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Preface

The Schloss Dagstuhl seminars on Scientific Visualization provide a dynamic setting for
ongoing and future research in visualization. Numerous contributions in this active field
originated at Schloss Dagstuhl, and were extended to large-scale collaborative research and
high-impact works. This volume of the Dagstuhl Follow-Ups series contains the proceedings
from two seminars in 2005 and 2007, as well as updated papers on topics related to talks
from the 2007 seminar. Many of these works represent updated research and results on the

topics that were initiated in the 2005 and 2007 seminars.!

Scientific Visualization (SV) is concerned with the use of computer-generated images
to aid the understanding, analysis and manipulation of data. Since its beginning in the
early 90’s, the techniques of SV have aided scientists, engineers, medical practitioneers, and
others in the study of a wide variety of data sets including, for example, high performance
computing simulations, measured data from scanners (CAT, MR, confocal microscopy ),
internet traffic, and financial records. Somewhat as a result of these past successes, matters
are changing for research in SV. The data sets are becoming massive in size, complex and
multi-dimensional in nature and the goals and objectives of the visualization much less
precisely defined, but yet the results are needed with higher urgency and importance. The
multi-resolution and hierarchical methods of today do not scale to these new data sets. The
segmentation and knowledge extraction methods of today need to be completely revamped
in order to be useful. Because of the changes that are taking place in SV, it was and is
important that a group of senior researchers meet with select junior researchers to map out
the future research agenda for this critical area.

One of the important themes being nurtured under the aegis of Scientific Visualization
is the utilization of the broad bandwidth of the human sensory system in steering and
interpreting complex processes and simulations involving voluminous data sets across diverse
scientific disciplines. Since vision dominates our sensory input, strong efforts have been
made to bring the mathematical abstraction and modeling to our eyes through the mediation
of computer graphics. This interplay between various application areas and their specific
problem solving visualization techniques was emphasized in the seminars.

Reflecting the heterogenous structure of Scientific Visualization, the selected papers of
this Dagstuhl Follow-Ups volume focus on the following topics:

Visual Analytics: The fields of information analysis and visualization are rapidly
merging to create a new approach to extracting meaning from massive, complex, evolving
data sources and stream. Visual analytics is the science of analytical reasoning facilitated
by interactive, visual interfaces. The goal of visual analytics is to obtain insight into
massive, dynamic and often conflicting pieces and formats of information; to detect the
expected and to discover the unexpected; and to yield timely assessments with evidence
and confidence levels.

Quality Measures: It is vital for the visualization field to establish quality metrics. An
intrinsic quality metric will tremendously simplify the development and evaluation of

! See http://www.dagstuhl.de/05231 and http://www.dagstuhl.de/07291 for details on the corres-
ponding Dagstuhl Seminars.
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Preface

various algorithms. The establishment of quality metrics will also advance the acceptance
and use of visualization in industrial and medical applications.

Ubiquitous Visualization: As ubiquitous computing is getting increased attention, also
visual display of everywhere available data is necessary. Challenges include: heterogeneous
output devices, novel interaction metaphors, network bandwidth (availability, reliability),
graceful degradation of algorithms with respect to largely varying resources, in vivo
visualization (real time, no pre-processing, robust).

Multifield and Multiscale Visualization: The output of the majority of computa-
tional science and engineering simulations is typically a combination of fields, so called
multifield data, involving a number of scalar fields, vector fields, or tensor fields. Similarly,
data collected experimentally is often multifield in nature (and from multiple sources). The
ability to effectively visualize multiple fields simultaneously, for both computational and
experimental data, can greatly enhance scientific analysis and understanding. Multiscale
problems with scale differences of several orders of magnitude in CFD, nanotechnology,
biomedical engineering and proteomics pose challenging problems for data analysis. The
state of the art in multiscale visualization considerably lags behind that of multiscale
simulation. Novel solutions to multiscale and multifield visualization problems have the
potential for a large impact on scientific endeavors.

Categorical Visualization: Information and knowledge is extremely difficult to extract
from multi-valued, multi-dimensional, multi-modal and multi-layered categorical data.
These data sets abound today and the pay-offs for understanding them are substantial.
Mathematical techniques based upon functional relationships break down requiring
completely new paradigms to visualize these types of data sets.

Intelligent / Automatic Visualization: Ever-increasing data sizes require semi-auto-
matic methods that concentrate on the typically very small portion of the relevant
information in the data. Techniques include model- and knowledge-based segmentation,
classification in abstract feature spaces, computation of saliency information from derived
data characteristics, automatic detection of important isosurfaces, automatic creation
of expressive transfer functions, automatic landmark selection and automatic path and
navigation guidance.

Point-based/Mesh-free Visualization: A typical strategy to visualize unorganized
multidimensional data sets is to transform the data into standard geometric primitives
of triangles and triangular mesh surfaces prior to rendering. This intermediate step is
time consuming, but necessary to map the data set to standard (hardware and software)
graphics primitives. With the recent advances in point-based rendering, new efficient
and creative approach for visualizing scattered and unorganized data sets are potentially
possible.

Hans Hagen



Generalized Hyper-cylinders: a Mechanism for
Modeling and Visualizing N-D Objects

Matthew O. Ward! and Zhenyu Guo!

1 Computer Science Department, Worcester Polytechnic Institute
100 Institute Rd., Worcester, MA 01609 USA
{matt,zyguo}@cs.wpi.edu

—— Abstract

The display of surfaces and solids has usually been restricted to the domain of scientific visual-
ization; however, little work has been done on the visualization of surfaces and solids of dimen-
sionality higher than three or four. Indeed, most high-dimensional visualization focuses on the
display of data points. However, the ability to effectively model and visualize higher dimensional
objects such as clusters and patterns would be quite useful in studying their shapes, relation-
ships, and changes over time. In this paper we describe a method for the description, extraction,
and visualization of N-dimensional surfaces and solids. The approach is to extend generalized
cylinders, an object representation used in geometric modeling and computer vision, to arbitrary
dimensionality, resulting in what we term Generalized Hyper-cylinders (GHCs). A basic GHC
consists of two N-dimensional hyper-spheres connected by a hyper-cylinder whose shape at any
point along the cylinder is determined by interpolating between the endpoint shapes. More com-
plex GHCs involve alternate cross-section shapes and curved spines connecting the ends. Several
algorithms for constructing or extracting GHCs from multivariate data sets are proposed. Once
extracted, the GHCs can be visualized using a variety of projection techniques and methods to
convey cross-section shapes.

1998 ACM Subject Classification 1.3.5 Computational Geometry and Object Modeling
Keywords and phrases N-Dimensional Visualization, Cluster Visualization

Digital Object Identifier 10.4230/DFU.SciViz.2010.1

1 Introduction

Visualization has been identified as a critical component to the process of interactive
exploration and mining of large data repositories. The essential problems that need to
be addressed when developing tools for interactive visual data analysis include:
How to structure and process the data into a format and size that is manageable within
the visualization environment, yet retains most, if not all the significant information
content of the original data;
How to best display information on the screen so as to provide users with useful insights
into their data given the constraints of visual perception, screen resolution, and processing
speed; and
How to provide users the ability to effectively interact with the visualization to extract
meaning from the data.

The field of data visualization can be roughly divided into two distinct subfields. Scientific
visualization concentrates predominantly on the display of one, two, or three-dimensional
spatial/physical data, while information visualization generally assumes data sets of arbitrary

@@@@ © M.O. Ward and Z. Guo;
G licensed under Creative Commons License NC-ND
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Generalized Hyper-cylinders

dimensionality, usually without a spatial attribute but often with one or more relations
defined between data items.

The display of surfaces and solids has usually been restricted to the domain of scientific
visualization; however, little work has been done on the visualization of surfaces and solids of
dimensionality higher than three. The primary focus in most high-dimensional visualization
has been on the display of data points, rather than surfaces and solids. However, the ability to
effectively visualize higher dimensional objects, whether defined analytically or derived from
data samples, would be quite useful in studying the shapes and relationships of these so-called
hyper-objects. For example, the richness of the description of a cluster of N-dimensional
data points could be greatly enhanced beyond commonly used methods, which often just
consist of the cluster center along with the hyper-box or hyper-ellipsoid encapsulating the
data. Likewise, descriptions of differences or changes in these clusters over time would benefit
from richer representations.

The focus of this paper is to describe a novel method for the description, extraction,
visualization, and interactive exploration of N-dimensional surfaces and solids. The general
concept is to extend generalized cylinders [8, 9], an object representation regularly used in
geometric modeling and computer vision, to arbitrary dimensionality, resulting in what we
term Generalized Hyper-cylinders (GHCs). In its simplest form, a GHC consists of two
N-dimensional hyper-spheres connected by a hyper-cylinder (spine) whose shape at any point
along the cylinder is determined by interpolating between the shapes of the endpoints. A
broader class of GHCs can be defined by using alternate cross-section shapes as well as curved
spines. We describe several algorithms for extracting GHCs from large multivariate data sets,
with user-controllable parameters to adjust the accuracy at which the GHCs approximate
the real data. Once extracted, the GHCs can be visualized in 2-D or 3-D using a variety of
techniques, such as projecting the endpoints into the display space using PCA or MDS. A
variety of object types to represent the shape of the GHC are being explored and evaluated.
Finally, a suite of tools is being implemented for interactively exploring data displayed with
GHCs, including operations for navigation, selection, filtering, and distortion.

This paper is organized as follows. Section 2 describes the work of others in visualizing
N-dimensional points and objects. Section 3 defines generalized cylinders and their extension
to generalized hyper-cylinders. Section 4 describes methods for visualizing GHCs, while
Section 5 focuses on methods to extract GHCs from datasets via manual, semi-automated,
and fully automated techniques. We conclude in Section 6 with a summary and a list of
potential future research directions.

2 Related Work

Multivariate data can be found in most, if not all, disciplines of study, and a wide range of
techniques have been developed for the visualization of such data. Popular techniques include
scatterplot matrices, projected point methods [1], parallel coordinates [2, 13], and tabular
views [7]. Other techniques that have been proposed include glyphs [12], pixel-oriented
techniques [3], and dimensional stacking [5]. While these are useful for examining individual
data records, they are less effective at providing a high-level description of the entire dataset
or selected subsets of the data.

For example, if one were interested in describing the shape of a cluster in a 5-dimensional
dataset, what techniques would be applicable? Most cluster descriptions in common use
consist of a small number of attributes, such as the location of the cluster center, its
population, and perhaps its dominant axis. Others represent a cluster by a representative
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Figure 1 Two hyper-boxes in Parallel Coordinates. Two clusters have been isolated based on
the second dimension. The brown and grey regions indicate the surrounding hyper-boxes for the
clusters. Image generated with XmdvTool [6, 11].
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Figure 2 The same clusters in Scatterplot Matrices. Image generated with XmdvTool.

sampling of the data points contained in it. However, this is not a good representation for
tasks such as comparing cluster shapes.

A simple approach to representing and visualizing N-dimensional clusters is to use the
axis-aligned hyper-box that contains the points of the cluster. For example, in Figures 1 and
2, two clusters of points have been selected in the parallel coordinates and scatterplot matrix
displays, respectively [6, 11]. The shaded regions indicate the extents in each dimension that

contain the selected points (yellow points in the brown region, red points in the blue region).

As can be seen, these regions overlap, so the user can only see the full extents of one of the
clusters. Clearly an axis-aligned hyper-box is not a very accurate description of a cluster’s
shape.

Another approach is to decompose the N-dimensional space into a (potentially large)
number of N-dimensional blocks or subspaces and represent the cluster as the set of subspaces
that contain at least one data point. This is akin to the spatial enumeration technique for
3-D solid modeling [8], where a 3-D volume is represented by an array of volume elements

Chapter 1
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Figure 3 Spatial enumeration with dimensional stacking. Each bin represents a hyper-box in N
dimensions. Those in red represent an isolated cluster [5, 4].

(voxels). One way to visualize this hyper-volume is with dimensional stacking [5, 4], where
each dimension is divided into a small number of bins and the display space is recursively
partitioned using pairs of dimensions. Figure 3 shows an example of a 5-dimensional dataset
with one cluster (red) isolated. While separated in display space, the red bins are contiguous
in N dimensions. The dark and light grid lines show the first two levels of nesting. Each
dimension has four bins. This representation is not very compact, and in order to increase
the accuracy of the representation the number of bins per dimension must be high. Also,
for high dimensional data the number of occupied bins tends to be very small (the curse of
dimensionality).

A method that is more accurate than hyper-boxes and more efficient than dimensional
stacking is the H-BLOB method as described by Sprenger et al. [10]. They represent clusters
via hierarchically nested hyper-spheres, which are then projected to three dimensions and
visualized using implicit surfaces (see Figure 4). This generates a closed, smooth surface
around each cluster, and thus provides a rich description of the shape. H-BLOBs have some
similarities to GHCs; however, it would take a potentially large number of hyper-spheres to
represent a shape that can be captured with a single hyper-cylinder, and we feel there are
many shape features that can be derived from GHCs that would be difficult to extract with
the H-BLOB representation.

3 Generalized Cylinders and Hyper-cylinders

Hyper-boxes and hyper-spheres are relatively coarse primitives to use in modeling shapes,
especially those defined by groups of scattered points. In each case, there can be a significant
amount of space within the model where there are no data points. In 3-D, a tapered cylinder
can often come closer to encapsulating the points in a cloud, as the endpoints and radius can
be adjusted to better fit the data. In geometric modeling and computer vision, this approach
is known as generalized cylinders (GC) [9], which can be used to model axis-symmetric
objects or object parts. A GC consists of two endpoints, a spine (straight or curved), and a
cross-section (often a circle or ellipse). Many variants on GCs have been proposed over the
years, including the use of non-convex cross-sections and varying the cross-section shape or
size as one moves from one endpoint to the other. A wide range of complex object shapes
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Figure 4 Implicit surfaces generated as hyper-spheres in N dimensions and projected to three
dimensions. Image from [10] (used with permission).

can be represented using a small set of GCs. While GCs have been widely used in 2-D and
3-D, to the best of our knowledge, they have not been extended to higher dimensions.

In fact, it is not hard to imagine this extension, which we call a generalized hyper-cylinder
(GHCQ). It is clear one can define two N-dimensional endpoints, along with a straight or curved
spine connecting them. The shape of the cross-section, however, is not so straightforward.
In the simplest form, we can use an (N-1)-dimensional hyper-sphere orthogonal to the spine,
with either a constant or variable radius as one moves along the spine. This would result
in hyper-planes at the ends of the GHC. Another alternative is to use an N-dimensional
hyper-sphere at each end, similar to H-BLOBs, with an interpolated radius along the spine.
As with GCs, we can also use ellipses for the cross-section shape. This can allow the GHC
to fit a given dataset with increased accuracy. Finally, while it might be possible to use an
arbitrary (N-1)-dimensional shape as a cross-section (e.g., represented as a GHC with one
less dimension), we feel the resulting complexity would make interpretation, rendering, and
analysis difficult.

4 Visualizing GHCs

There are many ways one could consider to render a set of GHCs; indeed. most multivariate
data visualization techniques could be extended to convey the endpoints, spines, and cross-
sections. As our initial attempt, we focused on GHCs with a straight spine and a hyper-sphere
cross-section. For M GHCs we draw M 2-D scatterplots, each aligned with a particular
GHC. Each GHC is represented as a trapezoid, where the width of the top and bottom are
proportional to the radii at the two endpoints and the length of the trapezoid is proportional
to the N-D distance between the endpoints. The endpoints are connected to represent the
spine. All other GHCs in a given view are drawn relative to the focus GHC.

In the following, we describe how to generate a 2-D scatterplot to represent and visualize
a hyper-cylinder. For each data point, we project it onto a scatterplot view by calculating the
x and y coordinates relative to the two endpoints and the spine. Assume the two endpoints
are A; and As, respectively, in N-dimensional space and A,, is the middle point of Aj As.
For any data point B;, it can be projected onto the spine A; A;. Assume the projection point
is By, i.e., By is on A1 Ay and B;B,, is perpendicular to A;As. The point B, is calculated as

Chapter 1
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follows:

(Bi — Al) . (AQ — Al) A2 — Al
[[Az — Ayf| |42 — Ay

The value of the y coordinate is the distance between A,, and B,,. If B, is nearer A,, the
value is positive; if B, is nearer A;, the value is negative. The value of the x coordinate is
computed as ||B; — Bp||costl, where ||B; — B, || is the Euclidean distance from the data point
and its projection point, and € is the angle between vector B; — B, and any fixed vector
that is orthogonal to A1 As, say T — T, (T' is any point in N-dimensional space and T}, is the
projection point as described before):

B, = A, +

(O*Op) i (T*Tp))
10 = O|IIIT = Tl

Thus the x coordinate is the rotated distance from a data point to the spine which
simulates a perspective view effect. When interactively increasing or decreasing all the
angles by an offset, analysts are able to simulate viewing the hyper-cylinder from different
orientations, i.e. by rotating the hyper-cylinder around the spine. Figures 5 to 7 show
an example of the different perspective views from different orientations when viewing a
hyper-cylinder in a three dimensional space. Point T is selected as the first data point of the
dataset.

0 = arccos(

To visualize multiple GHCs in a single scatterplot view, we map the two endpoints of
each non-focus GHC and connect them to represent the spine. We draw two perpendicular
lines whose lengths are proportional to the two radii and connect the four corners (the end
of the two perpendicular lines) to get a trapezoid. We fill the trapezoids with different colors
to denote different GHCs.

Figure 8 shows a set of three GHCs for a 4-dimensional dataset. Each view is centered
on one GHC (outlined), while the others are shown as filled colored trapezoids. The view
with the red boundary indicates the GHC that is currently being edited (the focus GHC).
The first GHC contains all of the data points; the amount of empty space indicates that this
GHC does not fit the dataset accurately. The second and the third GHCs contain the two
clusters, which are more accurate than the first GHC as they have smaller radii and shorter
spine lengths. It is very easy to discover how well the data points fit the cluster and examine
outliers that do not fit well in either GHC.

This representation is simple, yet flexible. Curved spines can easily be accommodated, as
can cross-sections that change in a non-linear way. There are also many possible variations
on this simple view, including:
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Figure 8 Visual representation of a set of GHCs .

Placing endpoints, as well as intermediate axis points for curved spines, using dimension-
ality reduction techniques such as PCA and MDS.

Rendering in 3-D, which can reduce the amount of occlusion.

Using colored stripes to represent how each dimension is changing along the length of the
spine.

Extruding a 2-D star glyph along a 3-D spine, where the length of each branch of the
star conveys the dimension size (for hyper-ellipsoidal cross-section).

We are experimenting with these and other variations for visualizing GHCs.

5 Extracting GHCs from Data

One of the biggest challenges with GHCs is deriving them from data, as a given dataset
could be represented with varying degrees of accuracy, leading to varying numbers and
shapes of GHCs. We can categorize potential approaches as either manual, automated, or
semi-automated. In the manual case, the user defines the endpoints for each GHC as well as
the cross-section size and shape. Data that fall within these specifications are assigned to the
GHC being constructed. By coloring the points as they get covered by the GHC, the user
can interactively adjust the position, shape, and orientation of the GHC to best fit the data.
In this case, it is up to the user to decide when multiple GHCs are needed. Figure 9 shows
such an interface for manual GHC specification. A subset of 5 dimensions are selected in
the parallel coordinates view, and the endpoints of the GHC are specified in the scatterplot
matrix view. In the projected view the user can adjust the radii of the GHC at each end.
In a semi-automatic approach, the user might specify pairs of endpoints and allow the
system to compute the best cross-section size and shape to use. It would also be possible to
automate the fitting of a curved spine, based on the distribution of points. Again, it would
be up to the user to indicate how many GHCs should be used and approximately where they

Chapter 1
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Figure 9 Interactive creation of GHCs to represent a dataset.

are located. Automated techniques could also be used to refine the endpoint location using a
localized search.

A fully automatic method could start with a clustering of the data. It would then be
assumed that each cluster could be represented by a single curved GHC or a set of connected
linear GHCs. Starting with the extreme points of a cluster, the spine could be initialized to
the straight line connecting the endpoints. Each point in the cluster would then be projected
to this line to ascertain if any gaps exist that should result in the division of the cluster into
multiple GHCs. Assuming no gaps exist, the distances and directions to each cluster point
from the spine could be used to bend the spine towards the center of the data that project
to that neighborhood of the spine. One challenge would be to identify where forks and joins
must occur, e.g., when few points are close to the spine and there are two or more groups of
points that share an approximate direction from the spine. One problem with this approach
is that the initial choice of endpoints is critical; it is important to not choose outliers, and
rather choose points that represent the dominant axis of the cluster.

We are studying ways to enhance our manual GHC creation tool as well as exploring
algorithmic alternatives to some or all of the stages of extraction and refinement.

6 Summary and Conclusions

In this paper we have introduced a new method for approximately describing objects of
dimensionality greater than three. By extending the notion of Generalized Cylinders from
3-D to N-D we can describe clusters and other patterns in multivariate datasets in a compact,
yet descriptive form. GHCs can be useful for not only compressing a dataset, but also for
comparing multiple datasets for change analysis and in specifying queries on data.

There are many unsolved problems and avenues for research in the definition, extraction,
and use of GHCs. While space limitations prohibit us from going into detail here, a partial
list of such topics includes:

What forms of interaction should be available to create and explore GHCs? These might
include navigation in data space, feature space, or display space, drill-down and roll-up to
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get more or less detail on demand, and distortions such as bending, moving, and scaling
to see objects more clearly without losing context.

Are there other shapes that would capture the shape more accurately or that would be
easier to extract with comparable shape accuracy?

What error measures could be used?

What object configurations would not be suitable for GHCs?

It is anticipated that a wide range of disciplines will benefit from this research, including

bioinformatics, computational modeling, telecommunications, health care, and other scientific
and industrial domains where the analysis of high dimensional data and models is important.
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—— Abstract

Many visual representations for trees have been developed in information and software visualiza-
tion. One of them are cone trees, a well-known three-dimensional representation for trees. This
paper is based on an approach for constructing cone trees bottom-up. For this approach, an
optimal layout for these trees is given together with a proof that based on the assumptions, there
can be no better layouts. This comprises special cases, an optimal constant for the general case,
and a post-processing step improving the layout.
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1 Introduction

Cone trees are a well-known three-dimensional representation for trees. Based on the original
work by Robertson et al. in 1991 [4], several different methods for the computation of the
layout have been proposed. While the original approach implemented a top-down approach,
in [1] a bottom-up approach was chosen to layout the cone tree. Unfortunately, some details of
the algorithm were not published. A compensation factor for the computation was motivated
and introduced, but its value or computation has not been given explicitely.

In this paper, we build upon this work. We show how special cases can be computed and
prove a tight bound for the compensation factor of the general case.

The paper is structured as follows. In Section 2, we review the ideas of [4], [1], and
other related work. In Section 3, the general setting and the assumptions for the layout are
described. In Section 4, the special cases are introduced, while in Section 5 the general case
is described. There, a tight bound for the compensation factor needed is proven. Further, an
optimization step is introduced in this Section, too. Finally, in Section 6, open problems are
given before we conclude this paper.

2 Related Work

This work is based on [4], [1], and [3]. Cone trees were first introduced in [4] (see Section 2.1).
Based on this work, a different approach for constructing cone trees was proposed in [1] (see
Section 2.2). In [3], reconfigurable disk trees were proposed as an enhancement to cone trees
(see Section 2.3).
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12 Computing an Optimal Layout for Cone Trees

Figure 1 Counterexample.

2.1 Cone Trees

Cone trees were first presented by Robertson et al. in 1991 [4]. They are very well suited to
layout trees with a large number of children. Based on the available screen size, the layout is
produced in a top-down manner. Details are given in Section 3.

An evaluation of cone trees was performed by Cockburn and McKenzie in 2000 [2]. They
found that for certain tasks, the participants were significantly slower than when using a
2D tree interface. Possible reasons for the bad performance of cone trees mentioned in their
study comprise less familiarity with cone trees and a comparatively crude 3D interface.

2.2 Beyond Cone Trees

In [1], a different approach was chosen to layout the cone tree. The computation of the
respective cones is done bottom-up. Our approach is based on this work. The details are
given in Sections 3 and 5.1.

2.3 Reconfigurable Disk Trees

In [3], so-called RDTs (Reconfigurable Disk Trees) are presented. They define a reference
point and an apex point together with apex height, reference height, and reference length.
These additional parameters allow different cone shapes and layouts. Additionally, they
provide an evaluation of the node density.

In the implementation, explicit values are given for the compensation factor introduced
in [1]. Unfortunately, there are special cases where this computation will result in overlaps.
One of these cases is depicted in Figure 1.

Consider four children with the radius 1. Moving them together as closely as possible
leads to a square with edge length 2. Considering the triangle depicted in Figure 1, the
radius is the largest edge of a triangle with a right angle and the smaller edges being 1 unit
long. Thus, r. can be computed as

re=1V124+12 =2 > 1.414

This is the minimal radius.
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According to [3], the radius will be computed as follows:
inner_sum = 2- Z out__rady
k

= 2.(14+1+41+1)

= 8

max__child_radius = mgx{out_radk}
= max(1,1,1,1)
= 1.

It follows that
inner_sum=8>2-w-1=2-7-max_child radius.

Thus, the radius will be approximated as

inner__sum 8
rad = = < 1.28.
2-m 2.7

Thus, rad < r., which leads to overlapping circles for this case.

3 General Setting

Cone trees are essentially built as follows. The root of the tree is placed on top. All children
of a node are placed at a fixed distance below this node forming a circle. If the node is
projected onto the plane of this circle, it will be projected onto the center of the circle
(see also Figure 2). In Figure 3, one cone of a tree is shown. The parent node (yellow) is
connected to its children using a transparent cone.

The approach chosen in [4] takes a fixed 3D space and fits the cone tree into this space.

The height is divided by the depth of the tree giving the height of each cone. The radius of
each circle is progressively reduced from top to bottom. The disadvantage of this approach is
that the size of the children will have to be adapted to the size of the circle. For large trees,
the circles containing the leaf nodes will be either very small or will not be visible at all.
Another approach was taken in [1]. There, a bottom-up approach was chosen. Each leaf
element of the tree has a bounding circle. This circle gives the size of the leaf element. All
leaf elements are arranged in a circle such that they do not overlap. The bounding circle of
all elements arranged in the bottom circle of the cone gives the size of the cone. The whole

cone, leaves plus parent node, is placed in the bottom circle of the next cone one level higher.

Here, we describe the adaptation of the ideas presented in [1]. We describe the construction
of one cone. In Figure 2, a 2D view of the circle at the base of the cone is given. The radii
of the bounding circles of the children determine the radius of the circle of this cone. In
Figure 3, a 3D view is given. The parent node is placed at the top of the cone. All cone
elements and variables are described next.

Given are a parent node N, of the cone and its n child nodes Nj ... N,. The size of each
node is given by its radius 7,,71,...,7,. The cone is described by the radius r. of the circle
at its base and its height h.. Further, the radius 7, of the bounding circle of the children is
needed. In the Table 1, these entities are summarized.

Currently, the height of the cone is always set to a predefined constant value h. = const.

13
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" Figure 2 Construction of one cone element: 2D view.

"' Figure 3 Construction of one cone element: 3D view.
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Table 1 Abbreviations.

Abbreviation Element

N Node

S Shape representing a node
R Radius

H Height

) Angle between two child nodes
C Circumference

p subscript Parent node

1...n subscript | Child node number 1...n
¢ subscript Cone

b subscript Boundary

G subscript Glyph representing a node

4 Special Cases
4.1 No Children

If there are no children, then the radius and the bounding radius of the cone are set to the
bounding radius of the glyph rg representing the parent node IV, of the cone:

Te =Tp =TqG-

4.2 One Child Node

If the number of child nodes is n = 1, then the child node is positioned directly below the
parent node. Placing a child at a certain position either means placing a leaf at this position
or placing the parent node of the cone representing the subtree at this position. See Figure 4
for a depiction of this situation.

The bounding radius of the cone is set to the maximum of the radius of the cone and the
bounding radius rg of the glyph representing the parent node IV, of the cone:

ry = max(rg, re).

4.3 Two Child Nodes

If the number of children is n = 2, then an optimal radius and an optimal bounding radius
can be computed (see Figure 5).
The cone can be computed as

” o T + T2
c 2
ry = Te+max(ry,ro)
1 = 0°
Y2 = 180°.

The position of the first child is at an angle of p; = 0° and at a distance of r. from the
center of the circle. The position of the second child is at an angle of o = 180° and at a
distance of r. from the center of the circle.

Chapter 2
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Figure 4 One child node.

Figure 5 Two child nodes
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Remark: If the radii are different, then the bounding circle is not the smallest bounding
circle containing both children. Its radius is

r1 — 72|
2

larger. One possible optimization would be to use the radius
Ty =171+ To.

Then, the parent node has to be put at the position between the two child nodes that is the
center of the bounding circle. But then the cone would no longer be a right circular cone but
an oblique cone.

4.4 Three Child Nodes

If the number of children n = 3, then an optimal radius and an optimal bounding radius
can be computed, too. Let r1, r2, r3 be the radii of the children, such that without loss of
generality ry > 1o > r3. Let A, B, C be the corners of a triangle with the edges of that
triangle being

a = 1ri+7re
= 7’1+7’3
c = Tro+4rs3.

That is, A is the center of the child having radius r3, B is the center of the child having
radius 79, and C' is the center of the child having radius 7.
A triangle is acute if it satisfies the following set of inequalities:

a4+ > A2
B4+ > a?
A+ad> > v

If the triangle is acute, then the circumcenter of the triangle lies inside the triangle. Otherwise,
it lies outside. If the circumcenter lies inside the triangle, then the children can be positioned
on the circumcircle (see Figure 6). In this case, the order of the radii is not important. Let

A denote the first child Ny, B denote the second child Ny, and C denote the third child Nj.

The following equations can be used to compute the radius of the circumcircle and the angles
of the child positions:

a? +c2 —b?

B = arccos
2-a-c
b
re = -
c 2-sin 8
o1 = 0°
r?+rf—b2
(g = arccos ————
.rcn‘r‘c
2-7“3—1)2
= arccos ——5—
2-rf
rerrgfcz
(p3 = arccos ———
2-1q T
272 —¢2
= arccos £ 5
2-r

C
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Figure 6 Three child nodes forming an acute triangle: Computation.

Figure 7 Three child nodes forming a non-acute triangle: Moving the circumcenter on the triangle
edge.

If the circumcenter of the triangle lies outside the triangle, we get the situation depicted
in Figure 7.

Consider the triangle AUM B where U denotes the circumcenter of the triangle and M
the midpoint of the edge BC. As U lies on the perpendicular bisector of BC, the triangle has
a right angle at the corner M. Therefore, |M B| < |[UB|. Thus, using M as center and |M B
as the radius of the cone’s circle results in a smaller circle. This smallest circle containing all
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Figure 8 Three child nodes forming a non-acute triangle: Computation.

children can be constructed as follows (see also Figure 8):

a
Te = 5
Th Te+T1
e = 0°
Y2 = 180°
x2+r2702
(p3 = arccos ———
.l‘./]"c
with
2 2 2
a —b
cosf = @+ -0
2-a-c
2 = A4+r2-2.c-r.-cosf
2 2 2
e (a cc—b
= c2+r3— e (a4 )

a

In this case, the smallest child with its center A will be moved away from M along a
line through M and A (see Figure 9). With respect to the closeness of the children, the
circumcircle would be the better solution. But then the radius would be larger.

4.5 Equally Sized Child Nodes

Another special case that can be easily computed is all children having equal size, that is

V’L'Z’l"i:?.

Then, the children can be placed at the vertices of an equilateral polygon (see Figure 10).

19

Chapter 2



20 Computing an Optimal Layout for Cone Trees

Figure 9 Moving A onto the circle.

¢)

Figure 10 Circumcircle of an equilateral polygon.

The radius of the cone can be computed directly using the following equations:

T . Te
sinp  sin90°
27
¢ = 2-n
S
T on
\
?
re = —.
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Remark: A comparison with the approximation given in Section 5.2 yields:

n —
oo it m_neT
¢ 2.7 2 2
N/ — r
¢ sin T
/ nr L. us us
Te 5 _noT-sing  n-sing
" T 2.7 2
Te sin § r
! s s
n-sinZ g
lim £ = lim 2 —
n—oo 1!/ n—00 2

This corresponds to the approximation of a circle through an equilateral polygon. Finally, in
the limit the circumference of the polygon is equal to the circumference of the circle and
thus the error is equal to the compensation factor introduced. On the other hand, for n = 2,
the quotient is equal to 1 and thus the compensation factor is needed.

5 General Case

The general case allows computing only an approximation of the cone. First, the construction
of the circle is given in Section 5.1. In order to compute the radius, a compensation factor
is used. A tight bound of this compensation factor is motivated and proven in Section
5.2. Finally, it is possible to improve the construction with a post-processing step. This
optimization is presented in Section 5.3.

5.1 Introduction

In case a parent node has more than three children, n > 3, an exact computation of the
inner circle is no longer possible, except for special cases. One special case would be that
all children have the same bounding radius (see Section 4.5). In general, the cone and the
positions of the children can be computed as follows (see also Figure 11 and [1]).

The circumference of the cone’s base circle can be approximated as

n
i=1

An approximation of the radius of the cone’s base circle can then be computed as

L G

Te = .
2.

The radius used for the cone’s base circle is obtained by multiplying the approximated
radius by a compensation factor f

re =Te- f.

If the number of children is small or if there is a large difference between the radii
of the smallest and the largest child, then the circumference will be underestimated. The
compensation factor f was motivated and introduced in [1], but no formula for its computation
has been given. The special cases for less than four children, n < 4, have already been
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" Figure 11 Cone with more than three children.

addressed in Section 4. Here, the maximal error between approximated and minimal
circumference needed is computed. It is given by the following equation (see Section 5.2):

<

[0}

[
SUS
B

Therefore, choosing

f=

o3

as compensation factor is sufficient.
The radius of the bounding circle is computed using the following equation:

ry =7+ max {r;}.
i=1...n

Each child is positioned at distance r. from the center of the cone’s circle. The first child
is always positioned at @13 = 0°. The angle ; between two children N; and N;_1, i > 1 is
computed as

Tt
re

i

Hence, the children N;, ¢ > 1 are positioned at

A
pi = Z%‘-
j=1
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Figure 12 Identification of 7 as bound of the compensation factor; line-up of the children.

Figure 13 Explanation of m as bound of the compensation factor; moving children onto the
boundary.

5.2 Computation of the Compensation Factor

The compensation factor needed in the previous section can be estimated as follows. First of
all, we consider the situation depicted in Figure 12. All children are lined up yielding the
diameter d of a circle

=1

Now, the children can be moved perpendicular to the line from the line onto the boundary
of the circle (see Figure 13). That is, all children can be placed on a circle having radius r.

23

Chapter 2



24

Computing an Optimal Layout for Cone Trees

and circumference c¢., such that

Te = g:Zn

=1

n
Cc = 2-7r-rc:2-7r-g 7.
i=1

n

The quotient between the chosen circumference ¢, and the estimated circumference ¢, is

Ce _ 2.3 _
évc 2'22;17"1'

As can be seen from Figure 13, only one half of the circle is used for placing the children.
Thus, the compensation factor is much too large. The conjecture is that using

=

po|

as compensation factor would be sufficient.
Consider the following inequalities:

2.1,

2: 30T

n
™
& 2-7r-rc§§-2~;ri

= <

7r<;$ <
Ce 2 -

m
2

n
& 4~rc§2-2m.
i=1
In order to show the latter relation, consider the following situations. All children are
arranged such that the centers of their bounding circles form a convex polygon. The distance
between two children is the sum of their radii. Compute a minimal bounding circle around
this convex polygon. Please note that this construction can always be performed. Then,
there are two possible situations:
1. Exactly two vertices of the convex polygon are lying on the border of the minimal
bounding circle (see Figure 14).
2. Three or more vertices of the convex polygon are lying on the border of the minimal
bounding circle (see Figure 15).

If no or only one vertex lies on the border of the circle, then the circle would not be
minimal.

Considering the first case, if exactly two vertices of the convex polygon are lying on
the border of the bounding circle, then the distance between these vertices is equal to the
diameter of the circle. Otherwise, the bounding circle would not be minimal.

Let A and B be the vertices lying on the minimal bounding circle. Then, we get

_ [AB]

Te 5

and the above equation is certainly fulfilled:

_ o, ABl = -
4'Tc—4~T—2~|AB|§2~;n.
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Figure 14 Explanation of the compensation factor: first case.

Figure 15 Explanation of the compensation factor: second case.

Chapter 2



26

Computing an Optimal Layout for Cone Trees

Figure 16 Explanation of the compensation factor: second case.

This holds because the path from A to B using lines of the polygon is certainly longer than
the direct path between A and B (triangle inequality).

If three or more vertices are lying on the boundary of the minimal bounding circle, then
the result is obtained as follows. Consider any triangle with all vertices lying on the boundary.
Then, the bounding circle is also the circumcircle of the triangle. There is at least one
triangle with the circumcenter lying inside the triangle or on one of its sides. Otherwise, for
each triangle, the circumcenter lies outside the triangle. This is the second situation of the
special case described in Section 4.4 and the circle would not be minimal.

Now, choose a triangle such that the circumcenter lies inside the triangle or on one of its
sides. If the center of the circumcircle lies on one of the sides of the triangle, then this side is
the diameter of the circle and we have the same situation as in the first case. Otherwise, let
a, b, ¢ be the sides of the triangle and A, B, C' its vertices.

If

4-re <la| +[b] + ||

then

4-rc§\a|+|b|+|c\§2-2ri.
i=1

The last inequality holds because a, b, and ¢ are the shortest connections between A, B, and
C. Every path on the polygon is longer (triangle inequality). Thus, it is sufficient to show
that the first inequality holds.

Consider Figure 16. First of all, the law of sines implies the following equations:

|a] + [b] + |¢]

2-r.-sina+2-r.-sinff+2-r.-siny

= 2.7, (sina+sinf 4+ sinvy).
Thus, it is sufficient to show

sina +sin  +siny > 2
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because then

la] + 1b] + |¢| 2-r.-(sina+sinf + sinvy)
2702

4-r,..

Y

In order to show that the sum of the sine of the angles is greater or equal to two, consider
the following conditions. As the triangle is acute, we have

A, B,C <90°.
Therefore, we get
A+B>90°= A>90° - B.
From this follows

sin a cos 8

>
sinfg >

cos Q.
Using these, we get

sihaw + sinf+sinvy
sin a + sin 8 + sin(180° — (a + B))
sin « + sin 8 + sin(a + )

sina + sin 8 + sina - cos 4 cosa - sin 3
2

> sina+sin5—|—cos2ﬁ+cos «

= sina+sinf+1—sin?f+1—sin’a
= 2+4sina- (1 —sina)+sing- (1 —sinp)
> 2.

From this follows the claim about the compensation factor at the beginning of this section.

5.3 Optimization Step

Having computed the layout as described in Section 5.1, an optimization step can be
performed (see Figure 17). This is done by computing for each child an optimization factor

£ = Ti + Tit1
" d(ririg)
_ T + i1
 Te Ted Te Te—2-Te Te-COSQ
Ty + Tig1

V(@2 =2 cosp)-r2

where d(r;,7;+1) denotes the distance between r; and 7;41. Then, an optimized radius can
be computed and used for the layout of the children:

7o = max(f;) - re.
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i q i+

Figure 17 Optimization step.

6 Future research and open problems

Although the layout computed is optimal under the assumptions presented in Section 3 and
Section 5.1, there is still space for improvements.

First of all, the proof for the general case is quite long. The question is whether there is
a more elegant proof of the bound for this case.

The second question is whether there is an easy way to extend the special cases. Further,
only a small number of special cases have been considered, namely, zero to three children and
equally sized children. There might be further special cases, leading to simple and efficient
solutions.

While this paper focused on the computation of the circle parameters, another parameter
is the height of the cone. The question is whether there is an elegant way to compute an
optimal height.

Finally, the implications of this work on RDTs can be researched, too.

7 Conclusion

Performing a bottom-up construction of cone trees, formulas for the optimal computation
of the cone’s base circles have been proposed. This includes special cases for zero to three
children and for equally sized children as well as the general case. For the latter, an optimal
compensation factor has been motivated and proven. Further, an optimization step has been
introduced for this case. This allows implementing cone trees bottom-up in an optimal way.
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—— Abstract

Mesh optimization of 2D and 3D triangulations is used in multiple applications extensively. For
example, mesh optimization is crucial in the context of adaptively discretizing geometry, typi-
cally representing the geometrical boundary conditions of a numerical simulation, or adaptively
discretizing the entire space over which various dependent variables of a numerical simulation
must be approximated. Together with operations applied to the vertices the so-called edge or
face swap operations are the building block of all optimization approaches. To speed up the
optimization or to avoid local minima of the function measuring overall mesh quality these swaps
are combined to generalized swap operations with a less local impact on the triangulation.

Despite the fact that these swap operations change only the connectivity of a triangulation,
it depends on the geometry of the triangulation whether the generalized swap will generate
inconsistently oriented or degenerate simplices. Because these are undesirable for numerical
reasons, this paper is concerned with geometric criteria that guarantee the generalized swaps for
a 3D triangulation to yield only valid, non-degenerate triangulations.

1998 ACM Subject Classification 1.3.5 Computational Geometry and Object Modeling
Keywords and phrases 3D Triangulation, Geometric Conditions, Swap Operations

Digital Object Identifier 10.4230/DFU.SciViz.2010.30

1 Introduction

Triangulations of points in 2D space for a mesh of triangles or points in 3D space for
a mesh of tetrahedra are crucially important for numerous applications encountered in
scientific and engineering application, including numerical simulation, shape approximation,
or visualization. In scattered data approximation [15, 8, 20] 2D triangulations are used
to define a piecewise linear coarse approximation of a dense data set, assigning a “height
value” for every vertex. This technique can also be used for image compression [5, 4, 21, 18]
and video compression [19, 17]. For reverse engineering [12, 9, 6, 1], the 2-manifold surface
to be reconstructed is approximated by a 3D triangulation that contains no tetrahedra.
For mechanical engineering and physical simulations [24, 14], 3D triangulations are used as
meshes for finite element methods.

For all of these applications the triangulation needs to be optimized with respect to
an application-dependent cost function measuring mesh quality based on a multitude of
proper mesh quality variables, including, for example, point distribution, approximation
error [7, 18], triangle shape [10], dihedral angles [14], etc. The optimization process is usually
based on simple, local changes in the triangulations such as repositioning of vertices [15],
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insertions and removal of vertices [7, 11] and edge and face swaps [22]. While the first of these
operations change geometry and connectivity of the triangulation the swaps change only
the connectivity of a triangulation. To speed up the optimization or to avoid local minima
during mesh optimization multiple edge and face swaps are combined to generalized swap
operations that change the connectivity of more than three tetrahedra of the triangulation
[13, 25, 23, 17], see Section 2.

However, it depends on the geometry of the triangulation if a generalized swap will
generate flipped or degenerate simplices. We present in this paper geometric criteria that
guarantee that a generalized swap operation in a 3D triangulation will generate only valid,
non-degenerate triangulations.

2 Related Work

In general, a swap operation replaces d-dimensional simplices of a triangulation (d > 1) by
other simplices. It usually affects only a local area of the triangulation, and changes the
connectivity of the triangulation without changing the number or position of the vertices.
Lawson [16] was was among the first scientists studying and publishing swap operations
systematically. He showed that d + 2 points in d dimensions, which do not all lie in a
hyper-plane, have either one unique triangulation 7 or two possible triangulations 7; and
T2. Which case happens depends on the vertex positions, see Figure 1 for the 2D case. In
the latter case, 71 and 75 differ only in connectivity and the transformation from 7; to

Tz is called swap operation s;_,2(71) = T2. The opposite transformation is se—1(72) = 7.

Because s1_,9 089 ,1 = 85,1 08152 = id, s1_,2 and so_,1 are inverse operations.

d d
S1-2
a a
c
‘ b
S
- b 2—1

Figure 1 Triangulations of four points in the 2D case.

d
c
b b

If 77 is a subset of a larger triangulation 7, the swap operation can be applied by replacing
only the simplices of 71 with those of 75, and leaving all simplices of 7 unchanged, i.e.,
T' = (T \ T1) UTz. Note that the subset 7; has to be a triangulation, i.e. it has to fill the
convex hull of its vertices, and must be convex.

Additionally to these basic swaps, one can construct generalized swap operations that
replace a set of simplices C' of the triangulation by a different set of simplices C’. Thus, C
and C are not required to cover the convex hull of their vertices. Since the generalized swaps
are usually more powerful, they can lead to a good triangulation with less swap operations,
but are often less efficient.

One way to construct a generalized swap operation is to combine a sequence of basic
swap operations to a so-called composed swap operation. For the 2D case Yu et al. [25] use a

combination of two edge swap operations. If a simple edge swap does not reduce the cost
function, they swap the edge and one of its adjacent edges. Thus, the affected faces do not
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e 2-2swap

2-2 swap

IV.a IV.b V.

Figure 2 The different settings of five points in the 3D case.

need to form a convex polygon for the composed swap operations. Using the composed swap
operations can improve the optimization results significantly.

Concerning the 3D case, the set of swap operations is larger and more varied than in
the 2D case. Again, we can categorize them into basic swap operations and composed
swap operations. According to Lawson [16], there are five different settings of five points
a,b,c,d and e in 3D space, only two of which have two different triangulations and therefore
provide swap operations, see Figure 2. If three points are collinear, or four points a, b, ¢, d are
coplanar with d € conv(a, b, ¢), or e € conv(a, b, ¢, d) there is only one possible triangulation,
see Figures 2 1., III., and V. If exactly four points are coplanar and form a convex quadrilateral
q there are two possible triangulations with flipped diagonals of ¢, see Figure 2 II. Because
the triangulation consists of two cells before and after the swap, the swap is called a 2-2
swap. For the most general case in which all five points are corners of conv(a, b, ¢, d, e) there
are also two possible triangulations, see Figure 2 IV. Because this swap replaces three cells
by two and vice versa, it is called a 3-2 swap or 2-3 swap, respectively.

When applied to a subset of a triangulation 7, the 2-2 swap is only possible if the two
faces {a,b,d} and {b,c,d} are border faces of T. If they are interior faces, the incident two
cells also have to be swapped, see Figure 3. This leads to the 4-4 swap, which replaces four
cells with four other cells.

In 3D also a combination of basic swap operations can be more powerful. Joe [13]
systematically analyzed the possible settings. Every face of a triangulation is assigned to nine
different categories, describing their local setting and their status of being transformable by a
basic swap operation. He proposes a set of composed swap operations to transform faces that
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e 4-4 swap e

4-4 swap

Figure 3 The 4-4 swap is used if the faces of the 2-2 swap are no border faces.

are initially not transformable, by first swapping adjacent faces. For every composed swap
operation, he lists the cells that are removed and created. From this list, he provides criteria
in [13] to compute the change of a cost function ¢ resulting from each of the operations, if ¢
is the minimum of the costs of the individual cells.

Another class of composed swap operations is the class defined by the generalizations of
the 3-2 and 2-3 swaps, see [24, 3].

Generalized 3-2 swap (Gs2) A generalized 3-2 swap (Gs2) can be applied to an edge e =
{a,b} with n > 3 incident cells C = {¢1,...,¢,}, with ¢; = {a,b,v;,v;41} and v,41 =
vy, see Figure 4 (left). The loop (vi,...,v,) is split into a set of n — 2 connected
faces F = {f1,..., fn_2}. Note that the choice of F' is not unique. Gss replaces the
edge e with the faces F, where the n cells C' are replaced by the 2(n — 2) cells C' =

{ctns Cz,p ce 0&77l_2,cg7n72} with ¢}, ; = f; U {a} and C;Li = f; U{b}.

Generalized 2-3 swap (G23) We say a face f = {v1,v2,v3} is sandwiched between vertices
a and b, if the two cells incident to f are ¢; = {a,v1,v9,v3} and ¢o = {b,v1,v2,v3}. A
generalized 2-3 swap (Goz) is applied to a set F' = {fi1,..., fn_a} of faces, which are
sandwiched between two points a and b, see Figure 4 (right). A new edge e = {a,b}
is inserted into the triangulation, and the border edges of F' are connected to the new
edge e to form the new cells. Let C" = {c 1,¢,1,.-,C4n_2,C,,, o} De the set of cells
incident to the faces ¢}, ; = fi U{a} and ¢ ; = f; U{b} of I, and (v1,...,v,) be the loop
of vertices defined by the border edges of F. Ga3 replaces the faces of ' by the edge
€ = 04}, and the 2(n — 2) cells of C” are replaced by the n cells C' = {c1,...,c,}, with
¢i = {a,b,v;,v;41}, and v, 41 = v1.

Ga3 is the inverse of Gzo. Since the choice of faces is not unique in either direction,
applying the one swap operation after the other leads to the start triangulation only if for
both swaps the same faces are chosen. Also note that the 2-3 swap is a special case of Gz,
the 3-2 swap of G3s, and the 4-4 swap a special case of Gz and Gss.

The execution of G3o and Gogz can result in invalid triangulations. In Sections 4 and 5 we
discuss necessary and sufficient geometric conditions to ensure the validity of the resulting
triangulation. Shewchuk [23] notes that these swaps can be replaced by a series of 2-3 and
3-2 swaps, where the intermediate triangulations are topologically correct, but may contain
degenerate or inverted cells. In Section 6 we show that there is always a sequence of 2-3, 3-2,
and 4-4 swaps to replace a Ga3 or Gzo swap without degenerate or inverted cells.
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Figure 4 The generalized 3-2 and 2-3 swaps.

3 Notation

In order to define the generalized swap operation in terms of connectivity changes and
associated geometric conditions, we first adjust our notation properly.

A 3D triangulation T = (V,&,F,C) (tetrahedrization) consists of a set of vertices V,
edges £ C V?, faces F C V? (triangles), and cells C C V* (tetrahedra). Thus, an edge is
a pair of vertices, a face a triple of vertices, and a cell a quadruple of vertices. All these
entities are ordered such that 7T is an oriented simplicial 3-complex, where the edges of
adjacent faces and the faces of adjacent cells are order reversely. In this case, we call T a
valid triangulation. We will use set operations to define new faces and cells, i.e., for v; € V,
e = (vg,v3) € E, f = (vg,v3,v4) € F and ¢ € C we define

eU{v} (v1,v2,v3) € F,
fU{v} = (v1,v2,v3,v4) €C

and

e€f <= (vq,v3) is a sub-tuple of f,
f€c <= (va,vs,v4) is a sub-tuple of c.

While V, £, F, and C describe only the connectivity of the triangulation, a geometric
realization of 7 is defined by associating a point v € R3 to every vertex v € V. The geometric
realizations of an edge e € V2, a face f € V3, or a cell ¢ € V* are then defined as the convex
hull of the geometric realizations of their vertices, and are also denoted in boldface letters e,
f, and c, respectively. Furthermore, for a set M of edges, faces, or cells, we denote by M the
union of the geometric realizations of the elements of M. Throughout this paper, geometric
realizations of elements of a triangulation are denoted by boldface letters.
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We say a valid triangulation T is consistently oriented, when the geometric realizations
of all cells have the same geometric orientation. The orientation of a cell induces a notion
of orientation on all of its contained k-sub-simplices for k = 1,2. A k-sub-simplex is called
positively oriented if it is positively oriented in the k-dimensional hyperplane bounding the
enclosing (k + 1)-sub-simplex with outward pointing normal. This means in particular, that
all faces of a cell are positively oriented with respect to the half-plane bounding the cell with a
normal pointing to the outside of the cell. If the vertices of a cell are not affinely independent,
it is called degenerate, and if a cell or any of its k-sub-simplices are not positively oriented,
we call it inconsistently oriented.

Border faces are faces of a triangulation T that are incident to only one cell in T, all
other faces are called inner faces. Analogously, border edges are incident to only one inner
face, all other edges are called inner edges The border of a triangulation T is the set of all
its border faces. If T is a valid, consistently oriented triangulation, the geometric realization
of its border is a 2-manifold.

The boundary 05 of a subset S of a manifold M are the points in S for which every e-ball
in M contains points in M \ S. Note that the term border is an attribute of the connectivity
of a triangulation, whereas boundary is a property of its geometric realization.

We need to provide some definitions concerning spherical projections, which we will use
to establish geometric conditions for allowable swap operations.

» Definition 1. The spherical projection of a point p € R? onto the sphere S with center
q € R and radius r is defined as

I%p) =q+r(p—-a)/llp—dallzy, p#a
A projection of a set of points P C R3\ {q} is the set of the projected points,
I9(P) = {I1%(p)|p € P}.

Some properties of the spherical projection (without proof) are:

If P is a line, I19(P) is either two antipodal points (for q € P), or a half great circle (for
q ¢ P) of S1.

If P is a plane, IT9(P) is either a great circle (for q € P), or an open half sphere (for
q ¢ P) of S4.

If P = conv(p1, p2,ps) is a triangle and the plane defined by P does not contain q,
IT9(P) is a spherical triangle, bounded by the projection of the edges I19(conv(p1, p2)),
I9(conv(p2, p3)), I1%(conv(ps, p1)), which are segments of great circles of S9.

4  Geometric Conditions for G5,

For the geometric conditions to be satisfied for a Gso-swap as defined in Section 2 we have
an edge e = (a,b) with n incident cells that is swapped. The triangulation before and after
the Gzp-swap is denoted by 7 and 7.

» Condition 1. The triangulation 7 = (V, &, F,C) is valid, and all cells of T have positive
orientation.

» Condition 2. The edge e is an inner edge of T, i.e., every face f incident to e is incident to
exactly two cells ¢y 1 # cy 2.

Note that the last condition implies that e is not on the border of T. Furthermore, these
conditions induce an order of the faces incident to e.
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» Lemma 2. All faces containing e can be ordered to form a cyclic sequence G = (g1,...,gn),
i.e., the indexi=1,...,n of g; is understood modulo n. Furthermore, the dihedral angles 0;
between g; and g;+1 (in the direction a to b) are in the interval (0,7), and sum to 2.

Proof. Due to Condition 2, a face g = (a, b, v) incident to e is incident to two cells ¢g 1, ¢g 2.
Both have two faces incident to e, one of the two is g, the other ones are ¢gf and g5, respectively.
The successor of g is the face gj. of cell ¢4 1, on the positive side of g (in the direction a to b),
k =1,2. The predecessor of g is the other face. Due to Condition 2 this relation determines
a cyclic successor-graph without branches.

The dihedral angle 6; between a face g; and its successor g;;1 is the dihedral angle at e
of the cell that contains both faces. Therefore, 0 < # < m, because otherwise the cell would
be inverted or degenerate, contradicting Condition 1.

Since the sequence of faces is cyclic, it surrounds e. It can only cycle exactly once around
e, because otherwise cells between the faces would intersect in their interior, which contradicts
Condition 1. The sum of the dihedral angles between the faces is therefore 27. <

We denote the cell between g; and g;11 as ¢;, and the third vertex of g; as v;. Thus,
Lemma 2 induces also a cyclic order on the cells C' = (cy, ..., ¢,) and vertices V = (v1,...,v,)
around e. Because G3s replaces the cells of C' by other cells, we call C the affected region,
and the border faces of it are given by

oC = {(a,va,v1), (b,v1,v2),...,(a,v1,0,), (b,vn,v1)},
ie., 0C = Ufeac f. The line through a and b is denoted by
l1={a+ A(b—a)|X € R} (1)

» Lemma 3. There is a closed loop of edges B = {by,...,b,} that winds around 1 exactly
once.

Proof. This follows from Lemma 2, where b; is the edge of ¢; opposite to e. |

For the sphere S around a contained in the convex hull of all cells containing a we
set tf = I1*(b) and denote by t the antipodal point of t{. Let B* = II*(B) the spherical
projection of B onto S®. Since B? is a closed loop on 52, it splits S into two parts S} and
S8, which are characterized by ¢} € S} and tg € 5§, see Figure 5. Analogously, Sb, t}’, tg,
BP, SIb, and 5’8 are defined.

» Definition 4. A partition of B is a set F = {f1,..., fm} of faces f; ¢ F, where
1. all vertices of f; belong to edges of B, i.e., f; CV,
2. all edges of f; are either edges of B or inner edges I, and
3. a. every edge of B is incident to exactly one face of F,
b. every edge of I is incident to exactly two faces of F.

» Lemma 5. FEvery partition F' of B has n — 3 inner edges and m =n — 2 faces.

Proof. As a consequence of Lemma 2 partitioning B is equivalent to a triangulation of a
simple polygon B’ in a plane perpendicular to 1 without introducing new vertices. This
polygon is the orthogonal projection of B along direction 1. Since every simple polygon with
n vertices can be triangulated with n — 2 triangles (see [2]), i.e., n — 3 inner edges, the claim
follows. <
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Figure 5 Terms used in spherical projection with B in blue and B* in green.

The partition F' of B defines the cells that are created by the Gso-swap. Every face
of the partition is connected to a and b to form two new cells. The set of new cells is
C'={cu1:Ch1s 1 Coms Con} With ¢, ;= fjU{a} and ¢ ; = fju{b} for f; € F. Note that
for n > 3 the partitions and also the Gso-swap is not unique.

It can happen that C’ contains inconsistently oriented or degenerate cells. Therefore, the
Gso-swap would result in an invalid triangulation and must not be applied. Whether this is
happens depends on e and B and also on the choice of F'. We call F' a valid partition if all
cells in C' are valid.

Depending on the geometry, there are three different cases. For every case we present
an example for n = 4, so that two different partitions exist: Fy = {(v1,v2,v3), (v1,v3,v4)}
and Fy = {(v1,v2,v4), (v2,v3,v4)}. For every example, a = (0,0,1) and b = (0,0, —1).
Furthermore, the z and y coordinates of vy to v4 are (—0.3,—0.3), (0.7, —1.3), (1.7, —0.3),
and (0.7,0.7), respectively.

Every partition is valid For every partition F', all cells in C’ are valid. For our example, we
choose the z coordinates to be z; = 25 = 23 = z4 = 0. Both partitions F; and F> are
valid in this case. Note, that every partition is valid as long as the affected region C is
convex. which is only the case if (as in this example) all v; are coplanar. But also for a
non-convex affected region all partitions can be valid.

Some partitions are invalid For some partitions, there are cells in C’ that are inverted or
degenerate. But other partitions are valid. For a concrete example, set the z coordinates
to 21 = 29 = z3 = 0.8 and z4 = —0.8. Here, F} is an invalid partition, because the cell
(a,v1, Vs, vy) is inverted, while partition F; is valid.

All partitions are invalid It can also happen that no valid partition exists at all. In this case,
Gso cannot be applied to e. An example for this case is z; = 23 = 0.8 and 29 = 24 = —0.8.
Here, F} is invalid because of the inverted cell (b, vy, vy, v3), F» is invalid because of the
inverted cell (a, vy, vz, vy).
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These examples show that we need another condition that ensures that F' is a valid
partition. Under the assumption that Conditions 1 and 2 are satisfied, we found four
equivalent formulations 3.2., 3.1., 3.3., and 3.4. for the missing condition. Will prove their
equivalence later in Theorem 11. Before we describe the missing condition in detail we need
to define the supporting plane pl(t) of a triangle ¢ as the affine hull of its vertices.

» Condition 3.

3.1. All cells ¢;, ; and c;, ; have positive orientation.

3.2. Every f; has a on its positive side, and b on its negative side.

3.3. The spherical projection of the faces f; onto S is contained in S} U B?, and the

interior of the inner edges is projected into S (for SP analogously),

TIP(f;) C SP U BP, foralli=1,....n, 2
() ! orant " for p € {a,b}. @
1P (d) c SP, for all d € 1, (3)

3.4. The interior of the inner edges is a subset of the interior of the affected region, and
the supporting planes of all faces f; intersects the line 1 in the interior of e,

dc C\acC, foralldel, (4)
pl(f)N1eé. (5)

» Theorem 6. If Conditions 1, 2, and 3 are met, the triangulation T' = (V, &', F', C') with
C'=(C\C)UCl (and & and F' accordingly) is valid.

Proof. Due to Conditions 1 and 3.1., all cells of C’ have positive orientation. To prove that
there are no holes in C’, we check for border faces of the cells of C’:

The faces b; U {p} for p € {a, b} are border faces of both C' and C".
The faces f; are incident to c;, ; and ¢}, ;, i.e., f; is not on the border of C”.
For the faces f = dU{p},d € I, p € {a, b}, the edge d is incident to two f aces f; and fy,
ie., f is incident to ¢}, ; and ¢}, ;. So, f is not on the border of C".

Thus, there are no new border faces, i.e., there are no holes in C”. |

» Lemma 7. Condition 3.1. and Condition 3.2. are equivalent.

Proof. By definition, a is on the positive side of f; if and only if the cell ¢, ; has positive
orientation. Furthermore, b is on the negative side of f; if and only if the cell ¢; ; has positive
orientation. <

» Lemma 8. Conditions 3.1. and 3.2. imply Condition 3.3.

Proof. To prove (2) we first show that II*(F) is a connected region on S? that is bounded
by B2. Then we show that ¢? € IT*(F).

Due to Condition 3.1. a is not in F, since this would cause degenerate cells, and IT*(F)
is a connected region on S®. For f;, f; € F' with common edge d € I, the spherical triangles
I12(f;) and I12(f;) share the spherical edge 11*(d). Due to Condition 3.1. the both cells ¢, ;
and cfh ; have positive orientation, so they are on opposite sides of the plane P through d
and a. Therefore, IT2(f;) and IT?(f;) are also on opposite sides of IT*(d), see Figure 6. This
implies that the interior of all inner edges of T is not projected to the boundary of IT(F').
The same holds true for all interior points of F. Thus, the boundary of IT?(F) consists of
projections of the border edges of B. Consequently, the interior of I1?(F) is not intersected
by B?, so IT*(F) is either completely in S? UB?, or in S8 UB?2.
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Figure 6 The projections of f; and f; are on opposite sides of the projection of the edge d.

Since B winds around 1 once, the 1 line intersects F in at least one face f;. Let p =1Nf;.
Because a is on the positive side of f; (Condition 3.2.), II*(p) = t&. Therefore, IT1*(F) C
S2 U B?2. Analogously, one can show IIP(F)  SP U BP.

o

Especially, the interior of I1?(d) does not intersect B2, which implies (3). |
» Lemma 9. Condition 3.3. implies Condition 3.4.

Proof. Let d € I be an inner edge of F', and p € d be an interior point of d. Due to Condition
3.3., p® =II?(p) € Sp. We split S} into spherical triangles by adding edges from II*(v;) to
2. At least one of these triangles contains p®. Let this triangle be ¢ = (8, II?(v;), II* (vi41)),
see Figure 7. The boundary B? (green) is partitioned into spherical triangles (red lines),
d is (vi,v4) (blue line) and p € d. In this case, I12(p) is within the spherical triangle
t = (18,117 (vy), [12(vs)).

The set of points that are projected into ¢ is defined as the intersection of the half
spaces defined by the planes spanned by a and one of the edges of t, i.e., g1 = (a,b,v;),

g2 = (a,v;41,b), and g3 = (a,v;,v41), which contains the fourth point {a,b,v;,vi11} \ g:.

The point p cannot be on the negative side of gy, go or g3, as this would mean that its
image is not in ¢. Also, it cannot be in the plane defined by a and g3, as this would mean
that it is projected to B2.

With the same argument for IT°, we obtain the faces g4 = (b,v;,a), g5 = (b, v111,a), and
g6 = (b,vi41,v;). Removing the redundant faces g4 = g1 and g5 = g2, we can conclude that
P is not on the negative side of g; and go, and it is on the positive side of g3 and gg. These
four faces define the cell ¢;. Thus, p € C, and p ¢ 9C, proving (4).

We still have to prove (5). Assume there exists a face f in F with {q} = pl(f)N1 ¢ é
and, without loss of generality, A < 0. This face has at least one interior edge d € I and we
chose an arbitrary point p € d. Now, p is projected to p* which lies outside of Sf*. This
contradicts (3) and, thus, proves (5). <

» Lemma 10. If Conditions 1 and 2 are satisfied, Condition 3.4. implies Condition 3.2.

Proof. For n =3 we have I = ) and F' = {f,}. Since B circles around 1, there must be an
intersection of 1 and f;. Due to Condition 3.4., this is between a and b, and because of the
order of the vertices of f; as induced by Lemma 2, a is on the positive and b on the negative
side of f;, and Condition 3.2. is satisfied.
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Figure 7 ST is divided into spherical triangles Figure 8 The intersection of the extension of
(red lines), one of which contains I1*(p). segment v to q with 1 is between a and b.

We now consider n > 3. The partition F' contains n — 2 faces, the border B has n edges
(see Lemma 3). If every face of F' had at most one edge of B, there would be at least two
edges in B left. Since no face of F' can have three edges of B (otherwise B would have a
sub-cycle of three edges), at least two faces of F' must have two edges of B. Let F C F be
the set of faces with two edges in B.

The line 1 intersects either one face of F' in its interior, or it intersects an inner edge of I
and therefore two faces of F' on their border.

In the case that 1 intersects an inner edge, and the adjacent faces of F' are the only two
faces in F, there can be no other faces in F, due to the following: if two faces with each two
edges in B and both sharing a common inner edge, their edges in B already define a cycle.
Since B does not contain any sub-cycles, there can be no further edges in B. In this case we
have n = 4. Since the intersection of 1 with f; and f; is between a and b (Condition 3.4.),
and because of the order of the vertices of f; and f3, a is on the positive side of f; and f5,
and b is on the negative side. Thus, in this case Condition 3.2. is satisfied.

For the remaining case there is at least one face f in F' that has no intersection with 1,
because otherwise Conditions 1 and 2 were violated. Let f = (vg—1, vk, vr4+1). Because f
does not intersect 1, 61 + 0 < m. Thus, the inner edge d = (vg—1,vr+1) cannot cross any
other cell besides ¢,p_1 and c¢;. Due to Condition 3.4., dc ck—1 Uck. With g, = (a,b,v),
the intersection d Ngy = {q}, with q in g;. When extending the line segment from vy, to q,
it intersects the segment e in its interior in point q’, because of (5) (see Figure 8). Since vy,
and q are points in f, the line through v, and q is also in the plane of f, and so is q’. From
these considerations and the vertex order of f, it follows that a is on the positive and b is
on the negative side of f. Thus, f fulfills Condition 3.2..

Now we remove f from F, i.e., F becomes F'\ {f}, B becomes (B \ {bx—1,bx)}) U {d},
and I becomes I\ {d}. This new edge cycle B still satisfies Conditions 1 and 2, but has one
edge less. This procedure can be repeated until n = 3, or n = 4 and 1 intersects both faces in
F. <

» Theorem 11. If Conditions 1 and 2 are satisfied, Conditions 3.2., 8.1., 8.3., and 3.4. are
equivalent.
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(a) Violating Condition 5. (b) Violating Condition 5. (c) Violating Condition 5. (d) Violating Condition 6.

Figure 9 Examples of sets F' violating Conditions 5 or 6.

Proof. This follows directly from Lemmata 7, 8, 9, and 10. <

5 Geometric Conditions for G,3

We use the same notation as in Section 4, i.e., F' = {f1,..., fm} is a set of faces sandwiched
between a and b, such that F is a connected 2-manifold. The edge set B = {b1,...,b,} are
the border edges of F'. The order of edges in B is induced by the order of boundary edges in
OF.

The triangulation before and after the Gos-swap is denoted by 7’ and 7. We define the
orientation of f; so that a is on the positive side of f;. The cells incident to these faces are
C' ={ca1:Ch1s 1 Coms Com ) With ¢, ;= fiU{p} for i=1,...,m and p € {a,b}. The new
edge in T is e = (a,b).

Next we define the conditions for which Go3 will result in a valid triangulation.

» Condition 4. The triangulation 7' = (V,&’, F’',C’) is valid, and all cells of 7’ have positive
orientation.

» Condition 5. The edges of B form exactly one simple cycle (v1,...,v,).

This condition ensures that the faces in F' are connected via edges, that there is only one

connected component of faces, and that the faces form a bounded 2-manifold without holes.

Examples of sets F' that violating Condition 5 are shown in Figures 9a, 9b, and 9c.
» Condition 6. All vertices incident to a face in F' are on the border B.

Condition 6 the absence of interior vertices in F' that are not part of B. Those interior
vertices would be removed by Ga3, but a swap may only modify the connectivity, but not add,
remove, or move vertices. Figure 9d shows an example of a set F' that violates Condition 6
due to an interior vertex.

» Lemma 12. If Condition 6 is satisfied, the number of vertices in B is n =m + 2.

Proof. If Condition 6 is satisfied, F' is a partition of B. Considering Lemma 5 we can
conclude m = n — 2. Therefore, n = m + 2. <

The Gos-swap will now replace the cells C’ by the cells C = {¢1,...,¢,} with
Ci = (av ba Vi, Ui+1)

and faces g; = (a,b,v;), where the index 4 is understood modulo n.
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» Condition 7. One of the equivalent following conditions holds:

7.1. All cells ¢; have positive orientation.

7.2. The dihedral angle 6; between the faces g; and g;11 (in counterclockwise direction,
seen from a in direction b) is in (0, 7).

» Lemma 13. Condition 7.1. and Condition 7.2. are equivalent.

Proof. c; has positive orientation if and only if c; is consistently oriented or non-degenerate.
This is true if and only if the inner dihedral angle ¢; is in (0, 7). <

» Theorem 14. If Conditions 4, 5, 6, and 7 are met, the triangulation T = (V, €, F, C)
with C = (C\ C")UC (and € and F accordingly) is valid.

Proof. Due to Conditions 4 and 7.1., all cells of C have positive orientation. To prove that
there are no holes in C, we check for border faces of the cells of C"

The faces b; U {p} for p € {a, b} are border faces of both C’ and C.

The faces g; are incident to ¢;—1 and ¢;, i.e., g; is not on the border of C.
Thus, there are no new border faces, i.e., there are no holes in C. |

6 Replacing Generalized Swaps by a Series of Basic Swaps

In [23] Shewchuk showed that the “multi-face removal” (equivalent to Go3) and “edge removal”
(equivalent to Gs2) can be replaced by a series of basic 2-3 and 3-2 swaps. The intermediate
triangulations are topologically correct, but may contain inconsistently oriented or degenerate
tetrahedra.

We will show that there always exists a series of basic 2-3, 3-2, and 4-4 swaps to mimic
the effect of a Goz- and a Gza-swap, where all intermediate triangulations are valid. This
result shows that the Go3- and G3o-swaps do not add additional potential that is not already
possible with 2-3, 3-2 and 4-4 swaps. An optimization procedure like simulated annealing
should theoretically be able to find a near-optimal solution also without utilizing G235 and
Gso. In practice, the convergence rate can be increased by implementing Go3 and Gss.

6.1 Replacing G,

Let e be an inner edge of triangulation T, B the set of border edges, and F a valid partition
of B, so that the Conditions 1, 2, and 3 for G35 are satisfied.

» Theorem 15. The same effect as the Gso swap operation of e and partition F can be
obtained by a series of either

n — 3 basic 2-3 swaps followed by a 3-2 swap, or

n — 4 basic 2-3 swaps followed by a 4-4 swap, for n > 4.

Proof. We use the same arguments as in the proof of Lemma 10.

For n = 3, F consists of exactly one face f1, and the vertices of f; circle around e exactly
once. Therefore, the conditions are satisfied to apply a 3-2 swap to e, so we can substitute
Gsso by a single 3-2 swap.

For n = 4, and the single inner edge d = (v;, v;12) with 7 € {1, 2} intersects with e, the
quadrilateral (v;,a,v;;12,b) is planar and convex, fulfilling the conditions of a 4-4 swap. This
4-4 swap replaces e by d and the four cells of C with the four cells of C’. Thus, the G35 swap
can be replaced by a single 4-4 swap.

If n = 4 and d and e do not intersect, or if n > 4, there is at least one face in F' with
two edges in B that does not intersect e. Let this face be f; = (vi—1,v;,vi41). As in
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the proof for Lemma 10, the edge d = (v;—1,v;4+1) intersects the face g; in its interior, so
the cells ¢;_; and ¢; fulfill the condition for a 2-3 swap. This swap removes ¢;_; and ¢;
from the triangulation, adds ¢ ; and cgJ and a temporary new cell ¢ = (a,b,v;—1,0;41).
The remaining cells (C'\ {c;—1,¢;}) U{c} together with the reduced partition F'\ {f;} and
the reduced border (B \ {(vi—1, v;), (vi,v;+1)}) U {d} fulfill Conditions 1-3. So, G35 can be
applied to the reduced setting. By induction, the reduced setting can be processed with
either (n — 1) — 3 2-3 swaps, followed by a 3-2 swap, or with (n — 1) — 4 2-3 swaps, followed
by a 4-4 swap. Adding the 2-3 swap to remove f;, the claim follows. <

6.2 Replacing Go3

Since the Go3 operation is the inverse of the G35 operation for the same partition F', Go3 can
be replaced by a series of basic swaps.

» Theorem 16. The same effect as a Goz operation of a partition F sandwiched between a
and b can be obtained by a series of either

a single 2-8 swap, followed by n — 3 3-2 swaps, or

a single 4-4 swap, followed by n — 4 3-2 swaps.

Proof. While Go3 replaces the cells C’ by cells C', G35 does the inverse. G3o can be substituted
by a series of basic swap operations Gzo = $1 0 82 0 -+ - 0 §,p,, With m being either n — 2 (s,
being a 3-2 swap) or n — 3 (s, being a 4-4 swap), as in Theorem 15. For the same choice of
F', we have

Gos =Gsa ' =(s10--08p) " =5, 008,
The inverse of a 3-2 swap is a 2-3 swap and vice versa, and the inverse of a 4-4 swap is a
corresponding 4-4 swap. We start in Goz with s;-!, which is either a 2-3 swap or a 4-4 swap.

Then we proceed with either n — 3 or n — 4 3-2 swaps. |

7 Conclusions

We have presented different geometric conditions for generalized swap operations a 3D
triangulation. These conditions are proved to be equivalent, such that one can use that
particular condition in practice that is most appropriate given the specific needs of an
implementation. In a mesh optimization application these swap operations are used to speed
up the optimization process and to attenuate "getting stuck" in local minima.

Furthermore, we have shown that the generalized swap operations can be realized by
simple 3-2, 2-3, and 4-4 swaps, which simplifies the implementation significantly. This
decomposition of the generalized swap guarantees at the same time, that all intermediate
triangulations are consistently oriented and do not contain degenerate cells, causing numerical
problems in certain applications.

Based on these conditions, our future research plans are focused on applications of 3D mesh
optimizations, e.g., in video compressions or bio-medical and bio-mechanical simulations.
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—— Abstract

We present a method for hierarchical data approximation using curved quadratic simplicial ele-

ments for domain decomposition. Scientific data defined over two- or three-dimensional domains
typically contain boundaries and discontinuities that are to be preserved and approximated well
for data analysis and visualization. Curved simplicial elements make possible a better represen-
tation of curved geometry, domain boundaries, and discontinuities than simplicial elements with
non-curved edges and faces. We use quadratic basis functions and compute best quadratic simpli-
cial spline approximations that are C°-continuous everywhere except where field discontinuities
occur whose locations we assume to be given. We adaptively refine a simplicial approximation
by identifying and bisecting simplicial elements with largest errors. It is possible to store mul-
tiple approximation levels of increasing quality. Our method can be used for hierarchical data
processing and visualization.

1998 ACM Subject Classification 1.3.5 Computational Geometry and Object Modeling

Keywords and phrases Approximation, Bisection, Grid Generation, Finite Elements, Hierarchi-
cal Approximation, Simplicial Decomposition, Spline

Digital Object Identifier 10.4230/DFU.SciViz.2010.45

1 Introduction

Scalar and vector field data often contain discontinuities that should be preserved for data
approximation and analysis purposes. It is important to represent domain boundaries—
including geometry such as a car body, an aircraft, or a ship hull—and the locations of field
discontinuities, represented by curves and surfaces. To better approximate these curves and
surfaces we investigate the use of curved quadratic simplicial elements. We do not address
the problem of extracting discontinuities from a given scalar or vector field data set; we
assume that this information is known. We consider data defined over two-dimensional (2D)
and three-dimensional (3D) domains.

We utilize only curved simplicial elements that are quadratic. In the 2D case, we use curved
triangles whose edges may be straight line segments or parabolae; in the 3D case, we use curved
tetrahedral elements whose edges/faces may be straight line segments/planar triangles or
curved. Generally, we refer to both non-curved and curved simplicial elements as just simplicial
elements. We use a quadratic polynomial transformation to map the so-called standard simplex
to the corresponding simplicial region in 2D /3D space. Furthermore, we use a quadratic
polynomial defined over each simplicial element to locally approximate the dependent
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variable(s). We use curved elements with curved edges/faces to better approximate domain
boundaries and discontinuities. All simplicial elements that do not “touch” geometry, domain
boundaries, or discontinuities are non-deformed elements. Nevertheless, the polynomials we
use over all simplicial elements are all quadratic.

Our overall goal is the construction of a hierarchical data over 2D or 3D domains using
a best approximation approach based on curved quadratic finite elements and quadratic
polynomials defined over these elements. We start with a coarse decomposition of the
domain, using a relatively small number of simplicial elements and placing curved simplices
in areas where boundaries and discontinuities occur. We then compute a (globally) best
least squares approximation, a quadratic spline approximation for the dependent variable(s)
that is C%-continuous. (Due to the C° continuity requirement we can place simplices with
curved edges/faces only along boundaries and where discontinuities occur, i.e., in areas
where the curved edges/faces are not shared by other elements. The physical locations
of discontinuities play the same roles as domain boundaries: Two simplicial elements may
share the—geometrically—same edge/face defining the locus of a discontinuity, but the field
function defined over the two elements is discontinuous along/on the shared edge/face.) Based
on local errors that we compute for each simplicial element, we bisect a certain percentage of
the elements with largest errors, update the simplicial domain decomposition accordingly,
and compute a new best quadratic spline approximation. We iterate this process until a
specified error condition is met or the number of simplicial elements exceeds some threshold.

Our approach belongs to the class of refinement methods. These methods are based on
the principle of refining intermediate data approximations by inserting additional points or
elements until a certain termination criterion is satisfied. We have developed our method
with a focus on the needs of massive scientific data analysis and visualization, see [22, 39, 45].
To enable interactive frame rates for massive data visualization, for example, it is possible
to use low-resolution best approximations everywhere or adaptively insert high-resolution
approximations locally into an otherwise relatively coarse approximation. The overall
approximation algorithm is based on these steps:

Initial simplicial domain decomposition. Assuming that either a polygonal/poly-
hedral or an analytical definition is known for all boundaries and discontinuities in the
2D/3D domain of interest, we construct a coarse simplicial decomposition of this domain.
We use curved edges/faces only in areas where they are needed to better approximate
curved boundaries and/or discontinuities. (The quadratic transformations, mapping the
standard simplex defined in so-called parameter space to deformed simplices in so-called
physical space, are defined by specifying corresponding point pairs in the two spaces
such that one obtains a one-to-one, bijective mapping.) Figure 1 shows a possible initial
simplicial decomposition, including curved elements, of space around a wing cross section.
Best approximation. In the 2D case, each simplicial element has six associated knots,
one knot per corner and one knot per edge. Six knots in parameter space are associated
with six points in physical space, and this defines the needed quadratic mapping for a
simplex. (Accordingly, the number of knots is ten in the 3D case.) For simplicity, we
consider only knots that are uniformly distributed along the edges of the standard simplex,
see Appendix A. We associate a quadratic polynomial with each simplicial element, which
approximates the dependent variable(s) over the corresponding region in space. We
represent each quadratic basis polynomial in so-called Bernstein-Bézier form, see [12, 41].
Assuming that the function to be approximated, a scalar- or vector-valued function, is
known in analytical form, it is possible to compute the unique best quadratic spline
approximation defined as a linear combination of the set of quadratic basis functions.
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Figure 1 Decomposition of space around wing using curved 2D simplices (geometry, domain
boundary, and discontinuity shown in bold).

The best approximation, understood in a least squares sense, is the result of solving the
normal equations, see [9].

Adaptive bisection. We compute a local error value for each simplicial element once
a best approximation is known. We use the Ls norm to compute simplex-specific error
values. The set of simplices is ordered according to the simplex-specific, local error values.
To compute a next-level best quadratic approximation we determine a certain percentage
of simplices with largest error values and bisect them by splitting them at the mid point
of their longest edge. If a simplex’ longest edge is not unique, we choose the edge to be
split randomly. In the case of curved edges we use arc length to determine the longest
edge to be bisected. Splitting a specific simplex into two simplices induces additional
splits for all those simplices that share the split edge. We update a simplicial domain
decomposition by considering all edge bisections and compute a new best approximation.
We repeat the process of identifying simplices with largest errors, bisecting these simplices,
and computing a new best approximation until we obtain an approximation for which
the maximal simplex-specific error is below a certain error threshold or until a maximal
number of simplices is reached.

Hierarchical data representation. To support hierarchical data processing and
visualization, for example, we can store multiple best approximations of different simplicial
resolutions. For each best approximation, we need to store the polynomial coefficients of
each simplicial element—for its shape and the polynomial defined over it. Considering a
non-curved simplicial element, we only need to store its three (four) corner points and the
coefficients of the quadratic polynomial defined over the element. Considering a curved
element, we need to store all polynomial coefficients defining the shape of the element
in addition to the coefficients of the quadratic polynomial defined over the element. We
store a fixed number of best approximations such that either the number of simplices
increases in a specified fashion or the maximal simplex-specific error decreases in a certain
way from one resolution to the next.

We discuss these steps in more detail in the sections to follow.

Related work in the areas of hierarchical data representation and approximation is
discussed in [1, 4, 5, 6, 7, 11, 16, 17, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 38, 48,
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Figure 2 Mapping standard triangle to arbitrary curved triangle (iso-parametric lines shown in
parameter and physical space).

51, 52, 59]. Best-approximation methods are described in [53, 55], and effective processing
and visualization approaches for data approximated by higher-order elements are covered in
[19, 55, 56, 57]. So-called data-dependent triangulation schemes, i.e., schemes concerned with
the construction of piecewise linear approximations using near-optimal simplicial elements,
are described in [10, 36, 43]. In [46, 47] various data structures are covered in-depth that can
be used for efficient storage of hierarchical data approximations. From a broader perspective,
our work is related to grid generation, and references for this area are [14, 32, 49, 50]. Finite
element methods, which also are closely related to our work, are discussed in detail in [60].

2 Mapping the Standard Simplex

In the 2D case, the standard simplex in parameter space is the triangle with corners (0, 0),
(1,0), and (0,1). The triangle with these three corners is mapped to a curved triangular

region in physical space by mapping the six knots w; = (u; 5, v; ;) = (%, %)7 1, >0,1+5 <2
(abbreviated in multi-index notation as |i| = 2), in parameter space to six corresponding
points x; = (2, ;,¥;,;) in physical space, using a quadratic mapping. The quadratic mapping
in the 2D case, using Bernstein-Bézier polynomials B?(u) as basis functions, see [12, 41] and
Appendix A, is given by

> cij BYj(u,v)
< _ x(u,v) _ n2 _ i ;
" ( y(w,v) ) |i\:2bl Bt “Izzzzdi,j B j(u,v) |- e

The mapping between parameter and physical space must be one-to-one. Figure 2 depicts
the general mapping of the standard triangle in parameter space to a curved triangle in
physical space.

In the same way, we define the mapping of the standard tetrahedron with corners
(0,0,0), (1,0,0), (0,1,0), and (0,0,1) to a curved tetrahedron in physical space, mapping
the ten knots w; = (w; jk, Vi jk, Wi k) = (%, %, g), li| = 2, to ten corresponding points

Xi = (@i j .k, Yijks %ij,k) i physical space. Thus, the quadratic mapping in the 3D case is
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Figure 3 Mapping standard tetrahedron to arbitrary curved tetrahedron.
given by
> Cigik sz,k(uavaw)
x(u, v, w) li=2 )
x(u) = y(u,uw) = Z b; B?(u) — HZQ di7j,k: Bi,j,k(,u”/u’w) ) (2)
il=
Z(”?’U?w) li|=2 Z €ijk Bi%j,k(quVw)
lij=2

Figure 3 depicts the general mapping of the standard tetrahedron to a curved tetrahedron.

We use quadratic Bernstein-Bézier polynomials as basis functions for the approximation of
a field function defined over non-curved simplicial elements as well. We denote these quadratic
basis functions as Bf (x) = B} ;(,y) (= nyjﬁk(x, y,7) in the 3D case). A generalization of
the standard Bernstein-Bézier polynomials is necessary for curved simplicial elements. We
define the needed generalized quadratic basis polynomials for curved elements in Appendix
A. Figure 4 shows the graph of a quadratic polynomial defined over its associated curved
triangular domain.

3 Initial Simplicial Domain Decomposition

The main objective driving the development of our method is the hierarchical representation of
very large scientific data sets enabling real-time and adaptive data processing and visualization.
Data sets resulting from computational simulations are typically defined on a grid, and the
dependent variables are associated with either the vertices, also called nodes in the finite
element literature, or the elements defining the grid. We assume that a data set is provided
on a high-resolution grid. The original grid, its boundaries, and possibly known locations of
field discontinuities (in the dependent variables) influence how we define an initial simplicial
decomposition of the relevant 2D /3D domain.

The objective is to initially represent the 2D /3D domain with a relatively small number of
curved simplicial elements, using curved elements only where they help to better approximate
domain boundaries and known field discontinuities. In the 2D case, the grid points discretizing
the domain boundary represent curves, while they represent surfaces in the 3D setting. For
practical purposes we proceed as follows: First, we compute the bounding box of the original
set of grid points and decompose this box into two (five) non-curved triangles (tetrahedra).
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Figure 4 Graph of quadratic polynomial over its curved simplicial domain (Bernstein-Bézier
control net shown for curved domain simplex).

Second, we clip these non-curved simplices against the curves (surfaces) defining the domain
boundaries. Third, we identify the portion of the initial two (five) simplices that lies inside
the domain over which the dependent variable(s) must be approximated; we represent this
portion by using initially non-curved simplices only.

We consider perpendicular distance values to determine the quality of a simplicial domain
decomposition. We compute the distances of the original grid boundary points from the
boundary edges (faces) of the initially non-curved (boundary) simplices. If these distance
values are larger than a certain threshold, we must solve a local optimization problem, i.e.,
we deform an edge/face of a non-curved simplex in a quadratic fashion such that the original
grid points in the affected areas are (nearly) optimally approximated by quadratic curves
(surfaces). We can solve this problem locally as a univariate (bivariate) approximation
problem by considering the distances of original grid points in normal direction of the
associated edges/faces of the simplicial boundary elements. We note that the construction
of a globally optimal boundary curve/surface approximation is a subject in its own right,
but it is not the focus of this paper. We continue our discussion by assuming that boundary
approximation schemes suitable for incorporation into our overall scheme are available.

Geometry and domain boundaries can be identified easily from an originally supplied grid.
One simply needs to identify elements with edges/faces that are not shared by other elements.
It is much harder to identify the locations in 2D /3D space where field discontinuities, i.e.,
discontinuities of the functions describing the dependent variables, occur. Such discontinuities
should be preserved in a simplicial approximation as much as possible. Such discontinuities,
once there locations are known, can be treated by curved simplicial elements just like domain
boundaries.
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Figure 5 Shared face of two simplicial elements in 3D space is planar but may have curved edges.

The detection of discontinuities of scalar-valued functions over 2D/3D domains has
been an active research area in several disciplines, including digital image analysis, pattern
recognition/feature extraction from satellite imagery, and scientific data visualization. We
refer to the methods described in [2, 40] for more detail. For our purposes, we assume that
discontinuities can effectively be extracted from a given data set and that curves/surfaces are
used to represent them in the 2D /3D domain. Topologically, we treat these curves (surfaces)
in the same way as we treat boundary curves (surfaces) by using simplices with curved
edges/faces where they touch these discontinuities. Thus, every discontinuity is approached
from two sides, and the simplicial elements touching a discontinuity do not share vertices.
(The geometrical information of vertices of these elements is shared by vertices along/on
field discontinuities, but the coefficients used for field function approximation are different.)
Once an initial decomposition of the domain is constructed, we compute the implied best
quadratic spline approximation, which we describe in the next section.

In the 3D case, we ensure that each face that is shared by two simplices is planar.

Nevertheless, certain edges of a shared planar face may be curved whenever these edges
belong to a simplex face that approximates the domain boundary geometry (surface) or a
discontinuity in the 3D domain. This situation is illustrated in Figure 5.

4 Best Approximation

We assume that the field/function to be approximated over a 2D/3D domain is known
analytically. Should this not be the case, e.g., in the case of scattered data (randomly
distributed points with associated function values but without connectivity information),
it is always possible to construct an analytical representation by performing a prior data
interpolation or approximation step, see [13, 37]. In the case that a data set is defined
on a grid, the required analytical definition is given by a piecewise linear function for a
simplicial (triangular, tetrahedral) grid and a piecewise bilinear /trilinear function in the case
of quadrilateral/hexahedral grid cells. (We assume that function values are associated with
grid vertices.) We denote the analytical function to be approximated over the domain by
F(x). Based on an initial simplicial domain decomposition, we compute the corresponding

best piecewise quadratic approximation of F(x) by solving the normal equations, see [9].

The normal equations determine the set of coefficients for the desired quadratic spline
representation, a best approximation in the least squares sense.
Corner vertices of simplicial elements may be shared by any number of simplices, and we
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Figure 6 Types of basis functions. Basis function associated with shared corner (left) and shared
edge (right).

denote the basis function that we associate with a corner vertex v; by f;(x). An edge of a
simplicial element may be shared by no more than two simplices in the 2D case and by an
arbitrary number of simplices in the 3D case. We denote a basis function that we associate
with a simplex edge e; by g;(x). We refer to the set of simplices sharing a common corner
vertex as the platelet of this corner, and we call the set of simplices sharing a common edge
edge neighbors. Thus, a set of platelet simplices defines the region in space over which a
basis function associated with the corresponding corner vertex is non-zero. Edge neighbors,
associated with a particular edge, define the region in space over which a basis function
associated with this edge is non-zero. Instead of providing a formal definition for these two
types of basis functions, we refer to Figure 6 that depicts the types for the bivariate case.
We denote a best approximation as a(x), and we write it as a linear combination of the
basis functions associated with all distinct simplex corners and simplex edges. Assuming
that there are m distinct corners and n distinct edges, we can write a best approximation as

m

ax) = Y e L0+ Y d; g )

=1

We must solve the normal equations to obtain the unknown coefficients ¢; and d;. In matrix
form, the normal equations are

(fi,fr)y - (fu,fm) (froo) - (fio9n) c1 (F, f1)
) ooe Uid) U)o ) | [ en || ) |
(g1, f1) - {91, fm)  (91,91) - (91,9n) dy (F,q1) |’

where (G, H) denotes the inner product of the two functions G and H, i.e.,

(G H) = / G(x) H(x) dx. (5)

common domain of G and H

We must compute inner products involving curved and non-curved simplices. Since all
simplicial elements in physical space are defined as quadratic (or linear) mappings of the
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standard simplex, we can simplify integration by making use of the change-of-variables
theorem, see [34], which relates integration in physical space to integration in parameter
space for parametrically defined regions. In the 2D case, integrals are computed according to
the formula

G(z,y) dx dy = / G(m(u,v),y(u,v)) J(u,v) du dv, (6)

curved simplex standard simplex

where J(u,v) denotes the Jacobian associated with the mapping of the standard simplex to
the corresponding simplex in physical space. The Jacobian is the determinant

aat(u,v)  Za(u,v)
- . (7)
any(u,v)  Fy(u,v)

Ty Ty

J(u,v) = |xu| =
(,0) Pl Yu Yo

(The 3D case is a straightforward extension.) When using a simple linear transformation to
map the parameter space knots u; to associated physical space points x;, the Jacobian has a
constant value C. This constant value is given by the determinant

C = ’ dao dopo ’ (8)
in the 2D case and
C = | daoo dozo doo2 | 9)

in the 3D case, where the column vectors d; are given by d; = x; — Xg.

The matrices resulting for the best approximation problems for different levels of simplicial
resolution are sparse, and several methods exist for bandwidth reduction, efficient factorization,
and inversion of such sparse matrices, see [8, 15, 18, 42, 44]. Matrix bandwidth is related
to the indexing scheme used for the set of basis functions, i.e., the indexing used for
simplex corners and simplex edges. We apply a bandwidth reduction step prior to matrix
factorization/inversion.

The computation of the inner products appearing in the normal equations requires
multi-dimensional integration over non-curved and curved simplicial elements. While the
change-of-variables theorem reduces this integration to integration over the standard simplex,
we still need to perform numerical integration for the calculation of the inner products
appearing on the right-hand side of the normal equations, i.e., integrals of the types (F, f;)
and (F, g;), since F(x) can be any integrable function. We use Romberg integration for the
computation of these right-hand-side inner products, see [3, 27]. Appendix B lists some of
the needed inner product values for quadratic Bernstein-Bézier polynomials.

Once we have computed a best approximation for a particular simplicial domain decom-
position, we analyze the local approximation quality to identify those simplices that should
be refined (bisected) to further improve approximation quality. In the following section, we
discuss the general principles used for adaptive bisection.

5 Adaptive Bisection

For each simplicial element in a particular domain decomposition, we compute a local
approximation error. We define this error as

E(S;) = / (F(x) - a(x))2 dx. (10)

curved simplex S;
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Figure 7 Bisection of simplices in bivariate and trivariate cases.

We order the set {S;} of simplicial elements in decreasing order of their associated error
values E(S;). To construct a new, refined best approximation we specify a percentage of
simplices to be bisected and choose the simplices with largest approximation errors.

We bisect a simplicial element marked for refinement by identifying an edge of maximal
length, using arc length in the case of curved edges, and split this element by using the
midpoint of the split edge as a new simplicial corner vertex. The bisection step is shown in
Figure 7. All simplices sharing the split edge are bisected as well to avoid so-called hanging
nodes and thus preserve a conforming mesh. The bisection steps lead to a new simplicial
domain decomposition, and we must compute a new best quadratic spline approximation.

We continue to bisect a certain percentage of simplices in the resulting intermediate
simplicial domain decompositions until either the number of simplices in a decomposition
exceeds some threshold or an approximation is obtained whose maximal simplex-specific
error value is smaller than some tolerance. In principle, it is possible to store all intermediate
best quadratic spline approximations in addition to the originally supplied data, possibly
including a grid. For practical purposes, this might not always be possible due to storage
limitations. Therefore, the number of different best approximations that one stores usually
depends on the original resolution of a given data set and its underlying grid, the “complexity”
of a given analytical field function, the amount of storage available, and the criterion used
to terminate adaptive bisection. The final result of our method is a set of independent
best quadratic spline approximations to be used for the purposes of real-time, adaptive, or
hierarchical analysis and visualization.

6 Data Visualization Issues

Our data approximation method based on curved simplicial elements must also be considered
in the context of visualization techniques applied to data sets defined over 2D and 3D domains.
In the case of scalar-valued data sets, the particularly relevant visualization approaches to
be considered are (i) extraction and visualization of isocurves/isosurfaces or contours; (ii)
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slicing the data domain with lines/planes (slicing lines/planes); and (iii) ray casting, see
[19, 55, 56]. Applying these types of visualization techniques to curved simplicial elements
over which the dependent variable varies in a quadratic fashion requires us to generalize
standard visualization methods that often can deal only with elements with planar faces and
linearly or trilinearly varying dependent scalar value.

It is reasonable to view an approximation consisting of curved quadratic simplicial
elements to be competitive with a representation consisting of only non-curved, linear
simplicial elements when the higher-degree polynomial representation can be rendered nearly
as efficiently as the linear one. To study the competitiveness of the piecewise quadratic
approximation scheme one must compare rendering efficiency and simplicity for two types
of approximation: a piecewise quadratic approximation based on a combination of non-
curved and curved simplices and a piecewise linear approximation based on only non-curved
simplices. In order to compare two approximation schemes properly, one must require that
their respective overall approximation errors are nearly the same.

The application of slicing methods, contouring techniques, and ray casting to non-curved
quadratic elements is done routinely. As discussed in [58], for example, the intersection of
a ray with an isosurface inside a non-curved 3D simplicial quadratic element, for example,
reduces to solving a univariate quadratic equation. The volume rendering integral along a
ray segment, see [35], is generally too complex to be integrated in closed form, and it is
therefore computed numerically. A cut plane intersects a non-curved simplicial element in a
polygon on which the scalar field is a quadratic function. Quadratic texture coordinates can
be computed in software, or in hardware by taking advantage of texture look-up tables.

Visualization of curved simplicial elements is much more difficult. A quadratic mapping
from parameter to physical space must be inverted prior to evaluating a scalar field function
at a point in physical space. In the case of curved tetrahedral elements, this requires one to
solve three quadratic equations in three variables simultaneously, which can be done with
numerical techniques. One could require that a tetrahedral face shared by two tetrahedra
is planar, and thus it would be possible to define the field function directly in terms of
physical space. The construction of the necessary basis functions for this case is described in
Appendix A. Similar problems arise when intersecting a ray with an isosurface or a curved
simplex face. We intend to investigate in the future how to render curved simplices directly
by solving the involved algebraic equations most elegantly and most efficiently.

A simple solution is to subdivide a curved simplex adaptively, depending on a view, and
approximate a curved simplex by non-curved simplices resulting from a properly chosen
subdivision scheme. One can replace edge endpoints with the respective edge midpoints. A
reasonable criterion to use when deciding when to terminate the subdivision process could
be based on the image-space projected maximal deviation of the (union of) the non-curved
simplices from their curved “parent” simplex, to allude to just one possibility. Since we
represent curved simplicial elements in Bernstein-Bézier form, one could also apply subdivision
techniques used in computer-aided geometric design, see [12]. An algorithm like the one
described in in [58] could then be applied to the set of non-curved simplices, having quadratic
variation only in scalar value.

7 Conclusions

We have described a method for the construction of hierarchical approximations of functions
over 2D and 3D domains. The method uses curved simplicial elements to represent the
finite domain of a function to be approximated and constructs a best piecewise quadratic
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approximation in the least squares sense. Curved simplicial elements are promising in the
context of approximating complicated 2D or 3D domains and the dependent functions defined
over these domains. Such higher-order elements allow one to construct approximations with
relatively smaller error when compared to lower-order and non-curved elements.
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A  Quadratic Basis Polynomials

Our method requires quadratic basis polynomials for non-curved and curved simplicial
elements. We review the definition of the standard Bernstein-Bézier polynomials used for
non-curved elements before generalizing these polynomials for curved elements.

The quadratic Bernstein-Bézier polynomial basis functions, defined for the standard
simplex in parameter space, are

21 P
2 _ _ _ 2—1—35 .1 ..
Bi(u) = ey (1 —u—v) u' v (11)
in the bivariate case and
91 o o
Bi(u) = (1—u—v—w)? 77k gyt gk (12)
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in the trivariate case. Through a linear parameter transformation we can evaluate these
quadratic polynomials over all non-curved simplices in physical space. Figure 8 illustrates
the graphs of two quadratic Bernstein-Bézier basis functions in the 2D case over the standard
triangle.

We must define quadratic basis polynomials for field function approximation over curved
simplices in a different way. These more general polynomials are not the result of applying a
simple linear parameter transformation. We define quadratic basis polynomials for curved
simplices in a way such that they are a generalization of the standard Bernstein-Bézier
polynomials for non-curved simplices and guarantee continuity in function value along/on the
shared edges/faces of all simplices. We define these generalized quadratic basis polynomials in
physical space: In the 2D case, it is possible to think of a set of six simplex-specific quadratic
basis polynomials, denoted as {Q; ;(x,¥y)}, as a set of six quadratic polynomials satisfying
certain interpolation conditions. We specify interpolation conditions at points (i, Yk,i)
that are distributed uniformly with respect to arc length along the edges of a curved simplex.
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Figure 8 Graphs of quadratic Bernstein-Bézier basis polynomials.

Using the short-hand notation Qf; for @Q; ;(xk,1,Yk,), the interpolation conditions, when
written in matrix form, are given by

Qoo Qoo Qoo Qoo Qus Qo 410100
QYo Qi @iy QUy Qio QVh 020000
Qoo Qg Q30 Qo Qp @p [ _ 1[0 14010 (13)
QY Qo) @) Qi Qo1 Qi | 41000200
QYY @Y @Yl QY Qi Qvi 000020
Qs QoY @9 Qoa Qoa Qo3 000114

These interpolation conditions lead to the standard Bernstein-Bézier polynomials when
applied to a non-curved simplex. The construction of the basis polynomials in the 3D case is
based on the same principle.

Each generalized quadratic basis polynomial is zero outside the particular simplex for which
it is defined. The quadratic basis polynomials associated with curved simplices are not as
easily constructed and evaluated as those associated with non-curved simplices. Nevertheless,
once the generalized quadratic basis polynomials are determined for all curved simplices, we
can still compute inner products involving them by applying the change-of-variables theorem.

B Inner Products of Basis Polynomials

In the following, we define some of the required values of inner products of quadratic
polynomials. We only consider the case of these polynomials being defined over the standard
simplex in parameter space. For the quadratic Bernstein-Bézier basis polynomials BZ(u)
defined for knots spaced uniformly along the edges of the standard simplex one obtains these
values for inner products Ifj = (Bj,j, Bi,1) in the 2D case:
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We use Romberg integration to compute inner products of quadratic basis polynomials f;(x)

and g;(x) and the function F(x) to be approximated.
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—— Abstract

Visualizations are well suited to communicate large amounts of complex data. With increasing resolution
in the spatial and temporal domain simple imaging techniques meet their limits, as it is quite difficult to
display multiple variables in 3D or analyze long video sequences. Feature detection techniques reduce the
data-set to the essential structures and allow for a highly abstracted representation of the data. However,
current feature detection algorithms commonly rely on a detailed description of each individual feature.
In this paper, we present a feature-based visualization technique that is solely based on the data. Using
concepts from computational mechanics and information theory, a measure, local statistical complexity,
is defined that extracts distinctive structures in the data-set. Local statistical complexity assigns each po-
sition in the (multivariate) data-set a scalar value indicating regions with extraordinary behavior. Local
structures with high local statistical complexity form the features of the data-set. Volume-rendering and
iso-surfacing are used to visualize the automatically extracted features of the data-set. To illustrate the
ability of the technique, we use examples from diffusion, and flow simulations in two and three dimen-
sions.

1998 ACM Subject Classification 1.3.6 Methodology and Techniques, 1.3.7 Three-Dimensional Graph-
ics and Realism

Keywords and phrases Feature Detection Techniques, Feature-based Visualization, Local Statistical
Complexity

Digital Object Identifier 10.4230/DFU.SciViz.2010.62

1 Introduction

When analyzing their data-sets, one of the important questions of researchers is: Did I see everything
that is relevant? Usually the domain experts can name several structures that they are interested
in and that have significant influence on the system’s evolution. Commonly, such structures are
called features. In fluid dynamics, for example, they comprise structures like vortices, separation
and attachment lines, cycles, and stagnation points. Detecting and visualizing these structures
automatically is of great help for the domain experts. They get a simplified description of the system
and can immediately understand basic properties of their data-set.

In order to detect these prominent structures in a data-set automatically, mathematical descriptions
are required. Some features like stagnation points can be detected very easily, as they are simply
zeros in the vector field. Other features like vortices, however, are very hard to define mathematically.
Several different detection methods based on vorticity, A;, or the Sujudi and Haimes algorithm exist,
but neither is capable of detecting vortices in all scenarios (Galilean invariance). The vortex example
illustrates that more complex features are often hard to describe with a simple algorithm or formula,
which gets even tougher in an unsteady setting. Here, a less restrictive feature definition would be
beneficial.
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A second problem that arises when looking for features is the fact that there is no general definition
of a feature. In general, features are phenomena, structures or objects in a data set of interest for
the underlying problem [19]. Thus, features strongly depend on the application and the user. Users
from computational fluid dynamics (CFD), magnetic resonance imaging (MRI) and biological system
simulation will be looking for different features and for each field a different set of tools is required
to detect the structures the domain experts are interested in.

Even when provided with the appropriate set of tools, the user still has to run several algorithms
to detect all the different features and usually has to specify parameters for each of them. Hence, the
user has to start five to ten algorithms, set parameters, wait for the results, check whether something
has been found, verify the results and look for structures that are not included in the list of standard
features. Doing this entire procedure for several data-sets can become quite wearisome and much
easier feature detection process would be desirable.

Summarizing these last three scenarios, we found the following weak points of the standard
feature detection procedure:

Most features can be found without domain knowledge even by a novice. Why can’t computers

do this?

A feature may depend on the application. User dependence sounds weird in natural sciences (or

engineering).

If the data describes a physical simulation, a feature should depend only on the data.

To deal with these problems, the feature detection procedure described in the last scenario has to be
highly simplified. The algorithm for the identification of relevant structures we think of, should look
something like this:

1. Load the simulation data.

2. Run the feature detection algorithm.

3. Get a visualization with highlighted features (i.e. the most important regions).

Moreover, we want the logic behind the algorithm to be easy to understand and that the algorithm does
not need a definition or name for all the different types of features it detects. The second requirement
ensures that new structures can be found that have not been identified as features before.

Hence, the goal of the paper is to present a new way towards a feature-based visualization that
does not need a priori definitions of structures that are considered relevant. On the contrary, relevance
is to be directly defined by the data itself and the user is presented those structures that differ from the
basic patterns in the data-set, i.e., the features of the data-set.

2 Related work

Much work has been done in the field of feature detection and visualization. In general four different
concepts can be distinguished: image processing, topological analysis, physical characteristics, and
partition-based approaches. Image processing techniques, e.g. Ebling et al. [6], Schlemmer et al. [24]
and Heiberg et al. [9], often apply pattern matching approaches. Here a two or three-dimensional
pattern is predefined and similar structures are found in the data-set. Although these techniques
are very flexible with respect to finding certain patterns with different scale and/or orientation, the
user still has to define a sample pattern as reference for each of the structures he/she is looking
for. Topological analysis clusters regions of similar behavior/structure. Examples in this area can
be found in the survey by Scheuermann et al. [23]. The topological analysis of a data-set provides
an automatic simplification. However, there is no classification of the importance of the different
structures that have been identified. Many feature detection methods are based on the analysis of
physical characteristics (e.g. Garth et al. [7], Roth [20]), as these are the most intuitive descriptions
for domain experts. Though many excellent methods fall into this category, they all have the problem
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that they are very restrictive concerning the definition. A detailed description of flow feature detection
techniques that fall into these three categories can be found in the survey by Post et al. [19]. The
idea behind partition-based approaches is to separate the domain into regions of similar structure or
behavior. Streamline predicates [22] and pathline attributes [28], for example, cluster integral lines in
the data-set with given properties. The method we are going to present falls into this category, as it
partitions the domain into areas that feature distinct structures and those that do not. Partitioned-based
approaches are summarized in the paper by Salzbrunn et al. [21].

As mentioned before, these standard feature detection methods commonly rely on a given
definition or description of the feature to be found. What we are looking for is a feature description
given by the data-set itself. The third step of the algorithm we have in mind (Section 1) already reveals
the direction we are aiming at. We do not want to provide exact feature definitions, but are looking for
regions of high importance in the data-set. Important is to be understood in an information-theoretic
way, i.e. we want to identify the regions with the highest information content or complexity.

In the literature, a large variety of complexity measures are available, e.g., [2, 4, 8, 16, 27].
Common measures originating from the analysis of strings of data are Shannon entropy [27] and
algorithmic information [1]. Shannon entropy is a measure of the uncertainty associated with a
random variable, whereas the algorithmic information is roughly speaking the length of the shortest
program capable of generating a certain string. Both measures have in common that they are measures
of randomness. In complex systems however, randomness is commonly not considered to be complex.
Likewise, Hogg and Huberman [11] state that complexity is small for completely ordered and
completely disordered patterns and reaches a maximum inbetween. A different approach was taken
by Grassberger [8], who defined complexity as the minimal information that would have to be stored
for optimal predictions. Based on this idea, statistical complexity [4] was introduced identifying
the complexity of a system with the amount of information needed to specify its causal states, i.e.,
its classes of identical behavior. In order to analyze random fields, a point-by-point version was
formulated by Shalizi [25] called local statistical complexity.

3 Specifications

The following work is based on the ideas by Shalizi et al. [26], which assumes the following properties
of a data-set:

1. The data stems from a PDE simulation (in engineering or natural sciences).
2. The solver is based on a finite difference scheme on a Cartesian grid.

3. The data is unsteady and all time-steps and independent variables are available.

The first requirement ensures that the process creating the data is the same at each position in
the resulting field. As PDEs are the standard definition of physical systems, e.g. the Navier-Stokes
equations for fluid flow, this demand sets no limitations. The second requirement allows for the
comparison of local neighborhoods. A sample Cartesian grid is given in Figure la. Using finite
difference schemes as solver, clearly defines a local neighborhood that is used to compute the value
in the next time-step as illustrated in Figure 1b. Moreover, initial conditions and boundary conditions
are required for the computation. In the results section we will use data-sets that were computed
using more sophisticated solvers and show that this is no crucial restriction. The third requirement
ensures that exact conclusions about the influence of different positions and variables can be made.

Looking closer at these three requirements, we see that they correspond to the construction rules
of cellular automata, which are well researched.
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(a) Cartesian grid.

(b) Finite difference.

(c) Light-cone configurations.

Figure 1 Different structures in a Cartesian grid: (a) Empty grid. (b) Sample neighborhood used to compute
finite differences. (c) Light-cone structures used for the computation of local statistical complexity.

4 Cellular Automata

A cellular automaton (CA) is a discrete model of a system, with the game of life being the best-known

example. The automaton consists of a regular uniform lattice with a discrete variable at each cell.

The configuration of an automaton at a certain time step is completely specified by the values of the
variables at each site. Following predefined local rules the configuration can change at each discrete
time step. A rule defines which value a cell will take in the next step, depending on the values of
its neighborhood in the present. Typically, the neighborhood of a cell consists of the cell itself and
all immediately adjacent cells. An example for a rule is: If the cell has value 0 and at least two of
its neighbors have value 1, change the cell’s value to 1. For each time step all values are updated
simultaneously.

An example of a 1D cellular automaton is given in Figure 2. The domain can be separated into two
different classes: stable local patterns and defects. The stable local patterns are the areas, that look
like the background of the image. The defects are the triangles in different sizes that move across the
image. Although the stable patterns dominate after some time, the defects are the ones that determine
the long term behavior. Shalizi et al. [26] proposed a filter for the automatic extraction of coherent
structures, i.e. defects, in CA. Their filter is called local statistical complexity and automatically
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Figure 2 Cellular automaton in 1D (top) and corresponding local statistical complexity field (bottom).

detects prominent formations of arbitrary size and shape in unsteady data-sets. Figure 2(bottom)
shows the filtered image of the 1D cellular automaton, highlighting the defects that move around in
the original data-set.

5 Local Statistical Complexity

Local statistical complexity extracts those regions in an unsteady field, where a lot of information
from the local past is required to predict the dynamics in the local future. This happens where the
temporal evolution is very unusual compared to what happens in the rest of the field. In general, users
are interested in a subset of these distinctive regions, as they know the basic structure of their data-set
and want to find regions that behave differently. Especially for large intricate and little understood
data-sets local statistical complexity is a helpful tool to guide the user to regions that might be relevant
for him or her.

Local statistical complexity focuses on the local temporal evolution of the field. The local past of
position p in the field consists of all the points that might influence p. As effects propagate at finite
speed, the past has the shape of a light-cone that is directed towards the past. The apex is located at p.
This concept is likewise used when computing simulations using finite differences or finite elements.
Here the value at position X in time-step ¢ is computed from the neighborhood of the point in the
previous time-step t — 1 (Fig. 1c). (An exception is pressure in incompressible flow.) The future
is given by a light-cone that is directed in the opposite direction, i.e., the future. Each light-cone
comprises a set of positions. The values at these positions together with the neighborhood information
are called a configuration. A configuration can be thought of as a pattern that extends in time, space
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and if appropriate over multiple variables. By definition future configurations contain the value at the
apex, past configurations do not.

For each past-cone configuration we would like to be able to predict, what might happen in the
future. The only value that we can predict exactly, is the one at the future-cone apex, as it results from
the calculation rule of the simulation method (remember Fig. 1b). To predict the remaining values
in the future-cone, we need statistics. We group several similar past-configurations and compute
a histogram over the different futures that occur. This estimated distribution tells us which future
configurations are likely for this particular class of behavior in the past. This procedure is repeated
for all different groups of past-configurations.

Analyzing the histograms we computed in the previous step, we will observe that some of them
are very similar. This means that the differences we detected in the past-configurations have no
significant influence on the dynamics in the future. Thus, we merge all those past groups that have
very similar histograms. The different groups that result after the merging are called causal states. A
causal state represents a cause-and-effect relationship between what was observed in the past and
what might happen in the future. So, if we have a past configuration and can determine its causal
state, we can estimate the most probable future dynamics.

Now that we can predict the dynamics in the future given the past configuration, we want to find a
minimal lossless encoding for this information. The code with the shortest expected length is given by
a Huffman-code. A Huffman-code assigns frequent symbols short codewords and rare symbols longer
ones. The entropy H[X] is a measure of the smallest average codeword length that is theoretically
possible for the given alphabet X. For functions f(x) x € X, mutual information I[f(X), X] equals
entropy H[f(X)]. In order to find an optimal encoding for the past-configurations, we have to find
a function f that minimizes the mutual information I[f(PastConf);PastConf]. Shalizi et al. [26]
showed that the unique function that minimizes the mutual information is the mapping to the causal
states. Thus, if we store at each position the Huffman-code of the corresponding causal state, we
resolve the file with shortest expected length that still gives us all informations about the dynamics in
the local future.

The encoded file can finally be used to detect distinctive regions. The Huffman-code assigns each
causal state a codeword whose length depends on the number of positions that are assigned to it.
Causal states with a very long codeword feature dynamics in the future that occur very rarely in the
field. Local statistical complexity measures for a past-configuration the length of the codeword of
the corresponding causal state, i.e., the amount of information that is needed to predict the causal
state/the dynamics in the future. The longer the codeword, the more likely it is that something
extraordinary is going to happen in the local future of this position. More information on the theory
and implementation of local statistical complexity and causal states can be found in [26, 14].

6 Application to Finite Difference Schemes

Complexity analysis using local statistical complexity can be applied to scientific simulations as
finite difference schemes, a direct analog to CA rules, can be used to discretize PDEs. The following

simple example of an isotropic diffusion, e.g., ion concentration in water, is used for illustrations.

Given a concentration f (X,#) at each position X € B at time f, the temporal development of this
concentration f (X,¢) is observed. The governing PDE is

d
(1) = DAT () 1)
ot

with a constant diffusion coefficient D, time derivative ‘;—’; (¥,1) and Laplacian Af (X,¢). As boundary

conditions constant concentrations are assumed: f(X,¢) = f(¥,1y) for x € dB. A simple finite
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(a) Configuration. (b) Config space. (c) Discretization.

(d) Region growing (e) Voronoi cells.

Figure 3 Density-driven Voronoi tessellation: (a) A past configuration extracted from the data-set consisting
of eight variables. (b) This configuration marked in high-dimensional configuration space (only first two of the
eight variables illustrated). (c) Initial fine-grained discretization of the configuration space. (d) Density-driven
region growing starting in densest regions. (e) Final Voronoi tessellation of the configuration space. (f) Final
partitioning of the domain.

difference scheme in the plane consists of a Cartesian lattice L = {0, ...,255} x {0,...,255}, a given
concentration fy : L — R, and the difference equation

1 1 1
f(xl,)Cz,l‘-f— l) = T6f(x1 —1L,x+ 1,t) + gf(xl,xz—i— 1,t)+ Ef(xl +1,x+ 1,1‘) +

1 1 1

gf(xl —1,0+0,1)+ Zf(xhxz +0,1) + gf(xl +1,x+0,1)+ )
1 1 1

T6f(xl —Lx—1,0)+ gf(xl,xz -1+ %f(xl +1,x—1,1)

which is also known as applying a binomial 3 x 3 filter to a digital image in image processing [12]. In

this example L is the lattice of the CA, f contains the values over time and Eq. 2 gives the complete

rule. As ¢ = 1, the configurations are as illustrated in Fig. 1c. The reader familiar with either finite

difference schemes or image processing might imagine a larger stencil or filter for ¢ > 1. Similar

schemes can be applied to any PDE, allowing for analysis using local statistical complexity.

7 Computation of Local Statistical Complexity

The first step in visualizing the local statistical complexity of a data-set consists of the computation of
causal states. Causal states are defined by:

Causal State = €(I7) = {A : P(IT|A) = P(I"|I7)}. 3)
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Hence, a causal state is the equivalence class of all past-cones (/™) that have the same distribution
(P(I'|I7)) over possible futures (I7), i.e., each causal state predicts a certain future and the possible
futures of different causal states differ.

To determine the causal states that occur within a data-set, the conditional probabilities P(I™]/™)
have to be estimated. As exactly the same pattern ™ or [~ commonly only occurs once in a scientific
data-set, the probabilities cannot be estimated directly, but similar configurations have to be grouped
for the estimation. The grouping has to fulfill two requirements. First, all samples in the data-set have
to be assigned to a group and second, the size of each group in high-dimensional space (dimensionality
is given by the number of entries in the cone, cf. Fig. 1c) has to be the same to allow for a correct
estimation.

In [13], Jénicke et al. proposed a fast strategy to estimate probabilities with a single sweep through
the data. We use this approach based on density-driven Voronoi tessellation, which consists of three
steps:

1. Discretization: Compute the past- and future-cone (Fig. 3a) at each position and store the
discretized cones in two trees.

2. Density-driven Voronoi Tessellation: Partition the high-dimensional discrete cone space (Fig. 3b)
using a Voronoi tessellation (Fig. 3(c-e)) that takes the underlying distribution of cone configura-
tions into account. This step is performed for the past and future tree separately. Resulting IDs
are stored for each leaf in the two trees.

3. Probability Estimation: For each past cell, the corresponding future cells are counted and used to
estimate the probabilities.

The idea behind density-driven Voronoi Tessellation is to let the discretization adapt to the structure
of the high-dimensional data. The initial discretization in Step 1. is used to estimate a local density.
Starting from densest regions, a region growing algorithm is applied that iteratively captures the entire
space. The method ensures that the Voronoi cells have equal size and that clusters are well preserved.

To identify causal states, the conditional probabilities have to be estimated. This is achieved by
counting the number of occurrences of different future classes per past Voronoi cell. Dividing by the
total number of configurations per past cell, gives the conditional probability P(I™|I7). In a last step,
those Voronoi past cells are grouped that feature a similar distribution over futures using a y>-test
[10]. The resulting grouped classes are the causal states of the process.

Each of these causal states represents a spatio-temporal pattern, indicating what might happen
next if a certain past was observed. After the identification of the causal states, new fields that hold
the ID of the causal state at each position are created. As we are not interested in the local pattern but
in the complexity of the current position, we have to evaluate the local statistical complexity of each
causal state and assign appropriate values to the field of causal state IDs.

Local statistical complexity measures how much information from the local past is required to
predict the dynamics in the local future at a certain position. If the dynamics of a configuration
match the average behavior in the data-set, only little information is required. On the contrary if
something unusual happens, more information is required. To measure how extraordinary some
local dynamics are, Shalizi et al. [26] proposed local statistical complexity, which was extended to
scientific simulation data by Janicke et al. ([14, 13]). The local statistical complexity at a certain
position p in the field is defined as the mutual information between the corresponding configuration’s
past (/7) and its causal state (€(I7)):

LSC(p) = 1[e(17);17). )

Mutual information is a measure from information theory, which tells how much information one
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random variable contains about another one:

P(a,b)
1[A;B] = P(a,b)log, —2) 5
[ ] aegb’eB ( Jlog, P(a)P(b) )

where P(a) is the probability that the random variable A takes the value a and P(a,b) is the corre-
sponding joint probability of variables A and B. Using this definition, the local statistical complexity
of a cone configuration tells how much information from the past is required to identify its causal
state. If one knows the causal state, the dynamics in the future are clear as well. Hence, if a lot of
information is required to identify the causal state, the local dynamics are extraordinary compared to
what is happening in the rest of the data-set.

8 Results

The three data-sets we are going to analyze have increasing complexity. The first one is an isotropic
diffusion which is a perfect analogon to CA. In the second example we will analyze swirling flow.
This 2d examples consists of multiple variables and contains different features experts are interested
in. The third test-case is a simulation of the flow around a delta wing. In this large 3d example several
intricate features are present. The results of local statistical complexity will be compared to standard
feature detection techniques for both CFD examples to verify the correctness of the automatic detected
features.

8.1 Isotropic Diffusion

An isotropic diffusion, simulated using finite differences as explained in Section 6, is a simple example
of a large variety of diffusion processes, i.e., equalization of differences in concentration, heat, matter
or momentum, appearing in nature. The dataset is simulated by repeated filtering using a binomial
filter. In the diffusion field, the cells at the left border are set to 1, and those at the right border to
0. Upper and lower boundaries are initialized with linearly decreasing values that range from 1 to 0.
The inner part is initialized with random values between 0.0 and 1.0. The process displayed in the
upper row of Fig. 4, is defined on a square lattice with 150 cells in each direction. 800 time-steps are
simulated.

The left half of the images in Figure 4 shows the evolution of the diffusion. In time-step 1 the
image consists of many small coherent structures that still feature a large variety of values. After 20
time-steps these homogeneous regions have become much larger and the range of values has shrunk.
At the boundaries small bands with the extremal values are visible. This process continues in time-step
50. While the center becomes more homogeneous, the gradients starting from the boundaries grow.
In time-step 800 half of the domain has reached the equilibrium of the diffusion process.

On the right hand-side of this series of snapshots, the corresponding complexity fields are depicted.
In the first time-step the entire domain is covered by small black and gray spots. The areas that appear
in light gray, are those that hold values close to 0.5, the most common value in this data-set. Black
cells hold formations that have either very different or extremal values in their configurations. In
time-step 20 the diffusion has formed larger homogeneous regions, which are found by local statistical
complexity. Again, black areas indicate extreme values and gray areas normal ones. These areas grow
(time-step 50) until in time-step 200 the entire center of the data-set holds value 0.5. Thus, this pattern
is the basic one and considered to be uninteresting. In time-step 800 the gradient covers half of the
data-set. As we only analyze those time-steps in which the gradient evolves, these configurations
with increasing/decreasing values are something extraordinary, whereas configurations containing
only value 0.5, the standard result of the diffusion process, are considered to be normal.
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(a) Time-step 1.

(b) Time-step 20.

(c) Time-step 50.

(d) Time-step 800.

Figure 4 Evolution of the diffusion data-set (left - original values, right - Isc field): (a) (left) Random
initialization in time-step 1. (right) Local patterns that are close to equilibrium occur in light-gray in the Isc-field,
which indicates small complexity. Pixels colored in black include extremal values which seldom occur in the
entire unsteady data-set. (b) Time-step 20: Coherent structures start to form. (c) Time-step 50: Coherent
structures in the center grow. Large areas reach equilibrium (light-gray in center). The gradient grows starting
from the boundary. (d) Time-step 800: The center has reached equilibrium (value 0.5) and the boundary gradient
grows further.

Chapter 5



72

Towards Automatic Feature-based Visualization

(a) Original. (b) Norm of velocity.

(c) Vorticity. (d) Local statistical complexity.

Figure 5 Swirling flow: In each image the line integral convolution (LIC) of the velocity field is overlayed
with an additional quantity. (a) The conical shear region (blue) outlines the region where the flow enters the
domain. Two red points mark one of the ring-like vortex structures. (b) The norm of velocity overlay highlights
regions with a strong current and reveals the relevant structures. (c) Vorticity indicates strong swirling motion.
The color-coding gives the orientation. (d) Local statistical complexity automatically extracts analog structures.

8.2 Swirling Flow

The development of a recirculation zone in a swirling flow is investigated by numerical simulation.
This type of flow is relevant to several applications where residence time is important to enable mixing
and chemical reactions.

The unsteady flow in a swirling jet is simulated with an accurate finite-difference method. The
Navier-Stokes equations for an incompressible, Newtonian fluid are set up in cylindrical coordinates
assuming axi-symmetry in terms of streamfunction and azimuthal vorticity. All equations are dimen-
sionless containing the Reynolds number Re and the swirl number S as defined by Billant et al. [3]

D 2vg(R/2
Re— v¢(0,20) s vo(R/2,20)

v VZ(O,Z())

(6)

where zo = 0.4D, D = 2R is the nozzle diameter and v the kinematic viscosity, as dimensionless
parameters.

The PDEs are discretized with fourth order central difference operators for the non-convective
terms and with a fifth order, upwind-biased operator [17] for the convective terms. The time integrator
is an explicit s-stage, state space Runge-Kutta method ([5], [15]), the present method is fourth order



H. Janicke and G. Scheuermann

accurate with s = 5. The time step is controlled by the minimum of two criteria: The limit set
by linearized stability analysis and the limit set by the error norms of an embedded third order
Runge-Kutta scheme [5]. The Helmholtz PDE for streamfunction ¥(r, z,) is solved with an iterative
method using deferred corrections and LU-decomposition of the coefficient matrix. The deferred
corrections method is designed to reduce the bandwidth of the coefficient matrix. It converges rapidly
using about ten to twenty steps.

The flow domain is the meridional plane Z = {(r,z) : 0 <r <R,0<z <L} withR=5D, L=8D
and D denoting the nozzle diameter at the entrance boundary. The flow domain is mapped onto the
unit rectangle which is discretized with constant spacing. The mapping is separable and allows to a
limited extent crowding of grid points in regions of interest. The present simulation uses n, = 91 and
n, = 175 grid points in radial and axial directions. The boundary conditions are of Dirichlet type at
the entrance section and the outer boundary and at the exit convective conditions are imposed for the
azimuthal vorticity. The initial conditions are stagnant flow and the entrance conditions are smoothly
ramped up to their asymptotic values within four time units.

The simulation results for Re = 103, S = 1.1 (within the range of the experiments [3], [18]) used
for the complexity analysis are ten time steps after the formation of the recirculation bubble (which
forms at ¢ = 6.02) at times ¢ = 33.63092 to t = 33.70560. The flow is unsteady and does not approach
a steady asymptotic state as the velocity and vorticity fields show (Fig. 5(a-c)).

Figure 5(a) shows a line integral convolution (LIC) of the velocity field, featuring several vortices.
Relevant features are highlighted in this image. The structure outlined in blue is the conical shear
region surrounding the inlet of the swirling flow. The two red dots indicate one ringlike vortex
structure. The coreline of this vortex lies in a plane orthogonal to displayed cross-section and passed
through the red points. Comparing this image to the one overlayed with the norm of velocity (Fig.
5b), we see that the simple LIC image gives a misleading impression of the flow as several of the
clearly visible vortices are detected in regions close to noise.

The vorticity overlay in Figure 5c results in a similar image as norm of velocity. Basically the
same structures are highlighted. Differences occur at the inlet, where, as expected by the technique,
only the shear flow is highlighted. Moreover, the ring-like vortex structures are more pronounced
than the connecting structures. The color-coding provides an additional hint telling the orientation of
the rotation.

Local statistical complexity is computed for the combination of velocity and vorticity and layed
over the original LIC to provide context (Fig. 5d). Both features, the shear region and the ring-like
vortex structures, are automatically detected by local statistical complexity. Unlike vorticity, local
statistical complexity marks both features as equally complex. Both, the conical shear region, as well
as the vortex structure are assigned highest complexity, while the vortices exhibit only small vorticity,
compared to the shear flow.

8.3 Delta Wing

This data-set represents the airflow around a delta wing at low speeds with an increasing angle
of attack. Multiple vortex structures form on the wing due to the rolling-up of the viscous shear
layers that separate from the upper surface. These formations of three vortices can be observed
on either side of the wing (Fig. 6a). With increasing angle of attack the intensity of the primary
vortices (purple) increases until in time-step 700 a vortex breakdown occurs. This phenomenon is
characterized by rapid deceleration of both the axial and tangential mean velocity components inside
the vortex. During breakdown, the axial mean velocity component vanishes and becomes negative
on the axis of the vortex, corresponding to appearance in the flow structure of a stagnation point
followed by a recirculation bubble. The analysis of vortex breakdown is highly interesting, as it is one
of the limiting factors of extreme flight maneuvers. The extraction and visualization of the individual
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(a) Streamsurfaces (b) Sujudi-Haimes
(c) A2 < -1,500,000 (d) Vorticity > 5,000
(e) LSC > 10 (F) LsC > 12

Figure 6 Delta Wing: (a) Streamsurfaces to indicate the vortices above the delta-wing. (b) Sujudi-Haimes
vortex detection algorithm applied to the vector field. (c) Isosurface in the A,-field (isovalue = -1,500,000). (d)
Isosurface in the vorticity field (isovalue = 5000). (e,f) Isosurface in the local statistical complexity field of the
norm of velocity (Isovalue = 10 (e), Isovalue = 12 (f)).
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structures, however, is still a challenging task as the different structures are nested and interact with
each other. The unstructured grid was resampled on a 292x224x75 grid (~ 4.1 Million positions) and
consists of more than 1000 time-steps. The images in Figure 6 depict time-step 700.

Images 6(b-d) give an overview over standard vortex detection techniques. The algorithm by
Sujudi and Haimes [29] (Fig. 6b) is a technique that detects vortex core-lines. Applied to the delta
wing, this method perfectly extracts the core-line of the major vortices. However, we only get a
vague indication of the core-lines close to the surface, whose vortices are less dominant and interact
with each other. The A;-criterion extracts the “hull” of the vortex. Finding an appropriate isovalue
(-1,500,000) to separate the two minor vortices without missing the recirculating bubble takes some
time. The isosurface of the magnitude of the vorticity (Fig. 6d) gives approximately the same result.

Figures 6(d—f) show the local statistical complexity of the norm of velocity. Figure 6e shows
all positions that are assigned a complexity value greater than 10 (maximum: 14.7). The visualized
structures do not only comprise the vortices and the recirculation bubble, but also the regions at the
outer corners of the wing, where the flow from the smaller vortices and the flow from underneath the
wing interact and form a swirling motion that is classified by the other techniques as vortex. Increasing
the complexity value further (Fig. 6f), we see that the individual vortices are better separated. The
major vortices are no longer visible as their complexity value is smaller than those of the small
vortices. This observation means, that the local temporal evolution of the norm of the velocity is
very distinct for vortices and for the recirculating bubble. The exceptional behavior of the norm of
the velocity is a typical characteristic for recirculating bubbles, as was explained earlier. With our
method we can extract these distinctive formations automatically without defining a definite pattern
beforehand. This feature is an important characteristic of our method, as it is capable of identifying
structures that exhibit an extraordinary formation without precisely describing its pattern.

9 Conclusion

In this paper we described a filter called local statistical complexity based on concepts from informa-
tion theory which automatically extracts coherent structures from unsteady multi-fields. It assigns
each position in the data-set a scalar value whose magnitude depends on how extraordinary the local
dynamics at the current position are. Color-mapping or isosurfacing can be used to visualize the most
distinct structures in the data-set.

Local statistical complexity is intrinsic to unsteady multi-field visualization as this is required by
the theory and quantities of different type (scalar, tensor, vector valued) can be used simultaneously
in the computation. The process reduces the multi-field to a single scalar field giving the importance
of each position. The entire process is fully automatic and requires no application-specific knowledge.
(The user has to provide two parameters for the Voronoi tessellation, which could be estimated as
well.)

Current problems arise, when analyzing divergence-free flow, as the concept of local influence
propagation is not preserved. When the dynamics are too turbulent, memory costs increase a lot, as
many different configurations have to be stored. The alternative is to compute coarser causal states,
which makes the results more inaccurate.

In our future work we would like to work on a complete mathematical basis in the continuous case.
More research has to be done regarding the influence of the parameters in the Voronoi tessellation
process. The original concept was designed for PDEs solved using finite differences. Extending the
theory to other numerical schemes is a further task that should be addressed in the future.
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—— Abstract

We apply Knoll et al.’s algorithm [9] to interactively ray-cast constructive solid geometry (CSG) objects
of arbitrary primitives represented as implicit functions. Whereas modeling globally with implicit sur-
faces suffers from a lack of control, implicits are well-suited for arbitrary primitives and can be combined
through various operations. The conventional way to represent union and intersection with interval arith-
metic (IA) is simply using min and max but other operations such as the product of two forms can be

useful in modeling joints between multiple objects.

Typical primitives are objects of simple shape, e.g. cubes, cylinders, spheres, etc. Our method handles
arbitrary primitives, e.g. superquadrics or non-algebraic implicits. Subdivision and interval arithmetic
guarantee robustness whereas GPU ray casting allows for fast and aesthetic rendering. Indeed, ray casting
parallelizes efficiently and trivially and thus takes advantage of the continuous increasing computational
power of hardware (CPUs and GPUs); moreover it lends itself to multi-bounce effects, such as shadows
and transparency, which help for the visualization of complicated objects. With our system, we are able
to render multi-material CSG trees of implicits robustly, in interactive time and with good visual quality.
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1 Introduction

Constructive solid geometry objects involving implicit surfaces can be an effective geometric repre-
sentation. Arbitrary-form implicit surfaces can be used to model a wide variety of shapes, as well as
perform interpolation and smoothing filters of multiple varieties of data. Constructive solid geometry
allows for generalized trimming of these surfaces. Moreover, CSG implicits make for a compact
and flexible model, in which the CSG object itself can be represented simply by implicit functions
consisting of min and max operators.

Interactive, pixel-exact rendering of implicits poses a challenge to extraction and rasterization
methods. Ray casting methods employing interval arithmetic have conventionally been among the
most robust solutions for rendering general-form implicit surfaces, but also among the slowest.
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However, recent SIMD techniques for the CPU [10] and GPU [9] have shown that IA bisection can
be a practical method for interactive rendering. The contribution of this paper is to show how, in
addition to conventional closed-form implicit functions, interval arithmetic methods can be employed
in efficiently rendering constructive solid geometry.

2 Related work

In 1982, Roth [17] presented the first algorithm for directly rendering CSG without precomputing
the combined boundary representations. His algorithm used the CSG operators to classify the
intersections found by ray casting. Goldfeather et al. [2] showed in 1986 how an initial restructuring
of the tree could allow CSG to be directly rendered using Z-buffer rasterization. In 1992 Duff [1]
demonstrated the use of A and subdivision for rendering CSG implicits. Nielson [14] presented
applications of implicits and CSG in the context of scattered data interpolation. Kirsch et al. [8]
provided an enhancement of Goldfeather’s algorithm. Giinter et al. [3] performed CSG modeling in
real-time while Romeiro et al. [16] focused on large CSG models. Not directly related to CSG, the
community Hyperfun [6] builds models using the F-rep representation which includes the CSG one.

3 Background

3.1 Ray casting implicits: a root-finding problem

An implicit surface S in 3D is defined as the set of solutions of an equation

fxy,2)=0 ¢))
where f: Q C R® — R. In ray casting, we seek the intersection of a ray

p(t)=0d+1td )

with this surface S. By simple substitution of these position coordinates, we derive a unidimensional
expression

fi(t) = flox+1tdy,0y+1dy, 0, +1d;) 3)

and solve where f;(t) = 0 for the smallest # > 0. Therefore ray casting a 3D implicit function reduces
to a 1D root-finding problem.

Approaches for arbitrary implicits include:

Closed-form solutions, which although fast, may suffer from numerical problems in 32-bit float
arithmetic.

Point-sampling [4] evaluates the function at interval endpoints and exploits the rule of signs.
This is typically fast, but not generally robust (see Fig. 1(a)).

Sturm sequences [18] break the ray segment into monotonic intervals by recursively bracketing
zeros of all derivatives. This is slow and requires differentiability.

Piecewise algebraic surfaces [11], though efficient, are limited to low-degree algebraics when
relying on an analytical root-finding scheme.

Lipschitz methods [7] which rely on bounding Lipschitz constants to determine where root-
finding methods will converge. This works on a subclass of algebraics.

Distance functions [5] require derivation of a signed distance function from an arbitrary point in
space to the surface, and also requires Lipschitz.
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Figure 1 The inclusion property. (a) Left: When a function f is non-monotonic on an interval /, evaluating
the lower and upper components of a domain interval is insufficient to determine a convex hull over the range.
(b) Right: This is not the case with an inclusion extension F, which, when evaluated, will enclose all minima
and maxima of the function within that interval. Ideally, F (I) is equal or close to the bounds of the convex hull,
CH(I).

Inclusion algebra methods which evaluate an inclusion extension of the implicit (see Fig. 1(b)),
and use that for spatial rejection or determining monotonicity. These work for any computable
function, but require implementation of an inclusion arithmetic library.

This paper will focus on the latter approach, as it is robust and general, and requires nothing
more than a function definition. Historically, it has also been the slowest, primarily due to inefficient
implementation and impractical numerical assumptions.

3.2 CSG and implicits

The three basic operators in constructive solid geometry are the boolean union, intersection and
difference. Considering two solid objects A and B respectively represented by the implicit functions
fa and fp and with the following convention: f < 0 inside the solid and f > 0 outside the solid (here
f = 0 defines the solid), we can easily express those operations in terms of implicit functions. Indeed
the union between A and B is defined by

AUB = min(fa, fB). 4
The intersection between A and B is defined by

ANB = max(fa, fs)- )
Finally the difference between A and B is defined by

A\B = max(fa,—[3) (6)

Thus the construction of a complex CSG object using n boolean operators reduces to the expression
of a single implicit function formed by min, max, and the implicit primitives.

3.3 Interval Arithmetic

Interval arithmetic (IA) was introduced by Moore [13] as an approach to bounding numerical rounding
errors in floating point computation. The same way classical arithmetic operates on real numbers,
interval arithmetic defines a set of operations on intervals. We denote an interval as X = [x,X], and the
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Algorithm 1 min and max in TA with Cg.
typedef float2 interval;

interval imin(interval a, interval b)
{
return interval(min(a.x,b.x),min(a.y,b.y));

}

interval imax(interval a, interval b)
{
return interval (max(a.x,b.x),max(a.y,b.y));

}

base arithmetic operations are as follows:

+y = [x+yxX+)], @)
-y = [x-yx-yl ®)
Ixy = [min(xy,xy,Xy,Xy), max(xy,xy,Xy,Xy)]. (€))

Moore’s fundamental theorem of interval arithmetic [13] states that for any function f defined by
an arithmetical expression, the corresponding interval evaluation function F is an inclusion function
of f (where F is the interval extension of f):

FE®2/® = {/) | xex). (10)

The inclusion property provides a robust rejection test, i.e.

0¢F(x) =0¢ () an

Inclusion operations are powerful in that they are composable: if each component operator
preserves the inclusion property, then arbitrary compositions of these operators will as well. As
a result, in practice any computable function may be expressed as inclusion arithmetic [12]. For
example, the two IA functions we are mostly interested in for performing CSG are min and max (see
Algorithm 1).

3.4 Ray Casting CSG implicits with 1A

The inclusion property extends to multivariate implicits as well, making it suitable for a spatial
rejection test in ray casting. Moreover, by substituting the inclusion extension of the ray equation

(Equation 2) into the implicit extension CSG(x,y,z), we have a univariate extension CSG,(X,Y,Z).

To check whether any given ray interval f = [t,7] possibly contains our surface, we simply check if
0 € CSG,(f). As aresult, once the inclusion library is implemented, any function composed of its
operators can be rendered robustly.

4 Ray Casting CSG implicits with IA on the GPU: results and
discussion

Previously we showed how a complex CSG object reduces to a single implicit function. To render
these objects efficiently, we turn to the GPU implicit IA bisection algorithm of Knoll et al. [9]. This

81

Chapter 6



82

CSG Operations of Arbitrary Primitives ...

Figure 2 Toy examples. First row: union, intersection and difference of a cube and a sphere (20, 160, and
28 fps). Second row: union, intersection and difference of three cylinders (91, 84, 127 fps).

method employs simple floating-point modulus to effect a stackless recursion method, bisecting along
the ray and computing the interval extension of the implicit function along each bisected segment.
The following CSG examples are obtained using this technique with relatively small € (in the order of
le —5). Indeed, when dealing with multiple implicits, a precision of le — 3 (typically sufficient for
non-CSG objects) is too large for guaranteeing good visual quality, especially around the intersections
areas between the primitives (see Section 4.6). All benchmarks are measured in frames per second on
an NVIDIA 8800 GTX, at 1024x1024 frame buffer resolution. The equations of the CSG primitives
are provided in Table 1 of the Appendix.

4.1 Basic CSG operations

Figure 2 shows a simple example of implicit CSG functionality, using a cube (modeled as a high-order
superquadric) and a sphere. We have added transparency in some figures for a better understanding of
the resulting object.

4.2 More difficult examples

We can handle implicits defined by arbitrary complicated functions in the same way as simpler forms.
Figure 3 demonstrates two more difficult functions: the citrus and the heart. CSG requires that its
components be closed manifolds (i.e. without boundary); in other words their combination defines a
solid object.

Figure 7 (in the Appendix) demonstrates a panel of CSG objects involving several primitives such
as the tangle, the decocube, superquadrics, ellipsoids, etc.

4.3 Arbitrary blending and dynamic CSG

Arbitrary blending: Implicits inherently support blending operations between multiple basis func-
tions. Such forms need only be expressed as an arbitrary 4D implicit f(x,y,z,w), where w varies over
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Figure 3 CSG of citrus and heart. Left: union (50 fps). Right: intersection (48 fps).

time. As ray-casting is performed purely on-the-fly with no precomputation, we have great flexibility
in dynamically rendering these functions. Useful morphing methods include product implicits, linear
interpolation between surfaces, the hyperbolic and super-elliptic blends; and gaussian or sigmoid
blending, shown in Fig. 8 (see Appendix) between the decocube and the sphere. As the blending
scheme is also represented as an implicit function in our method, we are able to construct any blend
we want.

Dynamic CSG: By setting variables in the CSG objects instead of fixed values, e.g. for a radius, we

are able to model time-varying CSG operations. Figure 4 shows a dynamic CSG object: the union of
a cube and a radius-varying sphere.

Figure 4 Dynamic CSG: union of a cube and a radius-varying sphere, running at 48-117 fps.
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4.4 Multi-material CSG

In addition to using the IA minimum and maximum operators to directly compute the interval
extensions of CSG objects, we can evaluate the extensions separately and employ boolean arithmetic
to determine which surfaces are intersected by a given ray interval. In addition, we can specify
level-set conditions on the individual implicit components, similarly to the CSG methods described in
F-rep literature [15]. Given an implicit f(®) and a condition g(®), inclusion arithmetic allows us
to verify g = {g(®) >0} or g = {g(w) < 0}, given the interval form of the inclusion extension
G over an interval domain @ C Q. Then, one can render fN gy or fNg_ for arbitrary level sets of
g. Boolean evaluation of 3-manifold level sets allows us to perform many of the same CSG effects,
and at the same time determine which component object is intersected. This allows us to shade
components differently as desired (Fig. 5). In addition, increased algorithmic sensitivity near CSG
joints due to wider bounds (see Section 4.6) is not an issue using this method.

Figure 5 CSG objects using level-set conditions. Left: icos.csg (13 fps). Right: sesc.csg (9 fps).

4.5 Ray casting effects

As our algorithm relies purely on ray-casting, we can easily support per-pixel lighting models and
multi-bounce effects, many of which would be difficult with rasterization (Fig. 6). We briefly describe
those modalities.

Transparency: Transparency is useful in visualizing implicits (see Fig. 2 and 6(a)), particularly
functions with odd connectivity or disjoint features. It costs around 3 x as much as one primary ray
per pixel.

Reflections: Reflections are a good example of how built-in features of rasterization hardware can
be seamlessly combined with the implicit ray casting system. Looking up a single reflected value
from a cubic environment map invokes no performance penalty. Tracing multiple reflection rays in an
iterative loop is not significantly more expensive (20 —30%), and yields clearly superior results (see
Fig. 6(a)(d)).

Gradient shading: Gradient shading is one example of features that can easily be extracted from
a ray-casted object; it can help understand its topology. The gradient is computed approximately
using central differences. Figure 6(b) shows the gradient shading on an intermediate blend between a
decocube and a sphere.
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Figure 6 Shading Effects. Top left to bottom right: (a) reflections and transparency on multiple-unions
CSG object (11 fps); (b) gradient shading on a decocube/sphere blending (41 fps); (c) shadows on 4-Bretzel U
torus (30 fps); and (d) tangle U torus with up to six reflection rays (11.5 fps).

Shadows: Shadows often entail around 20 — 50% performance penalty. One can equally use a coarser

precision for casting shadow rays than primary rays. An example of shadows is illustrated in Fig. 6(c).

4.6 Algorithmic Sensitivity

Much efficiency of the IA bisection technique is owed to the fact that fairly low sensitivity is required
for accurate rendering. For many implicit forms without CSG, a termination criterion such as
e =211~ 0.0005 is sufficient for accurate rendering. However, in the case of CSG objects, the

use of IA minimum and maximum operators cause local bounds to expand, particularly near joints.

As aresult, a finer discretization is required by our rendering technique to reconstruct the correct
surface. Generally, this requirement is not significantly greater (€ = 271° ~ le¢ — 5 typically suffices);

however this constraint is view-dependent as well as dependent on the form of the implicit itself.

Nonetheless, we find IA ray bisection is less sensitive to CSG joints than to fine features in the
implicit itself (for example the asymptotic features of the Steiner surface shown in [9]). Moreover,
despite the moderately finer € required to render CSG objects, this sensitivity has little impact on the
frame rate (perhaps 10%-20%) compared to the costs of additional IA computation. We note that

85

Chapter 6



86

CSG Operations of Arbitrary Primitives ...

greater algorithmic sensitivity is not an issue for multi-material objects computed using the boolean
evaluation method of Section 4.4.

5 Conclusions and Future Work

We have demonstrated a system which can render multi-material CSG objects of implicits robustly, in
interactive time and with good visual quality. Moreover we can add multi-bounce effects, such as
shadows and transparency, which help for the understanding of complicated objects. Our system is
general: it handles arbitrary primitives; robust: it relies on robust techniques; and efficient: it exploits
recent GPU’s capabilities.

There are several directions for future work. One desirable direction would be to develop a CSG
language similar to [6] and adapt the existing GUI to be able to model large multi-material CSG
objects. Extending the ray casting system with a bounding volume hierarchy traversal would allow
for a scene graph of piecewise implicit primitives for use in modeling or visualization, and would
accelerate rendering. Also comparing interval and (reduced) affine arithmetic as in [9] for the task
of CSG modeling may lead to interesting observations. Another direction would be to work on
the interaction paradigm of the system so that the user could intuitively build primitives, including
free-form surfaces using control points. Using this system to prototype trimmed moving least squares
implicits, for example, would be an interesting application. Finally, a virtual reality environment
would be perfectly well-suited for such a direct-interaction CSG modeling system.
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A Equations of the implicit primitives

Table 1 Formulas of the CSG primitives.

sphere

PR

pseudo-cube

200 +y500 +ZSOO P2

cylinder

x2 +y2 —1
torus
(1—v/(2+)2)? +22 - .125

4-bretzel

L3121 —22)%(3.8 —22)% — 10y%)2 + 6022 — 2
tangl
angie a4yt =5y 44524118
decocube

(2 +y*—0.8)2 + (2 - D) ((O* +22 - 0.8%)>+

(2 —1)2)((2+x2—0.82)2+ (32 —1)2) - 0.02
i
superquadric 200 ¢ (554 54
ellipsoid
P 252 +.252 +22— 1
heart
car 22472+ 2 —1)3 = (12 +)2)F
citrus
4 ¥ +22 —4y3(1 - 5y)3
trigonometric
£ (1—/(x2+y2))% +sin(z)* —.125
1008.¢88 ic(x,y,z) =2 — (cos(x+ Ty) 4+ cos(x — Ty) +cos(y + 12)+
cos(y — 7z) +cos(z— Tx) +cos(z+ tx)), T= —‘f
CSG condition (on inclusion intervals):

(0 € ic) and spherejpper < 0 and spheregyrer > 0

sesc.csg

CSG of superellipsoid (se) and sinusoid convolution (sc):
se(x,y,2) =x0+ 3 (3 +24)* - 20

sc(x,y,z) = xy+cos(z) + 1.741 sin(2x) sin(z) cos(y) + sin(2y) sin(x) cos(z)

+sin(2z) sin(y) cos(x) — cos(2x) cos(2y)
+cos(2y) cos(2z) + cos(2z) cos(2x) +0.05

CSG condition (on inclusion intervals):
((sc>0) and (0 € se)) or ((se < 0) and (0 € sc))

multiple-unions csg

min(min(min(min( in(x 500+y500+1500 .25,
=12+ -1+ (Z*l) -.2), (( 082)2 (2 1)?%)
(0P +22—0.87)2 + (& — 1)) ((2 + 42 082) ( - 1)%)-0.02),
(262 +y2+72—1)3 = (12 +y%)z )
(1= (2 +y0))2 4+ 22 —.125),(x+ 12+ 0+ 12+ (z+ 1) = .1)
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B More examples of CSG implicits

Figure 7 CSG with arbitrary primitives. First row: tangle U sphere (12.7 fps), decocube U heart (22 fps)
and trigonometric function U sphere (16 fps). Second row: superquadric U ellipsoid (41 fps), superquadric \
ellipsoid (60 fps) and multiple-unions CSG object (21 fps).

Figure 8 4D sigmoid blending of the decocube and a sphere running at 33 — 50 fps.
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—— Abstract

Applications of complex variables and related manifolds appear throughout mathematics and
science. Here we review a family of basic methods for applying visualization concepts to the
study of complex variables and the properties of specific complex manifolds. We begin with
an outline of the methods we can employ to directly visualize poles and branch cuts as complex
functions of one complex variable. CP? polynomial methods and their higher analogs can then be
exploited to produce visualizations of Calabi-Yau spaces such as those modeling the hypothesized
hidden dimensions of string theory. Finally, we show how the study of N-boson scattering in dual
model/string theory leads to novel cross-ratio-space methods for the treatment of analysis in two
or more complex variables.
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1 Introduction

Mathematical visualization of issues involving complex variables is a fundamental problem
that, sooner or later, is related to almost any problem in science. Our goal here is to review
some general methods that can be used to make the abstract features of complex variables
more concrete by exploiting computer graphics technology, and to illustrate these methods
with some interesting applications. We begin with a number of general concepts, and conclude
with some examples related to problems of mathematical physics motivated by string theory.
The basic methods for the representation of the shapes of homogeneous polynomial
equations in CP? were explored in detail in ([3]), and this will be the starting point for
many of our basic visualizations. We will also briefly summarize some more recent results of
([4]) treating some geometric objects arising naturally in the complex analysis of integrals
appearing in the N-boson scattering amplitudes of the dual models of early string theory.

2  Visualizing Complex Analysis

Complex Numbers

We may think of a complex number in several ways. The most traditional form comes from
the observation that, while the trivial equation 22 = 1 can be solved in the domain of real
numbers, the closely related equation 22 = —1 cannot: one must introduce an “imaginary
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number” obeying i2 = —1 in order to be able to represent the solutions to all algebraic
equations of a single variable.

The most general form of the solution to an algebraic equation in one variable thus has
two parts, a real part and an imaginary part, which can be written in terms of two real
numbers x and y as

z=x+ 1y . (1)
We also introduce the complex conjugation operation,

Z=x—1y, (2)
which in turn leads to the concept of the modulus-squared,

Z= 2P =22+ 42 (3)

The essential properties of products of complex numbers follow directly from the properties
of the symbol 4, yielding

2120 = (x1 +iy1) (w2 +iy2) = (T122 — Y1y2) + i (1Y + T291) - (4)

A more formal way of writing this would be to consider Eq. (4) as a realization of an abstract
algebra relating pairs of numbers, where the corresponding (commutative, associative) algebra
is defined as

(w1, y1) * (2, Y2) = (122 — Y1y2, T1Y2 + T2y1) - (5)

Equations (4) and (5) are indistinguishable in any mathematical sense, though some practi-
tioners may feel strongly about being more comfortable with one or the other.

For completeness, we note that another unique property of complex numbers is that,
besides the trivial case of real multiplication, only complex multiplication is both commutative
and preserves the value of the modulus under multiplication,

|z122| = |21] |22] - (6)

2.0.0.1 Visualizing a Complex Point

Once we have Eq. (1), we may ask immediately how we visualize a complex point. One
approach is that of Figure 1(a), which simply treats 2 and y as Cartesian variables, and so
every complex number is depicted as a point in the 2D plane. However, this does not allow
us to easily treat infinity, which is a critical element in the mathematical analysis of functions
of a complex variable. Thus Figure 1(a) is only a local view of the actual manifold that
mathematicians refer to as “the complex line” because of its one-dimensional complex nature,
and that physicists and engineers, for example, would refer to as the “complex plane” because
of its two-dimensional real nature. In order to treat the space of one complex variable in a
way that infinity is no longer a special point, and can be included naturally in all the tasks
of complex analysis, we must find a way to express coordinates on the space in a way that is
more general than simple Cartesian coordinates. The solution to this problem is to treat the
representation of one complex variable using one-dimensional complex projective space or
CP!, which is the space of pairs of complex numbers (2o, z1) that are taken to be equivalent
under multiplication by any nonvanishing complex number A, which is to say

(Z()7 21) ~ ()\Zo, )\2’1) . (7)
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’ o =(0,1)

(a)

Figure 1 (a) The complex plane. (b) The full space 