

)2/n

z1 =
(
x2 − y2)2/n

z2 = (2xy)2/n
.

Because of the projective equivalence, only n2 of the n3 phase choices available here are
meaningful.
n2 roots: In the method of ([3]), the relative phases of n2 different congruent patches
tie together to create the full topological surface, where the obvious locations of the
fixed points of the z1 and z2 phase transformations expose many key features of the
surface. The method starts as before by setting z n

0 = −1. Then we exploit the complex
trigonometric identity

cos(θ + iξ)2 + sin(θ + iξ)2 = 1

to define one patch, the fundamental domain, as the quadrant where θ gives a positive
real part for cos and sin, namely 0 ≤ θ ≤ π/2 and −ξmax ≤ ξ ≤ +ξmax. Thus the first
and most elementary of the n2 patches is

w1 = (cos(θ + iξ))2/n

w2 = (sin(θ + iξ))2/n
.

The remaining patches are found by making phase transformations on both z1 and z2
until the entire surface is covered; all the patches are then labeled by the n2 integer pairs
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Figure 5 n = 3 in CP2: The cubic is a
torus.

Figure 6 n = 4 in CP2: The quartic is a
section of the K3 surface, a 4-manifold.

(k1, k2), where k1 = 0, . . . , n− 1, k2 = 0, . . . , n− 1, and the parametric solutions of the
equations become

z1 = exp(2πik1/n)w1

z2 = exp(2πik2/n)w2 .

Typical results are shown in the Figures as follows:
Cubic Torus. The cubic is topologically a torus (genus 1), though it is hard to see due
to the infinities in local coordinates. It is also technically the standard polynomial in
CP2 that is a Calabi-Yau space. See Figure 5.
Slice of K3 Quartic. K3 is described by the quartic polynomial of complex dimension
2 (4 real dimensions) in CP3. This is the unique simply-connected Calabi-Yau 4-manifold,
and we can write the equation locally as

(z1)4 + (z2)4 + (z3)4 = 1 . (27)

This is one complex constraint in 3D complex space, and thus is a manifold with 2
complex, 4 real, dimensions. Setting, e.g., z3 = 0, gives a slice that is a surface in CP2

with genus 3. See Figure 6.
Slice of Calabi-Yau Quintic. It is hypothesized that 10-dimensional string theory
includes 4 dimensions of space-time and 6 dimensions that are curled up into a Calabi-Yau
space at the scale of the Planck length. A popular (but by no means unique) candidate
for this space is the quintic in CP4 given locally by the equation

(z1)5 + (z2)5 + (z3)5 + (z4)5 = 1 . (28)

This is one complex constraint in 4D complex space, and thus is a manifold with 3
complex, 6 real, dimensions. Setting, e.g., z3 = z4 = 0, gives a slice that is a surface in
CP2 with genus 6. See Figure 7.

In general, it can be shown that every homogeneous polynomial of degree N + 1 in CPN

is in fact a Calabi-Yau space and therefore admits a Ricci-Flat metric. Calabi conjectured
and Yau proved the existence of these metrics ([8]), but, except for trivial cases such as the
CP2 cubic torus, none are explicitly known. In Table 1, we summarize this family of spaces.
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Figure 7 n = 5 in CP2: The quintic is a section of the Calabi-Yau quintic, the 6-manifold
proposed for the hidden dimensions of string theory.

Table 1 Road map of the simple homogeneous polynomial Calabi-Yau spaces.

N CP deg(f) C dim R dim Remarks

1 CP1 2 0 0 z = ±1, the 0-sphere S0

2 CP2 3 1 2 flat torus T2

3 CP3 4 2 4 K3 surface
4 CP4 5 3 6 CY String Theory quintic
N CPN N+1 N-1 2(N-1) Solution of

N∑
i=1

(zi)N+1 = 1
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0

u + v
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Figure 8 The Euler Beta Function has this remarkable unshrinkable contour representation due
to Pochhammer.

Figure 9 When u + v = 0,−1, . . ., deformation through ∞ has no obstruction: one can simply
unloop the contour and pass through the [0, 1] branch line, resulting in a contour that shrinks to
zero.

2.5 Visualizing Infinite Riemann Surfaces: the Pochhammer Contour
The next challenge is to consider the problems of visualizing complex functions that, unlike
the square root and its analogs, may have infinite Riemann surfaces. There is a classic
example from the 19th century that provides all the features relevant to this problem. The
Euler Beta Function can be represented as the improper integral

B(u, v) =
∫ 1

0
xu−1(1− x)v−1 dx (29)

with the analytic continuation

B(u, v) = Γ(u)Γ(v)
Γ(u+ v) . (30)

Now, if one considers the integrand of Eq. (29) as a branched complex function zu−1(1−z)v−1

defining a Riemann surface, one finds branch points at z = 0 and at z = 1 with possibly
infinite branchings if u or v should be irrational. However, in 1890 Pochhammer was clever
enough to see this not as a problem but as an opportunity to define a new kind of contour
integral that was not sensitive to infinite branchings ([5]). In Figure 8 we show the usual
planar sketch of Pochhammer’s Contour, from which a little analysis allows us to compute
its value as

ε(u, v) = (1− e2πiu)(1− e2πiv)
∫ 1

0
xu−1(1− x)v−1 dx (31)

= (1− e2πiu)(1− e2πiv)B(u, v) . (32)
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Figure 10 Sample Riemann surface for
the B4 integrand – multiple branch cover-
ings spiral to infinity.
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Figure 11 The corresponding embedded
Pochhammer contour is a commutator , en-
circling each branch point twice.

Through an interesting trick of complex analysis, one can determine the zeroes of the
function directly to occur when u+ v = 0,−1, . . .: at these values, the contour can be “pulled
over” the point at infinity as shown in Figure 9 and deformed to an equivalent vanishing
loop. These zeroes can be confirmed explicitly from the analytic continuation Eq. (30).

Finally, we can explicitly create a function representing the Riemann surface of the Euler
Beta function integrand.

β(z; u, v) = zu−1(1− z)v−1 (33)

and create a 3D projection with, e.g., the vertical axis given by Reβ(z; u, v). Figures 10 and
11 show a section of a branched covering that could in principle spiral indefinitely, along
with the closed Pochhammer loop that can be traced on the Riemann surface, no matter
how complex. Figure 12 superimposes these on the same space to illustrate the context.

3 Extending CP2 Visualization Methods to CP3

Our next objective is to see how we can create some basic images of the K3 surface that give
more global information than the 2D slice representation that we saw in Figure 6. We recall
that K3 can be represented in general as a homogeneous quartic polynomial in CP3 in the
form

z 4
0 + z 4

1 + z 4
2 + +z 4

3 = 0 , (34)

which reduces after division by z0 6= 0 (or equivalently, after division by z1, z2, or z3) to Eq.
(27). Even though this is a 4-manifold (after division, 6 real variables and two real constraint
equations), we can pick out some of its global, non-slicing, properties by considering what
amounts to the “real subspace” of the parameterization.
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Figure 12 Pochhammer contour plotted directly on the Riemann surface.

3.1 CP2 Example

We can see an example of a dimensional reduction in the CP2 case by remembering that in
the n2 patch method ([3]), each patch is parameterized as

z1 = (cos(θ + iξ))2/n

z2 = (sin(θ + iξ))2/n

with 0 ≤ θ ≤ π/2, so, with the imaginary part of the argument approaching zero (ξ ≈ 0),
the complex variables (z1, z2) become purely real and describe a circular quarter arc from
z1(θ = π/2) = 0 to z2(θ = 0) = 0. Since, at z1 = 0, multiplying by the z1 phase exp(2πik1/n)
leaves zero as a fixed point, there will be n copies of the circular arc fanning out from z1 = 0
to n copies of the intersection point z2 = 0. (Note: these may be understood simply as the
roots of (z1)n + (z2)n = 1 with either z1 = 0 or z2 = 0.)

In Figure 13, we show the z1 = 0 intersection points as green cubes, the z2 = 0 intersection
points as red cubes, and let ξ have a finite range to show the surface shape near the core.
In Figure 14, we set ξ ≈ 0 to expose the n2 “real core” curves forming the graph of the
surface skeleton in this local inhomogeneous coordinate system. Note that this is not quite a
topologically symmetric structure because infinity has been treated specially in this coordinate
system, but a great deal of the structure, e.g., the degree of the polynomial, is clearly exposed.
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Figure 13 Left: n = 3 cubic. Right: n = 4 quartic. Red and Green points represented as small
cubes indicate where the zeros of z1 and z2 pass through the surface; each of z2 = 0 Red points is
connected to all n copies of the z1 = 0 Green points, and vice versa, through the “real” central line
of each of the n2 patches.

Figure 14 Shrinking the complex extent of the surface parameterization so that only the “real
core” curves remain shows a connected graph of n2 arcs connecting the 2n nodes.

3.2 The K3 “Real Core”
The representation of the K3 surface as a fourth-degree homogeneous polynomial in CP3,
like the general case of the CP2 polynomials described earlier, can be solved in a variety of
ways. Here we will focus on generalizing the n2 patch method ([3]) to CP3, which turns out
to lead naturally to n3 patches of dimension 4 (and for CPN , to nN patches of dimension
2(N − 1)). Thus the basic equation for which we seek a 4-parameter parametric form is

(z1)4 + (z2)4 + (z3)4 = 1 . (35)

Following the complexified circle ( S1) method used for CP2, we arrive at a 4-manifold
parameterization based on the complexified sphere S2, namely

(cos θ sinφ, sin θ sinφ, cosφ) (36)

with 0 ≤ φ ≤ π, 0 ≤ θ < 2π. For the full 4D patch, we would complexify the angular
variables as θ → θ + iξ, φ → φ + iρ to get exponential growth towards infinity. To retain
the “real skeleton” surface analogous to the network of edges shown in Figure 14 for CP2

polynomials, all we need to do is recast the real equation (36) in the form

w1 = (cos θ sinφ)2/n

w2 = (sin θ sinφ)2/n

w3 = (cosφ)2/n
,
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Figure 15 The “real core” of the quartic K3 Calabi-Yau space, delimited by 43 = 64 spherical
triangles. Each spherical triangle is bounded by the intersections of the zeros of the three local
complex variables with the K3 surface (a 4-manifold).

with n = 4 selecting the K3 fundamental domain (2/n = 2/4 = 1/2 so each term is a square
root). The remaining patches are found by making phase transformations on (z1, z2, z3)
until the entire surface is covered; all the patches are then labeled by the n3 = 64 integers
(k1, k2, k3), where ki = 0, 1, 2, 3 and the parametric solutions of the equations become

z1 = exp(2πik1/4)w1

z2 = exp(2πik2/4)w2

z3 = exp(2πik3/4)w3 .

The result is a collection of octants of the sphere, spherical triangles that fan out four at a
time from the curves where z1 = 0, z2 = 0, and z3 = 0 intersect the manifold. The result
is depicted in Figure 15, where part of the shape is cut away so that the interior “fanning
out” is made visible. We remark that just as Figure 14 appears to have non-manifold triple
or quadruple intersections, but in fact, when complexified, yields the smoothed continuous
surface of Figure 13, we need to imagine that in 4D, Figure 15 also extends completely
smoothly away from the 4-way fan-out junctions.

3.2.0.4 Regular global tessellations

The representations shown here are local and are limited in their effectiveness for exposing
the overall topology of the polynomials in CP2 and CP3, etc. Extending these limited
local representations to global tessellations with maximal symmetries is a subject of ongoing
research.
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4 Two Complex Variables and the Dodecahedron

Finally, we review our approach to creating visualizations for problems arising in many-
complex-variable analysis, outlining the two-complex-variable case as our main example ([4]).
We begin with the N -particle bosonic scattering amplitude of the original dual model, the
precursor to string theory, which is given by the integral

BN =
∫
· · ·
∫

vol

∏
ij

u
αij−1

ij


∏
k

du1k

(1− u14) · · · (1− u1,N−1)

The N -point cross-ratios uij obey a set of constraints that is non-linear except for the
4-particle case B4, which in fact is the Euler Beta function treated earlier:

uij = 1−
j−1∏

m=i+1

i−1∏
n=j+1

umn .

These constraints define manifolds in CPN(N−3)/2 that provide new insight into the nature
of the analytic continuation of these integrals.

The N = 5 case is the simplest non-trivial example that we can work out explicitly; the
corresponding improper integral is two-dimensional,

B5(α1, α2, α3, α4, α5) =

=
∫ 1

0

∫ 1

0
sα1−1tα2−1(1− s)α3−1(1− st)α4−α3−α5(1− t)α5−1 ds dt

=
∫ ∫

(z1)α1−1(z2)α2−1(z3)α3−1(z4)α4−1(z5)α5−1 ds dt/(1− st) , (37)

and thus must eventually be treated using two complex variables.
The B5 cross-ratio constraints are quadratic,

1− z1 − z3z4 = 0
1− z2 − z4z5 = 0
1− z3 − z5z1 = 0 (38)
1− z4 − z1z2 = 0
1− z5 − z2z3 = 0 ,

and, in these variables, there are twelve different possible integration domains of Eq. (37)
that we can initially represent as in Figure 16. Using CP5 cross-ratio variables, we would
properly represent these equations as z 2

0 − z0z1 − z3z4 = 0, etc., but we will omit the details
here.

Each individual region, when plotted using Eq. (38), is not simply a square or triangle as
one might guess from the Cartesian variable plot in Figure 16, but is actually a pentagon, as
shown in Figure 17

The resulting figure is a “blown-up” dodecahedral manifold formed from twelve pentagons,
but this dodecahedron, shown in Figure 18, is quite different topologically from the familiar
Platonic dodecahedron, and in fact has Euler characteristic χ = −3, so it is a surface
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Figure 16 The 12 connected components of the domain of parameters for the set of 5-point
cross-ratios.
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Figure 19 (a) The 12 B5 connected components with double covering extensions noted by barred
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CP1 branch lines in the B5 integrand.
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Figure 20 Genus 4 double cover of five-cross-cap surface projected from R6.
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Figure 21 Projected embedding of the five-cross-cap surface itself.

corresponding to a sphere with five cross-caps. Figure 19 shows the solutions of the cross-
ratio constraints, which double cover the five-cross-cap surface, and Figure 20 finally shows
the visualization of the full double-covered surface embedded in R6. Creating an identified
embedding of the five cross-cap surface itself (the single cover, not the double cover) employing
the methods of ([4]) leads to the example image in Figure 21.

Much remains to be done to create further informative visualizations of these families of
surfaces.

5 Discussion and Remarks

We have reviewed a family of basic problems in the complex analysis of one and many
variables, and presented visualizations of a number of the manifolds that naturally arise. A
new method, the use of cross-ratio variables instead of the expected CPN variables for the
analysis of N complex variables, shows promise and is essential for the treatment of certain
N -dimensional integrals. Among the surprising and unexpected aspects of this investigation
was the discovery of a relationship to a family of objects known as the Stasheff associahedra
([7, 6, 2]). The explicit geometric embeddings that we discovered as part of our explicit
graphics-oriented approach are in fact new geometric realizations of these topological objects.

Complex analysis is a fertile proving ground for developing and testing mathematical
visualization methods. Here we have reviewed a variety of basic approaches that can be
used for visualization in complex analysis, focusing on several families of complex algebraic
equations and their geometry. Much remains to be done.
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Abstract
Interpolation is an essential step in the visualization process. While most data from simulations
or experiments are discrete many visualization methods are based on smooth, continuous data
approximation or interpolation methods. We introduce a new interpolation method for sym-
metrical tensor fields given on a triangulated domain. Differently from standard tensor field
interpolation, which is based on the tensor components, we use tensor invariants, eigenvectors
and eigenvalues, for the interpolation. This interpolation minimizes the number of eigenvectors
and eigenvalues computations by restricting it to mesh vertices and makes an exact integration of
the tensor lines possible. The tensor field topology is qualitatively the same as for the component
wise-interpolation. Since the interpolation decouples the “shape” and “direction” interpolation
it is shape-preserving, what is especially important for tracing fibers in diffusion MRI data.
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1 Introduction

Typically visualization deals with discrete data; nevertheless, many visualization methods are
designed to generate a continuous data representation. We need an appropriate interpolation
or approximation method, which must be chosen from a large number of possibilities, which
can influence the visualization result significantly. This choice is often guided by two -
sometimes conflicting - goals: (i) the interpolation should be “simple,” meaning it should
simplify our computations; and (ii)the interpolation should be “natural,” meaning that it
should represent the real data as well as possible without introducing too many artifacts.
Often losses due to simple interpolation schemes are accepted to simplify the computations.

In many cases a method accomplishing simplicity well uses a linear interpolation schema
on a triangulated or tetrahedrized domain. For scalar fields, a unique piecewise linear
interpolation is defined by a given triangulation. For vector fields, there are two obvious
linear interpolations schemas: one based on the interpolation of the vector field components,
and the other one based on or alternatively the direction and length of the vectors. In most
cases, both approaches lead to similar results. Considering tensor fields, there are even more
ways to interpolate linearly. The most common approach is a linear interpolation of the
tensor components [4, 9]. But since the entities we are mostly interested in are not the tensor
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components but tensor invariants, which are in general not linear, the interpolation is not
really simple. There are other problems related to this interpolation, e.g. the sign of the
determinate is not preserved.

There has been some work done in the area of tensor field interpolation based on the tensor
components. Besides the linear approaches more advanced interpolation methods based
on components have been developed with goals of noise reduction or feature preservation
[1, 6, 8].

There are also some papers using direction interpolation. in context of diffusion MRI
data with the goal of tracing anatomical fibers [5, 2]. Most of these approaches are specific
to diffusion MRI data with the goal of tracing anatomical fibers. Such approaches often
focus on regions with high anisotropy where no degenerated points exist and the issue of
direction assignment is not so important. These interpolation lead to linear direction field,
but are not consistent in regions containing degenerated points.

We introduce a linear interpolation schema for symmetrical tensor fields that combines the
advantages of linear interpolation of components, which delivers a consistent field, with the
advantages of eigenvector and eigenvalue-based interpolation generating a simple direction
field and being shape preserving. It is based on eigenvectors and eigenvalues guided by the
behavior of eigenvectors for the component-wise interpolation. It is “shape preserving” and
minimizes the number of locations where we have to compute the eigendirections. We discuss
its properties and compare it to the standard interpolation, i.e., linear interpolation of tensor
components.

2 Outline – Idea

Our goal is the interpolation of the tensor field based on the linear interpolation of eigenvalues
and eigenvectors. Since there are two eigenvalues and two eigendirections with each two
possible orientations, there exists a variety of linear interpolations based on eigenvectors
and eigenvalues, see Figure 1. To specify the interpolation uniquely we first have to assign
the eigenvalues to each other and then assign orientations to the eigenvectors. When using
vectors for the interpolation, we have to consider the fact that not all structures occurring in
tensor fields can be simulated by global vector fields, e.g., winding numbers of half integers.
This means that an assignment of directions is not possible globally, but it is possible for
simply connected regions, that do not contain degenerate points. The situation is complicated
by the fact that for discrete data the existence of a degenerate point inside a cell depends on
the chosen interpolation.

We discuss one possible eigenvector eigenvalue interpolation schema which simulates the
topology of the component-wise interpolation but decouples the interpolation of “shape,”
represented by the eigenvalues, and direction. Our orientation assignment for eigenvectors
is guided by the behavior of the eigenvectors in case of a component-wise interpolation
such that the resulting field topology is qualitatively the same as for the component-wise
interpolation. This means that we obtain the same number and types of degenerate points
in each triangle. The exact position of the degenerate points and separatrices varies slightly.

In the following sections, we describe first the criterion for the assignment of eigenvalues
to each other. Then we discuss the behavior of the eigenvectors for the linear interpolation
of tensor components, which is essential for the orientation assignment to the eigendirections.
Since the existence of degenerate points inside the triangle influences the interpolation, the
next step is to define degenerate points on the basis of eigenvectors at the vertices. The
results from these discussions are finally used to define the interpolation of eigenvalues and
eigenvectors.
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Figure 1 Symmetric tensors can uniquely be represented by their eigendirections and eigenvalues,
here represented by the ellipses. Using the eigenvalues and eigendirections for interpolation we
have several possibilities for grouping them and assigning orientations to eigendirections. If we
restrict rotation angles to values smaller than π, there are four different assignments resulting in
four different rotation angles.

3 Basics and Notation

We use the term tensor field for symmetric 2D tensors of second order defined on a triangulated
two-dimensional domain. Using a fixed coordinate basis, each tensor can be expressed as a
2× 2 matrix, given by four independent scalars. A tensor T is called symmetric if, for any
coordinate basis, the corresponding array of scalars is symmetric. The symmetric part of the
tensor is defined by three independent scalars and is represented by a symmetric matrix. We
use the following notation:

T =
(
E F

F G

)
=
(
d+ ∆ F

F d−∆

)
, (1)

where ∆ = E−G
2 and d = E+G

2 .
A tensor T is characterized by its eigenvalues λ and µ and corresponding eigenvectors

±v and ±w. For symmetric tensors, the eigenvalues are always real and the eigenvectors
mutually orthogonal. We call the eigenvector with the larger eigenvalue major eigenvector
and the smaller eigenvalue minor eigenvector. Further, ∆ = (λ+ µ)/2. In most points the
two eigenvectors of a tensor are defined uniquely, each assigned to one eigenvalue. This is
no longer the case for points where both eigenvalues are the same, i.e., λ = µ, the so-called
degenerate points. In tensor field topology the degenerate points play a similar role as
zeros (critical points) in vector fields [3, 7]. Independently of the eigenvalues, an isolated
degenerate point can be defined by the number of windings an eigenvector performs when
moving on a closed line around the degenerate point. The undirected eigenvector field allows
winding-numbers to be multiples of one half. The rotational direction provides us with
additional information about the characteristics of the degenerate point.

To describe the points inside a triangle with vertices P1, P2, and P3 we use barycentric
coordinates β1, β2 and β3, 0 ≤ βi ≤ 1, where

P (β1, β2, β3) = β1P1 + β2P2 + β3P3,
3∑

i=1
βi = 1. (2)

The triangle edges are named ei, i = 1, 2, 3, where the index i is chosen according to
its opposite vertex Pi. Table 1 summarizes the notation we use for the eigenvalues and
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Table 1 Notation for eigenvectors and eigenvalues in triangle P1, P2, and P3. The variables λ
and µ are chosen such that λ ≥ µ. The functions λ(t) and µ(t) are continuous but not necessarily
differentiable everywhere. The functions v(t) and w(t) might not be continuous. The “±” in front of
the eigenvectors allude to the fact that the eigenvectors are bidirectional and have no orientation.

Point Tensor Eigenvalues Eigenvectors
P1 T1 λ1 ±v1 = (v11, v12)

µ1 ±w1 = (w11, w12)
P2 T2 λ2 ±v2 = (v21, v22)

µ2 ±w2 = (w21, w22)
P3 T3 λ3 ±v3 = (v31, v32)

µ3 ±w3 = (w31, w32)
P (β1, β2, β3) T (β1, β2, β3) λ(β1, β2, β3) ±v(β1, β2, β3) = (v1, v2)

µ(β1, β2, β3) ±w(β1, β2, β3) = (w1, w2)

eigenvectors at the vertices Pi, i = 1, 2, 3, and in the interior of the triangle. We always use
“±v” and “±w” when referring to eigenvectors to allude to the fact that the eigenvectors are
bidirectional and have no orientation. We use v and w when referring to vectors representing
the eigenvectors with an arbitrary but fixed direction for v, e.g., considering the way they
were generated by a numerical computation. The direction of w is defined in a way such that
v and w is a right-handed system. The assignment of the names λ and µ to the eigenvalues
is critical for the interpolation based on eigenvalues and eigenvectors. For component-wise
interpolation it is given implicitly. The requirement for the assignment to be continuous
resolves this ambiguity: assigning the same name to all major eigenvalues and to all minor
eigenvalues. Thus, we can define the variable names in a way that λi ≥ µi for all i, without
loss of generality. If there is a degenerate point inside a cell the eigenvalue might not be
differentiable there.

4 Linear Interpolation of Tensor Components

The most commonly used interpolation scheme for tensors is linear interpolation of tensor
components. It is a consistent approach and produces a globally continuous tensor field
approximation. We use this field to guide the orientation assignment to the vector field.
To be able to do so we start with a detailed analysis of the eigenvector behavior for a
component-wise tensor interpolation.

For linear interpolations, the value at a point P is already uniquely specified by the values
in two points P1 and P2 whose connection passes trough P . Therefore, many properties can
already be observed when considering the linear interpolation in-between two points:

P (t) = (1− t)P1 + t P2, T (t) = (1− t)T (P1) + t T (P2), t ∈ [0, 1]. (3)

The eigenvalues at P (t) are given by

λ(t) = d(t) +
√
F 2(t) + ∆2(t) and µ(t) = d(t)−

√
F 2(t) + ∆2(t) . (4)

There exists a degenerate point in P (t0) when both eigenvalues λ(t0) and µ(t0) are the same.
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Figure 2 Two examples of the behavior of the eigenvalues and eigenvectors for component-wise
linear interpolation when moving along the edge. The images on the right show an example where the
rotation angle is almost π/2. The rotation takes place in a very small region where the eigenvalues
reach their extrema.

This is equivalent to F (t) = ∆(t) = 0.

Observation 1
For linear interpolation of tensor components, there exists only a degenerate point on the
connection of two points if the following three conditions are satisfied:

(a) F1 · F2 ≤ 0
(b) ∆1 ·∆2 ≤ 0
(c) F1∆2 −∆1F2 = 0

(5)

If F1 = F2 = 0 = ∆1 = ∆2, the entire connection consists of degenerate points. In all other
cases, there exists an isolated degenerate point located in P (t0), where

t0 = F1

F1 − F2
= ∆1

∆1 −∆2
. (6)

If the denominators are equal to zero, the entire edge is degenerate. The eigenvalue in the
degenerate point is E(t0) = G(t0).

If we assume that P1 is not a degenerate point and use the eigenvectors of T1 as coordinate
basis, then F1 = 0 and ∆1 6= 0. Thus, the third condition (5c) reduces to F2 = 0, meaning
that the eigenvectors of T1 are eigenvectors of T2 as well. The second condition (5c) implies
that the corresponding eigenvectors are rotated about π/2.

Observation 2
For linear interpolation of tensor components, there exists a degenerate point on the
connection of two not-degenerate points P1 and P2 if and only if

v1 · v2 = 0 = w1 ·w2. (7)

Thus, the existence of degenerate points on an edge is independent from the eigenvalues on
the vertices.

We now consider the behavior of eigenvectors when moving along an edge without
degenerate points. The eigenvectors are-well defined everywhere and change continuously.
The change can be expressed by the angle α(t) formed by the eigenvector v(t) and the x-axis,
see Figure 3. The special choice of the angle does not influence the result for the change of
the angle. Geometrical considerations using the tensor components to express the eigenvector
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Figure 3 Change of eigenvector along the connection of two points. The rotation direction of
the eigenvectors depends on the quadrant in which the second eigenvector lies. Only one possible
rotation angle exists with absolute value smaller than π/2.

allow us to obtain after simplification:

dα(t)
dt = 1

2
∆(t)Ḟ (t)− F (t)∆̇(t)

∆2(t) + F 2(t) . (8)

For linear interpolation of tensor components, this results in

dα(t)
dt = 1

2
F2∆1 − F1∆2

∆2(t) + 4F 2(t) . (9)

Since the denominator is always greater than zero the sign, and thus the rotational direction,
is determined by the numerator. Integrating Equation 9 shows that the absolute rotation
angle is smaller than 3

4π.
If there exists a degenerate point D = P (t0) on the edge, it can easily be seen that

v(t) = v1, w(t) = w1 for 0 ≤ t < t0, and v(t) = v2, w(t) = w2 for t0 < t ≤ 1.

Observation 3
When moving along an edge the rotation angle is limited to an absolute value of π/2. The
direction of the rotation is given by

F2∆1 − F1∆2.

If this expression is smaller than zero, the eigenvector is rotated clockwise; if it is larger it
is rotated counter-clockwise; if it is equal to zero, then either both points have the same
eigenvectors or there exists a degenerate point on the edge, the rotation is π/2 and the
rotation direction is undetermined.

5 Interpolation Based on Eigenvectors and Eigenvalues

We use the observations from the last sections to define a tensor interpolation inside a triangle
based on an eigenvector and eigenvalue interpolation. We use the notations as defined in
Table 1.

There are some issues we have to take care in order to use a vector interpolation applied
to a tensors. First, we have to define a local criterion for the assignment of an orientation to
the eigenvectors ±v1 and ±w1. Second, we have to show that the rotation angle is smaller
than π such that it can be represented by a vector interpolation. Third, we have to show
that the interpolated vectors are orthogonal everywhere and thus are valid eigenvectors. The
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second point was already shown to be satisfied in the last section. The third point can be
shown to hold by performing a simple scalar product calculation. The most critical point,
the first one, is discussed in the next sections.

Among all possible assignments, we chose an assignment that reflects the continuous
change of the eigenvectors defined by the component-wise interpolation. It is important to
differentiate between triangles containing a degenerate point and those that do not, since the
eigenvector behavior of triangles with a winding number of half integers cannot be simulated
by a simple vector interpolation.

5.1 Edge Labeling
Since a consistent global orientation assignment is not possible, we first define arbitrarily
directed eigenvectors vi and wi. Instead of changing directions we label the edges according
to the behavior of the eigenvectors when moving along the edge ei:

l(ei) =



0 if there exists a degenerate point on the edge, meaning vj ·vk = 0

-1 if the directions of vj and vk do not match the direction propa-
gation, meaning vj · vk < 0

1 if the directions of vj and vk match the direction propagation,
meaning vj · vk > 0

(10)

where i, j, k ∈ {1, 2, 3} are cyclic indices.

5.2 Interpolation in Triangles without Degenerate Points
The tensor inside the triangle is defined by its eigenvectors v and w and eigenvalues λ and µ.
We use the edge labelling defined in the last paragraph to define the interpolation of the
eigenvectors, see Figure 4,

v(β1, β2, β3) = β1v1 + β2l(e3)v2 + β3l(e2)v3,

w(β1, β2, β3) = β1w1 + β2l(e3)w2 + β3l(e2)w3,
(11)

and eigenvalues λ and µ,

λ(β1, β2, β3) =
3∑

i=1
βiλi, µ(β1, β2, β3) =

3∑
i=1

βiµi. (12)

5.3 Existence of Degenerate points
We distinguish three cases: (i) isolated degenerate points; (ii) degenerate lines; and (ii)
degenerate triangles. The interesting case is the isolated degenerate point. For linear
interpolation, there only two types of isolated degenerate points exist, wedge points with a
winding number of 1/2 and trisector points with a winding number of −1/2. Using our edge
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Figure 4 The left figure shows an example of a triangle without a degenerate point. The right
figure shows an example of a triangle containing a degenerate point. The edges of the triangle
are labelled with a “+” if the direction definition of the two adjacent eigendirections matches the
assignment defined by the interpolation of tensor components. They are labelled with “-” if one of
the directions must be reversed to obtain a consistent assignment.

labelling convention we obtain a criterion for the existence of a degenerate point inside the
triangle.

Observation 4
Let ei, i = 1, 2, 3 be the edges of the current triangle, and let l(ei) be the edge labelling as
defined by Equation 10. The product of the labels of the triangle edges take on the following
values:

∏
i=1,2,3

l(ei) =



0 if there exists a degenerate point on at least one of the edges. If
there exist two degenerate edges, we have a degenerate line. If
there exist three degenerate edges, the entire triangle is degener-
ate.

1 if there is no degenerate point inside the triangle.

-1 if there exists an isolated degenerate point inside the triangle.

5.4 Location of Degenerate Points

Since degenerate points at vertices can be detected easily, we restrict our considerations,
in this section, to triangles without degenerate behavior at the vertices. Initially, we also
assume that there is no degenerate point along the edges, thus the product of the edge labels
is −1. Figure 4 shows an example of a triangle containing a degenerate point. We know that
the existence of a degenerate point on a line connecting any two points A and B is equivalent
to the eigendirections vA and vB being perpendicular, see Section 4, thus vA · vB = 0. We
use this fact to determine the location of the degenerate point in a triangle. First, we define
an eigenvector field on the triangle boundary by linear interpolation. For each edge ei, we
define

v(t) = (1− t) · vj + t · l(ei) · vk, t ∈]0, 1[, (13)
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Figure 5 To show that the location of a degenerate point is well-defined we have to show that
the three lines connecting the vertices and their opposite points intersect in one point.

where i, j, k ∈ {1, 2, 3} are cyclic indices. Even though the vector field v on the boundary is
not continuous at all vertices, the corresponding un-oriented direction field ±v, is continuous
defining a continuous rotation angle varying from zero to π or −π.

The mean value theorem implies that there exist three parameters ti ∈]0, 1[, i = 1, 2, 3, for
each vertex one, such that vi · v(ti) = 0. Thus, for every vertex there exists a point on the
opposite edge with rotation angle π/2. We call this point the opposite point of the vertex,
see Figure 5. The following equation defines the parameters ti:

vi · ( (1− ti)vj + l(ei)tivk ) = 0, (14)

where i, j, k ∈ {1, 2, 3} are cyclic indices. Using these definitions we finally define the location
of the degenerate point in the following way:

Definition
The location of the degenerate point is defined as the intersection of the connections of the
triangle vertices and their opposite points. Using barycentric coordinates, the location of
the degenerate point D is defined by :

βi =
∣∣∣∣ (P (tj)− Pj)× (Pj − Pi)
(P (tj)− Pj)× (P (ti)− Pi)

∣∣∣∣ , (15)

with cyclic indices i, j, k ∈ {1, 2, 3} where

P (ti) = (1− ti)Pj + tiPk and ti = vi · vj

vi · (vj − livk) .

To prove that the point D is well-defined we have to show that the resulting point does not
depend on the choice of i and j. From the definition of ti, i = 1, 2, 3, Equation 14, it follows
that

t1t2t3 = (1− t1)(1− t2)(1− t3). (16)

This is exactly the condition that three lines through the vertices and points on the opposite
edge defined by parameters ti intersect in one point. Since all other eigenvectors result
from linear interpolation of the vectors at the vertices it can be seen that also all other
connectors of points with their opposite point intersect in the same point. Thus, the point D
is well-defined and can be use to define the location of the degenerate point. The location of
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the degenerate point depends only the eigendirection at the triangle vertices, it is independent
of the eigenvalues.

If the degenerate point lies on an edge, we cannot use this definition since the three
connecting lines degenerate to one line. In this case we use the eigenvalues at the vertices to
determine the degenerate point.

5.5 Eigenvalue Definition in the Degenerate Point
A linear interpolation of the eigenvalues at the tree vortices would not lead to multiple
eigenvalues. Instead, we interpolate the mean eigenvalue d = 1/2(λi +µi) and set the deviator
∆ = 1/2(λi − µi) to zero. If βi, i = 1, 2, 3, are the coordinates of the degenerate point inside
the triangle, its eigenvalue is defined by

ν = 1
2

3∑
i=1

βi(λi + µi) (17)

5.6 Interpolation of Triangles with Degenerate Point
For the interpolation of triangles containing degenerate points, we subdivide them by inserting
an additional vertex D in the degenerate point. It is connected to the three triangle vertices.
The tensor in the new point is defined as the degenerate tensor with eigenvalue ν as defined
by Equation 17. Each new triangle is interpolated separately. The eigenvectors, which are not
defined in the degenerate point, are set to zero, in correspondence to vector field singularities.
The final interpolation of the eigenvectors is performed in the new triangle with vertices Pi,
Pj , and D. Let P = P (β1, β2, β3) := βiPi + βjPj + βkD, using cyclic indices i, j, k. Then
the eigenvectors in P are defined by

v(βi, βj , βk) = βivi + βj l(ek)vk and
w(βi, βj , βk) = βiwi + βj l(ek)wk,

(18)

Thus, the eigenvectors are independent from the coordinate βk. The eigenvalues are defined
in the non-degenerated case as described in Section 5.2.

5.7 Classification of the Degenerate Point
The neighborhood of the degenerate point is characterized by segments separated by radial
tensor lines. In our case, the radial tensor lines are straight lines and are defined by their
intersection P (tr) with the triangle boundary:

v(t)× (P (tv)−D) = 0, w(t)× (P (tw)−D) = 0, tv, tw ∈ [0, 1]. (19)

These are quadratic equations for each edge with a maximum of two solutions per edge and
eigenvector field. For the entire triangle, one or three solutions per eigenvector field are
possible.

Trisector Point

The trisector point has a winding number of −1/2. It is characterized by three separatrices
and three hyperbolic sectors for each eigenvector field, see Figure 6.
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Figure 6 The left figure is an example of a trisector point for one eigenvector field. The middle
and right figure are two examples showing wedge points, with one and three radial tensor lines,
respectively.

Figure 7 Two examples comparing the results of linear component-wise tensor interpolation (top
row) and linear interpolation of eigenvectors and eigenvalues (bottom row). The second interpolation
is much more shape-preserving, and the change of directions is much more uniform.

Wedge Point

A wedge point has a winding number of 1/2. It is characterized by one to three radial
tensor lines. These radial lines define either one hyperbolic sector or one hyperbolic and two
parabolic sectors, see Figure 6.

6 Results

We provide some examples to illustrate the basic differences of the two interpolation methods.
In the figures we use ellipses to represent tensors. The half axes are aligned to the eigenvector
field, and the radii represent eigenvalues. The half axes are defined as

r1 = 1 + cλ and r2 = 1 + cµ, (20)

where c is a normalization factor. This approach allows us to represent non positive definite
tensors as well as ellipses.

The first example shows interpolations on a line, see Figure 7. It illustrates, that the
decoupling of eigenvalue and eigenvector interpolation preserves shape. The change of
the direction is much more continuous than for component-wise interpolation. Similar
observations can be made for the interpolation inside a triangle without degenerate point,
see Figure 8. Figure 9 shows two examples of triangles with degenerate points, one with
wedge point and one with trisector point. Since interpolation of the eigenvectors is only piece
wise linear, due to the subdivision, it allows a more general structure when compared with
component-wise interpolation. The qualitative structure of the mesh generated by integrating
the eigenvector fields are the same. The position of the degenerate point varies slightly, but
the type of the degenerate point is always the same. It can happen that, for eigenvector
interpolation the wedge point has two more radial tensor lines, resulting in an additional
parabolic, sector, see 9(b).
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Figure 8 Comparison of component-wise (left) and eigenvalue, eigenvector-based (right) tensor
interpolation inside a triangle without degenerate point. The upper row shows the tensors represented
as ellipses, and the second row shows the mesh resulting form integrating the eigenvector fields.
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Figure 9 Comparison of component-wise (middle) and eigenvalue, eigenvector-based (right) tensor
interpolation inside a triangle with degenerate point. The upper row shows a triangle with trisector
point, and the bottom row a triangle with wedge point. The triangles on the left compare the
separatrices for both interpolations. For the wedge point case, there exist two more radial lines with
two additional parabolic sectors for the eigenvector interpolation.
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Abstract
While tensors occur in many areas of science and engineering, little has been done to visualize
tensors with order higher than two. Tensors of higher orders can be used for example to de-
scribe complex diffusion patterns in magnetic resonance imaging (MRI). Recently, we presented
a method for tracking lines in higher order tensor fields that is a generalization of methods known
from first order tensor fields (vector fields) and symmetric second order tensor fields. Here, this
method is applied to magnetic resonance imaging where tensor fields are used to describe diffu-
sion patterns for example of hydrogen in the human brain. These patterns align to the internal
structure and can be used to analyze interconnections between different areas of the brain, the
so called tractography problem. The advantage of using higher order tensor lines is the ability
to detect crossings locally, which is not possible in second order tensor fields. In this paper, the
theoretical details will be extended and tangible results will be given on MRI data sets.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Tensor Field, Line Tracking

Digital Object Identifier 10.4230/DFU.SciViz.2010.124

1 Introduction

Tensors are mathematical objects that are used in physics and engineering for measuring
natural quantities or for describing derived quantities such as the vector derivative which is a
second order tensor. While second order tensors, especially symmetric second order tensors
are well studied and many visualization techniques exist, little has been done to visualize
tensors of order higher than two. Higher order tensor occur for example in mechanical
engineering as the fourth order material tensor but despite of painting complex glyphs, no
method exists for analyzing the structure of higher order tensor fields.

Magnetic resonance tomography (MRT) is an imaging technique used in medicine that
is more sensitive to tissue structures than computer tomography (CT). Diffusion weighted
MRT is a variant where diffusion of hydrogen bound in molecules is measured along gradient
directions of an applied magnetic field. As the magnetic field gradient can be changed,
the diffusion can be sampled using a three dimensional sampling pattern. If six different
directions on a sphere g(i) are acquired leading to six signals s(i), i ∈ {1 . . . 6} measured in
addition to a base image s(0), a second order diffusion tensor can be reconstructed by solving
the system of six equations

s(i) = s(0)e−bTjkg(i)
j g(i)

k (1)

describing a symmetric second order tensor1 Tjk = Tkj . Here s(i) is the signal intensity in
presence of a magnetic field gradient and s(0) is the baseline image which is the signal intensity

1 We use Einstein’s summing convention in all equations where variables are summed up over same indices
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in absence of diffusion-sensitizing field gradients to which the remaining measurements are
related. The parameter b is called b-factor or diffusion weighting factor which will be assumed
to be a constant here. The influence of the b-value to the measurement has been studied for
example by Frank [5] and Jones [9]. Usually, more gradient directions are used to smooth
the data and equation 1 is solved using least squares fitting.

In addition to this approach, other techniques have been introduced to handle the
additional information gained by sampling using more than six points, among these are
q-Space imaging, higher angular resolution diffusion (tensor) imaging HARD(T)I and q-Ball
imaging. While q-Space imaging [1] is difficult to measure and is prone to artefacts [13],
q-Ball imaging needs a high number of gradient directions (about 120 to 300) [13]. HARDI
is a technique using higher order tensors to represent diffusion patterns using higher angular
resolution than second order diffusion tensor imaging while only a reasonable small amount
of gradient directions is needed. The number of gradient directions is important because of
its linear dependence on the measuring time. In clinical environments only ten to twenty
minutes of scanning time are available resulting in six to thirty gradient directions using two
or three images for averaging.

Concerning visualization, the ellipsoidal glyph is a rather simple but the best known
visualization technique. It is an ellipsoid spanned by the scaled eigenvectors of the symmetric,
positive definite second order tensor and may be interpreted as an isosurface of the density
function of particles placed in a fluid after a certain diffusion time. In addition many other
glyphs exist like the superquadric glyph presented by Kindlmann [10]. It presents a better
technique providing a direction independent interpretation by reducing errors of introduced
by visual artifacts. Unfortunately, the physical interpretation partly vanishes.

Tensor lines are a well known and widely used method for visualizing symmetric second
order tensor fields which are applied in many different settings like mechanical engineering [3,
8] and medical imaging [14]. In MRT of the human brain, neural fibers hinder diffusion
perpendicular to their course. Therefore tensor lines approximate the neural fiber structures
found in the white matter of the brain. While second order tensors can represent only a
single direction (the direction of the major eigenvector discarding its orientation), higher
order functions are able to represent a higher angular resolution and thus a higher amount of
directions inside the same volume element. This makes it possible to extract a higher amount
of information from the scanned data compared to simple second order tensor approaches.
Usually crossings are detected by looking at the neighboring voxels which reduces the absolute
resolution of the data. As current diffusion tensor images still have a relatively low resolution
(usually larger than 1× 1× 1mm3 compared to the fiber structures which are at a resolution
of micrometers in diameter) and many fiber tracts span only across two or three voxels, it is
important to work with the highest resolution of data available. This implies that analysis of
data at voxel resolution or beyond is crucial for analyzing MRT data.

on one side of the equation. Free indices or indices on different sides of the equation lead to a system of
equations.
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2 Higher Order Tensors

A tensor of order (rank)2 r and dimension d is a multilinear form mapping r d-dimensional
vectors to a scalar:

T : (Rd)r → R (2)

(
v(1), . . . ,v(r)

)
→ Ti1...ir · v

(1)
i1
· · ·v(r)

ir
. (3)

When using the same normalized direction vector g (we call it gradient vector as used in the
MRT nomenclature) a tensor can be interpreted as a scalar function defined on the sphere

fT (g) = Tj1...jr · g
(i)
j1
· · ·g(i)

jr
(4)

There is an analogy between symmetric even order tensors and the symmetric spherical
harmonics approach presented by Frank [6] which has been pointed out by Özerslan et al. [12].
This can be used as an alternative to the tensor representation. A discussion of the use of
spherical harmonics in detail can also be found in Hlawitschka et al. [7]. Here we only want to
emphasize the similarity of the spherical harmonic transform to the Fourier transform. Thus,
higher order spherical harmonic basis functions contain higher frequency components. As
spherical harmonics and the tensor functions fT of same order r describe the same function
space, the frequency information is contained in the tensors, too.

We compute a higher order tensor using the raw information s(0) and s(n) and map it to
a tensor T of order r using

s(n) = s(0)e−bTi1...ir ·gi1 ···gir (5)

To display this information, we use a generalization of Reynold’s stress glyph that is defined
by the surface

S = {p ∈ R3 : pj = Ti1...ir
· vi1 · · ·vir

· vj ∧ v ∈ S2}. (6)

The usual color map for medical imaging indicating the direction of the largest expansion
can be applied to this, too, as shown in Fig. 1. Fading out the color by anisotropy values is
difficult for higher order tensors because anisotropy measures of higher order tensors can
not be compared to those of second order tensors. This is due to the fact that higher order
components are independent of lower order components. Color mapping on the surface
function can be applied to strengthen the shape of the glyph. In addition, arrows can be
drawn to improve visibility of local maxima as shown in Figures 2–5 and 8.

3 Higher Order Tensor Lines

Despite of the fact that glyphs give a good impression of the properties of a tensor defined at a
certain position, no information is shown about its neighborhood. Therefore stream lines and

2 We are ignoring the difference between contravariant and covariant indices here and use a fixed
orthonormal coordinate system for the sake of readability. Therefore all tensor indices are lower indices
and vector indices should be interpreted as upper indices to preserve mathematical correctness but are
written as lower indices to simplify notation and to allow upper indices to be reused differently where
needed.
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Figure 1 A comparison of different tensor glyphs in the area marked by the red box including
parts of the forceps minor and the pyramidal tract. Middle: Box glyphs aligned to the eigenvectors
(left) and Superquadric tensor glyphs (right). Bottom: second order Reynold’s glyph (left) and its
fourth order modification (right).

Figure 2 First order tensor are defined by the scalar product of the direction vector and the
vector sampling the surface. It is obvious that lines can be drawn and that they correspond to
streamlines. (The scaling of the sampling vector has been normalized for this drawing, blue values
are negative.)
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Figure 3 Second order tensor lines in general have one major eigendirection. They also are a
subset of fourth order tensors.

Figure 4 Symmetric, fourth order tensors may have more directions and have special degenerated
cases like the one in the middle where a single major direction still exists.

Figure 5 Our approach of tracking lines is also applicable to mixed order tensors (here zeroth
and third order), but this is not investigated any further due to the lack of application.
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Figure 6 A second order Reynold’s glyph with maxima and minima indicated by red and blue
arrows resp. and its eigenvector decomposition (thin green lines).

tensor lines have been introduced to depict the information present in a certain neighborhood
around a point of interest or – when using randomly seeded lines or lines seeded by complex
algorithms determining good seed points – global information about the behavior of the
vector or tensor field. Therefore, tensor lines have been used in many fields of visualization.
Even though tracking of second order tensor lines reveals a reasonable visualization for
medical images on the first view, it does not handle crossings of fibers at all due to its nature
and underlying model of gaussian diffusion. Thus, the interconnections between the inner
part of the corpus callosum and the outer areas of the corpus callosum are not handled
correctly because they seem to be divided by the pyramidal tract. For a detailed description
about the commissural fibers (neofibrae commissurales) from a neurological/topical point of
view refer to Duus [4].

In second order tensor fields these techniques are based on the eigenvector decomposition
of the matrix representation of second order tensors, especially symmetric, positive definite
tensors which have three positive eigenvalues and three orthogonal eigenvectors. As there is
no such decomposition for higher order tensors [11], we introduce a technique leading to the
same results for stream lines and tensor lines that is applicable to higher order tensor fields,
too.

A non degenerated symmetric second order tensor as shown in Fig. 6 has two distinct
maxima, two minima and two saddle points which correspond to its eigenvector directions.
We use this property to define a major tensor line as a line following these maxima.

Let Σ be the set of tensors of arbitrary order r and let

T : R3 ⊇ U → Σ (7)
p → T (p) (8)

be a C2 continuous tensor field. In the following, we study the corresponding function fT (p)
at each position, i.e.

fT (p) : S2 → R (9)
(θ, φ) → fT (p)(θ, φ) (10)

so we have a function on the sphere at every position.

I Definition 1. We call a position p ∈ U degenerated if there is a position (θ, φ) ∈ S2 where

∇S2fT (p)(θ, φ) = 0 (11)

and

det |∇2
S2fT (p)(θ, φ)| = 0. (12)
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Figure 7 A tensor T at a position p in the data set with two maxima m1 and m2 provides
two neighborhoods N1 and N2 around p. On both neighborhoods a C1 continuous vector field is
defined. Because the area contains no critical points, streamlines can be integrated everywhere in
the neighborhood. Both sets of lines are combined to areas containing two, one or no streamlines.
Usually only lines going through the point p are of interest.

(The name is well chosen because some tensor lines are not uniquely defined at these positions
in accordance to the usual notion of degenerate points introduced by Delmarcelle and
Hesselink [2]. Fig. 8 gives a visual impression of some of those tensor glyphs.) Usually,
testing higher derivatives would lead to a more restrictive definition of degenerated points.
There are special instable cases in which study of higher order derivatives would reveal, that
what we call degenerated is not degenerated. For simplicity, we ignore these very rare cases
in the following sections.

At a regular point (i.e. a point that is not degenerated) q ∈ U , we have a finite number
M of isolated maxima m1, . . . ,mM = (θ1, φ1), . . . , (θM , φM ) of fT (q). Using the implicit
function theorem, we obtain neighborhoods U1, . . . , UM ⊂ U and unique C1 continuous
functions

wm : Nm → S2 (13)
p → wm(p) = (θm(p), φm(p)) (14)

that parametrize the maxima (θm(p), φm(p)) in the neighborhood Nm, i.e. we can extract
M C1-continuous vector fields around p as shown in Fig. 7. Using these vector fields on Nm

we define major arbitrary order tensor lines.

I Definition 2. A unique (major) tensor line in the tensor field T through the point q
following a maximum m is a curve

xm : Im → Nm (15)
t → xm(t) (16)

with

xm(0) = q (17)

and
∂xm

∂t
(t) = wm(xm(t)). (18)
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Figure 8 A fourth order tensor glyph showing two main directions of diffusion (left) and a
degenerated fourth order glyph with a single main direction and a “degenerated ring” (right).

4 Properties of Higher Order Tensor Lines

Similar definitions can be given for minor tensor lines following the minima and medium
tensor lines following the directions of saddle points of the functions fT . This provides us
with a framework of lines in arbitrary order tensor fields where crossing is a valid behavior of
lines following different maxima in overlapping areas. Every parameterized line is uniquely
defined by a position and an initial oriented direction. In symmetric tensor fields, two lines
having the same direction but different orientation differ in their parameterization only
by the relation of their parameters t1 = −t2. In the following sections, we will deal only
with symmetric tensors. As the number of maxima on the function fT is even because of
its symmetry, we will speak of one (two, three...) direction when having two (four, six...)
maxima of fT .

Despite of the fact that our definition of higher order tensor lines is closely related to
the definition of second order tensor lines it is independent of the order of the tensor. Thus,
this definition can be applied to zeroth, first and second order tensors, too. Obviously, for a
zeroth order tensor fT is constant which is also the most important degenerate case in higher
order tensor fields i.e. a completely isotropic tensor.

4.1 First Order Tensors
First order tensors (vectors) are simply build by the scalar product of the vector direction
and the sampling direction v.

fT = Tivi =< T, v >= ‖T‖‖v‖ cos γ, (19)

thus its maximum in the non degenerated case is in the same direction as the vector direction
and our higher order tensor lines correspond to streamlines. A special case about asymmetric
functions fT is that there exists a minimum that can be tracked leading to an reverse
parameterized line. In the case of first order tensor fields, there is only one minimum which
describes backward integration of the streamline. The only degenerated case here is Ti = 0,
thus fT = 0.

4.2 Symmetric Second Order Tensors
For symmetric second order tensors, the maximum is in the direction of the largest eigenvector.
This can be seen by decomposing T into R−1DR where R is a rotation of the eigenvector
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Figure 9 Slice through a human brain. Top left: Kindlmann’s superquadric glyphs, right: Full
brain tracking of second order tensor lines colored by direction. Bottom left: second order tensors
displayed by surface glyphs. Bottom right: Fourth order glyphs shown in the same dataset. The
red glyphs indicate crossings where the fourth order glyph reveals much more information than
the corresponding second order glyph in the same data set. The data set has been provided by
Max-Planck-Institute for Human Cognitive and Brain Sciences Leipzig.

basis of the tensor to the cartesian basis vectors and Dii = λi a diagonal tensor containing
the eigenvalues.

For a vector e(k) along the k-th eigendirection of T , fT can be written as

fT (e(k)) = Tije
(k)
i e

(k)
j = λ1e

(k)
j e

(k)
j = λ1‖e(k)‖2. (20)

For any other direction, the vector v can be projected into the basis of the tensor which can
be expressed by the rotation ṽ = Rv. Let e(k) now be the normalized eigenvectors of the
tensor then

fT (v) = fT (ṽ1e
(1) + ṽ2e

(2) + ṽ3e
(3))

= Tijṽ1e
(1)
i ṽ1e

(1)
j + Tk`ṽ2e

(2)
k ṽ1e

(2)
` + Tmnṽ3e

(3)
m ṽ1e

(3)
n

= λ1ṽ2
1 + λ2ṽ2

2 + λ3ṽ2
3 (21)

Obviously the maximum of fT for a constant length of v is reached at ṽ1 → max which is
achieved by turning the vector v in the direction of the eigenvector of the largest eigenvalue
λ1. This shows that higher order tensor lines are the same lines as second order tensor lines.

Due to the fact that the neighborhoods are areas of smooth behavior, their borders have
to be degenerated. Even though this seems obvious their calculation and mathematical
analysis is still an open topic and will be a subject of further research.
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5 Application to Real World Data Sets

We applied the method to several measured data sets of healthy volunteers. 36 gradient
directions are measured in addition to the base image. The data has been converted to
symmetric tensors using equation 4. No additional filtering or smoothing has been applied.
The data set consists of a rectilinear grid of size 128×128×44 with a voxel size of approximately
1.7× 1.7× 3.0mm3. Lines are seeded at every grid point inside the brain or randomly in an
region of interest. We tracked several lines in areas where crossings are assumed in medical
literature, e.g. in Duus [4], most important the area close to the corpus callosum.

5.1 Second Order Tensor Lines
Second order tensor lines are used to compare our results to previous results. We seeded a
second order tensor line at every position of the grid inside the brain where the fractional
anisotropy is larger than 0.2. All lines were stopped when the FA reaches the threshold of
0.15. The resulting lines were filtered by a maximal length of about the diameter of the brain
and maximal number of steps to prevent loops and a minimal length of 30mm to remove
visual clutter from too short lines. Results of the tracking can be seen in Fig. 9. We further
magnified the area where the corpus callosum and the pyramidal tract meet as described by
Duus. This area is shown in Fig. 10. Due to limitations of second order tensors tensor lines
from the bottom to the top (blue) split the image into two parts. This separatrix cannot be
crossed by other lines which can be clearly seen in the figure.

5.2 Higher Order Tensor Lines
The higher order approach has been applied to the same data set. Again, no filtering has been
applied. Fourth order tensors are reconstructed as described previously. Random seedpoints
have been selected in a region of interest which is approximately the area of the assumed
crossing and are marked by different colors than the lines themselves. Due to simplicity, a
simple Euler approach with adaptive stepsize control has been used for the integration of
lines. The result can be seen in Fig. 11. A comparison to the second order tensor lines that
can be seen in Fig. 10 shows that the knowledge of physicians is much better represented
by the higher order approach as a crossing of lines can be detected and a smaller amount
of lines of the corpus callosum is deflected by the influence of the diffusion pattern of the
pyramidal tract and the corona radiata.

6 Conclusion and Future Work

The theoretical basis of tracking higher order tensor lines has been presented. Proofs of
equality to first order and symmetric second order lines have been indicated. Furthermore, we
have shown that higher order tensor lines can be applied to noisy medical data sets acquired
using diffusion weighted magnetic resonance imaging with a relatively small amount of
gradient directions. There, well known crossings of the pyramidal tract and corpus callosum
have been reconstructed that are not visible in second order tensor fields. A comparison to
images found in medical literature reveals many similarities, like the crossing structure and
their directions that can not be present in second order tensor fields. Further investigations
have to be done relating the influence of noise in second and higher order tensor fields,
describing the reliability of the tracking. Application to other higher order tensor data such
as complex fourth order material tensors is still an open topic.
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Figure 10 Crossings of the pyramidal tract and the corpus callosum shown using second order
tensor lines in a measured data set of a young healthy volunteer. Even though a crossing is
expected, second order tensors are not capable of displaying crossing behavior. Data set provided by
Max-Planck-Institute for Human Cognitive and Brain Sciences Leipzig.

Figure 11 Similar view of the same data set as in Fig. 10. Crossings of the pyramidal tract and
the corpus callosum painted as tubes. Colored points indicate the random seeding points of the
lines. The data set has been provided by the Max-Planck-Institute for Human Cognitive and Brain
Sciences Leipzig.
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Abstract
Illustrative techniques are a new and exciting direction in visualization research. Traditional
techniques which have been used by scientific illustrators for centuries are re-examined under
the light of modern computer technology. In this paper, we discuss the use of the focus+context
concept for the illustrative visualization of volumetric data. We give an overview of the state-of-
the-art and discuss recent approaches which employ this concept in novel ways.
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1 Introduction

A considerable amount of research has been devoted to developing, improving and examining
visualization techniques for scientific volume data. It has been shown that volume rendering
can be successfully used to explore and analyze volumetric data sets in medicine, biology,
engineering, and many other fields.

A recent trend in volume visualization is that researchers tend to use traditional illus-
trations as an inspiration for their work. As the domain of scientific illustration is based
on centuries of experience in the depiction of complex volumetric structures, it represents a
valuable source for visualization researchers. A common technique found in many traditional
illustrations (see Figure 1) is referred to as focus+context in visualization literature. As there
is often not enough space available to display all information in sufficient detail, the general
idea is to emphasize regions of particular interest (focus) without completely removing other
information important for orientation (context). Moreover, focus+context visualizations are
not only motivated by space limitations but also by human visual perception. People are
capable of simultaneously perceiving both local detail and global context [46]. Focus+context
methods make it possible to show more detailed or targeted information and at the same
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Figure 1 Medical illustration using focus+context – the image shows the position of a kidney
after transplantation into the pelvic region. Bones are displayed in a stylized way while focus is
emphasized by a more realistic rendering style (image courtesy of Frank M. Corl [17]).

time give users a sense of where in the data the zoomed-in, more detailed, or pointed out
information is.

In connection with the advanced interaction possible in computer-based visualization
the focus+context concept offers additional advantages. As the focus can be modified
interactively, it serves as a means to explore complex data. This paper reviews recent
approaches which employ different kinds of focus+context techniques for improved illustrative
visualization of volumetric data. Section 2 gives an overview of previous work in the area. In
Section 3 we discuss a framework for distortion-based focus+context volume visualization. It
employs traditional (i.e. physically plausible) as well as arbitrary distortions for highlighting
structures in volumetric data. Section 4 presents deformation techniques which allow a user
to manipulate the data for improved comprehension in Section 4. Next, in Section 5, we
focus on concepts used in the design of a volume-based illustration system which aims to
produce visualizations with the aesthetic appeal of traditional illustrations. In Section 6 we
discuss how illustrative focus+context visualization can be employed in medical applications
for surgery planning. Finally, the paper is concluded in Section 7.

While distinct approaches, the individual parts of this paper have many similarities.
They all employ the concept of focus+context to prevent information overload and allow
the user to concentrate on certain structures of interest. Traditional scientific illustration
is used as a source of inspiration and adapted to the additional degrees of freedom offered
by computer-based visualization. Finally, all approaches use the capabilities of graphics
hardware to allow interactive navigation and interaction.
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2 Related Work

Focus+context approaches have been heavily employed in information visualization. Many
approaches are based on spatial distortion, for instance fish-eye views [21], hyperbolic
trees [31] or the document lens [44], and others [29] (see [34] for a more detailed overview).
Viewpoint-dependent distortion of 3D data [8, 9] highlights regions of interest by dedicating
more space to them. Other methods, for example tool glass and magic lenses [3], allow the
display of additional data dimensions on demand. Cue methods [30] enhance the visualization
by assigning visual cues to certain objects so that they are more prominent to the viewer
without hiding the context.

While the area of non-photorealistic rendering [25, 49] is more concerned with imitating
artistic styles in an automated way, illustrative visualization goes one step further and tries to
apply these techniques selectively to enhance visual comprehension. Illustrative visualization
can be seen as a fusion of the focus+context concept and non-photorealistic rendering. The
visual abstraction is realized at two basic levels: stylized depiction (low-level abstraction)
deals with how objects should be presented, while smart visibility (high-level abstraction) is
concerned with what should be visible and recognizable.

The inherent complexity of volumetric data has lead to a considerable amount of research
in illustrative techniques for volume visualization. Most approaches tend to combine both
levels of abstractions and do not have an explicit steering mechanism. Levoy [35] was the
first to propose modulation of opacity using the magnitude of the local gradient. This is an
effective way to enhance surfaces in volume rendering, as homogeneous regions are suppressed.
Based on this idea, Rheingans and Ebert [43] present several illustrative techniques which
enhance features and add depth and orientation cues. They also propose to locally apply
these methods for regional enhancement. Using similar methods, Lu et al. [37] developed an
interactive volume illustration system that simulates traditional stipple drawing. Csébfalvi
et al. [20] visualize object contours based on the magnitude of local gradients as well as
on the angle between viewing direction and gradient vector using depth-shaded maximum
intensity projection. Lum and Ma [38] present a hardware-accelerated approach for high-
quality non-photorealistic rendering of volume data. They also suggest the use of lighting
transfer functions [39] for object enhancement. The concept of two-level volume rendering,
proposed by Hauser et al. [26], allows focus+context visualization of volume data. Different
rendering styles, such as direct volume rendering and maximum intensity projection, are
used to emphasize objects of interest while still displaying the remaining data as context.
Zhou et al. [60] use a focal-region-based rendering approach which depicts context data
using a different rendering technique. They also propose the use of distance to emphasize
and de-emphasize different regions [59]. The distance from a focal point is used to directly
modulate the opacity at each sample position. Tapenbeck et al. [51] employ distance-based
transfer function based on the distance to an object (rather than a focal point). Levoy and
Whitaker [36] perform adaptive resolution volume rendering based on gaze direction. Cignoni
et al. [13] provide the MagicSphere metaphor to visualize 3D data with the MultiRes filter.
Wei et al. [58] apply fisheye views to particle track volume data using nonlinear magnification
functions. LaMar et al. [33] integrate a 3D magnification lens with a hardware-texture
based volume renderer. Cohen and Brodlie [15] magnify features by generating a new volume
using inverse distortion functions.

Some recent approaches explicitly distinguish between low- and high-level abstraction.
Viola et al. [54, 55] map an importance function which specifies the relevance of different
structures within the volume data to appropriate levels-of-spareness which control object
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appearance. Different importance compositing strategies control object visibility. Svakhine
et al. [50] employ illustration motifs to control the appearance of objects at varying degrees
of complexity.

3 Distortion-based Focus Enhancement Using Volumetric Lenses

Distortion-based focus enhancement with lenses has a long history, with the first reported uses
going all the way back to the Greeks, Arabs, and Romans. Greek philosopher Aristophanes
(448 BC-380 BC) already knew that glass could be used as a magnifying lens, but it was not
until roughly 150 AD that Ptolemy discovered the basic rules of light diffraction and wrote
extensively on this subject. Back then, magnifying glasses were mainly used as a reading
aid by the literate class. For example, Roman tragedian Seneca (4 BC-AD 65) is said to
have read "all the books in Rome" by looking through a glass globe of water. A thousand
years later, far-sighted monks employed segments of glass spheres which they laid against
reading material to magnify the letters, and the development of these "reading stones" was
based on the theories of the Arabic mathematician Alhazen (roughly 1000 AD). This basic
invention was then later refined by Venetian glass blowers, who constructed lenses that could
be held in a frame in front of the eye instead of directly on the reading material. While
these first spectacles were intended for use by one eye only, the idea to frame two ground
glasses with wood or horn into a single binocular unit was introduced in the 13th century.
Eventually, in 1268, Roger Bacon made the first known scientific commentary on lenses for
vision correction, and he is generally credited with the invention of the magnifying glass,
and perhaps with the foundation of the field of optics as a whole. Since then these basic
lens optics have experienced a great revolution, on a vast order of scales, ranging from the
magnification of individual biological cells to the scanning of the far-out cosmos. In many
applications, and definitely in the case of spectacles, preserving context is a strong necessity,
in order to maintain and provide ease of navigation. Preserving context usually means that
the resolution of the visual information presented is highest in the foveal center (the focus),
and then falls off towards the periphery in some smooth fashion, without performing any
clipping within the viewing area. This is usually the case in lens-based physical optics. In
more recent years, the laws of lens optics have also found application in the virtual world,
using computers to implement these general concepts. In the beginning, the emphasis was on
realistic simulations of the physical laws, and a great number of computer graphics papers
were written to that effect [47]. However, while computer graphics was mainly concerned
with the realistic simulation of optical effects in possibly very complex scenarios, the field of
information and data visualization has been more in line with the original intentions of the
ancient "reading stones" concept, that is, the magnification of objects of interest for better
perception of their detail. It was quickly discovered that virtual (computerized) lenses are no
longer constrained by the physical laws of optics, allowing the liberal use of these concepts
in creative ways.

The approach summarized in this section of the paper (see [57] for more detail) seeks to
generalize distortion functions and to make them interactive via implementation on graphics
hardware. The latter allows their use within an engaging volume exploration tool, where a
real-time response to user actions is a must – a property that is also expected, and in fact
taken for granted, in physical lenses. As was mentioned above, in addition to physics-based
lens optics, software lenses also allow the derivation and implementation of functionalities
that do not have counterparts in physical optics, or at least are hard to fabricate. We provide
volumetric lenses in both categories. In the former, we devise a set of lenses that tune their
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Figure 2 Illustration of the general lens mechanism.

geometry to the underlying feature semantics, while in the latter we allow the user to design
the distortion function with a free-hand tool. In the following sections, we will describe the
key components of our framework, and we conclude with pointers to possible extensions of
our framework.

3.1 Virtual Lens Optics in a Volumetric Environment

Our lens aims to provide smooth transitions between focal and peripheral regions, with
no clipping. Further, it aims to keep the lens effects local. Thus, the additional screen
area dedicated to the focal (magnified) regions must be taken away from the peripheral
(minified) regions. In sampling theory terms, this means that the focal volume regions are
oversampled, while the peripheral volume regions are undersampled. The latter requires
proper anti-aliasing during image generation. Figure 2 illustrates these concepts, using a
raycasting rendering paradigm. Here, the blue line segment on the image plane represents
the magnification part of the lens, LC is its center point and F is the virtual focal point.
When orthogonal incident rays hit the image plane, in the area of the focal region, the ray
directions are modified and go through F . Therefore, a ray cone is formed between the lens
and F , and the object regions within this cone are rendered in an enlarged area on the image
plane. The peripheral regions (to the left and right of the focal region) are represented by the
red line segments on the image plane with width lb and are rendered at reduced resolution,
while image regions outside + − lr (the radius of the lens) appear at normal magnification.
Thus, the paths of the rays traversing the peripheral region form the smooth transition
between normal and focal region.

This general framework enables the design of lenses with arbitrary shapes. Figure 3a
shows the original volume rendering obtained with no lens, and Figure 3b-d are renderings
obtained using a circular, square, and arbitrary-shaped lens, respectively.
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(a) (b)

(c) (d)

Figure 3 Magnifier volume renderings with (a) No lens, (b) Circular lens, (c) Square lens, (d)
Arbitrary-shaped lens.

(a) (b)

Figure 4 Magnifier volume renderings for the bone feature in a segmented frog dataset. (a) and
(b) are renderings without and with magnification under a circular lens.
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Figure 5 Feature-based lens illustration.

A segmentation of the dataset enables magnification with semantics. Figure 4 was
generated by allowing the rays under the lens to penetrate the frog’s skin, magnifying the
skeleton underneath.

3.2 Feature-centric Lens
The feature-centric lens provides users a means to highlight portions of interest in volume
objects by dedicating more screen area to them. This also promotes a more accurate and
differentiated understanding of these features, since fine detail is enlarged. In this lens, the
shape of its magnification portion (and that of the surrounding transition region) is defined
dynamically by the shape of the features (represented by available segmentation information)
in the dataset (see Figure 5 for an illustration). Here, whether an incident ray changes
direction depends on the distribution of the feature. Thus the direction of each ray needs
to be determined dynamically. Transition regions are also used here to retain the spatial
context of the features. For each ray orthogonally incident upon the image plane, the new
direction is computed as follows. Assuming all rays changed directions to the focal point F ,

if a ray passes through the feature, then its new direction is pointing to F .
if the ray does not pass through the feature but is inside the transition region on the
image plane, the distance d (see Figure 5) from its entry point to the boundary of the
feature-projected area is calculated. This distance is used to compute the new direction.
otherwise, the ray continues along its original direction.

The transition region is determined by a boundary of certain width around the feature.
For this we first project the feature onto the image plane and then fill all interior points
with a constant value. This region will be magnified using the over-sampling scheme defined
before. The transition region field can then be marked (on the image plane) using a distance
transform and the values be used to determine the direction of the rays. Alternatively, one
may also determine the ray direction vector by finding the distance of the starting position to
the closest neighbor in the projected feature region. We have used a GPU-accelerated search
circle approach for this, with the transition region width lb being the circle’s maximal radius.
Figure 6 shows some rendering results for a color volume dataset, in which a user-selected
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(a) (b) (c) (d)

Figure 6 Feature-based lens volume renderings for a segmented human brain color volume dataset.
(a) without specifying any feature of interest, (b) with a feature of interest, which is not magnified
and appears too small to be seen clearly. From (c) to (d) the magnification factor increases.

feature is magnified and the other objects near that feature are compressed. Figure 6a shows
the skin of the brain. Figure 6b shows an interior structure of the brain, without rendering
other features which occlude this structure, while the magnified structures are shown in
Figure 6c and d.

3.3 Free-form Lens Optics
Our framework also allows the design of arbitrary lens functions, using a free-form drawing
tool. Figure 7 (top) shows an example. Here, the vertical axis (the height of the curve)
indicates the (instantaneous) sampling rate, which is the reciprocal of the local sample
distance on the image plane. The horizontal axis indicates the distance from the lens center.
The higher the sampling rate, the greater is the number of rays per unit area and the
magnification. Since magnification in one screen area (sampling rate > 0) must be balanced
with minification in another (sampling rate < 0), the total curve integrals above and below
the x-axis must approximately match. This is also illustrated in Figure 7 (bottom), where
we observe that the rays shot into the object are denser in the center region of the lens and
become coarser towards the boundary. Various sampling functions can be adopted to define
various volumetric lenses and to achieve different volume rendering results.

Figure 8 shows some results object with the free-form lens, comparing it with the results
obtained with no lens and a standard magnification lens, respectively. The toes of the foot
are shown rendered with different magnification effects. The difference between Figure 8b
and 8c is mainly caused by the different magnification factor distributions on the lenses.
For the standard lens, the magnification factors for points projecting into the magnification
region and having the same distance to the image plane are the same. Therefore, objects at
the same depth are magnified uniformly. However, for the lens with cubic sampling function,
the factor is the highest on the lens center and decreases gradually towards the lens boundary.
Objects with projections closer to the lens center are magnified with higher magnification
factors. Along any ray, the factor remains the same for different depth values.

3.4 Extensions
There are several extensions that fit well into the presented framework. For example, it
would be relatively straightforward to extend the current mipmap-based zooming capabilities
to more sophisticated multi-resolution data, where the data appearing under magnification
comes from a different data source. This could either be a modality acquiring data at a
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Figure 7 Sampling-rate-based lens illustration.

(a) (b) (c) (d)

Figure 8 Comparing volume renderings with (a) no lens, (b) normal magnification lenses (c)
cubic lens optics sampling function (maximal sampling rate/normal sampling rate = 3), and (d) an
arbitrary lens optics sampling function.
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resolution appropriate for the current local magnification rate, or a texture synthesis process
that generates these data from high-resolution data swatches on the fly [56]. Finally, the
lens may be generalized to provide Superman-vision capabilities – a magic lens to see the
underlying uncertainties associated with the data, another channel in a multi-modal dataset,
a segmentation result, or some semantic annotations that go with the data. It may fuse these
views together, controlled by the user.

4 Interactive Manipulation of Volumetric Objects

The purpose of visualization is to "gain insight by using our visual machinery" [1] and
"Underlying the concept of visualization is the idea that an observer can build a mental
model, the visual attributes of which represent data attributes in a definable manner" [45].
The tools we currently have in 3D data visualization to help building the mental model
include real-time rendering, rotation, slicing, transfer functions, segmentations and many
novel focus+context renderings. However, the effective exploration of volumetric data is still
a challenging task, especially for complex volumetric datasets with convoluted structures.
With the prevalence of 3D imaging in all fields, such as for physical therapy, psychology,
security and screening, archeology, e-commerce, etc. it is important to explore methodologies
which can enhance our comprehension of the underlying structure.

Interestingly, the use of physical representations in rapid prototyping (layered manufac-
turing) has capitalized on this fact. Claims include: 2D screen displays do not always provide
an intuitive representation of 3D geometry; unusual or deformed geometry may be hard
to comprehend on-screen; the integration of different modalities is hard to visualize; and
the planning of complex 3D manipulation from 2D images can be difficult [10]. As opposed
to virtual prototypes (display), "physical prototypes bring in a completely new interactive
modality – the sense of handling an object" [2]. It can be much easier to learn about complex
3D shapes by holding the actual objects.

In this section, we describe a more active approach to visualization which allows the
user to manipulate the data. The purpose is to allow the viewer to explore the data for
comprehension not necessarily to simulate reality. Techniques or operations on the data
that exemplify this approach include bend, move/re-pose, peel, pull, sweep, roll/unroll, cut,
retract, and split. All of these descriptions are verbs, symbolizing an action on the dataset.
Some examples of this type of visualization are shown in Figure 9. This type of visualization
is common in surgical education and simulation, medical illustration and other types of
illustration. Below we briefly describe some of the different types of manipulations which are
useful, and discuss how to achieve these effects on 3D datasets.

4.1 Spatial Transfer Functions
In medical illustration, one commonly sees peel-away effects simulating surgical cuts and
other types of surgical procedures. Therefore, what is desired is a deformation-like procedure
which can model cuts or splits in a volume. Surgical simulation packages can handle cuts, but
they are usually specialized to one model. Other physically based deformation methodologies
exist (see [11] for a review) and most focus on deforming the surface without modeling cuts.
For visualization and illustration purposes it is not clear that the manipulations must be
physically based. Most related is the work of [40] where surgical-like operators were defined
on volumetric datasets.

A spatial transfer function [12, 27] defines a geometrical transformation of the scalar values
of volumetric models to allow different effects such as splitting, squeezing and sweeping. The
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peel

move

sweep

unroll

Figure 9 Different manipulations on a volume: peel, move, seep, unroll. Images are from
[28, 48, 23, 19].

spatial transfer function is able to handle discontinuities in the rendering method which other
more direct data manipulation methodologies have trouble with. The surgical cut shown in
Figure 9 is rendered with a spatial transfer function. The volumetric model with the spatial
transfer function is rendered by first computing the transformation on the bounding volume,
and mapping back to find the actual volumetric values. These can then be composited using
a standard ray casting approach. Details can be found in [28].

4.2 Curve-Skeleton Decomposition
To achieve the bend, move/re-pose, and sweep, a proxy geometry can be used. The proxy
geometry allows the user to easily specify a transformation on the data. One such proxy
geometry which is useful is a curve-skeleton. A curve-skeleton is a 1D line-like representation
of the object (sometimes referred to as a centerline). A skeleton also is a natural decomposition
of many objects and provides a simple way to specify a path (e.g., for virtual navigation).
A skeleton of a volumetric object is a useful shape abstraction that captures the essential
topology of an object. It also has a cognitive basis in shape comprehension. Motion is also
traditionally specified in computer graphics using a skeleton. (Therefore, all of the motion
capture available to computer graphics can be available for volumes as well.) The skeleton
can be extracted by using a variety of methods (see [18] for more information). Once the
skeleton has been obtained, the joints can be chosen [22]. The joints define the areas where
bending can occur. Each skeletal segment defines a bounding cuboid about a logical segment
of the volume, as seen in Figure 10. The width of the cuboid can be determined from a
distance field computed on the volume. The subdivision of the cuboids can be determined
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1. Compute skeleton + texture 
decomposition 

3. Define texture and move 
texture along skeleton path --- 
apply new texture to that 
portion of the decomposition 

2. Define path 

Figure 10 Block based decomposition of a volume along a skeleton path. The skeleton is divided
into small cube-like regions. Each region can be sliced and then rendered. By specifying small
regions, different colors, transfer functions, or general transformations can be applied independently.
An effect simulating blood flow is shown by moving a texture along a specified path.

based upon the requirements of the visualization (described below). This geometry, though
a coarse approximation to the actual shape, suffices for reconstructing most shapes and
provides a simple geometry for fast rendering. The boxes are also good for fuzzy bounded
volumes, which may not have a definite boundary. An example of the cuboid structure about
a central axis is shown for the aneurysm dataset in Figure 10.

The skeleton/cuboids supports both kinematic manipulation and sweeping. One can
grab the skeleton and move it as shown in two images from Figure 9. In the first, the
hands of the visible man are moved away from the torso to allow better viewing of the
torso area. In the second, a volumetric colon is unrolled (its skeleton is straightened). The
manipulation can be performed by explicitly computing a new volume in the reposed position
[23] or interactively using a technique which only renders the manipulated volume [48]. For
interactive manipulation, the cuboids are transformed about the joint, and each cuboid is
sliced along the viewport. The slices are mapped back to the original texture to determine
the appropriate color value. The texture-mapped polygons are then composited back-to-front
which volume renders the deformed volume. Interpolation is done between two end planes
of the adjoining bounding boxes which essentially covers the joint area with a stretched
volume. The advantage of using this approach is that it requires a minimum of geometric
processing and is therefore very fast. If the volume is rotated, the underlying geometry has
to be re-sliced and composited. Since each cuboid is sliced independently, it is necessary to
sort the sliced polygons along the view direction from back to front. This is achieved in a
two-pass rendering algorithm with the aid of a data structure that indexes polygons with
respect to their depth coordinate.

The skeleton decomposition also supports selective rendering [48] and sweeps [19]. Selective
rendering is where a portion of the dataset is rendered with a different transfer function. This
allows one to highlight different parts of a volume for more effective focus+context viewing.
By adding motion to the selective rendering, we can create a swept representation where a
dataset is traversed along a specified path. This is commonly used in medical illustration to
produce animations, highlight features or enhance the rendering of a dataset. Techniques for
navigation of datasets are used in virtual colonoscopy, where the userís viewpoint is traversed
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(a) (b)

Figure 11 Swept based volume rendering. The effect simulates flow through a volume and enables
focus+context views. (a) shows the skeleton path (b) is the traversal. See [19] for more examples
and a movie.

along a path. Such techniques can be described as inside-out visualizations of the dataset.
Here, we are doing an outside-in visualization, where the exploration is enabled by moving a
transfer function, in addition to independent control of the userís viewpoint. It is naturally a
focus+context technique, as it focuses the viewers gaze on the area being swept while still
showing the entire object. It is similar to using a highlighter pen to emphasize parts of an
object. An example of this technique used in medical illustration to show blood flow can be
seen in [5].

4.3 Dataset Traversal

Traversing (explicitly or mentally) a complex datasets seems to be an essential part of
understanding 3D shape and a skeleton or sweep structure can aid in this process. When
rendering volumes as 3D textures, transfer functions are usually applied as a lookup color
table. This table defines the color and transparency associated with each density value of
the volume. The skeletal-based block decomposition allows us to apply a different transfer
function to each cuboid of the decomposition along a path at a particular time. A traversal
path is selected, and each segment of the path is highlighted at a different time. For
rendering, each cuboid of the decomposition is rendered as textured slices. When a slice is
being rendered, the proper transfer function is found (i.e., if that slice is part of the segment
being highlighted). Since all of the slices are composited together, any number of highlights
can be used and the combinations are solved on-the-fly. This creates a feeling of "sweeping
out the structure", similar to lighting the structure from within. Two examples of swept
visualization can be seen in Figure 11. In the first, parts of a colon are highlighted, and
in the second the visible man dataset is traversed while changing the rendering parameters
(from bone to skin). Figure 10 shows a swept volume simulating blood flow. More details of
the algorithm are given in [19].



S. Bruckner, M. E. Gröller, K. Mueller, B. Preim, and D. Silver 149

multi-object
volume rendering

illustrative
enhancement

selective
illustration

data
volume

selection
volume

sample
data

meta
information

sample
data

meta
information

acquisition
device

user
input

output
image

Figure 12 Conceptual overview of our direct volume illustration environment.

5 Interactive Design of Illustrations from Volume Data

In this section we discuss several concepts used in the design of VolumeShop [7], a system
for interactive generation of illustrations directly from volume data. The advantages of such
a system are manifold: Firstly, the whole process of creating an illustration is accelerated.
Different illustration methods and techniques can be explored interactively. It is easy to
change the rendering style of a whole illustration – a process that would otherwise require
a complete redrawing. Moreover, the research process is greatly simplified. Provided that
the object to be depicted is available as a volumetric data set, it can be displayed with high
accuracy. Based on this data, the illustrator can select which features he wants to emphasize
or present in a less detailed way. Illustration templates can be stored and reapplied to other
data sets. This allows for the fast generation of customized illustrations which depict, for
instance, a specific pathology. Finally, the illustration becomes more than a mere image.
Interactive illustrations can be designed where a user can select different objects of interest
and change the viewpoint.

The architecture of VolumeShop discriminates between two basic types of volumes: data
volumes and selection volumes. A data volume stores the actual scalar field, for example
acquired by a CT scanner. A selection volume specifies a particular structure of interest in a
corresponding data volume. It stores real values in the range [0,1] where zero means "not
selected" and one means "fully selected". While both multiple data and selection volumes can
be defined, only one pair is active at a time. At the heart of the system lies a multi-object
volume rendering algorithm which is responsible for the concurrent visualization of multiple
user-defined volumetric objects. It makes use of illustrative enhancement methods and
selective illustration techniques defining the visual appearance of objects. A conceptual
overview of the system is given is Figure 12.
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Figure 13 Overview of the basic multi-object combination process for background, ghost, and
selection: the intersection between selection sets and volume sets results in object sets which are
then combined.

5.1 Multi-Object Volume Rendering

When illustrating a volumetric data set, we want to enable interactive selection and emphasis
of specific features. The user should be able to specify a region of interest which can be
highlighted and transformed, similar to common image editing applications. We also want to
permit arbitrary intersections between objects and control how the intersection regions are
visualized.

VolumeShop’s approach identifies three different objects for the interaction with a vol-
umetric data set: a selection is a user-defined focus region, the ghost corresponds to the
selection at its original location, and the background is the remaining volumetric object. A
transformation can be applied to the selection, e.g., the user can move, rotate, or scale this
object. While the concept of background and selection is used in nearly every graphical
user interface, ghosts normally exist, if at all, only implicitly. The approach uses fuzzy
set arithmetic to derive the selection, ghost, and background objects (objects sets) as an
intersection of the selection volumes (selection sets) and the opacity transfer function specified
for the data volumes (volume sets), as illustrated in Figure 13.

Additionally, the user is supplied with control over the appearance of regions of intersection.
Frequently, for example, illustrators emphasize inter-penetrating objects when they are
important for the intent of the illustration. Two dimensional intersection transfer functions
are employed for this purpose. An intersection transfer function specifies the color and
opacity at a resample location based on the scalar volume of the volumetric objects present
at that location. Per definition background and ghost never intersect. The selection, however,
can intersect either the background, the ghost, or both. The intersection transfer functions
can be used to control the color and opacity in the region of intersection between two objects
based on the scalar values of both objects. VolumeShop provides a default setting which is
an opacity-weighted average between the one-dimensional color transfer functions of the two
respective objects (background and selection, or ghost and selection). Furthermore, there
are several presets where the opacity is computed from the one-dimensional opacity transfer
functions by one of the compositing operators derived by Porter and Duff [42]. The color
can be specified arbitrarily. Additionally, the user can paint on the two-dimensional function
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Figure 14 Using intersection transfer functions to illustrate implant placement in the maxilla.
As the selection (green) is moved into the ghost (faint red), the intersection transfer function causes
it to be displayed in blue.

using a gaussian brush to highlight specific scalar ranges. Figure 14 shows an example where
the ghost/selection intersection transfer function is used to illustrate the placement of an
implant in the maxilla. This kind of emphasis is not only useful for the final illustration, but
can act as a kind of implicit visual collision detection during its design.

5.2 Illustrative Enhancement

Illustration is closely related to non-photorealistic rendering methods, many of which attempt
to mimic artistic styles and techniques. VolumeShop uses a simple approach which integrates
several presented models and is thus well-suited for a volume illustration system. Most
illumination models use information about the angle between normal, light vector and viewing
vector to determine the lighting intensity. In volume rendering, the directional derivative of
the volumetric function, the gradient, is commonly used to approximate the surface normal.
Additionally, the gradient magnitude is used to characterize the "surfaceness" of a point; high
gradient magnitudes correspond to surface-like structures while low gradient magnitudes
identify rather homogeneous regions. Numerous distinct approaches have been presented that
use these quantities in different combinations to achieve a wide variety of effects. In order
to integrate many of these models, VolumeShop uses a two-dimensional lighting transfer
function for shading objects. The arguments of this function are the dot product between the
normalized gradient N̂ and the normalized light vector L̂ and the dot product between the
normalized gradient and the normalized half-way vector Ĥ, where Ĥ is the normalized sum
of L̂ and the normalized view vector V̂ . A two-dimensional lookup table stores the ambient,
diffuse, and specular lighting contributions for every N̂ · L̂ and N̂ · Ĥ pair. Additionally, a
fourth component used for opacity enhancement is stored.

We use the terms "ambient", "diffuse", and "specular" to illustrate the simple correspon-
dence in case of Phong-Blinn lighting. However, the semantics of these components are
defined by the model used for generation of the lighting transfer function. Thus, a lighting
transfer function might use these terms to achieve effects completely unrelated to ambient,
diffuse, and specular lighting contributions. This approach allows different illustrative shad-
ing models to be evaluated at constant costs. For example, contour lines are commonly
realized by using a dark color where the dot product between gradient and view vector N̂ · V̂

approaches zero, i.e., these two vectors are nearly orthogonal. We can thus create a lighting
transfer function where we set ambient, diffuse and specular components to zero where
N̂ · L̂ ≈ 2(N̂ · Ĥ). Other methods, such as cartoon shading [14] or metal shading [24] can be
realized in a straight-forward manner and combined with effects like contour enhancement.
Figure 15 shows an image rendered using four different lighting transfer functions.
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(a) (b) (c) (d)

Figure 15 The same data set rendered with four different lighting transfer functions (the lighting
transfer function for each image is displayed in the lower left corner - ambient, diffuse, specular, and
opacity enhancement components are encoded in the red, green, blue, and alpha channel, respectively).
(a) Standard Phong-Blinn lighting. (b) Phong-Blinn lighting with contour enhancement. (c) Cartoon
shading with contour enhancement. (d) Metal shading with contour enhancement.

5.3 Selective Illustration
Selective illustration techniques are methods which aim to emphasize specific user-defined fea-
tures in a data set using visual conventions commonly employed by human illustrators. They
are closely related to focus+context approaches frequently found in information visualization.

5.3.1 Cutaways and Ghosting
Cutaways (also referred to as cut-away views) are an important tool commonly employed by
illustrators to display specific features occluded by other objects. The occluding object is
cut out to reveal the structure of interest. Viola et. al. [54] introduced importance-driven
volume rendering, a general framework for determining which object is to be cut by using an
importance function. VolumeShop’s simplified three-object setup allows a static definition of
this importance function, which enables us to skip costly importance compositing and thus
allows for an efficient implementation. Cutaways are only performed on the background and
can be independently defined for ghost and selection.

Ghosting [6] refers to a technique which is frequently used in conjunction with cutaways.
Instead of removing the occluding regions completely, opacity is selectively reduced in a way
which attempts to preserve features such as edges. This tends to aid mental reconstruction of
these structures and generally gives a better impression of the spatial location of the object
in focus. The user can smoothly control the degree of ghosting from no ghosting (opacity is
not reduced at all) to full cutaway view (occluding structures are completely suppressed) as
shown in Figure 16.

5.3.2 Visual Conventions and Interaction
As the selection can undergo a user-defined transformation there are a number of possibilities
for combining the effects of transfer functions, cutaways and ghosting, and spatial displace-
ment. In its simplest form, this can be used to illustrate the removal or insertion of an object.
Furthermore, "magic views" on a structure of interest can be generated, where the object
is displayed using a different degree of detail, orientation, or rendering style. Illustrators
commonly employ certain visual conventions to indicate the role of an object in their works.
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(a) (b) (c)

Figure 16 Different degrees of ghosting - from no ghosting (a) to full cutaway (c).

(a) (b)

Figure 17 Using different artistic visual conventions. (a) Illustrating a tumor resection procedure
using an automatically generated arrow. (b) Detailed depiction of a hand bone using a fan.

VolumeShop provides the user with different kinds of visual enhancements inspired by these
conventions.

For example, arrows normally suggest that an object actually has been moved during the
illustrated process (e.g., in the context of a surgical procedure) or that an object needs to
be inserted at a certain location (e.g., in assembly instructions). Analogously, VolumeShop
employs arrows to depict the translation between ghost and selection, i.e., the arrow is
automatically drawn from the object’s original position to its current location. To avoid very
short arrows in case the selection and the ghost project to nearby positions in image space,
we use the screen-space depth difference to control the curvature of the arrow. This leads to
the kind of bent arrows frequently found in illustrations. Figure 17 (a) shows an example for
the use of arrows.

Another metaphor used are "fans". A fan is a connected pair of shapes, such as rectangles
or circles, used to indicate a more detailed or alternative depiction of a structure. It can be
easily constructed by connecting the screen-space bounding rectangles of ghost and selection.
In combination with cutaways and ghosting, this type of enhancement can lead to very
expressive visualizations, depicting, for example, two different representations of the same
object (see Figure 17 (b)).

Apart from controlling visual appearance, it is useful to provide different interaction
types based on the role of an object in the illustration. For example, the user can "pin" down
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the current selection, i.e. its on-screen location will remain static, but it is still affected by
rotations. A rotation of the viewpoint causes the same relative rotation of the object. This
can be used to generate a special view which always shows the part of an object facing away
from the viewer in the background object.

5.4 Conclusion
The use of an optimized GPU volume rendering algorithm with multi-object capabilities
(see [7] for more details) allows us to provide a responsive interface for interactive generation
of volume-based illustration using the techniques described in this section. VolumeShop is an
open architecture and supports extensions using a plug-in mechanism. For more information
(including a downloadable version) see: http://www.cg.tuwien.ac.at/volumeshop.

6 Illustrative Visualization for Neck Dissection Planning

In this section, we discuss how conventional and illustrative rendering techniques might
be employed to support a particular surgical intervention: neck dissection planning. Neck
dissection planning poses challenging visualization problems due to the enormous density of
crucial anatomic structures: Muscles, vascular structures, and nerves share the same small
space. This discussion is based on an ongoing research project and the experiences with
planning 20 neck dissections based on CT datasets ([32] and [53]).

6.1 Medical Background
Neck dissections are carried out for patients with malignant tumors in the head and neck
region. These surgical procedures are necessary because the majority of the patients develops
lymph node metastases in the neck region. The extent of the intervention depends on the
occurrence and location of enlarged (and probably) malignant lymph nodes. In particular, the
infiltration of muscles, nerves or blood vessels determine the surgical strategy. If for example
the A. carotis interna is infiltrated, the patient is regarded as not resectable. Visualization
techniques should be developed to support decisions regarding the surgical strategy.

6.2 Conventional Surgical Planning
Surgical planning is carried out by means of 2D slices. Computer support allows to browse
quickly through the slices, to change brightness and contrast and to perform measurements.
3D renderings are rarely used and many surgeons are not convinced of the additional value
of 3D renderings at all. This attitude has serious arguments: in 2D slices each and every
voxel is visible – it can be selected and its intensity value can be inquired. Instead, 3D
visualizations are primarily used to give an overview. Since conventional surgical planning
relies on 2D slices, it is a good strategy to include 2D slices and the related manipulation
techniques in advanced surgical planning systems. With this strategy, surgeons can plan
their interventions as they did it before and can use the advanced techniques additionally.
The most benefit can be achieved if 2D and 3D visualizations are carefully synchronized, e.g.
with respect to the selection and emphasis of an object (Figure 18).

6.3 Advanced Surgical Planning
Advanced surgical planning requires reliable segmentation results. Segmentation of the
relevant structures is a challenging task and an area of ongoing research. In our case study,
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Figure 18 The lymph node emphasized in the 3D visualization is simultaneously emphasized in
the original slices.

Figure 19 Left: Illustrative rendering for neck dissection planning. Silhouettes are generated for
the bones which serve as anatomic context. Right: Silhouette rendering reveals lymph nodes which
touch and potentially infiltrate a critical structure.

the segmentation of all relevant structures is accomplished with NeckVision, a dedicated
software assistant [16].

Illustrative Rendering. Silhouette rendering is employed for two purposes. The obvious
use is to indicate the context objects, such as bones (Figure 19, left). In addition, silhouettes
may be used to discriminate two classes of objects; those which exhibit a certain feature (or
are more “interesting") are rendered with silhouettes enabled whereas the remaining objects
are drawn without silhouettes. In neck surgery planning, many lymph nodes have to be
explored by the user. In particular, lymph nodes which are enlarged and touch a critical
structure are essential and thus rendered with silhouettes (Figure 19, right). Surgical users
regard this a substantial help since otherwise it is not recognizable whether the lymphnode
is (only) close to a critical structure or touches it. The combination of silhouette-, surface-
and volume rendering is accomplished with a scenegraph-based approach [52].

Approximative Rendering of Nervs. For some structures, such as nerves, a complete
segmentation is not possible. Nerves are very small compared to the spatial resolution of the
data. Therefore, a single voxel contains nerve tissue and other adjacent tissue resulting in an
intensity value which is hard to distinguish from its surrounding. As a consequence, only in
some slices a nerve could be identified at all. Nevertheless, the rough course of the nerves
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Figure 20 Approximate visualization of N. facialis for neck dissection planning. In the lower
portion, the density of disks is higher which implies a more reliable visualization.

is essential for surgical planning. Anatomic experience shows that nerves proceed almost
linearly and do not deviate strongly from the straight connection between positions found in
some slices. Since it is important to prevent the injury of nerves, approximate visualizations
should be generated where the segmented portions are emphasized and the part in between
is reconstructed as linear connection. The emphasis of the segmented portions is carried out
with small cylindrical disks (see Figure 20).

6.4 Enhancing Slice-based Visualizations
In the following, we describe how slice-based visualizations can be enhanced to give an
overview on anatomic structures. This description is motivated by the importance of
slice-based views for surgery planning and is based on [53].

For an overview of the segmented structures in a slice-based visualization, it is essential to
present the relative position of structures in the current slice as well as their positions within
the whole set of slices. In the following, we refer to the slice number as the z-dimension.
The visualization problem that occurs here is similar to time scheduling. In this area,
various techniques have been developed to visualize data entries and their temporal relations.
Graphical overviews should present appointments distinguishable from each other and the
temporal relations between them (see for example, the LifeLines project [41]). Translated
to slice-based visualization, the interval of slices (zmin, zmax) of the segmented structures
corresponds to the lengths of appointments.

Similar to temporal overviews in time scheduling, we attach a narrow frame next to the
cross sectional image that represents the overall extent of slices in the volume data set. The
top and bottom boundary of the frame correspond to the top and bottom slice of the dataset.
Each segmented structure is displayed as a bar at the equivalent vertical position inside this
frame. The vertical extent of the bar represents the interval (zmin, zmax) for each structure.
We refer to this combination of bars as LiftChart and regard it as a widget which provides
interactive facilities to locate structures and slices. The LiftChart widget can be used for
interaction and navigation. The horizontal slice indicator is operated like a normal scrollbar
and moves through the slices. If the mouse is placed over a particular bar, information about
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Figure 21 Left: The Sweepline moves from bottom to top and places the next available bar
at the leftmost unused column. Middle: Each anatomic structure is represented by one bar. The
LiftChart is divided in three parts: one part for structures on the left and on the right side
each and one part for structures in the middle. Right: Lymphnodes are aggregated in one column.
Additional landmarks serve as orientation aids.

the underlying anatomic structure is shown.
In order to optimize the LiftChart’s use of screen space, the bars are ordered with a

Sweepline algorithm. The slices are processed from bottom to top and for each anatomic
structure a bar is drawn in the leftmost available column. If a structure ends, the respective
column is freed again and can hold the bar of a new structure starting farther above (Figure 21,
left).

The LiftChart enhances the recognition of relative positions of structures in the volume
dataset. To simplify the correlation between the slice view and the LiftChart, the color
and style of the bars should correspond with the color and style of the structures displayed
in the slice view. The colors represent different categories: Lymph nodes (yellow), Muscles
(brown), veins (blue), arteries (red) and the lung (skin-colored). The green line denotes the
current slice. The currently displayed slice is depicted by a horizontal line and annotated
with the slice number. To visualize not only the z-distribution of structures, but also their
horizontal position, several arrangements of the bars have been explored (Figure 21). In
the simplest form, each anatomic structure is represented by one bar. Since some anatomic
structures have a defined side, the LiftChart may be divided in three parts: one part for
structures on the left and on the right side each and one part for structures in the middle
(see the left image of Figure 21). In particular, the separation in lymph nodes located at the
left and right side is motivated by the surgical strategies (left and/or right-sided surgery).

It is also possible to group bars which belong to the same category of anatomical structures
to minimize the horizontal extent of the widget (see Figure 21, right, where the lymph nodes
are aggregated into one column). Furthermore, landmarks for orientation in the dataset may
be displayed. As an example relevant for neck dissections, in the right image of Figure 21,
the bifurcations of the Vena Jugularis (JBiL/JBiR) and Arteria Carotis (CBiL/CBiR) are
indicated.

Slice-based Visualization of Safety Margins. Safety margins are essential for pre-
operative planning and intraoperative navigation. To prevent damage to structures at risk,
the distances of the surgical tool to such structures have to be carefully observed during
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Figure 22 Depicting safety margins around pathologic lymph nodes as special halos on the
current slice. Left and right are swapped in the slice view, because the viewing direction is from
bottom to top. Left image: the safety margins of 2mm (red) and 5mm (yellow) are shown as the
user would see them in the slice view. Right image: the position of the slice with the displayed
structures is shown for comparison.

the surgery. Halos (in the original sense of the word) can convey this distance information.
Therefore, for all structures at risk an Euclidean distance transform [4] is performed and the
resulting distance information is overlaid on the slice image. We considered color-coding the
distance information but rejected this idea, since a color map conveys too much information
not relevant for the surgical strategy. Depicting important distance thresholds as halos
by drawing isolines representing 2 and 5mm distances reduces the information to a few
categories which are easy to interpret (Figure 22).

6.5 Discussion

From an applications point of view, illustrative renderings target only a portion of the overall
problem. Whether or not all relevant lymph nodes are correctly delineated is probably more
important than the details of their visualization. Valuable computer support for surgical
planning requires high-quality image acquisition, reliable and fast image analysis techniques
and comprehensible visualizations. The combination of 2D and 3D renderings is essential for
the acceptance of computer-supported surgical planning systems.

The use of illustrative techniques for neck dissection planning is based on discussions
with clinicians. Although illustrative techniques are not wide-spread in surgical planning,
our research indicates, that they have a potential to improve surgical planning. The need
for illustrative techniques will likely increase since more and more information is available
preoperatively. The development of illustrative techniques should be directed to support the
integrated visualization of these different sources of information. The great advantage of
using illustrative techniques is the additional freedom to fine-tune visualizations with respect
to task-specific needs. The major drawback is that additional effort is required to select
appropriate techniques and parameters. These steps need to be strongly supported since the
time for surgical planning remains severely restricted.



S. Bruckner, M. E. Gröller, K. Mueller, B. Preim, and D. Silver 159

7 Conclusion

In this paper we have presented illustrative techniques for the visualization of volumetric
data. We have shown that the concept of focus+context is a particularly useful metaphor for
dealing volume data due to their inherent complexity.

Lens-based distortion is a powerful framework for the exploration of volume data even if
no additional information is available. When segmentation data is present, feature-based
lenses can be used to enhance fine details in an intuitive way. The "hands-on" approach
to volume visualization presented in Section 4 is a natural way for examining volume data.
Three-dimensional interaction allows users to examine objects in a similar way as he they
would do in real life. Section 5 showed that the use of advanced volume visualization
techniques makes it possible to interactively generate expressive illustrations based on real
data rather than hand-made geometric models. And finally, in Section 6 we have seen
that medical applications such as treatment planning can greatly benefit from illustrative
visualization.

Illustrative visualization has generated a considerable amount of interest in the community.
While we can learn a lot by studying the world of illustration, many new challenges arise when
adapting traditional techniques to computer-based visualization. The aspect of interaction
seems of particular importance in this context as traditional illustration does not feature any
interaction capabilities.
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Abstract
Computer support for intervention planning is often a two-stage process: In a first stage, the
relevant segmentation target structures are identified and delineated. In a second stage, image
analysis results are employed for the actual planning process. In the first stage, model-based
segmentation techniques are often used to reduce the interaction effort and increase the repro-
ducibility. There is a similar argument to employ model-based techniques for the visualization
as well. With increasingly more visualization options, users have many parameters to adjust in
order to generate expressive visualizations. Surface models may be smoothed with a variety of
techniques and parameters. Surface visualization and illustrative rendering techniques are con-
trolled by a large set of additional parameters. Although interactive 3d visualizations should be
flexible and support individual planning tasks, appropriate selection of visualization techniques
and presets for their parameters is needed. In this chapter, we discuss this kind of visualization
support. We refer to model-based visualization to denote the selection and parameterization of
visualization techniques based on ’a priori knowledge concerning visual perception, shapes of
anatomical objects and intervention planning tasks.
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1 Introduction

Surgical interventions, radiotherapies and other local therapies require a precise understanding
of the patient’s anatomy. In particular, the location and extent of pathologic variations in
relation to vital anatomic structures, such as major blood vessels, is essential to evaluate the
resectability and to determine the surgical strategy. Interventions are planned by means of
CT or MRI data. Planning involves a systematic exploration of the slices of radiological data.
In order to support the mental preparation of surgeons, more and more 3d visualizations are
generated. Oblique MPR (multiplanar reformation) slices for instance allow to assess the
local cross section of vascular structures and volume rendering is employed to get an overview
which is essential for example in case of complex fractures or rare anatomic variants.

Intervention planning can be supported even better if image analysis results, such as
segmentation information concerning the relevant objects, are available. For an efficient
segmentation, model-based segmentation approaches are often exploited. Statistical models,
such as Active Shape Models and Active Appearance Models, employ ’a priori knowledge
with respect to the expected shape and grey value distributions [8, 9]. With active contour
models-another class of model-based segmentation techniques-deformable models are fitted
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to the segmentation target structure based on a flexible geometric representation such as
B-Splines. The process of fitting the model to the target structure is guided by physical
principles and constraints which restrict for example the curvature along the path (model
assumptions) [24, 27, 39].

Based on image analysis results, visualization parameters can be locally adapted to
individual objects or certain categories of anatomic structures, such as nerves or lymph nodes.
Since visualizations should provide insights into spatial relations, there is an argument for
visualization techniques which "idealize" anatomic structures to some extent to render them
more comprehensibly.

The design of "idealized" visualizations requires assumptions or ’a priori knowledge
with respect to geometric properties. This gives rise to the term model-based visualization.
More general, model-based visualization refers to the automatic selection of appropriate
visualization techniques. There is a variety of sources which can be exploited to derive
such automatic selections. Similar to the model generation process in image segmentation,
experience with the visualization of a variety of similar datasets is an essential source of
information. In case of clinical applications, "idealized" visualizations must be shown to
be "correct enough" to draw reliable conclusions. Therefore we discuss the validation of
model-based visualization techniques.

Model-based visualization versus intelligent computer graphics. The
(semi-)automatic selection and parameterization of visualization techniques – which we
characterized as model-based visualization – might be considered as an instance of knowledge-
based or intelligent computer graphics. However, the typical goals of knowledge-based
computer graphics are considerably more ambitious: the automatic selection of appropriate
viewpoints and perspectives, the computation of complex layouts, labeling of 3d models, the
selection of appropriate levels of detail and the determination of movements of a virtual
camera through complex virtual environments are among these goals [21, 12, 6, 16, 22, 36].
The general concept of knowledge-based computer graphics is to hierarchically decompose
high-level intent-based specifications into more and more elementary specifications until
they are precise enough to be rendered. The results are evaluated with respect to rules and
constraints and backtracking mechanisms are employed to initiate new solutions if the initial
solutions failed to generate an appropriate result. The goals of model-based visualization
are at a lower and more elementary level. Since neither knowledge representations nor
backtracking mechanisms are involved, model-based visualization should not be regarded as
intelligent graphics.

Organization. A general problem for many intervention planning tasks is the generation
of geometric models which represent the segmentation results. Due to the large variety of
steps and algorithms, a model-based approach is needed for this problem. As a first step, we
discuss the appropriateness of mesh smoothing algorithms for different categories of anatomic
structures (Section 2). While flat and compact structures can be smoothed satisfactory
with general methods, elongated and in particular branching structures require dedicated
smoothing approaches. In Section 3, we therefore discuss model-based visualization of
vascular structures. In Section 4, we describe the process of generating geometric models for
illustrative visualization with a focus on silhouettes and feature lines. Illustration techniques,
such as cut-away and ghostviews, and their application are discussed in Section 4. Finally,
we provide a general discussion of ’a priori knowledge for visualization purposes in Section 5.
In essence, this chapter should rather present a framework for the analysis and refinement of
visualization techniques instead of presenting final results.
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Figure 1 Typical problems of applying Marching Cubes to binary segmented volume data. From
left to right: an organ (large compact), a vascular tree (elongated branching), and two individual
vascular structures. The arrows in the left image relate to typical problems of visualizing compact
objects from data with insufficient slice distance: plateaus and visible staircases arise. Note, that due
the oblique course of the vascular structure on the very right, the segmentation results in adjacent
slices do not overlap resulting in the generation of several surfaces. Images are courtesy of Jens
Haase, University of Magdeburg.

2 Towards Model-Based Surface Extraction and Smoothing

For many rendering options, it is essential to transform segmentation results into (polygonal)
surfaces. The usual representation of a segmentation is a binary volume with the same
resolution as the original volume data (the set of "1" voxels represents a particular anatomic
structure). The common surface extraction technique is the Marching Cubes-algorithm
(or one of its refinements which handle ambiguities in a more sophisticated manner). The
problem with this general strategy is that Marching Cubes leads to jaggy surfaces if it is
applied to binary volume data, in particular if the slice distance is high (e.g. ≥ 5 mm). In
some cases, for example when the segmentation results in adjacent slices do not overlap,
Marching Cubes would not even generate a connected polygonal surface (Figure 1, right).

A variety of techniques have been developed and discussed to improve the surfaces either
before, during or after surface extraction. Before surface extraction, image processing filters
may be applied to convert the binary volume in a multivalue volume. In particular, with
morphologic filters a good trade-off between accuracy and smoothness can be achieved
[28]. Another technique which is applied before surface extraction is the interpolation of
intermediate slices. The surface extraction itself may be improved by gradually refining the
initial Marching Cubes result when it is strongly discontinuous [7]. Most research however
tackles the question how an existing polygonal surface may be smoothed [38].

Smoothing geometric models is a wide topic, similar to smoothing image data. Simple
methods tend to remove not only noise but also relevant features. Advanced methods, such
as those based on diffusion theory better retain relevant features. The improved quality is
attained at the expense of long computation times. However, no single smoothing method is
appropriate for all anatomic and pathologic structures. Pathologic structures, for example,
should not shrink in the smoothing process, whereas this requirement is less crucial for
large organs. Again, the suitable selection, combination and parameterization of smoothing
techniques requires ’a priori knowledge with respect to the shapes to which they are applied.
Smoothing techniques also alter the geometry and therefore, must be evaluated by measuring
distances to "correct" visualizations. The appropriateness of these techniques depends on a
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Figure 2 Smoothing results of an elongated surface model (a muscle in the neck region). Images
are courtesy of Jens Haase, University of Magdeburg.

large number of parameters:

image acquisition parameters, such as the slice distance.
category of anatomic object. Anatomic objects have strongly different shapes and sizes:
elongated, branching, planar, and compact objects occur. Smoothing techniques which
are appropriate for one category may lead to inacceptable results for another.
task-specific requirements. Objects which serve as anatomic context should be smoothed
strongly even at the expense of accuracy. Objects relevant for the surgical strategy must
be more carefully processed since accuracy is more important. For some structures, such
as a malignant tumor, accuracy has the utmost priority.

As a first step, towards a model-based solution, we explored the effects of wide-spread and
fast smoothing approaches [2]. We restricted the comparison to smoothing algorithms which
have a linear complexity (in each iteration, each vertex is replaced by a weighted sum of its
previous position and the positions of adjacent vertices). The Laplace filter, the Laplace-filter
with the so-called HC correction [42], and the LowPass filter [38] were considered(Figure
2). Median and average filter, applied to surface normals [44], were also explored but initial
results were not encouraging in particular for small objects where new artifacts were created
in some cases. The major strength of the latter filters is the preservance of sharp edges as
they occur in CAD-models.

Visual quality as well as different metrics (volume preservation, Hausdorff distance to
the original model, and the average curvature) were employed to compare different methods.
An essential aspect of each filter is the neighborhood which is considered at each point. All
filters were implemented with the topological-distance of 1 (only vertices which share an
edge with the current vertex) and topological distance of 2 (vertices which are connected
to the current vertex by a path of at most two edges are considered). Figure 3 compares
smoothing with both neighborhoods.

Each filter was applied to a set of six anatomic objects each representing a different class or
category of objects. Each of the filters has two parameters influencing the accuracy and visual
quality: the number of iterations and the smoothness factor. The investigation considered
6 weighting factors (from 0.05 to 0.9) and 4 different numbers of iterations (from 5 to
50). The website http://wwwisg.cs.uni-magdeburg.de/cv/projects/LST/smoothing/
presents all results.

The LowPass filter turned out to be the most appropriate fundamental smoothing filter
for all reference objects. To smooth compact objects (e.g. organs, lymph nodes), the
LowPass filter with a 2nd order neighborhood, a weighting factor of about 0.7, and 20 to 50
iterations should be used. A similar smoothing strategy can be applied to planar objects

http://wwwisg.cs.uni-magdeburg.de/cv/projects/LST/smoothing/
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Figure 3 A bone (left) is smoothed with the LowPass-filter with the normal (b) and extended
neighborhood (c). The curvature plots show the effect of smoothing on the mean curvature. LowPass-
filtering with the extended neighborhood strongly reduces the curvature (f). Images are courtesy of
Jens Haase, University of Magdeburg.

(e.g. ligaments), whereas here not more than 20 iterations should be applied. With the
recommendations above, the volume of the smoothed models is preserved well: it is exactly
preserved for large compact models and for smaller or elongated objects shrinkage was lower
than 4% and the Hausdorff distance which is a worst case approximation of the distance
error was between 3 to 6 mm. This amount of distance error is reasonable compared to the
resolution of the underlying data.

Flat objects (thin objects which might be curved, such as ligaments) with holes and
frayed parts should be smoothed with a 1st order neighborhood. Holes cannot be closed by
any smoothing algorithm; but at least they should not be enlarged. Elongated objects with
many small branches and detached object parts (recall Fig. 1, right) cannot be smoothed
appropriately with any of the general smoothing filters. For smoothing simple none branched
elongated objects, the LowPass filter with a weighting factor of 0.5 and 10 iterations is
recommended. The visual results achieved with the Laplace-filter with correction are similar
to the LowPass filter. However, for larger numbers of iterations and/or larger smoothing
factors volume shrinkage (8 to 12%) and Hausdorff distances are larger. The accuracy of the
Laplace-filter with HC-correction is considerably better with a 2nd order neighborhood.

2.1 Validation
Similar to new segmentation methods, model-based visualization techniques should be
carefully validated with respect to accuracy. This includes qualitative and quantitative
comparisons with other methods. Quantitative comparisons are based on metrics which
characterize distances between segmentation or visualization results or based on volume
overlaps [45]. In particular, the comparison with a "gold standard" is essential. The "gold
standard" represents the solution which is regarded as "true" or at least as the most accurate
result which could be generated so far. For image segmentation, the manual segmentation of
medical experts is usually considered as gold standard.

For model-based visualization, a validation is required to investigate whether the segmen-
tation result is correctly displayed. For our purposes, we considered isosurface rendering
with the Marching Cubes method [25] as gold standard (taking 0.5 as isolvalue, when "1"
represents foreground voxels and "0" represents background voxels). As has been discussed
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by [7], Marching Cubes is not the most accurate visualization. However, it is close to it
and a more precise visualization (trilinear interpolation) is more complex to implement and
considerably slower.

With respect to the smoothing techniques, we evaluated primarily the volume preservation.
It is known and not surprising that Laplacian smoothing leads to a strong loss of volume
(with larger smoothness factors). The relation between Laplace with correction and the
LowPass filter as well as the precise influence of the neighborhood on accuracy were not
known before.

2.2 Discussion
We derived initial recommendations for smoothing surfaces based on the analysis of wide-
spread and fast iterative methods. It is necessary to include more algorithms, in particular
those which adapt the surface normal’s [37] and diffusion based methods [11, 37]. So far,
our results are limited by the fact that only one segmentation result for each category of
anatomic structure is considered. We derived results in a systematic but purely empirical
manner. An alternative and more elegant approach would be to derive hypothesis on the
suitability of smoothing methods based on an analysis of the properties of the algorithms.
We have not investigated so-called normal errors – the angle between the correct surface
orientation and the surface computed with a new method. Pommert et al. [32] discussed the
validation of medical visualization techniques with respect to distance and normal errors and
employed a set of phantoms to study different aspects, such as the influence of the sampling
density (see also [31]).

3 Model-based Visualization of Vascular Structures

For intervention planning, it is crucial that spatial relations can be correctly inferred from
the visualization. In particular the topology of vascular trees is often essential to decide
on the feasibility of a surgical strategy. Moreover, the curvature, the depth relations, and
the diminution of the diameter towards the periphery should be depicted correctly. With
conventional visualizations, such as Maximum Intensity Projection (MIP) or surface rendering,
artifacts arise due to the limited resolution and inhomogeneities of contrast enhancement.
Therefore, vascular structures should be reconstructed based on the radiological data of a
patient and some model assumptions as to the shape of vasculature [3, 15]. The pioneering
work of Barillot et al. [3] is probably the first dedicated effort to generate medical visualizations
based on ’a priori knowledge. Healthy vascular structures exhibit a roughly circular cross-
section, they are connected with each other and their diameter shrinks from the root to
the periphery. Based on these assumptions, a variety of visualization techniques have been
developed which use the skeleton and the local vessel diameter as input. Primarily graphics
primitives, such as cylinders and truncated cones, were fitted to the skeleton and scaled
according to the local vessel diameter [26, 18]. The most advanced explicit reconstruction
technique is based on subdivision surfaces [13, 5]. More specialized model assumptions were
employed by Puig in [34]. She considered typical elements (cylindrical, stenosis, ...) and
branching structures in cerebral vasculature, tried to classify branchings accordingly and
used ’a priori knowledge to emphasize the corresponding branching type.

The explicit construction of a geometry however exhibits problems in particular at
branchings were discontinuities arise at the joint of truncated cones or cylinders. A superior
image quality can be achieved by means of implicit surfaces, where the shape of a vascular
system is described by an implicit equation which has to be evaluated along the skeleton.
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Figure 4 Model-based visualization of vascular structures embedded in direct volume renderings
of surrounding structures. Left: The bronchial tree is depicted. Right: a cerebral tree is shown.
Images are courtesy of Steffen Oeltze, University of Magdeburg.

The resulting scalar fields are polygonized by means of a threshold. A special variant of
implicit surfaces, convolution surfaces, allow to visualize branching skeletal structures by
applying a convolution filter to the skeletons. The use of convolution surfaces for medical
visualization poses some problems with respect to accuracy; the depicted vascular structures
should correctly convey the vessel diameter and the topology of vascular structures. Usually,
convolution surfaces exhibit "unwanted effects", such as unwanted blending where two
branches are incorrectly merged with each other due to the construction process. Oeltze et al.
could show that an appropriate filter selection allows to effectively avoid that the resulting
visualizations strongly deviate from the segmentation results on which they are based [29].
Two examples of this work are shown in Figure 4.

3.1 Validation

In order to validate the convolution surface as viable technique for vascular structures,
various experiments with small artificial data have been accomplished to study whether
unwanted blending or bulging occurs. Another qualitative part of the validation was to
analyze visualization results achieved with "real" patient data and compare them with the
results achieved with other model-based techniques. After these tests the width of the
convolution filter was adapted and a quantitative validation was based on 10 abdominal
CT datasets (patients with liver metastases) with different resolution and distances were
computed for each vertex of the resulting polygonal mesh.

Distance metrics, such as mean distance and Hausdorff distance, are primarily relevant for
assessing the accuracy of vessel visualization techniques. As the major result of a quantitative
validation, Oeltze et al. found that the deviation of "their" variant of convolution surfaces to
an isosurface rendering of the segmentation result is on average below half the diagonal size
of a voxel. Taking into account that half the diagonal size of a voxel is the uncertainty which
is due to resolution of the data, this is an excellent result. Only for a very small fraction
of the voxels the distance is up to 3 diagonal voxel sizes [30]. Figure 5 illustrates how the
results were achieved and analyzed.
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Figure 5 Validation of a model-based visualization techniques. Left: Intensity-coded visualization
of the deviation from convolution surface (CS) to isosurface. The strongest deviations occur at the
root of the vessel tree (see the inset with the superimposed isosurface in wire-frame mode). Right:
Boxplots of the distance measures (in mm) carried out for a comparison of CS and Isosurface based
on 10 vascular trees. Each box indicates the lower quartile, median, and upper quartile values. The
whiskers extend from each end of the box to show the extent of the rest of the data. The values
within each box represent the percentage of data values beyond the ends of the whiskers and the
maximum distance. Thick lines indicate the half diagonal voxel size. Images are courtesy of Steffen
Oeltze, University of Magdeburg.

3.2 Discussion
Model-based visualization refers to the automatic selection of appropriate visualization
techniques. With respect to the visualization of vascular structures this involves an assessment
of the local vessel diameter in cross sectional areas.

If it turns out that the assumption of a circular cross section is strongly violated in several
adjacent slices, any visualization technique which assumes this property is obviously not
suitable. In such cases, a pathology is likely and an isosurface of the segmentation result
is a better visualization option. Pathologies such as stenosis or aneurysms occur at small
portions of a vascular system. A hybrid combination of isosurface rendering (in pathologic
portions) and model-based rendering (in healthy portions) is probably the best choice to
depict pathologic vascular systems.

There are some similarities between model-based vessel segmentation and visualization.
Model-based vessel segmentation techniques also assume connectedness of vascular structures
and try to "bridge" over a few voxels which fail to fulfill a homogeneity criterion due to
partial volume effects. An ellipsoidal cross-section is often assumed in vessel segmentation
approaches [19]. In general, model assumptions in image segmentation must be less restrictive
to cope with the variety of shapes and the imperfect quality of medical image data.

4 Model-based Illustrative Rendering

Conventional 3d visualization includes volume rendering and surface rendering where color and
transparency are employed to selectively emphasize anatomic structures. These techniques
have obvious limitations if a variety of different objects is relevant for a treatment decision
and need to be displayed simultaneously. These limitations recently led to the development of
illustrative rendering techniques [4, 17, 40], which can be flexibly combined with conventional
medical visualization techniques. These new techniques involve an increased flexibility on
the one hand and an increased necessity to adjust parameters on the other hand. In clinical
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Figure 6 Liver, intrahepatic vasculature as well as a tumor are depicted for intervention planning.
Convolution surfaces are used for the vasculature. While the left image is restricted to the liver and
their internal structures, the right image also contains surrounding structures as context objects.
Stippling is a useful technique for these structures. Left image is courtesy of Christian Tietjen, right
image is courtesy of Alexandra Baer (both from University of Magdeburg).

applications, presets are necessary to reduce the interaction effort. These presets must
consider which techniques and which parameters of these techniques are appropriate for
certain categories of anatomic structures. We regard this as another example of model-based
visualization.

Illustrative rendering refers to the use of lines and points as rendering primitives. Silhouette
rendering, hatching and stippling are used to render anatomic shapes more comprehensibly.
After the pioneering work of Saito and Takahashi [35] a few dedicated therapy planning
solutions have been developed, for example radiation treatment planning [20]. Illustrative
rendering techniques are based on proven assumptions with respect to shape perception.
Object boundaries are recognized faster and more precisely by depicting their silhouettes.
Surface orientation is perceived more accurately (compared to shaded surfaces) if hatching
lines along the main curvature directions are included [20, 43].

The potential of such visualization techniques for intervention planning can be easily
shown. However, for practical use, the selection and parameterization of illustrative rendering
techniques must be supported. Our experiments and an informal user study reveal that
silhouette rendering is useful for large structures, such as organs (see Figure 6), but not for
small structures such as small nodules [40]. Depending on the visualization goal, silhouette
rendering may be used as the only rendering mode or combined with surface rendering. The
exclusive use of silhouettes clearly indicates that the visualization of an object serves as
anatomic context (only). More experiments (more datasets, different visualization goals, ...)
and user studies are needed to derive more reliable conclusions.

It is also necessary to investigate the prerequisites for illustrative rendering. A major
problem with the automatic use of silhouette and hatching line generation is the smoothness
of surfaces. Silhouettes emphasize not only the relevant features of a boundary but also
noisy portions which might occur due to smaller segmentation errors or large slice distances.
Hatching lines are usually generated by considering curvature directions. Noisy surfaces
exhibit frequent strong changes of surface normals and curvatures. Therefore, the hatching
directions suddenly change and lead to distracting visualizations. In summary, object shapes
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Figure 7 Left: Silhouette generation based on a typical segmentation result of the liver in
abdominal CT data. Right: The polygonal model was strongly smoothed (relaxation filter with 7
iterations and relaxation factor 1.0) prior to silhouette generation. Images are courtesy of Christian
Tietjen, University of Magdeburg.

resulting from a segmentation process usually require a subsequent smoothing step to be
adequate for illustrative rendering (recall Section 2). Figure 7, illustrates how silhouette
generation is affected by smoothing.

Illustrative techniques enrich the expressiveness of medical 3d visualizations by emphasiz-
ing silhouettes or characteristic features, such as ridges and valleys. This development is
not finished yet; new hatching and stippling techniques (see Fig. 6, right) are devised which
convey geometric properties such as curvature.

These new techniques exhibit considerably more parameters than silhouette rendering.
The analysis of anatomic structures and the evaluation of sample image should lead to
recommendations how to apply such techniques for certain anatomic structures.

5 Exploration of Nodules and Lymph Nodes with Cutaways and
Ghosting

Emphasis techniques are useful to support the perception of relevant anatomic or pathologic
structures. What is relevant is determined by the user, by either selecting an object name in
a list or by picking its visual representation. A wide variety of emphasis techniques exists
[33]. The selection should again consider geometric properties and ’a priori knowledge of the
objects. As an example, we discuss emphasis techniques which were developed to support
the exploration of lymph nodes, lung nodules and other pathologic structures.

The occurrence and localization of enlarged and potentially malignant lymph nodes is
an essential information for planning surgical interventions, for example, in the neck region
[23]. By contrast to vascular structures, lymph nodes, tumors and lung nodules do not
exhibit a complex topology. Instead they are rather small and compact. They are explored
together with adjacent structures in order to evaluate whether these structures are infiltrated.
Without other structures displayed, small nodules cannot be localized. Often, it is a severe
problem to display these structures simultaneously with sufficient opacity.

Cutaways – originating from technical illustrations – might be applied. Cutaway views
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Figure 8 Lymphnodes in the neck region are emphasized by means of cylindrical ghostviews. A
sequential exploration of all lymph nodes is supported taking into account the lymph node’s size
and position. Image is courtesy of Arno Krueger, University of Magdeburg.

are generated by removing a geometric shape to expose hidden objects. Instead, cutaways are
applicable to show compact small objects. Compactness and relative size can be geometrically
analyzed.

As a variation of cutaway views the cut region can be displayed transparently instead of
a complete removal. This technique is referred to as ghostview (Feiner and Seligman [12]).
An essential decision in the use of cut-away views and ghostings is the selection of a cut
geometry. It should be regular to be recognizable as an illustration technique (anatomical
shapes are not regular). The shape should "fit" to the objects which should become visible
(see also [41] for a discussion of cutaways and related smart visibility techniques). Since
lymph nodes, nodules, and metastasis have roughly circular shapes (model assumption),
cylinders are appropriate cut-regions. Figure 8 shows cylindrical ghostviews used for neck
dissection planning. Intervention planning, however, requires a systematic exploration of
all enlarged lymphnodes. Based on this task knowledge, an exploration technique is needed
which supports a sequential emphasis of all relevant lymphnodes. In [23], we suggested to
use the Tab-key in order to emphasize all lymphnodes based on a sequence which considers
size and local coherency.

6 Discussion

The previous sections presented a variety of examples where visualization techniques have
been fine-tuned to particular target structures such as nodules and vascular structures.
"Model-based" techniques are also needed for a variety of other applications, such as the
visualization of diffusion tensor data, where ’a priori knowledge on white matter tracts and
their branchings is incorporated in the visualization and clustering of fiber tracts [14, 46].

Similar to segmentation problems, the suitability of visualization techniques depends on
the object shape, size and on the occurrence of other objects in the neighborhood. In many
intervention planning applications, image analysis is regarded as a challenge and visualization
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as a simple matter of using some wide-spread commercial rendering system. This is an
over-simplified view of the difficult problem of conveying the essential information to the
user. Visualization, on the other hand, can benefit from the substantial work on representing
’a priori knowledge for image segmentation. Smoothness constraints as they are used for
Active Contours are relevant for silhouette rendering: If segmentation results fail to meet
smoothness constraints, they cannot be directly employed for silhouette generation.

Model-based image segmentation recently started to represent not only one "target"
structure, but also spatial relations of adjacent structures, see e.g., the Active Structural
Shape Models developed by [1]. Similarly, the effectiveness of visualization techniques applied
to one anatomic structure depends on the visualization techniques applied to other anatomic
structures which are displayed simultaneously. Therefore, it is essential that intervention
planning tasks are carefully studied in order to determine which collections of objects are
explored simultaneously. These collections should be provided as predefined selections and
the default visualization techniques should be chosen in such a way that the whole collection
is comprehensibly displayed. As a simple example, colors and transparencies of such objects
should be selected such that contrasts are easily perceived and all relevant objects are
sufficiently visible.

Comparison of model-based segmentation and visualization. In Table 1, we
compare information used for model-based segmentation and visualization. While the
distribution of grey values of the target structures in CT and MRI data is valuable information
for model-based segmentation, this information is not relevant for model-based visualization.
Derived information such as gradient magnitude or curvature metrics is essential for edge-
based segmentation, such as Live Wire. For visualization, these metrics can be regarded as
indicators for the certainty of the visualization. Primary tumors for example, often have weak
borders and their precise extent is uncertain. This information can be employed to select a
visualization technique which conveys this uncertainty (for example a semitransparent volume
rendering instead of a "perfect" shiny isosurface). We regard as geometric shape any shape
descriptor; such as compactness or anisotropy. Assumptions related to shape descriptors are
useful to identify the target structure and to visualize it appropriately. Similar, topology
information, such as connectedness and the number of holes is essential for segmentation and
visualization. The use of structural information for image analysis was clearly demonstrated.
For visualization, it can be used for the design of color mapping schemes which employ
information on adjacency of structures. Finally, visualization strongly benefits from research
in visual perception. Whether something can be perceived at all, whether color differences
can be discriminated, whether objects can be discriminated at a glance ("preattentive" vision)
is dependent on the selection of visualization parameters. A variety of user studies have
been carried out and provide a valuable source for ’a priori knowledge (recall Colin Ware’s
book [43]). Finally, task knowledge can be exploited to derive which objects are essential for
certain tasks and to guide the selection of visualization parameters.

Despite the similarities between model-based segmentation and visualization there are also
fundamental differences. Model-based segmentation is employed to automatically segment one
target structure (with rather fixed topology). Model-based visualization is more general and
refers to classes of anatomic structures, such as vascular systems or lymph nodes. Moreover,
model-based segmentation is adapted to particular image data, such as T2-weighted MRI
data, whereas model-based visualization does not consider the modality of the imaging
device.

While there is one correct segmentation, there are potentially many appropriate visual-
ization settings for a particular set of anatomic structures. The suitability of visualization
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Table 1 Model-based segmentation and visualization

Information Model-based Model-based
segmentation visualization

Grey value distribution x -
Gradient magnitude/ curvature metrics x x
Geometric shape x x
Topology x x
Structural relation between objects x x
Visual perception - x
Task knowledge - x

parameters depends on user preferences, previous experiences and on the visual capabilities
of a particular user. The exploration of 3d models with appropriate interaction facilities is
desirable and may lead to additional insights. In particular, rotation and zooming provide
insight into spatial relations. However, the unrestricted exploration involves too many
parameters. Therefore, a model-based approach is desired to start the exploration with a
meaningful combination of visualization techniques.

7 Concluding Remarks

We introduced model-based visualization as a concept where the appropriateness and param-
eterization of visualization techniques is carefully adapted to the shape and size of the object,
and to the context of its visualization in intervention planning. To realize model-based
visualizations, the shape of the target structure has to be analyzed, for example, with respect
to the branching pattern. The wide literature on shape description may be employed to
select appropriate shape descriptors (see e.g. [10] for a recent book on shape classification).

We argue that model-based visualization is an essential goal in order to effectively exploit
the huge space of visualization options. The fully interactive specification of all visualization
parameters is not feasible since it is time-consuming and leads to visualization results which
are neither optimal nor reproducible. Although we presented concepts and solutions for
some specific problems, many aspects of model-based visualization require a more in-depth
analysis. Even the visualization of vascular structures – probably the aspect which deserved
most attention so far – requires the refinement of existing solutions, for example to better
represent vascular structures at locations where the cross section is notably not circular.

There is an urgent need for further research in the adaptation of visualization techniques
to intervention planning tasks. In particular, the appropriateness of visualization techniques
must be assessed by the target users: medical doctors who prepare for complex interventions.
Prospective user studies are required which compare visualization techniques with respect to
their consequences for the surgical strategies. We restricted the discussion in this paper to
static visualizations. The model-based generation of animation sequences for intervention
planning is an interesting challenge for future research.
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Abstract
Shoulder joint replacement, or arthroplasty, is indicated in cases where arthritis or trauma has
resulted in severe joint damage that in turn causes increased pain and decreased function. How-
ever, shoulder arthroplasty is less successful than hip and knee replacement, mostly due to the
complexity of the shoulder joint and the resultant complexity of the replacement operation.

In this paper we present a complete visualization-oriented pre-operative planning and intra-
operative guidance approach for shoulder joint replacement. Our system assists the surgeon
by allowing a virtual arthroplasty procedure whilst giving feedback, primarily via patient- and
procedure-specific joint range of motion (ROM) simulation and visualization. After a successful
planning, our system automatically generates a 3D model of a patient-specific mechanical guid-
ance device that is then produced by a rapid prototyping machine and can be used during the
operation. In this way, a computer-based guidance system is not required in the operating room.
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1 Introduction

Rheumatoid arthritis and osteoarthritis, the two most common forms of arthritis, are diseases
that adversely affect joint cartilage and bone quality. They can lead to severe joint damage
that in turn causes increased pain and reduced joint mobility and patient function. In
these cases, joint replacement is indicated. Joint replacement, or arthroplasty, is a surgical
procedure during which diseased parts of a joint are removed and replaced with artificial
components.

Hip and knee replacements are successful procedures with regard to pain relief, post-
operative joint functionality and durability. At ten years follow-up, the revision rate for
cemented total hip prostheses is 7% and about 13% for uncemented total hip prostheses [15].
In contrast to this, shoulder replacement yields good results with regard to pain relief, but
fares significantly worse with regard to post-operative joint functionality and especially
replacement durability. Literature shows that after nine years, between 24% and 44% of
shoulder glenoid components show radiological loosening [22], i.e. loosening that is visible on
a radiograph.
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Figure 1 The skeletal structures of the shoulder. Illustration courtesy of the Delft Shoulder
Group.

One of the reasons for this situation is the fact that the placement of shoulder prostheses
is a difficult procedure. The procedure is complicated by two factors:

The shoulder joint is a more complex mechanism than either the hip or the knee joints.
A relatively small incision is made during the shoulder replacement operation. This small
incision results in a limited field of view for the surgeon.

Figure 1 shows the skeletal structures in the human shoulder. The upper arm bone, or
humerus, rotates against the glenoid, which is the shallow cup-like part of the shoulder-blade,
or scapula. The humerus is held in the shoulder joint by a collection of muscles and tendons
called the rotator cuff. The scapula itself is non-rigidly attached to the thorax via the
collar-bone, or clavicula, and is able to slide over the thorax.

This flexible construction yields an impressive range of motion (ROM) for the shoulder
joint, but as is almost always the case with increased complexity, is less robust than for
instance the hip joint. The complexity of the shoulder joint contributes to the difficulty
of performing a good replacement. Besides the fact that the precise functioning of this
joint is not entirely clear, the surgeon has to cope with extremely limited visibility during
the replacement operation. These factors contribute to the lower long-term success-rate of
shoulder replacement.

In shoulder replacement, or shoulder arthroplasty, the humeral head and the glenoid are
replaced with prostheses. Figure 2 shows an illustration of the skeletal structures in the
human shoulder with implanted glenoid and humeral head prostheses.

Currently, the de facto standard for pre-operative planning for shoulder replacement is
template-over-x-ray planning. The orthopaedic surgeon manually overlays transparencies
with various prosthesis sizes and types on an x-ray of the patient’s shoulder. Consequently,
the surgeon decides on a particular prosthesis type and size, based only on a two-dimensional
projection of the bony anatomy of the shoulder. In addition, this method of planning offers
no patient-specific intra-operative guidance for prosthesis placement.

In order to improve the existing planning approach and hence also the outcome of shoulder
replacement surgery, we have developed a flexible prototype surgical planning software system
as well as linked mechanical guidance devices, also called patient-specific templates. The
replacement operation is planned by making use of our pre-operative planning software.
Integrating patient-specific joint motion simulation, the software is able to predict the post-
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Figure 2 Illustration of a shoulder after an arthroplasty. Both the humeral head and glenoid
prostheses have been virtually implanted, i.e. a total shoulder replacement has been performed.

operative patient joint range of motion (ROM). Based on this, the surgeon can optimize
their planning. The parameters of the virtually performed operation, such as the insertion
position and angle of the glenoid component, are used to design a patient-specific mechanical
guidance device that is manufactured with rapid-prototyping techniques. The guidance
device uniquely docks with easily identifiable bony structures in the patient’s shoulder and is
used for robust mechanical intra-operative guidance.

In this paper, we collect a number of our recent advances and show how they are integrated
to form a complete pipeline for the pre-operative planning and intra-operative guidance
of shoulder arthroplasty surgery. We present a new approach for the segmentation and
accurate surface extraction of the bony structures from CT data of shoulder replacement
patients. Due to its pathology, segmentation of the data offers unique challenges. However,
the segmentation is required for the subsequent simulation steps. We then document the
pre-operative approach we have developed, including the real-time post-operative joint range
of motion (ROM) prediction and visualization. Finally, we show how the planning information
can be used to design a patient-specific mechanical guidance device for glenoid component
replacement. The range of motion simulation has been published elsewhere [13], and the idea
of the shoulder guidance device has been presented previously [23]. The contribution of the
present article consists of the shoulder segmentation technique, the automatically designed
guidance devices and the integrated shoulder replacement planning and guidance pipeline.

2 Previous Work

We discuss previous and related work in two parts. In the first part we give an overview of
techniques related to joint segmentation and in the second part we focus on planning and
guidance for joint replacement.
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2.1 Joint Segmentation
In previous research we developed a technique to determine the radius and centre of the
humeral head using a modified Hough transform [24]. This is an effective approach and might
be combined with our current work, but for pre-operative planning and ROM simulation
we require complete and accurate surface representations of the skeletal structures in the
shoulder.

Branzan-Albu et al. presented an approach to segment the skeletal structures from T1-
weighted MRI images of healthy shoulders [3]. A separate segmentation was performed on
each 2D slice and the results are combined to form a smooth 3D segmentation. The results
are good but this technique has been developed for healthy shoulders with large joint space
width and healthy bone density. In addition, it focuses on a small region of interest around
the gleno-humeral joint.

A general approach for segmenting skeletal structures from CT data was presented
by Kang et al. [11]. This approach is based on 3D region growing with locally adaptive
thresholds following by a mixture of 3D and 2D morphological operations to close holes
in the segmented surfaces. The resulting segmentation is then smoothed by adjusting its
containing iso-surface. The approach is applied on the hip, the knee and the skull. The
authors state that a site-specific approach is required for separating different bony structures
at joints before their techniques can be applied. In the case of the hip, they make use of a
manually-placed sphere. In our opinion, the determination of this site-specific separation
method is one of the most complex tasks in the case of the shoulder.

Zoorofi et al. segmented hip joints by making use of histogram-based thresholding and an
interesting hip-specific approach based on the convex hull of the initial thresholding and the
application of the Hough transform [26]. This is a promising technique, but is very much
hip-specific.

There are a number of examples in literature on segmenting skeletal structures from
CT data, but very few of these address the problem of separating neighbouring skeletal
structures, such as those found in joints. If we further narrow the problem to that of
separating neighbouring skeletal structures from pathological CT data, even fewer examples
remain. When we add the extra specification that it should deal with shoulder joints, there’s
almost nothing to be found. Our work attempts to fill this important and unexplored research
area.

2.2 Planning and guidance for joint replacement
A wide range of pre-operative planning systems exist, for example Hip-Op [14], HipNav [20]
and BrainLAB’s VectorVision1. However, to our knowledge no such specific planning system
for the shoulder joint is available at this time. Probable factors here are the complexity and
the relatively lower number of replacements of the shoulder joint.

Most surgical guidance systems with a computer-based pre-operative planning stage
make use of optical tracking systems during surgery. In our case, we couple computer-based
pre-operative planning with automatically designed patient-specific mechanical guidance
devices. The idea of manually designing patient-specific guidance devices or templates for
surgical guidance has been explored for spinal surgery [7]. Our first manual designs for the
shoulder guidance device have been presented [23]. In this article we present the first example

1 http://www.brainlab.com/

http://www.brainlab.com/
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of an automatically designed patient-specific guidance device that can be produced using
rapid-prototyping techniques.

2.2.1 Range of Motion simulation
Joint range of motion (ROM) simulation aims to predict the post-operative motion patterns
of a patient joint, based on pre-operative medical image data and the parameters of the
planned surgical procedure.

Some research has been done on pre-operative ROM estimation for the hip joint. Jaramaz
et al. use analytical modeling of the properties of implants to estimate both the ROM and
the chance of dislocation, with bony impingement hardly playing a part [10]. The approach
of Richolt et al. resembles our approach more closely, by applying collision detection to the
3D problem of bony impingement [17]. Their system is designed for osteotomy rather than
joint replacement and only determines ROM for joint rotation along a single user-defined
axis.

The simulator we describe in this paper predicts bone-determined ROM, i.e. soft tissue
is not taken into account. For a full arthroplasty simulator we would require additional
information on the presence of muscle tissue, ligaments and cartilage. Alternatively, a model
of these aspects could be used, such as the Delft Shoulder and Elbow Model (DSEM) [25].
This is a musculoskeletal model of the shoulder and elbow joint that mainly focuses on muscle
function and the involved forces and energy. However, the DSEM is not patient-specific.

In section 4.2 of this article we present a summary of our previous ROM prediction and
visualization work [13] in order to serve as context for the full planning and guidance system.

3 Segmentation

The pre-operative planning, and especially the ROM simulation component, require high-
quality surface meshes describing the bony surfaces in the human shoulder. These surfaces
have to be extracted from CT data of patients with bone- and cartilage-affecting diseases. This,
together with the complex geometry of the shoulder joint, results in a complex segmentation
problem. Figure 3 shows a single axial slice from a typical dataset. In this case, joint
space narrowing caused by arthritis results in the humerus and the scapula appearing fused.
Decalcification, also related to the disease, in addition to the partial volume effect, leads to
edges that are fuzzy and difficult to detect. Traditional approaches fail completely on this
data.

Our approach combines a number of powerful techniques to separate complex touching
structures by masking and inverse masking, then extracting initial surfaces that are larger
than the objects that we wish to segment, and subsequently deflating deformable surfaces to
fit precisely on the outside surface of those objects, all the while preserving the topology of
the deforming surfaces [2]. Figure 4 is a flow chart illustrating the complete approach. In
the following subsections, we will briefly explain each of these stages.

3.1 Deriving structure masks
The first step is to derive conservative structure masks for the structures that are to be
segmented and in some cases also for structures that border on those that are to be segmented.
We define a conservative structure mask as a list of all contiguous voxels that can be reasonably
assumed to be contained within the boundaries of the structure that is being masked. Our
use of conservative indicates that we prefer false negatives over false positives. In other
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Figure 3 An axial slice from an arthritic shoulder CT dataset showing a humeral head and a
scapula that appear to be fused together. This is due to the joint space being extremely narrow and
the limited resolution of the CT scanner.

words, we prefer a mask that does not fully cover the structure of interest over one that
covers the structure as well as some of its surroundings.

We use two main methods to generate these masks, indicated by the grey blocks marked
A and B in Figure 4. Method A is used if structures do not touch and method B is used
if they do. In most cases, both methods are used to generate a library of masks for each
dataset. These masks can be combined to activate or to deactivate arbitrary parts of the
dataset.

3.1.1 Method A

This method starts with an interactive histogram segmentation. This method is similar to
that described in [9] and based on concepts presented in [12] and [18]. It makes use of a
linked, or coupled, view that shows a 2-D histogram of image gradient magnitude over image
intensity for the CT data that is being examined. By delineating regions on this histogram
with closed polygons or splines, the user can select data points on the basis of both their
intensity and gradient magnitude.

After this step, other masks from the library (for example generated by method B)
can be used to remove unwanted components of the selection. Followed by a connected
components analysis and our modified hole filling algorithm, filled and contiguous structure
masks can be generated. Our modified hole filling algorithm is a standard morphological
binary reconstruction hole-filling algorithm where we modify the convential marker image to
deactivate one or more of the volume boundaries. By doing this, we allow for expected open
cavities, such as the interior of the humerus, to be filled as well.
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Figure 4 A flow chart illustrating our approach to the segmentation of the skeletal structures
of the shoulder. Ovals signify data and blocks signify operations. The A and B blocks show two
distinct ways to generate the initial conservative bone mask. TP signifies Topology Preserving. All
these operations take place in 3D.

3.1.2 Method B
Starting with a 3D morphological watershed and basin merging step, this method is able to
do an initial separation of touching complex objects, such as the humerus and scapula shown
in Figure 3. During an interactive selection step, the user indicates which of the merged
watersheds are relevant. The selected watersheds are combined and are used as an initial
implicit surface during a level-set [19] based surface inflation step to refine the structure
mask. The surface is inflated until it reaches the inside edge of bony structure that surrounds
it.

3.2 Deformable surfaces
A 3D Canny edge detection [4] is applied to the input data. With the correct thresholds, this
yields a volume containing a number of edge voxels. For each bony structure that we segment,
we perform a morphological binary reconstruction of the edge voxels from the conservative
mask for that structure. This operation removes all edge voxels that are disconnected from
those voxels that touch the mask directly or indirectly (via connections with other edge
voxels). Again masks from the library can be used after this step to remove any remaining
edge voxels that are not relevant to the structure that we are segmenting. The result is a
volume with voxels that are zero everywhere, except on the edges of the structure of interest
where the voxels have unit value.
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The conservative structure mask of the bony structure that we are segmenting is dilated
so that it completely envelops all edge features. The dilated mask is converted to an implicit
surface and then deflated using a topologically constrained [8] geodesic active contour [5]
using the inverse of the edge features described above as the speed function. In other words,
the speed function has unit value everywhere, except on the edges, where it has value zero.
This causes the level set to continue deflating until it reaches an edge. The outside surface of
both the scapula and the humerus have a topological genus of 0 in the majority of cases. We
have integrated this knowledge into the segmentation pipeline by ensuring that we start with
a genus 0 initial surface and constraining its topology as it deforms. This technique solves a
number of problems related to the thinness and complexity of the scapula and the relatively
low resolution of the CT data by preventing holes or isolated points from forming.

The segmentation process is repeated for each of the bones that need to be extracted. In
general, we require models of the scapula and the humerus for pre-operative planning and
ROM simulation.

4 Pre-operative Planning

During the planning phase, the glenoid and humeral components have to be selected and
virtually implanted. During the virtual implantation, the system presents feedback to the
surgeon about the structural quality of the planned procedure, e.g. whether there is sufficient
contact between the prosthesis and the bone, as well as the functional quality of the planned
procedure. Our system also simulates and visualises the ROM of the patient shoulder.

4.1 Virtual implantation
Docking two 3D objects using only a perspective or an orthogonal projection on a conventional
screen is by nature quite difficult. In our case, we need precise control over the position
and orientation of a prosthesis in order to implant it virtually into the surface model of the
scapula.

In order to solve this problem, we made use of some basic CAD interaction techniques com-
bined with the practical techniques used by orthopaedic surgeons during shoulder replacement
surgery. Refer to Figure 5 during the following explanation. During a conventionally planned
shoulder operation, the orthopaedic surgeon initially tries to align the glenoid prosthesis with
the intersection between two imaginary planes. The first plane passes through the centre of
the glenoid and the most lateral edge of the scapula. The second plane is roughly orthogonal
to the first, parallel to the spina and passes through the centre of the glenoid. Experience has
shown that this will help to achieve a post-operative centre of gleno-humeral rotation that is
close to, or coincides with, a healthy centre of rotation. This result plays a very important
role in the success of the replacement [6].

The planning software integrates a range of geometrical constraint-based object manipu-
lation techniques based on points, axes and planes. With this functionality, the double plane
insertion sketched above can easily be constructed and used as a first estimate for glenoid
component placement. In order to do this, the surgeon will start by selecting three points:
one in the centre of the glenoid and two on the lateral edge of the scapula. These points are
shown in Figure 5a and are marked with respectively “Glenoid”, “Lateral 1” and “Lateral
2”. The point selection logic makes it easy to select points on surfaces and will also keep
these latched to the surface when they are moved. A scapula lateral edge slice can now be
created by making use of these three points as a plane definition. The system will warn if
the three selected points do not uniquely define a plane. See Figures 5 and 6 for an example
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(a) (b)

Figure 5 In (a), a scapula is shown with the points that are required to place the two anatomical
planes. In (b), the same scapula is shown with the resultant anatomical planes intersecting to form
an insertion axis for the glenoid prosthesis.

of such a plane intersecting the scapula. It can also happen that the plane defined by these
three points does not have the desired orientation. In our experience, substituting one of
the lateral edge points with the point where the spina meets the medial edge of the scapula,
labeled “MeS” in Figure 5a, solves this problem.

By repeating this process, but instead making use of the point on the centre of the glenoid
and two points on the posterior side of the scapula approximately equidistant from the spina,
a second plane can be defined. These two extra points are labeled “Spina 1” and “Spina 2”
in Figure 5a. The intersection of these two planes constitute a very good first estimation of
the glenoid insertion axis. This plane intersection is shown in Figure 5b.

The constraint system can now automatically align the prosthesis axis with the intersection
of the two planes and optionally constrain all prosthesis motion to the plane intersection.
The object with the horizontal pin in Figure 6a represents the glenoid prosthesis. Logically
the constraint system can also work with a single plane: in this case the prosthesis can be
aligned with the plane, i.e. be embedded in it, and optionally all prosthesis motion can be
constrained to the plane. This is the approach that has been chosen in Figure 6.

During the final prosthesis manipulation, objects can be hidden and object contouring
activated, so that the object intersection curves with the anatomical planes can be seen
overlaid on the CT-data slices. This is shown in Figure 6b. In this mode, the volume slice
can still be moved to and fro. This enables the surgeon to judge the fit of the prosthesis
with regard to the bone volume that is visible in the CT-scan. This view is more familiar to
surgeons, as it is strongly reminiscent of the template-over-x-ray planning method.

The humeral prosthesis is placed in accordance with the actual surgery. During the
procedure, a metal ring is fitted on the humeral head. This defines the location of the centre
of rotation as well as the size of the humeral prosthesis. A pin is drilled into the bone through
a guidewire at the center of the ring. On this pin a metal block is mounted. When sawing
off part of the humeral head, the surgeon follows the plane as imposed by the metal block.
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(a) (b)

Figure 6 Part of the glenoid component planning functionality. In (a) the complete models are
shown and in (b) only their contours. The contour view enables the user to judge whether the
prosthesis has a good fit and is reminiscent of the conventional template-on-x-ray planning. The
slice is anatomically oriented but can be moved to check all parts of the glenoid component.

In the pre-operative planning system, we fit a sphere through the humeral head. Virtual
models of the pin and metal block are positioned using the centre of rotation defined by the
sphere. The cutting plane defined by the metal block is applied and the prosthesis is placed
at the centre of the intersection plane. This completes the placement of the prosthesis. All
of the parameters can be adjusted at any time during the simulation.

4.2 ROM simulation and visualization

Throughout the surgeon’s interaction, the predicted patient-specific range of motion (ROM)
can be calculated and visualized [13]. The ROM is bone-determined in that only the bone
geometry playes a role in the simulation. Soft tissue does not play any role. The gleno-
humeral ROM is visualized with motion envelopes, that indicate the maximum ROM of
the humerus in every direction. In addition, a novel visualization technique depicts the
differences between the current and previous ROM during the surgeon’s interaction.

In order to calculate the ROM using a segmented CT dataset, we implemented a simplified
bio-mechanical model of the gleno-humeral joint. A generally accepted hypothesis is that the
gleno-humeral joint can be approximated by a ball-joint [16,24]. We combined this model
with collision-detection on surface models of the skeletal structures in the patient’s shoulder.

Our simulator is capable of handling hemi-protheses, which is a prosthesis without a
glenoid component, and also reversed prostheses, where the spherical component is placed at
the glenoid.

For all prostheses, the ROM envelopes are constructed in the following way. The humerus
is aligned with an initial orientation, which will be the starting alignment for all iterations.
The simulation consists of two nested iterations. During the outer iteration, the humerus is
rotated around the axis marked with Ai in Figure 7. Axis Aj rotates along with Ai.

At each rotation, the maximum possible orientation of the humerus around axis Aj is
found by making use of a binary search. By repeatedly dividing the search interval in half,
our ROM determination executes in O(log n), where n relates to the effective resolution of
the end result of the binary search. Whenever colliding polygons are detected, we reverse the
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A A

Medial Axis

Figure 7 A schematic representation of the humerus and its rotational axes. As can be seen
in this image, the additional ROM as the result of endo/exorotation is related to δ, the distance
between the medial axis of the humerus and the vertical axis through the center of rotation.

search direction. We use OPCODE [21] (Optimized Collision Detection), an efficient library
based on memory-optimized bounding-volume hierarchies to detect colliding polygons.

A complete new ROM has to be determined for each change made by the surgeon that
affects the bone or prosthesis geometry, for example a change in the position of the humeral
prosthesis.

In order to enable the real-time use of the ROM simulation, we have developed two
optimization approaches. In the interpolation approach, a large number of ROM envelopes are
precalculated so that ROM envelopes can be interpolated during interaction. In the collision
clipping approach we make use of a clipping plane to clip collisions, thus rendering the
usual re-initialization of the collision detection data structures during each ROM calculation
unnecessary. This same clipping plane is uploaded to the graphics hardware to clip the
geometry.

4.2.1 Visualization

Once all directions of our ROM envelope have been probed for their maximum angles, we can
begin constructing the ROM visualization. We draw lines between the center of rotation and
an arbitrary point within the end of the shaft of the humerus, and then transform these lines
according to their respective maximum angles. The resulting envelope is shown in Figure 8.

For each change made to the virtual prosthesis placement by the surgeon, a new ROM
envelope is calculated and visualized. This enables the surgeon to visualise directly the
complete shoulder ROM for a particular set of operational parameters. Being able to see the
envelope update in real-time as changes are being made, helps the surgeon to investigate the
effect of even small changes to the planned operation.

Several parameters that define the placement of the humerus prosthesis can be adjusted
during the interaction. First of all, the cutting plane at the humeral head can be translated
along its normal, as well as rotated around two axes perpendicular to the normal. Also, the
position of the humerus prosthesis relative to the humerus can have a small offset in any
direction within the cutting plane.

In general, the placement of the glenoid component is constrained by the quality and the
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Figure 8 The visualization of ROM by means of envelopes.

geometry of the scapula and takes place according to the method described in Section 4.1.
Therefore our ROM simulation and visualization focuses on changes in the humeral component
placement, but applying it to glenoid placement changes would be straight-forward.

In order to facilitate this important investigation of the increase or decrease in ROM
that results from a particular change in the planning, we have implemented comparative
visualization functionality whereby the difference between two ROM envelopes can be
explicitly visualized. The comparative visualization is also updated in real-time as the
surgeon interacts with the planning.

For two consecutive envelopes we depict improvements and deteriorations by connecting
the lines with colored polygons. A red polygon denotes that the most recent envelope has a
more limited ROM in that particular direction than the reference envelope, while a green
polygon states the opposite. Additionally, the end points of the lines are connected with
arrows, pointing towards the most recent envelope. The resulting visualization is shown in
Figure 9. The reference envelope can be set to the current or any previously determined
ROM envelope at all times.

5 Guidance Device

The guidance device is a crucial link between the pre-operative planning phase and the
execution of the procedure in the operating room. During pre-operative planning, the size
and type of prosthesis can be determined and this knowledge can easily be applied during
the actual replacement. Prosthesis position and orientation, however, require some extra
ingenuity.
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Figure 9 Comparative visualization of two ROM envelopes. The first envelope is a previously
determined ROM which was set as a reference envelope by the user. The second envelope is
continuously updated for every adjustment applied to the prosthesis placement parameters.

In order to realise this planning in the operating room in a robust and efficient fashion,
we are working on applying principles for the design of pedicle screw drill guides [7] to the
design of a patient-specific guidance device for shoulder replacement.

The patient-specific mechanical guidance device is a jig, or template, that can be used
by the surgeon during the operation to guide the use of another tool such as a drill or a
pneumatic saw. In the case of a glenoid replacement, the template uniquely fits the patient’s
scapular glenoid and has a conduit for a drill, thus acting as a drill-guide. By making use
of this template, the surgeon can ensure that the pre-operatively planned glenoid insertion
position and orientation are realized. In this way, a cheap and robust coupling between the
computer-based intra-operative planning and the operation itself is realized.

Figure 10a shows the latest design of our glenoid drill guide. Figure 10b shows a guidance
device that our planning software has designed for the patient and the planned implantation.
The guidance device is manufactured with a rapid-prototyping machine.

6 Results

In order to evaluate the results of our segmenation approach, we started by comparing its
results on an experimental CT dataset of an ex vivo scapula to a manual expert segmentation.
The manual segmentation was performed by drawing a contour describing the outside
scapular surface on each axial slice of the 512 × 512 × 420 dataset, sampled at a resolution of
0.333×0.333×0.5mm, and then linking these contours together with triangles. The resultant
mesh consisted of 6900 triangles, was closed and it was of genus 0 topology.
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(a) (b)

Figure 10 In (a), the latest design of the glenoid drill guide is visualized on a surface model
of a scapula, courtesy of Liesbet Goossens and Bart de Schouwer, Katholieke Universiteit Leuven,
Belgium. In (b), another design that has been automatically made patient-specific by the planning
software is shown.

We used our method to segment the scapular mesh from the same data. The resultant
mesh consisted of 729212 triangles, was closed and was also of genus 0 topology. The large
number of triangles is the usual result of applying the Marching Cubes algorithm to a volume
of this resolution to extract a surface of this complexity. We did not apply any decimation
techniques to the mesh.

We compared the meshes using the Mesh software [1]. The maximum, mean and root-
mean-squared (RMS) symmetric Hausdorff distances are 3.7, 0.4 and 0.5mm respectively.
The symmetric distance is the maximum of the distances from the first mesh to the second
mesh and from the second mesh to the first. The distances as a percentage of the largest
diagonal of the bounding box of the scapula are 1.6, 0.2 and 0.2% respectively. The RMS
error is in the order of a single voxel. We find this result quite acceptable for a manual vs.
automatic reconstruction.

Most of the outliers, and specifically the parts of the mesh that cause the maximum
Hausdorff distance, are caused by cartilage being misclassified as cortical bone. This is
especially a problem with cadaveric material, as the cartilage seems to harden over time and
thus appears in the CT data with greater intensity.

We have also tested the complete prototype planning system, including the segmentation,
on a number of in-vivo shoulder CT datasets of patients requiring total shoulder replacements.
Feedback from the operating orthopaedic surgeon, who used the system primarily for pre-
operative exploration, was positive. The fact that our bone-determined ROM simulation
can be used to predict impingement, i.e. when due to prosthesis placement joint motion is
restricted by bone colliding with bone, is seen as particularly important.

We benchmarked the interactive performance of the ROM simulator on a Pentium 4
running at 2.66 GHz with 512 MB of RAM. The humerus model consisted of 50.000 polygons,
while the scapula consisted of 155.000 polygons.

Performance figures for the interactive ROM simulation are listed in Table 1. As can
be seen, the speed increase due to collision clipping varies from a factor of 1.33 to 8.22 for
normal usage of the simulator. The speed increase due to interpolation varies from a factor of
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Table 1 Speed of simulation and rendering in updates per second. All performance figures are
specified as updates per second, figures in parentheses refer to speedups relative to “no optimization”
performance.

With rendering Without rendering
no optimization 0.27 0.30
collision clipping 2.22 (× 8.22) 2.69 (× 8.97)
interpolation 10.81 (× 40.04) 374.4 (× 1248)

10.74 to 40.04. If we discard the graphical representation, the speed increase by interpolation
gets as high as a factor of 1248.

The precalculation interpolation optimization leads to a great speed-up, but can only be
used if suffcient time for pre-processing is available (approximately 20 minutes for the cases
presented here) and if the surgeon’s changes are limited to a known set of possibilities. The
collision clipping optimization leads to a less significant speed-up, but can be applied in all
cases and does enable the interactive use of the ROM simulation.

We have performed initial validation experiments on cadaver scapulae to test the design
and functioning of the drill-guide [23]. The results were promising, but do require improve-
ment, as the cartilage covering the glenoid has a significant impact on the orientation of the
resultant implant. The drill guide is designed based on the bony surface of the glenoid and
not the cartilage covering it. Cartilage will be taken into account in future experiments.

7 Conclusions and Future Work

In this paper we have described a complete visualization-oriented process for the pre-operative
planning and intra-operative guidance of shoulder replacement surgery.

We presented an approach for segmenting the bony structures from CT data of arthritic
patients. Existing methods, mostly designed for other joints, all fail on this type of data.
We then showed how these segmentations are used in an interactive pre-operative planning
solution that assists the surgeon in virtually implanting shoulder prostheses. The pre-
operative planning software gives real-time feedback on structural and functional aspects of
the planned procedure. The bone-determined shoulder ROM is calculated and visualized
interactively, so that the surgeon gets feedback on every small change made to the planning.
Changes in ROM are also explicitly visualized, helping the surgeon to fine-tune the planning.

The CT data and pre-operative planning are used to automatically generate a patient-
specific mechanical guidance device that can be used during the replacement operation to
execute the planning. To increase accuracy and reliability of the guidance devices during
surgery, we will focus on improved imaging of cartilage, and refine the modelling to improve
mechanical support from the cartilage.

We are currently working on a new segmentation approach that exploits image-based
curvature in combination with a priori knowledge of the shoulder anatomy, leading to more
robust and accurate segmentation results.

The ROM simulator will be further refined to include effects of soft tissue and active
motion on joint mobility. Reference standards for mobility of healthy joints will be developed
to estimate the amount of functionality to be restored after joint replacement. We are
currently validating aspects of the ROM simulator as part of a cadaveric study.

We are also preparing for a series of clinical studies in using our pre-operative planning
system for actual replacement surgery. A thorough evaluation of all stages of the pipeline
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will be carried out, including post-operative functional tests, to compare the overall results
of the process with current clinical practice.
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Abstract
The segmentation of the myocardium based on the 17-segment model as recommended by the American
Heart Association is widely used in medical practice. The patient-specific coronary anatomy does not play
a role in this model. Due to large variations in coronary anatomy among patients, this can result in an
inaccurate mapping between myocardial segments and coronary arteries. We present two approaches to
include the patient-specific coronary anatomy in this mapping. The first approach adapts the 17-segment
model to fit the patient. The second approach generates a less constrained mapping that does not necessar-
ily conform to this model. Both approaches are based on a Voronoi diagram computation of the primary
coronary arteries using geodesic distances along the epicardium in three-dimensional space. We demon-
strate both our approaches with several patients and show how our first approach can also be used to fit
volume data to the 17-segment model. Our technique gives detailed insight into the coronary anatomy in
a single diagram. Based on the feedback provided by clinical experts we conclude that it has the potential
to provide a more accurate relation between deficiencies in the myocardium and the supplying coronary
arteries.
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1 Introduction

In the field of cardiac tomography, the American Heart Association (AHA) has published a set of
recommendations to standardize part of the clinical routine [4]. These recommendations concern the
segmentation of the left ventricular myocardium, the heart muscle of the left ventricle. They also
include a standardized nomenclature for the coronary arteries, small arteries surrounding the left
ventricle that supply the myocardium with oxygenated blood. One of these recommendations is the
use of a 17-segment model for the segmentation of the myocardium. This model defines a mapping
of each of the segments to the coronary arteries that supply that region. The relation between the
myocardium and its supplying coronary arteries is important during diagnosis.

The individual paths of the coronary arteries and the way they supply the myocardium varies
greatly among different patients. This causes the standardized mapping between myocardial segments
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and coronary arteries to be of varying accuracy across different patients. This issue is acknowledged
by the American Heart Association, with the note that the suggested model is based upon the methods
available at that time [4].

With current MRI (Magnetic Resonance Imaging) technology it is possible to segment the three
major coronary arteries from a whole heart scan [11]. The three primary coronary arteries are the left
anterior descending (LAD), the left circumflex (LCX) and the right coronary artery (RCA). While
there are still cases where a complete segmentation is not feasible, these issues will most likely be
resolved in the near future.

We use the patient-specific coronary anatomy to improve the relation between the myocardium and
the supplying coronary arteries. We explore two possible approaches. In our first approach we adapt
the 17-segment model as defined by the AHA to fit to the coronary anatomy of the patient in question.
In other words, we set a number of constraints to force the mapping between the myocardium and
the areas the coronary arteries are supplying to correspond to the 17-segment model. In our second
approach we do not set any constraints and thus allow for arbitrary mappings between the coronary
arteries and the myocardium. Both approaches are based on Voronoi diagrams of the coronary arteries
using geodesic distances along the epicardium, the outer part of the myocardium. The resulting
relation divides the myocardium into several coronary territories, regions of the myocardium supplied
by the coronary artery that corresponds to that territory. These territories, along with the coronary
arteries themselves, are finally projected onto a two-dimensional bull’s eye plot.

Both of our approaches result in customized diagrams that better reflect the actual relation between
myocardial tissue and supplying coronary arteries. The approach of adapting the 17-segment model is
less sensitive to incomplete segmentations of the coronary anatomy. On the other hand, unconstrained
coronary territories may be more accurate for patients that do not correspond well to the 17-segment
model.

Our article is structured as follows. We first give an overview of related work on the 17-segment
model from the American Heart Association and patient-specific coronary territories in Section 2. In
Section 3 we discuss the computation of the coronary territories and the projection on a bull’s eye
plot. In Section 4 we discuss both approaches to computing patient-specific coronary territories. In
Section 5 we describe the results of an evaluation experiment and provide a use case of our techniques
with viability data. In Section 6 we discuss the medical applications and issues of our approach.
Finally, in Section 7 we conclude our work.

2 Related Work

The American Heart Association (AHA) published a set of recommendations to standardize the
segmentation of the left ventricular myocardium [4]. This includes a division of the myocardium into
17 parts accompanied by a mapping of each of the segments to coronary territories. As a reference
this 17-segment model is depicted in Figure 1. It shows the myocardium in a bull’s eye plot, a
two-dimensional representation of the left ventricle. Since its introduction, the 17-segment model
has become widely accepted in clinical practice and it has replaced previous models. In the area of
SPECT, for example, a 20-segment model [1] was more common prior to the introduction of the
17-segment model.

A medical study performed by Pereztol-Valdés et al. [10] using myocardial perfusion nuclear
imaging gives a more precise relation between each of the 17 segments and the supplying coronary
arteries. It shows that contrary to the model of the AHA, only nine segments are commonly supplied
by one coronary artery; the remaining segments are supplied by multiple coronary arteries. It also
verifies that there is great variability among patients, especially in the apical area of the left ventricle.
Based on the outcome of this study, the authors presented a revised mapping of segments to coronary
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Figure 1 The 17-segment model for the segmentation of the left ventricle as presented by the American
Heart Association [4]. The patterns indicate the mapping of the segments to coronary territories.

territories, where some segments are assigned to multiple territories. Recently a similar study was
published by Ortiz-Pérez et al. [9] using contrast-enhanced MRI. Their work also confirmed the
variability in coronary anatomy and the need for a better model to more accurately attribute perfusion
defects in segments to coronary arteries.

Beliveau et al. [2, 3] previously presented the idea of computing patient-specific coronary terri-
tories. In their work coronary arteries are segmented from a whole heart CT scan and projected on
the segmented epicardial surface. The patient-specific coronary territories are computed by using a
Voronoi diagram of the projected arteries. While their work is in several ways similar to ours, there
are several key differences. Besides a different implementation approach and a different method to
project the territories on a bull’s eye plot, no explicit relation between the 17-segment model and
the coronary territories is made, although the 17-segment model is mentioned in their work. Their
approach is thus not capable of forcing correspondence to this model. We demonstrate how we can
use this to regularize a bull’s eye plot of viability data (see Section 5.2), while their approach is
limited to showing an overlay. In other work, Voronoi diagrams are also being used for the analysis
of modeled and segmented artery trees [6].

Oeltze et al. presented several novel visualization techniques for the analysis of perfusion data [8].
Their redefined bull’s eye plot shows myocardial perfusion data of both rest and stress states in a
single bull’s eye plot based on the 17-segment model. They also presented an interactive bull’s eye
plot that is linked to a three-dimensional visualization showing coronary artery branches. Picking a
segment on the bull’s eye plot automatically adjusts the view of the three-dimensional view to show
the corresponding artery.

3 Computation of Coronary Territories

A coronary territory defines the region of the myocardium supplied by a specific coronary artery.
Determining which part of the myocardium a coronary artery is supplying is a complex and yet
unsolved problem. We approach this by assuming that each part of the myocardium is supplied
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Figure 2 Overview of our approach towards patient-specific coronary territories.

by its closest coronary artery. This approximation suffices for our purposes. We also perform
all computations on the epicardial surface, instead of taking the three-dimensional nature of the
myocardium into account.

An overview of our approach is shown in Figure 2. We obtain a whole heart segmentation from
a whole heart MRI scan using an approach by Ecabert et al. [5]. Using only the left ventricular
epicardium part of this segmentation, we create a rectangular mesh of the epicardium to gain more
control over the resolution and uniformity of the mesh. We track the centerlines of the three primary
coronary arteries in the same whole heart scan using a semi-automatic vessel tracking method [7] and
project them onto the mesh of the epicardium. We subsequently compute a Voronoi diagram of these
projected arteries. This diagram is finally projected on a bull’s eye plot.

Prior to computing the Voronoi diagram, we can set a number of constraints to force the resulting
division of the epicardium into coronary territories to correspond to the 17-segment model. In this
case we can use the borders and middle lines of the coronary territories to adapt the 17-segment model
to the patient. We can then also use the deviation between the original and adapted models to deform
data from a different scan of the same patient to fit to the original 17-segment model. Without setting
any constraints, the resulting coronary territories can have arbitrary shapes and need not correspond
to the 17-segment model. Both these approaches are discussed in more detail in Section 4.

3.1 Mesh of the Epicardium

Our automatic segmentation algorithm gives a segmentation of the left ventricular epicardium in the
form of an unstructured polygonal mesh. In order to guarantee a sufficient accuracy throughout the
mesh during the Voronoi diagram computation we generate a rectangular mesh instead. We intersect
the unstructured mesh with two sets of planes. One set consists of evenly spaced planes orthogonal
to the long axis, the other set consists of planes through the long axis with evenly spaced angular
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qq

Voronoi
borders

Figure 3 The distances to the closest coronary artery are propagated to all neighbors of a vertex along the
edges and diagonals of each quadrilateral it is part of. Each quadrilateral can be divided in up to four territories.
The gray lines indicate the triangularization of this particular case. Note that our approach, opposed to the
traditional marching squares algorithm, generates a vertex in the middle of the quadrilateral.

offsets to the short axis. The points at the intersections of a plane from each set and the unstructured
mesh form control points for a set of interpolating Catmull-Rom spline patches. We generate the final
rectangular mesh by tessellating each patch at the desired accuracy.

3.2 Projection of the Coronary Arteries

Once we have a proper mesh of the epicardium, we project the coronary arteries onto this mesh. We
compute a discrete representation of the coronary artery tree by generating a set of points spaced
approximately one millimeter apart along each coronary artery. For each of the points along each
coronary artery, we compute the closest vertex of the mesh. The index of the artery and the Euclidean
distance to that artery is stored at that vertex.

3.3 Computation of the Voronoi Diagram

As a first step towards computing the Voronoi diagram of the arteries on the epicardial mesh, we
compute the closest coronary artery and the distance to that artery for all vertices of the mesh by
propagating the information in the vertices encountered during the projection of the arteries in the
previous step. Starting with an active set consisting of only those vertices, we propagate the distances
to all neighboring vertices using an 8-neighborhood approach. In other words, each vertex has eight
neighbors to which distances are propagated, except at the edges of the mesh (see Figure 3). Distances
and indices to arteries are only updated if the distance is shorter than the one already present in the
vertex, if any. Once the algorithm terminates, each vertex contains an index of and distance to its
closest coronary artery.

Here “closest” refers to the distance along the epicardium to a projection of a coronary artery.
We believe this method, although still very simple, approaches reality better than using Euclidean
distances in space. Since we use a discrete mesh of the epicardium, the distance is the approximate
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geodesic distance along this mesh. In order to obtain a good approximation of the true geodesic
distance, we construct a sufficiently fine-grained mesh. In our experiments we construct a mesh with
80 contours between the apex and the base of the left ventricle and contours divided into 128 vertices.
Experiments with using finer grained meshes indicate that the maximum error due to interpolation
between vertices is less than one millimeter.

The Voronoi diagram is given by the lines passing through edges whose vertices have different
closest coronary arteries. We extract these lines using an approach based on marching squares, as
all faces of our mesh are quadrilaterals. The difference with traditional marching squares is that
each quadrilateral can be divided in up to four parts. Figure 3 shows a case where the four vertices
of a quadrilateral belong to three different coronary territories, dividing the quadrilateral into three
parts. We have generalized the division of the quadrilateral to cover the cases where it needs to be
divided into three or four parts. The intersection points on the edges of the quadrilateral are first
computed. To improve the quality of the dividing lines, we use linear interpolation to compute more
exact intersection positions. We then compute the average of these points, giving a point q inside
the quadrilateral. For edges that have no intersection point, we compute the point on the middle of
those edges. We can then divide the quadrilateral into four regions where each region is given by one
corner point, the two intersection or middle points of the edges connected to the corner and point q.
Note that each of these four regions is always convex, as point q is inside or on the rhombus spanned
by the four intersection or middle points. The four regions can then be triangulated independently
using at most two triangles, as is shown in Figure 3 by the gray dashed lines. The number of triangles
used for parts consisting of multiple regions can be reduced. The blue part in Figure 3, consisting of
two regions of the quadrilateral, can for example also be triangulated using three triangles. The edges
of the Voronoi diagram are given by the edges of the triangles that belong to different parts.

3.4 Projection onto a Bull’s Eye Plot

Once we have computed a complete Voronoi diagram on the epicardial surface, we project it onto a
two-dimensional bull’s eye plot. The projection method is based on a parameterization of the left
ventricle, which is illustrated in Figure 4. Each point in the left ventricular myocardium can be
specified using a 3-tuple (φ,h,r). In this tuple φ represents the angle with the short axis in a plane
orthogonal to the long axis, h the distance to the apex along the long axis and r the distance to the
long axis. The projection of the Voronoi edges is constructed by computing the parameters of all
vertices and directly interpreting (φ,h) as polar coordinates. The coronary arteries are projected on
the bull’s eye plot using the same approach.

4 Patient-Specific Coronary Territories

In the 17-segment model there is no variation in shape among patients of the three coronary territories.
Although this eases interpretation and comparison, it does not give any details about the patient-
specific coronary anatomy.

Using the method of computing patient-specific coronary territories described above, we can
improve on the 17-segment model in two different ways. The first approach is to alter the 17-segment
model by fitting the model’s edges to the patient-specific coronary territories. The second approach is
to compute the coronary territories without taking any model into account.

4.1 A Patient-Specific 17-Segment Model

For the first approach to work, the morphology of the patient-specific coronary territories should
match that of the 17-segment model. The first 16 segments of the 17-segment model divide the
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Figure 4 Parameterization of the left ventricle and its mapping to a bull’s eye plot.

left ventricle into three parts: a basal part, a mid-cavity part and an apical part. Each of these parts
correspond to one of the rings in the model shown in Figure 1. Each of the primary coronary arteries
supplies part of each of those three parts.

The segmentation of the coronary arteries in a whole heart MRI scan is a difficult task. As the
coronary arteries become thinner towards the end, segmentation of the complete branch is rarely
possible due to the resolution of current whole heart MRI scans. This often results in incomplete
segmentations of the coronary arteries, which in turn causes the morphology of the coronary territories
based on these segmentations to rarely match that of the 17-segment model. We can force a correspon-
dence by artificially completing the segmentation of the coronary arteries by connecting the endpoint
of each artery to the apex. This approach is a compromise between a solely segmentation-driven
approach, like the approach discussed in Section 4.2, and a solely model-driven approach, like the
17-segment model.

When adapting the 17-segment model, the borders of the coronary territories in the model are fit
to the corresponding borders in the Voronoi diagram. The edges of segments indicating the center of
each territory are mapped to lines equidistant to the borders of that coronary territory. Both these
mappings require that each coronary territory has two borders, i.e. it has a “left” and a “right” side.
This means that each coronary territory should run from the apex to the base and should be connected,
just as is the case in the 17-segment model.

The basal, mid-cavity and apical segments of the 17-segment model are equal thirds of the heart
along the long axis. This means that any differences between the original and an adapted 17-segment
model are strictly angular differences. The relation of the distance to the apex along the long axis
is also preserved in the 17-segment model; adapting the model thus does not affect h. We conclude
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Figure 5 Function f transforms the query point (red dot) from the 17-segment model to the adapted model.
The angular differences (gray arcs) are used to transform the blue arc A into the orange arc B.

that a function f exists such that for any point (φ,h) in a bull’s eye plot of the 17-segment model,
( f (φ),h) gives the corresponding point in a bull’s eye plot of an adapted 17-segment model.

Figure 5 gives an overview of the implementation of function f . Given a tuple (φ,r) in a coronary
territory (the red dot), we compute the two angular differences between the borders of the coronary
territory according to the 17-segment model and the Voronoi diagram respectively (the gray arcs), at
distance r from the apex along the long axis. We use linear interpolation between these two angular
differences to find the angular difference for the specified value of φ (the arc marked f ). This approach
essentially transforms the blue arc A into the orange arc B using an angular scaling and translation.
Note that function f is in fact defined for every point inside the myocardium, even through it is only
applied to the edges of the segments for computing the adapted 17-segment model. In Section 5.2 we
use this property to adapt volume data to the 17-segment model instead, using the inverse of f .

Figure 6 shows a comparison between a standard 17-segment model (Figure 6a) and the same
model adapted to the patient-specific coronary anatomy (Figure 6b). The coronary arteries are also
projected on top of the bull’s eye plots. Note that the Voronoi diagram is computed using geodesic
distances in three-dimensional space, so the borders of the coronary territories generally are not
equidistant to the coronary arteries between them. Also, part of the RCA wraps around the right
ventricle. Since the distance to the long axis is lost in the bull’s eye plot, this is no longer visible in the
projection of the RCA. For this particular patient, the divergence from the model is not particularly
big. This is not too uncommon, as the 17-segment model is based on an average of the population.

4.2 Unconstrained Coronary Territories

The previously discussed approach artificially completes the segmentation of the coronary arteries
by connecting the end points to the apex. We can also omit this process and use the coronary
anatomy directly. However, the resulting division of the myocardium into coronary territories does
not necessarily correspond to the 17-segment model. Our experiments show that there is no complete
correspondence for most patients. In most of the cases this is due to varying way the apex is supplied,
as is confirmed by earlier studies [9,10]. Also the fact that the LAD becomes too thin to be successfully
segmented well before it has reached the apex often plays a role.

Figure 6c shows the coronary territories computed without artificially completing the coronary
artery segmentation. In this particular case, the divergence from the 17-segment model is rather minor
and correspondence is only lost in the apical segment of the model, corresponding to the inner ring.
Since no constraints are set, the divergence may be arbitrarily large. In fact, the territories may even
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(a) (b) (c)

Figure 6 A comparison of (a) the 17-segment model, (b) the 17-segment model adapted using the patient-
specific coronary anatomy and (c) unconstrained coronary territories. The three coronary arteries are projected
as black lines. All three bull’s eye plots correspond to the same patient.

be disjoint, although this rarely occurs in practice. While this approach imposes less constraints on
the coronary territories, it is also more sensitive to incomplete segmentations of the coronary arteries.

5 Medical Expert Evaluation

We have performed an informal evaluation of our approach by selecting five patients who underwent
a whole-heart cardiac MRI scan and generating four bull’s eye plots for each patient. The first bull’s
eye plot contained only a projection of the three primary coronary arteries. The second, third and
fourth bull’s eye plots also contained the original 17-segment model, an adapted 17-segment model
and unconstrained coronary territories, respectively. Figure 6 gives the latter three bull’s eye plots for
patient 2 used in this experiment. For patient 4 an adapted 17-segment model could not be generated.
This issue is further discussed in Section 6.

An experienced cardiologist first manually drew the coronary territories on the first bull’s eye plot
for each patient. The next task was to rate the correspondence between the projected coronary arteries
and the coronary territories as produced by each of the three approaches on a scale from one (very
bad) to five (very good). The results of this evaluation are listed in Table 1.

Case Method 1 Method 2 Method 3

Patient 1 5 5 5
Patient 2 4 4 4
Patient 3 2 2 4/5
Patient 4 1 N/A 4/5
Patient 5 1 2 4/5

Table 1 Results of our evaluation experiment. Method 1 corresponds to the original 17-segment model,
method 2 corresponds to the adapted 17-segment model and method 3 corresponds to using unconstrained
coronary territories. The scale ranges from one (very bad) to five (very good).

Finally our expert provided an overall rating for each approach of determining coronary artery
territories. The manual approach was given a score of 4, both the original and our adapted 17-model
were rated 3 and using unconstrained coronary territories was rated 4.
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Our expert expressed that it was difficult to get a feeling for the concept of forcing the coronary
territories to correspond to the 17-segment model. The continuous bull’s eye plot projection we used
also created some confusion. It was not clear whether strong variations within one ring, such as in
the lower right part of Figure 6c, corresponded to epicardial and endocardial territories or whether
the diagram should be interpreted as having infinitely many rings. Finally, a suggestion was made
to restrict the segmentation of the LAD in the inferior wall, as current segmentations often led to
an overestimation of the LAD territory. This is also the reason why we were unable to compute
constrained coronary territories for patient 4.

In the manually drawn territories the inner ring was entirely allocated to the LAD in all patients
except the first. Since this does not correspond to the original 17-segment model, this was only
reflected by the unconstrained coronary territories. This is clearly visible in the scores given in Table 1
and is also the primary reason this method is preferred. In summary, our expert was positive about our
work, especially the unconstrained coronary territories. Our evaluation indicates that this approach
can compete with a manual approach.

5.1 Application to CT Data

We have also applied our technique to a whole heart CT scan. We applied the same segmentation
techniques as for the MRI scans. Due to the better spatial resolution of CT, we were able to extract
a more detailed coronary artery tree. Figure 7 shows the unconstrained coronary territories of this
dataset. We use hue to encode to which primary coronary artery a territory belongs to and use lightness
to distinguish territories from subbranches. This visualizes the hierarchy in the coronary artery tree.
It also demonstrates that our approach is capable of generating a large number of territories. Due
to the more fine-grained segmentation of the coronary artery tree, there is little difference when the
end points of the coronary arteries are connected to the apex. For the same reason as before, forcing
correspondence to the 17-segment model was not feasible for this patient.

5.2 Application to Viability Data

The primary advantage of patient-specific information on the coronary territories is that it allows to
establish a more accurate relation between a functional deficit and the coronary arteries. This involves
including other types of data, such as cine, late enhancement and perfusion data. Here we give an
example of how our approach can be combined with viability information from a late enhancement
scan. A late enhancement scan shows areas where a contrast agent has accumulated, typically
indicating dead tissue called scar. We demonstrate that the patient-specific coronary territories can
lead to a better understanding of which coronary arteries are related to areas of scar.

Figure 8 shows two bull’s eye plots that each depict both the coronary territories and viability
data. The darker areas in the bull’s eye plots correspond to areas of scar. The top bull’s eye plot shows
the coronary territories as an adapted 17-segment model. In the bottom bull’s eye plot, we adapted
the volume data to fit the original 17-segment model using the inverse of function f discussed in
Section 4.1. We implemented this using on-the-fly resampling of the volume data. In other words,
function f−1 is evaluated for every pixel during the rendering of the bull’s eye plot. In this case the
scar on the top side of the bull’s eye plot is stretched to fill the entire segment.

On the right of Figure 8 a three-dimensional view is shown to relate the scar to the three-
dimensional coronary and cardiac anatomy. The coronary territories are projected on the epicardial
surface, using the adapted 17-segment model approach. To establish a strong correspondence between
the bull’s eye plot and the three-dimensional view, we show a cursor on both views, indicated by the
red arrows in Figure 8. To facilitate easy navigation, the viewpoint can be controlled by the position
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Figure 7 Unconstrained coronary territories computed from a detailed coronary artery tree extracted from a
CT scan. The hue of each territory encodes its primary coronary artery, while the lightness is used to distinguish
territories from subbranches.

of the cursor. The user can then explore the three-dimensional view by moving the cursor on the
bull’s eye plot.

6 Discussion

For some patients, the coronary anatomy is too different from what the 17-segment model assumes.
As was verified by Pereztol-Valdés et al. [10] and Ortiz-Pérez et al. [9], especially in the apical region
there is a lot of variance among patients. Figure 9a shows the unconstrained coronary territories of
one of our patients. The territory of the LAD is relatively large because the LAD covers both the
anterior and inferior left ventricular walls in the apical area. Moreover, the part of the RCA that was
visible in the whole heart MRI scan did not extend toward the apical region.

For this patient, our approach of adapting the 17-segment model fails since we cannot force a cor-
respondence due to the dominant LAD. If an adapted 17-segment model is desired, the segmentation
of the LAD could be restricted in the apical area. Analyzing the unconstrained coronary territories as
shown in Figure 9a is in fact especially useful for patients with a coronary anatomy that considerably
diverges from the average.

There are also patients that correspond very well to the 17-segment model. Figure 9b shows a
comparison of an adapted 17-segment model and the standard 17-segment model in red and black
lines, respectively. For this particular patient, the edges of the coronary territories map fairly well to
what the 17-segment model predicts. It should be noted however that the model of each part of the
myocardium being exclusively perfused by a single artery is especially inaccurate near these borders
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Figure 8 Combined visualization of coronary territories and viability information. The darker areas in
the bull’s eye plots and the three-dimensional view correspond to areas of scar. A cursor (red arrows) shows
corresponding points on both bull’s eye plots and the three-dimensional view. The 17-segment model is shown
in the three-dimensional view as a set of black lines around the epicardium.

(a) (b)

Figure 9 Varying correspondence to the 17-segment model: (a) a case where adapting the model fails, (b) a
case with relatively little difference to the model.
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of the coronary territories. Another aspect that is visible in Figure 9b is that due to the circular nature
of the bull’s eye plot, differences near the apex result in smaller visual differences in the diagram.

We have not included segment number 17, corresponding to the apex, in our experiments. This
segment forms a special case compared to the other 16 segments. It it is connected to all other
territories and only has one border. A special approach is required to assign it to a coronary territory,
since there is no clear mapping between this segment and the Voronoi diagram on the epicardial mesh.
Thus when adapting the 17-segment model, it would only have to be decided to which coronary
territory this segment should be assigned, but no edges need to be adjusted.

In our experiments we used meshes consisting of approximately 104 quadrilaterals. The entire
preprocessing phase, including the mesh computation, coronary artery projection, Voronoi diagram
computation and computing the adapted 17-segment models typically takes less than one second on a
modern workstation (Intel Xeon 3 Ghz, 2 GiB RAM, NVIDIA GeForce 8800 GTX).

7 Conclusion

We have introduced two approaches for establishing a relation between the patient-specific coronary
anatomy and the myocardium. In the first approach we adapt the borders of the segments of the
17-segment model as defined by the American Heart Association. In the second approach we compute
the coronary territories without taking any model into account. Both approaches are based on a
Voronoi diagram computation of the coronary arteries projected onto a quadrilateral mesh of the
epicardium.

Both approaches provide detailed insight in the patient-specific coronary anatomy. Adapting the
17-segment model forces a correspondence between the coronary territories and the 17-segment model
by connecting the end points of the primary coronary artery branches to the apex. This approach
forms a compromise between using a model-based approach and a segmentation-based approach.
The second approach does not pose any constraints and thus allows for arbitrarily shaped coronary
territories. It is therefore also more sensitive to incomplete segmentations of the coronary arteries.
While the uniformity appearance of the 17-segment model is lost, the additional patient-specific
information on the coronary territories allows for a better understanding on the relation between the
coronary arteries and the myocardium.

We have presented an application of using patient-specific coronary territories with visualizing
viability information from a late enhancement scan. Instead of altering the 17-segment model to
correspond to the coronary anatomy, we show that it is also possible to fit the underlying volume
data to the original 17-segment model. This approach creates uniformly looking bull’s eye plots,
regardless of the coronary anatomy of the patient.

Feedback obtained through an evaluation experiment with a cardiologist gave a clear signal
that our work has clinical relevance. Results indicated that there is a preference towards using
unconstrained coronary territories. The latter method produced territories that best matched those
indicated manually by our cardiologist and are considered to have a greater correspondence than
those that the original 17-segment model suggest.
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Abstract
Modeling complex organs, such as the human heart, requires a detailed understanding of the geometric
and mechanical properties of that organ. Similarly, the model is only as accurate as the precision of the
underlying properties allow. Hence, it is of great importance that accurate measurements of the geometric
configuration are available. This paper describes the different steps that are necessary for creating and
visualizing such a vascular model, ranging from determining a basic geometric model, gathering statistical
data necessary to extend an existing model up to the visualization of the resulting large-scale vascular
models.
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1 Introduction

In order to precisely model a complex organ, such as the human heart, the organ’s mechanical and
physiological properties need to be fully understood. This includes the analysis of, for example, the
geometric configuration of the myocardium and its supporting vasculature as well as the structural
configuration of the vessels themselves. Therefore, this paper describes methodologies that help
analyze such properties and provides some answers to the visual analytics challenges this ongoing
research is facing.

In order to extract morphometric data from a volumetric data set that resembles a scan of a
coronary system with the arteries highlighted using some form of contrast agent, the center lines
of the individual vessel segments need to be identified resulting in a curve-skeleton describing the
medial axis of the vessels. This then allows the software to compute the vessel radii as the distance
between the center lines and the vessel boundary. Similarly, the length of a vessel segment can be
computed as the length of the center lines, as well as bifurcation angles as the different angles formed
by the center lines at a bifurcation. Obviously, it is quite important that both the boundary and the
center lines are determined as accurately as possible. The method used in this paper computes both at
a sub-voxel level to achieve a very high precision.

Curve-skeletons represent the very basic features of an object. They describe a thinned version of
the object represented as some type of stick model resulting in the center-lines of the object. Therefore,
the use of curve-skeletons can prove useful for applications, such as animation [46] or flight planning
for virtual colonoscopy [19]. Similarly, accurate curve-skeleton methods can be used for extracting
quantitative measurements from computed tomography (CT) scanned vascular structures. Here, the
curve-skeleton describes the center lines of the vessels. These can then be used to measure vessel
radius, vessel lengths, and angles between vessels within the volumetric data set retrieved by using
the CT scanner. In order to derive these measurements from the volumetric data set, an accurate
extraction method for curve-skeletons is desirable. For example, thinning-based techniques that work
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in the voxel space of the volumetric data set tend to generate jagged lines which are in no way suitable
for determining angles between vessels. Similarly, inaccuracies can occur when computing the radii
of the vessels. Hence, an approach that only uses the volumetric data set in order to identify the
boundary surface of the contained object is more promising.

The algorithm used in this paper is exactly of this type. It is capable of extracting the boundary
surface of an object that is defined by a volumetric data set at sub-voxel level. For this, it determines
the location of the maximal gradient within the volumetric data set similar to Canny’s [8] maxima-
suppression technique but extended to three dimensions. Since the algorithm only relies on points
extracted from the volumetric data set but not on its underlying structured grid, it can also be applied
to objects defined by a point set without any restrictions.

Techniques used for computing the topological graph of a vector field are applied to determine the
curve-skeleton. First, for all points on the object’s boundary vectors are computed that are orthogonal
to the boundary surface. There are different options for computing these vectors. They either can be
derived by determining the normal vector of a plane that is defined by a least-square fit of the point and
its neighbors. Or – in case of the object being defined by a volumetric data set – the image gradients
determined in the previous step can be used. In both cases, the normal vectors can be determined in
such a way that they are facing inwards with respect to the object. The entire vector field can then be
determined by computing a tetrahedrization of the entire point cloud and then linearly interpolating
within the tetrahedra. In order to ensure that only the curve-skeleton inside the object is extracted, all
tetrahedra that are located outside the object are removed based on the normal vectors.

A topological analysis of the vector field within the faces of every tetrahedron yields points on
the curve-skeleton. By following the topology of the tetrahedrization, points on the curve-skeleton
within neighboring tetrahedra can be connected resulting in the entire curve-skeleton. Based on this
curve-skeleton, vessel radii are computed at a very high accuracy. Similarly, bifurcation angles can
be computed and statistically analyzed. This information, i.e. statistical information about the vessel
lengths, vessel radii, and bifurcation angles for vessels of different sizes, can then be used to grow
additional vessels onto an existing model resulting in a large-scale model of the vasculature that
includes vessels down to the capillary level.

Rendering such a large-scale model is quite challenging for currently available computing hard-
ware since commodity graphics cards are presently not able to display this amount of information
interactively. For the complete coronary arterial model, traditional rendering algorithms require the
total of 6 GB of geometric information to be transferred from main memory to the graphics card,
which presents a limit for interactive rendering. Furthermore, most desktop computers are not capable
of handling this amount of data due to insufficient main memory. Hence, the size of such a large-scale
anatomical model is prohibitive for rendering on desktop computers without employing out-of-core
techniques or more sophisticated rendering algorithms. Occlusion culling techniques are usually
capable of achieving better performance. However, when applied to tree-shaped data sets only little
occlusion occurs which in turn requires the removal of partly visible areas of the data set in order to
achieve an increase in rendering performance [49]. In addition, medical personnel and researchers
tend to prefer to see the entire data set without anything being removed in fear of missing essential
information. Hence, the visualization methods in this paper refrained from applying any type of
geometry reduction methods but improved on the rendering method itself instead.

The objective of this paper is to outline methods that allow for the analysis, modeling, and
visualization of cardiovascular structures. This includes methodologies that are capable of extracting
quantitative morphometric measurements from scans of cardiovascular data sets. These statistical
data can then be used to generate a large-scale vascular model with vessels from the most proximal
level down to the capillaries. The enormous amount of vessel segments included in such a model
requires novel visualization methods in order to achieve interactive rendering of these data sets. The
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proposed approach computes the necessary geometry that is required for visualizing the data set
on-the-fly and utilizes all computational resources available on today’s desktop computers, i.e. all
cores of the CPU and the GPU at the same time, thereby achieving maximal performance of the
visualization algorithm. The rendering algorithm is especially optimized for rendering large-scale
tree-shaped data sets and the computation of all necessary geometry in parallel on the CPU assisted
by the GPU. The techniques described in this paper can easily be applied to data extracted from any
type of tree-like structure.

The following section discusses work related to the topics described in this paper. A description
of the algorithms can be found in section 3. Section 5 discusses the performance of the algorithm
applied to the large-scale vascular data set, followed by conclusions and future work.

2 Related Work

Several approaches for extracting curve-skeletons or medial axes can be found in the literature. A
very good overview of available techniques can be found in the paper by Cornea et al. [9].

Some methods start with all voxels of a volumetric data set and use a thinning technique to shrink
down the object to a single line. Directional thinning approaches use a specific order in which voxels
are removed. For example, directions, such as up or down, are used to define this order and conditions
are used to identify endpoints [2, 7, 17, 22, 24, 31, 32, 37, 45]. Since these methods are sensitive with
respect to the order in which the voxels are removed the resulting curve-skeleton may not be perfectly
centered. Non-directional methods [5, 42] or fully parallel approaches [12, 25, 27] do not suffer from
this disadvantage. Ideally, the topology of the object should be observed. Such an approach was
proposed by Lobregt et al. [23] which is the basic technique used in commercial software systems,
such as AnalyzeT M developed by the Mayo Clinic. The disadvantage of this approach is that it tends
to produce jagged lines which do not allow accurate measurements of angles between parts of the
object, such as individual vessels of a vascular structure. Other approaches [43] classify the voxels in
different groups, such as edge, inner, curve, or junction and re-classify after removal of a voxel. A
similar algorithm is proposed by Palagyi et al. [31]. The disadvantage of thinning algorithms is that
they can only be applied to volumetric data sets due to the nature of these algorithms.

To avoid this disadvantage, other approaches deploy the distance transform [16] or distance field in
order to obtain a curve-skeleton. For each point inside the object, the smallest distance to the boundary
surface is determined. For this, the Euclidean metric or the <3,4,5> metric [4] can be used. Also,
fast marching methods [39, 44] can be deployed to compute the distance field. Voxels representing
the center lines of the object are identified by finding ridges in the distance field. The resulting
candidates must then be pruned first. The resulting values are then connected using a path connection
or minimum span tree algorithm [41, 47, 52]. Methods used to identify points on the ridges include
distance thinning [10, 14, 15, 34], divergence computing [6], gradient searching [3], thresholding the
bisector angle [26], geodesic front propagation [33], or shrinking the surface along the gradient of
the distance field [38]. The distance field can also be combined with a distance-from-source field
to compute a skeleton [53]. Based on an anisotropic diffusion applied to the image gradients, Yu et
al [51] extract skeletons from 2D images.

Techniques based on Voronoi diagrams [1, 11] define a medial axis using the Voronoi points.
Since this approach usually does not result in a single line but rather a surface shaped object, the
points need to be clustered and connected in order to obtain a curve-skeleton. Voronoi-based methods
can be applied to volumetric data sets as well as point sets. Due to the fact that clustering of the
resulting points is required, these approaches can lack some accuracy.

The center lines in combination with the vessel radii computed at the center points allow for a
geometric reconstruction of the vasculature. Various techniques for visualizing vascular structures
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can be found in the literature. Hahn et al. [18] employ geometrical primitives, such as truncated
cones, to visualize vessels inside the human liver. Masutani et al. [28] used cylinders aligned to the
vessel skeleton to visualize the vasculature. Different radii at branchings resulted in discontinuities
when using this method. Felkel et al. [13] reconstructed liver vessels from center line and radius
information to supply an augmented reality tool for surgery. Puig et al. [35] developed a system for
exploring cerebral blood vessels using a symbolic model with a focus on geometric continuity and on
realistic shading. Oeltze et al. [29, 30] use convolution surfaces to obtain a smoother representation
of blood vessels extracted from CT or MR data. Ritter et al. [36] extended on illustrative rendering
techniques to accentuate spatial depth by use of GPU-accelerated shadow-like depth indicators. The
method was applied to vascular structures to better distinguish vessels in the front from vessels further
in the back. Stoll et al. [40] introduced stylized primitives which utilize the GPU to render cylindrical
objects using a single quadrilateral. The approach was used for fast rendering of streamlines in vector
field data sets.

3 Methodology

As indicated in the Physiome Project [20], modeling the human body requires its analysis at various
levels ranging from the genomic over to the tissue level and organ level up to the human body itself.
Similarly, modeling the human heart requires a detailed understanding of the vascular structure and
the individual vessels of which the structure composed.

A previously developed software package extracts morphometric data from a volumetric image in
several steps. Although a brief summary of the algorithm is given here, a detailed description can be
found in the original publication [48]. The algorithm first segments the tubular objects within the
volumetric image based on the image gradients. In order to get a more accurate representation of the
boundary, the points resulting from the segmentation step are moved along the gradient direction in
such a way that they are located at the maximal gradient. This provides a more precise and smoother
representation of the boundary compared to using the original voxel locations. Then, a vector field is
computed in such a way that all vectors are pointing inwards to the center of the tubular object. In
the simplest case, the image gradients can be used at the boundary. Using a tri-linear interpolation,
the vector field can be computed after a tetrahedrization of all the boundary points is determined.
Finally, the points on the center lines are computed using a topological analysis of the vector field
within the cross sectional area of the tubular objects and connected based on the topology of the
tetrahedrization. This then results in a precise representation of the center lines of all tubular objects
within the volumetric image. At the same time, the algorithm computes the radii of the tubular shapes
along with the center lines as the distance between center line at boundary.

The algorithm has a proven accuracy with smaller error than most other methods. For the
validation of the algorithm, vessel radii were computed for the main trunk of the arterial branches of
a series of five porcine heart data sets as the distance between the center line and the vessel boundary
and then compared to manual optical measurements. The agreement between the measurements is
very good, with an error of 0.06mm (scan resolution was 0.6mm×0.6mm×1.0mm), which underlines
the accuracy of the center lines. For the three major branches (LAD, LCx, and RCA) of the five
porcine hearts, the root mean square error between the two measurements is 0.16mm and the average
deviation is 0.13mm.

Based on these accurate morphpometric data, the vascular geometry can be reconstructed. The
morphometric data extracted from the volumetric data set provides vessel segments identified as
line strips defined by the center lines of the vessels with radii measurements at both ends of each
line segment. Conic cylinders can then be computed that represent each vessel segment. Since two
consecutive line segments may not have the exact same direction, the end caps of the conic cylinders
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Figure 1 Vasculature of a pig heart: volume rendering (a) and geometric reconstruction (b) of the same
heart.

Figure 2 Definition of bifurcation angles.

are rotated in such a way that they describe half the angle between the line segments. This way, a
smooth transition between segments can be created that avoids gaps at the transition. By computing
such a conic cylinder for every vessel segment that was extracted from the volumetric data set, a
geometric reconstruction of the vasculature is achieved. Figure 1 depicts such a reconstruction and
compares it to a volume rendering of the exact same volumetric data set.

Using the above algorithm, the arterial center lines were determined for seven porcine hearts and
for all vessels detected by the software. Since the accuracy for vessels smaller than the scan resolution
is questionable as indicated by our previous study, vessels with a diameter of less than 1mm were not
included in the analysis. Based on these center lines of the vessel segments, bifurcation angles were
measured as defined in Figure 2. The two child segments define a plane. The angle between the two
children within that plane describes the in-plane angle. The out-of-plane angle is formed between the
parent segment and the plane defined by the two child segments. The main angle refers to the angle
between the parent and the larger child segment while the secondary angle is determined by the angle
between the parent and the smaller child segment.

Due to the fact that the first segment of a center line merely represents the connection of the vessel
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Figure 3 Sample bifurcation extracted from the volumetric data.

branches but not necessarily the direction of the daughter vessel due to possible curvature, more than
just the first segment were included in the calculation of the bifurcation angle (Figure 3). The first
center line segment usually only leads out of the main vessel formed by the parent and the larger
child. Using this segment alone would result in erroneous bifurcation angles. Hence, the center line
segments starting with the first segment after the bifurcation until the length of the daughter segment
reaches three times the radius of the parent vessel were considered. The vectors representing the
center line segments identified in such a way were then averaged and weighed by the length of each
vector to determine a representative for the orientation of the daughter vessels. These were used for
the computation of the bifurcation angles as described before.

For the statistical analysis, the bifurcations were grouped with respect to the order of the respective
vessel segments. These groups were defined by the diameter of the vessels thereby associating a
range of diameter values to a specific order. The relation between vessel diameters and orders are
shown in Figure 4 for LAD, LCx, and RCA. The bifurcations were then classified based on the order
of the parent and daughter vessels. Bifurcations between vessel orders ranging from 9 to 11 for LAD
and RCA, and 9 and 10 for LCx were considered since vessels of that specific size can be extracted
reliably from CT scanned imagery with a resolution of 1mm. Average angles and standard deviation
within each of these groups were computed for each of the major coronary arterial branches.

Figures 5 through 8 list the statistical summary of the secondary angles and out-of-plane angles
in matrix form according to the order number of the parent vessel segment (vertical axis) and the
daughter vessel segment (horizontal axis). Each entry lists the average angle within that group and
the standard deviation. The tables confirm assumptions typically made for vascular structures. The
smaller daughter vessel usually forks off at a relatively larger angle whereas the larger vessel continues
the vessel segment in a rather straight fashion. The low out-of-plane angles confirm that bifurcations
typically are relatively planar. Despite the important fact of confirming observations and assumptions
often found in the literature, it is often difficult to analyze the values for specific bifurcations. A
focus+context-oriented visualization can help in this case. By annotating a visualization of the
vascular geometry with textual information representing the angular values, it is much easier to
correlate the values with the geometry of the vascular structure making an analysis significantly less
cumbersome. Figure 9 shows an example for such a visualization. The user can zoom in on specific
bifurcations and check the attached angular values interactively.

The size of the vessel segments that can be extracted from the volumetric data depends on the
resolution of the scanning device used. Typically, capillary vessels have a diameter of 6−7µm. This
is significantly smaller than the resolution of typical scanners. In order to derive a detailed model
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range
RCA Order low high

9 552 955
10 955.1 2,319
11 2,319.1 3,606

range
LAD Order low high

9 554 986
10 986.1 2,189
11 2,189.1 3,830

range
LCx Order low high

9 649 1,782
10 1782.1 2,940

Figure 4 Relation between order numbers and vessel diameter.

RCA order 9 order 10 order 11
order 9 29.66±13.93 19.79±11.17 12.10±0.64
order 10 24.72±20.69 15.73±7.79
order 11 17.31±1.06

LAD order 9 order 10 order 11
order 9 25.36±15.88 23.26±13.33 15.41±9.48
order 10 26.94±20.66 23.28±17.93
order 11 35.00±20.65

LCx order 8 order 9 order 10
order 9 20.05±15.00 17.35±16.95
rder 10 24.74±30.33

Figure 5 Main bifurcation angles.

RCA order 9 order 10 order 11
order 9 73.13±28.13 56.99±26.18 60.71±13.14
order 10 63.87±34.63 57.55±22.56
order 11 36.31±21.93

LAD order 9 order 10 order 11
order 9 66.19±31.75 70.87±28.62 64.89±19.56
order 10 66.85±32.95 65.02±26.20
order 11 51.36±6.31

LCx order 8 order 9 order 11
order 9 65.75±31.95 69.46±19.11
order 10 86.75±60.92

Figure 6 Secondary bifurcation angles.
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RCA order 9 order 10 order 11
order 9 89.46±19.12 65.18±27.89 70.35±11.46
order 10 68.80±35.15 62.30±20.31
order 11 38.79±43.47

LAD order 9 order 10 order 11
order 9 66.37±31.68 76.55±32.03 69.25±16.86
order 10 68.57±33.86 75.29±31.87
order 11 25.49±26.03

LCx order 8 order 9 order 10
order 9 71.99±32.03 64.39±26.57
order 10 74.08±48.50

Figure 7 In-plane bifurcation angles.

RCA order 9 order 10 order 11
order 9 12.81±11.26 10.97±10.01 5.82±3.95
order 10 11.47±10.62 7.02±4.05
order 11 9.32±8.65

LAD order 9 order 10 order 11
order 9 16.55±13.52 12.26±8.21 10.78±9.74
order 10 12.92±13.46 12.09±10.11
order 11 21.27±1.24

LCx order 8 order 9 order 10
order 9 9.58±10.13 6.74±7.01
order 10 6.61±4.04

Figure 8 Out-of-plane bifurcation angles.

of the vasculature that includes vessels on the capillary level, the vasculature extracted from the
volumetric data can be extended based on statistical properties of the vasculature. Recently, Kaimovitz
et al. [21] developed a three-dimensional (3-D) geometric model of the entire coronary arterial tree
(right coronary artery, RCA; left anterior descending artery, LAD; and left circumflex, LCx arterial
tree). The model is purely based on morphometric data as extracted using the methodology as
described previously, i.e. statistical information of vessel length, vessel diameter, and bifurcation
angles. The model spans the entire coronary arterial tree down to the capillary vessels in a prolate
spheroid model of the heart and encompasses about 11 million segments. The 3-D tree structure was
reconstructed initially in rectangular slab geometry by means of global geometrical optimization
using a parallel Simulated Annealing (SA) algorithm. The SA optimization was subject to a global
boundary avoidance constraint and local constraints at bifurcations prescribed by previously measured
data on branching asymmetry in the coronary arterial tree. Subsequently, the reconstructed tree was
mapped onto the prolate spheroidal geometry of the heart. The transformation was made through least
squares minimization of the deformation in segment lengths as well as their angular characteristics.

Due to the high number of vessel segments, the geometric data that needs to be generated for
creating a high-quality visualization of this data set is quite substantial. When discretizing the end caps
of the conic cylinders to represent each vessel segments with 8 vertices, the overall geometric data
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Figure 9 Focus+context visualization of vascular geometry and bifurcation angles.

amounts to 6 GBs of data. Since this amount of data exceeds the amount of memory typically available
in desktop computers, out-of-core rendering approaches are required to visualize the data [50]. The
entire geometric information is stored in a file and then accessed using memory-mapping so that the
operating system automatically swaps chunks of the data set in and out as necessary. In addition to
the geometry, a pressure simulation can be performed based on the geometric configuration of the
vasculature. The resulting pressure data can then be used to color-code the vessels. Figure 10 shows
such an image where the vessel segments are colored from red (low pressure) to green (high pressure).

Even though the rendering is of very high-quality, the fact that out-of-core methods are required
results in rather slow rendering performance of about one minute per frame. This obviously is not
interactive. However, the center line information combined with the vessel radii as described by the
vascular model requires comparably less memory and fits into most desktop computer’s main memory.
Hence, a visualization technique that is solely based on these center lines and radii only would not
require out-of-core techniques and therefore could be able to achieve faster rendering times.

The rendering technique described in this paper follows a similar approach than Stoll et al. [40]
where the GPU is used to make lines appear cylindrical for rendering streamlines. In this paper, this
idea is extended to allow for more general conic cylinders with different radii at each end since this is
a requirement for rendering the vessel segments. In addition, the rendering technique is optimized
for the purpose of rendering large-scale tree-shaped data sets and parallelized to run on the multiple
cores of a CPU at the same time.

In this method, each vessel segment is represented only by a single quadrilateral. This approach
provides two advantages. First, the quadrilateral can be solely computed based on the center line
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Figure 10 High-quality rendering of the arterial tree of a pig heart including vessels from the most-proximal
level down to the capillaries.

Figure 11 Computation of vessel directions (red arrows attached to its center point) based on the center
lines of the vessels (dashed).

and radii information describing the vessel segments. Second, the rendering algorithm draws only
four vertices per vessel segment compared to at least 18 vertices for the traditional approach. A
fragment program can be used to make the quadrilateral appear like a cylindrical object. Of course,
this rendering technique requires that the quadrilateral is always parallel to the projection plane in
order to be completely visible. Only then a cylindrical appearance can be achieved. Consequently,
the quadrilateral needs to be recomputed for every frame if the view has changed.

In a pre-computational step, the vessel directions at each center point are computed as the average
of the direction of vessel segment ending at that center point and the direction of the vessel segment
starting at that center point. In case of bifurcations, there may be more than one vessel segment
starting at that center point. Consequently there are more than one direction available as well which
then are included in the computation of the average direction. Figure 11 illustrates two examples. The
resulting vessel direction is necessary to ensure a smooth transition between the vessel segments.

In order to compute the quadrilateral to represent a vessel segment, an offset vector is computed
for every center point in such a way that this offset vector is parallel to the projection plane and
orthogonal to the vessel direction at that center point. Figure 12 illustrates this procedure. Based on
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center line offset

offset

vessel direction

vessel direction

Figure 12 Computation of the quadrilateral representing a single vessel segment.

the offset vectors of two consecutive center points, four vertices can be computed by offsetting the
center point in positive and negative direction of the offset vector as described in figure 12. This then
results in the quadrilateral representing that vessel segment. Since neighboring quadrilaterals are
based on the same vessel direction and therefore on the same offset vector, a smooth transition from
one vessel segment to the next is guaranteed. Due to the fact that the offset vectors are parallel to the
projection plane, it is guaranteed that the quadrilateral itself is parallel to the projection plane as well.
This quadrilateral is then used as an approximation for the vessel segment.

Obviously, representing the vessel segment using a single quadrilateral works best when looking
at the segment from the side. When looking at the vessel segment’s cross-sectional area, it is
approximated as a single vertical line since only a single quadrilateral is used as a representation.
However, this is more obvious only for terminal vessels, i.e. vessel segments that represent leaves in
the vascular tree. For vessels with adjacent segments most of the resulting artifact will be covered
by that adjacent vessel segment. In addition, the percentage of vessels that are orthogonal to the
projection plane and where the cross-sectional area would be visible is very small among all 11
million vessel segments. It would be easy to test for those cases and draw a circular area instead of
a quadrilateral. However, this would require additional computation for the test and drawing more
vertices for approximating a circle compared to drawing a quadrilateral. The test would have to be
performed for every vessel segment. Considering the minimal artifact resulting from neglecting these
cases and the loss of performance from the additional testing, this was not implemented to achieve
the maximal performance possible.

In order to find the most efficient way of computing the quadrilaterals representing the vessel
segments, three different approaches were implemented and compared. The first one computes all
offset vectors for two consecutive center points individually. Hence, the offset vector for two con-
secutive quadrilaterals are computed twice. To avoid this double computation, two other approaches
were tested. The first one stored all offset vectors in memory. This resulted in a huge array of
offset vectors so that eventually the amount of available main memory was exceeded and the system
started swapping during the rendering. Consequently, the performance of the rendering algorithm
dropped. The second approach recursively traversed the vascular tree structure so that consecutive
quadrilaterals were computed right after each other. This allowed the system to reuse the offset vector
computed for the previous quadrilateral. However, the additional burden introduced by the recursion
slowed down the rendering compared to the direct approach. Even transforming the recursion into
a sequential approach using queues resulted in a slower performance. As a result it was found that
computing both offset vectors for each quadrilateral results in the best performance possible despite
the fact that some offset vectors are computed twice.

Rendering the vessel segments as quadrilaterals results in a rather flat appearance. In order to
achieve a more cylindrical effect, a fragment program can be used that uses darker colors at the edge
of the vessel, i.e. the sides of the quadrilateral that are not connected to other quadrilaterals. To
achieve this effect, texture coordinates can be assigned to the vertices of the quadrilateral. Based on
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void main (in float4 color : COLOR0,
in float2 texcoord : TEXCOORD0,
out float4 result : COLOR) {

result = color * (-(texcoord.y - 0.5) *
(texcoord.y - 0.5) + 1.0);

}

Figure 13 Fragment program for making a quadrilateral appear as a cylindrical object.

these texture coordinates, the fragment program can determine the local position of every fragment
with respect to the vessel segment and change the color for the fragment if the edge of the vessel
is approached. Figure 13 shows the Cg code of the fragment program used in this implementation.
The fragment program simply fades the color when approaching the edge of the vessel. A similar
effect could be achieved by using a simple texture. However, a fragment program has two advantages
over a texture. First, the fragment program is resolution independent and computes the color for each
fragment whereas a texture may produce aliasing artifacts. Second, the fragment program is color
independent. Hence, color coding could be used for the vessel segments which would be preserved
by the fragment program but overwritten by a texture.

Since CPU manufacturers nowadays often times provide more than just a single core, this
additional computational resource can be used by the current implementation as well by simply
adding a thread that computes quadrilaterals representing vessel segments on the CPU for very core.
To synchronize the threads, a queue was introduced which contains all vessel segments that are not
rendered yet. Then a separate thread is started which acquires the next vessel segments from the
queue and computes the quadrilaterals to represent these vessel segments. The resulting geometry
data is stored in another queue. This other queue is then processed by the main thread which renders
the quadrilaterals contained in that queue. On a dual-core processor, this then results in two parallel
processes which compute the necessary geometric data required for rendering the vascular data set.
As can be seen in the next section, the current implementation of the algorithm scales very well and
utilizes all computational resources available resulting in an increased rendering performance.

4 Performance

Figure 14 shows the resulting image of the performance rendering method based on a single quadri-
laterals for every vessel segment. As can be seen in the image, the rendering quality is still very good.
Every of the 11 million vessel segments is represented in this image.

The performance of the algorithms is very good as well. All measurements were performed on a
computer equipped with an Intel Core2 Duo E6850 running at 3.0 GHz with 2 GB of memory and
an NVidia Quadro FX3700 graphics card running Linux. A Western Digital Raptor WD740ADFD
spinning at 10,000 RPM was utilized as the permanent storage device. The original implementation
based on an out-of-core methodology requires over a minute (65 seconds on average) to render a
single frame due to the fact that the geometry needs to be loaded from disk all the time. Figure 15
shows a plot of the rendering frame rate over a period of time.

When using the improved rendering algorithm, the performance increases significantly. Since the
methodology no longer has to rely on the hard drive as the main storage medium, but instead can
store all the necessary information in main memory, a rendering frame rate of about 0.68 is achieved
which amounts to 1.5 seconds per frame on average. A plot of the frame rates over time is included in
Figure 16.

The algorithm scales very well as can be seen when adding a second thread to assist in the
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Figure 14 Performance rendering of the arterial tree of a pig heart.

computations necessary to compute all the quadrilaterals to represent the vessel segments. The
rendering performance doubles to 1.32 frames per second which is equivalent to 0.75 seconds per
frame which allows for an interactive investigation of the data set.

5 Conclusion and Future Work

This paper presented methodologies for extracting quantitative measurements from volumetric data
sets at a very high accuracy. These morphometric measurements can be used to reconstruct the
geometry of the vasculature resulting in an accurate visualization of the data. The measurements
extracted include vessel length, vessel radius, and bifurcation angles which can be used as a statistical
basis for growing additional vessels onto an existing vasculature. This way, large-scale vascular
models can be generated that include vessels from the most proximal level down to the capillaries.
Due to the vast amount of vessels included in such a data set, fast rendering methodologies are
required to handle this amount of information. As discussed in this paper, using a more suitable
rendering algorithm can result in an improvement of a factor of 43 in rendering performance over
traditional out-of-core approaches.

In the future, the geometric reconstruction will be used to perform detailed flow simulation within
the vessels to accurately analyze the flow properties within the vascular structure. Due to the high
accuracy of the extracted measurements, the information can be used for disease detection, such
as identification of areas of reduced flow. In addition, the extraction algorithm will be extended to
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Figure 15 Rendering performance of out-of-core method for the large-scale arterial tree of a pig heart.
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Fig. 16. Rendering performance of performance method for the large-scale arterial tree of a pig
heart.
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identify individual fibers within volumetric data sets captured using optical coherence tomography
of vascular tissue. An analysis of the fiber structure will result in the determination of mechanical
properties of individual fibers to model the expansion of a fiber due to increased pressure induced by
the blood flow.
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Abstract
Interactive Visualization has been used to study scientific phenomena, analyze data, visualize
information, and to explore large amounts of multi-variate data. It enables the human mind to
gain novel insights by empowering the human visual system, encompassing the brain and the
eyes, to discover properties that were previously unknown. While it is believed that the process
of creating interactive visualizations is reasonably well understood, the process of stimulating
and enabling human reasoning with the aid of interactive visualization tools is still a highly
unexplored field.

We hypothesize that visualizations make an impact if they successfully influence a thought
process or a decision. Interacting with visualizations is part of this process. We present exemplary
cases where visualization was successful in enabling human reasoning, and instances where the
interaction with data helped in understanding the data and making a better informed decision.

We suggest metrics that help in understanding the evolution of a decision making process.
Such a metric would measure the efficiency of the reasoning process, rather than the performance
of the visualization system or the user. We claim that the methodology of interactive visualization,
which has been studied to a great extent, is now sufficiently mature, and we would like to provide
some guidance regarding the evaluation of knowledge gain through visually enabled reasoning.
It is our ambition to encourage the reader to take on the next step and move from information
visualization to visually enabled reasoning.
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1 Introduction

Visualization of information alone does not provide new insights. It is the discourse between
the human brain and the masses of information that enables reasoning and analytics.
Information visualization and the science of interaction must not only focus on rendering

© J. Meyer, J. Thomas, S. Diehl, B. fisher, D.A. Keim, D.H. Laidlaw, S. Miksch, K. Mueller, W.
Ribarsky, B. Preim, A. Ynnerman;

licensed under Creative Commons License NC-ND
Scientific Visualization: Advanced Concepts.
Editor: Hans Hagen; pp. 227–245

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz Center for Informatics (Germany)

http://dx.doi.org/10.4230/DFU.SciViz.2010.227
http://creativecommons.org/licenses/by-nc-nd/3.0/


228 From Visualization to Visually Enabled Reasoning

performance and methods of human-computer interaction (HCI), but also on successful
reasoning. Traditionally, research on HCI uses results from cognitive sciences to enhance
the user’s experience and performance when interacting with a visualization system. A
successful visual data analysis system is usually characterized by an improvement in these
two user-related categories, measured by means of a user study.

The next step in the evolution of visual analytics is the integration of interactive visu-
alization and human reasoning. Interactive reasoning is a process that takes place when a
dynamic visualization system responds to the user’s input and aids the user in gaining new
insights. A tight coupling between cognition, interaction and visual analytics is necessary to
enable the user to make informed decisions. We suggest a new metric, which is required to
evaluate the efficiency of visually enabled reasoning.

The next parts of this chapter provide an overview of some key definitions and define the
new science of visually enabled reasoning. Chapter 2 gives a strong motivation for the shift
from visualization to visually enabled reasoning. Chapter 3 outlines a roadmap to visually
enabled reasoning and describes visual reasoning tools. A discussion is provided in chapter 4,
which is intended to motivate the reader to take an integrated approach and to think about
visual analytics as a tool that empowers humans to make better informed decisions. As a
special feature, we present cases where interactive visualization and visual analytics were
successful in enabling human reasoning.

1.1 Definition of Terms
Visual Analytics — Visual analytics is defined as the science of analytical reasoning
facilitated by interactive visual interfaces [51]. This research area emerged from the fields of
information visualization, scientific visualization, and data analysis. Thus, visualization as
one method of analyzing data is combined with data analysis, e.g. statistics with respect
to correlations, clusters and distributions of data. Visual analytics goes beyond visual data
mining [28], which also emphasized a combination of data analysis and visualization by
incorporating HCI. Visual analytics focuses on data analysis by means of interactive data
visualization and human-computer interaction. It is understood that the human visual
and cognitive system is the most powerful tool for understanding the complex relationships
between data elements. Adapting a dynamic visualization system to match the abilities of the
human cognitive system is an instrumental key to optimizing user experience and performance.
A system that matches visual perception, with respect to resolution, focus, attention and
detail without overloading human senses is most suitable for efficient interpretation of large
data sets. Human reasoning is an important and indispensable element in this process.
It is important to note that the cognitive process of reasoning does not end with a good
understanding of the data. Conclusions must be drawn, leading to actions. These actions
include planning, decision making, and going back to the visualization in order to change
the simulation or planning scenario.

Science of Interaction — The contemplated science of interaction through visual
interfaces is broad. From the human perspective, it has both perceptual and cognitive
components. Since we are focused on visually enabled reasoning, we will concentrate mostly
on the cognitive component here. As shown in Figure 1, interactive visualization is the
pervasive mediating component between the user and data, i.e., between information and
insight. The science of interaction must formulate principles for all these interactions out of
which both descriptive and predictive models must arise. From these principles and inference
models, rules of design for interactive visualization systems and for the interactive reasoning
will be formulated. There will be general rules that will apply across all visualizations, and
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Figure 1 Visually Enabled Reasoning.

there will be specific rules, based on the general rules but developed for domain-specific
problems. In this set of principles and models, there must be a model for the human cognitive
process engaged in the rhythm of interaction, that is, in simultaneously probing data and
analyses, and in assessing visualizations. To emphasize, the human cognitive process must
be modeled explicitly as an integrated part of any model of visually enabled reasoning. Once
modeled, it can also be evaluated, and the efficiency of the reasoning process can be assessed
(Figure 1).

Cognition — The Oxford Dictionary defines cognition as ”the mental action or process
of acquiring knowledge and understanding through thought, experience, and the senses ()”. In
the context of visually enabled reasoning we extend theories of problem solving and reasoning
to include ways in which experience and the senses integrate human knowledge and expertise
with information from interactive visual analytic technologies. The ability of these systems
to shift the burden of information processing to perceptual processes should enable cognitive
operations to take place at a higher level over more complex cognitive ”chunks”. In this
view, cognition cross-cuts levels of the perception/decision/action hierarchy, and can best
be examined within the framework of abilities and constraints that make up the human
cognitive architecture.

Interactive Reasoning is the process of distinguishing between ideas in order to create
new relations and insights based on collected evidence. A significant reasoning process is
the building and testing of hypotheses (which may involve choosing between competing
hypotheses). A hypothesis can either be an argument (e.g., a decision process that determines
a course of action or point of view) or a model (e.g., a predictive representation of how
something works). Evidence and also reasoning artifacts are derived from relevant information,
data, analyses, or previous knowledge. Reasoning is intrinsically interactive. Here we are
concerned with reasoning mediated by interactive visualization where the visualization is
the means of presenting to humans the relevant information, analyses, and knowledge and
also the interface through which the human manipulates the information, analyses, etc. to
advance the reasoning process.
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Visual Reasoning usually incorporates different people with considerably different
qualifications and backgrounds. There are people developing tools for visual reasoning, and
other people using these tools to analyze their data. In most scenarios, however, the people
who acquire data (the authors of the data) are different from the actual customers. In
medicine, for example radiology technicians and radiologists acquire data using a specific
imaging protocol based on the request of a referring physician who is the actual end-user. A
surgeon, for instance, might use these data for preoperative planning. The development of
visual reasoning tools requires a close collaboration of all stakeholders from the onset.

The concept of participatory software development which is well-known in the HCI
community since the 80ies [20][24] is essential to enabling end users to influence design
decisions and ensure that the constraints of the particular domain are included in system
design at an early stage. Visual reasoning and problem solving strategies are very complex
issues, and it is very difficult to design them right from the beginning with reliable formal
specifications directly for supporting scientists. The process of tool development based on a
preliminary requirement analysis and later determining all the flaws of the design in a user
study is just not effective. Instead, the authors and the users of the data should be considered
as active co-developers and not as passive sources of information, who are supposed to answer
questions such as ”How often do you need this feature?” This active involvement of end
users requires that tool developers communicate in a not too technical way with the domain
expert. In particular, formal specifications, such as nested state transition diagrams or even
use cases are not a good basis for a discussion with end users. The scenario-based approach
by Carroll and Beth Rosson [43] is promising, because it yields specifications which can be
discussed with end users, as well as guide the design, development and evaluation process.

Dynamics—Modeling human dynamics is a critical part of understanding and evaluating
visually enabled reasoning. The study of human dynamics includes the adaptability and
interaction between models and visual interfaces. Today, rapidly growing technologies such as
Internet, mobile computing and sensor web have enabled new patterns of human interactions,
from social networks to physiological functions [8]. Human dynamics has become more
complex and more venerable. Unfortunately, our understanding of human dynamic behavior
and machine interaction is very limited. Much is invisible. To make invisible visible is the
goal of visual analytics, and to help model the complex, dynamic human machine interaction
is the aim of this article.

Social networks represent a good model for studying complex human dynamics when
many individuals and large computing networks are involved. The fundamental studies of
social networks such as the six degrees of separation and the power law of linked interactions
shed light on the scalability of human networking activities. Those remarkable models enrich
our in-depth understanding of the dynamics in a very large network, which is a challenge to
a visualization system.

Insight Gain — Gaining insights is a main goal of visual analytics or information
visualization methods, however, as Yi et al. point out [57], although a few definitions of
insight exist, no commonly accepted definition has emerged in the community. For example,
Card et al. [9] declare that the purpose of visualization is insight, not pictures (p. 6). Saraiya
et al. [44] define insight as an ”individual observation about the data by the participant,
a unit of discovery” (p. 444). North categorizes insight to be complex, deep, qualitative,
unexpected, and relevant [34]. Yi et al. [57] identified four types of processes through
which people gain insight: Provide Overview, Adjust, Detect Pattern, and Match Mental
Model. According to Chang et al. [11] the scope of definitions of insight in the visualization
community differs from that of the cognitive community: the definitions of insight in the
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visualization community are generally broader but vaguer than those in cognitive science.
They suggest defining insight in two parallel meanings: (1) a term equivalent to the cognitive
science definition of insight as a moment of enlightenment, and (2) a broader term to mean
an advance in knowledge or a piece of information.

1.2 A New Science
We propose a new science of human interaction with information. This new science is based on
insight gain through visually enabled reasoning. Interactive visualization, which has matured
into a set of well studied tools, plays an important role in this endeavor. Traditionally, user
studies have been used to evaluate performance and utility of visualization systems. We
propose a new metric which measures human reasoning instead of visualization or interaction
performance. We will ask what kind of experiments can be conducted to measure human
reasoning and whether user studies are an appropriate method for evaluating this process.

The paradigm of visually enabled reasoning is a whole new kind of evolution. How do we
create a model to measure human reasoning? How do we measure insight gain? In order to
answer these questions, cognitive scientists, visualization researchers and human-computer
interaction specialists must collaborate in an interdisciplinary effort to define both system
specifications and metrics for human reasoning. This collaboration has already begun, as
evidenced by initial steps toward a human cognitive model undertaken by visualization and
cognitive scientists working together [23].

1.3 Importance of Interdisciplinary Collaboration
To enable scientists and domain experts to use advanced visual analytics system successfully
requires a substantial knowledge of highly specialized scientific domains. This in-depth
knowledge is usually not completely formalized. It is applied in an intuitive and implicit
manner and thus cannot be easily extracted as a basis for computer support. As an example
from engineering, the simulated flow in a designed engine model is analyzed with respect to
complex flow patterns using a variety of analysis and visualization methods. In medicine,
surgeons have to make treatment decisions based on the assessed risk associated with different
interventions, often using interdisciplinary discussions, such as in a tumor board for their
planning tasks. Intensive interdisciplinary collaborations are an essential basis for providing
visual reasoning tools in such advanced application areas.

2 Motivation

One of the key aspects of research on visually enabled reasoning will be focused investigation
of the structure of human perception, cognition and action, i.e. human cognitive architecture.
In this effort, we must understand how cognitive functions are distributed across perceptual
and perceptually-guided motor processes.

For example, low-level perception of events is itself an inferential process. Irvin Rock’s
”logic of perception” [41][42] refers to the visual system’s ability to compensate for inadequate
sensory information (the so-called ”poverty of the stimulus”) and to reconcile conflicting
sensory information through processes of unconscious inference. Perceptual inference is
largely data-driven, and does not take into account the perceiver’s conscious thoughts, beliefs,
intentions, etc.

Pylyshyn’s ”cognitive impenetrability” test [37] distinguishes these two levels: while
learning does train perception’s inferential processes (and so individuals will differ one from
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Figure 2 Conveying visual information to the brain.

Figure 3 Visualization-centric human-computer interaction.

another in their abilities, and experts will differ from novices), the perceiver’s conscious
thoughts, beliefs, intentions, etc. do not actively participate in perception. Thus input from
end-users, e.g. verbal protocols of a ”think aloud” session, can give only limited insight into
their perceptual logic. The term ”metacognitive gap” [17] describes this counterintuitive
break between the ways in which these two logics must be understood, and hence the need
for a new cognitive science of human interaction with visualization systems.

From the perspective of the cognitive architecture of sensemaking, when we understand a
dataset we do so by attending to the conceptual implications of information that is itself
constructed by the pre-conscious logic of perception. Visually enabled reasoning will be most
successful when we fully understand how to design images and dialogs that enable the logic
of perception to support the logic of conscious reasoning.

In Figure 2, visualization includes both the technical process of producing a visual display
of information as well as the process of conveying this information into the human brain
to form a mental image. Expression includes both the mental process of deciding what to
express as well as the technical process of conveying this to the computer.

In Figure 3, the visualization is in the center and forms the medium that links the human
and the computer. The widths of the links themselves illustrate the bandwidth of these
channels. Note that the visualization-human bandwidth is perceived the largest, while that
of the other modalities is much smaller. The visualization is not just an image, but an active
and responsive process, equipped with autonomous methods, such as (semantic) zooming,
graphics rendering, context+focus displays, etc. The visualization is updated by both user
and computer, and it also stimulates or provokes new updates by both of these processes. In
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this diagram, computer and human are equal processes both capitalizing on their individual
strengths. The visualization forms a bilateral interaction medium.

The advance in computing power allows for the recomputation of parts of the visualization
in real or near real time and thus enables modern interaction techniques like brushing and
linking [16][53], panning and zooming [3], focus-context [33], magic lenses [4], as well as
animated transitions. But not only the visualization, but also the underlying data and
analyses can be partially recomputed.

Highly interactive and dynamic techniques are essential for supporting visual reasoning.
With these techniques, changes between complex visualizations can now be directly observed
instead of having to be interpreted which poses a much higher mental effort.

Visual or computational steering [54] is the concept that on the basis of a visualization of
the current status parameters of a running simulation or analysis are changed and the results
are visualized immediately. Thus, visual steering allows for the control of the simulation in
real time, instead of running a simulation first and then doing a post-mortem analysis.

As a result, the visualization has turned from an end product of the analysis process to a
user interface in an interactive and iterative analysis process.

3 Roadmap to Visually Enabled Reasoning

This chapter outlines the system components and conceptual considerations required for
visually enabled reasoning. Most of the system components, such as interaction devices,
dynamic and adaptive visualization, animation and sensory feedback, have already been
developed and need to be combined with visual cognition techniques. We discuss tools
for visually enabled reasoning and define metrics for evaluating these tools with respect to
supporting the process of computer-aided human reasoning.

3.1 Science of Interaction
In terms of visually-enabled reasoning, interaction is the means by which the human and the
computer work together (see also section 1.1 for a definition of terms). It makes the interface
permeable and communication and collaboration possible. The visualization subsystem needs
to be dynamic and adaptive, because the analysis and cognitive tasks can be significantly
different depending on what direction the user takes in her investigation. Scientific research
up to now usually employs user studies, task analyses, usability tests, and system performance
evaluations for the evaluation, validation, and improvement of these systems. What has
been missing to support visually-enabled reasoning is research that focuses on cognition, the
reasoning and argument process itself, and the ability to make decisions. One aspect that
must be focused on is the idea of a mixed initiative system, where the human and computer
work together in intimate collaboration, each doing what it does best and then sharing
results at the right time. New models that address the maintaining of cognitive flow for this
mixed initiative system, through visual representation and especially through interaction,
are starting to be developed [22][23], but much more work remains to be done.

Edward Tufte introduced the concepts of micro/macro reading, in which detail cumulates
into larger coherent structures [52]. In this sense a figure or diagram can be graphically read
at the level of larger contextual structure, at the detail level, or both view connected to
(similar to Focus and Context techniques). A good example is the illustration of sleep and
wake for newborn infants: each of the individual observations can be seen (micro reading),
but collectively all observations reveal the larger 25-hour and then the 24-hour circadian
cycles (macro reading). These concepts can be transferred to handle interactions. Interact
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methods can be defined on the micro level (e.g., selecting data points) and on the macro
level according to particular tasks.

The classical interaction methods proposed by Shneiderman [47] (overview, zoom, filter,
details-on-demand, relate, history, and extract) or by Chuah and Roth [13] (basic visualiza-
tion interaction [BVI] operations: graphical operations [encode data, set graphical value,
manipulate objects], set operations [create set, delete set, summarize set, and others], and
data operations [add, delete, derived attributes, and others]) can be seen on the micro level.

Yi et al. [56] studied different interaction methods and proposed a novel user intent-based
categorization schema, which could be seen on the macro level as

1. Select: mark something as interesting (e.g., brushing),
2. Explore: show me something else (e.g., navigation),
3. Reconfigure: show me a different arrangement (e.g., swap x and y axis of a scatter plot),
4. Encode: show me a different representation (e.g., switching to a different visualization

method),
5. Abstract/Elaborate: show me more or less detail (e.g., details on demand),
6. Filter: show me something conditionally (e.g., dynamic queries), and
7. Connect: show me related items (e.g., linking).

Yi et al. [56] also presented the different categorization schemata developed in the past,
which makes quite clear that there is no established science of interaction available yet.
However, according to the needs and purposes, different categorization schemata are used. As
mentioned in Yi et al. [56], their proposed categorization schema does not cover all aspects,
which were discovered in their literature and system research.

3.2 User Modeling
User modeling is a mature concept used in the design of intelligent user interfaces [29][30][31].
User modeling is concerned with deriving assumptions on the current user based on their
previous activities with the system. These assumptions may be exploited to enhance the
interactive use of a visual reasoning system. Thus, the system is adaptive with respect to its
user.

The user model might be something as simple as a data structure with parameters and
associated values. It might be more complex and represent also ”why” the system has arrived
at a certain assumption and describe the certainty of that assumption. In fact, sophisticated
knowledge representations are exploited, e.g., in advanced hypertext systems [6][7].

Obviously, user modeling is a concept which is only applicable to systems that are
used frequently; otherwise the user modeling effort does not pay off. Once this concept
is implemented, experienced long-term users of a visualization reasoning system can be
effectively represented and supported. At the lowest level, default values for visualization
techniques, such as colors, parameters for diagram representations, isolines and so forth may
be adapted to the preferences of the user. At a higher level, the selection of visualization
techniques and the screen layout might be adapted. For instance, the system ”classifies”
the current task, looks for the visual reasoning strategies applied frequently in the past,
and ”suggests” a layout, where, for example, a 3-D visualization, a cross-sectional 2-D
visualization and a 2-D histogram of data values and gradient magnitude are presented
simultaneously. Similarly, the selection of data analysis techniques, such as cluster analysis,
principal component analysis and correlation analysis might be adapted based on previous
decisions of the user. Finally, the composition of data analysis results and visualization
techniques is based on a huge parameter space and thus would benefit from narrowing this
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space based on ”intelligent” decisions. Therefore, a visually enabled reasoning system should
include models of the following:

User,
Visualization Environment (Output Devices), and
Data Analysis Methods.

These three components and their combination are essential for modeling visual reasoning.

User modeling, however, describes only one source for providing adaptive behavior. The
selection and parameterization of visualization and data analysis techniques should also be
adaptive with respect to the available computational output and device resources. Given
the large variety of output devices, differing in spatial resolution, number of gray levels,
physical size, and, for instance, the ability to render stereoscopic images, the suitability of
visualization techniques strongly depends on the particular output device. Adaptive behavior
should be guided primarily by existing knowledge of the properties of visual perception,
including different abilities of user groups at varying age levels.

Finally, even the same user working in the same environment (computational hardware
and output devices) often needs a variety of interactions and parameter adjustments for
carrying out a ”similar task”. A large amount of these adjustments is due to the special
characteristics of the data sets. Signal-to-noise ratio, frequency, the spatial distribution of
unreliable data which should be removed, the amount and characteristics of inhomogeneity,
and other imperfections of real-world measured data should be analyzed in order to ”suggest”
a meaningful sequence of visual reasoning steps.

The concept of exploiting the great potential of enhancing visual reasoning with adaptive
components, however, is not straightforward. Successful examples for user models with the
special requirements of visual reasoning in mind have not been developed yet. Existing
strategies for collecting, structuring and representing user data have to be refined and
evaluated. As a general issue of user modeling, privacy issues must be taken into account.
Efficient user modeling inevitably requires collecting and analyzing large amounts of data
of specific users. It must be ensured that this data is securely stored and that it cannot be
accessed by unauthorized persons.

The experience of many users with adaptive behavior in computing software is often
negative. In some cases, users could not predict the feedback of the system, resulting in
a feeling of losing control. Moreover, the suggested solutions of the software often do not
correspond with the choices that the user would make in a particular situation. Systems
tend to over-generalize user interactions from the past. All of these problems have to be
taken seriously.

Adaptivity has obvious limitations and therefore should be restricted to situations where
a strong effect is likely to occur. Raskin pointed out that users are only effective if they form
habits, if the system they use performs in a predictive way and if they are not overwhelmed
by necessary, but semantically less relevant decisions [38]. If a system continuously changes
its behavior — based on knowledge acquired by analyzing interaction patterns of the user —
forming a habit becomes difficult, because the learning process of the user interferes with the
adaptive system component [32]. Therefore, changes of the system’s behavior should not
occur frequently, they should be motivated and explained appropriately to the user, and they
only come into effect after the user accepts them.

As stated above, a visual reasoning environment, in particular a collaborative one will
potentially incorporate very different people with considerably different qualifications and
backgrounds. These parameters will determine the inherent complexity and style of the
visualizations used. A main obstacle in achieving true human-like artificial intelligence is the
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fact that human consciousness is highly dependent on personal semantic models, knowledge,
past experiences, skills, preferences, and the like, which are hard to capture and to encode in
machines. We face the same obstacles when attempting the encoding of data and information
into visual representations. These differences are expressed horizontally (same complexity,
but different representation) as well as vertically (reduction of complexity). While the
former is more a function of personal preferences, possibly motivated by professional or
community background, the latter is a function of educational background, classification of
the information visualized, and task-mandated (minimal) requirements. Thus, there will
not be a single one visual reasoning environment that fits all participants, yet it must allow
all participants to communicate with one another and with the computing engine as well.
The key here is to develop a parameterized model of users and tasks, methodologies to
acquire and test them, procedures to generate the user- and task-suitable visualizations,
and finally appropriate means to translate one representation into another (also known as
grounding [5][14]). For this, we need to capture personal preference vectors (in terms of
visualization paradigms) and correlate them with other user information, such as background,
education level, and others. These frameworks can then also be used to parameterize tasks
and knowledge. A rich suite of user studies is needed to provide these models, and market
research has developed statistical frameworks (such as conjoint analysis [19][26] to efficiently
acquire these, with a minimal set of users and user involvement. Such models will then yield
adaptive user interfaces that can eventually predict the best visual representations of the
information at hand. Finally, once such models are formulated, systems can automatically
coach analyst users in the development of strategies or plans of attack for conducting more
complex analyses. One will also be able to generate templates that cover the best-fitting
strategies for most efficient analysis. Schneider-Hufschmidt et al. [45] provide a good overview
on concepts of user modelling and using user models to enhance interaction, and most of the
concepts described in this article are still applicable more than a decade later.

3.3 Visual Perception
Research in cognitive science aims at explaining how the human visual system creates
perceptual experiences from visual stimuli. The results of this research have many implications
for the design of visualizations. For example, due to the different densities and kinds of
receptors in the human eye, color should be used for detail information in the user’s focus,
but not in the periphery (context), and motion can be used as a stimulus in the periphery.
Many interesting insights have been gained by looking at visual illusions. Recently, Changizi
et al. [12] proposed that many of these illusions are due to the predictive power of the human
visual system that tries to compensate for neural delay. It is an open question how we can
exploit this predictive power in the design of visualizations to convey information faster.

Another cognitive resource that current visualization techniques do not fully exploit is the
human visual memory [46][48] — our ability to store vast numbers of (sufficiently different)
pictures.

3.4 Visual Reasoning Tools
Visual reasoning tools are essential for a wide range of tasks. In supervisory control tasks,
often characterized by large displays, it is essential that abnormalities are presented (and
eventually aurally added) in an attention-grabbing manner. In exploratory tasks, a wide
flexibility is useful to enable browsing-like undirected exploration. Finally, many routine
tasks involve visual reasoning, not the least important are software assistants for medical
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diagnosis. For routine tasks, flexibility should be deliberately restricted or at least hidden
behind some ”Advance options...” sheet for expert users only. Not only reduced parameter
sets but also guided (wizard like) interaction to predefined steps are appropriate to enable
users to build habits. The incorporation of analytic capabilities is essential for these three
kinds of basic tasks. In exploratory tasks, often involving huge and multi-dimensional data,
analytic and aggregating capabilities are essential to cope with the large amounts of data
at all. In supervisory tasks, analytic functions may enable not only the localization of a
potential failure but also the classification of the problem, the analysis of its severity and
potential sources. Finally, in routine tasks, users may be directed to suspicious features. The
development of effective tools in any of these task categories requires a model of the task,
a model of the user groups as well as a model of visualization options including possible
combinations guided by knowledge on human perception.

4 Discussion

The state-of-the-art in visually enabled reasoning has evolved from baby steps (beginning of
visualization) to teen years (introduction of interactive visualization) to adulthood (maturing
of visualization and interaction research and device technology). We are now approaching
the senior years, and we are exploring new ways to use these established technologies for the
next evolutionary step, which is visually enabled reasoning.

This chapter discusses challenges and shortcomings of current systems, proposals for
improved interactive systems that take human cognition into account, and the potential need
for a new science of interaction with information.

4.1 Current Shortcomings in Interactive Visualization Systems
The word visualization refers to the process of creating a mental understanding and notion of
an object or phenomenon of which information is conveyed to the mind through our sensory
channels of perception. Sometimes this is simply referred to as insight. Vision is just one of
the sensory channels that can be used, but as it is in many aspects the dominating one it
has lent its name to the creation of the mental notion of perceived subjects. Visualization
is therefore in many cases facilitated by computer rendered images and relies on the power
of the human visual sense to analyze the content of images. It should be noted that the
mental process of visualization does not only rely on vision, but also makes use of our other
senses. The reason for the dominance of the visual channel is found in the high information
bandwidth that it creates to the human brain, as we are fundamentally visual beings. This
is also reflected in the semantic metaphors we use to describe understanding — ”I see”, ”To
Visualize” or indeed ”Insight”. The inclusion of other senses in the visualization process is
sometimes referred to as perceptualization, which emphasizes the collaboration of all human
senses. This is a somewhat confusing use of the word and could also be misleading as it
points more to the creation of the impression rather than the insight gained.

The apparent success of visualization based on the visual sense is only a part of the
reason why other senses have been less explored in visualization. It can be argued that in
comparison with vision other senses are more qualitative, less precise and harder to render
input for. Also the equipment is expensive and the bandwidth low compared to vision.
Despite this there have been many efforts to develop multi-sensory visualization. Most of
these efforts have, however, not delivered the added value needed to compensate for the effort
involved in generating the associated stimuli, and multi-sensory visualization has not been
given high priority in the visualization community. Furthermore, immature implementations
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and demonstrators have deterred many users from exploiting the potential of multi-sensory
visualization.

There is, however, renewed interest in multi-sensory visualization. Rendering is now
reaching a very high level of quality and to be able to bring visualization to the next level,
addressing larger and more complex data, more information channels need to be utilized.
It has also been shown to that, for instance, haptic interfaces can improve the process
of visualization and shorten time to insight. To fully explore the use of multi-sensory
visualization a rigorous understanding of what additional sensory channels can contribute,
which methods are really effective, and for which applications the additional information
channels can provide key information is needed. Used in an effective way it is deemed
probable that the multi-sensory visualization can improve the visualization process as much
or more than further improvement of rendering of images.

People tend to use both hands if they manipulate 3-D objects [25][40]. In medicine,
two-handed interaction has been successfully applied, e.g., to pre-operative planning in
neurosurgery. Hinckley et al. [27] argue that for the interaction tasks involved, e.g.,
exploration of a brain with free orientation of head and cutting plane, the most intuitive
handling can be achieved with two-handed 3-D interaction where the dominant hand does fine-
positioning relative to the non-dominant hand. In an empirical evaluation they demonstrated
that physicians use these interaction techniques efficiently after only a short learning period.

4.2 Improved System Designs
The new science of interaction enabling visual reasoning as experience within visual analytics
technologies and systems requires interfaces and interaction something specific of the data type
and sometimes specific to the application. For example IN-SPIRE is a suite of technologies
designed for unstructured text analytics [1]. The interlinking multiple visual representations,
lists, multiple query types, temporal, affect, and other visual representation were deigned to
effective text analytics. It applies to a wide range of applications from news, reports, blogs,
planning documents, science articles, and many more. Some of the foundational interactions
techniques are used with other data types but the implementations of the interactions are
quite different such as those for video analysis of news [18].

Some data types and applications will quire unique interactions to ease the cognitive
burden between the users, often non computer specialists, and their information. Such an
interface can be seen in recent financial analytics system built specifically for fraud detection
[10]. The many cyber applications based on billions of transactions are another call of
application specific interfaces. Our thinking for a new science of interaction with visual
analytics systems must include both the foundational interactions and some application and
data type specific applications.

4.3 Cognitive Aspects of Reasoning
Alan Newell posited ”bands” of mental activity ranging from biological-level neural firings
over 10 ms and below, cognitive operations that take place on the order of seconds, rational
activities that take place on the order of minutes and so on.

What Newell did not explicitly consider were that many temporal constraints on cognitive
processing are due to the cost of acquiring information from the environment through motor
activity. At lowest level eye and head movements strategically (albeit unconsciously) sample
the visual world so as to support processes of perceptual inference discussed above. Newer
cognitive science research suggests, the time required to execute an eye movement to acquire
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needed information constrains the speed of cognitive processing [2]. In reading, for example,
the processing time of a fixated word is slowed so as to enable the eye to have the time to
make a saccade to the next word in the sentence. Given the hard constraint of the time
required to make an eye movement, this ”just-in-time” cognitive processing reduces the load
on short-term memory in reading.

The correspondence of eye movement and processing times is characteristic of many
perceptuomotor ”interactive routines”. These routines comprise epistemic actions that reveal
information, externalizing actions that modify the perceptual world to reflect conceptual
understanding, and coordinating actions that bind concepts to content. In the case of expert
performers (e.g. skilled musicians or very experienced computer users) these interactive
routines are effectively ”complied”, taking place automatically under supervisory control of
conscious problem solving processes.

This line of investigation has significant implications for visualization applications that
support human reasoning. Wayne Gray’s ”soft constraints” cognitive cost accounting hypoth-
esis [21][55] posits that small changes in the time required for the user to acquire information
from a visual display can impact information comprehension and discourse and cause sig-
nificant shifts in task performance and strategy. Work by Po et al. [36] demonstrated that
presence of a cursor and delay in its response had profound impacts on users’ ability to target
display items via voice and pointing. The effects of these small changes in display response
was attributed a shift between dorsal and ventral visual pathways.

If these theories are correct, interactions of temporal patterns in human-information
dialog can interact with the intrinsic time course of cognitive processes to support or impede
cognitive processing. This suggests that temporal rhythms in solo and collaborative use
of technology can both detect and support ”flow” [15] of effective cognitive processing
and fluency of interaction. Addressing the sequential nature of human-information dialog
will require new empirical methods that integrate mathematical modeling of sequences of
interaction and human-mediated qualitative research methods.

Many of us are now working within research projects that involve user evaluations of
applications and visualization tools at different points throughout the development process.
Unfortunately we see a tendency in our community to rely almost exclusively on quantitative
methods of evaluation, often associated directly with theories of cognition and sometimes
taken without question or modification from the fields of HCI and cognitive science. While
these fields are naturally close to our work and collaborations with HCI and cognitive science
are and will continue to be very fruitful in our research and in evaluations, we would also like
to point out that there are other approaches to user evaluation that can shed light on elements
of visualization which will also be very useful for future work. Inspiration to this more varied
and qualitative research on usability draws its inspiration from the groundbreaking study of
human-machine interaction ‘Plans and Situated Action’ by Suchman [49][50]. Examples of
qualitative methods that we suggest could be useful additions to our projects include:

Interviews with users — both interviews which follow a preset interview guide and open
interviews (which allow the user to speak more freely about her/his experience of the tool)
can be helpful not only in analyzing how well the user has succeeded in interpreting the data
we are presenting, but also in discovering otherwise unknown issues with the tools. More
importantly, this method can sometimes uncover questions to and about the data that are
important to users but which were not specified in the research project’s original remit. Often
this is a result of the fact that ‘the user’ is generally a more heterogeneous category than
we imagine it to be. Interviews with several different users can show how this heterogeneity
impacts and is impacted by our visualization tools.
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Discourse analysis — by this we suggest that it is sometimes useful for us to analyze the
discourses which surround that data that we are attempting to visualize. Rather than relying
solely on official documentation to describe the data which is provided to or included in
our research projects, we suggest that analyzing more unofficial discourses (sourced through
searches of academic, trade and news reports, for example) that surround a data set can also
shed light both on alternative interpretations of the data and on other possible users, whose
needs and impressions should also be considered when we are constructing tools with which
to visualize data.

Observation of the tools in use — while this type of method can be used to make
quantitative analyses of a tool (by counting eye movements or timing task completion, for
example), we suggest that qualitative observations, based on the ethnographic methods like
those employed within the field of Science, Technology and Society could also lead us to
understand the way people actually use and, perhaps more importantly, ’misuse’ our tools,
forcing us to see our work in entirely different contexts. Much of this observation could and
should be done outside of the laboratory, in ‘real world’ settings, to give us a better feel for
how our research behaves and is experienced once it leaves our hands.

The emphasis on visual display and human visual processing in the literature reflects our
understanding that the visual modality is central to human experience and the most likely
candidate modality for effective technological enhancement of human reasoning. Behind
this assumption lies a concern that adding finely-textured information from other senses
— hearing and touch — will distract from the information better presented in the dominant
sensory domain. We find this assumption unwarranted. Cognitive neuroscientists have
long known that vision itself comprises multiple sensory channels with integration of those
channels occurring in higher visual areas that must draw from multiple neural maps of
smaller sensory channels such as color, shape, orientation, etc. Many of these areas also draw
from sensory channels from hearing and touch.

4.4 Do We Need a New Science of Human Interaction with
Information?

It is clear that the study of interaction must be significantly expanded and deepened from
what has been done so far. How interaction works with visual display really hasn’t been
studied in any depth. Yet, it is clear with the new highly interactive exploratory tools that
are now being developed that interaction is a very important part of the total system, even
if it is not well understood. It is with this and the needs for visually-enabled reasoning in
mind that the developers of the visual analytics research agenda called for a new ”science
of interaction” [51]. This call has been reiterated and progress so far on the science of
interaction detailed recently [35][39].

4.5 Unexpected Discovieries
In the discussion of visual reasoning tasks, three categories were defined: exploratory,
supervisory, and routine. Of these three, exploration is the most demanding in terms of
reasoning, because it involves a process where the investigator does not know what she is
looking for (at least not in detail). Hence, the process is one where discovery is emphasized.
Once the investigator makes a discovery, she must assess what it means and how it fits into
the context of what she already knows. Often a model or argument, which we call here
the hypothesis, must be formed that weaves together known facts, the newly discovered
evidence, the task at hand, and other relevant knowledge. The hypothesis has predictive
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capability and is testable; new evidence must be collected to validate it. There are often
multiple competing hypotheses, so one must gather further evidence that lends support to
one or the other. Finally, the hypotheses may need to be modified based on new evidence
collected or if there is a dynamic situation where circumstances change over time. All these
processes are reasoning processes and can be complex and iterative. If, further, one has both
complex reasoning and large scale, dynamic data with perhaps many related variables, then
this is a visual reasoning task requiring visual analyses.

In the visual reasoning process, interaction is key for two reasons. First, exploration
implies probing the data in overview, in relations within the data, and in detail. It is only by
doing this that discoveries can be made. Second, exploration and discovery must intimately
involve the investigator since only she can determine the context, meaning, and relations of
the discoveries made. In particular, there cannot be an automated analysis that will extract
meaning and relations because the nature of the discovery is not known beforehand and thus
cannot be planned for. Therefore, interaction is key, and it must furthermore be through a
visual interface.

We will give examples for the class of problems, involving both complex reasoning and
large scale data, for which visual reasoning through an interactive visual interface is required.
Certainly problems in bioinformatics are of this type. Researchers often have to compare
and contrast annotated genomic data for several species, which includes large amounts
of information such as relevant publications, various statistical analyses including of the
sequences themselves, microarray results, protein expression results, and other information.
Often a gene function can only be fully understood as part of a gene network, such as
regulatory networks that suppress or enhance functions associated with specific diseases.
These are complex reasoning processes involving exploratory analysis for which visualizations
are required.

Another example is integrated computer experiments involving weather and environ-
mental effects. Weather drives all these computer experiments (e.g., wind patterns, clouds,
rain patterns, etc.), and to get high resolution results, which are necessary for detailed
environmental impact studies, one must start with high resolution weather. The weather
inputs then drive high resolution air quality models with hundreds of time-dependent out-
put fields involving interacting chemical constituents and items such as various types of
particulates. The results are truly stupendous in size and enormously complex in their
relations and interactions. Two- and three-dimensional visualization techniques have been
used for some time, but to study and understand the interacting 4D fields in the context
of factors such as changing pollution sources, population and traffic patterns, and other
factors requires visually-enabled reasoning. Without visually-enabled reasoning, there is no
hope of understanding these complex processes. General, complex problems that have many
applications include exploratory analysis and understanding of large scale collections of text
or multimedia. Large text collections, of course, appear in many contexts from the above
bioinformatics problems to business intelligence and legal evidence-gathering for large scale
civil or criminal investigations. An example of the latter is the ENRON fraud investigation,
which involved the sifting of billions of documents of all types, from email exchanges to
internal memos and reports, by teams of lawyers. Visual analysis tools such as INSPIRE,
developed by PNNL, have proved quite successful for these types of analyses, which cannot
be done in such detail by any other method. In it latest versions, INSPIRE is also an example
of a tool that is being enhanced to more fully support visually-enabled reasoning. Large
scale multimedia collections (containing related images, text, video, closed captions, etc.)
are also notoriously difficult to analyze. Unannotated image collections, for example, must
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be sorted by hand, and even this categorization will not provide a view of all the relations
one might need for an exploratory analysis. Likewise, video collections must be watched,
even if annotated at some level, in order to understand, analyze in detail, and relate their
contents. For collections containing millions or billions of images (such as collections that
can be gleaned from the Web) or tens of thousands of hours of video (such as produced
by broadcast news in a period of days), the task is unmanageable. Now exploratory visual
analysis tools have been developed that effectively attack both these problems and point the
way towards full visually-enabled reasoning capabilities.

The development so far of these tools for exploration and discovery indicates that they
will also be quite useful and effective for more modes problems in both size and complexity.
It is our position that visually-enabled reasoning tools with high interactivity will be of great
use whenever one is faced with an open-ended problem involving the meaning of data or
information.

These issues of exploration, discovery, and the role of interaction are, of course, also
central issues in visual analytics, which is most succinctly described as ”the science of
analytical reasoning facilitated by interactive visual interfaces”. But whether one approaches
visually-enabled reasoning and the science of interaction from the viewpoint of visual analytics
or from another direction (e.g., scientific visualization and computational science), the basic
needs and the science that must result are the same.

5 Success Story

MSU ERC Space Shuttle Study — In 1990, the National Science Foundation established
an Engineering Research Center (ERC) for Computational Field Simulation at Mississippi
State University (MSU). The fulfillment of the center’s mission is illustrated by the John
Glenn space shuttle flight. The center has significantly contributed to the art and practice
of ”unstructured grid generation”, yielding high quality grids in significantly less time. The
center focused a team on coupling its structured grid CFD algorithm knowledge within a
portable, scalable computational architecture onto unstructured grid solver technology. This
required substantial research in both boundary layer gridding and solution algorithms. As it
turned out, the parallel solver (research) code had just been assembled for the first time when
the Space Shuttle mission STS-95 was launched. NASA Johnson Space Center called seeking
simulated analysis of the Space Shuttle Orbiter during the return flight after the Orbiter drag
chute door was lost during main engine startup. The NASA engineers wanted to know the
dynamic pressure in the region of the missing chute door in order to estimate the aerodynamic
loadings during reentry. The ERC group read a previously supplied Space Shuttle Orbiter
geometry into the ERC’s integrated simulation environment (SOLSTICE) and created the
grids within hours. Initial simulation results were computed on a high performance computer
within two days. The significance of this endeavor was not that NASA actually needed the
results for successful reentry, but rather that the ERC had been able to take a tough real
world problem and compute the solutions in two to three days after receiving the geometry
description. This demonstrated an achievement that was a direct result of the researchers’
ability to simulate very complex real world problems with complex geometries in relative
motion. These accomplishments have come from directed cross-disciplinary efforts involving
various technologies: grid generation, field solution algorithms, and scientific visualization,
coupling human reasoning with computer and computational engineering. The task could
not have been accomplished without combining all of the various talents and technologies.
(Source: NSF Engineering Research Center at Mississippi State University)
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Abstract
We have adopted a numerical method from computational fluid dynamics, the Lattice Boltzmann
Method (LBM), for real-time simulation and visualization of flow and amorphous phenomena,
such as clouds, smoke, fire, haze, dust, radioactive plumes, and air-borne biological or chemical
agents. Unlike other approaches, LBM discretizes the micro-physics of local interactions and can
handle very complex boundary conditions, such as deep urban canyons, curved walls, indoors,
and dynamic boundaries of moving objects. Due to its discrete nature, LBM lends itself to multi-
resolution approaches, and its computational pattern, which is similar to cellular automata, is
easily parallelizable. We have accelerated LBM on commodity graphics processing units (GPUs),
achieving real-time or even accelerated real-time on a single GPU or on a GPU cluster. We have
implemented a 3D urban navigation system and applied it in New York City with real-time live
sensor data. In addition to a pivotal application in simulation of airborne contaminants in urban
environments, this approach will enable the development of other superior prediction simulation
capabilities, computer graphics and games, and a novel technology for computational science and
engineering.
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Digital Object Identifier 10.4230/DFU.SciViz.2010.246

1 Introduction

Visually reproducing flow phenomena in all its richness and complexity has been an exciting
endeavor in computer graphics and visualization. The purpose can be categorized into
two main topics. One is to enrich the virtual environment with photorealistic images and
animations of natural scenery. We have seen astounding appearances in the movies and
games of streaming water, flaming fire, turbulent smoke, and so on. In these applications, the
requirement is to visually convince the observers that they have seen duplicated reality. The
other topic is the correct flow simulation, which demands the accuracy and precision besides
the visual authenticity. Such simulations have a broader scope of applications in scientific,
environmental and security areas with its reasonable behavior replication and believable
picture making.

We have now entered a new era in computer graphics with the advent of hardware
accelerated programmable rendering and shading. With the programmability of the graphics
processing unit (GPU), combined with the increased performance of CPUs, we can now start
to simulate flow phenomena at interactive rates. Direct computational fluid dynamics (CFD)
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solvers of the complex Navier-Stokes (NS) equations have been introduced to benefit the
graphics and visualization applications.

Procedure techniques have been applied for many years to model gaseous phenomena.
They [4, 3, 27, 29, 20, 13] use mathematical functions and algorithms to define the appearance
of the objects. Particle-based Methods [26, 23, 25, 19, 9, 28] have also been widely used in
amorphous phenomena modeling because they are computationally inexpensive, flexible to
control the behaviors and easy to fit into the user-interaction paradigm.

Over the past decades, the application of CFD methods for solving the NS equations has
led to significant advances in the modeling of fluid phenomena. Foster and Metaxas [10, 11]
developed physically-based methods for the realistic animation of fluids by solving the NS
equations. Based on a stable fluid solver [30], various realistically looking smoke [8], water
[5], flame [21], viscoelastic fluids [12] and flows on surfaces [31] were generated.

A promising and relatively new CFD method, Lattice Boltzmann Method (LBM), has
been introduced by our group to the graphics and visualization community in 2002 [33].
Extensive research has been conducted on using the LBM to model various flow phenomena
[34, 1, 7, 24, 35, 36, 40, 39]. The LBM solves the fluid dynamics within the framework of
statistical mechanics, where the microscopic physics of fluid particles are modelled and the
macroscopic averaged properties obey the desired NS equations. Its microscopic kinetic
equation provides many advantages, including easy implementation of boundary conditions
and fully parallel algorithms. The LBM can handle any arbitrarily-shaped inside objects
and even dynamic boundaries of moving objects. The computation of the LBM is inherently
local and explicitly parallel, which is easy to accelerate on the modern graphics processing
unit (GPU) to achieve great simulation performance. Meanwhile, multi-resolution LBM
approaches have been applied to optimize the use of computational resources for large-scale
simulations. The LBM has been successfully used in modeling various amorphous phenomena
and simulating contaminants dispersion in urban environments. It has the great potential to
benefit researchers and end-users in a variety of applications in education, entertainment
and scientific simulations.

2 Lattice Boltzmann Method

The LBM is a relatively new approach in CFD, inspired by cellular automata, that models
Boltzmann particle dynamics on a lattice. In the case of a fluid, for example, the Boltzmann
equation expresses how the average number of flow particles with a given velocity changes
between neighboring lattice sites due to inter-particle interactions and ballistic motion. In
the LBM, the variables associated with each lattice site are the particle velocity distributions
that represent the probability of the presence of a flow particle with a given velocity. The set
of velocities in the model is discrete, being defined by the number, orientation, and length
of lattice links. Particles stream between neighboring sites synchronously in discrete time
steps. Between streaming steps, they undergo collision. The Bhatnager, Gross, Krook (BGK)
model [32] is commonly employed to represent the collisions as a statistical redistribution of
momentum, which locally drives the system toward equilibrium. As in kinetic theory, the
collisions conserve mass and momentum.

The LBM simulation of 3D flow field is generally performed on a 3D lattice where each
lattice site has a number of links representing the velocity vectors (including the zero velocity)
to its neighbors. As illustrated in Figure 1, this lattice cell is part of a 3D lattice called
D3Q13, which includes the center site with zero velocity and the twelve minor-diagonal
neighbor links. Stored at each lattice site are 13 particle distributions associated with the
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Figure 1 The D3Q13 lattice geometry. The particle distribution fi is associated with the link
corresponding to the ei velocity vector.

13 velocity vectors. We denote these as fi where i identifies a particular velocity vector ei
among the 13. The macroscopic flow density, ρ, and the macroscopic flow velocity, u, are
computed from the particle distributions:

ρ(r, t) =
∑

i

fi(r, t) (1)

u(r, t) = 1
ρ(r, t)

∑
i

fi(r, t)ei (2)

Using the BGK model, the Boltzmann dynamics can be represented as a two-step process of
collision and ballistic streaming:

fi(r, t+) = fi(r, t)−
1
τ

(fi(r, t)− feq
i (r, t)) (3)

fi(r + ei, t+ 1) = fi(r, t+) (4)

Note that we use the notation t+ to denote the post-collision particle distribution. Also, feq
i

represents the local equilibrium particle distribution, which is given by

feq
i (ρ,u) = ρ(A+B(ei · u) + C(ei · u)2 +Du2). (5)

The constant τ represents the relaxation time scale that determines the viscosity of the
flow, while A through D are constant coefficients specific to the chosen lattice geometry.
The equilibrium particle distribution comes in as a consequence of the BGK collision model.
It is a local particle distribution whose value depends only on conserved quantities - the
macroscopic mass ρ and momentum ρu. Its form may be recognized as the Taylor expansion
of the 3D Maxwell velocity distribution to second order. Since the evaluation of Equations 1
through 5 requires only local particle distributions, their acceleration on graphics hardware
is efficient (see Section 3). Only one parameter, τ , is used to control the flow behavior in
collision (Equation 3). Therefore, this primary LBM is called the single-relaxation-time LBM
(SRTLBM). A Smagorinsky subgrid model [36] can be applied to achieve high Reynolds
numbers flows without incurring numerical instability, which only involves local particle
distribution values and retains the LBM parallelizability.
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2.1 Multiple-relaxation-time LBM
Even with the subgrid method, the SRTLBM is prone to unstable numerical computation
when used for low viscosity fluids (high turbulent fluids) or incorporated with temperatures
or body forces. Multiple-relaxation-time Lattice Boltzmann Model (MRTLBM) is a new
general version of LBM developed by d’Humiéres et al. [2]. This collision model abandons
SRTLBM to achieve better numerical stability and greater flexibility in selecting the transport
coefficients. The essential idea is to make a change of basis from phase space (i.e., the space
of the distributions fi) to the space of hydrodynamic moments (i.e., density, momentum,
energy, etc.) and to perform the collision step in the latter space. As in the BGK model,
collisions are implemented via a relaxation, but in the moment space each moment is allowed
to relax individually. Although the relaxation rates are not all independent, the additional
flexibility allows one to maneuver the model into regions of higher stability while decoupling
some of the transport coefficients. After relaxation, the inverse transformation is applied to
return to phase space where streaming, boundary update rules, and additional micro-physics
are implemented as before.

Mathematically, the change of basis from the space of distributions to the space of
moments is given by:

|m〉 = M |f〉, |f〉 = M−1|m〉 (6)
|f〉 = (f0, f1, . . . , f12)T , (7)

|m〉 = (m0,m1, . . . ,m12)T , (8)

where T denotes the transpose. Each of the 13 moments {mi|(i = 0, 1, . . . , 12)} has a physical
meaning. For example, m0 is the mass density ρ, m1,2,3 are the components of the momentum
vector j, m4 is the energy, and the other higher order moments are components of the stress
tensor and other high order tensors. The rows of the matrix M relate the distributions to
the moments. For example, since ρ =

∑
i fi, the first row of M consists of all ones. Although

the values of the distributions and the moments vary over the nodes of the lattice, the matrix
M is constant for a given lattice.

In MRTLBM, the two step process of collision and streaming becomes:

|f(r, t+)〉 = |f(r, t)〉 −M−1S[|m(r, t)〉 − |meq(r, t)〉] (9)
|f(r + ei, t+ 1)〉 = |f(r, t+)〉 (10)

The components of the vector |meq〉 are the local equilibrium values of the moments. Among
them, the mass density and the momentum (m0 to m4) are conserved. Expressions for the
nonconserved moments depend only on local values of the conserved moments [15]. The
matrix S in the collision equation is a diagonal matrix whose elements are the relaxation
rates, {si|(i = 0, 1, . . . , 12)}. Their values are directly related to the kinematic shear and
bulk viscosities, ν and ξ, respectively:

ν = 1
4( 1
s6
− 1

2), (11)

ξ = (2
3 − γc

2
s0)( 1

s5
− 1

2), (12)

where γ is the specific heat and cs0 is the isothermal speed of sound. The user has the
freedom to choose the flow parameters to define characteristics of the fluid being modeled.
This choice then determines the relaxation rates.

MRTLBM can also accommodate a body force due to gravity, sensor readings or some
other external field. This is implemented by adding the force F to the momentum, j′ = j+Fδt
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(typically, δt = 1). In practice, for stability, the force term is executed in two steps, one-half
before the relaxation step and one-half after.

To capture thermal effects, temperature is coupled to MRTLBM through the energy
moment that the model exposes. For the D3Q13 lattice, the energy equilibrium is modified
as follows:

(meq
4 )′ = meq

4 + cT, (13)

where the temperature T is coupled with a constant coefficient c. The heat transfer here is
modeled separately with a standard diffusion-advection equation, given rise to the LBM:

∂tT + u · ∇T = κ∆T, (14)

where κ is the thermal diffusivity of the fluid.
Note that SRTLBM can be seen as a special case of MRTLBM associated with a specific

choice of parameter values in the equilibria of the moments so that only one single relaxation
rate, 1/τ , remains free.

2.2 Boundary Conditions
Interactions between the LBM flow field and the interacting objects result from the exchange
of momentum at their shared boundaries. Generally, there exist two types of boundaries in
the LBM: (1) the surrounding walls of the LBM simulating space; (2) internal objects. The
treatment of boundary conditions of both the SRTLBM and MRTLBM are handled in the
discrete velocity space after a general streaming simulating step.

For the surrounding walls, the boundary conditions are usually treated as periodic, bounce
back (forward), or out flow boundaries [32]. For the inside objects, bounce-back rule can
be easily applied. For no-slip boundaries that can move, or involve complex geometries,
the bounce back rule has been substantially improved [35, 18] to accommodate curved and
moving boundaries.

2.3 Multi-resolution LBM
Physically-based flow modeling methods usually employ a uniform grid to discretize the
simulation domain, and then apply numerical computations to solve the NS equations. For
large-scale simulations, it is inefficient to maintain a uniform grid with high resolution
spanning the entire domain. To achieve interactive performance and to optimize the use of
resources, we have applied a multi-resolution LBM [38] that offers high resolution computation
around areas of interest (for example, near a solid body) and places low resolution grids on
other areas or faraway boundaries. Interfaces between the grids with different resolutions are
properly treated to satisfy the continuity of mass and momentum.

This level-of-detail scheme is implemented by a 3D block-based grid structure consisting
of a coarse grid and one or more fine grids. The global flow behavior in the whole simulation
space is roughly modeled by the LBM simulation on the coarse grid with relatively low
consumption of resources. For regions of interest, the LBM computation performs on the fine
grids superposed on the coarse one. These grids are implemented as separate blocks instead
of tree-style recursive structures. The global simulation on the coarse grid determines the
flow properties on interfaces and then defines boundary conditions of the fine grids at each
time step. Therefore, the simulation on the fine grids obeys the correct global flow behavior.
Meanwhile, it supplies rich visual details and accuracy in the regions of interest by utilizing
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A Stack of 2D Textures

+X Direction Volume +Y Direction Volume +XY Direction Volume -XY Direction Volume

D3Q13 LBM

Figure 2 Each set of particle distributions having the same velocity direction is grouped into a
volume and every four volumes are packed into one stack of 2D textures

small grid spacing, small time intervals, and introducing vorticity confinement. A fine grid is
easily initiated and terminated at any time while the global simulation is running. Moreover,
a fine grid is able to move along with a moving object, to model small-scale turbulence caused
by the object-fluid interactions.

3 GPU Acceleration

As a direct result of recent advances in modern GPU’s multiple-pipeline SIMD architecture,
stream processing model, and high memory bandwidth, the computational power of the GPU
has outpaced that of the CPU. This gap between their computational powers is foreseen to
widen, propelled by the booming game industry. As a result, using the GPUs for general-
purpose computation has become very attractive. We refer the reader to a further survey
on General Purpose computation on the GPU (GPGPU) [22]. However, note that not all
computations can take advantage of the GPU computation. Some requirements, such as
data parallelism and the locality in memory access, are essential. Therefore, the implicit
fluid solvers cannot be naturally plugged into the GPU due to its obligation to solve a linear
system from the Poisson equation of the pressure.

An attractive feature of the LBM is that the computation is inherently local and explicitly
parallel. This feature allows us to accelerate the LBM computations on the low-cost SIMD
processor of contemporary GPUs, and achieve great performance for the flow phenomena
simulation. We have accelerated the flow computation on a GPU [16, 17] with moving
boundaries, and extended it for large-scale simulations on a GPU cluster [6].

As shown in Figure 2, all the particle distributions fi associated with the same velocity
direction are grouped into a volume and every four volumes are packed into one stack of
textures, since a texel has four RGBA components. The equilibrium distributions feq

i are
stored in the same way. The macroscopic density ρ along with the three components of the
velocity u, are stored in one stack of textures similarly. Generally, the simulation of the flow
field on the GPU is implemented in several steps: (1) Compute the equilibrium distribution
values; (2) Compute collision; (3) Apply the boundary conditions at the boundary links;
(4) Stream the particle distributions; (5) Compute the macroscopic density and velocity.
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(a) (b) (c)

Figure 3 (a) Smoke coming out of a chimney; (b) Smoke interacting with a green moving obstacle.
(c) Fire spreading on a table.

Involving only local operations, each step is implemented as a fragment program that
calculates the corresponding equation. The fragment programs fetch the input variables
from the textures, execute the computation, and render the output results. Comparing
the SRTLBM and the MRTLBM, the hardware acceleration is similar, except that for the
MRTLBM, extra matrix multiplications are executed. The matrices used are constant and
no inversion is required, and therefore, the computation fits well on the GPU. The speedup
factor of the GPU acceleration compared with the CPU version depends on the type of the
GPU, the optimization of the code, and the resolution of the simulation lattice.

4 Amorphous Phenomena

Natural amorphous phenomena play an important role in graphics and visualization sim-
ulations. A good flow model for these phenomena should not only describe the flow, but
also model the interaction between the flow and the surrounding environment in a physically
correct manner. We have applied the LBM to simulate various flow phenomena, including
smoke [36], fire [33, 40], light objects floating in the air [34, 35], solid melting [39], and
thermal flow phenomena [37], such as heat shimmering and mirage.

4.1 Smoke and Fire

The movements of smoke and fire are highly complex and have many rotational and turbulent
details at various levels. While the LBM simulation models the flow field and takes care of
the large-scale interactions of the flow with the scene, our rendering approach can add the
small-scale interactions and visual details on-the-fly during the interactive viewing process.
A key component of our approach are textured splats [33], which can be efficiently rendered
on any commodity hardware board. Textured splats allow us to model both the visual detail
of the natural phenomena itself as well as the volumetric shadows cast onto objects in the
scene.

Besides the texture splatting method, we have also implemented the volume rendering
on the GPU for flow visualization. When a fluid source (for example, a smoke inlet) is
positioned and begins to release smoke, the smoke density constructs a scalar volumetric
dataset. The evolution of this density volume is modeled by an advection-diffusion equation
and computed by a back-tracing algorithm based on the method of characteristics [30]. We
use the monotonic cubic interpolation [8] for computing the back-tracing density values at
positions not on the regular grid sites. Figure 3 shows the rendering results of fire and smoke.
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(a) (b) (c)

Figure 4 (a) Soap bubble deformation and dynamics in response to the spray from the spray
can; (b) Multiple bubble blown by a flow; (c) Streamlines show the flow pattern originating from a
plane cutting through the most active flow region.

4.2 Floating Objects
Using the LBM with boundary conditions appropriate for moving objects, we have simulated
the natural dynamics that emerge from the interaction between a flow field and immersed
floating objects [34, 35]. If the boundary is fixed in space and located between two neighboring
lattice sites, the no-slip condition is implemented with the bounce-back rule of Section 2.2.
To match the velocity at the boundary, in the case of a moving object, the bounced-back
particle distribution must also be adjusted to account for the momentum imparted by the
boundary. Following the approach of Ladd [14], the essential idea is to enforce the no-slip
boundary condition at a moving boundary, while maintaining the conservation of mass and
momentum. Based on an SRTLBM simulation, the effect of the boundary velocity is to
transfer some momentum across the boundary so that the streamed distribution is:

fi
′(r, t+ 1) = fi(r, t+)− 2W 3

c2 ρ(ei · ub) (15)

where the prime indicates the velocity distribution associated with −ei, ub is the object
velocity, and W is a constant associated with the lattice velocity.

We demonstrate our approach using soap bubbles. The soap bubbles in Figure 4 illustrate
Fresnel reflection, reveal the dynamics of the unseen flow field in which they travel, and
display spherical harmonics in their undulations. Our bubble simulation allows the user to
directly interact with the flow field to influence the dynamics in real time.

4.3 Thermal Flow
Various realistic phenomena involve hot objects, dynamic flows and heat transfers, such
as melting, dissolving, shimmering and mirage, which are of great interest to computer
graphicists and visualization experts. For simulating these phenomena, it is imperative to
provide a correct and efficient modeling of the heat transfer as well as the interaction between
the objects and the flow. Based on the LBM, we developed a physically-based method that
provides a basic framework for modeling these thermal flow phenomena [39, 37].

Our method includes conduction, convection and radiation, which are the three basic
types of heat transfer in the real world. Heat sources are defined as any arbitrarily shaped
objects interacting with the surrounding air. The temperature distribution on the objects
can be calculated from radiators (e.g., the sun), or defined by the user with other physical
or nonphysical methods. Such temperature distribution is applied to the surface geometry
by a novel mechanism, a temperature texture. Therefore, we model the heat transfer from
the heat sources to the ambient flow. The different heat exchange behaviors are determined
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(a) (b) (c)

Figure 5 (a) Heat shimmering from a hot bagel; (b) Mirage in a desert; (c) Melting of a volumetric
wax foot.

Figure 6 Contaminant propagation in the West Village of New York City.

by material and flow properties that are controlled by physically meaningful parameters,
such as thermal conductivity, Prandtl number, and flow velocity. In the flow region, a
hybrid thermal LBM, which couples the MRTLBM with a finite difference discretization of a
diffusion-advection equation for temperature, is used for modeling the thermal flow dynamics.

Heat shimmering and mirage appear when the heated air has a different refractive index
from that of the cooler surrounding air, resulting in an altered light direction through the
hot air compared to that of the cooler air. That is, the changes in the index of refraction are
attributed to temperature variation. Once the dynamic temperature distribution is computed
by our physically-based modeling framework, we apply a nonlinear ray tracing method to
render the resulting visual effects [37]. Figure 5a illustrates the shimmering effects from a
hot bagel with a distorted background. In Figure 5b, a phantom body of water appears in
the desert due to total reflection. We have also presented a method to simulate the melting
and flowing phenomena with different materials in multiple phases [39]. In such a multiphase
environment, solid objects are melted because of heating and the melted liquid flows while
interacting with the ambient air flow. Figure 5c shows the melting effects of a volumetric
foot. When the skin and other soft parts are melted as wax and begin to flow downwards,
the bones are revealed.
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Figure 7 A closeup view of buildings and smoke.

5 Urban Security

The LBM can accurately model air flow and contaminant transport and mixing in geometri-
cally complex environments, such as urban canyons, with the inclusion of thermal effects due
to surface heating. Our simulation work [24] is directly relevant to: (1) dispersion models
that predict the path and spread of the hazardous agent; (2) interaction with emergency
responders who use the information provided by the models. By exploiting the inherent
parallelizability of the LBM and implementing the computation on the GPU or a GPU
cluster, it is possible to build large scale simulations that span a whole city.

Traditionally, the airborne dispersion of toxic contaminants in open environments is
modeled via mesoscale Gaussian plume models which completely disregard the small-scale
complex flow dynamics around buildings defining the intricate boundary conditions in
deep urban canyons. This may cause the local contamination to be vastly misjudged with
devastating consequences for evacuation and mediation efforts. In contrast, our approach
uses the MRTLBM to accurately model air flow, contaminant transport and temperature
fields within a complex GIS city geometry with a resolution sufficient to accurately simulate
its dispersion along the canyons.

To provide an efficient visual interface of the simulation, we first render building facades
with textures acquired from real photographs. Because the simulation is executed on the
GPU and most of the texture memory is used to store simulation data, there is little space
to store textures for buildings. We use noise textures and a smart shader to help texturing
the buildings [24]. Then, we render contaminant smoke with self-shadows in real-time with
textured splatting method.

To study the behavior of smoke particles, gases, aerosols, and other plumes in a per-
vasive urban environment, we initially used a 3× 3 block area around the Environmental
Measurements Laboratory (EML) building in the West Village of New York City. Those
sensors record meteorological data (e.g., the wind velocity, temperature, etc.) at a real-time
speed. Currently, there are 3 sensors installed in this exercise. Once the live-sensor input is
communicated over network links, we adapt the simulation numerical models to accommodate
it. The effect of the sensor data is incorporated as a body force [24]. Figure 6 shows the
simulation result of a 10-block area rendered by our visualization system. Figure 7 shows the
closeup views of the buildings and smoke during the simulation. The LBM model consists
of 90 × 30 × 60 lattice sites with the spacing between two neighboring sites less than 5
meters. The building GIS models are at 1 meter resolution. Measured on a computer with a
2.53 GHz Intel Pentium 4 CPU and an NVIDIA GeForce FX 5950 Ultra GPU, our GPU
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(a) (b)

Figure 8 Airborne dispersion in the Time Square area. (a) Wind field streamlines; (b) Contami-
nant density rendered with colors.

implementation has achieved speedup factor of 8 over a CPU imiplementation and can be
run at over 12 steps per second.

For large-scale simulations, we have developed a parallel LBM flow simulation on a GPU
cluster and simulated the dispersion of airborne contaminants in the Times Square area of
New York City [6]. Using 30 GPU nodes, our simulation can compute a 480× 400× 80 LBM
(the spacing between two lattice sites is 3.8 meters) in 0.31 second/step, a speed which is
4.6 times faster than that of our CPU cluster implementation on 30 CPU nodes. Figure 8
shows the contaminant dispersion in the Time Square area with wind field streamlines and
airborne dispersion distribution.

6 Conclusions

We have proposed a solution for the visual simulation of flow phenomena based on a promising
microscopic fluid solver, the Lattice Boltzmann Method. The LBM is powerful and flexible
due to its great ability for handling complex geometries and accelerating the computation on
parallel machines. Our visual simulation system has great benefits in modeling the complex
and non-linear flow behaviors with its convincing visual results and accurate prediction
simulation. This approach will enable the development of other superior prediction simulation
in computer graphics and games, as well as in computational science and engineering.
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Abstract
This article is intended as an update of the major survey by Max [40] on optical models for direct volume
rendering. It provides a brief overview of the subject scope covered by [40], and brings recent develop-
ments, such as new shadow algorithms and refraction rendering, into the perspective. In particular, we
examine three fundamentals aspects of direct volume rendering, namely the volume rendering integral,
local illumination models and global illumination models, in a wavelength-independent manner. We re-
view the developments on spectral volume rendering, in which visible light are considered as a form of
electromagnetic radiation, optical models are implemented in conjunction with representations of spectral
power distribution. This survey can provide a basis for, and encourage, new efforts for developing and
using complex illumination models to achieve better realism and perception through optical correctness.
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1 Introduction

The process of volume rendering maps a 3D scalar field into a 3D field of optical properties, usually
color c and extinction coefficient τ , via so-called transfer functions, and then approximates its visual
appearance by integrating along viewing rays.

Max provided a comprehensive survey of optical models for direct volume rendering in 1995
[40], and the survey has been extensively referenced in the volume rendering literature. Since then,
there have been some new developments in the context of optical and illumination models for volume
rendering, such as spectral volume rendering, shadow algorithms and refraction rendering. The
authors believe that it is beneficial to re-visit this topic and bring these new developments into the
perspective. On one hand, this survey is written as an update of [40], so it does not repeat the details
of many technical aspects that were presented in [40]. On the other hand, it is also intended to be a
self-contained work, so some fundamentals have been included.

In Sections 2, 3 and 4, we will examine the volume rendering integral, and local and global
illumination models used in volume rendering, respectively. In these sections, the discussions on
lights and colors are wavelength-independent, and the optical models presented were often applied
directly to RGB-based implementations in practice. In Section 5, we review the developments on
spectral volume rendering, in which optical models were implemented in a wavelength-dependent
manner.
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2 The Volume Rendering Integral

2.1 Basic Optical Model
The simplest physical model is that of a collection of small non-reflecting opaque particles, glowing
with color c, which are the only light sources in the scene. The extinction coefficient τ represents the
differential probability of a viewing ray hitting a particle, so that the probability of the ray hitting a
particle along an infinitesimal length ds is τ ds. Max [40] gives a derivation of τ = πr2 N in terms of
the radius r and number density N of the particles. In particular, τ is proportional to N. For particles
of constant radius and material, τ is then also proportional to the mass density ρ of the particles, so
that τ = ρκ , where κ depends on the material.

The transparency T (s) represents the probability that the viewing ray travels a distance s away
from the viewpoint without hitting any particles. Since the events “not hitting between distances 0
and s” and “not hitting between distances s and s + ds” are independent, their probabilities multiply,
so

T (s+ds) = T (s)
(
1− τ(s)ds

)
.

Thus

dT = T (s+ds)−T (s) =−T (s)τ(s)ds,

so

dT/T =−τ(s)ds.

Using the initial condition T (0) = 1,

ln(T (s)) =−
∫ s

0
τ(u)du,

and

T (s) = exp
(
−
∫ s

0
τ(u)du

)
. (1)

By the same independent event argument, the probability of not hitting a particle between distances
0 and s, and then hitting one between distances s and s+ds, is T (s)τ(s)ds. In this case, the color will
be c(s), the color of the particles at position s. The values of τ and c at a given 3D position are usually
specified by transfer functions of the scalar variable being visualized. The ray may pass through the
complete volume, and hit an opaque background at distance D with probability T (D), in which case
it will have the background color B (which may depend on the point hit). The expected color E for
the ray is gotten by averaging the colors for all these hitting events, weighted by their probabilities:

E =
∫ D

0
T (s)τ(s)c(s)ds+T (D)B. (2)

(For another derivation of this, see [40].) The product τ(s)c(s) can be thought of as a spatially
varying color C(s) which already has the effects of the particle density factored in. In the compositing
literature, C is called a “premultiplied” color, and c is called a “non-premultiplied” color. In volume
rendering it is also common for the transfer function to specify a premultiplied color, in which case

E =
∫ D

0
T (s)C(s)ds+T (D)B. (3)
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2.2 Integration by Discrete Sampling
The simplest way of estimating the integral in Equation (2) is to subdivide the interval from 0 to D
into n segments of equal length ∆s = D/n and approximate the integral as a Riemann sum:

∫ D

0
T (s)τ(s)c(s)ds∼=

n−1

∑
i=0

T (si)τ(si)c(si)∆s,

where si is a sample in the ith segment. If si = i∆s is at the left hand end of the ith segment,

T (si) = exp
(
−
∫ si

0
τ(u)du

)
=

i

∏
j=1

exp
(
−
∫ s j

s j−1

τ(u)du
)
.

If we assume τ(s) is constant on each segment (a further approximation),

T (si)∼=
i

∏
j=1

exp
(
−τ(s j)∆s

)
.

Thus we can compute E by the following Iteration A:

E = 0.
T = 1.
for i = 0 to n-1 do

E = E + T*tau[i]c[i]
T = T*exp(-tau[i]*DeltaS)

E = E + T*B

Early ray termination stops this computation when T becomes zero, or small enough so that further
terms have negligible effect. A similar iteration can be written for back to front accumulation of the
contributions, which does not need the temporary variable T , but cannot do early ray termination.

A further approximation is to estimate exp(x) by the first two terms in its Taylor series:

exp(x) = 1+ x+ x2/2+ · · ·

so that

exp(−τ(s)∆s)∼= 1− τ(s)∆s. (4)

This approximation is only good when the product τ(s)∆s is small; otherwise it may cause visible
artifacts. If it is made, the steps in the above iteration can be achieved in simple compositing hardware.
The data volume is sliced by a series of equally-spaced planes into textured polygons that can be scan
converted and composited in hardware.

On a regular cubic or rectilinear grid, the data at si can be interpolated from the eight surrounding
grid values using 3D texture mapping hardware. If only 2D texture mapping is available, the slices
can be taken along a set of parallel coordinate planes in the grid, passing through the aligned data
samples. It is more accurate to interpolate the scalar data and then apply the transfer functions for
color and opacity, rather than sample the color and opacity at the grid and then interpolate them. This
is easily done in hardware using dependent textures.
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2.3 Integration along Ray Segments
Garrity [15] showed how to trace a ray through a tetrahedral grid, by determining through which face
it exits a tetrahedron, and following a neighbor pointer to the next adjacent tetrahedron. Weiler et al.
[56] have implemented this on a GPU.

Assume that the ith segment is bounded by ray distances si and si+1 and thus has length ∆si =

si+1−si, and that within its tetrahedron, the optical properties ci and τi are constant. Then substituting
Equation (1) into Equation (2), separating out the transparency up to si, and then integrating, the
contribution Ei of the ith segment to E is

Ei =
∫ si+1

si

τiciT (s)ds

=
∫ si+1

si

τiciexp
(
−
∫ s

0
τ(u)du

)
ds

= τici

∫ si+1

si

exp
(
−
∫ si

0
τ(u)du

)
· exp

(
−
∫ s

si

τi du
)

ds

= T (si)τici

∫ si+1

si

exp(−τi(s− si)ds

= T (si)τici
exp(−τi(s− si))

−τi

∣∣∣∣si+1

si

= T (si)ci
(
1− exp(−τi∆si)

)
.

The following Iteration B can then compute the radiance along the ray with floating point accuracy:

E = 0.
T = 1.
for i = 0 to n-1 do

F = exp(-tau[i]*DeltaS[i])
E = E + T*c[i]*(1. - F)
T = T*F

E = E + T*B

Even for the discrete sampling in the previous section, Iteration B will be more accurate than the
Iteration A derived from the Riemann sum, if τ ∆s is large, so that T varies significantly between
samples.

Shirley and Tuchman [52] divided the projection of a tetrahedron by its projected edges into
triangles in software, and used polygon rendering and compositing to render them in hardware. Wylie
et al. [60] have now done all steps in hardware, except the global visibility sorting required to
determine the compositing order. The same principles apply to a mesh of arbitrary convex polyhedral
cells, as shown by Williams et al. [59], which also presents a visibility sort based on a method
proposed by Martin Newell.

This visibility sorting remains a bottleneck, and in fact is not always possible, because there may
be a cycle of tetrahedra, each overlapping the next. Visibility sorting has its own extensive literature,
which is beyond the scope of this survey.

2.4 Analytic Integration
So far we have assumed that the optical properties are constant within each cell. Another case which
can be handled analytically is when they vary linearly along each ray. For example, this is the case if
the scalar function is linearly interpolated from its values at the four vertices of a tetrahedron, and
the transfer functions mapping it to τ and c or C are also linear. In such cases, applying a symbolic
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integration package to the integral in Equation (2) produces a rather complicated analytic expression,
first presented by Williams and Max [58]. As shown in [59], this method also applies to piecewise
linear transfer functions, by dividing the tetrahedra into sub-polyhedra in which the transfer function
is linear. That paper also improves the numerical stability of the software evaluation. Moreland and
Angel [43] have used a GPU to evaluate this analytic expression in hardware, by precomputing part
of it into texture tables.

2.5 Other Integration Methods
If the volume data is determined at grid points, the discrete sampling methods in Section 2.2 are
appropriate, but if the data comes from a finite element grid, integration along the ray segments in
each grid cell may be more accurate and efficient. However, only the constant case in Section 2.3
and the linear case in Section 2.4 admit analytic solutions. The transfer function may not be linear or
even piecewise linear. Also, the interpolated scalar value along a ray may not be linear. For example,
for trilinear interpolation on hexahedral elements, the scalar function is a cubic polynomial along
general rays. In addition, higher order finite elements may be used in the physical simulation for
better convergence.

A further problem with finite elements is that they may be deformed, that is, the mapping from
a standard element shape like a cube or regular tetrahedron into the physical simulation space may
be non-linear. Often, the same higher order polynomials used to define the scalar function on the
standard element are also used to map the standard element into physical space. Thus, an inverse map
is needed before the scalar function can even be evaluated at a point on the ray. In fact, a ray can
intersect a deformed element in more than one segment. Wiley et al. [57] show how to determine
these segments for the case of deformed quadratic tetrahedra, and approximate the inverse mapping
along them by polynomial splines.

Once the ray segments are known, there are several ways that the integral can be approximated. In
[57], the equally spaced sampling method of Section 2.2 was used. But for smoothly varying transfer
functions, Gaussian integration [48] can give greater accuracy for the same number of sample points,
by approximating the integral as an unequally weighted sum of the integrand at n unequally spaced
sample points. The sample locations and sample weights are chosen to give the exact integral for
polynomials of the maximum degree, 2n−1, allowed by the 2n degrees of freedom in these positions
and weights. So if the integrand is well approximated by such polynomials, Gaussian integration
will give a good approximation. But this is not always the case, especially for non-smooth transfer
functions that are selected to emphasize certain contour surfaces of the scalar function. For this
application, discussed in more detail in the next section, it may be more appropriate to find the exact
intersection of the ray with any contour surface within the volume element. Williams et al. [59]
used the quadratic formula to intersect rays with contour surfaces within undeformed tetrahedra with
quadratically varying scalar functions. Kirby and Nelson [28] estimate the scaler function along the
inverse-mapped ray within a higher order deformed element by a high degree polynomial, and then
use a general root finding procedure to find its first root along the ray.

Another possibility is to precompute and store the integrals. For a linear variation of the scalar
function along a ray segment and arbitrary transfer functions, the integral along the segment depends
only on the segment length, and the scalar values at its two endpoints. Röttger et al. [50] propose
storing the integrals in a 3D texture, indexed by these three variables. Weiler et al. [56] used this in
their hardware ray tracing, and proposed an efficient incremental method of doing the precomputation.
For the hardware implementation by plane slicing given at the end of Section 2.2, the ray segment
length is constant in an orthogonal view, and approximately constant in a perspective view, so only a
2D texture is required for the precomputed integrals. A good reference on hardware implementation
of the methods in this and the next two sections is [13].
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3 Local Illumination

The volume rendering integrals given in Equations (2) and (3) represent a typical optical model which
is referred to as the absorption plus emission model [40] and is perhaps the most widely-used optical
model in volume visualization. The non-premultiplied color c(s) can simply be a function of emission
property at a sample point s by considering the volume as a light-emitting medium. Another approach
is to involve one or more light sources in the computation of c(s). In both cases, the illumination
at s depends not only the optical properties sampled at s and the intensity of each light source, but
also indirect light reflected towards s from other part of the medium (i.e., scattering) as well as the
absorptivity of the medium that determines how much light can eventually arrived at s (i.e., shadows).
Such an illumination model is referred to as global illumination, which will be discussed in detail in
Section 4.

To avoid costly computation with a global illumination model, it is common to adopt a local
illumination model where c(s) is estimated based only on the optical properties sampled at s and the
intensity of each light source. This allows us to rewrite Equation (2) as:

E =
∫ D

0
T (s)τ(s)

(
cg(s)+

k

∑
i=1

cr(s,Li)

)
ds+T (D)B,

where cg(s) is the sampled intensity of self-glowing at s, and cr(s,Li) defines the light reflected due
to light source Li (i = 1, . . . ,k). In many applications, a local illumination model is normally adequate
for rendering a single isosurface within a volume. When handling multiple isosurfaces, or amorphous
regions, one needs to aware the limitation of such a model and the potential perceptual discrepancy
due to the omission of shadows and indirect lighting.

3.1 Classic Illumination Models
Given a light source L, one can estimate cr at s locally by using one of the empirical or physically-
based illumination models designed for surface geometry, such as the Phong, Phong-Blinn, and
Cook-Torrance models [14]. When such a model is used in volume rendering, it is assumed that
each sampling position, s, is associated with a surface or microfacet. This assumption allows us to
compute the surface normal at s, which is required by almost all surface-based illumination models.

In volume models, surface geometry is normally not explicitly defined, and in many situations,
models do not even assume the existence of a surface. Hence, the computation of surface normals is
usually substituted by that of gradient vectors. While for some parametric or procedurally-defined
volume models, it is possible to derive gradient vectors analytically, in most applications, especially
where discrete volumetric models are used, gradient vectors are estimated, for example, using the
finite differences method for rectangular grids [41], and 4D linear regression for both regular and
irregular grids [44]. The commonly used central differences method is a reduced form of finite
differences based on the first two terms of the Taylor series. There are many other gradient estimation
methods, including schemes that involve more or fewer neighboring samples (e.g., [47, 63]), and
schemes where the discrete volume models are first convolved using a high-order interpolation
function, and gradients are computed as the first derivative of the interpolation function (e.g., [6, 45]).
Möller et al. compared a few normal estimation schemes in the context of volume visualization [42].

Usually the local illumination models are only applied at or near a presumed surface within
the volume, so a surface presence indicator is used to weight (i.e. multiply) the computed local
illumination. Levoy [36] describes two methods of computing this surface weight, using formulas
involving the scalar value and its gradient magnitude, and Kindleman and Durkin [27] give a method
which uses a 2D texture table indexed by these two quantities. Kraus [32] points out that if the task
is to determine only if a contour surfaces is intersected by a ray segment, this can be indicated by a



N. Max and M. Chen 265

2D texture table indexed by the two scalar values at the endpoints of the segment. Alternatively, ray
tracing can be used to locate points exactly on an isosurface, as described in Section 2.5, and the local
illumination can be applied only at these points.

3.2 Measured and Precomputed BRDFs
The light reflected from a point on a surface can be described by a bi-directional reflection distribution
function (BRDF). Hence, it is feasible to obtain a BRDF in sampled form by either measurement or
computer simulation [16]. The measurements of a BRDF are usually made using a goniophotometer
in a large number of directions, in terms of polar and azimuth angles, uniformly distributed on a
hemisphere about a source [20]. In computer graphics, it is also common to precompute discrete
samples of a BRDF on a hemisphere surrounding a surface element (e.g., [25, 4]).

Given n sampling points on a hemisphere, and n possible incident directions of light, a BRDF can
be represented by an n×n matrix. Given an arbitrary incident light vector, and an arbitrary viewing
vector, one can determine the local illuminance along the viewing vector by performing two look-up
operations and interpolating up to 16 samples.

One major advantage of using measured or pre-computed BRDFs is that the computation of
c(s) in Equation (2) or C(s) in Equation (3) no longer needs to rely on an illumination model that
can easily be defined and computed. One can use measured data to compensate for the lack of an
appropriate model that accounts for a range of physical attributes, or use precomputed data for a
complicated and computationally intensive model (e.g., an anisotropic model as in [25]).

Similar to a BRDF, the light transmitted at a point on a surface can be described by a bi-directional
transmittance distribution function (BTDF). Hanrahan and Krueger [17] considered both BRDF and
BTDF in a multi-layered surface model, which can be viewed as a simplified volume model. Baranoski
and Rokne [3] applied this approach to the modeling of foliar scattering. Wang et al. [55] obtained
their BRDFs and BTDFs by fitting parametric models to measured reflectance and transmittance data.

3.3 Phase Functions
A phase function, r(ω,ω ′), defines a probability distribution of scattering in direction ω with respect
to the direction of the incident light, ω ′ [10]. More precisely, r(ω,ω ′)dω represents the probability
that light flowing in direction ω ′ that scatters from a particle scatters into the solid angle dω about
the direction ω . Blinn [10] gives the phase function for a spherical diffusely reflecting particle. The
Henyey-Greenstein phase function [19] is also popular in computer graphics. A discussion of the
phase function in the context of multiple scattering will be given in Section 4.1. Here we briefly
describe its use as a local illumination model.

The fundamental difference between such an illumination model and those in 3.1 and 3.2 is that it
is entirely volumetric and does not assume the existence of a surface or microfacet at every visible
point in space. While phase functions are largely used in the context of global illumination, they can
be used as for local illumination in a perhaps rather simplified manner. Despite the omission of the
multiple scattering feature in the context of local illumination, phase functions allow a volumetric
point to be lit by light from any direction. On the contrary, classic illumination models and BRDFs
consider only light in front of the assumed surface or microfacet defined at the point concerned.

3.4 Other Related Developments
Many local illumination methods developed for surface rendering have been, or can be, used in
conjunction with the volume rendering integral. These include Blinn and Newell’s environment map
[9], Arvo’s illumination map [2], Heckbert’s radiosity texture [18]. However, the application of these
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methods in volume rendering has so far been largely limited to the rendering of a single iso-surface
[31].

The discrete sampling process described in Section 2.2 facilitates a scattering event at each sample.
In such a process, refraction can be realized as a local illumination feature by altering the ray path.
Rodgman and Chen examined several sampling methods for rendering refraction in conjunction with
the volume rendering integral [49], and employed nonlinear diffusion filters to improve the quality of
refraction rendering. Li and Mueller studied the use of different interpolation filters in a surface-based
approach to rendering refraction [38, 37].

In many visualization applications, it is appropriate, and often desirable, to use non-photorealistic
lighting to enhance the perception of synthesized visualizations. Recently, Stewart employed local
occuluders and uniform diffuse illumination to render pseudo-shadows in depressions and crevices
[54]. Lee et al. used globally inconsistent lighting to enhance perception of shapes [35]. Lum et al.
applied transfer functions to incoming light to provide better perception of material thickness and
boundaries [39].

4 Global Illumination

4.1 The Basic Equation for Multiple Scattering
If the particles in the optical model scatter as well as emit light, the mathematical situation is more
complicated than in section 2. For a complete solution, we must determine I(x,ω), the radiance (light
intensity) flowing through every 3D point x in the volume, in every direction ω on the unit sphere,
taking into account the effects of multiple scattering.

The probability that light hitting a particle scatters instead of being absorbed is called the albedo
a. The scattering depends on the direction of the incoming and scattering rays according to the phase
function r(ω,ω ′).

Let the source function g(x,ω) represent the light emitted or inscattered into direction ω by a
particle at position x. Integrating the scattered incoming light over all incoming directions ω ′ in the
unit sphere Ω, taking into account the effects of the albedo and the phase function, and finally adding
on the glow cg(x), we get

g(x,ω) =
∫

Ω

a(x)r(ω,ω ′)I(x,ω ′)dω
′+ cg(x). (5)

In practice, a usually does not depend on x, and the phase function r(ω,ω ′) depends only on the
scattering angle between the unit direction vectors ω and ω ′.

In order to write the multiple scattering version of Equation (2), giving an expression for I(x,ω),
we substitute g(x,ω) for c(s). We evaluate the optical properties at points x(s) = x−ωs, since the
integral in (2) is along a “viewing ray” in the direction opposite to the light flow. Thus we have

I(x,ω) =
∫ D

0
T (s)τ(x(s))g(x(s),ω)ds+T (D)B. (6)

This equation is difficult to solve, since g(x(s),ω) depends via Equation (5) on I(x,ω ′) at all the
points x(s) on the viewing ray and in all directions ω ′ in the unit sphere, so that all the I(x,ω) must
be solved for simultaneously. Surveys of techniques for the solution are given in Pérez et al. [46] and
Max [40].

4.2 Single Scattering Approximation
One simplifying assumption is that the albedo and/or density is low, so that the probability of light
scattering more than once is small, and only single scattering need be considered. For further
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simplicity here, we will also assume that there is no glow cg, and only one parallel light source with
intensity L0 at an infinite distance in the single direction ω ′. Then we can precompute the shadowing
effects of the volume opacity, and determine the I(x,ω ′) inside the integral in Equation (5) by using
Equation (1) to obtain

I(x,ω ′) = L0 exp
(
−
∫ D

0
τ(x− sω

′)ds
)
.

Kajiya and von Herzen [26] did this in a first pass through the volume, essentially computing
I(x,ω ′) by the part of Iteration A involving only T . Bahrens and Rattering [5] give an accurate and
efficient method for this shadow pre-computation on gridded data, using texture mapping hardware,
by moving a sampling plane perpendicular to ω ′ in discrete steps along the light flow direction. This
shadow computation can be done in the same pass as the volume rendering if the sampling plane
instead bisects the angle between the viewing and illumination rays, as in [29].

4.3 Diffusion Approximation

Another simplifying assumption is that the albedo is high, and that the size of the volume features is
large compared to the mean free path 1/τ . Then almost every ray seen at the viewpoint will have
been scattered so many times that all the directional properties of r(ω,ω ′) will be washed out by
multiple spherical convolutions, and the scattering will be effectively diffuse, equal in all directions.
In this case, the flow of light can be modeled by a second order partial differential equation for I(x) as
a function of position only. Stam [53] first introduced this equation to computer graphics, and solved
it using the multi-grid method. (His equation is off by a factor of 3 in a couple of the terms. For a
correct derivation see Ishimaru [21].)

Jensen et al. [24] introduced an approximate solution to this equation based on fitting the analytic
solution for the diffusion from two virtual point light sources, one below a planar surface bounding the
participating medium, and one above it, outside the medium. This approximation is only valid for a
semi-infinite domain with constant optical properties, bounded by a flat plane, but it has been applied
to give realistic renderings for other geometries. Jensen and Buhler [22] used an octree hierarchy
to account for illumination at all the surface points, and this idea has now been refined by various
authors, for example Dachsbacher and Stamminger [11], to give real time performance on graphics
hardware. However, the basic technique of Jensen et al. [24] is only applicable to homogenous
materials, and is less useful for volume rendering of spatially varying data.

4.4 Other Multiple Scattering Methods

For non-homogeneous materials, there are several methods not covered in the survey of Perez et
al. [46]. Jensen and Christiansen [23] extend photon mapping to participating media. They do a
Monte Carlo simulation of photon transport from the light sources, which can take into account
spatially varying optical properties and general phase functions. They record each scattering event in
a spatial data structure called a photon map. In a final gather pass from the viewpoint, they collect the
scattering events relevant to a viewing ray, to account for the inscattered photons. Of course, this can
be slow, since many photons are required for accurate convergence.

Kniss et al. [30] have generalized the single pass shadow algorithms given at the end of Section
4.2 to multiple forward scattering, by gathering the accumulated light from several sampled directions
in the previous sampling plane. Zhang et al. [62] have added backward scattering from the next
couple of sampling planes.
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5 Spectral Volume Rendering

We now consider visible light as a form of electromagnetic radiation. The radiative power emitted
by an object is typically defined as a function known as the spectral power distribution (SPD),
F(λ ), where λ is the wavelength within the radiation band concerned. In color computation, it is
common to limit this range to the visible spectrum, λ ∈ [380nm,770nm], or often a narrower range,
λ ∈ [400nm,700nm], to which human eyes are more sensitive.

5.1 Basic Optical Models
The transmission of light of a single wavelength λ through a homogeneous isotropic absorption filter
(such as glass and gelatin) is governed by the Bouguer’s or Lambert’s law (1727, 1760), which states
that the intensity of an incoming light, L0(λ ) decreases exponentially with the path length s in the
filter medium, that is:

L(λ ) = L0(λ ) · exp
(
−s · τ(λ )

)
,

where τ(λ ) is the spectral extinction coefficient (commonly referred to as absorptivity) of the
medium. Beer (1983) extended the Lambert-Bouguer law to a liquid solution with a low or moderate
concentration of an absorbing solute, as:

L(λ ) = L0(λ ) · exp
(
−s ·ν ·κ(λ )

)
,

where ν represents the concentration of the solute and κ(λ ) is the extinction coefficient of the solute
[61].

When the transparency T (λ ,∆) = exp
(
−∆ · τ(λ )

)
is known for a standard path length ∆, we can

obtain the transparency for an arbitrary path length δ as:

T (λ ,δ ) = T (λ ,∆)
δ

∆ .

This is more often written in the form of a depth correction formula for opacity, α(λ ,δ ), as:

α(λ ,δ ) = 1−T (λ ,δ ) = 1−
(
1−α(λ ,∆)

) δ

∆ .

For a homogeneous medium, the Lambert-Bouguer law, which was derived from experimentation,
is consistent with Equation (1), which was derived independently based on the notion of absorbing
particles. Comparing with the early discussion in Section 2.1, the Lambert-Bouguer law is a special
case of Equation (1), while transparency T (s) in Equation (1) can be considered as an approximated
extension of the Lambert-Bouguer law by removing the homogeneity condition and assuming the
same refractive index for materials with different τ(s).

The basic optical model proposed by Bouguer and Lambert, and a wavelength-dependent version
of Equation (1) form the basis of the two spectral volume rendering integrals in 5.2 and 5.3.

5.2 A One-pass Rendering Integral
Bergner et al. [7, 8] developed a spectral volume rendering integral, partially based on the multiple
scattering model described in Section 4.1. In order to facilitate ray casting with local illumination,
they simplified the multiple scattering model by removing all the global illumination elements in the
model. This includes (i) assigning volumetric shadow ratio to constant 1 for all voxels and directions,
(ii) considering only irradiance and radiance with the same direction as the viewing ray, and (iii)
approximating the radiance at each point by the reflectance of the local materials.
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In particular, Bergner et al. successfully factored the light source out in the computation of their
volume rendering integral. This enables interactive data integration using different light sources
during post illumination.

Let L(λ ) be a light source of a single wavelength, and Ii(x,ω,λ ) be the irradiance at a sampling
position x reached from a light ray of direction ω . Ii is computed as:

Ii(x,ω,λ ) = L(λ ) · Ĩi(x,ω,λ ,D),

where D is the distance between x and the point d where the light ray first enters the volume. Ĩi(x,ω,λ )

indicates the proportion of L(λ ) that has arrived at x from d, which is:

Ĩi(x,ω,λ ) = Ĩi(x−Dω,ω,λ ) ·T (x,ω,λ ,D)+
∫ D

0
Ĩr(x− sω,ω,λ ) ·T (x,ω,λ ,s)ds,

where Ĩi(x−Dω,ω,λ ) is the irradiance at d, T (x,ω,λ ,s) is the spectral version of the extinction
function in Equation (1), i.e.,

T (x,ω,λ ,s) = exp
(
−
∫ s

0
τ(x− tω,λ )dt

)
,

and Ĩr(x− sω,ω,λ ) indicates the scattered radiance from the external illumination. Because of the
abovementioned simplification, the term Ĩr(x− sω,ω,λ ) is computed with a local illumination model
based on the Phong model.

5.3 A Two-pass Spectral Rendering Integral
Noordmans et al. considered a spectral volume rendering integral which features shadow computation.
They adopted the Kajiya and von Herzen’s two pass algorithm [26] for computing volumetric shadows
and adapted the notion of opacity in the traditional RGBα-based volume rendering. Let ρm(x) be
the mass density of a material m at x, and κm(λ ) be the absorption attribute of m at wavelength λ .
Consider the position x features M materials. The spectral representation of opacity at x is defined as:

τ(x,λ ) =
M

∑
m=1

ρm(x) ·κm(λ ).

In the illumination phase, the flux of the light is propagated through the volume using discrete ray
casting. At each sampling position x, the incident light Ii is related to the transmitted light It (which
subsequently becomes the incident light at the next sample) simply as:

Ii(x+∆x,λ ) = It(x,λ ) = Ii ·
(
1−∆x · τ(x,λ )

)
.

In the radiation phase, the flux of radiance is accumulated also using back-to-front ray casting.
At each sampling position x, the radiance Ir is related to the irradiance Ib arriving from the previous
sample, and the local emission Ie as:

Ib(x+∆x,λ ) = Ir(x,λ ) = Ie(x,λ )+ Ib(x,λ ) ·
(
1−∆x · τ(x,λ )

)
.

Note that as mentioned in conjunction with Equation (4), the term 1−∆x ·τ(x,λ ) used in both phases
is only an approximation.

One particular interesting aspect of the work by Noordmans et al. is the design of its emission
function, which is split into two parts, namely elastic scattering and inelastic scattering. The former
features scattering in a chromatic medium, with each material m is associated with a specific spectral
band, facilitating a spectral transfer function. The latter enables materials to absorb the incident light
at one wavelength and re-emit the energy at another, facilitating a simulation of fluorescence and
phosphorescence materials.
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5.4 One-dimensional Radiosity
Abdul-Rahman and Chen [1] presented a spectral volume rendering integral based on the optical
model proposed by Kubelka and Munk [34], commonly referred to as the Kubelka and Munk theory.
The theory, which was built upon Schuster’s two flux concept [51], differs from the Lambert-Bouguer
law in at least two respects. (i) It models both absorption and scattering but only in the directions of
an incident flux and a reflected flux. (ii) It assumes that a volumetric colorant layer can be divided into
a large number of homogeneous elementary layers, the optical properties of the volume thus depend
on one direction, say x. The two fluxes Ii and Ir flow in opposite directions, x and −x respectively.

Consider an isotropic elementary layer of thickness dx, which is associated with an absorbing
coefficient K(λ ) and a scattering coefficient S(λ ). With the incident flux Ii(λ ), the passage of a
light beam through the layer will have its energy decreased through absorption, by an amount of
K(λ )Ii(λ )dx, and through scattering, by an amount of S(λ )Ii(λ )dx. At the same time, because of
the radiation reflected by the reflected flux Ir(λ ), the energy is also increased due to backscatter, by
an amount of S(λ )Ir(λ )dx. This gives the total changes of the Ii(λ ) as:

dIi(λ ) =−K(λ )Ii(λ )dx−S(λ )Ii(λ )dx+S(λ )Ir(λ )dx. (7)

On the other hand, the passage of the reflected flux, Ir(λ ), in the opposite direction, is also subject to
similar changes, that is:

−dIr(λ ) =−K(λ )Ir(λ )dx−S(λ )Ir(λ )dx+S(λ )Ii(λ )dx. (8)

Note that when S(λ )= 0, the incident flux, on integrating, follows the Lambert-Bouguer law discussed
in 5.1. Also note that without the back-scattering, we would have K(λ )+S(λ ) = τ(λ ), where τ(λ )

is the extinction coefficient in the Lambert-Bouguer law. As placement of the colorant layer and its
elementary layers are normally drawn in a horizontal manner, the incident and reflected fluxes are
commonly referred to as downward and upward fluxes respectively.

Dividing both sides of Equations (7) and (8) by dx, we have two simultaneous differential equa-
tions. The solution to the equations leads to several useful formulae. Consider a single homogeneous
layer of thickness X . Let R(λ ) and T (λ ) be the reflectance and transmittance of the layer respectively.
We have:

R(λ ) =
sinh(b(λ )S(λ )X)

a(λ )sinh(b(λ )S(λ )X)+b(λ )cosh(b(λ )S(λ )X)
(9)

T (λ ) =
b(λ )

a(λ )sinh(b(λ )S(λ )X)+b(λ )cosh(b(λ )S(λ )X)
, (10)

where

a(λ ) =
S(λ )+K(λ )

S(λ )
, b(λ ) =

√
a(λ )2−1.

Here a(λ ) is essentially a spectral version of the albedo defined in 4.1, but only the probability of
hitting back-scatters is considered. The reflectance of an opaque medium can thereby be computed by
making X → ∞ in Equation (9), resulting in:

R∞(λ ) = 1+
(

K(λ )

S(λ )

)
−
[(

K(λ )

S(λ )

)2

+2
(

K(λ )

S(λ )

)] 1
2
.

Kubelka later extended the Kubelka-Munk theory to inhomogeneous layers [33]. Given the reflectance
and transmittance of two different layers, R1, T1, R2 and T2, considering an infinite process of
interaction between the two layers. A light flux passes the first layer with the portion T1, and then the
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second layer T1T2. Meanwhile, a portion of T1R2T1 will be reflected from the second layer and pass
though the first layer again. Continuing this process leads to two infinite series:

R1, T1R2T1, T1R2R1R2T1, . . .

T1T2, T1R2R1T2, T1R2R1R2R1T2, . . .

The infinite process of interaction can be considered as one-dimensional radiosity [12] — a limited
form of global illumination. The sums of the two series give the compositing reflectance and
transmittance as:

R(λ ) = R1(λ )+
T1(λ )

2R2(λ )

1−R1(λ )R2(λ )

T (λ ) =
T1(λ )T2(λ )

1−R1(λ )R2(λ )
.

A discrete spectral volume rendering integral can thus be formulated based on this multi-layer
model. Using the ray-casting method, one can approximate the intersection volume between each
ray and a volume object as a series of homogeneous layers with a thickness equal to the sampling
distance.

The work by Abdul-Rahman and Chen [1] highlighted some relative merits of the Kubelka-Munk
theory over the Lambert-Bouguer law, especially in terms of its built-in distance attenuation, and
its capability of determining the opacity and transparency optically according to the absorption and
scattering properties. They have also experimented with captured optical properties of some real
world materials, and the design for spectral transfer function for post-illumination.

6 Summary and Conclusions

Volume rendering is an indispensable tool for synthesizing images involved volumetric models. Much
of the theoretic foundation was laid down in late 1980’s and early 1990’s [40]. Until recent years,
however, most volume rendering systems employed only basic local illumination models. Due to the
rapid increase of computation power, a collection of complex illumination features, such as shadows
and refraction, have started to appear in some recent developments. This survey has provided an
overview of optical and illumination models for volume rendering, while highlighting some new
developments including spectral volume rendering, shadow algorithms and refraction rendering.
We hope that this survey will encourage further research into the development and use of complex
illumination models to achieve better realism and perception through optical correctness.
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Abstract
We present an interactive, real-time mapping system for digital elevation maps (DEMs), which
allows Earth scientists to map and therefore understand the deformation of the continental crust
at length scales of 10m to 1000 km. Our system visualizes the surface of the Earth as a 3D surface
generated from a DEM, with a color texture generated from a registered multispectral image
and vector-based mapping elements draped over it. We use a quadtree-based multiresolution
method to be able to render high-resolution terrain mapping data sets of large spatial regions
in real time. The main strength of our system is the combination of interactive rendering and
interactive mapping directly onto the 3D surface, with the ability to navigate the terrain and to
change viewpoints arbitrarily during mapping. User studies and comparisons with commercially
available mapping software show that our system improves mapping accuracy and efficiency,
and also enables qualitatively different observations that are not possible to make with existing
systems.
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Sciences and Engineering
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1 Introduction

Understanding how continents deform is a fundamental problem in Earth science [2]. Although
the plate tectonic paradigm provides an accurate description of the behavior of oceanic crust,
the theory fails to fully explain strain distribution within continents. There are currently two
end-member views of the problem [3]. In one, continental deformation is spatially distributed
over thousands of kilometers and thus, fundamentally differs from the plate-like behavior of
the oceanic crust. In a second view, continents are mosaics of strong, rigid blocks bounded
by weak faults, and thus mimic the behavior of oceanic plates. Distinguishing between
these two views centers on determining the geometric and mechanical evolution of first-order
(≈ 1000 km long) intracontinental structural systems [3]. Do these systems of faults and folds
remain stable in space and time for tens of millions of years (oceanic-plate like), or do they
migrate, eventually producing spatially distributed deformation zones (diffuse pattern)?

Addressing this problem centers on determining how these 1000 km-long structural systems
form and evolve over geologically intermediate time scales of a few tens of thousands to
a few million years. At its core, developing this understanding requires mapping these
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structural systems. Specifically, mapping means identifying and measuring the 3D orientation
of surfaces such as faults and folded layers of rock, along with the various topographic
features by which these structures may be identified, such as contorted drainage networks
or displaced ridges. Short-term deformation of a few seconds to a few thousands of years
is straightforward to characterize using active, historical or paleo earthquakes as well as
geodetic techniques such as VLBI, GPS, or InSAR. Likewise, long-term deformation that
accumulates over tens of millions of years can be measured using thermochronology and
geochronology. But understanding the intermediate record has proven difficult because it
has been difficult to map.

At such intermediate time scales, active deformation of the Earth’s surface produces
detailed (10m–100m) topographic features by which active structures may be identified and
mapped. However, such mapping has been hampered by the lack of both data and tools that
permit efficient analysis of those data over the 1000 km × 1000 km areas that span regions of
active continental deformation. In the last few years the first of these problems has been
addressed and geologists now have access to non-classified intermediate (10m–20m) and high
(1m–10m) pixel resolution DEMs and multispectral satellite or photographic imagery. The
sudden availability of these new datasets has amplified the need within the earth sciences
community for straightforward tools that provide both efficient visualization of gigabyte to
terabyte datasets and geological mapping within an interactive, 3D visualization environment.
The problem of interactive, 3D visualization of large datasets has been previously addressed
using multi-resolution and level of detail techniques [8, 7]. We expand that environment
to allow users to map on the 3D surface and compare our new application with recently
developed alternative approaches based on 3D photogrammetric techniques.

Although active structures typically deform the Earth’s surface, this surface is also under
constant attack by geomorphic processes that either destroy it via erosion or bury it via
deposition. The competition between the rates of surface deformation and destruction
results in a characteristic length scale for preserved deformed geomorphic markers, such
that markers that are a few thousand to a few million years old will typically have spatial
dimensions of a few tens to a few thousands of meters. This spatial range requires geologists
to make numerous detailed observations to fully map active structures, and therefore places
a fundamental limit on the data resolution needed to study these markers. In particular,
multispectral imagery and digital terrain data must have resolutions not coarser than 15m
and 30m, respectively. However, because the first-order structural systems are typically on
the order of 1000 km long, geologists must also make these detailed observations over very
large areas. In addition, many of the areas of active continental deformation lie in Africa,
Asia and the Middle East, where data are incomplete and/or of variable quality.

Geologists have struggled with the dilemma of making detailed, remote observations over
large areas for some time. One compromise is to use low-resolution imagery, and a second is
to conduct detailed investigations of small (10 km × 10 km) areas at a few, widely spaced
localities. Both methods give a strongly filtered view of the active deformation field. As a
result, the geomorphic record of neotectonic deformation, and thus our understanding of
how major structural systems evolve at intermediate time scales, remains largely unexplored.
In response, we have developed RIMS, a Real-time, Interactive, Mapping System. RIMS
allows geologists to visualize, and map in 3D space, structures that are active at intermediate
time scales, both in detail but also over thousand-kilometer wide zones of active continental
deformation.
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2 Related Work

Prior to the development of RIMS, there were two basic methods for analysis of high
resolution, multispectral imagery and digital terrain data available to geologists. One option
was perspective views of texture data such as imagery draped over a DEM. A large number
of widely available tools allow interactive manipulation of such displays [6, 9, 10, 11, 12, 13].
Most of them do not yet appear to make use of multiresolution techniques [14]. More
importantly, it is not possible to map directly on the 3D scene. The second approach has
been to perform 3D feature extraction using a StereoGraphics Z-Screen and a photogrammetry
package [15, 16, 17].

2.1 Terrain Level-of-Detail (LOD) Algorithms
Multi-resolution visualization of large-scale 3D terrain models is an active area of research.
[1] have recently presented a technique using triangulated irregular network (TIN) patches as
drawing primitives in place of triangles. TIN patches represent terrain highly accurately and
are optimized in a preprocessing step for efficient storage and rendering and are batched to
the graphics hardware by a view-dependent algorithm. In addition, a texture tile hierarchy is
constructed to allow for multi-resolution imagery to be projected onto the terrain geometry. [4]
and [8] work with regular gridded data, considerably reducing the preprocessing requirement,
and present data management and view-dependent algorithms focusing on the real-time
generation of the triangulated mesh representation of the terrain. The former method focuses
on attaining the best fidelity in the generated approximation using complex algorithms,
whereas the latter method concentrates on the simplicity and ease of implementation of
the data management and simplification techniques. All the mentioned techniques feature
out-of-core data management enabling them to process the large data sets associated with
terrain visualization.

The terrain visualization component of our system is based on the algorithm of [7].
Quadtrees are a well-understood data structuring concept we use to uniformly represent and
manage the different components of our system (geometry, texture and mappings).

2.2 Vector Mapping and Display Systems
One of us (Cowgill) has recently developed a method for building digital stereo models (DSMs)
from 15m-pixel resolution ASTER stereoscopic imagery using only the ground control point
information provided with the Level 1A data. Individual DSMs comprise 4200 × 4200 pixel
(≈ 60 km × 60 km) images that can be mapped in 3D using StereoAnalyst (SA) [15] at scales
up to 1:20,000 (≈ 62 screen pixels to 1 image pixel). This system is limited to a plan or
bird’s eye view and does not permit a user to view the surface along a vertical cross-section,
which is a perspective that geologists rely upon heavily for analysis. In addition, the DSMs
typically have lateral variations in X and Y parallax, resulting in eye strain after a few hours
of analysis with SA. Finally, the lack of an ASTER-specific sensor model and external ground
control information restricts the DSM to a single scene, thus only a 60 km × 60 km area can
be mapped at once using SA.

To address the visualization problem of draping 2D vector data over a multi-resolution
3D terrain representation, [18] propose algorithms for rendering geometric lines adapted to
surface tessellation. Their method handles sophisticated restricted quadtree triangulations
where the representation is not fixed for a given node. Our approach employs fixed regu-
lar triangulations per node and allows for the more straightforward method presented in
Sect. 4.1.2.
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As an alternative to the polyline-as-geometry approach mentioned above, [5] present
techniques to render vector data using textures generated on-demand. In hopes of being less
sensitive to vector data quantity, we would like to add such a polyline-as-texture approach
to our system in the future.

3 Terrain Visualization

To be useful for netotectonic studies, a 3D mapping system must provide interactive textured
height field rendering of very large terrain data sets (above 35 k × 35 k samples) with full
roaming and viewpoint manipulation, and at the same time must provide interactive mapping
of attributed points, polylines and polygons directly on the 3D terrain model. When zoomed
in to large magnifications, the system must display height field and texture at full resolution.
The system must be able to import and export georeferenced mapping data from and to
standard GIS applications. Ideally, the system should be able to manipulate the viewpoint
at any time while placing mapping elements.

3.1 Terrain Representation
Unprocessed terrain data sets are commonly maintained as two-dimensional single or multi-
band images. In our case, one gray-scale DEM represents the height measurements for a
given longitude/latitude sampling, and other three-channel images contain the corresponding
color-information – typically either false-colors generated from the height or spectral-band
interpretations, or actual aerial photographs. The first main task of our system is to facilitate
visual exploration of such data sets by constructing and rendering appropriate 3D surface
representations.

3.1.1 Quadtrees
For rendering purposes, a terrain data set’s surface is reconstructed using triangle drawing
primitives. When rendered directly, the large and high-resolution terrain data sets required by
the application would far exceed current graphics hardware capabilities, prohibiting real-time
exploration. To address this problem, we use multi-resolution representations based on a
quadtree subdivision. A quadtree’s lowest-level nodes correspond to a tiling of a given data
set at its native resolution. Higher-level nodes contain successively coarser representations,
subsampled by a factor of two between levels. All nodes in the same tree have a fixed size of
some power of two in each dimension. By sending only appropriate nodes to the graphics
hardware (see Sect. 3.1.2), we can render very large data sets in real time while maintaining
sufficient detail for mapping purposes. When treating each tree node as an atomic entity,
the quadtree representation enables efficient frame processing, e. g., hierarchical view culling
(see Sect. 3.1.3, selecting appropriate detail level (see Sect. 3.1.2), and computing mapping
element representations (see Sect. 4.1.2).

In our system, terrain models are represented by a set of correlated quadtrees, the first
one containing the terrain’s height values, and one or more additional ones containing texture
data. These trees are generated from the unprocessed data in a preprocessing step (see
Sect. 3.2). Considering that the original height and texture data are tightly correlated, the
height and texture trees will present a node-to-node matching if generated with appropriate
node sizes. For example, using a 30m resolution DEM with a 15m resolution texture draped
over it would require a texture quad twice the size of a height quad, e. g., 128 and 64,
respectively. This tight coupling prompted us to merge the two trees leaving a single terrain



T. Bernardin, E. Cowgil, R. Gold, B. Hamann, O. Kreylos, and A. Schmitt 279

tree that needs to be maintained and processed each frame: each of its nodes contains
references to corresponding height and texture data (see Fig. 1 left). We expect this structure
to also facilitate future out-of-core management/caching and allow for quick overlaying of
compatible preprocessed textures.

3.1.2 Level-of-Detail Calculation
To effectively exploit the multi-resolution terrain representation, we need a means of evaluating
the appropriateness of a node based on a set of frame conditions. We consider a continuous
LOD value characterizing a node as perfectly fitting the conditions if it is zero. Negative
values progressively indicate the node’s resolution to be too coarse and positive values
indicitate it being too fine. Additionally, we choose a split-threshold below which nodes will
be considered for subdivision and a merge-threshold above which merging is suggested (see
Sect. 3.1.3). We make the following considerations for our LOD evaluation:

Focus and Context

When mapping, users operate locally on the terrain data, effectively defining the region of
interest. We consider each evaluated node’s distance from the manipulation cursor as a first
LOD value: at the cursor location, the finest detail is desired and the farther away from the
focus point, the coarser we are allowed to represent the terrain (see Fig. 1, top-right).

View-Distance Dependency

To explore the data, users are constantly manipulating view parameters that in turn affect
the projection of terrain tree nodes into screen space. To account for such view-specific
characteristics we consider a node’s projected pixel coverage using [8] estimation of perspective
projection dependent on the distance between the node and the viewing camera. The node’s
world-space edge-size is projected and compared to a chosen optimum for a second LOD
value: for a given view, the finest detail level discernable on screen (as specified by the
optimum) is chosen (see Fig. 1, middle-right).

In the end, the final LOD value is computed by combining the two previous ones: the
focus-LOD sets the coarsest bound, meaning that although the view would allow for more
detail to be displayed on the screen, for a node away from the focus point this does not
currently interest the user. On the other hand, the view-LOD specifies the finest bound, in
that even for the node directly under the focus point we need only render as much detail as
will be discernable in the screen projection (see Fig. 1, bottom-right).

3.1.3 Tree Maintenance
Ideally, the active tree nodes chosen for a terrain approximation would be those with a LOD
value evaluated between the split and merge thresholds. Refining recursively by starting with
the root node and subdividing nodes whose LOD values lie below the split-threshold would
in fact result in a set of leaf nodes defining a gap-less, overlay-free tiling of the terrain area.
However, cracks might appear between neighboring nodes of different resolutions due to
hanging triangle vertices (see Fig. 2). To address this problem, we modify the LOD criterion
such that direct neighbors in the active set differ at most by one level of resolution. If this
property holds for an entire tree, cracks can be removed by simple stitching at the edges of
affected nodes.
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Figure 1 Left: Terrain tree with height and texture data. Active tiles belonging to the current
approximation are colored, and their geometry and texture data quads are shown. Right: Level-of-
detail computation. Top: LOD is calculated based solely on the focus point (note the overly detailed
square in the middle). Middle: LOD is determined only using the view parameters. Bottom: Focus
and view LODs are combined

Splitting and Merging

Since users exploring terrain roam interactively, view parameters change little from one frame
to the next. A high inter-frame coherence can be expected and an approach similar to the
one followed by [4] is worthwhile. Instead of generating the appropriate representation by
recursive subdivision of the root (with the necessary balancing performed on the fly), the
previous representation is tweaked to conform to the new frame conditions. Our current
implementation dedicates a first traversal pass to tree maintenance using split and merge
operations, but the task could easily be left to the care of an independent thread.

The tree maintenace pass initially evaluates the LOD values of all previously active nodes.
Their new LOD values are then compared to the thresholds in order to decide whether nodes
should be kept as they are, split into their children, or merged with their siblings. Both the
split and merge operations assume a valid one-level difference terrain tree and result in a
similarly valid one. The split operation does so by recursively forcing the considered node’s
neighborhood to subdivide appropriately, whereas the merge operation only succeeds if the
siblings and neighborhood allow for the parent to become a leaf. This scheme favors showing
detail over hiding it. Additionally, before either operation can be completed, the stitching
attributes for the inserted node(s) and the neighborhood have to be corrected, i. e., coarser
nodes have to be adapted to neighboring finer ones. We use four bit-flags, one for each edge,
specifying if the corresponding edge connects to a more detailed one. We describe how these
bit-flags relate to actual mesh approximations in Sect. 3.3.

View Frustum Culling

By taking advantage of the quadtree structure, we can further reduce maintenance costs (and
later rendering time) using hierarchical view frustum culling. The tree maintenance pass
traverses the terrain tree depth-first from the root until it encounters a node that is outside
the current view frustum or a leaf node in the current approximation (as determined by the
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Figure 2 Stitching between nodes. Left: Cracks can appear at the edge of neighboring nodes of
different resolutions. Right: Stitching adapts lower-resolution nodes to higher-resolution ones for
smooth transitions.

Figure 3 Quadbase preprocessing. Left: Alignment of vertex positions in a height quad (blue
dots) and texels in a texture quad (bold squares). Right: Alignment between input height data,
height quads in the same level, and height quads between levels. Black tick marks denote pixel
borders of input data, blue dots denote vertex positions in height quads, hollow dots denote “ghost
vertices” around height quads.

split and merge criteria described above). Computing the visibility of a node is done by
intersecting its bounding sphere with the view frustum. This check is very inexpensive, and
enables efficient culling of entire subtrees from the maintenance traversal if an upper-level
node is invisible. We maintain a visibility flag in each node to forward the results obtained
here to the rendering phase (see Sect. 3.3).

3.2 Quadbase Preprocessing

Available terrain data sets usually describe a continuous area at a given resolution, whereas
our program requires a multi-resolution hierarchical tiling of that area. We generate the
needed tiles off-line with our preprocessing tool and store them in a binary quadbase file.
The preprocessor first constructs a skeletal quadtree with the property that its leaf nodes
tile the input data set at its native resolution, the root node entirely covers the input data
set’s domain, and only those nodes intersecting the domain are retained. The skeletal tree
is then traversed in a bottom-up, breadth-first fashion. At each level, each node crops out
the data associated with it and appends it to the quadbase file. After all nodes in a level
are processed, the input data is resampled to the resolution appropriate for the next higher
level. To associate the image data with mesh geometry we place vertices at the centers of
pixels (see Fig. 3, left). Therefore, care must be taken to duplicate quad edge pixels where
vertices are shared for rendering. Moreover, quads produced to store height information
should additionally store border pixels to facilitate generation of vertex normals later on (see
Fig. 3, right).

Descriptive information for both the quadtree, e. g., quad resolution and number of quads,
and the contained data, e. g., upper-left corner longitude/latitude and data resolution, is
stored in an additional quadbase header file.
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3.3 Rendering

Mesh Representation

Whereas the preprocessed texture quads can be used directly as sources for texture objects,
the height quads have to be converted into triangulated patches of 3D vertices. The vertex
positions and texture coordinates are generated by creating a planar regular grid where
(x, y)-points are elevated using the appropriate pixel value of the height quad. Vertex texture
coordinates are calculated by linearly mapping (x, y)-coordinates into the associated texture
quad’s texture rectangle, which is identical for each texture node. The only considerable
computation comes from running a filter on a height pixel’s neighborhood to obtain vertex
normals for rendering. After being computed, the position, texture coordinates and normals
are stored in memory compactly as an interleaved vertex array. We have chosen to omit this
step from the preprocessing to keep the input data as general and independent of internal
geometric representation as possible. This approach also reduces I/O volume, making us less
dependent on slow reads from disk.

We employ a simple caching scheme for node geometry and texture data, to circumvent
having to wait for disk I/O when a previously active node becomes activated again. This
caching scheme can be enhanced for full data size-independent out-of-core rendering for very
large terrain data and limited main memory.

Rendering pass

The image corresponding to the current terrain representation is produced in a second pass
through the terrain tree. Similar to tree maintenance, a separate thread could be assigned
this task, refreshing at the graphics hardware’s rate instead of the I/O-bound update thread’s
rate. A depth-first traversal from the root finds the active nodes of the current approximation
and renders them, exploiting the hierarchical view culling maintained in the visibility bit-flag
(see Sect. 3.1.3). Additionally, we could use the quadtree structure to always draw the nodes
in front-to-back order and take advantage of the graphics hardware’s depth buffer culling.

In Sect. 3.1.3, we mention the need for neighboring rendered quads to align without cracks,
even when they do not represent the same level of detail. This affects the triangulations that
have to be generated: with one level of difference maximally possible between neighbors, we
can identify fifteen different stitching cases. For each case, we pre-compute a static index
array defining appropriate triangle strips over the vertex grid. To render a node, its vertex
data can then efficiently be sent to the graphics hardware with the appropriate index array
for the node’s stitching flag computed by the tree maintenance traversal (see Sect. 3.1.3).

4 Mapping

The real-time rendering provided by RIMS constitutes a highly valuable tool for terrain
data exploration. However, textured 3D representations are already available in common
commercial software (albeit not using multi-resolution approaches yet) and many advanced
techniques have been published. More important for our purposes is the use of the 3D terrain
model to directly and efficiently specify and edit georeferenced mapping elements. The
following section presents our program’s mapping capabilities.
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Figure 4 Top: Refining a polyline by inserting a new control point. Bottom: 3D polyline
representation. Left: Line strips connecting the segment control points follow the terrain topology.
Right: Mesh representation has changed showing more detail, thus hiding the old line strips (red). A
new line strip has to be generated connecting the same control points.

Specifying 2.5D Mappings

Typically, mapping data is two-dimensional, e. g., a polyline would be specified as a list
of (longitude, latitude) control points. Our mapping tools conceptually operate on a 2D
plane by keeping this representation and dynamically assigning appropriate height values to
all control points. This approach allows for mappings to be defined independently of the
current 3D terrain approximation which, in our case, is constantly changing. Interfacing
with common GIS packages can then also be realized easily: our system supports the ASCII
ARC/INFO interchange file format for imports and exports.

Most commonly, geologists highlight features using a connected sequences of line segments,
i. e., polylines. Our system supports mapping with this primitive: controlling a cursor bound
to the terrain surface as a spatial reference, users can perform various actions such as creating,
selecting, moving and deleting control points (see Fig. 4, top).

4.1 Polyline Rendering
To display polylines we take a line-as-geometry approach similar to [18]. Combining such an
approach with the multi-resolution 3D terrain representation requires “lifting” polylines to
the 3D terrain model appropriatedly to avoid clipping with the terrain geometry (see Fig. 4,
bottom). In the following, we describe processing the polyline approximation in detail.

4.1.1 General Handling
Geometric lines, our display primitives, can only accurately follow flat surfaces, like those
defined by the triangles of the 3D terrain representation. Thus, each 2D polyline segment –
specified by a pair of 2D control points – has to be represented by a sequence of 3D line
segments, one for each triangle intersected by the 2D polyline segment. Re-computing the
appropriate 3D vertices for each frame would dramatically reduce the amount of segments
that can be visualized interactively. To address this limitation, we exploit the locality of
polyline manipulations (moving an inner control point, for example, modifies at most two
segments) and the strong frame-to-frame coherence (triangulations will only change for few
quads in each frame) by storing 3D representations for all polylines, and tweaking previously
valid representations when polyline segments are edited, or the terrain approximation changes.
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Table 1 Data set sizes (in pixels for DEM and texture), preprocessing times (in seconds) and
frame rates (in frames per second) for the three test data sets.

Data Set DEM Size Tex Size Build Min. fps Avg. fps Max. fps
Aksai 1850 × 900 3700 × 1800 6 s 41.2 141.6 285.7
Mosul 2558 × 2447 5115 × 4901 22 s 60.6 130.0 400.0

Puget Sound 8193 × 8193 16384 × 16384 750 s 30.1 94.2 285.7

A polyline is represented as a list of subsegments, such that each subsegment is contained
in a single currently active quadtree node. When a polyline is created or manipulated, the
sequence of subsegments is computed by clipping the 2D polyline against the domains of
all active nodes it intersects. Each active node also stores a list of subsegments associates
with it, such that when a node splits or is merged with its neighbors, the affected polyline
subsegments can be determined efficiently, and replaced with new ones appropriate for the
changed set of active nodes.

4.1.2 Subsegment Computation
The dominating computational cost of visualizing a polyline lies in the generation of line
strips for each of its subsegments, i. e., for each polyline part contained in an active quad
of the current terrain approximation; thus, a fast technique is required to maintain high
frame rates. In our case, this is facilitated by the regular triangulations within each quad.
Moreover, computing the subsegment vertices is effectively only to a 2D problem: since all
vertices of the 3D terrain approximation are extruded from the (x, y)-plane along the same
direction, we “flatten” them back onto the plane containing the 2D polylines. Intersection
points can then be computed and subsequently extruded appropriately. Thus, a very simple
algorithm similar to those used to rasterize lines to a regular pixel grid can be used with few
modifications.

5 Results

To evaluate RIMS’ performance, we simulated mapping usage on three test data sets of
different sizes. The data set sizes (as DEM size and texture size) and the preprocessing times
necessary to create the hierarchical quadbases from the input data sets are given in Table 1,
as well as the minimum, average and maximum frame rates achieved during mapping.

To evaluate the utility of RIMS, we conducted two comparison tests between the RIMS
and StereoAnalyst (SA) [15] mapping methods. The first test (see Fig.5 and 6) compares
the maximum level of geological detail that can be extracted from the data to identify the
mapping system with the highest sensitivity to detail. Geologists seek the most sensitive
system because it allows them to extract the largest amount of information and thus develop
the most sophisticated geological analysis. For this test, a user spent as much time as needed
to extract the maximum number of features over the same area. The second test (see Fig. 7)
compares the number and quality of geologic observations that can be collected in the same
finite period of time to identify the most efficient mapping system. Geologists prefer highly
efficient systems that allow them to process their data as quickly as possible. For this test, a
user spent two hours mapping the same area. In both tests, the study areas were mapped first
with SA, then with RIMS. This approach was admittedly biased, because the users had the
benefit of already having mapped the scene once at the start of their RIMS sessions. However,
both users are significantly more familiar with the SA navigation/mapping environment;
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thus, their lack of familiarity with the RIMS controls likely offsets any advantage their prior
SA mapping provided.

The tests indicated that RIMS provides a number of user benefits, including reduced
eye strain, faster zoom and pan speeds, and slight advantages in the navigation. More
importantly, the tests also revealed five key differences that make RIMS more useful for
geological applications. Relative to SA, RIMS provided greater 1) understanding of the
mapped structural geometry and thus pattern of active deformation; 2) confidence in feature
identification and location; 3) numbers of mapped features (i. e., a larger number of mapping
elements); 4) mapping accuracy (i. e., a larger number of vertices per mapping element);
and 5) ability to locate and identify small features. Specific examples of each difference are
provided in the following sections, highlighting the utility of RIMS.

1. The most important difference revealed by the tests is that RIMS allowed both users to
obtain a more sophisticated understanding of the structural geometry of their areas. For
example, in Fig. 5, arrow A′ on the right-hand side of the figure points to a structure
that was obvious in the RIMS environment. The lack of a structure at arrow A on the
left-hand side of the figure indicates that the user was not able to see and interpret this
feature using SA. A RIMS screen shot (see Fig. 6, right half) clearly shows the structure
mapped at A′, and also demonstrates that it appears as an uninterpretable bump in a
plan-view stereo pair that replicates the view from SA (see Fig. 6, left half). Likewise,
additional structures were discovered at B′ and C ′ using RIMS while the corresponding
points B and C indicate that the user missed these features when using SA. In summary,
the plan (bird’s eye) view and grayscale imagery of SA made it difficult to identify the
topographic and textural variations that indicated the existence of these subtle features.

2. RIMS provided both users with higher confidence in their vector mapping, as indicated
by the type of lines selected to represent mapped features. Geologists express their
confidence in their ability to accurately locate a mapped feature by using solid, dashed,
or dotted lines (in order of decreasing confidence). Fig. 7 shows that the RIMS project
contains 20 boundaries mapped using solid lines, 2 using dashed, and 2 with dotted. In
contrast, the SA project has only 2 boundaries defined with solid lines, 21 with dashed
lines, and 1 with a dotted line.

3. Both users were able to identify a larger number of features using RIMS than SA. The
RIMS output shown in Fig. 5 has 289 mapped features whereas only 172 features were
extracted using SA. Likewise, Fig. 7 indicates that 14 major structures were defined using
RIMS, in contrast to 8 structures on the SA map.

4. RIMS allows users to more accurately locate features and then map them using more
vertices per feature because it does not demand constant manual parallax adjustments.
Because the polylines have more vertices in the RIMS outputs, they better track short
wavelength variations in the feature geometry and thus more accurately follow subtle
changes in the boundaries between geologic units. In contrast, the maps generated
from SA show a prevalence of long straight line segments. Differences in detail are
especially evident in Fig. 7 at comparison points A–A′, B–B′ and C–C ′ in SA and RIMS,
respectively.

5. Finally, RIMS is more effective for locating small geologic features. For example, a series
of river terraces located at point D′ in the RIMS output were not located at point A using
SA (see Fig. 7). Likewise, points E–E′ indicate a small outcrop that was not seen in SA
at E but that was mappable using RIMS at E′. Although these features are small, their
identification has important implications regarding the geometry of active deformation in
the mapped area.
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Figure 5 Results of sensitivity test. Gold arrows highlight points where the maps differ signifi-
cantly, as discussed in the text. Red lines are fold hingelines and are solid where confidently located
and dashed where their position is less clear. Blue lines denote drainages. Broken black lines indicate
contacts between two different geologic units, dotted black lines are marker beds. Dashed yellow
line denotes the edge of a geomorphic surface. Brown lines indicate drainage divides. Left: Map
generated using StereoAnalyst. Right: Map generated using RIMS.

Figure 6 Subtle ridge appearing at location A–A′ in Fig. 5. Left and center: Cross-eye stereo
pair reconstructing the plan view provided by StereoAnalyst. Right: Screen shot from RIMS.
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Figure 7 Results of efficiency test. Decorated red lines are various types of active faults. Black
lines represent folds and contacts between two different geologic units. Red and black lines are solid
where features are confidently located and dashed, dotted, or querried where position is increasingly
less clear. Solid blue lines are drainages. Text labels (pC, T, Qo, Qm#, Qy) denote units of different
apparent ages. Left: Map generated using StereoAnalyst. Right: Map generated using RIMS.
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6 Conclusions and Future Work

In summary, while the tests described above show that the maps generated using both
utilities capture many of the same major geologic features, it is clear that RIMS is both a
more sensitive and a more efficient mapping utility, and thus greatly advances geologists’
ability to remotely map patterns of active defomation in fine detail while also spanning
continental collision zones that are thousands of kilometers wide and often inaccessible for
field study. The advantages of RIMS over the previously used system are mostly due to
RIMS’ interactive visualization of large textured 3D terrain models, and its ability to map
directly onto the 3D terrain in real-time.

Our future efforts will focus on moving the terrain maintenance out-of-core to allow for
more scalability. We are also looking into on-demand textures to support a higher quantity
of mappings with a more varied appearance (as seen in the results figures produced with
ArcMap). In addition, mapping capabilities are to be extended providing geologist with more
tools and help so as to more efficiently extract interesting features from the data sets.
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Abstract
This paper provides a survey of approaches for special relativistic visualization. Visualization
techniques are classified into three categories: Minkowski spacetime diagrams, depictions of spa-
tial slices at a constant time, and virtual camera methods that simulate image generation in
a relativistic scenario. The paper covers the historical outline from early hand-drawn visual-
izations to state-of-the-art computer-based visualization methods. This paper also provides a
concise presentation of the mathematics of special relativity, making use of the geometric nature
of spacetime and relating it to geometric concepts such vectors and linear transformations.
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1 Introduction

Einstein’s special theory of relativity has been attracting a lot of attention from the general
public and physicists alike. In 2005, the 100th anniversary of the publication of special
relativity [7] was the reason for numerous exhibitions, popular-science publications, or TV
shows on modern physics in general and Einstein and his work in particular. In special
relativistic physics, properties of space, time, and light are dramatically different from those
of our familiar environment governed by classical physics. We do not experience relativistic
effects and thus do not have an intuitive understanding for those effects because we, in our
daily live, do not travel at velocities close to the speed of light.

Special relativity is usually described in terms of mathematical models such as spacetime
and Lorentz transformations. Since special relativity has a strong geometric component,
visualization can play a crucial role in making those geometric aspects visible without relying
on symbolic notation. This paper gives an overview of different approaches for visualizing
various aspects of special relativity to a range of different audiences. One application
is the support of visual communication for a general public, for example, by means of
illustrations in popular-science publications, exhibitions, or TV shows. Another audience
are students because visualization can be used to improve the learning experience in high-
school or university courses. For example, depictions help to motivate, interactive computer
experiments allow for exploration and active participation, and visual explanations can enrich
a symbolic description of mathematical ideas.

A third group of people are experts in physics and relativity. Although they do not need
visualization to learn and understand the mathematics of special relativity, visualization may
engage them in a different way of thinking. Edwin F. Taylor, a renowned teacher of special
relativity [33], expressed his experience with special relativistic visualization as follows [32,
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Section 6]: “[...] I have come to think about relativity quite differently [...] My current view
of the subject is much more visual, more fluid, more process oriented, covering a wider range
of phenomena [...] In short, both my professional life and my view of physics have been
transformed [by relativistic visualization].”

These different types of audiences have a quite varying background knowledge. Therefore,
different visualization approaches may be employed for different audiences and purposes. This
paper distinguishes three classes of basic approaches (see Section 2): A direct visualization
of spacetime by Minkowski diagrams, a visualization of a subset of spacetime for a fixed
time, and the simulation of images as taken by a fast moving camera. Technical aspects and
algorithms for these different approaches are discussed in Sections 5–7. All three approaches
have in common that they may benefit from interactive computer implementations that
facilitate trial-and-error explorations through the user.

This paper has several goals. First, it provides a survey of state-of-the-art computer-based
methods for special relativistic visualization. The methods are roughly structured along
the aforementioned classification of approaches. Because several alternative algorithms are
available for the camera metaphor, these algorithms are further classified in subcategories
(see Section 7). In addition, this paper provides a concise presentation of special relativity
in Section 3, making use of the geometric nature of spacetime and relating it to geometric
concepts such vectors and linear transformations. This paper also provides a historical outline
of the development of special relativistic visualization (Section 4).

2 Types of Visualization Approaches

This paper adopts a geometric point of view on special relativity. Key elements are the
concepts of spacetime and Lorentz transformations, which relate different coordinate systems
in spacetime. Section 3 explains these concepts on a mathematical level. Spacetime is the
combination of 3D space and a single temporal dimension, leading to a joint 4D description.
Physical experiments, even if they are only virtual, are represented in form of 4D spacetime
coordinates. For example, a point-like object that moves through space and time leaves a
trace in spacetime—a so-called worldline. Similarly, light rays can be represented as lines
through spacetime. Therefore, spacetime and traces therein are sufficient to describe the
physical scenarios that are relevant for this paper.

Lorentz transformations represent changes between coordinate systems—transformations
between different frames of reference. Due to the Lorentz transformation, observers in
different frames of reference typically provide different coordinate descriptions for the very
same physical object. In other words, both spatial and temporal positions are dependent on
the reference frame—space and time are not addressed by absolute coordinates, but they are
relative. The structure of spacetime and the Lorentz transformation can be derived from
two postulates: the principle of relativity (i.e., physical laws are valid and unchanged in any
inertial reference frame) and the invariance of the speed of light (i.e., the speed of light in
vacuo has a finite and constant value, regardless of the reference frame). This derivation can
be found in textbooks, such as [22].

The three visualization approaches discussed in this paper can be related to spacetime
in the following ways. All approaches have in common a reduction of dimensionality of 4D
spacetime.

(a) Minkowki diagrams. Minkowski diagrams are spacetime diagrams. They depict
spacetime by graphically representing both temporal and spatial dimensions in a single image.
The dimensionality of the spatial domain is reduced to either one or two (by taking a slice
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through space), which leads to a total number of two or three dimensions for the spacetime
diagram. In this way, graphical representations of the 2D or 3D diagram are feasible in
an image. The advantage of Minkowski diagrams is their direct visualization of spacetime
itself—Minkowski diagrams are the visual pendant to the mathematical geometry of special
relativity. Figures 1 and 2 show typical examples of Minkowski diagrams.

(b) Spatial slices. Another way of reducing dimensionality is to construct a spatial slice
of constant time. This slicing corresponds physically to a simultaneous measurement of
positions in 3D space. Time and simultaneity depend on the frame of reference, i.e., a spatial
slice is always defined with respect to a reference frame. Spatial slices are a natural metaphor
because they model measurements in 3D space for a “frozen” time. Figure 3 provides an
example of several spatial slices taken at different times.

(c) Virtual camera model. The virtual camera model simulates a physical experiment:
what kind of image would a camera produce in a special relativistic setting? This approach
simulates what we would see and, therefore, is the special relativistic analog of standard
image synthesis by rendering non-relativistic scenes. Figure 4 illustrates the virtual camera
view for high-speed travel toward the Brandenburg Gate.

In a non-relativistic setting, where the speed of light is assumed to be infinite, approaches
(b) and (c) are identical. Special relativity, however, requires us to make a clear distinction
between seeing and measuring. Measurements are made at sample points simultaneously with
respect to the reference frame of the observer. In contrast, seeing is based on the photons that
arrive simultaneously at the camera of the observer. These photons are usually not emitted
simultaneously (with respect to the observer’s reference frame) due to the finite speed of
light. Following [41], approaches (a) and (b) can be regarded exocentric visualization, which
present an outside view, whereas approach (c) can be considered an egocentric visualization,
which is produced from the perspective of the user.

3 Elements of Special Relativity

This section provides a brief introduction to the mathematics of special relativity, discussing
the concepts of spacetime, Lorentz transformation, four-vectors, and the Minkowski metric.
More details on these concepts can be found in textbooks like [21, 22], or in a visualization-
orientated presentation of special relativity [40].

Spacetime consists of three spatial dimensions and one temporal dimension. Analogously
to a vector in Euclidean 3D space, a vector in spacetime can be described by four components

xµ = (t, x, y, z) = (x0, x1, x2, x3) , µ = 0, 1, 2, 3 .

The Greek indices {1, 2, 3} refer to three spatial components and the index 0 refers to the
temporal dimension. To simplify the notation in this paper, natural units are used, in which
the speed of light c = 1. The geometry of spacetime is described by the Minkowski metric

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (1)

which is used to compute distances and inner products in spacetime. The inner product
between two vectors, aµ and bµ, is

aµ · bµ = ηµνa
µbν .
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The Einsteinian sum convention is applied: terms with duplicate indices are implicitly
summed, e.g., the indices µ and ν are implicitly summed over all entries 0 . . . 3. The inner
product is used to define the squared length of a spacetime vector—a so-called four-vector.
For example, the position vector xµ has squared length

xµ · xµ = ηµνx
µxν = t2 − x2 − y2 − z2 .

The Lorentz transformation is a linear and homogeneous transformation of spacetime vectors

xµ′ = Λµνxν , (2)

where Λµν is the matrix representation of the transformation. A Lorentz transformation
is defined as a transformation that does not change the inner product or the squared
length of four-vectors—it does not affect the geometry of spacetime as described by the
Minkowski metric. The collection of Lorentz transformations forms the Lorentz group. A
Lorentz transformation connects two inertial frames of reference and leaves the speed of light
invariant. Lorentz transformations can be interpreted as a combination of spatial rotations
of the two reference frames and a so-called Lorentz boost. The Lorentz boost is a velocity
transformation between two reference frames that move at different relative speeds, given by
(cf. [21, p.69])

Λµν =


γ −β γ nx −β γ ny −β γ nz

−β γ nx (γ − 1) nx2 + 1 (γ − 1) nx ny (γ − 1) nx nz
−β γ ny (γ − 1) nx ny (γ − 1) ny2 + 1 (γ − 1) ny nz
−β γ nz (γ − 1) nx nz (γ − 1) ny nz (γ − 1) nz2 + 1

 . (3)

Here, ~n = (n1, n2, n3) is the normalized direction of motion, β is the velocity relative to the
speed of light, and γ = 1/

√
1− β2.

By including translations between reference frames, the Lorentz group is extended to the
Poincaré group. The Lorentz group transforms four-vectors in spacetime, while the Poincaré
group transforms points in spacetime. A spacetime point is usually called an event. For
comparison, an analogous distinction has to be made between points and vectors in Euclidean
3D space—linear transformations are applied to vectors while affine transformations are
applied to points. Events and four-vectors are tightly connected: the difference between two
spacetime events is described by a four-vector that connects both events.

In general, the squared length of a four-vector is independent of the frame of reference
because it is not changed by Lorentz transformations. Therefore, a vector can be characterized
by its length. A vector is lightlike when it has vanishing length. Lightlike difference vectors
are important for image synthesis because they connect light emission and absorbtion events.
Accordingly, the propagation of a photon can be described by its lightlike four-wavevector,
which combines circular frequency and 3D wavevector:

kµ = (ω,~k) . (4)

The 3D wavevector ~k points into the light direction and has length k = 2πλ−1, where λ is
the wavelength. The circular frequency ω is related to the frequency ν of the photon by
ω = 2πν. Wavelength and frequency are related by λ = ν−1.

By applying a Lorentz transformation to the four-wavevector, the aberration of light
and the Doppler effect can be immediately computed. The relativistic aberration of light
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describes the change of light direction caused by the Lorentz transformation. The aberration
can be expressed as

cos θ′ = cos θ − β
1− β cos θ , φ′ = φ , (5)

where directions are given by spherical coordinates (θ, φ) and (θ′, φ′). The Doppler effect
accounts for the transformation of wavelength from one inertial frame of reference to another
and is described by

ω′ = ω

D
, (6)

with the Doppler factor

D = 1
γ (1− β cos θ) . (7)

Expressed in terms of wavelength, the Doppler effect is

λ′ = Dλ . (8)

Finally, the wavelength-dependent radiance Lλ is transformed according to

L′λ(λ′, θ′, φ′) = 1
D5Lλ(λ, θ, φ) . (9)

A derivation of this relation is described by Weiskopf et al. [43] in the context of special
relativistic visualization. The transformation of radiance leads to the so-called searchlight
effect because light that is incident from the direction of motion is increased in radiance.

4 Historic Remarks and Recent Developments

This section discusses the timeline of developments in special relativistic visualization. The
presentation is in approximately chronological order, from early work on special relativity
to recent improvements on computer-based visualization. Although this overview of the
literature covers papers from both physics and computer science, the focus is on a survey of
special relativistic visualization based on modern computer graphics.

Einstein’s original article on special relativity [7] was published in 1905. However, the
contemporary understanding of special relativity as a description of spacetime associated
with a certain metric goes back to Hermann Minkowski, as laid out in his 1908 lecture on
“Raum und Zeit” (“space and time”) [20]. The accompanying four-vector formalism may be
attributed to Arnold Sommerfeld and his publications [29, 30] from 1910. These developments
form the basis for a geometric point of view on special relativity that is widely adopted in
most contemporary presentations and textbooks. Moreover, this geometric interpretation is
vital for the extension to general relativity. More historical details on the early developments
in special relativity can be found in an article by Walter [36].

A direct visualization of the spacetime geometry is typically based on a Minkowski
diagram, which is a most popular type of visualization in textbooks. Minkowski introduced
his diagrams in his lecture on space and time [20].

The second fundamental visualization approach—using spatial slices—was also used
early on. For example, such a visualization appears in the movie “Die Grundlagen der
Einsteinschen Relativitäts-Theorie”, which is an early popular-science documentary film and
probably the first animated visualization of special relativity. This film, with a length of over
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two hours, had its premiere in 1922. Unfortunately, no copy of the original movie is known
to have survived until today [37]. However, an abridged and modified American version that
was released in 1923 as a 20-minute film with the title “The Einstein Theory of Relativity”
is available, including an accompanying booklet [27].

The third visualization approach—the virtual camera model—took much longer before it
was developed. Remarkably, the issue of image generation in the context in special relativity
was ignored for a long time, or wrong interpretations were given. For example, Gamow
equates the Lorentz contraction and the visual appearance of moving bodies in his book “Mr
Tompkins in Wonderland” [8], neglecting the difference between seeing and simultaneously
measuring. Apart from a previously disregarded article by Lampa [18] in 1924 about the
invisibility of the Lorentz contraction, it was only in 1959 that the first correct solutions
to the issue of image generation within special relativity were presented by Terrell [34] and
Penrose [23]. Later, more detailed descriptions of the geometrical appearance of fast moving
objects were discussed in the physics literature, e.g., by Weisskopf [45], Boas [3], Scott and
Viner [26], Scott and van Driel [25], Hollenbach [11], Hickey [10], Suffern [31], Burke and
Strode [4], Sheldon [28], Terrell [35], and Kraus [17].

In the 1980s, computers were gradually used for advanced special relativistic visualization.
The earliest published example known to the author is a software by Taylor [32], which was
used for teaching courses at MIT starting 1986. This software included both Minkowski
diagrams and the virtual camera model, and rendering was based on line graphics. Besides
this published work, there might have been other implementations of that era that may be
overlooked today because their results were not disseminated publicly.

In 1989, Hsiung and Dunn [12] were the first to publish an advanced rendering technique
for the virtual camera approach. Their rendering technique is based on an extension of
standard 3D ray tracing. Within the following year, Hsiung and co-workers extended their
work to include the visualization of the Doppler effect [14], relativistic time dilation [13],
and the time-buffer method [15]. In 1991, Gekelman et al. [9] described a rendering method
related to the time-buffer. Later developments included extended illumination models by
Chang et al. [5] and Betts [2], which were subsequently improved by Weiskopf and co-workers
[43, 44]. Other papers addressed the issue of acceleration in the context of the virtual camera
approach [9, 44, 16, 24, 39]. As alternative rendering methods, texture-based rendering was
introduced by Weiskopf [38] and image-based rendering by Weiskopf et al. [42]. Weiskopf [40]
described these techniques in more detail and proposed a special relativistic version of the
radiosity method. Li et al. [19] extended special relativistic ray tracing to include reflection
and transmission phenomena. Finally, Weiskopf et al. [41] reported on their experiences with
relativistic visualization for popular-science and educational presentations.

5 Minkowski Diagrams

A Minkowski diagram is the standard way of depicting the spacetime of special relativity.
Figure 1 shows a typical example. Such a diagram is a direct visualization of the mathematical
concepts described in Section 3: spacetime events are visualized as points (dots), four-vectors
are shown as connecting lines, the wordlines of objects as lines, and reference frames are
indicated by their respective coordinate axes. The light rays absorbed by the observer form
a light cone that is also illustrated by a line (or a collection of lines).

The popularity of Minkowski diagrams in textbooks and other scientific presentations of
special relativity is rooted in the fact that those diagrams provide a geometric visualization
of spacetime and its important constituents. In other words, a Minkowski diagram goes
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Figure 1 1+1D Minkowski diagram show-
ing light emission from a static object and light
absorption by a moving camera.

Figure 2 2+1D Minkowski diagram with
several worldtubes and a backward light cone
originating from a virtual camera.

hand-in-hand with the mathematical description from Section 3. The superposition of inertial
reference frames using a Minkowski diagram allows us to visualize the Lorentz transformation
of an event. Figure 1 illustrates the Lorentz transformation of the event E to frame S′ by
projection lines (light solid lines).

Unfortunately, there are a few issues connected with Minkowski diagrams. One problem
is the reduction of dimensionality: typically, only the temporal dimension and one spatial
dimension are shown in a diagram. Sometimes a second spatial dimension is included.
However, Minkowski diagrams never show all four dimensions of spacetime but only a
subspace thereof. Therefore, these diagrams cannot provide a faithful representation of
the complete physical scenario. Another issue is the interpretation of angles and inner
products in a Minkowski diagram. Since the Minkowski metric (Eq. (1)) is different from
the Euclidean metric, inner products in a Minkowski diagram cannot be inferred intuitively
from our experience with Euclidean space, in which the diagram is rendered. For example,
the inner product of the t and x axes of any reference frame vanishes even though these
axes do not seem to be perpendicular in the rendered diagrams (see the coordinate system
S′ in Figure 1). However, this interpretation issue is more of a problem in popular-science
presentations than in scientific publications due to the different background knowledge of
the readers. Therefore, Minkowski diagrams primarily address physicists and researchers as
an audience.

Minkowski diagrams are usually not based on complex scene descriptions or other external
data because they rather target the visualization of simple spacetime relationships such
as a lightlike connection between emission and absorption events. Therefore, Minkowski
diagrams are typically generated without specific computer support. For example, they
may be hand-drawn illustrations or produced with a generic vector graphics program. The
educational software by Taylor [32] is one of the few examples where spacetime diagrams
are computer-generated. Another example is the system by Diepstraten et al. [6] that
automatically generates Minkowski diagrams from a 3D scene description. This system, as
another advanced feature, allows for 2+1D diagrams with two spatial axes. 2+1D diagrams
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Figure 3 Spatial slices at three different
times, taken from the motion of a cube-shaped
object.

Figure 4 Virtual camera view for traveling
at β = 0.99 toward the Brandenburg Gate.

have a couple of advantages compared to traditional 1+1D diagrams: extended objects can
be shown instead of point particles; the visibility properties between objects can be visualized;
objects may move in various directions of motion; angles become apparent in two spatial
dimensions; finally, the relativistic aberration of light can only be seen in more than one
spatial dimension. Figure 2 shows a 2+1D Minkowski diagram with several worldtubes (i.e.,
the 2D analog of wordlines) and a backward light cone originating from the observer. The
intersections of the backward light cone with the worldtubes indicate the emission of light
that is registered by the virtual camera.

6 Spatial Slices

Spatial slices can be constructed for a fixed time, which corresponds to a simultaneous
measurement of positions in 3D space. Due to the relativity of time, a spatial slice is
always associated with a reference frame—this visualization approach intrinsically depends
on coordinate systems. Therefore, one may have to face apparent paradoxes if this frame
dependency is not carefully observed. On the other hand, spatial slices are quite intuitive in
the sense that they show simultaneous measurements.

Spatial slicing is typically applied to present an “outside” perspective by an omniscient
viewer in order to explain relativistic phenomena. Because such phenomena are usually
related to some aspects of light propagation, typical visualizations include not only depictions
of scene objects but also representations of light rays. Figure 3 shows a 2D example of several
spatial slices taken at different times. Here, both a moving box-shaped scene object and a
light ray are shown.

Spatial slicing can be implemented by using standard 2D or 3D computer graphics that
is based on the assumption of infinite speed of light. Instantaneous light transport is one
way of realizing a simultaneous measurement. The only extension, as compared to standard
computer graphics, is the need for a Lorentz transformation of scene objects when the
reference frame is changed. While the Lorentz transformation could be computed according
to the matrix–vector multiplication from Eq. (2), there is a simpler solution for uniformly
moving objects: these objects are reduced in length with a factor 1/γ, which is called Lorentz
contraction. Therefore, the relativistic effects can be included by a simple scaling along the
direction of motion, which can even be done “manually” in any 2D or 3D of-the-shelf graphics
tool (e.g. Adobe Illustrator or Maya). The main application of spatial slices is for physics
education and popular-science presentations. Examples can be found on the web page [W3].



D. Weiskopf 297

7 Virtual Camera Model

The virtual camera model is based on a physical experiment: what kind of image would a
camera produce in a special relativistic setting? This approach is the special relativistic
analog of standard image synthesis. It is also related to spatial slicing from the previous
section. The main difference is that the finite speed of light is taken into account for the
virtual camera model. The virtual camera model is typically applied to a fast moving camera:
how would the world be perceived in a “relativistic flight simulator”? Because this scenario
is conceptually simple, it is appropriate for popular-science and educational illustrations [41].

7.1 Special Relativistic Polygon Rendering
The idea of special relativistic polygon rendering is to transform the 3D geometry of a
static scene to the apparent shape of the scene objects as seen by a relativistic observer.
This approach works in object space, transforming the original 3D geometry to another 3D
geometry. The scene objects emit light (either directly or indirectly through light reflection)
and, thus, can be related to light emission events. Conversely, the camera is related to a
light absorption event. Relativistic polygon rendering relies on the relationship between light
emission and absorption events, and the Poincaré transformation of these events in order to
allow for moving cameras or objects.

The Minkowski diagram in Figure 1 illustrates these transformations for a single point-like
scene object. The line {(t, xe)|t} denotes the worldline of the object in its rest frame S. The
intersection of the worldline of the scene object with the backward light cone originating
from the camera event O determines the emission event E, i.e., the connection between E
and O is lightlike. The time coordinate of E in the frame S is determined by(

x0
o − x0

e

)
=
√

(x1
e − x1

o)2 + (x2
e − x2

o)2 + (x3
e − x3

o)2 , (10)

where xµe denotes the coordinates of E and xµo the coordinates of O. The Poincaré transfor-
mation allows us to transfer the coordinates of the emission event from the scene frame to
the camera frame. The spatial coordinates of that event can be used to render the object
as seen by the fast moving camera. To render a more complex scene, the transformation of
events is applied to all vertices of the tessellated scene. Please note that, due to the nonlinear
nature of Eq. (10), the combined transformation of vertex locations is nonlinear.

Relativistic polygon rendering fits to the GPU rendering pipeline: vertex coordinates
are modified at the first stage of the rendering pipeline, whereas the other stages of the
pipeline remain unaffected. The transformation of vertex coordinates can be done either by
CPU processing or in a vertex program on the GPU. The object-space approach to special
relativistic rendering is used in several papers with sometimes slight variations of the same
computational theme [5, 9, 15, 24, 39].

Object-space relativistic rendering has several advantages: it is easy to implement, it
is fast due to its direct support by graphics hardware, and it allows for scene objects that
move at different speeds. The main disadvantage is caused by the nonlinear transformations
of vertex coordinates. The linear connections between vertices through straight edges may
lead to artifacts that are most prominent for large, nearby triangles. This problem can be
overcome by a view-dependent re-tessellation to refine large triangles.

The transformation of vertex positions only accounts for the apparent geometry as seen by
the moving camera. The relativistic effects on illumination can be incorporated by modifying
the color and intensity according to the Doppler and searchlight effects (see Eqs. (8) and
(9)).
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Figure 5 Polygon rendering of relativistic radiosity: non-relativistic view (left), aberration effects
for β = 0.6 (center), and all relativistic effects included (right).

Typically, relativistic polygon rendering considers only direct illumination. However,
global illumination is feasible as well. For example, special relativistic radiosity rendering
allows for global illumination with diffuse reflections [40]. Like non-relativistic radiosity, the
first rendering stage is view-independent and computes the radiosity solution for a static
scene. The second stage uses relativistic polygon rendering to construct the image for a
relativistic observer. Figure 5 shows an example of relativistic radiosity.

7.2 Image-Based Special Relativistic Rendering
Image-based special relativistic rendering [42] computes images without the need for a 3D
scene representation. It uses the plenoptic function, which describes the radiance field
depending on light direction, spacetime position, and wavelength [1]. The plenoptic function
is first acquired for a static camera in the rest frame of the scene, and then transformed to
the frame of a moving camera. Afterwards, non-relativistic rendering methods are applied to
generate the final image. The Lorentz transformation of the plenoptic function is governed
by the following relativistic effects: the aberration of light changes the direction according to
Eq. (5), the Doppler effect modifies the wavelength according to Eq. (8), and the searchlight
effect alters the radiance according to Eq. (9).

Often, the plenoptic function is considered only for a single camera location, leading
to a panorama image taken from that position. Here, the relativistic aberration just leads
to a nonlinear warping of the panorama. The Doppler and searchlight effects additionally
change the color and brightness of the panorama. However, all these operations can be
realized by simple image manipulations. Image-based rendering can be applied to real-world
images [42] or to textures generated on-the-fly by non-relativistic rendering of 3D scenes
[38, 41]. Figure 4 shows an example of texture-based rendering where only the geometric
effects due to the aberration of light are visualized.

Image-based rendering has the following advantages. First, it is well supported by the
graphics pipeline of GPUs—non-relativistic rendering may be used to generate the panorama
and only one additional rendering step is required for the image transformation. Second, no
view-dependent re-tessellation of the scene is needed because the nonlinear transformations
work on a per-pixel basis for the panorama image. Image-based rendering is per-pixel
accurate, both for the geometric and illumination effects. A disadvantage of image-based
rendering is that the panorama needs to be acquired at high resolution to ensure a sufficient
sampling rate after the nonlinear Lorentz transformation. Another shortcoming is the lack
of support for objects that move at differing speeds.
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7.3 Special Relativistic Ray Tracing

A third class of rendering approaches is based on ray tracing. For scenarios with a single static
scene and a moving observer, non-relativistic ray tracing needs only a slight modification to
incorporate relativistic effects: the primary ray directions are transformed from the moving
camera frame to the frame of the static scene [12]; afterwards, non-relativistic ray tracing is
performed. The ray direction and wavelength can be transformed by applying the Lorentz
transformation to the corresponding wavevector (see Eq. (4)). The radiance is transformed
according to Eq. (9).

Full 4D special relativistic ray tracing is needed to include more advanced effects such as
accelerating scene objects and shadowing, reflection, or transmission of light [19, 41]. 4D ray
tracing represents light rays, scene objects, and the intersection between rays and objects in
4D spacetime. In this way, animated and accelerated objects can be modeled. To compute
the local illumination at an intersection event, the light information needs to be transferred
into the rest frame of the object that is hit by the ray. This transformation is accomplished
by Eqs. (5), (8), and (9).

One advantage of ray tracing is high image quality and the support for reflection and
transmission. Full 4D ray tracing additionally extends the range of effects to include
accelerated objects and advanced interreflection between objects that move relative to each
other. Therefore, 4D ray tracing is the visualization method with the widest range of
supported relativistic effects. The main disadvantage of ray tracing are high computational
costs, which typically make interactivity impossible.

7.4 Acceleration

The accelerated motion of a point-like object through spacetime can be computed by solving a
corresponding equation of motion (an ordinary differential equation). In this way, accelerating
cameras can be modeled [24, 39, 44]. The image generation for an accelerating camera is
identical to the relativistic rendering for a co-moving, non-accelerating camera (i.e., a camera
that moves with the same instantaneous velocity). Therefore, any of the aforementioned
rendering techniques can be employed. The acceleration of extended scene objects is more
complex and subject to issues of correct physical modeling to ensure a consistent and
physically plausible motion [16, 41]. Here, the rendering is usually accomplished by 4D ray
tracing.

8 Open Issues

Most of the aforementioned virtual camera techniques facilitate rendering at interactive rates
so that the efficiency of relativistic rendering can be considered a solved problem. A largely
unsolved issue, however, is the photorealistic computation of wavelength-dependent radiance
in a scene, which is the prerequisite for realistic rendering of the Doppler and searchlight
effects. The main challenge is the acquisition or modeling of wavelength-dependent properties
of scene objects and light sources (even beyond the visible spectrum because of the Doppler
shift).

Although there exist some interaction metaphors for the virtual camera approach [39, 41],
the development of appropriate user interfaces is a goal of on-going research. Similarly, the
computer support for generating Minkowski diagrams and spatial slicing could be greatly
improved by specific interaction models and design interfaces.

Chapte r 19



300 A Survey of Visualization Methods for Special Relativity

Web Links

A wealth of information on special relativistic visualization can be found on the web. Examples
are: a list of special relativistic flight simulators [W2], a timeline for the development of
computer-based relativistic visualization [W1], and didactics material for teaching relativity
[W3].

Web Links
W1 D.V. Black. Visualization of non-intuitive physical phenomena.

http://www.hypervisualization.com [accessed Feb 20, 2006].
W2 A. Hamilton. Guide to special relativistic flight simulators.

http://casa.colorado.edu/~ajsh/sr/srfs.html [accessed Feb 20, 2006].
W3 U. Kraus, C. Zahn. Space time travel.

http://www.spacetimetravel.org [accessed Feb 20, 2006].
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Abstract
We present an audio-visual Virtual Reality display system for simulated sound fields. In addition to the
room acoustic simulation by means of phonon tracing and finite element method this system includes the
stereoscopic visualization of simulation results using a 3D back projection system as well as auralization
by use of a professional sound equipment. For auralization purposes we develop a sound field synthesis
approach for accurate control of the loudspeaker system.
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1 Introduction

For architectural planning of class rooms, theaters or concert halls the auditive impression of resulting
rooms is very important. Auralization provides such a feasibility. It can be considered as the auditive
variant of visualization, providing insight into acoustic properties of a room and its reasons. Virtual
Reality environments enable an immersive representation of computer-generated scenes. Integrating
acoustic simulation, visualization, and auralization into the design process aims at interactive design
and immediate exploration of the virtual model.

In this work we present an audio-visual Virtual Reality

Figure 1 Room acoustic visualization
on the VR system.

system which integrates computer-aided simulation, visu-
alization and auralization of acoustics in a room model.
For auralization purposes we combine a FEM based ap-
proach and the phonon tracing algorithm [5] in order to ob-
tain a realistic impression of the sound perceived at given
listener positions. The wave field synthesis approach en-
ables a correct auditive rendering of the convolved signals
on a professional sound equipment. With our system,
walkthrough of the listener positions is possible, such
that a visual and auditive impression of the scene can be
provided.
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From our visualization, the effect of different materials on the spectral energy distribution can
be observed. The first few reflections already show whether certain frequency bands are rapidly
absorbed. The absorbing materials can be identified and replaced in the virtual model, improving
the overall acoustic quality of the simulated room. A wave front is the pressure wave corresponding
to a unit pulse. In order to visualize the wave fronts spread out from the sound source we use both
particles (spheres) and surface elements, color coded using the energy spectra of the corresponding
virtual sound particles. After a sufficient time period, a great number of reflections has occurred, such
that individual wave fronts cannot be identified, anymore. The darker the color of spheres gets, the
more energy has been absorbed by the different materials. Applications of our work include (but are
not limited to) the acoustic improvement during architectural design, and equipment phases of class-
and congress rooms. sec Our paper is organized as follows. In Section 2 we review related work.
Section 3 describes the acoustic virtual reality system. Section 4 outlines our simulation algorithm,
implying the phonon tracing approach and the finite element method. Thereafter, we present our
synthesis algorithm in Section 5, follows by visualization of the simulation results (Section 6). In
Section 7 we show an application of our sound visualization approach, before we conclude our work.

2 Related Work

In room acoustics there are two main approaches simulating the propagation of sound. The first
approach is based on the wave equation which is solved numerically, for example by use of the
finite element method (FEM). The simulation results are very accurate, but the complexity increases
drastically with the highest frequency considered, since a volume grid with O(n3) cells needs to be
constructed where n is proportional to the highest frequency. The time complexity for solving this is
typically O(n3 log n3). Hence, the wave model is suitable for low frequencies only.

The second approach, known as geometric acoustics, describes the sound propagation by sound
particles moving along a directed ray. There exists a variety of such methods for simulating room
acoustics. They are mostly based on optical fundamentals, and make use of approaches developed
there. Two classical methods for acoustic simulation are the image-source method [1, 6] and the
ray tracing method [25, 26]. Due to the shortcomings of the two classical approaches, continuative
approaches have been developed in recent years. Mostly, they employ parts of the classical schemes
or a combination of them. One approach that makes use of advantages of image-source and ray
tracing is introduced in [46]. Here, the visibility check of the image-source algorithm is performed
via ray tracing. Beam-tracing methods [12, 13, 32] overcome the aliasing problem of classical ray
tracing by recursively tracing pyramidal beams, implying the need for highly complex geometric
operations, still ignoring diffraction effects at low frequencies. An approach for calculation of edge
diffraction in room acoustics is presented in [45, 30]. To overcome the dependency of the simulation
on the receiver position the radiosity method was extended to be used in room acoustics [40, 24].
Due to the computation complexity these methods do not seem practical for large environments.
Newer approaches cope with complexity by exploiting GPU hardware accelerating the simulation
calculations [17]. Approaches utilizing the photon mapping [18] also exist [20, 5].

The aim of audio simulation is to estimate acoustic properties, such as reverberation time and the
reproduction of acoustic benchmarks. Auralization is the process of producing audible impression of
a room. It can be realized in two different ways. The first one is the ”direct room impulse response
rendering” approach, where the room impulse response (RIR) is measured or modelled and afterwards
convolved with the anechoic signal. In the DIVA auralization system [41, 29] a different approach is
proposed, the "parametric room impulse response rendering". Here, the RIR is not calculated before
the auralization process. Instead, a set of either perception-based or physic-based parameters for
auralization is defined. In [34] an audio-rendering system for use in immersive virtual environments
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is introduced. It is optimized for efficient rendering of moving sound sources. A survey of existing
auralization systems is given in [41].

There are two major sound rendering approaches: wave field synthesis [4] and binaural synthesis
[3]. The latter approach uses headphones to reproduce the sound field simulated at the ears of the
virtual listener. The advantages are cheap equipment and low number of channels to be computed.
However, the listener is bothered by the headphones and synthesis requires deep knowledge of the
acoustics of the human head and psycho-acoustics. Therefore, we apply wave field synthesis. The
underlying theory is based on Huygens’ principle, or more mathematically, on the fact that solutions
of the Helmholtz equation correspond to distributions of sound sources on the surface of the domain
(Kirchhoff-Helmholtz integral, [14]). This continuous distribution is approximated by a finite number
of loudspeakers. The higher the number of speakers and the lower the frequency the larger is the
sweet spot where the approximation is accurate. Usually, only the sound field of a 2D listening plane
is synthesized as this requires already quite large number of speakers. For instance, Fraunhofer IDMT
furnished a cinema with 192 speakers to achieve good reproduction at all seats [22]. For our purpose
it is enough to have a good reproduction close to the proband’s head the position of which is, except
for small movements, fixed. The present system comprises currently 4 full-band speakers and a bass.
In a future system additional mid and high-band speakers will be added.

The existing acoustic visualization techniques can be classified into two groups. The methods of
the first group consider the propagation of the sound waves or rays inside the room independent of
the listener position. Whereas the algorithms in the second group base on the measured or simulated
room impulse response for individual listener. Yokota et. al. [47] visualized sound propagation of
2-D sound fields using a difference time domain method. Petrausch and Rabenstein [37] introduce a
program for simulation and OpenGL based visualization of 2-D sound wave propagation in real time.
Tokita and Yamasaki [44] depicted particle displacements resulted from a wave-based simulation
on a rigid 3-D grid in a cube shaped room. Lokki [29] presented a visualization using the image-
source method. Lokki and Nenonen [28] utilized cave equipment for immersive visualization of
trace paths and particle paths propagating inside closed rooms. In [39] Pulkki and Lokki present an
approach visualizing edge diffraction. Funkhouser et. al. [12] used visualization of source points,
receiver points, pyramidal beams, reverberation path etc. in order to understand and evaluate their
acoustic modeling method. Lauterbach et. al. [27] showed the sound propagation resulting from
frustum tracing. Sound visualization approaches utilizing the phonon tracing algorithm as well as
comparative visualization of the phonon tracing and an FEM based solver are presented in [10] and
[9] respectively. Khoury et. al. [21] represented the sound pressure levels inside the room by means
of color maps. Additionally, the precedence effect (or ”law of the first wave front”) was analyzed
by using isosurfaces. Stettner et. al. [43] visualized acoustic metrics such as clarity and definition
as well as spatial impression by use of specific icons. Monks et al. [33] introduced an interactive
optimization system for acoustic design. The results are presented by means of icons depicting early
decay time (EDT), interaural cross-correlation coefficient (IACC), and bass ratio (BS). Furthermore,
the sound strength was displayed at room surfaces using color to indicate the sound-level data at
different time moments. Several approaches for visualization of measured sound intensity also exist
[36, 11, 31].

For room acoustic modeling we combine in our system a FEM based method (for low frequency)
and the phonon tracing approach [5] (for middle and high frequency). By this means we can consider
the diffraction and interference, which can not be neglected for low frequencies, and manage the
complexity problem of FEM by middle and high frequencies. For sound rendering purposes we
introduce a wave field synthesis approach. In addition to the auralization we provide a visualization
of sound wave propagation inside the virtual room.
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Figure 2 Modules of our audio-visual Virtual Reality system.

Figure 3 Visual and audio Virtual Reality display system.

3 Acoustic Virtual Reality System

In this section we present our visual and auditive virtual reality display system. A schematic overview
is given in Fig. 2. As input the system requires the geometry model of the room, the absorption or
reflection properties of the room surfaces, sound sources characteristics, and listener positions. The
module ”Acoustic simulation” computes the modal state space model (low frequencies) by use of the
Finite Element Method (FEM) described in Section 4.2, and the room impulse responses (RIR) and
the phonon map (middle and high frequencies) by means of the phonon tracing algorithm introduced
in Section 4.1. On the basis of this information the anechoic source signal is modified for sound
synthesis in the ”Acoustic rendering” module. Thereafter, the soundfield synthesis is performed
utilizing the acoustic hardware. The ”Acoustic Visualization” module provides the visualization of
wave propagation from the sound source. The graphical rendering ("Visual rendering" module) is
implemented utilizing a stereoscopic back projection system. By use of our VR system, a walkthrough
of the listener positions is possible, such that a visual and auditive impression of the scene can be
provided.

The hardware of the Virtual Reality system includes the 3D back projection system and the
acoustic system (see Fig. 3). The 3D back projection system is composed of two high resolution
digital D-ILA projectors for displaying mono and passive stereo signals, two circular mechanical
shiftable polarization filters, and one projection wall, suitable for polarization filters. By means of
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Table 1 Technical details of the VR System.

3D Powerwall
2 projectors 1400x1050, 1500 ANSI Lumen
1 screen plastic film suitable for polarization filters (2.88m x 2.30m)
2 filters circular polarization filters
glasses plastic glasses with circular polarization inserts
4.1 Acoustic system
1 sound card 7.1 USB sound blaster
4 loudspeakers two-way universal loudspeakers
1 subwoofer active subwoofer with integrated amplifier
1 amplifier four-channel amplifier with integrated programmable FIR Filters
PC cluster
1 master Dual Xeon 3.0 GHz, 2GB RAM, PCI-Express, NVidia Quadro FX1300
2 render nodes Single Xeon 3.0 GHz, 2GB RAM, PCI-Express, NVidia Quadro FX5400

this system a stereoscopic rendering of virtual scenes is possible, observed by wearing polarizing
eyeglasses. The acoustic system contains a 7.1 soundblaster and a professional surround sound
equipment. This surround sound system on its part includes four two-way loudspeakers and one
subwoofer facilitating the localization of the virtual sound source. The system is driven by the
PC-cluster composed of three connected DELL computers. Two of them are the render nodes, and
one acts as master controlling the navigation and audio-visual output. Technical specifications of
the hardware of the Virtual Reality system are summarized in table 1. To reduce the intensity of
reflections from the walls we attached acoustic absorber plates inside our virtual reality lab.

The software application for the visual stereoscopic and acoustic rendering of the simulation
results on the hardware described above is implemented in C++ using QT1 and OpenGL2 APIs for
GUI programming and rendering. Particularly, we used QT’s client-server concept for controlling
the graphical representation. The render nodes are are responsible for drawing the view for the left
and right eye, respectively. To ensure that both rendered images are displayed simultaneously for
a flicker-free representation of the scene, synchronization of the render nodes is required. Some
APIs for parallel rendering already exist, for example Chromium3, which is a system for interactive
rendering on clusters.

To avoid restrictions imposed by existing synchronization software packages, a simple method
based on sockets and full hand-shake synchronization is implemented. Nevertheless, since pure
OpenGL is used for graphic rendering the application of Chromium or another VR API’s (e.g.
VR Juggler4, DIVERSE5) in order to be flexible to use another VR hardware configuration is
straightforward. The full hand-shake synchronization is realized as follows. The master sends
command messages to the render nodes. When both renderer replied on a successful execution of
the instruction, a new command can be send. In Fig. 4 the loading process of a room geometry from
a file is conceptually shown. The master sends the command for loading the scene from file (load

1 http://trolltech.com/
2 http://www.opengl.org/
3 http://chromium.sourceforge.net/
4 http://www.vrjuggler.org
5 http://diverse-vr.org/
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Figure 4 Full hand-shake synchronization for rendering

scene). After the affirmative reply from both render nodes, instruction for rendering follows (render
scene). Is this successfully executed and confirmed, the buffers can be swapped now for the final
representation of the left eye and right eye views on the display. Before the master can send new
instructions to render nodes, it needs to wait for the response to the previous message, even in the
case of single operations like swapping buffers. Otherwise, two consecutive messages sent by the
master may collide causing a serious time delay.

For auralization purpose we used the synthesis method described in Section 5. In order to drive
the loudspeaker of the audio system separately with the corresponding signals the PortAudio library6

for acoustical output is utilized. The audio playback is administrated by the master computer and is
started in a new process (thread ).

4 Room Acoustic Simulation

4.1 Phonon Tracing Approach
Photon mapping [18, 19] is often used for rendering photo-realistic images, supplementing uni-
directional raytracing by a variety of visual effects, like color bleeding and caustics. We adopt a
similar approach to the simulation of sound, named phonon tracing [5], which is summarized in
following.

Problem Specification

Our simulation algorithm requires the following input information:
position of sound source s,
emission distribution E of sound source,
one ore more listener positions li,
a triangulated scene with tagged material m j,
an absorption function α j : Ω 7→ (0,1] for each material,
an acoustic BRDF for each material (if applicable),
an energy threshold ε for terminating the phonon paths.

6 www.portaudio.com
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The output of our approach is a FIR filter fi for each listener’s position li corresponding to the impulse
response with respect to the sound source and the phonon-map containing for each phonon the energy
spectrum ep, the traversed distance dp, the phonon’s position pp at the reflection point, its outgoing
direction vp, number of reflections rp, and the material mp at the current reflection.

Our simulation algorithm is executed in two stages, the phonon tracing step constructs the phonon
map, and the phonon collection and filtering step collects the phonon’s contribution to a FIR filter for
every listener position.

Phonon Tracing

Every phonon p emitted from the sound source carries the following information:
an energy spectrum ep : Ω 7→ R+,
the distance dp traversed from the source,
the phonon’s current position pp,
the outgoing direction vp.

Our absorption and energy functions α j are represented by ne = 10 coefficients associated with the
frequencies 40,80,160, ...,20480 Hz. The basis function for the energy spectrum are wavelets adding
up to a unit impulse. Every phonon is composed of different frequencies, which is more efficient than
tracing a single phonon for each individual frequency band.

Phonons are emitted from the source s according to the emission probability distribution E and
have at starting point a unit energy spectrum ep,i = 1 (i = 1, ...,ne). At the intersection of the phonon
ray with the scene, the phonon direction dp is reflected with respect to the surface normal and the
absorbed energy is subtracted according to the local material m j, and the distance dp is set to the
traversed distance. The phonon is fixed at the intersection point, contributing to a global phonon map.

If the maximal energy of the phonon exceeds the energy threshold, i.e. max{ep,i}ne
i=1 > ε and

a minimal number of reflections is achieved, the next phonon re-uses the path and energy of the
preceding one, saving computation time. It started at the current position with respect to the outgoing
direction dp and contributes to the phonon map at next surface intersection. If the threshold is not
exceeded and a minimum number of reflections has been computed, the a new phonon is stated from
the source. After a prescribed number np of phonons have contributed on the global phonon map, the
tracing is terminated. The phonon map is used for further visualization purposes on our virtual reality
system.

Phonon Collection and Filtering

The remaining task of the phonon tracing method is collecting the phonon’s contribution to a FIR
filter f for every listener’s position l. This filter corresponds to the impulse response from the source,
recorded at l, such that convolution with an anechoic signal, reproduces the perceived signal.

In the case of uniform absorption for all frequencies, the contribution of a phonon visible from
the listener is simply a scaled, translated unit pulse (Dirac). The Dirac is shifted by the time elapsed
between emission and reception of a phonon and scaled by the phonon’s energy ep,i multiplied by a
gaussian weighting the distance of the ray to the listener. In classical acoustic ray tracing [25, 26], a
sphere is used to collect rays at listener position. Using a gaussian, however, provides much smoother
filters, since more phonon rays contribute to the filter, weighted by their shortest distance.

In the more general case of frequency-dependent absorption, the unit impulse is subdivided into
wavelets representing the individual frequency bands. The filter becomes the a sum of this wavelets
scaled by ep,i and shifted by the elapsed time. In our implementation we use 10 frequency bands
and absorption coefficients for the frequencies ωi = 20 ·2i Hz (i = 1, ...,10). We construct band-pass
filters in spectral domain by means of cosine functions in order to obtain quickly decaying wavelets.
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The wavelets are computed by the inverse Fourier transform. Our band-pass filters have the following
properties:

compact support in the frequency domain Ω,
symmetry and smoothness in both domains,
their sum is one in Ω and a Dirac in the time domain.

The impulse response filters produced by our implementation are sampled at a rate of 48 kHz. For
generating the filter bank, we used 214 samples, employing the inverse FFT for computing the
discretized wavelets. After the computation the response filter is normalized. A complete description
of our phonon tracing algorithm, particularly addressing the filter design, can be read in more detail
in [5].

4.2 Finite Element Method (FEM)
Phonon tracing or any other method based on geometric acoustics (ray tracing, mirror image) fail in
the low frequency range for two reasons:
1. Wavelengths are of the order of typical dimensions of the room. Hence, diffraction can no longer

be neglected.
2. Damping is typically low at low frequencies and reverberation times become too long to be

represented by a convolution kernel of reasonable length.
Therefore, we have to fall back on wave acoustics to simulate the low frequency part of the sound field.
For closed rooms this is preferably done by the finite element method (FEM), which approximates the
wave equation by a large system of ordinary differential equations (ODEs) the unknowns of which
are the pressures at grid points covering the room. In general, there are by far too many unknowns
to solve these systems of ODEs in real time. Hence, we need to reduce the system to a concise
state-space model with similar input-output behavior in the frequency range of interest.

There are many different approaches to model reduction [2]. The common observation is that
system dynamics can often be represented quite well by a superposition of a few (generalized)
eigen-modes. The coefficients of these modes are the unknowns of the new reduced system. Finally,
assuming samplewise constant input (e.g. acceleration of the loudspeaker membrane), the continuous
state-space model is transformed into a discrete one, which can be solved in real time. In practice, a
low pass filter is used to split the input signal into a low frequency part and a remainder. The low
frequency part ( < 300 Hz) is handled in the way described here and the remainder by phonon tracing.

In the following we list the steps to get from the wave equation (1) to a reduced discrete state-space
model (5) describing the transient response of a room to an excursions of a loudspeaker membrane.
The wave equation and associated boundary conditions read:

∂ 2 p
∂ t2 − c2

0∆p = 0 on G

c0
∂ p
∂n

= −1−R
1+R

∂ p
∂ t

on Γw

∂ p
∂n

= −ρ0
∂ 2xm

∂ t2 on Γm . (1)

p = p(t,x) denotes pressure, c0= 343 m/s the velocity of sound, and ρ0 =1.2 kg/m the density of air
at room temperature, G the interior of the room, and Γw and Γm the surfaces of walls and membrane,
respectively. xm is the excursion of the membrane and R is a reflection coefficient. It may depend on
the particular wall, but is constant for all frequencies. This is a minor problem, as we use the model
only for a small frequency band.

Approximating the pressure distribution by a superposition of, for instance, piecewise quadratic
ansatzfunctions p(t,x) = ∑

N
i=0 pi(t)ϕi(x) and integrating (1) with respect to the ϕi gives a FE model



E. Deines, M. Hering-Bertram, J. Mohring, J. Jegorovs, and H. Hagen 311

of the form:

Mp̈+Dṗ+K p = Fu

y = Pp . (2)

The real N×N matrices M,D,K are called mass, damping, and stiffness matrix. p = p(t) is a vector
composed of the coefficients pi. u = u(t) is the input, e.g. the acceleration of the membrane. F
transforms this input into a force. P is a projection matrix extracting certain interesting pressures yi.
Setting

x̂ =
[

p
ṗ

]
, Ê =

[
I 0
0 M

]
, Â =

[
0 I
−K −D

]
, B̂ =

[
0
F

]
, and Ĉ =

[
P 0

]
the FE model may be rewritten as a state-space model:

Ê ˙̂x = Âx̂+ B̂u

y = Ĉx̂ . (3)

Assuming that x̂ is essentially composed of the columns of a matrix U ∈RN×n, n� N, and projecting
the equations on the columns of V ∈ RN×n we end up with a reduced state-space system where

x̃ =Ux̂, Ẽ =V t ÊU , Ã =V t ÂU , B̃ =V t B̂ , C̃ = ĈU . (4)

The columns of U and V may be found by expanding the associated transfer function H(s) =
Ĉ(sÊ − Â)−1B̂ about some shifts s j = iω j. Here, we used the rational dual Arnoldi algorithm
described in [35]. Finally, dividing the first equation of the reduced version of (3) by Ẽ and performing
a balanced truncation [48] we end up with a state-space system of typically a few hundred unknowns
rather than several 10,000 degrees of freedom. Integrating the reduced version of (3) over the length
∆t of one sample for constant input un, i.e.

xn = eÃ∆t xn−1 +
∫

∆t

0
eÃ(∆t−τ) dτ B̃un−1,

leads to a discrete state-space system

xn = Axn−1 +Bun−1

yn = Cxn . (5)

Switching to a suitable basis xn = T ξn it is always possible to turn the system into companion
canonical form [23], where the first n−1 rows of A coincide with the last n−1 rows of the identity
matrix of order n, the last row contains the negative coefficients of the characteristic polynomial of
A, and B is the n-th unit vector. Hence, updating the state vector xn and evaluating the pressure at a
certain position requires 2n multiplications and 2n−1 additions. Below, we will present an example
where n = 149, i.e. 595 floating point operations are needed per new sample. On the other hand, if
the sampling rate is 48,000 and we are using a convolution kernel instead which can represent at least
a full wave of a 20 Hz signal, we need at least 4799 floating point operations.

Numerical Example

We consider a small room with two doors, a heating covered by absorbing material, walls made of
bricks or concrete, an absorbing ceiling and a loudspeaker in one of the corners, cf. Fig.5. We assume
a reflection coefficient R = 0 at the heating (total absorption), R = 0.8 at the ceiling, and R = 1 (total
refection) at all the other surfaces. The original FE model contains 29272 unknowns and was created
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Figure 5 Response to a low frequency beep in a small weakly absorbing room .

with FEMLAB. Model reduction was done in MATLAB and yielded a model of order 145. Virtual
measurements are taken in a plane 160 cm above the floor. The fourier transform of the input signal
to the loudspeaker is a Gaussian centred about 200 Hz with standard deviation of 20 Hz. Responses
are illustrated for a virtual microphone in the small indentation at the front door and in the middle of
the room. Note that the indentation acts as a resonator. A standing wave is excited which oscillates
between front door and opposite corner while taking low values in the center of the room. Close to
the front door reflections accumulate in such a way that the maximum amplitude is reached when the
loudspeaker has already stopped playing.

5 Acoustic Synthesis

Let p̃i ∈ R2nb a section of the digital signal simulated in point x̃i ∈ R2 of the horizontal measuring
plane cutting the virtual room. nb is the block length. We choose a power of 2 to speed up later
Fourier transforms. The np points are distributed equally on a small circle of radius r about the virtual
head position. The radius has to be of the same order as the wave length corresponding to the highest
frequency to be reproduced:

r ≈ λmin =
c0

fmax
. (6)

For fmax= 20,000 Hz and a sound velocity of c0= 343 m/s the radius is only 12 mm. The exact
radius depends on the number of loudspeakers nl. To get an idea, imagine that an arbitrary sound
field of frequency fmax has to be approximated by a polynomial with nl coefficients which, for small
nl, will be valid only within a small radius. Choosing r this small we avoid artefacts in reproducing
the high frequency part of the sound field while, at lower frequencies, the approximation will still be
good also for larger radii.
The system for sound field synthesis is made to reproduce sound in np fixed positions on a ring of
radius r about a point in the projection room. As the proband may change the line of vision in the
virtual room these points cannot be directly associated with the np points from the fixed grid where
sound is simulated. Hence, the simulated samples p̃i,n of time step n are interpolated and evaluated at
the rotated real positions xi using cubic splines in the angle.
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Figure 6 Virtual and projection room.

The resulting signals pi ∈ R2nb are first windowed by a lifted cosine and then subjected to a fast
Fourier transform:

p̂i = fft(pw
i ), pw

i,n =
1
2

[
1− cos π(n+ 1

2 )
nb

]
pi,n . (7)

Synthesizing the sound field we assume that the loudspeakers induce plane waves in the central
listening position and that time delay and amplification are the same for all loudspeakers. These
conditions are met fairly well as we use an anechoic projection room and the speakers are furnished
with FIR filters and placed on a circle. However, in a later version the plane-wave assumption will be
replaced by using measured impulse responses. So far, the Fourier coefficients q̂ j,k of the signal of
the j-th speaker are computed to satisfy:

p̂i,k =
nl

∑
j=1

q̂ j,k exp
(
−i

ωk

c0
〈ν j,xi〉

)
. (8)

ωk =
π fs
nb

k is the k-th angular frequency, fs the sampling rate, and ν j the radiation direction of the
j-th speaker. This leads to a linear system for each frequency:

Ak q̂.k = p̂.k . (9)

For stability reasons the number np of reproduction points is chosen greater than the number nl of
speakers and (9) becomes overdetermined. Moreover, in order to keep speaker signals bounded we
introduce a small regularization parameter α:

q̂.k = Tk p̂.k, Tk = [A∗kAk +αI]−1 A∗k . (10)

The matrices Tk are computed once for each frequency when initializing the system. As the
speaker signals will be real we have q̂.,k = q̂∗.,nb−k and only half of the systems need to be solved.
Next, the q̂ j are retransformed into time domain by the inverse Fourier transform to get qw

j . The
superscript w indicates that these speaker signals will reproduce only the windowed measurements.
To get the final speaker signals, the first half of qw

j is added to the last half of the qw
j computed for the

last block:

q j = qw,new
j,1...nb

+qw,old
j,nb+1...2nb

. (11)
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Finally, qw,new
j,nb+1...2nb

is stored for adding in the next step. The following table summarizes the
algorithm:

1. Get next block of simulated measurements.
2. Per time step: interpolate simulated measurements at reproduction points of projection

room.
3. Scale measurements in projection room by lifted cosine-function.
4. Fast Fourier transform of scaled measurements in projection room.
5. Per frequency: compute loudspeaker signals to optimally reproduce measurements in a

regularized least squares sense.
6. Inverse fast Fourier transform of loudspeaker signals.
7. Add first half of loudspeaker signals to last half stored for last block.
8. Store last half of loudspeaker signals to add in the next step.
9. Goto 1.

6 Visualization

Our first visualization method described in [5] focuses on the spatial propagation of a sound wave
from the source. The corresponding wave front traverses the room and is reflected on surfaces,
altering its intensity and energy spectrum. We visualized this sound waves by rendering small spheres
representing the sound particles. These are color coded by means of their spectral energy. Therefore,
we use the RGB components, such that blue corresponds to the average of the energy by 40, 80, 160,
320 Hz, green corresponds to the average of energy by 640, 1280, 2560 Hz, and red to the average by
5120, 10240, 20480 Hz. When sliding through time, the spheres follow the simulated phonon paths.
We integrated following functions in our interactive visualization system:

varying the percentage of phonons to be rendered,
rendering only the phonons reflected from a selected material,
exchanging selected materials,
varying time / transversed distance.

The data structure supporting this visualization is an array of phonons carrying their energy
spectrum ep, the traversed distance dp, the phonon’s position pp at a reflection point, and its outgoing
direction vp, according to section section 4.1. In addition, we record the number of reflections rp

and the material mp at the current reflection. Since all phonons sharing the same path are listed
consecutively in the array, it is simple, for example, to select all consecutive pairs pi, pi+1 where
the current time t satisfies tpi ≤ t < tpi+1 and to draw a sphere on the line segment ppi, ppi+1,
corresponding to a phonon’s location at time t.

The exchange of a certain material requires only the phonons’ energy to be re-evaluated, where
the phonon paths remain fixed. To allow the exchange, it is necessary to enforce a minimum number
of reflections for every path in advance, since otherwise materials with high absorption coefficients
cannot be replaced. An application scenario of this kind is provided in the next section.

To improve the visualization of sound propagation to be able to better distinguish between different
reflected wave fronts and still preserving the scalability we use surface elements (surfels) [38] for
particle representation. In Fig. 7 a sketch of surfels is depicted. The surfel representation can be
adjusted according to users needs on accuracy as well as graphics hardware capabilities. The level of
detail can be changed by prescribing the number of points describing the circumcircle of the disk
(from quad to circle in Fig. 7).

In order to depict the propagated sound wave front, a surfel is rendered on each particle position
at given time. The size of the surfel is given by the radius ri and the orientation by the normal ni
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Figure 7 Sketch of surface elements (surfels) at different levels of detail.

which corresponds to the sound particle traveling direction. The radius ri varies depending on the
number nph of phonons to be rendered (given by the user) as well as on the traversed distance l of the
sound wave (time step given by the user):

ri = s

√
l

nph
. (12)

The radius ri can also be expanded by the scaling factor s in order to obtain a surface rendering
of the sound wave front. A small radius ri results in a visualization on the wave front similar to that
using spheres, whereas a large ri leads to a surface-like representation. An example of sound wave
propagation visualization is depicted in Fig. 8.

7 Visualization Application

The visualization approaches described in the previous section were used to examine the acoustic
properties of a virtual reality (VR) laboratory that is also used for auralization purposes. Fig. 10 shows
the wave front propagation based on 30000 paths traced from the sound source resulting in 910610
phonons in the phonon map, at a traversed distance of 1.5, 4.5, and 10 m. At small distances / traversal
times, the individual wave fronts can be recognized, whereas large distances provide insight into the
frequency decomposition of the various reflections. We observe a shift towards lower frequencies,
since the particles color is dominated by the blue component after a number of reflections.

In order to identify the reason for the frequency shift, we look at sound particles reflected from a
selected material in their earlier paths. Fig. 9 shows these particles for reflections from walls, floor,
and canvas, respectively. We observe that particles reflected from walls carry mostly a yellowish
color, despite of their potential reflection from additional materials. Hence, the energy of these
particles is shifted towards the mid and high frequencies. The floor and the canvas reduce high
frequencies. Reflections from the canvas affect mostly the right side of the room, whereas the impact
of the carpet is much greater. While a potential frequency shift can already be seen in material
absorption coefficients, their impact on room acoustics can be studied much better with the aid of our
visualization approach.

In Fig. 11 the carpet is replaced by a material with similar absorption as the walls. When
comparing Fig. 11(a) and 11(b), it becomes evident that this change is sufficient for increasing the
intensities of mid and high frequencies. This interactive visual observation of intensities changes
because of material modifications adds significantly to the acoustic properties improvement during
the design process. While the acoustics of the laboratory are not much of importance, it may have a
greater impact on the design of larger classrooms. Optimizing the acoustics of such larger rooms may,
for example, eliminate the need of using a microphone or improve the auditive quality of concerts.
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(a) (b)

(c) (d)

Figure 8 Wave front representation using surface elements (surfels) in contrast to spheres. Spheres used
for rendering of phonons (a). Surfels with increased radius from (b) to (d).

(a) (b) (c)

(d) (e) (f)

Figure 9 Wave fronts reflected from walls (a+d), floor (b+e), and projection wall (c+f) using smaller (a,b,c)
and greater (d,e,f) radius.
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(a) (b) (c)

Figure 10 Wave front propagation from a spherical sound source. The visualization shows phonons with
RGB color-coded spectral energy due to reflection at different materials at 1.5m (a), at 4.5m (b), and at 10m (c).

(a) (b)

Figure 11 Changing material of the floor. (a) all phonons at d = 4.5m; (b) same as (a) with new material.

8 Conclusions

In this work we have presented an audio visual Virtual Reality system for room acoustics. For acoustic
simulation purposes we have combined a geometric approach, the phonon tracing, and a FEM based
solver. Sound rendering is performed utilizing a professional sound equipment using our synthesis
approach. Furthermore we have introduced visualization techniques for sound wave propagation
from the sound source. For visual rendering a stereoscopic 3D back projection display is used. The
system enables the exploration of acoustical behavior inside a room visual as well as aural allowing
the feasibility to improve the acoustics of the room during the design process. Future work includes
continuative methods visualizing well defined room acoustic metrics as well as the visualization of
the low frequency part simulated by means of FEM. Further work on integration of human machine
interfaces like 3D mouse, game port or haptic devices would improve the interaction in the virtual
environment.
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Abstract
We present a novel method to measure saliency in molecular dynamics simulation data. This
saliency measure is based on a multiscale center-surround mechanism, which is fast and efficient
to compute. We explore the use of the saliency function to guide the selection of representative
and anomalous timesteps for summarization of simulations. To this end, we also introduce a
multiscale keyframe selection procedure which automatically provides keyframes representing the
simulation at varying levels of coarseness. We compare our saliency guided keyframe approach
against other methods, and show that it consistently selects superior keyframes as measured by
their predictive power in reconstructing the simulation.
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1 Introduction

Molecular dynamics trajectories play a vital role in enhancing our understanding of the
building blocks of life at the nanoscale. A number of recent advances in modeling and
simulation of proteins and nucleic acids continue to provide us with novel insights into the
relationship between the form and function of these dynamic biological nanomachines. In our
efforts to simulate ever-more accurate models of physics and chemistry, such simulations out
of necessity have to occur over very small time scales, typically femtoseconds. However, the
major molecular conformational changes of interest typically occur over timescales ranging
from a few microseconds to seconds. This difference in simulation timescales is being bridged
by novel algorithmic approximations, advances in hardware, as well as by simply running
longer time-scale simulations facilitated by larger storage capacities of modern computer
systems [9].

However, just because we now have the ability to simulate exceedingly long timescale
molecular dynamics simulations, does not necessarily mean that we are better equipped to
gain visual insights using such simulation datasets. Since the capabilities of the human visual
system remain unchanged and the bandwidth into the human cognitive machinery remains
constant, we have now reached a stage where the current generation simulation datasets can
easily overwhelm the limits of human comprehension. In real world, the human visual system
deals with the glut of information coming at it from the world by focusing retinal hardware
and attention on what is most important, or salient. The challenge of visual presentation
and analysis of very large datasets compels us to re-examine not just how to present data,
but what data to present. In this paper we discuss some of our recent research that deals
with how to effectively summarize large molecular dynamics trajectories using ideas inspired
by the visual saliency mechanism of the human visual system.
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The main contributions of this paper are:
We present a multiscale saliency operator for molecular dynamics trajectories that is
successful at identifying the most salient time steps of a molecular dynamics simulation.
We show how one can find the most representative frames of a molecular dynamics
trajectory by simply inverting the multiscale saliency operator.
We quantitatively show the benefits of using our multiscale saliency operator to summarize
molecular dynamics trajectories compared with other methods such as a random scheme
or the Douglas-Peucker scheme.
We validate our methods using several real-world examples of long time scale molecular
dynamics trajectories.

We believe that the research directions that we have identified in this paper are early-stage
efforts that will hopefully spark a number of follow-on methods to automatically or semi-
automatically identify and visualize salient features, events, and trends in very large-scale
time-varying datasets. Our methods, in turn, build upon the seminal work of several other
prominent researchers in the field. We give a summary of the related research in the next
section.

2 Background and Related Work

The last few years have seen a growing interest in summarization of large-time varying datasets.
Perhaps the greatest amount of research has been in abstraction [14] and summarization of
videos [3]. However, much of the research on video summarization is not directly applicable
to summarization of 3D datasets. In graphics, very interesting work has been done in
summarization of articulated characters [2] as well as their compression [11, 1]. In volume
visualization, Silver and Wang [12] have used the framework of template matching to identify
key features such as reconnection events in large time-varying 3D volumes, such as those
arising from computational fluid dynamics (CFD) simulations.

Almost all the previous work in characterization of time-varying datasets has been
with either articulated skeletal human models or time-varying volume datasets. Although
these methods provide helpful insights, they do not directly carry over for use in molecular
dynamics simulations. This is because, unlike molecular dynamics simulations the movements
in character animation are purposive, described by a set of continuously changing joint
angles. Thus an event of interest in character animation can be detected by a change of
such movements. Molecular dynamics simulations are characterized by a variety of motions
at multiple scales. There are fine-scale Brownian motions and larger-scale conformational
changes. To handle this challenge, we define a multiscale saliency operator that works with
several different-sized sliding windows.

Ideally, we would like to identify the most important time steps in large time-varying
molecular dynamics simulations for the purposes of summarization, fast-previewing, indexing,
and further analysis. We build upon the ideas of image saliency by Itti et al. [8] and mesh
saliency by Lee et al. [10]. They use a center-surround operator to identify the uniqueness of a
pixel or a vertex with respect to its neighborhood. In our approach, we define the importance
of a timestep by its difference from its neighbors, both forward and backward in time, over
multiple scales. Specifically, we analyze a difference of Gaussian weighted average positions
centered around each timestep for several different scales. Subsequently, we combine this
information into a single multiscale saliency function S, and present a multiscale keyframe
selection procedure to obtain representative (or conversely, anomalous) frames based upon
this function. Further details of our approach are in Sections 3 and 4.
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Figure 1 This figure gives an overview of our salient timestep selection procedure. In step 1,
the per-atom saliency measure is taken at multiple scales. Step 2 then composites these per-atom
saliency functions into a single per-timestep saliency function for each scale. In step 3, the separate
single-scale saliency functions are combined into a single multiscale saliency function. Finally, in step
4, the multiscale keyframe selection (MSKS) procedure is used to select representative timesteps
from the simulation using the multiscale saliency function.

3 Multiscale Saliency for Molecular Dynamics Trajectories

The notion of saliency is general. Indeed, even in the particular domain of molecular dynamics
simulations, one might reasonably suggest many methods by which to compute saliency. In
order to focus the scope of this work, we shall consider saliency on a per-timestep basis. In
section 4, we consider the representation of simulation data through the selection of key
timesteps. Thus, we are motivated to define our saliency measure on a per-timestep basis.
Inspired by the saliency mechanism of the human visual system, we have decided to formulate
our saliency operator for molecular dynamics trajectories to be multiscale and to make use
of a center-surround mechanism [8].

Even among those measures adhering to these criteria, there are numerous possible
definitions of per-timestep saliency. However, since the notion of saliency in the domain of
molecular dynamics simulations has not been well explored, we shall introduce a simple but
straightforward definition, which we have found to be very effective. An overview of our
method is given in figure 1.

3.1 Saliency Definition
In order to define our notion of saliency, it will be necessary to introduce some notation.
Our main analysis will be on an order-3 tensor P, containing the position of each atom for
every timestep of the simulation data. For a simulation with n timesteps and m atoms, P
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will be an m× n× 3 tensor, such that Pa,t,− = ~pa,t is the 3-vector containing the Cartesian
coordinates of atom a at timestep t. For the sake of brevity, we shall write Pa,t,− as Pa,t. It
will also be useful to index ranges of P. The expression PI,J will be used to denote a block
of values from P spanning atoms I = [i1, i2, . . . ], timesteps J = [j1, j2, . . . ] , and all spatial
coordinates.

Further, it will be useful to define the notion of a selection window. Let w(i, σ) =
[i − σ

2 , . . . , i + σ
2 ] denote the selection window of size σ + 1 centered about i, where σ is

assumed to be an even integer. As these selection windows will be used to address our
position tensor P, we must be careful to assure they have a valid definition for each timestep
i. This is achieved simply by “reflecting” the simulation data about the first and last frame
to handle the respective border cases.

Finally, we shall make use of the notion of a discretely sampled Normal distribution. We
denote by N(i, σ), the normal distribution with mean i and variance σ, and by N(i, σ)(j), the
evaluation ofN(i, σ) at j. Then, we define Gkσ,i = [N(i, σ)(i−k2 ), . . . , N(i, σ)(i), . . . , N(i, σ)(i+
k
2 )] as the set containing k values, each value obtained via the evaluation of the appropriately
parametrized normal distribution at a given location. Gkσ,i is symmetric about its center,
which is at the k

2
th entry, Gkσ,i[k2 ].

3.1.1 Per-atom Saliency
In practice, we define our saliency field for each atom and for each timestep over a number of
scales. To simplify the exposition, we will first consider only a single scale σ. Let us consider
computing the saliency of atom a at timestep t; it is given by the following equation:

Sσ[a, t] =

∣∣∣∣∣∣
∣∣∣∣∣∣
 ∑
i∈w(t,2σ)

(G2σ
σ,t[j] ∗Pa,i)

−
 ∑
i∈w(t,2σ)

(G2σ
2σ,t[j] ∗Pa,i)

∣∣∣∣∣∣
∣∣∣∣∣∣ (1)

Where j = i − (t − σ) is used as the local index into the discretely sampled Normal
distributions. Essentially, we consider the Gaussian weighted average of the atom’s position
at scales σ and 2σ, and define the saliency as the norm of the difference. In this formulation,
we consider σ as the “center” scale and 2σ as the “surround” scale. The greater the difference
between the center and the surround, the higher the saliency at the point of evaluation.

3.1.2 Per-timestep Saliency
Once we have computed the per-atom saliency for each atom and timestep, we can aggregate
information to obtain a per-timestep measure of saliency. We define the saliency of timestep
t at scale σ as follows:

Sσ[t] = 1
m

m∑
a=1
Sσ[a, t] (2)

The saliency for timestep t is given simply as the mean saliency of all m constituent
atoms at timestep t.

3.1.3 Multiscale Saliency
The definition of saliency we have so far provided exists only at a single scale, σ. Formulating
multiscale saliency is as simple as considering multiple values of σ and composing the results.
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(a) Saliency Function at Different Scales

(b) Multiscale Saliency Function

Figure 2 Each scale considered produces a different saliency function, as seen in (a). These
saliency functions are combined into a single multiscale saliency function S, as shown in (b).

The multiscale saliency measure for a given timestep t is defined over a set of scales as follows:

S[t] = 1
|Λ|

∑
σ∈Λ

S̄σ[t] (3)

Where S̄σ is the normalized saliency function at scale σ and Λ = {σ1, σ2, . . .} is the set of
scales from which the multiscale saliency is composed. Throughout this work, we will simply
consider Λ = {σ, 2σ, 3σ, 4σ}, though many different choices are possible. The composition
of the different single scale saliency functions into the single multiscale saliency function in
illustrated in figure 2.

4 Using Saliency

4.1 Interpreting The Saliency Function
Having obtained the multiscale saliency function S, we may now inquire about its intuitive
relationship to the original simulation data. What, precisely, does S measure? We shall answer
this question by again appealing to the criteria by which we defined our saliency function.
The computation of S relies on a center-surround mechanism; effectively determining the
uniqueness of a particular timestep with respect to its temporal neighborhood. Furthermore,
the computation of S is multiscale; suggesting that it encodes this uniqueness over temporal
neighborhoods of various size.
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Thus, we suggest that S[t] provides a measure of the uniqueness of timestep t with respect
to neighboring timesteps over multiple scales. Local extrema of S may now be interpreted to
tell us something about the timesteps to which they correspond. In particular, local maxima
of S correspond to timesteps which are very different, or anomalous, with respect to their
surroundings. Similarly, local minima of S correspond to timesteps which are very similar to,
or representative of, their surroundings. Equipped with this intuitive interpretation of S,
we can now suggest how the saliency function can be used, and how this intuition can be
verified.

4.2 Representative Keyframe Selection
As mentioned in section 2, the changes in atomic position between consecutive timesteps of
a simulation are dominated by Brownian motion. Only over larger timescales do interesting
and purposeful molecular conformational changes occur. This suggest that one might be
able to summarize the content of the simulation very precisely by choosing only a few
timesteps (keyframes) to represent the entire simulation. Such keyframes can be useful for
summarization, indexing, and numerous other tasks.

When finding such keyframes, there is a particular constraint that we wish to respect.
Namely, keyframes should be drawn from the actual simulation data. Though it might be
tempting to produce representative molecular conformations by aggregating information
from multiple timesteps of simulation data, there are compelling reasons to avoid this
approach. Molecular dynamics simulations are highly computationally intensive and modeled
upon equations which respect numerous physical constraints (e.g. atom positions may
not superpose, and a molecular configuration should be consistent with the potential field
induced by the molecule’s constituent atoms). Data representations which aggregate data
and synthesize a representation may easily violate such constraints which are painstakingly
considered during the course of the simulation. In order to avoid such problems, we shall
not consider synthesizing representative keyframes. Rather, the representative keyframes we
select will be taken directly from the original simulation data; thus ensuring that they are
valid and consistent with the underlying physical model of the simulation.

Respecting this constraint, and understanding its motivation, we may now consider some
different approaches to keyframe selection. In particular, we will suggest three methods for
keyframe selection.

4.2.1 Random Keyframe Selection
Perhaps the simplest approach to obtaining keyframes is to sample uniformly at random
from the full simulation. We shall label this approach as RS. Since differences in molecular
configuration between nearby timesteps are dominated by Brownian motion, the selection
of timesteps which are well distributed and reasonably temporally separated will likely
provide a meaningful summary of the simulation. This approach has no dependence on the
underlying data, and may yield an arbitrarily poor set of representative keyframes. However,
its implementation is completely trivial and exceedingly fast.

4.2.2 Douglas-Peucker Keyframe Selection
The second method we shall consider for keyframe selection is an extension of the classical
Douglas-Peucker (DP) algorithm [4]. Classically, this algorithm has been used to approximate
planar curves by polylines. The algorithm itself is fairly simple and has an elegant recursive
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definition. Consider two points, p1 and p2 residing on the planar curve C. Consider the line
segment p1p2 as the linear approximation of C between these two points. The Douglas-Peucker
algorithm considers the orthogonal projection of C onto p1p2 at n uniform discrete sample
positions between p1 and p2. Let c∗ ∈ C denote the point for which this orthogonal projection
is farthest from the true curve. The DP algorithm will add c∗ to the set of approximation
samples and then recursively descend onto the line segments p1c∗ and c∗p2. Various criteria
may be established for the termination of the algorithm; for example, one may terminate
the algorithm when a desired number of approximation samples has been chosen, or when a
maximum acceptable per-sample error threshold has been achieved.

The extension of the Douglas-Peucker algorithm to molecular dynamics simulation data
is fairly straightforward. Instead of a planar curve, one attempts to approximate atom
positions. Linear interpolation of atom positions is considered between consecutive keyframes,
where the temporal distance between these keyframes is used as the linear interpolant. Thus,
one may obtain a linear prediction ~̄pa,t for each atom (a) at each timestep (t) of the true
simulation data ~pa,t. The difference between the linear prediction of a timestep t and the
true simulation data at t can simply be computed as the sum of differences between predicted
and actual atom positions as in equation 4:

εt =
m∑
a=1

∣∣∣∣~̄pa,t − ~pa,t∣∣∣∣ (4)

In this adaptation of the DP algorithm, εt simply replaces the orthogonal distance between
the curve and the approximating line segment; leaving the remainder of the algorithm largely
the same.

4.2.3 Saliency Guided Keyframe Selection
Finally, we may consider using the multiscale saliency function S to guide the selection
of keyframes. We shall refer to this approach as saliency guided (SG) keyframe selection.
Though the intuition behind this method is simple, some care must be taken when actually
using S for keyframe selection. First we must determine precisely how S should guide the
selection of keyframes. In section 4.1, we suggested that local minima of S correspond
to representative timesteps from the simulation. Therefore, it makes sense to choose the
timesteps corresponding to the local minima of S as keyframes. First, however, we must more
carefully define what we mean by local minima. Since S is obtained from the composition of
saliency functions spanning multiple different scales, it is possible that the fine scale saliency
functions will lead to small fluctuations between consecutive values of S. However, unless
the surrounding values of S are relatively smooth, such small fluctuations should not trigger
keyframe selection.

To address this issue, we make use of non-maximal suppression. Given a window size, w,
non-maximal suppression will suppress the entire signal with the exception of the w-local
maxima. For example, when we consider S[t] for some timestep t, non-maximal suppression
will suppress S[t] to 0 unless S[t] > S[t+ i], i ∈ [−w2 ,

w
2 ]. A reasonable value of w will ensure

that not too many keyframes are selected, and that small and non-meaningful fluctuations
in S do not trigger keyframe selection. Here it is important to note that we consider non-
maximal suppression of the function 1−S, which is equivalent to a non-minimal suppression
of S itself.

However, the use of non-maximal suppression introduces a new consideration. How should
one choose a reasonable value of the window size w? Recall that w should be related to the
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scale in S at which we wish to detect keyframes. Rather than choosing a fixed value of w,
we introduce a procedure for multiscale keyframe selection (MSKS). The user provides the
MSKS procedure with a target number of keyframes, k, and the procedure will return the
smallest number k′ ≥ k of keyframes obtained using a coarse to fine selection procedure.
The MSKS is possible in part due to the subset containment property of non-maximal
suppression. Consider performing non-maximal suppression on 1− S using a window of size
w. We shall denote by NMS(f, w) the non-maximal suppression of the function f using a
window of size w. Further, let NZ(f) denote the indices for which the discrete function f
takes non-zero values. Then we may denote the set of desired keyframes (w-local maxima) as
Fw = NZ (NMS(1−S, w)) . Now, consider a window of size w′ < w. The subset containment
property ensures that Fw ⊆ Fw′ . This means that if 1− S[t] is a w-local maximum, then it
is also a w′-local maximum ∀w′ < w. Bearing this property in mind, we will now describe
the MSKS procedure.

Algorithm 1: MSKS.
Input: S, k
Output: F
F = ∅;
w = |S|;
f = 1− S;
while |F | < k do

w = w
2 ;

f ′ = NMS(f, w);
for i = 0 ; i < |f ′| ; i = i+ 1 do

if f ′[i] > 0 then
F = F ∪ i;

return F ;

The MSKS procedure iteratively builds up a set of keyframes by running non-maximal
suppression on 1− S with windows of decreasing width. The pseudo-code for this algorithm
is given in algorithm 1. One important aspect of this algorithm is that when the user requests
k keyframes, the algorithm will actually return k′ ≥ k keyframes. This is due to a natural
notion of scale, both in the saliency function S and in the multiscale keyframe selection
procedure. For each window size used during the non-maximal suppression procedure,
there are a number of natural keyframes which will be selected at the corresponding scale.
This feature is important, because it allows the algorithm to select representations of the
underlying simulation at varying levels of coarseness.

Figure 3 shows a plot of the multiscale saliency function S, where 12 keyframes have
been chosen using the MSKS procedure. For each keyframe that has been selected, a circle
has been plotted at the corresponding local minima of S. The color of each circle denotes
the scale (window size = w), at which the timestep corresponding to that circle was first
selected as a keyframe.
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Figure 3 This figure illustrates the selection of keyframes from the multiscale saliency function,
S, using the MSKS procedure. For each timestep chosen as a keyframe, the corresponding local
minima is marked with a circle. The color of each circle denotes the non-maximal suppression
window size, w, at which the corresponding timestep was first chosen as a keyframe.

5 Results

5.1 Datasets

GroEL Transitions

GroEL is a molecular nanomachine that changes its conformation empowered by ATP
chemistry. Spectacular conformational changes between the conformational states of GroEL ,
such as T → R and R→ R′′ transitions, are induced upon ATP binding and hydrolysis at
the catalytic site of equatorial domain, respectively. Normal operation of the GroEL -GroES
chaperonin system [13] is of utmost importance for the cell function as this increases the yield
of substrate proteins that are prone to misfold. The misfolding of proteins and subsequent
aggregations often lead to the fatal neurodegenerative disorders such as Alzheimers and
prion diseases. To better understand the allosteric transitions of GroEL molecule at the
microscopic level, multiple sets of Brownian dynamics simulation were performed using a
self-organized polymer (SOP) model [7, 5]. The SOP model adopts a strategy of using the
minimal representation of proteins and RNA that retains the topological information. The
simulations [6] show that T → R transition of GroEL , in which the apical domains undergo
counterclockwise motion, is mediated by a multiple salt-bridge switch mechanism at the
interfaces of seven subunits. The initial event in the R→ R′′ transition, during which GroEL
rotates clockwise, involves a dramatic outside-in concerted movement of helices K and L,
exerting a substantial strain on he GroEL structure, induces the 90 degree clockwise rotation
and 40 degree upward movement of apical domain. This simulation consists of 3668 atoms
and 834 timesteps.

Folding of Tetrahymena Ribozyme

Large RNAs fold into complex structures which determine their biological activities. The
RNA folding problem studies how RNA folds into a unique structure without searching
through all possible conformation. How macromolecules from thermophilic organisms achieve
thermostability has been a fascinating question for structural biologist and the biotechnology
industry. There are many pathways in the folding procedure. Some pathways lead directly to
the native state, while others result in “kinetically trapped” conformations that contain some
native, as well as non-native interactions. This dataset presents the folding simulation of the
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Tetrahymena Ribozyme. Force-quench refolding of the P4-P6 subdomain of the Tetrahymena
ribozyme occurs through a compact intermediate. Subsequent formation of tertiary contacts
between helices P5b-P6a and P5a/P5c-P4 leads to the native state. This simulation consists
of 158 atoms and 1540 timesteps.

5.2 Verification Procedure
It is difficult to visually verify the representative power of the chosen keyframes. Thus, we
will rely on a purely quantitative verification procedure. Representative keyframes should be
able to predict their temporal neighborhood well. To measure this predictive power, we shall
make use of the keyframes chosen by the various selection algorithms (i.e. RS,DP, and SG)
and perform an interpolation procedure over them. The total error between the simulation
data predicted solely by the keyframes and the actual simulation data will be used as a
measure of the predictive/representative power of the selected keyframes. More precisely,
for every timestep t which is not, itself, a keyframe, the interpolation procedure will yield a
prediction with some resultant error εt. The representative power of the selected keyframes
will be measured by ε =

∑n
t=1 εt, where a smaller ε is indicative of more representative

keyframes. εRS, εDP, and εSG are used to indicate the errors using the three methods.

5.3 Experimental Results
The saliency guided keyframe selection approach (SG), in paper is compared against the
Douglas-Peucker(DP) and random selection methods (RS); all of which are described in
section 4.2. The experiments show the keyframes selected by the saliency approach better
approximates the simulations than the other two methods. For each simulation, we consider
representing the simulation using three different numbers of key frames, selected using the
SG, DP, and RS methods. The random sampling method illustrates the difficulty of this
problem and establishes a baseline performance for comparison, and the DP algorithm is
considered as the current state of the art. Random selection of keyframes are sampled 1000
times for each experiment. The reported performance of the random sampling method is an
average across all the samples. The statistics intend to show the error of approximations
produced by the two keyframes selection methods (DP and SG) are lower than random
selection, and they are statically significant. The performance difference in between the
average random selection and the other two method shows it is unlikely to randomly pick
good keyframes to approximate the simulations. This shows that not all timesteps are equally
representative, and that it is important to select the correct timesteps when summarizing
these complex molecular dynamics simulations.

Table 1 and Table 2 show statistics of the relative improvement between SG and RS.
The relative improvement is computed by:

εRS − εSG

εRS

Most of the results show the SG method performance is 10% - 20% better than the
random selection performance.

The null hypothesis here is that the distribution of error due to SG is drawn from the
same distribution of RS. The t-values shown in Table 1 and Table 2 shows this hypothesis
can be safely rejected (95% confidence interval).

The relative cumulative approximation error of the experiments with respect to the RS
method are shown in Figure 4 and Figure 5. The horizontal axis represents the timesteps and
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Table 1 Relative improvement statistics of saliency guided (SG) frame selection over random
selection (RS) for the GroEL simulation.

# keyframes Relative improvement stdev t value

2 +1.49% 19.46% 2.58
5 +13.63% 15.63% 28
10 +18.0% 8.97% 63

Table 2 Relative improvement statistics of saliency guided (SG) frame selection over random
selection (RS) for the Tetrahymena Ribozyme simulation.

# keyframes Relative improvement stdev t value

15 +22.58% 9.51% 75
24 +22.96% 6.97% 94
45 +15.44% 4.2% 113

Table 3 Relative improvement statistics of saliency guided selection (SG) over Douglas-Peucker
selection (DP).

(a) GroEL

# keyframes Relative improvement

2 +22.81%
5 +9.25%
10 +6.61%

(b) Tetrahymena Ribozyme

# keyframes Relative improvement

15 +12.13%
24 +12.12%
42 +8.99%

the vertical axis represents the relative cumulative error. The three plotted lines represent
the errors obtained by the SG, DP, and RS methods. Each line shows the cumulative error
relative to the RS method at a certain timestep throughout the simulations.

In the GroEL simulation, the SG method consistently results in the lowest overall error;
whereas the 5 or 10 keyframes selected by the DP algorithm approximate the simulation
better than random selection. The approximations produced by the SG method are 6%−22%
better than those produced by the DP algorithm. In the 2 keyframe experiment, The DP
algorithm selects only the beginning and the ending timesteps, this results in significant loss
of details during the simulation and hence it was even outperformed by average random
selection.

In the Tetrahymena Ribozyme simulation, the SG method consistently results in the
lowest overall error, and the DP algorithm also consistently approximates the simulation
better than random selection. The approximations produced by the SG method are 12% -
15% better than those produced by the DP algorithm. The trend of the error plot shows that
the SG method outperformed the DP algorithm and RS approach at every frame across
the simulation.

Table 3 shows a summary of relative improvement obtained by employing the SG frame
selection method rather than the DP frame selection method.
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(c) 10 keyframes

Figure 4 Relative cumulative error (with respect to RS) of approximating the GroEL simulation
by the selected keyframes.

5.3.1 Selected Keyframes

The selected keyframes from the two simulation are presented in this section.
The frames from the GroEL simulation show the conformational changes of the functional

subunits during the course of the R → R′′ transition. Figure 6 shows the 10 keyframes
selected using the SG method for summarizing the GroEL simulation.

The frames from the Tetrahymena Ribozyme simulation show how the Ribozyme molecule
folds from a straight chain in to it native state. Figure 7 shows the 10 keyframes selected via
the SG method for summarizing the Tetrahymena Ribozyme simulation.

5.3.2 The Most Salient Frames

Recall that when using the SG method to obtain keyframes, we are interested in obtaining
the most representative timesteps from the simulation data. These timesteps are chosen by
using the MSKS procedure to find the local maxima of 1− S over various scales.

This procedure naturally leads one to wonder about the effect of using the MSKS
procedure on S rather than 1− S. While the local maxima of 1− S signify the timesteps
which are the most similar with respect to their temporal neighborhood over various scales,
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Figure 5 Relative cumulative error (with respect to RS) of approximating the Tetrahymena
Ribozyme simulation by the selected keyframes.

the local maxima of S correspond to those which are most different. Such anomalous
timesteps are useful and informative in their own right. By simply inverting our multiscale
saliency function, we are able to select both the most representative and the most anomalous
timesteps of a simulation. Figure 8 and Figure 9 show the 5 most salient frames from the
GroEL and Tetrahymena Ribozyme simulations.

6 Conclusion

In this work, we have introduced a notion of temporal saliency for molecular dynamics
simulation. Such a notion is useful for summarizing, abstracting, indexing, previewing, and
analyzing these large time-varying datasets. We have shown how our multiscale saliency
function S can be used in conjunction with a multiscale keyframe selection procedure to
choose representative frames from among the locally chaotic motion of molecular dynamics
simulations. By employing interpolation over such keyframes as a measure of their predictive
power, we have shown that saliency guided keyframe selection consistently chooses more
representative frames than other methods.
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Figure 6 The 10 most representative timesteps from the simulation of GroEL nanomachine
consisting of 3668 atoms and 834 timesteps. The corresponding saliency function is shown in
Figure 2.

Figure 7 The 10 most representative timesteps from Tetrahymena Ribozyme simulation consisting
of 158 atoms and 1540 timesteps.

Figure 8 The 5 most salient timesteps from the 834 timesteps of the GroEL simulation with
3668 atoms.

Figure 9 The 5 most salient timesteps from the 1540 timesteps of the Tetrahymena Ribozyme
simulation with 158 atoms.
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Abstract
We present a streaming compression algorithm for huge time-varying aerial imagery. New airborne optical
sensors are capable of collecting billion-pixel images at multiple frames per second. These images must
be transmitted through a low-bandwidth pipe requiring aggressive compression techniques. We achieve
such compression by treating foreground portions of the imagery separately from background portions.
Foreground information consists of moving objects, which form a tiny fraction of the total pixels. Back-
ground areas are compressed effectively over time using streaming wavelet analysis to compute a compact
video texture map that represents several frames of raw input images. This map can be rendered efficiently
using an algorithm amenable to GPU implementation. The core algorithmic contributions of this work
are methods for fast, low-memory streaming wavelet compression and efficient display of wavelet video
textures resulting from such compression.
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1 Introduction

Aerial systems are being devised that deploy billion-pixel cameras, providing high-resolution wide-
area video at several frames per second. These new cameras produce data streams that are a factor
of one hundred larger than previously deployed in aerial imaging systems. In this setting, the main
challenges are twofold:

to transmit this huge pixel stream to the ground over available wireless bandwidths, at best about
20 megabits per second; and
to display this huge image stream visualized over 3D terrain models, by extending the best known
view-dependent display optimization techniques to handle data that is not only large spatially, but
large temporally.

Current state-of-the art static image and video compression methods are at best capable of a factor
of 100 compression while keeping high image quality to perform automated mover detection and
analysis. An additional factor of 10 to 100 compression is needed. At the same time, the process of
compression must occur before transmission to ground due to restricted bandwidth, payload storage,
and power available on the aircraft.

To achieve the thousand to ten thousand times compression needed, alternatives to conventional
image and video compression strategies are needed. We make two observations about wide-area
aerial video that enable some specialization in compression techniques:
1. images are taken repeatedly over the same area, and
2. the primary interest is for moving objects.
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(a) (b) (c)

Figure 1 For aerial images, such as the one shown in (a), we achieve high levels of compression by
considering two portions of the images. The foreground portion shown in (b) is comprised of moving objects in
the image and makes up only a tiny fraction of the image. The background portion shown in (c) varies slowly
and smoothly over time, making it ideal for aggressive compression.

With two assumptions, the strategy pursued here is to compress foreground and background imagery
separately, see Figure 1. Moving objects comprising the foreground make up a tiny fraction of the
pixels in the image and can be transmitted directly. Background imagery varies slowly and smoothly,
making it ideal for compression.

The background imagery is compressed in a streaming fashion with the aid of 1D wavelet analysis
performed on a per-pixel basis. Using temporal wavelet analysis, the resulting wavelet images
effectively represent several frames of raw input images. Since movers only occupy a tiny fraction
of the overall imagery, and background imagery is reduced significantly to low temporal rates, and
the overall compressed size can easily be a factor of 10 to 100 smaller than using existing state-of-
the-art still-image and video compression on the image stream, while meeting the special accuracy
requirements for analysis.

To minimize memory usage when compressing a large time sequence of huge images, streaming
variants on wavelet analysis are used. The key idea is to view wavelet lifting diagrams as dependency
graphs, and to effectively “parse” the diagrams as soon as images are taken. Overall this reduces the
total memory footprint.

The system consists of several components—image segmentation, temporal compression, and
rendering. In this paper, we focus on the description of an image segmentation approach where meth-
ods are derived from similar techniques used in the visualization and computer graphics community.
Section 4 describes the image segmentation methods. The wavelet-based streaming compression
algorithm is discussed in Sections 5, 6 and 7. Section 8 addresses the replacement of foreground
movers by static elements. Section 9 illustrates the efficient rendering of the compressed information
using a GPU-based algorithm. Sections 10 and 11 illustrates results obtained with this system.

2 Related Work

There is an extensive volume of work on segmenting foreground from background in computer vision
[2]. Algorithms for object recognition and video tracking are most related to our work. In particular,
the goal of video tracking is to locate moving objects in time. While the literature has primarily
focused on improving the speed and accuracy of locating a few moving objects, relatively little
research has been devoted to locating a large number of moving objects efficiently. Consider that
aerial image sequences may contain hundreds of moving vehicles.

Wavelets have been used in computer graphics and visualization for a number of applications,
including multiresolution analysis, variational modeling, and compression [7]. B-spline wavelets
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Figure 2 Overview of the complete compression system. A raw input stream of images are segmented
into foreground and background images. Moving objects comprising the foreground make up a tiny fraction
of the pixels in the image and are transmitted directly. Background images are compressed aggressively using
wavelet-based techniques, greatly reducing the number of frames that need to be transmitted. After transmission,
wavelet images are “decompressed” efficiently in the renderer for a user-specified time point ti, and foreground
pixels are overlayed on top.

have been combined with subdivision surface techniques to represent geometric models at multiple
levels-of-detail [1, 7]. They compute wavelet transforms using a lifting approach [8] that divide
wavelet analysis into smaller, more efficient lifting operations.

Streaming techniques treat the data as a continuous stream of information. These algorithms
operate on restricted contiguous portions of data which are currently “in focus.” Because streaming
methods operate on a fixed amount of data at a time, they are often faster, more efficient, and
more scalable than “global” techniques that require an entire data set to reside in main memory
[5]. Recent research has focused on streaming algorithms for simplifying and compressing 3D
geometric models [5]. The availability of online media has increased the need for streaming video
encoding and decoding methods [6]. Several codecs for streaming video exist, however many of these
methods focus on only streaming content delivery. Compression and encoding of the content is often
considered a preprocess.

In our work, we combine image segmentation and wavelet methods to compress long sequences
of huge aerial imagery in a streaming fashion. We analyze pixel intensity values over time to separate
pixels that represent moving foreground objects from stationary background pixels. Background
pixels form a slowly varying image sequence that we compress with the aid of wavelet analysis. We
use streaming evaluation of the wavelet transformation to allow both compression and delivery to
occur as soon as possible in a streaming fashion while keeping the memory footprint low. Wavelet
encoded images compactly represent large numbers of images. They can be rendered efficiently
making them suitable for incorporation into state-of-the-art large terrain, large texture viewers, such
as the one developed by Hwa et al. [3, 4].

3 System Overview

Given a raw input stream of huge images, our system outputs foreground images and wavelet-
compressed background images. In the first stage of processing, raw input images are segmented
into foreground and background images by analyzing changes in pixel intensity over time. Holes in
the background images are filled in preparation for wavelet compression. The background images
are passed to a wavelet compression engine comprised of several levels of wavelet transform. We
refer to these output background images as wavelet images. The number of wavelet images output
is a constant factor smaller than the number of images input to the system. Wavelet images and
foreground images constitute a compressed set of information that is suitable for transmission. After
transmission, consecutive sets of wavelet images are used to render larger video sequences using a
texture-mapping approach. Foreground images are overlayed on top of the reconstituted backgrounds.
We refer to the sets of wavelet images as wavelet video textures. Figure 2 illustrates our complete
system.
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4 Image Segmentation

Segmentation of moving objects is performed in two phases, detection and completion. In the
detection phase, the goal is to have at least a single pixel of positive detection per moving object,
not including paralax motion of buildings, trees, or other tall structures. In the completion phase,
pixels for the entire object are determined. Extra “guard pixels” surrounding the object are also
labeled as part of the mover to obtain a conservative segmentation. Both phases of this algorithm
could be accomplished with well known but expensive search and correlation strategies. For real-time
processing on small sensor platforms, fast, local computations are desired.

For detection, two approaches were tested. The first approach uses two buffered frames to perform
detection. Pixels are declared likely movers in frame f if (1) their value v f (x,y) is different from
all the values within one pixel in frame f +1, (2) this frame-to-frame difference has a high gradient
magnitude, (3) the gradient magnitude at frame f is high, and (4) the gradient directions in the
two cases above are parallel to one another (either the same or exact opposite directions). This is
formulated by defining a unit gradient vector

~g =
∇v f (x,y)
||∇v f (x,y)||

and defining
d f (x,y) = min

dx,dy∈ [−1,1]
|v f (x,y)− v f+1(x+dx,y+dy)|

along with

~h =
∇d f (x,y)
||∇d f (x,y)||

and
q = (~h′ ·~g′)(||~g||−gmmin)||~h|| .

This consistently finds some pixels per mover, but is somewhat sensitive to noise, and does not
completely eliminate paralax-induced detections of tall building edges.

The second detection approach uses five frames. The median value is obtained for a pixel over
these frames. The detection is then the difference between the current frame’s value and the least
different value from a small neighborhood of the next frame. A small amount of “soft erosion” is
performed on the results. This was found to be very reliable at detecting some pixels per mover, and
was not as sensitive to noise or to building edge paralax.

After detecting a set of pixels from each mover, a conservative region of pixels is determined
around each complete mover. Using the results of the five-frame detection, there are good starting
points to seed a search for all mover pixels. We start with the core pixel of each connected component,
defined as the last pixel to be deleted for the component by repeated erosion operations that are
restricted to not break components into two pieces. From this starting point, we flood fill to all pixels
that are near pixels with frame-to-frame differences with magnitudes above a specified threshold.

5 Wavelet Analysis Reviewed

The lifting approach [8] for discrete wavelet analysis uses a 1D input signal F represented by a set of
samples fi uniformly spaced in time at points ti. F is decomposed into scaling-function coefficients,
or s-values, and wavelet coefficients, or w-values. In the lifting approach, this decomposition is
computed by relabeling signal values as

si = f2i and wi = f2i+1
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Figure 3 Illustration of cubic wavelet analysis. Input values shown as blue circles are relabeled as s-values
and w-values. Three alternating s- and w-lift operations compute the final cubic wavelet coefficients outlined in
red. Black arrows show which values contribute to intermediate values between lifting operations. Gray arrows
illustrate which values remain the same between operations.

followed by a sequence of alternating s-lift and w-lift operations. The s-lift and w-lift operations are
defined as
s-lift( a, b ):

s j = aw j−1 +bs j +aw j ∀ j and (1)

w-lift( a, b ):

w j = as j +bw j +as j+1 ∀ j. (2)

Therefore, s-lifts compute new s-values by computing a weighted sum of a given s-value with
its neighboring w-values. Likewise, w-lifts compute new w-values by computing a weighted sum of
a given w-value with its neighboring s-values. The order and number of lifting operations and the
values of the weights a and b determine the type of wavelet used. In our work, we use uniform cubic
B-spline wavelets [1, 7]. This transform is defined by the sequence of three lifting operations s-lift( -
1/4, 1 ), followed by w-lift( -1, 1 ), and then s-lift( 3/8, 2 ). Figure 3 illustrates the lifting approach to
wavelet analysis.

6 Streaming Wavelet Analysis

Values resulting from wavelet analysis can be computed in a streaming fashion. We view the stages
of the lifting operations as a dependency graph, where nodes represent computed values and directed
edges represent how terms are combined to produce a computed value. From this perspective, the
relationship between input signal values and output values reveals that the first s- and w-values
can be computed after the first four input signal values have been received, see Figure 4a. Further
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Figure 4 Illustration of streaming cubic wavelet analysis. The beginning of the computation shown in
(a) requires four initial values shown here in green. These values produce one s-value and one w-value. Post-
initialization computations are shown in (b). Here, pairs of input values produce pairs of output values. The pink
circles represent stream values currently being computed, and orange circles represent those computed from the
last stream update. Note that the new output values depend on three values from the previous computation, and
so three values must be maintained in memory across stream updates. This dependence is visualized here as pink
arrows emanating from orange circles. Gray circles represent values that have not yet been processed.

investigation reveals that subsequent pairs of s- and w-values can be computed as soon as pairs of
input signal values are received, see Figure 4b. Only three internal results from previous computations
need to be maintained between updates to compute two new output values. Thus, values from
wavelet analysis can be produced in a streaming fashion, using a small memory footprint to track
the computation state. For the purposes of this discussion, we call the computational engine that
performs streaming wavelet analysis a stream analyzer.

7 Wavelet Compression

Compression is achieved by discarding w-values and performing several levels of wavelet analysis.
Discarding w-values achieves a factor of two reduction in data size. The s-values from one level of
analysis are used as input to the next level. Since each level of wavelet analysis achieves a factor of
two reduction in data size, k levels of such nested wavelet analysis achieve a factor of 2k reduction in
data size. We achieve streaming wavelet compression by cascading k stream analyzers together such
that s-value output from one stream analyzer is used as input to the next stream analyzer. Figure 5
illustrates a sample wavelet compression system constructed from three stream analyzers.

8 Filling Gaps

This wavelet analysis requires a uniform spacing of samples over time. Image segmentation removes
foreground pixels, creating gaps in the stream passed to the wavelet compressor, and we must fill
these temporal gaps in order to perform wavelet compression.

We adopt a simple strategy to fill in the gaps created by foreground pixels. The buffer keeps track
of the last value received as well as the point in time it was received. Let flast be the last pixel value
received and tlast be the point in time it was received. Let fcurr be the newly arrived pixel value and
tcurr be the current point in time. A gap exists if tcurr− tlast > 1. Missing values corresponding to
time values tlast+1, ..., tcurr−1 are computed using linear interpolation between flast and fcurr. We note
that the goal here is to provide noise-free input to the wavelet compressor, and so linear interpolation
suffices to maintain a stable input signal and is more desirable than filling gaps with zeroes. Figure 6
illustrates the gap filling process.
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Figure 5 Illustration of a streaming wavelet compression system. A pixel value stream is input to the system,
which computes a smaller output stream of wavelet coefficients. The system is constructed from three stream
analyzers. Here, each box represents a stream analyzer that performs wavelet analysis, producing s- and w-values.
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Figure 6 Illustration of gap filling. Gaps are detected easily by comparing the arrival time of the current
pixel value against the arrival time of the last pixel value. Missing values are linearly interpolated using the
current and last pixel values. Solid circles represent received values and dashed circles represent interpolated
values.
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9 Rendering Compressed Video Images

Our system performs gap filling and wavelet compression for each pixel of each background image,
producing output images whose pixel values correspond to wavelet coefficients. We refer to the output
images containing wavelet coefficients as wavelet images.

Each set of four consecutive wavelet images defines a single four-channel texture that compactly
represents several frames of the raw input video. The four intensity values of each pixel of this image
define a uniform cubic B-spline curve. Evaluating these per pixel B-spline curves at time ti provides
the pixel intensities comprising an image that approximates frame ti of the raw input video. We refer
to the four-channel textures as wavelet video textures and note that they can be rendered efficiently
using a GPU fragment program.

Let Iu be the set of wavelet images. Each Iu represents 2k frames of the original input video. At
time ti, the four wavelet images necessary to construct a wavelet video texture are Iu−1, Iu, Iu+1, and
Iu+2 where u = i/2k. Given the wavelet video texture and a specific point in time, a GPU fragment
program renders the appropriate background image by evaluating a uniform cubic B-spline. Once the
compressed background image has been rendered, foreground pixels are overlayed onto the result.

10 Discussion

Performing streaming wavelet compression is advantageous for several reasons. It keeps the memory
footprint small, which is critical, as the process is performed on a per-pixel basis. Since three internal
values per pixel need to be kept between stream updates, 3×2k values are needed per pixel to perform
cubic wavelet compression. Streaming allows values to be returned as soon as possible, enabling
results to be displayed sooner despite the extra computation. Our compression saves bandwidth in
that a single wavelet image need only be sent once for every 2k raw input images.

Our wavelet encoding provides a few distinct advantages. The smooth nature of our compression
naturally removes undesirable noise found in the original image sequence. The encoding is amenable
to hardware-accelerated rendering through the use of texture mapping and programmable GPUs,
enabling rendering efficiency. The encoding results in a stack of wavelet image textures, which can
be incorporated into state-of-the-art terrain visualization systems capable of managing and rendering
large textures [3, 4].

Naturally, streaming compression impacts the latency between when images are captured and
when they are displayed. This latency is most significant at the initialization of the compression
system, where 3×2k−2 frames are necessary before the first wavelet image is produced. Subsequent
wavelet images are produced for every 2k raw input images, and three additional images are necessary
before the first wavelet video texture can be rendered. Thus, the initial cold-start latency is (3×2k−
2)+(3×2k) = 6×2k−2 frames.

Our approach to compression has some limitations. As with many other vision algorithms, our
image segmentation procedure is sensitive to reflections off of shiny objects such as bodies of water
or metal roof tops. Tall structures such as skyscrapers appear to move as the vantage point of the
sensors shifts. Both of these issues cause fluctuations in pixel intensity over time making the problem
of identifying foreground movers even more difficult and will be addressed in future work.

11 Results

We have tested our method on a 100 frame sequence consisting of 1 megapixel images. The total raw
input size was 100 MB. Our test machine was a 2.8 GHz P4 PC with 2 GB of memory to perform
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Figure 7 Difference images for select time steps of a 100 frame data set show two things: (1) the error
introduced by cubic wavelet approximation is low and (2) some pixels corresponding to moving objects are not
classified as foreground.

streaming wavelet compression on the sequence. In our implementation, we use k = 4 levels of
wavelet analysis for compression, achieving a 16:1 compression ratio.

Figure 7 shows difference images between our compressed result and the original images. They
demonstrate that our compression scheme works relatively well, but is sensitive to foreground pixels
mislabeled as background pixels. The difference images also illustrate that undesirable noise in the
original image sequence do not exist in the compressed result. We note that some images show
portions of the original images toward the borders of the images. This is due to image registration,
since some frames simply do not contain pixel information contained in other frames.

12 Conclusions and Future Work

We have described a streaming compression algorithm designed for huge time-varying aerial imagery.
By treating foreground and background imagery separately, our system is able to achieve high levels
of compression. We have developed a streaming formulation for wavelet analysis that satisfies several
requirements of high-resolution aerial photography: computational efficiency, low-memory footprint,
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compression suitable for transmission in low-bandwidth environments, streaming update of recently
captured images, and high-quality approximation to slowly-varying background images. The wavelet
images resulting from this compression are combined creating wavelet video textures that compactly
represent large numbers of raw input frames and that are inexpensive to render. As our compression
method is a streaming technique, it scales well to larger input image sizes and is insensitive to the
duration of the image sequence.

As future work, we will investigate ways to achieve further compression. After all pixels are
processed in the 1D temporal streaming transform, the wavelet images can be compressed spatially
using a number of image compression techniques, including those based on biorthogonal wavelets. We
hope to develop compression techniques tailored for fast-varying foreground imagery. Although the
compression we have presented is highly effective, it depends on a good segmentation of background
from foreground. This prerequisite motivates further development of fast and effective segmentation
techniques.
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