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Preface

This volume is based on GI-Dagstuhl Seminar 10452 on “Data Exchange, Integration, and
Streams” (DEIS’10) held in November 2010. Before discussing the volume itself, we present
some background and an overview of the DEIS’10 event, which we co-organized.

Background

The Schloss Dagstuhl – Leibniz Center for Informatics or, simply, Dagstuhl is known as
the place “where computer scientists meet”. Many computer scientists are familiar with
the Dagstuhl seminars in which participants spend a week interacting with colleagues in an
informal setting by sharing new results and work in progress, exchanging ideas, or embarking
on new collaborations. Alongside these year-round seminars, however, Dagstuhl also hosts
a different and less frequent type of event that is expressly geared towards students and
postdoctoral scholars. Specifically, Dagstuhl is also the home of the GI-Dagstuhl Seminars1,
which are sponsored jointly by the German Informatics Society (GI) and the Schloss Dagstuhl
– Leibniz Center for Informatics. The designated purpose of GI-Dagstuhl Seminars is to
enable young researchers to learn about new developments in a particular area of research
through active engagement in the seminar, which is typically organized by an international
team of senior researchers. GI-Dagstuhl Seminars are typically limited to at most 20–25
participants, including the organizers.

In November of 2009, we submitted a proposal for a GI-Dagstuhl Seminar in the form of
an advanced school on data exchange, data integration, and data streams. These are three
different, yet inter-related, facets of information integration that have been investigated in
depth by the research community in recent years.

Data exchange and data integration deal with the execution of information integration,
but they adopt distinctly different approaches. Data exchange is the problem of transforming
data residing in different sources into data structured under a target schema; in particular,
data exchange entails the materialization of data, after the data have been extracted from
the sources and re-structured into the unified format. In contrast, data integration can be
described as symbolic or virtual integration: users are provided with the capability to pose
queries and obtain answers via the unified format interface, while the data remain in the
sources and no materialization of the restructured data is required.

In the basic data stream model, the input data consists of one or several streams of data
items that can be read only sequentially, one after the other. This scenario is relevant for a
large number of applications where massive amounts of data need to be processed. Typically,
algorithms have to work with one or few passes over the data and a memory buffer of size
significantly smaller than the input size.

Overview of the DEIS’10 Event

After our proposal was accepted, we disseminated the plan for the Advanced School on Data
Exchange, Integration, and Streams (DEIS’10) via postings to a number of forums, including
DBWorld, and through a dedicated web page at
http://www.tks.cs.uni-frankfurt.de/events/deis10

1 http://www.dagstuhl.de/en/program/gi-dagstuhl-seminars/
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viii Preface

Potential applicants were asked to submit by July 15, 2010 an application consisting of a
letter of interest, a curriculum vitae, up to three representative papers or theses authored
by the applicant, and a letter of recommendation from an academic supervisor or other
senior colleague. We received 31 applications, out of which 22 applicants were selected
to participate in DEIS’10; together with the organizers, this brought the total number of
DEIS’10 participants to 25, which is the maximum that can be accommodated in a GI-
Dagstuhl Seminar. The great majority of the applications received were of very high quality.
In fact, we would have gladly accepted more applicants had there been more room. Of the
22 successful applicants, 18 were graduate students and 4 were postdoctoral scholars. In
terms of geography, 18 were located in Europe, 3 in North America, and 1 in South America.

The participants were notified of their selection in early September 2010. Each participant
was asked to study the relevant literature in a specialized topic that was assigned to him or
her by the organizers of DEIS’10, based on the interests and expertise of the participants.
Moreover, each participant was assigned one of the three organizers as mentor. Mentors and
mentees interacted via email during September and October 2010. In particular, participants
were asked to send their mentors a progress report with an outline of their presentation by
the beginning of October 2010, which was followed by a semi-final draft of the slides of their
presentation a week before DEIS’10 took place.

During the first day of DEIS’10, each of the three organizers gave a 90-minute tutorial on
one of the three main themes of the school. Specifically, there was a tutorial on “Schema
Mappings and Data Exchange” by Phokion Kolaitis, a tutorial on “Data Integration” by
Maurizio Lenzerini, and a tutorial on “Data Streams” by Nicole Schweikardt. The rest
of the program consisted of the presentations by the participants. Each participant was
given 45 minutes to present an overview of the specialized topic assigned to her or him; the
presentations were followed by or were interspersed with questions by the audience, so that
a total of one hour was allotted to each specialized topic. The specialized topics covered
during DEIS’10 were as follows.

Data Exchange: “The chase procedure and its applications to data exchange” by Andrian
Onet; “Algorithms for computing the core of universal solutions” by Vadim Savenkov;
“The inverse operator on schema mappings and its uses in data exchange” by Jorge Pérez;
“Integrity constraints in data exchange” by Víctor Guttiérez-Basulto; “Semantics of query
answering in data exchange and closed world reasoning” by André Hernich; “Analyzing,
comparing and debugging schema mappings” by Emanuel Salinger; and “XML data
exchange” by Amélie Gheerbrant.

Data Integration: “Query answering in data integration” by Piotr Wieczorek; “Data in-
tegration: consistent query answering” by Sławomir Staworko; “Data cleaning for data
integration” by Ekaterini Ioannou; “Description logics for data integration” by Y. Angélica
Ibáñez-Garcia; “View-based query processing” by Paolo Guagliardo; “Probabilistic data
integration and probabilistic data exchange” by Livia Predoiu; “Learning and discovering
queries and mappings” by Marie Jacob; “Theory of peer data management” by Sebastian
Skritek; “Peer data management systems” by Armin Roth; and “XML data integration”
by Lucja Kot.

Data Streams: “Basic algorithmic techniques for processing data streams” by Mariano
Zelke; “Data stream management systems and query languages” by Sandra Geisler;
“Querying and mining data streams” by Elena Ikonomovska; “Distributed processing of
data streams and large data sets” by Marwan Hassani; and “Stream-based processing of
XML documents” by Cristian Riveros.
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While a small number of participants presented some of their own research work, most of
the presentations were a synthesis of papers studied by the participants in the months before
DEIS’10 took place. In total, well over 100 published papers were distilled and synthesized
by the participants in their presentations. The slides of these presentations and the relevant
bibliographical references can be found at the web page of DEIS’10.

In addition to the tutorials and the presentations of specialized topics, an after-dinner
problem session was held in the second day of DEIS’10. In this session, both the organizers
and the participants presented selected open problems in each of the three main themes of
DEIS’10. The last time slot of DEIS’10 was a wrap-up session during which feedback about
the event was solicited and tentative plans for a follow-up event were discussed.

Follow-Up

For some of the topics presented at DEIS’10, excellent survey articles already exist. Some
other topics are still too nascent to justify survey articles at this point of time. For several
more mature topics for which no survey articles presently exist, we felt that the time is ripe
to produce such survey articles as a follow-up to DEIS’10. To this effect, we invited a number
of DEIS’10 participants to contribute chapters to this volume. In several cases, we paired
authors and asked them to co-author chapters that constitute a synthesis of their individual
presentations at DEIS’10. Each draft chapter was peer-reviewed and subsequently revised to
take into account the suggestions of the reviewers.

Overview of the Volume

The first four chapters in this volume examine several different, yet inter-related, aspects
of data exchange. The underlying thread in these chapters is the systematic use of schema
mappings, which are are high-level syntactic specifications that describe the relationship
between two database schemas. Schema mappings have turned out to be the essential building
blocks in formalizing and analyzing data inter-operability tasks, such as data exchange and
data integration.

The first chapter of this volume, which is authored by Adrian Onet, gives a comprehensive
overview of the properties of the chase procedure, an important algorithm that has been
widely used to construct “good” solutions in data exchange and also to reason about schema
mappings. The study of “good” solutions in data exchange is pursued in more depth in the
second chapter, which is authored by Vadim Savenkov. Here, the focus is on the algorithmic
properties of core universal solutions, which, intuitively, are the “best” solutions to materialize
in data exchange. The third chapter, which is authored by Jorge Pérez, examines the various
approaches that have been taken towards giving precise semantics and studying the properties
of the inverse operator on schema mappings, an operator that, as the name suggests, is
intended to “reverse” the action of the given schema mapping. The fourth chapter, authored
by Emanuel Sallinger, presents an overview of the concepts introduced and the methods
developed to reason about schema mappings with emphasis on optimality and equivalence
between schema mappings.

The next four chapters explore different aspects of data integration. All chapters are
centered around what is considered the main problem in this form of information integration,
namely processing queries posed to the data integration system.

The first one, which is the fifth chapter of this volume, authored by Paolo Guagliardo and
Piotr Wieczorek, provides an overview of the techniques for computing the answers to queries
posed to the global schema of a virtual data integration system, both in the case where the

DFU – Vo l . 5
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global schema is expressed in the relational model, and in the case where a semi-structured
data model is used instead. While most papers on query processing in data integration
concentrate on positive queries, the sixth chapter of this volume, authored by André Hernich,
addresses the issue of selecting the right semantics and the right algorithms for answering
non-monotone queries, both in data integration and in data exchange. The seventh paper,
which is authored by Armin Roth and Sebastian Skritek, deals with a sophisticated form of
information integration that is receiving great attention in the last years, namely peer data
integration. Unlike traditional data integration systems, peer data integration systems do not
rely on a unique global schema. Instead, they allow for full autonomy of a set of data sources,
with mappings between them, and no need of central coordinator. The eighth chapter,
authored by Ekaterini Ioannou and Sławek Staworko, provides a discussion on techniques
introduced for handling inconsistencies. Query processing in data integration is often studied
under the assumption that the data integration system is logically consistent. However, this
is an unrealistic assumption in many real world contexts. The chapter illustrates two main
approaches to deal with inconsistencies, based on “on-line” consistent query answering, and
methods for resolving the inconsistencies “off-line”, respectively.

The last two chapters deal with data streams. Both chapters are centered around the
question of how to efficiently process massive amounts of data in a real-time manner, using
memory buffers that are significantly smaller than the input data.

The first one, which is the ninth chapter of this volume, authored by Elena Ikonomovska
and Mariano Zelke, gives an overview of algorithmic techniques for data stream processing. It
presents abstract models for data stream processing and contains a tutorial on fundamental
techniques for sampling and sketching data, as well as a survey of algorithmic approaches
for similarity mining, group testing, clustering, and summarizing data streams. The tenth
chapter, authored by Sandra Geisler, gives an overview of data stream management systems
(DSMS), i.e., database management systems specifically designed for processing data streams.
It gives details on the architecture of DSMS, surveys existing systems and query languages,
and discusses methods for monitoring the data quality of DSMS.
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The Chase Procedure and its Applications
in Data Exchange
Adrian Onet

Concordia University
Montreal, Canada
adrian_onet@yahoo.com

Abstract
The initial and basic role of the chase procedure was to test logical implication between sets of
dependencies in order to determine equivalence of database instances known to satisfy a given
set of dependencies and to determine query equivalence under database constrains. Recently the
chase procedure has experienced a revival due to its application in data exchange. In this chapter
we review the chase algorithm and its properties as well as its application in data exchange.

1998 ACM Subject Classification H.2.5 [Heterogeneous Databases]: Data translation

Keywords and phrases chase, chase termination, data exchange, incomplete information

Digital Object Identifier 10.4230/DFU.Vol5.10452.1

1 Introduction

The main focus of this chapter is an introduction to the chase procedure and its importance
in data exchange, as it is already announced in the title. A retrospective look at the
evolution of the chase procedure proves with no doubt its importance and effectiveness in
solving several data related problems. Originally, the chase was developed for testing logical
implication between sets of embedded dependencies [36]. In fact, the logical implication
problem tests whether all databases satisfying a set of dependencies must also satisfy another
given dependency. Later, the chase was reformulated for other types of dependencies such
as functional, join and multivalued dependencies [37, 49]. Beeri and Vardi [10] proposed a
unified treatment for the implication problem by introducing the chase for tuple-generating
and equality-generating dependencies, classes of dependencies large enough to express all the
previous classes. Moreover, the chase procedure was also shown to be useful for determining
if two database instances (that may contain nulls) represent the same set of possible instances
under a set of dependencies [43]. Finally, the chase was also used for testing query equivalence
and containment under database constraints [3, 31].

More recently, the chase procedure has gained a lot of attention due to its usefulness
in: data integration [33, 11], ontologies [14, 13], inconsistent databases and data repairs
[5, 2, 23], data exchange [19], query optimization [17, 42], peer data exchange [9], and
data correspondence [23]. In this chapter we will focus on the advantages of using the
chase procedure in data exchange. We will show that the chase can be used to compute
representative target solutions in data exchange. Intuitively, the data exchange problem
consists of transforming a source database into a target one according to a set of source
to target dependencies describing the mapping between the source and the target. The set
of dependencies may also include target dependencies, that is constraints over the target
database. It is important to mention that the source and the target schemata are considered
to be distinct. To be more precise: given a source instance I and a set Σ of source-to-target
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2 The Chase Procedure and its Applications in Data Exchange

and target dependencies, an instance J over the target schema is said to be a data-exchange
solution (or simply solution) for I and Σ, if I ∪ J satisfies all dependencies in Σ. One of the
most important representation for this (usually infinite) set of solutions was introduced by
Fagin et al. [19]. They considered the finite instance obtained by chasing the initial source
instance with the set of dependencies. Such an instance, if it exists, was called a universal
solution. In their paper, Fagin et al. showed that the universal solution is a good candidate
to be materialized on the target. In particular, the universal solution can be used to compute
certain answers to (unions of) conjunctive queries over the target instance.

Even though not exhaustive, this chapter investigates the chase procedure when applied
against a set of tuple-generating and equality generating dependencies. We also investigate
different chase variations proposed for data exchange and review their properties. Section 3
is devoted to the chase procedure and to some of its variations when the constraints are
specified by sets of tuple-generating and equality generating dependencies. This section it
is not only focused on mapping constraints (i.e. source-to-target and target dependencies)
but also general constraints giving us a full picture for the chase termination problem. In
the same Section 3, we will also see that each of the chase variation presented computes
instances that are homomorphically equivalent and thus any of this chase variations can be
used in computing universal solutions. Even more, to the best of our knowledge, there exists
only one chase variation which is complete in finding universal solutions. It is known that
the chase procedure might not terminate for some input instances; even more, it was shown
that it is undecidable to test if a chase procedure terminates for a given set of dependencies
and a given input instance. Given this, there was tremendous work in finding classes of
dependencies that ensure the chase termination for all input instances. Section 4 presents
some of the main such classes and reviews the subset relationship and complexity of testing
the membership problem for these classes. In Section 5 we review the role played by the
chase procedure in data exchange. Finally, Section 6 presents an extension of the chase
process that deals with larger classes of dependencies including inequalities, disjunctions and
negations. All the proofs presented in this chapter are only sketches, the complete proofs
can be found in the mentioned literature.

2 Preliminaries

For basic definitions and concepts we refer to [1]. We will consider the complexity classes
PTIME, NP, coNP, DP, RE, coRE, and first few levels of the polynomial hierarchy. For
definitions of these classes we refer to [45].

Let us start with some preliminary notions. A schema R is a finite set {R1, . . . , Rn} of
relation names, each Ri having a fixed arity, arity(Ri). Let Const be a countably infinite set
of constants, Null be a countably infinite set of labeled nulls and Var be a countable infinite
set of variables, such that the sets are pairwise disjoint. From the domain Dom = Const∪Null
and the finite set R we build up a Herbrand structure consisting of all expressions of the
form R(a1, a2, . . . , ak), where R is a k-ary relation name from R and ai’s are values in Dom.
Such an expression is called a tuple. A database instance I is then simply a finite set of
tuples. We denote the set of values occurring in an instance I by dom(I). An instance I,
such that dom(I) ⊆ Const, is called a ground instance.

Let then I and J be instances over a schema R. A homomorphism h from I to J is a
function on Const∪Null, that is identity on Const, extended to tuples, relations and instances
in the natural way, such that h(I) ⊆ J . We write I → J in case there exists a homomorphism
from I to J . By I ↔ J we denote the fact that I → J and J → I. A homomorphism from I
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to J is said to be full if h(I) = J . A full injective homomorphism is called embedding. A
homomorphism h from I to J is said to be a retraction if h is identity on dom(J). In this
case J is called a retract of I. An instance J is said to be a proper retract of instance I, if J
is a retract of I and J ⊂ I. An instance I is said to be a core if it does not have any proper
retract. An instance J is said to be a core of I if J is a retract of I and it is also a core. The
cores of an instance I are unique up to isomorphism and therefore we can talk about the
core of an instance I and denote it core(I).

A relational atom is an expression of the form R(x̄), where R is a relational symbol from a
schema R and x̄ ∈ (Const∪Var)arity(R). For an easier representation, by x̄ we also represent
the sets of elements in x̄ and we denote by |x̄| the cardinality of such set. A conjunctive
query ϕ(x̄) over a schema R is a conjunction of relational atoms from R, where x̄ denotes
the variables of the atoms in ϕ. CQ identifies the class of conjunctive queries and UCQ
the class of unions of conjunctive queries. The class CQ 6= denotes all conjunctive queries
that also allow the inequality atom (similarly is defined the class UCQ 6=). The extension
of previous classes by allowing negation gives CQ¬,UCQ¬, CQ¬, 6= and UCQ¬,6=. Given a
formula α : R1(x̄1)∧R2(x̄2)∧ . . .∧Rn(x̄n) and a mapping h : (Const∪Var)→ (Const∪Null),
identity on Const, by h(α) we denote the instance {R1(h(x̄1)), R2(h(x̄2)), . . . , Rn(h(x̄n))}.

Finally, a tuple generating dependency (tgd) is a first order sentence ξ of the form:
∀x̄, ȳ

(
α(x̄, ȳ)→ ∃z̄ β(x̄, z̄)

)
, where α (the body) and β (the head) are conjunctive queries,

x̄ and ȳ denote the universally quantified variables, and z̄ the existentially quantified ones.
We denote by body(ξ) the set of all atoms in the body and by head(ξ) the set of all atoms in
the head. An equality generating dependency (egd) is a first order sentence ξ of the form
∀x̄
(
α(x̄) → x1 = x2

)
. An egd is like a tgd, except that the consequent is an equality

between the variables x1 and x2 that also are part of x̄. For simplicity for these types of
formulae, we will omit the universal quantifiers; also the conjunction between atoms will
be denoted by comma. Thus, the tgd ∀x, y

(
R(x, y) ∧ R(y, x) → ∃z T (x, z) ∧ S(z)

)
will

be simply denoted as R(x, y), R(y, x) → ∃z T (x, z), S(z). A full tgd is a tgd that has no
existentially quantified variables. A LAV tgd is a tgd with only one atom in the body. Let
ξ be a tgd of the form α(x̄, ȳ)→ ∃z̄ β(x̄, z̄), and ā ∈ (Const)|x̄|+|ȳ|. We denote by ξ(ā) the
first order sentence obtained from ξ by replacing the universal quantified variables with the
corresponding constants in ā. An instance I is said to satisfy a set of dependencies, denoted
I |= Σ, if I satisfies Σ in the theoretic standard model sense.

3 The chase procedure

The importance of the chase procedure in data exchange was first brought to the forefront
by Fagin, Kolaitis, Miller and Popa in their seminal paper [19], where the chase was used as
a tool for constructing a "general" solution to the data-exchange problem. In their approach
the chase procedure applies at each iteration a chase step, that either adds a new tuple
or changes the instance to model some equality generating dependency, or fails when the
instance could not be changed to satisfy an equality generating dependency. Based on this
chase procedure, several variations were proposed [12, 16, 38, 24]. To differentiate them,
we will call the chase procedure presented by Fagin et al. [19] the standard chase. Since
most of the practical database constraints (such as key and inclusion dependencies) can be
represented as sets of tuple generating (tgd) and equality generating (egd) dependencies, in
this section we will present the chase procedure applied on such dependencies. Later on,
more precisely in Section 6, we will introduce a variation of the chase procedure that also
deals with dependencies containing inequalities and disjunctions. For an ease of notation,
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4 The Chase Procedure and its Applications in Data Exchange

through this section if not mentioned otherwise, we will use the notation I to represent an
arbitrary instance over a given schema and Σ to refer to an arbitrary set of tgds and egds
over a schema explicitly mentioned if it does not follow directly from the context.

3.1 The chase step
The chase procedure is a repetitive application of a chase step. Each chase step “applies” a
tgd or egd, on a subset of the instance.

The tgd chase step. Let I be an instance and ξ be the tgd α(x̄, ȳ) → ∃z̄ β(x̄, z̄) both
over a schema R. A pair (ξ, h) is said to be a trigger for I, if h is a homomorphism such that
h(α(x̄, ȳ)) ⊆ I. In case we also have that there is no extension h̃ of h such that h̃(β(x̄, z̄)) ⊆ I,
then (ξ, h) is said to be an active trigger for I. The tgd ξ is said to be applicable to I with
homomorphism h if (ξ, h) is a trigger (active or not) for I.

To fire the trigger (ξ, h) means to transform I into the instance J = I ∪ h̃(β(x̄, z̄)),
where h̃ is a distinct extension of h, i.e. an extension of h that assigns new fresh nulls to
the existential variables in β. By “new fresh” we mean the next unused element in some
fixed enumeration of the nulls. We call this transformation as an oblivious-chase step and
denote it I ∗,(ξ,h)−−−−→ J . In case (ξ, h) is an active trigger for I, the transformation is called
standard-chase step and is denoted I (ξ,h)−−−→ J . Clearly any standard-chase step is also an
oblivious-chase step but the converse does not always hold.

I Example 1. Let us consider instance I = {R(a, b), R(b, a), S(b, c)} and tgd ξ:

R(x, y), R(y, x)→ ∃z S(x, z).

Homomorphism h = {x/a, y/b} maps the body of ξ to I and there is no extension of h that
maps the head of ξ into I. That is, the trigger (ξ, h) is active for I and I (ξ,h)−−−→ J , where
J = I ∪{S(a,X)} and h̃(z) = X. On the other hand, for the homomorphism h′ = {x/b, y/a}
the pair (ξ, h′) is a trigger for I, but it is not an active trigger. In this case I ∗,(ξ,h

′)−−−−−→ J ′,
where J ′ = I ∪ {S(b,X)}.

The complexity of testing if there exists a trigger (active trigger) for a given instance I
and a fixed (or given) tgd ξ is given by the following theorem:

I Theorem 2. [26] Let ξ be a tgd and I an instance. Then
1. for a fixed ξ, testing whether there exists a trigger or an active trigger on a given I is

polynomial;
2. testing whether there exists a trigger for a given ξ on a given I is NP-complete;
3. testing whether there exists an active trigger for a given ξ and a given I is Σp2-complete.

Proof. Let us consider ξ to be a tgd of the form α(x̄, ȳ)→ ∃z̄ β(z̄). The polynomial cases
can be verified by checking all homomorphisms from the body of the dependency into the
instance. We also need to consider for the active trigger problem if it has for each such
homomorphism an extension that maps the head of the dependency into the instance. These
tasks can be carried out in O(n|α|) and O(n|α|+|β|) time, respectively.

It is easy to see that the trigger existence problem is NP-complete in combined complexity,
as the problem is equivalent to testing whether there exists a homomorphism between two
instances (in our case α and I); a problem known to be NP-complete.
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Regarding the combined complexity of the active trigger existence problem, we observe
that it is in ΣP2 , since one may guess a homomorphism h from α into I, and then use an NP
oracle to verify that there is no extension h′ of h, such that h′(β) ⊆ I. In the case of the
lower bound, we will reduce the following problem to the active trigger existence problem.
Let φ(x̄, ȳ) be a Boolean formula in 3CNF over the variables in x̄ and ȳ. Is the formula
∃x̄ ¬

(
∃ȳ φ(x̄, ȳ)

)
true? The problem is a variation of the standard ∃∀-QBF problem [48] and

known to be ΣP2 -complete [46].
For the reduction, let φ be given. We construct an instance Iφ and a tgd ξφ. The instance

Iφ is:

F

1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1

N

0 1
1 0

The tgd ξφ = α→β is constructed as follows: for each variable x ∈ x̄ in φ(x̄, ȳ), the body
α will contain the atom N(x, x′) (x′ is used to represent ¬x). The head β is existentially
quantified over that set

⋃
y∈ȳ{y, y′} of variables. For each conjunct C of φ, we place an

atom F (x, y, z) in β, where x, y and z are the variables in C, with the convention that if the
variable x is negated in C, then x′ is used in the atom. Finally, for each y ∈ ȳ, we place in β
the atom N(y, y′), denoting that y and y′ should not have the same truth assignment. It is
easy to note that ∃x̄ ¬

(
∃ȳ φ(x̄, ȳ)

)
is true, if and only if there exists an active trigger (ξφ, h)

for Iφ. J

The egd chase step. Let I be an instance and ξ the egd α(x̄)→ xi = xj , where xi, xj ∈ x̄.
We say that ξ is applicable to I with the homomorphism h, if the following holds:
1. h maps the atoms of α(x̄) to tuples of I,
2. h(xi) 6= h(xj).

The pair (ξ, h) is called an egd active trigger for I, or simply a trigger. Let (ξ, h) be an egd
trigger for I. In case h maps both variables xi and xj to constants, then we say that the egd
chase step fails, and represent this by I (ξ,h)−−−→ ⊥. Otherwise, we say that the egd chase step
does not fail and denote this by I (ξ,h)−−−→ J , where instance J is computed as follows:
1. if both h(xi) and h(xj) are labeled nulls, then J is obtained from I by replacing all

occurrences of h(xi) with h(xj), considering that there is an enumeration of the variables
such that i < j.

2. if either h(xi) or h(xj) is a constant and the other is a labeled null, then J is obtained
from I by replacing all occurrences of the labeled null with the constant.

I Example 3. Consider instance I = {R(a, b), R(c,X), R(X,Y )} and ξ: R(x, y) → x = y.
There are three distinct homomorphisms that map the body of ξ into I: h1 = {x/a, y/b},
h2 = {x/c, y/X} and h3 = {x/X, y/Y }. As h1(x) and h1(y) are distinct constants, it follows
that I (ξ,h1)−−−−→ ⊥. On the other hand, h2(x) is a constant and h2(y) is a null. Thus, we have
I

(ξ,h2)−−−−→ J , where J = {R(a, b), R(c, c), R(c, Y )} is obtained by replacing all occurrences
of null X with constant c in I. Finally, h3 maps both variables x and y to distinct nulls,

Chapte r 01



6 The Chase Procedure and its Applications in Data Exchange

making the egd ξ applicable on I with the homomorphism h3. Hence I (ξ,h3)−−−−→ J ′, where
J ′ = {R(a, b), R(c, Y ), R(Y, Y )} is obtained from I by replacing X with Y , considering that
y follows x in the variable enumeration.

Similarly to the tgd chase step, we have the following complexity results for the egd
trigger-existence problem. Note that for egds the trigger and active trigger notions coincide.

I Theorem 4. Let ξ be an egd and I an instance. Then
1. for a fixed ξ, testing whether there exists a trigger on a given I is polynomial, and
2. testing whether there exists a trigger for a given ξ on a given I is NP-complete.

Proof. Similar with the proof of Theorem 2. J

3.2 The chase algorithm
Using the previously introduced chase steps, we are now ready to present the standard-chase
algorithm. This algorithm can be described as an iterative application of the standard-chase
steps. In case one of the egd chase steps fails, then the algorithm will fail. If the algorithm
does not fail, it nondeterministically chooses another active trigger, tgd or egd, and proceeds
with the corresponding standard-chase step. The algorithm terminates when either one
of the egd chase step fails or when there are no other active triggers. More formally, the
standard-chase algorithm can be described as follows:

STANDARD-CHASE(I,Σ)
1 I0 := I; i := 0;
2 if exists active trigger (ξ, h) for Ii
3 then
4 if Ii

(ξ,h)−−−→ ⊥
5 then return FAIL
6 else Ii

(ξ,h)−−−→ Ii+1; i := i+ 1
7 else return Ii
8 goto 2

Note that the previous algorithm introduces a nondeterministic step at line 2, induced
by the trigger choice. This makes the chase process to be viewed as a tree, where level
i in the tree represents the i-th step in the chase algorithm, and where to each node a
new edge is added for each of the applicable active trigger. Each path from the root of
the tree to a leaf node represents an execution branch, or simply a branch, similarly to
the nondeterministic finite automata. Thus the algorithm may return different instances
depending on the considered branch. There are cases when, for some branches, the algorithm
fails while it does not fail for other branches, as it is shown in Example 6. This happens by
exhaustively choosing the same dependencies in the nondeterministic step.

Moreover, the standard-chase algorithm stops if it either fails, due to an egd trigger at
step 4, or there are no other active triggers to be applied. As the tgds are adding new tuples
to the instance, it may be that the chase algorithm never terminates as in Example 5.

Fagin et al. [19] showed that in case the standard-chase algorithm fails on one execution
branch, then it will fail on all finite branches.

For the branches for which the algorithm does not fail, a standard-chase sequence is
a finite or infinite sequence (I0, I1, I2, . . . , In, . . .) such that I0 = I and Ii

(ξ,h)−−−→ Ii+1, for
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some i ≥ 0 and some active trigger (ξ, h). If for some branch the algorithm terminates in
the finite, then there exists a positive integer n such that for the standard-chase sequence
(I0, I1, I2, . . . , In) there is no active trigger for In.

As shown in the following example, a standard chase sequence may be finite or infinite,
for the same set of tgds and the for same input instance.

I Example 5. Consider instance I = {R(a, b)} and tgds:

ξ1 = R(x, y)→ R(y, x), and
ξ2 = R(x, y)→ ∃z R(y, z).

If first we chose the tgd trigger (ξ1, {x/a, y/b}), the tuple R(b, a) is added to the instance
I forming an instance I ′ = I ∪{R(b, a)}. It can be easily noticed that there is no other active
trigger on I ′ involving either ξ1 or ξ2. From this it follows that the sequence (I, I ′) is a finite
standard-chase sequence. On the other hand, if in the standard-chase algorithm we chose
first the active trigger (ξ2, {x/a, y/b}), and from there on only chose active triggers over ξ2,
we get the following infinite chase sequence:

I0 = I

R

a b

(ξ2,h1)−−−−→ I1

R

a b

b X1

(ξ2,h2)−−−−→ . . .
(ξ2,hn)−−−−→ In

R

a b

b X1

X1 X2

. . .

Xn−1 Xn

(ξ2,hn+1)−−−−−−→ . . .

The next example shows a case when the standard-chase algorithm fails on some branches
and does not terminate (implicitly does not fail) on others.

I Example 6. Let us now consider a slightly changed set of dependencies from the previous
example:

ξ1 = R(x, y)→ T (y, x);
ξ2 = T (x, y)→ x = y; and
ξ3 = R(x, y)→ ∃z R(y, z).

Consider the instance I = {R(a, b)}. If applying an active trigger (ξ1, {x/a, y/b}), it will
add the tuple T (a, b) to I. Next, when applying the active trigger (ξ2, {x/a, y/b}) the
standard-chase algorithm will fail. However, if the chosen branch uses only the triggers over
ξ3, the standard-chase algorithm will not terminate, as previously shown.

In the previous example the standard-chase algorithm did not fail because we exhaustively
applied active triggers over the same dependency. To avoid such cases, the chase algorithm
is required to be fair, defined as follows:

I Definition 7. Let I0 be an instance and Σ a set of tgds and egds. A standard-chase
sequence (I0, I1, . . .) is said to be fair if for all i and for all active triggers (ξ, h) for Ii, where
ξ ∈ Σ, there exists j such that either Ij

(ξ,h)−−−→ Ij+1 or the trigger (ξ, h) is not active for Ij .
A standard-chase algorithm is said to be fair, if it only produces fair chase sequences.

In the rest of this chapter we will consider, if not mentioned otherwise, all the chase
algorithms to be fair.
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8 The Chase Procedure and its Applications in Data Exchange

Let us now turn our attention to standard-chase algorithms that terminate in a finite
number of steps. The following proposition shows the relationship between the finite instances
returned by the algorithm.
I Proposition 8. [19] If K and J are two finite instances returned by the standard-chase
algorithm on two distinct execution branches, with input I and Σ, then K and J are
homomorphically equivalent, that is K ↔ J .

Based on the homomorphic equivalence class, if there exists an execution branch for
which the standard-chase algorithm with input I and Σ terminates in the finite and does
not fail, then we denote by chasestd

Σ(I) one representative of the equivalence class for the
resulting finite instances. If the standard chase fails or if it does not terminate in the finite
on all branches, then we set chasestd

Σ(I) = ⊥. With the instance I and the dependencies Σ
defined in Example 5, we have chasestd

Σ(I) = {R(a, b), R(b, a)}. On the other hand, with
the input instance and the dependencies defined in Example 6 we have chasestd

Σ(I) = ⊥.
The following theorem, developed by Fagin et. al, states one of the main properties of the
standard-chase algorithm. As seen later in this section, this property also holds for the other
chase variations.

I Theorem 9. [19] If chasestd
Σ(I) 6= ⊥, then chasestd

Σ(I) |= Σ and I → chasestd
Σ(I).

Let us now turn our attention to the problem defined as the termination of standard-chase
algorithm. It is easy to see that the cause of non-termination lies in the existentially quantified
variables in the head of tgds. Thus, for simplicity, for the following classes we omitted egds.

I Definition 10. Given an instance I, by CTstd
I,∀ we denote the class of tgd sets such that

Σ ∈ CTstd
I,∀ iff all standard-chase sequences for I and Σ are finite. We denote by CTstd

I,∃ the
class of tgd sets such that Σ ∈ CTstd

I,∃ iff there exist some standard-chase sequences for I and
Σ that are finite.

The previous notations are extended to classes of tgd sets for which the standard chase
terminates on all input instances as follows:

I Definition 11. We denote by CTstd
∀∀ the class of tgd sets such that Σ ∈ CTstd

∀∀ iff for all
instances I all standard-chase sequences of I with Σ are finite. We denote by CTstd

∀∃ the class
of tgd sets such that Σ ∈ CTstd

∀∃ iff for all instances I there exists at least one standard-chase
sequence of I and Σ that is finite.

From the termination classes definition it is clear that CTstd
∀∀ ⊆ CTstd

∀∃. Also from the set
of dependencies presented in Example 5, it follows that the inclusion is strict.

Deutsch, Nash and Remmel in [16] showed that, given I and Σ, the problems of testing
whether Σ ∈ CTstd

I,∀ or Σ ∈ CTstd
I,∃ are undecidable in general. More recently, Grahne

and O. [26] extended this undecidability result to the CTstd
∀∃ class too. That is for a given

Σ, the problem of testing if Σ ∈ CTstd
∀∃ is coRE-complete. In case we allow a single denial

constraint, then the class CTstd
∀∀ is coRE-complete as well. Where a denial constraint is a tgd

of the form α(x̄)→ ⊥, which is satisfied by an instance I only if there is no homomorphism
h such that h(α(ā)) ⊆ I,

Given the previous result, the next best hope is to find large decidable classes of de-
pendencies included in CTstd

∀∀. One such class is the one of full tgds, that is tgds without
existential quantifiers. In Section 4 we review other decidable classes of dependency sets that
are known to be in CTstd

∀∀.
Before ending this section we need to reiterate that the termination classes are defined

over tgds. Even if the egds do not introduce new nulls, they still may play an important
role in the standard-chase termination problem, as shown in the next example.
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I Example 12. Let Σ = {ξ1, ξ2, ξ3}, where:

ξ1 = R(x, y)→ ∃z S(y, z);
ξ2 = S(x, x)→ ∃z R(x, z); and
ξ3 = S(x, y)→ x = y.

Let I = {R(a, b)}. It is easy to see that the standard-chase algorithm converges to the infinite
instance J = {R(a, b), R(b,X1), . . . , R(Xn−1, Xn), . . . , S(b, b), S(X1, X1), . . . , S(Xn, Xn), . . .}.
On the other hand, Σ′ = {ξ1, ξ2} ∈ CTstd

∀∀, that is without the egd ξ3 the standard chase
algorithm terminates on all execution branches with any input instance.

3.3 Chase variations
After the standard chase was presented as a method of computing "general" solutions in
data exchange [19], many variations of the standard-chase algorithm were proposed in the
literature [12, 16, 38, 24] . In the remaining part of this section, dedicated to the chase
algorithm, we try to differentiate between the main chase variations by highlighting their
termination properties.

3.3.1 The oblivious chase
This focuses on one of the simplest variations of the standard chase named the oblivious
chase (also known as naïve chase). This procedure is based on the relaxation of the chase
step. The oblivious chase presented here differs from the one described by Cali et al. [12] by
not relying on any order. As we will see, this does not affect the finite instance returned by
the chase algorithm.

The oblivious-chase algorithm is an iterative application of the oblivious-chase step, that
is at each iteration all triggers are considered, and not only the active ones as in the standard-
chase algorithm. Recall that for the trigger (ξ, h) and the instance I the oblivious-chase
step is denoted as I ∗,(ξ,h)−−−−→ J , where instance J is constructed the same way as in the
standard-chase step. Note that if (ξ, h) is a trigger for I, then (ξ, h) will also be a trigger for
J , where I ∗,(ξ,h)−−−−→ J . To avoid such infinite loops, the oblivious-chase algorithm applies each
trigger only once.

I Example 13. Consider the instance I = {R(a, b), R(b, a), S(b, c)} and the tgd ξ defined as
R(x, y), R(y, x)→ ∃z S(x, z) as in Example 1. The homomorphism h = {x/a, y/b} maps the
body of ξ to I, and there is no extension of h that maps the head of ξ into I. This makes (ξ, h)
both a standard and an oblivious-chase trigger. However, the homomorphism h1 = {x/b, y/a}
also maps the body of ξ to I, but there exists the extension h̃1 = {x/b, y/a, z/c} of h1,
such that h̃1 maps the head of ξ into I. Hence (ξ, h1) is a trigger but not an active trigger
for I. The instance J is obtained by applying the oblivious-chase step I ∗,(ξ,h1)−−−−−→ J , where
J = I ∪ {S(b, Y )} and Y is a new labeled null.

Because of the nondeterministic way the oblivious-chase algorithm selects the triggers
at each iteration, we may have different execution branches. Similarly to the termination
classes defined for the standard chase, we introduce corresponding termination classes of tgd
sets for the oblivious chase: CTobl

I,∃, CTobl
I,∀, CTobl

∀∀ and CTobl
∀∃.

The following proposition shows that the termination classes are not affected by the
nondeterministic nature of the algorithm.
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10 The Chase Procedure and its Applications in Data Exchange

I Proposition 14. Let I be an instance. Then CTobl
I,∀ = CTobl

I,∃ and CTobl
∀∀ = CTobl

∀∃.

Proof. The proof follows from the observation that for the oblivious-chase algorithm, when
the input set of dependencies are only tgds, the set of triggers applied on each branch is the
same, up to isomorphism. Thus, if the oblivious chase terminates on one execution branch,
then it will terminate on all branches. J

From the previous proof it also follows that in case the oblivious chase terminates for
instance I and set of tgds Σ, then the returned on all execution branches are isomorphically
equivalent. As we will see in the following example, if we allow egds, the instances returned
are not guaranteed to be isomorphically equivalent. Still, using the same proof techniques as
the one used to prove Theorem 9, it can be shown that in this case, if the chase terminates
and does not fail, the instances returned are homomorphically equivalent. Thus, if the
oblivious chase terminates with input I and Σ (containing both tgds and egds), then we
denote by chaseobl

Σ(I) one representative instance of the homomorphic equivalence class. If
the oblivious chase fails or if it does not terminate, we set chaseobl

Σ(I) = ⊥.

I Example 15. Let Σ = {ξ1, ξ2, ξ3}, where:

ξ1 = S(x)→ ∃y R(x, y);
ξ2 = R(x, y)→ ∃z T (y, z); and
ξ3 = R(x, y)→ x = y.

Let us now consider the instance I = {S(a)}. If we apply the dependencies in the order ξ1,
ξ2, ξ3 and then ξ2 again, we get the following instance J0 = {S(a), R(a, a), T (a,X1), T (a,X2)}.
But, if we apply the dependencies in the order ξ1, ξ3 and finally ξ2, the instance returned
by the oblivious-chase algorithm is J1 = {S(a), R(a, a), T (a, Y1)}. Clearly J0 and J1 are not
isomorphically equivalent but they are homomorphically equivalent.

From the observation that all active triggers are also triggers, it follows that:
I Proposition 16. CTobl

∀∀ ⊂ CTstd
∀∀.

Proof. The inclusion follows directly from the definition of the trigger and the active trigger.
For the strict inclusion part consider dependency set from Example 17. J

I Example 17. Consider Σ = {R(x, y)→ ∃z R(x, z)}. Clearly there is no active trigger on
Σ for any instance I. On the other hand, for I = {R(a, b)} the oblivious-chase algorithm will
create the following infinite chase sequence:

I0 = I

R

a b

∗,(ξ,h1)−−−−−→ I1

R

a b

a X1

∗,(ξ,h2)−−−−−→ . . .
∗,(ξ,hn)−−−−−→ In

R

a b

a X1

a X2

. . .

a Xn

∗,(ξ,hn+1)−−−−−−−→ . . .

In order to relate termination of the standard and the oblivious algorithms, we introduce
a transformation called enrichment that takes a tgd ξ = α(x̄, ȳ)→ ∃z̄ β(x̄, z̄) over a schema
R̄, and converts it into the tgd ξ̂ = α(x̄, ȳ)→ ∃z̄ β(x̄, z̄), H(x̄, ȳ), where H is a new relational
symbol that does not appear in R. For a set Σ of tgds defined on schema R, the transformed
set is Σ̂ = {ξ̂ : ξ ∈ Σ}. Using the enrichment notion, we can present the relation between the
standard and oblivious-chase terminations.
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I Theorem 18. [25] Let Σ be a set of tgds and I an instance. Then we have:
1. Σ ∈ CTobl

I,∀ if and only if Σ̂ ∈ CTstd
I,∀, and

2. Σ ∈ CTobl
∀∀ if and only if Σ̂ ∈ CTstd

∀∀.

Proof. It follows from the observation that for any instance I if (ξ, h) is a trigger for I, then
(ξ̂, h) is also an active trigger for I. J

Cali et al. showed in [12] that it is undecidable if the oblivious chase terminates for a
given input I and given set of tgds Σ. The same result applies for the class CTobl

∀∀ if we allow
at least one denial constraint [26]. It remains an open problem if the class CTobl

∀∀ remains
undecidable when considering only sets of tgds.

We close the presentation of the oblivious-chase algorithm by linking together the finite
instances resulting from both chase algorithms.

I Theorem 19. [12] Let I be an instance and let Σ be a set of tgds and egds, such that
chaseobl

Σ(I) 6= ⊥. Then chasestd
Σ(I)↔ chaseobl

Σ(I) and chaseobl
Σ(I) |= Σ.

3.3.2 The semi-oblivious chase
The semi-oblivious-chase method was first introduced by Marnette in [38]. For this, let ξ be
a tgd α(x̄, ȳ) → ∃z̄ β(x̄, z̄); then the triggers (ξ, h) and (ξ, g) are considered equivalent if
h(x̄) = g(x̄). The semi-oblivious chase works as the oblivious one, except that exactly one
trigger from each such equivalence class is fired in a branch.

For a better differentiation between the chase algorithms presented so far consider the
following example:

I Example 20. Let Σ = {ξ} contain the tgd ∀x, y R(x, y)→ ∃z T (x, z), and consider the
instance I = {R(a, b), R(a, c), R(d, e), T (a, a)}. In this case there exist only three triggers
τ1 = (ξ, {x/a, y/b}), τ2 = (ξ, {x/a, y/c}) and τ3 = (ξ, {x/d, y/e}). From these triggers only
τ3 is an active trigger for I. Thus, there is only one step to be executed for the standard
chase: I τ3−→ Jstd, where Jstd = I ∪{T (d,X1)}. Because the homomorphism from the trigger
τ1 maps x to value a as the homomorphism from the trigger τ2, it follows that τ1 is equivalent
with τ2. That is in the semi-oblivious chase only two triggers are applied: the active trigger
τ3 and the representative of the equivalence class for τ1 and τ2. Hence, the resulted instance
is Jsobl = I ∪ {T (d,X2)} ∪ {T (a,X3)}. Finally, the oblivious chase will apply all triggers
returning instance Jobl. Bellow are the tabular representations of the instances resulted
by applying the standard, semi-oblivious and oblivious-chase algorithms. The instances are
restricted to relation T :

Jstd

T

a a

d X1

Jsobl

T

a a

d X2

a X3

Jobl

T

a a

d X4

a X5

a X6

Similarly to the previous chase algorithms, we define termination classes over sets of tgds:
CTsobl

I,∃ ,CTsobl
I,∀ , CTsobl

∀∃ and CTsobl
∀∀ for the semi-oblivious algorithm. The following proposition

shows that the nondeterministic behavior of the semi-oblivious-chase algorithm does not
influence the termination for different execution branches.

Chapte r 01
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I Proposition 21. Let I be an instance. Then CTsobl
I,∀ = CTsobl

I,∃ and CTsobl
∀∀ = CTsobl

∀∃ .

Proof. It follows from the observation that the set of representative trigger for each equival-
ence classes is the same for all execution branches. J

Similarly to the oblivious chase case, it can be shown that in case the semi-oblivious-chase
algorithm terminates and not fails with the input instance I and the set of tgds Σ, then
the instances returned by each execution branch are isomorphically equivalent. In case we
allow egds in Σ, then the returned instances will be homomorphically equivalent. In this
case we denote by chasesobl

Σ(I) one representative instance of the homomorphic equivalence
class for the instances computed on each execution branch. In case the semi-oblivious-chase
algorithm fails or it is non-terminating, we set chasesobl

Σ(I) = ⊥.
The same as for the oblivious chase case, we can find a rewriting of the dependencies such

that we can relate the termination of the semi-oblivious-chase algorithm to the termination
of the standard-chase algorithm. We introduce a transformation, called semi-enrichment,
that takes a tgd ξ = α(x̄, ȳ) → ∃z̄ β(x̄, z̄) over a schema R, and converts it into the tgd
ξ̃ = α(x̄, ȳ) → ∃z̄ β(x̄, z̄), H(x̄), where H is a new relational symbol that does not appear
in R. For a set Σ of tgds defined on schema R, the transformed set is Σ̃ = {ξ̃ : ξ ∈ Σ}. Using
the semi-enrichment notion, the relation between the standard and semi-oblivious-chase
terminations can be presented as follows.

I Theorem 22. [26] Let Σ be a set of tgds and I an instance. Then we have:
1. Σ ∈ CTsobl

I,∀ if and only if Σ̃ ∈ CTstd
I,∀, and

2. Σ ∈ CTsobl
∀∀ if and only if Σ̃ ∈ CTstd

∀∀.

The following theorem relates the instances returned by the semi-oblivious chase and the
instances returned by the standard-chase algorithm.

I Theorem 23. [38] Let I be and instance and let Σ be a set of tgds and egds, such that
chasesobl

Σ(I) 6= ⊥. Then chasestd
Σ(I)↔ chasesobl

Σ(I) and chasesobl
Σ(I) |= Σ.

Similarly to the standard chase algorithm, the problem of testing if the semi-oblivious
chase is terminating for a given instance and a given set of tgds is undecidable [38]. The
same result applies for the class CTsobl

∀∀ , if we allow at least one denial constraint [26]. It
remains an open problem if the class CTsobl

∀∀ remains undecidable when considering only sets
of tgds.

The proposition below shows the set relationship between termination classes for the
chase variations presented so far.

I Proposition 24. [26] CTobl
∀∀ ⊂ CTsobl

∀∀ ⊂ CTstd
∀∀ ⊂ CTstd

∀∃.

Proof. The inclusions are clear from the definition of the corresponding chase steps. For the
first strict inclusion consider Σ1 = {R(x, y)→ ∃z R(x, z)}. From Example 17, we know that
Σ1 /∈ CTobl

∀∀. On the other hand, it is easy to see that for any instance I only a maximum of
|I| triggers will be applied on each execution branch by the semi-oblivious chase. For the
second strict inclusion consider Σ2 = {ξ1, ξ2}, where:

ξ1 = R(x)→ ∃z S(z), T (z, x), and
ξ2 = S(x)→ ∃z R(z), T (x, z).

It is easy to check that the standard chase terminates for Σ2 with any input instance I.
Additionally, the semi-oblivious chase does not terminate for Σ2 and instance I = {R(a)}. J
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3.3.3 The core chase
The class of chase algorithms is enriched by the core chase algorithm introduced by Deutsch
et al. in [16]. We need to clarify from the very beginning that the core chase differs from
the other variations by executing in parallel all applicable standard tgd chase steps and
also computing the core of the unified instance. Note that we may only apply the standard
tgd chase steps in parallel but not the egd chase steps, as the latter may modify the given
instance by equating existing labeled nulls to constants or to other labeled nulls.

For a better understanding, we slightly changed the algorithm from [16] by applying all
the egd triggers before applying in parallel all the active tgd triggers. This modification
does not change however the result or the complexity of the given algorithm.

CORE-CHASE(I,Σ)
1 I0 := I; i := 0;
2 if exists a standard egd trigger (ξ, h) for Ii
3 then
4 if Ii

(ξ,h)−−−→ ⊥
5 then return FAIL
6 else Ii

(ξ,h)−−−→ Ii+1; i := i+ 1 goto 2
7 if exists a standard tgd trigger for Ii
8 then
9 For all active trigger (ξ, h) for Ii, compute in parallel Ii

ξ,h−−→ Jj
10 Ii+1 := Core(

⋃
j Jj); i := i+ 1

11 else
12 return Ii
13 goto 2

By applying all the triggers in parallel, the core-chase algorithm eliminates the non-
deterministic part introduced by the standard-chase algorithm. In case the core-chase
algorithm terminates in the finite and does not fail for input I and Σ, we denote the returned
instance by chasecore

Σ(I) . In case the core chase fails or it is non-terminating, we set
chasecore

Σ(I) = ⊥.
Similarly to the other chase variations, for the core chase we introduce classes of tgd

sets CTcore
I,∀ , CTcore

I,∃ , CTcore
∀∀ and CTcore

∀∃ . Because the core chase is deterministic, it follows that
CTcore

I,∀ = CTcore
I,∃ for any instance I and that CTcore

∀∀ = CTcore
∀∃ .

I Theorem 25. [16] Let I be an instance. Then CTstd
I,∃ ⊂ CTcore

I,∀ and CTstd
∀∃ ⊂ CTcore

∀∀ .

Proof. For the second strict inclusion consider Σ = {R(x) → ∃y R(y), S(x)}. Clearly the
standard chase does not terminate on any branch with I = {R(a)} and Σ, that is Σ /∈ CTstd

∀∃ .
On the other hand, for any instance I, the core chase will terminate in maximum |IR| steps,
where IR is instance I restricted to tuple over relation R. J

In [16] it is shown that the membership problem for the class CTcore
I,∀ for a given instance

I is RE-complete. To this, it was shown most recently [26] that the membership problem for
the class CTcore

∀∀ is coRE-complete.
It may be noted that at line 10 the core-chase algorithm does not simply compute the

union between all the instances computed at line 9, but it also computes its core. This gives
the following link between the core chase and standard-chase algorithms:
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Figure 1 Termination classes for different chase variations.

I Theorem 26. Let I be and instance and let Σ be a set of tgds and egds, such that
chasestd

Σ(I) 6= ⊥. Then chasestd
Σ(I) ↔ chasecore

Σ(I) and chasecore
Σ(I) |= Σ, even

more, Core(chasestd
Σ(I)) = chasecore

Σ(I).

Before ending this section about chase variations, let us summarize the differences between
the presented chase algorithms. First we saw that in case the algorithm terminates and
does not fail with input I and Σ, then the instances returned by all of the presented chase
variations are homomorphically equivalent. We also saw that the complexity of testing the
existence of a trigger is slightly easier than testing the existence of an active trigger. From
this it follows that the oblivious and semi-oblivious-chase steps are less expensive than the
standard-chase step that is also less expensive than the core-chase step. On the other hand,
a set of dependencies is more likely to terminate for the core chase than any of the other
chase variations. Figure 1 shows the set inclusion relationship between different termination
classes.

4 Sufficient conditions for the chase termination

In the previous section we saw that it is undecidable to test for all the chase variations if the
chase will terminate for a given instance and a given set of dependencies. This motivated
the research community to find large classes of tgd sets that ensure termination of the
standard-chase algorithm for all instances. In this section some of these classes of tgd sets
will be presented for which it is known that the standard chase terminates on all execution
branches for all input instances. We also investigate here if these classes are sufficient to
guarantee the chase termination for other chase variations beside the standard chase. For
this, we will say that a class of sets of tgds C is closed under enrichment if Σ ∈ C implies
Σ̂ ∈ C. Similarly, the class C is closed under semi-enrichment if Σ ∈ C implies Σ̃ ∈ C. From
Theorems 18 and 22 it directly follows:

I Corollary 27. Let C ⊆ CTstd
∀∀.

1. if C is closed under enrichment, then C ⊆ CTobl
∀∀.

2. if C is closed under semi-enrichment, then C ⊆ CTsobl
∀∀ .

We will use the previous corollary to show that the termination classes presented here
not only guarantee the termination for the standard-chase algorithm but also for the semi-
oblivious-chase algorithm.
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Figure 2 Extended dependency graphs associated with dependencies from Example 30.

4.1 Rich acyclicity
The class of richly acyclic set of dependencies was introduced by Hernich and Schweikardt in
[30] in a different context, and it was shown in [25] that this class guarantees termination for
the oblivious chase on any input instance.

I Definition 28. [19, 12] For a given database schema R define a position in R to be a pair
(R, k), where R is a relation symbol in R and k a natural number with 1 ≤ k ≤ arity(R),
such that k identifies the k-th element in R.

The notion of extended-dependency graph is defined as follows:

I Definition 29. [30] Let Σ be a set of tgds over schema R. The extended-dependency
graph associated with Σ is a directed edge-labeled graph GEΣ = (V,E), such that each vertex
represents a position in R and ((R, i), (S, j)) ∈ E, if there exists a tgd ξ ∈ Σ of the form
α(x̄, ȳ)→ ∃z̄ β(x̄, z̄), and if one of the following holds:
1. x ∈ x̄ and x occurs in α on position (R, i) and in β on position (S, j). In this case the

edge is labeled as universal;
2. x ∈ x̄ ∪ ȳ and x occurs in α on position (R, i) and variable z ∈ z̄ that occurs in β on

position (S, j). In this case the edge is labeled as existential.

The following example illustrates the previous definitions:

I Example 30. Consider database schema R = {S,R}, with arity(S) = 1 and arity(R) = 2.
The set {(S, 1), (R, 1), (R, 2)} represents all positions in R. Let Σ1 contain the following
dependency over R:

ξ11 = S(x)→ ∃y R(x, y)

let Σ2 contain the following dependencies:

ξ21 = S(x)→ ∃y R(x, y), and
ξ22 = R(x, y)→ ∃z R(x, z)

and, finally, let Σ3 be a slight modification of Σ2:

ξ31 = S(x)→ ∃y R(x, y), and
ξ32 = R(x, y)→ ∃z R(y, z).

Figure 2 captures the extended dependency graphs associated with Σ1, Σ2 and Σ3 (note
that the existential edges are represented as dotted lines).

Chapte r 01
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I Definition 31. [30] A set of tgds Σ is said to be richly acyclic if its extended dependency
graph does not contain a cycle going through an existential edge. We denote by RA the class
of all richly acyclic tgd sets.

Note that the problem of testing if Σ ∈ RA is polynomial in size of Σ. Returning to
Example 30, Σ1 is richly acyclic because it does not contain any cycles. On the other hand,
neither Σ2 or Σ3 are richly acyclic. As we will see in the following subsection, the RA ensures
termination for the standard-chase algorithm on any input instance, that is RA ⊂ CTstd

∀∀ . The
next theorem follows directly from Corollary 27 and the observation that RA is closed under
enrichment.

I Theorem 32. [25] Let Σ ∈ RA and let I be an instance. Then there exists a polynomial
in size of I that bounds the length of every oblivious-chase sequence of I and Σ.

Mainly, the previous result states that RA ⊆ CTobl
∀∀ and based on the termination hierarchy

represented in Figure 1, it follows that any set of tgds from RA ensures termination of any
of the chase variation previously presented on any input instances.

4.2 Weak acyclicity
Fagin et al. [19] introduced the class of weakly acyclic dependencies as a class of sets of tgds
that ensures standard-chase termination on all execution branches for all input instances.
Intuitively weak acyclicity checks if the set of tgds does not have a cyclic condition such
that another new null value forces the adding of a new null value.

I Definition 33. [19] Let Σ be a set of tgds over schema R. The dependency graph
associated with Σ is a directed edge-labeled graph GΣ = (V,E), such that the set of vertexes
V represents the positions in R. There is an edge ((R, i), (S, j)) ∈ E, if there exists a
dependency ξ ∈ Σ of the form α(x̄, ȳ)→ ∃z̄ β(x̄, z̄). There exists x ∈ x̄ such that x occurs in
position (R, i) in α and if one of the following holds:
1. x occurs in β in position (S, j). In this case the edge is labeled as universal;
2. there exists variable z ∈ z̄ which occurs in position (S, j) in β. In this case the edge is

labeled as existential.

I Definition 34. [19] A set of tgds Σ is said to be weakly acyclic if the corresponding
dependency graph does not have any cycle going through an existential edge. By WA is
denoted the class of all weakly acyclic sets of tgds.

Note that the problem of testing if Σ ∈WA is polynomial in size of Σ. Figure 3 illustrates
the dependency graphs associated with the dependencies from Example 30. Based on the
previous definition, it follows that : Σ1 is weakly acyclic as the dependency graph does not
contain any cycles; Σ2 is weakly acyclic as its dependency graph has a cycle going only
through universal edges; Σ3 is not weakly acyclic as it has a cycle going through an existential
edge. From the definitions of the RA and WA classes, it follows that RA ⊆WA. Also because
Σ2 ∈WA and Σ2 /∈ RA, it follows that the inclusion is strict, that is RA ⊂WA.

I Theorem 35. [19] Let Σ ∈WA and let I be an instance. Then there exists a polynomial
in size of I that bounds the length of every standard-chase sequence of I and Σ.

From the chase termination hierarchy it follows that if Σ ∈ WA, then Σ ∈ CTstd
∀∃ and

Σ ∈ CTcore
∀∀ . Besides, even if CTobl

∀∀ ⊂ CTstd
∀∀ the classes CTobl

∀∀ and WA are incomparable. For
this consider the tgd set Σ from Example 17. It is easy to see that Σ ∈ (WA \ CTobl

∀∀). For
the other direction consider Σ′ = {S(y), R(x, y)→ ∃z R(y, z)}, clearly Σ′ ∈ (CTobl

∀∀ \WA).
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Figure 3 Dependency graphs associated with dependencies from Example 30.

From the observation that the class WA is closed under semi-enrichment, Theorem 35
and Corollary 27, it follows:

I Theorem 36. WA ⊂ CTsobl
∀∀ .

Proof. For the strict inclusion part of this theorem consider the same set of dependencies
Σ′ = {S(y), R(x, y)→ ∃z R(y, z)}. J

4.3 Safe dependencies
Meier, Schmidt and Lausen [41] observed that the weak acyclicity condition takes into account
nulls that may not create infinite standard-chase sequences. For example, consider the set
Σ = {ξ} [41] where:

ξ = R(x, y, z), S(y)→ ∃w R(y, w, x).

Figure 4a) represents the corresponding dependency graph with cycles going through exist-
ential edges involving position (R, 2). Thus, the dependency is not weakly acyclic. On the
other hand, the newly created null in position (R, 2) may create new null values only if the
same null also appears in position (S, 1). Based on the given dependency, new nulls cannot
be generated in position the (S, 1). Hence, this dependency can not cyclically create new
nulls.

In order to introduce the notion of safe dependencies, we first need to define the following
concept.

I Definition 37. [12] The affected positions associated with a set of tgds Σ is the set aff (Σ)
defined as follows. For all positions (R, i) that occur in the head of some tgd ξ ∈ Σ, then
1. if an existential variable appears in position (R, i) in ξ, then (R, i) ∈ aff (Σ);
2. if universally quantified variable x appears in position (R, i) in the head and x appears

only in affected positions in the body, then (R, i) ∈ aff (Σ).

Intuitively, the affected positions are those where new null values can occur during
the chase process. For example, the set of affected positions associated with the set of
dependencies Σ = {R(x, y, z), S(y)→ ∃w R(y, w, x)} is aff (Σ) = {(R, 2)}.

I Definition 38. [41] The propagation graph for a set of tgds Σ is a directed edge labeled
graph PΣ = (aff (Σ), E). Where ((R, i), (S, j)) ∈ E if there exists a dependency ξ ∈ Σ of
the form α(x̄, ȳ)→ ∃z̄ β(x̄, z̄), there exists a variable x that occurs in α in position (R, i), x
occurs only in affected positions in α and one of the following holds:
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Figure 4 a) Dependency graph, b) Propagation graph for {R(x, y, z), S(y) → ∃w R(y, w, x)}.

1. x appears in β in affected position (S, j). In this case the edge is labeled as universal;
2. there exists variable z ∈ z̄ which occurs in position (S, j) in β. In this case the edge is

labeled existential.

Considering the same dependency set Σ = {R(x, y, z), S(y)→ ∃w R(y, w, x)}, Figure 4a)
represents the corresponding dependency graph and Figure 4b) the corresponding propagation
graph. Note that the propagation graph contains only one node, corresponding to the affected
position (R, 2). Because y appears in the head in a non-affected position (S, 1), it follows
that there are no edges in the propagation graph.

I Definition 39. [41] A set of tgds Σ is called safe if its propagation graph PΣ does not
have a cycle going through an existential edge. By SD is denoted the class of all safe sets of
tgds.

Note that the problem of testing if Σ ∈ SD is polynomial in size of Σ. In our example,
the dependency graph did not contain any edges (see Figure 4b)), hence Σ ∈ SD.

I Theorem 40. [41] Let Σ ∈ SD. Then there exists a polynomial in size of I that bounds
the length of every standard-chase sequence of I and Σ.

From our running example in this subsection and from the definition of the SD class, it
follows that WA ⊂ SD. Also, similarly to the weakly acyclic class it can be shown that SD is
closed under semi-enrichment. Thus, because the previous theorem states that SD ⊂ CTstd

∀∀,
it follows that actually SD ⊂ CTsobl

∀∀ ⊂ CTstd
∀∀. This means that given a set of tgds which is

safe, one may use the semi-oblivious chase to compute an instance which is (see previous
section) homomorphically equivalent to any instance returned by the standard chase with
the same input. Finally, it can be easily noted that, even if SD is bigger than WA, it does not
contain the termination class CTobl

∀∀. For this consider Σ = {R(x, x)→ ∃z R(x, y)}, clearly
Σ ∈ (CTobl

∀∀ \ SD).

4.4 Super weak acyclicity
The following class of sets of tgds properly extends the class of safe sets of tgds and
consequently the class of weakly acyclic and richly acyclic sets of tgds. The new class of
dependencies, introduced by Marnette [38], beside omitting the nulls that can’t generate
infinite chase sequences, as in the case of safe dependencies, also takes into account the
repeating variables. For a more uniform presentation of the sufficient classes, we will slightly
change the notations used in [38].
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In this subsection we assume that the set of dependencies Σ has distinct variable names
in each tgd. We also assume that there exists a total order between the atoms in each
dependency. With this, we can now define the atom position to be a triple (ξ,R, i), where ξ
is a dependency in Σ, R is a relation name that occurs in ξ, i a positive integer i ≤ n, where
n is the maximum number of occurrences of R in ξ, given by the total order between the
atoms in the tgd. Clearly each atom position uniquely identifies an atom in Σ. Similarly
to the notion of position, a place can be defined to be a pair ((ξ,R, i), k), where (ξ,R, i) is
an atom position and 1 ≤ k ≤ arity(R). Intuitively, the place identifies the variable that
appears in the k-th attribute in the atom represented by (ξ,R, i).

Let V ar(ξ) denote the set of variables that occurs in dependency ξ. As mentioned, for any
two distinct dependencies ξ1 and ξ2 from Σ, we have V ar(ξ1) ∩ V ar(ξ2) = ∅. The mapping
V ar is extended in the natural way to a set of dependencies Σ, V ar(Σ) = ∪ξ∈Σ V ar(ξ).
Similarly, we define the mappings V ar∃ and V ar∀ that map each dependency ξ to the set
of existentially quantified variables in ξ and to the universally quantified variables in ξ,
respectively. Clearly for each dependency ξ, V ar∃(ξ) and V ar∀(ξ) represent a partition of
V ar(ξ).

Given a tgd ξ and y ∈ V ar∃(ξ), Out(ξ, y) is defined to be the set of places in the head of
ξ where y occurs. Given a set a tgd ξ and x ∈ V ar∀(ξ), In(ξ, x) is defined to be the set of
places in the body of ξ where x occurs. Intuitively, Out(ξ, y) represents the places where
variable y is “exported” when applying tgd ξ. Similarly, In(ξ, x) represents the places that
need to be “filled” for variable x in order for ξ to be applied.

Given an atom position (ξ,R, i), a substitution θ is a function that maps each variable x
that occurs in the atom (ξ,R, i) to a constant if x ∈ V ar∀(ξ) and to a fresh new constant,
if x ∈ V ar∃(ξ), where by “new fresh” we mean the next unused element in some fixed
enumeration of the constants. The atom resulted by replacing each variable in the atom
given by (ξ,R, i) with the substitution θ is denoted by θ(ξ,R, i). Two atoms (ξ1, R, i1)
and (ξ2, R, i2) are said to be unifiable if there exist substitutions θ1 and θ2 such that
θ1(ξ1, R, i1) = θ2(ξ2, R, i2). Two places p1 = ((ξ1, R, i1), k1) and p2 = ((ξ2, R, i2), k2) are said
to be unifiable if k1 = k2 and (ξ1, R, i1) is unifiable with (ξ2, R, i2). By p1 ∼ p2 it is denoted
that p1 and p2 are unifiable. Let us define ΓΣ to be a function that maps each variable x to
the set of places where x occurs in Σ. ΓHΣ represents the function that maps each variable
x to the set of places from the head of some dependency where x occurs. Similarly, the
function ΓBΣ maps each variable x to the set of places from the body of some dependency
where x occurs.

For a better understanding of the previous notions, let us consider the example:

I Example 41. [47] Let Σ = {ξ1, ξ2}, where:

ξ1 = R(x)→ ∃y, z S(x, y, z), and
ξ2 = S(v, w,w)→ R(w).

The atom positions for Σ are: (ξ1, R, 1), corresponding with the atom R(x); (ξ1, S, 1),
corresponding with the atom S(x, y, z); (ξ2, S, 1), corresponding with the atom S(v, w,w);
and (ξ2, R, 1), corresponding with the atom R(w). We have V ar∀(Σ) = {x, v, w} and
V ar∃(Σ) = {y, z}. Clearly (ξ1, R, 1) is unifiable with (ξ2, R, 1), consider for example unifiers
θ1 = {x/a} and θ2 = {w/a} where both variables x and w are in V ar∀(Σ). On the other hand,
the atom positions (ξ1, S, 1) and (ξ2, S, 1) are not unifiable because y and z are existentially
quantified variables and thus any unifier will map y and z to distinct constants (recall
that each existential variable is mapped to a new fresh constants). Hence, we only have
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((ξ1, R, 1), 1) ∼ ((ξ2, R, 1), 1). For variable x the set ΓΣ(x) = {((ξ1, R, 1), 1), ((ξ1, S, 1), 1)},
ΓBΣ (x) = {((ξ1, R, 1), 1)} and ΓHΣ (x) = {((ξ1, S, 1), 1)}.

Given two sets of places P and Q, we denote P v Q if for all p ∈ P there exists q ∈ Q
such p ∼ q. Let us now define mapping Move(Σ, Q) that gives the smallest set of places P
such that Q ⊆ P , and for all variables x that occurs in a body of some dependency ξ ∈ Σ if
ΓBΣ(x) v P then ΓHΣ (x) ⊆ P . Intuitively, the Move(Σ, Q) returns the smallest set of places
such that new atoms may be generated in those positions by chasing some atoms given by
the places in Q.

I Definition 42. [38] Given Σ a set of tgds and ξ1, ξ2 ∈ Σ, we say ξ1 triggers ξ2 in Σ, and
it is denoted by ξ1 ;Σ ξ2, iff there exist a variable y ∈ V ar∃(ξ1) and a variable x ∈ V ar∀(ξ2)
occurring in both the body and the head of ξ2 such that:

In(ξ2, x) v Move(Σ,Out(ξ1, y)).

I Definition 43. [38] A set of tgds Σ is said to be super-weakly acyclic iff the trigger
relation ;Σ is acyclic. We denote by SwA the set off all super-weakly acyclic tgd sets.

I Example 44. Let us consider the same set of dependencies Σ = {ξ1, ξ2} from Example 41.
The place ((ξ1, S, 1), 1) is not unifiable with ((ξ2, S, 1), 1), thus In(ξ2,w) 6v Move(Σ,Out(ξ1, y)),
that is ξ1 6;Σ ξ2. Similarly, ξ2 does not contain any existential variables and so it follows
that ξ2 6;Σ ξ1. As both dependencies do not share common relation names in the head and
body, it follows that ξ1 6;Σ ξ1 and ξ2 6;Σ ξ2. That is the relation ;Σ does not induce any
cycle, following that Σ is super-weakly acyclic. Moreover, it can be seen that Σ is not safe as
between the affected positions (R, 1) and (S, 2) there exists a cycle through an existential
edge in the corresponding propagation graph.

Marnette [38] showed that the membership problem Is Σ ∈ SwA? is polynomial in the
size of Σ. Spezzano and Greco [47] also proved that SD ⊂ SwA, that is the super-weak acyclic
class properly contains the safe dependencies. The class SwA is closed in adding atoms to the
body of dependencies. Thus given a set of tgds Σ, then any set of dependencies Σ′ obtained
from Σ by adding new atoms in the body of any dependency remains super-weakly acyclic.

I Theorem 45. [38] Let Σ ∈ SwA and let I be an instance. Then there exists a polynomial
in the size of I that bounds the length of every semi-oblivious-chase sequence of I and Σ.
Thus, Swa ⊂ CTsobl

∀∀ .

This concludes that the super-weakly acyclic class of tgd sets is sufficient for the
termination of the semi-oblivious, standard and core-chase algorithms for all input instances.

4.5 Stratification
The stratified model of dependencies was introduced by Deutsch et al. in [16]. This class
relaxes the condition imposed by weak acyclicity by stratifying the dependencies and check
for weak acyclicity on each of these strata instead of checking for the entire set.

I Definition 46. [16] Let ξ1 and ξ2 be two tgds , we write ξ1 ≺ ξ2, if there exist the instances
I, J and a vector ā ⊆ dom(J) such that:
1. I |= ξ2(ā), and
2. there exists an active trigger (ξ1, h), such that I (ξ1,h)−−−−→ J , and
3. J 6|= ξ2(ā).
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I Example 47. Consider Σ = {ξ1, ξ2}, where:

ξ1 = R(x, y)→ S(x), and
ξ2 = S(x)→ R(x, x).

With the instance I = {R(a, b)} and the vector ā = (a) we have that I |= ξ2(a); and for
the homomorphism h = {x/a, y/b} we have I (ξ1,h)−−−−→ J , where J = {R(a, b), S(a)}. Because
J 6|= ξ2(a), it follows that ξ1 ≺ ξ2. On the other hand, ξ2 6≺ ξ1 because for any instance I
and vector of constants b̄ such that I |= ξ1(b̄) and I (ξ2,h)−−−−→ J , for some active trigger (ξ2, h),
it follows that J |= ξ2(b̄).

The authors of [16] claimed that testing if ξ1 ≺ ξ2 is in NP, as we will show next, this
cannot be true unless NP = coNP.

I Theorem 48. [26] Given two tgds ξ1 and ξ2, the problem of testing if ξ1 ≺ ξ2 is coNP-hard.

Proof. We will use a reduction from the graph 3-colorability problem that is known to be
NP-complete. It is also known that a graph G is 3-colorable if and only if there exists a
homomorphism from G to K3, where K3 is the complete graph with 3 vertices.

A graph G = (V,E), where V = n and E = m, is identified with the sequence
G(x1, . . . , xn) = E(xi1 , yi1), . . . , E(xim , yim) and treat the elements in V as variables. Simil-
arly, we identify the graph K3 with the sequence

K3(z1, z2, z3) = E(z1, z2), E(z2, z1), E(z1, z3), E(z3, z1), E(z2, z3), E(z3, z2)

where z1, z2, and z3 are variables. With these notations, given a graph G = (V,E), we
construct tgd’s ξ1 and ξ2 as follows:

ξ1 = R(z)→ ∃z1, z2, z3 K3(z1, z2, z3), and
ξ2 = E(x, y)→ ∃x1, . . . , xn G(x1, . . . , xn).

Clearly the reduction is polynomial in the size of G. We will now show that ξ1 ≺ ξ2 iff G
is not 3-colorable.

First, suppose that ξ1 ≺ ξ2. Then there exists an instance I and homomorphisms h1

and h2, such that I |= h2(ξ2). Consider J , where I (ξ1,h1)−−−−→ J . Thus RI had to contain at
least one tuple, and EI had to be empty, because otherwise the monotonicity property of
the chase we would imply that J |= h2(ξ2).

On the other hand, we have I (ξ1,h1)−−−−→ J , where J = I ∪ {K3(h′1(z1), h′1(z2), h′1(z3))},
and h′1 is a distinct extension of h1. Since EI = ∅, and we assumed that J 6|= h2(ξ2), it
follows that there is no homomorphism from G into J , i.e. there is no homomorphism from
G(h′2(x1), . . . , h′2(xn)) to K3(h′1(z1), h′1(z2), h′1(z3)), where h′2 is a distinct extension of h2.
Therefore the graph G is not 3-colorable.

For the other direction, let us suppose that graph G is not 3-colorable. This means that
clearly there is no homomorphism from G into K3. In fact, with these assumptions let us
consider I = {R(a)}, and the two homomorphisms h1 = {z/a} and h2 = {x/h′1(z1), y/h′1(z2)}.
It is easy to verify that I, h1 and h2 satisfy the three conditions for ξ1 ≺ ξ2. J

The obvious upper bound for the problem ξ1 ≺ ξ2 is ΣP
2 . In [26] it is shown that this

upper bound can be lowered to ∆P
2 . To the best of our knowledge these are the tidiest

bounds found so far for the given problem.
Given a set of tgds Σ, the chase graph associated with Σ is a directed graph G = (V,E),

where V = Σ and (ξ1, ξ2) ∈ E iff ξ1 ≺ ξ2.
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I Definition 49. [16] A set of tgds Σ is said to be stratified if the set of dependencies in
every simple cycle in the corresponding chase graph is weakly acyclic. The set of all stratified
tgd sets is denoted by Str.

In [26] it is shown that the complexity of testing if Σ ∈ Str, for a given Σ, is in ΠP
2 .

Meier et al. [41] shown that Str 6⊆ CTstd
∀∀ but actually Str ⊆ CTstd

∀∃, that is the stratification
guarantees the termination only on some standard-chase execution branches for all input
instances.

I Example 50. [41] Consider Σ = {ξ1, ξ2, ξ3, ξ4}, where:

ξ1 = R(x)→ S(x, x);
ξ2 = S(x, y)→ ∃z T (y, z);
ξ3 = S(x, y)→ T (x, y), T (y, z); and
ξ4 = T (x, y), T (x, z), T (z, x)→ R(y).

We have Σ ∈ Str is stratified since ξ1 ≺ ξ2, ξ1 ≺ ξ3 ≺ ξ4 ≺ ξ1, and the set {ξ1, ξ3, ξ4}
is weakly acyclic. Let I = {R(a)}. The standard-chase execution branch that triggers
repeatedly dependencies ξ1, ξ2, ξ3 and ξ4 never terminates. On the other hand, the chase
sequences that never trigger ξ2 will terminate.

Meier et al. [41] changed the stratification definition in order to guarantee termination
on all execution branches for all instances.

I Definition 51. [41] Let ξ1 and ξ2 be two tgds we write ξ1 ≺c ξ2, if there exist instances
I, J and tuple ā ⊆ dom(J), such that:
1. I |= ξ2(ā), and

2. there exists trigger (ξ1, h), such that I ∗,(ξ1,h)−−−−−→ J , and
3. J 6|= ξ2(ā).

Given a set of tgds Σ, the c-chase graph associated with Σ is a directed graph Gc = (V,E).
With V = Σ and (ξ1, ξ2) ∈ E iff ξ1 ≺c ξ2. A set of tgds Σ is said to be c-stratified if the set
of dependencies in every simple cycle in the c-chase graph is weakly acyclic. The set of all
c-stratified tgd sets is denoted by CStr.

I Theorem 52. [41] Let Σ ∈ CStr and let I be an instance. Then there exists a polynomial,
in size of I, that bounds the length of every standard chase sequence of I and Σ.

Using the same reduction as in Theorem 48, it can be shown that the problem of testing
if ξ1 ≺c ξ2 is coNP-hard and it is in ∆P

2 . Also the problem of testing if Σ ∈ CStr, for a given
Σ, it is in ΠP

2 .
Meier et al. [41] showed that WA ⊂ CStr and that SD ∦ CStr1. Also Spezzano and Greco

[47] proved that SwA ∦ CStr, that is the super-weakly acyclic class is not comparable with the
c-stratified class. Also based on the observation that CStr is closed under semi-enrichment,
it follows that CStr ⊂ CTsobl

∀∀ .

1 The notation A ∦ B is shorthand for A * B and A + B
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4.6 Inductively restricted dependencies
Another class of dependencies that guarantees the standard-chase termination is the in-
ductively restricted set of tgds. Note that the stratification method lifts the weakly acyclic
class of dependencies to the class of c-stratified dependencies. The inductively restricted
class generalizes the stratification method while still keeping the termination property for
the standard-chase algorithm. This generalization is done using the so-called restriction
systems [41]. With the help of the restriction systems, Meier et al. [41] define the new
sufficient condition called inductive restriction that guarantees the standard-chase algorithm
termination on all execution branches for all instances. From this condition a new hier-
archy of classes of dependencies is revealed with the same termination property, called the
T-hierarchy. Note that the inductive restriction condition presented here is given from the
erratum (http://arxiv.org/abs/0906.4228) and not from [41], where the presented condition,
as mentioned in the erratum, does not guarantee the standard-chase termination on all
branches for all instances.

Let Σ be a set of tgds, I an instance and A a set of nulls. The set of all positions (R, i)
such that there exists a tuple in I that contains a variable from A in position (R, i) is denoted
by null-pos(A, I).

Similarly to relation "≺" for the stratified dependencies, the binary relation "≺P " is
defined for the inductive restriction condition, where P is a set of positions.

I Definition 53. [41] Let Σ be a set of tgds and P a set of positions. Let ξ1, ξ2 be two
dependencies in Σ. It is said that ξ1 ≺P ξ2 if there exist instances I,J and vector ā ⊆ dom(J),
such that:
1. I |= ξ2(ā), and
2. there exists a trigger (ξ1, h), such that I ∗,(ξ1,h)−−−−−→ J , and
3. J 6|= ξ2(ā), and
4. there exists X ∈ ā ∩ Null in the head of ξ2(ā), such that null-pos({X}, I) ⊆ P .

I Example 54. Consider Σ containing a single tgd ξ = R(x, y)→ ∃z R(y, z). In Section 3
we saw that there are instances I such that standard-chase algorithm does not terminate
on all branches for I and Σ. It is easy to see that with instances I = {R(a, b)} and
J = {R(a, b), R(b,X)}, and vector ā = (b,X), conditions 1,2 and 3 from the previous
definition are fulfilled. For the 4th condition, consider X ∈ ā, then we have ξ(ā) which
represents the formula R(a,X)→ ∃zR(X, z). Thus, X occurs in the head of ξ(ā). On the
other hand, null-pos({X}, I) = ∅, instance I does not contain any labeled nulls, hence for
any set P , null-pos({X}, I) ⊆ P . Thus, ξ ≺P ξ, for any set of positions P .

I Definition 55. [41] Let P be a set of positions and ξ a tgd. By aff-cl(ξ, P ) is denoted the
set of positions (R, i) from the head of ξ such that one of the following holds:
1. for all x ∈ V ar∀(ξ)2, with x occurs in (R, i), x occurs in the body of ξ only in positions

from P , or
2. position (R, i) contains a variable x ∈ V ar∃(ξ).

For the tgd in Example 54, we have aff-cl(ξ, P ) = {(R, 1), (R, 2)}, where P = {(R, 2)}.
Given a set of dependencies Σ, the set of all positions in Σ is written as pos(Σ).

2 Recall that by V ar∀(ξ) we denote the set of all universally quantified variables in ξ and by V ar∃(ξ) the
set of all existentially quantified variables in ξ.
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I Definition 56. [41] A 2-restriction system is a pair (G(Σ), P ), where G(Σ) is a directed
graph (Σ, E) and P ⊆ pos(Σ) such that:
1. for all (ξ1, ξ2) ∈ E, aff-cl(ξ1, P ) ∩ pos(Σ) ⊆ P and aff-cl(ξ2, P ) ∩ pos(Σ) ⊆ P , and
2. for all ξ1 ≺P ξ2, (ξ1, ξ2) ∈ P .

A 2-restriction system is minimal if it is obtained from ((Σ, ∅), ∅) by a repeated application
of constraints 1 and 2, from the previous definition, such that P is extended only by those
positions that are required to satisfy condition 1. Let us denote by part(Σ, 2) the set that
contains the sets of all strongly connected components in a minimal 2-restriction system.

I Example 57. Returning to our dependency from Example 54, the minimal 2-restriction
system is computed as follows. Consider pair (({ξ}, ∅), ∅). Previously we showed that ξ ≺P ξ,
for any set of positions P , by particularization we have ξ ≺∅ ξ. Thus, we add edge (ξ, ξ) to E.
Using condition 1 from Definition 56 we have aff-cl(ξ, ∅) = {(R, 2)}. That is we add position
(R, 2) to P . By repeating this process once again with P = {(R, 2)}, we add to P the position
(R, 1) too. Hence, the minimal 2-restriction system is ((Σ, {(ξ, ξ)), {(R, 1), (R, 2)}}). The
only connected component in this restriction system is {ξ}.

In [41], Meier et al. provide a simple algorithm that computes the set part(Σ, 2).

I Definition 58. [41] A set Σ of tgds is called inductively restricted iff every Σ′ ∈ part(Σ, 2)
is safe. The set of all inductively restricted tgd sets is denoted by IR.

Using the same reduction from the proof of Theorem 48, it can be shown that the problem
of testing if ξ1 ≺P ξ2, for a given ξ1, ξ2 and P , is coNP-hard and it can be solved in ΣP

2 .
Similarly to the stratification case it can be shown that the complexity of testing if Σ ∈ IR is
in ΠP

3 . From the definition, it directly follows that SD ⊂ IR. To this Meier et al. [41] also
showed that Str ∦ IR and that CStr ⊂ IR. On the other hand, the classes SwA and IR are
incomparable [47], that is SwA ∦ IR.

I Example 59. [41] Consider the following set of tgds Σ:

ξ1 = S(x), E(x, y)→ E(y, x), and
ξ2 = S(x), E(x, y)→ ∃z E(y, z), E(z, x).

It can be easily observed that Σ is neither stratified nor safe, but it is inductively restricted.

I Theorem 60. [41] Let Σ ∈ IR and let I be an instance. Then there exists a polynomial, in
size of I, that bounds the length of every standard-chase sequence of I and Σ.

Meier, Schmidt and Lausen [41] observed that the inductive restriction criterion can be
extended to form a hierarchy of classes that ensure the standard-chase termination on all
branches for all instances. Intuitively, the lowest level of this hierarchy, noted T [2], is the
class of inductively restricted dependencies. Level T [k], k > 2 is obtained by extending the
binary relation ≺P to a k-ary relation ≺k,P . Intuitively, ≺k,P (ξ1, . . . , ξk) means that there
exists a standard-chase sequence such that firing ξ1 will also cause ξ2 to fire. This in turn
will cause ξ3 to fire and so on until ξk. Based on this new relation, the set part(Σ, k) is
computed similarly to part(Σ, 2). The algorithm that computes part(Σ, k) can be found in
[41]. For all k ≤ 2, it is shown that T [k] ⊂ T [k + 1].

It is easy to check that the previous hierarchy is closed under semi-enrichment, following
from Corollary 27 that for any k we have T [k] ⊂ CTsobl

∀∀ . Also in [44] it is shown that
T [k] ∦ CTobl

∀∀. More recently, the T [k] hierarchy of classes was extended by Meier et al. [42]
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Figure 5 Relationship between chase termination classes.

to the ∀∃ − T [k] hierarchy of classes that ensures the standard-chase termination on at least
one execution branch and it showed that T [k] ⊂ ∀∃ − T [k], for any k > 1.

Figure 5 illustrates, as a Hasse diagram, the subset relationship between the termination
classes presented.

Before concluding this subsection, we need to mention that more recently Greco et al.
[27] extended the classes of dependencies that ensure the standard-chase termination to new
large classes based on a stratification based method called local stratification.

4.7 The rewriting approach
Spezzano and Greco [47] noticed that all the previous classes may be extended by using
a rewriting technique. Intuitively, if T is one of the classes {WA,SD,SwA,Str,CStr}, then
instead of directly checking if a set of dependencies Σ ∈ T, we check if Adn(Σ) ∈ T, where
Adn(Σ) is an adornment based rewriting of Σ such that, if Adn(Σ) ∈ CTstd

∀∀, then Σ ∈ CTstd
∀∀.

Where the adornment of a predicate p of arity m is a string of the length m over the alphabet
{b, f }. An adorned atom is of the form pα1,α2,...,αm(x1, x2, . . . , xm); if αi = b, then variable
xi is considered bounded, otherwise the variable is considered free.

Due to the space constraints we will present this method following a simple example.
Consider the following set of dependencies Σ = {ξ1, ξ2} [47]:

ξ1 = N(x)→ ∃y E(x, y), and
ξ2 = S(x), E(x, y)→ N(y).

The affected positions in Σ are (E, 1),(E, 2) and (N, 1). As the corresponding propagation
graph contains a cycle, through an existential edge, involving positions (N, 1) and (E, 2), it
follows that Σ /∈ SD. Construct the set of dependencies Adn(Σ) as follows:
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1. For all predicate symbols p of arity m in Σ add the tgd:

∀x1, x2, . . . , xm p(x1, x2, . . . , xm)→ pα1,α2,...,αm(x1, x2, . . . , xm)

where, for all positive i ≤ m, αi = b.
In our example Σ contains the following predicate symbols {E,S,N}, that is we add to
Adn(Σ) the following set of tgds:

ξ′1 = E(x, y)→ Eb b(x, y);

ξ′2 = N(x)→ Nb(x); and

ξ′3 = S(x)→ Sb(x).
2. Repeat to create new adornment predicate symbols based on the existing dependencies,

until none can be added. That is, if a variable in the head is marked as bounded (free)
and if it occurs only bounded (free) places in the body. All existential variables in the
head are marked as free.
Returning to our example and using ξ1 from Σ and the new adornment Nb, we add the
following dependency to Adn(Σ):

ξ′4 = Nb(x)→ ∃y Eb f (x, y).
Similarly, based on tgd ξ2 from Σ and new adornments Sb and Eb b, we add the following
dependency to Adn(Σ):

ξ′5 = Sb(x), Eb b(x, y)→ Nb(y).
Repeating this process, we add the following tgds to Adn(Σ):

ξ′6 = Sb(x), Eb f (x, y)→ N f (y), and

ξ′7 = N f (x)→ ∃y Ef f (x, y).
After this point no other adornments can be created.

3. Finally, for each of the adornment predicate pα in Adn(Σ), add a new dependency in
Adn(Σ) that "copies" pα to a new p̂ predicate symbol. In this example the following new
dependencies are added:

ξ′8 = Nb(x)→ N̂(x);

ξ′9 = N f (x)→ N̂(x);

ξ′10 = Sb(x)→ Ŝ(x);

ξ′11 = Eb b(x, y)→ Ê(x, y);

ξ′12 = Eb f (x, y)→ Ê(x, y); and

ξ′13 = Ef f (x, y)→ Ê(x, y).

In [47], it is proved that Σ ∈ CTstd
∀∀ if and only if Adn(Σ) ∈ CTstd

∀∀. Returning to our
example, it can be noted that the set Adn(Σ) is safe. Thus, using the previous observation, it
results that even if the set Σ was not safe, the standard chase will terminate on all branches
on Σ with any instances.

I Theorem 61. [41] Let T be one of the classes {WA,SD,SwA,Str,CStr}, let Σ be a set of
tgds and let I be an instance. Then, if Adn(Σ) ∈ T, there exists a polynomial, in size of I,
that bounds the length of every standard-chase sequences of I and Σ.

Even more, Spezzano and Greco [47] proved that these rewritings strictly extend the
classes of dependencies.

I Theorem 62. [41] Let T be one of the classes {WA,SD,SwA,Str,CStr} and let denote by
AdnT the set of all Σ such that Adn(Σ) ∈ T. Then, T ⊂ AdnT.
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More recently, this rewriting method was further improved by Greco et al. [27] by indexing
the adornment used to specify the free positions. This method ensures that we may equate
only variables that have the adornment with the same index.

5 The chase and data exchange

The previous section was mainly focused on presenting different chase algorithms and their
termination criteria. This section is dedicated to the instance returned by the chase algorithm
and to how it can be used in the data-exchange problem. As we will see, the finite instance
returned by any chase variation is strongly related to the notion of universal model. Such
instances represent a good candidate to be materialized under the target schema in data
exchange. Beside computing a general solution for the data-exchange problem, the chase
procedure also plays an important role in some related problems as the inverse, recovery
[18, 22, 8], and composition of schema mappings [21, 6].

For a complete and coherent introduction to the application of the chase procedure in
data exchange, we first present the notion of universal models and its relation with the
chase algorithm. Need to mention that the notion universal models [16] was introduced as a
generalization of universal solutions [19] in data exchange. This first part will be followed
by a short review of the data-exchange problem and the link between universal models and
query answering in data exchange. In the final part of this section we will review the query
answering problem in case there are no universal models.

5.1 Universal models
Beside the data-exchange problem, universal models play an important role in many other
database problems as: testing for conjunctive query containment under functional and
inclusion dependencies [31], data integration [33], and query answering over ontologies [14].

I Definition 63. [16] Given an instance I and Σ a set of dependencies, a finite instance J is
said to be a model for I and Σ if J |= Σ, and I → J .

I Example 64. Consider I = {R(a, b), R(b, c)} and Σ = {R(x, y), R(y, z)→ R(x, z)}. The
instance J = {R(a, b), R(b, c), R(a, c)} is a model of I and Σ, so is instance J1 = J∪{R(a,X)},
with X a labeled null from Null. On the other hand, J2 = {R(a, b), R(a, c)} is not a model
of I and Σ, even if J2 |= Σ, since there is no homomorphism from I into J2.

The conclusion of this example is that, in general, there may be an infinite number of
models of I and Σ. Still, some of these models are more general than the others in the sense
that they have a homomorphism into all the other models. Such models are called, of course,
universal models.

I Definition 65. [16] A finite instance U is said to be a weak universal model of I and Σ
if U is a model of I and Σ, and if for any finite model J of I and Σ, it is that U → J . If
U → J . Also for all infinite models J of I and Σ, then U is said to be a strong universal
model or simply a universal model.

I Example 66. Considering the instance I and the dependency Σ from Example 64, it
is clear that both instances J and J1 are strong universal models. Moreover, the model
J3 = {R(a, b), R(b, c), R(a, c), R(a, a)} is neither a strong nor weak universal model as there
does not exist a homomorphism from J3 to model J .
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I Theorem 67. [19, 16] Let I be an instance and Σ a set of tgds and egds. Then any finite
instance returned by the standard-chase algorithm is a universal model of I and Σ.

Intuitively, the theorem says that whenever the standard chase terminates and it does
not fail, it gives a universal model of I and Σ. From this theorem, it follows that if
chasestd

Σ(I) 6= ⊥ then chasestd
Σ(I) is a universal model for I and Σ. In the finite case, the

instance returned by the standard-chase algorithm is homomorphically equivalent with the
finite result of any chase variations. It follows that for any of the previously presented chase
variations, when they terminate and do not fail, they return a universal model.

I Corollary 68. Let I be an instance, Σ a set of tgds and egds, and ∗ ∈ {obl, sobl, core}.
If chase∗Σ(I) 6= ⊥, then chase∗Σ(I) is a universal model of I and Σ.

This result ensures that the standard, oblivious, semi-oblivious and core chase are sound
in finding universal models. Naturally the following question raises: Are these algorithms
also complete in finding universal models? The following example shows that the standard,
oblivious and semi-oblivious-chase algorithms are not complete.

I Example 69. Let us consider the same instance I = {R(a, b)} and set Σ = {ξ1, ξ2}, where:

ξ1 = R(x, y)→ ∃z R(y, z), and
ξ2 = R(x, y), R(y, z)→ R(y, y).

It is easy to see that there is no terminating branch for the standard chase for Σ and I.
Similarly, the oblivious and semi-oblivious algorithms with the same input will not terminate.
On the other hand, there exists universal model J = {R(a, b), R(b, b)} of I and Σ. Thus the
standard chase is not complete in finding universal models.

The result below shows that the core chase is complete in finding universal models.

I Theorem 70. [16] Let I be an instance and Σ a set of tgds and egds. Then there exists a
universal model of I and Σ iff the core-chase algorithm terminates and does not fail on input
I and Σ.

We know from the definition of the universal models that all universal models are also
weak universal models. The following example shows that the converse does not hold.

I Example 71. [16] Let us consider instance I = {T (a)} and Σ = {ξ1, ξ2, ξ3}, where:

ξ1 = T (x)→ ∃y, z E(y, z);
ξ2 = E(x, y)→ ∃z E(y, z); and
ξ3 = E(x, y), E(y, z)→ E(x, z).

Consider the relation E to contain the edges of a graph. Clearly all models have an infinite
walk. From this it follows that every finite model has a cycle in the corresponding graph.
From this and ξ3, it also follows that any finite model has a self loop. Besides, the instance
J = {T (a), E(X,X)} is a model of I and Σ containing a self loop. Consequently, J is a weak
universal model of I and Σ. On the other hand, the transitive closure of an infinite path also
satisfies Σ, however no finite instance with cycle has a homomorphism into it. This means
that J is not a strong universal model of I and Σ.

Deutsch et al. [16] showed that it is undecidable to test if an instance U is a strong (weak)
universal model for a given instance I and Σ a set of tgds. Even more, they demonstrated
that there is no complete chase based procedures for finding weak universal models.
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5.2 Data exchange
Data exchange is an old database problem that only recently earned more formal treatment.
More precisely, it is the problem of transforming data structured under a source schema
to data structured under a different target schema. Formally, a data-exchange setting is
a quadruple (S,T,Σst,Σt), where S represents the source schema, T represents the target
schema, Σst is a set of constraints representing the relationship between the source and target
schema, and Σt represents a set of constraints over the target schema. Given a data-exchange
setting (S,T,Σst,Σt) and the instance I over the source schema S, the data-exchange
problem is to find instances J over the target schema T, such that I ∪ J is a model for I and
Σst ∪Σt. An instance J with the previous properties is called a solution to the data-exchange
problem, or simply a solution. This problem was first formalized by Fagin et al. in [19].
Most of the data-exchange problems consider Σst to be a set of tgds and Σt to be a set of
tgds and egds. From now on, if not mentioned otherwise, we assume that the data-exchange
settings are of this format.

As there is an infinite number of solutions to the data-exchange problem, a natural
question raises: Which solution or finite set of solutions should be materialized on the target?
There is no simple answer to this question as there may be different representations of the
target depending on the semantics of the queries used over the target instance. The semantics
considered in this subsection, also most prominent in the literature, is the certain answer
semantics for union of conjunctive queries (UCQ) over the target instance. This can be
formalized by the following definition:

I Definition 72. Let σ = (S,T,Σst,Σt), let I be a source instance and Q a query in UCQ
over T. The certain answer of Q for I and σ is defined as

certσ(Q, I) =def ⋂
J, I∪J|=Σst∪Σt

Q(J).

Fagin et al. [19] showed that the universal solution is a good candidate to be materialized
in data-exchange problem under the certain UCQ answer semantics. Where the universal
solution for a data-exchange setting σ = (S,T,Σst,Σt) and the instance I is a universal
model for I and Σst ∪ Σt restricted to schema T. We need to mention that Fagin et al.
considered as solutions only finite instances which is the more important case in practice.
This means that all results specified in Subsection 5.1 also hold for universal solutions. In
particular, it means that the universal solution can be computed by the chase algorithms and
that it is undecidable if the universal solution exists for a given data-exchange setting and a
given source instance. Marnette [38] showed that it is undecidable to test if the oblivious
chase will terminate for a given data-exchange setting for all input instances. This result can
be enhanced to all chase variations, including core chase. Thus, it is undecidable to test if,
for a given data-exchange setting for all the input instances, there exists a universal solution.

In [19], Fagin et al. described a sufficient condition for the universal solution to not exist,
as the following theorem shows it:

I Theorem 73. [19] Let σ = (S,T,Σst,Σt) be a data-exchange setting and I a source
instance such that there is a failing branch for the standard chase with input I and Σst ∪ Σt.
Then there is no universal solution for I and σ.

In data exchange we may also have the case when there exists a solution but there is no
universal solution. Let us consider the next example:

Chapte r 01



30 The Chase Procedure and its Applications in Data Exchange

I Example 74. Consider the following data-exchange setting:

σ = ({S}, {R}, {S(x, y)→ R(x, y)}, {R(x, y)→ ∃z R(y, z)})

and the source instance I = {S(a, b)}. Clearly there is no universal solution for this setting,
but there exists solution J = {R(a, b), R(b, b)}.

As shown by Kolaitis et al. in [32], it is undecidable to check for a given instance I and a
data-exchange setting σ, if there exists a solution for I and σ.

Before presenting the computation of the certain answer for a data-exchange setting using
a universal model, we need to introduce the notion of naïve evaluation. Let I be an instance,
possible with null values, and Q be a query. The Qnaïve(I) is defined by evaluating Q on
I and by treating each null as a new distinct constants, and then by eliminating from the
result all the tuples with nulls.

I Theorem 75. [19] Let σ = (S,T,Σst,Σt) be a data-exchange setting and I an instance
over the source instance that does not contain nulls such that there exists a universal solution
J for I and σ. Then, certσ(Q, I) = Qnaïve(J) for any Q ∈ UCQ.

In [35] Libkin showed that UCQ is the largest class of queries with the property that the
certain answers may be computed using the naïve evaluation. We conclude this subsection by
reiterating the idea that within the infinite set of universal solutions there exists a universal
solution which is minimal in size. Such universal solution is called core and, as noted in [20],
it is unique up to variable renaming. Hence, in case there exists a universal solution, the
core chase will terminate and return the core.

5.3 Data exchange beyond universal solutions

For the data-exchange setting and the source instance presented in Example 74 we know
that there is no universal solution. On the other hand, when considering the query Q(x)←
∃y R(x, y), the certain answers is the set of tuples {(a), (b)}. In [12], Cali, Gottlob and Kifer
investigate the problem of conjunctive query answering when the universal solution is not
guaranteed to exist. For this, the authors unravel two classes of tgds , namely guarded tuple
generating dependencies (gtgd) and weakly guarded tuple generating dependencies (wgtgd),
for which the problem of conjunctive query evaluation is decidable. Intuitively, a tgd is
guarded if its body contains an atom called guard which covers all the variables in the body.
Clearly LAV tgds are gtgds. A set of tgds is weakly guarded, if for each tgd, its body
contains one atom which covers all the variables that appear in the affected position, that is,
predicate positions that may contain new labeled nulls generated during the chase process.

I Example 76. Let us consider the following dependencies:

ξ1 = S(x), R(x, y)→ ∃z R(y, z), and
ξ2 = R(x, z), R(z, y)→ R(y, x).

In ξ1, the atom R(x, y) covers all the variables in the body, meaning that it is a gtgd. Clearly,
ξ2 is not gtgd as there is no atom to cover all variables from the body. The affected position
in the set {ξ1, ξ2} is (R, 2), that is we may introduce new labeled nulls during the chase
process only in the second position of the predicate R. As in ξ2, the atom R(z, y) covers
both variables that appear in affected position in ξ2. It follows that ξ2 is a wgtgd.
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Cali et al. [12] give complexity bounds for the conjunctive query answering problem, that
is: Does a tuple t belong to the certain answer? The complexity bounds discovered are the
following: (1) for a fixed set gtgds the conjunctive query answering problem is NP-complete;
(2) for atomic queries the problem becomes polynomial; (3) in case the fixed dependencies
are wgtgds, the conjunctive query answering problem becomes EXPTIME-complete. Need to
mention here that in [29] Hernich showed that if the data-exchange setting contains only
guarded tgds, it is decidable if for the given setting and a given instance there exists a
universal solution.

In the certain answer semantics for UCQ queries over the target schema a universal
solution is enough to compute certain answer for any UCQ query. Therefore another question
comes up naturally: Is this semantics also a good model for general queries? As shown in [4]
and [34], this semantics is not suitable for general queries, as it may give unintuitive answers
even for simple copying data-exchange settings.

I Example 77. Let us consider a data-exchange setting σ = ({R}, {R′},Σst, ∅), where Σst
simply copies the source into target: R(x, y) → R′(x, y). Consider the source instance
I = {R(a, b)} and the query over the target schema Q(x, y)← R′(x, y) ∧ ¬R′(x, x). As one
of the solution is the instance J = {R′(a, b), R′(a, a)}, it follows that certσ(Q, I) = ∅. Now,
when applying the same query on the source instance (by replacing relation name R′ with
R), it returns the set of tuples {(a, b)}. Clearly this is not the expected behavior as the
target instance is supposed to be a copy of the source instance.

To avoid such cases, Fagin et al. [20] proposed a new semantics for the certain answers
to existential queries. Where existential queries Q(x̄) is a formula of the form ∃ȳ ϕ(x̄, ȳ),
where ϕ is a safe quantifier-free formula. Under this semantics, instead of evaluating the
query on all solutions, the query is evaluated on universal solutions only.

I Definition 78. Let σ = (S,T,Σst,Σt), let I be a source instance and Q a query over the
schema T. The u-certain answer of Q for I and σ is defined as

u-certσ(Q, I) =def ⋂{Q(J) : J universal solution for I and σ}.

Clearly certσ(Q, I) ⊆ u-certσ(Q, I), for any data-exchange setting σ, instance I and
query Q. Also, as shown in [20], certσ(Q, I) = u-certσ(Q, I) whenever Q ∈ UCQ. The
u-certain semantics is shown [20] to be adequate for existential queries. Even more, it is
proved that in case J is a universal solution for data-exchange setting σ and instance I,
and Q is an existential query, then the answer under u-certain semantics can be computed
as: u-certσ(Q, I) = Qnaïve(core(J)). Returning to the previous example, the core universal
solution is J = {R(a, b)}, hence the certain answer to query Q will be the expected set of
tuples {(a, b)}.

Later on new closed world semantics was proposed in order to deal with general queries
for the data-exchange problem [34, 30, 28, 24]. Libkin [34] considered data-exchange settings
without target dependencies and computed CWA-solutions which are used afterwards to
compute certain answers for FO queries. Hernich and Schweikardt [30] introduced a new chase
based algorithm, called the α-chase, to compute CWA-solutions when the data-exchange
setting also contains target dependencies. In [24] Grahne and O. introduce a chase algorithm
on conditional tables in order to strongly represent a closed world semantics called the
constructible solutions. A similar chase process for conditional tables that considers only
source to target dependencies was also introduced in [7].

Chapte r 01



32 The Chase Procedure and its Applications in Data Exchange

6 Chase extensions

The chase algorithms presented in the previous sections considered only tgds and egds as
constraints. In this section we will describe extensions of the chase algorithms needed in
order to deal with negation disjunctive embedded dependencies (NDED). As we will see, the
chase procedure on NDEDs helps finding universal solution sets which are used afterwards in
computing certain answers to more general queries such as UCQ¬, 6=. Disjunctive dependencies
are also investigated by Marnette and Geerts in [40].

Before introducing the chase process for NDEDs, we need to extend the universal solution
notion to universal solution set. Given two instances I and J , we write I 99K J if there exists
an embedding from I to J . Let I, J be two sets of instances, we write I 99K J if for all
J ∈ J there exists I ∈ I such that I 99K J .

I Definition 79. [16] A set I of finite instances is an emb-universal model set for a set of
instances J if it satisfies the following conditions:
1. I 99K J .
2. I ⊆ J .
3. I is finite.
4. there is no I ′ ⊂ I such that I ′ 99K J .

Let us first review the extended chase step for disjunctive embedded dependencies. A
disjunctive embedded dependency (DED) [15] is a constraint of the form:

ξ : ∀x̄ α(x̄)→
∨

1≤i≤n
∃z̄i βi(x̄i, z̄i)

where, x̄i ⊆ x̄, for every 1 ≤ i ≤ n. Formulae α and each βi are conjunctions of relational
symbols and equality atoms. For each 1 ≤ i ≤ n, let us denote by ξi the dependency
∀x̄ α(x̄) → ∃z̄i βi(x̄i, z̄i). The extended chase step on DED is defined as follows [16]. Let
I be an instance and a homomorphism h such that h(α(x̄)) ⊆ I. If I (ξi,h)−−−→ ⊥, for all
1 ≤ i ≤ n, then we say that the extended chase step on I with (ξ, h) failed, and it is denoted
as I (ξ,h)−−−→ ⊥. Otherwise, let J be the set containing all instances Ji, such that I (ξi,h)−−−→ Ji.
If J is empty, it is said that the extended chase step on I with (ξ, h) is not applicable. For
convenience we write this as I (ξi,h)−−−→ I. Finally, if J 6= ∅, then J is said to be obtained from
I in one extended chase step with (ξ, h) and denoted as I (ξ,h)−−−→ J

I Example 80. Consider the following DED:

ξ = R(x, y), R(y, z)→ R(x, z) ∨ x = y ∨ ∃v R(v, z).

Let I = {R(a, b), R(b, c)}. Let h = {x/a, y/b, z/c} be the homomorphism that maps the
body of ξ to I. The three disjuncts from the head of ξ give the following dependencies:

ξ1 = R(x, y), R(y, z)→ R(x, z);
ξ2 = R(x, y), R(y, z)→ x = y; and
ξ3 = R(x, y), R(y, z)→ ∃v R(v, z).

For these dependencies, we have I (ξ1,h)−−−−→ J , where J = I ∪ {R(a, c)}, I (ξ2,h)−−−−→ ⊥ and I |= ξ3.
Thus I (ξ,h)−−−→ J , where J = {J}.
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A dependency ξ of the form α(x̄) → ⊥, where α is a conjunction of atoms, is called
denial constraint or falsehood . If for an instance I there exists a homomorphism h, such that
h(α(x̄)) ⊆ I, then it is said that the extended chase failed on I with (ξ, h) and it is denoted
by I (ξ,h)−−−→ ⊥.

If we add inequalities to DEDs, we obtain DED6=s [15]. Let Σ be a set of DED 6=s over
the schema R. The set of dependencies Σ is replaced by Σ 6=, in which each inequality of
the from x 6= y from Σ is replaced by the atom N(x, y), where N is a new predicate which
does not appear in Σ. Also in Σ6= are added the following dependencies: → x = y ∨N(x, y),
and x = y ∧N(x, y)→ ⊥. It may be noticed that in the new schema, Σ6= contains one extra
predicate compared to the schema of Σ and also it contains two new dependencies.

Finally, by adding to DED 6=s negation we obtain NDEDs. Let Σ be a set of NDEDs over
the schema R. By Σ 6=,¬ is denoted the set of dependencies Σ 6= in which each negated literal
of the form ¬R(x̄) is replaced by a new literal R̂(x̄), and also for each predicate R ∈ R the
following two dependencies are added in Σ6=,¬: R(x̄) ∨ R̂(x̄), and R(x̄) ∧ R̂(x̄)→ ⊥. It can
be noted that for any set Σ of NDED, Σ 6=,¬ is a set of DED.

I Example 81. Consider the following set of dependencies Σ = {ξ1, ξ2}, where:

ξ1 = R(x, y)→ x 6= y, and
ξ2 = R(x, y), S(x)→ ¬S(y).

The corresponding Σ 6=,¬ will contain the dependencies:

ξ1 = R(x, y)→ N(x, y);
ξ2 = R(x, y), S(x)→ Ŝ(y);
ξ3 = x = y ∨N(x, y);
ξ4 = x = y ∧N(x, y)→ ⊥;
ξ3 = R(x, y) ∨ R̂(x, y);
ξ4 = R(x, y) ∧ R̂(x, y)→ ⊥;
ξ5 = S(x) ∨ Ŝ(x); and
ξ6 = S(x) ∧ Ŝ(x)→ ⊥.

Using the previous notations we are now ready to present the extended-core-chase al-
gorithm introduced by Deutsch, Nash and Remmel in [16] which has as input an instance I
and a set Σ of NDED.

EXTENDED-CORE-CHASE(I,Σ)
1 L0 = {I}; i := 0;
2 Compute in parallel for each instance J ∈ Li the set KJ

where K ∈ KJ iff J (ξ,h)−−−→ K for some ξ ∈ Σ 6=,¬ and homomorphism h

3 L′ =
⋃
J∈Li

⋃
K∈KJ

{core(K)}
4 compute Li+1 by removing from L′ all K such that ∃L ∈ L′, L→ K; i = i +1;
5 if Li = Li−1
6 then return the set of instances from Li restricted to the schema of I
7 else goto 2

I Example 82. Consider Σ = {T (x)→ R(x)} over the schema {R,S, T} and consider the
instance I = {T (a)} over the same schema. With this input, the value of L1 after executing
step 4 is L1 = {{T (a), R(a), S(a)}, {T (a), R(a), Ŝ(a)}}, thus the algorithm will return the
set {{T (a), R(a), S(a)}, {T (a), R(a)}}.
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Let us denote by Σ(I) the set of all models for I and Σ. The following theorem, due to
[16], ensures that the returned set of instances, if it terminates, is an emb-universal model
set for the set of all models of I and Σ.

I Theorem 83. [16] Let Σ be a set of NDEDs over the schema R and let I be an instance
over the same schema, such that the extended-core-chase algorithm terminates with the input
I and Σ returning the set of instances L. Then L is an emb-universal model set for Σ(I).

As shown in [16], emb-universal model sets can be used to compute the certain answers
to UCQ 6=,¬.

I Theorem 84. [16] Let U be a emb-universal model set for Σ(I), and let Q be a UCQ 6=,¬

query. Then certΣ(Q, I) =
⋂
J∈U Q(J).

Let us consider the dependencies and the instance from Example 82 and also consider the
query Q(x) ← R(x) ∧ ¬S(x). When computing query Q against the emb-universal model
set from Example 82, certΣ(Q, I) = ∅. The previous result does not hold for general FO
queries. For this consider the boolean query Q′ ← (∀x S(x)→ R(x)). In this case Q′(J) is
true for all instance J from the emb-universal model set. On the other hand, the instance
J = {T (a), R(a), S(b)} is a model for I and Q(J) = false, that is certΣ(Q, I) = false. In
order to cope with general FO queries in data exchange, several closed world semantics have
been proposed [34, 30, 28, 24].

7 Conclusion

This chapter was intended to be a review of the chase based algorithms and also to highlight
their use in data exchange. One of the main issues with the chase algorithms is the termination
problem, that is:

Is there a branch for which the algorithm terminates for a given input I and Σ?
Does the chase algorithm terminate on all branches for a given I and Σ?

As presented, both these problems are undecidable in general. We also saw that the problem
of testing if the core chase terminates for all input instances is undecidable in general. The
undecidability result holds for the standard chase as well, in case we allow at least one denial
constraint. Testing if the standard chase terminates for a given set of tgds on all instances
remains however an open problem. Note that this problem is not the same as testing if there
exists a universal solution for a given data-exchange setting with all input instances that is
known to be an RE-complete problem [39].

Section 4 was dedicated to presenting large decidable classes of tgds for which it is known
that the standard chase algorithm terminates on all branches for all input instances. As
shown, all these classes actually ensure the termination for the “less expensive“ (complexity
based) semi-oblivious-chase algorithm, making this chase variation a better choice when
dealing with sets of dependencies from those classes.

In case the chase based algorithm terminates, the instance computed is guaranteed to
be homomorphic equivalent to any instance computed by any other chase variations. This
property of the chase algorithms plays an important role in data exchange, especially in
choosing the right instance on the target which should be materialized. Under the certain
answers semantics for UCQ queries, the finite instances returned from any of the chase
algorithms presented in Section 3 are good candidates to be materialized on the target. These
instances, which are universal solutions, can be used together with the naïve evaluation to
obtain the certain answers to any UCQ query over the target schema. In case a universal
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solution exists, the certain answers computation for UCQ queries is polynomial. In [12] it is
shown that for some special classes of tgds, even if the universal solution is not guaranteed
to exist, we may compute the certain answers to conjunctive queries. In these cases the
complexity of computing the certain answers may grow as high as EXPTIME-hard.

To the best of our knowledge, the only chase based algorithm known to be complete in
finding universal solutions for the data-exchange problem is the core chase. However, the
core chase is the most expensive, complexity wise. This is because at each step it involves
finding all the active triggers as well as computing the core of the produced instance. As
shown in [20], the core-identification problem (i.e. given instances I and J , Is I the core of
J?) is DP-complete. This leaves us with the open question if there exist other, less complex,
chase based algorithms which are complete in finding universal solutions.

In this chapter we only focused on the cases where the chase algorithms terminate. This
is mainly because in data exchange the infinite chase is not so important. If one is interested
in the infinite chase, a good starting point would be [12].
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Abstract
We describe the state of the art in the area of core computation for data exchange. Two main
approaches are considered: post-processing core computation, applied to a canonical universal
solution constructed by chasing a given schema mapping, and direct core computation, where
the mapping is first rewritten in order to create core universal solutions by chasing it.
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1 Introduction

Data exchange is concerned with the transfer of data between databases with different
schemas, according to declarative specifications known as schema mappings. Unlike virtual
data integration, concerned with query translation among distributed databases [15, 9], data
exchange aims at actually materializing a target database, for the later use offline.

In this chapter, we consider the most common schema mapping language, based on tuple-
generating dependencies (tgds) and equality-generating dependencies (egds). Our setting
assumes two parties: the source and the target data storages with respective relational
schemas S and T, and the single direction of data flow. Such scenario is typically guided by
the source-to-target tgds (st-tgds for short) and target constraints based on egds and tgds.

The data exchange problem for a schema mappingM = (S,T,Σ), where Σ is a set of
st-tgds and target constraints, is defined by Fagin, Kolaitis, Miller and Popa in [6] as a task
of constructing a target instance J for a given source instance I, s.t. the combined instance
〈I, J〉 satisfies the dependencies in Σ. Such J is called a solution for I to the data exchange
problem associated withM.

I Example 1 ([20]). Let Tutorial(course, tutor) and BasicUnit(course) be relations in a source
schema, and NeedsLab(id_tutor,lab), Tutor(id_tutor,tutor), Teaches(id_tutor, id_course) and
Course(id_course,course) be relations in a target schema. The following source-to-target tgds
relate the two schemas:
1. ∀C (BasicUnit(C)→ ∃IdcCourse(Idc, C)) ,
2. ∀C∀T (Tutorial(C, T )→ ∃Idc ∃Idt (Course(Idc, C) ∧ Tutor(Idt, T ) ∧ Teaches(Idt, Idc))) .
Target dependencies are given by the two tgds:
3. ∀Idc ∀C (Course(Idc, C)→ ∃Idt ∃T (Tutor(Idt, T ) ∧ Teaches(Idt, Idc))),
4. ∀Idt ∀Idc (Teaches(Idt, Idc)→ ∃LNeedsLab(Idt, L)).
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For the source instance I consisting of two facts Tutorial(’java’, ’Yves’) and BasicUnit(’java’),
the following instances are all valid solutions:
J = {Course(C1, ’java’), Tutor(T2,N), Teaches(T2,C1), NeedsLab(T2,L2),

Course(C2, ’java’), Tutor(T1,’Yves’), Teaches(T1,C2), NeedsLab(T1,L1)},
Jc = {Course(C1,’java’), Tutor(T1,’Yves’), Teaches(T1,C1), NeedsLab(T1,L1)},
J ′ = {Course(’java’,’java’),Tutor(T1,’Yves’), Teaches(T1,’java’), NeedsLab(T1,L1)}
Existentially quantified variables in tgds can be interpreted as arbitrary values. To reflect
this, solutions in data exchange may contain labeled nulls, serving as placeholders for
unknown constants. Labeled nulls are denoted by capitalized identifiers without quotes in
this chapter. J

As demonstrated by Example 1, data exchange problems may admit multiple solutions,
due to the use of implicational dependencies with existentially quantified variables in schema
mappings. Fagin et al. in [6] proposed clear criteria for evaluating the quality of solutions.
The most prominent requirement is universality, disallowing materialization of facts not
implied by I ∪ Σ, where I is seen as conjunction of atoms of the source instance, and Σ is
the set of dependencies in the mapping. This requirement can be captured as follows: a
solution K for I is universal, if for arbitrary solution K ′ for I, there is a function h mapping
labeled nulls of K to values occurring in K ′ and preserving non-null values of K, such that
h(K) ⊆ K ′ holds. Such h is called a homomorphism. Note that J ′ in Example 1 is not
universal, since there exists no homomorphism transforming J ′ into the solution J . Indeed, a
homomorphism preserves constants, and thus the fact Course(’java’,’java’) cannot be mapped
onto any fact in J . At the same time, J is a universal solution (and hence, so is Jc, which is
a subset of J , up to a renaming of labeled nulls): in particular, J can be transformed into J ′
by mapping C1 and C2 to ’java’, T2 to T1, L2 to L1 and N to ’Yves’.

The number of universal solutions is usually infinite: unless very restrictive target egds
are part of the mapping, arbitrary number of facts consisting of fresh distinct labeled nulls
can be added to a universal solution J , without affecting its universality. Fagin, Kolaitis
and Popa [7] thus recognized the size of universal solution as an important quality criterion,
and proposed the notion of core universal solution. It is inspired by the graph theoretic
concept of the core of a graph [13] defined as smallest subgraph which also is a homomorphic
image of the graph. Since universal solutions have homomorphisms to any other solutions,
core universal solution can be defined as the smallest universal solution possible (Thus, the
smallest solution Jc in Example 1 is the core universal solution). The following holds [7]:
1. For each source instance I and a mappingM, a smallest universal solution is unique up

to isomorphism (that is, up to renaming of labeled nulls). Therefore, we can speak of the
core universal solution (or, simply, the core).

2. Every universal solution contains the core universal solution as its subset.
3. All universal solutions for I underM have the same core.
4. For some classes of queries, certain answers (or the best approximations thereof) can

be found by evaluating the queries on the core universal solution. Certain answers (cf.
Chapter 5) are the answers that are found in every solution for a data exchange problem.

Being an attractive option for materialization, core universal solutions are not always easy
to compute. For mappings with expressive target constraints, the question of feasibility of
finding the core universal solution remained open for several years. In 2006 Gottlob and
Nash answered it positively for mappings with target egds and tgds, appropriately restricted
to ensure the termination of the data exchange process based on incrementally satisfying all
dependencies in the mapping (known as chasing the dependencies, or just the chase) [12].
Their technique eliminates redundant facts from instances that result from the chase, and
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Table 1 Development of Algorithms for Core Computation.

Algorithm Year1) Type Σt Scale: 300s Comments
GreedyCoreComp [7] 2003 PP egds n/a

BlockCoreComp [7] 2003 PP egds n/a

Hd-Core [10] 2005 PP simple tgds n/a hypertree-decomp.
+ egds not covered

FastCore [10] 2005 PP full tgds n/a not covered
+ egds

FindCore [12] 2006 PP tgds
Chase with egds: [20]

2K Skolemized mappings,
+ egds oblivious chase: [16]

Core mappings [19] 2009 D ∅ 500K

Laconic mappings [22] 2009 D ∅ n/a FO< st-tgds

Spicy-FD [18] 2010 D FDs 1M FDs (best-effort)

1) Conference versions of the articles:
[7]: In Proceedings of PODS 2003, pp. 90–101, ACM 2003
[12]: In Proceedings of PODS 2006, pp. 40–49, ACM 2006
[20]: In Proceedings of LPAR 2008, LNCS(5330), pp. 62–78, Springer
[19]: In Proceedings of SIGMOD 2009, pp. 655–668, ACM 2009

thus can be called a post-processing core computation method. Despite theoretical tractability,
it has not yet been proven to scale in practice.

Much better performance is demonstrated by the method of direct core computation
proposed by Mecca, Papotti and Raunich [19], and independently by ten Cate, Kolaitis,
Chiticariu and Tan [22] in 2009. Its idea is to rewrite the dependencies in the mapping in
such a way that chasing them immediately yields a core universal solution. The downside
of this approach is that far less expressive mappings can be supported: both algorithms of
[19, 22] deal with mappings without target constraints, whereas in [18], Marnette, Mecca
and Papotti extend direct core computation to encompass target functional dependencies on
the best-effort basis. Both [19, 18] report experimental results witnessing that direct core
computation scales to instances with up to million records.

Table 1 contrasts the published algorithms for core computation in data exchange. The
columns are (1) the name of the algorithm, (2) year of its first publication, (3) type: post-
processing or direct, (4) the class of target constraints supported, (5) estimate of the source
instance size (in tuples) for which the core universal solution can be found in 5 minutes,
based on the latest published results, and (6) additional comments. The prototypical
algorithms GreedyCoreComp and BlockCoreComp, proposed by Fagin et al. in their
foundational paper [7], are discussed in Sections 3.1, 4.1 and 4.2. The algorithms HD-Core
and FastCore by Gottlob were the first to encompass restricted classes of target tgds along
with egds. The former supports the class of simple tgds having a single atom without repeated
variables in the antecedent. This class leads to the target database instances with bounded
hypertree-width (see Section 3.1 for brief discussion). The latter algorithm allows full tgds
(introducing no new labeled nulls, see Section 2) and egds. Due to space restrictions, we will
not discuss HD-Core and FastCore here, but istead focus on their successor, FindCore
algorithm by Gottlob and Nash, supporting mappings with egds and weakly-acyclic tgds, a
broad class of dependencies for which the chase always terminates. Marnette [16] has shown

Chapte r 02



42 Algorithms for Core Computation in Data Exchange

that FindCore can be lifted, in fact, to arbitrary terminating mappings based on tgds. In
both [12, 16], egds are supported via encodings as tgds. Pichler and Savenkov [20] have
shown how the need for such an encoding in FindCore can be eliminated, and provided a
prototype implementation of post-processing core computation. FindCore algorithm and
its enhancements is subject of Sections 4.3 and 4.4.

The last three lines in Table 1 are direct core computation methods. The Core schema
mappings by Mecca et al. (Section 5.1.1) and Laconic schema mappings by ten Cate et al.
(Section 5.1.2) were first such approaches, supporting source-to-target dependencies only.
The algorithm Spicy-FD by Marnette et al. relies on these methods to provide a best-effort
direct core computation facility in presence of target functional dependencies (Section 5.3).

The rest of this paper is organized as follows: after presenting the preliminaries in Section 2,
we discuss general complexity of core computation Section 3, then present post-processing
algorithms in Section 4, and direct core computation in Section 5. After outlining the
performance of currently existing implementations in Section 6, we conclude with Section 7.

2 Preliminaries

Data exchange problem. A schema R = {R1, . . . , Rn} is a set of relation symbols Ri each
of a fixed arity. An instance over a schema R consists of a relation for each relation symbol in
R, s.t. both have the same arity. We only consider finite instances. We will usually identify
a relation with its relation symbol (and vice versa).

Tuples of the relations may contain two types of elements: constants and labeled nulls.
For every instance J , we write nulls(J) to denote the set of labeled nulls of J and const(J)
to denote the set of constants of J . The two sets are disjoint: nulls(J) ∩ const(J) = ∅. The
domain of J dom(J) is thus the union of nulls(J) and const(J). If a tuple (x1, x2, . . . , xn)
belongs to the relation R, we say that J contains the fact R(x1, x2, . . . , xn). We also write
~x for a tuple (x1, x2, . . . , xn) and if xi ∈ X, for every i, then we also write ~x ∈ X instead of
~x ∈ Xn. Likewise, we write r ∈ ~x if r = xi for some i.

Let S = {S1, . . . , Sn} and T = {T1, . . . , Tm} be schemas with no relation symbols in
common. We call S the source schema and T the target schema. We write 〈S,T〉 to denote
the combined schema {S1, . . . , Sn, T1, . . . , Tm}. Instances over S (resp. T) are called source
instances (resp. target instances). If I is a source instance and J a target instance, then their
combination 〈I, J〉 is an instance of the schema 〈S,T〉. A subinstance of an instance J is an
instance over the same schema as J , containing a subset of facts of J .

Dependencies. A common class of database dependencies considered in the area of data
exchange and data integration is the class of embedded dependencies [5]. These are first-order
sentences ∀~x∀~x0 (φ(~x, ~x0)→ ∃~y ψ(~x, ~y)), where premise φ and conclusion ψ are conjunctions
of atomic formulas with relational symbols from some schema R or equalities. Throughout
this paper, we shall omit the outermost universal quantifiers, and assume all variables
occurring in the premise to be universally quantified (over the entire formula), and all
variables occurring only in the conclusion to be existentially quantified over the entire
conclusion. For instance, we shall write

S1(x1, x2) ∧ S2(x1, x3)→ ∃y1∃y2 Q(x1, y1) ∧ P (x2, y1, y2)
instead of

∀x1 ∀x2∀x3 ( S1(x1, x2) ∧ S2(x1, x3)→ ∃y1∃y2 (Q(x1, y1) ∧ P (x2, y1, y2)) ) .
The dependencies considered in this chapter fall in one of the two categories: tuple-generating
dependencies (tgds) with conjunctions of atoms in the conclusions and equality-generating
dependencies (egds) where conclusions are restricted to equality predicates. In Section 5, we
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will also extend the class of embedded dependencies by L tgds, whose antecedents φ(~x, ~x0)
are formulas over the language L. In particular, an important role will play FO tgds with
antecedents being arbitrary first-order formulas, and FO< tgds enhancing the latter with the
linear order relation <. Given a tgd τ : φ(~x, ~x0)→ ∃~y ψ(~x, ~y)

the elements of ~x, ~x0 are called the ∀-variables of τ , and the elements of ~y are called the
∃-variables of τ ; it is assumed that all elements of ~x actually occur in ψ(~x, ~y),
|~x| as ∀-width of τ and |~y| ∃-width of τ . If ∃-width = 0, the tgd is called full.

For a mapping M, ∀-width and ∃-width of M are defined, respectively, as the maximal
∀-width and ∃-width of a tgd inM.

Schema mappings, data exchange problem. A schema mapping M is given by a triple
(S,T,Σ) consisting of the source schema S, the target schema T, the set of dependencies.
Typically, Σ contains a set of source-to-target dependencies Σst and the set of target depend-
encies Σt. Each source-to-target dependency of Σst is a tgd with its antecedent over S and
conclusion over T. The target dependencies Σt range over T.

The data exchange problem associated with a mapping M = (S,T,Σst ∪ Σt) is the
following: Given a null-free source instance I, find a target instance J , s.t. 〈I, J〉 |= Σst and
J |= Σt. Such a J is called a solution for I underM or, simply, a solution if I andM are
clear from the context.

Skolemization. We will also consider skolemized mappings. The standard skolemization
replaces each ∃-variable y ∈ ~y in the tgd φ(~x, ~x0)→ ∃~y ψ(~x, ~y) with a Skolem term f(~x)
where f is a fresh distinct function symbol.

Chase. The data exchange problem can be solved using the chase procedure [1], which
iteratively introduces new facts or equates terms until all desired dependencies are fulfilled.

Tgd chase step. Let φ(~x, ~x0)→ ∃~y ψ(~x, ~y) be a tgd, s.t. I |= φ(~a,~a0) for some assignments
~a,~a0 on ~x and ~x0 respectively. For each such assignment ~a, I is extended with the facts
instantiating the atoms of ψ(~a, ~Z) where ~Z consists of distinct labeled nulls not present in
dom(I). If the tgd is skolemized, the functional terms it generates are considered labeled
nulls. Chase based on this definition of tgd application is often called oblivious, or naïve in
the literature. A more fine-grained classification, proposed in Chapter 1, calls the so defined
chase semi-oblivious (since the target facts are created for each assignment ~a and not for
every combination of ~a and ~a0).

Egd chase step. Consider an egd τ : φ(~x )→ xi = xj , s.t. I |= φ(~a ) for some assignment
~a on ~x. This egd enforces the equality ai = aj . If ai, aj ∈ const(I) and ai 6= aj , the chase
aborts with failure. Otherwise, if one of ai, aj is a labeled null, all its occurrences in the
instance are replaced by the other term in the pair (ai, aj).

The result of chasing an instance I with dependencies Σ restricted to the target schema is
denoted as chase(I,Σ). An important property of mappings with target tgds is termination of
the chase. Unless specifically noted, here we assume that sets of dependencies are terminating,
that is, never cause infinite sequence of chase steps on any source instance. We refer the
reader to Chapter 1 for detailed discussion of chase variants and chase termination.

Homomorphisms and the core. Let I,I ′ be instances. A homomorphism h : I → I ′ is a
mapping dom(I) → dom(I ′), s.t. (1) whenever R(~x ) ∈ I, then R(h(~x )) ∈ I ′, and (2) for
every constant c, h(c) = c. An endomorphism is a homomorphism I → I, and a retraction is
an idempotent endomorphism, i.e. r ◦ r = r. The image r(I) under a retraction r is called
a retract of I. An endomorphism or a retraction is proper if it is not surjective (for finite
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instances, this is equivalent to not being injective), i.e., if it sends two distinct nulls onto the
same term.

I Definition 2. An instance is called a core if it has no proper endomorphisms. A core C of
an instance I is an endomorphic image of I, s.t. C is a core.

It can be easily shown that all cores of an instance I are unique up to isomorphism [13]. We
can therefore speak about the core of I.

Universal solutions and canonical instances. Consider a terminating schema mapping
M = (S,T,Σst ∪ Σt). Given a null-free source instance I, the universal solution for I under
M can be computed as follows: We start with the instance (I, ∅) over the combined schema
〈S,T〉, i.e., the source instance is I and the target instance is initially empty. Chasing
(I, ∅) with Σst yields the instance (I, Jst), where Jst is called a preuniversal instance: we
write chase(I,Σst) = Jst, using the convention that chase(I,Σst) is restricted to T. This
chase always succeeds since Σst contains no egds. Then Jst is chased with Σt. If Σt

contains egds, this chase may fail. If the chase succeeds, we end up with the instance
J = chase(Jst,Σt) = chase(I,Σ), which is referred to as a canonical universal solution for I.
A universal solution has a homomorphism into any other solution for I. If universal solution
J ′ is a core, it is called the core universal solution for I. Finally, we call an instance J over
T canonical, if for some source instance I, J = chase(I,Σ).

3 Complexity of core computation

We start with discussing the complexity of core computation for arbitrary instances, first
studied by Hell and Nešetřil [13] and then by Fagin, Kolaitis and Popa in [7], where the
following decision problems are formulated:

CoreRecognition: Given an instance A over some schema R is it a core?

According to Definition 2, the instance is the core if it has no homomorphism into its
proper subinstance. Since testing for homomorphism is a well known NP-complete problem,
it is immediate that CoreRecognition is in coNP. Hell and Nešetřil [13] have shown that
it is actually coNP-complete, even if A is an undirected graph. The proof uses a reduction
from Non-3-Colorability on graphs with girth (shortest cycle contained in the graph) of
length at least 7. The next problem brings us yet one step further to the complexity of core
computation. It was first formalized and studied by Fagin et al. in [7].

CoreIdentification: Given an instance A and its subinstance B over some schema R,
is core(A) = B?

The intuition suggests, that deciding CoreIdentification amounts to testing a homo-
morphism between A and B, and then solving CoreRecognition for B. Hence, the problem
can be split into a NP-complete and coNP-complete parts, and therefore might be complete
for both classes. This guess appears to be correct: Fagin et al. showed that core identification
problem is DP-complete (where the class DP is the class of decision problems that can be
expressed as a conjunction of an NP problem and a coNP problem). Building upon results
of [13], the authors provide a reduction from 3-Colorability/Non-3-Colorability.

Taking the possible instance size into account, the above results render core computation
on arbitrary instances as a prohibitively expensive task. Importantly though, in data exchange
one is typically confronted with target instances with certain regularities: they must fulfill
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Procedure BlockCoreComp (”The Blocks algorithm” [7])

Input: An instance J
Output: The core of J

(1) Identify the fact blocks {B1, . . . , Bn} of J
(2) Set C := J

(3) for each X ∈ nulls(J) do
(4) Set C−X := {R(~a) | R(~a) ∈ J ∧X ∈ ~a}
(5) Let BX ∈ {B1, . . . , Bn} be the block containing X: X ∈ nulls(BX)
(6) if X ∈ nulls(C) and exists a homomorphism h : BX → C \ C−X then
(7) Set C := (C \BX) ∪ h(BX)
(8) return C

data dependencies and, moreover, are often created from scratch with this requirement in
sight. These regularities allow to dramatically improve the efficiency of core computation.

In contrast, less assumptions can be typically made about the structure of source instances.
At the same time, many data exchange frameworks disallow labeled nulls at the source side1.
Most algorithms considered in this survey crucially depend on this simplifying assumption.
Thus, speaking of core computation for data exchange, we assume that source instances do
not contain nulls.

The next section is devoted to the complexity of core computation relative to certain
structural parameters of the instance. In Section 4, these parameters will be related to
syntactic properties of schema mappings.

3.1 Parameterized complexity
Core computation comes down to a search for homomorphisms. The decision version of this
problem can be formulated as follows:

Homomorphism: Given instances A,B over schema R, does A→ B hold?

This problem can be reformulated as the problem of evaluation of boolean conjunctive
queries (BCQ), one of the most thoroughly studied topics in database theory [2]. Hence,
numerous results for BCQ evaluation carry over to Homomorphism, and vice versa. One
of the most immediate parameters for Homomorphism is the maximal size of independent
subinstance, called fact block.

I Definition 3. Fact blocks are connected components of the fact graph of an instance
J , where the fact graph has the facts of J as vertices and edges drawn between two
vertices whenever the facts at these vertices share a labeled null. We define blocksize(J)
as max{|nulls(B)| | B is a fact block of J}. Finally, for a null X ∈ nulls(J), B(X) denotes
the fact block of J which contains X.

It follows immediately from the definition, that for two distinct blocks B1, B2 in J ,
nulls(B1) ∩ nulls(B2) = ∅. Hence, every homomorphism h for J can be decomposed into
a union of homomorphisms hi : Bi → A where i ranges over all blocks of J , and the
homomorphisms hi and hj can be defined independently of each other if i 6= j. This

1 Data exchange semantics for source instances with nulls has been proposed in [8]
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motivates the Blocks algorithm BlockCoreComp, first considered in [7]. It searches for
local block-wise homomorphisms that eliminate at least a single null from the domain of J .
For any fact block B ⊆ J the homomorphism h : B → J can be immediately turned into an
endomorphism on J by taking it in a union with the identity mapping on all other fact blocks
of J . Hence, BlockCoreComp computes a sequence of nested instances J ⊇ J1 . . . ⊇ Jn,
such that the endomorphisms J → J1 . . .→ Jn hold, and Jn = core(J).

The BlockCoreComp algorithm can be shown to run in time O(|nulls(J)| · (c+m),
where m = |I| and c is the cost of the homomorphism test at step 5. This cost depends
crucially on blocksize(J), which we will denote by b.

A naïve way of testing a single homomorphism B → J takes time O(|dom(J)|b). This
result can be improved considerably by employing such parameters of J as treewidth tw(J)
[14], query-width qw(J) [3], or hypertree-width [11]. Gottlob and Nash take the latter
parameter, and describe a procedure for deciding Homomorphism, that on the input
(B(X), C \C−X) on line (5) of BlockCoreComp takes time O(mbb/2c+2), where hw(B(X))
is approximated by b.

A number of favorable properties of hypertree decomposition is given in [12], motivating
its usage for core computation. In particular, the hypertree decomposition is

Robust: for every instance J , hw(J) ≤ qw(J) ≤ tw(J) holds. Moreover, there exist
instances J ′, J ′′, for which inequalities hw(J ′) < qw(J ′) and qw(J ′′) < tw(J ′′) are proper.
Useful: Homomorphism(J , A) can be decided in time O(t · ak), where a is the size of the
largest relation in A, t a number of hypernodes in the hypertree decomposition of J and
k is a bound for hw(J). Moreover, k ≤ bb/2c+ 1, where b = blocksize(J).
Efficiently decidable: For each fixed constant k, the problems of determining whether
hw(J) ≤ k and of computing (in the positive case) a hypertree decomposition of width
≤ k are feasible in polynomial time.

The precise complexity of BlockCoreComp relative to treewidth and query-width has
not been considered in the literature so far, but can be derived easily from the results on CQ
evaluation.

In all the expressions above, we have b = blocksize(J) in the exponent of the running
time estimation. The authors of [12] show that this cannot be avoided (unless P=NP). They
use a parameterized reduction from the k-CLIQUE problem, to show the following:

I Theorem 4. [12] If J has blocksize(J) ≤ k and C ⊆ J is null-free, then the problem
CoreIdentification (J,C) is fixed parameter-intractable in the parameter k.

4 Core computation as a post-processing

In this section we show how the knowledge that the given instance results from the chase
with certain type of dependencies can be leveraged to facilitate the core computation.

Most post-processing algorithms restrict the homomorphism search to subinstances whose
blocksize only depends on the given mapping, thus achieving polynomial data complexity of
the core computation. In Section 4.1, we also present a particularly simple Greedy algorithm
[7] which requires no endomorphism search at all, provided that the target dependencies of
the mapping contain no tgds.

J = J0 ⊇ J1 ⊇ . . . ⊇ Jn = C

Figure 1 Recursive core approximation.

All currently known post-processing al-
gorithms follow the recursive approximation
scheme, in which the core is found as a sequence
of ever shrinking endomorphic images of the ca-
nonical universal solution J , such that each image
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can be seen as an approximation to the core. It is desirable that every such core approximation
Ji be itself a universal solution to the data exchange problem. Then, each subsequent
approximation can be immediately used for query answering instead of the previous one (and
instead of the original canonical instance J); the core is found when no further improvement
of the current approximation is possible. The BlockCoreComp algorithm, however, never
checks that the output instance C is a solution. It is easy to show, that for mappings
with target constraints restricted to egds, each iteration of BlockCoreComp delivers a
universal solution, without further ado. Indeed, the algorithm computes a sequence of nested
endomorphic images. Egds are closed under the subset relation, while for st-tgds the following
lemma holds:

I Lemma 5. Let Σ be a set of st-tgds, I, J be respectively a source and a target instance,
and let h be a homomorphism on J . Then, (I, J) |= Σ implies (I, h(J)) |= Σ.

Proof idea. The proof is based on the three observations: (1) I contains no nulls, (2) h
preserves constants, and (3) conjunctive queries are closed under homomorphisms. Assume
that for a st-tgd τ and some assignment ~a satisfying the antecedent of τ there is an assignment
~b for ∃-variables of τ . Then, h(~b) is also a satisfying assignment for ∃-variables of τ . J

In presence of target tgds, however, the situation is a little more complex. Consider the
following example:

I Example 6. [12] Let J be an instance with a binary relation R containing the following
tuples: {(X,Z), (X, a), (a, a), (Z, Y ), (a, Z)}, were a is a constant and the other values are
labeled nulls. Then, h = {X → Z, Y → Z,Z → a, a → a} is an endomorphism on A,
h(J) = {(X, a), (a, a), (a, Z)}. Now, the following full tgd is satisfied by A but not by h(A):

R(x1, x2) ∧R(x2, x2) ∧R(x2, x3)→ R(x1, x3)

Indeed, applied to h(J), the tgd yields (X,Z), which is not part of h(J). J

The above endomorphism is somewhat particular: namely, it is non-idempotent, mapping
Z onto a and re-introducing it as a image of Y . As shown by Gottlob and Nash, no such
example would be possible for an idempotent endomorphism (retraction):

I Lemma 7. [12] Let J be an instance, and r : J → J its retraction. Then, for arbitrary set
of tgds and egds Σ, J |= Σ implies r(J) |= Σ.

Hence, the core approximation via proper retractions is a viable alternative for mappings
with target tgds. Their use becomes even better justified, taking into account the cost of
transformation of an arbitrary endomorphism into an idempotent one, as demonstrated by
Gottlob and Nash:

I Lemma 8. [12] Let h be a proper endomorphism on some instance J : that is, ∃x, y ∈
dom(J), such that h(x) = h(y). Then, there exists a retraction r : J → h(J), such that
r(x) = r(y). Moreover, such r can be found in time O(|dom(J)|2).

Proof hint. The retraction r can be obtained by computing a sequence h = h0, h1, . . . , hk = r

of endomorphisms, where hi+1 is obtained by composing hi with itself ni times. It can be
shown that Σ0≤i<k ni ≤ |dom(J)|2. We will refer to this iteration-based transformation as
to Procedure ToRetraction. J
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Procedure GreedyCoreComp (”The Greedy algorithm” [7])

Input: Source instance I, schema mapping Σ = Σst ∪ Σt where Σt = ∅ or consists of egds
Output: The core universal solution for I under Σ

(1) Set J := chase(I,Σ), C := J

(2) for each R(~a) ∈ J do
(3) if 〈I, C \ {R(~a)}〉 |= Σst then
(4) Set C := C \ {R(~a)}
(5) return C

In the remainder of this section, post-processing core computation is considered under
different classes of target dependencies. Most algorithms that we present deliver core
approximations which are universal solutions. If target constraints are restricted to egds,
this property comes for free. In presence of target tgds, transforming proper endomorphisms
into proper retractions is needed. The only complicated case is when target dependencies
comprise both tgds and egds, since some algorithms simulate egds by tgds and thus egds may
not be satisfied until the core is found. This issue is addressed in Section 4.4.

4.1 No target constraints
The Blocks algorithm. In the absence of target constraints, each canonical instance has
blocksize bounded by the ∃-width of the mapping, as can be readily seen from the definition
of a chase step with a tgd. Indeed, each such step instantiates the ∃-variables of a tgd with
fresh distinct nulls, and hence two facts created at different chase steps never share a null.

Hence, the BlockCoreComp algorithm from Section 3.1 can be applied to chase(I,Σ)
without any modifications, and the inequality blocksize(J) ≤ ∃-width(Σ) holds.

The Greedy algorithm. The Greedy algorithm GreedyCoreComp is defined for mappings
whose set of target constraints is empty or consists of target egds. This procedure does not
explicitly check the existence of an endomorphism from the canonical universal solution J
to its subinstance C. This is not an omission, since C is a solution for I: the test on line 3
verifies that Σst is satisfied after the atom R(~a) is removed. Being a universal solution, J has
a homomorphism into any other solution, so J → C holds after each iteration. Obviously,
C → J holds too, by C ⊆ J . Hence, this algorithm does not depend on the block size of J ,
but rather on the complexity of evaluating the st-tgds in Σst over 〈I, C〉. This approach is
not quite in the spirit of data exchange, however, since the test on line 3 requires the source
instance to be accessible all the time until the core is not found.

4.2 Target egds
The Blocks algorithm. If mapping includes target egds, the blocksize of the instance is
not fixed anymore, as can be seen on a following simple example:

I Example 9. Consider the mapping Σ with one st-tgd and one egd:

S(x, z)→ ∃y1, y2 P (x, y1) ∧R(z, y1, y2) R(x, x1, y1) ∧R(x, x2, y2)→ y1 = y2

For each source instance I, the canonical preuniversal instance chase(I,Σst) has blocksize
2. The blocksize of canonical universal solution, however, is k + 1, where k is the maximal
number of distinct facts in I that agree on the second attribute. J
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Recall that the complexity of core computation depends exponentially on blocksize.
Therefore, the unbounded blocksize would effectively make core computation intractable.
The idea due to Fagin et al. [7] is to redefine the notion of fact block in order to keep its size
bounded despite the effects of egds. Recall the process of constructing a universal solution
via chase: first the source instance I is chased into a preuniversal canonical instance Jst, to
which, in turn, the target egds are applied. The following property, discovered by Fagin et
al., will play an important role in several core computation algorithms:

I Lemma 10 (Rigidity). [7] Let Σ = Σst ∪ Σt be a mapping in which Σt consists of target
egds, and two labeled nulls X,Y ∈ nulls(Jst) belong to different fact blocks in Jst. If the
chase of target egds enforces the unification of X and Y so that they are both substituted
by a term t in the canonical universal solution J , then t is rigid in J : That is, for any
endomorphism e on J , e(t) = t holds.

The intuition behind this property is that conjunctive queries in the antecedents of egds
cannot distinguish between the fact block and its endomorphic image, and thus make egds
perform the same labeled null unifications in both. The consequence for core computation is
very favorable: nulls affected by egds during the target chase can be treated as constants.
Hence, we consider non-rigid fact blocks (nr-blocks for short) constructed as in Definition 3,
but disregarding the sharing of rigid nulls between facts. A corresponding parameter of the
target instance measuring the maximal number of nulls in an nr-block of an instance is called
nr-blocksize, and the BlockCoreComp algorithm can be adapted accordingly.

Since non-rigid fact blocks are contained in the fact blocks of the preuniversal instance
(modulo unification of nulls), target egds actually facilitate core computation. The only
downside is the necessity to track egd applications in order to identify rigid nulls.

The Greedy algorithm. The procedure GreedyCoreComp defined in Section 4.1 handles
mappings with target egds without any modification. Note that line 3 only checks that the
source-to-target constraints in Σ are satisfied after the fact R(~a) is eliminated from C. It is
easy to show that whenever an instance J satisfies an egd, then any its subinstance does so,
too. Since C is a subinstance of J and J |= Σt, C |= Σt holds as well.

4.3 Target tgds
Neither Greedy nor Blocks algorithm can be easily extended to support target tgds. The
problem with the Greedy algorithm is that unlike egds, tgds are not closed under the subset
relation, so the test if the combined instance 〈I, C \ {R(~a)}〉 satisfies Σt as well as Σst needs
to be performed at each iteration in addition to the test 〈I, C \ {R(~a)}〉 |= Σst. Moreover,
eliminating a single fact at a time is no longer sufficient in presence of target tgds.

The negative effect of target tgds on the Blocks algorithm is twofold. Besides merging
the blocks of a preuniversal instance (by putting nulls from different blocks into the same
fact), chase with target tgds can introduce a polynomial number of new nulls, and thus the
blocks of chase(I,Σst ∪Σt) can be substantially larger than those of chase(I,Σst). No direct
analog of the Rigidity property is available for the case of target tgds. Thus, new ideas are
needed to tackle mappings with target tgds. In this section we describe one such idea by
Gottlob and Nash, implemented in their algorithm FindCore [12].

Let J be a canonical instance for some mapping M, and C ⊆ J be its current core
approximation, satisfyingM. C is the core if there is no endomorphism r from J into some
proper subinstance of C. It is easy to show, that any such r must unify at least two terms
from the domain of C: that is, ∃X,Y ∈ dom(C) such that r(X) = r(Y ). Gottlob and Nash
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proposed a construction of a bounded-size instance K ∈ J , X,Y ∈ dom(K), such that a
desired r exists iff a homomorphism h : K → C exists, with h(X) = h(Y ). We will call such
K a kernel of J w.r.t. the terms X,Y , written KXY . (Note that it is not a problem kernel,
as used in the parameterized complexity theory, but a database instance). To define KXY ,
some new definitions are needed.

I Definition 11 (Parents, Ancestors, Siblings). Let ~Y be a vector of nulls created by a tgd
τ : φ(~x)→ ∃~y ψ(~x, ~y), that fired with a satisfying assignment ~a for the variables of φ. Then,
the elements in ~a are called parents of each null in ~Y . Moreover, all elements of ~Y are called
siblings w.r.t. each other, and τ -children of ~a, written ~a τ⇒ ~Y . The ancestor relation is then
defined as a transitive closure over parents.

We say that a subinstance K of a canonical instance J is closed under parents and siblings,
if (1) whenever X ∈ nulls(K), then parents and siblings of X are in dom(K), and (2) all
facts of J which are over dom(K) are in K.

I Definition 12 (Depth). The depth of constants (copied from the source instance or
contained in the right-hand side of the tgd) is taken to be 0. Then, the depth of each labeled
null is defined to exceed by one the maximal depth of its parents.

For a broad class of terminating mappings, every null in the canonical target instance has
depth bounded by a constant depending only on the mapping: we say that such a mapping
has the bounded depth property. Gottlob and Nash used this insight to limit the kernel
size |KXY |. The results of Marnette [16] imply that a similar property holds for arbitrary
terminating mappings defined by tgds, and thus FindCore can be lifted to handle all such
mappings. This lifting will be the subject of Section 4.3.1.

The following example shows how the depth of a labeled null can remain small even
though its derivation takes a long sequence of chase steps.

I Example 13. Let mapping Σ consist of a single st-tgd τst and three target tgds τ1,2,3:

τst : E(x1, x2)→ ∃y D(x1, y) ∧D(x2, y)
τ1 : D(x1, x2) ∧D(x1, x3)→ C(x2, x3)

τ2 : C(x1, x2) ∧ C(x2, x3)→ C(x1, x3)
τ3 : D(2, x1) ∧ C(x1, x2)→ ∃z C2(x2, z)

τst copies the vertices of a graph given by the source relation E (a list of egdes) along with the
unique edge identifier, generated as a labeled null. The binary relation C is then initialized
by τ1 with the pairs of identifiers of adjacent edges. The transitive closure of C is computed
by τ2. Finally, τ3 puts in C2 the identifiers of edges which belong to the connected component
with a specific vertex “2”. Although C2 depends on the transitive closure of C and thus takes
unlimited number of chase steps to compute, any null in it has bounded depth. Indeed, the
nulls in D are created by the source-to-target chase, and thus have depth 1. C contains only
the nulls from D. The tgd τ3 which populates C2 depends on C and on D and therefore
creates nulls of depth at most 2. J

We are now ready to define a kernel subinstance KXY :

I Definition 14 (Kernel). Let J be a canonical universal solution under a terminating
mappingM defined by st-tgds and target tgds, and let Jst be its preuniversal subinstance.
Given a pair X,Y ∈ dom(J), let AXY be a minimal set of terms containing X, Y and closed
under the parent and sibling relations. Then, the kernel KXY of J is defined as a set of all
facts of J over AXY , together with the fact blocks of Jst having nulls in common with AXY :⋃
N∈nulls(AXY ) B

st(N), where Bst denotes the fact blocks of Jst.
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Procedure Extend

Input: Canonical universal solution J ,
retraction r for J ,
homomorphism h : K → r(J) where K ⊆ J closed under parents and siblings.

Output: Endomorphism g : J → r(J) such that ∀x ∈ dom(h) g(x) = h(x)

(1) Initialize g(x) =
{
h(x) if x ∈ dom(h)
r(x) if x ∈ dom(Jst \ dom(h))

(2) while dom(g) ⊂ dom(J) do
(3) Find a tgd τ ∈ Σt, ~a ∈ dom(g) and ~Y ∈ nulls(J) \ dom(g), such that ~a τ⇒ ~Y ;
(4) Set g := g ∪ {~Y → r(~Y ′)}, where g(~a) τ⇒ ~Y ′;
(5) return g;

I Theorem 15 (Properties of KXY ). Let J be a canonical universal solution under a mapping
M defined by st-tgds and target tgds and having the bounded depth property. Let r be a
retraction on J and let C = r(J). Then, for any two terms X,Y ∈ dom(C), the kernel KXY

constructed according to Definition 14 has the following properties:
1. |KXY | is bounded by a constant depending solely onM.
2. An endomorphism g : J → C, g(X) = g(Y ) exists if and only if the homomorphism

h : KXY → C exists, such that h(X) = h(Y ).

Proof Sketch. Claim (1) follows from the Definition 14. Indeed, an estimation |AXY | ≤
2edwd can be shown by induction, where where w and e are respectively ∀-width and ∃-width
of the mapping, and d its depth (see [12], Lemma 1). A combination with the blocks of
Jst raises the bound to 2e2dwd (blocksize(Jst) is at most e). This is a constant, as we only
consider data complexity and take the mapping fixed. Thus, also the number of facts in
KXY is bounded (the target schema is fixed, and there is only a constant number of distinct
facts one can build over a fixed domain).

For Claim (2), suppose no homomorphism KXY → h(J) can unify X and Y . Since KXY

is a subinstance of J , there is also no endomorphism of J with this property. Now, to the
contrary, let h be an arbitrary homomorphism h : KXY → r(J). Such a homomorphism can
be extended to an endomorphism g on J , consistent with h:
(a) We initialize g to be a homomorphism W → C, where W is an instance, similarly to
KXY closed under ancestors and siblings, but also containing the preuniversal subinstance
Jst of J . To do so, we define

g(x) =
{
h(x) if x ∈ dom(h) ,
r(x) if x ∈ dom(Jst \ dom(h))

To see that g is indeed a homomorphism it suffices to note that the facts in KXY and in
Jst \KXY do not have nulls in common, as readily follows from Definition 14.
(b) We now extend g to an endomorphism on the whole instance J . The extension proceeds
by “replaying” the chase steps:

Let φ(~x)→ ψ(~x) be a full target tgd inM, and let ~a be an assignment for ~x such that
W |= φ(~a) but W 6|= ψ(~a). Then, W is extended with ψ(~a). After this step, g is still
a homomorphism for W , since W → C implies C |= φ(g(~a)), C |= M and hence, also
C |= ψ(g(~a)) holds.
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Procedure FindCore
Input: Source instance I, terminating mappingM = (S,T,Σ)
Output: Core universal solution for I underM

(1) Set J := chase(I,Σ), and let Jst be a preuniversal subinstance of J , Jst = chase(I,Σst)
(2) Initialize retraction r to be identity on dom(J);
(3) for each X ∈ nulls(r(J)), Y ∈ range(r), X 6= Y do
(4) Compute KXY ;
(5) if exists h : KXY → r(J) s.t. h(X) = h(Y ) then
(6) Set g := Extend(J, r, h);
(7) Set r := ToRetraction(g); //Lemma 8
(8) return r(J)

For a non-full target tgd τ : φ(~x) → ∃~y ψ(~x, ~y) in M such that W |= φ(~a) but the τ -
children ~Y of ~a are not in dom(W ), both W and g have to be extended: W is augmented
with ψ(~a, ~Y ), while g is extended to map ~Y into dom(C). Since J has been created
by the oblivious chase, we know that there are τ -children of g(~a) among the nulls
of J : ~Y ′ ∈ nulls(J), such that g(~a) τ⇒ ~Y ′ holds. Moreover, as C is a retract of J ,
C |= ψ(g(~a), r(~Y ′)) holds as well. It suffices to extend g in order to map elements of ~Y
onto the respective elements of r(~Y ′).

By replaying all chase steps with non-full tgds, g can be extended to an endomorphism on
J . It takes the time linear in the size of J , provided that the parent relation is maintained
during the chase of J .2 Procedure Extend captures this idea. J

Finally, we can define the core computation algorithm FindCore, which, given a ter-
minating mappingM, performs the following steps. It starts with a trivial automorphism r,
and tries to improve it: The main cycle of FindCore performs an exhaustive search for all
pairs X,Y where X ∈ nulls(r(J)), Y ∈ range(r) and a homomorphism h : KX,Y → r(J)
exists, such that h(X) = h(Y ). When such homomorphism h is found, it is lifted to an
endomorphism g on J by applying the procedure Extend. Since g unifies at least two terms
in r(J), it is an improvement for r and can be shown to send J onto some proper subset of
r(J). Thus, r is updated to be g and transformed into a retraction by an iterative procedure
from the proof of Lemma 8, after which the computation starts over from line 3.

4.3.1 Core computation for skolemized mappings
In [16] Marnette made a number of important contributions to the problem of tractability of
core computation. He proved that the idea of FindCore is applicable to any terminating
mapping based on tgds, and that this result can be extended to support egds by encoding
them as tgds. Moreover, the reformulation of FindCore for skolemized mappings resulted
in a simpler and more efficient version of the algorithm.

I Example 16 (Skolemized mapping). Consider the skolemization of the mapping from
Example 13. The full tgds τ1,2 are not affected by the skolemization. The dependencies τst
and τ3 after skolemization have the form

τskst : E(x1, x2)→ D(x1, fst(x1, x2)) ∧D(x2, fst(x1, x2))
τsk3 : D(2, x1) ∧ C(x1, x2)→ C2(x2, f3(x2)) J

2 For skolemized mappings, no special tracking of parents is required, see Section 4.3.1
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Note that the chase with skolemized mappings produces nulls labeled with Skolem terms.
These terms can be nested: in particular, the dependency τsk3 in Example 16 generates terms
of the form f3

〈
fst〈·, ·〉

〉
. Each such Skolem term denoting a labeled null in the target instance

contains its ancestors (see Definition 11) as subterms. The notion of ancestor here is refined
in comparison to Definition 11. Consider the dependency τsk3 . According to Definition 11,
each null introduced by τsk3 in the C2 relation has two parents, instantiating the variables x1
and x2. However, the Skolem term in τsk3 only has x2 as argument, since x1 does not occur
in the conclusion of the dependency. This skolemization strategy ensures that the size of
each Skolem term in an instance created by chasing a mapping has bounded size, provided
that the mapping is based on tgds and is terminating.

The above observation is crucial, since the kernel KXY from Definition 14 now can be
redefined using closure under subterms. Also the procedure Extend, lifting a homomorphism
on a kernel to an endomorphism on the target instance can be defined much more concisely
than for the non-skolemized tgds:

Given a retraction r selecting the current approximation of the core of the canonical
universal solution J (with the preuniversal instance Jst), and the homomorphism h : Kxy →
r(J) , the endomorphism g for J is defined recursively as

g(x) =


x if x ∈ const(J) ,
h(x) if x ∈ dom(h) ,
r
(
f
〈
e(t1), . . . , e(tn)

〉)
if x 6∈ dom(h) ∪ const(J) and x = f〈t1, . . . , tn〉 .

This formulation is similar to that given in the proof of Claim (2) of Theorem 15 and replaces
the procedure Extend for skolemized mappings. A clear advantage of this new extension
procedure is that no special tracing of the chase process is needed, in contrast to the original
procedure. Another improvement of [16] to FindCore is concerned with target egds and
therefore will be considered in the next section.

4.4 Target tgds and egds
The FindCore algorithm can be extended to the case when target dependencies contain egds
in addition to tgds. The strategy, considered by Gottlob and Nash [12] and by Marnette [16],
is to encode egds by target tgds, generating special “equality” facts in the target instance.
This solution fits quite naturally to the setting of [16], which assumes databases with equality
constraints.

The set Σt of egds and tgds over the target schema T is transformed into the set Σ̄t of
tgds over the schema T∪{E}, where equality relation E is not part of T. The transformation
in [12] consists of the following steps:

1. Replace all equations x = y with E(x, y), turning every egd into a tgd.
2. Add constraints for symmetry E(x, y)→ E(y, x), transitivity E(x, y) ∧ E(y, z)→ E(x, z),

and reflexivity of E : R(x1, . . . , xk)→ E(xi, xi) for every R ∈ T and i ∈ {1, 2, . . . , k}.
3. Add consistency constraints: R(x1, . . . , xk), E(xi, y) → R(x1, . . . , y, . . . , xk) for every

R ∈ T and i ∈ {1, 2, . . . , k}.

The consistency constraints are problematic, as they can cause non-termination of the
mapping:

I Example 17 ([16]). Consider two target dependencies τ, ε, and a tgd encoding τε of the
latter, together with the E-symmetry constraint τs and the consistency constraint τ cR for R:
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τ : R(x)→ ∃y P (x, y)
ε : P (x, x′)→ x = x′

τε : P (x, x′)→ E(x, x′)
τs : E(x, x′)→ E(x′, x)

τ cR :
R(x)∧E(x, x′)→ R(x′)

While the original set of dependencies {τ, ε} is terminating, the rewriting {τ, τε, τs, τ cR} is
not: Oblivious chase does not terminate on any instance with a non-empty relation R, while
the non-oblivious chase terminates only if τs is satisfied before τ cR. J

Gottlob and Nash address this problem by defining a special nice order of tgd applications
in the non-oblivious chase, determined at execution time. In [16] Marnette gives an improved
encoding scheme coinciding with the approach used by Duschka et al. for query answering
using views [4]. It is based on so-called rectification of antecedents: for instance, a rectification
of P (x, x)∧Q(x, z) is P (x, x′)∧Q(x′′, z)∧E(x, x′)∧E(x, x′′), while the tgd τ from Example 17
after rectification rewrites as R(x)∧ E(x, x′)→ ∃y P (x′, y). Consistency constraints can now
be avoided.3

Whatever encoding scheme is chosen, it should be noted that chase(I,Σst ∪ Σ̄t) is not a
universal solution and may violate the egds of Σt. In [16] this is circumvented by assuming
that the target instance includes equality constraints, whereas in the encoding approach of
[12] the satisfaction of egds is a by-product of core computation. The subinstances found
by the iterations of post-processing algorithms suffer from the same problem. A further
disadvantage is a necessity to instantiate the E-facts in the target instance, instead of unifying
the nulls and thus reducing its domain size.

These shortcomings motivated the introduction of FindCoreE by Pichler and Savenkov
[20], an adaptation of FindCore for the immediate application of egds in the chase. The
main idea is to redefine the kernel KXY , using the parent relation over facts rather than nulls
(the latter is not robust w.r.t. egds). To identify facts, each relation in the target schema is
equipped with a new Id attribute, to be instantiated with fresh unique nulls (fact identifiers)
and neither copied to other facts nor affected by egds (cf. Example 18).

The sibling facts are those created at the same chase step. The assumption is, that
sibling facts always form a single fact block. Such assumption is harmless, since a tgd
φ(~x)→ ∃~y1, ~y2 ψ1(~x, ~y1)∧ψ(~x, ~y2) where ~y1∩~y2 = ∅ can be rewritten as φ(~x)→ ∃~y1 φ1(~x, ~y1)
and φ(~x)→ ∃~y2 ψ2(~x, ~y2). If no such rewriting is possible, the tgds are called normalized.
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Figure 2 Parent relation over facts.

As in the tgds-only case, the parent re-
lation ensures a bound on the kernel size.
To define it, the notion of term position is
introduced as a pair (T,A) of a tuple id T
and attribute name A; such a position is
called native if at the chase step with the
tgd τ introducing T , a fresh null was created
for the attribute A in T ; otherwise, the posi-
tion is called foreign. The origin of a native

position (T,A) is defined as the fact T and its sibling facts; if (T,A) is foreign, we first find
its source as a position (T ′, A′), from which τ has copied the value to instantiate (T,A): T ′
is among the facts that satisfied the antecedent of τ , and at the moment of instantiation,
(T,A) has the same value as its sources. The origin of a foreign position is than defined as
the origin of any its source position (chosen non-deterministically). Finally, the parent facts
of T and its sibling facts ST is the union of the origin facts for foreign positions in {T} ∪ ST .

3 In [16, 17] Marnette proves that core computation remains tractable for mappings whose encodings
according to the rectification scheme are terminating. However, it is never explicitly discussed if this
result holds for any terminating mapping with tgds and egds as target dependencies.
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I Example 18. Consider two target tgds from Figure 2 of which an id-aware version is

σ1 : S(ts, x, y)→ ∃tp, z P (tp, y, z) σ2 : P (tp, y, z)→ ∃tq, v Q(tp, z, v)

and assume that the preuniversal instance contains the fact S(Ts, X1, Y1). With its antecedent
satisfied by the fact Ts, σ1 yields a fact R(Tr, Y1, Z1), and then σ2 introduces Q(Tq, Z1, V1),
where Trq, Y1, Z1 are fresh nulls. The three facts are shown in Figure 2, without the ids.
Although the Q-fact was introduced by a tgd firing on the fact Tp, Tp is not a parent of Tq,
since it has not contributed unique nulls to it: V1 is native to Tq, whereas the origin of Y1 at
the foreign position of Tq is the fact Ts. Hence, Ts is the only parent of Tq (and of Tp). J

Similarly to the Definition 14, the kernel K ′XY is defined as a set containing the origin
facts of X,Y , and closed over the siblings and parents relation (on facts). No other facts of Jst
resp. J have to be taken in the kernel, unlike the original definition from Section 4.3. If target
constraints consist of tgds, the inclusion K ′XY ⊆ KXY holds, where KXY is constructed
according to Definition 14. Moreover, the rigidity of nulls has to be taken into account for
proving an analog of Theorem 15 for mappings with tgds and egds.

5 Direct core computation

The algorithms presented so far followed the same general strategy: they first created a
solution with redundant facts, and then optimized it. An immediate question is, if it would
be possible to create only the necessary facts in the first place. This is the goal of direct core
computation. This question has been conceived already by Fagin et al. in [7]. They pointed
out, that simple rewriting of individual rules is not enough, by giving the following example:

I Example 19. Consider an instance I = {S(1, 1, 2, 3)} chased with the two st-tgds τ1,2 :

τ1 : S(a, b, c, d)→ ∃y1∃y2∃y3∃y4∃y5
R(y5, b, y1, y2, a)
∧R(y5, c, y3, y4, a)
∧R(d, c, y3, y4, b) )

τ2 : S(a, b, c, d)→ ∃y1∃y2∃y3∃y4∃y5
R(d, a, a, y1, b)
∧R(y5, a, a, y1, a)
∧R(y5, c, y2, y3, y4) )

The chase of I yields the following six facts (left column is due to τ1, the right one to τ2):

R(N5, 1, N1, N2, 1), R(3, 1, 1, N ′1, 1),
R(N5, 2, N3, N4, 1), R(N ′5, 1, 1, N ′1, 1),
R(3, 2, N3, N4, 1), R(N ′5, 2, N ′2, N ′3, N ′4).

The core universal solution contains the two underlined facts. However, in isolation each tgd
yields an instance which cannot be reduced. J

This example sheds some light on the intricacy of direct core computation. In particular,
it is clearly not possible to consider individual st-dependencies, or update the definition of
the chase step, without taking the interference between different st-tgds into account. Since
the above example was published in 2005, it was not until 2009 that a full-fledged solution
for direct core computation has been proposed, at least for the case of mappings without
target constraints: Core schema mappings by Mecca et al. [19] and Laconic schema mappings
by ten Cate et al. [22]. We will give an overview of these approaches in the next subsection.
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5.1 No target dependencies
The essence of direct core computation is predicting which dependencies can eventually
introduce redundant facts (that is, facts which are not part of the core), and under which
conditions. In absence of target constraints, there is a finite number of ways in which st-tgds
can interfere with each other. This gave rise to two approaches which we consider in this
section.

5.1.1 Core schema mappings
An illustrative example of the interference between st-tgds resulting in target redundancy we
take the coverage of conclusion atoms, in terminology of [19]:

I Example 20. Consider the mapping Σ consisting of the following four st-tgds:

τ1 : S1(x1, x2)→ ∃y1∃y2 R(x1, y1) ∧ P (x2, y2, y1)
τ2 : S2(x1, x2)→ ∃y R(x1, y) ∧ P (x2, x1, y)
τ3 : S3(x1, x2)→ R(x1, x2)
τ4 : S4(x1, x2, x3)→ P (x2, x1, x3)

Those tuples (a, b) ∈ S1 which also occur in S2, trigger creation of the facts we de-
note as Jab = {R(a, Y1), P (b, Y2, Y1)} which do not belong to the core: indeed, τ2 yields
the instance J ′ab = {R(a, Y ′), P (b, a, Y ′)}, onto which Jab is mapped by a homomorph-
ism {Y1 → Y ′1 , Y2 → a}. We say, that τ1 is covered by τ2. Similarly, both τ1 and τ2
are covered by a pair of dependencies {τ3, τ4}. To see this, consider a chase of an in-
stance I ′′ = {S1(a, b), S2(a, b), S3(a, c), S4(a, b, c)}. In addition to the facts of Jab and J ′ab,
chase(I ′′,Σ) contains the facts R(a, c) and P (b, a, c), onto which J ′ab can be mapped with
the homomorphism {Y ′ → c} and Jab with {Y1 → c, Y2 → a}. J

The goal of dependency rewriting is to discover potential coverages by means of static
analysis of mappings: that is, analysis performed at design time and valid for arbitrary
inputs. To this end, coverages are formalized as relationships between dependencies rather
than facts in possible target instances.

I Definition 21. Let ψ(~x, ~y) be a conclusion of a tgd τ with the ∀-variables ~x and ∃-variables
~y. We say that τ is covered by the tgds with conclusions ψ1(~x1, ~y1), . . . , ψk(~xk, ~yk), if there
exists a unification θ for ∀-variables ~x, ~x1, . . . , ~xk, and a substitution λ for ~y, such that
ψ(~xθ, ~xλ) is a subformula of φ0(~x, ~y0) ∧

∧
1≤i≤k φ(~xiθ, ~yi), where ψ0(~x, ~y0) is a subformula

of ψ with ~y0 ⊂ ~y. Moreover, ∀i 1 ≤ i ≤ k (~xi ∪ ~yi) ∩ range(λ) 6= ∅ must hold. If also
(~x0 ∪ ~y0) ∩ range(λ) 6= ∅ holds, the coverage is called partial (some atoms of ψ are mapped
onto other atoms of ψ), otherwise, the coverage is total.

Example 20 illustrates the total coverage. As Mecca et al. point out, for tgds without
self-joins in the conclusions, only this type of coverages is possible. To address such cases,
the antecedent of each tgd τ must be taken in conjunction with the negated antecedents of
tgds that cover τ .

I Example 22. Generation of redundant facts by the tgd τ1 from Example 20 can be
prevented by the following rewriting:

1. S1(x1, x2) ∧ ¬S2(x1, x2) ∧ ¬S3(x1, x2) ∧ ¬(∃x3S4(x1, x2, x3))→
∃y1∃y2 R(x1, y1) ∧ P (x2, y2, y1)

2. S1(x1, x2) ∧ S3(x1, x2) ∧ ¬(∃x3S4(x1, x2, x3))→ ∃y1∃y2 P (x2, y2, y1)
3. S1(x1, x2) ∧ S4(x1, x2, x3) ∧ ¬S3(x1, x2)→ ∃y1 R(x1, y1) J
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For tgds with self-joins in the conclusions also the partial coverages, as in the Example 19,
have to be taken into account. A solution of Mecca et al. [19] uses atom labeling as a starting
point for enumeration of partial coverages:

I Example 23. The st-tgds from Example 19 can be labeled as follows:

τ∗1 : S(a, b, c, d)→ ∃y1∃y2∃y3∃y4∃y5
R1(y5, b, y1, y2, a)
∧R2(y5, c, y3, y4, a)
∧R3(d, c, y3, y4, b) )

τ∗2 : S(e, f, g, h)→ ∃z1∃z2∃z3∃z4∃z5
R4(d, e, z1, f)
∧R5(z5, e, e, z1, e)
∧R6(z5, g, z2, z3, z4) )

A possible partial coverage of τ∗1 , enabled by the unification θ = {b→ c} of ∀-variables in τ∗,
is given by a substitution {y1 → y3, y2 → y4} on ∃-variables, sending R1 onto R2. J

Coverages of the tgd τ : φ(~x)→ ψ(~x, ~y) are represented by conjunctive formulas called
expansions, of the form χi ∧ ψi. Here, χi contains atoms that cover ψ, and ψi consists of ψ
together with equalities Ei such that there exists a substitution λ for ~y that turns it into a
subformula of χi, provided that the universal variables are unified according to Ei.

I Example 24. The dependency τ∗1 from Example 19 gives rise to the following expansions
(among others):

e23 : R2(y5, c, y3, y4, a) ∧R3(d, c, y3, y4, b) ∧ (R1(y5, b, y1, y2, a) ∧ b = c)
e44 : R4(h, e, e, z1, f) ∧R4(h′, e′, e′, z1, f

′) ∧ h = h′∧
(R1(y5, b, y1, y2, a) ∧R2(y5, c, y3, y4, a) ∧R3(d, c, y3, y4, b)∧
e = b ∧ f = a ∧ e′ = c ∧ f ′ = a ∧ h′ = d ∧ e′ = c ∧ f ′ = b)

The expansion formulas start with a covering part χ followed by the covered part in parenthesis,
consisting of the covered atoms ψ and a set E of equalities. The expansion e23 is taken from
Example 23 while e44 shows that two copies of τ∗2 provide a total coverage for τ∗1 . J

For a tgd τ with a conclusion ψ the coverages can be found by exhaustively enumerating
all mappings of ψ onto the multisets of tgd conclusions. Yet this alone does not bring us
to the goal of preventing redundant facts: While an expansion χi ∧ ψi indicates that some
atoms of ψ should not be instantiated because of the atoms in χi, should the atoms of χi be
instantiated? If an atom Rk in χi is covered by the atom Rl in some tgd conclusion, there
will be also an expansion of τ using Rl instead of Rk. Hence, avoiding redundancy comes
down to selecting the “safest” coverage at execution time. Mecca et al. distinguishes two
orders on expansions, one according to the size of a covering conjunction χ and another
favoring coverages with fewer existential variables: for example, a coverage of τ1 with {τ3, τ4}
in Example 20 is safer than the coverage with τ2, since the former two tgds have fewer
existential variables. We use an informal order “safer” for both cases, leaving the exact
details to [19].

The core computation in [19] is then implemented as a two-stage data exchange. The
first stage uses a target schema T′, obtained from T by taking the labeled atoms in Σ as new
distinct relation names (For instance, the S → T′ exchange with two tgds of Example 19
can use the labeled tgds of Example 23). The second phase transfers the data from T′ to T,
ruled by the set Σ′ of dependencies obtained from expansions as follows:

If expansion e : χ ∧ ψ is most safe, a full tgd τe : χ ∧ ψ → χ¬∗ is added to Σ′, where
¬∗ denotes elimination of labels.
Otherwise, τe has the form χ∧ψ∧¬(

∧
j ej)→ χ¬∗ where j ranges over expansions which

are safer than e.
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The combination of expansions in the latter case is quite similar to the way tgd antecedents
in the Example 22 were obtained. It ensures that the safest possible coverage is taken into
account when the tgd is applied.

I Example 25. The expansion e44 is safer than e23. Hence, the antecedent of the tgd,
obtained from e23 will contain the following conjuncts:

erew23 : R2(y5, c, y3, y4, a) ∧R3(d, c, y3, y4, b) ∧ (R1(y5, b, y1, y2, a) ∧ b = c)
¬
(
R4(h, e, e, z1, f) ∧R4(h′, e′, e′, z′1, f ′) ∧ h = h′∧(
R1(y′5, b′, y′1, y′2, a′) ∧R2(y′5, c′, y′3, y′4, a′) ∧R3(d′, c′, y′3, y′4, b′)∧

e = b′ ∧ f = a′ ∧ e′ = c′ ∧ f ′ = a′ ∧ h′ = d′ ∧ f ′ = b′
)

∧ c = e ∧ a = f ∧ d = h′ ∧ c = e′ ∧ b = f ′
)

The corresponding conclusion of the tgd is ∃y3∃y4∃y5 R(y5, c, y3, y4, a)∧R(d, c, y3, y4, b). J

However, two further problems with isomorphic fact blocks are yet to be addressed: based
on expansions which are equally safe, distinct T′ → T tgds with isomorphic conclusions can
be produced in Σ′. The second problem is concerned with a particular type of tgds:

I Example 26. Consider a tgd S(x1, x2)→ ∃y R(x1, y)∧R(x2, y). Given a “reflexive” source
{S(1, 2), S(2, 1)}, it yields a target instance {R(1, Y1), R(2, Y1), R(2, Y2), R(1, Y2)} with two
cores. Such tgd is said to have a conclusion with a non-trivial automorphism: indeed, under
the unification x1 → x2, there is a renaming of ∃-variables that map the first conclusion
atom on the second one and vice versa. J

Core schema mappings address both issues using a special skolemization strategy, in the
case of tgds with non-trivial automorphisms in the conclusion also involving interpreted
functions sort. The Skolem terms that replace ∃-variables are strings encoding the structure
of the fact block, instantiated by applications of the tgd (This technique assumes that the
dependencies are normalized as described in Section 4.4):
1. All facts in the block (∃-variables omitted). In case of fact blocks with non-trivial

automorphisms, the list of facts is sorted before producing the Skolem string.
2. Joins between nulls.
3. A self-reference to the null represented by the Skolem string, in the fact block.

In this way, two variables will be instantiated with the same Skolem terms if and only if
they correspond to the respective positions in isomorphic fact blocks.

I Example 27. The ∃-variable y in the tgd with non-trivial automorphism from Example 26
is skolemized with a string of the following pattern:

sort(R[A : x0], R[A : x1]); j : [R.B = R.B]; v : j

The first component lists two facts in the block together with their ∀-variables. The prefix
sort indicates that actual values of x0, x1 must be sorted before composing the string. The
second component, prefixed with j, denotes the join between the two facts, while the last
component v : j associates the Skolem string to the positions participating in the join. Taking
the source instance of Example 26, both facts S(1, 2) and S(2, 1) generate the Skolem string
’R[A:1] R[A:2]; j:[R.B=R.B]; v:j’. J

To summarize, core computation is performed by chasing the skolemized mappings, with
FO antecedents and interpreted Skolem functions. The two-phase data exchange via the
intermediate schema T′ is avoided in practice by rewriting expansions over the source schema
[19]. In the next section, we will consider another algorithm for direct core computation in
the absence of target constraints.
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5.1.2 Laconic schema mappings

A different approach for direct core computation, named Laconic schema mappings has been
developed by ten Cate, Chiticariu, Kolaitis and Tan [22].

I Definition 28 (Laconicity). A mapping M is Laconic if for each source instance I, the
canonical universal solution for I underM is a core.

A favorable property of Laconic mappings is that they allow core computation by means
of standard SQL queries, without any procedural extensions, e.g., for sorting the arguments
of Skolem terms. Besides the algorithm itself, the authors provide a number of optimality
results for their SQL encoding. These results take advantage of an abstract representation of
skolemized mappings, in which every k-ary target relation R ∈ T has a form:

R := {(t1(~x), . . . , tk(~x)) | φ(~x)} ∪ · · · ∪ {(t′1(~x′), . . . , t′k(~x)) | φ′(~x′)} (1)

Here, t1, . . . , tk, . . . , t′1, . . . , t′k are terms and φ, . . . , φ′ are first-order queries over the source
schema. Since FO queries correspond to SQL queries, one can easily use a relational DBMS
in order to compute the tuples in the relation R.

I Definition 29 (L-term interpretation). Let L be any query language. An L-term interpret-
ation Π is a map assigning to each k-ary relation symbol R ∈ T a union of expressions of
the form (1) where t1, . . . , tk ∈ Terms[~x] and φ(~x) is an L-query over S.

Here, Terms[~x] is a set of terms built using the set of constants ~x and functional symbols
from some countably infinite vocabulary. As usual, the proper terms Terms[~x] \ ~x are
considered as nulls while the members of ~x are constants. The goal of direct core computation
is then to find an L-term interpretation of a core universal solution for a given schema
mappingM. Moreover, to reduce the complexity of data exchange, it is desirable to use the
least expressive language L.

Given a Laconic mapping with L st-tgds, it is straightforward to obtain a L-term
interpretation, whose target relations are core universal solutions: it suffices to apply the
standard Skolemization, and use the antecedent of a st-tgd as a precondition of conclusion
atom. The main result of ten Cate et al. in [22] is that every mapping based on FO< st-tgds
can be converted into a logically equivalent Laconic mapping, also consisting of FO< st-tgds.
They also show optimality of this language, even for input mappings consisting of CQ st
tgds: see Section 5.2. Hence, from now on we will focus on obtaining the Laconic mappings,
rather than term interpretations.

Unlike Core schema mappings, which adapts each individual st-tgd to the case when it
fires along with other dependencies, ten Cate et al. follow a top-down approach: taking a
global perspective on a given mapping, they create its Laconic version from scratch.

The algorithm builds upon the observation exploited in Section 4.1: Namely, that in the
absence on target constraints, the size of fact blocks in the target instance is bounded by the
maximal number of conclusion atoms in the tgds. Hence, one can enumerate all possible fact
block patterns (up to renaming of nulls and unifications of constants) in the core universal
solution. This is captured by the notion of fact block type (f-block type for short):

I Definition 30. An f-block type t(~x; ~y) is a set of atomic formulas in two disjoint sets of
variables ~x and ~y, respectively called c-variables and n-variables. A fact block B is said to
have the type t(~x; ~y), if it can be obtained by instantiating c-variables of t with constants,
and replacing each n-variable with a distinct null. Let a fact block B = t(~a, ~Y ) be such an
instantiation. We say that t is realized at ~a.
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The algorithm proceeds in four steps which are outlined in the subsequent paragraphs.
1. Identify all f-block types that can be realized in a core universal solution underM, for

any source instance I.
2. For each f-block type t(~x, ~y), construct a query precont(~x) over the source schema,

retrieving all assignments ~a for ~x, such that t is realized in core(I,Σ) at ~a. Such query is
called a precondition of t.

3. For each f-block type t′ with non-trivial automorphisms, strengthen precont′(~x) to ensure
that if two assignments ~a1,~a2 for ~x are distinct, the corresponding fact blocks t′(~a1, ~N1)
and t′(~a2, ~N2) are not isomorphic. Such additional constraints for the precondition of t′
are called side-conditions denoted as sidecont(~x).

4. For each f-block type t(~x, ~y), produce a tgd precont(~x) ∧ sidecont(~x)→ ∃~y t(~x, ~y).

Generating f-block types forMamounts to examination of tgd conclusions inM, and taking
certain subsets of them. Importantly, f-block types are (1) connected w.r.t. to n-variables,
and (2) cores — if considered as instances where c-variables are constants and n-variables
are nulls, — and (3) cannot be obtained from any other f-block type by renaming c- or
n-variables. The result of this step is the set TypesM of f-block types generated by M.

Finding the preconditions. This is the crux of the algorithm, for which one can give an
intuition as follows. Consider an f-block type t as a query qt(~x) ← ∃~y t(~x, ~y). For all
homomorphic images of t in a canonical target instance J , qt selects satisfying assignments
for the c-variables ~x. Suppose that we manage to restrict qt(~x) in order to select only the
assignments for ~x at which t is realized, in the core of J . By Definition 30, we have to filter
out every assignment ~a for ~x, such that
1. ~a contains nulls, or
2. ∃~b ∈ dom(J) : J |= t(~a,~b) and for some i ≤ |~b|, bi ∈ const(J), or
3. ∃ ~N ∈ nulls(J) : J |= t(~a, ~N) and for some i, j ≤ | ~N | Ni = Nj holds, or
4. ∃ ~N1 ∈ nulls(J) : J |= t(~a, ~N1) and for some fact block B ⊆ J , ~N1 ⊂ nulls(B): this case

prohibits mapping of t(~x, ~y) into a bigger fact block of J .

The first item is addressed by considering only the certain answers of qt: we can be sure
that all certain answers belong to the core of J . Moreover, we can immediately rewrite
certain(qt(~x)) over the source schema. This rewriting, denoted as certainM(∃~y t)(~x), uses
well-known techniques and will be discussed shortly. It remains to address the items (3) and
(4): so far, the assignments of ~y of are not restricted in any way.

Concerning (3), suppose that we want to query for all images of t in which some yi ∈ ~y is
mapped onto a constant in the core of J . It suffices to bring yi into the set of c-variables
of t, and ask for certain answers for ∃y−i t(~xyi; ~y−i), where ~y−i is ~y without elements equal
to yi. Then the assignments for ~x can be projected and excluded from the answers to
certainM(∃~y t)(~x). The same is done for each n-variable of t, and a similar approach allows
to handle the case (4). A corresponding query is defined as an approximated precondition
precon′t(~x) of the form

certainM(∃~y
∧
t)(~x) ∧

∧
i

¬∃x′ certainM(∃~y−i
∧
t[yi/x′])(~x, x′)

∧
∧
i6=j
¬certainM(∃~y−i

∧
t[yi/yj ])(~x)
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Procedure ConvertToLaconic

Input: MappingM = (S,T,Σ) consisting of FO< st-tgds
Output: Laconic mappingM′ ≡M with the set of FO< st-tgds Σ′

(1) Set Σ′ := ∅
(2) Generate TypesM
(3) for each t(~x; ~y) ∈ TypesM do
(4) Compute preconditions precont(~x)
(5) Compute side-condition sidecont(~x)
(6) Add the following FO< st-tgd to Σ′:
(7) ∀~x (precont(~x) ∧ sidecont(~x)→ ∃~y

∧
t(~x; ~y))

(8) return (S,T,Σ′)

To handle (5), precon′t is combined with negated approximated preconditions precon′t′ for
each f-block type t′, on which t can be mapped by a non-surjective homomorphism:

precont(~x) = precon′t(~x) ∧
∧

t′(~x′; ~y′) ∈ TypesM

h : t(~x; ~y)→ t′(~x′; ~y′) non-surjective

¬∃~x′
(∧

i

(xi = h(xi)) ∧ precon′p′(~x′)
)

As pointed out in [22], one of possibilities for rewriting t(~x; ~y) over the source schema is
splitting upM into a compositionM1 ◦M2, whereM1 consists of full st-tgds and tgds in
M2 have single atoms over some intermediary schema in the antecedents; such tgds can be
rewritten using an algorithm like MiniCon [21] (cf. Section 3.3 in Chapter 5), after which
the unfolding of atoms according toM1 would give a desired rewriting.

Adding side-conditions. A special tgd from Example 26 considered in the Section 5.1.1 has
to be taken care of in the context of Laconic mappings as well. Unlike Core schema mappings,
a non-standard skolemization is not necessary now: the preconditions are enhanced with
side-conditions which rely on inequalities and are defined over the source schema. This can
be seen on example:

I Example 31. The st-tgd S(x1, x2)→ ∃y R(x1, y)∧R(x2, y) from Example 26 is rewritten
as (S(x1, x2) ∨ S(x2, x1)) ∧ x1 ≤ x2 → ∃y R(x1, y) ∧ R(x2, y). It is easy to see that on a
problematic source instance {S(1, 2), S(2, 1)} the rewritten tgd is triggered only once. J

Side-conditions are only introduced for f-block types with non-trivial automorphisms. In
particular, they are not used for mappings in which tgds have no self-joins in the conclusion.

Generating the st-tgds. Given the set TypesM of f-block types ofM, together with their
preconditions and side-conditions, generation of the new st-tgds for the Laconic version of
M comes down to combining the f-block type and its preconditions resp. side-conditions in
a single tgd, as specified in the procedure ConvertToLaconic.

5.1.3 Discussion
We have described two approaches to direct core computation, which use the same language
elements: st-tgds with antecedents FO and linear order on the source constants. Despite
of these similarities, these mappings are obtained in quite different ways: Core schema
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mappings are built bottom-up, adapting existing st-tgds to take care of other dependencies
and, whereas Laconic schema mappings are constructed top-town, by using a given schema
mapping as a black box and applying query rewriting algorithms like MiniCon [21].

The algorithm of Mecca et al. is currently the only known implementation of direct core
computation. This can be hardly overestimated, especially taking into account the promising
performance reports, with millions of tuples in the source instance processed in a few minutes
(More detailed discussion of experimental results is postponed until Section 6). At the same
time, ten Cate et al. provide important optimality results, justifying the language constructs
found both in Laconic mappings and in Core mappings. These results will be the subject of
the next section.

5.2 Complexity and expressiveness
The first theoretical result of ten Cate et al. addresses complexity of a test for laconicity:

I Theorem 32. [22] Testing laconicity of schema mappings specified by FO st-tgds is
undecidable. It is coNP-hard already for schema mappings specified by LAV st-tgds.

Producing a Laconic or Core schema mapping based on a set of st-tgds can result in an
exponential increase in the number of dependencies. This is not a coincidence: ten Cate et
al. show, that this cannot be avoided:

I Theorem 33. [22] There is a sequence of schema mappingsM1,M2, ... specified by LAV
st-tgds such that the specification of eachMk is of length O(k), and such that every Laconic
schema mapping logically equivalent to Mk specified by FO< st-tgds contains at least 2k
many FO< st-tgds.

Concering the optimality of FO< as a language used in the antecedents of the Laconic
st-tgds, the following results show, that such neither linear order on constants nor negation
can be avoided.

I Theorem 34. [22] Consider the schema mappingM = (S,T,Σ) where S = {S}, T = {R}
and Σ consists of a single LAV st-tgd S(x1, x2) → ∃y S(x1, y) ∧ S(y, x2). No FO-term
interpretation yields, for each source instance I, the core universal solution of I w.r.t. M.

I Theorem 35. [22] There exists schema mapping M with dependencies given by st-tgds,
such that no UCQ<-term interpretation can compute the core universal solution for each
source instance.

Proof hint. Any mapping with coverage between st-tgds, like that in Example 20, can be
shown to require negation for achieving laconicity. J

The language ingredients used by Core schema mappings in Section 5.1.1 are fully
consistent with the results cited above: The interpreted sort function used to produce Skolem
strings (see Example 27) assume the linear order on the source constants, and negation in
the antecedents is used to combine expansions (Example 25).

5.3 Target constraints
Two direct core computation algorithms presented in the previous chapter only dealt with
the mappings without target constraints. This is a major restriction in comparison to the
post-processing approach. However, as ten Cate et al. show [22], there is a good reason for
that: for a mapping with full target tgds, there is no Laconic version based on FO< st-tgds
and target tgds and egds.
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I Theorem 36. [22] There is a schema mappingM specified by finitely many LAV st-tgds
and full target tgds, for which there is no schema mappingM′ specified by FO< tgds, target
tgds and target egds, such that for every source instance I, the canonical universal solution
of I under M ′ is the core universal solution of I underM.

Proof idea. LetM be the schema mapping with S = {S′, S1, S2, S3}, T = {R′, P1, P2, P3,

Q1, Q2, Q3} specified by four LAV s-t tgds and three full target tgds:

S(x1, x2)→ R(x1, x2)
Si(x)→ ∃y Qi(y)

for i ∈ {1, 2, 3}

R(x, y) ∧R(y, z)→ R(x, z)
R(x1, x1) ∧Q1(x2)→ Q3(x2)
R(x1, x1) ∧Q2(x2)→ Q3(x2)

For source instances I in which all source relations are non-empty, the core universal
solution J will have the following shape: R is the transitive closure of S, and Q1,2,3 are
non-empty. Moreover, if S contains a cycle, then the core universal solution contains the
facts Q1(N1), Q2(N2) and Q3(N1), Q3(N2) for distinct null values N1, N2. If S in I is acyclic,
Q1,2,3 each contain a single null, occurring exactly once in the core universal solution.

Suppose that a fact Q3(N ′) is present in the target instance. It is a part of the core
universal solution if and only if the source relation S is acyclic. One can show, that the
Laconic mapping must contain a dependency that fires on cyclic instances and not fires on
acyclic ones, and that such behavior can be achieved neither by st-tgds (we cannot detect
cycles with a FO< antecedent) nor by monotone target dependencies. J

In [22], it is conjectured that the same inexpressibility result should hold for the mappings
with target egds. Hence, the problem of direct core computation becomes highly non-trivial
even in presence of restricted target constraints. However, Marnette, Mecca and Papotti
give an experimental evidence based on the system +Spicy [18], that a best-effort approach
via FO-term interpretations can tackle practically relevant mappings with target functional
dependencies (FDs). We will outline their algorithm which we refer to as Spicy-FD in the
rest of this section.

Recall the Rigidity Lemma from Section 4.2: let an egd equate the nulls X,Y from the
domains of different blocks in the preuniversal instance Jst (the canonical universal solution
with respect to the st-tgds Σst of the mapping), then the null resulting from this unification
is rigid: e.g., assume that both X and Y have been replaced by the same term a in the
canonical universal instance J , obtained by enforcing the target egds on Jst. Then, for any
endomorphism e on J , e(a) = a holds. One of the key ideas behind the Spicy-FD approach
is reminiscent of this property:

1. Suppose that the mappingM whose set of dependencies Σ consists of st-tgds and target
FDs is such that a FO-term interpretation for universal solutions under M exists. In
[18], this interpretation is constructed in the form of skolemized FO st-tgds, called a FO
implementation RM of M. RM is sound and complete, if for each source instance I,
chase(I,RM) |= Σ iff chase(I,Σ) does not fail.

2. A sound and complete FO implementation RM correctly instantiates the ∃-variables that
would be affected by FDs in the target chase. Some of them are (rigid) nulls and some
are constants: we refer to them as to rigid terms. RM can be rewritten in a way to store
rigid terms in an auxiliary schema F with a relation Fi per each target FD εi inM.

3. For core computation, rigid nulls are indistinguishable from constants. Marnette et al.
notice that independently of the source instance I, each ∃-variable in the st-tgds Σst of
M is instantiated either by rigid terms or by non-rigid nulls (see Example 39 below). The
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former are converted into ∀-variables, stemming from the relations of the auxiliary schema
F, which are added to the antecedent of the st-tgd. The result of such transformation is
then made Laconic (or converted to a Core mapping), giving a set of FO< st-tgds Σc.

4. The core universal solution is obtained by a sequence of chases with RM followed by Σc.

Constructing FO implementation RM of M. Let Σ be a set of st-tgds and target FDs of
M. For each source instance I, chase(I,RM) |= Σ must hold, in which case RM is called
sound and complete implementation ofM with skolemized FO st-tgds.

The idea of this step is similar to that behind Core schema mappings: each st-tgd is
rewritten to anticipate the effect of target FDs. We illustrate it by rewriting the following
mapping over the source schema S = {S1,2} and the target schema T = {P,R,Q} where R
has attributes ABC, with a functional dependency ε : R〈A→ C〉 defined. Besides ε, the
mappingM = (S,T,Σ), Σ contains two st-tgds:

σ1 : S1(x1, x2)→ ∃y P (y) ∧R(x1, x2, y) σ2 : S2(x1, x2)→ ∃y R(x1, x2, y) ∧Q(y)

It is easy to see that on each pair of source facts I = {S1(a, b), S2(a, b′)} the single block
J = {P (N), R(a, b,N), R(a, b′, N), Q(N)} is introduced in the target instance, due to the
effect of the FD on R. This behavior can be captured by the st-tgd:

σ12 : S1(x1, x2) ∧ S2(x1, x3)→ ∃y P (y) ∧R(x1, x2, y) ∧R(x1, x3, y) ∧Q(y)

Such combined dependencies are called overlap st-tgds Σovl
st . Two issues arise: firstly, the

process of constructing Σovlst can fail to terminate. A solution is to abort with failure after
certain limit of number of steps has been reached.

Secondly, the set Σst ∪ Σovlst = {σ1,2,12} cannot yet be seen as an implementation ofM:
oblivious chase of I yields the instance J ∪ J1 ∪ J2 6|= ε where J1 = {P (N1), R(a, b,N1)}
instantiates the conclusion of σ1 and J2 = {R(a, b′, N2), Q(N2)} instantiates that of σ2:
these dependencies fire whenever the overlap st-tgd σ12 does. To suppress redundant facts,
the antecedents of σ1 and σ2 are rewritten respectively as S1(x1, x2)∧¬(∃x3 S2(x1, x3)) and
S2(x1, x2) ∧ ¬(∃x3 S1(x1, x3)). Procedure responsible for such rewriting is called AddNeg.

However, these measures still do not result in a desired implementation of M with
source-to-target dependencies: an instance I ′ = {S1(a, b), S1(a, b′)} is a simple counter-
example. The oblivious chase of I ′ with AddNeg(Σst ∪ Σovl

st ) creates a target instance
J ′ = {P (N1), R(a, b,N1), P (N2), R(a, b′, N2)} 6|= ε. This issue is solved by choosing a non-
standard skolemization strategy: in our example, the ∃-variable y in all three st-tgds is
substituted by a Skolem term with a single attribute x1 (Standard skolemization would yield
terms with attributes x1, x2 for σ1,2, and x1, x2, x3 in case of σ12). A key here is finding a
minimal set of attributes determining the rigid null: In general, there might be several FDs
affecting it. The minimal set (called determination in [18]) must be unique, otherwise the
procedure Skolemize aborts with failure.

In overall, the mapping Skolemize
(
AddNeg(Σst ∪ Σovlst )

)
is proven to be a sound and

complete FO implementation ofM, provided that no failure occurs while creating Σovlst or
performing the skolemization.

Eliminating rigid ∃-variables. We start by adorning each conclusion atom in st-tgds with
a unique label, as it was done in Section 5.1.1.

I Definition 37. Position in a conclusion atom Rl(z1, ...zk) of a st-tgd τ is a pair (l, i), for
i ≤ k. Let τ be applied in the chase, generating a fact R(a1, . . . ak) in the target instance.
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Procedure Spicy-FD

Input: Schema mappingM = S,T,Σst ∪ Σt where Σt as set of FDs
Output: Mappings (RF ,RC).

/* The core universal solution for I can be found as chase(I ∪ chase(I, RF ), RC) */

(1) Generate Σovlst and Set R := Skolemize
(
AddNeg(Σst ∪ Σovlst )

)
or fail

(2) Let F be the schema {Fε | ε : R〈i1 . . . im, j〉 ∈ Σt}, Fε fresh symbol of arity m+ 1
(3) Let RF = ∅
(4) for each φ(~x)→ ψ(~x) in R, ε : 〈i1 . . . im, j〉 ∈ Σt and R(t1, . . . tn) in ψ
(5) Set RF := RF ∪ {φ(~x)→ Fε(ti1 , . . . , tim , tm)}

/* Eliminate rigid ∃-variables */
(6) Set ΣFst := Σst ∪ Σovlst

(7) while fixpoint is reached do
(8) for each τ : φ(~x)→ ∃y, ~z ψ(~x, y, ~z) in Σ′st and ε : R〈i1, . . . im → j〉 ∈ Σt
(9) and each atom R(t1, . . . tn) in ψ such that tj = y and {ti1 , . . . , tim} ∈ ~x
(10) Replace τ in ΣFst by ∀~x∀y (F (ti1 , . . . tim , y) ∧ φ(~x)→ ∃z ψ(~x, y, ~z))

/* Apply algorithms from Section 5.1.1 or Section 5.1.2 */
(11) Convert ΣFst into a Laconic or Core mapping RC
(12) return (RF ,RC)

Positions (l, 1), . . . (l, k) are said to be instantiated with the terms a1, . . . ak, respectively.
A position (l, i) is called rigid, if for any source instance I, it is instantiated either with a
constant or with a rigid null in chase(I,Σ), and non-rigid otherwise.

It turns out, that each position can be uniquely classified as rigid or non-rigid, for arbitrary
source instances:

I Lemma 38. LetM be a mapping with an st-tgd τ . The position (l, j) of the conclusion
atom Rl(z1, . . . zj . . . zk) in τ is rigid iff one of the following condition holds: (1) zj is a
∀-variable, or (2) the positions (l, i1), ...(l, im) are rigid and an FD R〈i1 . . . im → j〉 is inM,
or (3) zi is a ∃-variable occurring in a rigid position in the conclusion of τ .

The first case of rigidity is trivial: the positions occupied by ∀-variable are instantiated by
constants and thus are rigid. Concerning the inductive case, consider the following example
(for brevity, we do not consider overlap st-tgds):

I Example 39. Consider a mapping with four st-tgds and a target FD:

τ1 : S1(x1, x2)→ ∃z R1(x1, x2, z)
τ3 : S3(x1, x2)→ Q4(x1, x2, x2)
τ4 : S4(x)→ ∃y R5(y, x, y)

τ2 : S2(x1, x2, x3)→ ∃y1∃y2 R
2(x1, y1, y2)

∧Q3(x2, x3, y1)
ε1 : R〈A,B → C〉

We assume that all target relations have attributes A,B,C. We will write R2.A to denote
the position (2, 1) in the conclusion of τ2, occupied by a ∀-variable x1. ∀-variables occur also
at positions R1.AB,R5.B, Q3.AB and Q4.ABC, rendering them all rigid. Also the position
R1.C is rigid, since the attribute R.C depends functionally on R.AB, and positions R1.AB

are rigid. Indeed, let R1 be instantiated as a fact R(a1, a2, N) in the canonical universal
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solution U . If there exists an endomorphism for U that maps N onto some c 6= N , the fact
R(a1, a2, c) must be present in U . Thus U 6|= ε1, which is a contradiction.

The remaining positions Q3.C, R5.AC and R2.BC are not rigid. As an example, con-
sider a source instance I = {S1(a, c), S2(a, b, c), S3(b, c)}. The canonical universal solu-
tion J = chase(I,Σ) = {R(a, c, Z), R(a, Y1, Y2), Q(b, c, Y1), Q(b, c, c)}, with core(J) =
{R(a, c, Z), Q(b, c, c)} obtained by the endomorphism {Y1 → c, Y2 → Z}. Note that the
facts R(a, Y1, Y2) and Q(b, c, Y1) were generated by chasing τ2: Y2 instantiating the non-rigid
position R2.C and Y1 instantiating the non-rigid positions R2.B and Q3.C. At the lines 7–10
of the procedure Spicy-FD, the rigid ∃-variables are transformed into ∀-variables in τ1:

τ ′1 : S1(x1, x2) ∧ F1(x1, x2, z)→ R(x1, x2, z)
Now, let Σ′ be Σ extended with an FD ε2 : Q〈A→ C〉. This makes position Q3.C rigid, by
the same reason as R1.C. In turn, also R2.B becomes rigid as sharing a ∃-variable with
Q3.C, and so is R2.C. The procedure Spicy-FD now would also be able to rewrite τ2:

τ ′2 : S2(x1, x2, x3) ∧ F2(x2, y1) ∧ F1(x1, y1, y2)→ R(x1, y1, y2) ∧Q(x2, x3, y1) J

Computing the core. The actual values for rigid nulls in relations Fi are provided by the
FO implementation RM of M. To this end, RM is rewritten to as the mapping RF at
the lines 3–5 of Spicy-FD, populating the relations Fi with the values instantiating the
rigid nulls, and with the values, by which the nulls are determined. Lines 6–10 perform the
elimination of rigid ∃-variables from Σst∪Σovlst , resulting in the set of st-tgds ΣFst. Its Laconic
version RC is computed at line 11. Finally, a composition of RF with RC allows to produce
a core universal solution for each source instance I.

6 Performance
Of the several presented core computation algorithms, only two have been actually imple-
mented: a post-processing approach FindCoreE [12, 20] and the Core schema mappings,
including the extension for target functional dependencies (the +Spicy system, [19, 18]).
Both systems employ the database engines for performing the chase. In the latter case, this
suffices to compute the core. In the post-processing case, searching for homomorphisms
and extensions thereof is delegated to the DBMS, while the main cycle is driven by a Java
program. The experimental evaluation allows to draw the following conclusions regarding
practical feasibility of the core computation algorithms.

Post-processing approach: Despite polynomial data complexity, the most flexible algorithm
based on FindCore only scales to with several thousands of nulls in the source database.
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Figure 3 Performance (a) and the progress (b) of core computation [20].
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Figure 3: SQL Scripts: Execution Times for the Second Group

for the four scenarios that do not contain self-joins in the target. As it can be seen, execution times for all scenarios
were extremely fast for both configurations. The overhead introduced by the rewriting of the FO-rules using negations is
always acceptable, with a maximum of around 10 seconds for scenarios of one million tuples.

Figure 3 reports the results for the five scenarios with self-joins. It can be seen that the first three self-joins scenarios,
sj1 – sj3, show times increasing linearly and did scale up to 1M tuples both in the core and in the canonical scripts
executions. The difference is instead notable with sj4 and sj5, but is not surprising for two reasons. First, considering
that many self-joins can trigger the exponential behavior discussed in the previous Section. Second, the running time
to interpret the Skolem functions fills some of the overhead time. For these reasons, the core computation script for sj4
took up to four times the canonical script execution time (21 minutes for the 1 million tuples source instance), while we
stopped the execution for sj5 on the biggest input (the core script took 41 minutes for the 500k tuples source instance).

Quality of Solutions We now want to study to which extent core universal solutions are more compact than canonical
solutions. To do this, we consider source databases with different degrees of “redundancy”. We dropped sj5 from this
comparison. For each of the remaining eight scenarios, we generated five synthetic source instances of fixed size (10K
tuples) based on a pool of values of decreasing size. This process generated different levels of redundancy (from 0% to
40%) in the source databases and enabled a comparison of the quality of the two solutions. Figure 4 shows the percent

Figure 4: Core vs Canonical: Size Reduction in Solutions

reduction in the output size for core solutions compared to canonical solutions. As output size, we measured the number
of tuples in the solutions. Figure 4.a shows results for the four scenarios that do not contain self-joins in the target.
As expected, core solutions are more compact than canonical ones in all the scenarios and this behavior becomes more
apparent with the increasing redundancy. The two subsumptions scenarios – s1 and s2 – follow the trend, but less

36

Figure 3: Execution Times for Source Instances of Increasing Size

tion phase increased exponentially with the number of tgds.
This is due to the fact that the algorithm has in general to
inspect an exponential number of possible overlaps. On the
contrary, the actual script execution times remained pretty
low, even for scenario s100, where more than 120 tgds were
processed.

8. RELATED WORK
As discussed in the previous sections, the notion of a data

exchange problem was originally introduced in [10] and the
properties of core solutions were first studied in [12]. Sophis-
ticated polynomial algorithms for core computation have
been given in [12] first, and then in [13, 23, 16]. These
algorithms assume that a specialized engine is used to post-
process a canonical solution, find endomorphisms and gener-
ate the core. Rewriting algorithms to generate core solutions
by means of SQL scripts have been given in [17, 24]. As it
was already discussed, these approaches are not applicable
to scenarios with target dependencies.
More recently, a rewriting algorithm for mappings that

also considers target egds [14] has been proposed. However,
in this case the purpose of the rewriting is quite different,
since it aims at optimizing and normalizing the input con-
straints; intuitively, the goal is to minimize the constraints
to make them easier to handle and to improve the quality
of solutions. The rewriting of [14] is therefore independent
from the one proposed in this paper and the two can be
easily combined.
The complexity of dealing with functional dependencies

has also been studied in the context of data integration,
both for LAV [9, 2] and GAV [7] mappings. In that context,
query rewriting techniques were developed to compute query
rewritings in presence of functional dependencies.
The presence of key constraints plays a key role also in

the data fusion literature [5]. However, these works adopt
a different approach: they merge data as a separate step
from the data translation and do not consider the presence
of labeled nulls (i.e., generated values).
An early attempt to partially incorporate key constraints

in mapping systems has been proposed by [6]. There, users
are supposed to provide specialized inputs so that the map-
ping algorithm can handle keys.
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Figure 4 Performance of direct core computation with +Spicy: no target constraints [19] (a)
and target FDs [18] (b).

This is not completely unexpected, taking into account a quadratic number of iterations in
the main cycle. As seen in Fig. 3(b), the core can be quite well approximated already by
a single iteration, but much time has to be spent to eliminate few remaining nulls and to
validate the minimality of the core.

Direct core computation approach of +Spicy, on the contrary, has proven to scale to
source databases with millions of facts, even in the presence of target FDs. Figure 4 presents
two charts adopted from [19] and [18] respectively, illustrating the performance of the two
implementations. Fig. 4(a) shows performance charts for mappings with self-joins in the
conclusions of st-tgds. The mapping ’SJ5’ has been specially crafted to generate a rewriting
with exponential number of dependencies. The chart in Fig. 4(b), produced with mappings
with simpler st-tgds, which is compensated by adding target functional dependencies. It
clearly demonstrates the robustness of the Spicy-FD procedure: the authors point out that
the scenario ’sd’ was specially designed to generate an exponential number of overlap st-tgds.
A better performance of the core computation in presence of target egds is not surprising,
taking into account the effect of rigid nulls, discussed in Sections 4.2 and 5.3.

7 Conclusion

We gave an overview of the algorithms for core computation in data exchange. They can be
roughly divided into two groups: the post-processing algorithms, optimizing the canonical
universal solution obtained by chasing a given set of dependencies, and direct computation,
constructing the core as a result of the chase with the preprocessed dependencies. Both
approaches provide polynomial data complexity of core computation. The advantage of
post-processing is the support for expressive mappings, however no scalable implementation
of this approach exists yet. In contrast, experiments with direct core computation have
shown very encouraging performance results, but on rather restricted mappings. As shown
in [22, 18], in presence of target dependencies it is often the case that no Laconic variant of
the given mapping can be found. On the other hand, the best-effort approach of [18] can be
used in many practical scenarios.

There is a need for further implementations of core computation in data exchange: so
far, only a single scalable implementation (the +Spicy system by Mecca et al.[19, 18])
has been reported. For the post-processing approach, the optimization potential can be
found in applying the decomposition-based homomorphism computation, adding the natural
support of egds for skolemized mappings by combining the ideas of [16] and [20], and
finding heuristics for approximation of the core. In the area of direct core computation, the
algorithms supporting more expressive mappings can be considered as one of the primary
goals. Furthermore, a combination of the two paradigms is conceivable, especially in the case
of mappings with target egds for which no FO-term implementations can be found.
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Abstract
The inversion of schema mappings has been identified as one of the fundamental operators for the
development of a general framework for data exchange, data integration, and more generally, for
metadata management. Given a mappingM from a schema S to a schema T, an inverse ofM
is a new mapping that describes the reverse relationship from T to S, and that is semantically
consistent with the relationship previously established byM. In practical scenarios, the inversion
of a schema mapping can have several applications. For example, in a data exchange context, if
a mappingM is used to exchange data from a source to a target schema, an inverse ofM can
be used to exchange the data back to the source, thus reversing the application ofM.

The formalization of a clear semantics for the inverse operator has proved to be a very
difficult task. In fact, during the last years, several alternative notions of inversion for schema
mappings have been proposed in the literature. This chapter provides a survey on the different
formalizations for the inverse operator and the main theoretical and practical results obtained so
far. In particular, we present and compare the main proposals for inverting schema mappings that
have been considered in the literature. For each one of them we present their formal semantics
and characterizations of their existence. We also present algorithms to compute inverses and
study the language needed to express such inverses.
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1 Introduction

A schema mapping is a specification that describes how data from a source schema is to
be mapped to a target schema. Schema mappings are of fundamental importance in data
management today. In particular, they have proved to be the essential building block for
several data-interoperability tasks such as data exchange, data integration and peer data
management.

In recent years, the research on the schema mapping area has mainly focused on perform-
ing data-interoperability tasks using schema mappings. However, as Bernstein [12] pointed
out, many information-system problems involve not only the design and integration of com-
plex application artifacts, but also their subsequent manipulation. Notice that the creation
of a schema mapping may imply considerable work by an expert who needs to know the
semantics of the schema components. Only an expert can establish a meaningful high-level
correspondence between those components. Thus, a schema mapping reflects the know-
ledge of the expert about the relationship between the schemas. This knowledge could, in
principle, be reused beyond the interoperability tasks for which the mapping was initially
created. Driven by these considerations, Bernstein [12] proposed a general framework for
managing and reusing schema mappings.
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In Bernstein’s framework [12], schema mappings are first class citizens, and high-level
algebraic operators are used to manipulate and reuse them. One of the most fundamental
operators in schema mapping management is the inversion of schema mappings. Given a
mapping M from a schema A to a schema B, an inverse of M is a new mapping that
describes the reverse relationship from B to A, and that is semantically consistent with the
relationship previously established byM. Notice that this is a very general idea of what an
inverse of a schema mapping should be. In fact, even the formalization of a clear semantics
for the inverse operator has proved to be a very difficult task [16, 17, 20, 21, 10, 11, 22, 6].
This chapter provides a survey on the different formalizations in the literature for the inverse
operator on schema mappings and the study of the theoretical problems that arise. Before
going into the details of these works, let us give a bit more intuition on how the inverse of
schema mappings can be useful in practice.

In practical scenarios, the inversion of schema mappings can have several applications.
In a data exchange context [18], if a mappingM is used to exchange data from a source to
a target schema, an inverse ofM can be used to exchange the data back to the source, thus
reversing the application ofM. As a second application, consider a peer data management
system (PDMS) [14, 26]. In a PDMS, a peer can act as a data source, a mediator, or
both, and the system relates peers by establishing mappings between the peers’ schemas.
Mappings between peers are usually directional, and are used to reformulate queries. For
example, if there is a mapping M from peer P1 to peer P2 and a query over P2, a PDMS
can useM to reformulate the query by using P1 as a source. Hence, an inverse ofM would
allow the PDMS to reformulate a query over P1 in terms of P2, thus considering this time
P2 as a source. Another application is schema evolution, where the inverse together with
the composition play a crucial role [13, 23]. Consider a mappingM between schemas A and
B, and assume that schema A evolves into a schema A′. This evolution can be expressed
as a mapping M′ between A and A′. Thus, the relationship between the new schema A′
and schema B can be intuitively obtained by inverting mapping M′ and then composing
the result with mappingM.

As we have mentioned before, in the study of the inverse operator, one of the key issues
is to provide a good semantics for this operator, which turned out to be a difficult problem.
After defining a semantics, some of the important questions that need to be answered are:

Existence For which classes of mappings is the inverse guaranteed to exist?
Expressiveness What is the mapping language needed to specify an inverse?
Algorithmic How can we effectively construct an inverse?

In this chapter, we present and compare the main proposals for inverting schema map-
pings that have been considered in the literature, and for each one of them we present the
main results regarding these three issues. In Section 2 we present the notion of inverse
proposed by Fagin [16], that we call here Fagin-inverse1, which is the first formal notion of
inverse proposed in the literature. In Section 3 we present the notion of quasi-inverse [20, 21]
which is obtained by relaxing the notion of Fagin-inverse. Section 4 presents the notions
of recovery and maximum recovery [10, 11] which were proposed as alternative notions for
inverting schema mappings. In Section 5 we present procedures to compute inverses and
discuss expressiveness issues, more importantly, the issue of what the language needed to

1 Fagin [17] named his notion just as inverse of a schema mapping. Since in this chapter we are intro-
ducing several different semantics for the inverse operator, we reserve the term inverse to refer to this
operator in general, and use the name Fagin-inverse for the notion proposed by Fagin [17].
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express inverses is. In Section 6 we present a relaxation of the notions of recovery and
maximum recovery based on certain answers, which gives alternative definitions of inverses
when one is focused on retrieving information with a particular class of queries. In Section 7
we report on extensions to the previous notions that deal with incomplete information in
source instances. Conclusions are presented in Section 8. We begin by giving a bit of general
notation for the chapter.

Preliminary notions and notation
In the study of the inverse operator, we use a general notion of schema mapping (or just
mapping in our context). We assume that a mapping from schema S to schema T is simply
a set of pairs (I, J) where I is an instance of S and J is an instance of T. As usual in data
exchange, given a mappingM from S to T and an instance I of S, we denote by SolM(I)
the set of solutions for I underM, that is SolM(I) = {J | (I, J) ∈M}.

Notice that a mapping in this general setting is just a binary relation, and thus one
can define some general operators over mappings that inherits from binary relations. One
such particular operator that plays a crucial role in this chapter is mapping composition.
Let M be a mapping from S to T, and M′ a mapping from T to R. The composition of
M andM′, denoted byM◦M′, is defined as the composition of binary relations, that is
M◦M′ = {(I,K) | there exists J such that (I, J) ∈M and (J,K) ∈M′} [33, 19].

We usually specify mappings by using logical languages. One particular language of spe-
cial interest is the language of source-to-target tuple-generating dependencies (st-tgds) [18].
An st-tgd from S to T is a First-Order formula of the form

∀x̄∀ȳ
(
ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)

)
(1)

in which x̄, ȳ and z̄ are tuple of variables, ϕ(x̄, ȳ) is a conjunction of relational atoms over S
(mentioning all the variables x̄ and ȳ), and ψ(x̄, z̄) is a conjunction of relational atoms over T
(mentioning all the variables x̄ and z̄). The left-hand side of the implication in formula (1) is
called the premise, and the right-had side the conclusion of the st-tgd. For simplicity, we omit
the universal quantifiers when writing st-tgds. That is, we just write ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)
for an st-tgd of the form (1). Given an st-tgd σ of the form ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) from S
to T, and a pair (I, J) with I an instance of S and J an instance of T, we say that (I, J)
satisfies σ if for every pair of tuples ā, b̄ such that I satisfies ϕ(ā, b̄), there exists a tuple c̄
such that J satisfies ψ(ā, c̄).

We say that a mappingM from S to T is specified by a set Σ of st-tgds, if for every pair
of instances I of S and J of T we have that (I, J) ∈M if and only if (I, J) satisfies every st-
tgd in Σ. We consider two types of values when defining mappings, constant and null values,
and we assume the existence of a special predicate C(·) to differentiate them. In particular,
C(u) holds if and only if u is a constant value. As is usual in the data exchange context [18],
when defining a mapping from S to T specified by st-tgds we assume that source instances
(instances of S) contain only constant values, while target instances (instances of T) may
contain constant and null values. Notice that an inverse ofM is a mappingM′ from T to
S, and thus M′ has constant and null values in its source schema (schema T), while only
constants in its target schema (schema S). In Section 7 we drop this assumption, and study
inversion of mappings that may contain constant and nulls in source and target instances.

2 Fagin-inverse

The first notion of inverse in the literature was proposed by Fagin [16]. This notion is based
on the algebraic intuition that a mapping composed with its inverse should be equal to
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the identity. Since we can unambiguously define the composition of two schema mappings
(based on the composition of binary relations), we only needed to define a notion of identity
for schema mappings.

Fagin was specially interested in defining an inverse for mappings specified by st-tgds
thus, he defined an intuitive identity in terms of st-tgds as follows. Let S be a schema, and
Ŝ = {R̂ | R ∈ S}, that is, Ŝ is a copy of S. The set of copying st-tgds over S is defined as

ΣS-copy = { R(x1, . . . , xk)→ R̂(x1, . . . , xk) | R is a k-ary relation symbol in S}.

The idea is that ΣS-copy essentially copies every source relation from the source to the target.
Notice that we need to use Ŝ = {R̂ | R ∈ S} in the definition of ΣS-copy and not simply
S since, otherwise, the semantics of the tgds would be trivial. Consider now the mapping
MS-copy from S to Ŝ, which is specified by ΣS-copy. Given the definition of mappingMS-copy,
it its a natural identity in our context, and thus, the notion of Fagin-inverse is formulated
as follows.

I Definition 1 ([16]). LetM be a mapping from S to T, andM′ a mapping from T to Ŝ.
ThenM′ is a Fagin-inverse ofM ifM◦M′ =MS-copy.

Notice that in the above definition, a Fagin-inverse of a mapping from S to T is not
a mapping from T to S but from T to Ŝ. This is because we were specially interested
in defining the identity mapping with a set of st-tgds. But we can reformulate the above
notion to use only schema S. Let I, J be instances of S and Ĵ be a copy of J over schema Ŝ.
Then we have that (I, Ĵ) ∈MS-copy if and only if I ⊆ J . Thus we can redefine the identity
mapping as a mapping IdS from S to S given by

IdS = {(I, J) | I, J are instances of S and I ⊆ J}.

With this new identity mapping we can reformulate the notion of Fagin-inverse as follows.

I Definition 2 ([16]). LetM be a mapping from S to T, andM′ a mapping from T to S.
ThenM′ is a Fagin-inverse ofM ifM◦M′ = IdS.

In the rest of the chapter we use Definition 2 for the notion of Fagin-inverse. Moreover,
if mappingM has a Fagin-inverse, then we say thatM is Fagin-invertible. It is important
to notice that IdS is not exactly the identity relation over instances of schema S. In [17],
Fagin formally justified the use of IdS as the identity when inverting mappings specified by
st-tgds, instead of the more natural IdS = {(I, I) | I is an instance of S}. As Fagin proved,
no composition of st-tgds can be equal to IdS (see Proposition 5.2 in [17]).

I Example 3. Let S be a source schema composed of a binary relation A(·, ·), and T a target
schema with a ternary relation B(·, ·, ·). Consider now the mappingM from S to T specified
by the st-tgd A(x, y)→ B(x, x, y). Then the mappingM1 specified by B(x, u, y)→ A(x, y)
is a Fagin-inverse ofM.

To see whyM1 is a Fagin-inverse ofM, assume that (I, J) ∈ M ◦M1. We know that
there exists an instance K of schema T such that (I,K) ∈ M and (K,J) ∈ M1. Then, if
A(a, b) is a fact in I with a and b arbitrary values, then B(a, a, b) is a fact in K, which, by
the definition ofM1 implies that A(a, b) is a fact in J . We have shown that every fact in I
is also a fact in J , and thus I ⊆ J . On the other hand, assume that I ⊆ J , and consider the
instance L of T such that B(a, a, b) is a fact in L if and only if A(a, b) is a fact in I. Then it
is straightforward that (I, L) ∈ M and (L, J) ∈ M1, which implies that (I, J) ∈ M ◦M1.
We have shown that (I, J) ∈M◦M1 if and only if I ⊆ J , thus implying thatM◦M1 = IdS.
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Consider now the mappingM2 specified by B(u, x, y)→ A(x, y), and the mappingM3
specified by B(x, x, y)→ A(x, y). Then bothM2 andM3 are also Fagin-inverses ofM. This
example shows that Fagin-inverses need not to be unique up to logical equivalence [17]. J

In the above example it was quite simple to obtain a Fagin-inverse. In fact, as mapping
M3 shows, just reversing the arrows in the definition of M generates a Fagin-inverse. In
the following examples, we show that Fagin-inverses are not always as easy to construct.
In particular, Example 4 shows that reversing the arrows does not always produce a Fagin-
inverse, and Example 5 shows that in some cases we need inequalities when specifying
Fagin-inverses.

I Example 4 ([17]). Consider a schema S with two unary relations A(·) and B(·), and a
schema T with three unary relations S(·), T (·), and U(·). LetM be the mapping specified
by the following set of st-tgds

A(x) → S(x)
A(x) → T (x)
B(x) → U(x)
B(x) → T (x)

LetM′ be the mapping obtained from the specification ofM by just reversing the arrows,
that is, M′ is specified by the set of tgds S(x) → A(x), T (x) → A(x), U(x) → B(x) and
T (x)→ B(x). It is easy to see thatM′ is not a Fagin-inverse ofM. Consider the instance
I = {A(1)}. Then for every K ∈ SolM(I) we have that T (1) is a fact in K. Thus, given
that T (x) → B(x) is in the specification of M′, we have that for every J ∈ SolM′(K) it
holds that B(1) is a fact in J . This implies that for every J such that (I, J) ∈ M ◦M′ it
holds that B(1) is a fact in J , and thus, (I, I) 6∈ M◦M′, which shows thatM◦M′ 6= IdS.

The problem in this case is that dependencies A(x) → T (x) and B(x) → T (x) are
somehow mixing the data of relations A and B in target relation T . Thus, to obtain a
Fagin-inverse of M, we cannot use T to recover the data of relations A and B. In fact, a
Fagin-inverse ofM can be constructed by using only target relations S and U as follows:

S(x) → A(x)
U(x) → B(x)

It can be easily shown that the mapping defined by the above dependencies is a Fagin-inverse
ofM. J

I Example 5 ([21]). Consider a schema S with a binary relation A(·, ·) and a unary relation
B(·), and a schema T with a binary relation S(·, ·) and two unary relations T (·) and U(·).
LetM be the mapping specified by the following set of st-tgds

A(x, y) → S(x, y)
B(x) → S(x, x)
B(x) → T (x)

A(x, x) → U(x)

Notice that in this case the mapping is translating tuples of the form A(a, a) and B(a) into
the same target relation S, thus, as in Example 4, mappingM is somehow mixing the source
information when translating it to the target. In this case we can solve this issue by using
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inequalities to specify a Fagin-inverse of M. Consider the mapping M′ specified by the
following dependencies

S(x, y) ∧ x 6= y → A(x, y)
T (x) → B(x)
U(x) → A(x, x)

Then, it can be shown thatM′ is a Fagin-inverse ofM. In fact, Fagin et al. showed [20, 21]
that inequalities are strictly needed to specify Fagin-inverses of mappings given by st-tgds
(we make this statement precise in Section 5). J

On the existence of Fagin-inverses
As we explained in the introduction, a first important question to answer for every definition
of inverse of schema mappings, is for which class of mappings the inverse is guaranteed to
exist. As we show next, there are several mappings specified by st-tgds that do not admit
Fagin-inverses.

Consider the following mappings specified by st-tgds (in every case, source and target
schemas are implicit in the dependencies).

M1 : A(x, y) → S(x)

M2 : A(x, y) → S(x) ∧ T (y)

M3 : A(x) → S(x)
B(x) → S(x)

(2)

As pointed out by Fagin [17], Fagin-invertibility for a mapping intuitively coincide with no
loss of information. Thus, considering this intuition, none of the above mappings should
be Fagin-invertible. For instance, mapping M1 is only transferring the first component
of relation A from source to target, and thus, we are losing the second component when
transferring the source data. In the case of M2, although it is actually transferring both
components of A from source to target, these components are being stored in independent
relations in the target thus loosing the relationships that they had in the source. For M3
the problem is a little bit different. In this case all the data in both A and B is being
transferred but, since all the information is stored in the same relation in the target, it is
impossible to reconstruct the initial source instances.

The question is how to formally prove that the above mappings have no Fagin-inverses?
To answer this, Fagin [16] proposed a very simple condition that a mapping specified by
st-tgds needs to satisfy in order to have a Fagin-inverse. This property is called the unique-
solutions property and is formalized as follows.

I Definition 6 ([16]). A mappingM from S to T satisfies the unique-solutions property if
for every pair of instances I1, I2 of S, it holds that SolM(I1) = SolM(I2) implies I1 = I2.

I Theorem 7 ([16]). Let M be a mapping from S to T specified by st-tgds. If M has a
Fagin-inverse thenM satisfies the unique-solutions property.

The proof of the theorem is very simple. Assume that we have a mappingM and that
M′ is a Fagin-inverse ofM. Now let I1 and I2 be instances such that SolM(I1) = SolM(I2).
SinceM′ is a Fagin-inverse ofM, we know thatM◦M′ = IdS and thus (I2, I2) ∈M◦M′.
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This implies that there exists an instance K such that (I2,K) ∈ M and (K, I2) ∈ M′.
Now, since SolM(I1) = SolM(I2) and K ∈ SolM(I2), we have that (I1,K) ∈ M and then
(I1, I2) ∈ M ◦M′ = IdS which implies that I1 ⊆ I2. With a symmetric argument we can
show that I2 ⊆ I1 and thus I1 = I2.

With this tool we can formally prove that the mappings in (2) have no Fagin-inverses.
For the case of M1, consider instances I1 = {A(1, 2)} and I2 = {A(1, 3)}. The instances
are different but SolM1(I1) = SolM2(I2). For the case of M2 we can use instances I1 =
{A(1, 2), A(3, 4)} and I2 = {A(1, 4), A(3, 2)} which satisfy that SolM2(I1) = SolM2(I2). For
the mappingM3 and the instances I1 = {A(1)} and I2 = {B(1)}, we have that SolM3(I1) =
SolM3(I2). Thus neither M1 nor M2 nor M3 satisfy the unique-solutions property which
implies that they have no Fagin-inverse.

The natural question at this point is whether the unique-solutions property is also a
sufficient condition to test Fagin-invertibility for mappings specified by st-tgds. It can be
shown that it is not [21]2. Fortunately, Fagin et al. [20] introduced another property, called
the subset property, which characterizes Fagin-invertibility for the case of mappings specified
by st-tgds.

I Definition 8 ([20]). A mappingM from S to T satisfies the subset property if for every
pair of instances I1, I2 of S we have that SolM(I1) ⊆ SolM(I2) implies I2 ⊆ I1.

I Theorem 9 ([20]). LetM be a mapping from S to T specified by st-tgds. ThenM has a
Fagin-inverse if and only ifM satisfies the subset property.

We have shown that there are several mappings specified by st-tgds that have no Fagin-
inverse, thus the question at this point is whether we can find some relaxed notions that can
give natural and useful reverse mappings when Fagin-inverses do not exist. In the next two
sections we introduce the notions of quasi-inverse [20, 21] and maximum recovery [10, 11]
proposed to deal with this issue.

3 Quasi-inverse

As we have shown in the previous section, there are many simple mappings specified by st-
tgds that do not possess Fagin-inverses. Nevertheless, in many cases there are very simple
and natural ways of specifying useful reverse mappings. Thus, there is a need for a weaker
notion of inverse to handle these cases. Towards solving this problem, Fagin et al. [20]
proposed the notion of a quasi-inverse of a schema mapping.

Intuitively, the notion of quasi-inverse is obtained from the notion of Fagin-inverse by not
differentiating between source instances that are equivalent for data-exchange purposes. Let
M be a mapping from S to T, and define the equivalence relation ∼M between instances
of S as follows: I1 ∼M I2 if and only if SolM(I1) = SolM(I2). That is, I1 and I2 are
considered equivalent if they have the same space of solutions under M. For instance, for
the mapping M specified by the st-tgds A(x, y) → S(x), and the instances I1 = {A(1, 2)}
and I2 = {A(1, 3)}, we have that I1 ∼M I2.

Informally, M′ is a quasi-inverse of M if the equation M ◦M′ = IdS holds modulo
∼M. To make this statement precise, let us introduce some notation. Let D be a binary

2 Fagin proved that for LAV mappings, that is, mappings specified by st-tgds in which only one atom is
mentioned in the premises of dependencies, the unique-solutions property is necessary and sufficient to
characterize Fagin-invertibility [17].
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relation over instances of a source schema S (that is, a mapping from S to S), and let M
be a mapping from S to a schema T. Then we define the relation D[∼M] as follows:

D[∼M] = {(I1, I2) | there exists I ′1 and I ′2 such that I1 ∼M I ′1, I2 ∼M I ′2 and (I ′1, I ′2) ∈ D}.

Now we can formally introduce the notion of quasi-inverse of a schema mapping.

I Definition 10 ([20]). Let M be a mapping from S to T, and M′ a mapping from T to
S. ThenM′ is a quasi-inverse ofM if (M◦M′)[∼M] = IdS[∼M].

I Example 11. Consider a source schema S = {A(·, ·)} and a target schema T = {S(·)},
and let M be the mapping from S to T specified by A(x, y) → S(x). We showed in the
previous section thatM has no Fagin-inverse. Consider now the mappingM′ specified by
S(x) → ∃u A(x, u). We now show thatM′ is a quasi-inverse ofM. To see why this is the
case, consider first the inclusion:

IdS[∼M] ⊆ (M◦M′)[∼M]. (3)

If (I1, I2) ∈ IdS[∼M], then there exist instances I ′1, I ′2 of S such that I1 ∼M I ′1, I2 ∼M I ′2
and (I ′1, I ′2) ∈ IdS. Thus, we have that I ′1 ⊆ I ′2. Let J ′1 be an instance of T such that S(a) is a
fact in J ′1 if and only if A(a, b) is a fact in I ′1 (for arbitrary values a and b). Then we have that
(I ′1, J ′1) ∈M, and also that (J ′1, I ′1) ∈M′ by the definitions ofM andM′. Moreover, given
that I ′1 ⊆ I ′2 we have that (J ′1, I ′2) also satisfies the tgds definingM′, and thus (J ′1, I ′2) ∈M′.
Hence, we conclude that (I ′1, I ′2) ∈ (M◦M′), which implies that (I1, I2) ∈ (M◦M′)[∼M]
(since I1 ∼M I ′1 and I2 ∼M I ′2). Thus, we have shown that inclusion (3) holds, and it only
remains to prove that the following inclusion holds:

(M◦M′)[∼M] ⊆ IdS[∼M]. (4)

If (I1, I2) ∈ (M ◦M′)[∼M], then there exist instances I ′1, I ′2 of S such that I1 ∼M I ′1,
I2 ∼M I ′2 and (I ′1, I ′2) ∈ (M◦M′). Thus, we have that there exists an instance K of T such
that (I ′1,K) ∈M and (K, I ′2) ∈M′. By the definitions ofM andM′ we conclude that for
every fact A(a, b) in I ′1, there exists an element c such that A(a, c) is a fact in I ′2. From this
last property we conclude that the instance I? = I ′1 ∪ I ′2 is such that I? ∼M I ′2. Moreover,
since I2 ∼M I ′2 and I ′2 ∼M I?, we have that I2 ∼M I?. Notice that I ′1 ⊆ I?, and thus we
have that I1 ∼M I ′1, I2 ∼M I? and (I ′1, I?) ∈ IdS, which implies that (I1, I2) ∈ IdS[∼M].
Thus, we have shown that (4) holds, which proves thatM′ is a quasi-inverse ofM. J

As the previous example shows, there are mappings that are not Fagin-invertible but
have a quasi-inverse. This, plus the following result, show that the notion of quasi-inverse is
a strict generalization of the notion of Fagin-inverse. In particular, the result shows that if
a mapping has a Fagin-inverse, then the notions of Fagin-inverse and quasi-inverse coincide.

I Theorem 12 ([20]). Let M be a mapping from S to T specified by st-tgds, and assume
that M has a Fagin-inverse. Then M′ is a Fagin-inverse of M if and only if M′ is a
quasi-inverse ofM.

It is not difficult to see why the theorem holds. Let M be a mapping from S to T,
and assume that M is specified by st-tgds and has a Fagin-inverse. If M′ is a Fagin-
inverse of M then M ◦M′ = IdS, which implies that (M ◦M′)[∼M] = IdS[∼M], and
thus M′ is a quasi-inverse of M. Assume now that M′ is a quasi-inverse of M, that is,
(M◦M′)[∼M] = IdS[∼M]. Given that M has a Fagin-inverse, from Theorem 7 we know
thatM satisfies the unique-solutions property. Thus, we have that for every pair of instances
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I1, I2 of S, it holds that if I1 ∼M I2 (or equivalently SolM(I1) = SolM(I2)) then I1 = I2.
Notice that this implies that (M◦M′)[∼M] = M◦M′ and IdS[∼M] = IdS. Thus, since
(M ◦M′)[∼M] = IdS[∼M] we obtain that M ◦M′ = IdS which implies that M′ is a
Fagin-inverse ofM.

On the existence of quasi-inverses
Consider the mappings in (2) in the previous section. In Example 11 we showed that for
mapping M1 specified by A(x, y) → S(x), the mapping specified by S(x) → ∃u A(x, u) is
a quasi-inverse. Consider M2, which is specified by A(x, y) → S(x) ∧ T (y). In this case
it can be proved that the mapping specified by S(x) ∧ T (y) → ∃u A(x, u) ∧ ∃v A(v, y) is
a quasi-inverse of M2. Moreover, for the case of mapping M3 specified by A(x) → S(x)
and B(x) → S(x), it can be proved that S(x) → A(x) ∨ B(x) is a quasi-inverse. Although
none of these mappings admit a Fagin-inverse, all of them admit a quasi-inverse. This gives
rise to the interesting question of whether every mapping specified by sets of st-tgds has
a quasi-inverse. Unfortunately, it was shown by Fagin et al. [20, 21] that the answer is
negative. To formalize this result we next introduce a property that characterizes when a
mapping specified by st-tgds has a quasi-inverse. This property is obtained by relaxing the
subset-property that characterizes Fagin-inverses.

I Definition 13 ([20]). A mappingM from S to T satisfies the (∼M)-subset property, when
for every pair I1, I2 of instances of S, if SolM(I1) ⊆ SolM(I2) then there exist instances I ′1
and I ′2 such that I1 ∼M I ′1, I2 ∼M I ′2 and I ′2 ⊆ I ′1.

I Theorem 14 ([20]). Let M be a mapping from S to T specified by st-tgds. Then M has
a quasi-inverse if and only ifM satisfies the (∼M)-subset property.

With the above tool we can show that there are mappings specified by st-tgds that do
not have a quasi-inverse.

I Example 15 ([20, 21]). Consider a source schema S consisting of a binary relation A(·, ·),
a target schema T consisting of a binary relation S(·, ·) and a unary relation T (·), and the
mappingM from S to T specified by the st-tgd

A(x, z) ∧A(z, y) → S(x, y) ∧ T (z). (5)

Fagin et al. showed [20, 21] thatM does not satisfy the (∼M)-subset property, from which
follows thatM has no quasi-inverse. We next show whyM does not satisfy the (∼M)-subset
property.

Let I1, I2 be instances of S such that:

I1 = {A(1, 4), A(4, 3), A(1, 2), A(2, 5), A(4, 2)}
I2 = {A(1, 2), A(2, 3)}

Moreover, let J1, J2 be the following instances over T:

J1 = {S(1, 3), S(1, 2), S(1, 5), S(4, 5), T (2), T (4)}
J2 = {S(1, 3), T (2)}

That is, J1 and J2 are the canonical solutions [18, 3] of I1 and I2, respectively. In this
case, given the definition of M, it is not difficult to see that they are also minimal and
characterizes their space of solutions. For instance, we have that K ∈ SolM(I1) if and only
if J1 ⊆ K. Similarly for I2 we have that K ∈ SolM(I2) if and only if J2 ⊆ K. Thus, given
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that J2 ⊆ J1, we conclude that SolM(I1) ⊆ SolM(I2). Next we show that there are no
instances I ′1, I ′2 of S such that I1 ∼M I ′1, I2 ∼M I ′2 and I ′2 ⊆ I ′1, which implies thatM does
not satisfy the (∼M)-subset property.

For the sake of contradiction, assume that there exist instances I ′1, I ′2 of S such that
I1 ∼M I ′1, I2 ∼M I ′2 and I ′2 ⊆ I ′1, and let J ′1, J ′2 be the canonical solutions for I ′1 and I ′2
underM, respectively. That is

J ′1 = {S(a, b) | there exists c s.t. A(a, c), A(c, b) ∈ I ′1} ∪
{T (c) | there exist a, b s.t. A(a, c), A(c, b) ∈ I ′1},

J ′2 = {S(a, b) | there exists c s.t. A(a, c), A(c, b) ∈ I ′2} ∪
{T (c) | there exist a, b s.t. A(a, c), A(c, b) ∈ I ′2},

Given that I2 ∼M I ′2, we have that SolM(I2) = SolM(I ′2) and, therefore, J2 = J ′2 by the
definition ofM. Thus, given that S(1, 3) ∈ J2, we have that S(1, 3) ∈ J ′2 and, hence, there
exists an element m such that A(1,m), A(m, 3) ∈ I ′2. Notice that this implies that T (m)
should be a fact in J ′2 and then since J ′2 = J2, we obtain that m must be equal to 2. Thus,
we have that A(1, 2), A(2, 3) ∈ I ′2. Now given that I ′2 ⊆ I ′1, we conclude that:

A(2, 3) ∈ I ′1. (6)

Given that I1 ∼M I ′1, we have that SolM(I1) = SolM(I ′1) and, therefore, J1 = J ′1 by the
definition ofM. Thus, given that S(4, 5) ∈ J1, we have that S(4, 5) ∈ J ′1 and, hence, there
exists an element n such that A(4, n), A(n, 5) ∈ I ′1. Notice that this implies that T (n) should
be a fact in J ′1 and then since J ′1 = J1, we obtain that n must be equal to either 2 or 4.
We show that in both cases we obtain a contradiction. Assume that n = 4, then we have
that A(4, 4) ∈ I ′1 implying that S(4, 4) ∈ J ′1 which leads to a contradiction since J1 = J ′1
and S(4, 4) /∈ J1. Assume that n = 2, then A(4, 2), A(2, 5) ∈ I ′1. But we know from (6)
that A(2, 3) ∈ I ′1 concluding that S(4, 3) ∈ J ′1 (since A(4, 2) ∈ I ′1), from which we obtain a
contradiction since J1 = J ′2 and S(4, 3) 6∈ J1. J

Although numerous non-Fagin-invertible schema mappings possess natural and useful
quasi-inverses, the previous example shows that there still exist simple mappings specified
by st-tgds that have no quasi-inverse. This leaves as an open problem the issue of finding a
notion of inversion for st-tgds which ensures that every mapping in this class is invertible.
This is the main motivation for the introduction of the notion of inversion discussed in the
following section.

4 Recovery and Maximum Recovery

In this section we introduce the notions of recovery and maximum recovery proposed by
Arenas et al. [10] as alternative notions for inverting mappings. As we show in this section,
the notion of maximum recovery strictly generalizes the notion of Fagin-inverses, but has
the desirable property that every mapping specified by st-tgds admits a maximum recovery,
thus solving the open problem left by the notion of quasi-inverse.

Let us start by considering the mapping M in Example 15, that is, M is specified by
A(x, z) ∧ A(z, y) → S(x, y) ∧ T (z). Notice that although mapping M does not have a
quasi-inverse, there is a very natural reverse mapping in this case. Consider the mapping
M′ defined by the tgds

S(x, y) → ∃u
(
A(x, u) ∧A(u, y)

)
T (z) → ∃v∃w

(
A(v, z) ∧A(z, w)

)



J. Pérez 79

M′ is essentially doing its best effort to recover the data initially stored in the source schema.
This is the main intuition behind the notions of recovery and maximum recovery. Intuitively,
a recovery ofM is a mapping that is capable of recovering sound data with respect toM,
and a maximum recovery ofM is a mapping that is capable to recover the maximum amount
of sound data with respect toM. We next formalize both notions.

LetM be a mapping from a schema S to a schema T, and IdS the identity mapping over
S, that is,

IdS = {(I, I) | I is an instance of S}.

Notice the difference between IdS and IdS; mapping IdS is the classical identity of binary
relations. When trying to invertM, the ideal would be to find a mappingM′ from T to S
such that,M◦M′ = IdS. If such a mapping exists, we know that if we useM to exchange
data, the application ofM′ gives as result exactly the initial source instance. Unfortunately,
in most cases this ideal is impossible to reach. For example, it is impossible to obtain such
an inverse if M is specified by a set of st-tgds [16]. The main problem with such an ideal
definition of inverse is that, in general, no matter whatM′ we choose, we will have not one
but many solutions for a source instance underM◦M′.

If for a mapping M, there is no mapping M1 such that M ◦M1 = IdS, at least we
would like to find a schema mappingM2 that does not forbid the possibility of recovering
the initial source data. That is, we would like that for every source instance I, the space
of solutions for I underM◦M2 contains I itself. Such a schema mappingM2 is called a
recovery ofM.

I Definition 16 ([10]). LetM be a mapping from S to T andM′ a mapping from T to S.
ThenM′ is a recovery ofM if (I, I) ∈M ◦M′ for every instance I of S.

I Example 17. Let S = {A(·, ·)}, and T = {S(·, ·), T (·)}. Consider the mapping M in
Example 15, that isM is a mapping from S to T specified by the following st-tgd:

A(x, z) ∧A(z, y) → S(x, y) ∧ T (z), (7)

LetM1 be a mapping from T to S specified by tgd:

S(x, y) → ∃u
(
A(x, u) ∧A(u, y)

)
.

It is straightforward to prove that M1 is a recovery of M. Let I be an arbitrary instance
of S, and J the canonical solution [18] for I, that is,

J = {S(a, b) | there exists c s.t. A(a, c), A(c, b) ∈ I} ∪
{T (c) | there exist a, b s.t. A(a, c), A(c, b) ∈ I}.

Then in this case we have that (I, J) ∈ M and (J, I) ∈ M1, from which we conclude that
(I, I) ∈ M ◦M1. This implies thatM1 is a recovery ofM. Similarly, ifM2 is a mapping
from T to S specified by tgd:

T (z) → ∃v∃w
(
A(v, z) ∧A(z, w)

)
,

then we also have thatM2 is a recovery ofM. On the other hand, ifM3 is a mapping from
T to S specified by tgd:

S(x, y) ∧ T (z) → A(x, z) ∧A(z, y), (8)

then we have that M3 is not a recovery of M. To see why this is the case, consider the
instance I = {A(1, 1), A(2, 2)}. Next we show that (I, I) 6∈ M ◦ M3. ForL the sake of
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contradiction, assume that (I, I) ∈M◦M3, and let K be an instance such that (I,K) ∈M
and (K, I) ∈ M3. Given that (I,K) satisfies st-tgd (7), we have that S(1, 1), S(2, 2) and
T (1), T (2) are facts in K. But then given that (K, I) satisfies tgd (8), we conclude that
A(1, 2), and A(2, 1) are facts in I, which is a contradiction. J

Being a recovery is a sound but mild requirement. Indeed, a schema mapping M from
S to T always has as recoveries, for example, mappings M1 = {(J, I) | J is an instance
of T and I is an instance of S}, and M2 = M−1 = {(J, I) | (I, J) ∈ M}. If one has to
choose betweenM1 andM2 as a recovery ofM, then one would probably chooseM2 since
the space of possible solutions for a source instance I underM◦M2 is smaller than under
M◦M1. In fact, if there exists a mappingM3 such thatM◦M3 = IdS, then one would
definitely preferM3 overM1 andM2.

In general, ifM′ is a recovery ofM, then the smaller the space of solutions generated by
M◦M′, the more informativeM′ is about the initial source instances. This notion induces
an order among recoveries. If M1 and M2 are recoveries of M and M◦M2 ⊆ M ◦M1
then we say that M2 is more(-or-equally) informative than M1 as a recovery of M. This
naturally gives rise to the notion of maximum recovery. If for a mappingM there exists a
recovery M′ that is more informative than any other recovery of M, then M′ is the best
option to bring exchanged data back, among all the recoveries. Intuitively, such a mapping
M′ recovers the maximum amount of sound information. Such a mapping M′ is called a
maximum recovery ofM.

I Definition 18 ([10]). Let M be a mapping from S to T, and M′ a mapping from T to
S. ThenM′ is a maximum recovery ofM if:
1. M′ is a recovery ofM, and
2. for every recoveryM′′ ofM, it holds thatM◦M′ ⊆M◦M′′.

Notice that the definition of maximum recovery implies a quantification over all the
possible recoveries of a mapping M. Thus, the process of proving that a particular map-
ping is indeed a maximum recovery of M seems to be very a difficult task (compare it
with the definitions of Fagin-inverse, quasi-inverse and recovery). Fortunately, Arenas et
al. [11] provide a toolbox to deal with maximum recoveries. In particular, the following
general characterization is useful to prove that a mapping is a maximum recovery of another
mapping.

I Theorem 19 ([11]). Let M be a mapping from S to T and M′ a mapping from T to S.
ThenM′ is a maximum recovery ofM if and only ifM =M◦M′ ◦M.

I Example 20. Let S = {A(·, ·)}, and T = {S(·, ·), T (·)}. Consider again the mappingM
in Example 15 specified by:

A(x, z) ∧A(z, y) → S(x, y) ∧ T (z),

and letM′ be the mapping from T to S specified by the following tgds:

S(x, y) → ∃u
(
A(x, u) ∧A(u, y)

)
,

T (z) → ∃v∃w
(
A(u, z) ∧A(z, w)

)
,

Next we use Theorem 19 to show that M′ is a maximum recovery of M. Given that M′
is a recovery of M (see Example 17), we have that M ⊆ M ◦M′ ◦ M. Thus, by using
Theorem 19, in order to show thatM′ is a maximum recovery ofM, we only need to show
thatM◦M′ ◦M ⊆M.
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Let (I, J) ∈ M ◦ M′ ◦ M. To prove that (I, J) ∈ M, we need to show that (I, J)
satisfies the st-tgd that specifies M. Let A(a, b) and A(b, c) be facts in I, with a, b, c
arbitrary elements. Then we need to prove that S(a, c), T (b) ∈ J . To prove this, first notice
that given that (I, J) ∈ M ◦M′ ◦M, there exist instances K of T and L of S such that
(I,K) ∈ M, (K,L) ∈ M′ and (L, J) ∈ M. Thus, given that A(a, b), A(b, c) ∈ I and
(I,K) ∈ M, we conclude that S(a, c), T (b) ∈ K. Hence, from the definition ofM′ and the
fact that (K,L) ∈M′, we conclude that there exist elements d, e and f such that

A(a, d), A(d, c), A(e, b), A(b, f) ∈ L.

Therefore, given that (L, J) ∈ M, we conclude that S(a, c), T (b) ∈ J which was to be
shown. J

As for the case of the quasi-inverse, it can be shown that the notion of maximum recovery
strictly generalizes the notion of Fagin-inverse for mappings specified by st-tgds.

I Theorem 21 ([10]). Let M be a mapping from S to T specified by st-tgds, and assume
that M has a Fagin-inverse. Then, M′ is a Fagin-inverse of M if and only if M′ is a
maximum recovery ofM.

The relationship between maximum recoveries and quasi-inverses is a little bit more
complicated and is given in the following result.

I Theorem 22 ([10]). Let M be a mapping from S to T specified by st-tgds, and assume
thatM has a quasi-inverse.
1. IfM′ is a maximum-recovery ofM thenM′ is a quasi-inverse ofM.
2. IfM′ is a quasi-inverse and a recovery ofM, thenM′ is a maximum recovery ofM.

On the existence of maximum recoveries
One of the main results regarding maximum recoveries is that they exist for every mapping
specified by st-tgds [10]. To show this, we next introduce the notion of witness solution that
can be used to characterize when a general mapping has a maximum recovery.

I Definition 23 ([10]). Let M be a mapping from S to T and I an instance of S. Then
an instance J ∈ SolM(I) is a witness solution for I underM, if for every other instance I ′
such that J ∈ SolM(I ′) it holds that SolM(I) ⊆ SolM(I ′).

Witness solutions are in a sense identifiers for spaces of solutions. In particular, if
there are two instances I1 and I2 that share a witness solution, then SolM(I1) = SolM(I2).
Arenas et al. [10], proved the following general characterization of the existence of maximum
recoveries.

I Theorem 24 ([10]). Let M be a general mapping from S to T (not necessarily specified
by st-tgds). Then M has a maximum recovery if and only if every instance I of S has a
witness solution underM.

It should be noticed that as opposed to the characterizations for the existence of Fagin-
inverses and quasi-inverse shown in Theorems 9 and 14, respectively, the characterization
for maximum recoveries can be applied to general mappings, not necessarily specified by
st-tgds. We can now use Theorem 24 to show that mappings specified my st-tgds always
have maximum recovery. For this we need to recall the notion of universal solutions in data
exchange [18]. Universal solutions were introduced as desirable solutions for data exchange.
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Essentially, a universal solution for an instance I under a mappingM is, in a precise sense,
the most general solution for I and can be embedded in any other solution for I [18]. In
particular, for mappings specified by st-tgds, universal solutions can be obtained by using
the chase procedure (see Chapter 1, for a comprehensive study of the chase procedure).
In our context, the two most important properties of universal solutions are stated in the
following lemma.

I Lemma 25 ([10, 18]). LetM be a mapping from S to T specified by st-tgds.
1. If J is a universal solution for I underM then J is a witness solution for I underM.
2. For every instance I of S there exists a universal solution for I underM.

Then from Theorem 24 and Lemma 25 we obtain the following.

I Corollary 26 ([10]). Every mappingM specified by st-tgds has a maximum recovery.

5 Computing Inverses

Up to this point we have presented three alternative notions for inverting mappings. For
every one of them we have discussed their formal definitions, characterizations and the ex-
istence problem. But we have not discussed the most important practical problem regarding
inverses of schema mappings: how to compute an inverse. In this section we present a gen-
eral algorithm that can be used to compute all the notions of inverses introduced so far.
We also discuss expressiveness issues. In particular, what is the language needed to express
these inverses which is directly related to the language used in the output of the algorithm.

5.1 An algorithm for inverting mappings
The algorithm presented in this section is based on query rewriting and thus we first in-
troduce the necessary terminology and some preliminary results. A fundamental notion in
this section is the notion of certain answers. Given a mapping M from S to T, a source
instance I, and a query QT over T, the set of certain answers of QT over I, denoted by
certainM(QT, I) is the set

certainM(QT, I) =
⋂

J∈SolM(I)

QT(J).

That is, a tuple ā is a certain answer if ā ∈ QT(J) for every solution J of I. With the
notion of certain answers we can define the notion of source rewritability. Given a mapping
M from S to T, and a query QT over T, we say that QS over S is a source rewriting of QT
underM if for every instance I of S it holds that

QS(I) = certainM(QT, I).

That is, if QS is a source rewriting of QT, in order to compute the certain answers of QT
one only needs to compute QS(I).

The computation of a source rewriting of a conjunctive query is a basic step in the
first algorithm presented in this section. This problem has been extensively studied in the
database area [30, 31, 15, 1, 35] and, in particular, in the data integration context [24, 25, 29].
It can be shown that given a mapping M from S to T specified by a set of st-tgds, and a
conjunctive query QT over T, then a rewriting of QT over the source can always be expressed
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as a union of conjunctive queries with equality predicates (UCQ=). As an example, consider
a mapping given by the following tgds:

A(x, y) → S(x, y),
B(x) → S(x, x),

and let QT be the target query given by formula S(x, y). Then a rewriting of QT over the
source is given by A(x, y) ∨ (B(x) ∧ x = y), which is a query in UCQ=. Notice that in this
rewriting, we do need disjunction and the equality x = y. Moreover, it is known that source
rewritings of conjunctive queries can be computed in exponential time. We formalize the
above discussion in the following lemma.

I Lemma 27 ([11]). There exists a procedure Source-Rew that given a set Σ of st-tgds
from S to T, and a conjunctive query QT over T, computes (in exponential time) a query
in UCQ= which is a source rewriting of QT under the mappingM specified by Σ.

The following algorithm, proposed in [11], uses procedure Source-Rew to compute
inverses. In particular, the algorithm computes a maximum recovery of the input mapping.
In the algorithm we use the special predicate C(·) that differentiates constant values from
labeled null values (that is C(u) holds if and only if u is a constant value). We also use
C(x̄), with x̄ a tuple of variables (x1, . . . , xk), as a shorthand of C(x1) ∧ · · · ∧C(xk).

Algorithm Inverse
Input: A mappingM from S to T specified by a set Σ of st-tgds.
Output: A mappingM′ from T to S specified by a set Σ′ of tgds with disjunctions, equalities
and predicate C(·).
1. Start with Σ′ as the empty set.
2. For every st-tgd ϕ(x̄)→ ∃ȳ ψ(x̄, ȳ) in Σ, do the following:

a. Let QT be the conjunctive query defined by formula ∃ȳ ψ(x̄, ȳ).
b. Use Source-Rew to compute a formula α(x̄) in UCQ= that is a source rewriting of
QT under mappingM.

c. Add dependency ∃ȳ ψ(x̄, ȳ) ∧C(x̄)→ α(x̄) to Σ′.
3. Return the mappingM′ from T to S specified by Σ′.

I Example 28. Let S = {A(·, ·), B(·)}, and T = {S(·, ·)}, and letM be the mapping for S
to T specified by the st-tgds

A(x, y) → S(x, y),
B(x) → S(x, x).

With inputM, algorithm Inverse first considers the st-tgd A(x, y)→ S(x, y) and computes
a source rewriting of S(x, y). From the discussion previous to the algorithm we know that
A(x, y) ∨ (B(x) ∧ x = y) is a source rewriting of S(x, y). Thus the algorithm includes in
Σ′ the dependency S(x, y) ∧C(x) ∧C(y) → A(x, y) ∨ (B(x) ∧ x = y). Then the algorithm
considers dependency B(x) → S(x, x) and computes a source rewriting of S(x, x) which
is given by the source query A(x, x) ∨ B(x). Then the algorithm includes dependency
S(x, x) ∧C(x)→ A(x, x) ∨B(x) in Σ′. Finally, the output of the algorithm is the mapping
M′ specified by the dependencies

S(x, y) ∧C(x) ∧C(y) → A(x, y) ∨ (B(x) ∧ x = y),
S(x, x) ∧C(x) → A(x, x) ∨B(x). J

Chapte r 03



84 The Inverse of a Schema Mapping

I Theorem 29 ([6, 11]). Let M be a mapping specified by st-tgds. Then with input M,
algorithm Inverse computes a maximum recovery ofM.

By Theorems 21 and 22 we obtain the following corollary regarding the computation of
Fagin-inverses and quasi-inverses.

I Corollary 30. LetM be a mapping specified by st-tgds. IfM has a Fagin-inverse (quasi-
inverse), then with input M, algorithm Inverse computes a Fagin-inverse (quasi-inverse)
ofM.

In general, the set Σ′ constructed in algorithm Inverse is of exponential size. Notice
that this directly depends on the size of the source rewritings computed by Source-Rew
which are in general exponential. Nevertheless, there are cases for which this process can be
done more efficiently. In particular, if mappingM is specified by a set of st-tgds that do not
use existential quantification in the conclusions of dependencies, also called full st-tgds [18],
then Step (2b) of algorithm Inverse can be accomplished in polynomial time [11, 34].

For the case of the Fagin-inverse, Arenas et al. [7] proposed an alternative algorithm
that uses target rewritings. Let M be a mapping from S to T specified by st-tgds, and
QS a conjunctive query over S. Then, a query QT is a target rewriting of QS under M if
certainM(QT, I) = QS(I) for every source instance I. That is, QT is a target rewriting of
QS if and only if QS is a source rewriting of QT. Although the notions of source and target
rewriting are tightly related, their associated algorithmic problems are not equivalent. For
example, as opposed to the case of source rewritings, for a conjunctive query QS a target
rewriting does not always exist [7]. Nevertheless, Arenas et al. [7] showed that if M is a
mapping specified by st-tgds that has a Fagin-inverse, then every conjunctive source query
is target rewritable. Moreover, it can be proved that a target rewriting can be computed in
exponential time and can be expressed as a union of conjunctive queries with equalities and
inequalities (UCQ=,6=) [7, 34]. We formalize this in the following lemma.

I Lemma 31 ([7, 34]). There exists a procedure Target-Rew that given a set Σ of st-tgds
from S to T, and a conjunctive query QS over S that is target rewritable, computes (in
exponential time) a query in UCQ=,6= which is a target rewriting of QS under the mapping
M specified by Σ.

With this procedure we can present the following algorithm to compute Fagin-inverses
(which is implicit in the work by Arenas et al. [7](Proposition 5.3)). In the algorithm we
also use the following property. A tgd from S to T of the form ϕ1(x̄) ∨ ϕ2(x̄) → ψ(x̄)
is equivalent to the set of tgds {ϕ1(x̄) → ψ(x̄), ϕ2(x̄) → ψ(x̄)}. That is, one can always
eliminate disjunctions from the premises of tgds. Another property that we use is that
equalities in the premises of tgds can always be eliminated by making the necessary variable
replacements. That is, the dependency ϕ(x̄) ∧ x = y → ψ(x̄) is equivalent to ϕ(x̄′)→ ψ(x̄′)
where x̄′ is the tuple obtained from x̄ by replacing every occurrence of y by x.

Algorithm Fagin-Inverse
Input: A mappingM from S to T specified by a set Σ of st-tgds that has a Fagin-inverse.
Output: A mapping M′ from T to S specified by a set Σ′ of tgds with inequalities and
predicate C(·).
1. Start with Σ′ as the empty set.
2. For every source k-ary relation symbol R do the following:

a. Let x = (x1, . . . , xk) be a k-tuple of distinct variables, and QS the conjunctive query
defined by formula R(x̄).
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b. Use Target-Rew to compute a formula α(x̄) in UCQ=,6= that is a target rewriting
of QS under mappingM.

c. For every disjunct β(x̄) of α(x̄) add dependency β(x̄) ∧C(x̄)→ R(x̄) to Σ′.
3. Eliminate all the equality predicates in Σ′ by making the necessary variable replacements

(and eliminating the remaining predicates C(x) for every replaced variable x).
4. Return the mappingM′ from T to S specified by Σ′.

I Example 32. Let S = {A(·, ·), B(·)} and T = {S(·, ·), T (·), U(·)}, and let M be the
mapping in Example 5, that is,M is specified by the set of st-tgds

A(x, y) → S(x, y)
B(x) → S(x, x)
B(x) → T (x)

A(x, x) → U(x)

With inputM, algorithm Fagin-Inverse first considers relation symbol A and in Step (2b)
and computes a target rewriting of A(x, y). It can be shown that the query given by
(S(x, y) ∧ x 6= y) ∨ (U(x) ∧ x = y) is a target rewriting of A(x, y). Then in Step (2c) the
algorithm adds dependencies

S(x, y) ∧ x 6= y ∧C(x) ∧C(y) → A(x, y)
U(x) ∧ x = y ∧C(x) ∧C(y) → A(x, y)

to the set Σ′. Then the algorithm considers relation symbol B and computes a target
rewriting of B(x). It can be proved that T (x) is a target rewriting in this case, thus,
the algorithm adds dependency T (x) ∧ C(x) → B(x). Finally, in Step (4) the algorithm
eliminates the equalities by variable replacements to obtain the set of dependencies

S(x, y) ∧ x 6= y ∧C(x) ∧C(y) → A(x, y)
U(x) ∧C(x) → A(x, x)
T (x) ∧C(x) → B(x)

Notice that the obtained mapping is almost exactly the mapping that is claimed to be a
Fagin-inverse ofM in Example 5. J

The correctness of algorithm Fagin-Inverse is stated in the following theorem.

I Theorem 33 ([7, 34]). LetM be a mapping specified by st-tgds that has a Fagin-inverse.
Then with inputM, algorithm Fagin-Inverse computes a Fagin-inverse ofM.

It should be pointed out that the first algorithms proposed to compute quasi-inverses [21],
and maximum recoveries [10], used ad-hoc techniques and were far more complicated that
the one that we presented in this section. The algorithms that we have presented were
proposed by Arenas et al. [11, 6, 7] and are based on query rewriting procedures which makes
them suitable for optimizations and can be benefited from the vast amount of work on query
rewriting in the data integration and data exchange contexts. Fagin et al. [21] also proposed a
simple algorithm to compute Fagin-inverses based on the chase procedure. We do not explain
all the details of this algorithm but describe the main idea. We assume some familiarity with
the chase procedure for tgds (see Chapter 1 for details on the chase procedure). For every
source atom R(x̄), the algorithm by Fagin et al. [21] considers all the atoms obtained by
considering all possible combinations of equalities among the variables in x̄. Those atoms are

Chapte r 03



86 The Inverse of a Schema Mapping

called prime atoms in [21]. For example, for a source relation R(·, ·, ·) the algorithm considers
the prime atoms R(x1, x1, x1), R(x1, x1, x2), R(x1, x2, x2), R(x1, x2, x1), and R(x1, x2, x3).
Assume that a Fagin-inverse is to be computed for a mappingM specified by a set Σ of st-
tgds. Moreover, given a prime atom α, let chaseΣ(α) be the result of chasing α with Σ. Then
for every prime atom α the algorithm generates a formula σα of the form β∧δ∧γ → α, where
β is the conjunction of all the target atoms in chaseΣ(α), δ is a conjunction of inequalities
of the form x 6= y for every pair of different variables mentioned in α, and γ is a conjunction
of formulas C(x) for every variable x mentioned in α. Fagin et al. [21] proved that if M
has a Fagin-inverse, then the set of formulas {σα | α is a prime source atom} specifies a
Fagin-inverse ofM [21].

5.2 Languages for expressing inverses

In this section we study the question of what the language needed to express inverses is. In
particular we survey the results in the literature that justify the languages used as output
in the algorithms of the previous section. In particular a first result which is immediately
obtained from the algorithms is the following.

I Theorem 34 ([20, 10]). LetM be a mapping from S to T specified by st-tgds.
1. M has a maximum recovery specified by a set of tgds from T to S with disjunctions and

equalities in the conclusions and predicate C(·) in the premises.
2. IfM has a Fagin-inverse (quasi-inverse), then there exists a Fagin-inverse (quasi-inverse)

of M specified by a set of tgds from T to S with disjunctions and equalities in the con-
clusions and predicate C(·) in the premises.

3. If M has a Fagin-inverse, there exists a Fagin-inverse of M specified by a set of tgds
from T to S with inequalities and predicate C(·) in the premises.

Parts 1) and 2) of the theorem follow from algorithm Inverse, while part 3) follows
from algorithm Fagin-Inverse. Fagin et al. [20, 21] use a slightly different language to
specify quasi-inverses of mappings specified by st-tgds. In particular, they use tgds with
inequalities and predicate C(·) in the premises and disjunctions (without equalities) in the
conclusions. It is not difficult to see that in the output of algorithm Inverse one can replace
the equalities in the conclusions of dependencies by inequalities in the premises as is outlined
in the following example.

I Example 35. Consider the mapping M in Example 28, that is, M is specified by the
dependencies A(x, y) → S(x, y) and B(x) → S(x, x). In that example, we compute a
maximum recoveryM′ ofM specified by the set of dependencies

S(x, y) ∧C(x) ∧C(y) → A(x, y) ∨ (B(x) ∧ x = y), (9)
S(x, x) ∧C(x) → A(x, x) ∨B(x).

Notice that from (9) we can generate two formulas depending on whether x = y or x 6= y

obtaining the set

S(x, y) ∧C(x) ∧C(y) ∧ x 6= y → A(x, y),
S(x, y) ∧C(x) ∧C(y) ∧ x = y → A(x, y) ∨B(x), (10)

S(x, x) ∧C(x) → A(x, x) ∨B(x). (11)
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Finally we can use variable substitutions to eliminate the equality in (10). In that case the
obtained dependency is equivalent to (11), and thus the final set of dependencies is

S(x, y) ∧C(x) ∧C(y) ∧ x 6= y → A(x, y),
S(x, x) ∧C(x) → A(x, x) ∨B(x).

J

It was shown by Arenas et al. [6](Lemma 4.2) that if from the output of algorithm
Inverse we eliminate the equalities with the process outlined in the above example, then
the obtained mapping is still a maximum recovery ofM. By a different procedure Fagin et
al. [20] showed that for mappings specified by st-tgds that has a quasi-inverse, there exists a
quasi inverse specified by a set of tgds with inequalities and predicate C(·) in the premises
and disjunctions in the conclusions. Thus we have the following.

I Theorem 36 ([6, 20]). LetM be a mapping from S to T specified by st-tgds.
1. M has a maximum recovery specified by a set of tgds from T to S with inequalities and

predicate C(·) in the premises and disjunctions in the conclusions.
2. IfM has a quasi-inverse, then there exists a quasi-inverse ofM specified by a set of tgds

from T to S with inequalities and predicate C(·) in the premises and disjunctions in the
conclusions.

We know what languages are sufficient to specify inverses but, are all the features of these
languages strictly needed to specify inverses? For example, do we really need disjunctions to
specify maximum recoveries and quasi-inverses? Do we really need predicate C(·) to specify
Fagin-inverses? In what follows we answer these questions.

The first result that we report was proved by Fagin et al. [20, 21], and states that
predicate C(·) is strictly necessary to specify Fagin-inverses.

I Theorem 37 (Necessity of C(·) [20]). There exists a mappingM specified by st-tgds that
has a Fagin-inverse but does not have a Fagin-inverse specified by tgds with inequalities in
the premises and disjunctions in the conclusions (without using predicate C(·)).

I Example 38. Consider the mappingM specified by the st-tgds A(x, y) → ∃z
(
S(x, z) ∧

S(z, y)
)
. It can be shown that M is Fagin-invertible. In fact, the mapping M′ specified

by S(x, z) ∧ S(z, y) ∧ C(x) ∧ C(y) → A(x, y) is a Fagin-inverse of M. Fagin et al. [20]
show that M does not have a Fagin-inverse that does not use C(·). To see the intuition
of the failure, lets show that if we delete the C(·) predicates in the definition of M′, the
resulting mapping is no longer a Fagin-inverse of M. Thus consider the mapping M′′
specified by S(x, z)∧S(z, y)→ A(x, y) and assume thatM′′ is a Fagin-Inverse ofM. Then
for every source instance I we have that (I, I) ∈ M ◦ M′′. Now consider the instance
I = {A(1, 2), A(2, 1)}. Since (I, I) ∈ M ◦M′′ we know that there exists an instance K
such that (I,K) ∈ M and (K, I) ∈ M′′. Thus, by the definition ofM, we have that there
exists elements a, b such that S(1, a), S(a, 2), S(2, b), S(b, 1) ∈ K. Then by definition ofM′′
we have that A(a, b), A(b, a) ∈ I and thus, either a = 1 and b = 2, or a = 2 and b = 1.
Assume first that a = 1 and b = 2, then we have that S(1, 1), S(2, 2) ∈ K which implies that
A(1, 1), A(2, 2) ∈ I which is a contradiction. If we assume that a = 2 and b = 1 we obtain
the same contradiction. Notice that we cannot obtain this contradiction withM′ since I has
as solution under M the instance K ′ = {A(1, n), A(n, 2), A(2,m), A(m, 2)} with n and m

different null values. Moreover, K ′ has I as solution underM′ and thus (I, I) ∈M◦M′. J

One can prove a stronger result for the case of maximum recoveries, namely that predicate
C(·) is needed even if we allow the full power of First-Order logic.
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I Theorem 39 (Necessity of C(·) for maximum recoveries [10]). There exists a mapping M
specified by st-tgds that has no maximum recovery specified by First-Order sentences that do
not use predicate C(·).

The following result shows that we need either inequalities in the premises or equalities in
the conclusions of dependencies in order to specify Fagin-inverses. This immediately implies
the necessity of these features to specify quasi-inverses and maximum recoveries.

I Theorem 40 (Necessity of either = or 6= [20]). There exists a mapping M specified by
st-tgds that has a Fagin-inverse but does not have a Fagin-inverse specified by tgds with
predicate C(·) in the premises and disjunctions in the conclusions.

Fagin et al. [21] use the mapping M in Example 32 to show the necessity of either
inequalities in the premises of equalities in the conclusions to specify Fagin-inverses. The
only remaining property that we need to prove is that disjunctions are necessary for quasi-
inverses and maximum recoveries.

I Theorem 41 (Necessity of ∨ [34, 20]).
1. There exists a mapping M specified by st-tgds that has no maximum recovery specified

by tgds with predicate C(·) in the premises and equalities in the conclusions.
2. There exists a mappingM specified by st-tgds that has a quasi-inverse but has no quasi-

inverse specified by tgds with inequalities and predicate C(·) in the premises.

6 Query Language-Based Inverses of Schema Mappings

In the data exchange scenario, the standard procedure used to exchange data with a mapping
is based on the chase procedure [18] (See Chapter 1 for a comprehensive study of the chase
procedure in data exchange). More precisely, given a mapping M and a source database
I, a canonical translation of I according to M is computed by chasing I with the set of
dependencies definingM [18]. Thus, when computing an inverse ofM, it would be desirable
from a practical point of view to obtain a mapping M′ where the chase procedure can be
used to exchange data. Unfortunately, the notions of inverse that we have introduced in the
previous sections, express inverses in some mapping languages which include features that
are difficult to use in practice. The most important of those issues is the use of disjunctions
in the conclusion of the mapping rules.

To provide a solution for the aforementioned issue, Arenas et. al [6] introduce a query-
language based notion of inverse called C-maximum recovery, with C a class of queries. The
idea is that when one focuses on particular query languages one can obtain inverses with
better properties regarding the languages needed to specify these inverses. In particular,
Arenas et al. [6] proved that when one focuses on conjunctive queries, one can obtain inverses
that can be expressed in a chaseable language.

The main intuition behind the notion proposed by Arenas et al. [6] is to use queries
to measure the amount of information that a mapping M′ can recover with respect to a
mappingM. LetM be a mapping from S to T,M′ a mapping from T to S. Notice that
M◦M′ is a mapping that goes from S to T and then to S again. Thus one can measure
the amount of information recovered byM′ by using queries over S. Let Q be a query over
S, then we say thatM′ recovers sound information w.r.t. Q underM if for every instance
I it holds that

certainM◦M′(Q, I) ⊆ Q(I).
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Thus, by posing the query Q over the space of solutions for I underM◦M′, one can only
obtain tuples that are already in the evaluation of Q over the original instance I. This
notion can be generalized to a class C of queries, which gives rise to the notion of C-recovery.

I Definition 42 ([6]). LetM be a mapping from S to T,M′ a mappings from T to S, and
C a class of queries over S. Then M′ is a C-recovery of M if for every query Q ∈ C and
every source instance I it holds that

certainM◦M′(Q, I) ⊆ Q(I).

As for the definition of maximum recovery, one can compare different C-recoveries. Let
M′ and M′′ be C-recoveries of M, and suppose that for every query Q ∈ C and source
instance I, it holds that

certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I) ⊆ Q(I).

Clearly, the mappingM′ is better thanM′′ to recover information w.r.t. queries in C, since
certainM◦M′(Q, I) is closer to Q(I) than certainM◦M′′(Q, I). This discussion naturally
gives rise to the notion of C-maximum recovery.

I Definition 43 ([6]). Let M be a mapping from S to T, and C a class of queries over S.
ThenM′ is a C-maximum recovery ofM if
1. M′ is a C-recovery ofM, and
2. for every C-recoveryM′′ ofM, it holds that certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I).

Before stating some general results regarding C-maximum recoveries and the relationship
with the notions presented in the previous sections, let us show some examples on what is the
influence of the class C of queries in the notion of C-maximum recovery. Before presenting
the example, we note that if M′ is a maximum recovery of M, then M′ is a C-maximum
recovery ofM for every class C of queries [8]. This is not difficult to show given the set of
tools for maximum recoveries proposed by Arenas et al. [11] (see [34, 8] for details on the
relationship between maximum recoveries and C-maximum recoveries).

I Example 44. LetM be specified by these two st-tgds:

A(x, y) → R(x, y), B(x) → R(x, x).

It can be shown that mappingM1 specified by dependency:

R(x, y) → A(x, y) ∨
(
B(x) ∧ x = y

)
is a UCQ-maximum recovery ofM (in factM1 is a maximum recovery ofM). To specify
M1, we have used a disjunction in the conclusion of the dependency. This disjunction is
unavoidable if we use UCQ to retrieve information [8]. On the other hand, if we focus on
CQ to retrieve information, then, intuitively, there is no need for disjunctions in the right-
hand side of the rules as conjunctive queries cannot extract disjunctive information. In fact,
it can be shown that a CQ-maximum recovery ofM is specified by dependency:

R(x, y) ∧ x 6= y → A(x, y). J

The example suggests that the notion of CQ-maximum recovery is a strict generaliza-
tion of the notion of UCQ-maximum recovery. More importantly, it shows that for different
choices of the class of queries used, we obtain different notions of inverses of schema map-
pings. The following results show that one can actually characterize the notions of Fagin-
inverse and quasi-inverse for particular classes of queries. In the theorem we use UCQ 6= to
denote the class of unions of conjunctive queries with inequalities.
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I Theorem 45 ([6, 8]). LetM be a mapping specified by a set of st-tgds.
1. Assume that M has a Fagin-inverse. Then M′ is a Fagin-inverse of M if and only if
M′ is a UCQ6=-maximum recovery ofM.

2. Assume that M has a quasi-inverse. There exists a class CM that depends on M such
thatM′ is a quasi-inverse ofM if and only ifM′ is a CM-maximum recovery ofM.

Arenas et al. [6, 8] provide several tools to work with C-maximum recoveries including
characterizations for the mappings that admit C-maximum recoveries and a general necessary
and sufficient condition for the existence of C-maximum recoveries. We refer the reader
to [34, 8] for a comprehensive study of C-maximum recoveries, and in particular, for a
definition of the class CM used in part 2) of Theorem 45.

The language of CQ-maximum recoveries
Arenas et al. [6] study several properties about C-maximum recoveries when one focuses
on CQ as the class C of queries. In particular, they provide an algorithm to compute
CQ-maximum recoveries for st-tgds showing the following theorem.

I Theorem 46 ([6]). Every mapping specified by a set of st-tgds has a CQ-maximum recov-
ery, which is specified by a set of tgds with inequalities and predicate C(·) in the premises.

Notice that the language needed to express CQ-maximum recoveries of st-tgds has the
same good properties as st-tgds for data exchange. In particular, the language is chaseable
in the sense that the standard chase procedure can be used to obtain a canonical solution.
Thus, compared to the notions of Fagin-inverse, quasi-inverse, and maximum recovery, the
notion of CQ-maximum recovery has two advantages: (1) every mapping specified by st-
tgds has a CQ-maximum recovery (which is not the case for Fagin-inverses and quasi-
inverses), and (2) such a CQ-maximum recovery can be specified in a mapping language with
good properties for data exchange (which is not the case for quasi-inverses and maximum
recoveries).

The algorithm proposed by Arenas et al. [6] to compute CQ-maximum recoveries is based
on the algorithm for computing maximum recoveries reported in the previous section. After
computing a maximum recovery, the algorithm does a post-processing step to eliminate the
disjunctions in the conclusions of the dependencies by using a notion of conjunctive-query
products [6, 34]. Given two conjunctive queries Q1 and Q2, the product query Q1 × Q2 is,
intuitively, the closest conjunctive query to both Q1 and Q2 in terms of homomorphisms.
Let us to introduce some terminology to formalize this notion.

Let Q1 and Q2 be two n-ary conjunctive queries, and assume that x̄ is the tuple of free
variables of Q1 and Q2. The product of Q1 and Q2, denoted by Q1×Q2, is defined as a k-ary
conjunctive query (with k ≤ n) constructed as follows. Let f(·, ·) be a one-to-one function
from pairs of variables to variables such that:
1. f(x, x) = x for every variable x in x̄, and
2. f(y, z) is a fresh variable (mentioned neither in Q1 nor in Q2) in any other case.
Then for every pair of atoms R(y1, . . . , ym) in Q1 and R(z1, . . . , zm) in Q2, the atom
R(f(y1, z1), . . . , f(ym, zm)) is included as a conjunct in the query Q1 × Q2. Furthermore,
the set of free variables of Q1 × Q2 is the set of variables from x̄ that are mentioned in
Q1 ×Q2. For example, consider conjunctive queries:

Q1(x1, x2) : P (x1, x2) ∧R(x1, x1),
Q2(x1, x2) : ∃y (P (x1, y) ∧R(x2, x2)).
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Then we have that Q1 ×Q2 is the conjunctive query:

(Q1 ×Q2)(x1) : ∃z1∃z2 (P (x1, z1) ∧R(z2, z2)).

In this case, we have used a function f such that f(x1, x1) = x1, f(x2, y) = z1, and
f(x1, x2) = z2. As shown in the example, the free variables of Q1 × Q2 do not neces-
sarily coincide with the free variables of Q1 and Q2. The definition of the product of queries
is motivated by the standard notion of Cartesian product of graphs. In fact, if Q1 and Q2
are Boolean queries constructed by using a single binary relation E(·, ·), then the product
Q1 ×Q2 exactly resembles the graph-theoretical Cartesian product [27].

The product of queries is the key ingredient in the algorithm CQ-Max-Recovery pro-
posed by Arenas et al. [6] to compute CQ-maximum recoveries. Given a mappingM spe-
cified by st-tgds, CQ-Max-Recovery first uses algorithm Inverse to compute a maximum
recoveryM′ ofM. Then it eliminates equalities in the conclusions of the dependencies defin-
ingM′ by adding the necessary inequalities in the premises of the dependencies (as outlined
in Example 35). Finally, the algorithm replaces the remaining disjunctions Q1∨Q2∨· · ·∨Qk
in the conclusions of the tgds, by the conjunctive query Q1×Q2×· · ·×Qk. The final output
of CQ-Max-Recovery is a set of tgds with inequalities and predicate C(·) in the premises
(without disjunctions in the conclusions).

I Example 47. Assume that the output of Inverse contains the dependency

A(x, y) ∧C(x) ∧C(y) →
(
P (x, y) ∧R(x, x)

)
∨ ∃z

(
P (x, z) ∧R(y, y)

)
.

Then algorithm CQ-Max-Recovery replaces this dependency by

A(x, y) ∧C(x) ∧C(y) → ∃u∃v
(
P (x, u) ∧R(v, v)

)
,

since ∃u∃v (P (x, u)∧R(v, v)) is the product of P (x, y)∧R(x, x) and ∃z
(
P (x, z)∧R(y, y)

)
. J

Arenas et al. [6] also study the minimality of the language used to express CQ-maximum
recoveries, showing that inequalities and predicate C(·) are both needed to express the CQ-
maximum recoveries of mappings specified by st-tgds. Arenas et al. [8] also show that the
class CQ is optimal to obtain the desired result of a notion of inverse with good properties
for data exchange. In particular, if one uses either CQ6= or UCQ 6= in the definition of C-
maximum recovery, then the language needed to express inverses is no longer chaseable [8].

7 Inversion in the Presence of Null Values in Source Instances

Fagin et al. [22] made the observation that almost all the literature about data exchange
and, in particular, the literature about inverses of schema mappings, assume that source
instances do not contain null values. Most of the results regarding inverses that we have
reported so far are proved for the case of mappings in which the source instances contain
only constant values while target instances may contain constant and null values. Fagin
et al. [22] go a step further and propose new refined notions for inverting mappings that
consider nulls in the source. In particular, they propose the notions of extended inverse,
and of extended recovery and maximum extended recovery. In this section, we review the
definitions of the latter two notions and compare them with the previously proposed notions
of recovery and maximum recovery (for a comprehensive study of the notion of extended
inverse see the work by Fagin et al. [22]).

The first observation to make is that since null values are intended to represent missing
or unknown information, they should not be treated naively as constants [28]. In fact, as
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shown by Fagin et al. [22], if one treats nulls in that way, the existence of a maximum
recovery for mappings given by st-tgds is no longer guaranteed.

I Example 48. Consider a source schema S = {A(·), B(·)} and a target schema T = {S(·)},
and letM be a mapping specified by the st-tgds

A(x) → ∃uS(u)
B(x) → S(x)

From Theorem 24, we know that if source instances only contain constant values, then M
has a maximum recovery. This property holds since, under this assumption, every source
instance I has a witness solution (see Definition 23 and Theorem 24). For example, for the
instance I = {A(1)} the target instance J = {S(n)}, with n a null value, is a witness solution
of I. In fact, if I ′ is any source instance such that J ∈ SolM(I) then SolM(I) ⊆ SolM(I ′).
Assume now that instances of S may contain constant and null values. Then we have that
J is no longer a witness solution of I under M. To see this consider the source instance
I ′ = {B(n)}. Then we have that J ∈ SolM(I ′) but, for example J ′ = {S(2)} is a solution
for I but not for I ′, therefore SolM(I) 6⊆ SolM(I ′), and thus J is not a witness solution of
I. In fact, it can be proved that if source instances may contain null values then I has no
witness solution underM implying thatM has no maximum recovery if null are allowed in
the source. J

Notice that in the above example, nulls in the source are considered as constants when
evaluating the tgds. Since nulls should not be treated naively when exchanging data, Fagin
et al. [22] proposed a new way to deal with null values based on homomorphisms. Recall
that given instances I and I ′ containing constant and null values, a homomorphism from I

to I ′ is a function h that is the identity over constant values, maps nulls to constants or null
values, and is such that if R(a1, . . . , ak) is a fact in I, then R(h(a1), . . . , h(ak)) is a fact in
I ′. Intuitively, in order to treat null values and constants differently, Fagin et al. [22] close
mappings under homomorphisms. This idea is supported by the fact that nulls are intended
to represent unknown data, thus, it should be possible to replace them by arbitrary values.
Formally, the authors introduce the following concept.

I Definition 49 ([22]). LetM be a mapping. The homomorphic extension ofM, denoted
by e(M), is the mapping

e(M) = {(I, J) | there exist I ′, J ′ such that (I ′, J ′) ∈M and there exist
homomorphisms from I to I ′ and from J ′ to J }.

The idea is that for a mapping M that has nulls in source and target instances, one
does not have to consider M but e(M) as the mapping to deal with for exchanging data
and computing mapping operators since e(M) treats nulls in a meaningful way [22]. The
following result shows that with this new semantics one can avoid anomalies as the one
shown in Example 48.

I Theorem 50 ([22]). For every mapping M specified by a set of st-tgds and with nulls in
source and target instances, e(M) has a maximum recovery.

As mentioned above, Fagin et al. [22] go a step further by introducing new notions
of inverse for mappings that consider nulls in the source. More specifically, the authors
introduce the following definitions
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I Definition 51 ([22]). Let M be a mapping from S to T, in which source and target
instances may contain null values. Mapping M′ is an extended recovery of M if (I, I) ∈
e(M) ◦ e(M′), for every instance I of S. Then given an extended recovery M′ of M, the
mapping M′ is a maximum extended recovery of M if for every extended recovery M′′ of
M, it holds that e(M) ◦ e(M′) ⊆ e(M) ◦ e(M′′).

At a first glance, one may think that the notions of maximum recovery and maximum
extended recovery are incomparable. Nevertheless, as shown by Arenas et al. [5] there is a
tight connection between these two notions.

I Theorem 52 ([5]). Let M be a mapping that may have nulls values in source and target
instances. ThenM has a maximum extended recovery if and only if e(M) has a maximum
recovery. Moreover, M′ is a maximum extended recovery of M if and only if e(M′) is a
maximum recovery of e(M).

One of the main result of Fagin et al. [22] regarding maximum extended recoveries is
that every mapping specified by st-tgds having nulls in source and target instances has a
maximum extended recovery. This result is implied by Theorems 50 and 52, and we formalize
it in the following theorem.

I Theorem 53 ([22]). Let M be a mapping specified by st-tgds in which source and target
instances may contain null values. ThenM has a maximum extended recovery.

It was left as an open problem to identify what is the exact language needed to express
maximum extended recoveries [22]. In fact, it is even open whether maximum extended
recoveries can be specified if the full power of First-Order logic is allowed to construct
mappings.

8 Conclusions

As many information-system problems involve not only the design and integration of complex
application artifacts, but also their subsequent manipulation, the definition and implement-
ation of some operators for schema mappings has been identified as a fundamental issue to
be solved [12, 13]. Nowadays, the community recognizes the need to develop techniques to
manipulate these mappings’ specifications and, in particular, the inverse of a schema map-
ping has been identified as one of the fundamental operators to be studied in this area. In
this chapter, we have surveyed the main definition for the inverse operator proposed in the
literature and the results that have been obtained in the last years.

One very important and challenging problem is the interplay between the inverse operator
and other schema mapping operators, in particular the composition of schema mappings [33,
19]. Arenas et al. [9] proved that the mapping that results from composing mappings
specified by st-tgds is not always invertible (even considering the relaxed notion of CQ-
maximum recovery). This opens the question on good notions for inversion and composition
of schema mappings, and a language for expressing mappings, suitable to deal with the
interplay between the two operators [5]. A first attempt and a partial solution for this
problem was given in [9].

The definition of the appropriate semantics for the inverse operator has proven to be a
non-trivial task, in which many sensible decisions had to be taken. In fact, the answer to
each of these decisions has given rise to different semantics for the inverse operator. Some
general questions that one might want to answer include whether we want inverses that are
guaranteed to be consistent in a general scenario, or do we settle for relaxed notions that
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allow only answering conjunctive queries (or other restricted classes of queries)? Certainly,
the latter question involves a tradeoff, since the more general operators usually require more
expressive languages, and their computation is more complex.

The spread of new semantics for the schema mappings, either modified semantics for
mappings specified by standard logical specifications over the relational model [32, 22], or
mappings for data models beyond the relational model, such as XML, which need different
mapping specification languages [4, 2, 36], originates several challenges. Under these new
scenarios, previously defined mapping operators have to be re-studied. This shows the
importance of having general notions of inverse that are not tied to a particular schema
mapping semantic, language or data model. Among the notions that we have presented,
only the notion of maximum recovery is defined in a general setting and can be applied
to abstract mappings independent of the mapping specification language, the semantics
used for logical specifications, or the data model used. Nevertheless, there is not yet clear
consensus about which semantics for the inverse operator is the appropriate one in general,
and we think that particular applications would need to use different inverses depending on
their specific needs. We hope the definitions and results presented in this chapter would be
useful to compare the proposals for inverses, their characteristics, and their applicability in
different contexts.
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Abstract
Schema mappings are an important tool in several areas of database research. Recently, the
topic of reasoning about schema mappings was given attention, in particular revolving around
the central concepts of equivalence and optimality. In this chapter, we survey these results. First,
we introduce relaxed notions of logical equivalence and show their potential for finding optimized
schema mappings. We then look at applications of these concepts to optimization, normalization,
and schema mapping management, as well as the boundaries of computability. We conclude by
giving a glimpse at reasoning about schema mappings in a broader sense by looking at how to
debug schema mappings.
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1 Introduction

Schema mappings are high-level specifications that describe the relationship between two
database schemas. They are an important tool in several areas of database research, notably
in data exchange [16, 8] and data integration [17, 15]. Over the past years, schema mappings
have been extensively studied.

In this chapter, we will focus on the topic of reasoning about schema mappings. Central
to any reasoning task is the concept of implication, and its close relative, equivalence. Since
schema mappings are usually specified by logical formulas, the natural starting point of
finding equivalence between schema mappings is

logical equivalence: schema mappings that are satisfied by the same database instances
are treated as being equivalent.

So now that we have a notion of equivalence, a natural next step is to use it to optimize schema
mappings. That is, finding out the “best” among all equivalent schema mappings given some
optimality criterion. Fortunately, there are algorithms for computing such optimized forms
for a broad range of optimality criteria, as we will explore in Section 5.

Unfortunately, it turns out that logical equivalence is a quite restrictive concept for
common tasks of data exchange. In particular, we can find two schema mappings where one
is clearly preferred to the other, they both work perfectly well for the given data exchange
task, but they are not logically equivalent. Hence we would not find the better one using
optimization procedures for logical equivalence. This is clearly unsatisfactory.
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To remedy this situation, Fagin, Kolaitis, Nash and Popa in [9] introduced relaxed notions
of equivalence: Notions that are less strict than logical equivalence, and therefore admit
more optimization potential. These are

data-exchange equivalence: schema mappings which behave in the same way for
data-exchange are seen as equivalent, and
conjunctive-query equivalence: schema mappings which behave similarly for answer-
ing conjunctive queries on the target database are treated as equivalent.

Therefore, using these notions, two of the prevalent applications of schema mappings can be
reasoned about. The question remains of course: In which cases are there, hopefully efficient,
algorithms for optimization under these relaxed notions of equivalence? This is a complex
question that depends on the class of schema mappings we are interested in. We will talk
about optimization potential and boundaries of computability in Section 6.

The notions of equivalence discussed up to now were primarily concerned with the two
crucial tasks of data exchange and query answering. But beyond that, the area of schema
mapping management [3, 4] poses quite different challenges: Operators of schema mapping
management allow one to e.g. invert schema mappings or extract the essential parts of
mappings.

The task of finding useful notions of equivalence between schema mappings for the
purposes of schema mapping management was taken on by Arenas, Pérez, Reutter and
Riveros in [1]. There they introduced notions of

equivalence in terms of information transfer: schema mappings, which transfer
the same amount of information are seen as equivalent. This notion has two variants,
transferring source information and covering target information.

We will see that important operators of schema mapping management can be characterized
using these equivalence notions and corresponding order relations in Section 7.

Up to now, we have talked about reasoning about mappings in a very strict sense. In the
broad sense, reasoning about schema mappings covers a number of tasks related to working
with schema mappings. When understanding and designing mappings, questions such as
“What is this schema mapping doing?” and “Why is this schema mapping not doing what is
expected?” are some of the first that are asked. We will give a glimpse at such reasoning
tasks in a broader sense, like analyzing and debugging schema mappings, in Section 8.

1.1 Organization

In Section 2, we will introduce the necessary concepts. The main parts of this chapter are:
Concepts: Where we will introduce notions of equivalence in Section 3 and then continue
to discuss notions of optimality in Section 4.
Applications: Where we will talk about optimization under logical equivalence in
Section 5. After that, we look at the boundaries of computability in Section 6. We will
finish by discussing applications to schema mapping management in Section 7.
Reasoning in the Broad Sense: Where we will look at analyzing and debugging
schema mappings in Section 8.

We finish this chapter with a conclusion and outlook in Section 9.
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2 Preliminaries

In these preliminaries, we will first introduce database schemas and the relationships such as
homomorphisms that may exist between database instances. Building upon that, we will
define schema mappings and solutions to problems concerning schema mappings. After that,
we describe the logical formalisms, called dependencies, on which schema mappings can be
based. We conclude this section by introducing an algorithm called the chase.

2.1 Schemas
A schema R = {R1, . . . , Rn} is a set of relation symbols Ri. Each relation symbol Ri has a
fixed arity. An instance I over a schema R associates a relation RIi to each relation symbol
in R. We call a relation symbol, together with some position an attribute. Sometimes, we
associate a name to such an attribute. If ~v ∈ RIi , we call ~v a tuple of Ri in I and also say
that the atom Ri(~v) is contained in I. Instances in the context of this chapter are always
considered to be finite. If the meaning is clear, we will not distinguish between syntax and
semantics, e.g. relation symbols and relations. For two instances I, J , we write I ⊆ J to say
that the set of atoms contained in I is a subset of the set of atoms contained in J .

The domain of an instance I consists of two types of values, constants and variables. We
write dom(I) for the domain, const(I) for the constants and var(I) for the variables. Variables
are also called labeled nulls or marked nulls. We assume that dom(I) = var(I)∪ const(I) and
var(I) ∩ const(I) = ∅. An instance is called ground, if var(I) = ∅. Instances are considered
ground, unless specifically noted otherwise. In the same way as for instances, we can also
refer to the domain, variables and constants of an atom, and speak of ground atoms. We
usually denote labeled nulls by italic font (x) and constant symbols by sans-serif font (a).

Let S = {S1, . . . , Sn} and T = {T1, . . . , Tm} be schemas with no relation symbols in
common. We write (S, T ) to denote the combined schema {S1, . . . , Sn, T1, . . . , Tm}. If I is
an instance of S and J is an instance of T , then (I, J) denotes the instance of the schema
(S, T ), consisting of the combined relations.

Let I, I ′ be instances. A substitution σ is a function dom(I) → dom(I ′) which replaces
variables by constants or variables, but leaves constants unchanged, i.e., for all c ∈ const(I)
it holds that σ(c) = c. We write σ = [x1 7→ a1, . . . , xn 7→ an] if σ maps xi ∈ var(I) to
ai ∈ dom(I) and for all v ∈ dom(I) not in {x1, . . . , xn}, σ(v) = v.

A homomorphism h : I → I ′ is a substitution dom(I) → dom(I ′) (i.e. leaves constants
unchanged) and for all atoms R(~x) it holds that R(~x) ∈ I implies R(h(~x)) ∈ I ′. If there
exists such an h, we write I → I ′. We say that I and I ′ are homomorphically equivalent,
denoted I ↔ J , iff I → I ′ and I ′ → I. If I → I ′ but not in the other direction, I is called
more general than I ′, and I ′ is called more specific than I.

A homomorphism h : I → I ′ is called an isomorphism, iff h−1 is defined, and is a
homomorphism from I ′ to I. If such an isomorphism exists, we write I ∼= I ′ and say that
I and I ′ are isomorphic. A homomorphism h : I → I is called an endomorphism. An
endomorphism is proper if it reduces the domain, that is, it is a surjective function (i.e. onto).

An instance I∗ ⊆ I is called a core of I , if I → I∗ and I∗ cannot be reduced by a proper
endomorphism. That is, there is no I ′ ⊂ I∗ such that I → I ′. Cores have several important
properties. The core is unique up to isomorphism, i.e. if I ′ and I ′′ are cores of I, then
I ′ ∼= I ′′. Therefore, we may talk about the core of I and refer to it as core(I). Furthermore,
for instances I and I ′ it holds that I ↔ I ′ iff core(I) ∼= core(I ′).
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2.2 Schema mappings
We now introduce schema mappings, which specify the relationship between schemas. Based
on the data-exchange problem, we will then explore specific instances called solutions, universal
solutions and the core of the universal solutions. These are three of the key notions for
working with schema mappings.

A schema mappingM = (S, T,Σ) is given by a source schema S, a target schema T , and
a set Σ of dependencies over S and T in some logical formalism. An instance (I, J) ofM
is an instance of the schema (S, T ), for which (I, J) |= Σ holds. The instance I is called
the source instance and is usually ground, whereas J is called the target instance and may
contain variables. If the source schema S and the target schema T are clear, or the specific
schema is not of primary interest, we will identify a schema mappingM = (S, T,Σ) with the
set Σ of dependencies. We sometimes refer to schema mappings just as mappings.

A target instance J is called a solution for I underM if (I, J) |= Σ. The set of all solutions
for I underM is denoted by Sol(I,M).

Let M = (S, T,Σ) be a schema mapping and I a source instance. A target instance
J is a universal solution for I under M iff it is a solution for I under M and for all
J ′ ∈ Sol(I,M) we have that J → J ′. The set of all universal solutions is denoted by
UnivSol(I,M). An important property of universal solutions is that if J and J ′ are universal
solutions for a source instance I underM, they are homomorphically equivalent, i.e. J ↔ J ′.
Therefore the cores of J and J ′ are isomorphic, that is core(J) ∼= core(J ′) (cf. [10]).

The core of the universal solutions core(I,M) is given by core(I,M) = core(J) for
any J ∈ UnivSol(I,M). Any universal solution J can be taken for computing the core, since
the core of homomorphically equivalent instances is unique up to isomorphism. Note that the
core of the universal solutions core(I,M) need not necessarily be a solution for I underM.

2.3 Dependencies
Here we will focus on the logical formalisms called dependencies on which schema mappings
are based. We will first define embedded dependencies and the important subtypes tuple-
generating dependencies and equality-generating dependencies. These are all based on
first-order logic. So after that, we will cover second-order dependencies. We conclude this
section by a discussion of conjunctive queries.
An embedded dependency over a schema R is a first-order formula of the form

∀~x (ϕ(~x)→ ∃~y ψ(~x, ~y))

where ϕ is a conjunction of atoms over R called the antecedent and ψ is a conjunction of
atoms over R and equalities called the conclusion. Furthermore, ϕ contains at least one
atom, and each x ∈ ~x occurs at least once in ϕ.

The following notational convention will be adopted to save some space and ease reading.
For dependencies, we will mostly omit universal quantifiers. All variables occurring in the
antecedent are implicitly universally quantified. We will sometimes also omit existential
quantifiers. All variables occurring just in conclusions are implicitly existentially quantified.
Therefore, for the dependency ∀~x (ϕ(~x)→ ∃~y ψ(~x, ~y)), we may write ϕ(~x)→ ψ(~x, ~y).
A tuple-generating dependency (tgd) is an embedded dependency of the form

∀~x (ϕ(~x)→ ∃~y ψ(~x, ~y))
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over a schema R where both ϕ and ψ are conjunctions of atoms over R. Tuple-generating
dependencies can be viewed as generalizations of inclusion dependencies, in particular in the
form of foreign-key constraints. However, tgds cannot express key constraints.
An equality-generating dependency (egd) is an embedded dependency of the form

∀~x (ϕ(~x)→ xi = xj)

over a schema R where xi and xj are contained in ~x. Equality-generating dependencies
generalize functional dependencies. These are in particular used to express key constraints.
For a schema mappingM = (S, T,Σ), an embedded dependency φ(~x)→ ψ(~x, ~y) is called a
source-to-target dependency (s-t dependency) if ϕ is defined over S and ψ over T . It is
called a target dependency if both ϕ and ψ are defined over the T and called a source
dependency if both are defined over S.

A second-order tgd (SO tgd) over source schema S and target schema T has the form

∃~f (τ1 ∧ . . . ∧ τn) where each τi has the form ∀~x (ϕ(~x) ∧ χ(~x)→ ψ(~x))

in which ϕ is conjunctions of atoms over S, ψ is a conjunction of atoms over T and χ is
a conjunction of equalities. As values, atoms and equalities may contain function terms
based on ~f . That is, second-order tgds extend the notion of (first-order) s-t tgds by allowing
existential quantification over function symbols. All variables from each ~x have to be safe. A
variable is safe, if it occurs in the relational atoms of ϕi or is derived through equations or
function applications from safe variables. Formal details can be found in [11].

By definition, it is clear that SO tgds are closed under conjunctions. A set of SO tgds
can therefore be identified with a single SO tgd. The most important property of SO tgds is
that they are also closed under composition [11].

Conjunctive queries. We conclude this section about logical formalisms by introducing
conjunctive queries. They are important for one of the relaxed notions of equivalence that
we are going to introduce.

A (Boolean) conjunctive query q over a schema R is a logical formula that has the
form ∃~x (A1 ∧ . . . ∧ An) where each Ai is an atom over relation symbols from R, and all
variables occurring in q are from ~x.

The certain answers to a (Boolean) conjunctive query q over T on a source instance I
under a schema mappingM, assuming that Sol(I,M) 6= ∅ are given as follows:

cert(q, I,M) =
⋂
J∈Sol(I,M) q(J)

The certain answers to a (Boolean) conjunctive query q on I underM can be obtained directly
from a universal solution [8], that is J ∈ UnivSol(I,M) implies cert(q, I,M) = ground(q(J))
where ground(q(j)) denotes the ground atoms of q(j), i.e., the atoms not containing variables.
This concept can be naturally generalized to non-Boolean conjunctive queries.

2.4 The chase
The chase procedure [2] is an algorithm that computes universal solutions for a variety of
schema mappings based on different dependency formalisms [8]. For a schema mapping
M = (S, T,Σ) based on (finite sets of) s-t tgds, target tgds and egds, and SO tgds, the
following holds: Given a source instance I, the chase procedure returns a universal solution J
for I underM, if it terminates and a universal solution exists. This J is called the canonical
universal solution for I underM and written as chase(I,M).
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The chase procedure computes a universal solution by a series of chase steps, based on a
source instance and an initially empty target instance. In every step, a single dependency
or multiple dependencies that are violated (i.e. not satisfied) by the current source and
target instance are applied by adding further tuples to the target instance to fulfill those
dependencies. We then say that these dependencies fire.

In the presence of target tgds, the chase does not always terminate. A sufficient condition
for termination is that the set of target tgds is weakly acyclic. Intuitively, this criterion
describes that the target tgds may not enter cycles which create new labeled nulls at each
pass through the cycle. We refer to [19] and [8] for detailed definitions and further pointers.

We will use three variants of the chase in this chapter. They are in general based on s-t tgds,
target tgds and target egds:

the standard chase: in which for each step, one dependency that is violated is applied
the parallel chase: in which for each step, all dependencies that are violated are applied
the SO tgd chase: which is the chase procedure for SO tgds

More details and formal definitions of different variants of the chase procedure can be found
in Chapter 1 of this book dedicated to the chase procedure.

2.5 Summary

This section introduced the most important preliminaries for the remainder of this chapter.
A brief summary can be found in Figure 1.

A schema mappingM = (S, T,Σ) is given by
a source schema S
a target schema T
a set Σ of dependencies over S and T in some logical formalism

Important dependency formalisms are
tuple-generating dependencies (tgds)
∀~x (ϕ(~x)→ ∃~y ψ(~x, ~y))

equality-generating dependencies (egds)
∀~x (ϕ(~x)→ xi = xj)

second-order tgds (SO tgds)
∃~f (τ1 ∧ . . . ∧ τn) where each τi has the form
∀~x (ϕ(~x) ∧ χ(~x)→ ψ(~x)) and χ is a conjunction of equalities

Figure 1 Schema mappings and dependencies (short summary).

3 Equivalence

In this first part on concepts, we will introduce the central notions of equivalence (this section)
and optimality (next section) for schema mappings. We therefore start by covering the
fundamental notions of equivalence we can use to compare schema mappings. We first treat

logical equivalence between schema mappings, which equates schema mappings that
are satisfied by the same instances.
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Building upon that, we look at relaxed notions of equivalence introduced by Fagin et al. [9].
These notions characterize schema mappings that are not necessarily logically equivalent,
but nevertheless indistinguishable for a variety of purposes. The first such relaxation is

data-exchange equivalence (DE-equivalence), which equates schema mappings that
exhibit the same behavior for data exchange. After that, we discuss
conjunctive-query equivalence (CQ-equivalence), which equates schema mappings
that yield the same certain answers to conjunctive queries.

If we need to compare schema mappings which differ e.g. in their target schemas, the amount
of source information transferred becomes important, independently of how exactly this
information is represented in the target instance [1]. This gives rise to

equivalence w.r.t. source information transferred (S-equivalence). The corres-
ponding notion for differing source schemas is
equivalence w.r.t. target information covered (T-equivalence) based on the amount
of target information that can be reconstructed by the schema mappings.

3.1 Notions of equivalence
We will now motivate and define these notions of equivalence. We will always start with an
example, seeing why the respective notion naturally arises, and after that formally define
that notion. Let us start by looking at such an example.

I Example 1. Over the source schema S = {P} and target schema T = {Q}, let the schema
mappingM = (S, T,Σ) be given by the following dependency:

P (x, y) ∧ P (z, y)→ Q(x, y)

This tgd is very similar to a simple copy tgd from relation P to Q. However, the additional
conjunct P (z, y) in the antecedent seems superfluous. Indeed, since the variable z does not
occur anywhere else in the dependency, and P (z, y) is satisfied whenever P (x, y) is satisfied,
it is easy to see that the conjunct could just be left out.

To be more precise, the schema mappingM and the schema mappingM′ = (S, T,Σ′)
given by the dependency

P (x, y)→ Q(x, y)
are satisfied by exactly the same pairs of instances. J

In the previous example, we saw logical equivalence at work. This is the most natural notion
to start with for reasoning about schema mappings, since our schema mappings are based on
dependencies given in a logical formalism.

I Definition 2. LetM = (S, T,Σ) andM′ = (S, T,Σ′) be two schema mappings. M and
M′ are logically equivalent if for every source instance I and every target instance J ,

(I, J) |= Σ⇔ (I, J) |= Σ′

We denote logical equivalence byM≡log M′. J

To avoid confusion, we do not use ≡ without subscript in this chapter. The following
formalization in terms of solutions for I underM characterizes the same notion. Two schema
mappingsM andM′ are logically equivalent, if for every source instance I, it holds that

Sol(I,M) = Sol(I,M′)

This characterization follows immediately from the definition of solutions. The use of data
exchange terminology for describing logical equivalence will be beneficial as we go on.

Chapte r 04



104 Reasoning about Schema Mappings

I Example 3. Over the source schema S = {P} and target schema T = {Q,R}, let the
schema mappingM = (S, T,Σ) be given by the following dependencies:

P (x, y)→ Q(x, y)
R(x, y)→ R(x, x)

Let us look at the result of data exchange under this schema mapping. We consider the source
instance I = {P (a, b)} and compute the chase result J = chase(I,M) = {Q(a, b)}. During
this chase, the second dependency never fires. Even more striking, there is no universal
solution for any I underM which ever materializes a tuple of R.

So, for the purposes of data exchange which is usually concerned with universal solutions,
we would like to simplifyM into the schema mappingM′ = (S, T,Σ′) given by the dependency

P (x, y)→ Q(x, y)

Unfortunately,M andM′ are not logically equivalent, they do not have the same solutions
for every source instance. Consider, for the source instance I = {P (a, b)}, the solution
J = {Q(a, b), R(a, b)}. This clearly violatesM, since the tuple R(a, a) would be required by
the second dependency.

But, as we have seen before, for the purposes of data exchange, the schema mappings
are “just as good”. To be more precise, the schema mappingsM andM′ have the same
universal solutions for all source instances. J

The previous example motivates the introduction of the first relaxed notion of equivalence
introduced by Fagin et al. [9], data-exchange equivalence (DE-equivalence), which does not
distinguish schema mappings which behave in the same way for the purposes of data exchange,
or more formally:

I Definition 4. [9] LetM = (S, T,Σ) andM′ = (S, T,Σ′) be two mappings. M andM′
are data-exchange equivalent, if for every source instance I,

UnivSol(I,M) = UnivSol(I,M′)

We denote data-exchange equivalence byM≡DE M′. J

Since for logical equivalence all solutions coincide, and for data-exchange equivalence the
universal solutions coincide, it is clear that from M ≡log M′, it follows that M ≡DE M′
for all schema mappings. With that, it is appropriate to talk about a relaxation of logical
equivalence. Also, in Example 3, we have already seen that this relaxation is proper (i.e.
both notions are distinct) for schema mappings based on s-t tgds and target tgds.

I Example 5. Over the source schema S = {P} and target schema T = {Q}, let the schema
mappingM = (S, T,Σ) be given by the following dependencies:

P (x, y)→ Q(x, x)
Q(x, y)→ Q(x, x)

Now, compared to the previous example, the source-to-target dependency is not anymore a
simple copy tgd, and the relation symbol occurring in the target dependency actually also
occurs in the source-to-target one. Can we, as in the previous example, simply remove the
second dependency, gaining the schema mappingM′ = (S, T,Σ′) given by

P (x, y)→ Q(x, y)
while still upholding data-exchange equivalence? It is now a bit more subtle to see why
M and M′ do not have the same universal solutions. The more so as for the source
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instance I = {P (a, b)}, both schema mappings have the same canonical universal solution
J = chase(I,M) = chase(I,M′) = {Q(a, a)}.

But now consider J ′ = {Q(a, a), Q(u, v)} where u and v are variables. It is clear that J ′
is still a universal solution underM′, since it is a solution underM′, and J ′ maps to the
universal solution J through the homomorphism [u 7→ a, v 7→ a]. Yet to satisfy M, since
u 6= v, it would require the atom Q(u, u) to be present. So J ′ is not a universal solution for
I underM.

This state of affairs is clearly unsatisfactory if we look at a conjunctive query like
∃x, y Q(x, y). If we want the certain answer to this query, a “strange” universal solution like
J ′ will not affect the result. The tuple Q(u, v) from J ′ will not be contained in the certain
answers, since it is not contained in J . Indeed, M and M′ will yield the same certain
answers to conjunctive queries. J

This example directly leads us to conjunctive-query equivalence (CQ-equivalence). It is based
on the behavior of conjunctive queries, posed against the solutions of a schema mapping.

I Definition 6. [9] Let M = (S, T,Σ) and M′ = (S, T,Σ′) be two schema mappings. M
andM′ are conjunctive-query equivalent, if for every source instance I and every conjunctive
query q, either Sol(I,M) = Sol(I,M′) = ∅ or

cert(q, I,M) = cert(q, I,M′)

We denote conjunctive-query equivalence byM≡CQ M′. J

By this definition, there can be two reasons for schema mappings to be CQ-equivalent. The
first is that both schema mappings could have no solutions at all. In this case, we say that
the schema mappings are CQ-equivalent. The other case is of course that there are solutions
to both schema mappings, and the certain answers to queries against them coincide.

The original definition of CQ-equivalence given above is based on the certain answers to
conjunctive queries. However, an alternative characterization is possible:

I Proposition 7. [9] LetM = (S, T,Σ) andM′ = (S, T,Σ′) be two schema mappings such
that the following holds.

Sol(I,M) 6= ∅ implies UnivSol(I,M) 6= ∅

M andM′ are conjunctive-query equivalent, if for every source instance I, either Sol(I,M) =
Sol(I,M′) = ∅ or

core(I,M) = core(I,M′) J

A few points are of interest now. The first crucial question is for which classes of schema
mappings it holds that Sol(I,M) 6= ∅ implies UnivSol(I,M) 6= ∅. That is, for which kinds
of schema mappings is there always a universal solution whenever any solution exists. In
[9], it is shown that a sufficient condition is to have schema mappings defined by s-t tgds,
target egds, target tgds that have a terminating chase, as well as to SO tgds. In particular,
leaving out target tgds or requiring the set of target tgds to be weakly acyclic guarantees a
terminating chase and therefore the property that we require.

What is also clear now is that in this case, CQ-equivalence is in fact a relaxation of DE-
equivalence and therefore of logical equivalence. This was not obvious for the characterization
based on conjunctive queries. It is easy to see here though, since the core is based on some
universal solution and by DE-equivalence all universal solutions coincide, so fromM≡DE M′
followsM≡CQ M′.
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We have now arrived at a hierarchy of schema-mapping equivalences given by respective
relaxation between logical equivalence, DE-equivalence and CQ-equivalence. This hierarchy
itself holds for all classes of schema mappings. For the most important classes of schema
mappings (where universal solutions exist, given that solutions exist), one can easily see this:
given that all solutions coincide, the universal solutions coincide and from that follows that
the cores of the universal solutions coincide.

I Proposition 8. [9] LetM = (S, T,Σ) andM′ = (S, T,Σ′) be two schema mappings

M≡log M′ ⇒ M≡DE M′ ⇒ M≡CQ M′
J

Also, we have seen in Examples 3 and 5 that this hierarchy is proper for schema mappings
based on s-t tgds and target tgds. Later in this chapter, we will take a more detailed look at
for which classes of schema mappings the hierarchy is proper, and for which it collapses.
We now have at hand two very natural relaxations of logical equivalence. Next we will explore
what happens if we need to reason about schema mappings that have differing source or
target schemas. They were introduced by Arenas et al. in [1].

I Example 9. Over the source schema S = {P} and target schema T = {Q}, let the schema
mappingM = (S, T,Σ) be given by the following dependencies:

P (x, y)→ Q(x, y)

Now consider the slightly altered schema mappingM′ = (S, T ′,Σ′) for T ′ = {R} given by
P (x, y)→ R(x, y, y)

Since the target relations affected by the two schema mappings are different, it is clear that
M andM′ are neither logically, nor DE-, nor CQ-equivalent. But intuitively, these schema
mappings are very similar.

In fact, through a schema mapping N based on Q(x, y)→ R(x, y, y) we can “reconstruct”
M′ fromM in the following sense: The composition ofM and N yieldsM′. In the same
way, we can reconstructM through the composition ofM′ and a schema mapping N ′ based
on R(x, y, y)→ Q(x, y).
In this way, we see that both schema mappings transfer the same amount of source
information, in the sense that they are able to reconstruct the result of the other. J

I Definition 10. [1] LetM = (S, T,Σ) andM′ = (S, T ′,Σ′) be two schema mappings. M′
transfers at least as much source information asM, writtenM �S M′, iff there exists a
schema mapping N from T to T ′ s.t.

M◦N ≡log M′

We say that M and M′ are equivalent w.r.t. the source information transferred, written
M≡S M′, iffM�S M′ andM′ �S M. J

Given that we talked about schema mappings with differing target schemas, it is natural to
ask about differing source schemas. The following definition mirrors the above one:

I Definition 11. [1] LetM = (S, T,Σ) andM′ = (S′, T,Σ′) be two schema mappings. M′
covers at least as much target information asM, writtenM�T M′, iff there exists a schema
mapping N from S to S′ s.t.

N ◦M ≡log M′

We say thatM andM′ are equivalent w.r.t. the target information covered, writtenM≡T M′,
iffM�T M′ andM′ �T M. J

Note that while the names of the ordering relations are given in this way in [1], the corres-
ponding equivalence relations are originally used without reference to a specific name.
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3.2 Summary

In this section, we introduced notions of equivalence for schema mappings and showed
through examples how they naturally arise when working with schema mappings.

We started with logical equivalence and then introduced relaxed notions of equivalence:
notions of equivalence which do not distinguish between mappings which behave the same for
a given purpose. We discussed data-exchange equivalence and conjunctive-query equivalence.
After that, we looked at two notions of equivalence in terms of information transfer.

In total, for schema mappings where the existence of solutions implies the existence of
universal solutions, the definitions are for reference summarized in Figure 2.

Two schema mappingsM andM′ are
logically equivalent (≡log)

iff for all I we have Sol(I,M) = Sol(I,M′)
data-exchange equivalent (≡DE)

iff for all I we have UnivSol(I,M) = UnivSol(I,M′)
conjunctive-query equivalent (≡CQ)

iff∗ for all I we have core(I,M) = core(I,M′)
equivalent w.r.t. source information transferred (≡S)

iff there exist N ,N ′ s.t. M◦N ≡log M′ andM′ ◦ N ′ ≡log M
equivalent w.r.t. target information covered (≡T)

iff there exist N ,N ′ s.t. N ◦M ≡log M′ and N ′ ◦M′ ≡log M

Figure 2 Notions of equivalence (∗assuming universal solutions exist in case solutions exist).

4 Optimality

Given that we can reason about schema mappings that are equivalent according to a variety
of notions as introduced in the previous section, there is a natural next task at hand: Finding
a schema mapping that is “best” among those equivalent mappings.

In this section, we therefore discuss a number of optimality criteria. Mostly, we will talk
about notions of “minimality” or “redundancy”. These give rise to decision problems, i.e.
identifying if a given schema mapping is minimal or non-redundant among equivalent schema
mappings. They of course also induce optimization problems in the sense of actually finding
such minimal or non-redundant schema mappings.

This section starts with the most basic optimality criteria, like subset- and cardinality-
minimality. There, our main concern will be understanding how they affect schema mappings.
But there are also quite intricate optimality criteria that we will talk about.

We thus start with some of the most basic optimality criteria (formal definitions follow later):
σ-redundancy: By that we mean detecting if some specific dependency σ is redundant,
i.e. could be left out while still yielding an equivalent schema mapping. Closely related is
subset-minimality: That is, finding a minimal subset of dependencies. In other words,
that set should contain no dependency that is redundant. A natural next step is
cardinality-minimality: Finding a schema mapping that uses the minimum number of
dependencies possible.
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The previous three notions were concerned with schema mappings at the level of dependencies,
but did not look inside of those dependencies. In [14], further criteria were presented that are
concerned with internal characteristics of the given dependencies. There is, given in slightly
generalized form:

antecedent-minimality: It is concerned with the total number of atoms in antecedents.
Together with cardinality-minimality, this aims at reducing the computational cost of the
joins computed by the chase. The complementary notion is
conclusion-minimality: Minimizing the total number of atoms in the conclusions.
Besides the number of atoms, we can also consider
variable-minimality: It is based on minimizing the total number of existentially quan-
tified variables. This is of course related to the number of labeled nulls introduced during
the chase.

The previously mentioned optimality criteria were all syntactically defined, which is important
for the computational cost of the chase or similar procedures. Still, there are interesting
semantic optimality criteria that are not based on the dependencies, but on the mapping seen
as a binary relation between source and target instances. The following semantic criteria
were introduced in [1] w.r.t. specific notions of equivalence:

target-redundancy: Is there an equivalent schema mapping that “uses fewer target
instances” (in the sense that the range of the optimized schema mapping is a subset of
the range of the original one). The complementary notions is
source-redundancy: Is there an equivalent schema mapping with a subset of source
instances. We will give formal definitions of all notions later in this section.

For all of the criteria, two things need to be fixed: First, what is the notion of equivalence
we are talking about? Secondly, what is the class of schema mappings that we allow for
the desired optimized mapping? The interplay between notions of optimality, notions of
equivalence and desired classes of schema mappings will turn out to be interesting.

4.1 Notions of optimality
We will now motivate and define these notions of optimality. Like in the previous section, we
will always start with an example, seeing why the respective notion naturally arises, and
after that formally define that notion. Let us start by looking at such an example.

I Example 12. Consider the schema mappingM given by the following dependencies:
P (x, y)→ Q(x, y) (σ1)
P (x, x)→ Q(x, x) (σ2)
P (x, y)→ R(y) (σ3)
P (u, v)→ R(v) (σ4)

Looking at dependency σ2, it is clear that whenever a tuple is produced through σ2, the
same tuple is also produced by σ1. That is, σ2 is clearly redundant in M (w.r.t. logical
equivalence). J

I Definition 13. LetM = (S, T,Σ) be a schema mapping and σ ∈ Σ. We say thatM is
σ-redundant w.r.t. e-equivalence, iff Σ \ {σ} ≡e Σ . J

I Example 12 (ctd). We have seen thatM is σ2-redundant, and we can remove it while
retaining logical equivalence. It is also easy to see that M is both σ3 and σ4-redundant,
since they are isomorphic “copies” of each other. Still, simply removing all σ-redundant
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dependencies will not yield a logically equivalent schema mapping: either σ3 or σ4 needs to
be retained. Thus, the following schema mappingM′ given by Σ′ as

P (x, y)→ Q(x, y) (σ1)
P (x, y)→ R(y) (σ3)

is a minimal subset of Σ s.t. M≡log M′. J

I Definition 14. Let M = (S, T,Σ) be a schema mapping and σ ∈ Σ. We say that M
is subset-minimal w.r.t. e-equivalence, iff there is no schema mappingM′ = (S, T,Σ′) s.t.
Σ′ ⊂ Σ andM≡eM′. J

I Example 12 (ctd). Somehow, the schema mappingM′ is still not completely satisfactory
regarding the number of dependencies. If we talk about subsets,M′ is clearly the best we
can do, but if we allow arbitrary dependencies, we can defineM′′ based on

P (x, y)→ Q(x, y) ∧R(y) (σ5)

This clearly has the minimum cardinality among all logically equivalent schema mappings. J

In the previous example, we have seen that M′′, is cardinality minimal among schema
mappings based on arbitrary dependencies. If we only look at schema mappings based on
GAV dependencies (which restrict tgds by allowing only a single atom in the conclusion), we
see thatM′ is cardinality minimal. This motivates the following definition relative to the
class of schema mappings:

I Definition 15. LetM = (S, T,Σ) be a schema mapping and C a class of schema mappings.
We say thatM is cardinality-minimal w.r.t. e-equivalence among C-schema mappings, iff
there is no mappingM′ = (S′, T ′,Σ′) in C s.t. |Σ′| < |Σ| andM≡eM′. J

Up to now, we have looked only at the dependencies themselves. We will now look inside of
them to find additional ways to optimize these schema mappings:

I Example 16. Consider the schema mappingM given by the following dependency:
P (x, y) ∧ P (u, v)→ Q(x, y)

It is clear that we could just as well leave out the atom P (u, v) in the antecedent, thus
getting the schema mappingM′ based on

P (x, y)→ Q(x, y)
which has the minimum total number of atoms in the antecedent (based on all schema
mappings that are logically equivalent). J

This motivates the following definition. Note that we are talking about the total number of
atoms over all dependencies here, not the maximum number over all dependencies.

I Definition 17. [14] LetM = (S, T,Σ) be a schema mapping and C a class of sch. mappings.
We say thatM is antecedent-minimal w.r.t. e-equivalence among C-schema mappings, iff
there is no mapping M′ = (S′, T ′,Σ′) in C s.t. AntSize(Σ′) < AntSize(Σ) and M ≡e M′,
where AntSize denotes the total number of atoms in antecedents. J

I Example 18. Consider the schema mappingM given by the following dependency:
P (x, y)→ ∃z(Q(x, y) ∧Q(x, z))

There are two dimensions in the conclusion that we can measure: the number of atoms, and
the number of existential variables that we use. The following mappingM′

P (x, y)→ Q(x, y)
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uses both the minimum total number of atoms in the conclusion, as well as the minimum
total number of existentially quantified variables. J

I Definition 19. [14] LetM = (S, T,Σ) be a schema mapping and C a class of sch. mappings:
M is conclusion-minimal w.r.t. e-equivalence among C-schema mappings, iff there is no
schema mapping M′ = (S′, T ′,Σ′) in C s.t. ConSize(Σ′) < ConSize(Σ) and M ≡e M′,
where ConSize denotes the total number of atoms in conclusions.
M is variable-minimal w.r.t. e-equivalence among C-schema mappings, iff there is no
schema mapping M′ = (S′, T ′,Σ′) in C s.t. VarSize(Σ′) < VarSize(Σ) and M ≡e M′,
where VarSize denotes the total number of existentially quantified variables. J

We can now talk about schema mappings based on their dependencies opaquely, and we can
look inside of those dependencies based on the number of atoms and existentially quantified
variables. For many tasks in data exchange and data integration, above all for the chase
procedure, it can be argued that it is desirable to find schema mappings which are minimal
under some, if not all of those criteria.

Still there is another, semantical, point of view in which such a schema mapping can still
be redundant, and it will have important applications later on:

I Example 20. Consider the schema mappingM given by the dependency:
P (x, y)→ Q(x, x)

Intuitively, this schema mapping “wastes space” compared to a schema mapping based on
e.g. P (x, y)→ R(x) by storing each source value x twice in the target.

In a more precise way, M is redundant in the following sense: Given source instance
I = {P (a, b)}, the canonical universal solution is J = {Q(a, a))}. But there is also another
possible solution J ′ = {Q(a, a)), Q(a, b))} with J ⊂ J ′. And indeed, we can find another
schema mappingM′ which has J as a solution, but not J ′:

P (x, y)→ Q(x, x)
Q(x, y)→ x = y

ClearlyM≡S M′, that is, they transfer the same amount of source information (incidentally,
they are also CQ-equivalent). In total, we have two mappingsM andM′, both are equivalent
w.r.t. source information transferred, but one has a strict subset of solutions for I. J

I Definition 21. LetM = (S, T,Σ) be a schema mapping and C a class of schema mappings.
M is target-redundant w.r.t. e-equivalence among C schema mappings, iff there is a target
instance J ′ ∈ {J | (I, J) ∈M} s.t. forM′ = {(I, J) ∈M | J 6= J ′} holdsM≡eM′. J

The preceding definition was originally given in [1] w.r.t. S-equivalence. As we will later see,
this is also the way it is commonly used and if no other notion of equivalence is explicitly
mentioned, we assume this notion as default.

As an important remark, note that this definition does not necessarily talk about schema
mappings “wasting space” inside the target instances. In particular, both schema mappings
M andM′ in the previous example store the value x twice in the target. So in this sense,
they both waste space, even though one is target redundant and the other is not (w.r.t.
S-equivalence among all schema mappings). The point is thatM wastes target instances,
since a subset of those would suffice.

Let us conclude this section by defining the natural counterpart to target-redundancy:
source-redundancy. It is commonly used w.r.t. T-equivalence.

I Definition 22. LetM = (S, T,Σ) be a schema mapping and C a class of schema mappings.
M is source-redundant w.r.t. e-equivalence among C schema mappings, iff there is a source
instance I ′ ∈ {I | (I, J) ∈M} s.t. forM′ = {(I, J) ∈M | I 6= I ′} holdsM≡eM′. J
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4.2 Summary
We now have means to talk about non-redundant and minimal schema mappings in a
variety of manners: We can have schema mappings that are non-redundant in their syntactic
representation (dependencies, atoms, variables) and their semantic extension (source- and
target instances). For reference, we informally summarize the definitions in Figure 3.

The following criteria are given w.r.t. a notion of equivalence and a class of mappings:

σ-redundant: a specific dependency σ could be left out
subset-minimal: no dependency could be left out
cardinality-minimal: the number of dependencies is minimal

antecedent-minimal: the total number of atoms in antecedents is minimal
conclusion-minimal: the total number of atoms in conclusions is minimal
variable-minimal the total number of existentially quantified variables is minimal

target-redundant: a target instance could be left out
source-redundant: a source instance could be left out

All criteria are usually w.r.t. logical equivalence, the exceptions are that usually
target-redundancy is w.r.t. S-equivalence, source-redundancy w.r.t. T-equivalence.

Figure 3 Notions of optimality for a schema mapping (informal summary).

5 Normalization and optimization for logical equivalence

In the previous sections, our main goal was to develop the relevant notions of equivalence
and optimality for reasoning about schema mappings. What was left open was how to use
these notions for actual reasoning, that is, the question of algorithms and complexity.

In this section, we will talk about reasoning under logical equivalence. The major result
we will cover here, presented by Gottlob et al. in [14], is that there is an algorithm which
transforms schema mappings based on s-t tgds into an optimal form in the following sense:

it is a unique normal form (up to variable renaming), and
the mapping is cardinality-, antecedent-, conclusion- and variable-minimal
among all split-reduced schema mappings.

This form can be computed in polynomial time if the length of each dependency is bounded
by a constant. What exactly split-reduced schema mappings are will be our next topic:

5.1 Finding optimal split-reduced schema mappings
Let us see why optimality among all mappings based on s-t tgds is not always desirable:

I Example 23. Over the source schema S = {L} and the target schema T = {C,E}, let the
schema mappingM be given by the following dependencies:

L(x1, x2, x3)→ ∃y C(x1, y) (σ1)
L(x1, x2, x3) ∧ L(x4, x2, x5)→ E(x1, x4) (σ2)

It is easy to see that the antecedents of σ1 is fulfilled whenever the antecedent of σ2 is fulfilled.
Therefore, clearlyM is logically equivalent toM′ based on the following dependency

L(x1, x2, x3) ∧ L(x4, x2, x5)→ ∃y(C(x1, y) ∧ E(x1, x4)) (σ3)
which contains both conclusions in a single dependency.
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Now let us compute the canonical universal solutions to both of these schema mappings for
source instance I = {L(a, b, c), L(d, b, f)} (which is just the antecedent of σ3 with variables
replaced by distinct constants). Let J = chase(I,M) and J ′ = chase(I,M′).

Considering the C-atoms, for J we have C(a, y1) and C(d, y2), since there are two possible
ways to instantiate the antecedent of σ1. But for J ′, since for σ3 there are actually four
possible ways to instantiate the antecedent, we additionally have C(a, y3) and C(d, y4). J

In the preceding example, we saw that, while M′ is the cardinality-, antecedent- and
conclusion-minimal mapping among all schema mappings, this leads to a quadratic blowup
of the size of the canonical universal solution compared toM.

However, σ3 ofM′ has a problematic property: The atoms in the conclusion are actually
not related to each other, they could very well be formulated in separate dependencies. This
was the reason for the quadratic blowup. Therefore the following was defined:

I Definition 24. [14] A schema mapping M = (S, T,Σ) consisting of s-t tgds is split-
reduced, if there is no logically equivalent mapping M′ = (S, T,Σ′) with |Σ| > |Σ′| but
ConSize(Σ) = ConSize(Σ′). J

Let us look at what this definition means: If we can, through “splitting up” a dependency –
thus raising the number of dependencies – still have the same total size of the conclusions,
then some conclusion atoms where not related to each other in a significant way. In other
words, the dependencies are decomposed without raising the total size of the conclusions.
If we find a schema mapping among the class of split-reduced schema mappings that is
minimal according to our chosen criteria, we get both a schema mapping that has good
properties in terms of the dependencies (minimality) and good properties in the solution
produced by the chase (some unnecessary blowup is avoided).

Note that one can view split-reducedness also as a derived optimality criterion like the
ones discussed in the previous section (based on cardinality- and conclusion minimality).
Let us now find, through an example, rules to rewrite a mapping into the optimal form we
promised. For ease of reference, the rewrite rule numbers will match those in [14]:

I Example 25 (based on [14]). Over the source schema S = {L} and T = {P,Q,R}, let the
mapping M be given by the following dependencies. For readability, all variables xi are
universally quantified and all variables yi are existentially quantified. For the same reason,
we use constant a within dependencies (avoidable by e.g. adding A(a) to all antecedents).

L(x1, x2, x3)→ P (x1, y1, a) ∧R(y1, x2, a) ∧R(y1, x2, y2) (σ1)
L(x1, x1, x1)→ P (x1, y1, y2) ∧Q(y2, y3, x1) ∧R(y1, x1, y2) (σ2)
L(x1, x2, x2) ∧ L(x1, x2, x3) → P (x1, y2, y1) ∧ Q(y1, y3, x2) ∧ Q(a, y3, x2) ∧ R(x2, y4, x3) (σ3)

In this state, it is very hard for a human to make much sense out of this schema mapping
without significant analysis. Let us therefore try to simplify it before trying to understand it.

A simple first rewriting is for σ1: The last atom R(y1, x2, y2) is actually a more specific
form of the second one R(y1, x2, a) in the conclusion. Thus we can do the following:

Rule 1: Simplify the conclusion to its core
applied to: L(x1, x2, x3)→ P (x1, y1, a) ∧R(y1, x2, a) ∧R(y1, x2, y2) (σ1)

So through the homomorphism [y2 7→ a], we can drop the last atom arriving at the core of
the conclusion. Before making things easier by dropping further atoms, let us try to split up
the quite long dependency σ3, to get a better overview (and reach a split-reduced form):
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Rule 3: Split the dependency if possible
applied to: L(x1, x2, x2) ∧ L(x1, x2, x3)→ (σ3)

P (x1, y2, y1) ∧Q(y1, y3, x2) ∧Q(a, y3, x2) ∧R(x2, y4, x3)

We see that in the first three atoms of the conclusion, there are existentially quantified
variables y1 to y3 intermingled and in the last one, there is only y4. Indeed, we can split σ4
in this way, yielding two dependencies, one with the conclusion R(x2, y4, x3) and one with
the other three atoms. Let us look at the current state of the schema mapping after having
applied those two rules:

L(x1, x2, x3)→ P (x1, y1, a) ∧R(y1, x2, a) (σ′1)
L(x1, x1, x1)→ P (x1, y1, y2) ∧Q(y2, y3, x1) ∧R(y1, x1, y2) (σ2)
L(x1, x2, x2) ∧ L(x1, x2, x3)→ P (x1, y2, y1) ∧Q(y1, y3, x2) ∧Q(a, y3, x2) (σ′3)
L(x1, x2, x2) ∧ L(x1, x2, x3)→ R(x2, y4, x3) (σ′4)

Now we look a bit further at the new rule σ′3. Following the split, in the antecedent there
occurs variable x3, but it is never used in the conclusion. Therefore we can:

Rule 2: Simplify the antecedent to its core
applied to: L(x1, x2, x2) ∧ L(x1, x2, x3)→ P (x1, y2, y1) ∧Q(y1, y3, x2) ∧Q(a, y3, x2) (σ′3)

Easily, through the homomorphism [x3 7→ x2], we can thereby drop the second atom of the
antecedent.

Let us stay with the conclusion of this dependency. Take the first atom P (x1, y2, y1).
It is clearly not implied by any of the other conclusion atoms, so Rule 1 – simplifying the
conclusion to its core – will not help. But maybe it is produced by another dependency:

Rule 5: Remove atoms from the conclusion, if it they are implied
applied to: L(x1, x2, x2)→ P (x1, y2, y1) ∧Q(y1, y3, x2) ∧Q(a, y3, x2) (σ′′3 )

More formally, by implied, the following is meant: If dependency τ ′ is produced from τ by
removing atoms from the conclusion, then the removed atoms are implied, if (Σ\{τ})∪{τ ′} is
logically equivalent to Σ. Indeed, looking at σ′1, we see that it produces the atom P (x1, y1, a)
under more general antecedents. This clearly implies our first atom P (x1, y2, y1), so we can
drop that. Furthermore, we see that the second conclusion atom Q(y1, y3, x2) is implied by
the last one Q(a, y3, x2) and we can also drop it.

Let us look at the one dependency we did not rewrite up to now, σ2: The first conclusion
atom P (x1, y1, y2) is a more specific case of P (x1, y1, a) from σ′1, and the other atoms are
also not very different from those implied by some dependencies. Let us check whether σ2 is
needed at all:

Rule 4: Remove the following dependency, if it is implied by other dependencies
applied to: L(x1, x1, x1)→ P (x1, y1, y2) ∧Q(y2, y3, x1) ∧R(y1, x1, y2) (σ2)

We see that the last atom R(y1, x1, y2) is implied by R(y1, x2, a) of σ1, and the remaining
one Q(y2, y3, x1) by σ′′′3 . So indeed, we can remove σ2. Our mapping is now given as follows:

L(x1, x2, x3)→ P (x1, y1, a) ∧R(y1, x2, a) (σ′1)
L(x1, x2, x2)→ Q(a, y3, x2) (σ′′′3 )
L(x1, x2, x2) ∧ L(x1, x2, x3)→ R(x2, y4, x3) (σ′4)

It can be checked that this mapping is now minimal according to our optimality criteria. J
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1. Simplify the conclusion to its core
2. Simplify the antecedent to its core
3. Split the dependency if possible
4. Remove the dependency, if it is implied by other dependencies
5. Remove atoms from the conclusion, if it they are implied by other dependencies

Figure 4 Rewrite rules for optimization and normalization (informal formulation).

Indeed, these rules are sufficient for achieving all four optimality criteria for mappings based
on s-t tgds among split-reduced mappings. Even more interesting, they actually yield a
unique normal form. Let us now summarize the rewriting system as defined by [14]:
Note that the first and second rules come down to core computations. If the length of each
dependency is bounded by a constant, this can be done efficiently (cf. [13]). The last two
items are implication tests, which are well known to be efficiently computable [2]. Splitting
can also be efficiently performed. In total, the normal form can be computed in polynomial
time if the length of each dependency is bounded by a constant [14].

5.2 Summary
In this section, we have seen how to compute an optimized unique normal form of a schema
mapping based on s-t tgds. The resulting schema mapping is cardinality-, antecedent-, subset-
and variable-minimal among all split-reduced schema mappings.

Through a quite complex extension, and a reformulation of what “split-reduced” should
mean in the presence of egds, an optimized but not normalized normal form can be obtained
for schema mappings based on s-t tgds and target egds [14].

6 Decidability of reasoning with relaxed notions of equivalence

In the previous section we have seen how to obtain optimized schema mappings under logical
equivalence. However, as we have talked about in the beginning, logical equivalence is quite
restrictive in the optimization potential it admits. In this section, we will therefore discuss the
question of the computational properties of optimality under relaxed notions of equivalence.

We have seen that logical-, DE- and CQ-equivalence form a hierarchy where each notion
might offer additional optimization potential compared to the one before. That is, while
logical equivalence is the most restrictive, CQ-equivalence is the least restrictive.

A number of questions remained. The first one is:
For which classes of schema mappings is this hierarchy proper, that is, for which schema
mappings can we really gain additional optimization potential? The counterpart of
this question is one about computability and complexity:
If there is additional optimization potential, can we find algorithms for reasoning about
them? In particular, can we construct algorithms for finding optimal schema map-
pings given various optimality criteria?

These are the questions that will guide this section. They will lead us to the boundaries of
computability as explored by Fagin et al. [9] and Pichler et al. [19].

Before looking at questions of computability, let us first find out for which classes of
schema mappings there is additional optimization possible. In other words, when is the
hierarchy of logical-, DE- and CQ-equivalence strict, and when does it collapse?
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6.1 Hierarchy or collapse
Let us first summarize what we have seen earlier in Section 3 when we introduced logical
equivalence, DE-equivalence and CQ-equivalence:

Logical equivalence, DE-equivalence and CQ-equivalence form a hierarchy (Proposition 8):
M≡log M′ ⇒ M≡DE M′ ⇒ M≡CQ M′.
For schema mappings based on s-t tgds and target tgds, all three notions are distinct
(through Examples 3 and 5 in Section 3).

Similar examples show that the three notions are different also for s-t tgds with target tgds
[9] or target egds [14] as well as for SO tgds [9]. By contrast, we will now see that for
schema mappings based on s-t tgds, the three notions actually coincide. We thus return to
an example we have seen in a similar form before (Example 5). This time, it will allow us to
find out something quite different:

I Example 26. For the source schema S = {P} and the target schema T = {Q} let the
schema mappingM be defined by the following dependencies:

P (x, y)→ Q(x, x)
Q(x, y)→ x = y

Let us compare this to the schema mapping based on just the s-t tgd. That is, we define the
schema mappingM′ based on

P (x, y)→ Q(x, x)

We have that the schema mappingsM andM′ are CQ-equivalent, but not DE-equivalent.
As an intuition for the CQ-equivalence, observe that the egd has no effect on the cores of the
universal solutions, since the atoms contained in it already have the form Q(x, x).

Now let I = P (a, a). The canonical universal solution, which in this case is also the core
of the universal solutions, will be J = {Q(a, a)} for both M and M′. But now consider
J ′ = {Q(a, a), Q(u, v)}, for variables u and v. This instance is universal for bothM andM′,
evidenced by the homomorphism [u 7→ a, v 7→ a]. Still, while J ′ is a universal solution for
M′, it is not even a solution forM. J

Fagin et al. [9] identify this property as the key reason for CQ-equivalence and DE-equivalence
to be distinct for a class of schema mappings: For two DE-equivalent schema mappings, there
is a universal solution for one mapping that is not even a solution for the other mapping.

I Definition 27. [9] Let M = (S, T,Σ) be a schema mapping. M has all the universal
solutions, if whenever

J ∈ UnivSol(I,M) and J ↔ J ′, then J ′ ∈ Sol(I,M) J

Recall that ↔ denotes homomorphic equivalence in this context. That is, for this property,
every instance homomorphically equivalent to a universal solution must also be a universal
solution. Note that from J ′ ∈ Sol(I,M′) through homomorphic equivalence to J follows that
J ′ ∈ UnivSol(I,M′). Given this definition, we then know that:

I Proposition 28. [9] If M and M′ have all the universal solutions, then M ≡CQ M′
impliesM≡DE M′. J

That is, if all mappings in a class of schema mappings have all the universal solutions, then
for this class DE- and CQ-equivalence coincide. Also, the following sufficient condition for
this property is attained:
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I Definition 29. [9] LetM = (S, T,Σ) be a schema mapping. M is preserved under target
homomorphisms, if whenever

J ∈ Sol(I,M) and J → J ′, then J ′ ∈ Sol(I,M) J

This property holds for schema mappings based on s-t tgds. Knowing that preservation
under target homomorphism holds has the following important consequence:

I Proposition 30. [9] IfM andM′ are
both preserved under target homomorphisms, and
both have that Sol(I,M) 6= ∅ implies UnivSol(I,M) 6= ∅ for all I

thenM≡log M′ iffM≡DE M′ iffM≡CQ M′. J

From this, since the properties hold for s-t tgds, we have that the three notions of logical-,
DE- and CQ-equivalence coincide for mappings based on s-t tgds. Also, since the three
notions are distinct for the classes of schema mappings

based on s-t tgds and target tgds
based on s-t tgds and target egds
based on SO tgds

we know through the preceding theorem that they are not generally preserved under target
homomorphisms for these classes. In total, if we allow target egds, target tgds or SO
dependencies, then the relaxed notions of equivalence offer additional optimization potential.

6.2 Decidability of equivalence and optimization
First, let us note that for mappings based on s-t tgds (where logical, DE-, and CQ-equivalence
coincide), all three notions are decidable. The decidability proof comes down to checking
implication of dependencies by the chase (cf. e.g. [7]).

I Proposition 31. LetM andM′ be schema mappings based on s-t tgds. Then it is decidable
whetherM≡log M′,M≡DE M′ andM≡CQ M′. J

So in this case, the problems are decidable, but there is no additional optimization power,
since the notions coincide. Given that for a variety of schema mapping classes there is clearly
additional optimization power using DE- and CQ- equivalence, we would like to use this
power by appropriate algorithms for reasoning about them. In [9], the following general
bounds are shown:

I Theorem 32. [9] Given two schema mappingsM andM′ based on s-t tgds and a weakly
acyclic set of target tgds

it is decidable whetherM≡log M′

it is undecidable whetherM≡CQ M′

The undecidability results holds even for copy s-t tgds and full target tgds. J

The decidability proof again comes down to checking implication of dependencies by the
chase. The undecidability result is based on a reduction from Datalog equivalence (which is
undecidable as shown in [20]), where target tgds are used to mirror recursive Datalog rules.

Further exploration of these bounds is done by Pichler et al. in [19], where schema
mappings based on target egds and target tgds are considered under DE-equivalence in
addition to CQ-equivalence. Also, various optimality criteria are discussed there.
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I Theorem 33. [19] For schema mappingsM andM′ based on full s-t tgds and full target
tgds, or s-t tgds and target egds, the following problems are undecidable
M≡DE M′ andM≡CQ M′
σ-redundancy ofM w.r.t. DE- and CQ-equivalence
subset-minimality ofM w.r.t. DE- and CQ-equivalence
cardinality-minimality ofM w.r.t. DE- and CQ-equivalence J

Thus leaving out target dependencies leads to a collapse of the hierarchy, hence no additional
optimization power. Adding target dependencies leads to undecidability. These bounds leave
one possibility open: If we require the target dependencies to be fixed, can we then optimize
the s-t tgds further?

Towards this goal, the following connection between normalization of Section 5 and
relaxed notions of equivalence was shown for s-t tgds and target tgds or egds. Here we
consider source egds, which are simply egds defined over the source schema.

I Theorem 34. [19] LetM andM′ be schema mappings based on s-t tgds and target tgds
or egds. Let Σ = Σst ∪ Σt the sets of s-t tgds resp. target dependencies ofM. Assume the
same for Σ′ andM′.
IfM≡CQ M′, then there exists a common set Σ∗s and Σ∗st of source egds resp. s-t tgds, s.t.

Σ ≡log Σ∗s ∪ Σ∗st ∪ Σt and Σ′ ≡log Σ∗s ∪ Σ∗st ∪ Σ′t J

So why is this theorem interesting? Assume that we have CQ-equivalent schema mappings
whose target dependencies are logically equivalent. Given the previous theorem, we can
normalize the source and s-t tgds upholding logical equivalence. But given that also the
target dependencies are logically equivalent, the two schema mappings are altogether logically
equivalent. This has the following consequence:

I Theorem 35. [19] In the same setting as in Theorem 34. If Σt ≡log Σ′t, then

Σ ≡log Σ′ iff Σ ≡DE Σ′ iff Σ ≡CQ Σ′ J

This settles the question of whether optimization is possible if the target dependencies are
fixed: There is no additional optimization power.
The third road to finding interesting decidable fragments is to look at special cases, e.g.
mappings based on functional dependencies or inclusion dependencies. However, the following
result weakens this hope for CQ-equivalence:

I Theorem 36. [19] CQ-equivalence is undecidable for schema mappings based on s-t tgds
and at most one key dependency per target relation. J

Interestingly, the situation for DE-equivalence looks quite different:

I Theorem 37. [19] DE-equivalence is decidable for schema mappings based on s-t tgds and
weakly acyclic sets of functional- and inclusion dependencies as target dependencies. J

These two results show our first disparity between the computational properties of DE- and
CQ-equivalence.

We have now talked about various optimization tasks under both DE- and CQ-equivalence.
From the point of schema mappings, we looked at those based on s-t tgds only, and at those
with target egds or target tgds in addition to s-t tgds. What we still have not discussed are
SO tgds. Here the following results are known:
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I Theorem 38. [12] LetM andM′ be given by SO tgds. It is undecidable whether
M≡log M′
M≡log M′ even if it is known thatM≡CQ M′
M≡CQ M′ for mappings based on SO tgds and source key deps. J

The proof of the first bullet is based on results about the existence of inverses from [1], about
which we will talk a bit later in this chapter.

The previous theorem talks about equivalence between schema mappings based on SO
tgds (showing undecidability) and before we talked about equivalence between schema
mappings based on s-t tgds (yielding decidability). Recently, Fagin and Kolaitis [7] looked at
equivalence where one mapping is based on SO tgds and the other one is based on s-t tgds:

I Theorem 39. [7] LetM be given by SO tgds andM′ be given by s-t tgds
it is undecidable whetherM≡log M′
it is decidable whetherM≡CQ M′ J

Interestingly, CQ-equivalence becomes decidable in this case, while it is undecidable for
schema mappings based on SO tgds plus source key dependencies.

6.3 Equivalence to classes of schema mappings
In this final subsection, we will talk about the computational properties of deciding whether a
mapping from some class of schema mappings is equivalent to a mapping in a more restricted
class of schema mappings.

Results in this area were shown in [9] for the following problem: Given a schema mapping,
under which conditions is it CQ-equivalent to a mapping consisting of s-t tgds?

We start with mappings based on full s-t tgds and full target tgds. For this, we need the
following concept: A mapping has bounded parallel chase if there is a constant, such that for
every source instance, the parallel chase needs at most that constant number of steps. Using
this, we have that

I Theorem 40. [9] LetM be a schema mapping based on full s-t tgds and full target tgds.
There exists a schema mappingM′ based on full s-t tgds withM≡CQ M′ iffM has bounded
parallel chase. J

The problem of finding such a schema mapping is undecidable [9]. We now look at mappings
based on SO tgds. Again, we need a characterizing concept, but this time it is more complex:

I Definition 41. [9] The Gaifman graph of facts G of a target instance K is the graph
whose nodes are the facts of K and there is an edge between two facts if they have a null in
common. A fact block (f-block) of K is a connected component of G.

MappingM has bounded f-block size if there is a constant such that core(I,M) has f-block
size bounded by this constant for every source instance I. J

In [7], it was shown that deciding whether the f-block size of an SO tgd is bounded by a
given number is equivalent to a problem we have already seen in the previous section: is a
schema mapping based on s-t tgds equivalent to one based on SO tgds. Importantly, the
notion of bounded f-block size characterizes CQ-equivalence of an SO tgd to s-t tgds:

I Theorem 42. [9] LetM be a schema mapping based on an SO tgd. There exists a mapping
M′ based on s-t tgds withM≡CQ M′ iffM has bounded f-block size. J
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Note that in [9] a characterization is also given for schema mappings based on s-t tgds and
target tgds with terminating chase.

Concerning schema mapping languages that can express only a subset of s-t tgds, results
where shown by ten Cate and Kolaitis [21]. Let a LAV tgd be a tgd with a single atom on
the left-hand side (this corresponds to what is called “extended LAV” in [7], compared to
“strict LAV” which requires that all variables on the left-hand side occur just once).

I Theorem 43. For a given schema mapping M, deciding whether there exists a schema
mappingM′ such thatM≡log M′ is NP-complete if
M is given by s-t tgds andM′ shall be definable by full s-t tgds
M is given by s-t tgds andM′ shall be definable by LAV s-t tgds
M is given by LAV s-t tgds andM′ shall be definable by full s-t tgds

it is decidable in polynomial time if
M is given by full s-t tgds andM′ shall be definable by LAV s-t tgds J

6.4 Summary
In this section, we have looked into the power of logical-, DE- and CQ-equivalence for
optimizing schema mappings. We have seen that for schema mappings based on s-t tgds
only, all three notions of equivalence coincide and therefore admit no additional potential
for optimization. We then looked at schema mappings based on target egds or target tgds
in addition to s-t tgds, as well as SO tgds. We have seen that there clearly is additional
potential for optimization using relaxed notions of equivalence.

However, unfortunately, most tasks are undecidable in general apart from logical equival-
ence for s-t tgds and weakly acyclic sets of target tgds. In particular, DE- and CQ-equivalence
are undecidable for schema mappings based on s-t tgds and target tgds or target egds. For
SO tgds, even logical equivalence is undecidable. We also looked at how to find mappings
which are CQ-equivalent to more restricted classes of schema mappings.

Altogether, many of the boundaries are known, but decidable cases are still sparse. Still,
the decidable special case for DE-equivalence and schema mappings with functional and
inclusion dependencies shows an interesting disparity between DE- and CQ-equivalence. We
summarize the results in Figure 5.

7 Equivalence and optimality for schema mapping management

In the previous two sections, we first discussed logical equivalence and its application to
normalization. After that, we talked about DE- and CQ-equivalence and the boundaries of
computability. In this section, we will talk about the notions of equivalence we have not
covered up to this point: Schema mappings which are equivalent w.r.t. the source information
transferred (S-equivalence) or equivalent w.r.t. the target information covered (T-equivalence).
They were introduced and applied by Arenas et al. [1].

These notions have a slightly different character compared to logical-, DE- and CQ-
equivalence. In particular, we can use them to compare schema mappings that have different
source or target schemas. On the other hand, mappings which are e.g. S-equivalent may
produce completely different target instances. Still, they guarantee that we can reconstruct
the original target instance using some other schema mapping.

Our focus in this section will be on applications of S-equivalence and T-equivalence, in
particular combined with the corresponding redundancy notions of source-redundancy and
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Optimization potential

Logical-, DE- and CQ-equivalence coincide for
mappings based on s-t tgds

They are distinct for
mappings based on s-t tgds and target tgds or target egds
mappings based on SO tgds

Boundaries of decidability

Logical equivalence is
decidable for mappings based on s-t tgds and sets of weakly acyclic target tgds
undecidable for mappings based on SO tgds

Data-exchange equivalence is
undecidable for mappings based on s-t tgds, target tgds or target egds
decidable for mappings with weakly acyclic sets of functional- and inclusion deps.

Conjunctive-query equivalence is
undecidable for mappings based on s-t tgds, target tgds or target egds
(even if restricted to a single key dependency per relation)
undecidable for mappings based on SO tgds and source key dependencies
decidable if one mapping is given by SO tgds, the other one by s-t tgds

Further results

Optimality is undecidable for mappings based on s-t tgds, target tgds or egds for
σ-redundancy, subset-minimality, cardinality-minimality

CQ-equivalence to mappings based on s-t tgds is characterized for
mappings based on target tgds with terminating chase
mappings based on SO tgds

Figure 5 Optimization potential and boundaries of decidability.

target-redundancy. We will see that for the important area of characterizing the operators
for schema mapping management, these notions of equivalence and optimality find natural
applications. After that, we will briefly discuss some algorithmic properties.

7.1 Application to schema mapping management
We begin by talking about the extract operator of schema mapping management [18]. Though
there are a number of possible characterizations, the intended meaning of the extract operator
is the following: Given a schema mapping, find a new source schema that captures exactly
the information that participates in it. Let us start by looking at an example.

I Example 44 (based on [1]). Over the source schema S = {P,Q,R} and the target schema
T = {U, V,W} let the schema mappingM be given by the following dependencies:

P (x, y)→ ∃uW (x, u) ∧ U(x, x) (σ1)
P (x, y) ∧R(y, z)→ ∃v V (x, y, v) (σ2)

Before taking an in-depth look into what the dependencies of schema mappingM do, let us
look at the source relation Q. It actually never occurs in the dependencies ofM.
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We could extract a new source schema S′ that does not include the information of Q at
all and then use two new schema mappings: M1 from S to S′ migrates from the old source
schema to the new one. M2 from S′ to T uses this new source schema to map to the target
schema. In this example, we could take M1 to be just copy tgds from S = {P,Q,R} to
S′ = {P,Q} i.e. based on

P (x, y)→ P ′(x, y)
R(x, y)→ R′(x, y)

andM2 to consist exactly of our two original dependencies σ1 and σ2 adapted to the new
schema. Here, we would trivially have that the two mappingsM1 andM2 composed do the
same thing as the originalM, or more preciselyM1 ◦M2 ≡log M. J

In the preceding example, we have extracted a new source schema S′ andM1 andM2 so
that the composition M1 ◦M2 yields the original mapping M. This feels like a natural
condition for an extract operator, but as we have seen, this condition alone yields rather
unimpressive results for S′,M1 andM2. Let us continue our example.
I Example 44 (ctd). In our previous example, we saw that we may find unsatisfyingM1
andM2 s.t. M1 ◦M2 ≡log M, if we impose no further restrictions. Yet indeed, we want to
extract exactly the information that participates inM. Let us look at the source information
that participates inM, and should therefore transferred byM1.

In our first dependency σ1, only the first variable x is actually used in the conclusion.
We must not transfer y if we want to capture exactly the needed information. Similarly for
σ2, only the result after the join between P and R is relevant. In particular, we do not need
the variable z in the conclusion. Let us express this as a schema mappingM1 based on

P (x, y)→ P1(x)
P (x, y) ∧R(y, z)→ P2(x, y)

To make our argument about “transferring the needed amount of source information” precise,
we have a tool at our hand: S-equivalence expresses that two schema mappings transfer the
same amount of source information. That is, we have found anM1 withM1 ≡S M.

Now having constructed M1, let us talk about M2, which should be able to do two
things. First, it should be able to yieldM in the sense thatM1 ◦M2 ≡log M. Secondly, we
should require thatM2 really covers exactly the amount of target information needed, or in
other wordsM2 ≡T M. Let us construct such anM2 based on

P1(x)→ ∃uW (x, u) ∧ U(x, x)
P2(x, y)→ ∃v V (x, y, v)

Altogether, we now have found schema mappings that capture exactly the information
participating inM, by requiringM1 ≡S M andM2 ≡T M. J

Our characterization of how we expect the extract operator to behave is now reasonably
complete. However whileM1 transfers exactly the information needed, andM2 covers the
information needed, the in-between schema S′ has no condition imposed on it so far. In
particular, we could still store every x from P (x, y) as P1(x, x, x, x), which intuitively is not
a good result of the extract operator. Let us continue our example.
I Example 44 (ctd). The problem we still have is possible redundancy in the new source
schema S′. While using P1(x, x, x, x) as an intermediate atom seems quite drastic, actually
we also have a somewhat surprising redundancy in M1, S′ and M2 from the previous
example, though it is a bit subtle:

Let us look at the source instance I = {P (a, a), P (b, b), R(b, b)}. The canonical universal
solution of I using our schema mappingM1 is J = {P1(a), P1(b), P2(b, b)}. But actually we
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do not need to store P (b), since it occurs as P2(b, b) anyway. That is, any x from P (x, y)
that has a join-partner in R need not necessarily be stored in the intermediate instance. So
the kind of redundancy we are talking about here is redundancy of possible source instances
or target instances.

Of course, our current schema mapping M2 would not be sufficient to make use of
this information, it would require a mapping with an additional dependency of the form
P2(x, y)→ ∃uW (x, u) ∧ U(x, x). Yet this modified schema mapping is clearly T-equivalent,
it covers the same target information. Let us avoid this redundancy in another way. Add to
bothM1 andM2 the following dependency:

P2(x, y)→ P1(x)
yieldingM′1 andM′2. This is a target tgd forM′1 and a source tgd forM′2.

Let us sum up and make precise our argument about redundancy. We are talking about
possibly redundant instances here, and the optimality notions appropriate for this case have
been already introduced in Section 4: source-redundancy and target-redundancy. We would
likeM1 to be target non-redundant among the S-equivalent mappings, andM2 to be source
non-redundant among the T-equivalent mappings. J

Through a progression of examples, we have now identified a characterization for the extract
operator that meets natural requirements. Let us make this definition explicit:

I Definition 45. [1] LetM = (S, T,Σ) be a mapping. (M1,M2) is an extract ofM if
M1 ◦M2 ≡log M
M1 ≡S M andM1 is target non-redundant w.r.t. ≡S
M2 ≡T M andM2 is source non-redundant w.r.t. ≡T J

We finish this subsection on the extract-operator by a few notes: Apart from the characteriz-
ation, there also exists an algorithm for computing extracts for mappings based on s-t tgds
with FO formulas in the antecedent. It is based on rewriting and composition [1]. The exact
language needed to express these extracts is still open.

Apart from the extract operator, the merge operator was analyzed in [1] as well as the
setting of schema evolution. Also, a characterization of the inverse operator [6] is given. The
inverse operator is discussed in detail in Chapter 3 of this book.

7.2 Decidability and complexity
For the following results about the properties of our notions, we will be mainly talking about
the ordering relations �S and �T instead of the equivalence relations ≡S and ≡T. Our first
goal will be to find algorithms for deciding these ordering relation.

An alternative characterization based on the following notions brings us one step closer
to this goal: A query Q over source schema S is called target rewritable underM, if there is
a query Q′ over T such that Q(I) = certain(Q, I,M) for all I. Then we have:

I Theorem 46. [1] LetM = (S, T,Σ) andM′ = (S, T ′,Σ′) be a schema mapping based on
s-t tgds. Then M �S M′ iff for every query Q, if Q is target rewritable in M then Q is
target rewritable inM′. This result even holds if FO formulas are allowed as antecedents. J

Backed up by this result we see that, equivalence and ordering w.r.t. source information
transferred (which are based on transferring enough source information to be able to recover
the original target information) are both intuitively and provably close to target rewritability.

For schema mappings based on s-t tgds, even with inequivalence in the antecedent,
decidingM �S M′ is in coNEXPTIME. However, for schema mappings based on s-t tgds
that allow FO formulas as antecedents, it is undecidable whetherM�S M′ [1].
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7.3 Summary
In this section, we looked at S-equivalence and T-equivalence. We applied them to characterize
the operator extract, one of the central operators of schema mapping management. To
characterize this operator, we saw that notions of equivalence (S- and T-equivalence) were
needed, as well as notions of optimality (source- and target-redundancy).

We hinted at other operators invert, merge, and the setting of schema evolution that can
be characterized using these concepts. For all of these, characterizations and algorithms can
be found in [1]. We finished this section by a quick look at questions of decidability and
complexity.

8 Reasoning in the broader sense

In the previous sections, we discussed reasoning about schema mappings in a strict sense.
Our topics were primarily equivalence and optimality. But of course the term “reasoning”
can be applied to a broad range of important tasks associated with schema mappings. While
we cannot cover all of them, we want to finish this chapter by at least talking about one of
them, in particular one that fits very well into what we discussed up to now.

Reasoning about schema mappings as a task humans have to do poses a number of
challenges. Of course, using optimization techniques beforehand might help create schema
mappings that are easier to handle as humans. Yet at some point, we have to deal with the
actual schema mappings we have at that moment.

Given such a schema mapping, one of the first challenges is to find out what this schema
mapping actually does, or rather what its intended meaning is. The other question that
usually enters our reasoning process earlier than we might like is what a certain schema
mapping does wrong. This topic of finding errors, that is debugging schema mappings, will
be our topic in this section.

8.1 Analyzing and debugging with routes
Since we want to actually understand and debug some arbitrary schema mapping that we
are given, let us start with such an example.

I Example 47 (based on [5]). In this example, to ease debugging, we leave the names of the
relation symbols intact. Also, universally quantified variables are denoted by words starting
in lower case (sal), existentially quantified variables are given starting with upper case (M)
and constants as usual in sans-serif font (Smith or 6689).

Let the mappingM over the source schema ManhattenCredit = {Cards,SuppCards} and
the target schema FargoFinance = {Accounts,Clients} be given by the following dependencies:

Cards(cn, l, s, n,m, sal, loc)→ ∃A (Accounts(cn, l, s) ∧ Clients(s,m,m, sal, A)) (σ1)
SuppCards(an, s, n, a)→ ∃M, I Clients(s, n,M, I, a) (σ2)
Accounts(a, l, s)→ ∃N,M, I,AClients(s,N,M, I,A) (σ3)
Clients(s, n,m, i, a)→ ∃N,LAccounts(N,L, s) (σ4)
Accounts(a, I, s) ∧ Accounts(a′, I ′, s)→ I = I ′ (σ5)

The schemas and the s-t tgds σ1 and σ2 are illustrated in Figure 6. Seemingly, it is a schema
mapping describing how data about credit cards is transferred to some financial organization.
Without worrying too much for now how this schema mapping actually works in detail, let
us try debugging it with a test instance. Let I be given by the following ground atoms:
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Cards Accounts
cardNo accNo
limit limit
ssn accHolder
name
mName Clients
salary ssn
location name

mName
SuppCards income
accNo address
ssn
name
address

Figure 6 Schemas and s-t tgds of mapping M.

Cards(6689, 15K, 434, J.Long,Smith, 50K,Seattle) (s1)
SuppCards(6689, 234,A.Long,California) (s2)

In the target database, we use the following instance J given by:
Accounts(6689, 15K, 434) (t1)
Accounts(N1, 50K, 234) (t2)
Clients(434,Smith,Smith, 50K, A1) (t3)
Clients(234,A.Long,M1, I1,California) (t4)

Let us take a closer look on t3, which is slightly strange: In Clients(434,Smith,Smith, 50K, A1),
why is there a labeled null A1 introduced, and why does the constant Smith occur twice?

Let us try to answer this question by tracing tuple t3 back to the atoms that are directly
responsible for creating it. We get the following atom s1 being responsible for creating both
t1 and t3 through dependency σ1 using homomorphism h:

Cards(6689, 15K, 434, J.Long,Smith, 50K,Seattle) (s1)
σ1: Cards(cn, l, s, n,m, sal, loc)→ ∃A (Accounts(cn, l, s) ∧ Clients(s,m,m, sal, A))
h: {cn 7→ 6689, l 7→ 15K, s 7→ 434, n 7→ J.Long, m 7→ Smith, sal 7→ 50K, loc 7→ Seattle, A 7→ A1}

Accounts(6689, 15K, 434) (t1) Clients(434,Smith,Smith, 50K, A1) (t3) J

Before using this chase-like step for debugging our schema mapping, let us formally define it:

I Definition 48. [5] A satisfaction step is given as K1
σ,h−−→ K2 where

K1 is an instance such that K1 ⊆ K and K satisfies σ
σ is a tgd ϕ(~x)→ ∃~y ψ(~x, ~y)
h is a homomorphism from ϕ(~x) ∧ ψ(~x, ~y) to K such that
h is also a homomorphism from ϕ(~x) to K1
K2 is the result of satisfying σ on K1 with h, where K2 = K1 ∪ h(ψ(~x, ~y)) J

Note that this differs from the definition of a chase step, in particular because the applicability
condition is far broader. This is not surprising since such a satisfaction step shall be able to
help debug arbitrary solutions, whether they were created through the chase or not. We now
continue our debugging:
I Example 47 (ctd). Let us look at what we can find out using this satisfaction step with
the result including t3. As we can see, the location Seattle is indeed contained in s1, it just
is not copied by σ1, instead being replaced by a labeled null. This is most probably not the
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intended meaning, we will correct it. For the constant Smith occurring twice, we see that σ1
uses m,m twice in the conclusion, instead of n,m from the antecedent. We can correct this
typo as well, modifying σ1 to

Cards(cn, l, s, n,m, sal, loc)→ Accounts(cn, l, s) ∧ Clients(s, n,m, sal, loc) (σ′1)

So we corrected an error, but we might have spotted this error without any help of a
debugging system.
Let us look at a more complex case, debugging t2: Accounts(N1, 50K, 234). This atom cannot
be traced via a single satisfaction step to source atoms. But it can be traced back to two
satisfaction steps (here, we omit the homomorphisms):

SuppCards(6689, 234,A.Long,California) (s2)
σ2: SuppCards(an, s, n, a)→ ∃M, I Clients(s, n,M, I, a)
Clients(234,A.Long,M1, I1,California) (t4)
σ4: Clients(s, n,m, i, a)→ ∃N,LAccounts(N,L, s)
Accounts(N1, 50K, 234) (t2) J

Before using this sequence of satisfaction-steps for debugging, we again formally describe the
notion first:

I Definition 49. [5] A route for Js with M, I and J is a sequence of satisfaction steps
(I, ∅) σ1,h1−−−→ (I, J1) . . . σn,hn−−−−→ (I, Jn) where

J is a solution of I underM
Ji ⊆ J and σi are fromM
Js ⊆ Jn J

Having now defined what we mean by a route, let us use the one we have found in our
continuing example for debugging our schema mapping:
I Example 44 (ctd). The route shows some strange things: The value 50K suddenly appears
in t2, without being required by the dependency. This also shows that J is actually not a
universal solution, thus we witness the difference between satisfaction step and chase step.

Also, the account contains a labeled null N1 as the account number, even though in the
source tuple, we have the concrete value 6689. The reason is clear looking at this trace: The
intermediate atom t4 simply cannot store this account number. We can correct this by a
more complex modification of σ2 based on a join:

Cards(cn, l, s1, n1,m, sal, loc) ∧ SuppCards(cn, s2, n2, a)→
∃M, I Clients(s2, n2,M, I, a) ∧ Accounts(cn, l, s2) (σ′2)

In total, we might not have found all errors through this debugging, but a few obvious ones,
and also some non-obvious errors have now been corrected. J

To conclude this section, we note a quite important fact for actual debugging with such
routes: There is an algorithm for computing a minimal route, essentially in polynomial time
w.r.t. the size of the atoms to-be-debugged. Also, there are situations where one route is not
enough, but computing all routes is required. There is an algorithm for that as well in [5].

8.2 Summary
In this subsection, we scratched the surface of reasoning about schema mappings in the
broader sense. We looked at a particular application of debugging schema mappings using
the concept of routes. While we briefly noted algorithmic properties, we had no chance to
explore further connections to e.g. the topic of provenance.

This was of course only an exemplified excursion into the broad topic of what “reasoning”
about schema mappings may mean. Each of those meanings might fill a chapter of its own.
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9 Conclusion

The topic of reasoning about schema mappings is a broad one. In this chapter, we focused
on some of the central concepts of reasoning tasks: equivalence (Section 3) and optimality
(Section 4). But we also talked about applications and reasoning in the broader sense.

So before summarizing what we discussed in this chapter, let us look at how those topics
fit together in how we actually reason about schema mappings:

Given a schema mapping:
What does it do, and
Can we find errors in it? (Debugging, Section 8)
Can we optimize it?

automatically using logical equivalence? (Optimizing and Normalizing, Section 5)
is there hope using relaxed notions? (Boundaries of Decidability, Section 6)
or at least preserving the information involved? (Information Transfer, Section 7)

This process could of course be augmented with any number of other reasoning tasks about
schema mappings, both in the strict or in a broader sense. Let us now summarize what we
discussed in this chapter:

9.1 Summary
In the first part of this chapter, focused on concepts, we introduced notions of equivalence
and notions of optimality. We saw how they naturally arise when working with schema
mappings and discussed their relationship to each other. As a quick reference of all involved
notions, see Figure 2 and 3 at the ends of Section 3 and 4.
In the second part, we looked at applications and computational properties of these
concepts. We first saw that under logical equivalence, one can optimize schema mappings
based on s-t tgds under a broad range of optimality criteria, achieving a unique normal form.

We then explored the boundaries of decidability under data-exchange equivalence and
conjunctive-query equivalence. While many of the general problems there are undecidable, we
saw that there is both additional potential opened by these relaxations of logical equivalence,
as well as some decidable cases that may exploit this additional potential.

We then continued to apply equivalence in terms of information transfer to characterizing
important operators of schema mapping management. We saw that one can achieve quite
concise characterizations in that way.
In the final part, we also gave a glimpse at the broader sense of reasoning about schema map-
pings. There, we briefly looked at analyzing and debugging schema mappings by introducing
the concept of routes.

9.2 Outlook
While many of the general computational boundaries of reasoning about equivalence and
optimality of schema mappings have been explored, there are a number of theoretical and
practical problems open. For practical utilization, the search for useful decidable fragments
is paramount. In particular, current algorithms like those illustrated in Section 5 might be
extendable to cover an even broader range of schema mappings. Still, new approaches might
be needed to cope with relaxed notions of equivalence.

In the broader sense of reasoning about schema mappings, we touched only the surface of
available material. It is a topic that could fill many chapters of this size.
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Abstract
In this chapter we illustrate the main techniques for processing queries in data integration. The
first part of the chapter focuses on the problem of query answering in the relational setting,
and describes approaches based on variants of the chase, along with how to deal with integrity
constraints and access patterns. The second part of the chapter investigates query processing in
the context of semistructured data, which is best described by graph-based data models, where
the expressiveness of query languages not common in traditional database systems allows to point
out the subtle differences between query answering and query rewriting. The chapter is closed
by a very brief discussion of query processing in data integration with XML and ontologies.
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1 Introduction

The present chapter deals with the broad area of query processing in data integration,
by illustrating the existing query answering techniques both for relational data and for
semi-structured data.

The focus of the first part is on query answering in the relational case. We start with a
brief description of possible results for various combinations of parameters of the problem.
Then we describe the approaches that insist on the reconstruction of a representation of
global database(s). The main algorithmic techniques are variants of the chase of the sources.
We explain the concept of universal solution and show that it can be useful even if we
would like to compute a query rewriting only (inverse-rules method). Next idea discussed
is to rewrite the query such that it could be evaluated directly on the sources without
materialisation (even if temporary) of the sources. We illustrate approaches based on the
analysis of the relationship between the atoms of the user query and in the views, like in the
MiniCon algorithm. We illustrate also the ways of dealing with integrity constraints and
access patterns. We also discuss a technique of chasing the queries that leads to complete
but unsound rewritings. The first part ends with a study of the information-theoretic notion
of determinacy and its relation to rewriting.

Then, we investigate query processing in the context of semistructured data, capturing
data that does not fit into the predefined and strict schemas of the relational setting, but is
best described by graph-based data models. The main mechanism used for querying such
kind of data consists in regular path queries, which are binary queries specifying the pairs
of objects connected in a semistructured database by a path that conforms to a regular
expression. Regular path queries can traverse the edges of a semistructured database in
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the forward direction only, but they can be extended with the ability of navigating edges
also backward by means of an inverse operator, in which case we speak of two-way regular
path queries. These query languages, not common in traditional database systems, possess a
peculiar expressive richness that allows to uncover the subtle differences existing between
query answering and query rewriting and which are completely blurred when focusing on
conjunctive queries.

In the second part of the chapter, we first present a technique for rewriting regular
expressions that can be readily applied for regular path queries, and we then discuss the
relationship between query answering and query rewriting, also in relation to the relevant
notion of losslessness. Indeed, we examine the relationship between various notions that
assess different aspects of losslessness, w.r.t. answering and w.r.t. rewriting, in order to
understand whether there is loss of information when processing a query based on a set of
views and, in such a case, what is the cause.

We conclude the chapter by briefly discussing query processing in other data integration
scenarios, namely XML data integration and the newly emerging area of ontology-based data
integration. Due to space limitations, this part has no pretence of exhaustiveness, but it
merely mentions current trends in data integration research.

2 Preliminaries

In this section, we introduce the necessary notation and give some basic definitions that will
be used throughout the chapter.

An n-ary relation on a set A, where n ∈ N is called the arity of the relation, is a subset of
the Cartesian product An, that is, a set of n-tuples of elements of A. A signature (or alphabet)
is a finite set of relation symbols, each of which has an associated arity. A relational structure
(or instance) over a signature σ is a pair I = 〈∆I, ·I〉, where ∆I is a domain of objects and ·I
is a function associating each relation symbol r ∈ σ with a relation rI of appropriate arity
(i.e., if r is an n-placed relation symbol, then rI is an n-ary relation). A relational structure
over a signature σ is also called a σ-extension. Sometimes we treat relational structures as
sets of facts, that is, an instance I is a set containing exactly one fact r(t) for each relation
symbol r and each tuple t ∈ rI.

We call database signature a signature R = {R1, . . . , Rn} of database symbols and view
signature a signature V = {V1, . . . , Vk} of view symbols not occurring in R. Each view symbol
V ∈ V has an associated view definition V R, which is a formula in some language L over
R expressing V in terms of the database symbols. A V-extension (i.e., a view instance) is
denoted by E; an R-extension (i.e., a database instance) is denoted by D and simply called
a database.

A query Q is a function from relational structures over a given signature S to relations,
associating each relational structure I over S with a relation Q(I) of a certain arity, called the
answer to Q over I. We refer to queries over the database signature R as database queries
and to queries over the view signature V as view queries.

We consider two different assumptions on V-extensions. Under Closed World Assumption
(CWA), a V-extension stores all the tuples that satisfy the view definitions. In this case we
call the views exact. Alternatively, under Open World Assumption (OWA), a V-extension
may store only some of the tuples that satisfy the view definitions. In this case, we call the
views be sound. We formally define sound and exact views as follows.

I Definition 1. Let D be a database and VR(D) be the V-extension E such that V (E) =
V R(D) for each V ∈ V . A V-extension E is said to be sound w.r.t. D iff E ⊆ VR(D), and it
is said to be exact w.r.t. D iff E = VR(D).
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In a traditional database setting, we answer queries by evaluating them on the database.
In the context of view-based query processing, we have view extensions, and we aim at
processing queries based only on the information about the views. There are two forms of
view-based query processing, namely: view-based query answering (i.e., computing certain
answers), and view-based query rewriting (i.e., computing query rewritings). The basic
notions for the two tasks are defined as follows.

I Definition 2 (Certain answers). The certain answers to a query Q under sound views V
w.r.t. a V-extension E is the set of all tuples t such that t ∈ Q(D) for every database D
w.r.t. which E is sound, that is:

certsoundQ,V (E) =
⋂{

Q(D) | D is such that E ⊆ VR(D)
}
. (1)

The certain answers to a query Q under exact views V w.r.t. a V-extension E is the set of all
tuples t such that t ∈ Q(D) for every database D w.r.t. which E is exact, that is:

certexactQ,V (E) =
⋂{

Q(D) | D is such that E = VR(D)
}
. (2)

I Definition 3 (Rewriting). Let Q be a query over a database signature R and Qr be a query
over a view signature V. Qr is a rewriting of Q under sound views V iff for every database
D and every V-extension E which is sound w.r.t. D it holds that Qr(E) ⊆ Q(D). Qr is a
rewriting of Q under exact views V iff for every database D and every V-extension E which is
exact w.r.t. D it holds that Qr

(
VR(D)

)
⊆ Q(D). A rewriting is exact if the subset inclusion

in the above conditions is in fact an equality.

Rewritings are view queries that, in general, are formulated in a different language than
the one used for database queries. We consider languages Lq and Lr in which database
queries and rewritings are respectively expressed, along with a language Lv for expressing
view definitions. When the rewriting language Lr is monotonic, the definition of rewriting
under sound views coincides with the one of rewriting under exact views.

I Proposition 1. Let Qr ∈ Lr and Q ∈ Lq, and let Lr be monotonic. Then, Qr is a rewriting
of Q under sound views V iff Qr is a rewriting of Q under exact views V.

Proof. A rewriting under sound views is always also a rewriting under exact views, thus we
only need to show the opposite direction (under the assumption that the rewriting language
Lr is monotonic). Assume that Qr is a rewriting of Q under exact views V, hence for every
database D we have that Qr

(
VR(D)

)
⊆ Q(D). By the monotonicity of Lr, we then get that

for every V-extension E such that E ⊆ VR(D) it holds that Qr(E) ⊆ Qr
(
VR(D)

)
and, in

turn, Qr(E) ⊆ Q(D). J

Rewritings as defined above in Definition 3 are “contained” rewritings, that is, they
provide an underestimation of the original query. Often we are interested in rewritings that
are in a sense the best underestimations of the query, hence it is natural to consider rewritings
that are maximal, also called maximally-contained rewritings, which we define below.

I Definition 4 (Maximal rewriting). A rewriting Qr ∈ Lr of a query Q ∈ Lq under sound
views V is Lr-maximal iff, there is no rewriting Q′r ∈ Lr of Q under V such that, for some
V-extension E which is sound w.r.t. some database D, it is the case that Q′r(E) ⊃ Qr(E). A
rewriting Qr ∈ Lr of a query Q ∈ Lq under exact views V is Lr-maximal iff, there exists no
rewriting Q′r ∈ Lr of Q under V such that Q′r

(
VR(D)

)
⊃ Qr

(
VR(D)

)
for some database D.
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Dually, we can consider also minimally-containing rewritings that are the least overestim-
ations of the query, but which are not even rewritings according to Definition 3. We study
them in Section 3.

In some applications, it is of interest to consider rewritings that always provide exactly
the same information provided by the original query. Such rewritings are called exact and
are formally defined as follows:

I Definition 5 (Exact rewriting). A rewriting Qr ∈ Lr of a query Q ∈ Lq under views V is
equivalent to Q iff Qr

(
VR(D)

)
= Q(D) for every database D.

That is, for every database D, the evaluation of the rewriting on the view extensions w.r.t.
D returns exactly the same answers given by evaluating the original query on D. Observe
that an exact rewriting may not always exist, possibly because it is not expressible in Lr.

We are now ready to provide the formal definition of data integration system, following
the approach in [41]: A data integration system I is a triple (G,S,M), where G is the global
schema, S is the source schema, andM is the mapping between G and S. The source schema
describes the structure of the sources, where the real data is stored, while the global schema
provides a reconciled, integrated and virtual view of the underlying sources. The source and
global schema may be simple definitions of a set of relations or may allow for various forms
of integrity constraints. The mapping connects the elements of the global schema with those
of the source schema.

Consider a source database D, that is, a relational structure over the source schema S.
We say that a global database B (any relational structure over G) is legal for I and D if B
satisfies all constraints of G and B satisfies the mappingM with respect to D.

A mapping is expressed as a set of dependencies between G and S. We consider depend-
encies in one of the following forms: local-as-view (LAV), global-as-view (GAV) and their
combination global-and-local-as-view (GLAV).

In the GAV setting, the mapping characterise the content of each element of the global
database as a view over the sources. Typically, GAV views are assumed to be exact, in which
case the mapping (in the relational setting) can be specified as a set of dependencies of the
form

∀~x ϕS(~x)↔ R(~x) , (3)

one for each relation symbol R in the global schema G, where ϕS(~x) is a query over S. On
the other hand, when GAV views are assumed to be sound, the equivalence in (3) must be
replaced by an implication as follows:

∀~x ϕS(~x)→ R(~x) . (4)

In the LAV setting, the sources are characterised in terms of a view over the global
schema. Conversely, LAV views are commonly assumed to be sound, in which case the
mapping can be specified as a set of dependencies of the form

∀~x P (~x)→ ∃~y ψG(~x, ~y) , (5)

one for each relation P in the source schema S, where ψG(~x, ~y) is a query over G. On the
other hand, when LAV views are assumed to be exact, the implication in (5) must be replaced
by an equivalence as follows:

∀~x P (~x)↔ ∃~y ψG(~x, ~y) . (6)
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Note that the LAV setting is exactly the scenario of view-based query processing. Indeed,
in LAV we have one view for each source and the source content corresponds to the view
extensions. A query posed against the global schema is answered by using both the view
definitions (i.e., the mapping) and the view extension (i.e., the data at the sources). In some
occasions, we refer to “view-based query processing” (i.e., query answering/rewriting using
views), rather than to “query processing in LAV”, so as to reflect the terminology used in
the relevant literature.

Finally, we can consider the most general approach, called GLAV setting, which allows to
specify mappings as any source-to-target tuple generating dependencies (s-t tgds) [34]:

∀~x ϕS(~x)→ ∃~y ψG(~x, ~y) . (7)

In general, given a data integration system and a source database, there could more
than one legal global databases. In order to define what it means to answer a query in this
case, we resort to the notion of certain answers. Similarly to what we did in the context of
view-based query processing, we define the certain answers certQ,I(D) to a query Q in the
system I with respect to D as

certQ,I(D) =
⋂{

Q(B) | B is a legal database for I and D
}
. (8)

In what follows, we will refer to the most well known query languages such as datalog,
conjunctive queries (CQ) and their unions.

IDefinition 6. A datalog¬ rule is an expression of the following form P (~x)← l1(~x1), . . . , ln(~xn),
where each of li(~xi) is a literal i.e. positive or negated atom R(~x). We mention it explicitly
if we allow negated atoms in queries by placing the superscript like in datalog¬. P (~x) is the
head of the rule and l1(~x1), . . . , ln(~xn) is the body. Each variable in the head of a rule must
occur in the body of the rule. A datalog¬ program is a finite set of datalog¬ rules. If a query
is given by one or more non-recursive rules and all of the rules have the same head then it
is a union of conjunctive queries (UCQ). A single, non-recursive, datalog rule is called a
conjunctive query (CQ). We say that a query is safe if, for each of its rules, every variable
appearing in such rule (whether in the head or in the body) appears in a positive literal of
the same rule.

When discussing conjunctive queries we will often use the notion of a canonical structure.

I Definition 7 (Canonical structure). A canonical structure CQ for a conjunctive query Q is
the structure over the signature consisting of the relation symbols mentioned by Q such that
each relation RCQ is the set of all tuples ~a of variables and constants in (positive) atoms
R(~a) of Q.

IDefinition 8 (Expansion of a query). LetR be a database signature, let V be a view signature
and assume that for each V ∈ V the view definition V R is expressed as a conjunctive query.
An expansion exp(Qr) of a query Qr over V is the query overR that is obtained by substituting
every atom V (~a) in Qr with the corresponding view definition V R(~a).

An expansion in a LAV data integration setting, where the mapping is given as a set of view
definitions expressed as conjunctive queries, is defined analogously.

3 Query processing in relational data integration

In the first part of this section we will describe the main approaches that have been proposed
for query answering in data integration for the case of relational data. Successively, we study
the information-theoretic notion of determinacy and its relation to rewriting.
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3.1 Approaches to query answering
There is a number of parameters that heavily influence query answering in data integration
[41], namely: the presence of integrity constraints in the global schema, the class of allowed
mappings, the classes of user queries, and the class of queries in the mappings.

Before we discuss the fundamental techniques in query answering, we review shortly the
basic results for various combinations of the parameters.

GAV without constraints. This is the simplest case for query answering. We assume
first-order queries in the mapping. If additionally, the views are exact then it can be proved
that there is a single global database that is legal w.r.t the sources. This is the retrieved
global database B over the source schema where the view extensions are computed using the
view definitions. Note that since there are no existential variables on the right-hand side of
view definitions, the tuples in B have the elements from the source database only.

Clearly, the answer to user query Q is computed by evaluating Q over the database B.
Similarly, it is easy to modify the user query in order to obtain an equivalent query that

can be executed over the sources. This can be done following the unfolding strategy where
each of the atoms over V where V is a relation symbol in the global schema is substituted
with the corresponding query in the GAV mapping (i.e. the view definition).

It turns out that if we assume that views are sound then only a very limited form
of incompleteness appears. Namely, each view extension can be any superset of what is
computed using the view definitions (for monotone queries). Thus, given a source database
D there exist a number of global databases that are legal w.r.t. D. However, it is easy to
see that there exists the single minimal global database, which is the intersection of all such
databases.

GAV with constraints. The presence of integrity constraints changes the situation radically.
It turns out that in addition to incompleteness (i.e. there may be several global databases
that are legal w.r.t. the sources) also the inconsistency can show up (i.e. there may be no
global database that is legal w.r.t. sources).

Query answering in a GAV system with key and foreign key constraints has been studied
in [11]. It is proved that computing certain answers corresponds to evaluating the query
over a special canonical database that may be infinite in general. However, instead of direct
evaluation of the query on the canonical database, the algorithm constructing a query
rewriting in terms of a logic program is proposed. The approach results in polynomial data
complexity for query answering in the case of conjunctive queries. The results were further
extended in [13, 12] to deal with unions of conjunctive queries and inclusion dependencies.

(G)LAV. This is the setting that was the most intensively studied in literature, see [43, 1,
38, 33, 51, 48, 23]. Before we discuss the main approaches to (G)LAV query answering in
detail we present a set of (data) complexity results in Tables 1 and 2 [1].

In the rest of the chapter we describe the main groups of query processing techniques for
the case of LAV mappings. The approaches in the first group insist on the reconstruction of
a representation of global database(s). The main algorithmic techniques are various variants
of the chase of the sources. We explain the concept of universal solution and show that it
can be useful even if we would like to compute a query rewriting only (inverse-rules method).
Then, we describe approaches based on the analysis of the relationship between the atoms of
the user query and in the views (e.g. the MiniCon algorithm). The main focus we put on the
maximally-contained rewritings, since as proved in [1] for L ∈ {datalog,UCQ}, L-maximal
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Table 1 Data complexity of computing certain answers assuming sound views [1].

query
views CQ CQ 6= PQ datalog FO
CQ PTIME coNP PTIME PTIME undec.
CQ6= PTIME coNP PTIME PTIME undec.
PQ coNP coNP coNP coNP undec.
datalog coNP undec. coNP undec. undec.
FO undec. undec. undec. undec. undec.

Table 2 Data complexity of computing certain answers assuming exact views [1].

query
views CQ CQ6= PQ datalog FO
CQ coNP coNP coNP coNP undec.
CQ6= coNP coNP coNP coNP undec.
PQ coNP coNP coNP coNP undec.
datalog undec. undec. undec. undec. undec.
FO undec. undec. undec. undec. undec.

rewriting of a query in L under OWA computes exactly the set of certain answers. We
illustrate also the ways of dealing with integrity constraints and access patterns. Finally, we
discuss a technique of chasing the queries that leads to complete but unsound rewritings.

When describing complexity bounds we always mean data complexity, that is the com-
plexity w.r.t. the size of data at the sources.

3.2 Reconstruction of global data
The first approach we are going to describe reduces query answering to the two steps:
1. Materialise some representation of global data.
2. Evaluate the query on the materialisation.

This approach is closely connected to the of data exchange [34] where we have a source
schema, a target schema (that corresponds to the global schema in data integration) and a
source-to-target mapping. The main difference between data integration and data exchange
is in their goals. The primary goal of data exchange is to materialise the global database
(target instance), while such materialisation is not required in data integration. Then query
answering is performed using the materialised target instance without accessing the sources.

In this context we consider source-to-target dependencies of the form ∀~x∀~y ϕ(~x, ~y) →
∃~z ψ(~x, ~z), where ϕ is a conjunction of atoms over S and ψ is a conjunction of atoms over G.
Such dependencies correspond to the mappings in the GLAV data integration system.

The first step in order to implement this strategy is to find a good representation of
possible global databases. Natural candidates has been studied in the field of incomplete
databases such as Codd tables, naive tables or conditional tables [39, 37]. Generally, a table
is a database such that in the domain, in addition to constants, variables (nulls) are allowed.
A table represents a set of complete databases, each obtained by substituting all variables
with constants.

Formally, let ∆ be the set of all values, called constants, that may occur in domains of
relational structures. In addition, the domain of a table can contain values from an infinite
set Var of labelled nulls. We have ∆ ∩ Var = ∅. In naive tables there may be different
occurrences of the same variable in contrast to a Codd tables where each variable can appear
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only once. While querying naive tables labelled nulls are treated like constants, in particular,
each of them is equal to itself only. The distinction between variables and constants needs
to be kept because of the function variables play when working with homomorphisms and
substitutions.

A table B represents (under Open World Assumption) the following set of databases:

Rep(B) = {v(B) | v maps all nulls in B to elements of ∆},

where v(B) is the database that results from B after replacing each null x with v(x).
Given tables B and B′, a homomorphism h : B → B′ is a mapping from ∆B (i.e. the

domain of B), to ∆B′ (i.e. the domain of B′), such that (1) h(c) = c, for every c ∈ ∆ and
(2) for every fact R(~a) in B, we have that R(h(~a)) is a fact of B′.

The answer Q(B)↓ to a query Q over a table B is computed in the following way: first Q
is evaluated on B (recall that in the process the nulls are treated as they were constants i.e.
two nulls are equal if and only if they are syntactically equal) and then all tuples containing
nulls are discarded.

Now we introduce the notion of universal solution [34]. Assume we are given a data
integration system I = (G,S,M) and a source database D. We say that a naive table B
over the global schema G such that ∆B ⊆ ∆ ∪ Var is a universal solution for I and D if
and only if (1) B is legal with respect to D and I and (2) for each global database B′ that
is legal w.r.t. D and I there exists a homomorphism h : B→ B′.

Why universal solutions are important? Intuitively, a universal solution is a solution
that contains all the essential information as required by the mappings. Assume that the
user queries are preserved under homomorphisms. That is, for every query Q if h : B→ B′
and ~a ∈ Q(B) then h(~a) ∈ Q(B′). This condition is satisfied by positive queries such as
conjunctive queries, unions of conjunctive queries and datalog.

We have the following theorem.

I Theorem 9 ([34]). Let I be a (GLAV) data integration system, let D be a source database,
and let B be a universal solution for I and D. For a query Q that is preserved under
homomorphisms we have certQ,I(D) = Q(B)↓.

Indeed, certQ,I(D) ⊆ Q(B)↓ because B is legal w.r.t. D and I. Moreover Q(B)↓ ⊆
certQ,I(D) because from the definition for each global database B′ that is legal w.r.t. D and
I there exists a homomorphism h : B→ B′ and h preserves Q.

In order to compute a universal solution we can use the classical chase [44, 4]:

I Algorithm 1 (Chase the sources).

Input: a data integration system (G,S,M) and a source database D.
Output: The canonical universal solution Sol(D).
For every element ofM of the form ∀~x∀~y ϕ(~x, ~y)→ ∃~z ψ(~x, ~z)

for every tuple (~a,~b) such that D satisfies ϕ(~a,~b);
insert the tuples ψ(~a, ~Z) into Sol(D), where ~Z is a fresh tuple of nulls

In the simple case where all dependencies are source-to-target and there are no constraints
in G (i.e. no target dependencies) the chase always stops and constructs the solution in
polynomial time.

The construction can be extended to the case where there are global constraints in G,
such as
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equality-generating target dependencies (egds) of the form

∀~xϕ(~x)→ xi = xj ,

where ϕ is a conjunction of atoms over G, xi and xj are among the variables in ~x; and
tuple-generating target dependencies (tgds) of the form

∀~x∀~y ϕ(~x, ~y)→ ∃~z ψ(~x, ~z),

where both ϕ and ψ are conjunctions of atoms over G. If there are no existential variables
in the right hand side then such tgds is called to be full.

During the chase, target egds and tgds are applied as long as Sol(D) does not satisfy all
of them. However, in the presence of egds the chase may fail. This is because two distinct
constants may be required to be equal. Moreover, in presence of tgds that are not full the
chase does not always terminate and to make things worse checking termination of the chase
is undecidable. [34] and [28] introduce a sufficient and verifiable in polynomial time condition
for the termination of chase: the dependencies have to be weakly-acyclic (or have stratified
witnesses). The idea is to keep track of how the values propagate during the chase, and, in
particular, whether a new labelled null can determine the creation of another new labelled
null, at a later chase step. For full details and proofs we refer to [34]. The research on the
properties of the chase continues and better termination conditions are discovered (see e.g.
[24].

Quite surprisingly, the concept of chase is useful even if we would like to compute a
query rewriting only, without considering the view extensions in the first place. Consider the
following strategy:
1. modify the query such that it is possible to evaluate it on the sources (i.e. compute the

query rewriting),
2. evaluate the query rewriting on the sources.
Now we present inverse-rules method [33]. We assume the LAV setting (G,S,M), in particular
the mappingM is specified by the queries of the form V (~x)→ ψ(~x, ~z), where V is a symbol
in S and ψ(~x, ~z) is a conjunction of atoms over G. Furthermore, the language for user queries
and query rewritings is datalog.

The inverse rules are defined as follows. For each rule r inM and for each of the free
variables y1, . . . , yn in r we introduce a new function symbol fr,yj

of the same arity as the
head of r. Consider the rule r inM of the form

V (~x)→
∧

i=1,...,n
Ri(~xi, ~zi)

For i = 1, . . . , n we define the inverse rules in the following way

Ri(~xi, s(~zi))← V (~x).

The function s replaces each of the free variables z in ~zi with the Skolem term fr,z(~x).

I Example 10. The rule r

V (x, y)→ R1(x, z) ∧R1(z, y)

generates the following inverse rules

R1(x, fr,z(x, y))← V (x, y),

and

R1(fr,z(x, y), z)← V (x, y).
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Intuitively, the Skolem terms play the role of nulls in the construction of a universal
solution. LetM−1 be the set of inverse rules for the mappingM. The rules ofM−1 together
with the rules from the original query Q form the desired query rewriting (Q,M−1) that
can be evaluated over the sources. Note, however, that in the result there may be tuples
containing function symbols. Clearly, in the final step all such tuples have to be discarded,
similarly to the tuples with nulls in the process of naive evaluation above. We denote the
resulting query as (Q,M−1)↓.

Although the query (Q,M−1)↓ is no longer a datalog query but rather a logic program
(it contains function symbols) it can be evaluated in polynomial time w.r.t. size of a source
database D [33]. Indeed, the evaluation has to be performed in two stages - it should start
with the inverse rules (they introduce function symbols but they are not recursive) and then
the original rules of Q should be applied (they could be recursive but they do not introduce
function symbols).

Furthermore, it is possible to eliminate function symbols at all. This is because there
are only finitely many function symbols in (Q,M−1)↓ which makes it possible to encode
them by introducing new predicate names in the datalog query. Therefore (Q,M−1)↓ is
expressible in datalog.

I Theorem 11 ([33]). Let I = (G,S,M) be a data integration setting, let D be a source
database, and let (Q,M−1)↓ be a query rewriting constructed as above. Then the rewriting
(Q,M−1)↓ is maximally-contained (i.e. it is a maximal rewriting in the class of datalog
queries), it can be evaluated in polynomial time w.r.t. the size of the sources and it computes
the certain answers, i.e., certQ,I(D).

Note however, although (Q,M−1)↓ is maximally-contained and it computes the certain
answers it is not necessarily exact, that is, equivalent to the original query (see Definition 5).
Actually, exactness is a joint property of both the rewriting and the data integration setting
(see the discussion at the end of Section 4). Here, the problem of checking whether there
exists an exact rewriting for a datalog query reduces to the datalog query containment [33]
which is undecidable [53]. Nevertheless, (Q,M−1)↓ is exact if an exact rewriting expressible
either in datalog or as UCQ exists [1].

The inverse rules method can be extended to deal with (global) integrity constraints of
the form of full dependencies. Recall that the full dependencies are dependencies of the form

∀~xϕ(~x)→ ψ(~y),

where necessarily ~y ⊆ ~x, ϕ is a conjunction of relational and equality atoms and ψ is a
relation atom or equality atom. The key point is that there are no existentially quantified
variables in the right hand side of a full dependency which guarantees the termination of
chase. We construct a set chase(Γ) of datalog rules, one rule for each global full dependency
in Γ. The idea is that the application of the rules in chase(Γ) will simulate the chase with
(full) tgds and egds.

In presence of egds we need a way of enforcing equalities between variables and functional
terms derived during the evaluation of the resulting query. We introduce a new relation E
with an aim to capture equality. In order to be able to use E, the query and left hand sides
of all dependencies have to be rewritten to their rectified version.

We limit ourselves to the following example.

I Example 12. Consider a query Q

Q(x) : − P (c, x, y, y)
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In order to use the equalities captured by E, Q is rewritten to its rectified version Q̄, where
a constant c has to be replaced with fresh variable z and E has to include the pair (c, z),
the variable x appears in the head, so it is replaced in the body with a fresh variable x′
and E has to include (x, x′),
the variable y appears more than once in Q, the second occurrence is replaced with a
fresh variable y′ and E has to include (y, y′).
Q̄(x) : − P (z, x′, y, y′) ∧ E(x, x′) ∧ E(c, z) ∧ E(y, y′)

Consider a full dependency with the left hand side rectified:

P (x, y) ∧ P (y′, z) ∧ E(y, y′)→ P (x, z)

where P is a relation symbol in G.
For each such dependency the following, new datalog rule is introduced in chase(Γ).

P (x, z) : −P (x, y) ∧ P (y′, z) ∧ E(y, y′)

Finally, the rewriting of a query Q is the union Q ∪M−1 ∪ chase(Γ) ∪ equiv(E), where
equiv(E) is the transitivity datalog rule for E: E(x, y)← E(x, z) ∧ E(z, y).

I Theorem 13 ([33]). Let I = (G,S,M) be a data integration setting, let D be a source
database. We assume that the global schema G includes a set of full dependencies Γ. Consider
a (rectified) query Q. Then (Q,M−1 ∪ chase(Γ) ∪ equiv(E))↓ is a maximally-contained
rewriting of Q.

The restriction to the class of full dependencies guarantees evaluation of the query rewriting
in polynomial time however it is more limiting than e.g. if we restrict dependencies to be
weakly-acyclic. Note that we could introduce datalog rules for arbitrary tgds but then we
have to deal with Skolem terms in recursive rules. Such logic programs need not terminate.
Of course, this is nothing unexpected in the light of the results on the chase termination.
Note, however, that there are examples of dependencies such that the chase terminates but
the bottom-up evaluation of the logic program generated by them does not. E.g. consider
the weakly-acyclic dependency P (x1, x2) → ∃yP (x1, y) and the corresponding chase rule
P (x1, f(x1, x2)) : −P (x1, x2).

We can also include special domain enumeration rules [33] to deal with access patterns
on the views, however we defer it for a while.

3.3 Building the rewriting directly
The approaches to query answering that insist on the materialisation of global data, even if
temporary as in the inverse rules method, share a serious disadvantage. The materialisation
is not required in data integration and potentially it results in a lot of recomputation. In
this section our goal is to modify the query in such a way that it is possible to evaluate it on
the sources without materialising the global data.

First, recall that an expansion exp(Qr) of a query Qr over V is the query over R that
is obtained by substituting every atom V (~a) in Qr with the corresponding view definition
V R(~a).

We present methods for computing maximally-contained query rewritings that are based
on the analysis of how the atoms of a query can be mapped to the atoms of the expansion of
the rewriting. Such mapping is called the containment mapping [21] and it necessarily exists
since it witnesses the containment of the rewriting in the query.
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We assume a LAV data integration system (G,S,M) and that the user query Q and the
queries in M are conjunctive queries (CQs). We say that an atom R(~x) of Q is covered
by an atom R(~y) of a query V ∈ M if there is a mapping θ : ~x → ~y such that θ(~x) = ~y.1
Intuitively, such partial mappings θ can be used to build the containment mapping.

We start with the following result

I Theorem 14 ([42]). Let (G,S,M) be a LAV data integration system and let the user query
Q and the queries in M be conjunctive queries (CQs). If the body of Q has n atoms, and
Q′ is a CQ-maximal rewriting (it contains all other rewritings that are CQ), then Q′ has at
most n atoms.

The result follows from the fact that the atoms of the expansion exp(Q′) must cover the atoms
of Q. Since exp(Q′) ⊆ Q then there is a homomorphism h from (the canonical structure for)
Q to (the canonical structure for) exp(Q′). Clearly, each atom in Q is mapped by h to at
most one atom in exp(Q′). Thus, if Q′ contains more than n atoms then the expansion of at
least one atom of Q′ is disjoint from the image of h. Hence, the atom can be deleted and
this contradicts the maximality of Q′.

This gives us the brute-force algorithm for the construction of maximally-contained
rewriting in the class of unions of conjunctive queries. It is enough to consider all possible
conjunctions of n or fewer atoms.

I Theorem 15 ([42], [1]). Let (G,S,M) be a LAV data integration system, let Q and the
queries in M be conjunctive queries (CQs) and let Qr be the union of all CQ-maximal
rewritings for Q. Then
1. Qr is the UCQ-maximal rewriting,
2. Qr can be evaluated in polynomial time w.r.t. the size of the sources,
3. Qr is perfect (i.e. it computes exactly the certain answers),
4. Qr is exact if an exact rewriting (in the class of UCQs) exists.

The bucket algorithm [43] and its improved versions MiniCon algorithm [51], SVB
algorithm [48] provide better ways of constructing maximally-contained rewritings. Let
(G,S,M) be a LAV data integration system and let Q and the queries (views) V = V1, . . . , Vn
inM be conjunctive queries (CQs). The key idea is to analyse how the atoms of the expansion
of a conjunctive rewriting can cover the atoms of the user query. We say that a variable is
distinguished if it appears in the query head or in the head of a view definition. Existential
variables are called nondistinguished (or local). We say that a variable in Q is shared if it it
appears more than once in Q. There are a few simple conditions that a contained rewriting
has to preserve.
C0 All atoms of Q have to be covered by atoms of the expansion of a rewriting.
C1 A distinguished variable in Q has to be mapped to a distinguished variable in some Vi in

the expansion.
C2 A shared variable x of Q has to be mapped either to a distinguished variable or all atoms

of Q involving x have to be covered by atoms in the expansion of a single Vi.
The example below illustrates the motivation for C2.

I Example 16. Consider a query Q(x, z)← P (x, y) ∧ P (y, z) and a mapping consisting of
the two queries:

V1(v)→ P (v, w), V2(t)→ P (u, t)

1 Such mapping does not exist only if some x appears twice in ~x (or because of constants if they are
present).
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Then the rewriting V1(x) ∧ V2(z) is not contained in Q. This is because its expansion is
P (x,w) ∧ P (u, z), where w and u are fresh variables. Clearly, there is no way to equate the
local variables w and u at the level of rewriting. Note that the variable y of Q is shared by
two atoms in Q but since it is not in the head of Q it gets mapped to local variables of V1
and V2. Unfortunately, the bucket algorithm is not aware of the condition C2.

The bucket algorithm creates a bucket for each of the atoms of Q. The bucket for an
atom R(~s) in Q contains the heads of the queries inM that include atoms to which R(~s)
can be mapped. A query Vk can appear in the bucket for R(~s) multiple times if R(~s) can be
mapped to more then one atom in Vk. Let ~s = s1, . . . , sn and ~t = t1, . . . , tn.2 An atom R(~t)
in Vk is placed in the bucket for an atom R(~s) in Q if and only if:

R(~s) and R(~t) unify (C0). 3

if xi is in the head of Q then yi has to be in the head of Vk (C1).
If both conditions are satisfied we insert into the bucket for R(~x) the new atom θ(head(Vk)),
where θ is the unifier and all variables of Vk not in the domain of θ (i.e. not mentioned in
R(~y)) are fresh.

After constructing the buckets the algorithm starts generating candidate rewritings. It
considers every rewriting formed by a conjunction of atoms, one atom from each of the
buckets. Effectively, it means that all elements of the Cartesian product of the buckets are
enumerated. Note that because C0 and C2 are not enforced the algorithm has to check each
of the rewritings whether either it is contained in Q or can be made to be contained by
equating some of its variables. Finally, the resulting rewriting is the union of all contained
conjunctive rewritings.

The bucket algorithm has two drawbacks - it generates a lot of candidate rewritings and
then it performs an expensive containment test for each of them. This is because each of
the atoms in Q is considered in isolation. On the other hand the MiniCon algorithm focuses
on the interactions between the variables in the query and the mapping and enforces each
of the conditions C0-C2. Again, let (G,S,M) be a LAV data integration system and let Q
and the views V1, . . . , Vn inM be conjunctive queries (CQs). The algorithm constructs a
kind of generalised buckets, called MiniCon Descriptions (MCDs), however once it discovers
that an atom of some Vi can cover an atom of Q it finds the minimal, additional set of query
atoms that have to be covered together. Recall, that in the bucket algorithm we have a single
bucket for each atom of Q and such buckets consist of atoms over Vi. Here, a MCD C is
formed for a particular atom V (h(~x)), where h equates some variables of ~x (i.e. we may use
V (x, y, x) in the rewriting instead of V (x, y, z) ). Formally, a MCD C for Q and V consists of

a head homomorphism h,
the atom V (h(~x)),
a partial mapping θ from the variables of Q to the variables of V .
a subset GC of atoms of Q that are covered by some atom in the query V (h(~x)) using θ.

Note that the problem of bucket algorithm with enforcing the condition C0 is avoided
by splitting each of the considered unifiers into a separate head homomorphism h and a
mapping θ.

2 Both ~s and ~t are tuples of constants and variables
3 Actually, note that this does not guarantee that R(~t) can cover R(~s). The problem arises when the

unifier equates a variable of ~t (in the head of Vk or not) with another variable of ~t that is not in the
head of Vk (i.e. local variable). Then in the second phase if we use Vk in a rewriting we cannot enforce
the equality since we have no access to the local variables at the level of rewriting. We verify this with
the containment tests in the second phase.
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The algorithm constructs a set C of MCDs in such a way that for each C ∈ C, where
C = (h, V (h(~x)), θ, GC) the conditions below hold

for each head variable x in Q which is in the domain of θ, θ(x) is the head variable in
V (h(~x)) (C1),
If an existential variable x of Q is in the domain of θ and is shared by two or more atoms
in Q then each of the atoms must be covered by V (h(~x)) (C2).
The set of atoms GC has to be the minimal one (i.e. it is not possible to cover a subset
of the atoms in G by V (h(~x)) even if θ or h are extended).

The third condition, although not essential, allows for the optimisation of the second phase.
Namely, the algorithm outputs a union of all rewritings that are combinations of MCDs
C1, . . . Ck such that the sets of covered atoms GC1 , . . . , GCk

form a partition of the set of
atoms of Q. 4 Finally, it can be proved that the expansion of each of the rewritings is
contained in Q. Hence, containment tests are not necessary.

3.4 Dealing with access patterns
Now, we show how to deal with a situation where access to data sources is limited. In practice,
it may happen that some sources can answer only such queries where some variables are
bound. For example, consider a source relation owns(person, residence) storing information
about owners of residences. The source accepts queries where residence is bound to a given
value (i.e. it is not a free variable). That is, users can ask who owns a given residence but
is is forbidden to ask for a list of residences owned by a given person or for a list of all
person-residence pairs.

In order to model such limitations we introduce access patterns. Formally, an access
pattern for a k-ary relation V in the source schema is an expression V α where α is a word of
length k over the alphabet {i, o}, where ’i’ stands for input slot (only bound values) and ’o’
stands for output slot (no value required).

We say that a datalog query Q is executable if every variable of a rule appears first (when
reading from left to right) in a positive atom in an output slot in the body of the rule. E.g.
query V iio(0, 0, x) ∧ V ′i(x) is executable, while query V iio(x, 0, 0) is not.

It turns out that, if we allow recursive rules in the rewriting, access patterns do not
require special treatment in data integration system. Indeed, if recursion is allowed in the
rewriting, then we can easily enumerate the whole active domain [33]. If recursion is not
allowed, then we can simulate it with the chase, first transforming the domain enumeration
rules into dependencies [23].

Given a source schema S, let domainS be the unary recursive query with one rule of the
form

domainS(xj)← domainS(xi1) ∧ domainS(xi2) ∧ . . . ∧ domainS(xik ) ∧ V (~x)

for each relation V in S with an access pattern α where xi1 , xi2 , . . . , xik are in the input
slots and xj is in the output slot. Note that all-output access patterns give non-recursive
rules and if all access patterns are input only then domainS is empty. Now a query dext(Q)
for a query Q is given by the rules for domainS and the following rule

dext(Q)(~x)← domainS(y1), . . . ,domainS(yk) ∧Q,

where the head of Q is Q(~x) and yi are the variables in the body of Q.
Clearly, dext(Q) is executable and contained in Q.

4 In particular the combinations cover mutually exclusive sets of atoms of Q.
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Each rule of the query domainS as defined above can be captured with a constraint

domainS(xi1) ∧ domainS(xi2) ∧ . . . ∧ domainS(xik ) ∧ V (~x)→ domainS(xj).

For every relation V α in S we define a constraint σV,α

domainS(~x) ∧ V (~x)→ V ′(~x).

We denote all above constraints byM. The constraints inM are over the source schema S
and the global schema G but note that they are not source-to-target since domainS appears
in both sides of some constraints.

I Theorem 17 ([23]). For a data integration setting (G, S, M), where S is with access
patterns, for any UCQ query Q and for a source database D, the query dext(Q)(~x) computes
certQ′,(G,S,M)(D) where Q′ is obtained from Q by replacing every symbol V in S with the
corresponding symbol V ′.

3.5 Chasing the query
Now we discuss the problem of rewriting queries using the views from a dual perspective. We
follow ideas first presented in [25] (see also [26]). The approach results in query rewritings
that are overestimations of the exact answers. Still, it turns out that such query rewritings
can be computed with the use of the chase. This time, however, we chase the queries, and
not the data as before.

Recall that in the most common setting LAV mappings consist of dependencies of the form

∀~xV (~x)→ ∃~y ψ(~x, ~y),

where V is a symbol in S and ψ(~x, ~y) is a query over G. Such dependencies enforce the
view V to be sound. Here, we essentially make use of the implication in the other direction.
Namely, the dependencies in the mapping are of the form

∀~x, ~y ψ(~x, ~y)→ V (~x)

where V is a symbol in S and ψ(~x, ~y) is a query over G. Such dependencies enforce the views
V to be complete. Note that we may enforce exactness of views with the use of both kinds
of dependencies at the same time. Recall also the result presented in Table 2 - computing
certain answers under exact views is coNP-complete for CQ queries and views. Such a setting
is called LAV with exact sources.

The following algorithm illustrates the idea of the approach limited to the case with
conjunctive queries (CQs). Recall that by CQ we denote the canonical structure for a CQ Q.

I Algorithm 2 (ViewRewrite((G,S,M), Q(~x))).
Input:

a LAV data integration setting (G,S,M) with exact sources,
a conjunctive query Q(~x) over G.

Let Q′(~x) be the empty query (with no atoms).
For each rule inM of the form ∀~x, ~y ψ(~x, ~y)→ V (~x)

for each tuple ~a such that
there is a tuple ~b such that CQ satisfies ψ(~a,~b); and
V (~a) is not an atom of Q′.

add V (~a) to the conjunction Q′ as a new atom.
QM(~x) := Q′

Output: the query QM(~x) over S.
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What can we say about the properties of QM? Consider exp(QM), the expansion of QM.
Recall that exp(QM) is obtained by substituting every atom in QM with the corresponding
view definition from M. Clearly, in exp(QM) the symbols in S are replaced with the
queries over G. Now, note that there is always a containment mapping from exp(QM)
to Q. Therefore, QM is complete but may be unsound. That is, it returns all tuples in
certQ,I(D) for every D but it may also return some incorrect tuples. Such rewritings are
called containing rewritings. Furthermore, it can be shown that QM is contained in any
other containing rewriting, thus it is the best containing rewriting possible. We call such
rewritings minimally-containing.

We illustrate the algorithm with the following example.

I Example 18. Consider the query Q(x1, x2) : −R(x1, z1)∧R(z1, z2)∧R(z2, z3)∧R(z3, x2)
and the dependencies R(y1, a) ∧ R(a, y2) → V1(y1, y2) ∈ M1 and R(y1, z1) ∧ R(z1, z2) ∧
R(z2, y2) → V2(y1, y2) ∈ M2. Q is the path of length 4, V1 is the path of length 2 and
V2 is the path of length 3. Then QM1(x1, x2) : −V1(x1, z2) ∧ V1(z1, z3) ∧ V1(z2, x2) and
QM2(x1, x2) : −V2(x1, z3) ∧ V2(z1, x2).

Note that exp(QM1) is equivalent to Q while exp(QM2) is not sound.

Finally, note that exp(QM) can be computed by the chase with the use of the rules with
implications in the other direction (i.e. of the form ∀~xV (~x)→ ∃~y ψ(~x, ~y).

The construction can be developed further, the paper [23] extends the result to UCQ¬
queries both in the mapping (i.e. view definitions) and as the user queries. Moreover, a broad
class of integrity constraints in the global schema is allowed as well as the access patterns on
views. The extension requires a careful technical development, but the basic idea of chasing
the query remains and offers a unified treatment of the three flavours of rewriting problems:
using views, with access patterns and under integrity constraints.

3.6 Determinacy and rewriting
The question of whether a query Q can be answered using a set of views V can be formulated
at several levels: A language-specific formulation is given by the notion of query rewriting,
while a more general formulation is given by the information-theoretic notion of determinacy,
which is formally defined as follows.

I Definition 19 (Determinacy). Given a set of views V and a query Q over a database
signature R, we say that V determines Q (written V � Q) iff, for every two database
instances D1 and D2, we have that Q(D1) = Q(D2) whenever VR(D1) = VR(D2).

Intuitively, determinacy says that the views provide enough information to uniquely determine
the answer to the query, but without specifying whether this can be done effectively or
using a particular query language. Thus, the question of what is the relationship between
determinacy and rewriting arises quite naturally. On the one hand, if a query Q has an
exact rewriting Qr under (exact) views V, then V � Q; the converse, on the other hand, is
in general not true, leading to the following definition.

I Definition 20 (Complete rewriting language). A rewriting language Lr is complete for
Lv-to-Lq iff Lr can be used to express an exact rewriting of a query Q ∈ Lq using views V
defined in Lv whenever V � Q.

An interesting case is when the language Lq is itself complete for Lv-to-Lq, because in
such a situation the query language needs not to be extended in order to take advantage of the
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available views. A thorough investigation of determinacy and its connection to rewriting is
carried out in [49] for relational data, in a setting with exact views and exact rewritings where,
for view languages Lv and query languages Lq ranging from first-order logic to conjunctive
queries, the following questions are studied:
1. Is it decidable whether V � Q for V in Lv and Q in Lq?
2. Is Lq complete for Lv-to-Lq rewritings? If not, what is the minimal extension of Lq in

which such rewritings can be expressed?

Here, we summarise the main results for the following languages: First-order logic (FO);
conjunctive queries (CQ) without equality, inequality and constants; unions of conjunctive
queries (UCQ). For additional languages (e.g., existential FO) and further details see [49].
We start by reporting a general result establishing that determinacy becomes undecidable as
soon as the query language Lq is powerful enough so that satisfiability is undecidable, or as
soon as the view language Lv is such that validity is undecidable.

I Proposition 2. If satisfiability of sentences in Lq is undecidable or validity of sentences in
Lv is undecidable, then it is undecidable whether V � Q for Q in Lq and V defined in Lv.

Clearly, a direct consequence of Proposition 2 is that determinacy is undecidable whenever
queries or view definitions are expressed in FO. For what instead concerns rewritings, it
turns out that in the unrestricted case, that is, when possibly infinite instances are allowed,
FO is complete for FO-to-FO rewritings, but unfortunately this does not hold anymore when
considering finite instances only. Indeed, in the restricted case, any language that is complete
for FO-to-FO rewritings must express all computable queries.

Determinacy remains undecidable also for much weaker languages than FO. In fact, it has
been shown in [49] that determinacy is undecidable for UCQs in a quite strong way, as the
undecidability result holds for a fixed database schema and a fixed set of views. Concerning
rewritings, since the question of whether a UCQ query has a UCQ rewriting in terms of a
set of UCQ views is decidable [42], we also have that UCQ is not complete for UCQ-to-UCQ
rewritings, otherwise we would get a contradiction of the undecidability of determinacy for
UCQs mentioned above. Indeed, the following theorem from [49] shows that no monotonic
language can be complete even for UCQ-to-CQ rewritings.

I Theorem 21. Any language that is complete for UCQ-to-CQ rewritings must express
non-monotonic queries.

Proof. Consider the database signature R = {r1, r2} with r1 and r2 unary and the view
signature V = {v1, v2} with the following view definitions:

v1
R : ∃u r1(u) ∧ r2(x) ; v2

R : r1(x) ∨ r2(x) .

Let Q be the query r2(x). It is easy to see that the views V determine the answer to Q. In
fact, for any database D, we have the following two cases:

If r1(D) 6= ∅, then ∃z r1(z) is always true and Q(D) = v1(D), that is, the answer to Q is
provided by v1;
If r1(D) = ∅, then v2(D) = r1(D) ∪ r2(D) = r2(D) = Q(D), that is, the answer to Q is
provided by v2.

Therefore, V � Q. Now, let D1 be a database such that r1(D1) = {a, b} and r2(D1) = ∅,
and let D2 be a database for which r1(D2) = {a} and r2(D2) = {b}. Then, we have that
v1(D1) = ∅ ⊆ {a} = v1(D2) and v2(D1) = {a, b} = v2(D2). However, Q(D1) = {a, b} 6⊆
{a} = Q(D2). Hence, the mapping that for each database D associates the query answer
Q(D) to the corresponding extension VR(D) is non-monotonic. J
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The above proof shows that Theorem 21 holds even if the database relations, views and
queries are restricted to be unary.

Whether a CQ query can be rewritten as another CQ query in terms of a set of CQ
views is decidable [42]. Hence, if CQ were complete for CQ-to-CQ rewritings, we would
immediately have a decision procedure also for the determinacy for CQ queries and views.
However, in both [49] and [3] it is unfortunately shown that CQ is not complete for CQ-to-CQ
rewritings and, indeed, the former also show that no monotonic language is. The proof in
[3] is of particular interest in that it provides an infinite set of examples of CQ views and
queries for which the views determine the query but the query has no CQ rewriting in terms
of the views. The examples involve path queries Qn(x, y) on a binary relation r returning
the pairs 〈x, y〉 for which there is an R-path of length n from x to y (for more information
on path queries see Section 4). For instance, it can be shown that {Q3, Q4}� Q5 and that
Q5 has the following FO rewriting:

Q5(x, y) ≡ ∃z Q4(x, z) ∧ ∀v Q3(v, z)→ Q4(v, y) ,

but Q5 has no CQ rewriting in terms of Q3 and Q4. For what concerns the decidability of
determinacy for CQ views and queries, the problem remains open.

We conclude this section by presenting a well-behaved query language with respect to
determinacy and rewriting, namely the so-called packed fragment (PF) of FO, identified and
studied by Marteen Marx in [47]. We first make a short digression to introduce another
fragment of FO, called the guarded fragment (GF), of which PF is a useful extension. GF is
formally defined as the smallest set such that:

it contains every first order atom over a given relational signature,
it is closed under the boolean connectives, and
it is closed under the following rule for quantified formulas: if φ(x, y) is in GF, then so
are also ∃y

(
G ∧ φ(x, y)

)
and ∀y

(
G→ φ(x, y)

)
, provided that G is an atomic formula,

called the guard, in which all variables x and y occur free.
In other words, GF allows only for quantified formulas of the form ∀y

(
G(x, y)→ φ(x, y)

)
,5

where G is an atomic relation symbol and φ(x, y) is also in GF.
The key requirement in GF is that all of the variables occurring free in the subformula φ

must also occur in the guard. On the one hand, such a restriction ensures nice logical properties
to this fragment, in particular that the validity problem is decidable in 2EXPTIME; on the
other hand, however, it strongly limits its expressivity. Intuitively, guarding corresponds
to restricting the tuples that can be generated by queries to tuples whose elements form a
sub-tuple6 in some atomic relation, therefore views defined in GF always consist of sub-tuples
of a relation in the database. For instance, we can define the view ICT-Employee(name) from
the tables Employee(emp, id) and Department(id, dep) in the guarded fragment, as shown in
the example below, but we cannot define the binary relation WorksFor(emp, dep) from these
two tables.

I Example 22. The exact view definition

∀x
[

ICT-Employee(x)↔ ∃y
(
Employee(x, y) ∧ Department(y, “ICT”)

) ]
5 The variables in x are free, while the ones in y are universally quantified: when x is empty we have a
GF closed formula; when y is empty we have an open formula without outermost quantification.

6 That is, a projection over some of the elements in tuple.
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is equivalent to (the conjunction of) the following two formulae:

∀x, y
[ (

Employee(x, y) ∧ Department(y, “ICT”)
)
→ ICT-Employee(x)

]
,

∀x
[

ICT-Employee(x)→ ∃y
(
Employee(x, y) ∧ Department(y, “ICT”)

) ]
,

which are both in GF since the first one can be rewritten as

∀y
[

Department(y, “ICT”)→ ∀x
(
Employee(x, y)→ ICT-Employee(x)

) ]
.

From a database perspective, GF coincides with the semijoin algebra, which is obtained
from Codd’s relational algebra by replacing the product operator with the semijoin operator
n [40]. Indeed, differently from the natural join, the semijoin Rn S always returns a subset
of the tuples in R. As the most common type of queries occurring in practise are CQs, it is
interesting to remark that the guarded conjunctive queries (i.e., the CQs that are expressible
in GF) are precisely the acyclic conjunctive queries [36]. A conjunctive query Q is acyclic
iff so is its hypergraph, having as vertices all the variables occurring (free or bound) in Q
and, for each atom A(x) in Q, an hyperedge consisting of all the variables in x. In turn, the
hypergraph of a query is acyclic iff it can be reduced to the empty one by repeatedly deleting
vertices that occur in exactly one hyperedge and deleting hyperedges that are contained in
some other one [2].

The packed fragment extends GF by allowing guards of the form:

G(x) =
∧
k

∃y Ak(x, y) , (9)

where each Ak is an atom and, for every pair of distinct variables xi and xj , G(x) contains an
atom Ak in which xi and xj both occur free. A guard of this kind is a “safe product” whose
hypergraph is such that any two of its vertices belong together to an hyperedge. When all
the relation symbols are binary, the hypergraph is in fact a complete graph, that is, a clique.
For example, the query Employee(x, z) ∧ Department(z, y) ∧WorksFor(x, y) is a safe product
and its hypergraph is indeed a clique, whereas ∃z

(
Employee(x, z) ∧ Department(z, y)

)
is not

because there is no atom connecting the variables x and y. The former query is expressible
in PF but not in GF, as its hypergraph is cyclic. Indeed, PF is strictly more expressive than
GF: the “until” operator of temporal logic is another example of a FO formula that can be
expressed in PF but not in GF.

As for the positive properties, the validity problem in PF is 2EXPTIME-complete and
every satisfiable PF formula is satisfiable on a finite model. The packed fragment enjoys good
properties also w.r.t. determinacy and rewriting. In fact, as shown in [47], determinacy for
PF queries and views is 2EXPTIME-complete and PF is complete for PF-to-PF rewritings.
Moreover, the completeness result holds in addition for (unions of) packed conjunctive queries
(PCQ), that is, formulas obtained from relation symbols and equality using only conjunction
and existential quantification.7 Indeed, we also have that PCQ is complete for PCQ-to-PCQ
rewritings and UPCQ is complete for UPCQ-to-UPCQ rewritings. Other well-behaved classes
of CQ queries and views, but orthogonal to PF, are reported in [49].

4 Query processing in semistructured data integration

Semistructured databases capture data that do not fit into rigid, predefined schemas, and are
best described by means of graph-based data models. Indeed, a semistructured database is a

7 Note that, although called packed conjunctive queries for simplicity, such formulas cannot always be
written in prenex form due to syntactic restrictions.
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Table 3 Summary of the major results on determinacy and completeness for rewritings.

Language L Determinacy Complete for L-to-L rewritings?

Finite Unrestricted

FO undecidable % !

UCQ undecidable % %

CQ open % %

PF 2EXPTIME-complete ! !

(U)PCQ 2EXPTIME-complete ! !

finite relational structure over a signature R of binary symbols, that can be seen as a finite
directed graph where each node is an element of the domain and each edge is labelled by a
symbol r ∈ R. We denote by r(x, y) an edge from x to y labelled by r, representing the fact
that relation r holds between objects x and y. Clearly, in order to extract information from
this kind of data model, special querying mechanisms are required that are not common in
traditional database systems.

A regular-path query (RPQ) is a binary query defined in terms of a regular language over
R. In particular, the answer to an RPQ Q over a semistructured database D is the set Q(D)
of pairs of nodes connected in D by a directed path traversing a sequence of edges that form
a word in the regular language L(Q) defined by Q. A two-way regular-path query (2RPQ)
is an RPQ extended with the ability of traversing edges backwards when navigating in a
semistructured database. Formally, a 2RPQ over R is defined in terms of a regular language
over the alphabet R± = R∪{r− | r ∈ R} obtained by adding, for each r ∈ R, a new relation
symbol r− that denotes the inverse of r. In addition, the standard notion of path in a graph
is replaced by the notion of “semipath”, that is, a navigation of the database from some node
to another according to a sequence of edge labels, in which edges are traversed forward or
backward depending on whether the corresponding edge label is direct (i.e., some r ∈ R)
or inverse (i.e., some r−). Then, the answer to a 2RPQ Q over a semistructured database
D is given by the pairs of objects connected in D by a semipath conforming to the regular
language defined by Q. Examples of RPQ and 2RPQ are given below.

I Example 23. Let D be the semistructured database over the signature R = {r1, r2, r3}
shown in Figure 1, and consider the RPQ Q = (r1 +r2) ·r3 and the 2RPQ Q′ = (r1 +r2) ·r3

−

over R. Then, the answers Q and Q′ produce when evaluated over D are respectively given
by Q(D) =

{
〈a, d〉, 〈c, d〉

}
and Q′(D) =

{
〈a, b〉, 〈c, b〉

}
.

In this section, we study view-based query processing in the context of semistructured
data. First, we focus on the query rewriting approach by presenting a method, proposed in

a b c

d

r1 r2

r3

r1 r2

Figure 1 The semistructured database D of Example 23.
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[17], for rewriting a query expressed as a regular expression (i.e., an RPQ) in terms of a set
of views also expressed as regular expressions. Since RPQs are essentially regular expressions,
the presented technique is directly applicable for them, and it is extended to 2RPQs in [20]
using two-way automata to deal with inverse. Then, following [19], we explain and clarify the
relationship between rewriting and answering, highlighting the distinction between them in
the context of RPQs and 2RPQs. Indeed, the expressive richness of these languages allows to
point out subtle differences between answering and rewriting that are blurred in the case of
conjunctive queries. Lastly, we deal with the issue of trying to understand whether processing
a query based on a set of views causes loss of information. We will introduce different notions
for assessing “losslessness” w.r.t. answering and w.r.t. rewriting, and discuss the distinction
and the relationship between them.

4.1 Rewriting of regular expressions
In this section, we present a method [17] for computing the rewriting of a regular expression
(RE) in terms of other regular expressions. We consider a finite alphabet R of database
symbols and a finite alphabet V of view symbols. Each view symbol v ∈ V is associated with
a RE vR over R that defines v in terms of the symbols in R. Given a query Q expressed as
a RE over R, we want to reformulate it (if possible) by a suitable combination of the view
symbols. The expansion of a language L over V is the language exp(L) over R consisting of
all the words obtained from a word v1 · · · vn ∈ L by substituting each vi with every possible
word of the regular language defined by the RE associated with vi. In symbols:

exp(L) =
⋃

v1···vn∈L

{
w1 · · ·wn | wi ∈ L

(
vRi
)}

. (10)

The expansion of a V-word w is given by exp({w}).
Let Qr be an expression defining a language L(Qr) over V : We say that Qr is a rewriting

w.r.t. V of a RE Q over R iff exp
(
L(Qr)

)
⊆ L(Q). A rewriting Qr of Q w.r.t. V is said to

be exact when exp
(
L(Qr)

)
= L(Q). Obviously, we are interested in capturing the language

defined by the original RE at best, that is, in finding rewritings that are maximal. Formally,
a rewriting Qr of Q w.r.t. V is R-maximal iff every rewriting Q′r of Q w.r.t. V is such that
exp
(
L(Q′r)

)
⊆ exp

(
L(Qr)

)
and it is V-maximal iff every rewriting Q′r of Q w.r.t. V is such

that L(Q′r) ⊆ L(Qr). Intuitively, for V-maximality we compare the languages over V defined
by the rewritings, while for R-maximality we compare the corresponding expansions over R
of such languages. Note that all of the R-maximal (resp., V-maximal) rewritings define the
same language, and there exist R-maximal rewritings which are not V-maximal, as shown in
the following example.

I Example 24. Let R = {r}, Q = r∗ and V = {v} with vR = r∗. Then, we have that
Qr = v∗ and Q′r = v are both R-maximal rewritings of Q w.r.t. V, but the former is also
V-maximal while the latter is not.

As it turns out, V-maximality is a sufficient condition for R-maximality, i.e., every V-maximal
rewriting is also R-maximal, hence we can search for a V-maximal rewriting in order to find
an R-maximal one. This approach is suitable for (common) cases in which any R-maximal
rewriting would do, whereas it is not when one is interested in finding a specific R-maximal
rewriting (e.g., one maximising the use of some view symbol because it is less expensive),
which might not indeed be V-maximal.

We present a method that constructs a V-maximal (hence also R-maximal) rewriting of
Q. Such a maximal rewriting always exists, even though it may be empty. The idea on which
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the proposed method is based consists in characterising, by means of an automaton, exactly
those V-words that do not belong to any of the languages defined by every possible rewriting
of Q w.r.t. V . Observe that a V-word is such if its expansion contains an R-word that is not
in L(Q). Then, the complement of this automaton represents the maximal rewriting we are
seeking, since it accepts exactly the V-words whose expansions belong to L(Q).

I Algorithm 3 (Compute maximal rewriting).
Input: A regular expression Q over R; a regular expression vR over R for each v ∈ V.
1. Construct a deterministic automaton A over R such that L(A) = L(Q).
2. Define the automaton A′ over V such that:

A′ has the same set of states and the same initial state as A;
all states that are not final in A are the final states of A′;
A′ has a transition from state si to state sj labelled by v iff there is a word in L(vR)
that leads (through a sequence of transitions) from si to sj in A.

3. Construct the complement A′ of A′.8
Output: The automaton A′.

The automaton A′ built in the second step of the algorithm accepts only those V-words
leading from the initial state (which is the same as A’s) to a state that is non-final for A (A’s
final states are non-final in A′ and vice versa). The reason why the automaton A built in the
first step is required to be deterministic is that we need to make sure that no R-word in the
expansion of each V-word accepted by A′ leads to a final state of A, thus belonging to L(Q).

I Example 25. Let R = {r1, r2, r3} and V = {v1, v2, v3}, with the following definitions:

v1
R = r1 ; v2

R = r1 · r3
∗ · r2 ; v3

R = r3 .

We want to rewrite the RE Q = r1 · (r2 · r1 + r3) in terms of V. The result of applying each
step of Algorithm 3 is shown in Figure 2: first, we construct the deterministic automaton A
of Figure 2a that accepts the language defined by Q; then, we build the automaton A′ of
Figure 2b that, for instance, has a v2-labelled loop in s0 because there exists a word (e.g.,
r1 · r2) in the language defined by v2

R leading from s0 (through s1) back to s0 in A;9 finally,
since in this specific example A′ is deterministic,10 its complement A′ is obtained by simply
swapping final and non-final states of A′ as in Figure 2c.

It can be proved (see [17] for details) that the automaton A′ in the output of Algorithm 3
is indeed a V-maximal rewriting of Q w.r.t. V. This also shows that the language over V
defined by the V-maximal rewritings is in fact regular, although the form of the rewritings was
not constrained a priori (the notion of rewriting was introduced as any expression defining a
language over V). The complexity of Algorithm 3 can be analysed as follows by considering
the cost of each step:
1. Generating the deterministic automaton A from the regular expression Q is exponential.
2. Building A′ is polynomial. In particular, it is required to check whether for each pair of

states si and sj there exists a word in the language defined by the RE associated with
v ∈ V leading from si to sj in A. This can be done by considering the automaton Ai,j ,

8 This is done by transforming A′ into a deterministic automaton and swapping its final and non-final
states. Obviously, the language L(A′) accepted by A′ is the complement of the language L(A′) accepted
by A′, that is, L(A′) = L(A′).

9 In fact, in this particular example, every word in L(v2
R) leads from s0 back to s0 in A.

10 In general, the automaton A′ constructed in the second step of Algorithm 3 is non-deterministic.
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s0

s1

s2

r2, r3

r1

r1

r2

r3

r1, r2, r3

(a) A

s0

s1

s2

v2

v3

v1

v1, v2

v3

v1, v2, v3

(b) A′

s0

s1

s2

v2

v3

v1

v1, v2

v3

v1, v2, v3

(c) A′

Figure 2 Construction of the rewriting of the regular expression r1 · (r2 · r1 + r3)∗ over R =
{r1, r2, r3} with respect to V = {v1, v2, v3} where v1

R = r1, v2
R = r1 · r3

∗ · r2 and v3
R = r3.

obtained from A by changing the initial state to si and the set of final states to {sj},
and then checking for the non-emptiness of the product automaton between Ai,j and an
automaton for L(V R).

3. Complementing A′ (which is in general non-deterministic) is exponential.
Hence, generating the V-maximal rewriting of a regular expression w.r.t. a set of regular
expressions is in 2EXPTIME [17]. Deciding the existence of a non-empty rewriting can
be done by first generating the maximal rewriting (2EXPTIME) and then checking for its
non-emptiness (NLOGSPACE), which together give an EXPSPACE bound [17]. By means
of a reduction from a suitable EXPSPACE-complete tiling problem, it has been shown that
such a bound is tight (see [17] for the details of the reduction).

I Theorem 26. The problem of verifying the existence of a non-empty rewriting of a regular
expression w.r.t. a set of regular expressions is EXPSPACE-complete.

Next, we present a method for checking whether a rewriting, in the form of the automaton
A′ obtained from Algorithm 3, is exact, that is, whether it captures the language defined by
Q in its entirety.

I Algorithm 4 (Verify exactness of rewriting).
Input: The automatons A and A′ built by Algorithm 3.
1. Construct an automaton B such that L(B) = exp

(
L(A′)

)
as follows:

a. For each vi ∈ V, construct an automaton Ai such that L(Ai) = L(viR). We assume
w.l.o.g. that each Ai has a unique initial state with no incoming edges and a unique
final state with no outgoing edges.

b. B is obtained from A′ by replacing each edge labelled by vi with a new copy of Ai,
identifying its initial state with the source of the edge and its final state with the target
of the edge.

2. Check for the emptiness of A ∩B.
Output: Yes, if L(A ∩B) = ∅; No, otherwise.
It can be proved that the automaton A′ is an exact rewriting of Q w.r.t. V iff L(A∩B) = ∅.
Thus, deciding the existence of an exact rewriting requires first the generation of A′ (doubly
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r1
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A1:

A2:

A3:
(a)
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r2

r2

r1
r1

r1

r3

r2

r2

r1, r2

r1

r3

r2

(b) B

Figure 3 The construction of automaton B of Algorithm 4 in the setting of Example 25.

exponential), then the construction of B (polynomial) and its complementation (exponential),
and finally checking whether L(A ∩B) = ∅ (NLOGSPACE). The explicit construction of B
(and the further exponential blow-up it causes) can be fortunately avoided by building B
“on-the-fly” as follows: Whenever the non-emptiness test for A ∩B requires to move from a
state s1 to a state s2, the algorithm guesses s2 and checks that it is directly connected to
s1; after guessing a suitable state, s1 can be discarded; therefore, at each step, at most two
states need to be kept in memory. By avoiding the generation of the whole B, we obtain a
2EXPSPACE bound, while hardness can be shown with a reduction from a suitable tiling
problem (see [17] for details), thus giving the following result.

I Theorem 27. The problem of verifying the existence of an exact rewriting of a regular
expression w.r.t. a set of regular expressions is 2EXPSPACE-complete.

Referring back to Example 25, Figure 3 shows the construction of the automaton B, as in
the first step of Algorithm 4. The automata A1, A2 and A3 of Figure 3a accept the languages
defined by the REs v1

R, v2
R and v3

R, respectively. By substituting each vi-labelled edge in
A′ (see Figure 2c) with a fresh copy of the corresponding Ai from Figure 3a, we obtain the
automaton B depicted in Figure 3b. For instance, the loop labelled by v2 in state s0 of A′
is replaced with a fresh copy of A2, which requires the creation of a new state s′0 in B and
whose initial and final states are both identified with s0. Similarly, replacing the v2-labelled
edge from s2 to s1 in A′ requires the creation of a new state s′2 in B, but this time the initial
state of A2 is identified with s2 while the final one is identified with s1. By applying the
second step of Algorithm 4 it can be verified that the RE Qr = v2

∗ · v1 · v3
∗ represented by

A′ is indeed an exact rewriting of Q.

4.2 Answering, rewriting, and losslessness
Most of the work in the area of view-based query processing has focused on a setting based on
conjunctive queries, in which it turns out that query answering and query rewriting coincide.
Indeed, if the target queries are allowed to be written as UCQs, then the UCQ-maximal
rewriting computes exactly the certain answers. For this reason, the relationship between
answering and rewriting in view-based query processing is not always well understood.
Calvanese et al. [19] provide a clean explanation of the distinction between the two notions
in the context of semi-structured data, where the expressiveness of RPQs and 2RPQs allows
to point out the subtle differences between answering and rewriting. Let us illustrate how
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x z y

v1
r1

v2

r2

v3

r3 + r4

Figure 4 The structure of certQ,V in Example 28.

things get more complicated when going beyond conjunctive queries by means of an example
involving RPQs.

I Example 28. Let R = {r1, r2, r3, r4}, Q = r1 · r3 + r2 · r4 and V = {v1, v2, v3} with the
following definitions:

v1
R = r1 , v2

R = r2 , v3
R = r3 + r4 .

By applying the techniques presented in the previous section, it can be checked that the
RPQ-maximal rewriting of Q w.r.t. V is empty. On the other hand, the certain answers can
be expressed as follows:

certQ,V =
{
〈x, y〉 | ∃z v1(x, z) ∧ v2(x, z) ∧ v3(z, y)

}
. (11)

Observe that, as shown in Figure 4, (11) matches non-linear patterns in a database.

By characterising both answering and rewriting in terms of constraint satisfaction problems
(see [19] for the technical details), Calvanese et al. show that the former is more precise than
the latter. Indeed, while rewriting ignores that the same pair of objects might be connected
by different edges, answering takes this into account, thus being able to recognise non-linear
patterns as in the case of Example 28. Since it is defined directly in terms of the information
content of the views, query answering is a more robust notion than query rewriting. In fact,
whether a tuple is among the certain answers logically follows from the view extension. On
the other hand, the motivation behind query rewriting is of a practical nature, that is, the
need to access the view extensions by means of a specific query language.

A related and relevant issue in view-based query processing concerns losslessness, that is,
the ability of being able to “completely” answer a query by relying only on the content of the
views. Such an ability depends on the chosen approach to view-based query processing and
can thus be considered from the query answering perspective, on the one hand, and from the
query rewriting perspective, on the other. In the context of RPQs and 2RPQs, as we shall
see, there is indeed a distinction between different notions of losslessness, while this is not
the case for conjunctive queries, as answering and rewriting coincide.

A set of views V is lossless w.r.t. query Q iff for every database D we have that Q(D) =
certQ,V

(
VR(Q)

)
. In other words, a set of views V is lossless when the certain answers over

the V-extension obtained from the view definitions always coincide with the answers to the
query. This equivalence between the query and the certain answers determines whether the
information content of a set of views is sufficient to answer completely a given query and
constitutes the notion of losslessness w.r.t. answering.

In order to determine whether there is loss w.r.t. rewriting, we can compare rewritings to
the original queries, on one side, and to the certain answers on the other, with the aim of
checking for equivalence in either case. Depending on which comparison we are performing,
we assess different aspects of losslessness w.r.t. query rewriting, which are represented by the
two notions of exactness and perfectness. The former consists in the equivalence of a rewriting
to the original query, modulo the view definitions; the latter is the equivalence to the certain
answers. In other words, a rewriting is exact if it gives the same answers as the original query
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and perfect if it computes exactly the certain answers. In the case of conjunctive queries,
where answering and rewriting coincide, maximal rewritings are always perfect and, as a
consequence, also losslessness w.r.t. answering and losslessness w.r.t. rewriting coincide (that
is, a set of views is lossless w.r.t. a query Q iff the maximal rewriting of Q is exact).

Let V be a set of 2RPQ views and Q a 2RPQ query, and denote by Qmax
r the 2RPQ-

maximal rewriting of Q with respect to V. Then, using results from [18] and exploiting the
fact that 2RPQs are monotone, we have that for every database D the following holds:

Qmax
r
(
VR(D)

)
⊆ certQ,V

(
VR(D)

)
⊆ Q(D) . (12)

Observe that in (12) we evaluate the certain answers and the maximal rewriting over the
V-extension VR(D) obtained from the view definitions, instead of an arbitrary V-extension
that is sound w.r.t. D. The reason is that, when considering V-extensions that are strict
subsets of D, there might clearly be loss of information, but such a loss would be unrelated
to the “quality” of the views, which is what we are interested in assessing. The richness of
2RPQs allows us to discern and appreciate the differences between the various notions of
losslessness, which correspond to the cases in which some or all of the inclusions in (12) are
actually equalities. Each case is discussed below.

When V is lossless w.r.t. Q, we have equivalence between the query and the certain
answers, therefore the rightmost inclusion in (12) is an equality. In this case, there is no
loss of information caused by the fact that we are answering the query based on a set of
views (but there might still be loss due to rewriting).
When Qmax

r is perfect, that is, equivalent to the certain answers, we have that the leftmost
inclusion in (12) is an equality. In this case, we do not lose answering power by resorting
to rewriting (but there might still be loss due to the fact that we are answering a query
based on a set of views).
When Qmax

r is exact, that is, equivalent to the query, we have that both inclusions in (12)
are actually equalities. Therefore, the maximal rewriting is not only exact but also perfect
and, in addition, the views are lossless w.r.t. the query. This means that exactness of the
maximal rewriting is the strongest notion, in that it combines together both losslessness
of the views and perfectness of the rewriting.

We conclude this section by briefly reporting the main complexity results obtained so far
concerning losslessness, exactness and perfectness in the case of RPQs [17, 16] and 2RPQs
[19, 20]. Let V be a set of RPQ views, Q an RPQ query and Qmax

r the RPQ-maximal
rewriting of Q with respect to V. Then, the following hold:

Checking whether V is lossless w.r.t. Q is EXPSPACE-complete in the size of Q and
PSPACE-complete in the size of the view definitions VR [16].
Verifying the existence of an exact rewriting of Q w.r.t. V is 2EXPSPACE-complete [17]
(see Section 4.1).

Let V be a set of 2RPQ views, Q a 2RPQ query and Qmax
r the 2RPQ-maximal rewriting of

Q with respect to V. Then, the following hold:
Checking whether V is lossless w.r.t. Q can be done in EXPSPACE in the size of Q and
the view definitions VR [19].
Verifying the existence of an exact rewriting of Q w.r.t. V is 2EXPSPACE-complete
[20].11
Checking whether Qmax

r is perfect can be done in N2EXPTIME in the size of Q and in
NEXPTIME in the size of VR [19].

11 In [20], the same complexity results reported in [17] for RPQs are indeed shown to hold also in the case
of regular path queries with inverse.
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5 Query processing in other data integration scenarios

We would like to conclude the chapter by briefly discussing query processing in the emerging
areas of XML data integration and ontology-based data integration.

5.1 Data integration with XML
An increasing number of data integration applications uses XML for describing the global
schema, which allows to hide proprietary source schemas that data owners do not want
to disclose, while at the same time adhering to a newly-established standardised interface
without the need of migrating existing data. Indeed, much of the work in data integration
with XML is motivated by and focuses on the problem of publishing portions of relational
and/or XML data stored in proprietary sources through a global XML schema against which
user’s queries are formulated. Compared to the case discussed in Section 4 of query processing
in semistructured data, the translation of XML queries (expressed in XQuery) poses technical
difficulties that do not arise with semistructured queries like RPQs and 2RPQs.

A methodology for integrating heterogeneous data sources under an XML global schema
with LAV mapping is described in [45], where queries against the global schema, expressed
in the XML query language XQuery, are translated into SQL queries over the local data
sources. The approach followed in [45] allows for mixed relational and XML (in fact, any
DOM-compliant) data sources and consists of the following three phases:
Normalisation The initial user’s query (expressed in XQuery) is brought, through equivalence-

preserving transformations, to a syntactical form that, whenever possible, can be directly
translated to SQL. Indeed, normalisation identifies the features of XQuery that do not
have SQL equivalents and filters out the queries which make use of them.

Translation The normalised query is translated into an SQL query over a generic, virtual,
relational schema serving as an intermediate layer independent of the actual relationship
between the XML global schema and the data sources. Indeed, the methodology described
in [45] is implemented in the data integration system Agora [46], where relational and
tree-structured data sources are defined by views over the global XML schema by means
of such an intermediate schema that closely models the generic structure of an XML
document.

Rewriting The translated SQL query on the generic schema is rewritten into a SQL query on
the real data sources, by means of query rewriting algorithm [42] searching for maximally-
contained rewritings. The authors of [45] argue that, even though in different scenarios a
rewriting algorithm searching for exact query rewritings can be employed, as is the case
in [46], in large-scale data integration applications, where there is no guarantee that all
qualifying data is available, maximally-contained rather than exact rewritings are more
appropriate.

The problem of finding an exact rewriting (if one exists) of an XQuery query against a
global (public) XML schema into one or more queries over the source schema is studied in
[28, 30] in a general setting with mixed (XML and relational) storage for the local (proprietary)
data under the GLAV approach and in the presence of integrity constraints on both the global
and the source schemas. The class of queries considered in [28] is a fragment of XQuery,
consisting of so-called XBind queries whose general form is reminiscent of conjunctive queries;
the constraints on the relational part are disjunctive embedded dependencies (DEDs) [2, 27]
and on the XML part are XML Integrity Constraints (XIC) [31] whose expressive power
captures a considerable part of XML Schema [9] including keys and “keyrefs” and more.
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The approach followed in [28] consists in “compiling” an instance of the XML query
rewriting problem into a relational one, and then solving the latter by using the Chase &
Backchase (C&B) algorithm [25, 27]. The C&B enumerates the exact rewritings of a query
that are “minimal” w.r.t. a set of constraints, in the sense that no atom can be removed
from the rewriting without compromising equivalence to the original query (under the given
constraints). Whenever the Chase is guaranteed to terminate, which is the case for sets of
dependencies with stratified witness [28] (a.k.a. weakly acyclic sets of dependencies [34]), the
C&B is complete, in the sense that outputs all (up to equivalence) and only the minimal
rewritings of the input query under the given constraints.

The solutions devised in [28] are implemented in the MARS system [29], which can handle
all of the cases handled by other LAV-based integration systems, such as Agora [46] and
STORED [22] (for XML publishing), and Information Manifold [43] (for purely relational
integration). Moreover, for what concerns XML publishing in the pure GAV approach, and
when the storage schema is purely relational, MARS also subsumes the expressive power of
the systems XPeranto [52] and SilkRoute [35].

Even though the settings of [28] and [45] differ in many aspects, as the former is GLAV-
based, deals with exact rewritings and constraints are allowed on both global and source
schemas, whereas the latter is LAV-based, deals with maximally-contained rewritings and
no constraints are allowed, the two approaches are quite similar, in that they both make
use of an intermediate relational schema, onto which the XML query rewriting problem is
translated and then solved by means of relational query rewriting techniques.

We close our brief discussion of XML data integration by mentioning the work [55], where
the authors address the problem of obtaining maximally-contained rewritings of XQuery
queries in the presence of constraints on the XML global schema with LAV mapping, by
devising a complete query rewriting algorithm that, differently from [45] and [28], operates
directly on nested structures. The class of queries considered in [55] is a fragment of XQuery
that includes nested subqueries; the constraints on the global schema are nested equality-
generating dependencies (NEGDs), which include functional dependencies in relational or
nested schemas, XML Schema key constraints, and more general constraints stating that
certain tuples/elements must satisfy certain equalities.

Although [45] and [55] both use the LAV approach and deal with maximally-contained
rewritings, the former does not allow for constraints whereas the latter takes into account
constraints on the global schema. However, due to the translation to the intermediate generic
relational schema, views and queries in [45] can be quite complex and hard to understand
by humans, whereas the techniques in [55] operate directly at the XML level, thus resulting
more natural and user-friendly.

5.2 Ontology-based data integration
The use of an ontology as the global schema in a data integration system, best known in the
literature as ontology-based data access (OBDA), has the benefit of providing a semantically
rich conceptual view of the information gathered by the system, which users can more easily
understand. However, using an ontology to mediate the access to data sources amounts to
data integration under integrity constraints, which must be fully considered during query
answering, as they have a deep impact on how certain answers are computed [11]. Indeed,
when the global schema is expressed in terms of even a very simple conceptual data model, the
problem of incomplete information implicitly arises also in the GAV approach, making query
processing (which without integrity constraints reduces to query unfolding) difficult [10].

When the global schema is an ontology expressed in the description logic ALCQI, which
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fully captures class-based representation formalisms, query answering in data integration is
decidable [14]. However, the high computational data complexity makes the use of a such
an expressive description logic infeasible in practice when dealing with large amounts of
data, therefore the authors of [14] propose the adoption of DL-Lite, a specifically tailored
restriction of ALCQI that ensures tractability of query answering in data integration while
keeping enough expressive power. The “lightweight” description logic DL-Lite and its variants
constitute a family of tractable description logics that are used in several applications, most
notably the OBDA system MASTRO [15], providing access to heterogeneous relational data
sources through an integrated ontology specified in a logic of the DL-Lite family.

Surveys on ontology-based approaches to semantic data integration present in the literature
[54, 50, 7] compare several OBDA systems w.r.t. their reusability, changeability, and scalability.
Recent systems, not considered in the above surveys, are OntoGrate [32] and the previously
mentioned MASTRO [15], for relational data sources, and SOBA [8], for extracting and
integrating information from heterogeneous resources including plain text, tables and image
captions. We also cite MOMIS [6, 5] for the integration of semistructured data sources.

References
1 Serge Abiteboul and Oliver M. Duschka. Complexity of answering queries using material-

ized views. In Proceedings of PODS ’98, pages 254–263, 1998.
2 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-

Wesley, 1995.
3 Foto Afrati. Rewriting conjunctive queries determined by views. In Ludek Kucera and

Antonín Kucera, editors, Mathematical Foundations of Computer Science, volume 4708 of
Lecture Notes in Computer Science, pages 78–89. Springer Berlin / Heidelberg, 2007.

4 Catriel Beeri and Moshe Y. Vardi. A proof procedure for data dependencies. Journal of
the ACM, 31(4):718–741, 1984.

5 Sonia Bergamaschi, Silvana Castano, and Maurizio Vincini. Semantic integration of semis-
tructured and structured data sources. SIGMOD Record, 28(1):54–59, March 1999.

6 Sonia Bergamaschi, Silvana Castano, Maurizio Vincini, and Domenico Beneventano. Se-
mantic integration of heterogeneous information sources. Data & Knowledge Engineering,
36(3):215 – 249, 2001.

7 Agustina Buccella, Alejandra Cechich, and Rodríguez. Encyclopedia of Database Techno-
logies and Applications, chapter Ontology-Based Data Integration, pages 450–456. Idea
Group Reference, 2006.

8 Paul Buitelaar, Philipp Cimiano, Anette Frank, Matthias Hartung, and Stefania Racioppa.
Ontology-based information extraction and integration from heterogeneous data sources.
International Journal of Human-Computer Studies, 66(11):759–788, 2008.

9 Peter Buneman, Susan Davidson, Wenfei Fan, Carmem Hara, and Wang-Chiew Tan. Keys
for XML. In Proceedings of the 10th international conference on World Wide Web, WWW
’01, pages 201–210. ACM, 2001.

10 Andrea Calì, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Accessing
data integration systems through conceptual schemas. In Hideko S.K̃unii, Sushil Jajodia,
and Arne Sølvberg, editors, Conceptual Modeling — ER 2001, volume 2224 of Lecture Notes
in Computer Science, pages 270–284. Springer Berlin / Heidelberg, 2001.

11 Andrea Calì, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Data integ-
ration under integrity constraints. Inf. Syst., 29(2):147–163, 2004.

12 Andrea Calì, Domenico Lembo, and Riccardo Rosati. On the decidability and complexity of
query answering over inconsistent and incomplete databases. In PODS ’03, pages 260–271.
ACM, 2003.

Chapte r 05



158 Query Processing in Data Integration

13 Andrea Calì, Domenico Lembo, and Riccardo Rosati. Query rewriting and answering under
constraints in data integration systems. In IJCAI, pages 16–21, 2003.

14 Diego Calvanese and Giuseppe De Giacomo. Data integration: a logic-based perspective.
AI Magazine, 26(1):59–70, March 2005.

15 Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo.
The MASTRO system for ontology-based data access. Semantic Web, 2(1):43–53, jan 2011.

16 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Lossless
regular views. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, PODS ’02, pages 247–258, New York, NY, USA,
2002. ACM.

17 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Re-
writing of regular expressions and regular path queries. Journal of Computer and System
Sciences, 64(3):443–465, 2002.

18 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. View-
based query containment. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, PODS ’03, pages 56–67, New York,
NY, USA, 2003. ACM.

19 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. View-
based query processing: On the relationship between rewriting, answering and losslessness.
Theoretical Computer Science, 371(3):169–182, 2007.

20 Diego Calvanese, Moshe Y. Vardi, Giuseppe de Giacomo, and Maurizio Lenzerini. View-
based query processing for regular path queries with inverse. In Proceedings of the nine-
teenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
PODS ’00, pages 58–66, New York, NY, USA, 2000. ACM.

21 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In STOC, pages 77–90, 1977.

22 Alin Deutsch, Mary Fernandez, and Dan Suciu. Storing semistructured data with STORED.
In Proceedings of the 1999 ACM SIGMOD international conference on Management of data,
SIGMOD ’99, pages 431–442. ACM, 1999.

23 Alin Deutsch, Bertram Ludäscher, and Alan Nash. Rewriting queries using views with
access patterns under integrity constraints. Theoretical Computer Science, 371(3):200–226,
2007.

24 Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited. In PODS, pages
149–158, 2008.

25 Alin Deutsch, Lucian Popa, and Val Tannen. Physical data independence, constraints, and
optimization with universal plans. In VLDB, pages 459–470, 1999.

26 Alin Deutsch, Lucian Popa, and Val Tannen. Query reformulation with constraints. SIG-
MOD Record, 35(1):65–73, 2006.

27 Alin Deutsch and Val Tannen. Optimization properties for classes of conjunctive regular
path queries. In Database Programming Languages, pages 21–39. Springer, 2002.

28 Alin Deutsch and Val Tannen. Reformulation of XML queries and constraints. In Diego
Calvanese, Maurizio Lenzerini, and Rajeev Motwani, editors, Database Theory — ICDT
2003, volume 2572 of Lecture Notes in Computer Science, pages 225–241. Springer Berlin
/ Heidelberg, 2002.

29 Alin Deutsch and Val Tannen. Mars: a system for publishing xml from mixed and redund-
ant storage. In Proceedings of the 29th international conference on Very large data bases,
volume 29 of VLDB ’03, pages 201–212. VLDB Endowment, 2003.

30 Alin Deutsch and Val Tannen. XML queries and constraints, containment and reformula-
tion. Theoretical Computer Science, 336(1):57–87, 2005.



P. Guagliardo and P. Wieczorek 159

31 Aline Deutsch and Val Tannen. Containment and integrity constraints for XPath. In Pro-
ceedings of the 8th International Workshop on Knowledge Representation meets Databases
(KRDB2001), volume 45 of CEUR Workshop Proceedings. ceur-ws.org, 2001.

32 Dejing Dou, Han Qin, and Paea Lependu. OntoGrate: Towards automatic integration for
relational databases and the semantic web through an ontology-based framework. Interna-
tional Journal of Semantic Computing, 04(01):123–151, 2010.

33 Oliver M. Duschka, Michael R. Genesereth, and Alon Y. Levy. Recursive query plans for
data integration. Journal of Logic Programming, 43(1):49–73, 2000.

34 Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:
semantics and query answering. Theoretical Computer Science, 336(1):89–124, 2005.

35 Mary Fernández, Yana Kadiyska, Dan Suciu, Atsuyuki Morishima, and Wang-Chiew Tan.
SilkRoute: A framework for publishing relational data in XML. ACM Trans. Database
Syst., 27(4):438–493, December 2002.

36 Georg Gottlob, Nicola Leone, and Francesco Scarcello. On tractable queries and constraints.
In Proceedings of the 10th International Conference on Database and Expert Systems Ap-
plications, DEXA ’99, pages 1–15. Springer-Verlag, 1999.

37 Gösta Grahne. Incomplete information. In Encyclopedia of Database Systems, pages 1405–
1410. Springer US, 2009.

38 Gösta Grahne and Alberto O. Mendelzon. Tableau techniques for querying information
sources through global schemas. In ICDT, pages 332–347, 1999.

39 Tomasz Imieliński and Witold Lipski. Incomplete information in relational databases.
Journal of the ACM, 31(4):761–791, 1984.

40 Dirk Leinders, Maarten Marx, Jerzy Tyszkiewicz, and Jan Van den Bussche. The semijoin
algebra and the guarded fragment. Journal of Logic, Language and Information, 14:331–
343, 2005.

41 Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–246,
2002.

42 Alon Y. Levy, Alberto O. Mendelzon, and Yehoshua Sagiv. Answering queries using views.
In Proceedings of the fourteenth ACM SIGACT-SIGMOD-SIGART symposium on Prin-
ciples of database systems, PODS ’95, pages 95–104, New York, NY, USA, 1995. ACM.

43 Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous informa-
tion sources using source descriptions. In VLDB, pages 251–262, 1996.

44 David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing implications of data
dependencies. ACM Transactions on Database Systems, 4(4):455–469, 1979.

45 Ioana Manolescu, Daniela Florescu, and Donald Kossmann. Answering XML queries on
heterogeneous data sources. In Proceedings of the 27th International Conference on Very
Large Data Bases, pages 241–250, 2001.

46 Ioana Manolescu, Daniela Florescu, Donald Kossmann, Florian Xhumari, and Dan Olteanu.
Agora: Living with XML and relational. In Proceedings of the International Conference on
Very Large Data Bases, pages 623–626, 2000.

47 Maarten Marx. Queries determined by views: Pack your views. In Proceedings of PODS
’07, pages 23–30, 2007.

48 Prasenjit Mitra. An algorithm for answering queries efficiently using views. In ADC, pages
99–106, 2001.

49 Alan Nash, Luc Segoufin, and Victor Vianu. Views and queries: Determinacy and rewriting.
ACM Transactions on Database Systems, 35(3):1–41, 2010.

50 Natalya F. Noy. Semantic integration: A survey of ontology-based approaches. SIGMOD
Record, 33(4):65, 2004.

51 Rachel Pottinger and Alon Halevy. MiniCon: A scalable algorithm for answering queries
using views. The VLDB Journal, 10(2–3):182–198, 2001.

Chapte r 05



160 Query Processing in Data Integration

52 Jayavel Shanmugasundaram, Jerry Kiernan, Eugene J. Shekita, Catalina Fan, and John
Funderburk. Querying XML views of relational data. In Proceedings of the 27th Interna-
tional Conference on Very Large Data Bases, VLDB ’01, pages 261–270. Morgan Kaufmann
Publishers Inc., 2001.

53 Oded Shmueli. Equivalence of datalog queries is undecidable. J. Log. Program., 15(3):231–
241, 1993.

54 H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and S. Hüb-
ner. Ontology-based integration of information – A survey of existing approaches. In Pro-
ceedings of the IJCAI-01 Workshop on Ontologies and Information Sharing, volume 47 of
CEUR Workshop Proceedings, pages 108–117. ceur-ws.org, 2001.

55 Cong Yu and Lucian Popa. Constraint-based XML query rewriting for data integration. In
Proceedings of the 2004 ACM SIGMOD international conference on Management of data,
SIGMOD ’04, pages 371–382. ACM, 2004.



Semantics for Non-Monotone Queries in Data
Exchange and Data Integration
André Hernich

Humboldt University Berlin
Germany
hernich@informatik.hu-berlin.de

Abstract
A fundamental question in data exchange and data integration is how to answer queries that are
posed against the target schema, or the global schema, respectively. While the certain answers
semantics has proved to be adequate for answering monotone queries, the question concerning
an appropriate semantics for non-monotone queries turned out to be more difficult. This article
surveys approaches and semantics for answering non-monotone queries in data exchange and data
integration.
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1 Introduction

Query answering is a fundamental task both in data exchange and data integration. Indeed,
the goal of data integration is to combine different sources of data and to provide a unified
view through which these sources can be queried [29]. The data often resides at the sources
while the view is virtual (i.e., not materialized). Hence, if a user queries the view, the query
has to be answered using the source data, for example, by evaluating suitable queries on the
sources and combining their results, or by materializing the relevant part of the view that is
needed to answer the query. Data exchange is similar to data integration insofar as its goal is
to translate databases over a source schema into databases over a target schema [11, 27, 6, 4],
whereby providing a view (over the target schema) on the source database. However, unlike
in data integration, the view is materialized and queries have to be answered directly on
that view. In fact, in data exchange it is generally assumed that the source database is not
available at the time the target database is queried [11].

In both areas, the basic approach for modeling the relationship between source and target
is based on schema mappings [29, 27]. Schema mappings describe target databases (over a
target schema) in terms of source databases (over a source schema) by means of high-level
declarative assertions (typically expressed in a suitable fragment of first-order logic or even
second-order logic). A solution for a source database is a target database that makes all
assertions hold true. Usually schema mappings are underspecified, which means that source
databases may have more than one solution. Hence, it is not obvious at all how to answer
queries that are posed against the target schema of a schema mapping.

The following approach for answering queries is common in such a setting [29, 27, 6, 4].
Instead of answering a query Q on a single solution, the set of all tuples that are answers to Q
on all solutions is returned. This set is called the set of the certain answers to Q on the given
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source instance and schema mapping. Informally, it contains all tuples that are certain to be
answers to Q no matter on which solution Q is evaluated. The certain answers semantics has
turned out to be adequate for answering monotone queries like unions of conjunctive queries
with inequalities in the sense that it yields the best result obtainable from the information in
the source database and the schema mapping. Although the definition of the certain answers
involves a potentially infinite set of solutions, in many practical settings it is possible to
compute them in polynomial time (in data complexity, i.e., for fixed schema mappings and
queries) from a single solution called universal solution [11, 5], or by evaluating a suitably
rewritten query over the source schema (cf., [29] and Chapter 5 of this book).

Researchers soon realized [11, 3, 31] that for non-monotone queries, the certain answers
semantics may yield results that intuitively seem to be not accurate. The following example
illustrates the basic problem.

I Example 1. Suppose we just want to copy source databases to target databases. For
instance, assume that source databases contain a single binary relation E and the target
database is going to be a database containing a single binary relation E′. Then the schema
mapping M describing the translation from source to target could be specified by the
tuple-generating dependency

θ := ∀x, y
(
E(x, y)→ E′(x, y)

)
.

Informally, θ says that all tuples in E have to be in E′. Hence, the set of solutions for a
source database S consists of all target databases whose relation E′ contains all tuples in
the relation E of S.

On the other hand, since schema mappings describe translations from source to target, it
seems to be natural to expect that the result of translating a source database S according
to M is the copy S′ of S over the new schema {E′}. In particular, it seems to be natural
to expect that a query posed against the target schema yields the same result as the same
query evaluated on S′. However, this is not the case if we answer queries by the set of the
certain answers to the query: If the source database S is such that E contains only the tuple
(c, d), where c, d are distinct constants, then the expected set of answers to

Q(x, y) := ∀z
(
E′(x, z)→ z = y

)
would be {(c, d)}, yet the set of the certain answers to Q on S and M is empty (since the
instance whose relation E′ consists of the tuples (c, d) and (c, e) is a solution for S). J

As indicated by the example, the problem is really a matter of the semantics of schema
mappings. Which target databases should constitute the set of solutions for a given source
database? For the schema mapping M in the example, we argued that only the copy of a
source database S should be a solution for S under M . To enforce this, we could have used a
constraint like ∀x, y

(
E(x, y)↔ E′(x, y)

)
stating that a tuple is in E′ precisely if it belongs

to E. Then the set of the certain answers would be as desired. However, this approach –
of using constraints that are not expressible by standard constraints like tuple-generating
dependencies or equality-generating dependencies considered in the literature – seems to have
received almost no attention.1

The approach pursued in the literature is to use custom-made semantics of query answering
[13, 22, 32, 2, 21]. Under each of these semantics, a query Q is answered by the set of the

1 An exception is [32], where an extension of tgds, annotated tgds, is considered whose semantics cannot
be captured by any set of tgds and egds.
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certain answers to Q with respect to a suitably restricted set S of solutions (i.e., by the set
of all tuples that are answers to Q on all solutions from S). Except for the semantics in
[13], different forms of non-monotonic reasoning, specifically, variants of the closed world
assumption [36], are implemented to arrive at the corresponding set of solutions. Here, the
basic idea is to consider target databases as solutions only if they can be derived in a certain
way from the source database and the schema mapping. Apart from trying to remedy the
shortcomings of the certain answers semantics when it comes to answering non-monotone
queries, I think that non-monotonic reasoning in data exchange and data integration is
appealing in its own right. In principle, it allows for more compact specifications of schema
mappings, since only the data that is actually moved from the source to the target has to be
specified, without saying what should not be in the target database.

This chapter is intended to give an overview on the different semantics for answering
non-monotone queries, and the complexity of query answering under those semantics.

The remaining part of this chapter is organized as follows. In Section 2 we introduce basic
notions and notation used throughout this chapter, and in Section 3 we recall the certain
answers semantics and its behavior on non-monotone queries. Section 4 surveys the different
semantics that have been proposed in the literature for answering non-monotone queries.
Finally, Section 5 compiles what is known about the complexity of answering non-monotone
queries under those semantics.

2 Basics

Below, we recall standard notions from database theory and data exchange used in the rest
of this chapter. For a detailed account of these, see, e.g., [1, 4].

We let [n] be the set of all integers m with 1 ≤ m ≤ n. Mappings f : A→ B are extended
to tuples ā = (a1, . . . , ak) over A via f(ā) := (f(a1), . . . , f(ak)), and to relations R ⊆ Ak via
f(R) := {f(ā) | ā ∈ R}.

2.1 Databases

A schema is a finite set σ of relation symbols, where each R ∈ σ has a fixed arity ar(R) ≥ 1. A
σ-instance I assigns to each R ∈ σ a finite relation RI of arity ar(R). The active domain of I,
that is, the set of all values that occur in I, is denoted by dom(I). As usual in data exchange,
we assume that dom(I) ⊆ Dom, where Dom is the union of two fixed disjoint infinite sets –
the set Const of all constants, and the set Null of all (labeled) nulls. Constants are denoted by
letters c, d, e and variants like c′, c1; different letters denote mutually distinct constants. Nulls
serve as placeholders, or variables, for unknown constants; we will denote them by ⊥ and
variants like ⊥′,⊥1. Instances without nulls are called ground. Let const(I) := dom(I)∩Const
and nulls(I) := dom(I) ∩Null.

It will often be convenient to view instances as sets of atoms, where an atom is an
expression of the form R(ā) with R a relation symbol and ā ∈ Domar(R). Thus, we identify
σ-instances I with the set {R(ā) | R ∈ σ, ā ∈ RI}. This enables us to apply set theoretic
notation to instances. For example, we may write R(ā) ∈ I instead of “R ∈ σ and ā ∈ RI .”
Furthermore, we may write I ⊆ J to indicate that all atoms of I are contained in J , or I ∪ J
for the instance consisting of all the atoms of I and all the atoms of J .

Let I and J be instances. A homomorphism from I to J is a mapping h : dom(I) →
dom(J) such that for all constants c ∈ dom(I) we have h(c) = c, and for all R(a1, . . . , ak) ∈ I
we have R(h(a1), . . . , h(ak)) ∈ J . We call J a homomorphic image of I if there is a
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homomorphism h from I to J such that J = h(I), where we define

h(I) := {R(h(a1), . . . , h(ak)) | R(a1, . . . , ak) ∈ I} .

Furthermore, we call I and J homomorphically equivalent if there is a homomorphism from
I to J and a homomorphism from J to I. An isomorphism from I to J is a bijective
homomorphism h from I to J such that h−1 is a homomorphism from J to I. If there is
an isomorphism from I to J , we call I and J isomorphic. We say that J is a core of I if
J ⊆ I and there is a homomorphism from I to J , but no homomorphism from I to a proper
subinstance of J . As shown in [19] (see also [13]), every instance has a core, and cores of
homomorphically equivalent instances are isomorphic.

2.2 Queries and Constraints
The reader is assumed to be familiar with first-order logic (FO). Atomic FO-formulas over a
schema σ are formulas of the form R(u1, . . . , uar(R)) or u1 = u2, where R ∈ σ and each ui
is a variable or an element of Const. Formulas of the first form are called relation atoms
(over σ). FO-formulas over σ are built from atomic FO-formulas over σ in the usual way
using negation, conjunction, disjunction, implication, existential quantification, and universal
quantification. We write ϕ(x1, . . . , xk) to indicate that ϕ is a formula whose free variables
are precisely x1, . . . , xk; if ϕ is a sentence, we omit the parentheses.

Let dom(ϕ) be the set of all constants in ϕ. An assignment for ϕ in an instance I is a
mapping α from the free variables of ϕ to dom(I) ∪ dom(ϕ), which we extend to Const via
α(c) := c for all c ∈ Const. We write (I, α) |= ϕ to indicate that ϕ is satisfied in I under
α. The relation |= is defined as usual, the only difference being that constants in ϕ are
interpreted by themselves, and quantifiers range over dom(I) ∪ dom(ϕ). That is, we apply
the active domain semantics. For example, we have (I, α) |= R(u1, . . . , uar(R)) precisely if
(α(u1), . . . , α(uar(R))) ∈ RI ; (I, α) |= u1 = u2 precisely if α(u1) = α(u2); and (I, α) |= ∃xϕ
precisely if there is an a ∈ dom(I) ∪ dom(ϕ) with (I, α[a/x]) |= ϕ, where α[a/x] is the
assignment defined like α, except that x is mapped to a. For an FO-formula ϕ(x1, . . . , xk)
and a tuple ā = (a1, . . . , ak) ∈ (dom(I)∪ dom(ϕ))k, we write I |= ϕ(ā) instead of (I, α) |= ϕ,
where α(xi) = ai for each i ∈ [k].

An FO-query over σ is an FO-formula ϕ over σ together with a tuple x̄ = (x1, . . . , xk)
containing all the free variables in ϕ; we denote such queries by ϕ(x̄). The result of ϕ(x̄)
on I is the set ϕ(I) := {ā ∈ (dom(I) ∪ dom(ϕ))k | I |= ϕ(ā)}. We will often tacitly use the
fact that for every FO-query Q over σ, there is a polynomial time algorithm that takes a
σ-instance I as input and outputs Q(I).

A conjunctive query (CQ) is an FO-query of the form ϕ(x̄) = ∃ȳ ψ, where ψ is a
conjunction of relation atoms. If ψ is a conjunction of relation atoms and inequalities ¬u = v,
we call ϕ a CQ with inequalities, and if ψ is a conjunction of relation atoms and negated
relation atoms, we call ϕ a CQ with negation. A union of conjunctive queries (UCQ) is a
disjunction of CQs. A UCQ with inequalities is a disjunction of CQs with inequalities.

When we refer to the atoms of ϕ(ā) for some FO-formula ϕ(x̄) = R1(ȳ1) ∧ · · · ∧Rk(ȳk)
and an assignment ā for x̄, we mean the atoms Ri(b̄i), where b̄i is obtained from ȳi by
replacing each variable in ȳi with the corresponding value assigned to that variable by ā.

2.3 Schema Mappings
The following definitions are standard in data exchange (cf., e.g., [11, 13, 27, 6, 4]). A
schema mapping M = (σ, τ,Σ) consists of disjoint schemas σ and τ , called source schema



A. Hernich 165

and target schema, and a finite set Σ of assertions, where we distinguish between source-
to-target tuple-generating dependencies (st-tgds), target tuple-generating dependencies (t-
tgds), and equality-generating dependencies (egds). St-tgds are FO-sentences of the form
∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), where ϕ is a conjunction of relation atoms over σ, ψ is a
conjunction of relation atoms over τ , and ϕ and ψ contain no constants. T-tgds are defined
similarly; they differ from st-tgds only in that ϕ, like ψ, is a conjunction of relation atoms
over τ . Egds are FO-formulas of the form ∀x̄(ϕ(x̄) → y = z), where ϕ is a conjunction of
relation atoms over τ , y and z occur in x̄, and ϕ contains no constants.

A source instance S for M is a ground σ-instance. A solution for S under M is a
τ -instance T such that S ∪T satisfies all the tgds and egds in Σ.2 Note that, unlike solutions,
source instances are not allowed to contain nulls, and that a source instance may have no
solution or more than one solution.

Concerning the question as to which solution should be materialized for data exchange,
[11] proposes universal solutions, and makes a good case for materializing such solutions. A
universal solution for S under M is a solution T for S under M such that for every solution
T ′ for S under M there is a homomorphism from T to T ′. A source instance for M might not
have a universal solution, even if it has solutions. However, if M is specified by st-tgds, then
every source instance S has a universal solution under M . For example, such a universal
solution can be constructed from an initially empty instance over M ’s target schema by
adding, for each st-tgd ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)) in M and each pair ā, ā′ of tuples with
S |= ϕ(ā, ā′) the atoms of ψ(ā, b̄), where b̄ is a tuple of pairwise distinct fresh nulls. The
resulting universal solution is unique up to isomorphism. We call it the canonical solution
for S under M , and denote it by CanSol(M,S).

Particular important universal solutions are core solutions, which can be thought of as
smallest universal solutions. If M is specified by st-tgds, then a core solution for S under M
is defined as a core of CanSol(M,S). Since every two cores of CanSol(M,S) are isomorphic,
there is a unique core solution for S under M up to isomorphism. Hence, we may speak of
the core solution, denoted by Core(M,S). It is easy to verify that Core(M,S) is a solution
for S under M . We will not need core solutions for more general schema mappings; see [13]
for their definition and properties.

I Example 2. Consider the schema mapping M = (σ, τ,Σ) with σ consisting of a binary
relation symbol Book, τ consisting of binary relation symbols Author and BookInfo, and Σ
containing the st-tgd

∀x∀y
(
Book(x, y)→ ∃z(Author(y, z) ∧ BookInfo(z, x))

)
.

Furthermore, consider the source instance

S := {Book(Comput. Compl.,S. Arora),Book(Comput. Compl.,B. Barak),
Book(Model Theory,W. Hodges)},

which stores tuples of the form (book title, author) in BookS . Then,

T := {Author(S. Arora,⊥1),BookInfo(⊥1,Comput. Compl.),
Author(B. Barak,⊥2),BookInfo(⊥2,Comput. Compl.),
Author(W. Hodges,⊥3),BookInfo(⊥3,Model Theory) }

2 A word of caution: In data exchange, solutions are usually finite, as introduced here, whereas in data
integration, solutions may also be infinite. For simplicity, we consider only finite solutions.
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is a universal solution for S under M . It is both the canonical solution and the core solution
for S under M . Other universal solutions can be obtained from T by adding arbitrary tuples
with nulls to T . Note that the instance T ′ obtained from T by identifying ⊥1 and ⊥2 is not
a universal solution, since there is no homomorphism from T ′ to T . On the other hand, if
we would add the egd ∀x1∀x2∀y

(
BookInfo(x1, y) ∧ BookInfo(x2, y) → x1 = x2

)
to Σ, then

T ′ would be the core solution for S under M . J

For later reference, we state:

I Theorem 3 ([11, 13]). Let M be a schema mapping defined by st-tgds. Then there are
polynomial-time algorithms that take a source instance S for M as input and compute
CanSol(M,S) and Core(M,S), respectively.

3 The Certain Answers Semantics and Non-Monotone Queries

The basic approach for answering a query Q over the target schema of a schema mapping
M = (σ, τ,Σ) is to return its certain answers [29, 11, 27, 6, 4]. Given any source instance S
for M , the certain answers to Q on M and S are defined as

cert(Q,M,S) := {ā | ā ∈ Q(T ) for all solutions T for M under S}.

So, informally, a tuple ā belongs to cert(Q,M,S) whenever it is an answer to Q no matter
on which of S’s solutions Q is evaluated. Note that if Q is a UCQ (or any other domain
independent query), this means that Q(ā) logically follows from S, viewed as a set of atomic
formulas, and Σ.3

I Example 4. Let M and S be as in Example 2, and consider the UCQ

Q(x) := ∃y
(
BookInfo(y,Comput. Compl.) ∧Author(x, y)

)
,

which asks for all authors of “Comput. Compl.” It is intuitively clear that the result of
evaluating Q with respect to M and S should be “S. Arora” and “B. Barak.” And indeed,
cert(Q,M,S) = {S. Arora,B. Barak}. J

The certain answers have several good properties for query answering in data exchange
and data integration. The most apparent one is their simple and natural definition. Another
one is that in many practical settings it is possible to compute them in polynomial time
(for fixed schema mappings and queries) from a single solution, namely a universal solution
[11, 5], or by evaluating a suitably rewritten query over the source schema (cf., [29] and
Chapter 5 of this book). For example, to compute cert(Q,M,S) for a UCQ Q, we only need
to evaluate Q on an arbitrary universal solution for S, and remove all tuples with nulls from
its result:

I Theorem 5 ([11]). Let M be a schema mapping, let S be a source instance for M , and let
Q be a UCQ over M ’s target schema. For any universal solution T for S under M ,

cert(Q,M,S) = {c̄ ∈ Q(T ) | c̄ contains no nulls}.

3 Here we use the standard first-order semantics. That is, Q(ā) logically follows from S and Σ if for all
instances I with S ⊆ I and I |= Σ we have I |= Q(ā).
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In particular, if M and Q are fixed, and M is such that for any source instance S for M ,
S has a universal solution if it has a solution, and a universal solution for S can be computed
in polynomial time, then cert(Q,M,S) can be computed in polynomial time. By Theorem 3,
schema mappings defined by st-tgds have this property. Much broader classes of schema
mappings with this property are known, see, e.g., [11, 13, 16, 9, 28, 34, 15, 18] and Chapter 1
of this book.

I Remark. Extensions of universal solutions and Theorem 5 that are suitable for answering
general monotone queries like UCQs with inequalities appeared in [9]. However, computing
the certain answers to such queries (for fixed schema mappings and queries) is in co-NP, and
co-NP-complete in general [11, 33]. Certain fragments of UCQs with inequalities were shown
to be tractable, though [11, 5].

Despite their good properties, it has been realized that for non-monotone queries the
certain answers may yield counter-intuitive results. We have illustrated the basic problem in
Example 1. Other problems have been pointed out in [11, 3, 31], for example:

A copying schema mapping is a schema mapping M = (σ, τ,Σ), where τ consists of copies
R′ for each R ∈ σ, and Σ consists of st-tgds ∀x̄

(
R(x̄) → R′(x̄)

)
for each R ∈ σ. For

example, the schema mapping from Example 1 is a copying schema mapping. Although
copying schema mappings intuitively say nothing else than to copy each relation R to the
relation R′, [3] showed that there is a copying schema mappingM = (σ, τ,Σ) and a simple
FO-query Q (actually, a union of a CQ and a CQ with negation) that is not rewritable to
an FO-query Q′ over σ such that for every source instance S forM , Q′(S) = cert(Q,M,S).
They also proved that it is not rewritable to an FO-query Q′ over τ such that for every
source instance S for M , Q′(T ) = cert(Q,M,S) with T ∈ {Core(M,S),CanSol(M,S)}.
As shown in [3], if M is a schema mapping defined by st-tgds, then for every Boolean
FO-query Q over M ’s target schema, either cert(Q,M,S) = ∅ for all source instances S
for M , or cert(¬Q,M,S) = ∅ for all source instances S for M . To see this, suppose that
cert(Q,M,S) 6= ∅ for some source instance S for M . Then for all solutions T for S under
M we have T |= Q. Now, if S′ is an arbitrary source instance for M , it is not hard to see
that there is a solution T ′ for S′ under M that is also a solution for S under M . Then,
T ′ 6|= ¬Q, and therefore cert(¬Q,S′,M) = ∅. It follows that either Q or ¬Q has a trivial
answer, namely ∅, that does not depend on the source instance.

As already pointed out in the introduction, the problem is really a matter of the semantics
of schema mappings, that is, a matter of which target instances of a schema mapping M are
considered as solutions for a source instance under M . One way to enforce a suitable set
of solutions would be to use a more expressive constraint language for specifying schema
mappings. This approach is certainly worth pursuing, but to the best of my knowledge
it seems to have received almost no attention in the literature to date. The approaches
proposed in the literature are based on the certain answers to queries with respect to a
restricted set of solutions.

4 Semantics for Non-Monotone Queries

A variety of semantics for answering non-monotone queries over the target schema of a
schema mapping have been proposed in the literature [13, 22, 32, 2, 21]. These semantics are
based on the following basic idea: for each schema mapping M and each source instance S,
define an appropriate set [[M,S]] of solutions, and answer queries Q by the certain answers
to Q on [[M,S]], that is, {ā | ā ∈ Q(T ) for all T ∈ [[M,S]]}.
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In [13], it is proposed to let [[M,S]] be the set of all universal solutions for S under M .
However, the resulting semantics has similar problems as the certain answers semantics [3].4
Therefore, we will not consider that semantics here.

The semantics proposed in [22, 32, 2, 21] are based on non-monotonic reasoning, specifi-
cally variants of the Closed World Assumption (CWA) [36], to arrive at the sets [[M,S]]. This
means that a solution will be in [[M,S]] if it can be derived in a certain way from M and S.
The goal is always to define a set of solutions that intuitively captures “precisely the positive
information in M and S, and nothing more.” This is quite natural, since – as Libkin argued
in [31] – in data exchange (but the same applies to data integration), data is moved from
source to target according to the tgds and egds of a schema mapping. Therefore, answers
to queries should only depend on that data, and not on data that could later be added to
the target database. For instance, this seems to be natural in Example 1 as we have argued
there. In the following, we review these semantics in more detail.

4.1 Libkin’s CWA-Semantics
The CWA-semantics [31, 23] (see also [22]) was the first semantics explicitly designed for
answering non-monotone queries in data exchange. It was introduced by Libkin [31] for
schema mappings defined by st-tgds, and extended by Schweikardt and myself [23] to schema
mappings as considered in this chapter. As the name suggests, it5 is based on the CWA. As
mentioned above, this means that for answering a query Q on M and S we take into account
only those solutions for S under M which can be derived in a certain way from M and S.
We call such solutions CWA-solutions.

4.1.1 CWA-Solutions
Informally, CWA-solutions for a source instance S under a schema mapping M are all those
solutions T for S under M that satisfy the following properties:
1. All atoms in T are justified in a certain sense by M and S.
2. Each justification for atoms is used at most once.
3. Each “positive statement” (Boolean conjunctive query) that is true in T logically follows

from S and the set of tgds and egds in M . That is, T should not “invent” new facts
compared to what can be inferred from S using M .

Below, we give an idea of how to formalize these informal requirements.
In the context of schema mappings defined by st-tgds, the requirements can be formalized

as follows. Assume that M is defined by st-tgds. Regarding the first requirement, an atom is
justified if it can be obtained from S by means of “applying” an st-tgd in M to S, where
st-tgds are considered as rules for deriving new atoms, similar to Datalog rules. A justification
for atoms consists of an st-tgd θ in M , say θ = ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)), and assignments
ā, ā′ to x̄, ȳ such that S |= ϕ(ā, ā′). We denote it by (θ, ā, ā′). An atom in T is justified if
there is a justification (θ, ā, ā′) with θ = ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), and an assignment b̄
for z̄ such that T |= ψ(ā, b̄), and the atom is one of the relation atoms in ψ(ā, b̄). The second
requirement insists that each justification j is “used” with a unique assignment b̄j for the
existentially quantified variables of the st-tgd in j. An atom in T is then justified if there is
a justification j such that the atom is justified by j as above, except that the assignment b̄

4 Example 1 is true for the universal solution-based semantics, too.
5 As we shall see below, the CWA-semantics form a family of semantics. But for the moment, let us refer
to this family as the CWA-semantics.
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must be the assignment b̄j . It was shown in [31, 22] that a solution T for S under M satisfies
the two requirements precisely if T is a homomorphic image of CanSol(M,S). Furthermore,
the third requirement, once properly formalized, turns out to be equivalent to the property
of being a universal solution. Hence:

I Theorem 6 ([31, 22]). Let M be a schema mapping defined by st-tgds, and let S be a
source instance for M . A solution T for S under M is a CWA-solution for S under M
iff
1. T is a homomorphic image of CanSol(M,S), and
2. T is a universal solution for S under M

(or, equivalently, there is a homomorphism from T to CanSol(M,S)).

This characterization immediately implies that CanSol(M,S) is the “maximal” CWA-
solution for S under M up to isomorphism in the sense that CanSol(M,S) is a CWA-
solution for S, and that every CWA-solution for S is a homomorphic image of CanSol(M,S).
Furthermore, it was shown in [31, 22] that Core(M,S) is the unique “smallest” CWA-solution
for S under M up to isomorphism.

I Example 7. Let M be the schema mapping defined by the st-tgd θ from Example 1,
and let S be the source instance exhibited in the same example. Then there is a unique
justification consisting of θ, and assigning x, y the values c, d. Since θ has no existentially
quantified variables, the only atom that can be justified using this justification is E′(c, d).
Hence, T := {E′(c, d)} is the unique CWA-solution for S under M . Indeed, we have
T = Core(M,S) = CanSol(M,S). J

I Example 8. Let M , S and T be as in Example 2. In the same example, we mentioned
that T = CanSol(M,S) = Core(M,S). Hence, T is the unique CWA-solution for S under
M up to isomorphism. J

To lift Libkin’s CWA-semantics to schema mappings defined by st-tgds, t-tgds and egds,
it is necessary to formalize the first two requirements above for such schema mappings. In
[23, 22], this is done using a derivation-based approach using a suitably controlled version
of the chase procedure. In addition, [24] (see also [20]) introduces a 2-player game and
characterizes the requirements using this game. It is shown that CWA-solutions can still
be characterized as particular universal solutions, and that the core solution, if it exists, is
the “smallest” CWA-solution up to isomorphism. On the other hand, in general there is no
“maximal” CWA-solution, that is, a CWA-solution with the same properties as the canonical
solution in the context of schema mappings defined by st-tgds.

Concerning the question whether a given source instance has a CWA-solution, it is easy
to see that a source instance has a CWA-solution whenever it has a universal solution. If M
is a schema mapping defined by st-tgds, by Theorem 3, we can even compute CWA-solutions
in polynomial time. For most of the classes of schema mappings mentioned in Section 3,
for which universal solutions can be computed in polynomial time (data complexity), it is
possible to compute CWA-solutions in polynomial time (data complexity). However:

I Theorem 9 ([23, 22]). There is a schema mapping M = (σ, τ,Σ) with Σ consisting only
of st-tgds and t-tgds such that the following problem is undecidable: Given a source instance
S for M , is there a CWA-solution for S under M?

4.1.2 Query Answering under the CWA
Given a schema mappingM and a source instance S forM , it seems now perfectly reasonable
to answer queries Q overM ’s target schema by the certain answers to Q on the CWA-solutions
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for S under M , that is, by the set of all tuples that are answers to Q on all CWA-solution
for S under M . However, we should be careful about what constitutes the result of a query
on an individual CWA-solution. To explain why, we need a little background on incomplete
instances.

An incomplete σ-instance is a set I of ground σ-instances [1, 37]. The idea is that I
represents an unknown instance I, and the instances in I are the possibilities for I. Every
σ-instance I represents an incomplete σ-instance. This is because nulls, which may occur
in I, are place-holders for unknown constants, and therefore, any instance obtained from
I by substituting constants for the nulls in I is a ground instance that could possibly be
represented by I. Consequently, I represents the incomplete σ-instance

rep(I) := {h(I) | h : dom(I)→ Const, h is the identity on const(I)} .

Here we are more interested in incomplete instances represented by CWA-solutions. Techni-
cally, CWA-solutions are instances I together with a set Σ of integrity constraints (the set of
t-tgds and egds of the schema mapping). Several ways of associating an incomplete instance
with such an instance have been proposed (see, e.g., [1, 37]). We choose the one proposed in
[26, 37], which is

repΣ(I) := {J | J ∈ rep(I), J |= Σ} .

Now, if I is an instance with nulls, and Q is a non-monotone query, returning Q(I) as
the answer to Q on I may lead to counter-intuitive results [26], mainly due to the fact
that distinct nulls may represent the same constant. To circumvent this, one typically uses
semantics designed for answering queries on incomplete instances. There are several such
semantics, but the most common one is the certain answers semantics [1, 37]. The certain
answers to a query Q on an incomplete instance I are defined by:

cert(Q, I) := {ā | ā ∈ Q(I) for all I ∈ I} .

For an instance I and a set Σ of constraints, we let

cert(Q, I) := cert(Q, rep(I)) and certΣ(Q, I) := cert(Q, repΣ(I)).

I Remark. It is no coincidence – and will do no harm – that we use the same name both
for the certain answers with respect to schema mappings and source instances, and for the
certain answers with respect to incomplete instances. Indeed, the set of solutions for a source
instance S under a schema mapping M is almost an incomplete instance T , except that it
may contain non-ground instances (think of each solution in T as a possible outcome of
translating S to the target).

For answering queries over target schemas of schema mappings, [22] propose the following
variant of the certain answers on CWA-solutions:6

I Definition 10. Let M = (σ, τ,Σst ∪Σt) be a schema mapping, where Σst is a set of st-tgds
and Σt is a set of t-tgds and egds, let S be a source instance for M , and let Q be a query
over τ . Then the set of the CWA-answers to Q on M and S is defined as

certCWA(Q,M,S) := {ā | ā ∈ certΣt(Q,T ) for all CWA-solutions T for S under M}.

6 Three more semantics have been proposed in [22]. For brevity, we consider only the most basic one.
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The following example shows that for the schema mapping, source instance and query in
Example 1, the CWA-answers leads to the desired result.

I Example 11. Let M and S be as in Example 7. As shown in Example 7, T := {E′(c, d)}
is the unique CWA-solution for S under M . Note that rep(T ) = {T}, since T contains no
nulls. In particular, for the query Q(x, y) from Example 1, we have cert(Q,T ) = {(c, d)},
and therefore certCWA(Q,M,S) = {(c, d)}, as desired. J

More generally, if M is a copying schema mapping, then every source instance S for M
has a unique CWA-solution S′, namely its copy, and the CWA-answers to a query Q on
M and S are precisely Q(S′), as desired. This implies that Q can be trivially rewritten
into a query Q′ over M ’s source schema such that for all source instances S we have
Q′(S) = certCWA(Q,M,S). Hence, the CWA-semantics remedies the problems of the certain
answers semantics on non-monotone queries described at the end of Section 3.

Let us finally consider an example that involves st-tgds with existential quantifiers:

I Example 12. Let M , S and T be as in Example 2. As shown in Example 8, T is the
unique CWA-solution up to isomorphism. Consider the query

Q(t) := ∃=1a∃x
(
BookInfo(x, t) ∧Author(a, x)

)
,

which, intuitively, asks for all single-authored books. However, certCWA(Q,M,S) = ∅, since
“Comput. Compl.” cannot be in certCWA(Q,M,S), and rep(T ) contains an instance obtained
from T by replacing ⊥1,⊥2,⊥3 with the same constant. On the other hand, this is not really
surprising, since M does not tell us that ⊥1,⊥2,⊥3 could not represent the same value.

Now let M ′ be the extension of M by the egd

η := ∀x∀y1∀y2
(
BookInfo(x, y1) ∧ BookInfo(x, y2)→ y1 = y2

)
.

Then, T would still be the unique CWA-solution for S under M ′, but cert(Q,M ′, S) =
{Model Theory}, since rep{η}(T ) does not contain any instance that arises from T by
mapping ⊥3 to the same constant as ⊥1 or ⊥2. J

For a number of schema mappings, including schema mappings defined by st-tgds, the
task of computing the CWA-answers to a query can be reduced – as in the case of the certain
answers semantics, explained in Section 3 – to the task of evaluating the query on a single
incomplete instance, which is a well-studied topic, see, e.g., [1, 37]:

I Theorem 13 ([22]). Let M = (σ, τ,Σ) be a schema mapping where Σ is a set of st-tgds,
let S be a source instance for M , and let Q be a query over τ . Then:

certCWA(Q,M,S) = cert(Q,CanSol(M,S)).

The result also holds for schema mappings defined by st-tgds and egds with CanSol(M,S)
extended appropriately.

4.2 A Relaxation of the CWA-Semantics
The CWA interprets existential quantifiers in tgds in a very restrictive way. For instance, in
Example 8, each entry in BookS introduces precisely one null which corresponds to a new
value assigned to the variable z in the unique st-tgd in M . In some cases, like Example 2,
this might be desirable. But in other cases, this might be too restrictive.
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I Example 14 ([22]). Let M = (σ, τ,Σ) be a schema mapping, with σ containing a unary
relation symbol Person, τ containing a binary relation symbol Child, and Σ containing a
single st-tgd

θ := ∀x
(
Person(x)→ ∃yChild(x, y)

)
.

Intuitively, θ states that for each person x there is a child y. Certainly, there could be more
than one child. However, under the CWA, the effect of θ would be that each person x has
exactly one child y. Indeed, if S is a source instance for M , then there is a unique CWA-
solution T for S under M which assigns to each person p ∈ PersonS a unique null ⊥p such
that (p,⊥p) ∈ ChildT . Hence, the CWA-answers to the Boolean query ∀x∃=1yChild(x, y) on
M and S would yield true (i.e., a non-empty result), even though this was not intended. J

Libkin and Sirangelo [32] propose a relaxation of the CWA, which admits finer control
over the degree of “closedness.” The basic idea is to control for each position in a solution
whether it should be open for adding new values at this position, or closed. In the following,
we illustrate the basic idea with an example.

I Example 15 (Example 14, continued). Let us annotate each occurrence of a variable in the
head7 of θ as closed (cl) or open (op) as follows:

∀x
(
Person(x)→ ∃yChild(xcl, yop)

)
.

Then the annotated version of θ induces the following annotated version of CanSol(M,S) for
the source instance S with PersonS = {p1, p2}:

T = {Child(pcl1 ,⊥
op
1 ),Child(pcl2 ,⊥

op
2 )}.

The basic idea is that at a position annotated with op we may “insert” arbitrary many values,
while at a position annotated with cl, the value is fixed. That is, the atom Child(pcli ,⊥

op
i )

corresponds to “there exist one or more c with Child(pi, c),” as desired. J

More generally, let M = (σ, τ,Σ) be a schema mapping, where Σ is a set of st-tgds. The
starting point is always an annotation α of the positions in the heads of the st-tgds in M ,
which must be provided by the user. To be precise, a position in the head of an st-tgd

θ := ∀x̄∀ȳ
(
ϕ(x̄, ȳ)→ ∃z̄

k∧
i=1

Ri(ūi)
)

is represented by a pair (i, j), where i ∈ [k] and j ∈ [ar(Ri)]. Such a pair corresponds to
the variable at position j in ūi. Then for each st-tgd θ ∈ Σ and each position (i, j) in θ’s
head, we have an annotation α(θ, i, j) ∈ {cl, op}. For instance, the annotation of the st-tgd
in Example 15 corresponds to α(θ, 1, 1) = cl and α(θ, 1, 2) = op.

Given a source instance S, we now define the annotated canonical solution CanSolα(M,S)
for S under M and α, which is a set of pairs (R(u1, . . . , uk), α′) consisting of an atom
R(u1, . . . , uk) from CanSol(M,S), and an annotation α′ : [k]→ {cl, op}. The construction
is as indicated in Example 15: starting from an empty set, for each st-tgd ∀x̄∀ȳ(ϕ(x̄, ȳ)→
∃z̄ ψ(x̄, z̄)) and each assignment ā, ā′ for x̄, ȳ with S |= ϕ(ā, ā′), we pick a tuple b̄ of pairwise
distinct fresh nulls and add all pairs (A,α′) to the set with A an atom of ψ(ā, b̄), and α′ the
annotation induced by α on A.

7 Given a tgd θ of the form ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄), we refer to the formula ψ(x̄, z̄) as the head of θ.
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As in the case of CanSol(M,S), the annotated canonical solution CanSolα(M,S) repre-
sents an incomplete instance, denoted by rep(CanSolα(M,S)), which is then used for query
answering. Before we give its definition, let us continue with our example.

I Example 16 (Example 14, continued). Let α be the annotation of θ’s head as shown in
Example 15. Recall T = CanSolα(M,S) from the same example, and that the meaning
of each atom Child(pcli ,⊥

op
i ) in T is “there exist one or more c with Child(pi, c).” Hence,

T represents the incomplete instance rep(T ) which consists of all τ -instances T ′ such that
ChildT

′
contains tuples (p1, a) and (p2, b) with possibly identical constants a, b, and all tuples

in ChildT
′
have the form (pi, c) with i ∈ [2] and c ∈ Const. In particular, each T ′ ∈ rep(T )

contains tuples (p1, a) and (p2, b), which represents the information that for each i ∈ [2] there
is at least one c with (pi, c). Furthermore, for any such tuple we can add a new tuple by
replacing the values at the positions annotated as “open” with new values. The resulting
instance would be in rep(T ), too. J

In general, rep(CanSolα(M,S)) consists of all ground instances T such that there is a
homomorphism h from CanSol(M,S) to T with h(CanSol(M,S)) ⊆ T , and for each atom
R(a1, . . . , ak) ∈ T \ h(CanSol(M,S)) there is a pair (R(b1, . . . , bk), α′) ∈ CanSolα(M,S)
such that ai = h(bi) for all positions i ∈ [k] with α′(i) = cl. That is, each atom A in
T \ h(CanSol(M,S)) coincides with an atom from h(CanSol(M,S)) on all positions that are
annotated as “closed”; A may have arbitrary values at positions annotated as “open”.

Analogous to Theorem 13, which characterizes the certain answers to Q on M and S by
cert(Q, rep(CanSol(M,S))), Libkin and Sirangelo propose to answer Q on (M,α) and S by8

cert(Q,M,α, S) := cert
(
Q, rep(CanSolα(M,S))

)
.

Note that under this semantics, the answers to a query depend on the annotation α. Note
also that for the annotation that assigns to each position in the head of a st-tgd the label
cl, we obtain the CWA-semantics. The other extreme is to assign to each position the label
op. In this case, we arrive at the certain answers semantics as introduced in Section 3. For
details, the reader is referred to [32].

I Example 17 (Example 14, continued). Let α be the annotation of θ’s head as shown in
Example 15. For the Boolean query

Q := ∀x∃=1yChild(x, y)

from Example 14 we have cert(Q,M,α, S) = ∅, as desired. J

Libkin and Sirangelo introduced their “mixed world” semantics for schema mappings
defined by st-tgds only, and left open the task of extending it to more general schema
mappings.
I Remark. Afrati and Kolaitis [2] proposed a much stricter version of the CWA, and argued
that it leads to an interesting semantics for aggregate queries under schema mappings defined
by st-tgds. Recall that for such schema mappings M , if S is a source instance and Q is a
query over M ’s target schema, the CWA-answers to Q on M and S can be characterized
as cert(Q,CanSol(M,S)). That is, a tuple belongs to the set of CWA-answers to Q on M
and S iff it belongs to Q(T ) for all T ∈ rep(CanSol(M,S)). Afrati and Kolaitis argue that

8 In fact, this is a characterization of their semantics, in the same way as Theorem 13 is a characterization
of the CWA-semantics.
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the CWA-semantics is too weak in the context of aggregate queries, since rep(CanSol(M,S))
may contain instances with values that do not occur in S, and propose a new semantics
based on the set of all endomorphic images of CanSol(M,S). Here, an instance I is an
endomorphic image of an instance J if there is a homomorphism h from J to J such that
h(J) = I. Given a query Q over M ’s target schema, we could now answer Q on M and S
under this “endomorphic images semantics” by

certendo(Q,M,S) := {ā | ā ∈ Q(T ) for all endomorphic images T of CanSol(M,S)}.

4.3 The GCWA∗-Semantics

Consider two schema mappings M1 = (σ, τ,Σ1) and M2 = (σ, τ,Σ2) over the same source
schema σ and the same target schema τ . We say that M1 and M2 are logically equivalent
if Σ1 and Σ2 are logically equivalent under the standard FO-semantics9 (i.e., for every
σ∪τ -instance I we have I |= Σ1 if and only if I |= Σ2). IfM1 andM2 are logically equivalent,
it seems desirable that for each source instance S for M1 (resp., M2) and each query Q
over τ , the answer to Q on M1 and S is the same as the answer to Q on M2 and S, since
intuitively M1 and M2 specify the same translation of source data to the target. Yet, for the
semantics introduced above, this is not necessarily true:

I Example 18. Let M1 = (σ, τ,Σ1) and M2 = (σ, τ,Σ2) with σ = {P}, τ = {E}, and

Σ1 =
{
∀x
(
P (x)→ E(x, x)

)}
,

Σ2 = Σ1 ∪
{
∀x
(
P (x)→ ∃y E(x, y)

)}
.

Clearly, M1 and M2 are logically equivalent. Now, for S := {P (c)} we have

T1 := CanSol(M1, S) = {E(c, c)},
T2 := CanSol(M2, S) = {E(c, c), E(c,⊥)}.

Hence, if

Q(x) := ∃=1y E(x, y),

then certCWA(Q,M1, S) = {c}, since T1 is the unique CWA-solution for S under M1, while
certCWA(Q,M2, S) = ∅, since T2 is a CWA-solution for S under M2. Analogously, we have
certendo(Q,M1, S) = {c} and certendo(Q,M2, S) = ∅.

Next we turn to the “mixed world” semantics. Fix an annotation α for the st-tgds in Σ2.
In particular, α yields an annotation for the st-tgd in Σ1. As long as the second position in
the head of the st-tgd in Σ1 is annotated as closed by α, we have cert(Q,M1, α, S) = {c} and
cert(Q,M2, α, S) = ∅. Note that if the second position is annotated as open, the resulting
semantics is very close to the certain answers semantics. J

There is a second issue related to the interpretation of tgds under the CWA-semantics,
which is best illustrated with an example:

9 Different notions of equivalence between schema mappings have been considered in [12]. Logical
equivalence is the strongest such notion. Instead of invariance under logical equivalence one could also
require invariance under any of the other notions of schema mapping equivalence.
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I Example 19. Let M = (σ, τ,Σ) be defined by σ = {R}, τ = {E,F}, and Σ = {θ}, where

θ = ∀x, y
(
R(x, y)→ ∃z

(
E(x, z) ∧ F (z, y)

))
.

Intuitively, θ states that “if R(x, y), then there is at least one z such that E(x, z) and F (z, y)
hold.” There could be exactly one such z, but there could also be more than one such z. In
particular, the possibility that there are precisely two such z, or precisely three such z etc. is
perfectly consistent with θ, and should not be denied when answering queries. Hence, given
a source instance S for M , we should expect that the answer to

Q(x, y) := ∃=1z
(
E(x, z) ∧ F (z, y)

)
on M and S is empty.

However, if we consider the source instance S = {R(c, d)}, we have CanSol(M,S) =
{E(c,⊥), F (⊥, d)}, so that certCWA(Q,M,S) = certendo(Q,M,S) = {(c, d)}. Hence, both
the CWA-semantics and the endomorphic images semantics exclude the possibility that there
is more than one z satisfying E(x, z) and F (z, y), although θ explicitly states that it is
possible that more than one such z exists.

Note that the existential quantifier in θ can be expressed via an infinite disjunction
over all possible choices of values for z (recall that nulls are just place-holders for unknown
constants, so we do not have to consider nulls here):

θ′ := ∀x, y
(
R(x, y)→

∨
c∈Const

(
E(x, c) ∧ F (c, y)

))
.

Thus, we argued above that we need a semantics that interprets this disjunction inclusively
rather than exclusively. J

Under the “mixed world” semantics, the query Q in Example 19 is answered as expected
as long as the occurrences of z in θ are annotated as open. On the other hand, if the
occurrences of z in θ are annotated as open, then, in a way, the “mixed world” semantics is
“too open” in that it allows atoms to appear in solutions that intuitively cannot be justified
by the source instance and the st-tgds.

I Example 20 (Example 19, continued). In light of the rewriting θ′ of θ in Example 19 the
only reasonable solutions for S = {R(c, d)} under M seem to be those solutions T for which
there is a finite set X ⊆ Dom such that T = {E(c, x) | x ∈ X} ∪ {F (x, d) | x ∈ X}. For
example,

T ∗ := {E(c, e), E(c, e′), F (e, d)}

should not be a valid solution, since the occurrence of E(c, e′) in T can intuitively not be
explained in terms of S and θ (for this, F (e′, d) should be in T ). Therefore, we should expect
the answer to

Q′(x) := ∀z
(
E(x, z)→ ∃y F (z, y)

)
on M and S to be {c}. But let α be an annotation for θ that annotates the second position of
E(x, z) in θ as open. Then, cert(Q′,M, α, S) = ∅ since T ∗ ∈ rep(CanSolα(M,S)). Intuitively,
the “mixed world” semantics is “too open” in that it allows E(c, e′) to occur in T ∗ without
enforcing that the corresponding atom F (e′, d) is present in T ∗. J
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Motivated by the above examples, [21] proposes a new semantics, called GCWA∗-seman-
tics. This semantics is invariant under logically equivalent schema mappings, and interprets
existential quantifiers in a natural way. A detailed discussion of the latter property can
be found in [21]. The starting point for the development of the GCWA∗-semantics was the
observation that query answering with respect to schema mappings is very similar to query
answering on deductive databases [14], and that non-monotone query answering on deductive
databases is a well-studied topic in this area (see, e.g., [14, 36, 35, 38, 25, 8]). Therefore, it
seemed obvious to use these semantics in the context of data exchange. For data exchange,
the semantics based on Reiter’s formalization of the CWA [36], and variants of the CWA
like Minker’s generalized CWA (GCWA) [35] seemed to be particularly interesting. It turns
out, though, that these semantics are too strong, too weak, or do not have the desired
properties. Nevertheless, their analysis provided a good starting point for developing the
GCWA∗-semantics. For details, see [21].

For schema mappings defined by st-tgds and egds, the GCWA∗-semantics has a very
simple definition in terms of minimal solutions. Here, a solution T for S under M is minimal
if there is no solution T ′ for S under M with T ′ ( T .

I Definition 21. Let M be a schema mapping defined by st-tgds and egds, and let S be a
source instance for M .
1. A GCWA∗-solution for S under M is a ground solution that is the union of minimal

solutions for S under M .
2. Given a query Q over M ’s target schema, the set of all GCWA∗-answers to Q on M and

S is defined by

certGCWA∗(Q,M,S) := {ā | ā ∈ Q(T ) for all GCWA∗-solutions for S under M} .

I Remark. For schema mappings whose specification additionally contains t-tgds, an extended
definition of GCWA∗-solutions is necessary. See [21] for details.

It should be clear that the GCWA∗-semantics is invariant under logical equivalent schema
mappings. Therefore, the problem described at the beginning of this section does not appear
for the GCWA∗-semantics.

I Example 22. Recall Example 19. The minimal solutions for the source instance S =
{R(c, d)} under M are all solutions for S under M of the form Ta := {E(c, a), F (a, d)} for
some a ∈ Dom. Now, the GCWA∗-solutions for S underM are precisely those instances T for
which there is a finite set C ⊆ Const with T =

⋃
a∈C Ta. Intuitively, this reflects “precisely

the positive information in M and S, and nothing more.” It is easy to see that for the query
Q from Example 19 and the query Q′ from Example 20 we have certGCWA∗(Q,M,S) = ∅
and certGCWA∗(Q′,M, S) = {c}, as desired.

I Remark. Gottlob et al. [17] propose a different approach of enforcing unique answers on
logically equivalent schema mappings under the CWA-semantics (and its relatives). The
idea is to first normalize the schema mapping as described in their paper, and then answer
queries under the desired semantics.

5 The Complexity of Answering Non-Monotone Queries

This section’s goal is to compile what is known about the complexity of answering queries
under the different semantics introduced in Section 4, which we henceforth call non-monotone
semantics. To the best of our knowledge, only the data complexity of this problem (i.e., its
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complexity as a function of the size of the source instance only) has been considered in the
literature. For each s ∈ {CWA,GCWA∗}, each schema mapping M for which certs is defined,
and each FO-query Q over M ’s target schema, we will therefore consider the complexity of

Evals(M,Q)

Input: a source instance S for M , and a tuple ā over dom(S) ∪ dom(Q)

Question: Is ā ∈ certs(Q,M,S)?

Concerning the “mixed world semantics” from Section 4.2, an important parameter is the
maximum number of open positions per atom in the head of an st-tgd. For an annotation α
for the st-tgds in M , let us denote this number by #op(α). Then, for each k ≥ 1 we consider

Evalk(M,Q)

Input: a source instance S for M , an annotation α for the st-tgds in M such
that #op(α) = k, and a tuple ā over dom(S) ∪ dom(Q)

Question: Is ā ∈ cert(Q,M,α, S)?

Note that for k = 0, the problem would correspond to EvalCWA(M,Q).
Let me point out that for monotone queries, most of the non-monotone semantics coincide

with the certain answers semantics [22, 32, 2, 21]. The only exception is the CWA-semantics,
but only in the context of schema mappings defined by st-tgds, t-tgds, and possibly also egds.
This, however, seems to be only due to the choice we made for the incomplete instances
represented by instances under integrity constraints. It might well be the case that this
changes when we represent such instances in any of the other ways proposed in the literature.
Anyway, the collapse to the certain answers semantics indicates once more that the certain
answers semantics is well-suited for monotone queries. It also shows that all results concerning
the certain answers semantics directly carry over to the non-monotone semantics. So, for
example, we know from [33] that there are schema mappingsM defined by st-tgds and CQs Q
with only two inequalities such that EvalCWA(M,Q) is co-NP-hard. But we also know from
[11] that the problem is in PTIME if Q is a UCQ with at most one inequality per disjunct.
For the GCWA∗-semantics, the latter is true even for the much broader class of weakly acyclic
schema mappings considered in [11]. This does not hold for the CWA-semantics in general,
since it does not coincide with the certain answers semantics on such schema mappings.

5.1 General FO-Queries
Not much is known about the complexity of answering non-monotone queries under the
non-monotone semantics. In many cases, it is hard to evaluate such queries, which is not
surprising given that the non-monotone semantics introduce implicit negation. Concerning
the complexity of evaluating general FO-queries under the CWA-semantics and the mixed
world semantics, we know:

I Theorem 23 ([22, 32]). If we restrict ourselves to schema mappings M defined by st-tgds,
and FO-queries Q over M ’s target schema, then:
1. EvalCWA(M,Q) ∈ co-NP, and there is a schema mapping M defined by st-tgds, and a

FO-query Q such that EvalCWA(M,Q) is co-NP-complete.
2. Eval1(M,Q) ∈ co-NEXPTIME, and there is a schema mapping M defined by st-tgds,

and a FO-query Q such that Eval1(M,Q) is co-NEXPTIME-complete.

Chapte r 06



178 Semantics for Non-Monotone Queries in Data Exchange and Data Integration

3. For all k ≥ 2, there is a schema mapping M defined by st-tgds, and a FO-query Q such
that Evalk(M,Q) is undecidable.

4. If Q has the form ∀x̄∃ȳ ϕ, where ϕ contains no quantifiers, then Evalk(M,Q) ∈ co-NP
for all k ≥ 1.

The membership part of Theorem 23(2a) follows directly from Theorem 13, whereas for
the hardness part we can use [33]. On the other hand, the membership part of Theorem 23(2b)
requires more sophisticated techniques. It involves a games argument and is technically
quite involved. Hardness is proved by a reduction from a NEXPTIME-complete version of
the tiling problem to the complement of Eval1(M,Q). Theorem 23(2c) is established by a
reduction from the finite validity problem for first-order logic [30].
I Remark. As shown in [22], the upper bound in Theorem 23(2a) holds for more general
schema mappings, called richly acyclic, which form a subclass of the weakly acyclic schema
mappings considered in [11]. It does not hold for weakly acyclic schema mappings, as there
are weakly acyclic schema mappings M and FO-queries Q over M ’s target schema such that
EvalCWA(M,Q) is undecidable [22].

Under the GCWA∗-semantics, query answering seems to be harder:

I Theorem 24 ([21]).
1. There is a schema mapping M defined by st-tgds and a CQ Q with one negated atom

such that EvalGCWA∗(M,Q) is co-NP-hard.
2. There is a schema mapping M defined by st-tgds and a FO-query Q of the form ∃x̄∀y ϕ,

where ϕ contains no quantifiers, such that EvalGCWA∗(M,Q) is undecidable.

Remember, though, that all of the above-mentioned results concern the data complexity
of query evaluation. For instance, co-NP-hardness of EvalCWA(M,Q) holds for some schema
mappings M and FO-queries Q, but there are many schema mappings M and FO-queries Q
for which EvalCWA(M,Q) is easy. Think, for example, of schema mappings that contain
only tgds without existentially quantified variables, and arbitrary FO-queries. For them,
EvalCWA(M,Q) is in PTIME. The same is of course true for Evalk, k ≥ 1, and EvalGCWA∗ .
It would be interesting to identify more general classes of schema mappings and queries for
which these problems are in PTIME.

5.2 Universal Queries
A very general and natural class of queries for which tractability of query answering under a
non-monotone semantics – namely, the GCWA∗-semantics – could be established is the class
of universal queries. Universal queries are FO-queries of the form ∀ȳ ϕ, where ϕ contains no
quantifiers. For schema mappings defined by st-tgds, it is not hard to show:

I Theorem 25 ([21]). For all schema mappings M defined by st-tgds, and for all universal
queries Q over M ’s target schema we have EvalGCWA∗(M,Q) ∈ co-NP.

On the other hand, if we restrict consideration to schema mappings defined by packed
st-tgds, then universal queries can be answered in polynomial time, as we shall see below.

I Definition 26 (Packed st-tgd). An st-tgd ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) is packed if every
two distinct relation atoms in ψ share a common variable from z̄.

I Remark. The schema mapping that is constructed in [21] for proving Theorem 24(2b) is
defined by packed st-tgds.
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Although quite restrictive, packed st-tgds still allow for non-trivial use of existentially
quantified variables in heads of st-tgds. Note that every st-tgd ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)),
where ψ contains at most two relation atoms with variables from z̄, is logically equivalent to
a set of packed st-tgds of size at most the number of relation atoms in ψ. Hence, the class of
schema mappings defined by packed st-tgds forms an interesting class of schema mappings.
An example of an st-tgd that is not packed is ∀x(P (x)→ ∃y∃z∃u(E(x, y)∧E(y, z)∧E(z, u))).
The remaining part of this section is devoted to the following result:

I Theorem 27 ([21]). Let M be a schema mapping defined by packed st-tgds, and let Q be a
universal query over M ’s target schema. Then there is a polynomial time algorithm that takes
the core solution for some source instance S for M as input and outputs certGCWA∗(Q,M,S).

Combined with Theorem 3, this result leads to a polynomial time algorithm that takes a
source instance S for M as input and outputs certGCWA∗(Q,M,S). In particular, we have
EvalGCWA∗(M,Q) ∈ PTIME. Also, recall from Section 3 that core solutions can be used to
compute the certain answers to UCQs and other queries. As a consequence, one only needs
to materialize the core solution in order to answer such queries and universal queries.

The proof of Theorem 27 is technically very involved. The core part consists of proving
the following “decision variant” of Theorem 27:

I Theorem 28 ([21]). Let M be a schema mapping defined by packed st-tgds, and let Q be a
universal query over M ’s target schema. Then there is a polynomial time algorithm that,
given the core solution for some source instance S for M and a tuple ā as input, decides
whether ā ∈ certGCWA∗(Q,M,S).

The remainder of this section presents a sketch of the proof of Theorem 28.

5.2.1 GCWA∗-Answers and Core Solutions
Let us first see how GCWA∗-answers can be obtained from core solutions. Consider a schema
mapping M , a source instance S for M , an FO-query Q over M ’s target schema, and a tuple
ā over dom(S)∪dom(Q). Using the core solution for S under M , how can we decide whether
ā ∈ certGCWA∗(Q,M,S)?

Observe that ā /∈ certGCWA∗(Q,M,S) if and only if there is a GCWA∗-solution T ′

for S under M such that ā ∈ ¬Q(T ′). Furthermore, recall that GCWA∗-solutions are
ground solutions that are the union of minimal solutions for S under M . In the case of
schema mappings defined by st-tgds, this is equivalent to being a union of ground minimal
solutions for S under M . Now let T be the core solution for S under M , and recall
from Section 4.1.2 that it represents an incomplete instance rep(T ). The following lemma
implies that ā /∈ certGCWA∗(Q,M,S) if and only if there are k ≥ 1 and minimal instances
T1, . . . , Tk ∈ rep(T ) such that ā ∈ ¬Q(T1 ∪ · · · ∪ Tk).10

I Lemma 29 ([21]). Let M be a schema mapping defined by st-tgds, let S be a source instance
for M , and let T be the core solution for S under M . Then the set of all ground minimal
solutions for S under M coincides with the set of all minimal instances in rep(T ).

If Q is a universal query, then ¬Q is equivalent to an existential query, i.e., a FO-query
of the form ∃x̄ ϕ, where ϕ is quantifier-free. Thus we have reduced the initial problem of
deciding ā ∈ certGCWA∗(Q,M,S) to a satisfiability problem for existential queries over the

10As for solutions, an instance T ′ ∈ rep(T ) is minimal if there is no T ′′ ∈ rep(T ) with T ′′ ( T ′.
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set of all instances that are unions of minimal instances in rep(T ). Towards solving this
satisfiability problem in its full generality, an important subproblem to be solved is the
corresponding satisfiability problem for the case that Q has the form ¬R(c̄) for some tuple
c̄ of constants. In this case, the problem simplifies to deciding whether there is a minimal
instance in rep(T ) that contains R(c̄). The next section shows how to find such an instance
if one exists.

5.2.2 Finding Atoms in Minimal Possible Worlds
Let T be the core solution for S under M , and let repmin(T ) be the set of all minimal
instances in rep(T ). Given an atom A, how can we find an instance T ′ ∈ repmin(T ) with
A ∈ T ′ if there is one? Note that in general there are infinitely many instances in rep(T ),
since each null can be substituted by an arbitrary element of Const. However, as shown in
[21], it suffices to restrict attention to finitely many representatives. Still, in the worst case
there are exponentially many such representatives left, and it is not clear at all how to find a
representative containing A.

A very nice structural property of core solutions under schema mappings defined by
st-tgds comes to the rescue: that the number of nulls in the atom blocks of such core solutions
does only depend on the schema mapping.

I Definition 30 ([16]). The Gaifman graph of the atoms of T is the undirected graph which
has the atoms of T as nodes, and an edge between two distinct atoms A and A′ if there is
a null that occurs both in A and A′. An atom block of T is a connected component in the
Gaifman graph of the atoms of T .

It follows immediately from results in [13] that for every schema mapping M defined by
st-tgds there is an integer s such that for every source instance S for M each atom block in
the core solution for S under M contains at most s nulls. The obvious idea is now to try to
look only at single atom blocks B of T , and search for an instance in repmin(B) containing
A. Unfortunately, this does not lead to a correct algorithm: If no instance in repmin(B)
contains A, then we can be sure that no instance in repmin(T ) contains A, but if there is an
instance in repmin(B) containing A, then this does not imply that there is also an instance
in repmin(T ) that contains A. An example is given in [21].

Instead, it can be shown that there is a subset S of the representatives of instances
in repmin(T ) such that S has size polynomial in the size of T , and such that it suffices to
consider only the instances in S in order to decide whether there is an instance in repmin(T )
containing A. Furthermore, it is possible to enumerate the instances in S in polynomial time.
The set S is defined using the following homomorphisms:

I Definition 31. Let B be an atom block of T , let B̄ := T \B, and let C ⊆ Const.
Let valC(T,B) be the set of all mappings h : dom(T )→ dom(T ) ∪ C such that h(c) = c

for all c ∈ const(T ), h(⊥) = ⊥ for all ⊥ ∈ nulls(B̄), and for every atom R(a1, . . . , ak) ∈ B
we have: if R(h(a1), . . . , h(ak)) /∈ B, then every null that occurs in R(h(a1), . . . , h(ak))
also occurs in B.
Let minvalC(T,B) be the set of all mappings h ∈ valC(T,B) such that there is no
h′ ∈ valC(T,B) with h′(T ) ( h(T ).

Let C be the set of all constants that occur in A. Then the set S is the set of all instances
that are the core of h(T ) for some h ∈ minvalC(T,B) and some atom block B of T . For
enumerating S, we simply enumerate all the atom blocks B of T and all h ∈ minvalC(T,B),
and compute the core of h(T ) using a slight modification of the blocks algorithm from [13].
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Showing that (1) the instances in S are indeed representatives of instances in repmin(T ), and
that (2) for every atom A contained in some instance in repmin(T ) there is an instance in
S containing A is technically involved. For proving (2), the property that M is defined by
packed st-tgds is very important. For details the reader should consult [21].

5.2.3 Solving the General Satisfiability Problem
Finally, let us see how we can put together the results so as to solve the satisfiability problem
in its full generality. Let M = (σ, τ,Σ) be a schema mapping defined by packed st-tgds, and
let Q be an existential query over τ . Given the core solution T for a source instance S under
M and a tuple ā over dom(S) ∪ dom(Q), how can we decide whether there are k ≥ 1 and
T1, . . . , Tk ∈ repmin(T ) such that ā ∈ Q(T1 ∪ · · · ∪ Tk)?

We first observe that Q is logically equivalent to a query of the form

Q′(x̄) :=
m∨
i=1

Qi(x̄),

where each Qi(x̄) is an existential query of the form

Qi(x̄) := ∃ȳi
ni∧
j=1

ϕi,j ,

and each ϕi,j is an atomic FO-formula, or the negation of an atomic FO-formula. It therefore
remains to decide whether for some i ∈ [m], there are k ≥ 1 and T1, . . . , Tk ∈ repmin(T ) such
that ā ∈ Qi(T1 ∪ · · · ∪ Tk).

We can do this as follows. Let i ∈ [m]. For simplicity, assume that the relation atoms
in Qi are ϕi,1, . . . , ϕi,`. Then for all j ∈ [`], we consider the set Tj of all pairs (Tj , αj),
where Tj is an instance in the set S mentioned in Section 5.2.2, and αj is an assignment for
ϕi,j with (Tj , αj) |= ϕi,j . Combining tuples from T1, . . . , T` that are compatible in a certain
sense,11 we obtain a set T of pairs (T ∗, α∗) such that T ∗ has the form T1 ∪ · · · ∪ Tk with
each Ti isomorphic to an instance in S, and α∗ is an assignment for

∧`
j=1 ϕi,j such that

(T ∗, α∗) |=
∧`
j=1 ϕi,j . Finally, we check whether there is a pair (T ∗, α∗) ∈ T such that T ∗

can be padded with a large enough number of disjoint copies of T so that the resulting
instance T ∗∗ satisfies ā ∈ Qi(T ∗∗). For the proof of correctness, which is technically quite
involved, I refer the reader to [21].

6 Conclusions

Query answering is a fundamental task in data exchange and data integration. The standard
semantics for queries in these areas is the certain answers semantics. While this is adequate
for monotone queries, it may lead to counter-intuitive answers for non-monotone queries.
This chapter surveyed various semantics (the CWA-semantics, the “mixed world” semantics,
the endomorphic images semantics, and the GCWA∗-semantics) that were designed for
answering non-monotone queries. Each of these semantics is based on a variant of the CWA
to reduce the set of solutions, and to answer queries with respect to the reduced set of

11 Informally, (T1, α1) and (T2, α2) are compatible if T1 and T2 can be “glued together” by identifying the
values assigned to some variable that occurs both in the domain of α1 and in the domain of α2, while
leaving the other values untouched.
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solutions. Answering non-monotone queries under any of these semantics may be co-NP-hard,
or co-NEXPTIME-hard (in the case of the “mixed world” semantics with at most one open
position per atom in an st-tgd), or even undecidable. Note, however, that these results speak
about the data complexity of the problem. In particular, single schema mappings M and
queries Q were exhibited for which the problem is hard. For many schema mappings and
queries, the problem is easy, though, and it would be interesting to identify more general
classes of schema mappings and queries for which the problem is tractable. We presented
one such example: the GCWA∗-answers to universal queries can be computed in polynomial
time under schema mappings defined by packed st-tgds.

Apart from identifying more general classes of schema mappings and queries for which
query answering is tractable, there are many more problems that still need to be solved. To
give three examples: Since there are several semantics for non-monotone queries, it would
be nice to have formal criteria (e.g., in the style of [7], see also [10]) for comparing them
and to understand their strengths and weaknesses relative to each other. Furthermore, it is
worth studying the combined complexity of query answering under non-monotone semantics.
There are a few results on the combined complexity of computing the certain answers [5],
but for non-monotone semantics there are no such results. Finally, a technical question
concerning the polynomial time algorithm for computing GCWA∗-answers to universal queries
(Theorem 27): Can it be extended to more general schema mappings? It seems possible to
do this for schema mappings defined by st-tgds.
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Abstract
Peer Data Management (PDM) deals with the management of structured data in unstructured
peer-to-peer (P2P) networks. Each peer can store data locally and define relationships between
its data and the data provided by other peers. Queries posed to any of the peers are then
answered by also considering the information implied by those mappings.

The overall goal of PDM is to provide semantically well-founded integration and exchange
of heterogeneous and distributed data sources. Unlike traditional data integration systems, peer
data management systems (PDMSs) thereby allow for full autonomy of each member and need
no central coordinator. The promise of such systems is to provide flexible data integration and
exchange at low setup and maintenance costs.

However, building such systems raises many challenges. Beside the obvious scalability prob-
lem, choosing an appropriate semantics that can deal with arbitrary, even cyclic topologies, data
inconsistencies, or updates while at the same time allowing for tractable reasoning has been an
area of active research in the last decade. In this survey we provide an overview of the different
approaches suggested in the literature to tackle these problems, focusing on appropriate semantics
for query answering and data exchange rather than on implementation specific problems.
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1 Introduction

Peer Data Management (PDM) on the one hand describes the complete area of data
management in peer-to-peer (P2P) systems, while on the other hand it is also used to denote
a very specific type of data management systems. In this survey, we follow the second
interpretation, referring to management of structured data in unstructured P2P networks
only. Concentrating on Peer Data Management Systems (PDMSs), we provide a summary
of different approaches introduced in the literature to design and create such systems, and
consider both theoretical aspects as well as actual implementations:

PDMSs consist of a set of peers, where each peer offers some data through a so called
peer schema. If a peer is interested in enhancing the information published through its
peer schema with the data provided by some other peer, mappings between these two peers,
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P1 R1
P2 R2

P3 R3sys(name) sys(name, org)

sem(name)
used_in(sys, sem)

Figure 1 Example of a PDMS. Rectangles with rounded borders represent the peers P1, P2, P3

and the trapezoids the peer schemas. Their schema is depicted next to the peers.

defined either on schema or instance level, are used to express the relationship between the
data offered by these peers. Queries are posed against a single peer schema. Their answers
do not only include the information stored locally at that peer, but also contain all the
information implied by these mappings.

I Example 1. Figure 1 shows an example of a small PDMS. Consider first only the peers P1
and P2, both collecting and providing information about PDMSs. P1 offers a list of prototype
systems (sys(name)) and P2 information about different semantics for PDMSs (sem(name)),
and which prototype implements which semantics (used_in(sys, sem)). Also, P2 retrieves
the information about available prototypes from P1. Now assume another peer P3 joins the
group. It also offers a list of prototype systems, which contains beside the name of the system
also the organization that built it (sys(name, org)). P3 enhances its list by the data provided
from P1, and P2 tries to complete its data by defining a mapping from P3 to itself. J

Example 1 already illustrates some of the main advantages of PDMSs: They can be easily
set up, members can join and leave the network at will, they support heterogeneous schemas
and domains, and there is no need for global coordination, as e.g. required in typical data
integration or multi-database systems. This allows each peer to take care of the mappings
it is interested in only and no global coordination mechanism is required. However, the
example also raises some questions. The probably most interesting one among them is how
such mappings between two peers really look like and, related to this, how data sharing along
them works. For example, P3 could either import all relevant data from P1, or retrieve the
required information only at query time by answering queries not only on its local data, but
also by forwarding them to P1.

In fact, while PDMSs possess very promising properties, building such a system is a
challenging task. One of the main problems is to find an appropriate formalism for defining
the mappings between peers that is powerful enough to be useful, but at the same time
allows for decidable (or preferably: efficient) reasoning (e.g., query answering). As a result,
several different formalisms and semantics have been suggested in the literature for the
specification of such mappings. Obviously, this leads to several different semantics that can
be applied to a PDMS. Beside these problems of creating a suitable theory for PDM (like the
relational model for single databases), due to the distribution and autonomy of the peers,
also implementing such systems is no easy task. In combination with the lack of a clear
semantics, several prototype systems have been created in the last years, addressing specific
problems of building such systems.

In this survey we provide an overview of the different approaches taken so far to overcome
these problems: We describe the most important and influential suggestions for useful
(i.e. powerful, yet efficiently decidable) semantics for mappings in PDMSs, concentrating
on relational systems, but also considering systems using other data models. One focus
of this discussion is how schema mappings from data exchange or data integration have
been applied to PDM. Beside those theoretical frameworks, we also provide an overview
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on existing prototype systems and point out specific and interesting properties of them.
The organization of the paper is as follows: After some preliminary definitions in Section 2,
we discuss general properties and characteristics of PDMSs in Section 3 and point out the
differences between PDMSs, other P2P systems, and other kinds of distributed database
systems. Next (Section 4), we describe the Local Relational Model, a concrete formalism for
modeling PDMSs. Section 5 contains the discussion of the application of schema mappings
to PDM, followed by alternative mapping strategies in Section 6. An overview on system
prototypes is started in Section 7 which is completed in Section 8 with a discussion of PDMSs
not applying the relational data model. We summarize and conclude in Section 9.

2 Preliminaries and System Model

Schemas and instances. A relational schema R = {R1, . . . , Rn} is a set of relation symbols
Ri each of a fixed arity ki and with an assigned sequence of ki attributes (A1, . . . , Aki

).
Unless defined otherwise, an instance (or interpretation) I over a schema R consists of a
ki-ary relation RIi for each relation symbol Ri ∈ R. We write ~x for a tuple (x1, . . . , xn), but
may also use Ri(~s) ∈ I to denote a tuple ~s ∈ RIi . By slight abuse of notation, we also refer to
the set {x1, . . . , xn} as ~x. Hence, we may use expressions like xi ∈ ~x or ~x ⊆ X, etc. Tuples
of the relations may contain two types of terms: constants and labeled nulls, taken from
the sets consts and null respectively. Although (unless stated otherwise) the domain (or
universe) dom = consts ∪ null is considered to be a countable infinite set, we only consider
finite instances here, and denote with dom(I) = consts(I) ∪ null(I) the active domain of I.

Homomorphisms and conjunctive queries. Let I, J be instances. A homomorphism h : I →
J is a mapping dom(I) → dom(J) s.t. (1) h(c) = c for all c ∈ consts(I) and (2) whenever
R(~x) ∈ I, then R(h(~x)) ∈ J , where by slight abuse of notation, for a tuple ~x = (x1, . . . , xn)
we write h(~x) for (h(x1), . . . , h(xn)).

A conjunctive query (CQ) Q on a database schemaR is of the formQ : ans(~x)← ∃~yφ(~x, ~y),
where φ(~x, ~y) =

∧n
i=1 ri is a conjunction of atoms ri = Rj(~z), s.t. Rj ∈ R with arity k, and

~z ⊆ ~x∪ ~y with |~z| = k. A tuple ~s is called an answer or solution to a CQ Q on an instance I
if ~s = µ(~x), where µ : ~x ∪ ~y → dom(I) is a variable assignment on ~x ∪ ~y, s.t. for every atom
Ri(~z) occurring in Q it holds that Ri(µ(~z)) ∈ I.

Constraints, Mappings, and Theories. Given some logic L and a relational schema R, a
(L-)theory over R is a set of formulas of L over the relation symbols in R. A formula that
contains no free variables is called a closed formula or sentence. A relational theory over R
consists of function free FO formulas over R. Two special kinds of FO constraints are very
well studied: A tuple generating dependency (tgd) is a FO formula ∀~x

(
∃~zφ(~x, ~z)→ ∃~yψ(~x, ~y)

)
,

where φ and ψ are conjunctions of atoms. An equality generating dependency (egd) is a FO
formula ∀~x

(
φ(~x)→ x1 = x2

)
where x1, x2 ∈ ~x and φ again is a conjunction of atoms.

Due to the structure of tgds, it is natural to identify a CQ with the lhs and rhs of a
tgd each, i.e. to consider tgds as mappings Q1(~x) → Q2(~x) for CQs Q1, Q2. Intuitively,
a tgd then requests all answers to Q1 also to be answers of Q2. Further (based on this
characterization) note that tgds can define GAV, LAV, and GLAV mappings, well known
from data integration [54]. We therefore consider those mappings as special cases of tgds.

The chase is a well known procedure to repair instances that do not satisfy a set of tgds
and egds by inserting tuples or unifying labeled nulls. For information on the chase, we refer
to Chapter 1 of this book.
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The cyclicity of a set of tgds (and mappings/constraints in general) is characterized via
a graph representation of such sets, i.e. they are acyclic iff some corresponding directed
graph is. Typically, for a set of mappings, the nodes of the graph are the relation symbols
occurring in the mappings (or pairs of relation symbols and variables). Directed edges are
added according to the structure of the mappings; for example for tgds from occurrences at
the lhs of a tgd to occurrences on its rhs. Weaker notions of acyclicity do only forbid certain
types of cycles. A prominent such example is weak acyclicity [20].

Peer Data Management Systems. We focus on the class of Peer Data Management
Systems (PDMSs) that offer semantically well founded sharing of structured data. Following
the terminology in [19], we consider a Peer Data Management System (PDMS) as a triple
S = (P,R,M), where P = {P1, . . . , Pn} is a set of autonomous peers, R is a set of peer
schemas (one schema Ri for each Pi ∈ P), andM is a set of mappings. We say that Ri is
the schema of a local database if data is actually stored under Ri. Alternatively, Ri can
also be the global schema of some local data integration system at Pi (in this case, we refer
to the source relations as Li and assume the mappings between Li and Ri for each Pi ∈ P
to be contained inM as well), or a mediator schema (or view) defined by mappings from
other peer schemas. Hence a peer may either bring new data into the system or just act
as a mediator, restructuring (through corresponding mappings) data already present in the
system. For the semantics of a peer, this does not make any difference, as in any case each
peer offers some well defined data through its peer schema. Finally, the mappings inM may
be either defined on schema or instance level, or both. As we will see, this depends on the
concrete formalism used for defining the mappings. We use domi to denote the domain of Pi.

Instances, consistent global instances, and queries for PDMSs. Given a PDMS S, an
instance I for S is either just an instance for R (if each Ri ∈ R is the schema of a local
database) or an instance for

⋃
Pi∈P Li if the peers consist of local data integration systems.

For an instance I for S, let I|Pi denote the restriction of I to the schema Ri (resp. Li).
Given an instance I for S, a consistent global instance I ′ for S w.r.t. I is in general an
instance of R, s.t. (i) I ′ satisfies M and (ii) if I is already an instance for R, then there
exists a homomorphism h : I → I ′. Thereby the notion “I ′ satisfies M” depends on the
concrete semantics applied, and will be a main focus of this survey. We denote with II
the set of all consistent global instances w.r.t. I, and drop the I if clear from the context.
However, some systems do not define a global instance for S as an instance for R, but as a
tuple (II [Ri])Ri∈R, where each II [Ri] is a set of instances for Ri.

A query to a PDMS S is formulated over a single peer schema Ri ∈ R. Given an
instance I for S, the result of a query Q usually is defined as the certain answers Qc(I) =⋂
I′∈II

Q(I ′), where Q(I ′) denotes the evaluation of Q over I ′. If only II [Ri] is defined, then
Qc(I) =

⋂
I′∈II [Ri] Q(I ′). Unless stated otherwise, we always assume Q to be a CQ.

3 PDMS: Characterization and Properties

In this section, we start with a quick overview over a classification of P2P systems and
discuss how PDM fits into these concepts. We then relate PDMSs to traditional database
systems, and finally take a look onto properties specific for PDMSs.

P2P systems are nowadays wide spread and used for a variety of applications in many
different areas. Tasks solved by P2P systems cover, among others, sharing of data (e.g.,
Gnutella, BitTorrent) and other resources, communication (e.g. Skype), or the implementation
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of fail-safe systems. The reasons for the success of P2P systems include their scalability, low
setup costs, the lack of need for central coordination, or a high reliability (since replicating
and shifting resources and tasks between different nodes allows to compensate node failures).

A prominent way to classify P2P systems is according to the logical structure of the
resulting P2P network (overlay network). In pure P2P systems, all peers are conceptually
equal and have the same role, while in hybrid systems so called super-peers (which have more
knowledge about the current state of the system) act as servers and control and coordinate
the system. In the extreme case of centralized P2P systems, all requests are issued against a
single central server who dispatches them to an appropriate network node. Pure P2P systems
are further divided into unstructured and structured systems. In unstructured systems, each
peer is free to choose which data to store, which peers to communicate with, or which requests
to accept. In structured P2P systems, data placement or message routing follows strict rules
determined by the system, which are enforced by the peers in a distributed manner. A
prominent example for structured P2P systems are distributed hash tables (DHTs), where
the placement of a data item is determined by a key or hash value assigned to each item:
Each peer gets assigned a (not necessarily distinct) part of the keyspace, and items are stored
at exactly those peers that cover their key values. The reason that we will concentrate on
the management of structured data in unstructured P2P systems is that while most of the
aspects and applications of P2P systems described above are already covered by surveys
or books, to the best of our knowledge, a summary of Peer Data Management Systems is
missing: We refer to [73] for a general introduction to – and overview on – P2P systems,
including characterizations, architectures, applications and systems as well as aspects like
routing, load balancing, security or trust. [69] provides an extensive summary of applications
for P2P systems and general P2P techniques, including three chapters on DHTs. A specific
overview over data management P2P systems can be found in [5, Chapter 16] with a focus on
query evaluation and replica management. A short classification of P2P data management
systems based on their structure is presented in [11]. Finally [68] provides an introduction
into the combination of P2P and Semantic Web techniques and applications. However, the
only overview paper in the area of PDMSs is [41], reviewing design and implementation
aspects and challenges for PDMSs, but not providing a comprehensive summary of existing
approaches. It can therefore be considered as a complement to the present paper.

One of the initial goals of PDMSs was to extend the idea of unstructured P2P file sharing
systems to structured data [32], i.e. to allow for data sharing between a large number of highly
autonomous participants, but supporting a rich semantics and expressive query languages
(see [32, 6] for early visions of this idea). Note that PDMSs are not primarily intended to
provide a distributed, fail safe storage system (like DHTs) or to provide load distribution, but
just to provide an easy way to allow participants to share their data with others. Each peer
can freely select its neighbors and define mappings to them. Data is shared according to the
semantics of the mappings only, such that each peer has full control over the data it stores.
Following these ideas, PDMSs obviously belong to the group of unstructured P2P-systems.

Compared to other distributed database systems like multi-databases [12], which allow for
a similar distribution and heterogeneity of their members, PDMSs provide a higher autonomy
for each peer. A classification and description of PDMSs w.r.t. traditional database approaches
is given in [11]. Higher autonomy of each member in the network also distinguishes PDMSs
from traditional data integration systems [54]. There, the data provided by each peer is
integrated in terms of a global schema instead of pairwise mappings.

While the above discussion holds for all PDMSs, we next take a look onto properties that
characterize and distinguish different approaches to PDM and shortly summarize the most
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important aspects of PDM that influence those properties. We start with considering design
choices that influence the semantics of a PDMS, continue with characteristics resulting from
these choices and finish with choices that deal with the concrete implementation but do not
influence the semantics. Obviously a fundamental property of a PDMS with heavy influence
on its semantics is the supported data model (e.g., relational, XML, RDF). Another important
aspect are the P2P mappings, as they define what data is exchanged and how. The exchange
could be either done by enforcing the constraints defined through the mappings on the data,
i.e. by indeed materializing tuples in the different peers such that the mappings are satisfied
over the stored instances (we refer to corresponding systems as exchange systems). In general
there exist several (up to infinitely many) possible instances that could be materialized to
satisfy the mappings. In this case, the goal is to identify some “best” instance to materialize.
Most of the time, this means to materialize some most general instance that only contains
information indeed implied by the mappings. Another desired property of the chosen instance
is to allow to compute the certain answers for some query w.r.t. all these possible instances
from the information in the instance only. Another possibility is not to materialize these
extra information, but to use the mappings to infer additional information only for query
answering at query time (integration systems), or to consider mappings only as rules for how
to translate updates made at one peer to an update on another peer and to exchange only
updates. Further aspects of mappings are the mapping language (e.g., FOL or restrictions
thereof, coordination formulas — cf. Section 4, mapping tables — cf. Section 6.1), the
semantics under which they are evaluated (e.g., local reasoning or global reasoning for FOL
mappings — cf. Section 5.1), whether they are defined e.g. on schema or instance level, and
whether they support different domains for each peer or assume a shared domain among
all peers. The supported query language is another interesting property of a PDMS, just
like the technique used for query answering. For example, the latter could be based on
query rewriting, answering queries using views, temporarily materialization of data (universal
solutions), or using logic programs (e.g., under the stable model semantics). Further aspects
are the incorporation of trust, the capability to deal with inconsistencies in the data in a
meaningful way, or the maintenance and use of data quality metrics.

Choices on the above properties have a direct influence on properties like the concrete
degree of the autonomy, modularity or heterogeneity of the peers or the decidability and
complexity of query answering. Finally, further properties of PDMSs arise from aspects
related directly with the implementation of such systems. Those include the query planning
algorithm (which can be centralized or distributed), the incorporation of query optimization
(including relaxations on the correctness or completeness of answers), the maintenance of
indices and/or replica, or optimizations of the inter peer mappings.

For a throughout discussion of these aspects related to PDM as well as pointers to
different solutions for them, we refer to the recent survey in [41]. Further discussions of these
topics can be found e.g. in [73, Chapter 4] and [5, Chapter 16]. In this paper, we provide a
summary of different approaches to PDM and PDMSs. Thereby the main focus will be on
the way the P2P mappings are defined and formalized, as they are the central component of
PDMSs. Beside describing these approaches, we will use (some of) the properties listed above
to discuss the effects of different approaches and to characterize them, but the main focus
lies on their descriptions. We will further give an overview of prototype implementations of
PDMSs, pointing out interesting or notable design decisions or specifics of these systems.
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4 A Model for PDM: The Local Relational Model

After the rather general last section, we now start to take a look onto concrete approaches
taken to formalize and implement PDMSs. One such proposal was the Local Relational
Model (LRM) [6, 67], one of the first models proposed for PDMSs. Because it addresses
several problems of PDM we use it to illustrate several different key concepts for PDMSs: In
the LRM, dependencies between the different databases can be expressed by mappings on
schema level. Peers are allowed to use different domains by providing a domain translation
mechanism with a meaningful, well-defined semantic. Finally, queries can exploit all these
mechanisms to incorporate information stored at several peers into the answer.

Because the LRM is a powerful mechanism addressing several problems of PDM, we will
use it as a reference model and compare other approaches with it, or – if appropriate – will
even describe other approaches in terms of the LRM.

I Definition 2. A LRM-PDMS is a PDMS SLRM = (P,R,M), where each Ri ∈ R is the
schema of a local database andM =MT ∪MCF ∪MR, s.t.MT contains for each Pi ∈ P
a relational theory Ti over Ri ∈ R,MCF is a set of coordination formulas, andMR is a set
of domain relations.

Domain relations rij ⊆ domi × domj provide domain translations between pairs (Pi, Pj) of
peers in P. They allow to support different domains domi (which, unlike in most other
formalisms, are assumed to be finite) at each Pi ∈ P . Domain relations need not be symmetric.
In the following let C = {i | Pi ∈ P}. A coordination formula (CF) is an expression of the
form CF ::= i : φ | CF → CF | CF ∧ CF | CF ∨ CF | ∃i : x(CF ) | ∀i : x(CF ), where φ
is a function free FO formula over some Ri ∈ R and i ∈ C. Their intuition is as follows:
∀i :x(CF ) denotes that the universal quantification of x is over the domain domi (similar for
∃), while i :φ indicates that variables in φ shall be evaluated w.r.t. Pi (i.e. under domi). For
variables occurring free in φ this may require to incorporate domain translation: If such a free
variable is bound outside i :φ by a quantifier under a different context Pj (i.e. bound under
domain domj), the translation from domj to domi must be considered for evaluation (see
below for a formal definition of the semantic of such a translation). Although not required in
[67], here we consider all CFs inM to be closed. Recall that a relational theory Ti over Ri
consists of function free FO sentences over Ri (i.e. function free FO constraints over Ri) with
constants from domi. Obviously, each theory Ti can be easily encoded as a set {i :φ | φ ∈ Ti}
of CFs. Further, in [67] it was shown that also domain relations may be expressed as CFs.
HenceM may be considered to contain coordination formulas only.

I Example 3. The following coordination formula adapted from [67] creates a record in the
Person relation of peer Hospital based on the data in Patient at peer Doc:

∀(Doc : fName, lName, gender).(Doc : Patient(SSN, fName, lName, gender) →
Hospital : ∃(persID, name, age).P erson(persID, SSN, name, gender, age,Doc)∧
name = concat(fName, lName))).

A unique value for persID has to be generated and the unknown age has to be filled with a
so-called Skolem constant. J

In the LRM, an instance I for S is not defined as an instance for R, but I = (I[Ri])i∈C is
a tuple of databases I[Ri] for each Ri ∈ R. Each such database I[Ri] in turn is considered to
consist of a set of instances I ′ of Ri that satisfy Ti while interpreting constants as themselves.
Thereby the idea is that while |I[Ri]| = 1 describes the case of a traditional database instance,
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|I[Ri]| = 0 indicates an inconsistent database at peer Pi and |I[Ri]| > 1 models incomplete
databases. Next we define satisfiability of CFs. To be able to deal with domain translations,
in the LRM a variable assignment µ for a set ~x of variables is a set of mappings µ = {µi}i∈C
with µi : ~x→ domi. For i ∈ C and J ⊂ C, µ is an i-to-J-assignment (i-from-J-assignment)
of a variable x if for all j ∈ J with j 6= i, (µi(x), µj(x)) ∈ rij ((µj(x), µi(x)) ∈ rji, resp.),
i.e. if µ sticks to the domain translations defined by the domain relations between domi

and domj for all j ∈ J . Now given I, MR, and an assignment µ, a CF i : φ is satisfied
by (I,MR) under µ (denoted (I,MR) |= i :φ[µ]) if for each I ′ ∈ I[Ri] it holds I ′ |= φ[µi].
I.e. i : φ is satisfied if φ, interpreted under the scope of Pi (in terms of the assignment
µi), is satisfied over all instances in I[Ri]. For CFs ∀i :x(A)[µ] (∃i :x(A)[µ]) on the other
hand let J ⊂ C contain all j ∈ C s.t. x occurs free in a subformula j : φ of A. The idea
is, that while x is quantified over domi, it is evaluated in A under the scopes of the peers
Pj (j ∈ J), i.e. under the domains domj . Hence when evaluating A, for every possible
value for x over domi, the corresponding domain translations must be taken into account.
Therefore (I,MR) |= ∀i : x(A)[µ] if (I,MR) |= A[µ′] for all i-to-J-assignments µ′ on x

that differ from µ only on x. Further, (I,MR) |= ∃i :x(A)[µ] if (I,MR) |= A[µ′] for some
i-from-J-assignments µ′ on x that differ from µ only on x. Intuitively, in case of universal
quantification, for each possible assignment µi on x, each subformula j :φ must be satisfied
under each translation of µi(x) to domj . The case for the existential quantification is similar,
but a little bit more involved (note that in i-from-J-assignments we have rji instead of rij).
Due to space restrictions, for a discussion of this we have to refer to [67]. Satisfaction of the
connectives →,∧,∨ is defined as usual.

Queries Q against some Pi ∈ P are of the form (i : q(~x)) ← A(~x), where A(~x) is a
coordination formula with free variables ~x, |~x| = n, and q is a new n-ary relation symbol.
Given (I,MR), the answer to such a query is defined as {~d ∈ domn

i | (I,MR) |= ∃i :
~x(A(~x) ∧ i : (~x = ~d))}. Queries can be defined recursively, i.e. A(~x) may use the result q′ of
another query Q′ (these recursions may be cyclic).

Note that while this defines how a query is evaluated over (I,MR),MCF is not taken
into account for query answering. Originally, in the LRM P2P mappings were not considered
for information exchange or reasoning, but just to express constraints between peers. For a
query to also include data stored at different peers, the corresponding CFs need to be specified
explicitly as part of the (recursive) query. As a result, there is no concept like consistent
global instances (w.r.t. some instance I for S). Also, while all I ′ ∈ I[Ri] must satisfy Ti,
it is not required that I[Ri] contains indeed all models of Ti. So, given a pair (I,MR) as
input, the LRM only defines if a CF is satisfied by (I,MR) and the result of a query over
this instance. If I contains incomplete databases, then this answer is however certain w.r.t.
this incompleteness (but not w.r.t. to possible repairs). Restricting to a certain class of
CFs, [22] extends the LRM by a notion of certain answers also takingMCF into account.
Therefore it is assumed that some input instance I is already encoded into

⋃
i∈C Ti, i.e. the

tuples in I are expressed as part of the theory Ti. Basically [22] then defines the notion of
global consistent instances by considering I[Ri] to consist of all interpretations of the theory
Ti (i.e. instances of Ri that satisfy Ti). This is then used to define the set of certain answers
w.r.t. I as those answers that occur in each such instance I ′ ∈ I[Ri]. Obviously, this idea
could be extended to the LRM in general. I.e. given I encoded intoM, the certain answers
to a query would be

⋂
{I|(I,MR)|=M}{~d ∈ domn

i | (I,MR) |= ∃i :~x(A(~x) ∧ i : (~x = ~d))}.
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5 Schema Mappings for PDMSs

We have seen that the LRM provides mappings on schema and instance level and supports
different domains at each peer. Many approaches to PDM however assume a unique domain
shared by all peers, and consider schema level mappings only. They can be generally described
as PDMSs SS = (P,R,M) whereM is a set of formulas of some logic L over R. In this
section, we will show how such settings can be used to express various semantics for PDMSs.

The characterization of SS is reminiscent of schema mappings as considered for example
in data exchange [46]. And in fact, like for data exchange, most schema level mapping based
PDM settings use tgds (or slight variations thereof) to define P2P mappings, and sets of
tgds and egds on single peer schemas Ri ∈ R to define local constraints. Unfortunately,
just applying the typical semantics of schema mappings to PDMSs is no satisfying solution,
as reasoning becomes undecidable and the structure of the system cannot be modeled
appropriately, leading to a loss of peer autonomy. As this raised a lot of work on identifying
suitable semantics that on the one hand resolve these problems and on the other hand support
a wider range of applications, we devote this section to the discussion of these suggestions.

5.1 Global and Local Reasoning
A major distinction between such PDMSs SS is made according to whetherM is interpreted
under global or local reasoning1. Global reasoning means thatM is interpreted as a single
(global) FO theory. This is the semantics obtained by extending data exchange [46] and data
integration [54] scenarios to P2P settings. Under local reasoning, each peer is modeled as a
distinct (local) theory, and inter-peer mappings are interpreted as to exchange certain facts
between such theories only. It was explicitly suggested in [14, 16], and occurs implicitly in
the LRM on implicational coordination formulas.

It is easy to see that under global reasoning, deriving all certain answers may become
an undecidable problem, due to the network topology (e.g., P2P mappings could form not
weakly acyclic sets of tgds [20], or in combination with local egds could form sets of 1-key
conflicting inclusion dependencies [13]). Global reasoning further does not completely reflect
the modularity of PDMSs [16]. On the other hand, it allows to derive more information than
local reasoning. The latter two properties are illustrated in the following example.

I Example 4 (cf. [22]). Assume a PDMS SS = (P,R,M), with P = {P1,P2,P3}, R1 = {C},
R2 = {M,F}, R3 = {TP}, (let C stand for Citizen, F for Female, M for Male, TP for
TaxPayer , and let all be unary) andM = {C(x)→M(x) ∨ F (x),M(x)→ TP(x), F (x)→
TP(x)}2, and queries Q1 : q(x)← TP(x), Q2 : q(x)←M(x), and Q3 : q(x)← F (x).

For an instance I = {C(alice)}, Qc2(I) = Qc3(I) = ∅ (under both kinds of reasoning), as
II contains two instances not containing F (alice) and M(alice) respectively. Under global
reasoning however, Qc1(I) = {q(alice)}, as TP(alice) is derivable in any I ′ ∈ II . While
entailing a maximal amount of information, this contradicts modularity in a way as mappings
not only transfer the “visible” content of a peer, but the information exchanged depends
on the complete structure of the network (hence it is to some extend unpredictable for a
single peer). Under local reasoning on the other hand Qc1(I) = ∅, as mappings only exchange
information present in every I ′ ∈ II , which is neither the case for F (alice) nor M(alice). J

1 Do not confuse the notions of global and local reasoning here with the global and local semantics in [22].
The (equivalent) latter two notions are concrete formalizations of local reasoning.

2 We use disjunctive tgds for the sake of illustration only. Similar effects occur with ordinary tgds as well.
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Note that mappings defined over a single peer schema behave equivalent under both kinds of
reasoning. We next take a closer look onto these two formalisms and two concrete examples.

5.1.1 Global Reasoning & PPL
If we consider a PDMS S = (P,R,M) whereM consists of FO formulas, the typical semantic
of S under global reasoning is defined in terms of a FO theory T that contains all formulas in
M. Given an instance I for S (i.e. either for R or for the source relations Li), II is defined
by all models of T that agree with I. As already noted, considering inter-peer tgds and local
tgds and egds leads to settings where query answering becomes undecidable (cf. [20, 16, 38])
as it requires to derive all information implied by T . The only ways to overcome this are
either to drastically restrict the allowed mapping language or to restrict the structure of T ,
and therefore the topology of the inter-peer mappings. While the first choice often requires
weak mapping languages that render the complete system useless, the latter reduces the
autonomy of the peers, as they are no longer free to define mappings to neighbors arbitrarily.
Hence, one has to find a trade-off between these two possibilities.

One of the first and most prominent examples for a PDMSs dealing with this trade-off
is the Piazza PDMS [35, 36, 37, 38, 71]. Mappings in Piazza are defined using the Peer
Programming Language (PPL), introduced for this purpose in [37, 38].

I Definition 5. A PPL-PDMS SPPL = (P,R,M) is a PDMS where each Ri ∈ R is the
schema of a local data integration system (where possibly Li = ∅), andM =ML ∪MP is a
set of mappings defined in PPL. TherebyML contains the mappings between all Li and
Ri, whileMP contains the mappings and constraints on R.

Due to space restrictions, we can only give a short overview on PPL. PPL distinguishes
two general kinds of mappings, storage descriptions (used to defineML) and peer mappings
(forMP ). Storage descriptions are either exact or sound LAV mappings between Li ∈ L
and Ri ∈ R. Peer mappings are either exact or sound GLAV mappings or certain GAV-style
mappings (definitional mappings; defined as datalog rules with a single atom in the head and
a CQ in the body) between two (not necessarily distinct) peer schemas Ri,Rj ∈ R. ([37, 38]
allow all mappings in M to refer to arbitrary relations in R. However, by introducing
additional relations and mediator peers, the above definition is equally expressive, but more
modular.) Given an instance I for L, an instance I ′ for R satisfies all LAV and GLAV
mappings according to the usual semantics (cf. [54]). The definitional mappings are satisfied
by I ′ if for each relation R occurring in the head of such a mapping, RI′ =

⋃n
i=1 Qi(I ′),

where the Qi are the bodies of the n definitional mappings where R is the head predicate
symbol. Given I, the goal is not to materialize any data under R, but at query time to
return the certain answers w.r.t. all instances I ′ satisfyingM that are equal to I on L.

The expressive power of PPL requires to constrain the topology of mappings inM in
order to allow for decidable query answering. Following the notion of acyclicity defined in
Section 2, we obtain the following results.

I Theorem 6 ([38]). Given a PPL-PDMS SPPL, a CQ Q, and an instance I for SPPL,
computing Qc(I) is undecidable. IfM contains only sound LAV and sound GLAV mappings,
andM is acyclic, then computing Qc(I) is in polynomial time (data complexity).

[38] also presented an algorithm that runs in polynomial time (data complexity) and computes
certain answers w.r.t. a PPL-mapping. While it is guaranteed to always return only certain
answers, it also returns all of them for acyclic mappings. One key observation for this
algorithm is that each GLAV mappings can be split into one LAV and one GAV mapping.
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The algorithm then creates a rule-goal tree, by interleaving steps of query unfolding (for
GAV style mappings) and answering queries using views [34] for LAV style mappings. At
the end, the query is rewritten in terms of the local schemas Li.

Although the border of decidability and tractability can be pushed further by resorting
to a little bit less restrictive constraints onM that still allow for decidable (tractable) query
answering (see [38]), the general problem of using global constraints remains.

5.1.2 Local Reasoning: Exchanging Certain Answers

Local reasoning applies an interpretation to inter-peer tgds that allows for decidable query
answering whenever query answering over each isolated peer can be decided. The basic idea
is that P2P mappings are not satisfied by a single consistent global instance, but by the set
of all such instances. Intuitively, they only exchange certain answers. This idea has been
formalized in several (equivalent) ways: It was explicitly introduced in [14] by using the
modal logic KT45 (by modeling a tgd as sentence ∀~x

(
K(∃~zφ(~x, ~z))→ ∃~yψ(~x, ~y)

)
, where K

is a modal operator expressing certainty) together with a distributed algorithm for query
answering, and shown to support modularity better than global reasoning in [16]. In [22], two
further formalisms for defining the semantics of a PDMS were introduced. Based on ideas
of the LRM they consider a restricted form of coordination formulas and were shown to be
equivalent with the formalism in [14]. Finally, in [27] local reasoning was formalized directly
via sets of global consistent instances. Here, we follow this approach: Assume a PDMS
S = (P,R,M) withM = CM ∪MM , where CM = {Ci | Pi ∈ P} are formulas of some logic
L defined over single peer schemas (including, if present, the mappings between Li and Ri),
andMM is a set of inter-peer tgds. Satisfiability of CM is still defined for single instances:
Given an instance I for R, some instance I ′ satisfies CM w.r.t. I if, for every Ri ∈ R, it
satisfies the logical theory containing Ci and the facts in I. ForMM on the other hand, being
satisfied is defined for sets of instances: Given an instance I, a set Î of ground instances
I ′ for R satisfies M w.r.t. I if (i) each I ′ ∈ Î satisfies CM w.r.t. I, and (ii) for each tgd
τ ∈ MM with τ = ∀~x(∃~zφ(~x, ~z) → ∃~yψ(~x, ~y)), it holds that

⋂
I′∈Î Qφ(I ′) ⊆

⋂
I′∈Î Qψ(I ′),

where Qφ, Qψ are the CQs associated to the lhs and rhs of τ , respectively. I.e., instead of
testing for each instance I ′ ∈ Î if all answers to Qφ are also answers to Qψ, under local
reasoning the certain answers to Qφ w.r.t. Î must be contained in the certain answers to Qψ.

Hence, given some instance I the semantics of S (i.e. the information implied by M)
depends on the set Î. Since there may exist more than one possible set to choose from, the
question is which is the “right” one. However, note that if two distinct sets Î and Î ′ satisfy
M, so does Î ∪ Î ′. Hence there exists a unique maximal set that satisfiesM. The set II
is thus defined as this maximal set, and mappings in MM are interpreted w.r.t. II . I.e.,
the data implied by MM is defined as those information shared by all instances I ′ ∈ II .
Given some instance I, all information implied byMM can be efficiently (data complexity)
materialized using a variant of the chase. Recall that the chase “repairs” violations of tgds
(witnessed by tuples ~t ∈ Qφ(I) \Qψ(I)) by adding tuples into I s.t. ~t is also an answer to
Qψ in the resulting instance. Now while the traditional chase considers all tuples ~t, for local
reasoning it suffices to only consider tuples that contain no labeled nulls. Beside efficient
reasoning, this procedure thus provides also an alternative, procedural description of the
semantics of local reasoning: tgds (an thus, peers) exchange only ground tuples.

One of the most elaborated frameworks based on this semantics is the PDEI-system also
defined in [27], which we discuss next and use to illustrate the above definitions.
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I Definition 7. A PDEI-System (Peer Data Exchange and Integration) SPDEI = (P,R,M)
is a PDMS where each Ri ∈ R is the schema of a local database instance, and M =
CE ∪ CI ∪ME ∪MI , where CE and CI are sets of tgds and egds defined over single peer
schemas Ri ∈ R, andME andMI are sets of inter-peer tgds.

According to the semantics described above, CE and CI are interpreted as FO-theories over
R, whileME andMI only need to be satisfied w.r.t. tuples that are present in all I ′ ∈ II .
In addition, PDEI-systems allow for both materialization of data and “virtual” exchange:
The mappings in CE ∪ME are enforced on the instance on R, i.e. tuples are materialized to
satisfy them, while those in CI ∪MI are only considered for query answering (if some tuple
can be derived by both kinds of mappings, it needs not to be materialized). Hence reasoning
over a PDEI-system is twofold: Given some instance I for R, the goal is on the one hand
to materialize an instance over R that satisfies CE ∪ME (“admissible instance”), and on
the other hand to answer queries over such an instance by returning certain answers also
w.r.t. CI ∪MI . For these tasks to be decidable, a PDEI-system S has to be stratified, i.e.
CE is weakly acyclic, CI consists of legal key constraints and foreign key dependencies (FK)
only, and no head of a FK appears in the lhs of any tgd in CE . Note that these are local
constraints only, verifiable by each peer Pi ∈ P in separation. For such systems, computing
admissible instances and query answering can be done by combining a variant of the chase
that considers the special semantics of inter-peer tgds (to retrieve information implied by
CE ∪ME ∪MI) with query rewriting (to access information implied by CI).

I Theorem 8 ([27]). Let S = (P,R,M) be a PDEI-System, and I an instance for R. If S
is stratified, then an admissible state I ′ for R and Qc(I ′) for a CQ Q can be computed in
polynomial time (data complexity).

5.1.3 Schema Mappings and the LRM
We shortly comment on the relationship between global and local reasoning over schema
mappings and the LRM by discussing the translation of some schema mapping based PDMS
S = (P,R,M) into a LRM-PDMS. Assuming a shared domain dom between all peers (i.e.
ri,j = {(a, a) | a ∈ dom} for all Pi, Pj ∈ P), we can neglect the effect of the domain relations.

For global reasoning, assume thatM is a set of function free FO formulas over R. This
corresponds to a LRM-PDMS Ŝ = ({P̂1}, {R̂1},M̂), where M̂ = {1:φ | φ ∈M}. This also
illustrates nicely how the structure of the PDMS is lost under global reasoning. Given an
instance I for S, II w.r.t. S contains exactly those instances I ′ for Ŝ that satisfy M̂ and s.t.
there is a homomorphism from I into I ′.

We already mentioned that when considering certain implicational coordination formu-
las, the LRM exhibits exactly the semantics of local reasoning. To see this, assume in
accordance with the last subsection, thatM contains function free FO formulas over single
peer schemas and inter-peer tgds only. This translates to a LRM-PDMS Ŝ = (P,R,M̂),
where M̂ contains one coordination formula i : φ for each formula φ ∈ M over Ri, and
for each tgd ∀~x

(
∃~zφ(~x, ~z) → ∃~yψ(~x, ~y)

)
between peers Pi, Pj one coordination formula

∀i : ~x
(
i : (∃~zφ(~x, ~z))→ j : (∃~yψ(~x, ~y))

)
. Again, for an instance I for S, II w.r.t. S contains

exactly those instances I ′ for Ŝ that satisfy M̂ and agree with I.

5.2 Inconsistency Handling
Given a PDMS S, we say an instance I for S is inconsistent (w.r.t. S) if II = ∅. One drawback
of the semantics and approaches seen so far is that they cannot deal with such a situation.
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They do not have sensible notions for query answering nor materialization in this case, and
therefore their algorithms will either fail or return useless results. This is unsatisfactory, as it
is very unlikely that a complete PDMS is consistent. In general, two kinds of inconsistencies
are distinguished. Local inconsistency occurs if the data stored at a single peer is already
inconsistent. In case of P2P inconsistency each peer is locally consistent, but the local data
contradicts data implied by inter-peer mappings, or a peer imports contradicting information
from different sources. In both cases, inconsistency occurring at a single peer immediately
renders the complete system useless (as it leads to global inconsistency).

Local inconsistency is in general addressed by “excluding” locally inconsistent peers,
i.e. by defining semantics that behave as if these peers were not part of the network. P2P
inconsistency on the other hand is tackled by defining semantics that consider suitable repairs
of the data, either by not importing contradicting facts or by ignoring the local data.

In [15], the first approach has been taken: In case of P2P inconsistencies, the local data
at each peer is preferred, and a maximal amount of consistent data is imported. Applying
local reasoning and considering an integration system, this semantics is formalized as an
extension of [16] using the nonmonotonic, multi-modal epistemic logic K45An .

I Definition 9 ([15]). A P2PDIS is a PDMS SP2PDIS = (P,R,M) where each Ri ∈ R is
the schema of a local data integration system andM =ML ∪MR ∪MP . MR is a set of
constraints Kiφ where φ is a function free FO formula over a single peer schema Ri ∈ R. ML

is a set of mappings Ki(∀~x(∃~zφ(~x, ~z)) → (∃~yψ(~x, ~y))) between some Li and Ri, and MP

contains inter peer mappings ∀~x(¬Ai⊥i∧Ki(∃~zφ(~x, ~z))∧¬Aj(¬∃~yψ(~x, ~y))→ Kj(∃~yψ(~x, ~y)))
from Pi to Pj , where φ and ψ are conjunctions of atoms.

Again, Ki and Ai are modal operators from K45An . Let I be an instance for S. Intuitively,
MR and ML express that the local mappings and constraints must be satisfied in each
I ′ ∈ II . The intuitive reading of the P2P mappings is as follows: If peer Pi is not locally
inconsistent, and ∃~zφ(~x, ~z) holds in every I ′ ∈ II , and ∃~yψ(~x, ~y) is consistent with the data
at Pj , then ∃~yψ(~x, ~y) should hold at Pj . Being a proper extension of local reasoning as
described before, the drawback of the approach is the high complexity of query answering.

I Theorem 10 ([15]). Let SP2PDIS be a P2PDIS whereML is a set of GAV mappings and
MR contains key constraints only, and Q a CQ over some Ri ∈ R. Given an instance I for
L, and tuple t, deciding if t ∈ Qc(I) is coNP-complete (data complexity).

Using repairs, [7, 8] considered both, omitting imported data and local data to resolve
inconsistencies. This approach is able to deal with inconsistencies between imported and
local data, but not with inconsistencies between data imported from different sources.

I Definition 11 ([7]). A CPDE-System is a PDMS SCPDE = (P,R,M), where each Ri ∈ R
is the schema of a local database instance andM =

⋃
Pi,Pj∈PM(Pi,Pj) ∪

⋃
Pi∈PMPi

. Each
M(Pi,Pj) andMPi

may be empty or contain full disjunctive tgds and tgds with one atom
in the lhs and rhs, defined over a single Ri ∈ R (MPi

) or two Ri,Rj ∈ R (M(Pi,Pj)). In
addition, eachM(Pi,Pj) 6= ∅ is annotated with a trust relation (Pi, [< | =], Pj).

Pj is a neighbor of Pi ifM(Pi,Pj) 6= ∅, andM(Pi,Pj) 6=M(Pj ,Pi) is allowed. Based on the
assumption that the transitive closure of the neighbor relation is acyclic, the semantics is
inductively defined based on neighborhood solutions and solution instances: Given an instance
I for S, for a peer Pi with

⋃
Pj∈PM(Pi,Pj) = ∅, the set of solution instances II [Pi] for Pi is

defined as the set of minimal repairs of I|Pi, and a solution S(Pi) =
⋂
I′∈II [Pi] I

′. For a peer
with neighbors P 1, . . . , Pn, the neighborhood solutions are defined via repairs of the instance
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Î = I|Pi ∪
⋃
P j S(P j) over the combined schemas of these peers, satisfyingMPi and all P2P

mappingsMPi,P j . Thereby only those repairs are considered that are “closest” (cf. [7]) to Î
and agree with Î on all Rj s.t. (Pi, <, Pj), i.e. on data from neighbors trusted more than the
local data. II [Pi] is then defined as the set of all neighborhood solutions restricted to Ri.

Being an integration system, no data is materialized, but the goal is, given a query over
some peer Pi and an instance I to compute the certain answers w.r.t. II [Pi]. As shown in
[7, 8], the problem can be encoded as answer set program. However, due to the disjunctive
tgds and the repair semantics, it is intractable in general.

I Theorem 12 ([7]). Let S be an acyclic CPDE-System and Q a FO query over an Ri ∈ R.
Given instance I for R and a tuple t, deciding if t ∈ Qc(I) is ΠP

2 -complete (data complexity).

In [22], the formalization of local reasoning presented there was also extended to address
local inconsistency by redefining the semantics of mappings from locally inconsistent peers.

5.3 Update Exchange
Another problem not considered by the approaches presented so far are updates. For
integration systems, in fact nothing changes in case of an update, as a query is answered on
the data present at query time. In exchange systems however, updates pose several problems,
based on the fact that later updates may revise and contradict earlier ones. Think e.g. of
changing a non-key value. Standard methods like the chase would lead to inconsistencies.
Another problem are e.g. deletions that lead to a mapping violation. Again, the chase would
just undo this deletion, which is not satisfactory. Hence the methods discussed previously may
not be appropriate in such settings, where data is both materialized and continuously changed
(often referred to as Collaborative Data Sharing (CDS) or Collaborative Data Integration).
The main idea behind approaches addressing these specific problems is not to exchange the
information directly, but to exchange information about the updates. We will next take a
look onto the most prominent examples of this approach.

5.3.1 Orchestra
One of the first and most cited approaches to realize CDS was formulated in the Orchestra
project [43, 72, 31, 28]. Most notably its semantics can be defined almost completely in
terms of schema mappings, although it differs a lot from the semantics seen so far.

I Definition 13. An O-PDMS is a PDMS SOrchestra = (P,R,M) where each Ri ∈ R is
the schema of a local database instances, andM is a weakly acyclic set of tgds τi and key
constraints. Each τi ∈M may contain relations from several peer schemas in both, its lhs
and rhs and has a trust condition θi attached.

Trust conditions assign to each update propagated by a tgd a numerical priority, based on
the content and the provenance of the update. The restriction to weak acyclicity is only
made to guarantee the termination of the chase, so every set of tgds on which the chase
terminates can be used.

So far, the setting looks similar to the previous ones. However, a different scenario is
assumed, resulting in a completely different semantics. Here, every user works on its local
database instance, i.e. queries are answered only locally and updates only affect the local
instance. Further, updates done by users on their local databases are not immediately visible
to the other peers in the network, but recorded in a local update log. At any time, a peer
can decide to either publish its updates, which means that they are copied into some global
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update store. Or he can decide to import updates done at other peers into his local database.
In this case, all updates published to the global update store by any peer since the last
import are first translated according to the mappingsM, then filtered according to the trust
conditions, and finally checked for mutual conflicts between these updates as well as for
conflicts with the local updates. Thereby the system is explicitly designed to handle such
conflicting updates: Local updates are always preferred to updates done at other peers, and
conflicts between imported updates are either resolved using the trust conditions, and if this
is not possible, the updates are deferred and a user has to select which to apply.

Formally, assume peer Pu chooses to import updates published by the others. Then the
content of its peer relations is defined by the following PDMS S ′ = (P,R′,M′), where R′
contains for each peer relation R ∈

⋃
Ri∈R,Rj∈Ri

Rj five relations: R` (local contributions
table), Rr (rejections table), Ri (input table), Rt (trusted input table), and Ro (output table).
Further, M′ contains the following mappings: For each τ ∈ M, M′ contains a mapping
τ ′ obtained from τ by replacing any relation symbol in the lhs by the corresponding Ro,
and each relation symbol on the rhs by Ri. Further, for each R, M′ contains the tgds
Ri(~x)∧ trusted(~x)→ Rt(~x), Rt(~x)∧¬Rr(~x)→ Ro(~x), and R`(~x)→ Ro(~x). Thereby trusted
is no real relation, but just denotes the filtering of updates according to the trust conditions
and resolving of conflicts using priorities (see below). In fact, in [28], Rt(~x) was defined as
Rt(~x) = trusted(Ri(~x)).

The content of the relations in R′ is defined based on the information retrieved from
the global update store: First, the sequence of updates in the store is flattened [43], i.e.
dependencies between updates are removed (if for example a tuple t is first inserted and then
changed to t′, these updates are replaced by just inserting t′. Also, if a tuple is first inserted
and then deleted, both updates are removed), such that no update depends on another one.
Based on this flattened update sequence, an instance I for the relations in R′ is defined as
follows: Each R` contains all tuples locally inserted into R. Rr contains all tuples that were
not inserted locally into R, but were delete from R according to the log (this means, the
tuple was imported during an earlier update, and then deleted. It should therefore not be
reinserted). Ri, Rt, and Ro are left empty. For each R ∈ Ru, the content of R after the
update is now defined as the content of Ro after chasing I withM′.

Inconsistencies occur whenever for the same key values, different updates show up (e.g.,
if two different values are assigned to the non-key values). Due to space restrictions, we only
sketch the basic idea of the conflict resolution algorithm (for details see [72, 28]): Updates in
Ri are considered as candidate updates. If such a candidate update conflicts with local data,
always the local data is preferred. Conflicts between candidate updates are resolved by the
trust mappings: The update with the higher priority is chosen, the other discarded. In case
that several conflicting updates have the same priority, the update is deferred until the user
selected one to apply. As the priority value of an update depends heavily on its provenance,
using an appropriate provenance model is important. In Orchestra, provenance semirings
are used, as on the one hand they are powerful enough to provide all required information,
and on the other hand their provenance expressions can be nicely transformed into trust
expressions. A description of the provenance model of provenance semirings can be found in
[29], a detailed discussion of how trust (trust or distrust an update) can be derived from
provenance expression is given in [28]. The reconciliation algorithm for conflicting updates
based on priorities was presented in [72], and recently developed further in [26].

Note that the description above was meant to define what tuples should be contained in
the local instance after the update, and not how these values are indeed computed, as this
would require to recompute the complete content. Instead, the instances can be computed
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incrementally. [28] presents algorithms for both, computing the effect of insertions and
deletions, where the main problem is to determine the effect of a deletion, as propagating
this deletion means to find all tuples that are consequences from the deleted one and can no
longer be derived from other local insertions.

5.3.2 Youtopia
Yet another approach was chosen more recently in the Youtopia system [52].

I Definition 14. A Y-PDMS is a PDMS SYoutopia = (P,R,M) where each Ri ∈ R is the
schema of a local database instance, andM is a set of tgds.

Note that except inter-peer tgds – which<f can always be repaired by inserting tuples – no
further constraints exist on R. Violations of some τi ∈ M introduced by an update are
repaired using a variant of the chase, which, in the presence of tgds only, cannot fail. As
usual, a violation occurs if in an instance I for S, there is a set of tuples (called witness)
matching the lhs of a tgd τ , without appropriate tuples matching the rhs of τ . Youtopia now
distinguishes two kinds of violations: A lhs-violation occurs if the tuple affected by an update
is part of the witness (e.g., after tuple insertion or replacing all occurrences of a labeled null
by the same constant). It is corrected by a forward chase, which means that new tuples are
added to I just like in the traditional chase. If, however, the tuple affected by the update
is not part of the witness (e.g., if the violation is due to a tuple deletion), this is called a
rhs-violation. Repairing such a violation by a forward chase would just undo the update,
which is probably undesired. Therefore, Youtopia resolves this via a backward chase, that
deletes tuples in the witness from I such that the tgd is no longer violated. If this causes
again a violation, it is again a rhs-violation, and therefore resolved the same way.

In this setting, there are now two unresolved problems: First, the forward chase may not
terminate (the backward chase terminates after deleting all tuples the latest), and second,
there might be several possibilities for deleting tuples to satisfy a violated tgd. Both issues
are resolved by asking the user for input: For the backward chase, whenever there is more
than one possibility for deletion, the user is prompted to select one of them. On the other
hand, whenever the forward chase produces a tuple t for some relation RI ∈ I that can be
mapped via a homomorphism h onto a tuple t′ ∈ RI , the chase is stopped, and the user has
to decide whether to add t to RI , or to apply h to I (thus indicating that t contains no new
information). Note that both actions satisfy τ . Then the following was shown.

I Theorem 15 ([52]). Any forward chase will either stop along all paths and ask for user
input or terminate after finitely many steps.

This does still not guarantee the termination of the forward chase, and even if it eventually
terminates, it might be running (or waiting for user interaction) for quite a long time. To not
freeze the system while waiting for termination, Youtopia allows different chase sequences
to run in parallel. A well-defined semantics for these concurrent chases is provided by
defining useful notions of serialization (e.g., extending final-state serializability) and safety
(of executing and interleaving chase steps). A discussion of the concurrency related notions
and results is out of the scope of this survey. We thus have to refer to [52] for any details.

5.3.3 ECA Rules
Event-Condition-Action (ECA) rules are a general, often used technique to coordinate
distributed systems by triggering actions based on the occurrence of certain events. Not
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completely fitting to our definition of schema mapping based PDMSs, their use in PDMSs has
been considered in [44, 45, 74], especially as a possibility for implementing schema mappings
in exchange systems. We therefore close this section by a short review of them.

I Definition 16. A PDMS SECA = (P,R,M) is a PDMS where each Ri ∈ R is the schema
of a local database instance, andM is a set of ECA-rules.

Following [74], we consider ECA rules in a generic way as rules of the form WHEN < event >,
IF < condition >,THEN < action >, where the “IF” part is optional. ECA-rules easily
allow to react to changes and updates in the system. On the other hand, the event based
character makes it hard to formally define II given an instance I for S. The idea is therefore
to see them as an implementation of schema mappings, that ensure that in case of updates a
materialized instance remains consistent w.r.t. a set of schema mappings.

Work done in this area addresses two main topics: Creation and evaluation of ECA-rules.
[45] proposed a distributed evaluation mechanism for ECA-rules: Given one rule including
several peers, the idea is to split it into several subrules that are then distributed among the
peers involved and allow for a distributed evaluation of the rule. [45] further introduces a
powerful event language and algebra. [44, 74] both consider the problem of semi-automatically
creating ECA-rules: Given default rules between standard schemas for a certain domain and
mappings between these schemas and concrete peer schemas, the goal is to translates the
default rules into rules between the peer schemas.

6 Alternative Semantics

In the previous section, we concentrated on approaches based on schema level mappings
between different peers. While they represent an important part of the discussion on PDMSs,
those systems do not represent the complete range of possible semantics. In this section, we
discuss semantics and approaches to PDMSs that are not based on mappings defined on
the schema level. As an example of data mappings, we will take a closer look onto mapping
tables. After this we discuss the idea of not just mapping schemas to schemas and data to
data, but to also map between data and schemas on the example of data-schema interplay.

6.1 Instance based mappings: Mapping Tables
One assumption common to all approaches in the previous section was that all peers share
the same domain, i.e. that they use the same domain elements to represent the real world.
However, this assumption might be too strong for certain applications and, in addition,
restricts peer autonomy. Recall that the LRM uses domain relations to extend the semantics
of schema mappings to also support domain translations. This idea was developed further
by dropping the schema mapping and defining P2P mappings solely on the data level by
specifying value correspondences only. One such approach, that can be considered as an
extension of the LRMs domain relations, are mapping tables [49, 47].

I Definition 17. A MT-PDMS SMT = (P,R,M) is a PDMS where each Ri ∈ R is either
the schema of a local database instance or of a local data integration system, andM is a set
of mapping tables.

Note that in [49, 47], the data is assumed to be stored directly under each Ri only. However,
as we will see, mapping tables are only used to translate queries between peer schemas, so
this does not make any difference. Next we will first describe mapping tables and their
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semantics as introduced in [49], and then, following [47], discuss how they can be used for
query answering in PDMSs.

Mapping tables describe a relationship between data stored under two sets of attributes,
extending domain relations in two ways: First, they need not be binary relations but may
have bigger arities, and second, they may also contain variables and domain restrictions
for these variables instead of just constants from the domain. Also, several mapping tables
between two peers may exist.

In the following, assume that each attribute Ai appearing in R has its own domain
dom(Ai), and let V be a set of variables. An attribute mapping over a set ~A of attributes
is a tuple t that contains for each Ai ∈ ~A either some c ∈ dom(Ai), some v ∈ V, or an
expression v − D where v ∈ V and D is a finite subset of dom(Ai), i.e. t = (t1, . . . , tn)
where ti ∈ (dom(Ai) ∪ V ∪ D) and D is the set of expressions v −D. A mapping table TM
between two sets ~A, ~B of attributes is a set of attribute mappings ti over ~A ∪ ~B s.t. no
variable occurs in two different attribute mappings ti, tj ∈ TM (i 6= j). Further, a mapping
table constraint τ is a triple (TM , ~A, ~B). Intuitively, each mapping table TM associates
values for ~B to given values for ~A. Formally, this is defined by means of valuations: For a
variable v in an attribute mapping, let ~Av be the set of attributes under which v appears.
A valuation µ is a function mapping all constants in TM onto themselves, each variable
v in TM into

⋂
Ai∈ ~Av

dom(Ai), and satisfies µ(v) /∈ D for all expressions v − D in TM .
Given a mapping table TM and values ~a for ~A, the set of values associated to ~a by TM
is ~BTM

(~a) = {~b | there exists a valuation µ s.t. t[ ~A] = ~a and t[ ~B] = ~b for some t ∈ µ(TM )}.
Finally a tuple t for attributes ~C with ~A∪ ~B ⊆ ~C satisfies τ = (TM , ~A, ~B) if t[ ~B] ∈ ~BTM

(t[ ~A]),
and a relation RI satisfies τ if each t ∈ RI satisfies τ . Even more expressive mappings
can be constructed by composing mapping table constraints to mapping table formulas
(MTF) as MTF = τ |(MTF ∧MTF )|(MTF ∨MTF )|¬MTF , where τ is a single mapping
table constraint, and the definition of whether a tuple satisfies a MTF is a straight forward
extension of the corresponding notion for mapping table constraints.

According to the above definitions, values for attributes ~A not appearing in the mapping
table have no translation to ~B. Assuming that a mapping table contains only partial
information, another interpretation considered in [49] is that such values map to any values
for ~B. However, this behavior can be explicitly defined under the above semantics using the
v −D construct. We therefore omit its discussion here.

Next, following [47], we discuss how to use mapping tables to define P2P mappings. The
general idea is to use mapping tables to rewrite a query on one peer to a query on another
peer, to forward this query, and to repeat these steps. Unlike similar procedures seen in the
previous sections, in this case answers of the resulting queries are not merged into a single
answer, but returned separately. One reason for this is that in a mapping table constraint it
need not be that | ~A| = | ~B|, hence the arities of the rewritten queries may not match.

Towards this goal it is first necessary to define when such a rewriting is correct, defined
as sound rewritings in [47]. Informally, the idea is that a rewritten query should return only
such tuples t′ that are translations of correct answers t to the original query (but t may not be
derived directly due to missing data). The formal definition for a sound rewriting from Ri to
Rj is based on a mapping table TM covering all attributes in Ri ∪Rj . Such a mapping table
constraint can be composed from several mapping tables (basically as conjunctive mapping
table formula matching uncovered attributes to all values — see [47] for details). Let Q1 be a
CQ. For the ease of notation, assume for the moment that equalities in Q1 are not expressed
by reusing variables but explicitly, and let ψ(~x, ~y) be the conjunction of these equalities, i.e.
Q1 : ans(~x1) ← ∃~y1φ(~x1, ~y1) ∧ ψ(~x1, ~y1). As now every variable occurs only once in φ, we
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can identify variables with the attribute for the position where they occur, and therefore ~x1
defines a set of attribute names. A query Q2 : ans(~x2)← ∃~y2φ

′(~x2, ~y2)∧ψ(~x2, ~y2) is a a sound
rewriting of Q1 over Rj w.r.t. TM if for every instance I for Rj and every t′ ∈ Q2(I) there
exists a valuation µ s.t. t[~x2] = t′ holds for some t ∈ µ(TM ). A rewriting is further complete
if it is sound and for every sound rewriting Q′2 and instance I it holds that Q′2(I) ⊆ Q2(I).

The problem of testing if a CQ is a sound rewriting of another CQ was shown to be
Π2P -complete in [47]. There, also an algorithm for computing a complete rewriting of a
CQ w.r.t. a mapping table TM was presented, that we cannot discuss here due to space
restrictions. Within a PDMSs, termination of the query forwarding is achieved in two ways.
On the one hand, a maximal number of forwards and rewritings for each query can be
specified. On the other hand for each query its path through the system is recorded. This
record is used for cycle detection. Once a cycle is detected, forwarding on this path stops.

Returning our attention to mapping table formulas in general, there are two interesting
problems that can be studied for sets of MTFs: The consistency and the inference problem.
Given a mapping table formula τ and an attribute set ~A, the consistency problem asks if
there exists a relation for R( ~A) that satisfies φ. The inference problem asks, given a set
Σ of MTFs and a single MTF τ , if every relation satisfying Σ also satisfies τ . While the
consistency problem is of obvious interest, the main interest in the inference problem stems
from the wish to create mapping tables automatically. Given a set of mapping tables, the
goal is to automatically derive new explicit mapping tables from them, as this may allow for
more and more exact query rewritings. Unfortunately, both problems (being interreducible
to each other) were shown to be NP-complete for the general case in [49].

Mapping tables have been combined with other data translation mechanisms (e.g., merge
and conversion rules in [56]) or schema mappings (in form of ECA rules in [44]). They are
also the main P2P mapping language in the Hyperion project [48, 4, 63] (see next section).

6.2 Data-Schema Interplay
Approaches for so-called data-schema-interplay extend the coordination formulas introduced
in Section 4. In such formalisms, the domain domi also contains the names of the relations and
attributes of the peer schema Ri. Consequently, the formulas φ occurring in the coordination
formulas can refer to both data and metadata. Pioneering work in this area was presented
in [53]. An important example from the peer data management domain is HepToX [10].

7 PDMS prototype systems

So far, we discussed semantic approaches for PDMSs. We will now give a short overview on
existing prototype systems, pointing out specifics or notable ideas. Due to space restrictions,
we cannot give a general or detailed discussion on the implementation of PDMSs. For a
deeper discussion of implementation related aspects, see [41].

A first suggestion for the general structure of a peer in a PDMS was already presented in
the vision paper [6] that also first suggested the LRM. Not surprisingly, a peer consists of
three main layers: The local data is managed by the storage layer. A P2P layer on the one
hand is responsible for establishing and managing mappings and connections to other peers.
On the other hand it also handles query rewritings, update exchange, domain translations,
or any other kind of information exchange supported by the system. Basically all algorithms
of interest for PDM are part of the P2P layer. Finally each peer is controlled through the
interaction layer, containing e.g. the user interface. Most of the systems presented in the
literature follow this schema.
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Hyper. The Hyper framework [17] considered the implementation of local reasoning as
introduced in [16] on a Data Grid architecture, with the main focus on how query answering
under local semantics can be deployed on Grid infrastructure. We are not going to discuss the
implementation on Grids here, but use this opportunity to shortly sketch the general idea for
query answering under local reasoning with tgds τ : ∀~x(∃~zφ(~x, ~z)→ ∃~yψ(~x, ~y)) as inter-peer
mappings (cf. Section 5.1.2). Recall that we can identify a CQ Qτ : ans(~x)← ∃~zφ(~x, ~z) with
the lhs of each τ , and consider a PDEI-system S = (P,R,M) with CE =ME = ∅ but let
CI contain arbitrary local constraints, and an instance I for S. The basic idea of the query
answering algorithm is as follows: For each τ from Pi to Pj , add a new relation symbol
Rτ of arity |~x| to Rj and a new local constraint ∀~xRτ (~x)→ ∃~yψ(~x, ~y) to CI . Now given a
(arbitrary) query Q over some Ri, first compute a perfect reformulation Q′ of Q w.r.t. I
and CI . (A perfect reformulation of a query w.r.t. an instance and a set of constraints is a
rewriting of the query that, evaluated over the instance, returns exactly the certain answers
w.r.t. the set of constraints.) Q′ may contain original relation symbols from Ri (these parts
of Q′ can be evaluated over I immediately) as well as some of the new Rτ . To evaluate Q′
on those, their content must be retrieved first. This is done by posing Qτ on the peer the lhs
of τ is defined on, where this procedure is repeated unless a cycle was detected. Finally Q′
can be evaluated by iteratively evaluating the (reformulations of the) queries Qτ and adding
the results to Rτ until a fixpoint is reached. This general idea can be implemented e.g. using
the chase (cf. [27]), or as datalog program (cf. [16]), and works for local reasoning in general.

coDB. In Section 5.1.2, we pointed out that [22] proposed a formalization of inter peer
mappings that resolves to local reasoning in terms of (restricted) coordination formulas. This
approach was implemented in the coDB PDMS [23, 21, 24]. Inter peer mappings are modelled
as coordination formulas i1 :φ1(~x, ~y1)∧ · · · ∧ ik :φk(~x, ~yk)→ i :h(~x) (where ~x =

⋃k
i=1 ~xi), and

domain relations are not considered. The very basic idea of the query answering algorithm is
similar to that presented for Hyper above. Therefore we do not discuss it here. A detailed
description of its distributed implementation can be found in [23, 24]. Notably, the authors
consider the problem of changes in the mappings while the algorithm is running. They show
that their algorithm is sound and complete w.r.t. those mappings that remain stable during
the runtime of the algorithm. Evaluation results of the coDB system are presented in [23].

PeerDB. PeerDB [59, 62, 61] takes a completely different approach than those seen so far.
Instead of defining semantic mappings between the peers, for each relation and attribute
name a set of metadata (basically a list of keywords) is maintained. If a query is posed against
a peer, the system identifies relations at other peers that might be worth also querying by
finding matches between the keywords attached to the relations and attributes used in the
query and those stored at the other peers. If a match is found, the corresponding relation is
added to a list of candidate relations. This search is done by sending software agents to all
neighbors of a peer, where they search for matches and are again forwarded. Forwarding is
stopped after a certain number of times. The list of possible matches is sent back to the
initiating peer, where it is ranked and presented to the user, who selects those relations to
use. The query is then rewritten accordingly and sent to the corresponding peers that return
the answer. Besides this completely different kind of mappings, the system further adapts
the topology of the network such that peers that contribute a lot of answers and matches
become a direct neighbor. (Being a neighbor just means to send agents directly to this peer.)
PeerDB further supports caching of answers to reduce the required bandwidth.
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Orchestra. We already presented the Orchestra system in Section 5.3.1. As mentioned
there, the ideas of update translation and exchange as well as conflict reconciliation based
on trust mappings and provenance have been all implemented in the Orchestra prototype
system [30, 43]. One focus of the implementation is how to perform the update exchange
incrementally, i.e. how to identify which tuples to add or to delete, without recomputing all
instances from scratch (for a detailed discussion of the corresponding algorithms see [28, 43]).
Towards these goals, Orchestra always tries to reuse existing relational database management
systems (RDBMSs) as much as possible and to find efficient implementations of all these
aspects on top of traditional RDBMSs. One example for this is the encoding of provenance
information in an RDBMS. Another important aspect is the implementation of the global
update store. [72] provides a comparison between a centralized and a distributed solution for
the storage of the published update logs.

Youtopia. Another system we already discussed earlier is Youtopia [52] (Section 5.3.2). The
distinguishing property of its implementation is probably its capability to support several
concurrent chases. Although providing algorithms to identify conditions under which it is
safe for a chase to proceed, Youtopia does not block chases until their execution is guaranteed
to be save, but applies an optimistic strategy that allows further chase steps to be scheduled
even if they are not safe. This may lead to conflicts that are detected and resolved by aborting
the corresponding chase. As this in turn may lead to cascading aborts, [52] considers three
different scheduling algorithms and provides an experimental comparison of them. It was
show that the number of aborts can be reduced to what seems to be an acceptable number.

Hyperion. The Hyperion project [60] was a large project on PDMSs. Part of it was the
development of the Hyperion PDMS [48, 4, 63]. The main focus of this system was the use
of mapping tables (see Section 6.1) for P2P mappings. The prototype provides algorithms
for checking consistency of mapping table formulas, deriving new mapping expressions from
existing ones, and computing rewritings of queries according to mapping tables. Further,
in addition to mapping tables, Hyperion also uses ECA-rules (see Section 5.3.3) to support
update exchange between peers, which is used to keep different peer instances consistent.
Obviously those updates are also translated according to the information provided by the
mappings tables. Consisting of three main components, the Hyperion PDMS basically follows
the general structure of PDMSs presented at the beginning of this section.

Humboldt Peers. Humboldt Peers is a full-fledged relational PDMS that offers different
strategies for completeness-driven query answering [64, 65]. As such, it follows a best-effort
approach. To preserve peer autonomy as much as possible, Humboldt Peers resorts completely
to local reasoning both in query answering and in building statistics of the data distribution
accessible through neighboring peers. For that purpose, query answers are exploited to
maintain multi-dimensional histograms on the potential cardinality of query answers received
from neighboring peers. Building on that statistics, each peer performs local optimization
in that it cuts off less promising peers from further query processing. To limit resource
consumption for the highly redundant problem of query answering in large PDMS, Humboldt
Peers sends a time budget along with each query. Using these pruning strategies, it was
shown in [64, 65] that response time for query answering can be cut down by one or more
orders of magnitude while still yielding a high completeness of the query result that can be
satisfying for many applications.
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8 Non-relational PDM

So far we concentrated solely on systems based on the relational data model. In this section,
we will discuss approaches based on other data models like XML or RDF. We will also loosen
the restriction only to consider unstructured P2P systems a little bit and will include some
hybrid systems as, unlike the relational case, they are very common in this area.

Piazza. It might be surprising to find the Piazza PDMS here, as we already discussed
it in Section 5.1.1 related to schema mappings. This was because the mapping language
PPL and the algorithm for query answering were introduced and formalized in terms of
relational schemas [37, 38]. However, the Piazza system was designed and implemented to
work on XML [35] and even to support both XML and RDF, including mappings between
both data models [36] by resorting to the XML representation of RDF. Nevertheless all
basic ideas described in Section 5.1.1 remain unchanged: Mappings are still either storage
descriptions or directed peer mappings (both can either be inclusion or equality mappings),
but expressed in an (adapted) fragment of XQuery instead of relational CQs. Using XQuery
allows the definition of more complex mappings that account to the nesting structure of
XML. The main focus of the prototype system lies on the algorithm for query answering
and its optimization. Implemented as a centralized algorithm, the reformulation step is
computed at that peer the query is posed on. A global system catalog allows to retrieve all
mappings currently present in the system. Recall that the idea of the algorithm is to compute
rewritings of the query via a rule-goal tree. The resulting queries over the source relations
are then sent to the corresponding peers to be executed. As the size of this tree grows quickly
w.r.t. the number of mappings, optimizing query rewriting is crucial. Several strategies have
been considered in [70], including pruning (i.e. identifying subtrees whose expansion will
not create any new answers), finding good strategies for which nodes to expand next, or
the computation of “shortcuts” by mapping compositions. Further, instead of returning the
complete answers at the end, whenever the rewriting produces a query over some source
relations, it is immediately executed and the result is presented to the user. Concerning the
implementation of PDMSs, these optimization methods are specific to Piazza.

AXML. Another XML-based approach that gained a lot of attraction is Active XML
(AXML) [42, 2]. First of all, AXML is an extension of XML that allows XML-documents
not to contain all information explicitly, but to embed web service calls. Executing those
calls then retrieves new data that is appended to the document. In general these may
be arbitrary web services just returning AXML documents, not giving rise to any PDMS.
However, as part of the AXML project so called AXML peers were created (cf. [2]). Each of
these peers contains a set of AXML documents, is capable of performing webservice calls,
and may publish its own services. These services, defined as (parameterized) queries over
the stored documents, give rise to the following AXML-PDMS3: Each peer stores a set of
AXML documents and may provide access to parts of these information through a web
service, defined as parameterized query over its documents and returning AXML documents.
Information offered by other peers can be accessed by including calls to their web services
into the own AXML documents. I.e., P2P mappings are defined in terms of queries on
other peers, a concept similar to tgds, that can be considered to describe the data to import
also in terms of queries. Within an AXML document, service calls are encoded as special

3 Note that our definition of a PDMS S = (P,R,M) only makes sense for schema based systems.
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XML elements whose children represent the call parameters. When activated, the root node
of the result-AXML document is appended to the document as sibling of the call element.
Several policies can be applied to define how long the result remains valid or what happens
with the result in case the service is called again. One difficulty with this materialization of
data is that since the result of a web service call can be an arbitrary AXML document, it
may contain further call elements, hence materializing all implicit information might not be
possible. As a result, when computing the answer to a query an important goal is to call only
those web services necessary to answer the query, but maybe even return service calls (instead
of their return values) in the answer (lazy evaluation). However, as web services in general
are just black boxes for the caller, reasoning about these questions (termination, was already
enough data materialized for query answering) is not possible. But as in AXML-PDMSs the
service definitions are known (at least from some global point of view), these problems have
been investigated in [1] for AXML-PDMSs where web services are defined using a monotone
conjunctive fragment of XQuery. Still undecidable in the general case, several decidable
fragments of these problems have been identified. We close the discussion by pointing to
two (out of many) extensions of AXML: [18] suggested a trust model for services, and [3]
proposed an algebra for evaluating AXML expressions. For a general overview on AXML
see [2].

SmurfPDMS. SmurfPDMS focuses on skyline-querying in a PDMS setting [40, 39]. Simil-
arly to Humboldt Peers, this prototype system employs so-called data summaries to route
queries through the network of peers. This means, that paths are pruned if they do not
promise a certain size of contribution to the query answer. The statistics in the data sum-
maries are maintained by exchanging updates between peers. To limit this update traffic in
the network, the updates are only propagated over a certain number of peer mappings. So
the statistics at each peers have a limited horizon.

HePToX. We already mentioned HePToX [9, 10] shortly in Section 6.2. Unlike most of
the other systems, that require the user to provide a complete specification of the mappings,
HePToX heavily supports the mapping creation. The data stored at each peer must be
structured according to a DTD. All the user has to do is to draw some arrows between
elements of the schemas that relate to each other, and to visually group different elements
that match to the same element in the other schema. The system then translates these
mappings into HePToX mapping language, which are datalog-style rules, adapted to be able
to deal with the nesting structure of XML documents. They are somewhat similar to nested
tgds [25], using Skolem functions to identify nodes (instead of using existential variables
like FO-tgds). Using these mappings, queries posed against the local schema of a peer and
formulated in a fragment of XQuery are translated to match the schemas of the neighbors.
Thereby a rewriting is considered to be correct if evaluating the rewritten query over the
data of the other peer returns the same result as applying the transformation to the data
and evaluating the original query there.

XPeer. XPeer [66] is the first hybrid P2P system that we consider. Peers, clustered around
super-peers, publish a schema of their locally stored data to their super peer in terms of so
called tree-guides that are automatically generated from the data. Basically these tree-guides
represent the structure of the XML data but omitting the actual data. The super-peer
network forms a tree and super-peers exchange information such that each super-peer knows
about the schema information stored at its children. Queries, issued against single peers,
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are handed over to the corresponding super-peer, from where they are routed through the
super-peer network by trying to find matches between the query and the peer schemas
stored at the super-peers. To improve this search for peer clusters that might be relevant for
answering a query, the systems aims at assigning peers with similar schemas to the same
super-peer, i.e. into the same cluster. Further, peers within the same cluster may replicate
data from each other to speedup query answering. Also, the super-peer network adapts the
number and distribution of super-peers automatically to the system load to avoid bottlenecks.

A survey of XML data management in P2P systems can be found in [51], focusing on the
use of indices, clustering, replication and query processing in such systems.

The idea of PDM has been also picked up by the Semantic Web community, resulting in
a variety of RDF based PDMSs. Interestingly, most of these systems differ greatly from the
systems we have seen so far, introducing several new ideas for defining mappings. In the
remainder of this section we will introduce some of those systems and discuss a selection
of those approaches. Although arguable not all of them are covered by our definition of a
PDMS we gave at the beginning, we think it is worth to mention them nevertheless. Probably
influenced by the idea of the web, many of these systems do not define explicit mappings
between pairs of peers: all peers in the network are considered as possible candidates for
query forwarding, and the task is to identify those peers that indeed contain relevant data.

Edutella. One of the most prominent RDF based PDMSs is Edutella [55, 57, 58], that was
originally designed for sharing educational resources by publishing RDF metadata describing
these resources and to provide a querying service on this metadata. The main goal of Edutella
is to provide an efficient mechanism for query routing, that forwards the query quickly to all
peers in the network that may contribute to its answer, but avoiding forwarding the query
to peers that do not. To reach this goal, a strong focus was laid on indices for query routing,
which is specific to Edutella. Although Edutella offers several other functionalities, we will
only shortly sketch the idea of using indices to guide query answering in a PDMS. Edutella is
a hybrid P2P system where each peer connects to exactly one super-peer. Those super-peers,
arranged in some predefined topology are then responsible for efficient routing. Queries
posed against a peer are handed to the super-peer, from where they are routed through
the super-peer network to peers that may contribute to the answer. Routing is based on
several indices maintained by the super-peers: First of all, each super-peer stores information
about the data provided by the peers connected to it that allows to determine if a peer can
understand the query. This includes information on the peer schema and for which parts of
this schema the peer actually contains data, but also the ranges of present values or other
value summaries. If a query arrives at a super-peer, these indices are used to identify suitable
peers for the query. In addition to the information about the peers connected to it, each
super-peer also stores indices about its neighboring super-peers. These are summaries of the
peer indices hold by the neighbors, describing the overall data offered by all peers connected
to a neighbor. Routing within the super-peer network is directed by these indices.

To ensure that this routing strategy does not lead to basically broadcasting the query
through the network, it is necessary that peers that may contribute to the answer are not
distributed randomly in the network. Edutella therefore tries to cluster peers based on
the data they offer. To do so, each super-peer can define certain constraints (like e.g. the
supported schemas) peers have to satisfy in order to be allowed to connect to this super peer.

SQPeer and Bibster. We have just seen how index information are used for guiding query
answering. Another possible use of data descriptions offered by a peer are advertisements,
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which gives rise to a different way of defining mappings between peers. The general idea
of advertisements is that peers announce description of their data. If another peer decides
to store such an advertisement, a mapping between these peers is established: Every time
a peer receives a query, it will not only try to answer it over its own data, but will also
check all of its stored advertisements whether they are relevant for this query. Two systems
following this approach in different ways are Bibster [33] and SQPeer [50].

Bibster was designed for the very limited scope of sharing bibliographic information
stored in Bibtex files at each peer. Advertising is done referring to some global ontology (for
the bibliographic domain, this was the ACM classification hierarchy). Each peer describes
its expertise, i.e. that parts of the ontology for which it actually provides data, as subsets of
this ontology. When a query is posed against a peer, it is first answered locally, and then the
stored expertises are used to identify peers that may be worth forwarding the query to. This
decision is based on a similarity measure computed between the query and advertisements.
Note that due to the need of a global ontology, Bibster is not a PDMS according to our
definition, but still an interesting approach as we think.

SQPeer takes a little bit different approach than Bibster. Storing again data under RDF
schemas, similar to the situation in Edutella (and considered in several RDF based systems),
a peer may not contain data for all parts of this schema. The advertisements of a peer consist
of descriptions of the so called active schema, i.e. of those parts of the schema a peer actually
stores data for. Queries are again sent through the network based on the published and
stored advertisements. But instead of immediately answering the query, each peer uses its
stored advertisements to identify which parts of the query could be answered by which peer
and annotates the query with the corresponding information. At the end, the annotated
query is sent back the peer where the query was originally issued. This peer then uses the
annotated information from the query to contact all relevant peers and collects their answers.

9 Conclusion

In this paper, we provided a survey of Peer Data Management Systems (PDMSs), concen-
trating on the management of structured data in unstructured peer-to-peer (P2P) systems.
The promise of these systems is the combination of a strong semantics (like for relational
data integration or exchange) with the high flexibility and autonomy offered by P2P systems.
As the design of a PDMS raises many questions, several suggestions have been made in
the literature to overcome the different design problems. Providing a summary of these
approaches, we laid a strong focus on the formalisms and semantics of the P2P mappings,
that more or less determine the semantics of the overall system.

P2P mappings can be designed for different purposes. They may be used for integrating
data at query time, for data exchange or update propagation. Mappings may be able to
deal with inconsistencies or support translations between different domains. In summary,
several characteristics of inter-peer mappings can be identified. They may be defined on
schema or instance level or even between instances and schemas. Further, while some offer a
well-defined semantics and allow for reasoning along them, others just define explicit rewriting
or translation rules for queries or data. Another distinction can be made on whether they
are explicitly defined or created on the fly at runtime, e.g. based on a query issued by a user
and some additional metadata.

Beside the description of the main theoretical concepts, we also discussed some of the
problems arising from the implementation of such systems, pointing out specifics of several
prototype systems published in the literature.

Chapte r 07



210 Peer Data Management

Table 1 An overview on the most important systems and approaches presented in this survey.
(p) in the “special mentions” column indicates that a prototype implementation exists, (e) and (i) in
the “semantics” column denote exchange and integration systems, respectively, and ⊂ L is used to
denote a fragment of L. (∗ syntactically restricted FO formulas)

data
model

mapping
level

mapping
language

query
language semantics special mentions Ref.

trad. data
exchange/
integration

relational schema tgds UCQs global [46, 54]

Piazza relational/
XML schema PPL UCQs

⊂XQuery global (i) (p), restricted
topology [38]

PDEI-
Framework relational schema tgds UCQs local (e/i) eff. decidable [27]

LRM relational schema &
instance

CFs/dom.
relations CFs local (i) domain

translation [67]

Orchestra relational schema tgds UCQs global (e) (p), trust,
update exchange [28]

Hyperion relational schema &
instance

ECA &
mapping
tables

CQs - (e/i) (p) [4]

[7],[8] relational schema UDECs∗
RDECs∗ FO repair (i) inconsistency

handling [7, 8]

Hyper relational schema tgds UCQs local (i) (p) [17]

AXML XML schema WS calls various - (i) (p) [2]

Youtopia relational schema tgds keyword &
structured global (e) backward chase

concurrency,(p) [52]

coDB relational schema ⊂CFs UCQs local (i) ∃ ext. for local
inconsistency,(p) [22]

HepToX XML data/schema
interplay

datalog
style rules ⊂XQuery - (i) graphical mapping

generation,(p) [10]

Humboldt
Peers relational schema GLaV CQs w/o

projections local (i) (p), compl. driven,
data statistics

[65]

Smurf-
PDMS

relational,
XML schema GLaV CQs local (i) (p), data statistics [40]

PeerDB relational schema keywords CQs - (i) (p) [59]

A summary of the more important systems and approaches discussed in this survey is
presented in Table 1. It lists for each of them the main characterizing properties: The data
model used, whether the P2P mappings are on schema or instance level (or a mixture of that),
the formalism used to define the inter-peer mappings, how these mappings are interpreted
(i.e. the semantics applied to the mappings), and whether the system is an exchange or
integration system. The table further shows the query language that is either supported by
the approach or discussed in detail within the context of the specific proposal. Any special
characteristics of a system are stated in the “special mentions” column, where (p) indicates
that a prototype implementation exists. Note that the table only contains a selection of
systems and is not complete: even some systems mentioned in this survey do not show up.

Despite all these different approaches, none of them seems to have been established yet
as the model for PDM. This may indicate that not all problems have been resolved in a
satisfactory way yet. One of these problems might be data inconsistency. Although very
elegant ways have been suggested for how to deal with contradicting data, most of the time
they come for the price of a high computational complexity. In general, performance is
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another critical aspect, and how to further speed up query answering or the data exchange
also is an interesting research direction. Altogether, although the semantics of PDMSs is
already understood quite well and the interest in those systems was decreasing the last two
years, there is still research potential in PDM.

References
1 Serge Abiteboul, Omar Benjelloun, and Tova Milo. Positive active xml. In Proc. of the

Symposium on Principles of Database Systems (PODS), pages 35–45, 2004.
2 Serge Abiteboul, Omar Benjelloun, and Tova Milo. The active xml project: an overview.

VLDB J., 17(5):1019–1040, 2008.
3 Serge Abiteboul, Ioana Manolescu, and Emanuel Taropa. A framework for distributed xml

data management. In Proc. of the Int. Conf. on Extending Database Technology (EDBT),
LNCS, pages 1049–1058. Springer, 2006.

4 Marcelo Arenas, Vasiliki Kantere, Anastasios Kementsietsidis, Iluju Kiringa, Renée J.
Miller, and John Mylopoulos. The hyperion project: from data integration to data co-
ordination. SIGMOD Record, 32(3):53–58, 2003.

5 M.T. Ăzsu and P. Valduriez. Principles of Distributed Database Systems. Springer, 2011.
6 Philip A. Bernstein, Fausto Giunchiglia, Anastasios Kementsietsidis, John Mylopoulos,

Luciano Serafini, and Ilya Zaihrayeu. Data management for peer-to-peer computing : A
vision. In Proc. of the ACM SIGMOD Workshop on The Web and Databases (WebDB),
pages 89–94, 2002.

7 Leopoldo E. Bertossi and Loreto Bravo. The semantics of consistency and trust in peer
data exchange systems. In Proc. of the Int. Conf. on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR), volume 4790 of LNCS, pages 107–122. Springer, 2007.

8 Leopoldo E. Bertossi and Loreto Bravo. Information sharing agents in a peer data exchange
system. In Proc. of the Int. Conf. on Data Management in Grid and Peer-to-Peer Systems,
pages 70–81, 2008.

9 Angela Bonifati, Elaine Qing Chang, Terence Ho, and Laks V. S. Lakshmanan. HepToX:
Heterogeneous peer to peer XML databases. CoRR, abs/cs/0506002, 2005.

10 Angela Bonifati, Elaine Qing Chang, Terence Ho, Laks V. S. Lakshmanan, and Rachel
Pottinger. HePToX: Marrying XML and heterogeneity in your P2P databases. In Proc. of
the Int. Conf. on Very Large Databases (VLDB), pages 1267–1270. ACM, 2005.

11 Angela Bonifati, Panos K. Chrysanthis, Aris M. Ouksel, and Kai-Uwe Sattler. Distributed
databases and peer-to-peer databases: past and present. SIGMOD Record, 37(1):5–11,
2008.

12 Athman Bouguettava, Boualem Benatallah, and Ahmed Elmagarmid. An overview of
multidatabase systems: Past and present. In Ahmed K. Elmagarmid, Marek Rusinkiewicz,
and Amit Sheth, editors, Management of heterogeneous and autonomous database systems,
pages 1–32. 1999.

13 Andrea Calì, Domenico Lembo, and Riccardo Rosati. On the decidability and complexity
of query answering over inconsistent and incomplete databases. In Proc. of the Symposium
on Principles of Database Systems (PODS), pages 260–271. ACM, 2003.

14 Diego Calvanese, Elio Damaggio, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. Semantic data integration in p2p systems. In Proc. of the Int. Workshop on
Databases, Information Systems and Peer-to-Peer Computing (DBISP2P), volume 2944 of
LNCS, pages 77–90. Springer, 2003.

15 Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Inconsistency tolerance in p2p data integration: An epistemic logic approach.
Inf. Syst., 33(4–5):360–384, 2008.

Chapte r 07



212 Peer Data Management

16 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. Logical
foundations of peer-to-peer data integration. In Proc. of the Symposium on Principles of
Database Systems (PODS), pages 241–251. ACM, 2004.

17 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Riccardo Rosati, and Guido
Vetere. Hyper: A framework for peer-to-peer data integration on grids. In Semantics
for Grid Databases, First Int. IFIP Conf. on Semantics of a Networked World (ICSNW).
Revised Selected Papers, volume 3226 of LNCS, pages 144–157. Springer, 2004.

18 Etienne Canaud, Salima Benbernou, and Mohand-Said Hacid. Managing trust in active
xml. In Proc. of the Int. Conf. on Services Computing (SCC 2004), 15-18 September 2004,
Shanghai, China, pages 41–48, 2004.

19 Philippe Cudre-Mauroux. Peer data management system. In Ling Liu and M. Tamer Özsu,
editors, Encyclopedia of Database Systems, pages 2055–2056. Springer US, 2009.

20 Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:
semantics and query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

21 Enrico Franconi, Gabriel Kuper, Andrei Lopatenko, and Ilya Zaihrayeu. Queries and up-
dates in the codb peer to peer database system. In Proc. of the Int. Conf. on Very Large
Databases (VLDB), VLDB ’04, pages 1277–1280. VLDB Endowment, 2004.

22 Enrico Franconi, Gabriel M. Kuper, Andrei Lopatenko, and Luciano Serafini. A robust
logical and computational characterisation of peer-to-peer database systems. In Proc.
of the Int. Workshop on Databases, Information Systems and Peer-to-Peer Computing
(DBISP2P), volume 2944 of LNCS, pages 64–76. Springer, 2003.

23 Enrico Franconi, Gabriel M. Kuper, Andrei Lopatenko, and Ilya Zaihrayeu. The coDB ro-
bust Peer-to-Peer database system. In Proc. of the Twelfth Italian Symposium on Advanced
Database Systems (SEBD), pages 382–393, 2004.

24 Enrico Franconi, Gabriel M. Kuper, Andrei Lopatenko, and Ilya Zaihrayeu. A distributed
algorithm for robust data sharing and updates in p2p database networks. In EDBT 2004
Workshops, Revised Selected Papers, volume 3268 of LNCS, pages 446–455. Springer, 2004.

25 Ariel Fuxman, Mauricio A. Hernández, C. T. Howard Ho, Renée J. Miller, Paolo Papotti,
and Lucian Popa. Nested mappings: Schema mapping reloaded. In Proc. of the Int. Conf.
on Very Large Databases (VLDB), pages 67–78, 2006.

26 Wolfgang Gatterbauer and Dan Suciu. Data conflict resolution using trust mappings. In
Proc. of the ACM Int. Conf. on Management of Data (SIGMOD), pages 219–230. ACM,
2010.

27 Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati. On
reconciling data exchange, data integration, and peer data management. In Proc. of the
Symposium on Principles of Database Systems (PODS), pages 133–142. ACM, 2007.

28 Todd Green, Grigoris Karvounarakis, Zachary Ives, and Val Tannen. Update exchange with
mappings and provenance. Technical report, University of Pennsylvania, 2007. Department
of Computer and Information Science; Technical Report No. MS-CIS-07-26.

29 Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance semirings. In Proc.
of the Symposium on Principles of Database Systems (PODS), pages 31–40. ACM, 2007.

30 Todd J. Green, Gregory Karvounarakis, Nicholas E. Taylor, Olivier Biton, Zachary G. Ives,
and Val Tannen. ORCHESTRA: facilitating collaborative data sharing. In Proc. of the
ACM Int. Conf. on Management of Data (SIGMOD), pages 1131–1133. ACM, 2007.

31 Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Update exchange
with mappings and provenance. In Proc. of the Int. Conf. on Very Large Databases (VLDB),
pages 675–686. ACM, 2007.

32 Steven D. Gribble, Alon Y. Halevy, Zachary G. Ives, Maya Rodrig, and Dan Suciu. What
can databases do for peer-to-peer? In WebDB Workshop on Databases and the Web, pages
31–36, 2001.



A. Roth and S. Skritek 213

33 Peter Haase, Jeen Broekstra, Marc Ehrig, Maarten Menken, Peter Mika, Mariusz Olko,
Michal Plechawski, Pawel Pyszlak, Björn Schnizler, Ronny Siebes, Steffen Staab, and
Christoph Tempich. Bibster - a semantics-based bibliographic peer-to-peer system. In
Proc. ISWC, volume 3298 of LNCS, pages 122–136. Springer, 2004.

34 Alon Y. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–294,
2001.

35 Alon Y. Halevy, Zachary G. Ives, Jayant Madhavan, Peter Mork, Dan Suciu, and Igor
Tatarinov. The Piazza peer data management system. IEEE Trans. Knowl. Data Eng.,
16(7):787–798, 2004.

36 Alon Y. Halevy, Zachary G. Ives, Peter Mork, and Igor Tatarinov. Piazza: data manage-
ment infrastructure for semantic web applications. In Proc. of the Int. World Wide Web
Conf. (WWW), pages 556–567. ACM, 2003.

37 Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov. Schema mediation in
peer data management systems. In Proc. of the Int. Conf. on Data Engineering (ICDE),
pages 505–516. IEEE Computer Society, 2003.

38 Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov. Schema mediation for
large-scale semantic data sharing. VLDB J., 14(1):68–83, 2005.

39 Katja Hose. Processing Rank-Aware Queries in Schema-Based P2P Systems. PhD thesis,
Technische Universität Ilmenau, 2009.

40 Katja Hose, Christian Lemke, and Kai-Uwe Sattler. Processing relaxed skylines in PDMS
using distributed data summaries. In Proc. of the Conf. on Information and Data Manage-
ment (CIKM), 2006.

41 Katja Hose, Armin Roth, Andre Zeitz, Kai-Uwe Sattler, and Felix Naumann. A research
agenda for query processing in large-scale peer data management systems. Inf. Syst., 33(7–
8):597–610, 2008.

42 INRIA. Active xml website (www.activexml.net/). http://www.activexml.net/, 2009.
Accessed 22. April 2011.

43 Zachary G. Ives, Nitin Khandelwal, Aneesh Kapur, and Murat Cakir. ORCHESTRA:
Rapid, collaborative sharing of dynamic data. In CIDR, pages 107–118, 2005.

44 Vasiliki Kantere, Iluju Kiringa, John Mylopoulos, Anastasios Kementsietsidis, and Marcelo
Arenas. Coordinating peer databases using ECA rules. In Proc. of the Int. Workshop on
Databases, Information Systems and Peer-to-Peer Computing (DBISP2P), volume 2944 of
LNCS, pages 108–122. Springer, 2003.

45 Vasiliki Kantere, John Mylopoulos, and Iluju Kiringa. A distributed rule mechanism for
multidatabase systems. In On The Move to Meaningful Internet Systems 2003: CoopIS,
DOA, and ODBASE - OTM Confederated International Conferences, CoopIS, DOA, and
ODBASE 2003, Catania, Sicily, Italy, November 3–7, 2003, volume 2888 of LNCS, pages
56–73. Springer, 2003.

46 Anastasios Kementsietsidis. Data sharing and querying for Peer-to-Peer data management
systems. In EDBT 2004 Workshops, Revised Selected Papers, volume 3268 of LNCS, pages
177–186. Springer, 2004.

47 Anastasios Kementsietsidis and Marcelo Arenas. Data sharing through query translation
in autonomous sources. In Proc. of the Int. Conf. on Very Large Databases (VLDB), pages
468–479. Morgan Kaufmann, 2004.

48 Anastasios Kementsietsidis, Marcelo Arenas, and Renée J. Miller. Managing data mappings
in the hyperion project. In Proc. of the Int. Conf. on Data Engineering (ICDE), pages 732–
734. IEEE Computer Society, 2003.

49 Anastasios Kementsietsidis, Marcelo Arenas, and Renée J. Miller. Mapping data in peer-
to-peer systems: Semantics and algorithmic issues. In Proc. of the ACM Int. Conf. on
Management of Data (SIGMOD), pages 325–336. ACM, 2003.

Chapte r 07

http://www.activexml.net/


214 Peer Data Management

50 Giorgos Kokkinidis and Vassilis Christophides. Semantic query routing and processing
in p2p database systems: The ics-forth sqpeer middleware. In EDBT 2004 Workshops,
Revised Selected Papers, volume 3268 of LNCS, pages 486–495. Springer, 2004.

51 Georgia Koloniari and Evaggelia Pitoura. Peer-to-peer management of xml data: issues
and research challenges. SIGMOD Record, 34(2):6–17, 2005.

52 Lucja Kot and Christoph Koch. Cooperative update exchange in the youtopia system.
PVLDB, 2(1):193–204, 2009.

53 L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian. Schemasql: A language for interoper-
ability in relational multidatabase systems. In 22nd Conference on Very Large Databases,
Bombay,India, 1996, pages 239–250. Morgan Kaufman Publishers, 1996.

54 Maurizio Lenzerini. Data integration: A theoretical perspective. In Proc. of the Symposium
on Principles of Database Systems (PODS), pages 233–246, 2002.

55 Alexander Löser, Wolf Siberski, Martin Wolpers, and Wolfgang Nejdl. Information integ-
ration in Schema-Based Peer-To-Peer networks. In Proc. of the Conf. on Advanced In-
formation Systems Engineering (CAiSE), volume 2681 of LNCS, pages 258–272. Springer,
2003.

56 Mehedi Masud, Iluju Kiringa, and Anastasios Kementsietsidis. Don’t mind your vocab-
ulary: Data sharing across heterogeneous peers. In On the Move to Meaningful Internet
Systems 2005: CoopIS, DOA, and ODBASE, OTM Confederated International Conferences
CoopIS, DOA, and ODBASE 2005, Agia Napa, Cyprus, October 31 – November 4, 2005,
Proceedings, Part I, volume 3760 of LNCS, pages 292–309. Springer, 2005.

57 Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambjörn Naeve,
Mikael Nilsson, Matthias Palmér, and Tore Risch. EDUTELLA: a P2P networking in-
frastructure based on RDF. In Proc. of the Int. World Wide Web Conf. (WWW), pages
604–615. ACM, 2002.

58 Wolfgang Nejdl, Boris Wolf, Wolf Siberski, Changtao Qu, Stefan Decker, Michael Sintek,
Ambjorn Naeve, Mikael Nilsson, Matthias Palmer, and Tore Risch. Edutella: P2p net-
working for the semantic web. Technical report, Hannover University: Distributed Systems
Institute - Knowledge Based Systems, 2003. Accessed 1. August 2009.

59 Wee Siong Ng, Beng Chin Ooi, Kian-Lee Tan, and Aoying Zhou. PeerDB: A P2P-based
system for distributed data sharing. In Proc. of the Int. Conf. on Data Engineering (ICDE),
pages 633–644. IEEE Computer Society, 2003.

60 University of Toronto Database Group. Hyperion project website
(www.cs.toronto.edu/db/hyperion/index.html. http://dblab.cs.toronto.edu/project/
hyperion/, 2009. Accessed 19. May 2011.

61 Beng Chin Ooi, Yanfeng Shu, and Kian-Lee Tan. Relational data sharing in peer-based
data management systems. SIGMOD Record, 32(3):59–64, 2003.

62 Beng Chin Ooi, Kian-Lee Tan, Aoying Zhou, Chin Hong Goh, Yingguang Li, Chu Yee
Liau, Bo Ling, Wee Siong Ng, Yanfeng Shu, Xiaoyu Wang, and Ming Zhang. PeerDB:
Peering into personal databases. In Proc. of the ACM Int. Conf. on Management of Data
(SIGMOD), page 659. ACM, 2003.

63 Patricia Rodríguez-Gianolli, Maddalena Garzetti, Lei Jiang, Anastasios Kementsietsidis,
Iluju Kiringa, Mehedi Masud, Renée J. Miller, and John Mylopoulos. Data sharing in
the hyperion peer database system. In Proc. of the Int. Conf. on Very Large Databases
(VLDB), pages 1291–1294. ACM, 2005.

64 Armin Roth. Completeness-driven query answering in peer data management systems. In
Proc. of the VLDB 2007 PhD Workshop, 2007.

65 Armin Roth. Efficient Query Answering in Peer Data Management Systems. PhD thesis,
Humboldt Universität zu Berlin, 2012.

http://dblab.cs.toronto.edu/project/hyperion/
http://dblab.cs.toronto.edu/project/hyperion/


A. Roth and S. Skritek 215

66 Carlo Sartiani, Paolo Manghi, Giorgio Ghelli, and Giovanni Conforti. Xpeer: A self-
organizing xml p2p database system. In EDBT Workshops, Revised Selected Papers, LNCS,
pages 456–465. Springer, 2004.

67 Luciano Serafini, Fausto Giunchiglia, John Mylopoulos, and Philip A. Bernstein. Local
relational model: A logical formalization of database coordination. In Proc. of the Int.
and Interdisciplinary Conf. on Modeling and Using Context, volume 2680 of LNCS, pages
286–299. Springer, 2003.

68 Steffen Staab and Heiner Stuckenschmidt, editors. Semantic Web and Peer-to-Peer – De-
centralized Management and Exchange of Knowledge and Information. Springer, 2006.

69 Ralf Steinmetz and Klaus Wehrle, editors. Peer-to-Peer Systems and Applications. Number
3485 in LNCS. Springer, 2005.

70 Igor Tatarinov and Alon Y. Halevy. Efficient query reformulation in peer-data management
systems. In Proc. of the ACM Int. Conf. on Management of Data (SIGMOD), pages 539–
550. ACM, 2004.

71 Igor Tatarinov, Zachary G. Ives, Jayant Madhavan, Alon Y. Halevy, Dan Suciu, Nilesh N.
Dalvi, Xin Dong, Yana Kadiyska, Gerome Miklau, and Peter Mork. The piazza peer data
management project. SIGMOD Record, 32(3):47–52, 2003.

72 Nicholas E. Taylor and Zachary G. Ives. Reconciling while tolerating disagreement in collab-
orative data sharing. In Proc. of the ACM Int. Conf. on Management of Data (SIGMOD),
pages 13–24. ACM, 2006.

73 Quang Hieu Vu, Mihai Lupu, and Beng Chin Ooi. Peer-to-Peer Computing - Principles
and Applications. Springer, 2010.

74 Dan Zhao, John Mylopoulos, Iluju Kiringa, and Verena Kantere. An ECA rule rewriting
mechanism for peer data management systems. In Proc. of the Int. Conf. on Extending
Database Technology (EDBT), volume 3896 of LNCS, pages 1069–1078. Springer, 2006.

Chapte r 07



	  



Management of Inconsistencies in Data
Integration ∗

Ekaterini Ioannou1 and Sławek Staworko2

1 Technical University of Crete, Greece
ioannou@softnet.tuc.gr

2 Mostrare, INRIA Lille – Nord Europe
University of Lille 3, France
slawomir.staworko@inria.fr

Abstract
Data integration aims at providing a unified view over data coming from various sources. One
of the most challenging tasks for data integration is handling the inconsistencies that appear in
the integrated data in an efficient and effective manner. In this chapter, we provide a survey on
techniques introduced for handling inconsistencies in data integration, focusing on two groups.
The first group contains techniques for computing consistent query answers, and includes mecha-
nisms for the compact representation of repairs, query rewriting, and logic programs. The second
group contains techniques focusing on the resolution of inconsistencies. This includes methodolo-
gies for computing similarity between atomic values as well as similarity between groups of data,
collective techniques, scaling to large datasets, and dealing with uncertainty that is related to
inconsistencies.

1998 ACM Subject Classification H.2.m [Database Management]: Miscellaneous

Keywords and phrases Data integration, Consistent query answers, Resolution of inconsistencies

Digital Object Identifier 10.4230/DFU.Vol5.10452.217

1 Introduction

Data integration aims at providing a unified view over data coming from various sources, for
example data from different applications, collections, or databases [55]. Providing efficient
data integration has received considerable attention by the database community and a variety
of approaches have been suggested, spanning from integrating relational databases with the
same schema to integrating unstructured, highly heterogeneous data collections. One of the
most challenging tasks that existing techniques for data integration focused on is the efficient
handling of inconsistencies that appear in the integrated data. The focus of this survey is to
present and discuss existing techniques that are able to manage/handle inconsistencies in an
efficient and effective manner.

Inconsistencies in data integration can appear for various reasons. One of the most
common sources is the use of different schemata and formats in the data that must be
integrated. As an example, consider a scenario where we need to integrate three databases
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providing basic information about Muppets, i.e., the CBS trivia, the Vanity Fair magazine,
and the DMV database. A fraction of the data from these databases is as follows:

CBS
Name Job DoB
Kermit Manager 14.03.1965
J. Statler Old Man 12.04.1946
Miss Piggy Diva 21.06.1976

Gonzo Stunman 01.03.1982

VF
Name Job DoB
Kermit Manager 14 May 1965
J. Statler Old Man 18 June 1942
Mlle Piggy Star 1 April 1936

Gonso Stunman 1 March 1982

DMV
Name Job DoB
Kermit Manager 03/14/65
J. Statler Old Man 06/18/42
Ms. Piggy Diva 01/09/90
Gonzo Daredevil 03/01/82

We can easily observe that integrating the data of these three databases causes inconsis-
tencies. For instance, inconsistencies arise from the use of different formats that represent
the dates (i.e., the DoB attributes), and the existence of spelling mistakes (i.e., in the name
of Gonzo). Two additional reasons of inconsistencies are the use of variance, such as for
representing “Miss Piggy”, and the use of close synonyms, such as “Diva” with “Star”, and
“Stunman” with “Daredevil”.

Modern systems, e.g., Web 2.0 applications, have introduced new challenges to handling
inconsistencies, which include the use of unstructured data, and higher levels of heterogeneity.
As also illustrated in the previous example, to effectively handle inconsistencies we need to
consider text variations, i.e., using similar strings for the same objects. Variations in text
can appear due to introduced spelling mistakes, or due to the use of acronyms (e.g., “ICDE”
for ‘International Conference on Data Engineering”), or abbreviations (e.g., “J. Web Sem.”
for “Journal of Web Semantics”). Another important source of data inconsistencies is the
evolving nature of the data. In essence, as time passed, data is added, removed, or modified
[69]. For example, the famous ex-lady of US was born as “Jacqueline Lee Bouvier” but this
was later changed to “Jackie Kennedy” and then to “Jackie Onassis”. In addition, each source
providing data for integration will provide data in a way most adequate for its purpose. For
instance, a publication will describe a person using the full name and affiliation, whereas an
email will use the email address. This is also amplified by the lack of a global coordination
for identifier assignment that forces each source to create and use its own identifiers.

In this chapter, we provide a survey on techniques introduced for handling inconsistencies
in data integration, as for example the ones discussed in the previous paragraphs. More
specifically, we present and discuss two group of techniques. The first group focuses on
techniques for computing consistent query answers, and the second group focuses on the
resolution of inconsistencies.

For the first group of techniques, we assume that the user specifies additionally a set of
integrity constraints on the global schema. Because integrity constraints play an important
role in the way the user formulates queries, it is essential that this information is incorporated
into the processing. One easy methodology to do this is to remove from consideration any
solutions that do not satisfy the integrity constraints. This naive approach may, however,
easily lead to trivialization because even in very simple data integration setting, such as data
merging, there is no consistent solution. Consequently, we focus on techniques for consistent
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query answers that adjust the semantics of queries to alleviate the possible impact of the
inconsistencies on the query answers.

The second group of techniques focuses on the resolution of inconsistencies, and in
particular on detecting and merging data fragments that describe the same real-world object.
In its simplest form, this involves computing the similarity and resemblance between data
fragments, and then merging the data fragments that have a similarity value exceeding a
predefined threshold. The whole process is performed offline, and thus at run-time, query
answering is performed over the resulted merged data. A significant amount of research
proposals focusing on efficiently and effectively addressing this challenge already exist. They
can be found in the literature under different names, such as merge-purge [46], deduplication
[71], entity identification [59], reference reconciliation [30], or entity resolution [76].

The remaining chapter is organized as follows. Section 2 presents and discusses techniques
related to consistent query answers, including mechanisms for the compact representation of
repairs, query rewriting, and logic programs. Section 3 techniques related to the resolution
of inconsistencies, and more specifically methods for computing atomic similarity, computing
similarity between groups of data, collective techniques, scaling to large datasets, and dealing
with uncertainty that is related to inconsistencies. Finally, Section 4 provides conclusions.

2 Consistent query answers

In this section we discuss the framework of consistent query answers introduced by Arenas
et al. in [8] to alleviate the impact of inconsistencies in a database on the quality of query
answers. We begin by recalling standard database notions (Section 2.1) and the framework
of consistent query answers (Section 2.2). Next, we discuss exists methods of computing
consistent query answers and outline complexity results that indicate inherent challenges
laying in this task (Section 2.3).

2.1 Basic notions

We recall the standard notions of relational databases [1]. We assume a fixed database
schema S, which is a set of relation names of fixed arity. Every relation attribute is typed
but for simplicity we assume two domains only: strings and rational numbers. We define in
the standard fashion the first-order language L of formulas over S and the usual build-in
comparison predicates (=, 6=, <, ≤, >, ≥ with their natural interpretation). A formula
is: closed if it has no free variables, ground if it has no variables whatsoever, and atomic
if it consists of one predicate only (other than the built-in predicates). In the sequel, we
will denote: relation symbols by R, R1, R2,. . . , atomic formulas by A1, A2,. . . , tuples of
constant by t, t1, t2,. . . , tuples of variables by x̄, ȳ,. . . , and Boolean combinations of built-in
predicates by ϕ.

A database instance I is a structure over S but often we will view I as a finite set of facts.
An integrity constraint is any closed formula in L. A database instance I is consistent with
a set of integrity constraints Σ iff I |= Σ in the standard model-theoretic way; otherwise I is
inconsistent. We identify the following basic classes of constraints (all are closed formulas):

Universal constraints: ∀x̄A1 ∧ . . . Ak ∧ ϕ→ Ak+1 ∨ . . . ∨An.
Tuple-generating dependencies: ∀x̄A1 ∧ . . . Ak ∧ ϕ→ ∃ȳA. The dependency is full when
there are no existentially quantified variables.
Denial constraints: ∀x̄A1 ∧ . . . Ak ∧ ϕ→ false.
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Functional dependencies (FDs): ∀x̄, ȳ, ȳ′, z̄, z̄′. R(x̄, ȳ, z̄)∧R(x̄, z̄, z̄′)→ ȳ = z̄ with a more
common formulation R : X → Y , where X and Y are the sets of attributes corresponding
respectively to x̄ and ȳ (and z̄).
Key constraints, a special subclass of functional dependencies: R : X → Y is a key
constraint if X ∪Y is the set of all attributes of R. Key constraint R : X → Y is primary
if it the sole constraint imposed on R.
Inclusion dependencies (INDs): ∀x̄, ȳ. ∃z̄.R(x̄, ȳ)→ P (ȳ, z̄) with a common formulation
R[Y ] ⊆ P [Y ′], where Y and Y ′ are the sets of attributes of respectively R and P that
correspond to ȳ.

A query is a formula of L and we distinguish the class of conjunctive queries i.e., formulas of
the form ∃x̄A1 ∧ . . . ∧Ak. A tuple t is an answer to query q in an instance I iff I |= q(t). In
the sequel, we do not treat separately closed (i.e., Boolean) queries, but simply, we define
true to be the answer of a closed query to be synonymous to the empty tuple () being the
only answer to the query.

2.2 The framework of consistent query answers
The framework of consistent query answers is based on the notion of a repair of a (possibly)
inconsistent database, which is essentially a consistent database instance minimally different
from the original database instance. The original definition used the notion of symmetric
difference between database instances to define acceptable repairs. Formally, the symmetric
difference between two database instances I and I ′ is ∆(I, I ′) = (I \ I ′)∪ (I ′ \ I). Essentially,
∆(I, I ′) is the set of all facts that need to be either deleted or inserted to obtain I ′ from
I. Now, given database instance I and two possible candidate repairs I ′ and I ′′, we use
the symmetric difference to identify the candidate repair that is easier to obtain from I:
essentially, I ′′ is closer to I than I ′ iff ∆(I, I ′′) ⊂ ∆(I, I ′).

I Definition 1. Given a set of integrity constraints Σ and two database instances I and
I ′, we say that I ′ is a repair of I w.r.t. Σ iff I ′ |= Σ and there is no database instance I ′′
consistent with Σ and such that ∆(I, I ′′) ⊂ ∆(I, I ′). By RepairsΣ(I) we denote the set of
all repairs of I w.r.t. Σ. J

I Example 2. Take a simplified Muppet schema Muppet(Name,Age) with one key constraint
Σ0 = {Muppet : Name → Age}. Consider an inconsistent database

I0 = {Muppet(Miss Piggy, 36),Muppet(Miss Piggy, 86),Muppet(Miss Piggy, 26),
Muppet(J. Statler, 73),Muppet(J. Statler, 83),Muppet(Kermit, 43)}.

I has 6 repairs w.r.t. Σ0 that follow:

I1 = {Muppet(Miss Piggy, 36),Muppet(J. Statler, 73),Muppet(Kermit, 43)},
I2 = {Muppet(Miss Piggy, 86),Muppet(J. Statler, 73),Muppet(Kermit, 43)},
I3 = {Muppet(Miss Piggy, 26),Muppet(J. Statler, 73),Muppet(Kermit, 43)},
I4 = {Muppet(Miss Piggy, 36),Muppet(J. Statler, 83),Muppet(Kermit, 43)},
I5 = {Muppet(Miss Piggy, 86),Muppet(J. Statler, 83),Muppet(Kermit, 43)},
I6 = {Muppet(Miss Piggy, 26),Muppet(J. Statler, 83),Muppet(Kermit, 43)}.

J

Intuitively, repairs represent (all) possible ways that the inconsistent database may be
repaired. A consistent answer to a query is an answer that is present in every such possibility.
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I Definition 3. Given an instance I, a set of integrity constraints Σ, and a query q, we say
that a tuple t is a consistent answer to a query q in I w.r.t. Σ iff t is the answer to q in every
repair of I w.r.t. Σ. J

Hence, if we take the query

q0(x) = ∃y. Muppet(x, y) ∧ y ≥ 65

asking for all Muppets eligible for senior discount, only J. Statler is the consistent answer to
q0 in I0 w.r.t. Σ0. On the other hand, Miss Piggy is not a consistent answer because of the
repair I1.

2.3 Computing consistent query answers
The main challenge in using the framework of consistent query answers lies in the fact that
an inconsistent database may have an exponential number of repairs even for very simple
sets of integrity constraints.

I Example 4. Fix n ≥ 0 and consider a database instance over the schema R(A,B):

In = {R(1, 0), R(1, 1), . . . , R(n, 0), R(n, 1)}.

In the presence of a single key constraint R : A→ AB, the instance In has 2n repairs. J

Consequently, a significant amount of research has been put into finding methods aiming to
use the framework without materialization of all repairs. To identify classes of queries and
integrity constraints for which this aim can be attained two basic decision problems have
been proposed and their complexity studied: consistent query answering and repair checking.
In virtually all research, the measure of data complexity has been adopted. This measure,
widely adopted for relational databases [75], expresses the complexity of a problem in terms
of the database size only, while the query and the integrity constraints are assumed to be
fixed. The first decision problem allows to identify for which classes of queries and integrity
constraints computing consistent query answers is tractable.
Consistent query answering Check whether true is the consistent answer to a given closed

query in a given database w.r.t. to a given set of integrity constraints i.e., the complexity
of the following set

DΣ,Q = {I | ∀I ′ ∈ RepairsΣ(I). I ′ |= Q}.

We point out that the restriction to closed (Boolean) queries only does not make DΣ,Q a
special, simpler case of the more general problem of computing consistent query answers.
Along the lines of [10] and [20], the treatment of an open query q(x̄) can be reduced to
a series of checks for closed query q(t) with t ranging over some set of candidate tuples
obtained by evaluating a simple derivative of q(x̄). The second problem aims at identifying
the complexity inherent to integrity maintenance.
Repair checking Check whether a database instance is a repair of a given database instance

w.r.t. the given set of integrity constraints i.e., the complexity of the following set

BΣ = {(I, I ′) : I ′ ∈ Repairs(I,Σ)}.

This problem is a natural formulation of model checking for repairs and negative results
highlight limitation of integrity enforcement mechanisms [2]. Another reason for the interest
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in this problem is its close connections to the data cleaning task. Finally, if the class of
integrity constraints includes inclusions dependencies, then repair checking is know to be
logspace-reducible to the complement of consistent query answers [19], which makes it an
alternative tool for characterizing the complexity of consistent query answering.

Several different methods for computing consistent query answers have been proposed.
They can be divided into three categories: query rewriting, compact representation of all
repairs, and logic programs. We begin by presenting the first two approaches as they yield
computing consistent query answers, and the aforementioned decisions problems, tractable
for applicable classes of queries and integrity constraints. Next, we summarize a number of
intractability results, which essentially precludes the use of approaches from the first two
categories. The solutions in the third category use logic programming, a framework know to
be capable of solving even problems complete for Πp

2, and therefore more suited for handling
difficult cases of consistent query answers.

2.3.1 Compact representation of all repairs
While approaches based on compact representation of all repairs has not been historically the
first one, we begin with this direction because it allows to present some useful notions and
tools. The most popular approach belonging to this category is based on the notion of the
conflict graph (for FDs only). First, we define the notion of a conflict: two facts R(t1) and
R(t2) are mutually conflicting w.r.t. a functional dependency R : X → Y iff t1[X] = t2[X]
and t1[Y ] 6= t2[Y ].

I Definition 5 ([10]). Given a database instance I and a set of functional dependencies Σ,
the conflict graph of I w.r.t. Σ is a graph G(I,Σ) whose set of nodes is I and edges connect
pairs of mutually conflicting facts in I. J

The conflict graph corresponding for the instance from Example 2 is presented in Figure 1.

Muppet(Kermit, 43)

Muppet(J. Statler, 73) Muppet(J. Statler, 83)

Muppet(Miss Piggy, 36) Muppet(Miss Piggy, 26)

Muppet(Miss Piggy, 86)

Figure 1 Conflict graph for the instance from Example 2.

The main reason for using conflict graphs lays in the simple observation that any maximal
independent set of G(I,Σ) is a repair of I w.r.t. Σ and vice versa. Let us recall that a
maximal independent set of a graph is any maximal set of nodes containing no edge and
note that any independent set can be extended to a maximal independent set.

The main use of conflict graph, and its variants, is to perform a repair existence check:
given two sets of facts, required facts {A1, . . . , Ak} and forbidden facts {Ak+1, . . . , Am},
check whether there is a repair that contains all required facts and none of the forbidden ones,
i.e., a repair that satisfies the query Ω = A1 ∧Ak ∧ ¬Ak+1 ∧ . . . ∧ ¬Am. This test attempts
to construct an independent set of nodes consisting of the required facts A1, . . . , Ak and
facts Bk+1, . . . , Bm blocking addition of facts Ak+1, . . . , Am, respectively. A fact B blocks
addition of A if {A,B} is an edge (i.e., A and B are conflicting) and thus the presence of B
precludes the presence of A in the constructed instance. The test is performed by exhaustive
enumeration of all combinations of edges adjacent to the forbidden facts. The test succeeds
if an independent set is found, which implies the existence of a repair that satisfies Ω and
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consequently does not satisfy the following (disjunctive) Boolean query:

Ψ = ¬Ω = ¬A1 ∨ . . . ∨ ¬Ak ∨Ak+1 ∨ . . . ∨Am.

This implies that true is not a consistent answer to Ψ. This check allows to compute
consistent query answers to arbitrary Boolean quantifier-free queries: if we take a Boolean
quantifier-free query in CNF Φ = Ψ1 ∧ . . .∧Ψn, then true is not the consistent query answer
to Φ if and only if there is some Ψi such that true is not consistent query answer.

This approach has been proposed by Chomicki and Marcinkowski [19] to handle denial
constraints that requires a generalization of conflict graphs to conflict hypergraps. This
algorithm is the basis of the Hippo system allowing to compute consistent answers to the class
of projection-free SQL queries [21, 20]. The conflict hypergraph has been further extended to
handle conflicts created in the presence of universal constraints. This work has been the basis
of a polynomial time repair check algorithm for sets of denial constraints, join dependencies,
and acyclic sets of full tuple-generating dependencies [72].

Another compact representation of all repairs is nucleus [77, 78]. In this approach all
repairs are represented by a tableau (a table with free variables), and queries are evaluated
in the standard way (answers with variables are discarded). We note that for some classes of
constraints, constructing the nucleus may, however, require time exponential in the size of
the input database.

2.3.2 Query rewriting
Query rewriting was the original approach proposed to compute consistent query answers,
and, in principle, it functions as follows. Given a query q ∈ Q and a set of integrity constraints
Σ, we construct a query q′ ∈ Q′ such that for any database I evaluating q′ over I yields
the consistent query answers to q in I w.r.t. Σ. This approach is parametrized by the
class of integrity constraints (containing Σ) and the class of queries Q the user can use to
formulate her queries but also the class of target language for the rewritten queries. Typically,
Q′ is richer and more expressive than Q but the query rewriting aims at using classes of
target languages that enjoy efficient query evaluation (in terms of data-complexity), and
consequently, the query rewriting yields efficient means of computing consistent query. Note
that the rewritten query q′, called often the rewritten query, is constructed independently of
the database instance.

I Example 6. Recall from Example 2 the schema Muppet(Name,Age) and the key constraint
Muppet : Name → Age, and consider the query q0(x) = ∃y. Muppet(x, y) ∧ y ≥ 65. Note
that the key constraint written as logic formula has the following form

@x, y, y′. Muppet(x, y) ∧Muppet(x, y′) ∧ y 6= y′.

This formulation allows to identify for a fact Muppet(x, y) the facts, Muppet(x, y′) ∧ y 6= y′,
that are conflicting with Muppet(x, y) and may be present in a repair instead of Muppet(x, y).
Consequently, we wish to know if Muppet(x, y) satisfying the query may be replaced in
some repair by a fact Muppet(x, y′) that does not satisfy the query, i.e., Muppet(x, y′) ∧ y 6=
y′ ∧ y′ < 65. Together, we obtain the rewritten query

q′0(x) = ∃y. Muppet(x, y) ∧ y ≥ 65 ∧ ¬(∃y′. Muppet(x, y′) ∧ y 6= y′ ∧ y′ < 65).

J
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The fact that the rewriting is constructed independently of the database instance has its
strong and weak points. On the one hand, this approach has no overhead in the architecture
when adapting existing applications: it suffices to replace its queries by the rewritten versions.
On the other hand, rewriting introduces a next level of complexity to the queries, which
may have a negative impact on the performance of the system. It is also known that there
exists relational queries that are not rewritable within the class of relational queries while
computing their consistent answers is tractable.

Query rewriting was the first approach proposed to compute consistent query answers [8].
It uses the notion of residues obtained from constraints to identify potential impact of
integrity violations on the query results. The residues are used to construct rewriting rules for
the atoms used in the query. This approach has been shown to be applicable to quantifier-free
conjunction of literals in the presence of binary universal constraints.

Chomicki and Marcinkowski [19] observed that if the set of constraints contains one FD
per relation only, the conflict graph is a disjoint union of full multipartie graphs. This simple
structure allows to construct rewriting for conjunctive queries without repeated relation
names and no variable sharing. They also show that relaxing the conditions imposed on
the queries and constraints leads to intractability: consistent query answering becomes
coNP-complete.

The result of Chomicki and Marcinkowski has been further generalized by Fuxman and
Miller [37] to allow restricted variable sharing (joins) in the conjunctive queries. The class
Cforest of allowed queries is defined using the notion of join graph of a query whose vertices
are the literals used in the query and an edge runs from a literal Ri to literal Rj if there is a
variable that occurs on a non-key attribute of Ri and any attribute of Rj (both occurrences
have to be different if i = j). The class Cforest consist of queries whose join graph is a forest,
the joins are full and the join conditions are non-key to key.

Fuxman et al. [36], presented the ConQuer system that computes consistent answers to
queries from Cforest. The queries can also use aggregates, and then range-consistent answers
are computed [10]: minimal intervals containing the set of values of the aggregate obtained
over the repairs. This allows the system to compute consistent answers to 20 out of 22 queries
of the TCP-H decision support benchmark. The experimental evaluation of the system shows
that the system performs reasonably well and is scalable w.r.t. both the size of the database
and the number of conflicts in the database.

2.3.3 Complexity results
The rewriting scheme presented in [8] renders consistent query answering polynomial for
quantifier-free conjunctive queries with negative atoms in the presence of binary universal
constraints, which include functional dependencies and full inclusion dependencies. In a
followup work, Cali et al. [17] showed that allowing arbitrary inclusion dependencies, together
with functional dependencies, leads to undecidability. This large increase in complexity
comes from the fact that a violation of non-full inclusion dependencies, caused by absence of
a tuple, can be repaired by inserting a tuple chosen among a possibly infinite set of tuples.
Furthermore, if the set of constraints has cycles, a cascading effect can occur.

I Example 7. Consider schema consisting of one relation symbol R(A,B) and one (cyclic)
inclusion dependency R[B] ⊆ R[A], which written as a formula is ∀x, y. R(x, y)→ ∃z. R(y, z).
Now, take this inconsistent instance I0 = {R(0, 1)}. The empty instance I ′0 = ∅ is one
of repairs of I0 but also for any n ≥ 1 so is the instance I ′n = {R(0, 1), R(1, 2), . . . , R(n −
1, n), R(n, n)}. Hence, not only does I0 have an infinite number of repairs but also there is
no bound on their size. J
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One way to tackle the problem of infinite choice is to consider repairs obtained by deleting
facts only, a setting studied in [19]. In the previous example, this yields only the empty repair
I ′0 = ∅. In this setting, the complexity of consistent query answering becomes Π2

p-complete.
Another approach proposed in [16] by Bravo and Bertossi uses a null value to instantiate the
existentially quantified attributes in the facts to be inserted. The semantics of constraint
satisfaction is adapted to the null value so that the presence of tuple with null value may
satisfy the constraints but not violate it. For instance, the repairs of I0 from the previous
example obtained this way in this setting are the empty repair I ′0 = ∅ and the repair
I ′′0 = {R(0, 1), R(1,null)}. On the one hand, the presence of R(0, 1) requires the presence of
a fact of the form R(1, y) and the fact R(1,null) fits the role perfectly. On the other hand,
the presence of R(1,null) does not require the presence of any other fact.

There are two natural classes of constraints, universal dependencies and full tuple-
generating dependencies, that similarly to full inclusion dependencies, may be violated by
the absence of some tuples but repairing a violation requires choosing a tuple to insert
from a finite set. A recent study by Staworko and Chomicki [72] showed that consistent
query answering is Πp

2-complete for arbitrary universal dependencies, coNP-complete for
denial constraints and arbitrary full tuple-generating dependencies, and in PTIME for denial
constraints, join dependencies, and acyclic full tuple-generating dependencies.

Establishing the computational complexity of consistent query answering has also served
to determine the boundaries of query rewriting for consistent query answering. The data
complexity of computing answers to relational queries is known to be in AC0, a complexity
class properly contained in P, and therefore, it is impossible for a relational query to express
a coNP-hard problem. For instance, Chomicki and Marcinkowski have shown in [19] coNP-
completeness of consistent answering to a conjunctive query in the presence of primary
key constraints (i.e., one key constraint per relation), which precludes the applicability of
rewriting for the full class of conjunctive queries. Because the class of conjunctive queries
and the class of primary key constraints is most commonly found in practice, a considerable
amount of effort has been put into finding a subclasses allowing tractable consistent query
answering, e.g., Fuxman and Miller have proposed in [37] a practical subclass Cforest of
conjunctive queries with tractable consistent query answering. This direction of research
goes often together with an attempt of establishing a dichotomy for consistent query answers:
essentially, finding a subclass of (conjunctive) queries containing only queries for which
consistent query answering is either intractable or can be accomplished with query rewriting.
An extension C∗ of the class Cforest was believed to have this property, until very recently
Wijsen has found otherwise [80]. Wijsen has also characterized sufficient and necessary
conditions for first-order rewritability for a subclass acyclic conjunctive queries [79]. An
interesting approach to the dichotomy question, based on structural properties of conflict
graphs, is currently pursed by Pema [66].

As for repair checking, while the repair characterization based on the conflict (hyper)graph
gives a PTIME repair checking for the class of denial constraints [19], adding arbitrary
inclusion dependencies leads to intractability, and under the subset repair semantics (deletions
only) repair checking is shown to be coNP-complete for functional dependencies and arbitrary
inclusion dependencies. Various restrictions allow to bring the complexity back to PTIME,
e.g., the class of functional dependencies and acyclic inclusion dependencies [19], the class of
denial constraints and full tuple-generating dependencies [72], the class of weekly acyclic LAV
depenencies [2], and semi-LAV dependencies [39]. Repair checking is also coNP-complete for
the class of universal constraints [72].
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2.3.4 Logic programs
Several different approaches have been developed to compute consistent query answers using
logic programs with disjunction and classical negation [9, 11, 33, 41, 42, 74]. Approaches
based on logic programs can be seen as a special case of query rewriting: essentially, we
incorporate in the program that defines the original query, a special program that defines
repairs. The main difference lays in the fact that evaluation of disjunctive logic programs is
known to be Πp

2-complete while query rewritting uses a target language with tractable query
evaluation.

Virtually all approaches falling into the category of logic programs use disjunctive rules
to model the process of repairing violations of constraints and stable models of the program
correspond to the repairs of the inconsistent database. A query evaluated under the cautious
semantics returns the answers present in every model, which naturally yields the consistent
query answers.

I Example 8. Consider the schema Muppet(Name,Age) from Example 2 with the key
constraint Muppet :Name → Age. The repairing logic program consists of the following rules:

Triggering rule which identifies conflicts and specify the possible repairing actions

¬Muppet′(X,Y ) ∨ ¬Muppet′(X,Y ′)← Muppet(X,Y ) ∧Muppet(X,Y ′) ∧ Y 6= Y ′.

Stabilizing rule which ensures that the constructed instance is consistent

¬Muppet′(X,Y )← Muppet′(X,Y ) ∧Muppet′(X,Y ′) ∧ Y 6= Y ′.

Persistence rule which copies facts from the original instance unless the fact has been
banned by the repairing process

Muppet′(X,Y )← Muppet(X,Y ) ∧ not¬Muppet′(X,Y ).

Note that this program uses the classical negation ¬ and the negation as failure not.
Essentially, ¬A means that it is known that A is not true while notA captures the assertion
that it is not know whether A is true (or the failure of proving that A is true).

The program above is evaluated together with the facts present in the instance and the
predicates used in the query need to be interpreted accordingly, e.g., the query q0(x) becomes

Q0(X)← Muppet′(X,Y ) ∧ Y ≥ 65.

There is an one-to-one correspondence between the stable models of this program and the
repairs. For instance, the stable model corresponding to the repair I1 of the instance I0
(Example 2) is

M1 = {Muppet(Miss Piggy, 36),Muppet(Miss Piggy, 86),Muppet(Miss Piggy, 26),
Muppet(J. Statler, 73),Muppet(J. Statler, 83),Muppet(Kermit, 43),
Muppet′(Miss Piggy, 36),¬Muppet′(Miss Piggy, 86),¬Muppet′(Miss Piggy, 26),
Muppet′(J. Statler, 73),¬Muppet′(J. Statler, 83),Muppet′(Kermit, 43),
Q0(J. Statler)}.

J

The main advantage of using logic programs is the generality of this approach: typically
arbitrary first-order (or even Datalog¬) queries are handled in the presence of universal
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constraints. Also, the repairing programs can be easily evaluated with existing logic program
environments like Smodels or dlv [32]. We note, however, that the systems computing
answers to logic programs usually perform grounding, which may be cost prohibitive if we
wish to work with large databases. Another disadvantage of this approach is the fact that
the class of disjunctive logic programs is known to be Π2

p-complete.
These difficulties are addressed in the INFOMIX system [33] with several optimizations

geared toward effective execution of repairing programs. One is localization of conflicts
with identification of the affected database that consists of all tuples involved in constraint
violations and all syntactically propagated conflict-bound tuples. Another optimization
involves using bit-vectors to encode tuple membership to each repair and subsequent use of
bitwise aggregate function to find tuples present in every repair. This optimization, however,
may be insufficient to handle databases with large numbers of conflicts because typically the
number of repairs is exponential in the number of conflicts.

Recently, this deficiency has been addressed with repair factorization [34]. Essentially,
the affected database is decomposed into parts that are conflict-disjoint (no two mutually
conflicting tuples are in separate parts). When computing consistent answers to a query only
parts that are simultaneously spanned by the query are considered at a time. The presented
experimental results validate this approach: the system computes consistent query answers in
a reasonable time and is scalable w.r.t. the size of the database and the number of conflicts.
Tests with up to 2001000 conflicts are reported.

3 Resolution of Inconsistencies

In this section, we present and discuss techniques that can be used for the resolution of
inconsistencies. More specifically, we focus on inconsistencies arising from the use of different
representations for describing the same real-world object, for example the same conference,
person, or location. The techniques we present here aim at detecting such representations.
Once detected, the representations with a similarity higher than a predefined threshold are
merged together. The final results are used for replacing the original representations in the
integrated data, and thus, query processing is performed over the merged data.

The following paragraphs present the techniques for resolution of inconsistencies grouped
into five categories according to the data included in the representation (that are used during
the processing): (i) atomic similarity techniques for comparing representations that are
strings (Section 3.1); (ii) similarity techniques for comparing representations corresponding
to groups of data (Section 3.2); (iii) collective techniques that also use inner-relationships
between representations (Section 3.3); (iv) techniques for scaling the processing to datasets
of large sizes (Section 3.4); and (v) dealing with the uncertainty that is related to the
inconsistencies (Section 3.5).

Additional information related to existing techniques in this domain, can be found in
surveys [28, 38, 35] and tutorials [54, 44].

3.1 Atomic Similarity Techniques
This category includes techniques that compute similarity when the representations are either
a single word, or a small sequence of words. Few examples of representations for this category
are: r1=“John D. Smith”, r2=“J. D. Smith”, r3=“Transactions on Knowledge and Data
Engineering”, and r4= “IEEE Trans. Knowl. Data Eng.”. As already discussed in Section 1,
such differences in representations (i.e., single words or sequence of words) are a common
situation that is typically resulted from misspellings, or naming variants due to the use of
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abbreviations, acronyms, etc. The merging of two such representations (e.g., “John D. Smith”
with “J. D. Smith”) is performed when the technique detects high resemblance between the
text values composing the representations.

The first group of techniques that belong to the category of atomic similarity techniques
are based on the characters composing the string. These techniques compute the similarity
between two representations (i.e., strings) as a cost that indicates the total number of the
operations needed to convert the string of the first representation to the string of the second
representation. The basic method of edit distance, named Levenshtein distance [56], counts
the number of character deletions, additions, or modifications that are required for converting
the first to the second string. The variations of this technique extends it with additional
aspects, such as operation cost depending on the character’s location, consideration of
additional operations, including open gap, and extend gap [60]. Jaro [49] computes similarity
by considering the overlapping characters in the two strings along with their locations. It
suitable to small strings, for instance first and last names. An extension of this technique is
the Jaro-Winkler [81]. This technique gives higher weight to the prefix (i.e., first characters)
of the string, and thus it increases the applicability of this approach to person names.

A second group of techniques are the ones that compute the similarity between collections
of words. The basic techniques from this group are the Jaccard similarity coefficient, and
the TF/IDF similarity [70]. Fuzzy matching similarity [18] is another technique of this
category. It is a generalized edit distance similarity that combines transformation operations
with edit distance techniques. Another method is the Soundex similarity. The Soundex
method converts each word into a phonetic encoding by assigning the same code to the
string parts that sound the same. The similarity between two words is then calculated as the
difference between the corresponding phonetic encodings of these words. Finally, [23] and
[15] describe and discuss an experimental comparison of various basic similarity techniques
used for matching names.

Although, the existing techniques are successful in identifying similar representations,
the idea of merging representations based on their string similarity is only partly correct,
since the objects to which the context of these representations refer is totally ignored. For
example, consider two representations for people with the exact same name. Using a similarity
technique from this category would result in incorrectly merging the representation of these
people. For this reason, these representations are typically used only as part of the initial
steps of more sophisticated representations, in order to identify potential merges, which can
be then further processed.

3.2 Computing Similarity between Groups of Data
In contrast to the previous category, the techniques of this category focus on dealing with
representations that are composed by a group of data. Few examples of representations for
this category are: r1={“John D. Smith”, “male”, “United States of America”}, and r2= {“J.
D. Smith”, “male”, “USA”}. They extend techniques of the previous category since they
combine basic string similarity with more complicated methodologies.

The first group of techniques for this category are those that consider the data of each tuple
(i.e., record) as the representation. The approaches suggested in [53] and [22] concatenate all
data composing each tuple and create a string. These strings are then compare using one
of the string similarity techniques (Section 3.1). One of the most known techniques of this
category is the merge-purge [46], aiming in identifying whether two relational records refer
to the same real-world object. Merge-purge considers every database relation (i.e., record) as
a representation. This approach first sorts the relations using the different available column
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names, and then uses the sorting to easy compare between similar information. The merging
of records is performed according to the found resemblances.

The techniques proposed in [73] and [29] aim at matching representations by discovering
possible mappings from one representation to another representation. More specifically, in
[73] a mapping is identified by applying a collection of transformations, such as abbreviation,
stemming, and initials. For the same purpose, Doan et al. [29] apply profilers, which are
described as predefined rules with knowledge about specific representations. Profilers are
created by various sources, such as domain experts, learned from training data, or constructed
from external data.

Cohen et al. [24] use techniques for string similarity (presented in the previous category)
to create techniques to adaptively modify the document similarity metrics. Li et al. [57] also
focus in handling multiple types of representations, addressing the problem as this appears
in the context of the text documents.

3.3 Collective Techniques
This category includes techniques that identify matches between two representations by
using not only the information available in the specific representations but also related
information from other representations. In particular, these techniques discover and exploit
the inner-relationships that exist among all representations of the given data collection.
These inner-relationships can be seen as links, or associations, between the representations
and parts of the representation data. As an example consider co-authorship in publications,
which is widely used by collective approaches. By knowing that a publication has α, β, and
γ as authors, and another publication has β’, and γ as authors, we can increase our belief
that β describes the same author as β’. Thus, we now have two sources for computing the
belief we have that authors β and β’ describe the same real-world object: the first is that
their strings are similar (computed using a technique for Sections 3.1-3.2), and the second is
that both authors have a publication with γ author.

To capture the inner-relationships found inside a data collection, the techniques of this
category model the collection into an intermediary structure. For instance, the technique in
[6] uses dimensional hierarchies, and the techniques introduced in [13] and [52] use graphs.
Ananthakrishna et al. [6] exploit dimensional hierarchies to detect fuzzy duplicates in
dimensional tables. The hierarchies are build by following the links between the data from
one table to data other tables. Representations are matched when the information along
these generated hierarchies is found similar. Getoor et al. [13, 14] model the metadata as
a graph structure. The nodes in this graph correspond to the information describing the
representations, and edges are the inner-relationships between representations. The technique
uses the edges from the graphs to cluster the nodes, and the clusters detected are then used
to identify the common representations.

In [52, 51], the data collection is also modeled as a graph following a similar methodology
as the previous methods. These techniques also generate other possible relationships to
represent the candidate matches between representations. The additional relationships
became edges that enhance the generated graph. Then, graph theoretic techniques are
applied for analyzing the relationships in the graph and deciding the possible matches
between representations. Other techniques follow a different methodology to create their
internal supportive structures. In [65], the nodes represent the possible matches between
two representations (and not one node representing one representation) and the edges the
inner-relationships between the possible representation matches. The relationships from the
structure are then used to decide the existence of nodes (matches between representations),
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and information encapsulated in identified matches is propagated to the rest of the structure.
Some of the proposed techniques of this category are from the area of metadata manage-

ment. The TAP system [43] uses a process named Semantic Negotiation to identify common
representations (if any) between the different resources. These common representations
are used to create a unified view of the data. Benjelloun et al. [12] identify the different
properties on which the efficiency of such a technique depends on, and introduce different
techniques to address the possible combinations of the found properties.

Another well-know technique is the Reference Reconciliation [30]. Here, the authors begin
their computation by identifying possible associations between representations by comparing
their corresponding data. The information encoded in the found associations is propagated
to the rest of the representations in order to enrich their information and improve the quality
of final results. The approach in [5] is a modified version of the reference reconciliation
algorithm that is focused on detecting conflict of interests in paper reviewing processes. The
approach introduced in [48] models the resolution-related information a Bayesian network,
and uses probabilistic inference for computing the probabilities of representation matches
and for propagating the information between matching.

3.4 Scaling to Large Datasets
As noted in [35], applying processing to datasets of a large size can be achieved through data
blocking, i.e., instead of comparing each representation with all other representations, the
representations are separated into blocks, and only the representations of the same block are
compared. The challenge is to create blocks of representations that are most likely to refer
to the same real-world objects. The majority of the proposed techniques typically associate
each representation with a Blocking Key Value (BKV) summarizing the values of selected
attributes and then operate exclusively based on the BKVs.

For instance, the Sorted Neighborhood technique [45], sorts blocks according to their BKV
and then slides a window of fixed size over them, comparing the representations it contains.
The StringMap techniques [50] maps the BKV of each representation to a multi-dimensional
Euclidean space, and employs suitable data structures for efficiently identifying pairs of
similar representations. Alternatively, the q-grams based blocking presented in [40] builds
overlapping clusters of representations that share at least one q-gram (i.e., sub-string of
length q) of their BKV. Canopy clustering [58] employs a cheap string similarity metric for
building high-dimensional overlapping blocks, whereas the Suffix Arrays technique, coined in
[4] and enhanced in [27], considers the suffixes of the BKV instead. The technique in [62]
introduces a mechanism for eliminating the redundancy of blocking methods by removing
superfluous comparisons.

More recently introduced techniques based on blocking focused not only on scaling
the resolution process to large datasets, but also on capturing additional issues related to
resolution. Papadakis et al. [61, 63, 64] investigated how to apply the blocking mechanism
on heterogeneous semi-structured data with loose schema binding. Among other, the authors
introduce an attribute-agnostic mechanism for generating the blocks, and explain how
efficiency can be improved through scheduling the order of block processing and identifying
when to stop the processing. The approach introduced by Whang et al. [76], iteratively
processes blocks in order to use the results of one block when processing other blocks, and
thus include the advantages illustrated by collective approaches (i.e., discussed in Section
3.3). The idea of iteratively block processing was also studied in [67], which provided a
principled framework with message passing algorithms for generating a global solution for
the resolution over the complete collection.
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3.5 Dealing with Uncertainty related to Inconsistencies

Uncertain data management approaches deal with a variation of inconsistency resolution.
More specifically, they consider the existence of probabilities that model the belief related
to the inconsistencies. For example, [68, 26] considers the existence of more than one
representations (modeled as relational relations) for the same real-world object. Thus, for
each real-world object the database contains a small set of possible-alternative representations,
with each representation accompanied by a probability that indicates the belief we have that
this is the correct representation.

The approach suggested by the Trio system [3] focuses on creating a database that support
uncertainty along with inconsistency and lineage, while also dealing with duplicate tuples,
i.e., representations. Dalvi and Suciu [25] follow the “possible worlds” semantics to introduce
query processing for independent probabilistic data that model alternative matches between
representations, and introduced a methodology for efficiently evaluating queries.

Dong et al. [31] investigate the use of the probabilistic mappings between the attributes of
the contributing sources with a mediated schema. Applying this method on representations
would have considered the possible mappings between the attribute names as given by con-
tributing sources with a mediated schema S. This means that an attribute of representations
α, β, and γ is mapped to an attribute from S with a probability to show the uncertainty of
each mapping. The authors explain how answering queries over the mediated schema S can
be performed using these mappings.

Andritsos et al. [7] do not focus on the schema information, as the approach presented
in [31], but on the actual data. The authors assume that the duplicate tuples for each
representation are given, for example as the results computed by a technique from Sections 3.1-
3.3. Thus, all tuples describing alternative representations of the same representation
have the same identifier. The tuples of the alternative representations are considered as
disjoined, which means that only one tuple for each identifier can be part of the final
resulted representation. The approach in [47] addresses more challenges of heterogeneous
data. In particular, this approach does not assume that the alternative representations of
representations are known, but that an representation collection comes with a set of possible
linkages between representations. Each linkage represents a possible match between two
representations and is accompanied with a probability that indicates the belief we have that
the specific representations are for the same real-world object. Representations are compiled
on-the-fly, by effectively processing the incoming query over representations and linkages,
and thus, query answers reflect the most probable solution for the specific query.

4 Conclusions

In this chapter we elaborated on the management of inconsistencies in data integration. More
specifically, we presented and discussed two group of techniques: (i) computing consistent
query answers, focusing on mechanisms for the compact representation of repairs, query
rewriting, and logic programs; and (ii) resolution of inconsistencies, focusing on methods for
computing similarity between atomic values or groups of data, collective techniques, scaling
to large datasets, and dealing with uncertainty that is related to inconsistencies.
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Abstract
We give a survey at some algorithmic techniques for processing data streams. After covering
the basic methods of sampling and sketching, we present more evolved procedures that resort
on those basic ones. In particular, we examine algorithmic schemes for similarity mining, the
concept of group testing, and techniques for clustering and summarizing data streams.
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1 Introduction

The opportunity to automatically gather information by myriads of measuring elements
proves to be both a blessing and a challenge to science. The volume of available data
allows a problem examination to be more profound than ever before; climate prediction [31]
and particle physics [17] are unthinkable without exploring mounds of data. However, the
challenge is posed by the necessity to inspect these amounts of information. The particle
physics experiment at the large hadron collider of CERN will soon produce data of a size of
15 petabytes annually [51] corresponding to more than 28 gigabytes on average every minute.

This challenge puts the basic principle of the traditional RAM-model, cf. [3], in question:
It is unreasonable to take a main memory for granted that includes the whole input and
allows fast random access to every single input item. On the contrary, for applications as the
above ones massive input data must be processed that goes beyond the bounds of common
main memories and can only be stored completely on external memory devices. Since random
access is very time-consuming on these devices, traditional algorithms depending on random
access show unfeasible running times.

Streaming algorithms drop the demand of random access to the input. Rather, the input
is assumed to arrive in arbitrary order as an input stream. Moreover, streaming algorithms
are designed to settle for a working memory that is much smaller than the size of the input.

Because of these features, streaming algorithms are the method of choice if emerging
data must be processed in a real-time manner without completely storing it. In addition,
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streaming algorithms can also benefit from their properties when processing data that is
stored on large external memory devices. Compared to their slow random access, the output
rates of such devices grow by magnitudes when the data content is dispensed in the order it
is stored, i. e., as a stream that can be handled by a streaming algorithm.

There is a large variety of streaming algorithms. They vary in several aspects such as the
number of passes that are permitted over the input stream, the size of the consumed memory,
or the time required to process a single input item. Such algorithms can be deterministic or
randomized, they might process streams comprising of numerical values, a graph’s edges,
coordinates of points, or parts of an XML document. For an overview of the rich literature
on streaming algorithms, we refer the reader to [9] and [58].

This work covers basic algorithmic techniques that are utilized by a multitude of streaming
algorithms. These techniques often form the foundation to which more sophisticated methods
revert to. After giving the necessary definitions in Section 2, we present the techniques
of sampling and sketching in Section 3 and Section 4, respectively. Then we build upon
these ideas and present some more advanced algorithmic techniques for similarity mining in
Section 5, the concept of group testing and its application to tracking hot items in Section 6,
and techniques for clustering and summarizing data streams based on robust approximation
in Section 7.

2 Preliminaries

Let U be a universe of n elements. Even though the members of U can be any objects, it is
convenient to identify them with natural numbers, thus, we assume U = {1, 2, . . . , n}. There
are several kinds of streams; the most natural one is simply a sequence a1, a2, . . . , aω of ω
items where each item is an element of U . Elements of U may occur once in the stream,
several times, or not at all. The sequence 2, 1, 2, 5 serves as an example. Such a sequence is
called a stream in the cash register model. Streams of the cash register model are widely
considered in practice; a sequence of IP addresses that access a web server is a typical
instance.

For an element j in our universe U , we can consider the number of occurrences of j in
the cash register stream. This way, we get the frequency of j that is denoted as fj . More
formally, fj = |{i : ai = j, 1 ≤ i ≤ ω}|, that is, the number of positions in the stream at
which element j appears. If we know the frequency for every element in U , we can arrange a
frequency vector f = (f1, f2, . . . , fn) containing the number of occurrences in the stream for
each j ∈ U at the corresponding position. For our example stream, the frequency vector is
(1, 2, 0, 0, 1, 0, . . . , 0) containing a zero for every element of U that is not part of the stream.

If we read a cash register stream item-wise from left to right, we can perceive this as
gradual updates to the frequency vector of U : Starting with the all-zero n-dimensional vector,
every ai in the stream causes an increment of the corresponding vector entry by one. After
processing the whole stream this way, the frequency vector emerges.

It is not hard to figure a generalization of the described update scheme: Instead of a single
element j ∈ U as a stream item incrementing fj by one, we can imagine a stream item
(j, z) ∈ U× Z. Such a pair in the stream changes fj by the amount of z, i. e., fj is increased
or decreased by |z| depending on the sign of z. A stream composed of such pairs is called
turnstile model stream.

A turnstile stream represents a frequency vector f of U since it describes fj for each
j ∈ U as the sum of all changes in the stream that are made on j. If for every prefix of the
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stream the represented vector consists of nonnegative entries only, we call this the strict
turnstile model. The sequence (3, 4), (2, 2), (5, 2), (1, 1), (5,−1), (3,−4) is an example for a
strict turnstile stream that gives rise to the same frequency vector of U as the previously
mentioned cash register example stream.

For the non-strict turnstile model, we allow the represented frequency vector to have negat-
ive entries as well. An example is given by the sequence (2,−1),(5, 1),(3,−3),(2, 3),(1, 1),(3, 3)
representing the same frequency vector as previous examples.

It easy to imagine a strict turnstile stream as a sequence of insert/delete operations to
a database. Every item (j, z) with positive (negative) z corresponds to inserting (deleting)
item j |z| times into (from) the database. The strict case applies here because at every
moment no entry is deleted from the database that has not been inserted before. We will see
the usage of this model in Section 6 when tracking frequent items in a database. As it turns
out in Section 5, the non-strict model has applications when examining the similarity of two
streams.

For some applications, it is common to use a certain restriction of the turnstile model. In
the turnstile model, the stream is a sequence (a1, z1), (a2, z2), . . . , (aω, zω) of pairs. Now let
us assume that for each element in U there is exactly one pair in the stream and the pairs
are ordered by the first component, that is, ai = i for every pair. Thus, we get a stream like
(1, z1), (2, z2), . . . , (n, zn) of n pairs. Since every ai is defined by its position in the stream,
we can drop the ai’s and end up with a stream z1, z2, . . . , zn. Such a stream is called a time
series model stream and it represents a frequency vector of U in the most elementary way:
It is just a sequence of the frequency vector entries written from left to right, i. e., fj = zj
for every j ∈ U .

The only time series stream possible representing the same frequency vector as previous
example streams is the sequence 1, 2, 0, 0, 1, 0, . . . , 0 of length n. The time series model has
applications in areas like sensor networks or stock markets where periodical updates like
measurements or share values are monitored. Each input item gives the observed value at
the corresponding moment and characteristics of the stream describe the value’s behavior.

For any given stream a1, a2, . . . , aω, a streaming algorithm reads the stream item by item from
left to right. It is forbidden to have random access to the stream. For the cash register and
turnstile model, such an algorithm cannot make any assumptions on the item’s order, that
is, it must be prepared for any order. Furthermore, the size of the memory for a streaming
algorithm is restricted: It must be sublinear in the size n of the universe and sublinear in
the cardinality of the stream which is defined as

∑
j∈U |fj |. We denote this cardinality by

m. Notice that for the cash register model, m equals ω, i. e., the number of items in the
stream. Hence, we will often write a1, a2, . . . , am for an input stream in the cash register
model omitting the ω. For the strict turnstile model, m is the total number of items that
have been inserted and not deleted.

Apparently, we assumed all our streams to be finite, that is, we have a first item a1 and a
last item aω or am. That seems to contradict many applications; sequences of IP addresses
accessing a web server or streams of operations to a database do not have a predefined
end. However, from the perspective of a streaming algorithm—and this very perspective we
take—the end of the stream is reached when the algorithm is queried about the stream. At
this moment, the last item is fixed, that is, the finite initial segment of a potentially infinite
stream is determined and framed as the object of investigation. However, the precise end
of the stream may not be known in advance which serves as a challenge for a streaming
algorithm that must must be prepared for answering a query about the stream at any
moment.
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It is important to note that this broad definition of a streaming algorithm spans a large
spectrum of algorithms. There are streaming algorithms consuming a memory that is
polynomially smaller than the input size, e. g. [42], others are content with a polylogarithmic
amount, e. g. [6]. While one-pass algorithms [60] are designed for a single run over the input
stream, there are also algorithms that read the input stream several times. Some of those
multi-pass algorithms assume the input stream to be unchanged between different passes,
e. g. [19], others have the ability to influence the order of the input items prior to every pass,
e. g. [2]. However, in this work we restrict ourselves to the case of one-pass algorithms.

Since most streaming algorithms work in a randomized fashion, we utilize tools from
probability theory for their presentation. For an introduction to this area as well as for
definitions and properties of terms as expectation and variance, further for inequalities due
to Markov, Chebyshev, and Chernoff, we refer the reader to [55].

3 Sampling

Generally, sampling denotes a rule-based process that selects a smaller number of items out
of a larger group. It is easy to see that such an approach can be useful in the streaming
context. In particular, if we assume the cash register model—and that is what we do for
the whole section—the sampling approach smoothly applies: Out of the large group of all
items a1, a2, . . . , am in the input stream, the algorithm chooses a group of size smaller, in
most cases much smaller, than m to be kept in memory to consume a space sublinear in
m. The idea is that at the end of the stream or whenever the algorithm is queried, it uses
the memorized items, that is, the sample, to gain information about the whole stream. Of
course, the accuracy of this information heavily depends on how well the sample represents
the whole stream according to the query. We will see instances of representative samples in
Section 3.1. To draw a characteristic sample is the challenge for any sampling approach.

Though there are some deterministic sampling methods in the area of streaming algorithms,
e. g. [36, 62], the predominant part of sampling approaches in this area is randomized and
hence subject of this chapter.

3.1 Reservoir Sampling
Assume we want to sample from the input stream a1, a2, . . . , am a single item s uniformly at
random, that is, in such a way that the probability of being the sample is the same for every
input item. Hence, we require Pr[a` is the sample s] = 1/m for 1 ≤ ` ≤ m.

It is important to note here that we draw a uniform sample over all input items and not
over the elements of the universe U . Hence, for our sampling purposes, we make a difference
between two input items ai and aj as long as i 6= j, even if ai and aj denote the same element
of U .

From the input stream 2, 1, 2, 5 for example, we want to pick one of the four input items
uniformly at random, that is, each with probability 1/4, and we do not care that two of
those items represent the same element of U . Of course, the universe element 2 is chosen
as the sample with probability 2/4 because of the two corresponding input items a1 and a3
while the universe elements 1 and 5 are each sampled with probability 1/4. Indeed, this is
intended since the element 2 occurs as twice as often as each of 1 and 5.

We see that an element’s frequency of occurrence proportionally affects the probability
for being the sample. Therefore, by drawing and examining samples we can try to deduce
information about the frequency distribution of the input stream; an example for doing so is
given later in this subsection.
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Figure 1 Decision tree for the reservoir sampling algorithm of stream a1, a2, a3, a4. The algorithm
randomly decides to take or not to take (“yes” or “no”) the considered input item as the actual
sample s. Each node is labeled by the probability of the previous decision and its color indicates
the item currently chosen as s. The probability of a specific path through this tree results from
multiplying the probabilities along this path.

If we want to sample an input item uniformly at random from the stream and the length
m of the stream is known in advance, this is a very simple task: Before reading the stream,
the algorithm chooses a number ` ∈ {1, 2, . . . ,m} uniformly at random; then it reads the
stream until item a` which is picked as the sample. For the space consumption we note that
the algorithm needs to generate ` and to memorize ` and a`, additionally it requires to count
the number of stream items up to `. Since a memory of O(logm+ logn) suffices to do so
and the stream is accessed sequentially, this method in fact describes a streaming algorithm
using one pass.

However, the prior knowledge of m is a fairly unrealistic assumption. On the contrary,
in most streaming scenarios the length of the stream is unknown beforehand or—even
worse—there is no pre-defined end of the stream. Such continuous streams can arise from
perpetual sensor updates; here, the unpredictable moment of a query marks the end of a
stream on which the query needs to be evaluated.

It might come as a surprise that we are able to draw a uniform random sample without
knowing the length of the stream. This approach is called reservoir sampling and is due to
Vitter [63]. For every position ` in the stream a1, a2, . . . , am, it maintains an item s that is a
uniform random sample over all items ai, i ≤ `, that is, over all items of the stream up to ai.
At the end of the stream, s is the final sample drawn from the whole input stream.

The algorithm starts by setting a1 as s. In the following step, a2 is chosen to replace a1
as the sample with probability 1/2; next, a3 is picked as s with probability 1/3. In general,
for i ≥ 2, ai is memorized as s—and thereby replaces the previously stored item—with
probability 1/i.

Figure 1 shows the decision tree of the reservoir sampling algorithm for a stream of four
input items. Each non-leaf node corresponds to a random decision of the algorithm whether
or not to replace the actual sample s by the current input item. Every node is labeled by
the probability of the preceding decision. Hence, the product of all labels along a path from
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the root to a leaf gives the probability for the specific sequence of decisions corresponding to
this path.

As an example we calculate the probability for choosing the second input item a2 as the
final sample from the stream a1, a2, a3, a4. After reading the first input item, the algorithm
chose a1 as the actual sample. While reading a2 in the next step, the algorithm picks a2
as s with a probability of 1/2. To end up with a2 as the final sample, the algorithm has
to decide to select neither a3 nor a4 as the actual sample in the next two steps. The item
a3 is not picked with a probability of (1− 1

3 ) = 2/3; a4 is not chosen with a probability of
(1− 1

4 ) = 3/4. Item a2 ends up as the final sample if and only if all mentioned events occur
which happens with a probability of 1

2 ·
2
3 ·

3
4 = 1

4 . Similarly, one can calculate the same
probability for the selection of each other input item as the final sample.

Another point of view on our small example is given by Figure 1: The probability
just calculated for choosing a2 as the final sample s corresponds to the decision sequence
“yes”, “yes”, “no”, “no” and thus to the path from the root to the orange leaf. However, while
a1 and a2 each have a single corresponding leaf only, a3 and a4 correlate with several leafs,
that is, decision sequences. Of course, the probability to end up with such items as the final
s is the sum over the probabilities of the corresponding sequences. Eventually, we get a
probability of 1/4 for every of the four input items.

The described reservoir sampling algorithm is certainly a streaming algorithm as it
sequentially reads the input stream and only requires to memorize a single item. To convince
ourselves that the choice for s at the end of the stream yields a uniform random sample, we
look at the probability that some a`, 1 ≤ ` ≤ m, is the final s. This happens if a` is chosen
as the actual s and additionally none of a`+1, a`+2, . . . , am replaces a` as the actual sample.
For this probability, we have

Pr[ a` is the final s ] = Pr[ a` is chosen as s ] ·
m∏

i=`+1
Pr[ ai does not replace a` as s ]

= 1
`
·

m∏
i=`+1

(
1− 1

i

)

= 1
`
·

m∏
i=`+1

i− 1
i

= 1
m

which means that any item a` ends up as the final sample with the same probability.

It is not hard to imagine a situation where we want to have a sample from the stream that
is larger than only one item. Here, a natural approach is to run k parallel instances of the
described procedure to get a random sample containing k items. As long as k is sublinear in
m, the storage required for this method is sublinear in m as well. However, it is important
to note that such a procedure results in a random sampling with replacement where each
item in the sample is chosen from the whole stream of m items. Hence, an item from the
stream can be selected more than once into the sample.

In contrast, it is often useful—as we will later see in this section—to get a random sample
without replacement where the sampled group of k items is randomly selected from all

(
m
k

)
subsets of size k that are possible over a set of m items. To get such a sample, the approach
of reservoir sampling can be generalized as follows.

The first k items a1, a2, . . . , ak in the stream are stored by the algorithm. For every
subsequent item ai, k < i ≤ m, the algorithm decides to include ai into the sample with
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probability k/i. If ai is chosen for insertion into the sample, the algorithm picks an item
uniformly at random among the k stored sample items that is replaced by ai.

This generalized reservoir sampling approach reads the stream sequentially and only
stores k items from the stream, hence, provided k is sublinear in m, that yields a streaming
algorithm. It also achieves the promised uniformity of the random sample. To see this, we
consider the probability that any k-item subset from the stream is chosen as the final sample.

For the sake of simplicity and because for different sample sizes the reasoning is along
the same lines, we focus on the case where k = 2, that is, a sample containing two items is
desired. Let a`1 , a`2 be any two items from the stream where `1 < `2. To end up with those
items as the final sample, a bunch of events must occur: First, the algorithm selects a`1 into
the sample. Second, every ai, `1 < i < `2 is either not chosen into the sample or, if it is
chosen, it does not replace a`1 . Third, the algorithm selects a`2 into the sample but does not
replace a`1 by doing so. Finally, no aj , `2 < j ≤ m, is chosen into the sample. We combine
the probabilities for these necessary events to get the probability for obtaining a`1 and a`2

as the final sample:

Pr[ a`1 , a`2 form the final sample ] = 2
`1
·
∏

`1<i<`2

(
1− 2

i
+ 2
i
· 1

2

)
· 2
`2
· 1

2 ·
∏

`2<j≤m

(
1− 2

j

)
= 2
`1 · `2

·
∏

`1<i<`2

i− 1
i
·
∏

`2<j≤m

j − 2
j

= 2
(m− 1) ·m

= 1/
(
m
2
)
.

It follows that all
(
m
2
)
subsets of 2 items from the stream are equally likely to show up as

the final sample.

We now want to direct our attention to an application for the reservoir sampling approach.
Consider a situation where we see a stream of items a1, a2, . . . , am and after the stream we
are given an order-independent predicate. Every item in the stream does or does not satisfy
such a predicate, but that is independent of the item’s position in the stream. The task is to
report the number of items in the stream that satisfy the predicate. As an example we can
imagine for our stream of natural numbers the predicate of being a prime number. Note that
the catch here is that the predicate is announced after the items passed by. Hence, we cannot
simply count the number of items satisfying the predicate while reading the input stream
because the subsequent predicate might as well ask for the number of items being equal to
zero or being larger than twelve; we simply do not know the predicate while receiving the
stream.

This problem is called query selectivity problem and it is of importance in the area of
databases. Here, a user’s query is usually unknown while an update stream is fed into the
database. To select a fast evaluation method for a query, it is very useful to know the fraction
of tuples that are retrieved in each evaluation step, that is, the fraction of tuples that are
selected by some predicate, c. f. [59].

It is not hard to imagine that any algorithm that exactly solves the query selectivity
problem for general streams and predicates requires the storage of the whole input stream.
To be prepared for every possible subsequent predicate, no input item can be abandoned.

However, often we do not need an exact answer; we are instead—as for the query
evaluation planning in a database—satisfied with an estimated one. For this, we can use
the described random sampling approach: We draw a sample of size k uniformly at random
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from the input stream and get m by simply counting the number of input items. After the
predicate is known, we simply determine the number k+ of items in our sample satisfying the
predicate. The number of items in the whole input stream meeting the predicate we estimate
as (m · k+)/k. That is, we calculate the fraction k+/k of items in our sample satisfying the
predicate and estimate that the same fraction of all m items in the stream meet the predicate
as well.

Using the reservoir sampling approach, we can draw a sample of arbitrary size uniformly
at random. On the one hand, we want k to be large since that clearly increases the accuracy
of the estimate. On the other hand, k also determines the space consumption of the sampling
algorithm since every sampled item must be memorized, thus, we want k to be small. Recall
that k needs to be sublinear in m to give rise to a streaming algorithm. So, what size do we
need for k?

Let m+ be the number of input items that satisfy the given predicate, i. e., the number
we want to estimate, and let m+ = m/c for a constant c, 0 < c ≤ 1. Assume that we
aim for a (1± ε) - estimate of m+ with probability 1− δ where ε and δ are constants with
0 < ε, δ < 1. That is, we want to have our estimate within the interval [(1−ε)m+, (1+ε)m+]
with probability 1− δ. The parameters ε and δ are chosen by the user and affect the space
consumption of the algorithm.

Since a sampled item satisfies the predicate with probability 1/c, the expected value
for k+ is k/c. To achieve a (1± ε) - estimate of m+ with probability 1− δ, we need k+ to
be within the (1± ε) - interval around its expected value with the same probability. By an
application of the Chernoff Bound, we have

Pr
[ ∣∣k+ − Exp[k+]

∣∣ > ε · Exp[k+]
]
< e−Θ(ε2·k/c) .

Consequently, if we draw k = O(1/ε2 log(1/δ)) samples from the input stream, the probability
that k+ is outside the (1±ε) - interval around its expected value and therefore the probability
that we over- or underestimate m+ by more than an ε - fraction is at most δ.

We emphasize the fact that a constant number of samples suffices, a number that is inde-
pendent of the stream’s length m. The same number of samples is sufficient to estimate the
median or other quantiles from a stream [53].

Since a single item from U can be memorized in logn bits and the counter for m uses
logm bits, the described approach requires a memory of O(logn+ logm) bits. The input
items are processed in a sequential fashion, thus, the whole approach is a streaming algorithm.

However, we do not want to conceal that the quadratic dependence of the sample size k on
ε makes the scheme impractical for very small values of ε. For those cases more sophisticated
sampling approaches are known, e. g. [54], that reduce the dependence on ε.

3.2 AMS-Sampling
We recall that every stream a1, a2, . . . , am describes a distribution on the universe U ; it
conveys information about the number of occurrences for every j ∈ U . As defined in Section 2,
fj denotes the number of occurrences of the element j in the input stream, that is, the
frequency of j. If we imagine the stream 2, 3, 3, 2, 3, 1, 2, 3 as an example, we get f1 = 1,
f2 = 3, f3 = 4, and fb = 0 for every b ∈ U \ {1, 2, 3}.

There are many approaches in the area of streaming algorithms to reveal the characteristics
of frequencies: The average, minimum/maximum values, the median and other quantiles can
be estimated [62], as well as the most frequent items [25], the fraction of rare items [28], and
histograms [35].
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For each k ≥ 0 we define Fk =
∑n
j=1 f

k
j to be the kth frequency moment. Apart from F1,

which simply equals the length m of the stream, the frequency moments provide meaningful
parameters of a distribution. F0 gives the number of distinct items in the stream which can
be used to detect denial of service attacks [8]; Fk for k ≥ 2 characterizes the skew of the
distribution and is used for example by query optimizers in databases when join sizes need
to be predicted [5]. For our example stream, we have F2 = 26 and F0 = 3 where the second
equation tells us that the stream consists of three different items.

It is easy to compute all frequency moments exactly by maintaining a counter fj for every
single item j of the universe. But of course, the memory consumption of such an approach
heavily depends on the distribution and can be proportional to m and/or n; no streaming
algorithm can emerge from this scheme. However, there is no other method, elaborated or
not, that gives rise to a streaming algorithm since it is known [6] that every algorithm that
exactly computes Fk for k 6= 1 requires storage linear in m and n.

Consequently, we have to be content with an approximative solution. As earlier for
the query selectivity problem in Section 3.1, we aim for an (1± ε) - estimation of Fk with
probability 1 − δ. More formally, we want to have a solution that lies within the interval
[(1− ε)Fk, (1 + ε)Fk] with probability 1− δ. Again, it is the users choice to set the constants
0 < ε, δ < 1 affecting the precision and memory usage of the algorithm.

A method to estimate frequency moments in the desired accuracy using only sublinear space
is the procedure of AMS-sampling. It originates from a celebrated paper [6] of Alon, Matias,
and Szegedy, hence the name. The method works for all Fk with constant k ≥ 1 and is a
sample-and-count approach where a sample is maintained with additional data.

The core of the AMS-sampling is to pick an item ai uniformly at random from all items
a1, a2, . . . , am in the stream and to compute r = |{i′ : i′ ≥ i, ai′ = ai}|, i. e., the number of
items equal to ai occurring in the stream starting at position i. At the end of the stream a
value X is calculated as X = m(rk − (r − 1)k).

We can use the reservoir sampling approach from Section 3.1 to select ai. Whenever the
reservoir sampling chooses a new item to be the actual sample s, a counter c is initialized to
one; every subsequent item in the stream that is not chosen to be sampled increases c by one
if it equals s. At the end of the stream, r is provided by c.

In order to compute X at the end of the stream, we need to store s, c, and a counter for m;
for that, O(logn+ logm) bits are sufficient which is also enough for the actual calculation of
X. Since the input stream is processed sequentially, this gives rise to a streaming algorithm.

Let us assume that for our example stream 2, 3, 3, 2, 3, 1, 2, 3 we have k = 3 and our
randomly picked item is a4, that is, the second occurrence of 2 in the stream. Since there
are two items equal to a4 occurring in the stream starting at a4 (namely a4 and a7), it is
r = 2. Using m = 8 as the length of the stream we get X = 8(23 − 13) = 56.

It is striking that the somewhat inscrutable value X in fact estimates the demanded Fk.
Therefore, X is what we call an unbiased estimator, that is, a variable whose expectation
equals—without any further transformations—the value in question. To see this, we compute
the expected value of X. Let U ′ be the subset of the universe U containing the items that
occur in the stream, i. e., U ′ = U ∩ {a1, a2, . . . , am}. For every item j ∈ U ′, any of the fj
occurrences of j in the stream might be selected as the final sample of the reservoir sampling
procedure. Thus, X takes the value m((fj − r + 1)k − (fj − r)k) if the rth occurrence of
the item j is chosen as the final sample. Every occurrence of every item in U ′ is selected as
the final sample with uniform probability 1/m, thus, the possible values of X corresponding
to those selections emerge with the same uniform probability. For the expected value of X,
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that means

Exp[X] =
∑
j∈U ′

fj∑
r=1

(
m
(
(fj − r + 1)k − (fj − r)k

)
· 1
m

)
=
∑
j∈U ′

fkj = Fk .

Even though in expectation X equals the desired value, it is not enough to simply take
X as an estimator for Fk. We cannot be sure that the probability of X lying outside the
(1± ε) - interval around Fk is at most δ as demanded. Therefore, the probability that X lies
within this interval needs to be increased, that is, we have to boost the concentration of
X around its expectation. To this aim the authors of [6] make use of a technique that has
become a standard by now and is presented in the following.

To increase the concentration of the random variable X around Exp[X], the variance of
X—which is a measure for expected deviation of X from Exp[X]—needs to be reduced. This
can be done for independent and identically distributed random variables v1, v2, . . . , vs by
taking the average v∗ =

∑s
a=1 va/s of the individual va’s. We then have Var[v∗] = Var[va]/s,

that is, compared to a single random variable va, the variance of the average is reduced by a
factor of s. Note that the expected value of the average is the same as for each individual
random variable va.

Now the idea to enhance the quality of the estimator for Fk is obvious: Instead of taking a
single X as an estimator for Fk, we run s1 independent instances of the above approach for
X in parallel to compute values X1, X2, . . . , Xs1 . By taking the average Y of this values, we
get an estimator for Fk which is more concentrated around its expectation, that is, around
Fk, than any individual Xa, 1 ≤ a ≤ s1.

To get the number s1 of parallel copies that are required, we utilize Chebyshev’s inequality
and can deduce that

Pr
[
|Y − Fk| > ε · Fk

]
≤ Var[Y ]

ε2 · F 2
k

= Var[Xa ]
ε2 · F 2

k · s1
for all 1 ≤ a ≤ s1 .

The authors of [6] show that for all 1 ≤ a ≤ s1, it is Var[Xa] ≤ kn1−1/kF 2
k . Thus, by

choosing s1 to be 8kn1−1/k/ε2, we get the following inequality1:

Pr
[
|Y − Fk| > ε · Fk

]
≤ Var[Xa ]

ε2 · F 2
k · s1

≤ kn1−1/kF 2
k

ε2 · F 2
k · 8kn1−1/k/ε2 = 1

8 . (1)

Thus, the probability that Y is not a (1± ε) - estimation of Fk is at most 1/8. Admittedly, we
want this failure probability to be δ, not 1/8. Of course, we could choose s1 to be kn1−1/k/ε2δ

instead of 8kn1−1/k/ε2 to reduce the probability in (1) to δ. By doing so, s1 would depend
proportionally on 1/δ. But we recall that s1 determines the memory consumption of the
algorithm since every of the s1 parallel instances of the sample-and-count approach needs to
individually memorize a sample and a counter. Thus, a proportional dependence of s1 on
1/δ yields a handicap for applications where a very small failure probability is desired.

Fortunately, we can do better. Instead of taking a single Y as an estimator for Fk, we
independently compute s2 such values Y1, Y2, . . . , Ys2 and take its median Z as our estimator
for Fk. Every Yb, 1 ≤ b ≤ s2 is the average of a separate group of s1 Xa’s as described above.

Let Y −= {b : Yb 6∈ [(1− ε)Fk, (1 + ε)Fk], 1 ≤ b ≤ s2} be the set of indices of those Yb’s
that are not an (1± ε) - estimate of Fk. Because of (1), we know that in expectation these

1 The constant 8 in the value of s1 is used in the original work [6]; any constant greater than two suffices
and only slightly changes the line of argumentation in the following.
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Yb’s are at most a 1/8 - fraction of all Yb’s, thus, Exp
[
|Y −|

]
≤ s2/8. If Z as the median

of all Yb’s is no (1 ± ε) - estimate of Fk, it must hold that at least half of all Yb’s are no
(1± ε) - estimate of Fk either. That only happens if the size of Y − exceeds s2/2, that is, it
exceeds its expected value by at least 3s2/8. As a result, we can bound the failure probability
for Z as

Pr
[
Z 6∈ [(1− ε)Fk, (1 + ε)Fk]

]
≤ Pr

[
|Y −| ≥ Exp

[
|Y −|

]
+ 3s2/8

]
< e−Θ(s2)

where the second inequality follows from an application of the Chernoff bound. If we choose
s2 to be O(log(1/δ)), the probability of Z being no (1± ε) - estimate of Fk is at most δ.

Altogether, our estimator for Fk is the value Z which is the median over s2 independent Yb’s
where each of those is the average of s1 independent Xa’s. Since every Xa requires the storage
of a sampled item and a counter, the overall space requirement is s1 · s2 ·O(logm+ logn) bits
which is O(kn1−1/k(logm+ logn) log(1/δ)/ε2). Clearly, the presented scheme is a streaming
algorithm as the memory consumption is sublinear in both m and n; additionally, a sequential
access to the input stream suffices to realize the sample-and-count approach for the individual
Xa’s.

The presented achievement has been the foundation for a lot of work enhancing it. The
biggest improvement is the reduction of the n1−1/k - factor in the presented space bound to
an n1−2/k - factor [44]. This dependency on n is optimal, that is, cannot be decreased any
further [11]. The dependency on ε2 is impossible to reduce either [65].

All mentioned results hold for the (1 ± ε) - estimation with probability 1 − δ of Fk for
general k. It is interesting to note that if k is an integer with 0 ≤ k ≤ 2, Fk can be estimated
by a streaming algorithm using only O((logm+ logn) log(1/δ)/ε2) bits of memory [6]. For
the special case of F0, that is, the determination of the number of distinct elements in a
stream, the work of Kane et al. [47] gives a space optimal algorithm.

3.3 Sliding Window Sampling
So far, we viewed all items in the input stream as being equally important, no matter how
far the occurrence of an item dates back. That is fine for many applications; the design of a
query evaluation plan in a database often is independent of the input item’s chronological
order. We have seen in the previous sections that the estimation of query selectivities or join
sizes uses samples that are uniformly drawn from the whole input.

However, it is easy to come up with applications where recent items are more significant
than older ones. A typical task is the prediction of a system’s behavior in the future based
on its current state; to determine the current state, the recent input is of importance. For
instance, the Random Early Detection protocol RED [34] is used within Internet routers to
anticipate traffic bottlenecks by maintaining statistics over the recent queue lengths. Another
example is to track calling patterns of phone company customers. To identify rapid changes
in calling behavior, companies keep track of weighted averages where recent behavior is given
a larger weight than older one [27].

The easiest way to model a different influence of older and newer input items is to simply
define a stream’s location ` such that all stream items ai with i ≥ ` are viewed as equally
significant while all items ai with i < ` are not considered at all. If we are interested in the
recent w items, we have to increment ` for every incoming item. This approach is called
sliding window model. Formally, instead of looking at the whole input stream a1, a2, . . . , at,
where at is the last item arrived, we only look at the items at−w+1, at−w+2, . . . , at. We can
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visualize this scheme as a window of size w that slides over the input stream from left to
right, hence the name.

There has been work in the sliding window model tackling problems that are known
from the ordinary data stream model. In [23] different statistics and histograms of a sliding
window are computed; [28] shows how to estimate the fraction of rare items and the similarity
of different streams. We will take a look at such applications in Section 5.2. In the present
section, we want to focus on the problem of maintaining a sample from the sliding window, a
problem which serves as a foundation for more evolved procedures.

The memory consumption of a streaming algorithm is constrained to be sublinear in m and
n. Note that under this requirement, every algorithm that completely stores the content of
the sliding window is a streaming algorithm as long as the window size w is sublinear in m
and n. Since for larger w such an algorithm is unsuitable, we have to tighten our requirement
accordingly. To yield practicable algorithms, we demand the memory usage of a sliding
window algorithm to be sublinear in n and w. As well as in the ordinary streaming model,
for most functions, their exact computation is impossible in this model [29] and we strive for
approximative solutions.

We want to give a sliding window algorithm that maintains a uniform random sample of
all items contained in the actual window. As in Section 3.1, we emphasize on the fact that
the sample is drawn uniformly from all items, that is, all positions within the window, not
from the universe elements that are part of the window. For the sake of simplicity, we aim
for a sample of size one and comment on larger sample sizes at the end of this section.

It is obvious that the reservoir sampling approach alone is not sufficient for the sliding
window context. Of course, we might be lucky and every actual sample arises from the actual
sliding window. But it is more likely that the actual sample falls out of the window as it
progresses; at that moment any algorithm using memory sublinear in w cannot construct a
new uniform sample.

A tempting idea to overcome this might be the following: We use the reservoir sampling
approach only over the first w stream items to draw a sample a`. By the properties of the
reservoir sampling, for the first sliding window a1, a2, . . . , aw the item a` is chosen uniformly
at random. If in the following the sliding window moves on, we keep a` as the random sample
until it falls out of the window, that is, if the item a`+w appears. At that particular moment,
we take a`+w as our sampled item which in turn is replaced with a`+2w and so on. That way,
the item a`+c·w, c ∈ N, is the actual random sample as soon as it occurs in the stream. If we
look at each sliding window individually, this approach indeed yields a sample that is drawn
uniformly at random from the window content. However, the sample for different window
positions is profoundly dependent: The place of a random sample for one window position
completely determines the place of the random sample in all following window positions.
Clearly, that is infeasible for many applications.

There is an algorithm for sampling items uniformly at random from a sliding window by
Braverman et al. [12]. In the following, we want to investigate the simple sliding window
algorithm maintaining a uniform random sample that is proposed by Babcock et al. [10] and
uses a priority sampling approach. Every incoming item ai is given a priority p(ai), that
is, a random value chosen uniformly at random in the continuous interval between 0 and 1.
The actual sample a` is given by the item that has the highest priority among all items in
the sliding window.

It remains to see that this method can be realized within the memory constraints of
the sliding window model. To this aim, we note that it is not necessary to store all items
from the actual window. We only need to memorize those items whose priority is maximal
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among items that arrived later. This is because an item ar will never be the sample if there
is an item as with s > r such that p(as) > p(ar). Hence, ar can be abandoned. We use a
linked list L that is ordered by decreasing priority to store the items that could be the actual
sample in the future. Every input item ai is processed by the random drawing of its p(ai),
its insertion into L according to p(ai), and the deletion of all descendants of ai in L. None
of these descendants can become the sample anymore. Furthermore, the item ai−w, that is,
the item that fell out of the window on the arrival of ai, is erased from L if it is part of L.
Note that at any time, the actual random sample is given by the head of the linked list.

Let us examine the key question here: What is the length |L| of the linked list L, i. e.,
how many items do we need to store? Clearly, the constitution of L depends on the item’s
priorities and so does |L|. It is interesting that in fact |L|—and therefore the memory
consumption of the algorithm—is a random variable. That includes the chance that the
random choices of the priorities force the memorization of all window items in which case
|L| = w and the model’s memory constraint is violated. However, we will see that such a
violation is very unlikely by an argumentation that is inspired by [7].

To this aim, we calculate the expected value of L’s length, i. e., Exp[|L|]. Let a′1, a′2, . . . , a′w
be the w recent input items, that is, the items that are in the actual window where a′i arrived
before a′i+1. Since a′w becomes the end of L, |L| is given by the number of ancestors of a′w in L
(where we define every item in L to be an ancestor of itself). Let X1, X2, . . . , Xw be indicator
random variables such that Xi = 1 if a′i is an ancestor of a′w in L and Xi = 0 otherwise. The
crucial observation is that a′i is an ancestor of a′w iff among all a′h with i ≤ h ≤ w the priority
p(a′i) is maximal. Since for s independent identically distributed continuous random variables
a fixed variable takes the maximum with probability 1/s, we have Pr[Xi = 1] = 1/(w− i+ 1).
The Xi’s are 0-1-random variables, thus Exp[Xi] = Pr[Xi = 1]. Due to the fact that a′w
cannot have ancestors with a later arrival time and by the linearity of expectation,

Exp
[
|L|
]

= Exp

[
w∑
i=1

Xi

]
=

w∑
i=1

Exp
[
Xi

]
=

w∑
i=1

1
w − i+ 1 = Hw

where Hw is the wth harmonic number bounded by lnw < Hw ≤ lnw + 1. Hence, in
expectation, only a logarithmic number of items is stored in the linked list L. To see that
with high probability no significant deviation from this expectation occurs, we apply the
Chernoff bound on |L| as a sum of indicator random variables having different distributions.
According to this, for every constant c ≥ e2,

Pr
[
|L| ≥ c · Exp

[
|L|
] ]

< e−c·Exp[|L|] = e−c·Hw < w−c

which means that with high probability the length of the linked list is O(logw).
It is important to note that for the above analysis we have to assume that all priorities

are distinct. From a theoretical point of view that is no issue since two samples from a
continuous interval differ with probability one. But a streaming algorithm using limited
storage cannot memorize arbitrary real values from a continuous interval. To overcome this,
we use a technique of [7]: The random priorities in the interval [0, 1] are generated piecemeal
by adding more and more random bits to their binary representation when required. We only
use the priorities for comparisons; if for two compared priorities one binary representation is
the prefix of the other, the representations are randomly enhanced until the comparison is
decided. By [7], with high probability it suffices to generate—and memorize—only a constant
number of bits for every priority.

After all, the described technique yields a streaming algorithm to draw from a sliding
window of size w a sample that is uniformly distributed over all items in the window. The
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input items can be processed in any given order. Since with high probability O(logw) items
are memorized in the linked list and every memorized item requires O(logn) bits of storage,
the memory consumption is O(logw · logn) with high probability.

It remains to enhance the algorithm for drawing more than one sample. As mentioned in
Section 3.1, the execution of k parallel independent runs yields a sample of size k which
is drawn with replacement. We can simulate sampling without replacement by executing
additional independent runs to achieve at least k distinct samples among all samples with
high probability. As long as k is sublinear in w, the number of required additional runs is
sublinear as well [10].

4 Sketching

The challenge for a streaming algorithm is to make a space-efficient summarization of the
input that allows to answer the given query at the end of the stream. In the previous section
we have examined the summarization due to sampling which is space-efficient as only a
limited number of input items are memorized. In this section a different technique called
sketching is considered.

Recall that for the cash register model we assumed the input stream a1, a2, . . . , am to be
a sequence of items where each ai stems from a universe U of size n. We may regard this
stream as an implicit, incremental update to a vector f = (f1, f2, . . . , fn) of dimension n.
Initially, f is the zero vector, i. e., fj = 0 for all 1 ≤ j ≤ n. Each input item ai in the stream
updates f by incrementing fai by one and leaving all other vector entries untouched. Hence,
after reading input item at, 1 ≤ t ≤ m, the vector f is the frequency vector of the stream
a1, a2, . . . , at, that is, each vector entry fj equals the number of occurrences of element j ∈ U
in a1, a2, . . . , at as previously defined in Section 2.

In the more general turnstile model, every item in the stream is a pair (j, z) ∈ U×Z. We
can imagine that after each such pair (j, z), the frequency vector f is updated by adding z
to fj . Recall that a positive z corresponds to insertions of item j, a negative z to deletions.
While in the strict turnstile model we assume all vector entries fj of f to be non-negative
at all times, in the non-strict case, the fj ’s can be general values in Z. In both cases, the
cardinality m of the stream is given by the sum of the absolute values of all vector entries.

Since in the streaming context we cannot assume or exclude particular orders of the input
items, every reasonable function to be calculated by a streaming algorithm is order-invariant.
Note that such an order-invariant function on the input items could easily be computed using
the frequency vector f at the end of the stream. Admittedly, no streaming algorithm can
have f at its disposal because the memorization of a general n-dimensional vector requires
at least n bits which violates the memory constraints of the streaming model. However,
we could, in limited space, try to sketch f in a way that allows the approximation of the
demanded function at the end of the stream.

That is exactly what the sketching approach does. It uses pseudo-random vectors of
dimension n and computes the dot product of these vectors with the frequency vector f . In
particular, if x is a pseudo-random n-dimensional vector, the dot product f · xT is called
a sketch of f . Usually, several sketches are used in combination to compute a—naturally
randomized—approximation of the function in question.

There are two important reasons for the utilization of sketches in the streaming context:
First, the sketch of the frequency vector f can be computed gradually while the stream items,
that is, the incremental updates of f are processed. For every input item (j, z) ∈ U× Z, the
sketch needs to be increased by z · xi where xi is the ith entry of x. Second, the sketch can
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be maintained in small memory. Since we assume the entries of x to be constants, the size of
the sketch f · xT is O(m · n) which can be memorized in O(logm+ logn) bits.

One of the first utilizations of sketches for the streaming context can be found in the
seminal paper of Alon, Matias, and Szegedy [6]. Here, the authors improve their own result of
approximating F2—which we examined in Section 3.2—by exploiting sketching techniques. A
further example of a sketching algorithm is the estimation of the number of distinct elements
in a data stream [24].

4.1 Count-Min Sketch

To highlight the sketching approach’s efficacy, we want to tackle the point query problem.
It asks at the end of the stream for fj , i. e., the number of occurrences in the input of
an arbitrary item j ∈ U . Note that the problem corresponds to the index problem of
communication complexity [50] which means that the storage required for an exact answer
is Ω(n). That is not surprising; since the algorithm does not know j before the end of the
stream, it has to prepare itself for every possible point query which for general streams
implies to maintain a counter for every item of the universe. It is further known [50] that
even a randomized algorithm with a reasonable error probability for this problem must use a
memory of size linear in n.

Hence, any streaming algorithm must be satisfied with an approximative answer. We
present such an algorithm in the following that utilizes the sketching approach, in particular,
the count-min sketch proposed in [26]. Our aim is to answer any point query by giving an
estimate f̂j of the queried fj . For this estimate we demand that fj ≤ f̂j ≤ fj + ε ·m with
probability 1− δ. As usual, the constants 0 < ε and 0 < δ < 1 are selected by the user in a
trade-off between desired precision and memory consumption of the algorithm.

For the ease of presentation, we focus in the following on our canonical cash register input
stream a1, a2, . . . , am where each ai is part of the universe U .2 However, we emphasize that
the presented count-min sketch smoothly applies to the strict turnstile model.

We let w = d2/εe and set up an array of w counters c(1), c(2), . . . , c(w) initialized with zero.
From a family of 2-universal hash functions that map from U to {1, 2, . . . , w}, a function h is
chosen uniformly at random. We comment on the usage and shape of such hash functions in
Section 4.2. While reading the input stream, the algorithm updates the counters: For every
input item ai, the counter c(h(ai)) is incremented by one. After reading the whole stream,
the algorithm answers any point query by utilizing the counters. In particular, if fj is in
question, the algorithm provides f ′j = c(h(j)) as an estimate.

It is easy to see that f ′j ≥ fj because every single occurrence of j in the stream increases
the counter c(h(j)). However, we cannot expect f ′j = fj because the number of counters
is smaller than the size of U , thus, collisions occur which affect the counter for item j to
be counted over with different input items. Let us examine the key question of how many
excessive increasings we have to reckon with.

For a fixed point query on fj , let X1, X2, . . . , Xn be indicator random variables such
that Xi = 1 if h(i) = h(j) and i 6= j; otherwise Xi = 0. Intuitively, each Xi indicates if
an item i different from j is hashed to the same counter by h. Since for the 0-1-variables

2 Notice that this cash register stream corresponds to the stream (a1, 1), (a2, 1), . . . , (am, 1) in the turnstile
model.
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a1 , a2 , a3 , . . . , ai , . . . , am

w

h1(ai)
h2(ai)
h3(ai)

hd(ai)

d

+1
+1

+1

+1

random hash
functions

matrix of
counters

Figure 2 Update of the count-min sketch for input item ai of the input stream. For each row
1 ≤ s ≤ d, the assigned hash function hs is evaluated for ai. The result hs(ai) indicates which
column to increment in row s.

Exp[Xi] = Pr[Xi = 1], we get

Exp[Xi] = Pr[h(i) = h(j) ] = 1
w

for i ∈ U \{j} and Exp[Xj ] = 0 (2)

where the first equality follows by the property of a function chosen randomly from a 2-
universal family, see Section 4.2. Furthermore, we define Y =

∑n
i=1 fiXi to be number of

increasings to c(h(j)) that do not originate from j; hence, f ′j = fj + Y . By linearity of
expectation,

Exp[Y ] = Exp

[
n∑
i=1

fi ·Xi

]
=

n∑
i=1

fi · Exp[Xi] ≤
m

w
≤ ε ·m

2 .

Thus, in expectation the estimate f ′j exceeds the true value fj by an amount of ε ·m/2.
Using Markov’s inequality, we can bound the probability that f ′j overruns fj by a value
greater than ε ·m as

Pr[ f ′j > fj + ε ·m ] = Pr[Y > ε ·m ] ≤ Exp[Y ]
ε ·m

= 1
2 . (3)

To reduce this failure probability to the desired value δ, we run d = dlog(1/δ)e independent
runs of the described algorithm in parallel. We can imagine this scheme as a d×w matrix of
counters c(s, t) with 1 ≤ s ≤ d, 1 ≤ t ≤ w where each row has its own hash function hs. It is
important that each of those functions is chosen independently and uniformly at random from
a family of 2-universal hash-functions. Every input item ai causes an update in every row, i. e.,
for every 1 ≤ s ≤ d, the counter c(s, hs(ai)) is incremented by one. The final estimate f̂j for
fj is the minimum value over the row’s estimates, that is, f̂j = min{c(s, hs(j)) : 1 ≤ s ≤ d}.

This whole scheme is called count-min sketch [26] based on its two main operations
counting and minimizing. Figure 2 shows the update of the sketch for an input item ai; the
determination of the returned value f̂j is outlined in Figure 3.

It remains to certify the claimed quality of the count-min sketch’s estimate. To bound the
failure probability of providing an estimate f̂j that exceeds the true value fj by more than
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w

h1(j)
h2(j)
h3(j)

hd(j)

dj

return the minimum of values in blue cells

Figure 3 Count min sketch estimation of fj . For each row 1 ≤ s ≤ d, the assigned hash function
hs is evaluated for j. The result hs(j) denotes the column to consider in row s. Of all considered
entries—indicated blue in this figure—the minimum is returned as f̂j , that is, the estimation of fj .

ε ·m, note that this happens iff the estimates of all rows overrun fj by more than ε ·m as
well:

Pr[ f̂j > fj + ε ·m ] = Pr[ for all s ∈ {1, . . . , d} : c(s, hs(j)) > fj + ε ·m ] ≤ 2−d ≤ δ

where the first and second inequality is due to (3) and the choice of d, respectively. Thus,
the failure probability is as desired.

Let us finally see that this procedure indeed yields a streaming algorithm. Obviously, the
input stream is processed sequentially. For the memory usage of the algorithm we state that
the hash functions consume a space of O(logn · log(1/δ)); we postpone the reason for that
to the next section. Any of the d · w counters can hold a value of at most m which yields an
overall memory usage of O(logm · log(1/δ)/ε+ logn · log(1/δ)) bits satisfying the limits of
the streaming model.

The utilization of the count-min sketch in the strict turnstile model instead of the cash
register one is straightforward: For each stream item (j, z) ∈ U× Z, we add z to all counters
that keep track of the occurrences of j. The estimation procedure for a query remains the
same, as well as the answer guarantees and the memory consumption. However, for the
non-strict turnstile model, the count-min sketch loses its ability to give an estimate f̂j that
is an upper bound of fj . This is due to the fact that the counters corresponding to j might
underrun fj because of colliding items with negative frequencies.

Finally, we want to highlight that the count-min sketch exploits its strength especially
on a stream in the strict turnstile model. We can imagine such a stream as insert or delete
operations to a database. As mentioned, with probability 1 − δ the error of the sketch is
ε ·m where m now is the number of items currently in the database. As an example assume
ε = 0.1 and δ = 0.01, thus, the count-min sketch comprises w · d = 20 · 7 = 140 counters. We
use it to track the insertion of a multiset containing a million (< 220) IP addresses into a
database. Since each counter requires at most 20 bits, an overall of at most 2800 bits are
used by the counters which is smaller than the input size by several orders of magnitudes.
If now all but a multiset of nine addresses are deleted again, we can use point queries to
the count-min sketch to reveal each of the remaining addresses and their frequencies exactly
with a probability of 0.99 because with this probability the error for a point query is at most
9ε < 1.
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4.2 Universal Hash Functions
The sketching technique relies on projecting the frequency vector f along pseudo-random
vectors to reduce the dimension of information to memorize. Often, this pseudo-random
vectors are given implicitly by pseudo-random functions. We can see this in the case of the
count-min sketch of the Section 4.1 where every single counter is a sketch. Here, a counter
can be regarded as a dot product of f with a 0-1-vector that has a 1 at position i iff the
hash function of the counter’s row maps item i ∈ U to the counter.

The reason for utilizing pseudo-random functions instead of completely random ones is
the memory constraint of the streaming model; the memorization of completely random
functions whose domain is the universe U is infeasible. This is due to the fact that in order
to store a completely random function over the domain U we have to be prepared to store
any function over U . That however requires the potential to memorize for each element in U
which element of the target set is assigned to it; a memory of size Ω(|U |) is needed to do so.

In contrast, a suitable pseudo-random function combines some random-like properties
with small required storage space. A basic family of such functions is the family of 2-universal
hash functions.

As usual, U = {1, 2, . . . , n} is our universe and let V = {0, 1, 2, . . . , q − 1} be a set with
q ≤ n. A family of hash functions H from U to V is said to be 2-universal if, for all x1, x2 ∈ U
with x1 6= x2, and for h chosen uniformly at random from H we have

Pr[h(x1) = h(x2) ] ≤ 1
q
. (4)

This property reflects what we mean by a random-like behavior. It is something we expect a
function to have that maps completely random from U to V , that is, assigns a completely
random hash value to every item in U . Notice that the family of all functions from U to V
satisfies this property as the random choice of any function from this family corresponds to
a completely random mapping. However, since there are |V ||U | = qn functions in this family,
Ω(n · log q) bits are required to store such a function distinguishable from all others which
exceeds the memory limitation.

However, there are families of functions that are 2-universal without being completely
random. For a fixed prime p > n, we let ha,b(x) = (((ax+ b) mod p) mod q) and define a
family of hash functions as H′ = {ha,b : 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p}. Each function h from
this family is far from being completely random: The knowledge of two mappings h(x1) and
h(x2) for x1 6= x2 suffices to deduce h(y) for every y ∈ U while for a completely random
function we can never deduce an unknown mapping from known ones. Anyway, H′ can be
shown to be 2-universal [55].

The crucial observation is that to memorize a function from H′, we only need to store
a, b, and p which can be done in O(logn) bits3. Since the property of a 2-universal family is
exactly what is needed for equality (2), we can utilize H′ as the family of hash functions for
the count-min sketch. For every row of the matrix of counters, a random function ha,b from
H′ is drawn by randomly selecting a and b within their respective bounds. For dlog(1/δ)e
rows, O(logn · log(1/δ)) bits are used to store the required hash functions of the count-min
sketch.

In the original work presenting the count-min sketch [26], the authors choose the hash
functions out of a family that is pairwise independent or strongly 2-universal. A family of

3 Notice that by Bertrand’s postulate, there is a prime p with n < p < 2n.
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hash functions H from U to V is said to be strongly 2-universal or pairwise independent if,
for all x1, x2 ∈ U with x1 6= x2, any y1, y2 ∈ V , and for h chosen uniformly at random from
H we have

Pr[h(x1) = y1 and h(x2) = y2 ] = 1
q2 . (5)

Note that this guarantee of pairwise independence between h(x1) and h(x2) is stronger than
the one for the 2-universal family as property (4) follows from property (5). Even if the
count-min sketch does not require this stronger guarantee, there are techniques used in the
streaming area that do so or demand even stronger properties. The estimation of F2 in [6]
utilizes a family of strongly 4-universal hash functions where a family is strongly k-universal
or k-wise independent if the hash values h(x1), h(x2), . . . , h(xk) are mutually independent
for all distinct x1, x2, . . . , xk ∈ U . For any constant k, there are constructions known [64]
that yield a family of strongly k-universal hash functions from U to V where every function
can be memorized using O(k · logn) bits. These small memory requirements make those
functions a valuable tool for many streaming algorithms.

5 Similarity Mining

Estimating the similarity between two data streams is a basic problem in the data stream
model and has many applications in mining massive streams of data, tracking changes in the
network traffic, processing genetic data and query optimization. As an example, consider the
problem of identifying similar entities (eg., web sites) based on the similarity between their
corresponding data stream logs (IP addresses of their visitors, click-stream patterns, etc.).

An obvious solution to the problem of similarity estimation is to maintain a counter for
each distinct item from the stream and compute the similarity at query time. Unfortunately,
this solution requires Θ(n) words of storage, where n is the size of the universe U . As
discussed previously, in the data streams scenario the dimensionality of the universe is
typically very high, as well as the number of streams being analyzed. Very often we will not
be able to afford the amount of memory which will be necessary in order to obtain exact
answers. In such situations, one must refer to algorithms which will use bounded small
amount of memory (polylogarithmic in the size of the universe), and will be able to produce
high-quality approximations with high probability.

Among the most commonly used measures of similarity are the Lp distance and the
Jaccard coefficient of similarity. In this section we will discuss algorithms for estimating these
measures of similarity both in the unbounded data stream models (time series model, cash
register model and turnstile model) and in the windowed combinatorial data stream model.
The described algorithms build upon the basic mathematical ideas described in Section 3.3
and Section 4.

5.1 Estimating Similarity on Unbounded Data Streams

Random projections are an important mathematical idea used typically for an efficient
dimensionality reduction over high cardinality domains. To this end many techniques have
been proposed for computing various types of sketches, which rely on pseudo-random vectors
generated by space-efficient computation of pseudo-random variables. The AMS-sampling
and the count-min sketch described in Section 3.2 and Section 4 respectively are both based
on the same general idea.
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The idea of using multiple random projections is very general and works in the turnstile
model as well. Similar powerful concept is based on generating a sequence of random variables
each drawn from a stable distribution. Sketches based on different stable distributions are
useful for estimating various Lp norms on the data stream, and form the basis of the
algorithms presented in this section.

Another very useful mathematical tool is the family of min-wise hash functions whose
properties enable a simple but efficient estimation of the Jaccard coefficient of similarity.
Min-wise hashing has been used to estimate the similarity between two data sets representing
various items in a market-basket analysis [22], and for estimating rarity and similarity in the
sliding window or combinatorial data stream model [28].

5.1.1 L2 and Lp Sketches
One of the most commonly used measures for data stream similarity is the Lp distance
between two streams A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bm), where m is the length of
the stream, while ai and bi are the actual i-th data elements of A and B. Here we consider
the simplest time-series data stream model. For a real number p ≥ 1 the Lp distance is
defined by:

Lp =
m∑
i=1
|api − b

p
i |

1/p. (6)

The the same definition applies to the cash-register and the turnstile data stream mod-
els with the difference that ai and bi would now represent updates on the counts of the
corresponding stream elements A[j] and B[j], for j ∈ {1, .., n}.

The special cases of the Lp distance for p = 0 and p→∞ are defined as follows. The L0
distance (also known as the Hamming distance) is the number of i’s such that ai 6= bi, and
measures the dissimilarity between two data streams. The L∞ distance is the limit of Lp for
p→∞ and is equivalent to the maximal difference at any time between any two items for
the given data streams:

L∞ = maxi∈{1,m}|ai − bi|. (7)

There is a substantial amount of work done on estimating the L1 [32, 24], the L2 (Euclidean
norm) [6, 43] and the Lp norm [43]. Feigenbaum et al. [32] were the first to produce a data
stream algorithm for estimating the L1 distance. Their technique relied on construction of
pseudo-randomly generated “range-summable“ variables which are four-wise independent4.
The L2 norm has been mostly used for estimating join and self-join sizes for the task of
query selectivity estimation using only a limited storage. The earliest work for estimating
the L2 norm is the paper of Alon et al. [6], where they consider the simpler cash-register
model. Their algorithms have been later extended in the work of [5] for handling the general
sequence of insertions and deletions in the turnstile data stream model.

Alon et. al.’s technique for estimating the L2 norm is based on the same concept described
in Section 3.2. The main idea is to define a random variable which can be computed under
the given space constraint, whose expected value is exactly the quantity we wish to estimate,
and whose variance is relatively small. The final result is then obtained by considering

4 The four-wise independence is defined as: the probability that a group of four random variables
{ε1, ε2, ε3, ε4} will map into a given combination of -1, +1 values, e.g., {−1,+1,+1,−1}, is equal to
1/24=1/16.
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sufficiently many such estimators, whose average is more concentrated around the expectation
of a single estimator. By putting them into several groups, computing the average within
each group, and taking the median of the group averages we get an estimator of the desired
quantity whose variance is bounded by a user-defined parameter ε with a tunable probability
of success 1 - δ, where δ is also specified by the user. Having the basic technique already
described, here we will briefly outline only the main points of the algorithm.

Let Zi,j for i = 1, 2, . . . , s1 and j = 1, 2, . . . , s2 denote independent random variables
defined as Zi,j =

∑m
v=1 εv(av − bv), where εv are 4-wise independent random variables that

take on the values +1 or -1 with equal probability. Let Xi,j = Z2
i,j . The interesting result is

that, the expected value of the square of this quantity is the square of the L2 distance we
wish to estimate:

Exp[Xi,j ] = Exp
[
(
m∑
v=1

εv(av − bv))2]
= Exp

[ m∑
v=1

ε2v(av − bv)2 +
∑
v 6=u

εvεu(av − bv)(au − bu)
]

=
m∑
v=1

(av − bv)2.

The last equality follows from the fact that Exp[εv] = 0 which will cancel out the second
term, and ε2v = 1, as well as the independence of the random variables.

We now explain how to compute the variables Zi,j , and hence Xi,j . Each Zi,j is initialized
to 0. The resulting algorithm simply maintains the values of the random variables Zi,j after
every update. Maintaining this value under continuous updates of the items av and bv is
straightforward: when an item with a value v arrives from stream A, we add εv to Zi,j for
all i and j. If an item with a value v arrives from stream B, we subtract εv from Zi,j for
all i and j. Practically, for each data item with value v we generate a mapping hi,j(v) from
{1, 2, . . . ,m} to {−1,+1} which is being added/subtracted to the random variables Zi,j .

The authors refer to this algorithm as tug-of-war, because each member of the sequence
with a value mapping to +1 associates to pulling the rope in one direction, while each member
with a value mapping to -1 associates to pulling the rope in the other direction. Note that
this algorithm does not require a priori knowledge about the length of the sequence, or the
number of distinct items seen from U at query time.

Let further Yj be the average of {X1,j , X2,j , . . . , Xs1,j} for all j = 1, 2, . . . , s2. Our final
estimate is given with the value of Y which is the median of {Y1, Y2, . . . Ys2}. As previously,
parameter s1 determines the accuracy of the results, i.e., the variance of the estimation,
and parameter s2 determines the confidence. By taking s1 = 1/ε2 and s2 = log(1/δ) the
algorithm will need O(s1s2) = O(1/ε2 log(1/δ)) memory words.

Building upon the ideas in [6, 32], Indyk extended the previous results providing a unified
framework for approximating the Lp distance between two data streams in small space, for
any p ∈ (0, 2] [43]. The method relies on the notion of p-stable distributions.

I Definition 1. A distribution D over < is called p-stable, if there exist p ≥ 0 such that for
any n real numbers a1, a2, . . . , an and i.i.d.5 variables X1, X2, . . . , Xn with distribution D,
the random variable

∑
i aiXi has the same distribution as the variable (

∑
i |ai|p)1/pX where

X is a random variable with distribution D.

5 independent and identically distributed
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It is known that stable distributions exist for any p ∈ (0, 2]. In particular, the Cauchy
distribution is 1-stable, and the Gaussian (normal) distribution is 2-stable, while for the
general case p > 2, random variable X from a p-stable distribution can be generated by using
the method of Chambers et al. [45].

The idea of using stable distributions enables us to use the previous approach for estimating
the quantity (

∑
i |ai|p)1/p for any p ≥ 0. The algorithm proceeds as previously by generating

a number of i.i.d. random variables Xi,j , only this time drawn from a p-stable distribution D.
The resulting random variables Zi,j will have “magnitudes” proportional to the “magnitudes”
of the corresponding random variables Xi,j , which implies that the dot product can be used
to approximate the value of the Lp distance. As previously one needs to repeat the procedure
multiple times in parallel. The final estimate will be within a multiplicative factor 1± ε of
the true value, with probability of at least 1− δ.

5.1.2 Min-wise Hashing
Another very popular measure of similarity is the Jaccard coefficient of similarity. Given two
data streams A and B, let SA denote the set of distinct items appearing in stream A, and
let SB denote the corresponding set for stream B. The Jaccard similarity between these two
data streams is defined as:

σ(SA, SB) = |SA ∩ SB |
|SA ∪ SB |

.

Since we are restricted on the space we can use the simplest approach of memorizing all the
distinct items observed till the moment is not viable. Thus, we would have to do some sort
of sampling, choosing not to memorize the appearance of some items. This equals to creating
signatures of size k � n bits for each set of distinct items, Sig(SA) and Sig(SB), which will
be then used to compute an estimate of the similarity. Of course, the simplest way would
be to sample the sets uniformly at random k times, using some of the techniques described
above. However, due to sparsity this approach can miss important information, and as a
result we would obtain a biased similarity estimate. This becomes obvious from the formula
of the Jaccard coefficient, which shows that we are interested in the items that appear in
both of the streams, while random sampling will not take into account this important fact.

Having in mind that streams are typically characterized with domains of a high cardinality,
creating a space-efficient signature for each stream is not an easy task. Here we will present
a very efficient way (in terms of memory and time) based on the concept of min-wise hashing
[21]. Before explaining how it is possible to construct small signatures from large sets, it is
helpful to visualize the collection of two sets SA and SB as their characteristic matrix.

Element SA SB

1 1 1
2 0 1
3 1 0
4 1 0
5 0 1

Figure 4 A matrix representing the sets SA and SB .

I Example 2. In Fig. 4 is an example of a matrix representing sets SA and SB chosen from
the universal set U = {1, 2, 3, 4, 5}. Here, SA = {1, 3, 4}, and SB = {1, 2, 5}. The columns
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of the characteristic matrix correspond to the sets, and the rows correspond to elements of
the universal set U from which elements of the sets are drawn. There is a 1 in row r and
column c if the element for row r is a member of the set for column c. Otherwise the value
in position (r, c) is 0. The top row and leftmost columns are not part of the matrix.

I Definition 3. Let π be a randomly chosen permutation over [n] = {1, 2, . . . , n}. For a
subset SA ⊆ [n] the min-hash of SA for the given permutation π, i.e., (hπ(SA)), is a mapping
of the set SA to the element a ∈ SA with π(a) = min{π(a′)|a′ ∈ SA}

In other words, the min-hash of any subset is the is the number of the first row, in the
permuted order, in which the column has a 1.

π1 SA SB

1 1 1
4 1 0
5 0 1
2 0 1
3 1 0

π2 SA SB

5 0 1
4 1 0
3 1 0
2 0 1
1 1 1

π3 SA SB

3 1 0
4 1 0
5 0 1
1 1 1
2 0 1

Figure 5 The matrices representing the sets SA and SB after the permutations π1, π2, and π3

given in the corresponding order.

I Example 4. Consider the following 3 permutations for a universe of size n = 5, U =
{1,2,3,4,5}: k = 1, π1 = (1 2 3 4 5); k = 2, π2 = (5 4 3 2 1); k = 3, π3 = (3 4 5 1 2), where
k represents the index of the permutation. Although it is not physically possible to permute
very large characteristic matrices, the min-hash function h implicitly reorders the rows of
the matrix of Fig. 4 so it becomes one of the other matrices given in Fig. 5.

Given the sets SA = {1, 3, 4} and SB = {1, 2, 5} the min-hashes for each permutation
are as follows: k = 1: hπ1(SA) = 1, hπ1(SB) = 1; k = 2: hπ2(SA) = 4, hπ2(SB) = 5; k =
3: hπ3(SA) = 3, hπ3(SB) = 5. The expectation of the fraction of permutations for which
the min-hashes agree is an estimation of the Jaccard similarity between the sets SA and SB .
In this case the fraction equals to 1/3 = 0.33 which is not a very good estimation of the
true value 1/5 = 0.2. The quality of the estimate depends on the amount of memory we are
willing to use, i.e., the size of the signature, that is, the value of k.

The wonderful and simple to prove property of min-hash functions is given with the
following proposition:
I Proposition 1. For any pair of subsets SA, SB ⊆ [n]

Pr[hπ(SA) = hπ(SB)] = |SA ∩ SB |
|SA ∪ SB |

± ε,

where the probability is defined over the random choice of the permutation π. The proof is
given in [13, 14].

The on-line algorithm for estimating the similarity works in the following way: choose
at random k permutations corresponding to k min-hash functions h1, h2, . . . , hk. Then at
any time t maintain: h∗i (SA) = minj≤thi(aj), and h∗i (SB) = minj≤thi(bj) for i = 1, . . . , k.
This is simple to do in a streaming fashion: as each new element at+1 from the first stream
appears, the algorithm computes the min-hash hi(at+1) for i = 1, . . . , k, i.e., for all the
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initially chosen permutations π1, π2, . . . , πk. Then, it compares the computed min-hashes
with their current minimum h∗i (SA). The minimum is updated only if hi(at+1) < h∗i (SA).

In order to maintain the h∗i (SB) values for the second stream, the same procedure
is performed simultaneously in a similar manner using the same randomly chosen k per-
mutations. The fraction of the min-hash values that they agree on, i.e., σ̂(SA, SB) =
|{i : h∗i (SA) = h∗i (SB)}|/k can be easily computed at any time.

To obtain an unbiased estimate we need to repeat the calculation multiple times, each
time choosing at random k permutations. In [33] it is shown that, for k = O(ε−1 log(1/δ))
the value σ̂(SA, SB) approximates the true Jaccard similarity with probability of at least
(1− δ) within a multiplicative factor of (1± ε). More precisely, for 0 < ε < 1, 0 < δ < 1 and
k ≥ 2ε−3 log δ−1, with probability of at least 1− δ holds:

σ̂(SA, SB) ∈ (1± ε) |SA ∩ SB |
|SA ∪ SB |

.

The ideal family of min-hash functions is defined by the set of all permutations over [n].
Storing a single permutation from this family requires O(n logn) bits; hence, they are not
suitable for data stream applications. In [56] a family of approximate min-hash functions is
presented such that any function from this family can be represented using O(logn log(1/ε′))
bits (each hash function being computed efficiently in O(log(1/ε′)) time). This induces
an additional error to the approximation of ε′, for which only the k value will have to be
appropriately adjusted. The advantage is in the savings of space and time.

5.2 Estimating Similarity on Windowed Data Streams
In many real-life scenarios the users are most interested on the most recent statistics or
models gathered over the “recently observed” data elements. Despite the exponential growth
in the storage capacity of the available systems, it is not common for such streams to be
stored even partially. For example, consider high-speed, backbone Internet routers that
route several Gbit/s and process tens of millions of packets per second on average. Storing
the log of these packets locally even for an hour will require several MB of fast memory.
Alternatively, moving it to a central warehouse would consume a sizable portion of the
network bandwidth [28]. The windowed data stream model was formalized as a framework
for designing algorithms, addressing the need of reasoning in this context.

Let us briefly recall the definition of the combinatorial [58] or sliding window data stream
model defined previously in Section 3.3: At any time t consider the window of the last w
observations at−(w−1), at−(w−2), . . . ., at, where each item ai is a member of the universe of n
items U . In this model we are allowed to ask queries about the data in the window using
only o(w) (often polylogarithmic in w) storage space.

Using sliding windows causes additional complications since maintaining simple statistics
like minimum or maximum over a window of most recent data requires storing the most recent
t items in the window, i.e., when a new item comes in, an old item is removed. Despite these
difficulties, there are algorithms for estimating both the Lp distance [29] and the Jaccard
similarity [28] over sliding windows of streaming data.

5.2.1 Approximating the Lp Norm
The work of Datar et al. [29] provides a general method for translating a wide range
of data stream algorithms into the windowed data stream models, such as maintaining
histograms, hash tables, distinct values and statistics or aggregates such as averages/sums.
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Their technique is based on a special type of a histogram called exponential histogram, which
is used to partition the window of w items into buckets. The main property of their algorithm
is to maintain buckets with exponentially increasing sizes such that: there are at most k

2 + 1
and at least k

2 buckets of each bucket size, where k = d 1
ε e. Thus, whenever there are k

2 + 2
buckets of same size, the oldest two buckets are merged, which may occasionally lead to a
cascade of such mergers.

Each bucket maintains the Lp sketches computed over the items it contains, but not the
actual values of the items. Additionally, for each bucket a time-stamp is associated that
marks the oldest active element in the bucket, and is used to indicate expiry. The expired
buckets are deleted, and new ones are created for the newly encountered items. The absolute
error of their estimate is due to the fact that the last bucket may contain items older than
the last observation seen at time t− (w− 1). However, this error is bounded with an additive
(1 + ε) factor loss in accuracy for a multiplicative overhead of O( 1

ε logw) in memory. The
query time for the exponential histogram is O(1), and the worst-case processing time is O(w).
For more details the reader is referred to [29].

5.2.2 Approximating the Jaccard Similarity
Computing an approximation of the Jaccard similarity in the windowed data stream model
is not an easy task, primarily due to the problem of maintaining the minimum over a sliding
window. The algorithm for approximating the Jaccard similarity described in section 5.1.2
requires at any time the correct minimal values for each hash function h∗i (A) (h∗i (B)), for
i = 1, . . . , k computed after every new observation at (bt). To be able to maintain these
minimums, one needs to store the outcome of all hi(aj) (hi(bj)), where j = t− (w− 1), . . . , t.
Thus, the problem boils down to maintaining the minimum hash values h∗i (t) for each random
permutation at any time t for both of the streams. Datar and Muthukrishnan [28] provide a
simple solution to this problem based on the idea of maintaining a linked list of hash values
hi and their timestamps only for the dominant items. Note, that we are interested only in
the items which are appearing in the current window, i.e., with timestamps greater than or
equal to t− (w − 1).

The property of dominance is defined as follows: Consider at time t two items d1 and d2
from the window of most recent w items with arrival times t1, t2 such that t1 < t2 < t. If
hi(d1) ≥ hi(d2) then we say that item d2 dominates item d1. Thus, as long as there is an
item d2 that dominates an item d1 both appearing in the window, we need not to store the
hash value hi(d1). It is easy to see that, at any time t if d1 is in the window then d2 is also
present and has a hash value no greater than hi(d1). Hence, the minimum h∗i at time t will
not be affected by the hash value of an item that is dominated.

Based on the observation above, the authors propose to maintain at any time t a linked
list Li(t) for all i = 1, . . . , k permutations. Every element of this list will represent a pair of
a hash value and its time-stamps (hi(aj), j) for some data item aj at time t, where j is the
arrival time of the item and satisfies the property t−(w−1) ≤ j ≤ t. The list would look like:

{(hi(aj1), j1), (hi(aj2), j2), . . . , (hi(ajl
), jl)}, where l ≤ w.

The list satisfies the property that both the hash values and the arrival times are strictly
increasing from left to right, i.e.,

j1 < j2 < j3 < . . . < jl and hi(aj1) < hi(aj2) < hi(aj3) < . . . < hi(ajl
),

where clearly h∗i (t) = hi(aj1).
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Maintaining this list is simple. When a new data item arrives at+1, we compute its hash
value hi(at+1) and traverse the list Li(t) looking for the largest index j′ (eg., a binary search
over a special data structure) such that hi(aj′) ≤ hi(at+1). Then, we remove all the pairs
from the list which appear after the pair with index j′. Now, (hi(aj′),j′) will be the rightmost
item in the list Li(t):

j1 < j2 < . . . < j′ and hi(aj1) < hi(aj2) < . . . < hi(aj′),

If its hash value is different from hi(at+1) then we insert the pair (hi(at+1), t + 1) at
the end of the list Li(t). Otherwise, we only need to update (hi(aj′),j′) into (hi(aj′),t+ 1).
The last step is to check if the leftmost pair corresponds to an item which is still present in
the window. If j1 /∈ {(t+ 1)− (w − 1), . . . , t+ 1} than the leftmost pair is deleted, and we
get an updated list Li(t+ 1).

In the worst case this procedure will require a memory of O(w). However, with high
probability, over the random choice of min-hash functions hi the size of the list is proportional
to the Harmonic number Hw, given by 1 + 1

2 + 1
3 + . . .+ 1

w = Θ(logw). A proof of this bound
is given in Section 3.3. Hence, the standard algorithm can be adapted to the windowed data
stream model, using O(logw+ logn) words of space and taking O(log logw) processing time
per data item, with high probability. Note that, the success of the result above is predicated
on the random choice of the random min-hash functions, and not over the distribution of the
input, meaning that, it holds for an arbitrary (worst case) input.

6 Group Testing for Tracking Frequent Items

Tracking the hot items (those that occur frequently) on an underlying database relation or a
data stream is a fundamental issue for the task of continuous query selectivity estimation,
iceberg query computation or simple outliers detection in stream data mining. Hot items
influence caching, load balancing, network traffic management, market-basket analysis and
are crucial for a successful anomaly detection. As such, maintaining the set of hot items
at any time is an interesting and an important problem. Formally, the question is how to
dynamically maintain a set of hot items under the presence of delete and insert operations in
the general turnstile data stream model.

Imagine that you observe a sequence (or a stream) of m operations on items, each member
of a universe U of size n. Without loss of generality, we can assume that the item identifiers
are integers in the range 1 to n. The net occurrence of any item x at time t, denoted cx(t),
is the number of times the item x has been inserted minus the number of times it has been
deleted. The current frequency of any item is thus given by:

fx(t) = cx(t)/
n∑
i=1

ci(t).

The k most frequent items at time t are those with the k largest fx(t)’s, where k is a
parameter. On the other hand, an item x is called hot item if fx(t) > 1/(k + 1), i.e., it
represents a significant fraction of the entire dataset. Clearly, there can be at most k hot
items, and there may be none.

I Example 5. Observe the following sequence of items: 1,2,1,3,4,5,1,2,2,3,1,1,3,5,2,6,1,2 each
of them being a member of the set [1, 6]. Their corresponding frequencies are: f1 = 6/18,
f2 = 5/18, f3 = 3/18, f4 = 1/18, f5 = 2/18 and f6 = 1/18. For k = 3, hot items are only 1
and 2 (f1 = 6/18 = 1/3 > 1/4 and f2 = 5/18 > 1/4).
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6.1 Preliminaries

Determining the set of hot items is an easy problem if we are allowed a memory of O(n)
words. Using a simple heap structure, we can process each insert or delete operation in
O(logn) time and find the hot items in O(k logn) time in the worst case [4]. As discussed
in several occasions for many streaming applications it is important to use sub-linear space
o(n) on the cardinality of the data stream. However, Alon et al. [6] proved that estimating
f∗(t) = maxxfx(t) is impossible with o(n) space. Thus, estimating the k most frequent
items or the k hot items is at least as hard. A simple argument from information theory can
help us show that solving this problem exactly, i.e., finding all and only items which have
frequency greater than 1/(k + 1) requires the storage of at least n bits.

This also applies to randomized algorithms. Any algorithm which guarantees to output
all hot items with probability at least 1− δ, for some constant parameter δ, must also use
Ω(n) space. This follows by observing that the above statement corresponds to the Index
problem in communication complexity [50]. However, if we are willing to accept approximate
answers it is possible to guarantee with high success probability at least 1− δ, that all hot
items will be found and no item which has frequency less than approximately 1

k+1 − ε, for
some user-specified parameter ε and any user-specified probability δ [25].

6.2 Background

The problem of finding the most frequent items in one-pass with limited storage has gained a
lot of interest in the last two decades. There is a large body of one-pass algorithms for finding
the k most frequent items in the simpler data stream model in which only insert operations
are allowed [30, 48, 52]. The general idea is to hold a number of counters (polylogarithmic
in n), each associated with a single item seen in the sequence. The counters are incremented
whenever their corresponding item is observed, but are decremented or deallocated only
under certain circumstances. Therefore, they cannot be easily adapted to the dynamic case.
As before, the algorithms guarantee that all hot items will be found, including items about
which no guarantees of frequency can be made.

Another approach is to use filters: as each item arrives, the filter is updated to account
for this arrival. Items which are above the threshold are retained as possible candidates for
hot items. At output time all the retained items are rechecked with the filter, and those that
pass the filter are output. Filter methods can only discover items when they become hot but
cannot retrieve items from past which have since become frequent [25]. An important result
that is of Charikar et al. [20], who gave an algorithm to approximate the count of any item
correct up to εn in O( 1

ε2 log 1
δ ) space and O(log 1

δ ) time per update.
In the general turnstile model only the algorithms proposed by Cormode and Muthukrish-

nan [25] give theoretical space and time guarantees, which are outperformed in practice, as
claimed. The algorithms use O(k log k logn) space for a summary data structure, and are
able to process each transaction in O(log k logn) time. Querying the summary for finding
the hot items takes O(k log k logn) time, which is independent on the size of the stream.

The approach of Cormode and Muthukrishnan is based on two different “group testing”
procedures which can be categorized as adaptive and nonadaptive. Thus the methods are
different in nature and give slightly different time and space guarantees. In the following
subsection we will discuss the nonadaptive group testing method which is more efficient
for the case of high transaction rates. For the adaptive group testing based method the
interested reader is referred to [25].
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6.3 Nonadaptive Group Testing

The general idea behind the algorithm is to randomly create O(k log k) groups or sets
of items, which are further deterministically divided or grouped into O(logn) subgroups
using error-correcting codes. Each group is associated with a counter which is incremented
whenever an item that belongs to that group is inserted, or decremented when the item gets
deleted. If a group contains a hot item then its corresponding counter will exceed a certain
threshold. Thus, discovering the hot items requires an assembling of all the results from the
tests performed over the different groups.

To ease the exposition of the algorithm, we will first describe a solution to the simpler
problem of finding the majority (occurs more than half of the time) item. The algorithm for
solving the latter problem will then be extended for the problem of finding k hot items.

6.3.1 Finding the Majority Item

While finding the majority item in the cash-register data stream model (where only insert
operations are allowed) is easy, this problem looks less trivial for the turnstile data stream
model. The reason is that an item which was found to be frequent, can become infrequent
due to a sequence of delete operations. However, there exist a deterministic algorithm to
solve this problem using dlog2 ne+ 1 counters. The algorithm maintains the set of counters
at any time trough increment and decrement operations. To identify the majority item at
output time a binary search procedure of log(n) steps is used.

The first counter d0 = c(t) =
∑
x cx(t) keeps track of the number of items in total, i.e.,

we increment d0 for every insert and decrement it for every delete operation. The remaining
counters d1, d2, . . ., dj are associated each with its corresponding jth bit of the binary
representation for a given item identifier x in the range 1 to n. Thus, j goes from 1 to logn.
Let bit(x, j) is a function that returns the value of the jth bit of the binary representation of
the integer x. The update procedure is as follows:

On insert(x): increment d0 and update all counters cj with +bit(x, j), for j = 1, . . . , logn
On delete(x): decrement d0 and update all counters cj with −bit(x, j), for j = 1, . . . , logn

At output time the algorithm does a binary search over the set of counters. The logic is
simple: if there is an item whose count is greater than d0/2 (majority item), then for any
way of dividing the elements into two sets, the set containing the majority item will have
weight greater than d0/2, and the other will have weight less than d0/2. For example, if
c1 > c0/2 (the least significant bit) means that the majority item is an item from the group
of odd numbers. Next we will need to examine if it belongs to the group of items divisible
with 4 or not, i.e., we need to test the value of c2. In this way we proceed with examining
the values of all the counters using the following procedure:

Initialize x← 0
For j = 1, . . . , logn, if cj > c0/2 then x← x+ 2j−1

Output x

The algorithm described above guarantees always to find the majority item if there is
one. If there is none such item, it will still return some item. Note, that in that case it will
not be possible to distinguish the difference based only on the information stored.
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6.3.2 Finding k Hot Items
Suppose we have selected a group of items to monitor which happened to contain only one hot
item. Then we can apply the algorithm from the previous section to this group by dividing
it further into logn buckets and associating a counter with each bucket. Determining the
hot item in the group would require simple “weighting” of all the buckets. Provided that the
total weight of other items in the group is not too much the hot item will always be in the
heavier of the two buckets.

The idea is to divide each group into logn subgroups in which we will not hold an exact
count for each separate item that is mapped to the group. This enables us to use space
polylogarithmic in the size of the universe, albeit on the cost of an approximate answer.
However, as we shall see this approximation can be very close to the correct answer. The
choice of items belonging to each group can be done completely randomly, in which case we
would have to store a list of members for every group explicitly (space at least linear in n).
Instead, to create a concise description of each group, one may use hash functions which will
provide a mapping of items to the groups. Each group will consist of all the items which are
mapped to the same value by a particular hash function. The advantage of this approach
comes from the possibility to store a concise representation for each hash function, using
space O(logn).

Let assume that we need W groups each divided further into logn subgroups. We need
a hash function which will provide a mapping from the set of item identifiers [1, n] to the
set of group identifiers [1,W ]. The hash functions used in the algorithm of Cormode and
Muthukrishnan [25] are universal hash functions derived from those given by Carter and
Wegman [16], and were discussed in Section 4.2. Briefly, each hash function is defined by a
and b, which are integers smaller than P (initially chosen to be O(n)) as: fa,b(x) = (((ax+ b)
mod P ) mod W ), where P > n > W is a fixed prime, and a and b are drawn uniformly at
random in the range [0, P − 1]. As a result, the space required to store each hash-function
representation is O(logn) bits.

When a hash function is used to provide a mapping into a number of groups, there is a
probability that two different items will be mapped to the same group. The authors make
use of the following fact which comes from Proposition 7 of [16]:

Over all choices of a and b, for x 6= y, Pr[fa,b(x) = fa,b(y)] ≤ 1
W .

This probability is directly connected with the success probability of the algorithm for
determining all k hot items. Therefore, we need to maximize it by using not one but several
hash functions of this type. Lets assume that we will use T such hash functions. As a result
we get T ×W overlapping groups. For storing the representation of each hash function hi
we will need two arrays a[1 . . . T ] and b[1 . . . T ] whose values are chosen at random, having
hi = fa[i],b[i] for i = 1, . . . T .

The data structure which will be maintained at all times is a three-dimensional array of
counters d, of size T ×W ×(logn+ 1). In addition to that, we need a counter for the current
total number of items seen m. The counters d[1][0][0] to d[T ][W − 1][logn] are all initialized
to zero. The counter d[0][0][0] is used to keep count of the total number of items. Let
Gi,j = {x|hi(x) = j} be the set of item identifiers which will be mapped to group Gi,j by the
hash function hi, for i = 1, . . . T and j = 1, . . .W . To keep the count of the current number
of items within each group Gi,j we will use the counters d[i][j][0]. For each such group we
will need logn counters for logn subgroups defined as Gi,j,l = {x|x ∈ Gi,j ∧ bit(x, l) = 1}.
These correspond to the groups used for finding the majority item. We will use d[i][j][l] to
keep count of the current number of items within subgroup Gi,j,l.
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The update procedure is simple and very similar to the update procedure for finding the
majority item, i.e., update the logn counters for each of the groups where an item x belongs
to based on its bit representation in exactly the same way as in section 6.3.1. The time to
perform an update O(T logn) is the time taken to compute the T hash functions, and to
modify logn counters for each of those T mappings. To output the hot items the structure
can be searched at any time. The basic test wold be whether the count for a group or a
subgroup exceeds the threshold needed for an item to be hot, which is m/(k + 1). A group
containing a hot item will always pass this test, but the same is possible for a group which
does not contain a hot item. Although this probability is very small various checks need to
be made in order to reduce the number of items output which are not hot.

The search procedure consist of examining all of the groups and testing if they contain a
hot item. That is, for a given group Gi,j , if d[i][j][0] ≤ m/(k + 1) then there cannot be a hot
item in that group, and the group is rejected. For the groups which are not rejected we need
to examine the counts of their subgroups. If a group is not rejected, then there is enough
information to discover the identity of the hot item x contained. At the end, the discovered
hot item need to be further verified if it belongs to the group it was found in, and if all the
groups where the item belongs are above the threshold, i.e., d[i][hi(x)][0] > m/(k + 1) for all
i. The total time to find all hot items is O(T 2W logn).

Cormode and Muthukrishnan [25] gave the following final result: Choosing W ≥ 2/ε and
T = log2(k/δ) for a user-specified parameter δ ensures that, with probability at least 1− δ
we can find all hot items whose frequency is more than 1

k+1 , and for a given ε ≤ 1
k+1 , with

probability at least 1− δ/k each item which is output has frequency at least 1
k+1 − ε.

The proof is simple and is based on the property of the hash functions used and the
Markov inequality, combined with some simple observations on the testing procedure. The
interested reader is referred to [25] for more details. If we substitute the values for T and W
from the above result into the previously given time and space bounds we will obtain the
following bounds: the upper bound on the space required is O( 1

ε logn log(k/δ)), the update
time takes O(logn log(k/δ)), and the query time is no more than O( 1

ε log 2(k/δ) logn).
One of the drawbacks of the method is that the update time depends on the product of T

and logn, which can be slow for streams with high cardinality, i.e., large item identifiers. To
reduce the time dependency on T each of the hash functions can be applied in parallel, and
the relevant counts can be modified separately. The dependency on logn can be addressed by
increasing the space usage. The observation is that, if instead of using the function bit(x, i)
one can use a function dig(x, i, b) which gives the ith digit in the integer x when it is written
in base b ≥ 2. Then, within each group one will need to keep (b − 1) ×logb n subgroups:
the i,j group now counting how many items have dig(x, i, b) = j for i = 1, . . . , logb n and
j = 1, . . . , b− 1. Setting b to m will correspond to keeping a count for every item.

7 Clustering and Summarizing Data Streams

In this last section we will discuss some more advanced algorithms for solving basic sum-
marization problems in the singe-pass data stream scenario. We will place the focus on the
maximum error histogram construction problem, although the techniques discussed here can
be applied to other summarization problems like K-center, K-median clustering and VOPT
histogram construction [39].

Histograms and related synopsis structures are popular techniques for approximating
data distributions, and may serve as basic building blocks in the design of more sophisticated
summary data structures for maintaining other statistics of interest. They have been
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extensively used in database query optimization for estimating selectivity factors [57] and
access path selection in a relational database management system [61], in approximate query
answering [1], mining time series [18], and many other areas.

With the increased interest into mining data streams several streaming algorithms for
histogram construction problems have been proposed [38, 39, 41, 15, 49]. However, all of
them have space bounds dependent on the size of the input m, the magnitude of the optimum
solution ε∗ or the machine precision M . A new result given by Guha [37] improves all
previous algorithms on the problems of histogram construction and K-center clustering in
either the space bound, the approximation factor or the running time. It represents the best
algorithm applicable to streaming scenarios with tunable guarantees, linear running time and
memory requirements independent of the input size.

In the following sections we will describe three main ideas used in the framework proposed
by Guha [37]: (1) the notion of “thresholded approximation”, (2) the idea of running
multiple copies of the algorithm corresponding to different estimates of the final error and, (3)
“streamstrapping” as a way to bootstrap the estimation procedure by using the summaries of
the prefixes of the data to choose the correct granularity required to further inspect the data.

7.1 Maximum Error Histograms
Let X = x1, . . . , xm be a finite data sequence of m real-valued numbers. The histogram
construction problem is defined as follows: given some space constraint B, create and store a
piecewise constant representation HB of the data sequence using at most B storage (pieces),
such that HB is optimal under some notion of error EX(HB) defined between the data
sequence and HB. The representation is a grouping of the values of consecutive points xi,
where i ∈ [lj , rj ] into a single value hj , thus forming a bucket bj , defined with the smallest lj
and the greatest rj index of the data points belonging to the bucket, and their representative
value hj . In other words, for lj ≤ i ≤ rj we estimate xi by hj . The histogram uses at most B
buckets which cover the entire interval [1,m], and saves space by storing only O(B) numbers
instead of m.

Since hj is an estimate for the values in bucket bj , for the query at point i, where
lj ≤ i ≤ rj we incur an error xi − hj . The error EX(HB) of the histogram HB is defined
as a function of these point errors. Since the interval corresponding to the buckets do not
overlap and every point belongs to exactly one bucket, we can express the total error of a
histogram HB with buckets b1, . . . , bB as a sum over all bucket errors:

∑
j Err(bj). In the

case of the maximum (absolute) error histogram construction problem, the error Err for the
bucket bj defined by the interval [lj , rj ] and representative hj is defined as follows:

Err(bj) = Err(lj , rj) = max
i∈[lj ,rj ]

|xi − hj |.

The error of the histogram is given with:

EX(HB) =
∑
j

Err(bj) =
∑
j

max
i∈[lj ,rj ]

|xi − hj |.

In order to minimize the error of the histogram we need to minimize the error of each
bucket. For the case of the maximum absolute error histogram construction problem the
representative values which minimize the maximum absolute error are computed using the
formula hj = xlj

+xrj

2 . Replacing the formula for hj in xi − hj the error of a bucket is given
with Err(bj) = xrj

−xlj

2 .

Chapte r 09



268 Algorithmic Techniques for Processing Data Streams

Figure 6 Illustration of the histogram construction problem.

I Example 6. Let us consider the following data sequence X = {20, 1, 5, 15, 5, 2, 16, 22,
36, 30, 34, 7, 31}. When constructing histograms it is usually useful to order the data X =
{1, 2, 5, 6, 7, 15, 16, 20, 22, 30, 31, 34, 36} to ease the representation. Figure 6 illustrates the
original sequence and the resulting histograms for the given sequence X and two possible
storage constraints: B = 6 and B = 4. As we can see, each histogram tries to approximate
the data sequence using fewer data points. Thus, the histogram construction algorithm
has to examine all of the possible divisions of this sequence in order to find the one that
minimizes the total error EX(HB) of the histogram.

We would first like to construct a maximum absolute error histogram using at most B=6
storage, which means that our histogram will have not more than 6 buckets. Let assume
that we have such an algorithm which is able to find the optimal histogram for the given
sequence X and space constraints B. The resulting optimal histogram for B=6 divides the
data elements in the following sequence of buckets B1 = {1, 2}, B2 = {5, 6, 7}, B3 = {15, 16},
B4 = {20, 22}, B5 = {30, 31} and B6 = {34, 36}, represented with the corresponding sequence
of values h1 = 1.5, h2 = 6, h3 = 15.5, h4 = 21, h5 = 30.5 and h6 = 35, with a cumulative
error EX(HB) = 4.

However, if we wish to reduce the storage to B = 4 pieces, then there are two possible
solutions with equal errors and one of them comprises the following sequence of buckets
B1 = {1, 2, 5, 6, 7}, B2 = {15, 16}, B3 = {20, 22} and B4 = {30, 31, 34, 36}, represented with
the corresponding sequence of values h1 = 4, h2 = 15.5, h3 = 21 and h4 = 33. The total
error under these space constraints is EX(HB) = 8.

Another variant of the maximum error histogram construction problem is to use the
relative error instead:

Err(lj , rj) = min
hj

max
i∈[lj ,rj ]

|xi − hj |
max{c, |xi|}

,

where c is an absolute constant that works as a sanity bound, used to reduce excessive
domination of the relative error by small data values. By setting c to be larger than all
numbers in the input, the relative error is reduced to an absolute error multiplied by 1

c which
allows to discuss both errors at the same time. The maximum absolute or relative error
metrics enable to approximate the data with uniform fidelity throughout the domain, unlike
sum-based measures.

Jagadish et al. [46] first gave a general technique for computing the optimum histogram
in O(m2B) time and O(mB) space for several measures. However, the quadratic running
time showed is undesirable for large data sets, not to mention for streaming applications.
Besides, having in mind that the histogram is already an approximation of the data, it
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came natural to think of near optimal solutions which can be constructed in time linear in
the size of the input data. This line of thinking went even further, considering “tunable”
approximations which would allow faster running times if a less accurate histogram suffices
for the application at hand. As a result, many solutions have been developed for a slightly
different problem formulation known as constructing (1 + ε)-approximate histograms [39]:
Given a sequence X of length m, a number of buckets B, and a precision parameter ε > 0,
find HB with EX(HB) at most (1 + ε) minH EX(H) where the minimization is taken over
all histograms H with B buckets. Thus, if we desire a 1% approximation to the optimal
histogram, we would set ε = 0.01. However, all of the solutions proposed have running times
dependent on the size of the input, although polylogarithmic.

An interesting and important result is given by Guha and Shim [40], where they present
a linear time optimal algorithm for the maximum absolute and relative error measures for
computing the optimum histogram in O(m+B2 log3m) time and O(m) space. Note that
the improvement in the running time is on the cost of an increased memory usage. Although
the algorithm is linear, due to its memory dependence on the size of the input it cannot be
used in streaming applications.

Only recently Guha [37] gave the first tight results for linear time algorithms whose space
requirements do not depend on the size of the input, i.e., the data stream. The StreamStrap
algorithm [37] uses the concept of thresholded approximation plugged into a framework
in which multiple repetitions of the thresholded algorithm are run in a sequential manner,
where each new run is enhanced and bootstrapped with the results from the previous run,
an idea called “streamstrapping”. The StreamStrap algorithm is discussed in more detail in
the following section.

7.2 The StreamStrap Algorithm
To be able to apply the StreamStrap algorithm there are two basic requirements which have
to be fulfilled in our summarization scenario:

1) Thresholded small space approximations exists.
2) The error measure is a Metric error.

For a given summarization problem P a thresholded approximation (as given in the work
of [37]) is defined to be an algorithm which simultaneously guarantees that: 1) if there is
a solution with summarization size B′ and error ε (where ε is known), then in small space
we can construct a summary of size at most B′ such that the error of our summary is at
most αε for some α ≥ 1 and, 2) otherwise declare that no solution with error ε exists. An
important point of the first requirement is that we use the knowledge of ε.

The second requirement translates into a property of the error measure which enables us
to use the following inequality for any X, Y , H, H ′:

Err(X(H) ◦ Y,H ′)− Err(X,H) ≤ Err(X ◦ Y,H ′) ≤ Err(X(H) ◦ Y,H ′) + Err(X,H),

where Err(X,H) is the summarization error of X using the summary H (eg., maximum
error histogram), X ◦ Y denotes a concatenation of input X followed by Y , and X(H) is the
summarized input in which every point x is replaced by the corresponding representative h
from H.

A thresholded version of the optimal algorithm for the maximum error problem [40] can
be easily derived by using the knowledge of ε in the computations [37]. For a given error
ε the algorithm can produce a summary of the input in linear time, using O(B′) space, if
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such summary exists. Further, both the maximum error and the square root of the VOPT
error satisfy the second requirement. Thus, we can fulfill all the conditions required for the
StreamStrap algorithm to be applied.

On a high level the algorithm proceeds as follows: First, it reads B points from the input.
Since all the input values are stored at this point of time, the summarization error is 0. The
algorithms continues with reading as long as the error remains zero. When the first input
which causes a non-zero error is observed (say this error is ε0), the algorithm initializes J
copies of the thresholded summarization algorithm and runs the algorithms. Each copy is
run for a different error value which is exponentially increasing with a factor of (1 + ε), i.e.,
ε0, (1 + ε)ε0, . . ., (1 + ε)Jε0. The value of J is chosen such that (1 + ε)J > α/ε, giving us
O( 1

ε log α
ε ) different algorithms.

A property of the thresholded algorithm is that it will succeed only if a summary exists
for the given error ε and the available storage space. Therefore, when at some point in
time some of the copies of the thresholded algorithm will declare a “fail” for some ε′, we
know that there exist no such solution for an error smaller or equal to ε′, that is, ε∗ > ε′.
Now, we terminate all the algorithms run for error estimates ≤ ε′ and, start running a
thresholded algorithm for (1 + ε)Jε′ using the summary from the “failing” algorithm as the
initial input. Whenever a running copy of the thresholded algorithm will declare a “fail” the
same procedure is applied. As a result, we will always have the same number of running
algorithms, but for different error estimates. At query time the algorithm returns the answer
for the lowest error estimate for which a thresholded algorithm is still running, i.e., have not
declared a “fail”.

The general idea is to start with the smallest possible estimate of the error and raise it a
number of times until we find a solution under the constraints on the memory storage and
the approximation factor ε. Using the summaries from the previous runs and the property
of a Metric error, it can be shown that for a given summarization problem that fulfills the
requirements of the framework, for any ε ≤ 1/10 the StreamStrap algorithm provides a
α/(1− 3ε)2 approximation. The proof is given in [37].

7.3 Applications
If we apply the StreamStrap algorithm for the maximum error histogram construction
problem with B buckets, we can have a single pass 1 + ε streaming approximation using
O(Bε log 1

ε ) space and O(m + B
ε (log2 B

ε ) logMε∗) time. The error of any bucket will be
additively within εε∗ of the true error of that bucket.

The StreamStrap algorithm has been applied also to the the problem ofK-center clustering,
K-median clustering and the VOPT histogram construction problem, for which upper bounds
on the space and running time are given [37]. Guha further proved the first lower space
bounds for maximum error histograms and for the K-center problem in the Oracle Distance
Model, where an oracle is assumed which given two input points and an additional small
space determines their distance. In particular, for the maximum error histogram construction
problem he proved that: for all ε ≤ 1/(40B), any 1 + ε approximation for B bucket maximum
error histogram, which also approximates the error of each bucket within additive ε times the
optimum error must use Ω( B

ε log(B/ε) ) bits of space. This result is proved by using a reduction
of the Indexing problem to the problem of constructing a histogram.

The importance of Guha’s results lies in the fact that the StreamStrap algorithm can
run indefinitely using a bounded amount of space and a constant processing time for each
data item from the stream, while still providing an approximation or a summary which
is according to the user’s specifications (given the approximation factor ε and the size of
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the summary B). Thus, it can be easily applied in many data stream applications in the
cash-register model, and as a building block in more sophisticated summary data structures
for tracking various statistics of interest. To the best of our knowledge, similar results have
not yet been achieved for the more general turnstile data stream model.
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Abstract
In many application fields, such as production lines or stock analysis, it is substantial to create
and process high amounts of data at high rates. Such continuous data flows with unknown
size and end are also called data streams. The processing and analysis of data streams are a
challenge for common data management systems as they have to operate and deliver results in real
time. Data Stream Management Systems (DSMS), as an advancement of database management
systems, have been implemented to deal with these issues. DSMS have to adapt to the notion
of data streams on various levels, such as query languages, processing or optimization. In this
chapter we give an overview of the basics of data streams, architecture principles of DSMS and
the used query languages. Furthermore, we specifically detail data quality aspects in DSMS as
these play an important role for various applications based on data streams. Finally, the chapter
also includes a list of research and commercial DSMS and their key properties.
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1 Introduction

Today, sensors are ubiquitous devices and they are crucial for a multitude of applications.
Especially, tasks like condition monitoring or object tracking often require sensors [76].
Important examples for monitoring applications are weather observation and environment
monitoring in general, health monitoring, monitoring of assembly lines in factories, RFID
monitoring, or road monitoring. These applications share characteristic properties which are
especially challenging for a data management system processing this data. First of all, the
sensed data is produced at a very high frequency, often in a bursty manner, which may pose
real-time requirements on processing applications and may allow them only one pass over
the data. ECG signals, for example, are created at a frequency of usually 250 Hz. Second,
sensor data is not only produced rapidly, but also continuously forming a data stream. Data
streams can be unbounded, i.e., it is not clear, when the stream will end. Data from sensors
furthermore can be defective, i.e., it is likely to include errors introduced by the imprecision
of measurement techniques (e.g., a vehicle speedometer has an error tolerance of 10% [29]),
data may be lost due to transmission failure or failure of the sensor.

Also the mapping of recorded sensor data to a time domain is important to rate the
timeliness of the data and to make it interpretable in that dimension. In monitoring
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applications the most recent data is apparently the most interesting data. This reveals
another source of defectiveness of the sensor data – namely disorder of data, which is likely
to happen when the protocol used for transmission cannot guarantee to sustain order or
network latencies occur [64]. In monitoring applications, data from multiple sources have also
to be integrated and analyzed to build a comprehensive picture of a situation. For example,
integrating data from several health sensors (such as ECG, temperature, blood pressure)
has to be integrated to derive that a patient is in a critical situation. Another challenge is
caused by the pure mass of data. Due to limited system resources in terms of space and CPU
time, algorithms analyzing the data, e.g. data mining algorithms, cannot store and process
the entire data, but they can process the data only once (the one-pass property) with the
available resources. In some applications, it is also required to combine streaming data with
historical or static data from a common database, e.g., when for a monitored road section
we want to look up, if it currently contains a construction site. All of these properties are
especially common to sensor data on which we will focus in this chapter. There are also other
typical applications producing data streams (further termed stream applications). Popular
examples are stock price analysis or network traffic monitoring, which can produce even
millions of samples per second.

To tackle the aforementioned challenges in data stream processing, a specific type of
systems called Data Stream Management Systems (DSMS) has evolved. The properties of
stream applications discussed before lead to a long list of requirements for DSMS. In contrast
to common data management systems and based on the nature of stream applications, DSMS
have to react to incoming data and deliver results to listening users frequently [65]. This
is also termed as the DBMS-Active, Human-Passive model by Carney et al. [19], while the
DBMS-Passive, Human-Active model is implemented by common Database Management
Systems (DBMS). In DSMS a reactive behaviour is realized by continuous queries which are
registered by a user in the system once and after that the queries are executed incessantly.
But some applications may at the same time require to allow ad hoc user queries [2] or
views [39] also. Data in a DSMS must not only be processed and forgotten, but the system
also has to react to changes of data items, which may lead to recalculation of already produced
results. This requires an appropriate change management in the system [1, 8].

Handling unbounded data streams while having only a limited amount of memory available
and being restricted in CPU time for processing the data is one of the main challenges for
a data stream management system. The creation of incremental results for critical data
processing operations and the application of window operators are only two examples of
how these issues are solved in DSMS. As already mentioned, most of the applications pose
real-time requirements to the data processing system [65]. This implicitly comprises the
requirement to be scalable in terms of data rates, which in turn demands techniques for
load balancing and load shedding to be incorporated in a stream system. But the system
must be also scalable in terms of queries as some application contexts can get complex and
require the introduction of several queries at the same time. Therefore, the demand for and
the adaptability to newly registered, updated, or removed queries is obvious [20]. This also
brings up the need for multi-query optimization, e.g., by sharing results of operators in an
overall query plan. Query plan modification during query processing is not only desirable
for query optimization, but also to serve Quality of Service demands under varying system
resource availabilities [59].

The imperfectness of data has also to be addressed by a DSMS. Unordered data has to be
handled adequately, and may be tolerated in controlled bounds. Means to recognize and rate
the quality of the data processed are also crucial to make assumptions about the produced
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answers or results [73]. Finally, as Stonebreaker et al. [65] demand, a DSMS also has to have
a deterministic behaviour, which outputs predictable and repeatable results to implement
fault tolerance and recovery mechanisms. This contrasts with non-deterministic components
in a DSMS, such as a component randomly dropping tuples to compensate a high system
load [78].

Parallel to DSMS, the terms Event Processing, Complex Event Processing (CEP) or
Event Stream Processing have evolved. These terms are referring to a concept which is
closely related to the notion of data streams. The corresponding systems are specialized
on the processing and analysis of events to identify higher level events, such as predicting
a political development from Twitter tweets or detecting a serious condition from vital
parameter readings. DSMS have a broader application scope, but CEP applications can
also be rebuild with DSMS [28]. Cugola and Margara distinguish DSMS and CEP systems
as data processing and event detection systems denoting the different focuses. The focus
disparities result, among others, in differences in architectures, data models and languages
between CEP systems and DSMS [25]. The focus of this chapter is put on DSMS. For a
comparison of CEPs and DSMS we refer to the survey by Cugola and Margara [25].

In this chapter, we will give a brief overview of DSMS and of some of the solutions which
address the above requirements. As there are already excellent surveys on the concepts of
DSMS, e.g., [11, 38, 22, 78, 39], we will focus on two main aspects and discuss them in more
detail: query languages for DSMS and data quality in DSMS.

1.1 Running Example – A Traffic Application Scenario
Throughout this chapter, we will use a real-time traffic management application as a running
example, namely traffic state estimation based on data from multiple mobile traffic sources.
In Car-to-X (C2X) communication vehicles can communicate with other vehicles (Car-to-Car)
or with the road infrastructure (Car-to-Infrastructure). The data collected and sent is called
Floating Car Data (FCD). For example, a vehicle can warn other vehicles behind it when it
brakes very hard. We consider two kinds of event-based messages sent out by the vehicles:
Emergency Braking Light (EBL) messages, which are created when a vehicle has a high
negative acceleration, and Warning Light Announcement messages (WLA). The latter are
produced when a vehicle turns on its warning light flashers. These messages contain general
information about the current state of the vehicle, such as the speed, the location, or the
acceleration.

Example 1 shows the schema of a C2X message stream, which is an example for FCD.
Another source of a data stream may be anonymously collected mobile phone position data
(also called Floating Phone Data (FPD) analogously to Floating Car Data (FCD)). This can
be used to derive further traffic information, such as the speed or the traffic state [33].

I Example 1. In our case study we receive the CoCar messages sent by the equipped vehicles
as a data stream. The simplified schema of the stream CoCarMessage is as follows,

C2XMessage(TS ,AppID,Speed,Acceleration,Latitude,Longitude)

where AppID represents the message type, such as an emergency brake message, Longitude
and Latitude represent the position of the vehicle and Speed and Acceleration represent
the current values for these attributes of the vehicle. Additionally, the data stream elements
contain a timestamp TS from a discrete and monotonic time domain.

The idea of traffic state estimation based on C2X messages is simple. We divide roads
in a given road network into equal-sized sections, e.g., of 100 meters length, as depicted in
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Figure 1 A road with two directions divided up into sections [35].

Figure 1. We collect the messages and data produced, assign the data to a section based
on the position in the message, and aggregate the data for each section and a certain time
period (e.g., the last minute). Based on the aggregated data for each section we can then
determine the traffic state either based on simple rules (if speed is higher than x and the
number of messages is higher than y) or using data stream mining techniques.

We realized the described application in the course of the CoCar project1 and its successor
CoCarX. We implemented an architecture based on a DSMS and data stream mining
algorithms. The architecture is supposed to derive further traffic data from raw data, such
as hazard warnings or the traffic state, and to send it out as traffic information to end-
users [35, 34]. The CoCar project investigates the feasibility of traffic applications based on
Car-to-X communication via cellular networks (UMTS and its successor LTE) and pWLAN.

2 DSMS Architectures

Due to the system requirements for DSMS their architectures differ in several aspects from
the traditional relational DBMS architecture. Querying has to be viewed from a different
angle as data is pushed into the system and not pulled from the system [20]. In Data Stream
Management Systems queries are executed continuously over the data passed to the system,
also called continuous or standing queries. These queries are registered in the system once.
Depending on the system, a query can be formulated mainly in two ways: as a declarative
expression, mostly done in an SQL-dialect, or as a sequence or graph of data processing
operators. Some of the systems provide both possibilities. A declarative query is parsed to a
logical query plan, which can be optimized. Similar to DBMS this logical query is afterwards
translated into a physical query execution plan (QEP). The query execution plan contains
the calls to the implementation of the operators. Besides of the actual physical operators,
query execution plans include also queues for buffering input and output for the operators.
A further support element in QEPs are synopsis structures. DSMS may provide specific
synopsis algorithms and data structures which are required, when an operator, e.g., a join,
has to store some state to produce results. A synopsis summarizes the stream or a part of the
stream. It realizes the trade-off between memory usage and accuracy of the approximation
of the stream. Additionally, load shedders can be integrated in the plan, which drop tuples
on high system loads. In most systems, execution plans of registered queries are combined
into one big plan to reuse results of common operators for multiple queries. The physical
query plan may be constantly optimized based, e.g., on performance statistics. In Figure 2
the query processing chain is depicted.

In Figure 3 a generic architecture of a DSMS based on [5, 39] is shown. First of all a
DSMS typically gets data streams as input. Wrappers are provided, which can receive raw
data from its source, buffer and order it by timestamp (as e.g. implemented by the Input
Manager in the STREAM system [64]) and convert it to the format of the data stream

1 http://www.aktiv-online.org/english/aktiv-cocar.html

http://www.aktiv-online.org/english/aktiv-cocar.html
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Figure 3 An generic architecture of a DSMS based on [5, 39].

management system (the task of the Stream Manager). As most systems adopt a relational
data model, data stream elements are represented as tuples, which adhere to a relational
schema with attributes and values. After reception the tuples are added to the queue of the
next operator according to the query execution plan. This can be done e.g. by a Router
component as implemented in the Aurora system [3]. The management of queues and their
corresponding buffers is handled by a Queue Manager. The Queue Manager can also be used
to swap data from the queues to a secondary storage, if memory resources get scarce. To
enable access to data stored on disk many systems employ a Storage Manager which handles
access to secondary storage. This is used, when persistent data is combined with data from
stream sources, when data is archived, or swapped to disk. Also it is required when loading
meta-information about, inter alia, queries, query plans, streams, inputs, and outputs. These
are held in a system catalog in secondary storage.

While the queue implementation decides which element is processed next, a Scheduler
determines which operator is executed next. The Scheduler interacts closely with the Query
Processor which finally executes the operators. Many systems also include some kind of
Monitor which gathers statistics about performance, operator output rate, or output delay.
These statistics can be used to optimize the system execution in several ways. The scheduler
strategy can be influenced, e.g., prioritizing specific subplans. Furthermore, the throughput
of a system can be increased by a Load Shedder, i.e., stream elements selected by a sampling
method are dropped. The Load Shedder can be a part of a Query Optimizer, a single
component, or part of the query execution plan. Furthermore, the statistics can be used to
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reoptimize the current query execution plan and reorder the operators. For this purpose
a Query Optimizer can be included. In the Telegraph system [20] subsets of operators are
build which are commutative. The operators of each subset are connected to a component
called Eddy. Each Eddy routes the incoming tuples to the operators connected to it based
on optimization statistics. Each tuple has to log, which operator has already processed it
successfully and when all attached operators processed it, it is routed to the next part of the
plan or output to recipients [20]. DBMS and DSMS share some of their query optimization
goals – both try to minimize computational costs, memory usage and size of intermediate
results stored in main memory. But obviously, the priorities for these goals are different for
the two system types. DBMS mainly try to reduce the costs of disc accesses [27], while DSMS
mainly have to reduce memory usage and computation time to be fast enough. Of course,
these different goals stem from the different data handling strategies (permanent storage vs.
real-time processing). In a DSMS a query is also not only optimized before execution, but it
is adaptively optimized during its run time. This enables the system to react to changes of
input streams and system and network conditions.

An interesting work to research the different architectural components of a DSMS is
the Odysseus [17, 32] framework. Odysseus allows to create customized DSMS for which
it provides basic architectural components while offering variation points for each of the
components. At these variation points custom modifications such as the integration of a new
data model or the inclusion of new algebraic and physical operators or new optimization
rules for logical query plans are possible.

Now that general concepts of DSMS architectures for query management and processing
have been introduced, the user interface to access the data, namely the principles of query
languages in DSMS are discussed in the next section.

3 Query Languages in DSMS

In principle, two main types of query languages for DSMS can be distinguished: declarative
languages (mostly relational, based on SQL) and imperative languages which offer a set of
operators (also called box operators) to be assembled to a data-flow graph using a graphical
user interface. The imperative languages often also include operators which represent SQL
operations. SQL-based languages are widely used, though SQL has many limitations for
querying streams [52]. Systems which include a declarative SQL-based language are, for
example, STREAM (Continuous Query Language, CQL) [10], Oracle Event Processing2,
PIPES [50], SASE (Complex Event Language) [43], or StreamMill (Expressive Stream
Language, ESL) [72]. Imperative languages are supported for example by the Aurora/Borealis
system (SQuAl) [3], or System S/InfoSphere Stream3 (SPADE/SPL) [31].

Because a stream is potentially unbounded in size, it is neither feasible nor desirable to
store the entire stream and analyze it. Some of the operations known from traditional query
languages, such as SQL, might wait infinitely long to produce a result, as the operation would
have to see the entire stream to generate a result (defined as blocking operations) [11]. The
missing support of sequence queries, i.e., retrieving sequential data, is one crucial limitation
known from relational databases and SQL [52]. One simple yet powerful way is to first
extract only a desired portion of the stream and use this portion in the remainder of the
query. Therefore, a very important requirement for a DSMS query language is the provision

2 http://oracle.com/technetwork/middleware/complex-event-processing/overview/index.html
3 http://ibm.com/software/data/infosphere/streams

http://oracle.com/technetwork/middleware/complex-event-processing/overview/index.html
http://ibm.com/software/data/infosphere/streams
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of windows [22, 9, 57]. Windows are operators that only select a part of the stream according
to fixed parameters, such as the size and bounds of the window. Hence, they provide an
approximation of the stream, but are at the same time implementing the desired query
semantics [11]. A window is updated based on fixed parameters [57] and internal matters of
the system (e.g., in principle, a result can be updated whenever a new element arrives or
whenever time proceeds) [45]. We will detail the different types and parameters of windows
in Section 3.1.5.

Besides the definition of windows in the language, also an approved set of query operations
accompanied by established semantics is beneficial for a DSMS query language [9]. This can
be accomplished, e.g., by using a common query language based on relational algebra and
its operators for operations on finite tuple sets (commonly called relations). The advantage
is the reuse of operator implementations and transformations for query optimization [9].
But such an approach also risks to be complicated, because the closure under a consistent
mathematical structure, such as bags in relational algebra, is crucial to enable nested queries
and algebraic optimization. Cherniack and Zdonik [22] investigated the property of DSMS
query languages to be closed under streams. A language is closed under streams if its
operators get streams as an input and if the output of the operators are streams as well.
They state that most languages provide stream-to-stream operators by either implicitly using
operators for windowing and conversion to streams or special stream-to-stream operators.
Only CQL provides the possibility to explicitly formulate the conversion of relations to
streams by specific relation-to-stream operators. These operators can either add output
elements to a result stream when a new element compared to the last time step is in the
result set (Istream operator), or when an element has been removed from the query result
relation compared to the last time step (Dstream operator), or all elements which are present
in the result set in the current time step (Rstream) are added to the stream [10, 9]. But to
avoid an inconsistent query formulation producing results not closed under streams, CQL
also offers many default query transformations. In fact, Arasu et al. showed in [9] that a
stream-only query language (only using stream-to-stream operators) can be build based on
the set of CQL operators. We will detail the types of operators used in continuous query
languages in Section 3.1.4.

I Example 2. Suppose we want to monitor the number of speeders in a reduced speed
area. We would like to retrieve the number of CoCar messages which have been sent in the
last minute and which contain a speed greater than 30km/h. Additionally, we also want to
retrieve an update every 10 seconds. In CQL the following query could be formulated to
fulfil our information requirement:

SELECT Istream Count (*) FROM
C2XMessage [Range 1 Minute Slide 10s]

WHERE
Speed > 30.0

Listing 1 Query 1

The same query can be formulated in an imperative query language by assembling box
operators. In Figure 4a a query formulated in Aurora’s SQuAl is depicted. The Filter
operator is similar to the selection in relational algebra – it retrieves all tuples with speed
greater than 30.0. Furthermore, an Aggregate operator is connected to the Filter operator,
which can be parametrized with the aggregate function and details for an implicit window
integrated in the operator. The SPADE query in Figure 4b is similar – the parametrized
Functor operator selects the tuples according to the speed restriction and the Aggregate
operator executes the Count operation.
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Filter(Speed > 30.0)

Aggregate(CNT, Assuming O, Size 1 minute, Advance 10 second)

(a) Query 1 in SQuAl

C2X_Source Functor Aggregate TCP_Sink

(b) Query 1 in SPADE

Figure 4 Query 1 formulated in imperative languages.

To include more powerful and custom functionality, another requirement to DSMS query
languages is the extension of the language by custom functions and operators to include
more complex actions, such as data mining or custom aggregates [52]. Most of the languages
provide a possibility for custom extensions. In the System S by IBM [31] a code generator
enables users to create skeleton code for user-defined operators in C++ and add custom code
to the operator. The operator is treated the same way as the other operators, e.g., during
query optimization. The Aurora system provides a specific operator Map in which user-
defined functions can be integrated and are executed whenever a new element is received [3].
In the Stream Mill ESL [52, 72] User-defined Aggregates (UDAs) based on concepts from
the SQL:99 standard (INITIALIZE, ITERATE, INSERT INTO RETURN, TERMINATE)
and the stream are used to implement new operators such as non-blocking aggregates or
windows. The UDAs process one tuple at a time and allow for keeping a state over the so far
seen stream elements. They can output a result when a specified condition is fulfilled and
not only when all the input elements have been seen. In [72] the authors also show how they
integrate stream mining algorithms into Stream Mill using UDAs.

3.1 Data Models and Semantics of Data Streams
Before we go into detail on continuous queries and operators used in the queries, we have
to understand what is exactly meant by the term “data stream”. In this section we will
also break data streams down to their indivisible components and examine the data models
applied in DSMS.

3.1.1 Data Models
Depending on the desired application realized with the DSMS and the data sources to support
there are different demands on the adopted data model and the semantics of the query
language. In the literature, the relational model is very dominant, presumably due to the
well-defined semantics, the established set of relational algebra operators, and the very well
studied principles of DBMS. Also, from a user’s perspective, the step from SQL towards its
streaming extensions seems to be quite small. But there are also data sources which do not
conform to the flat table concept for discrete data offered by the relational data model [56].
XML data received from, e.g., web services or RSS feeds as well as continuous signal data,
object streams, or spatio-temporal data streams demand special treatment. Therefore, a
variety of specialized DSMS with differing data models and corresponding query languages
have been proposed.
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The maintenance and analysis of massive and dynamic graphs is also a challenging
problem which can be tackled by data stream technology. There are multiple forms of this
data model possible. The stream can consist of, amongst others, a sequence of edges [30], a
stream of graphs where each graph is an adjacency matrix or list [67], or weight updates
of edges [6]. It may be used in event detection and forecasting e.g. of Twitter streams,
for web page linkage or social network analysis. To achieve a stable logical foundation for
DSMS Zaniolo presents a data model and query language called Streamlog, which is based
on Datalog [77]. While stream sources are represented by fact streams and sinks (or output
streams) by the goal of a datalog query, the operators in between are defined by rules.

An interesting generic approach, supporting multiple query languages and data models,
is implemented by the Odysseus framework [17]. A logical algebra component converts
queries from various language parsers to a logical query plan with generic algebra operators.
The semantics of the PIPES system [50] also allows for implementing multiple data models.
In this chapter we will concentrate mostly on the classical relational model, though there
are also many works on XML stream processing, e.g., using XML-QL [21], XPath [58] or
XQuery [18]. In the following we will discuss various representations and semantics of data
streams and concepts related to them.

3.1.2 Representations and Semantics of Data Streams
A data stream S can be understood as an unbounded multiset of elements, tuples, or
events [52, 11, 26, 50]. This means, each tuple can occur more than once in the stream which
is denoted by a multiplicity value. Each tuple (s, τ) ∈ U , where U is the support of the
multiset S, has to adhere to the schema of S. The support U of a multiset S is a set which
consists of the elements which occur in the multiset S at least once. Multiset and support
can be defined as follows [68, 63]:

I Definition 3. (Multiset and Support of a Multiset) A multiset is a tuple A = (B, f), where
B is a set and f is a function f : B → N, assigning a multiplicity to the tuple (number of
occurrencies of the tuple in the stream). The support of A is a set U which is defined as
follows:

U = {x ∈ B|f(x) > 0},
i.e., U ⊆ B.

The schema of a stream is constituted of attributes A1, . . . , An. Each tuple contains also
an additional timestamp τ from a discrete and monotonic time domain. Most definitions of
data stream semantics do not consider the timestamp as a part of the stream schema [10, 50, 3]
and therefore, it is always separately listed in the tuple notation.

A data stream can be formally defined as follows, based on the definition of Arasu et
al. [10]:

I Definition 4. (Data Stream) A data stream S is an unbounded multiset of data stream
elements (s, τ), where τ ∈ T is a timestamp attribute with values from a monotonic,
infinite time domain T with discrete time units. s is a set of attribute values of attributes
A1, A2, . . . , An with domains dom(Ai), 1 ≤ i ≤ n, constituting the schema of S. A stream
starts at a time τ0. S(τi) denotes the content of the stream S at time τi, being
S(τi) = {< (s0, τ0),m0 >,< (s1, τ1),m1 >, . . . , < (si, τi),mi >}.

I Example 5. The schema of the C2XMsgs stream from Example 1 would be written
according to this definition as:

C2XMessage(Timestamp, (TS ,AppID,Speed,Acceleration,Latitude,Longitude))
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In this example the timestamp Timestamp has been generated by the DSMS and TS is the
creation timestamp defined by the application. The different kinds of timestamps are detailed
in Section 3.2.

Depending on the data model, the attributes A1, . . . An can contain values of primitive
data types, objects or XML data. For example, Krämer and Seeger consider tuples to be
drawn from a composite type (in the relational case this is the schema) and its attributes can
contain objects [50]. This generic definition allows them to be open to different data models.
Gürgen et al. propose a generic relational schema for streams of sensor data of all kinds. Each
tuple in a stream consists of several general attributes also denoted as properties containing
the meta-data of the sensor, an attribute measurement carrying the values measured by that
sensor and a timestamp, when the measurement has taken place [41]. Their semantics of a
stream considers a temporal aspect, i.e., the present, past, and future of a stream is defined.
The life time of present data is limited by the size of the corresponding queue in the DSMS
and becomes past data when the queue is full [41].

Data streams commonly adhere to an append-only principle, i.e., data once inserted
in the stream will not be removed or updated [14]. But to enable updates in the streams,
there are also systems which do not only support insertion of tuples, but also updates and
deletions. In the Borealis system [1], which is the distributed successor system of Aurora, an
extended data stream model has been implemented. The schema of the stream has one or
more attributes which have been designated as the key of the stream. This allows for the
identification of data stream elements in the stream system for future changes. Furthermore,
the tuples include a revision flag which indicates if the tuple is either an insertion, an update,
or a deletion. The revision flag is processed by operators in the query plan and if an update
or deletion has been detected, former buffered results are reevaluated and also tagged with
a corresponding revision flag. Additionally, each tuple can also have information about
Quality of Service attached, which will be detailed in Section 4. The internal (physical)
representation of streams in STREAM uses the concept of revision flags, too, to denote
inserted and outdated tuples, e.g. for a window [10].

In the PIPES [50] and STREAM systems, streams are separated into base streams and
derived streams to denote the origin of the stream. Base streams are produced by an
external source and derived streams are produced by internal system operators. Furthermore,
in PIPES stream notations are distinguished based on the level in the query processing
chain. Streams from external sources are termed raw streams and adhere to the attributes
plus timestamp notation described above (according which the tuples are ordered in the
stream). Streams on the logical or algebraic level are termed logical streams. The tuples of a
logical stream contain attributes corresponding to the stream schema, a timestamp τ and a
multiplicity value. The multiplicity value indicates how often the tuple occurs at time τ in
the stream, which implements the bag semantics explicitly. Finally, the PIPES system also
introduces a physical stream notation. The notation is used to represent streams in query
execution plans, which include in addition to the attributes a validity time interval with
start and end timestamp, similar to the CESAR language [26], which indicates when a tuple
is outdated.

While above we have described the representations of streams and tuples, the semantics
or denotation of a stream (i.e., the underlying mathematical concept) can be separated from
these representations [56]. So far we used the rough semantics of an unbounded multiset for a
stream. This rough semantics raises the questions of how tuples are organized in the stream,
which tuples are included, and how a stream evolves with the addition of tuples. A stream
denoted as a multiset or bag of elements, allows duplicate tuples in the stream [10, 15, 50].
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The denotation as a set, i.e., without duplicates, is also possible. Furthermore, a stream
could also be interpreted as a sequence of states [56], where a relation transitions from
one state to another (on arrival of tuples or progression of time). Maier et al. propose
reconstitution functions to formally describe the denotations of streams and operations on
these denotations [56]. For example, the insertion of a new tuple in a stream denoted as a bag
can be recursively defined by describing what will be the following state, i.e., the “result bag”.
The reconstitution functions allow to write down the semantics in a more formal way and
can then be used to prove properties like the correctness of operators for the corresponding
denotation.

3.1.3 Inclusion of Persistent Relations
Solely querying of streams is often not sufficient to implement certain applications. Take the
traffic state estimation as an example. To improve our assertion about the traffic state we
could also integrate information from other streams, such as Floating Phone Data (positions
from anonymously tracked phones in vehicles), or from persistent sources such as historical
data about the traffic state at the same time last week or last year on the same street. This
would involve to join data of streams with other streams and to join streams with persistent
data from “static” data sources. In [22] this ability is called correlation. Most languages
support joins between streams and relations, because it is easy to implement. In principle,
each time new tuples arrive in the stream these are joined with the data in the relation and
the operator outputs the resulting join tuples. The join between streams is a little bit more
complicated. Most languages require at least one stream to be windowed [22], which results
in the former situation of joining a stream with a finite relation. Some offer also specific
operators for joins without windows.

The use of persistent relations in queries requires them to be represented in the query
language. In SQL-based languages these are noted in the same way as streams (it is
maybe more correct to say that the streams are represented in the same way as relations).
Representations for relations can also be related to the notion of time. A relation at time
τ consists then of a finite, unbounded bag of tuples which is stored in the relation at time
τ [10]. In CQL, a time-related relation is called an instantaneous relation, and analogously
to streams, base relations and derived relations are distinguished.

I Example 6. In this example we want to know for a certain road and section on this road, if
and how many road works it currently contains. The schemas of the stream with aggregated
information from the C2X messages about the road section and the persistent relation are as
follows:

AvgC2XMessage(Timestamp, (AvgSpeed,AvgAcceleration,RoadID,SectionID))

ConstructionSite(SiteID,StartDate,RoadID,SectionID)

In CQL we would formulate the query in the following way:

SELECT Rstream m.* , Count(c. SiteID ) As SiteNo
FROM AvgC2XMessage [Now] AS m, ConstructionSite AS c
WHERE c. RoadID = m. RoadID AND c. SectionID = m. SectionID

Note, that CQL is limited in its ability to join streams and relations. Only a NOW window
on the stream and the Rstream operator can safely be used for joins between streams and
relations. Queries with different windows or relation-to-stream operators would usually
deliver semantically incorrect results [10].
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3.1.4 Continuous Queries and Algebraic Operators

Now that we have clarified the main constituents of continuous queries in DSMS, namely,
streams, tuples, and relations, we will proceed to explain continuous queries and operators
for languages based on the relational algebra. So what is the difference between a continuous
query and an ad-hoc query? One goal of Tapestry [70], one of the first data management
systems processing continuous data, was to give the user the impression that a query is
continuously executed (which is not possible). To achieve this in DSMS, the result of a
continuous query at time τ is equal to the result of the query executed at every time instant
before and equal to τ [70, 10]. That means it takes into account all tuples arrived up to τ .
Depending on the language the result of the query can be a stream or a finite set of tuples,
e.g., in CQL the result can be either or, while other languages only support streams.

There are three main models how data is processed in a DSMS, i.e., when continuous
queries are executed. When a time-driven model [45] is used, a query will be updated with
progression of time (on every time step of the system). In a tuple-driven model a query is
evaluated on the arrival of each tuple, unless the query includes some temporal restriction,
such as a time-based window [45]. The event-driven model allows to define events or triggers
on whose firing the query is executed, e.g. in OpenCQ [55]. Of course these could be also
temporal events or an amount of tuples seen so far, but these could be also user-defined
events, such as a fired alert or an incoming e-mail.

One main problem for operators processing streams is the fact that streams are unbounded.
Especially, blocking operators, i.e., operators which do not produce a result tuple before they
have seen all tuples on their inputs [11], are problematic. The set of these operators comprises
aggregations, groupings, but also set operations, such as NOT IN or NOT EXISTS [52, 40].
For example, if we would like to calculate the average over the speed of the incoming C2X
messages, a classical average operation has to wait until the stream of messages ends (but we
do not know when the stream ends) to produce the desired result. In contrast, non-blocking
operators produce results periodically or on arrival of new tuples, i.e., incrementally [51].
Partially blocking operators [52] are operators which can produce intermediate results but
also a final result in the end. Obviously, a language for continuous queries can then only be
based on non-blocking operators [52, 11]. But the set of non-blocking operators is neither in
relational algebra nor in SQL sufficient for all expressible relational queries [52]. We discuss
the completeness of languages in Section 3.3. Another type of operators which are harmful
to continuous query processing are stateful operators [56] (in contrast to stateless operators).
These operators, e.g., joins, require to store a state for their operation, which for streams is
unbounded in size. Hence, the remedy to these problems is to approximate processing the
stream as a whole as good as possible. One simple yet powerful approach is the partitioning
of the stream into small portions, so-called windows. Each window is a finite bag of tuples
and can be processed also by the common relational blocking operators. A second possibility
is to provide incremental implementations of these operators, which are able to update the
result with new tuples and output “intermediate” results. Finally, an approximation of the
stream in form of a summary or synopsis can be used to operate on. In the following we will
detail window operators and their semantics.

3.1.5 Windows

In continuous query languages based on SQL, windows are a crucial extension to the algebraic
set of operators. It depends on the language which types of windows are supported. A window
is always built according to some ordered windowing attribute which determines the order of
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elements included in the window [57, 56]. The type of window, i.e., how it is determined
which elements are valid in the current window, according to [57] can be described by its
measurement unit, the edge shift, and the progression step. The measurement unit can be
either a number of x time units (time-based window) or tuples (tuple-based window) declaring
that the elements with timestamps within the last x time units or the last x elements are
valid for the window at the point in time of the query. We define a time-based window of
size l similar to the definition in [57] as follows:

I Definition 7. (Time-based Window) A time-based window WlT
(with window size lT ∈ T)

over a stream S at time τi ∈ T is a finite multiset of stream elements with

WlT
(S(τi)) = {< (sk, τk),mk > | (sk, τk) ∈ U, τi − lT ≤ τk ≤ τi, τk ≥ τ0},

where mk is the multiplicity of the tuple in the subset and U is the support of stream S(τi).

We assume, that the stream elements are ordered by timestamp τ before a window
operator is applied. The definition for a tuple-based window of size lN is similar:

I Definition 8. (Tuple-based Window) Let S(τi) = {< (s0, τ0),m0 >, . . . , < (sn, τn),mn >},
τi ≥ τn ≥ τ0 ∧ τj ≥ τj−1 ∀j ∈ {1, . . . , n}, be the content of stream S at time τi. Then a
tuple-based window WlN

(with window size lN ∈ N) over stream S at time τi ∈ T is a finite
multiset of stream elements with

WlN
(S(τi)) = {< (sk, τk),mk > | (sk, τk) ∈ U, j ≤ k ≤ i,

∃m′j ,m′′j . m′j ≥ 0,m′′j > 0,

mj = m′j +m′′j , m′′j +
i∑

`=j+1
m` = lN}.

where (sn, τn) ∈ U, ∀τj ∈ U τn > τj , and U is the support of stream S(τi).

This means, that we go backwards in the stream from time τi on and search for the last
point time τn at which elements arrived. We now collect exactly N tuples going backwards
in the stream. We assume, that the last tuple which (partially) fits into the window is
< (sj , τj),mj >. Then only the multiplicity portion m′′j which still fits into the window will
be added to the window.

In the Aurora system [78, 3] value-based windows as a form of generalization of time-based
windows are presented. These windows implement the idea of having a different windowing
attribute instead of a timestamp – the attribute just has to be ordered. Furthermore, the
value-based window should return only those tuples whose value of the particular attribute
is within a specific interval (hence, value-based windows). A similar concept are predicate-
windows [37] suited for systems which work with negative and positive tuples. A correlation
attribute identifying the data in the tuple and a predicate condition are defined for the
window, which enables to filter the tuples according to that predicate. The filtering may result
in negative tuples, when the predicate has been fulfilled by tuples for the same correlation
attribute value before but is not for the present query evaluation. Partitioned windows [53, 10]
are applicable to time- or tuple-based windows and follow the idea of dividing the stream
into substreams based on filter conditions and of windowing them separately. Afterwards,
the windows of the substreams are unioned to one result stream [3].

The edge shift of a window describes the motion of the upper and lower bounds of the
window. Each of them can either be fixed or moving with the stream. For example, in the
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most common variant, the sliding window, both bounds move, while for a landmark window
one bound is fixed and one is moving.

Finally, the progression step or periodicity defines the intervals between two subsequent
movements of a window. This again can either be time-based or tuple-based, e.g., the window
can move every 10 seconds or after every 100 arrived tuples. When the contents of windows
in each progression step are non-overlapping, this is termed a tumbling window, i.e., size
and sliding step have an equal number of units. Windows can also be punctuation-based. A
notification tuple sent with the stream indicates the window operator that it should evaluate.
We will explain punctuations in Section 3.2.

In the following, one of the most commonly used forms of a moving window, a sliding
time-based window, is defined as:

I Definition 9. A sliding time-based window with window size lT ∈ T and slide value v ∈ T
over a stream S at time τi ∈ T is a finite multiset of stream elements with

WlT ,v(S(τi)) = {< (sk, τk),mk > | (sk, τk) ∈ U,∃j ∈ N : τ0 + j · v ≤ τi,

τ0 + (j + 1) · v > τi, τi ≥ τ0 + lT ,

τ0 + j · v − lT ≤ τk ≤ τ0 + j · v, τk ≥ τ0}.

where U is the support of stream S(τi)

I Example 10. In our traffic example we would like to retrieve the number of C2X messages
with speed greater than 30km/h from the last minute every 10 seconds. We realize this
by defining a time-based sliding window WlT , v of size lT = 60s and with a sliding step of
v = 10s over the CoCarMessage stream. In Figure 5a the content of the window after 1
minute is shown. This is the first point in time, where the query with the window delivers
results (hence, τi ≥ τ0 + lT ). The window contains the elements 1,2,4,5,6. After 10 more
seconds the window slides, element 1 is dropped from the window and element 7 is added
(Figure 5b). After another slide after 10 seconds element 2 is dropped and element 8 is added
to the window (Figure 5c).

120s110s100s90s80s70s60s50s40s30s20s10s

65421 1087

W60,10(S(τ60))

τ

(a) Window after 60s
120s110s100s90s80s70s60s50s40s30s20s10s

76542 1081

W60,10(S(τ70))

τ

(b) Window after 70s

120s110s100s90s80s70s60s50s40s30s20s10s

87654 1021

W60(S(τ80))

τ

(c) Window after 80s

Figure 5 Example of a sliding window with size of 1min and slide step of 10s.

Depending on the language, windows can either be implicitly included in an operator (see
the definition of the Aggregate operator in Example 2, Figure 4a) or defined as a separate
operator in the query language. An example of the latter is given in the data and query
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model SStream [41] of the system SStreaMWare [42]. Gürgen et al. enable to define windows
a little bit different to provide a high flexibility and variety of window types. A window
creation operator produces a set of windows on a stream according to a window description
configuring the operator. The description is constituted of initial start and end parameters
(time or tuples are possible), parameters for the advancement of start and end window edges,
and a rate parameter which is analog to the slide parameter. The windows serve as input for
windowed operators, such as aggregation operators.

In SQL-based declarative languages the window construct included in the SQL:2003
standard is extended, e.g., by a SLIDE keyword to enable the definition of a sliding step.
Example 11 shows three different types of windows in different languages.

I Example 11.

CREATE STREAM C2XSpeeder
SELECT COUNT (*) As speederNo
OVER (RANGE 1 MINUTE PRECEDING SLIDE 10 SECOND ]
FROM C2XMessage WHERE Speed > 30.0

Listing 2 A Time-based Sliding Window in ESL (Stream Mill)

SELECT Istream COUNT (*)
FROM C2XMessage [RANGE 100 SLIDE 100]
WHERE Speed > 30.0

Listing 3 A Tuple-based Tumbling Window in CQL (STREAM)

SELECT Count (*)
FROM C2XMessage <LANDMARK RESET AFTER 600 ROWS ADVANCE 20 ROWS >
WHERE Speed > 30.0

Listing 4 A Tuple-based Landmark Window in TruSQL (TruSQLEngine)

3.2 The Notions of Time and Order
We already mentioned before, that time plays an important role in DSMS. In all DSMS
systems the processed tuples have some kind of timestamp assigned from a discrete and
monotonic time domain. The timestamps allow then to determine if a tuple is in order or
not and enable the definition of time-based windows [64].

3.2.1 Time
The prominent status of timestamps can already be seen from several semantics’ definitions
of streams. The timestamp is always handled as a specific attribute which is not part of
the stream schema [57, 10, 50]. A monotonic time domain T can be defined as an ordered,
infinite set of discrete time instants τ ∈ T [57, 9]. For each timestamp exists a finite number
of tuples (but it can also be zero).

In the literature, there exist several ways to distinguish where, when, and how timestamps
are assigned. First of all, the temporal domain from which the timestamps are drawn can
be either a logical time domain or physical clock-time domain. Logical timestamps can
be simple consecutive integers, which do not contain any date or time information, but
serve just for ordering. In contrast, physical clock-time includes time information (e.g.,
using UNIX timestamps). Furthermore, systems differ in which timestamps they accept
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and use for internal processing (ordering and windowing). In most of the systems implicit
timestamps [11, 78], also called internal timestamps or system timestamps are supported.
Implicit timestamps are assigned to a tuple, when it arrives at the DSMS. This guarantees
that tuples are already ordered by arrival time, when they are pipelined through the system.
Implicit timestamps assigned at arrival in the system also allow for estimating the timeliness
of the tuple when it is output [3]. Besides a global implicit timestamp (assigned on arrival),
there exists also the concept of new (local) timestamps assigned at the input or output
queue of each operator (time of tuple creation). This could also be implicitly expressed
by the tuple’s position in the queue [78]. In contrast, explicit timestamps [11, 78], external
timestamps [15] or application timestamps [64] are created by the data stream sources and
an attribute of the stream schema is determined to be the timestamp attribute. The authors
of the Stream Mill language ESL [72, 15] use the term explicit timestamp in another way to
discriminate between their concept of latent timestamps and internal and external timestamps.
Latent timestamps are assigned on demand (lazily), i.e., only for operations dependent on a
timestamp such as windowed aggregates [15], while explicit timestamps are assigned to every
tuple. Example 12 shows, how the three types of timestamps are defined on creation of our
C2XMsgs stream. In Listing 5 the creation timestamp ts is used as an explicit timestamp,
designated by the ORDER BY clause. The query in Listing 6 uses an implicit timestamp by
applying the function current_time and also designating it as order criterion. Listing 7
does not contain any information about an ordering attribute (no ORDER BY clause). Thus a
timestamp will be assigned on demand.

I Example 12 (Usage of the different timestamp types in ESL).

CREATE STREAM C2XMgs (
ts timestamp , msgID char (10) , lng real ,
lat real , speed real , accel real)

ORDER BY ts;
SOURCE ’port5678 ’;

Listing 5 Explicit Timestamp

CREATE STREAM C2XMgs (
ts timestamp , msgID char (10) , lng real , lat real ,
speed real , accel real , current_time
timestamp )

ORDER BY current_time ;
SOURCE ’port5678 ’;

Listing 6 Implicit Timestamp

CREATE STREAM C2XMgs (
ts timestamp , msgID char (10) , lng real , lat real ,
speed real , accel real );

SOURCE ’port5678 ’;

Listing 7 Latent Timestamp

Depending on the semantics of a data stream, tuples can include more than one timestamp.
For example, in the data stream definition of the CESAR language [26], which is an event-
based stream algebra, a tuple contains two timestamps, τ0 and τ1, denoting the start and
end of an event, respectively.
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There are also systems (e.g., StreamBase) which additionally order the tuples for the
same timestamp, for instance, by arrival order. Jain et al. define the order of tuples with
respect to the timestamp even stricter – an additional ordering between batches of tuples
with the same timestamp is specified [45]. This order was proposed because the authors
noticed semantic inconsistencies for query results in systems which use a time-driven model
(i.e., windows are evaluated on each new time instant) as well as in systems, which use a
tuple-driven model (i.e., a window is evaluated on each new tuple).

An interesting question is how timestamps should be assigned to results of binary operators
and aggregates to ensure semantic correctness. Babcock et al. propose two solutions to
assign a timestamp to results of a join [11]. The first option is to use the creation time
of a join output tuple when using an implicit timestamp model. The second option is to
use the timestamp of the first table involved in the join in the FROM clause of the query
can be used, which is suited for explicit and implicit timestamp models. For aggregates
similar considerations can be made. For example, if a continuous or windowed minimum or
maximum is calculated, the timestamp of the maximal or minimal tuple, respectively, could
be used. When a continuous sum or count is calculated, the creation time of the result tuple
or the timestamp of the latest element included in the result can be used. If an aggregate
is windowed there exist additional possibilities. The smallest or the highest timestamp of
the elements in the window can be used as they reflect the oldest timestamp or most recent
timestamp in the window, respectively. Both maybe interesting, when timeliness for an
output tuple is calculated, but which one to use depends obviously on the desired outcome.
Another possibility would be to take the median timestamp of the window.

3.2.2 Order
Many of the systems and their operators rely on (and assume) the ordered arrival of tuples
in increasing timestamp order to be semantically correct [64]. For example, in the STREAM
system (using a time-driven execution model) time can only advance to the next time instant,
when all elements in the current time instant have been processed [10]. This has been coined
as the ordering requirement [64]. But as already pointed out, this can not be guaranteed
especially for explicit timestamps and data from multiple sources. In the various DSMS
basically two main approaches to the problem of disorder have been proposed.

One approach is to tolerate disorder in controlled bounds. The Aurora system, for example,
does not assume tuples to be ordered by timestamp [3]. The system divides operators into
order-agnostic and order-sensitive operators. The first group of operators does not rely on an
ordering of elements, for instance, the Filter operation we already introduced in Example 2,
which is a unary operation processing one tuple at a time. The order-sensitive operators
are parametrized with a definition how unordered tuples should be handled. The definition
contains the attribute which indicates the order of the tuples and a slack parameter. The
slack parameter denotes, how many out-of-order tuples may arrive between the last and
next in-order tuple. All further out-of-order tuples will be discarded. The order can also be
checked for partitions of tuples, specified by an additional GROUP BY clause in the order
definition. A general concept of a slack parameter, called adherence parameter has been
presented for the STREAM system [7, 13]. The adherence parameter is a measure for how
well a stream “adheres” to a defined constraint. The authors define a set of k-constraints one
of which is the ordered-arrival-k-constraint. This constraint conforms to the slack parameter’s
ordering semantics.

The second way to handle disorder is to dictate the order of tuples and reorder them
if necessary. While the use of implicit timestamps is a simple way of ordering tuples on
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arrival [64], the application semantics often requires the use of explicit timestamps though.
Heartbeats [64] are tuples sent with the stream including at least a timestamp. These markers
indicate to the processing operators, that all following tuples have to have a timestamp greater
than the timestamp in the punctuation. As already mentioned in Section 2 the STREAM
system includes an Input Manager which buffers stream elements based on heartbeats. The
buffered elements are output in ascending order as soon as a heartbeat is received, i.e., they are
locally sorted. The heartbeats can be created by the stream sources or by the Input Manager
itself. Srivastava and Widom propose approaches to create heartbeats either periodically or
based on properties of the stream sources and the network, such as transmission delay [64].
Heartbeats are only one possible form of punctuation [74]. Punctuations, in general, can
contain arbitrary patterns which have to be evaluated by operators to true or false [74].
Therefore, punctuations can also be used for approximation. They can limit the evaluation
time or the number of tuples which are processed by an otherwise blocking or stateful
operator. For example, when a punctuation-aware join operator receives a punctuation it can
match all elements received on the streams to join since the last punctuation. Other methods
for reordering tuples in limited bounds use specific operators. Aurora’s SQuAl language
provides a sorting operator called BSort [3]. It orders tuples according to some attribute
by applying a buffered bubble sort algorithm. Finally, the Stream Mill system leaves the
handling of out-of-order tuples to the user [15]. It detects these tuples and adds them to a
separate stream.

3.3 Completeness of Stream Query Languages
It has already been mentioned that blocking operators are not an option for query languages
in DSMS [11]. Hence, SQL as is is not suited for DSMS, because sequence queries cannot
be expressed [52, 51]. An interesting question therefore is, which queries can be formulated
using only non-blocking operators of SQL. Continuous query semantics is based on the
append-only principle. Therefore, the class of monotonic queries is different from the query
classes which allow deletions and updates [70]. For a monotonic query Q holds, that the
result of a query over the ordered stream S at time τi is included in the results of the query
at time τi+1 [70, 52, 51, 39] or formally expressed:

Q(S(τi)) ⊆ Q(S(τi+1)),∀τi ∈ T

Law et al. have proven that the class of monotonic queries over data streams can be
expressed by queries using only non-blocking operators [52]. Non-blocking and monotonic
operators in the relational algebra are obviously Selection and Projection. Law et al. also
showed that a query which is monotonic for ordered streams is also monotonic for relations
with respect to set containment and can therefore be expressed only with non-blocking
operators [51]. It can be followed from this, that Union and Cartesian Product or Join also
can be calculated by non-blocking operators as these are monotonic wrt. set containment [51],
while Set Difference (which is non-monotonic) cannot. The intersection is a monotonic
operator and can be either expressed in the relational algebra by non-blocking or blocking
operators. In SQL also continuous forms of Count and Sum are non-blocking [52].

4 Data Quality in DSMS

We have motivated the demand for a new concept of data management systems by monitoring
and tracking applications. These applications usually rely on sensors which create data
streams by measuring values or recording multimedia. But the use of sensors also reveals
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problems. The produced data can be incorrect, unordered, and incomplete. Another source
of inaccuracies in data streams can be the use of classification, prediction, ranking or any
other sort of approximation algorithms [47, 48]. The unreliability of the data processed again
leads to unreliable results of applications realized with a DSMS. Consider our example of
traffic state estimation. We rely on positions determined by GPS devices. These devices
usually introduce a measurement error in positioning and messages may also contain no
position, when the GPS signal is lost. These errors are propagated through the entire data
processing chain. For example, when the road and the section on which the message has been
created is determined, the error can lead to an assignment to a wrong section. Inevitably,
this will lead to inexact results when estimating the traffic state for the road. Hence, means
to take inaccuracies into account and to rate the result of a query have to be considered.
Not only the quality of the data values (we will call this application-based data quality in the
following), but also the data stream management system performance has to be considered to
assess the quality of query results. When the output delay in the DSMS is too high, e.g., the
estimated traffic state will identify a traffic situation which is no longer present. Furthermore,
if too many tuples are dropped by a load shedder to gain performance, statements based
on a low number of data may also harm the result. Therefore, also the Quality of Service
(QoS) for multiple performance aspects of a system has to be tracked and taken into account
in query processing. Hence, we define data quality related to the system performance as
system-based data quality. In the following, we will discuss data quality dimensions for
application-based and system-based data quality. We will discuss solutions which enable to
rate and to track the corresponding data quality dimensions. We will also briefly introduce
our own ontology-based approach.

4.1 Application-based and System-based Data Quality Dimensions
As mentioned before, we distinguish data quality which is inherent in the data itself, i.e., it
describes how reliable the data we process is, and data quality which represents the system
performance of a DSMS. The type of the measured data quality is expressed by a data
quality dimension. For example, the timeliness of data is a data quality dimension. For
each data quality dimension a data quality metric defines a possible way to measure the
quality within that dimension. There exists a plethora of classifications which structure and
describe data quality dimensions, such as the Total Data Quality Management (TDQM)
classification [75, 66], the Redman classification [60], or the Data Warehouse Quality (DWQ)
classification [46]. For data streams, Klein and Lehner propose a dimension classification [49].
In Table 1 we list a non-exhaustive set of data quality dimensions, which we think are of
importance for data quality rating in a traffic state estimation application realized by a
DSMS (based on [49, 16]) and rate if they are application-based or system-based. Data
quality for a dimension can be measured on different levels. It can be measured system-wide,
e.g., the output rate, on operator level, e.g., the selectivity of an operator, or on window,
tuple, or attribute level.

In the following, we will discuss some approaches of measuring and rating data quality in
DSMS.

4.2 Quality of Service Monitoring in DSMS
In Section 2 we described that DSMS can implement means to monitor the system performance
during query processing. Aspects which describe the performance of a DSMS are also termed
Quality of Service. Quality of Service in general rates how good the component or system at
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Table 1 Example Data Quality Dimensions.

Data Qual-
ity Dimen-
sion

Informal Description Example Metric Application-
based/
System-
based

Completeness Ratio of missing values or
tuples to the number of re-
ceived values/tuples

The number of non-null
values divided by all values
including null values in a
window

Application-
based

Data Volume The number of tuples or
values a result is based on,
e.g., the number of tuples
used to calculate an ag-
gregation

Quantity of tuples in a win-
dow

System-
based and
Application-
based

Timeliness The age of a tuple or value Difference between cre-
ation time and current sys-
tem time

System-
based and
Application-
based

Accuracy Indicates the accuracy of
the data, e.g., a constant
measurement error or the
result of a data mining al-
gorithm

An externally calculated or
set value

Application-
based

Consistency Indicates the degree to
which a value of an attrib-
ute adheres to defined con-
straints, e.g., if a value lies
in certain bounds

Rule evaluation Application-
based

Confidence Reliability of a value or
tuple, e.g., the confidence
to have estimated the cor-
rect traffic state

A weighted formula which
is calculated from values
for other data quality di-
mensions

Application-
based

hand fulfils the constraints and requirements posed to it. QoS oriented systems then try to
give guarantees for the QoS aspects and try to keep QoS within defined bounds by applying
countermeasures. QoS dimensions (used here analogously to quality dimensions) have been
classified by Schmidt in [62] into time-based and content-based dimensions. Schmidt identified
the following time-based dimensions for DSMS: throughput (or data rate), output delay
(or latency) and the following content-based dimensions: sampling (or drop rate), sliding
window size, approximation quality and data mining quality. He defined two new time-based
dimensions, called signal frequency (amount of information in a stream) and inconsistency
(maximal difference between creation timestamp and system timestamp, which is similar
to our example metric of timeliness in Section 4.1). In the Aurora system additionally a
value-based QoS dimension is defined, which rates if important values have been output, i.e.,
they prioritize results and can therefore also prioritize values and adapt operators of the
corresponding queries for these values [3]. To guarantee to stay in given bounds for the above
dimensions, DSMS have several countermeasures, depending on the QoS dimension at hand.
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For example, if the system is overloaded and the output delay or the throughput are low, a
DSMS can drop tuples with sampling techniques, which can be quite simple (random) or very
sophisticated, e.g., based on information about other QoS parameters as in the case of the
value-based QoS [3]. The dropping of tuples is also called load shedding. Load shedding is
done by placing load shedding operators into the query execution plan [12, 69] where required.
Other possibilities are adaptive load distribution or admission control [69]. In the Aurora
system for each QoS the administrator of the system is required to model a two-dimensional
function with a QoS rating between 0 and 1 on the y-axis and the QoS dimension values on
the x-axis for each output stream [3]. Additionally, a threshold for the QoS dimension has to
be defined to indicate in which bounds QoS is acceptable. A similar approach is followed by
the QStream system [61, 62]. In the QStream system two descriptors for each output stream
are defined – a content quality descriptor which includes the dimension’s inconsistency and
signal frequency defined by Schmidt [62] and a time quality descriptor consisting of values
for data rate and delay. The quality dimensions are calculated throughout the whole query
process. All operators in the query execution plan comprise functions used to calculate the
value of each quality dimension when new tuples are processed. At the end of the processing
chain quality values are output for the result streams of each continuous query. A user
can pose requirements on the result stream’s quality by formulating a request describing
thresholds for the dimensions. If the descriptors meet the quality request, this is reported to
the user as a successful negotiation.

4.3 Inclusion of Data Quality in Data Streams
In the systems reviewed in the previous section, QoS information is handled separately
from the stream data and can only be retrieved for the output streams. Furthermore, data
quality dimensions are mostly system-based, i.e., the content of the data in the stream
and corresponding application-based quality dimensions are not taken into account. In the
successor system of Aurora, Borealis [1], the QoS model of Aurora has been refined to rate
QoS not at the output streams of the system, but also in each operator in between. To this
end, each tuple includes a vector with quality dimensions, which can be content-related (e.g.,
the importance of a message) or performance-related (e.g., processing time for a message up
to this operator). The vectors can be updated by operators in the query execution plan and
a score function is provided which can rate the influence of a tuple on the QoS based on a
vector [1]. A crucial limitation of the previous approach is, that the quality dimensions in the
vector are equal for each stream, which does not allow for an application-based data quality
rating of stream contents. To achieve a more fine-granular rating of data quality on attribute,
tuple and window level and to also include application-based data quality dimensions, Klein
and Lehner [49] propose a different approach. They extended the PIPES system [50] by
Krämer and Seeger with modified operators to include data quality dimensions as a part of
the stream schema. Krämer and Seeger distinguish four different types of operators based
on the operator’s influence on the stream data (modifying, generating, reducing or merging
operators). Changes on the data can in turn result in updates of the data quality of an
attribute, tuple, or window. For each data quality dimension and each operator the influence
of the operator is discussed and a function to calculate the new data quality is provided.
The approach introduces so called jumping data quality windows which include a set of data
quality dimensions and where for each attribute and window the size of the window can be
defined independently [49]. In addition, Klein and Lehner make the size of the data quality
windows dynamically adaptable based on an interestingness factor. The interestingness factor
is dependent on the application realized and can for example shrink the window size when
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there are interesting peaks in the stream data to refine the granularity of quality information
in this stream portion.

A drawback of Klein and Lehner is the deep integration of data quality dimensions and
corresponding metrics into the operators. The implementation of operators has to be changed
substantially to include the quality information. Therefore, we propose a more flexible
solution, which allows to define custom quality dimensions and metrics based on an abstract
data quality ontology. The ontology consists of two parts – a first part including data quality
related concepts, such as Quality Metric, Quality Dimension and Quality Factor, and a
second part comprising application specific concepts with relationships to the data quality
concepts (e.g., an attribute is related to a certain quality dimension). The data quality meta
information is loaded once when a continuous query is registered in the system and the data
quality is then calculated according to the meta information throughout query processing.
Similar to [49] we add the data quality information as separate attributes to the tuples in the
stream. We identified three main tasks in the data stream management process, which can
influence the data quality. First, in line with Klein and Lehner we parse the continuous query
and identify relational operators in the query which modify the data stream and the data in it
and hence, also the data quality. Second, in the ontology we allow to define rules, which rate
the semantic consistency of attribute values or values of multiple related attributes in a tuple.
For example, if we receive the current temperature and an indicator for snow, we can define
a rule to check if the value for snow (yes/no) is consistent with the temperature given (no
snow possible when above 3◦C). Third, also application specific and user-defined operations,
such as data mining operations, are considered and the addition of data quality values can
be easily integrated into the application code. The data quality metrics can be arbitrarily
complex and can include several data quality factors and can also combine values of other
data quality dimensions. This allows for flexible and application-dependent estimation of
data quality. For example, in the traffic state estimation example we calculate a confidence
value for the estimated traffic state based on multiple weighted data quality dimensions,
where the weights allow to reflect the individual contribution to the overall quality. Finally,
we made the calculation of data quality in the system optional – if not required, data quality
information is not calculated at all. Our approach is described in detail in [36].

4.4 Probabilistic Data Streams
A completely different way of dealing with defective data in DSMS are probabilistic data
streams. Uncertainty has been studied intensively for Database Management Systems and
several systems (mainly research prototypes) implementing probabilistic query processing
have been proposed. In data stream management this is a very recent topic which has been
addressed only scarcely in literature compared to other research questions. Kanagal and
Desphande [48] distinguished two main types of uncertainties in data streams (analogously
to databases). First, the existence of a tuple in the stream can be uncertain (how probable
is it for this tuple to be present at the current time instant?), which is termed by Kanagal
and Despande tuple existence uncertainty. Second, the value of an attribute in a stream
tuple can be uncertain, which is called attribute value uncertainty (what is the probability of
attribute X to have a certain value?). In literature, mainly the tuple existence uncertainty
is addressed. To model uncertainty for attribute values, for each attribute of a stream a
random variable with a corresponding distribution function has to be introduced [48]. The
probability of a tuple to consist of a certain configuration of values is then modeled by a joint
distribution function, which multiplies the probabilities of the single attribute values. The
tuple existence uncertainty can be modeled by a binary random variable, which can either
be zero (is not included) or one (is included) and a probability distribution function [48].
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I Definition 13. A probabilistic stream or probabilistic sequence is a sequence of tuples
S = < t1, p1 >, . . . , < tn, pn >, where pi is the probability of the existence of a tuple ti at
position i modeled by a probability distribution function (pdf) [48, 47, 23].

The probability for a composition of the stream of a certain multiset of tuples at a certain
point in time is again modeled by a joint probability distribution calculated from the pdfs of
the tuples. Analogously to the possible worlds in probabilistic databases, from the random
variables and the probability distributions, all possible streams [48, 47], i.e., deterministic
instances of the stream, at a time τ and their probability can be determined.

One can easily see that the number of possible streams grows exponentially with the
size of the stream and the number of possible tuples (#P-hard data complexity) [23]. For
certain query operations, such as aggregates, on probabilistic streams, which are again
probability distributions, it is therefore undesirable to calculate all the possible streams. The
remedy to this problem are operators, which approximate the pdfs for the corresponding
query operations. In [23] aggregates are computed using sketches, i.e., estimating frequency
moments for the probabilistic stream. The data complexity of possible streams is even worse
when the random variables are not independent of each other, i.e., if there is a correlation
between tuples [48]. Kanagal and Desphande [48] propose to use directed graphical models
(this can be, for example, Bayesian Networks) to describe correlated random variables,
intermediate query results, and the dependencies between them. In the graphical model, the
nodes depict the random variables and the edges are the dependencies. To limit the size of
the graph and hence the computational complexity for a query, marginal distributions are
used, which neglect unnecessary dependencies and infer new dependencies. Kanagal and
Desphande extended the set of SQL operators by some probabilistic operators. For example,
two new SELECT operators are provided, which can return a deterministic result for a query.
The SELECT-MAP retrieves the stream with the highest probability of all possible streams,
while SELECT-ML returns the possible stream which includes for each attribute of a tuple the
value with the highest probability for that attribute. Their language also supports sliding
windows and the set of common aggregates over the probabilistic data streams.

While the approaches before assumed possible stream semantics for streams with discrete
data, these semantics is not valid for streams with uncertain continuous data (a problem of
attribute-value uncertainty). The PODS system [73] addresses this issue by modeling each
continuous-valued attribute as a continuous random variable with a corresponding pdf. To
model pdfs for continuous random variables Tran et al. use Gaussian Mixture Models, which
include several distributions for one variable. A bimodal distribution function, for example,
can be approximated by two different Gaussian distribution functions. A probabilistic or
uncertain data stream then consists of a sequence of tuples with discrete and continuous
random variables for each attribute [73].

5 Conclusion

DSMS have demonstrated to be effective and efficient solutions dealing with huge amounts
of rapidly incoming data which has to be processed in real-time. The new data management
requirements of data stream applications have not only led to new concepts for data manage-
ment architectures, but also to new and adapted query languages and semantics suited for
streaming systems. Now, after almost two decades of research on continuous queries and data
streams, many research prototypes have evolved and already some of them have turned into
mature industry solutions. Many big players in the field of data management, such as Mi-
crosoft, IBM, or Oracle, have their own data stream management solution. However, despite
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some efforts, there is neither a common standard for query languages nor an agreement on a
common set of operators and their semantics until today. Finally, data quality has turned
out to be a crucial aspect in DSMS. Incoming data streams may be delivered by unreliable
sources and results of a DSMS application can be falsified by data inaccuracies. Hence, data
quality measurement, monitoring, and improvement solutions have to be integrated into
DSMS and receive increasing attention. Since many interesting questions still remain open
further research in the field is to be done and will follow.

Acknowledgments. I thank my colleagues Stefan Schiffer and Christoph Quix and the
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A Scientific and Commercial DSMS

In the following tables scientific and commercial DSMS are listed with their predominant
properties.

A.1 Research Projects

Table 2 Data Stream Management Systems – Research Projects.
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A.2 Commercial Systems

Table 3 Data Stream Management Systems – Commercial Products.
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