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Preface

In May 2012, around 40 world-leading experts convened in Schloss Dagstuhl in Saarland,
Southern Germany, to discuss future research directions and important research challenges
for artificial and computational intelligence in games. The volume you are now reading is the
follow-up volume to that seminar, which collects the distilled results of the discussions that
went on during those May days. As organisers of the seminar and editors of the follow-up
volume, it is our sincere hope that the chapters you are about to read will prove to be useful
both as references for your existing research and as starting points for new research projects.
In this introductory chapter, we give some background on the research field, describe how
the seminar was held, and briefly present each of the following chapters.

The research field

Research into artificial intelligence (AI) and computational intelligence (CI)1 started in
the 1950s and has been growing ever since. The main focus of the research is to provide
computers with the capacity to perform tasks that are believed to require human intelligence.
The field is in constant need of good benchmark problems. All benchmark problems have
their drawbacks – for instance, abstract mathematical problems might not be relevant to the
real world, and complex robotics problems can be time- and resource-consuming. In the last
decade, computer games have been considered a strong source of benchmark problems for
human intelligence. Humans have played games for all of recorded history, and since 1980s
video games have been a favourite pastime of people all over the world. Games provide a
plethora of tough and interesting challenges for AI and CI, including developing artificial
players, computationally creative systems that construct game content, agents that adapt to
players, and systems that analyse and learn about players from their in-game behaviour. As
games are developed to be challenging and interesting to humans, many game-related AI
problems are relevant to understanding human cognition and creativity as well. Additionally,
game design and development have a number of outstanding problems that could be solved
by better and more appropriate AI, so there is an opportunity to make a contribution to
real-world problems.

The study of AI and CI as applied to video games is rather new. A research field
devoted to these topics has only started to coalesce within the last 8 years around the
AAAI Artificial Intelligence and Interactive Digital Entertainment (AIIDE) and IEEE
Computational Intelligence and Games (CIG) conferences2. The research field is not yet
defined well, and the research community has been somewhat fractured along both the
symbolic/non-symbolic axis and along the European/American axis. A set of common
problems and a common terminology needed to be established, and ideas needed to be
cross-fertilised. The Dagstuhl seminar which this volume is an outcome of was held in order
to address these challenges.

1 The terms AI and CI are here used more or less interchangeably, even though there is a historic divide
in terms of both methods studied and membership of the research communities. In general, CI methods
are more biologically inspired or statistical, whereas AI methods are more symbolical or logical, but
there is a great deal of overlap.

2 AI and CI research into classic board games has a longer history, and is concentrated around the ICGA
Computer Games (CG) and Advances in Computer Games (ACG) conferences.
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viii Preface

The seminar and the follow-up volume

In May 2012, we gathered around 40 researchers and practitioners of AI and CI in video
games at Schloss Dagstuhl to discuss the challenges in the field and the approaches to make
progress on important problems. The seminar was arranged so that participants formed
work groups consisting of 3–10 people each, all experts on the topic of the group. The groups
discussed their topic for one or two days, and then reported the consensus of their findings
to the rest of the seminar. We explicitly instructed attendants to focus on the future of
the field rather than the past, and to form groups around problems rather than particular
methods. With so many world-class experts on these topics gathered in a single seminar to
discuss the challenges of the future, it would have been a sin to not publish the outcome of
the proceedings so it would be accessible to other researchers in the area.

Soon after the seminar, we published a Dagstuhl Report containing abstracts of the
discussions in all groups. We then invited group members to write longer chapters on each
topic, chapters which would include both surveys of the existing literature and discussions of
future challenges, and thus serve as guides to the literature as well as starting points for new
research projects. Unfortunately, not all groups wrote up a full chapter-length description of
their conclusions for various reasons (mostly lack of time on part of the authors). The work
groups that did not write full chapters were those on believable agents and social simulations,
AI architectures for games, AI for modern board games, evaluating AI in games research,
AIGameResearch.org and computational narrative. However, eight of the groups did write
full chapters, and those are collected in this follow-up volume.

The chapters

This volume consists of eight chapters in addition to the Introduction you are currently
reading. Each chapter is the outcome of a particular discussion group that met for two days,
and wrote the chapter in the months after the symposium. To assure quality, single-blind
peer review was carried out by other attendees of the seminar, and the final versions of the
chapters have been edited to address the reviewers’ concerns. In editing this volume, we
have chosen to arrange the chapters so that they start with the more generic problems and
methods and proceed to more specific applications. However, the web of interdependence
between work on these topics is dense, with games for mobile platforms relying on pathfinding,
general game playing on procedural content generation, procedural content generation on
player modelling, etc.

Search in Real-Time Video Games
Almost every AI and CI technique can be seen as search in some way: search for solutions,
paths, strategies, models, proofs, actions etc. Historically, the first applications of AI
techniques to games – in particular, methods for playing board games – were all about
searching the tree of possible actions and counter-actions, the “game tree”. It therefore
seems suitable to start this volume with a chapter about search. This chapter outlines the
main types of search that are used in games today, and then proceeds to discuss the main
challenges that search algorithms face when applied to real-time video games as opposed to
board games. Arguably the greatest challenge is that real-time video games typically have
near-continuous state and action space, so that the number of states and the number of
actions that could be taken from each state (the branching factor) is enormous in comparison
to the one for traditional board games. Also, the number of moves required to be taken



Preface ix

before the game reaches an end point with a natural reward function is much larger. However,
concepts as game tree and branching factor cannot easily be applied to real-time games as
moves are neither strictly sequential nor necessarily alternating between players. We find
that even measuring the hardness of these problems is difficult. Approaches to overcoming
the challenges include clustering or partitioning states, and statistical approaches such as
Monte Carlo methods.

Pathfinding in Games
Pathfinding is a particular kind of search, where the objective is to find the shortest path
(according to some metric) between two points. The workgroup (and thus the chapter)
on pathfinding was motivated by the central importance of pathfinding for most video
games. Algorithms for pathfinding consume a considerable amount of processing power
in modern games, and whereas pathfinding might be considered a “solved problem” in
some areas of AI, it most certainly is not in computer games. Inferior pathfinding is a
substantial problem in published commercial computer games, with their complex dynamic
environments and real-time processing requirements. Recent advances in pathfinding include
path computation methods based on hierarchical abstractions, informed memory-based
heuristic functions, symmetry reduction and triangulation-based map representations. The
chapter also outlines future research challenges, which mainly relate to the following three
subjects: (1) the dynamic nature of game maps, which can change at any time with, for
instance, a destructible environment; (2) the sheer size of game maps coupled with memory
limitations of game consoles; and (3) collaborative pathfinding for multiple agents.

Learning and Game AI
Machine learning is a very active research field in its own right, with a large number of
applications in various domains. It would seem natural for an academic researcher to think
that there were ample applications for learning algorithms in computer games. However, it
is rather rare to see machine learning used in any published games, and commercial game
developers tend to view such methods with utmost suspicion. The chapter on Learning
and Game AI goes through some of the many potential applications for machine learning
in games, such as balancing games, balancing players and finding design loopholes. The
chapter also discusses some of the considerable challenges that are impeding the adoption
of learning algorithms by the game industry, including explaining the models induced by
learning algorithms to designers and players, the problem with finding good reward functions
that reflect the quality of the game, and the high computational cost of many learning
algorithms.

Player Modelling
Player modelling is a specific application of machine learning to games, where the goal is
to model the behaviour, preferences or experience of the player. A central question tackled
in the chapter on player modelling is to what extent an accurate model of a player can be
constructed based on observations of the player’s behaviour in a game, potentially enriched
by information from demographics, questionnaires and psychophysiological measurements.
With the growing amount of networking that game players engage in, the potential to acquire
data for building player models is increasing all the time. Many modern computer games now
“phone home” and report detailed information to their developers’ servers about their players.

DFU – Vo l . 6
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This information might be used to make games more entertaining and captivating for their
players, which in turn translates to revenue for their developers. Researchers in CI and AI
have much to contribute here, given the plethora of methods that have been developed in
academia for similar problems. In the chapter, approaches based on unsupervised learning
are contrasted with “theory-based” approaches based on ideas and models from psychology.
One conclusion is that while it is relatively easy to create models for populations of players
which predict how that population will respond, it is quite hard to create a model for an
individual player, that explains and can anticipate that player’s behaviour. A potential
solution is to create dynamic models, i.e., a model for a player that is constantly evaluated
and dynamically adapted to observations of the player, and player responses.

Procedural Content Generation: Goals, Challenges and Actionable Steps
The chapter on procedural content generation discusses methods for automatically generating
game content such as maps, levels, items, quests and game rules. This is a set of important
problems in game development, both to alleviate production costs for game content and
to make new kinds of games that feature infinite and perhaps adaptive content generation.
In recognition of this, procedural content generation has recently become one of the most
active research topics within the CI/AI and games field. The chapter proposes a vision of a
system that can make a complete game world, including characters, buildings, quests, and
items for a given game-engine at the press of a button. To reach this vision, a number of
technical and conceptual challenges need to be overcome; the list includes items such as better
understanding the process of searching for game content artifacts, and representing artistic
style in a content generator. Further, the chapter lists a number of specific projects which
could be undertaken right away, and would contribute to addressing the main challenges for
PCG and ultimately to realising the grand vision.

General Video Game Playing
Much game AI is developed to work specifically with one game, meaning that the solutions
developed might be narrow in scope and contributing little to the greater problem of general
artificial intelligence. In the small field of general game playing, approaches to creating agents
that can proficiently play a wide range of games is studied. However, in actual practice
general game playing tends to focus on variations of board games. This is to a large extent
due to the field’s focus on the General Game Playing Competition, where AI agents are
tested on unseen games which in practice all are rather simple board games. The chapter on
general video game playing argues for the importance of testing agents on multiple unseen
games, but that these need to be more complex and multi-faceted than the games which have
hitherto been used for general game playing. In particular, video games provide plenty of
challenges related to coordination, timing, and navigation, that board games do not provide.
The chapter proposes that one necessary component of a general video game playing system
would be a language in which it is possible to specify complete video games, so that they can
be generated by a special game engine.

Towards a Video Game Description Language
This chapter continues where the chapter on general video game playing left off and puts
forward a concrete suggestion for a language that can specify simple video games. The
language was developed by analysing three simple 2D arcade games from the early 1980’s –
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Frogger, Lunar Lander and Space Invaders – and finding a vocabulary for describing their
common parts. It was found that a language could be structured around individual game
objects, and defining their movement logics and the effects of collisions. The chapter includes
sketches of how the three aforementioned games would be implemented in the proposed
language.

Artificial and Computational Intelligence for Games on Mobile Platforms
The final chapter addresses the particular challenges and opportunities arising when using
AI and CI in games for mobile platforms, such as smartphones and tablets. Compared to
desktop and laptop computers, these devices typically have limitations in terms of battery
life, processing power and screen size. However, they also have several features that are
not usually part of conventional systems, such as location awareness, personal ownership
and relatively low demands on graphics. The chapter on AI and CI for games on mobile
platforms argues that these features make such platforms very well suited for experimentation
with new AI-based game designs, especially those based on procedural content generation,
personalisation and ubiquitous gaming.

Conclusions

The 2012 gathering at Schloss Dagstuhl was deemed a great success by all participants, and it
drew a large part of this strength out of the agile and very adaptive style it was held in, with
several unforeseen developments in themes and results. This follow-up volume exemplifies
the high level of the scientific discussions and the strong focus on scientific progress of the
seminar as a whole. We are pleased to announce that a follow-up seminar will be organized
at Schloss Dagstuhl in 2014. Whereas the 2012 seminar treated the topics discussed as
separate research areas, the 2014 seminar will focus on the integration of the various research
fields. This is meant to achieve faster developments, improve visibility and acceptance of our
algorithms and approaches in industry and open up new areas of research. We believe that
integration is an exciting as well as necessary step in order to further shape and consolidate
the research field of artificial and computational intelligence in games.
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Abstract
This chapter arises from the discussions of an experienced international group of researchers
interested in the potential for creative application of algorithms for searching finite discrete
graphs, which have been highly successful in a wide range of application areas, to address a
broad range of problems arising in video games. The chapter first summarises the state of
the art in search algorithms for games. It then considers the challenges in implementing these
algorithms in video games (particularly real time strategy and first-person games) and ways of
creating searchable discrete representations of video game decisions (for example as state-action
graphs). Finally the chapter looks forward to promising techniques which might bring some of
the success achieved in games such as Go and Chess, to real-time video games. For simplicity, we
will consider primarily the objective of maximising playing strength, and consider games where
this is a challenging task, which results in interesting gameplay.

1998 ACM Subject Classification I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases search algorithms, real-time video games, Monte Carlo tree search, min-
imax search, game theory

Digital Object Identifier 10.4230/DFU.Vol6.12191.1

© Peter I. Cowling, Michael Buro, Michal Bida, Adi Botea, Bruno Bouzy, Martin V. Butz,
Philip Hingston, Héctor Muñoz-Avila, Dana Nau, and Moshe Sipper;
licensed under Creative Commons License CC-BY

Artificial and Computational Intelligence in Games. Dagstuhl Follow-Ups, Volume 6, ISBN 978-3-939897-62-0.
Editors: Simon M. Lucas, Michael Mateas, Mike Preuss, Pieter Spronck, and Julian Togelius; pp. 1–19

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol6.12191.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-62-0


2 Search in Real-Time Video Games

1 Introduction

Search algorithms have achieved massive success across a very wide range of domains, and
particular success in board and card games such as Go, chess, checkers, bridge and poker.
In each of these games there is a reasonably well-defined state-action graph (possibly with
information sets in the games of imperfect information games such as bridge and poker). The
success and generality of search for producing apparently strategic and human-competitive
behaviours points to the possibility that search might be a powerful tool in finding strategies
in video game AI. This remains true in multiplayer online strategy games where AI players
need to consistently make effective decisions to provide player fun, for example in the role of
supporting non-player character. Search is already very well embedded in the AI of most
video games, with A* pathfinding present in most games, and ideas such as procedural
content generation [78] gaining traction.

However, video games provide a new level of challenge when it comes to thinking about
the sort of strategic behaviours where search has worked so well in board and card games.
Principally this challenge is that the complexity of the naïvely defined state-action graph has
both a branching factor and a depth that is orders of magnitude greater than that for even
the most complex board games (e.g. Go), since we must make sometimes complex decisions
(such as choice of animation and path) for a large number of agents at a rate of anything
up to 60 times per second. Currently these problems are overcome using painstakingly
hand-designed rule-based systems which may result in rich gameplay, but which scale rather
poorly with game complexity and are inflexible when dealing with situations not foreseen by
the designer.

In this article, we point towards the possibility that power and ubiquity of search
algorithms for card and board games (and a massive number of other applications) might be
used to search for strategic behaviours in video games, if only we can find sensible, general
ways of abstracting the complexity of states and actions, for example by aggregation and
hierarchical ideas. In some ways, we are drawing a parallel with the early work on chess,
where it was felt that capturing expert knowledge via rules was likely to be the most effective
high-level method. While capturing expert rules is currently the best way to build decision
AI in games, we can see a bright future where search may become a powerful tool of choice
for video game strategy.

In order to provide a coherent treatment of this wide area, we have focussed on those
video games which have the most in common strategically with board and card games,
particularly Real Time Strategy (RTS) and to a lesser extent First Person games. For these
games a challenging, strong AI which assumes rational play from all players is a goal which
is beyond the grasp of current research (although closer than for other video games where
speech and emotion are needed), but which would likely be of interest to the games industry
while providing a measurable outcome (playing strength) to facilitate research developments.

The paper is structured as follows: in section 2 we consider the current state of the art in
relevant research areas, in section 3 we point to some of the research challenges posed by
video games, and in section 4 we discuss promising approaches to tackling them. We conclude
in section 5. The paper arose from the extensive, wide ranging and frank discussions of a
group of thought leaders at the Artificial and Computational Intelligence in Games summit
at Schloss Dagstuhl, Germany, in May 2012. We hope it may provide some inspiration and
interesting directions for future research.
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2 State of the Art

2.1 Search
Alpha Beta Minimax Search
Alpha-beta is a very famous tree search algorithm in computer games. Its history is strongly
linked with the successes obtained in Computer Chess between 1950, with the Shannon’s
original paper [65], and 1997 when Deep Blue surpassed Gary Kasparov, the human world
champion [1], [17], or indeed when Shaeffer and co-workers showed that with perfect play
the game of Checkers is a draw [63], which is one of the largest computational problems
ever solved. Alpha-beta [35] is an enhancement over Minimax which is a fixed-depth tree
search algorithm [81]. At fixed depth d, Minimax evaluates nonterminal game positions with
a domain-dependent evaluation function. It backs up the minimax values with either a min
rule at odd depths or a max rule at even depths, and obtains a minimax value at the root.
Minimax explores bd nodes, where b is the search tree branching factor.

At each node, alpha-beta uses two values, alpha and beta. Without entering into the
details, alpha is the current best value found until now, and beta is the maximal value that
cannot be surpassed. During the exploration of the branches below a given node, when the
value returned by a branch is superior to the beta value of the node, the algorithm safely cuts
the other branches in the search tree, and stops the exploration below the node. Alpha-beta
keeps minimax optimality [35]. Its efficiency depends mainly on move ordering. Alpha-beta
explores at least approximately 2bd/2 nodes to find the minimax value, and consumes a
memory space linear in d. Furthermore, in practice, the efficiency of alpha-beta depends
on various enhancements. Transposition tables with Zobrist hashing [86] enables the tree
search to reuse results when encountering a node already searched. Iterative deepening
[68] iteratively searches at increasing depth enabling the program to approach an any time
behaviour [39]. Minimal window search such as MTD(f) [56] uses the fact that many cuts
are performed when the alpha-beta window is narrow. Principal variation search assumes
that move ordering is right and that the moves of the principal variation can be searched
with a minimal window [55]. The history heuristic gathers the results of moves obtained in
previous searches and re-use them for dynamical move ordering [62].

Monte Carlo Tree Search (MCTS)
Monte Carlo Tree Search (MCTS) has revolutionised Computer Go since it was introduced by
Coulom [20], Chaslot et al. [19] and Kocsis and Szepesvári [36]. It combines game tree search
with Monte Carlo sampling. As for minimax tree search, MCTS builds and searches a partial
game tree in order to select high quality moves. However, rather than relying on a domain-
dependent evaluation function, Monte Carlo simulations (rollouts) are performed starting
from each nonterminal game position to the end of the game, and statistics summarising the
outcomes are used to estimate the strength of each position. Another key part of its success is
the use of UCT (Upper Confidence Bounds for Trees) to manage the exploration/exploitation
trade-off in the search, often resulting in highly asymmetric partial trees, and a large increase
in move quality for a given computational cost. The resulting algorithm is an any-time
method, where move quality increases with the available time, and which, in its pure form,
does not require any a priori domain knowledge. Researchers have been exploring its use in
many games (with notable success in general game playing [6]), as well as in other domains.

The basic algorithm can be enhanced in various ways, to different effect in different
applications. One common enhancement is the use of transposition tables, and a related

Chapte r 01



4 Search in Real-Time Video Games

idea: Rapid Action Value Estimation (RAVE) [24], which uses the all-moves-as-first (AMAF)
heuristic [13]. Another common enhancement is to use domain knowledge to bias rollouts
[9, 25]. This must be used with care, as stronger moves in rollouts do not always lead to
better quality move selections. A recent survey [12] provides an extremely thorough summary
of the current state of the art in MCTS.

A* Search
A* [29] is one of the most popular search algorithms not only in games (e.g., pathfinding),
but also in other single-agent search problems, such as AI planning. It explores a search
graph in a best-first manner, growing an exploration area from the root node until a solution
is found. Every exploration step expands a node by generating its successors. A* is guided
using a heuristic function h(n), which estimates the cost to go from a current node n to a
(closest) goal node. Nodes scheduled for expansion, that are kept in a so-called open list, are
ordered according to a function f(n) = g(n) + h(n), where g(n) is the cost from the root
node to the current node n. Nodes with a smaller f value are seen as more promising, being
considered more likely to belong to a solution with an optimal cost. When h is admissible
(i.e., h(n) never overestimates the true cost between n and the nearest goal, h∗(n)), A*
returns optimal solutions.

A* remembers all visited nodes, to be able to prune duplicate states and to reconstruct a
solution path to the goal node. Both the memory and the running time can be one important
bottlenecks for A*, especially in large search problems. Iterative Deepening A* (IDA*) [38]
reduces the memory needs down to an amount linear in the depth of the exploration path, at
the price of repeatedly expanding parts of the state space by iterative deepening. Weighted
A* [58] can provide a significant speed-up at the price of a bounded solution sub-optimality.
There are many other search methods that build on A*, including methods for hierarchical
pathfinding, and methods for optimal search on multiple CPU cores.

Multi-Player Search
Less research has been done on game-tree search in multi-player games than in two-player
zero-sum games, partly because results are harder to obtain. The original tree-search
algorithm for multi-player games, Max-n [47], is based on the game-theoretic backward
induction algorithm [54] for computing a subgame-perfect equilibrium (in which each player
maximizes its return under the assumption of game-theoretic rationality). To this, Max-n
adds game-tree pruning and bounded-depth search. Prob-max-n is an extension of Max-n
with probabilities [75]. The results on pruning in Max-n are very weak: shallow pruning
occurs at depth one, but deeper pruning does not occur except in the last branch, which
is not effective when the branching factor is high [40]. Greater pruning can be achieved by
replacing the assumption of game-theoretic rationality with a “paranoid” assumption that
all of the other players are trying to minimize one’s own return. This assumption reduces
the multi-player game to a two-player game, on which one can use a two-player game-tree
search algorithm [74] to compute a maximin strategy for the multi-player game. In terms
of game-playing performance, neither the paranoid algorithm nor the Max-n assumption of
game-theoretic rationality have been especially successful in producing strong AI players, and
more sophisticated ways are needed to model human interactions in multiplayer games [83].
As in two-player games in which MCTS surpassed alpha-beta, MCTS also surpassed Max-n
in multi-player games [73] with enhancements or not [53] and has become the reference
algorithm.
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2.2 Abstraction
Hierarchical Task Networks (HTNs) and Behaviour Trees
HTN planning is a technique for generating sequences of actions to perform tasks (complex
activities). In a game environment, these might be activities to be performed by an computer-
controlled agent. For each kind of task there are methods that provide alternative ways to
decompose the task into subtasks (simpler tasks). Usually each method contains preconditions
or constraints that restrict when it can be used. Planning proceeds by decomposing tasks
recursively into simpler and simpler subtasks, until actions are reached that the agent can
perform directly. Any time a task t is produced for which none of the available methods is
applicable, the planner backtracks to look for other ways to decompose the tasks above t.

Some HTN planners are custom-built for particular application domains. Others (e.g.,
SIPE-2 [82], O-PLAN [22, 77], and SHOP2 [51]) are domain-configurable, i.e., the planning
engine is independent of any particular application domain, but the HTN methods in the
planner’s input are specific to the planning domain at hand. Most HTN planners are built
to do offline planning, i.e., to generate the entire plan before beginning to execute it. But in
video game environments where there are strict time constraints and where the outcomes of
the planned actions may depend on many unpredictable factors (e.g., other agents), planning
is often done online (concurrently with plan execution) (e.g., [44]). To create believable
sequences of actions for virtual agents in Killzone 2, an HTN planner generates single-agent
plans as if the world were static, and replans continually as the world changes [80, 18].

In the context of game programming, a behavior tree is a tree structure that interleaves
calls to code executing some gaming behavior (e.g., harvest gold in an RTS game) and the
conditions under which each of these code calls should be made. In this sense, they are
closer to hierarchical FSMs [32] than to HTN planning. At each node there are lists of pairs
(cond, child) where cond is a condition to be evaluated in the current state of the game and
child is either a code call or a pointer to another node. In current practice, behavior trees
generally are constructed by hand. In principle, HTN planning could be used to generate
behavior trees; but most existing HTN planners incorporate an assumption of a single-agent
environment with actions that have deterministic outcomes (in which case the tree is simply
a single path). A few HTN planners can reason explicitly about environments that are
multi-agent and/or nondeterministic [41, 43, 42], including a well-known application of HTN
planning to the game of bridge [52, 70]. Furthermore, the online HTN planning used in some
video games can be viewed an on-the-fly generation of a path through a behavior tree.

Temporal Abstraction
The abstraction of time in real-time video games provides unique challenges for the use of
approaches which search a directed graph, where the nodes represent states and the arcs
represent transitions between states. Note that here we interpret “state” loosely – the states
themselves will usually be rather abstract representations of the state of the game, and the
transitions will usually only represent a small subset of possible transitions. If we introduce
continuous time, then a naive state transition graph has infinite depth, since we may make
a transition at any time. There are two primary methods for overcoming this problem:
time-slicing and event-based approaches. When using time-slicing we divide time into even
segments, and use algorithms which are guaranteed to respond within the given time, or
consider applications where a non-response is not problematic. There are many examples in
pathfinding (e.g. Björnsson [5]). Another time-slicing approach is given in Powley et al. [60]
where macro-actions are used to plan large-scale actions which are then executed frame by
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frame, where each transition corresponds to a macro-action executed over several frames.
Event-based approaches consider an abstraction of the tree where branching is only possible
following some significant event. Zagal and Mateas [85] has further discussion of abstract
time in video games.

Level of Detail AI
One of the main challenges of creating high-fidelity game AI is the many levels of behaviour
that are needed: low level actions, agent operations, tactics, unit coordination, high-level
strategy etc. For example, real-time strategy games require multiple levels of detail. The
AI needs to control tasks at different levels including creating and maintaining an economy,
planning a high-level strategy, executing the strategy, dealing with contingencies, controlling
hundreds of units, among many others. To deal with this problem, so-called managers are
often used to take care of different gaming tasks [64]. Managers are programs specialized in
controlling one of the tasks in the real-time strategy game such as the economy. In games
such as role-playing games and first-person shooters, a lot of CPU and memory resources are
spent in the area where the player-controlled character is located whereas little or no CPU
time is spent in other areas [10]. This is often referred to as level-of-detail AI. One possible
approach is to use AI techniques such as AI planning to generate high-level strategies while
using traditional programming techniques such as FSMs to deal with low-level control.

Hierarchical Pathfinding
Pathfinding remains one of the most important search applications in games. Computation
speed is crucial in pathfinding, as paths have to be computed in real-time, sometimes with
scarce CPU and memory resources. Abstraction is a successful approach to speeding up more
traditional methods, such as running A* on a flat, low-level graph representation of a map.

Hierarchical Pathfinding A* (HPA*) [7] decomposes a map into rectangular blocks called
clusters. In an abstract path, a move traverses an entire cluster at a time. Abstract moves are
refined into low-level moves on demand, with a search restricted to one cluster. Hierarchical
Annotated A* (HAA*) [28] extends the idea to units with variable sizes and terrain traversal
capabilities. Partial Refinement A* (PRA*) [76] builds a multi-level hierarchical graph by
abstracting a clique at level k into a single node at level k + 1. After computing an abstract
path at a given level, PRA* refines it level by level. A refinement search is restricted to a
narrow corridor at the level at hand. Block A* [84] uses a database with all possible obstacle
configurations in blocks of a fixed size. Each entry caches optimal traversal distances between
any two points on the block boundary. Block A* processes an entire block at a time, instead
of exploring the map node by node. Besides abstractions based on gridmaps, triangulation is
another successful approach to building a search graph on a map [23].

Dynamic Scripting
Scripts, programs that use game-specific commands to control the game AI, are frequently
used because it gives the game flexibility by decoupling the game engine from the program
that controls the AI [4]. This allows gamers to modify the NPC’s behaviour [59]. Carefully
crafted scripts provide the potential for a compelling gaming experience. The flip side of this
potential is that scripts provide little flexibility which reduces replayability. To deal with this
issue, researchers have proposed dynamic scripting, which uses machine learning techniques
to generate new scripts or modify existing ones [71]. Using a feedback mechanism such as
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the one used in reinforcement learning, scripts are modified towards improving some signal
from the environment (e.g., score of the game).

Learning Action Hierarchies
Various research directions have acknowledged that an hierarchical organization of actions
can be highly beneficial for optimizing search, for more effective planning, and even for
goal-directed behavioral control in robotics [8]. Psychological research points out that the
brain is highly modularly organized, partitioning tasks and representations hierarchically
and selectively combining representation on different levels for realizing effective behavioral
control [16, 30, 57]. While thus the importance of hierarchies is without question, how such
hierarchical representations may be learned robustly and generally is still a hard challenge
although some research exists studying this problem [31].

“Black Box” Strategy Selection
An intuitive approach to applying adversarial search to video games is to start off with
a collection of action scripts that are capable of playing entire games and then – while
playing – select the one executed next by a look-ahead procedure. In [61], for instance, this
idea has been applied to base-defense scenarios in which two players could choose among
scripts ranging from concentrating forces to spreading out and attacking bases simultaneously.
To choose the script to execute in the next time frame, the RTSplan algorithm simulates
games for each script pair faster than real-time, fill a payoff matrix with the results, and
then solves the simultaneous-move games- in which actions now refer to selecting scripts
– using linear programming. Actions are then sampled according to the resulting action
probabilities. Equipped with an efficient fast-forwarding script simulator and an opponent
modelling module that monitors opponent actions to maintain a set of likely scripts the
opponent is currently executing, RTSplan was able to defeat any individual script in its
script collection.

3 Challenges

3.1 Search
Massive branching factor / depth. MCTS has been successfully applied to trees
with large branching factor and depth in games such as Go or Amazons. However,
video games branching factor and depth in generally several order of magnitudes greater.
Furthermore, the action space and the time can be continuous leading to much more
complexity. MCTS has been studied in continuous action space leading to Hierarchical
Optimistic Optimization applied to Trees (HOOT) [48]. HOO [14] is an extension of
UCB addressing the case of a continuous set of actions. However, HOOT is a very general
approach which is unlikely to work in complex video games.
Often, the massive branching factor is caused by the high number of characters acting in
the game. One character may have a continuous set of actions. But even with a reduced
set of actions, i.e. north, west, south, east, wait, the number of characters yields an
action space complexity that is finite but that is huge and not tractable with general
tools such as HOOT. The problem of the huge action set in video games cannot be dealt
with MCTS approach alone. A partial solution could be grouping sibling moves, but it
will probably not be sufficient. Some abstraction scheme must be found to divide the
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number of actions drastically. There is some promise for macro-action techniques such as
[60] but to date these have been considered only in rather simple video games.
The length of simulated video games is the second obstacle. With many characters acting
randomly, a mechanism must lead the game to its end. Assuming the game ends, it should
do it quickly enough, and the game tree developed should go deeply enough to bring
about relevant decisions at the top level. A first solution to encompass the huge depth or
the time continuity, is to deal with abstract sequences grouping consecutive moves. A
sequence of moves would correspond to a certain level of task with a domain-dependent
meaning, e.g. a fight between two armies, or an army moving from a starting area to
another. Tree search should consider these tasks as actions in the tree.
Automatically finding abstractions. Learning abstractions has been a recurrent
topic in the literature. Works include learning abstraction plans and hierarchical task
networks from a collection of plan traces. Abstracted plans represent high-level steps that
encompass several concrete steps from the input trace. In a similar vein, learning HTNs
enables the automated acquisition of task hierarchies. These hierarchies can capture
strategic knowledge to solve problems in the target domain.
Despite some successes, there are a number of challenges that remain on this topic
that are of particular interest in the context of games: existing work usually assumes a
symbolic representation based on first-order logic. But RTS games frequently require
reasoning with resources, hence the capability to abstract numerical information is
needed. In addition, algorithms for automated abstraction need to incorporate spatial
analysis whereby suitable abstraction from spatial elements is elicited. For example, if
the game-play map includes choke points it will be natural to group activities by regions
as separated by those choke points. Also, abstraction algorithms must deal with time
considerations because well-laid out game playing strategies frequently consider timing
issues. Last but not least, such abstractions need to be made dependent upon the actual
behavioural capabilities available in the game. Choke points may thus not necessarily
be spatially determined in an Euclidean sense, but may rather be behavior-dependent.
For example, a flying agent does not care about bridges, but land units do. Thus, a
significant challenge seems to make abstraction dependent on the capabilities of the agent
considered. Learning such abstractions automatically clearly remains an open challenge
at this point.
Capturing manually-designed abstraction. Related to the previous point, rep-
resentation mechanisms are needed to capture manually-created abstractions. Such
representation mechanisms should enable the representation of game-playing strategies at
different levels of granularity and incorporate knowledge about numerical information,
spatial information and time. A challenge here is to avoid creating a cumbersome rep-
resentation that is either very difficult to understand or for which adequate reasoning
mechanisms are difficult to create.
1-player vs 2-player vs multiplayer. One of the biggest reasons why game-tree search
has worked well in two-player zero-sum games is that the game-theoretic assumption of
a “rational agent” is a relatively good model of how human experts play such games,
hence algorithms such as minimax game-tree search can produce reasonably accurate
predictions of future play. In multiplayer games, the “rational agent” model is arguably
less accurate. Each player’s notion of what states are preferable may depend not only
on his/her game score but on a variety of social and psychological factors: cameraderie
with friends, rivalries with old enemies, loyalties to a team, the impetus to “gang up on
the winner,” and so forth. Consequently, the players’ true utility values are likely to be
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nonzero-sum, and evaluation functions based solely on the game score will not produce
correct approximations of those utilities. Consequently, an important challenge is how
to build and maintain accurate models of players’ social preferences. Some preliminary
work has been done on this topic [83], but much more remains to be done.
Hidden information / uncertainty. Asymmetric access to information among players
gives rise to rich gameplay possibilities such as bluffing, hiding, feinting, surprise moves,
information gathering / hiding, etc. In many (indeed most) card and board games
asymmetric hidden information is central to interesting gameplay. Information asymmetry
is equally important for many video games, including the real-time strategy and first-
person games which are the primary focus of this article. When played between human
players, much of the gameplay interest arises through gathering / hiding information, or
exploiting gaps in opponents’ knowledge. Creating AI which deals with hidden information
is more challenging than for perfect information, with the result that many AI players
effectively “cheat” by having access to information which should be hidden. In some
cases this is rather blatant, with computer players making anticipatory moves which
would be impossible for a human player without perfect information, in a way which
feels unsatisfactory to human opponents. In other cases, there is a simulation of limited
access to information. Ideally computer characters should have access to similar levels of
sensory information as their human counterparts. The problems of hidden information
in discrete domains is well-studied in game theory (see e.g. Myerson [50]), where the
hidden information is captured very neatly by the information set idea. Here we have a
state-action graph as usual, but each player is generally not aware of the precise state of
the game, but the player’s partial information allows the player to know which subset of
possible states he is in (which is an information set from his point of view). Searching
trees of information sets causes a new combinatorial explosion to be handled. This is a
challenging new area for research, with some promise shown in complex discrete-time
domains by the Information Set Monte Carlo Tree Search approach of Cowling et al. [21].
Simulating the video game world forward in time. Rapid forward models could
provide a glimpse of the world’s future via simulation. This would allow researchers to
use techniques based on state space search (e.g. Monte Carlo Tree Search, HTN, classical
planning) more effectively either for offline or online AIs. However, modern games often
feature complex 3D worlds with rich physics and hence limited capability to speed-up a
simulation (there are hardware limitations of CPUs and GPUs). Moreover, games are
real-time environments that can feature non-deterministic mechanisms, including actions
of opponents, which might not be always reliably simulated. Opponent modelling [79] and
level-of-detail AI [11] approach may provide a partial solution to these issues. However,
these features are not always present in current games, and the design and development
of forward models provides an interesting research challenge.
Explainability. Explanation is an important component in computer gaming envir-
onments for two reasons. First, it can help developers understand the reason behind
decisions made by the AI, which is very important particularly during debugging. Second,
it can be useful to introduce game elements to new players. This is particularly crucial in
the context of complex strategic games such as the civilization game series.
Generating such explanations must deal with two main challenges. First, explanations
must be meaningful. That is, the explanation must be understandable by the player
and/or developer and the context of the explanation must also be understood. Possible
snapshots from the game GUI could help to produce such explanations, highlighting the
explanatory context. Second, explanations must be timely in the sense that they must be
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rapidly generated and be shown at the right time. The latter point is crucial particularly
if explanations occur during game play. They should not increase the cognitive load of
the player, since this might result in the player losing interest in the game.
It seems important to distinguish between preconditions and consequences when auto-
matically generating explanations. Preconditions are the subset of relevant aspects of the
game that must be in a certain state for the offered explanation (of what the bot has
done) to hold. Consequences are those the bot expected to occur when it executes a par-
ticular behavior in a the specified context. In order to generate meaningful explanations,
preconditions and consequences must thus be automatically identified and presented in
an accessible format to ensure the generation of meaningful explanations.
Robustness. Video games must continue to work whatever the state of the game world
and action of the players. hence any algorithm to which uses search to enhance strategy
or other aspects of gameplay must always yield acceptable results (as well as usually
yielding better results than current approaches). Explainability (discussed in the previous
paragraph) allows for better debugging and greatly improves the chances for robustness.
Robustness may be achieved by techniques such as formal proofs of correctness and
algorithm complexity, or by having simple methods working alongside more complex
search methods so that acceptable results are always available.
Non-smooth trees. Many games (chess is a prime example) have trees which are
non-smooth in the sense that sibling nodes at significant depth in the tree (or leaf nodes)
often have different game theoretic values. This behaviour makes tree search difficult,
and is arguably a reason why MCTS, while effective at chess AI, cannot compete with
minimax/alphabeta. It seems likely and possible that game trees for some video games
will have this pathology. While this makes heuristic search approaches that do not explore
all siblings perform unreliably, one possible source of comfort here is that for complex
game trees made up of highly aggregated states and actions, smoothness is quite close
to the property that makes such a game playable (since otherwise a game becomes too
erratic to have coherent strategies for a human player). While we raise this as a challenge
and a consideration, successful resolution of some of the other challenges in this section
may give rise to relatively smooth trees.
Red teaming, Real-World Problems. Red Teaming is a concept that originated in
military planning, in which a “Red Team” is charged with putting itself in the role of
the enemy, in order to test the plans of the friendly force – the “Blue Team”. The term
Computational Red Teaming (CRT) has been coined to describe the use of computational
tools and models to assist with this planning process. A technology review on CRT was
recently carried out for the Australian Department of Defence [26]. One application
domain for CRT is tactical battle planning, in which battles are simulated to test the
effectiveness of candidate strategies for each side, and a search is overlaid to search for
strong Red and/or Blue strategies. The task has a great deal in common with the search
for tactics and strategies in Real Time Strategy games, and shares many of the same
challenges: the strategy space is huge, involving coordinated movements and actions
of many agents; the domain is continuous, both spatially and temporally; the “fog of
war” ensures that much information is hidden or uncertain. It may be that approaches
that have been developed to address these issues in CRT will also be helpful in RTS and
similar games, and vice-versa.
Memory / CPU constraints. CPU and Memory consumption and management
represents a key issue in respect to computer game speed and scalability, even against a
background of increasing parallel processing capability. State of the art game development
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is primarily focused on the quality of the graphical presentation of the game environment.
As a result, game engines tend to consume and constrain the computational power
available for AI computations [15]. Therefore, an AI subsystem responsible for hundreds
of active agents has to scale well, due to the resource demand in question. Even proven
generic techniques like A* often need to be tweaked in respect to the game engine to
be used effectively in real-time [27]. This makes the use of computationally intensive
techniques, like classical planning or simulating decision outcomes, very problematic.
General Purpose Methods: Transfer learning. Many of the above techniques have
the aim of being generally applicable in whole sets or classes of game environments. Once
a particular behavioral strategy of an agent has been established in one environment,
the same strategy might also be useful in others. One approach to tackle such tasks
is to abstract from the concrete scenario, producing a more general scheme. If such
abstractions are available, then transfer learning will be possible. However, clearly the
hard challenge, which does not seem to be answerable in the general sense, is how to
abstract. Abstractions in time for transferring timing techniques may be as valuable as
abstractions in space, such as exploration patterns, or abstraction on the representational
format, for example, generalizing from one object to another. General definitions for useful
abstractions and formalizations for the utility of general purpose methods are missing at
the moment. Even more so, the challenge of producing a successful implementation of a
general purpose AI, which, for example, may benefit from playing one RTS game when
then being tested in another, related RTS game is still wide open.

4 Promising Research Directions and Techniques

4.1 Abstract Strategy Trees
The RTSplan “black box” strategy selection algorithm described earlier requires domain
knowledge implemented in form of action scripts. Moreover, its look-ahead is limited in the
sense that its simulations assume that players stick to scripts chosen in the root position. An
adhoc solution to this problem is to add decision points in each simulation, e.g.. driven by
game events such as combat encounters, and apply RTSplan recursively. This, however, can
slow down the search considerably. Another serious problem is that switching game-playing
scripts in the course of a game simulation episode may be inadequate to improve local
behaviours. As an example, consider two pairs of squads fighting in different areas of an
RTS game map, requiring different combat strategies. Switching the global game playing
script may change both local strategies, and we therefore will not be able to optimize them
independently. To address this problem, we may want to consider a search hierarchy in which
game units optimize their actions independent from peers at the same level of the command
hierarchy. As an example, consider a commander in charge of two squads. The local tasks
given to them are decided by the commander who needs to ensure that the objectives can be
accomplished without outside interference. If this is the case, the squads are independent of
each other and their actions can be optimized locally. This hierarchical organization can be
mapped to a recursive search procedure that on different command levels considers multiple
action sequences for friendly and enemy units and groups of units, all subject to spatial
and temporal constraints. Because the independence of sibling groups speeds up the search
considerably, we speculate that this kind of search approach could be made computationally
efficient.

As a starting point we propose to devise a 2-level tactical search for mid-sized RTS
combat scenarios with dozens of units that are positioned semi-randomly on a small map

Chapte r 01



12 Search in Real-Time Video Games

region. The objective is to destroy all enemy units. The low-level search is concerned with
small-scale combat in which effective targeting order and moving into weapon range is the
major concern when executing the top-level commands given to it. The high-level search
needs to consider unit group partitions and group actions such as movement and attacking
other groups. As there are quite a few high-level moves to consider, it may be worthwhile
investigating unit clustering algorithms and promising target locations for groups. Now the
challenge is to intertwine the search at both levels and to speed it up so that it can be
executed in real-time to generate game actions for all units. Once two-level search works,
it will be conceptually easy to extend it to more than two levels and – hopefully – provide
interesting gameplay which challenges human supremacy in multi-level adversarial planning.

4.2 Monte Carlo Tree Search
Video games have a massive branching factor and a very high depth due to a large number
of game agents, each with many actions, and the requirement to make a decision each frame.
Since abstraction is a promising technique for video games that replaces the raw states by
abstract states, the concrete actions by abstract actions or sequences of actions, the challenge
is to use these abstractions in a tree search algorithm. This will give an anticipation skill to
the artificial player. Instead of developing a tree whose nodes are raw states and arcs are
actions, MCTS might be adapted such that nodes would correspond to abstract states and
arcs to a group of actions or a sequence of actions, or even to a sequence of groups of actions.
The strength of MCTS is to develop trees whose nodes contain simple statistics such as the
number of visits and the number of successes. Therefore nothing forbids MCTS to build
these statistics on abstract entities. To this extent MCTS combined with abstractions is a
very promising technique for designing artificial agents playing video games.

4.3 Game Theoretic Approaches
Designing artificial players using abstraction and tree search for video games raises the
question of backing up the information from child nodes to parent nodes when the nodes
and the arcs are abstract. An abstract arc may correspond to a joint sequence of actions
between the players such as: let army A fight against army B until the outcome is known.
Given a parent node with many kinds of sequences completing with different outcomes, the
parent node could gather the information in a matrix of outcomes. This matrix could be
processed by using game theoretic tools to find out a Nash equilibrium and to back up the set
of best moves. The following question would be then how to integrate such a game theoretic
approach within a minimax tree search or a MCTS approach.

4.4 Learning from Replays
Learning in real-time games features a mixture of strong potential advantages and practical
barriers. Benefits include the possibility to adapt to a new environment or a new opponent,
increasing the gaming experience of users. Learning can reduce the game development time,
adding more automation to the process and creating intelligent AI bots more quickly. On the
other hand, a system that learns often involves the existence of a large space of parameter
combinations that gets explored during learning. A large number of parameter combinations
makes a thorough game testing very difficult.

An important challenge is making industry developers more receptive to learning, identify-
ing cases where potential disadvantages are kept within acceptable limits. Competitions can
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facilitate the development and the promotion of learning in real-time games, as a stepping
stone between the academia and the industry.

Learning from replays is particularly appealing because game traces are a natural source of
input data which exists in high volumes from network data of human vs human games. There
are many parts of a game that can benefit from learning, and multiple learning techniques
to consider. Reinforcement learning has been used to learn team policies in first-person
shooter games [69]. In domain-independent planning, sample plans have been used to learn
structures such as macro-operators and HTNs which can greatly speed up a search.

4.5 Partitioning States
Partitioning states into regions, subareas, choke points, and other relevant clusters is often
related to spatial and temporal constraints that are associated with these partitionings. In
the reinforcement learning domain, state partitionings have been automatically identified to
improve hierarchical reinforcement learning [66]. The main idea behind this approach is to
focus state partitionings on particular states which separate different subareas, thus focusing
on choke points. However, the automatic detection depends on the behavioral capabilities
of the reinforcement learning agent, thus offering a more general purpose approach to the
problem. With respect to factored Markov Decision Processes, Variable Influence Structure
Analysis (VISA) has been proposed to develop hierarchical state decomposition by means
of Bayesian networks [33]. With respect to skills and skill learning, hierarchical state
partitionings have been successfully developed by automatically selecting skill-respective
abstractions [37].

While it might not be straight-forward, these techniques stemming from the reinforcement
learning and AI planning literature, seem ready to be employed in RTS games. The exact
technical transfer, however, still needs to be determined. In the future, intelligent partitioning
of states brings may bring closer the prospect of developing autonomously learning, self-
developing agents.

4.6 Evolutionary Approaches
It is interesting to speculate as to whether evolutionary approaches which have been used
successfully by authors such as Sipper [67] might be used in video games. Evolutionary
algorithms have also been used in RTS-like domains with some success. For example,
Stanley et al. [72] use real-time neuroevolution to evolve agents for simulated battle games,
demonstrating that human-guided evolution can be successful at evolving complex behaviours.
In another example, Louis and Miles [45] used a combination of case-based reasoning and
genetic algorithms to evolve strategies, and later [49] combined this to co-evolve players for
a tactical game by evolving influence maps, and combining these with A∗ search. Genetic
programming was used in [34] to evolve behavior trees of characters playing FPS game
capturing basic reactive concepts of the tasks. In a light survey of evolution in games, Lucas
and Kendall [46] discuss many applications of evolutionary search in games, including video
games.

More recently, a number of researchers have been using evolutionary or co-evolutionary
search in the context of Red Teaming (as mentioned in Subsection 3.1). In this approach,
the evolutionary algorithm (or similar, such as a Particle Swarm Optimisation algorithm) is
used to search over a space of possible strategies for a given scenario. These strategies are
represented at a high level, for example as a set of paths to be followed by agents representing
the resources available to each side, organised into squads. Strategies are then evaluated
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using low-fidelity agent-based simulations, called distillations, in which these orders provide
the overall goals of the agents, and simple rules determine their movements and other actions.
The outcomes of these simulations provide fitness values to drive the evolutionary search.

The idea of organising agents into a heirarchical command structure is similar to the
Level of detail AI abstraction discussed in Subsection 2.2. Another possible hybrid approach
is to use temporal abstraction to subdivide the planning period, a coevolutionary search
to simultaneously identify sets of strong strategies for each side at each decision point, and
MCTS to select from these the strongest lines of play. An initial investigation of an idea on
these lines, on a small example scenario, can be found in [2].

4.7 Competitions and Software Platforms

In recent years numerous competitions have emerged presenting researchers with a good
opportunity to compare their AI approaches in specific games and scenarios – BotPrize,
Starcraft, Simulated Car Racing and Demolition Derby, and ORTS to name only a few.

The drawback of some of these competitions is the narrow universe of the respective
games. As a result, AI players are created specifically for the game and the competition’s
aim – e.g. AI in StarCraft exploits game mechanics for micromanagement to win unit on
unit combat, but are too specialised for other RTSs let alone other game genres. Thus the
challenge of generating a general purpose AI is lost.

To overcome this drawback, it is necessary to introduce a conceptual and technical layer
between the designed AI and the used game. This could provide the capability to compare AI
designs across various games and scenarios. Deeper understanding of the common problems
and technical details of games (e.g. RTS, FPS) and AIs is necessary to produce platforms,
tools, techniques, and methodologies for AI creation for games without limiting them to
specific virtual environment. An interesting development here is the Atari 2600 simulator
(see [3]) which allows precise simulation of 1980s arcade games at thousands of times normal
speed due to increases in hardware performance.

The first possible approach is to actually create a layer providing game abstractions for
all games of a certain genre and develop AIs on top of it, like the state of the art software
platforms xAitment, Havok AI, AI-Implant, and Recast. The second approach is to create a
configurable proto-game capable of reflecting the most important mechanics of all games in
a respective field (e.g. ORTS aims to provide a description of game mechanics for RTSs),
which would be build using the state of the art design patterns of the present games. The
third possible approach is to create a multi-game competition utilizing multiple games of the
same type where AIs cannot exploit a certain game. Finally, since solving open AI problems
(e.g. pathfinding) is one of the main issues within the gaming industry, it would be beneficial
to create competitions aimed at solving problems posed by the video games industry. This
could draw the game industry’s attention and help to establish a bridge between industry
and academia.

5 Conclusion

Search algorithms are already integral to video game AI, with A* pathfinding used in a
huge number of games. This paper has reflected upon the wider applications of search in
games, particularly the use of search in operational, tactical and strategic decision making in
order to provide a more interesting gameplay experience. It seems that there are many rich
research directions here, as well as many opportunities for academics to work together with
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those from the games industry and to build more interesting and repayable games in the
future.

In this paper we have considered how we may combine advances in search algorithms
(such as Monte Carlo Tree Search, minimax search and heuristically guided search) with
effective tools for abstraction (such as Hierarchical Task Networks, dynamic scripting, “black
box” strategy selection, player modelling and learning approaches) to yield a new generation
of search-based AI approaches for video games. Continuing advances in CPU speed and
memory capacity make computationally intensive search approaches increasingly available
to video games that need to run in real time. We have discussed the challenges that new
techniques must face, as well as promising directions to tackle some of these issues.

We expect to see many advances in search-based video game AI in the next few years.
It is difficult to predict where the most important advances will come, although we hope
that this paper may provide some insight into the current state of the art, and fruitful
future research directions as foreseen by a range of leading researchers in AI for search and
abstraction in games.
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Abstract
Commercial games can be an excellent testbed to artificial intelligence (AI) research, being a
middle ground between synthetic, highly abstracted academic benchmarks, and more intricate
problems from real life. Among the many AI techniques and problems relevant to games, such
as learning, planning, and natural language processing, pathfinding stands out as one of the
most common applications of AI research to games. In this document we survey recent work in
pathfinding in games. Then we identify some challenges and potential directions for future work.
This chapter summarizes the discussions held in the pathfinding workgroup.
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1 Introduction

Pathfinding is an important application of artificial intelligence to commercial games. Des-
pite a significant progress seen in recent years, the problem continues to constantly attract
researchers’ attention, which is explained in part by the high performance demands that
pathfinding implementations have to satisfy in a game. Pathfinding engines are allocated
limited CPU and memory resources. Moves have to be computed in real time, and often
there are many mobile units to compute paths for. Paths have to look sufficiently real-
istic to a user. Besides a more standard, single-agent pathfinding search on a fully known,
static map, games feature more complicated variations of the problem, such as multi-agent
pathfinding, adversarial pathfinding, dynamic changes in the environment, heterogeneous
terrains and mobile units, incomplete information, and combinations of these.

This chapter looks at games pathfinding research, with an emphasis towards the future.
It summarizes the discussions held in the Pathfinding Workgroup at the Dagstuhl Seminar
on Computational and Artificial Intelligence in Games. A shorter summary of the group’s
findings is available as part of a report on the entire seminar [24]. The first half of this
document overviews recent progress in the area. Then, current challenges and future work
directions are discussed.
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2 Survey of Pathfinding Methods

We start by indicating a popular, baseline approach to pathfinding. The three key elements
of the baseline approach are a graph representation of a map, a search algorithm, and a
heuristic function to guide the search. Grid maps are a popular way of discretizing a game
map into a search graph. As part of the process, a map is partitioned into atomic square
cells, sometimes called tiles. Depending on the map initial topology, a tile is marked as either
traversable or blocked. A mobile unit can occupy one traversable tile at a time. Traversable
tiles become nodes in the search graph. Graph edges connect adjacent traversable tiles.
Depending on the grid type, adjacencies are defined in the 4 cardinal directions (4-connected
grid maps), or in the 4 cardinal + 4 diagonal directions (8-connected grid maps).

According to Björnsson et al. [1], the A* [16] algorithm used to be the de facto standard
in pathfinding search. A* is a well known best-first search method, used in many other
search problems, including AI planning and puzzle solving, to name just a few. To speed up
a search, A* uses a heuristic function h(n), which estimates the distance from a given node
n to a goal node. Heuristics that do not overestimate the true distance to a goal are said to
be admissible. A* with an admissible heuristic returns optimal solutions. On 4-connected
maps, the Manhattan distance is a well known admissible heuristic. Given two nodes with
coordinates (x1, y1) and (x2, y2), the Manhattan distance is defined as ∆x + ∆y, where
∆x = |x1 − x2| and ∆y = |y1 − y2|. On a map with no obstacles, the Manhattan distance
coincides with the true distance. The Octile distance is a variant of the Manhattan distance
adapted to 8-connected maps. It is defined as

√
2×m+ (M −m), where m = min(∆x,∆y)

and M = max(∆x,∆y).
Part of the work overviewed in the rest of this section presents extensions of the baseline

approach, being based on online search. Extensions include using more informative heur-
istic methods, replacing a low-level grid map with a hierarchy of smaller search graphs,
exploiting symmetries to prune the search space in A* search, and using triangulation map
decomposition instead of grid maps.

Other contributions eliminate graph search at runtime. For example, compressed path
databases rely on a database of pre-computed all-pairs shortest path (APSP) data. Moves
are retrieved from a compressed APSP table. This is suitable to games where all potential
paths are precomputed, to largely free the CPU from the burden of path computation
during game play. The data compression helps reducing the memory overhead associated
with caching the precomputed paths.

2.1 Beyond Manhattan: Modern Pathfinding Heuristics on Grid Maps
The Manhattan and the Octile heuristics have the advantage of being simple, fast to com-
pute, and reasonably accurate on many map topologies. However, more informed heuristics
can reduce the number of states expanded (or visited) in a search. In this section we over-
view other heuristics in pathfinding, which can achieve a better accurracy, depending on
factors such as the map topology. They use pre-processing and additional memory to cache
the results of the pre-processing.

Goldberg and Harrelson [9] describe an admissible heuristic as part of their ALT search
method. Consider a given node l, called a landmark, on the graph. A pre-computation step
provides a look-up table with true distances d(n, l) from every node n to l. For simplicity,
assume an undirected graph. Given two arbitrary nodes n1 and n2, |d(n1, l) − d(n2, l)| is
an admissible estimation of the true distance from n1 to n2. The ALT admissible heuristic
takes the maximum maxl |d(n1, l)−d(n2, l)| over a subset of landmarks. Goldberg and Har-
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relson applied their ideas to graphs such as roadmaps and grids with non-uniform costs. The
heuristic has independently been developped by other researchers, including Sturtevant et
al. [32], who call it the differential heuristic. Goldenbert et al. [11] show how the differential
heuristic can be compressed. As an example of when the ALT heuristic is more informat-
ive than the Manhattan heuristic, we note that ALT can potentially identify unreachable
locations (∞ heuristic value), whereas Manhattan might return a finite value.

ALTBestP [6] is a variant of the ALT heuristic that uses one single landmark, from a
pre-defined subset of P landmarks. Specifically, at the beginning of a search, a landmark
is selected that gives the highest heuristic distance for the initial state: arg maxl |d(s, l) −
d(g, l)|, where s and g are the start and the goal. Furthermore, at each evaluated node, the
heuristic given by the selected landmark is compared with the Manhattan heuristic, and
their maximum is used as a heuristic evaluation.

Björnsson and Halldórsson [2] introduce the dead-end heuristic and the gateway heuristic,
two methods that use an automated decomposition of the map into disjoint areas. The
dead-end heuristic identifies areas that are irrelevant when solving a given instance, and
assign a heuristic value of ∞ to all locations contained in such areas. The gateway heuristic
identifies gateway points between adjacent areas in the partitioning, and pre-computes a
table with optimal distances between pairs of entrances. Thus, additional memory, with
a size quadratic to the number of gateways, is traded for an improved heuristic accuracy.
A similar trade-off is taken by Sturtevant et al. [32], with their canonical heuristic, and
Goldenberg et al. [10], with the portal heuristic. Sturtevant et al. [32] use the generic name
of true distance heuristics for the family of heuristics that store exact distances between
pairs of selected nodes.

2.2 Hierarchical Abstraction on Grid Maps
Hierarchical abstraction can potentially speed up a search by replacing it with a series of
smaller searches. Abstract solutions computed in a higher-level state space representation
are gradually refined, possibly through several hierarchical levels, down to the ground level
of the original search space.

Pathfinding is an application where hierarchical abstraction has been successful. Hier-
archical pathfinding methods, such as work mentioned in this section, can ensure that an
initial abstract solution can be refined into a low-level solution. This eliminates the need
to backtrack across hierarchical levels, thus eliminating a source of a potentially great slow
down.

HPA* [3] decomposes a map into disjoint square sectors. Entrance points between ad-
jacent sectors are identified and added as nodes into an abstracted search space. Abstract
edges connect pairs of entrance points placed on the border of the same sector. In effect, in
the abstracted space, a move traverses one sector in one step. Additional abstracted edges
connect the start node (and the target) to the entrance points of its sector. An abstract
solution contains macro moves such as sector-traversing moves. In a refinement step, a
search restricted to the area of one sector converts a macro step into a sequence of actual
moves. The method can have more than 2 hierarchical levels.

Partial Refinement A* (PRA* [34]) combines hierarchical abstraction with fast partial
path refinement to effectively interleave path planning with path execution, which is relevant
to robotics and video games. PRA* first builds a hierarchical map respresentation bottom-
up by mapping small connected regions (e.g., traversable 2x2 tile squares) to tiles on the next
level of abstraction while preserving connectivity. This greedy abstraction process creates
pyramids of coarser and coarser map representations up to the point in which only single
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tiles remain that represent the original connected components. For finding paths subject
to given time and path quality constraints, we choose an abstraction layer and find nodes
representing the start and endpoints on the original map. Starting at this level, PRA*(k)
uses A* to compute the shortest path and then projects the first k steps down to the next
map abstraction level, where the shortest path is determined by only considering a small
corridor around the projected path, etc. This process quickly finds high-quality initial paths
on the original map which allows objects to start moving in the right direction quickly.
Later, Sturtevant [33] described a hybrid approach that combines ideas of HPA* and PRA*
to decrease memory used for abstraction.

HAA* [12] extends HPA* in two directions. First off, in classical pathfinding, a map
is partinioned into traversable terrain and blocked areas. HAA* makes a finer distinction,
allowing to define several types of terrain, such as ground, water, and walls. Secondly, HAA*
handles mobile units with variable sizes and variable terrain traversal capabilities.

The idea of splitting a map into disjoint rectangular blocks is also exploited in Block
A* [39]. Given a pre-determined block size m × n, Block A* pre-computes a database of
all possible block topologies (i.e., all possible combinations of traversable and blocked grid
cells). For each block, optimal distances between pairs of boundary cells are stored. At
runtime, Block A* expands an entire block at a time, as opposed to one individual cell, as it
is the case in regular A*. Block A* is adapted to perform any-angle pathfinding [8], which,
unlike standard grid-based pathfinding, is not limited to the 8 major compass directions.

While the map decomposition used in HPA*, HAA* and Block A* explicitly assumes
a gridmap encoding of the underlying topology, it seems that they could in principle be
extended to other graphs with an (almost) planar structure. One possible approach would
be to slice the bounding rectangle of the graph with square or rectangular blocks, obtaining
the map decomposition. At the same time, PRA* appears to be more straightforward to
apply to non-gridmap graphs, as its core abstraction method relies on identifying cliques.

2.3 Symmetry Elimination
The frequently used assumption that traversable areas on a map have a uniform traversal
cost leads to a considerable degree of symmetry in a pathfinding problem. Consider a path
encoding where each move is represented as a direction. For example, on a 4-connected
gridmap, a path from A to B that goes three steps to the left and three steps upwards
would be encoded as llluuu. Assumming there are no obstacles in the grid-aligned rectangle
having A and B as opposite corners, there are many equivalent paths from A to B, obtained
by interleaving the moves: lluluu, lluulu and so on. This can lead to an excessive, useless
exploration of some parts of a map.

Symmetry reduction can be based on empty rectangles identified on a map [13, 14].
Given two nodes A and B on the border of an empty rectangle, all optimal paths connecting
these are symmetrical to each other, and considering only one such a path is sufficient. Thus,
search can be sped up by defining macro-operators to cross rectangles without visiting any
interior nodes. Jump point search [15] takes a different approach to symmetry elimination.
It allows pruning part of the successors of a node, ensuring that optimality and completeness
are preserved.

2.4 Triangulation-Based Pathfinding
Grid-based map representations are common in pathfinding applications such as video
games, because of their conceptual simplicity that leads to straight-forward and fast im-
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plementations. However, there are several drawbacks that may render grid-based represent-
ations less useful in applications in which world objects don’t have uniform sizes or shapes,
they are not axis-aligned, or they can move in arbitrary directions. Another problem is that
basic grid-based representations waste space in case large map regions are empty. To address
these problems Demyen and Buro [7] present two pathfinding algorithms TA* (Triangula-
tion A*) and TRA* (Triangulation Reduction A*). TA* uses dynamic constrained Delaunay
triangulation (DCDT [18]) to represent maps in which obstacles are defined by polygons,
and finds optimal any-angle paths for circular objects by running an A* like algorithm on
graphs induced by the triangulation.

TRA* improves on TA* by applying a topological map abstraction that contracts each
corridor in the triangulation graph to a single edge and tree components in which pathfinding
is trivial are removed and handled separately. What is left is a graph only containing degree-
3 nodes. Its size is proportional to the number of obstacles on the map, which can be
considerably smaller than the triangulation graph. Because of this size reduction, TRA*
runs faster than TA* and much faster than A* on common game maps while generating
high-quality paths. With the geometric map represenation the mentioned restrictions of
grid-based approaches are lifted. A TA* variant is being used in the StarCraft 2 game
engine.

2.5 Real-Time Search

Real-time search [20] works under the assumption that an agent has a limited amount of time
before having to make a move. Many researchers have addressed the problem since Korf’s
original work [20]. The general solving framework includes a planning step, a learning step
and an acting step. The cycle repeats until the agent reaches the target. In the planning
step, the agent explores the area around its current location. Learning uses the results of
the exploration to update knowledge such as heuristic estimations of the current state or
other states. Acting refers to making one or several moves, changing the current state of
the agent. The many real-time algorithms available differ in the exploration strategy (e.g.,
A* search vs breadth first search), how to perform the heuristic update, and what state to
select as the next current state.

For a long time, real-time search has not been considered as a viable approach to be
implemented in a game. A main cause is the phenomenon of scrubbing: when real-time
search reaches a plateau, an agent has to slowly learn more accurate heuristic values for
the states in the plateau, before being able to escape. This results in an irrational-looking
moving pattern of the agent, moving around within a local area for a long time. Solution
paths can be very long, and so can be the total time to reach the target.

Recently, a line of research on real-time search has focused on eliminating, either com-
pletely or to a great extent, the learning step and thus the scrubbing behaviour [5, 23]. A
key insight that contributes to the success of such methods is the idea of using hill-climbing
moves. These are moves that look the most promising after searching forward only one
step ahead, i.e., evaluating only the successors of a current state. Often, two nodes can be
connected by performing solely hill-climbing moves. For example, consider two nodes within
an area with no obstacles. When a path can be decomposed into subgoals such that the
next sub-goal can be reached with hill-climbing moves, moves are computed fast, with no
learning and scrubbing necessary.
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2.6 Compressed Path Databases
Most pathfinding methods search at the path query time to compute a path on demand. An
alternative approach is to perform path precomputation and lookup [36], returning paths
orders of magnitude faster than online search. Straightforward ways of storing precom-
puted paths have prohibitive memory requirements, which has been a major impediment
to adopting path lookup on a larger scale. Recently, a structure called a compressed path
database [4] has been shown to achieve a massive lossless compression, bringing memory
needs down to reasonable values for many grid maps. Compressed path databases exploit
an idea previously observed and used in [27], with no application to games. In many cases,
the first move on an optimal path, from a start location s to any target t in a contiguous
remote area, is the same. The original authors call this property path coherence. For a
start–target pair (s, t), let the first-move label of t identify an optimal move to take in s

towards t. Compression involves finding, for a given s, a contiguous area A where all the
targets t ∈ A have the same first move label. This allows to replace many identical first-move
labels, one for each (s, t) pair, with one single record for the pair (s,A).

Advantages of compressed path databases include the speed of path retrieval and the
optimality of solutions. The first-move lag (i.e., the time to wait until the first move is
performed) is very low, since each move is retrieved independently from the subsequent moves
on the path. At the same time, compressed path databases pose a number of challenges to
be addressed in the future, as we discuss later in this report.

2.7 Multi-Agent Pathfinding
Multi-agent pathfinding addresses the problem of finding paths for a set of agents going to
their goals. Each agent may have its own goal or all the agents may have a global goal. At
each timestep, all agents move according to their plans. The set of agents has to find the
minimal cost for reaching the set of goals, or to maximize some quantity. The cost can be
the elapsed time. Compared to mono-agent pathfinding, two obstacles appear clearly. The
first one is the size of the set of (joint) actions which is exponential in the number of agents,
which lead to difficulty for a global planning method. And when considering the elementary
solutions to each mono-agent problem in order to find a global solution, the second one is
managing collisions between agents.

Furthermore, multi-agent pathfinding can be cooperative, when all the agents help each
other and try to optimize in the same direction. But it can be adversarial when an army
tries to reach a point and another one prevents this from happening.

Starting points for cooperative pathfindind (CPF) are optimal methods like centralized
A*. They work well on small problems. To avoid the exponential number of actions in the
number of agents, Standley proposes the mechanism of operator decomposition (OD) [30].
Instead of considering that the set of agents decides its joint action (operator), the agents
decide their elementary action in turn, one after each other. With some care to special cases,
A* associated with OD and a perfect heuristic is admissible and complete [30]. Another idea
for optimal solutions is independence detection (ID) [31]. Each agent plans its optimal path
to the goal with A*. Then conflicts are detected, and resolved if possible. When a conflict
between two agents is not solvable, the two agents are gathered into a group, and an optimal
solution is found for this group. Conflict between groups are detected and so forth. When
few conflicts occur this method avoids the exponential size of the set of actions, but in the
worst case, this method is inferior to any centralized method.

The Increasing Cost Tree Search (ICTS) [28] is a two-level search: a global level and a
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low level. At the global level, the search proceeds on an Incremental Cost Tree (ICT) in
which one node corresponds to a vector of costs. The global cost is the sum of individual cost
heuristic (SIC). At the root of the ICT the costs are the optimal costs of agents considered
alone, and the global cost cannot be smaller. At depth δ, the sum of the costs of a node
is the optimal cost plus δ. A node is a goal for ICT iff there is an effective combination of
individual paths without conflict and with costs corresponding to the costs of the node. ICT
search is a breadth-first search for a goal node that progressively increases the best possible
optimal cost.

In video games, optimal complete methods are not always searched because they are
not scalable. Instead, suboptimal, incomplete but tractable methods exist. Cooperative A*
[29] decomposes the whole task into a series of single agent searches in a three-dimensional
space including time. A wait move is added to the set of actions of the agents. The
computed routes are stored in a reservation table that forbids to use its entries in future
searches. Hierarchical cooperative A* (HCA*) uses the idea of Hierarchical A* [17] with
the simplest possible hierarchy: the domain with all agents removed. An issue of HCA*
is how to terminate: sometimes an agent sitting on its destination must move to give the
way to another agent. Another issue is the ordering of agents, and the most important
one is computing complete routes in the 3-dimensional space. Therefore, Windowed HCA*
(WHCA*) simply limits the lookahead in each search it performs to a fixed-horizon time
window [29].

Multi-agent pathfinding can be solved suboptimally in low-polynomial time [21, 26].
However, the practical performance of the available complete method is an open question.
Recent research has lead to the creation of multiple suboptimal methods that are complete
on well-specified subclasses of instances. Push-and-Swap [25] works on problems with at
least two free nodes (i.e., problems where the number of nodes in the graph representing the
map exceeds the number of mobile units by at least two). MAPP [38] works on problems of
the Slidable class. TASS [19] works on problems with at least four free nodes. The TASS
method is a tree-based agent swapping strategy. There are other sub-optimal methods that
work well in practice, but whose completeness range has not been characterized [29, 35, 37].

3 Looking at the Future

In this section we discuss a number of current challenges and directions for the future.

3.1 Bridging the Industry–Academia Gap

As discussed earlier in the report, recently there has been a significant progress in academic
research in multi-agent path finding. Computer games are often mentioned as an application
domain in research papers, and game maps have been used as benchmark data. However, it
appears that there is a need for a better alignment between problems addressed in academic
research and problems that are truly relevant to game developers. Recent academic research
has focused on objectives such as computing optimal solutions, or scaling sub-optimal meth-
ods to hundreds or even thousands of mobile units. Such objectives are important on their
own but, in many real-time strategy games, solution optimality is not strictly needed, and
there can be relatively few units interacting on a portion of a map. In such games, the ability
to encircle and attack a moving enemy unit, which combines elements of multi-agent col-
laborative pathfinding, multi-agent adversarial pathfinding, and multi-agent moving-target
search, could be quite important.
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We believe that a better industry–academia integration in multi-agent pathfinding could
benefit if game developers make available precise definitions of some of their problems and
interest, and possibly data to experiment with. They could be made available on their
own, or be part of a competition open to academic researchers. Recently, Sturtevant has
organized a Grid-Based Path Planning Competition1. This first edition focused on single-
agent pathfinding on fully known, static maps. This could pave the way towards more
diverse types of competition problems, such as multi-agent path planning.

In multi-agent pathfinding, non-interfering paths that bring each agent from its current
state to its goal state must be planned. The agents are considered as friendly, and one agent
may give the way to another one. For example, workers mining and transporting ore is such
a problem. The complexity of a problem depends on the connectivity of the grid, the rules
governing agent movements, the size of the grid, the number of obstacles, the number of
agents. The challenge is to find solutions that avoid collisions and deadlocks in the context
of fast computations. Future work consist in filling the gap between optimal algorithms
solving relatively simple problems and tractable algorithms solving very complex problems
but not optimally.

In adversarial multi-agent pathfinding, encircling behaviors, pursuit behaviors and/or
escaping behaviors must be planned. For example, encircling an enemy unit to attack it,
guarding one or several chokepoints, catching up a prey. Some agents are inimical and their
meetings lead to fight whose outcomes can be the partial weakening or the complete destruc-
tion of some of the agents. However, some other agents are friendly and must coordinate
their movements to reach a goal needing cooperation, such as circling a prey. The terminal
conditions of the plan can be fuzzy and hard to determine, and planning can be continual.
Future work include the integration of the adversarial multi-agent pathfinding solutions with
game tree solutions to video games considered as two-player games.

3.2 From Smart Agents to Smart Maps
While single-agent path planning can naturally be modelled with an agent-centered ap-
proach, other problems may require a decision-making entity that is different from individual
mobile units. For example, in multi-agent path planning, both views could be considered. A
distributed approach would be agent-centered, allowing each agent to make decisions based
on its (possibly incomplete) knowledge about the rest of the problem. Many multi-agent
pathfinding algorithms, however, including most methods discussed in this report, assume
the existence of a centralized decision maker.

Taking the idea further, we argue that part of the intelligence built in a path-finding
module could be associated with parts of the environment in a distributed manner. For
example, a notion of a smart chokepoint could be used to schedule incoming units through a
narrow area of a map. The idea is similar to a traffic light system controlling an individual
intersection on a road map. More generally, local portions of a map, not restricted to certain
types of topologies could be responsible for a smooth navigation inside their own areas.

A dynamic environment offers an additional scope for developing intelligent map func-
tionality. As pointed out earlier in the report, advanced pathfinding algorithms can use
pre-computed datastructures for a faster path computation. Dynamic changes can inval-
idate underlying datastructures. A smart map should be able to know when to trigger a
repair, what area of the map should be affected, how to perform a repair, and how to handle
ongoing navigation while a local datastructure is still under repair.

1 http://movingai.com/GPPC/index.html

http://movingai.com/GPPC/index.html
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3.3 Time and Memory Constraints
While common formulations of pathfinding problems, such as single-agent pathfinding on
a static graph, have a low polynomial complexity, the challenge is to satisfy the ambitious
CPU and memory limits set in actual games. There tends to be a speed–memory trade-off,
exhibited, for example, by methods that perform pre-processing and use the cached results of
pre-processing for a faster online pathfinding. Path quality is a third performance measure
that must be considered. The challenge is to improve the performance on one or more such
criteria, without paying a price on the remaining criteria.

Compressed path databases (CPDs) illustrate the speed–memory tradeoff well, being a
fast but memory-consuming method. Compressed path databases are more memory intens-
ive than other pathfinding methods, such as techniques that involve A* search. Thus, we
use CPDs as a case study, discussing how its memory footprint could be improved.

Future efforts on reducing their size could aim at preserving path optimality, or could
relax this requirement, as a tradeoff to a better size reduction. In games, the optimality of
solutions is not seen as a must-have feature. Suboptimal paths that look reasonable to a user
are acceptable. A promising idea that involves suboptimal paths is combining compressed
path databases with hierarchical abstraction. Recently, Kring et al. [22] have extended the
HPA* algorithm to cache (uncompressed) all-pairs shortest paths for small rectangular sub-
parts of a map. The idea could be taken further to store such local all-pairs shortest paths
in a compressed form, in the style of CPDs. Furthermore, at the global level, a compressed
path database could be computed for the abstract graph that HPA* uses. This approach
would result in a hierarchical, two-level compressed path database.

Finally, we advocate a closer interaction with communities working on related problems,
such as robot navigation, journey planning on a road map, and multi-modal journey planning
in a city. Similarities between such domains and pathfinding in games have encouraged, to
some extent, the transfer of ideas across domains. Clearly, future common events, such as
workshops at big conferences, would help tighten the connections.

4 Conclusion

Summarizing discussions held in the Pathfinding Workgroup at the Dagstuhl Seminar 12191,
this chapter focused on recent advances, current limitations and possible future directions
in pathfinding research. A comprehensive literature survey was beyond the purpose of our
work. Instead, our survey was meant to set the grounds for identifying challenges and future
work ideas.

It seems that research in pathfinding is not in a danger of fading. The recent first edition
of the pathfinding competition suggests that the interest remains high even for the standard,
well studied single-agent pathfinding on a fully known grid map. Yet, some diversification
to the focus of future research might be desirable. For example, in problems such as multi-
agent pathfinding, there seems to be a gap between academic research and commercial
game development. The two communities could mutually benefit from each other if game
developers make available descriptions of problem variants that are particularly relevant to a
game, together with performance specs (speed, memory) expected from a solving algorithm.
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Abstract
The incorporation of learning into commercial games can enrich the player experience, but may
concern developers in terms of issues such as losing control of their game world. We explore a
number of applied research and some fielded applications that point to the tremendous possibili-
ties of machine learning research including game genres such as real-time strategy games, flight
simulation games, car and motorcycle racing games, board games such as Go, an even traditional
game-theoretic problems such as the prisoners dilemma. A common trait of these works is the
potential of machine learning to reduce the burden of game developers. However a number of
challenges exists that hinder the use of machine learning more broadly. We discuss some of these
challenges while at the same time exploring opportunities for a wide use of machine learning in
games.
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1 Introduction

Machine learning seeks to improve the performance of a system (e.g., a computer player agent)
on a given gaming task (e.g., defeat an opponent). Typically, machine learning algorithms
can do this online or offline. The former takes place while playing the game while the latter
takes place from data collected in previous games. For example, online learning enables
game-playing algorithms to adapt to the current opponent strategy while offline learning
enables eliciting common game-playing strategies across multiple games.

In this chapter, we explore learning aspects in current computer games, challenges,
and opportunities for future applications. Our intention is to look at the broad issues of
incorporating learning into games, independently of languages and platforms.

We begin our study by discussing research and applications of machine learning to game
AI. We first provide a quick overview of a number of research and applications of machine
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learning to games. Then we examine carefully the use of evolutionary computation in gaming
tasks.

Next we examine a number of challenges that makes it difficult to apply machine leaning
more broadly in games including (1) the need for algorithms to explain their decisions and
gain the user’s trust, and (2) some lingering issues such as difficulty of pointing to a specific
solution and the need for gaming data, and (3) Making the game enjoyable for the player.
The latter is a difficult yet crucial one. It is clear that we want to make games more enjoyable
but it is unclear how we can formalize the notion of "fun" in machine understandable form.

Finally, we examine opportunities for machine learning applications which we believe
are within reach of current techniques. These include (1) balancing gaming elements, (2)
balancing game difficulty, and (3) finding loopholes in games.

2 Sample State-of-the-Art Applications and Research

Our discussion of the state of the art is divided into two parts: first we give a overview of a
number of applications of machine leaning and in the second part we discuss in depth how
evolutionary computation can be used to build sophisticated AI.

2.1 Machine Learning for Game AI
It would be difficult to give a complete overview of research and applications on machine
learning for Game AI. We discuss some of these works to give the reader an overview of the
topic.

There are a number of well-documented success stories such as the use of induction
of decision trees in the commercial game Black and White [1]. There are a number of
noncommercial applications of machine learning to game such as the use of reinforcement
learning to play Backgammon [29]. The use of machine learning to find patterns from
network and log data has demonstrated to be significant [8]. Also there is significant research,
demonstrating the use of learning approaches such as evolutionary computation to evolve
rules for high-performance for arcade games.

In [6], the authors used a Q-learning based algorithm to simulate dog training in an
educational game. In [10], the authors used coevolution to evolve agents playing Capture-
the-Coins game utilizing rtNeat and OpenNERO research platform. In [22], the authors
used learned self-organizing map to improve maneuvering of team of units in real-time
strategy game Glest. In [24], car racing track models are learned from sensory data in car
racing simulator TORCS. In [14], the authors used cgNEAT to evolve content (weapons)
in Galactic Arms Race game. In [20], tunsupervised learning tecniques are used to learn a
player model from large corpus of data gathered from people playing the Restaurant game.
In [31], evolutionary algorithms are used for automatic generation of tracks for racing games.
In [21], a neural network learning method combined with a genetic algorithm is used to
evolve competitive agent playing Xpilot game. In [19], the authors use a genetic algorithm to
evolve AI players playing real time strategy game Lagoon. In [7], artificial neural networks
are used to control motorbikes in Motocross The Force game. In [28], the authors used
genetic algorithms to evolve a controller of RC racing car. In [26], the authors introduced the
real-time neuro-evolution of augmenting topologies (rt-NEAT) method for evolving artificial
neural networks in real time demonstrated on NERO game. In [32], the authors present
evolution of controllers for a simulated RC car. In [9], parameters are evolved for bots playing
first person shooter game Counter Strike. In [34], the authors used a genetic algorithm to
optimize parameters for a simulation of a Formula One car in Formula One Challenge ’99-’02
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racing game. In [15], the authors reported on the impact of machine learning methods in
iterated prisoner’s dilemma. In [4], the authors used real-time learning for synthetic dog
character to learn typical dog behaviors. In [17], genetic algorithm are used to develop neural
networks to play the game of Go. In [35], the authors used neuro-evolution mechanisms to
evolve agents for a modified version of Pac-Man game. In [23], tagents playing Quake 3 are
evolved. In [12], authors provided a technical description of the game Creatures where they
used neural networks for learning of the game characters. In [2], data from recorded human
game play is usedd to train an agent playing first person shooter game Quake 2. In [30], the
authors used pattern recognition and machine learning techniques with data from recorded
human game play to learn an agent to move around in first person shooter game Quake 2. In
[18], the authors report on using tabular Sarsa(λ) RL algorithm for learning the behavior of
characters in a purpose-built FPS game.

2.2 A Discussion of Evolutionary Computation Applications
We concentrate on evolutionary systems, which is reflective of the potential and some of the
difficulties of fielding machine learning techniques in commercial games.

Evolutionary rule-based systems have been demonstrated to be a successful approach to
developing agents that learn to play games, as in [25, 5, 11]. In this approach, the agent’s
behavior is dictated by a set of if-then rules, such as “if I see an opponent, and I have low
health, then collect health”. These rule sets are subject to evolutionary learning, which allows
one to start with random behaviors and to have the evolutionary learning process conduct
the search for individual rules that are strong as well as complete rule sets that are successful.

This approach has been used with good results on a variety of arcade and video games,
including Unreal Tournament 2004, Mario, and Ms. Pac-Man, in the competition environ-
ments provided at IEEE conferences. Small and Congdon [25] demonstrated learning in the
environment of the Unreal Tournament 2004 Deathmatch competition at IEEE Congress on
Evolutionary Computation. In this competition setup, agents (bots) played head-to-head in
this dynamic first person shooter. Bojarski and Congdon [5] demonstrated learning in the
environment of the Mario AI Championship 2010 competition at the IEEE Computational
Intelligence and Games conference (CIG). In this competition setup, the agent was allowed
10,000 times to play a novel level (providing time to learn the level) and was scored on its
performance on the 10,001st play. Gagne and Congdon [11] demonstrated learning in the
environment of the Ms. Pac-Man vs. Ghosts Competition for CIG 2012. In this competition
setup, a simulated version of Ms. Pac-Man is used, allowing entrants to submit agents for
the role of Ms. Pac-Man in the game or to submit a ghost team. The Gagne and Congdon
work describes an evolutionary rule-based system that learns to play the ghost team role.

These approaches have in common the use of “Pittsburgh-style” rule sets, in which the
individuals in the evolutionary computation population are each a rule set. (This is contrasted
with “Michigan-style” rule sets, in which each individual in the evolutionary computation
population is a single rule, and the entire population constitutes a rule set.) Learning occurs
both through mutation of the conditions for the rules and via crossover, in which rules swap
their conditions. While the learning takes time (e.g., a week or two), the agents learn to get
better at playing their respective games.

Kadlec [16], uses evolutionary computation techniques for controlling a bot. These
techniques are used to learn both strategic behavior (e.g., planning next steps such as which
weapons to find) as well as reactive behavior (e.g., what to do under attack). The testbed
uses was Unreal Tournament 2004. Unreal Tournament is a first-person shooter game (see
Figure 1) where bots and human-controlled characters compete to achieve some objectives.
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Figure 1 Snapshot of Unreal Tournament 2004 (courtesy of Rudolph Kadlec (2008)).

Kadlec’s work uses genetic programming to evolve the strategic knowledge while neural
networks was used to generate reactive behavior.

Experiments were performed in two kinds of games: death match (where participants
increase their score by killing enemies) and capture the flag, where players increase their
score by capturing enemy flags and bringing them to their home base. Figures 2 and 3
show sample behavior trees learned for the death match and capture the flag experiments
respectively. The experiment demonstrated the feasibility to learn complex behavior but on
the other hand the resulting behaviors were not as complex as the ones followed by humans
or hand-coded bots.

Behavior trees consisted of three types of nodes - functional nodes that help to decide
which behavior should be selected, behavior nodes that code specific type of behavior and
sensory nodes that output the value of a specified sensor. Each behavior in a tree has its
priority either computed by a function or fixed. The functional nodes then decide which
behavior will be activated based on these priorities. In the trees there are two types of
functional nodes - highest activation that simply selects the behavior with the highest
activation and sequential arbiter that returns the first behavior if its activation is higher
than 0.1 or when the activation of the second behavior is lower than 0.1, otherwise it returns
the second behavior result.

Kadlec [16] also reports on a second experiment using the algorithm reported by Stanley
and Miikkulainen [27]. This experiment demonstrated the capability to learn reactive behavior
but again the resulting bots didn’t exhibit human-like or hard-coded performance. While
the results were interesting, there is still room for research on these techniques before they
can be deployed.

Bauckhage et al. [3] used neural network architectures to learn behavior of bots in the
first-person-shooter game Quake II. As an input for learning, they used post-processed
network data of the game, coding the changes in the state from the game. This allowed
them to use recordings of gameplay to train the neural networks. Authors were successful in
learning basic moving and aiming behavior by this approach, proving it is possible to learn
human-like behavior by analyzing the data gathered from actual human game play.
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Figure 2 Behavior trees of best individuals for the DeathMatch experiment (courtesy of Rudolph
Kadlec (2008)). The bot exhibits two types of behaviors. The bot attacks the enemy player (node
AttackPlayer) with the priority fixed to 0.65 or it picks health packs (node PickHealth). The priority
of PickHealth behavior is an inverse of the SeeAnyEnemy sensor. This means if the bot actually
sees any enemy, the inverse function will inverse this sense to be false and the behavior priority will
be 0, so the bot will select AttackPlayer behavior.

Figure 3 Behavior trees of best individuals for the Capture the Flag experiment (courtesy of
Rudolph Kadlec (2008)). Although the tree looks complex the resulting behavior is simple: the bot
wanders around (moves randomly around the map) if it does not see enemy flag carrier or shoots
the enemy player if the player is holding the flag.
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3 Challenges

We identify two challenges in adding learning to commercial games: The need to explain
decisions and gaining user’s trust and issues with using machine learning algorithms.

3.1 Need to Explain Decisions and Gaining User’s Trust

It will be desirable for machine learning algorithms to explain their decisions. Unfortunately, it
is often difficult to devise algorithms that are capable of automatically generating explanations
that are meaningful for the user. In the context of computer games, explanations can help
game developers understand the reasoning behind gaming decisions made by automated
players and thereby correct potential flaws in the reasoning process. They also help understand
capabilities and limitations in the decision making process and tune scenarios accordingly.

The lack of a capability to explain itself can lead to its decisions not being trusted,
making it more difficult for machine learning techniques to be accepted. Game companies
are often reluctant to add learning elements to their games for fear of “losing control” over
the gameplay that might emerge with learning. Since there are many examples in machine
learning of systems honing in on an exception or exploiting unanticipated by the developer of
the system, this concern is not baseless. Examples of potentially problematic learning would
include a non-player character (NPC) that is essential to the storyline learning something
that destroys the storyline or an NPC that discovers an exploit, revealing it to human players.
In the first case, the behaviors subject to learning would need to be controlled. In the second
case, one can argue that human players will eventually discover exploits anyway, so this may
be a non issue.

It’s good to remember that the primary reason to add learning to a game would be that
the learning could make the game more enjoyable for the player. One facet of this might be
to relieve monotony, and another might be to adapt the play level to the player to make the
game appropriately challenging (and possibly, to help the player learn to play the game).
The issues of monotony might kick in with non-player characters (NPCs) having overly
scripted actions; additionally, player enjoyment is often heightened when the player does not
know for certain that they are playing against a bot. While adding an NPC that can adapt
during gameplay has the potential to lessen predictability of the NPC, a concern is that an
adaptive NPC could also learn ridiculous or malicious behaviors. However, if the facets of
behavior that the agent is allowed to learn over are controlled, adaptivity has the potential
to increase player enjoyment. For example, an NPC opponent that adapts its “skill level” to
the human player, allowing just enough challenge. Whether opponent or teammate, an NPC
with adaptive skill levels could in effect work with the player to help the player improve
their own gameplay. The key to controlling the learning is to limit the facets of behavior
that it is applied to. Part of the difficulty is that some of the learning mechanisms such
as evolutionary computation (see Section 2) make intricate computations that are difficult
to explain to the game developer. For example, the game developer might see that some
of the resulting strategies are effective but might be puzzled by other strategies generated.
Without even a grasp of how and why these techniques work, it will be difficult for the game
developer to adopt such a technique. This is doubtless a significant challenge but one that if
tackled can yield significant benefits.
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3.2 Issues with Using Machine Learning Algorithms
Another challenge is that there is no simple answer if a game developer asks the question
about which machine learning approach to use. Take for example, classification tasks, a
subfield of machine learning where an agent must learn a function mapping input vectors
to output classes. There is no such a thing as the best classifier algorithms; some classifier
algorithms work well in some data sets but not in others. The sheer number of potential
algorithms to use for classification tasks can be overwhelming for game practitioners that
might be looking for a quick fix.

Another difficulty is obtaining the data for input to test the machine learning algorithms.
There is no clear value added for a commercial company to gather and share the data. This
is reminiscent of a “chicken and egg” problem, whereby the data is needed to demonstrate
potential capabilities but without some proof that these techniques might work it is difficult
to collect the data needed.

Part of the problem is that if a gaming company has money to invest in a game, aspects
such as graphics will get prioritized simply because it is unclear what the benefit is from
investing in machine learning.

Finally, some games are designed for the player to spend a certain number of hours.
Having adaptable AI can make the game replayable for a long time and hence it might be
undesirable for those kinds of games.

3.3 Reward versus Having Fun
One of the challenges of applying machine learning is the difficulty of eliciting adequate
target functions. Machine learning algorithms frequently have an optimality criterion defined
by a target function. For example, in reinforcement learning, an agent is trying to maximize
the summation of its future rewards (this target function is called the return in reinforcement
learning terminology). In an adversarial game, the reward can be defined as the difference in
utility U(s)−U(s′) between the current state s and some previous state s′. One way to define
the utility of an state is by computing Score(ourTeam) − Score(opponent). Intuitively, by
defining the return in this way, the reinforcement learning agent is trying to maximize the
difference in score between its own team and its opponent.

While clearly having such a target is sensible in many situations such as a machine versus
machine tournament, such target functions omit an crucial aspect in games: players want to
have fun and this is not necessarily achieved by playing versus an opponent optimized to
defeat them. "Having fun" is an intangible goal, difficult to formalize as a target function.
This is undoubtedly one of the most interesting and challenging issues of applying machine
learning to games.

4 Opportunities

We identify three opportunities for machine learning techniques including:

4.1 Balancing Gaming Elements
Many games have different elements such as factions in a real-time strategy games (e.g.,
humans versus orcs) or classes in a role-playing game (e.g., mages versus warriors). Machine
learning could help with balancing these elements. One example of games that could benefit
from machine learning techniques is collectible card games with the most notable example
Magic: The Gathering. These games often feature a complex set of rules and thousands of
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different cards with different abilities that are then used by players in their strategies. The
goal of the developers of these games is to balance the gaming elements so no particular
strategy will work in all cases. Some of these developers released online versions of their games
(e.g. Magic: The Gathering) that omit the need of the players to own real cards, moving
everything to virtual world. These online versions of games could provide the developers
with invaluable statistics of a) the trends in the game - e.g. which strategy is used the most,
b) strength of the card, e.g. when the player plays “the blue Viking” in the second turn he
has 60% probability to win the game or c) general patterns in player strategies that could
then be used to train competitive AI for these games. This would help the developers to
improve the game in terms of gameplay and potentially make the game more desirable for
players. While points a) and b) are more data mining and statistics processing, the point c)
could benefit from one of the machine learning algorithms that are currently available.

4.2 Balancing Game Difficulty

In games such as those that are open-ended such as massive multiplayer online (MMO)
games, a difficulty is how to tailor the game simultaneously towards dedicated players (e.g.,
players who play 20+ hours per week) and casual players (e.g., players who play 10 hours or
less a week).

An important potential for adding learning to games is in adjusting the game difficulty
to the player. Players will lose interest in a game that is markedly too easy or too hard for
them, so the ability for an element of the game to adapt to the player will reasonably increase
player engagement. Additionally, the same mechanism would allow a game to be enjoyed
by different family members, with different profiles and histories for each. Furthermore, an
adaptive approach to game difficulty includes the potential to help develop player skills,
allowing a player an extended enjoyment of the game.

4.3 Finding Design Loopholes in Games

Pattern recognition techniques can be used to detect common patterns in game logs and
then use these patterns to detect outliers. Such techniques will enable developers to detect
anomalies (e.g. exploits in MMOs) much faster than it is currently done, which is done
manually for the most part. MMORPG games often feature complex worlds with rich sets
of rules. In these worlds it is often hard to predict general trends in the means of player
strategies or economy prior to launch of the game. More often than not, these kinds of
games need tweaking and balancing after launch preventing the exploitation of features not
intended by game developers. These problems are often detected “by hand”, by honest
players reporting the issue, or by dedicated game developers, who monitor the game and
check for these kinds of exploits. However, these processes could be partially automated by
applying a) simulation, b) data mining and c) machine learning algorithms. For example
the algorithm would gather data such as “gold gain per hour per level” for all of the players.
Then all the players that would exceed certain threshold over average value would be tagged
as suspicious and developers would be notified to further check the issue. This approach can
be extended to almost any feature of the game, such as quest completion, difficulty of the
enemies, etc. Moreover, methods of auto-correction by machine learning methods could be
applied, e.g. I see that this player defeats that enemy every time, but this is not supposed to
be, so we increase the difficulty of this particular enemy for this particular player.
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4.4 Making Timely Decisions
One of the most difficult challenges of applying AI to games is twofold. First, that Game AI
is typically allocated comparatively little CPU time. Most CPU time is devoted to other
processes such as pathfinding or maintaining consistency between the GUI and the internal
state of the game. Second, the time for developing the game AI is comparatively short; other
software development tasks such as graphics and level design take precedence. This makes it
very difficult to design and run a deep Game AI. As a result frequently game AI is generally
not as good as it can be [13].

Machine learning offers the possibility to learn and tune capable Game AI by analyzing
logs of game traces (e.g., player versus player games during beta testing). Indeed in Section
2.1, we discussed some of systems. For example, [29] reports on a system capable of eliciting
game playing strategies that were considered novel and highly competent by human experts
in a board game. [33] reports on a learning system that controls a small squad of bots in an
FPS game and rapidly adapts to opponent team’s strategy. In these and other such learning
systems, the resulting control mechanism is quite simple: it basically indicates for every
state the best action(s) that should be taken. Yet because it captures knowledge from many
gameplay sessions it can be very effective.

5 Conclusions

In this work, we have explored the state of the art in machine learning research and challenges
and opportunities in applying machine learning to commercial games. For the state of the
art we have explored research on evolutionary computation, as an example of a machine
learning technique that shows a lot of promise while at the same time discussing limitations.
We explored three basic challenges: (1) lack of explanation capabilities which contribute to a
lack of trust on the results of the machine learning algorithms, (2) other issues with machine
learning such the difficulty of getting the data needed because of perceived cost-benefit
tradeoffs, and (3) modeling "fun" in machine learning target functions. Finally, we explored
opportunities for machine learning techniques including using machine learning techniques
for (1) balancing game elements, (2) balancing game difficulty, (3) finding design loopholes
in the game, and (4) making timely decisions.
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Abstract
Player modeling is the study of computational models of players in games. This includes the
detection, modeling, prediction and expression of human player characteristics which are mani-
fested through cognitive, affective and behavioral patterns. This chapter introduces a holistic
view of player modeling and provides a high level taxonomy and discussion of the key compon-
ents of a player’s model. The discussion focuses on a taxonomy of approaches for constructing a
player model, the available types of data for the model’s input and a proposed classification for
the model’s output. The chapter provides also a brief overview of some promising applications
and a discussion of the key challenges player modeling is currently facing which are linked to the
input, the output and the computational model.
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1 Introduction

Digital games are dynamic, ergodic media (i.e., a user interacts with and alters the state
of the medium). They are designed to be highly engaging and embed rich forms of user
interactivity. Collectively, the human-computer interaction (HCI) attributes of digital games
allow for high levels of player incorporation [9]. As such, they yield dynamic and complex
emotion manifestations which cannot be captured trivially byf standard methods in affective
computing or cognitive modeling research. The high potential that games have in affecting
players is mainly due to their ability of placing the player in a continuous mode of interaction,
which develops complex cognitive, affective and behavioral responses. The study of the player
in games may not only contribute to the design of improved forms of HCI, but also advance
our knowledge of human experiences.

Every game features at least one user (i.e., the player), who controls an avatar or a group
of miniature entities in a virtual/simulated environment [9]. Control may vary from the
relatively simple (e.g., limited to movement in an orthogonal grid) to the highly complex
(e.g., having to decide several times per second between hundreds of different possibilities in
a highly complex 3D world). The interaction between the player and the game context is
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of prime importance to modern game development, as it breeds unique stimuli which yield
emotional manifestations to the player. Successful games manage to elicit these emotions in
a manner that is appreciated by the player, and which form the main reason that the player
is willing to engage in the game [50].

The primary goal of player modeling and player experience research is to understand how
the interaction with a game is experienced by individual players. Thus, while games can be
utilized as an arena for eliciting, evaluating, expressing and even synthesizing experience, we
argue that one of the main aims of the study of players in games is the understanding of
players’ cognitive, affective and behavioral patterns. Indeed, by the nature of what constitutes
a game, one cannot dissociate games from player experience.

This chapter focuses on experience aspects that can be detected from, modeled from, and
expressed in games with human players. We explicitly exclude the modeling of non-player
characters (NPCs), as in our view, player modeling involves a human player in the modeling
process. We also make a distinction between player modeling [10, 26] and player profiling.
The former refers to modeling complex dynamic phenomena during gameplay interaction,
whereas the latter refers to the categorization of players based on static information that
does not alter during gameplay — that includes personality, cultural background, gender
and age. We will mainly focus on the first, but will not ignore the second, as the availability
of a good player profile may contribute to the construction of reliable player models.

In summary, player modeling — as we define it in this chapter — is the study of
computational means for the modeling of player cognitive, behavioral, and affective states
which are based on data (or theories) derived from the interaction of a human player with
a game [78]. Player models are built on dynamic information obtained during game-player
interaction, but they could also rely on static player profiling information. Unlike earlier
studies focusing on taxonomies of behavioral player modeling — e.g., via a number of different
dimensions [58] or direct/indirect measurements [56] — we view player modeling in a holistic
manner including cognitive, affective, personality and demographic aspects of the player.
Moreover, we exclude approaches that are not directly based on human-generated data or
not based on empirically-evaluated theories of player experience, human cognition, affect
or behavior. The chapter does not intend to provide an inclusive review of player modeling
studies under the above definition, but rather a high-level taxonomy that explores the
possibilities with respect to the modeling approach, the model’s input and the model’s
output.

The rest of this chapter provides a taxonomy and discussion of the core components of a
player model which are depicted in Figure 1. That includes the computational model itself
and methods to derive it as well as the model’s input and output. The chapter illustrates a
few promising applications of player modeling and ends with a discussion on open research
questions for future research in this field.

2 Computational Model

Player modeling is, primarily, the study and use of artificial and computational intelligence
(AI and CI) techniques for the construction of computational models of player behavior,
cognition and emotion, as well as other aspects beyond their interaction with a game (such
as their personality and cultural background). Player modeling places an AI umbrella to
the multidisciplinary intersection of the fields of user (player) modeling, affective computing,
experimental psychology and human-computer interaction.

One can detect behavioral, emotional or cognitive aspects of either a human player or
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Figure 1 Player Modeling: the core components.

a non-player character (NPC). In principle, there is no need to model an NPC, for two
reasons: (1) an NPC is coded, therefore a perfect model for it exists in the game’s code,
and is known by the game’s developers; and (2) one can hardly say that an NPC possesses
actual emotions or cognition. However, NPC modeling can be a useful testbed for player
modeling techniques, by comparing the model discovered with the actual coded one. More
interestingly, it can be an integral component of adaptive AI that changes its behavior in
response to the dynamics of the opponents [6]. Nevertheless, while the challenges faced in
modeling NPCs are substantial, the issues raised from the modeling of human players define
a far more complex and important problem for the understanding of player experience.

By clustering the available approaches for player modeling, we are faced with either
model-based or model-free approaches [80] as well as potential hybrids between them. The
remaining of this section presents the key elements of both model-based and model-free
approaches.

2.1 Model-based (Top-down) Approaches
According to a model-based or top-down [80] approach a player model is built on a theoretical
framework. As such, researchers follow the modus operandi of the humanities and social
sciences, which hypothesize models to explain phenomena, usually followed by an empirical
phase in which they experimentally determine to what extent the hypothesized models fit
observations.

Top-down approaches to player modeling may refer to emotional models derived from
emotion theories (e.g., cognitive appraisal theory [21]). Three examples are: (1) the emotional
dimensions of arousal and valence [19], (2) Frome’s comprehensive model of emotional
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response to a single-player game [22], and (3) Russell’s circumplex model of affect [51], in
which emotional manifestations are mapped directly to specific emotional states (e.g., an
increased heart rate of a player may correspond to high arousal and therefore to excitement).
Model-based approaches can also be inspired by a general theoretical framework of behavioral
analysis and/or cognitive modeling such as usability theory [30], the belief-desire-intention
(BDI) model, the cognitive theory by Ortony, Clore, & Collins [47], Skinner’s model [57], or
Scherer’s theory [53]. Moreover, theories about user affect exist that are driven by game
design, such as Malone’s design components for ‘fun’ games [40] and Koster’s theory of ‘fun’
[35], as well as game-specific interpretations of Csikszentmihalyi’s concept of Flow [14].
Finally, several top-down difficulty and challenge measures [2, 28, 45, 59, 60, 70, 75] have
been proposed for different game genres as components of a player model. In all of these
studies, difficulty adjustment is performed based on a player model that implies a direct link
between challenge and ‘fun’.

Note, however, that even though the literature is rich in theories on emotion, caution
is warranted with the application of such theories to games (and game players), as most of
them have not been derived from or tested on ergodic media such as games. Calleja [9], for
instance, reflects on the inappropriateness of the concepts of ‘flow’, ‘fun’ and ‘magic circle’
(among others) for games.

2.2 Model-free (Bottom-up) Approaches

Model-free approaches refer to the construction of an unknown mapping (model) between
(player) input and a player state representation. As such, model-free approaches follow the
modus operandi of the exact sciences, in which observations are collected and analyzed to
generate models without a strong initial assumption on what the model looks like or even
what it captures. Player data and annotated player states are collected and used to derive the
model. Classification, regression and preference learning techniques adopted from machine
learning or statistical approaches are commonly used for the construction of a computational
model. Data clustering is applied in cases where player states are not available.

In model-free approaches we meet attempts to model and predict player actions and
intentions [64, 65, 76] as well as game data mining efforts to identify different behavioral
playing patterns within a game [15, 43, 61, 62, 72]. Model-free approaches are common
for facial expression and head pose recognition since subjects are asked to annotate facial
(or head pose) images of users with particular affective states (see [55] among others) in
a crowd-sourcing fashion. The approach is also common in studies of psychophysiology in
games (see [68, 79] among others).

2.3 Hybrid Approaches

The space between a completely model-based and a completely model-free approach can be
viewed as a continuum along which any player modeling approach might be placed. While
a completely model-based approach relies solely on a theoretical framework that maps a
player’s responses to game stimuli, a completely model-free approach assumes there is an
unknown function between modalities of user input and player states that a machine learner
(or a statistical model) may discover, but does not assume anything about the structure
of this function. Relative to these extremes, the vast majority of the existing works on
player modeling may be viewed as hybrids between the two ends of the spectrum, containing
elements of both approaches.
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3 Input

The model’s input can be of three main types: (1) anything that a human player is doing
in a game environment gathered from gameplay data (i.e., behavioral data); (2) objective
data collected as bodily responses to game stimuli such as physiology and body movements;
and (3) the game context which comprises of any player-agent interactions but also any
type of game content viewed, played, and/or created. The three input types are detailed
in the remainder of this section. We also discuss static information on the player (such as
personality and gender) that could feed a player model.

3.1 Gameplay Input
The main assumption behind the use of behavioral (gameplay-based) player input is that
player actions and real-time preferences are linked to player experience as games may affect
the player’s cognitive processing patterns and cognitive focus. In the same vein, cognitive
processes may influence player experience. One may infer the player’s present experience
by analyzing patterns of his interaction with the game, and by associating his emotions
with context variables [12, 24]. Any element derived from the interaction between the player
and the game forms the basis for gameplay-based player modeling. This includes detailed
attributes of the player’s behavior (i.e., game metrics) derived from responses to system
elements (i.e., NPCs, game levels, or embodied conversational agents). Game metrics are
statistical spatio-temporal features of game interaction [17]. Such data is usually mapped
to levels of cognitive states such as attention, challenge and engagement [12]. In addition,
both general measures (such as performance and time spent on a task) and game-specific
measures (such as the weapons selected in a shooter game — e.g., in [25]) are relevant.

A major problem with interpreting such behavioral player input is that the actual player
experience is only indirectly observed by measuring game metrics. For instance, a player
who has little interaction with a game might be thoughtful and captivated, or just bored and
busy doing something else. Gameplay metrics can only be used to approach the likelihood of
the presence of certain player experiences. Such statistics may hold for player populations,
but may provide little information for individual players. Therefore, when one attempts
to use pure gameplay metrics to make estimates on player experiences and make the game
respond in an appropriate manner to these perceived experiences, it is advisable to keep
track of the feedback of the player to the game responses, and adapt when the feedback
indicates that the player experience was gauged incorrectly.

3.2 Objective Input
Games can elicit player emotional responses which, in turn, may affect changes in the player’s
physiology, reflect on the player’s facial expression, posture and speech, and alter the player’s
attention and focus level. Monitoring such bodily alterations may assist in recognizing
and synthesizing the player’s model. As such, the objective approach to player modeling
incorporates access to multiple modalities of player input.

Within objective player modeling, a number of real-time recordings of the player may be
investigated. Several studies have explored the interplay between physiology and gameplay by
investigating the impact of different gameplay stimuli to dissimilar physiological signals. Such
signals are usually obtained through electrocardiography (ECG) [79], photoplethysmography
[68, 79], galvanic skin response (GSR) [41, 49], respiration [68], electroencephalography
(EEG) [44], electromyography (EMG) and pupillometry [7]. In addition to physiology one
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may track the player’s bodily expressions (motion tracking) at different levels of detail and
infer the real-time affective responses from the gameplay stimuli. The core assumption of
such input modalities is that particular bodily expressions are linked to basic emotions and
cognitive processes. Motion tracking may include body posture [52] and head pose [55], as
well as gaze [4] and facial expression [48].

While such objective multimodal measurements are usually more meaningful than the
gameplay inputs discussed in the previous subsection, a major problem with most of them is
that they are viewed by the player as invasive, thus affecting the player’s experience with
the game. This affect should be taken into account when interpreting measurements.

3.3 Game Context Input

In addition to both gameplay and objective input, the game’s context is a necessary input
for player modeling. Game context refers to the real-time parameterized state of the game.
Player states are always linked to game context; a player model that does not take context
into account runs a high risk of inferring erroneous states for the player. For example, an
increase in galvanic skin response (GSR) can be linked to a set of dissimilar high-arousal
affective states such as frustration and excitement; thus, the cause of the GSR increase (e.g.,
a player’s death or level completion) needs to be fused within the GSR signal and embedded
in the model.

3.4 Player Profile Information

Differences between players lead to different playing styles and preferences. Player profile
information includes all the information about the player which is static and it is not directly
(nor necessarily) linked to gameplay. This may include information on player personality
(such as expressed by the Five Factor Model of personality [13]), culture dependent variables,
and general demographics such as gender and age. Such information may be used as static
model input and could lead to the construction of more accurate player models.

A typical way of employing player profile information is the stereotype approach [34]. The
approach attempts to (automatically) assign a player to a previously defined subgroup of the
population, for which key characteristics have been defined. Each subgroup is represented by
a stereotype. After identifying to which subgroup the player belongs, the game can choose
responses appropriate for the corresponding stereotype. This approach has been used by
Yannakakis & Hallam [73] and by Thue [63]. They define stereotypes in terms of a player’s
gaming profile, rather than the gamer’s characteristics outside the realm of gaming.

Van Lankveld et al [69, 71] look beyond pure gaming behavior, attempting to express
a player’s personality profile in terms of the Five Factor Model. While they achieve some
success in modeling players in terms of the five factors, they notice that gameplay behavior
not necessarily corresponds to “real life” behavior, e.g., an introverted person may very
well exhibit in-game behavior that would typically be assigned to an extroverted person.
Therefore, we can recognize two caveats which should be taken into account when aiming
to use a real-life personality profile of a player to construct a model of the player inside a
game: (1) the player’s behavior inside the game not necessarily corresponds to his real-life
behavior and vice versa; and (2) a player’s real-life profile not necessarily indicates what he
appreciates in a game.
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4 Output

The model’s output is usually a set of particular player states. Such states can be represented
as a class, a scalar (or a vector of numbers) that maps to a player state — such as the
emotional dimensions of arousal and valence or a behavioral pattern — or a relative strength
(preference). The output of the model is provided through an annotation process which can
either be driven by self-reports or by reports expressed indirectly by experts or external
observers [80]. However, there are instances where reports on player states are not available;
output then must be generated by unsupervised learning (see [15, 17] among others).

The most direct way to annotate a player state is to ask the players themselves about
their playing experience and build a model based on these annotations. Subjective player
state annotations can be based on either a player’s free-response during play or on forced
data retrieved through questionnaires. Free-response naturally contains richer information
about the player’s state, but it is often unstructured, even chaotic, and thus hard to analyze
appropriately. Forcing players to self-report their experiences using directed questions, on the
other hand, constrains them to specific questionnaire items which could vary from simple tick
boxes to multiple choice items. Both the questions and the answers provided may vary from
single words to sentences. Questionnaires can either involve elements of the player experience
(e.g., the Game Experience Questionnaire [29]), or demographic data and/or personality
traits (e.g., a validated psychological profiling questionnaire such as the NEO-PI-R [13]).

Alternatively, experts or external observers may annotate the player’s experiences in a
similar fashion. Third-person annotation entails the identification of particular player states
(given in various types of representation as we will see below) by player experiences and
game design experts (or crowd-sourced via non-experts). The annotation is usually based on
the triangulation of multiple modalities of player and game input, such as the player’s head
pose, in-game behavior and game context [55]. Broadly-accepted emotional maps such as
the Facial Action Coding System [18] provide common guidelines for third-person emotion
annotation.

Three types of annotations (either forced self-reports or third-person reports) can be
distinguished. The first is the rating-based format [41], which labels player experience states
with a scalar value or a vector of values (found, for instance, in the Game Experience
Questionnaire [29]). The second is the class-based format, which asks subjects to pick a user
state from a particular representation which could vary from a simple boolean question (was
that game level frustrating or not? is this a sad facial expression?) to a user state selection
from, for instance, the Geneva Emotion Wheel [54]. The third is the preference-based format,
which asks subjects to compare an experience in two or more variants/sessions of the game
[77] (was that level more engaging that this level? which facial expression looks happier?).
A recent comparative study has exposed the limitations of rating approaches over ranking
questionnaire schemes (e.g., pairwise preference) which include increased order of play and
inconsistency effects [74].

Beyond annotated player states or player profiles (such as personality traits), player
models may be constructed to predict attributes of gameplay (e.g., in [39, 65] among others)
or objective manifestations of the experience [3].

5 Applications

In this section we identify and briefly illustrate a few promising, and certainly non inclusive,
applications of player modeling to game design and development, that range from adapting
the challenge during the game to personalizing the purchasing model in free-to-play games.
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5.1 Adaptive Player Experience and Game Balancing

As already mentioned in section 2.1 there exist several theoretical frameworks investigating
the relationship between experience and game interaction that have been either built with
primarily games in mind (e.g. the player immersion model of Calleja [9]; the theory of ‘fun’
of Koster [35]) or derived from other fields (e.g. psychology) and domains and tailored to
games (e.g. the theory of flow [14] adopted for games [11]). Essentially what unifies all
these theories is that ultimate player experience is achieved when elements of the game
(mechanics, storyline, challenges) are in some sort of right balance with the general skills of
the player. A common, but rather simplistic, approach to balance between game challenges
and different player skills in order to match a broader range of players consists of providing a
small, predefined set of difficulty levels which the player can pick from. A more sophisticated
approach consists of adapting the game’s challenge in response to the actions of the players
and to the state of the game environment; relevant examples of this approach are the AI
director [8] of Left 4 Dead (Valve, 2008) and the race script [23] framework used in Pure
(Black Rock Studio, 2008).

Most of the game balancing approaches currently used rely on simple in-game statistics
to estimate the state of the players and make strong assumptions on what kind of experience
the players are looking for in the game (e.g., the basic assumption behind the AI director in
Left 4 Dead is that players enjoy dramatic and unpredictable changes of pace). While, in
general, such assumptions hold for a large number of players (as the designers usually have
a good idea of their players), they are not universally applicable and may actually exclude
large groups of potential players that would be willing to play a game if it would offer an
experience more to their liking. Reliable player modeling techniques have the potential to
adapt the challenge level of a game (and other gameplay elements) in a manner that suits
each individual player [75, 1].

5.2 Personalized Game Content Generation

Procedural content generation (PCG) aims to deliver a large amount of game content
algorithmically with limited memory resources. Nowadays PCG is mainly used to cut the
development cost and, at the same time, to face the increasing expectations of players in
terms of game content. Recently, the problem of automating the generation of high-quality
game content has attracted considerable interest in the research community (see [78] and the
corresponding chapter in this volume). In particular, research showed that search algorithms
can be combined successfully with procedural content generation to discover novel and
enjoyable game content [38, 66, 67]. Accordingly, the automation of content creation offers
an opportunity towards realizing player model-driven procedural content generation in games
[80]. The coupling of player modeling with PCG approaches may lead to the automatic
generation of personalized game content.

Player models may also inform the generation of computational narrative (viewed here as
a type of game content [80]). Predictive models of playing behavior, cognition and affect can
drive the generation of individualised scenarios in a game. Examples of the coupling between
player modeling and interactive narrative include the affect-driven narrative systems met in
Façade [42] and FearNot! [5], the emotion-driven narrative building system in Storybricks
(Namaste Entertainment, 2012), and the affect-centred game narratives such as the one of
Final Fantasy VII (Square Product, 1997).
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5.2.1 Towards Believable Agents
Human player models can inform and update believable agent architectures. Behavioral,
affective and cognitive aspects of human gameplay can improve the human-likeness and
believability of any agent controller — whether that is ad-hoc designed or built on data
derived from gameplay. While the link between player modelling and believable agent design
is obvious and direct the research efforts towards this integration within games is still sparse.
However, the few efforts made on the imitation of human game playing for the construction
of believable architectures have resulted in successful outcomes. Human behavior imitation
in platform [46] and racing games [31] have provided human-like and believable agents while
similar approaches for developing Unreal Tournament bots (e.g. in [33]) recently managed to
pass the Turing test in the 2k BotPrize competition.

5.3 Playtesting Analysis and Game Authoring
While aiming at creating a particular game experience, designers can only define and alter
the game mechanics [11, 27] (i.e., game rules) that, in turn, will affect the playing experience.
From the mechanics arise the game dynamics, i.e., how the game is actually played. The
dynamics lead to game aesthetics, i.e., what the player experiences during the game.

Even when a game is tested specifically to determine whether it provides the desired
player experience, it is usually difficult to identify accurately which are the specific elements
of the mechanics that work as intended. Player modeling, which yields a relationship between
player state, game context, and in-game behavior, may support the analysis of playtesting
sessions and the identification of what appeals to a particular player, and what does not (see
[15, 43, 72] among many).

Player modeling provides a multifaceted improvement to game development as it does
not only advance the study of human play and the enhancement of human experience.
Quantitative testing via game metrics — varying from behavioral data mining to in-depth
low scale studies — is improved as it complements existing practices [78].

Finally, user models can enhance authoring tools that, in turn, can assist the design
process. The research field that bridges user modeling and AI-assisted design is in its infancy
and only a few example studies can be identified. Indicatively, designer models have been
employed to personalise mixed-initiative design processes [37, 36]. Such models drive the
procedural generation of designer-tailored content.

5.4 Monetization of Free-to-Play Games
Recent years have seen an increasing number of successful free-to-play (F2P) games on diverse
platforms, including Facebook, mobile devices and PC. In F2P games, playing the game itself
is free. Revenues come from selling additional contents or services to the players with in-game
microtransactions [20]. In order to be profitable, these games require developers to constantly
monitor the purchasing behavior of their players [20]. Player modeling may improve the
understanding of the players behavior [16] and help with the identification of players who
are willing to pay. In addition, the information provided by player modeling might be used
to customize the market content and mechanisms, eventually leading to increased profits.

6 The Road Ahead: Challenges and Questions

In this section we list a number of critical current and future challenges for player modeling as
well as promising research directions, some of which have been touched upon in the previous
sections.
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Regardless of the line of research in player modeling chosen, the biggest obstacle right now
is lack of proper and rich data publicly available to the researchers. What is required is a
rich multimodal corpus of gameplay and player data as well as player descriptions. Such
a corpus must include detailed gameplay data for several games for a large number of
players, including actions, events, locations, timestamps as well as biometrical data, that
are trivial to obtain in large volumes (e.g., camera images and eye-tracking). Demographic
data for the players must be available, as well as player information in the form of several
questionnaires and structured interview data. Not all this data needs to be available for
every subject in the database; several large datasets of gameplay data already exist, and
it would be beneficial to include those in the database too.
The use of procedural content generation techniques for the design of better games
has reached a peak of interest in commercial and independent game development [78],
which is showcased by successful (almost entirely procedurally generated) games such as
Minecraft (Mojang, 2011) and Love (Eskil Steenberg, 2010). Future games, in general,
are expected to contain less manual and more user-generated or procedurally-generated
content, as the cost of content creation and the content creation bottleneck are key
challenges for commercial game production. As the number of games that are (partially
or fully) automatically generated grows, the challenge of modeling players in never-ending
open worlds of infinite replayability value increases substantially.
Nowadays, several modalities or player input are still implausible within commercial game
development. For instance, existing hardware for physiological measurements requires
the placement of body parts (e.g., head or fingertips) to the sensors, making physiological
signals such as EEG, respiration and skin conductance rather impractical and highly
intrusive for most games. Modalities such as facial expression and speech could be
technically plausible in future games: even though the majority of the vision-based affect-
detection systems currently available cannot operate in real-time [81], the technology in
this field is rapidly evolving [32].
On a positive note, recent advances in sensor technology have resulted in low-cost
unobtrusive biofeedback devices appropriate for gaming applications. In addition, top
game developers have started to experiment with multiple modalities of player input (e.g.,
physiological and behavioral patterns) for the personalization of experience of popular
triple-A games such as Left 4 Dead (Valve, 2008) [1]. Finally, recent technology advances
in gaming peripherals such as the PrimeSense camera showcase a promising future for
multimodal natural interaction in games.
Comparing model-based and model-free approaches to player modeling, we note that
model-based inherently contains argumentation and understanding for the choices of the
model, which model-free lacks. However, practice shows that model-based approaches
often fail to encompass relevant features because of a lack of insight of the model builders.
The model-free approach has the advantage of automatically detecting relevant features;
however, it is also prone to detecting meaningless relationships between user attributes,
game context and user experience. In computer games an extensive set of features of
player behavior can be extracted and measured. At the same time there is, usually, lack
of insight in what these features actually mean, at least at present. Therefore, in the
current state of research, model-free approaches seem most suitable. Domain-specific
knowledge, feature extraction and feature selection are necessary to achieve meaningful
models of players .
As mentioned before, player characteristics within a game environment may very well differ
from the characteristics of the player when dealing with reality. Thus, validated personality
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models such as psychology’s Five Factor Model might not fit well to game behavior. An
interesting direction in player modeling research is to determine a fundamental personality
model for game behavior; such a model will have some correspondence with the Five
Factor Model, but will also encompass different characteristics. Moreover, the behavioral
clues that can be found in game behavior may be considerably different from those that
can be found in reality.
Experience has shown that diligent application of data mining techniques may provide
insight into group behaviors. However, it remains difficult to make predictions about
individuals. As such, player models can usually only give broad and fuzzy indications
on how a game should adapt to cater to a specific player. One possible solution is to
define several possible player models and classify an individual player as one of them (the
stereotyping approach). Then, when gameplay is going on, the model can be changed in
small steps to fit the player better. I.e., the player model is not determined as a static
representation of the player, used to determine how the game should be adapted; rather
it is a dynamic representation of a group of players, that changes to highlight the general
characteristics of a specific player, and drives the game adaptation dynamically. In our
view, this step-wise approach to game adaption by means of player modeling has the
potential to lead to quick, good results in creating games that offer a personalized form
of engagement to the player.
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Abstract
This chapter discusses the challenges and opportunities of procedural content generation (PCG)
in games. It starts with defining three grand goals of PCG, namely multi-level multi-content
PCG, PCG-based game design and generating complete games. The way these goals are defined,
they are not feasible with current technology. Therefore we identify nine challenges for PCG
research. Work towards meeting these challenges is likely to take us closer to realising the three
grand goals. In order to help researchers get started, we also identify five actionable steps, which
PCG researchers could get started working on immediately.
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1 Introduction

Procedural content generation (PCG) refers to the algorithmic generation of game content
with limited or no human contribution. “Game content” is here understood widely as
including e.g. levels, maps, quests, textures, characters, vegetation, rules, dynamics and
structures, but not the game engine itself nor the behaviour of NPCs. PCG has been part of
published games since the early eighties, with landmark early examples being the runtime
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generation of dungeons in Rogue and the extremely compressed representation of hundreds of
star systems in Elite. Prominent recent examples of PCG include the ubiquitous SpeedTree
system, used for generation of trees, grass and other types of vegetation in hundreds of
commercial games, and the generation of dungeons, weapons and items in the Diablo series
of games. PCG can be used for a variety of reasons, including providing variety, reducing
development time and development costs, saving space in transmission or on disk, augmenting
human creativity and enabling adaptivity in games.

The academic research community around PCG has formed only within the last few
years. While a number of important papers were published in venues dedicated to AI or
graphics research, the first workshop devoted entirely to PCG took place in 2009 and the
first journal special issue devoted to the topic came out only in 20111. The solutions to
content generation problems that have been explored by academic researchers have tended to
be focused more on adaptable and controllable (and sometimes highly complex) algorithms,
whereas the types of algorithms that have so far been used in published games tend to be
simpler, faster and less controllable.

The workgroup on PCG decided to look at the field from the perspective of what research
would be most important to do in the future in order to ensure that real breakthroughs
are made, and modern PCG techniques will be able to add value to the games industry by
enabling new types of games as well as new ways of developing games. We took a top-down
perspective and started with thinking about what sort of things we would ultimately want
PCG to be able to achieve; the grand goals of the research field. We then tried to identify
the most important challenges that need to be overcome in order to be able to realise these
goals, and finally identified a handful of actionable steps that could make progress towards
overcoming these challenges, and which could be taken already today by someone – perhaps
you? – interested in contributing to the field.

2 Goals

The following is a list of what we consider the most important goals of PCG research. In each
case, the goal is currently not obtainable and it would require significant further research
effort leading to some sort of breakthrough in order to be able to realise the goal. However,
in each case there is already some work done that directly addresses this goal, so for each
item we list what we consider the most relevant previous work.

2.1 Multi-level Multi-content PCG
Imagine being able to push a button and generating a complete game world: terrain,
vegetation, roads, cities, people, creatures, quests, lore, dialogue, items, vehicles; polygons,
graphs, textures, text. For example of such a fully fledged game world, think of the Elder
Scrolls V: Skyrim (Bethesda) game world, complete with all that which makes it so immersive
and exciting – except for the underlying game engine. And then press the same button again,
and you get a fresh new world, different from the previous world in every respect: the details,
the overall structure, the look and feel. Maybe it’s a sci-fi world threatened by invasion, or a
murder mystery in a contemporary industrial city. The only limits for the expressive space

1 The PCG workshop runs annually since 2010, co-located with the Foundations of Digital Games
Conference. The autumn 2011 issue of IEEE Transaction on Computational Intelligence and AI in
Games is entirely devoted to PCG. A discussion group for the PCG community can be found at
https://groups.google.com/group/proceduralcontent/
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are the capabilities of the underlying game engine, which provides primitives for movement,
social interactions, combat, scoring etc. The system we imagine should be so flexible so that
it would be possible to plug in a new game engine, complete with a new set of rules and
dynamics, and go on to generate complete game worlds that fit with that engine.

In other words we are here envisioning a system that can generate multiple types of
quality content at multiple levels of granularity in a coherent fashion while taking game
design constraints into consideration. Nothing like this exists yet, and while it might not be
possible to achieve such a system in the foreseeable future, we see much room for progress in
this direction.

Almost all existing approaches to content generation generate a single type of content
for a single game, and the results all too often look uninspired and generic. There are some
interesting examples of trying to generate several types of content so that they fit in with
each other. Dwarf Fortress (Bay 12 Games) generates many aspects of the game world,
including its geology and backstory, all the way down to the socks on each foot of individual
dwarfs. However, for each type of content the generation process is very simple, and the
generated game worlds show little variation. A similar problem is tackled by Hartsook et
al., though that paper employs a “waterfall” model where one type of content (stories) are
generated first and the second (maps) afterwards, with no feedback between process [9].
Another approach to multi-level multi-content generation is that of the Sketchaworld system
by Smelik et al. [23]. This system allows for mixed initiative generation of various aspects
of a landscape, including topology, vegetation, and the placement of roads and buildings.
All objects have semantics and defined interdependencies, which together with a conflict
resolution system allows editing on one level (e.g. changing the flow of a river) to have effects
on entities on other levels (e.g. a bridge is automatically created over the river to allow a
pre-existing road to pass through). However, that system does not address game-specific
design considerations such as balance or challenge.

2.2 PCG-based Game Design
Imagine a game where procedural content generation was a central mechanic, without which
the game could not exist at all; in fact, the whole genre to which the game belongs could not
exist without procedural content generation. Imagine that the game was truly endless, and
that exploration of an infinite range of content was a central part of the gameplay, indeed
the main reason the game was so appealing.

Almost all existing approaches to PCG focus on generating content for an existing game,
where the core game itself could exist without the PCG mechanism. PCG is done to facilitate
development, or to allow for runtime adaptation. Even in games such as Rogue, Spelunky
and Diablo, where a key feature of the game is the endless variation in game content, all of
the levels could in principle have been generated offline and presented to the player without
taking player choice into account. Creating games where a PCG algorithm is an essential
part of the game design requires innovations both in game design, where parameters to
the PCG algorithm need to be meaningfully based on player actions, and in PCG, where
the algorithm needs to be reliable and controllable beyond the capacities of most current
algorithms.

A few games have made progress towards realising this vision. Galactic Arms Races
and Petalz both feature the evolution of new content as a core part of the game, where the
players respectively evolve weapons to defeat enemies or evolve flowers to impress friends
as the game is being played [10, 19]. Endless web is a platform game that lets the player
explore different dimensions of content space, and generates new levels in response to the
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player’s actions[26]. In Infinite Tower Defence, the role of PCG is to create new levels and
enemies that match the current strategy of the player so as to force the player to explore
new strategies [2]. Another example is Inside a Star-filled Sky, which features a “zooming”
mechanic, where the player character can enter enemies and explore new levels inside them;
this yields an apparently endless hierarchy of nested levels. While these games are addressing
the challenge of PCG-based game design, they are still variations on well-known genres rather
than examples of genres that could only exist because of PCG.

2.3 Generating Complete Games
Imagine a PCG system that could create complete games. Not just content for an existing
game, but the whole game from scratch, including the rules and game engine. At the press of
a button, starting from nothing, the system will create a game no-one has played before and
which is actually enjoyable to play. This would involve automating the arguably most central
and “AI-complete” aspects of game design, including estimating how a human player would
experience interacting with a complete system of rules and affordances. Perhaps the system
accepts parameters in the form of a design specification for the game. For the example, a
human might task the system with designing a game that features fog of war, that promotes
collaboration or that teaches multiplication.

Several attempts have been made to generate game rules, sometimes in combination
with other aspects of the game such as the board. Of particular note is Cameron Browne’s
Ludi system which generated a board game of sufficient novelty to be sold as a boxed
product through searching through a strictly constrained space of board games [4]. This
system built on evolutionary computation, as did earlier [32] and later [6] attempts to evolve
simple arcade-style games. Other attempts have build on symbolic techniques such as logic
programming [25, 34]. While these examples have proven that generation of playable game
rules is at all possible, they all generate only simple games of limited novelty.

3 Challenges

Analysing what would be needed in order to reach the grand goals discussed above, the
workgroup arrived at a list of eight research challenges for procedural content generation.
Successfully meeting any of these challenges would advance the state of the art in PCG
significantly, and meeting all of them would probably render the goals described above
attainable. Addressing any of these challenges could make a good topic for a PhD thesis.

3.1 Non-generic, Original Content
Generated content generally looks generic. For example, looking at the dungeons generated
for a roguelike game such as those in the Diablo series, you easily get the sense that this is
just a bunch of building blocks hastily thrown together with little finesse – which is just
what it is. Re-generate the level and you get a superficially very different but ultimately
equally bland level. Most generated levels lack meaningful macro-structure and a sense of
progression and purpose. Very rarely would you see a generated level about which you could
say that it was evidence of skill or artfulness in its creator, and even more rarely one which
showcases genuine design innovation. Compare this with the often masterfully designed levels
in comparable games such as those in the Zelda franchise. The Zelda levels are aesthetically
pleasing in several ways, providing a clear sense of place and progression, and often offering
some original and unique take on the design problems of action adventure games.
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There are a few examples of PCG systems having come up with what could be called
genuine inventions. In the Galactic Arms Race game, several of the weapons that were
generated (such as the tunnel-maker and hurricane) were surprising to players and designer
alike and unlike anything the designers had seen before, yet were effective in the game and
opened up for new playing styles, as if they had been designed by a human designer [10]. As
discussed above, Browne’s Ludi system managed to come up with a game (Yavalath) that
was sufficiently novel to be sold as a boxed product. However, we do not know of a system
that has exhibited sustained creativity, or that (in the language of Margaret Boden [3]) has
displayed transformational rather than just exploratory creativity.

The challenge, then, is to create content generators that can generate content that is
purposeful, coherent, original and creative. This challenge is quite broad, as interpretations
of these adjectives could vary – this only means that there are many different ways of
approaching the challenge.

3.2 Representing Style
Directly connected to the previous challenge but somewhat more specific is the challenge to
create a content generator that can create content in a particular style that it has somehow
learned or inferred. Human artists of various kinds can observe artefacts produced by another
artist, and learn to imitate the style of that artist when producing new artefacts – e.g., a
skilful painter could study a number of Picasso paintings and then produce new paintings that
were recognisably in the same style (while presumably not exhibiting the same creativity),
and then go to on to study Mondrian paintings and produce Mondrian-like paintings of her
own. An analogous capacity in PCG could be a level generation system that could study
the seminal level designs of Shigeru Miyamoto in the Zelda and Super Mario series, and
produce similar designs automatically; the same generator could, after being presented with
John Romero’s significantly different designs for Doom levels, learn to imitate that style
too. Perhaps the generator could be presented with artefacts that were not game levels,
for example architectural designs by Frank Lloyd Wright, and learn to reproduce that style
within the constrained design space of levels for a particular game. Similarly competent
texture generators, game rule generators and and character generators could also be imagined.
It is important to note that the challenge is not only to imitate the surface properties of a
set of designs (such as recurring colours and ornamentation) but also the deeper features of
the design, having to do with expression of ideas and emotions in interplay with the player
and game design.

Some attempts have been made to model player preferences in level generators [16]
or designer preferences in interactive evolution for content generation [15]. However, the
preferences modelled in these experiments are still very indirect, and the generated artefacts
still exhibit the style of the generator more than that of the player or designer.

3.3 General Content Generators
Almost all existing PCG algorithms generate a single type of content for a single game.
Reusability of developed PCG systems is very limited; there is no plug-and-play content
generation available. This can be contrasted with the situation for other types of game
technology, where game engines are regularly reused between games and even some aspects of
game AI (such as pathfinding) now being available as middleware. The only PCG middleware
that is actually in use in multiple games is SpeedTree, but this again generates only a single
type of content (vegetation) and that type is of little functional significance in most games,
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meaning that the risks of generating content are rather low; ugly shrubbery is ugly but tends
not to break the level. The lack of readily available PCG systems that could be used without
further development to generate for example levels or characters for a new game is probably
holding back adoption of PCG techniques in the game industry.

It is already the case that certain techniques underly a number of different PCG sys-
tems. For example, L-systems [18] are at the core of both SpeedTree and techniques for
creating landscapes [1] and levels [7]. Similarly, compositional pattern-producing networks
(CPPNs) [29] are the basis for both the spaceships in Galactic Arms Race [10], the flowers in
Petalz [19] and the pictures in PicBreeder [20]. However, in each case significant engineering
effort was required to make the method work with the particular type of content in the
particular game.

A general content generator would be able to generate multiple types of content for
multiple games. The specific demands, in term of aesthetics and/or in-game functionality, of
the content should be specified as parameters to the generator. A game designer armed with
such a tool would just need to properly specify the requirements for the content that should
be part of a new game in order to promptly have a means of automatically generating content
for it. One idea for how to achieve this is to treat PCG algorithms as content themselves,
and generate them using other PCG methods so as to fit the particular content domain or
game they are meant to be applied to [14].

3.4 Search Space Construction
If content is to be generated then it must be be situated within a search space. The structure
of the search space determines what content can be reached from small perturbations of any
particular instance in the search space. For a content generator to be successful, the structure
of the search space needs to have certain forms of locality. In general, small perturbations
in the underlying representation should not lead to radical changes in the appearance or
functionality of the content itself. For example, a table should not turn into a mushroom in
a single small mutation. Rather, the table might become a little shorter, a little taller, or a
little rounder, but it would remain a recognisable table.

This search space structure is ultimately determined by the selected underlying rep-
resentation for the class of content being generated. Existing representations include the
L-sytems [18] and CPPNs [29] discussed in the previous section, as well as logic-based
representations such AnsProlog code snippets [24] and more direct representations where
individual numbers correspond to individual features of the artefact. Such representations
bias the generator towards producing certain qualitative themes, such as fractals in L-systems
or symmetry in CPPNs. These biases are a reflection of the structure of the search space
induced by the representations – fractals tend to be reachable from many different parts of a
search space induced by L-systems. Thus the representation becomes an implicit means of
structuring which types of content neighbour which, and therefore which artefacts can lead
to which others.

This relationship between representation and search space structure highlights the signi-
ficant challenge of designing a generator for a specific type of content: If a type of content
is to be generated – say vehicles or buildings – then the engineers designing the generator
must carefully construct a representation that induces a reasonable structure on the search
space. One would not want airplanes to change in one step into wheelbarrows. To ensure
such a smooth a tightly coupled landscape, the designer must intimately understand the
relationship between the underlying representation and the structure of the space it induces,
a relation which is not necessarily intuitive. For this reason, designing the search space to
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make a satisfying generator requires significant skill and insight, and there are currently few
general principles known to the research community for undertaking such a task.

In the future, it is possible that tools can be built to aid in adapting a particular
representation for a particular class of content. For example, as noted in the previous section,
CPPNs have encoded pictures, weapon systems, and flowers by interpreting their outputs
and choosing their inputs carefully. It would be most helpful if a tool could help to automate
such choices so that a particular representation could be adapted to a particular content
class more easily.

3.5 Interfaces and Controllability for PCG Systems
Most existing PCG systems are not easy for a human to interface with and control. Many
classic PCG implementations, for example the dungeon generators in many roguelike games,
have no parameters of control at all; taking a random seed as input, a level is generated as
output. In very many cases, you as a user (or as a game) would need to have more control of
the generated artefact. Like controlling how difficult a level is, whether it should be more
suited to speed runners or to explorer-type players, how much treasure and how many puzzles
it should contain, and whether it should include a green flagpole at a particular location
or perhaps five pixels to the left of that position. Or the age of a generated flower, the
intuitiveness of a ruleset or the hipness of a car. There are many possible types of control
that could be desirable, depending on the game and the designer.

Some classic constructive algorithms such as L-systems offer ways for the designer to
specify aspects of the generated content, such as the “bushiness” of a plant. Search-based
approaches allow the designer to specify desirable properties of the content in the form
of objectives, but encoding the desired qualities in a fitness function is often far from
straightforward and there is no guarantee that content with high values on these objectives
can be found in the search space. Other PCG paradigms such as solver-based PCG using e.g.
Answer Set Programming [24] offer complementary ways of specifying objectives, but again,
it is not easy to encode the desired qualities for a non-expert. The mixed-initiative PCG
systems Sketchaworld [23] and Tanagra [27] explicitly address this problem by allowing the
user to interact with the PCG system by moving and creating objects in physical space, and
thus imposing constraints on how what can be generated where. These systems clearly show
a viable way forward, but so far only some aspects of control has been achieved (physical
location) at the cost of some limitations in what sort of underlying PCG methods can be
used.

What would it mean to allow users (be they designers or players, or perhaps some other
algorithm such as a challenge balancing system) complete control over the content generation
algorithm? Presumably it would mean that they could at any point during the generation
process change any aspect of the content: making the level more blue or less scary or just
making all of the gaps except the fifth one contain apples. Then the generator responds by
implementing the changes, perhaps introducing new features or removing others, but still
respecting what the user has specified wherever possible, and intelligently resolving conflict
between specifications (e.g. the apples in the gaps could make the level more difficult). One
could imagine something like Adobe Photoshop’s extreme array of expressive tools, including
brushes, filters and abilities to only have modifications apply to particular layers, but all
the way taking game design into account and autonomously generating appropriate content
suggestions. It should be emphasised that this is not only a formidable challenge for PCG
algorithms, but also for human-computer interaction. It is not even obvious how to represent
aspects of game content that depend on being played to be experienced (such as game rules)
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in an editor; a recent attempt at mixed-initiative generation of game rules mostly highlighted
the problem [30].

3.6 Interaction and Opportunistic Control Flow Between Generators
Closely related to the previous challenge, and crucial for the goals of multi-level PCG and
generating complete games, is the challenge to devise workable methods for communication
and collaboration between algorithms working on generating different aspects or layers of
the same artefact. For example, when a system generates the rules for a game, the physical
environments for the same game and the characters or creatures that feature in it, the various
generative algorithms must be able to communicate with each other. The simplest way of
implementing this would probably be a “waterfall” model where the rules are generated
first, positing requirements on the terrain/levels generator, in turn further constraining the
space available for the creature/character generators. But this rules out any innovations
in rules which are dependent on, and initiated by, uncommon solutions and crazy ideas in
level or character design. In fact, as the rule generator cannot know what sort of characters
the character generator will be able to produce (unless the latter’s search space is severely
constrained), the rules will have to be constrained to be very bland and workable with pretty
much any characters. For these reasons, games developed by teams of humans are often
developed in a much more opportunistic way, where opportunities or problems discovered at
any content layer could affect the design of the other layers (e.g. the invention of a new type
of enemy spurs the invention of new rules).

How can we replicate such an opportunistic control flow in a completely (or mostly)
algorithmic environments, where algorithms (or perhaps some algorithms and some humans)
collaborate with each other? One could imagine a system where constraints are posted in
a global space, but this requires that a language and/or ontology be constructed to make
such constraints comprehensible across generators, and also that a system is devised for
working out priorities and solving conflicts between constraints. Going further, one could
imagine equipping the content generators with models of themselves so as to provide a level
of introspection, allowing them to exchange models of the bounds of their generative spaces.

3.7 Overcoming the Animation Bottleneck
In modern 3D computer games, animation is a major concern. Almost everything needs
to be animated: creatures, characters, vehicles and features of the natural world such as
vegetation and water. Creating believable animations even if the underlying characters are
not procedurally generated is a huge challenge. In particular:

Motion capture or hand animation is very expensive to acquire, and requires either the
use of specialised motion capture facilities or an extensive team of animators.
Data-heavy forms of animation such as motion capture or hand-animation also costs a
significant amount of time, and are often a bottleneck for improving character behaviour.
Animation systems based on data require significant runtime overheads for shifting around
the data, decompressing it and generating runtime poses via blending.

This makes current animation techniques a bottleneck in three different ways, each as
important as the other. Procedural techniques are already starting to resolve each of these
three different issues, and the games industry is highly interested in the results [5].

There are many domain-specific problems to generating compelling animations for char-
acters that were hand defined, but harder still is the problem of animating procedurally
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generated creatures. Being able to generate an artefact does not mean that one automatically
is able to animate it, and if one is not able to convincingly animate an artefact it is more or
less useless in-game, as it would break the suspension of disbelief.

The big challenge of procedural animation is to match the high expectations of human
observers, without having to resort to stylisation as a solution. This solution will involve
subtle combinations of data and code that are crafted and assembled together masterfully by
skilled technical animators, and new algorithms to make this possible.

3.8 Integrating Music and Other Types of Content
While most computer games feature music, the whole audio component usually only serves
the task of supporting the game flow or emphasising the general atmosphere of the game.
This is often done either by producing complete sound tracks as in the movie industry or
by designing a very simple generative system (as in the Google app Entanglement) that
repeatedly recombines single parts in order to stretch the available music and prevent boredom.
Games that actively use the music as source of information to create game content or, vice
versa, use game events for adjusting or even creating music are still rare.

In many well-known games based on music (e.g. Guitar Hero or SingStar), the interaction
between music and game events is completely fixed and has been manually created. An
overview of the different possibilities is given in [17]. Some examples of more complex
interaction are:

Rez (Sega)2 from 2001, a rail shooter that tightly binds the visual impression (and
appearance of enemies) to the composed music and also feedbacks user actions acoustically.
Electroplankton by Nintendo3 from 2005, where the player interacts in various ways with
the game to create audio and visual experiences.
The turntable-like game Scratch-Off [8] that requires user interaction matching the rhythm
of the music while blending over to another piece of music.
The Impossible Game is a graphically simple but challenging platform game for consoles
and mobile phones that requires the user to cope with very different obstacles that are
generated in accordance with current music events.
The Bit.Trip series by Gaijin Games features the main character Commander Video who
has to cope with game events mostly based on the rhythm of the played music in 6 very
different games (rhythm shooter, platformer).
Wii Music automatically generates melodies based on how the player moves the controller.
BeatTheBeat [12] features three mini-games (rhythm-based tap game, shooter, and tower
defence) that each use the available music as background and its analysed feature events
as source for game event creation.

Music informatics has made great strides in recent years, including the emergence
personalised music selection systems (including learning personal preferences) as well as
complex music generation systems. Given this progress, it should be possible to establish
game/music systems that interact in a much more complex way than what we are used to
see in most games. In principle, one could take an existing simple game and attach it to a
recommendation or generating system. Some thought has to be put into designing clever
interfaces, but the problem appears per se as solvable. Using existing music as input source

2 http://www.sonicteam.com/rez
3 http://www.mobygames.com/game/electroplankton
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for realtime production of game content just becomes possible now as modern computers are
powerful enough to analyse the music online. This scheme can enhance a game considerably
because the user can modify it by selecting the music that best reflects the current mood or
just some very different music to create a new experience.

However, this strategy is only applicable for simple games with a restricted number of
(partly repetitive) game components. For more complex games, interaction in the other
direction (game events influence the music played) may make more sense. The components
to achieve this are available, simple forms of modulation would be changing volume, speed,
or key of the music. One could also think of online remixing by changing the volume of single
instrument tracks, an approach that has been tried some years ago by several musicians by
means of online tools (e.g. Peter Gabriel, William Orbit), but not in the games context.
The feasibility of this approach highly depends on access to the single music and games
components, but technically appears to be rather simple. A more sophisticated approach
would apply a music generating system in order to modify or re-create the currently played
music. However, for achieving a believable connection between game events and music,
the semantic of the game events needs to be defined in a transferable fashion, for example
through their effects on the player’s mood.

3.9 Theory and Taxonomy of PCG Systems
While PCG research has been steadily increasing in volume in the last few years, there has
been a lack of unifying theory to guide the research or even to help relating the disparate
contributions to each other. New algorithms have been proposed and case studies carried
out in a number of game domains, but it is seldom clear in what ways a new approach is
better (or worse, or just different) to existing approaches. A theory and taxonomy of PCG
would explain the relative advantages of different approaches, why some content generation
problems are harder than others, and which approaches are likely to work on what problems.
It would also help situate and analyse any new algorithms proposed. A recent paper makes an
initial attempt to provide a taxonomy for PCG, but covers mostly search-based approaches,
in particular those based on evolutionary computation [33].

4 Actionable Steps

The challenges listed above are somewhat abstract and are mostly long-term projects. For
some of them, it is not even clear how to approach them. To make matters more concrete,
and to provide a set of example projects for anyone wishing to contribute to advancing
the state of the art of procedural content generation, we devised a number of actionable
steps. These are more specific research questions around which projects with a limited scope
could be formulated, and for which the technical prerequisites (in terms of algorithms and
benchmarks) already exist. You could start working on any of these steps already today.

4.1 Atari 2600 Games
Inventing a system that could generate a complete game with the complexity and scope of
a modern AAA game might be a tall task – after all, developing these games often takes
hundreds of person-years. Fortunately, not all games are equally complex. Those games
that were made for early computers and game consoles were substantially less complex, as
available memory size, processing speed, graphics resolution and development teams were
all fractions of what they are today. The Atari 2600 games console, released in 1977, had
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4 kilobytes of RAM, a 1.2 MHz processor and was home to classic games such as Pitfall,
Breakout, Adventure and Pac-Man. All of them had two-dimensional graphics that adhered
to certain constraints regarding e.g. the number of movable objects that were dictated by
the system’s hardware design.

One could realistically try to directly approach the third of the grand goals outlined
above, that of generating complete games, working within the much constrained space of
games that would be possible on a system such as the Atari 2600. The limited space makes
it much more tractable to search for good games, regardless of which search-mechanism
would be used. The limited computational requirements of running these games would also
make it possible to test them, for example by simulating playthroughs, at a much faster pace
than real-time. A successful game generation system for Atari 2600 games should be able to
re-invent classic games such as Breakout and Pac-Man, but also to invent enjoyable games
that have never before been seen and which differ in some interesting way from all existing
games. Developing such a system would require devising a description language for this type
of video games, that is complete enough to cover essentially all interesting such games, but
which still enables the space to be effectively searched; for some thoughts on how this could
be done, please see the chapter Towards a Video Game Description Language in this volume.

Relates directly to challenges: general content generators, search space construction,
interaction and opportunistic control flow.

4.2 Procedural Animation for Generated Creatures

One way of approaching the challenge of bringing PCG and procedural animation together is
to develop a creature generator which generates creatures together with suitable procedural
animation. The most impressive attempt to do something similar is probably the Creature
Creator in Spore, but that is an editor rather than an automatic content generator, and
imposes certain constraints on the generated creatures that should be avoided in order to be
able to search a more complete creature space.

Relates directly to challenges: overcoming the animation bottleneck, interfaces for PCG
systems.

4.3 Quests and Maps

The computational generation and adaptation of narrative is a specific type of PCG which
enjoys its own research field, and a number of promising approaches have been presented,
most of them based on planning algorithms [35]. Another domain of PCG which has seen
much attention is the generation of maps of different kinds. Maps are automatically generated
in games such as Civilization and Diablo, and a number of recent studies have investigated
techniques such as cellular automata [11], grammars [7, 1] and evolutionary computation [31]
for generating interesting and/or balanced maps for different types of games.

Generating maps and quests together could potentially be an excellent showcase for
multilevel PCG (the first of the grand goals outlined above), as the best-designed games
often feature quests and maps that interact and reinforce each other in clever ways – the
map helping the game tell the story, and the story helping the player explore the map –
and there are workable approaches to generating each type of content separately. However,
there is surprisingly little work done on generating quests and maps together. One of the
few examples is Dorman’s use of grammars for generating Zelda-style dungeons and quests
together, achieving good results by severely limiting the domain [7]. Another is Hartsook et
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al.’s generation of matching maps and quests, by simply generating the map after the quest
so that the former fits with the latter [9].

There is plenty of scope for taking this further and generating maps and quests that are
perfect fits for each other. The interested investigator could start by taking one of those
algorithms that has been proven to work well for one domain (maps or quests) and try to
encode the other domain within the first, or by devising a scheme where map and quest
generators take turns to respond to each other, or perhaps by trying to invent a completely
new algorithm for this task. One could also try to allow human intervention and input at
any phase of the quest/map generation.

Relates directly to challenges: interaction and opportunistic control flow, general content
generators, interfaces for PCG systems.

4.4 Competent Mario Levels
The Mario AI Benchmark is a popular testbed within the CI/AI in games community, based
on an open source clone of Nintendo’s classic platformer Super Mario Bros. The benchmark
has been used for a series of competitions focused on developing AI controllers that play
the game proficiently [13], but in 2010 and 2012 it was also used for a competition where
entrants submitted level generators capable of generating personalised levels for particular
players [22]. A number of PCG systems were submitted to this competition, and a number
of other PCG experiments using the Mario AI Benchmark have been published following the
competition [21, 28].

However, comparing the quality of the generated levels with those that can be found in
the real Super Mario Bros game, or with human-designed levels in any other high-quality
platformer, makes any PCG aficionado disappointed. The generated levels typically lack a
sense of progression, or any other macro-structure for that matter. Unlike the real Super
Mario Bros levels, there is no sense that they are telling a story, trying to teach the player a
skill, or hiding a surprise. Furthermore, the generated levels frequently feature items and
structures that make no sense, unexplainable difficulty spikes and repeated structures that
seem to be taken straight from a structure library. A high priority for someone interested
in procedurally generating platform levels should be to devise an algorithm that can create
levels with a sense of purpose. Using the Mario AI Benchmark as a testbed means that there
is no shortage of material for comparisons, both in the form of level generators and in the
form of professionally designed levels.

Relates directly to challenges: non-generic content, representing style.

4.5 Player-directed Generation with Model-based Selection
A final intriguing possibility is that player-directed generation in the style of Galactic Arms
Race [10] could be enhanced by combining it with model-based selection such as in [16]. In a
game like Galactic Arms Race, the game generates new content based on content players
have liked in the past (as evidenced by e.g. using it). This idea works to ensure that new
content appearing in the world derives from content that players appreciated.

However, as the number of players climbs higher, the amount of content generated will
also climb because player behaviour generally leads to new content spawning in the world.
With a relatively small population of players, this dynamic poses few problems because
the probability of any player in the game eventually experiencing a reasonable sampling
of the diversity of generated content is high. However, with many players, the consequent
content explosion means that most players will see only a small fraction of the diversity of
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content that the game is able to produce. In that situation, the question arises whether
the overall search for content might benefit from trying to expose players to content that
they are likely to find interesting. That is, the game might try to model the type of content
that individual players prefer and thereby avoid wasting effort presenting newly-generated
instances to players who are unlikely to be interested in them. If such mismatches occur on
a large scale, then pockets of the search space that could have been explored fruitfully might
be abandoned simply because the players who would have been interested in such content
never had to the opportunity to observe it.

By combining player modelling with player-directed content generation, it is a possible
that a synergistic effect could accelerate the search and also produce a more diverse set of
content. When players are exposed to candidate content that they are likely to find interesting,
their discernment in principle can help to explore the subspace of that particular type of
content with more fidelity than would be possible through the overall player population.

Relates directly to challenges: representing style, search space construction.

5 Conclusion

This chapter presents three grand goals for procedural content generation, and presents
several challenges that should be addressed in order to realise these goals, and a sample of
actionable steps that could get you started towards the challenges. Obviously, these are not
the only conceivable actionable steps nor even the only challenges for PCG. We believe PCG
presents a rich and fertile soil for research and experimentation into new techniques, with
obvious benefits both for industry and for the science of game design.
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Abstract
One of the grand challenges of AI is to create general intelligence: an agent that can excel at many
tasks, not just one. In the area of games, this has given rise to the challenge of General Game
Playing (GGP). In GGP, the game (typically a turn-taking board game) is defined declaratively
in terms of the logic of the game (what happens when a move is made, how the scoring system
works, how the winner is declared, and so on). The AI player then has to work out how to play
the game and how to win. In this work, we seek to extend the idea of General Game Playing into
the realm of video games, thus forming the area of General Video Game Playing (GVGP). In
GVGP, computational agents will be asked to play video games that they have not seen before.
At the minimum, the agent will be given the current state of the world and told what actions
are applicable. Every game tick the agent will have to decide on its action, and the state will be
updated, taking into account the actions of the other agents in the game and the game physics.
We envisage running a competition based on GVGP playing, using arcade-style (e.g. similar
to Atari 2600) games as our starting point. These games are rich enough to be a formidable
challenge to a GVGP agent, without introducing unnecessary complexity. The competition that
we envisage could have a number of tracks, based on the form of the state (frame buffer or object
model) and whether or not a forward model of action execution is available. We propose that the
existing Physical Travelling Salesman (PTSP) software could be extended for our purposes and
that a variety of GVGP games could be created in this framework by AI and Games students
and other developers. Beyond this, we envisage the development of a Video Game Description
Language (VGDL) as a way of concisely specifying video games. For the competition, we see this
as being an interesting challenge in terms of deliberative search, machine learning and transfer
of existing knowledge into new domains.
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1 Motivation

The field of Artificial Intelligence is primarily concerned with creating agents that can make
good decisions [15]. In the context of games, this definition is particularly relevant, as the
player of a game will typically have to make a large number of accurate decisions in order to
achieve a favourable outcome (a win over an opponent, or a high score). Games have thus
always formed a fertile source of benchmarks and challenges for the AI researcher since the
earliest days of the field [16].

Great progress has been made with specific games, such as chess, backgammon and
poker (to name but three of the many games that AI researchers have effectively mastered).
However, each AI program is written to tackle a specific game and the techniques used for
one game do not necessarily transfer to other games. Humans can thus still claim to be, in
some sense, more intelligent than these programs because they can play multiple games and
learn how to play and excel at new ones: their intelligence is more general.

In AI, we are always striving for theories concerning intelligence in general rather than
intelligence in the specific. If we come up with a theory of good decision making and use
a turn-taking game as an example of how that theory works, then we have made a better
contribution than someone who writes a bespoke computer program just to play that game.
In the best case, our theory of intelligence should be able to be applied to any situation in
the real world where decisions are taken.

These observations, combined with the success of computer programs at turn-taking
games such as chess and Othello, have given rise to the challenge of General Game Playing
(GGP) [5], which has now become an annual competition at the AAAI conference [22]. This
competition focuses on turn-taking board games. The logic of the game is specified in a
language called GDL (Game Description Language) [21] which in turn is inspired by the
single agent Planning Domain Definition Language (PDDL) [24] used in the AI planning
community.

Turn-taking board games are only one genre of games at which humans excel. A turn-
taking board game is usually quite slow-paced, and so deliberative reasoning about the
consequences of actions and the likely responses of opponents are possible using seconds or
even minutes of CPU time. Humans also excel at other games where decisions have to be
made much more quickly and where the environments are noisy, dynamic and not always
predictable. Video games are a very good example of this genre and form an interesting
challenge for AI researchers.

Classic arcade video games (such as Pac-Man, Asteroids and Space Invaders) are very
good examples of the kind of activities we are seeking to cover in this work. In his book
Half-Real [11], Juul offers a six-part definition of what a game is: (1) games are rule-based;
(2) they have variable outcomes; (3) the different outcomes have different values; (4) the
player invests effort to influence the outcome; (5) the player is attached to the outcome; and
(6) the game has negotiable consequences. Looking specifically at points (3), (4) and (5), our
core assumptions in this work are that the value of the outcome achieved by the player of a
video game (point 3) is a direct reflection of the amount of intelligence (intellectual effort)
brought to bear on the task (point 4); and that this can be further used as an indicator of
the player’s general level of intelligence (point 5).

In this work, we seek to extend the idea of General Game Playing into the realm of
video games, thus forming the area of General Video Game Playing (GVGP). In GVGP,
computational agents will be asked to play video games that they have not played before.
The agent will have to find out how the game reacts to its actions, how its actions affect
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its rewards and therefore how to win the game (or maximise its score). At the minimum,
the agent will be given the current state of the world and told what actions are applicable.
Every game tick the agent will have to decide on what action to take. The state will then
be updated, taking into account the actions of the other players in the game and the game
physics. We envisage that the rules and the physics of the game can be encoded using a
Video Game Description Language (VGDL). We have analysed a selection of classic arcade
games with a view to representing them in VGDL and the results of this work are presented
in another paper in this volume.

The aims of this work are:
to define what General Video Game Playing is and our motivation for this investigation;
to review some of the previous work that has influenced and inspired this work;
to discuss what video games we would initially like to tackle in this work;
to speculate on the computational methods that might be appropriate for GVGP;
to present a proposal for a GVGP framework, based on existing software for the Physical
Travelling Salesman Problem (PTSP);
to outline our proposal for a GVGP competition.

The remainder of the chapter is structured as follows. In the next section, we look at the
background behind GVGP, in particular the GGP competition and the work of the Atari
2600 group at Alberta. We then examine what sort of games would like to tackle in GVGP
and the mechanisms that agents might use in order to play these games competently. We
then examine how we would build a GVGP framework, based on the Physical Travelling
Salesman (PTSP) work at the University of Essex. Finally, the paper ends with a proposal
for a GVGP competition, with tracks based on the form of the state (frame buffer or object
model) and whether or not a forward model of action execution is available.

2 Background

General video game playing is an excellent tool to test artificial intelligence algorithms. If a
human player is sitting in front of a video game and is playing the game, then they need to
make observations about the state of the game:

Where is the avatar of the player (i.e. which screen object is ‘me’)?
Where are the opponents or enemies?
What are the current options (direction of next move, firing of a weapon, jump, etc.)?
Which option will most likely bring the own avatar towards a particular goal?

One of the main advantages of general video game playing is that it is of intermediate
complexity. It is more complex than simple board games, e.g. movement options may be
continuous and the game may also employ simulated physics. However, general video game
playing is not as complex as developing human-like robots.

In developing human-like robots, researchers have resorted to highly constrained settings.
Sample tasks include: vacuuming the floor [10], cleaning windows [4], moving objects or
persons from location A to location B [8], or giving tours in a museum [19]. Even though
these problems have all been beautifully addressed by these researchers the settings are
constrained, i.e. algorithms are usually only transferable to similar domains. In some cutting
edge areas of robotics (search for the holy grail of artificial intelligence) the goals are not at
all clearly defined. Should a robot be able to play chess, learn to play the piano, wash the
dishes or go shopping for groceries? Should a robot first learn to play chess and then how
to go shopping or vice versa? That aside, robot actuators and input sensors may not allow
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handling of completely different problem classes such as driving on the road and playing
chess.

In contrast, in general video game playing, the goal of the player is clearly defined.
Moreover, there are several different goals (one for each game). The goals are not taken from
an artificial laboratory setting but correspond to actual goals that have been addressed by
numerous game playing enthusiasts around the world. Goals include:

Navigating a yellow object through a maze while collecting all white dots and at the
same time avoiding colored ghosts (Pac Man).
Landing a space ship on the moon (Lunar Lander).
Navigating a space ship through a field of asteroids (Asteroids).
Driving a racing car (Pole Position).
Climbing to the top of a platform environment while avoiding falling objects (Donkey
Kong).

While each game has its unique story and goal which should be achieved by the player, the
method of how the player interacts with the game is the same across all these games. All
possible moves of the player are defined through the game controller (e.g. the Atari 2600
had a joystick with a single button resulting in 18 possible moves for each time step). The
number of possible movements for each time step are sufficiently small and discrete. However,
given the continuous nature of the game, i.e. a new decision has to be made for each time
step, the game is sufficiently complex.

We believe that addressing the diverse problems of general video game playing will
allow us to gain new insights in working towards the holy grail of artificial intelligence, i.e.
development of human-like intelligence.

2.1 General Game Playing
The General Game Playing competition at AAAI has now been running since 2005 and
focuses on turn-taking board games. The programs which enter the competition are not
given the details of the games in advance; instead, the rules of the game to be played are
specified using GDL, the Game Description Language [21]. Given the unseen nature of the
games, there are two common approaches used to construct players, namely deliberative
reasoning (e.g. minimax search) or policy learning (e.g. reinforcement learnng). One of the
most successful players to date is Cadia Player [2], which is a deliberative approach based on
Monte Carlo Tree Search [12, 3].

2.2 The Atari 2600 Games Group
The work described in our paper has a strong connection to the work of the Atari 2600 games
group at Alberta, and much of our discussion was influenced by their work [1]. They have
built what they call The Arcade Learning Environment (ALE), based on the games for the
classic Atari 2600 games console. A variety of different genres of game are available for this
console: shooters, adventure, platform, board games, and many others. An emulator for 2600
games is used in the ALE, and the player of these games has to interact with this emulator
to find out what action to take next. Two approaches to creating players are investigated,
based on reinforcement learning [18] and Monte Carlo Tree Search [12]. Other recent work
in this area by Hausknecht et al. has investigated the use of evolutionary neural networks for
creating general video games players [6].

The aim of the work cited in this section is similar to ours: to create general artificial
intelligence agents for playing video games. Our proposal complements this work in two ways:
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firstly, by proposing an alternative and potentially more general framework for creating the
games, including a Video Game Description Language; and secondly, by proposing a General
Video Game Playing competition for evaluating different approaches to this problem.

2.3 Artificial General Intelligence
The field of artificial general intelligence (AGI) addresses the problem of artificial intelligence
in its most broad sense. The intelligent agents that it aims to build should be able to (learn
to) act well in a very broad range of environments, and under a broad range of constraints.
This contrasts with narrower AI research that focuses on a single application domain. A
large portion of the recent work in AGI is based on Hutter’s theoretical framework [9].
Recently, games were proposed as the specific ingredient for measuring this form of general
intelligence [17]; namely, an (infinite) set of unseen games were proposed to play the role of
the “broad range of environments”.

3 Games for General Video Game Playing

What kind of games are suitable for General Video Game Playing research? Since we want to
start our investigations with a feasible challenge, we think that classic 2-dimensional arcade
games offer the right balance. If this is successful, we then would envisage moving into
3-dimensional games, which offer more complexity (not least in terms of the effort required
to create the game environment). In the companion paper in this volume, we present Video
Game Description Language definitions for three diverse arcade games: Space Invaders,
Lunar Lander and Frogger. Other suitable candidates might include simple first person
shooting games such as Maze War [23], albeit represented in a 2-dimensional form.

All these games are characterised by relatively simple but fast-paced gameplay, with
the need for the player to make accurate decisions and adopt high performing strategies in
order to win. The emulators for such games can be created more easily than those complex
3-dimensional games but will still allow for sufficient experimentation for the results to be
transferrable to more complex game environments.

4 A Competition for General Video Game Playing

One of the main challenges of General Video Game Playing is to create a software framework
that allows for games to be designed and representated and different game-playing agents
tested via some form of long-running competition. Competitions have been very useful in
promoting research in creating AI players of games: examples include the long-running
Ms Pac-Man competition [13], the 2K Botprize [7] and the Physical Travelling Salesman
Problem [14].

In order to support research in General Video Game Playing we propose using software
created for the Physical Travelling Salesman Problem as the basis of a General Video Game
Playing framework. In order to do this, we would need to extend the framework to add
more agents and more game objects and create a general state model for the system. The
framework would be adapted to read 2-dimensional games written in VGDL.

We propose to hold a GVGP competition, in a number of tracks. These tracks will be
based on variations in what data is available to the player:

What data will be provided to the player to characterise the state? A frame buffer or an
object model?
Will the player have access to the entire state or just a first-person perspective?
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Will the player be able to use the simulator as a forward model to be able to do deliberative
reasoning?

Since these three features are mutually exclusive, the competition could, in theory at
least, run in 8 independent tracks (e.g. frame buffer model, entire state, no forward model).
In practice, only some of these variations will be interesting: in particular, the decision to
use a the entire state or a first person perspective will be dictated by the genre of game we
are playing. However, the use of frame buffer vs object model and the use of a forward model
vs no forward model are both interesting dimensions, thus resulting in at least 4 variations
for each game.

5 Potential Applications

While creating general video game players is an interesting academic activity in itself, we
think that this area of research could find applications in real video games. Our eventual
aim would be to enable the creation of high performance AI players without any extra code
being written: the game environment would be designed and then handed over to the general
AI agent, which would then work out how to play the game competently. In the shorter
term, we think that general video game playing techniques could be used both to test game
environments, including those created automatically using procedural content generation [20]
and to find potential loopholes in the gameplay that a human player could exploit.
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Abstract
This chapter is a direct follow-up to the chapter on General Video Game Playing (GVGP). As
that group recognised the need to create a Video Game Description Language (VGDL), we formed
a group to address that challenge and the results of that group is the current chapter. Unlike
the VGDL envisioned in the previous chapter, the language envisioned here is not meant to be
supplied to the game-playing agent for automatic reasoning; instead we argue that the agent
should learn this from interaction with the system.

The main purpose of the language proposed here is to be able to specify complete video
games, so that they could be compiled with a special VGDL compiler. Implementing such a
compiler could provide numerous opportunities; users could modify existing games very quickly,
or have a library of existing implementations defined within the language (e.g. an Asteroids ship
or a Mario avatar) that have pre-existing, parameterised behaviours that can be customised for
the users specific purposes. Provided the language is fit for purpose, automatic game creation
could be explored further through experimentation with machine learning algorithms, furthering
research in game creation and design.

In order for both of these perceived functions to be realised and to ensure it is suitable for a
large user base we recognise that the language carries several key requirements. Not only must it
be human-readable, but retain the capability to be both expressive and extensible whilst equally
simple as it is general. In our preliminary discussions, we sought to define the key requirements
and challenges in constructing a new VGDL that will become part of the GVGP process. From
this we have proposed an initial design to the semantics of the language and the components
required to define a given game. Furthermore, we applied this approach to represent classic
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1 Motivation

Recent discussions at the Dagstuhl seminar on Artificial and Computational Intelligence in
Games addressed the challenge of extending the principles of General Game Playing (GGP)
to video games. While the rationale and challenges facing research in General Video Game
Playing (GVGP) is the focus of another report in these proceedings, the need for a Game
Description Language (GDL) designed to suitably express the key concepts and mechanics
inherent in video games became apparent. This has led to this report exploring the challenges
and potential pitfalls faced in creating a Video Game Description Language (VGDL) that
will work as part of the GVGP process.

The focus of traditional GDLs is to express components expected in the state of a game,
and the rules that induce transitions, resulting in a state-action space. Typically, GDLs
for use in GGP competitions conform to a set-theoretic language that expresses atomic
facts in predicate logic. One of the more popular examples: the GDL component of the
Stanford General Game Playing Competition employs this approach to define discrete games
of complete information [4]. While this provides means to define and subsequently generate
games that conform to this particular set, the language is ill-suited for defining video game
environments. This is due to a number of factors:

Nondeterministic behaviour in video games as a result of non-player characters (NPCs)
or elements of chance are common.
Decisions for actions in video games can be attributed to player input or prescribed NPC
behaviour. These decisions are no longer turn-based and may occur simultaneously at
any step of the game.
Video game environments may employ continuous or temporal effects, real-time physics
and context-based collisions or interactions between combinations of players and artefacts.
Part of the player’s task is learning to predict those dynamics.
Typical video games use much larger environments than board games for the player to
interact with. However, the player-environment interactions are sparse, meaning that a
part of the environment complexity is rarely or never influencing decision making.

These factors among others present an interesting research challenge in its own right: to
try and maintain a balance between simplicity and generality in a description language whilst
ensuring it is suitably expressive. Driven by these factors and the challenge they represent,
we have raised key goals that shape our aspirations:

To define a GDL that supports the core mechanics and behaviour expected of classical
2D video games.
To ensure the VGDL defined will support the work being developed in the GVGP
discussion group.
Define a language that is sufficient not only to represent a game to the human reader,
but also for a compiler to generate an instance of the game.
Provide a VGDL that is unambiguous, extensible and tractable that could provide
opportunities for Procedural Content Generation (PCG).

In this report, we consolidate the key points raised by the authors as we explored the
challenges and impact of expanding the current research in Game Description Languages for
Video Games to further these design goals. We highlight the current state-of-the-art in the
field, the core criteria and considerations for the design and subsequent construction of a
VGDL, the challenges the problem domain will impose, the potential for future research and
collaboration and finally highlight preliminary steps in developing a VGDL prototype.
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2 Previous Work

Several attempts have been made in the past to model aspects of both simple arcade games
and board games. Most of them had the purpose of being able to generate complete games
(through evolutionary computation or constraint satisfaction) but there have also been
attempts at modelling games for the purposes of game design assistance.

The Stanford General Game Playing Competition defines its games in a special-purpose
language based on first-order logic [4]. This language is capable of modelling a very large space
of games, as long as they are perfect information, turn-taking games; those games that can
practically be modelled with the Stanford GDL tend to be board games or games that share
similar qualities. The language is very verbose: an example definition of Tic-Tac-Toe runs to
three pages of code. We do not know of any automatically generated game descriptions using
this GDL, but even if they exist, their space is unlikely to be suitable for automatic search,
as any change to a game is likely to result in an unplayable and perhaps even semantically
inconsistent game.

One noteworthy attempt at describing and evolving board games is Browne’s Ludi
language and the system powered by this language that evolves complete board games [1].
The Ludi system is a high-level language, and expressly limited to a relatively narrow domain
of two-player “recombination games”, i.e. turn-based board games with a restricted set
of boards and pieces, and with perfect information. The primitives of the Ludi GDL are
high-level concepts such as “tiling”, “players black white” etc. As the language was expressly
designed to be used for automatic game generation it is well suited to search, and most
syntactically correct variations on existing game descriptions yield playable games.

Also related is the Casanova language developed by Maggiore [6], now an open source
project [2]. Casanova is a high-level programming language with particular constructs
that make certain aspects of games programming especially straightforward, such as the
update/display loop, and efficient collision detection. However, it is significantly lower level
than the VGDL developed here and its complex syntax would means that it is unsuitable as
it stands for evolving new games.

Moving from the domain of board games to video games that feature continuous or semi-
continuous time and space, only a few attempts exist, all of them relatively limited in scope
and capabilities. Togelius and Schmidhuber created a system which evolved simple game rules
in a very confined rule space [11]. The game ontology featured red, blue and green things
(where a thing could turn out to be an enemy, a helper, a power-up or perhaps something
else), and a player agent. These could move about in a grid environment and interact. The
rules defined the initial number of each thing, the score goal and time limit, how each type
of thing moved, and an interaction matrix. The interaction matrix specified when things of
different colours collided with each other, and with the player agent; interactions could have
effects such as teleporting or killing things or the agent, or increasing and decreasing the
score. Using this system, it was possible to generate very simple Pac-Man-like games.

Nelson and Mateas created a system that allowed formalisation of the logic of dynamical
games, and which was capable of creating complete Wario Ware-style micro-games [9], i.e.
simpler than a typical Atari 2600 game. That system has not yet been applied to describe or
generate anything more complex than that.

Togelius and Schmidhuber’s system inspired Smith and Mateas to create Variations
Forever, which features a somewhat expanded search space along the same basic lines, but a
radically different representation [10]. The rules are encoded as logic statements, generated
using Answer Set Programming (ASP [5]) in response to various specified constraints. For
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example, it is possible to ask the generator to generate a game which is winnable by pushing a
red thing into a blue thing; if such a game exists in the design space, ASP will find it. Another
system that took the same inspiration to another direction is Cook et al.’s ANGELINA,
which expands the design space by generating not only rules but also other aspects of the
game, particularly levels, concurrently [3]. The Inform system [8] permits specifying text
adventure games, coded in natural language. Further, Mahlmann et al.’s work on a Strategy
Game Description Language, used for representing and generating turn-based strategy games,
should also be mentioned [7].

As far as we are of, no game description language can represent even simple arcade games
of the type playable on an Atari 2600 with any fidelity. For example, the physics of Lunar
Lander, the destructible bases of Space Invader or the attachment of the frog to the logs in
Frogger cannot be modelled by existing GDL’s.

Aside from generating rules, there are a number of applications of evolutionary computa-
tion to generate other types of content for games; see [12] for a survey.

3 Criteria and Considerations

During our initial discussions, we identified what core criteria would be required for any
resulting VGDL. These criteria are instrumental in ensuring the original goals introduced in
Section 1:

Human-readable: We want to ensure a simplicity in the structure of the language that
ensures a human reader can quickly formulate new definitions or understand existing
ones through high level language.
Unambiguous, and easy to parse into actual games: We intend for the software
framework attached to the language to be able to instantly generate working prototypes
of the defined games through a simple parsing process. The game mechanics and concepts
transfer between games and, where possible, between classes of games.
Searchable/tractable: A representation of the game components in a concise tree
structure allows for generative approaches like genetic programming, specifically leading
to natural cross-over operators.
Expressive: The language must be suitably expressive to represent the core mechanics
and objects one expects of classical 2D video games. Most of these aspects are by design
encapsulated, simplifying the language and drastically reducing the code required to
define them.
Extensible: Many game types, components and dynamics can be added any time, by
augmenting the language vocabulary with new encapsulated implementations.
Legal & viable for randomly generated games: all game components and dynamics
have ‘sensible defaults’, which make them as likely as possible to inter-operate well with
a large share of randomly specified other components.

These criteria are considered as we move into the subsequent section, in which we discuss
how we envisage the structure of the VGDL, and how components necessary to describe
video games are expressed.

4 Language Structure

Our discussion focused on the core components required in order to represent a simple video
game, this was separated into the following categories:
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Map: Defines the 2D layout of the game, and also the initialization of structures as
obstacles or invisible entities such as end of screen boundaries and spawn points.
Objects: Objects that exist within the game. These can be different types of entities,
such as non-player characters (NPC), structures, collectibles, projectiles, etc.
Player Definitions: Determines the number of players, and which ones are human-
controlled.
Avatars: Player-controlled object(s) that exist on the map. When a player passes input
to the game, it will have an impact on the state of the avatar.
Physics: Definition of the movement/collision dynamics for all or some object classes.
Events: Control events sent from the player via input devices, timed or random events,
and object collision triggered events that affect the game.
Rules: Any event can be specified to lead to game-state changes like object destruction,
score changes, another event, etc. The rules also specify the game objectives, and
termination.

4.1 Map
The map of the game defines the (initial) two-dimensional layout, in particular the positioning
of the obstacles and the starting positions of the objects (including the avatar). Initially, we
see maps as string representations, that can be parsed directly into a game state by mapping
each ASCII character to an instance of the corresponding object class at its position.

4.2 Objects
The fundamental components of a game are the objects that exist in the 2D space. Every
object has a set of (x,y) coordinates, a bounding polygon (or radius), and is represented
visually on-screen. Objects are part of a hierarchy that is defined by the VGDL and permits
the inheritance of properties like physics, or collision effects with a minimal specification.
The player-controlled avatar is a specific type of object, and most games dynamics revolve
around the object interactions. A permanent static object, such as a wall, collectable (power
pills, health packs, coins etc.), portals or spawn/goal location is referred to as a ‘structure’.
These static objects will not require any update logic for each game tick. Meanwhile dynamic
objects, such as avatars, NPCs, elevators and projectiles will specify how they change state
on subsequent ticks of the game.

4.3 Physics
The temporal dynamics of non-static objects are called their ‘physics’, which include aspects
like gravitational pull, friction, repulsion forces, bouncing effects, stickiness, etc. Furthermore,
more active NPC behaviors like fleeing or chasing are included under this header as well.
Those dynamics operate on (specified or default) properties of the objects, like mass, inertia,
temperature, fuel, etc. The player control inputs affect the dynamics of the avatar object(s),
and those mappings to movement and behavior are encapsulated in the avatar class used
(e.g. spaceship, car, frog, pointer).

4.4 Events
We recognise that in many games, there are instances of state-transition that are not the
result of an established agent committing actions. As such, we have identified the notion of
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an event: a circumstance that at an undetermined point in time will result in change to one
or more objects on the next time step of the game.

To give a simple example, an NPC’s behaviour is defined by its own rationale. As such,
at any given time step, the action the NPC will commit is determined by pre-written code
that may factor elements from the environment as well as whether the current time step
bears any significance in-terms of the NPCs lifespan or any cyclical behaviour. Meanwhile, a
human player’s actions are not inferred from the entity itself. Rather, it is achieved by the
system polling the input devices that are recognised by the game software. In the event that
the input devices present a signal, we recognise this as an event, given that this signal will
appear at an indeterminable point in time.

We have recognised a range of circumstances we consider events, namely:

Signals from players via recognised input devices.
Object collisions (with each other, or with map boundaries).
Actions occur at specific points of time in the game (e.g. spawning).
Actions that will occur with a given probability.

For any game we wish to define, we must identify the range of events that can occur at
any point. As is seen later in Sections 6, we identify the list of events required for a handful
of games.

4.5 Rules
The game engine detects when the bounding boxes of two objects intersect and triggers a
collision event. Besides the default effect of ignoring the collision, common effects that could
occur include: bouncing off surfaces/objects, destruction of one or both objects, sticking
together, teleportation and the spawning of a new object. Outside of game entities, collisions
can also refer to the player leaving the ‘view’ of the game, as such we require rules for
recognising instances of scrolling, panning and zooming of the game view. Lastly, collisions
can also trigger non-local events, this can affect the current score, end a given level either as
a result of success or termination of the players avatar, move the game to the next level or
indeed end the game entirely.

5 Representing the Language: Preliminary Syntax

We propose a preliminary syntax as close to human-readable as possible, in order to invite
game contributions from as broad an audience as possible, but definitely including game
designers and other non-programmers. Our proposed VGDL needs to suitably represent a
tree structure, which we propose to encode in Python-like white-space syntax. The other
syntax features are arrows (>) representing mappings, e.g. from tile characters to objects
names, from object names to object properties, or from collision pairs to their effects. Object
properties are assigned by terms combining property name, an ‘=’ symbol, and the value. We
require naming properties to make the code more readable and options ordering-independent.
Example: “Rectangle (height=3, width=12)”. Parentheses and commas can be added for
readability, but are ignored by the parser.

6 Examples of Classic Games

The preceding sections discussed the purpose, structure and format of the VGDL that the
authors have devised. In this section we showcase examples that were conceived during
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Figure 1 A screenshot of the Space Invaders game [15].

discussion. For this language to work in conjunction with the GVGP research, it is desirable
to suitably express the entities and mechanics of games that one would expect to find on the
Atari 2600. This section therefore focuses on three games reflective of that period: Space
Invaders, Lunar Lander and Frogger; chosen for their dissimilar mechanics and design. These
examples were selected for two purposes: to provide context to the design decisions we
made during discussion – thus providing definitions that reflect that we had envisaged – and
secondly as an attempt to identify potential complications that would need to be resolved.
What follows is our attempt to define the entities, physics, collision matrix and event table
that reflect the game as succinctly as possible.

6.1 Space Invaders
Space Invaders, originally released in 1978 in arcades and in 1980 for the Atari 2600, is one
of the most influential games in the industry both critically and commercially [15]. The
mechanics of Space Invaders are relatively straightforward; the player must defend against
waves of enemy characters (the space invaders) who are slowly moving down the screen. The
enemies begin at the top of the screen and are organised into rows of a fixed size. The group
will collectively move in one direction along the x-axis until the outmost invader collides with
the edge of the screen, at which point the group moves down a set distance and alternates
their horizontal direction. While moving down the screen, enemies will at random open fire
and send missiles towards the bottom of the screen. These missiles either eliminate the player
upon contact, or can damage one of bunkers situated between the invaders and the player.
The player can hide behind these bunkers to strategically avoid being destroyed out by the
invaders. In addition to these invaders, a flying saucer can appear at random intervals which
traverses along the top of the screen, opening fire on the player below. To retaliate against
these threats, the player controls a cannon at the bottom of the screen which can be moved
left or right within the bounds of the game world. The player can fire missiles at the invaders
that will eliminate them upon contact. The player must eliminate all enemy invaders before
they reach the bottom of the screen in order to win. Figure 1 shows a screenshot from the
Space Invaders game. As previously described, we can see the player-controlled cannon at
the bottom of the screen as the waves of enemies move down in their grouped ‘typewriter’
formation.

Referring to the initial language structure in Section 4, we identify the core components
of Space Invaders as follows:
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Figure 2 An object hierarchy of the entities found within the Space Invaders game. Note that
the Avatar, Player Missile and Saucer have been identified as singletons.

Table 1 The Space Invaders collision matrix, identifying the behaviour of the game in the event
that two entities collide in the game.

Avatar Base Enemy
Missile

Player
Missile

Enemy End of Screen Saucer

Avatar life lost game over avatar stops

Base base

damaged;

missile

disappears

base

damaged;

missile

disappears

base tile

removed

Enemy
Missile

both

destroyed

missile destroyed

Player
Missile

destroys

enemy

missile destroyed saucer

destroyed

Enemy moves down, all

enemies change

dir.

End of
Screen

disappears

Saucer

Table 2 The event listing for Space Invaders, showcasing not only instances which happen with
a certain probability or time, but also the relation of input devices to avatar control.

Event Action
Joystick left Avatar left
Joystick right Avatar right
Joystick button Avatar fires missile
Time elapsed Saucer appears
Probability event Random enemy fires a missile
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Map: An empty map save for the tiles that represent the bases the player uses for
cover. Locations are annotated for spawn points NPC waves, the human player and the
structures that present the boundary of the screen.
Objects: These are separated in ‘Fixed’ and ‘Moving’ objects. The former is indicative
of spawn points and the tiles that represent a base. Meanwhile, the latter denotes entities
such as NPCs and missiles. A hierarchy of these objects is shown in Figure 2.
Player Definition: At present we consider this a one-player game, with the controls
identified in Table 2.
Avatars: Player controls one sole avatar, the missle cannon.
Physics: Each moving object in the game moves a fixed distance at each timestep. There
are no instances of physics being employed beyond the collisions between objects.
Events: The events of the game can be inferred both from the collision matrix in Table 1
and the event listings in Table 2.
Rules: Rules of the game, such as player scoring, the death of either enemy or player,
and winning the game can be inferred from the event table and collision matrix.

We feel that this information, which was gathered as part of our groups discussion, is
representative of the Space Invaders game. The object tree in Figure 2 identifies each type of
object which is used in the game. From this we can begin to dictate rules for collision as well
as assign events to these objects. Note that we have identified some objects as singletons,
given that only one of these objects at most should exist in the game world at any given
timestep. The collision matrix in Table 1, highlights the behaviour and events that are
triggered as a result of objects colliding within the game. Meanwhile the events shown in
Table 2 not only shows the actions that the user can have via the avatar, but circumstances
such as enemy saucers or missiles that are triggered by time or probability.

6.2 Lunar Lander
Lunar Lander is an arcade game released by Atari in 1979. This game was selected due
to its greater emphasis on precision when controlling the avatar, which proved popular at
the time of release [14]. Control of the avatar is confounded by gravitational forces and
momentum gathered from movement, which is an element that we did not have to consider
in Space Invaders. As shown in Figure 3, the player is tasked with piloting the lunar module
towards one of the predefined landing platforms. Each platform carries a score multiplier
and given the rocky terrain of the moon surface, they are the only safe places to land the
module; landing the module in any location other than the pads results in death. The player
can rotate the lander within a 180 degree range such that the thrusters of the lander can
range from being perpendicular and parallel to the ground. The aft thruster must be used to
slow the descent of the lander given the gravitational forces bearing down upon it. However,
the player has two further considerations: the control must be applied proportionally to
provide adequate strength to the thrusters. Secondly, applying the thrusters will consume
the limited fuel supply. The player scores multiples of 50 points for a successful landing, with
the multiplier identified on the landing platform. Failed attempts also receive score based on
how smoothly the lander descended.

Once again we discussed how the game could be formulated within the proposed VGDL,
summarised as follows:

Map: The map file would identify the terrain of the world as structures, with unique
identifiers for landing platforms based on their score multipliers. The map will also
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Figure 3 A screenshot of Lunar Lander taken from [14] showing the player trying to land on
either of the highlighted platforms.

Figure 4 An object hierarchy of the entities found in Lunar Lander, complete with reference to
the scroll pane used for viewing the game.

Table 3 Lunar Lander collision matrix.

Lunar
Lander

Landing Pad Rough Close to
EOS

Lunar Lander IF upright and low

speed then win else

ship explodes

ship explodes scroll/wrap

Table 4 Lunar Lander events.

Event Action
Joystick Left Rotate Left Stepwise
Joystick Right Rotate Right Stepwise
Joystick Up Increase Thrust
Joystick Down Decrease Thrust
Landing Altitude Reached Zoom Scroll Pane
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identify where the avatar will spawn in the game world at the beginning of a landing
(typically the top-left).
Objects: The object tree, shown in Figure 4 indicates the avatar itself, the ground being
separated into landing pad and the ‘rough’: i.e. all other parts of the terrain. One unique
object in this tree is the Scroll Frame. Having played Lunar Lander we recognised the
scroll frame’s view follows the lander should it move towards the left and right edges of
the screen. Furthermore, once the lander has descended to an altitude of approximately
500, the scroll frame zooms closer to the lander to allow for more precise control.
Player Definition: This a one-player game, with controls as shown in the event list in
Table 2.
Avatars: The lander module.
Physics: The game must model the gravitational force that exerts upon the lander,
and the continuous variables needed to calculate the thrust speed. We would intend for
the language’s multiple physics models to contain some that represent these phenomena.
These models will be parameterised to customise the model for the game.
Events: With exception of the player input, the only event shown in Table 2 is the
zooming of the scroll pane once the final descent altitude is reached.
Rules: Rules of the game, such as player scoring, the death of the player, and winning
the game can be inferred from the event table and collision matrix.

Again we have encapsulated the core game mechanics to be represented in the VGDL.
We believe these definitions can be expressed succinctly within the proposed language. One
component of the game that has not been explored as yet is the varying difficulties that
Lunar Lander offers to the player. There are four difficulty settings, Training, Cadet, Prime
and Command, differ in the strength of gravitational force applied, applying atmospheric
friction to the movement of the lander and in some cases added rotational momentum. This
could be achieved given our intention to apply parameterised physics models as part of the
language.

6.3 Frogger

The last game covered in our initial discussions was Frogger, an arcade game developed by
Konami and published by Sega in 1981 [13]. The game’s objective is to control a collection
of frogs one at a time through a hazardous environment and return to their homes. In
order to reach the goal, the player must navigate across multiple lanes of traffic moving at
varying speeds, followed by a fast flowing river full of hazards. While the first phase of the
trip relies on the player using any available space on the road whilst avoiding traffic, the
latter constrains the users movements to using floating logs and turtles – strangely, despite
being an amphibian entering the water proves fatal. What proved interesting to players at
release and subsequently to the discussion group is the range of hazards that the player must
overcome. Each ‘lane’ of hazards moves independently across the screen at its own speed.
Furthermore, some groups of floating turtles in the river would submerge after a set period
of time, meaning the player had to quickly move to another safe zone.

Below we highlight the key features of the game that we would implement in the VGDL:

Map: The map identifies where the initial location of the vehicles and logs. Furthermore,
it must assign the goal locations, the surrounding screen edge to prevent the player
moving off the level and the water hazards.
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Figure 5 A screen of the Frogger game from [13], with the frog avatar crossing the freeway with
only the river of logs and turtles keeping him from the lilypad goals at the top of the screen.

Objects: The object tree in Figure 6 indicates the range of fixed and moving objects
that exist in the game. While this tree looks similar to that shown in Figure 2, we create
a hierarchy for the floating platforms in the game, using the Log as the supertype. This is
of relevance to the collision matrix (Table 5), as we only define the event of colliding with
the supertype. This has been introduced as collisions with the subtypes are conditional
and driven by context. This issue would be addressed as a rule in the game.
Player Definition: Frogger is a two-player game, however only one player is in control
of the frog at any given time. The controls for the player are shown in Table 6.
Avatars: The frog currently on screen.
Physics: Frogger does not adopt any physics models in the movement or behaviour of
any objects in game. The game is driven by the collisions between the frog and other
objects, be they hazard or otherwise.
Events: Table 6 shows that outside of player controls, we must consider the appearance
of a fly, which provides bonus score, and the creation of new moving vehicles or logs on
screen.
Rules: Outside of standard scoring and life counts, the rules must carry extra information
regarding the collisions that take place in game. While the collisions shown in Table 5
are similar to those shown previously, there are conditions on whether this results in
death for the player. Firstly, should the player land on a floating turtle, then it is safe
and as the collision matrix shows, the frog will stick to that surface. However should
the turtle be submerged then the frog collides with the water, resulting in death for the
player. Secondly, it is safe for a frog to collide with a crocodile provided it is not near its
mouth. In the event of landing on the mouth, the player dies. In addition, there are rules
that define how the player scores: should the frog reach the lily pad having landed on
either a fly or female frog, then the score earned has a bonus of 200 points.

The features defined are similar to that which we have seen in the previous two games,
but we addressed the unique elements of this game by defining rules for specific contexts,
whilst retaining a simplicity for the design. This issue of context-specific collisions is one
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Figure 6 The proposed object hierarchy for the Frogger. Note the separation of fixed and mobile
objects used previously in Figure 2. Furthermore, the crocodile and turtle objects have been placed
under logs in the hierarchy given that they are also moving platforms for the frog. The difference is
they carry conditions that dictate whether the frog has safely landed upon them.

Table 5 The Frogger collision matrix. Note we only consider collisions with a log type, as
collisions with the log subtypes are determined at runtime based on their current state.

Frog Vehicle Log Fly Goal Pad Water EOS
Frog dies sticks frog eats

fly

fills position,

new frog created

player dies blocks movement

Vehicle disappears/wraps

Log disappears/wraps

Fly disappears/wraps

Goal Pad
Water
EOS

Table 6 Frogger events.

Event Action
Joystick Left Jump Left
Joystick Right Jump Right
Joystick Up Jump Up
Joystick Down Jump Down
Probability Event Fly Appears
Probability Event Lady Frog Appears
Time Elapsed New Logs/Vehicles appear
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that must be addressed early on in the language. Games that we would wish to define in
the VGDL have collisions with enemies that are dependent upon state and/or location. For
example, in the game Mario Bros. the player will be killed should they collide directly with
a moving crab. Should the player land on the top of a ‘Koopa’ tortoise, then the enemy is
stunned; while side-on contact proves fatal. Given our efforts on Frogger we believe this will
not prove taxing when working in the formal language.

7 Prototype and Roadmap

Upon reaching the end of our time in Dagstuhl we had reached a consensus on what we
expected of the Video Game Description Language. This of course is reflected by the concepts
and examples shown throughout Sections 3 to 6. At the time of writing, a working prototype
of the language has been developed in Python.1 The language incorporates many of the
considerations raised in Section 3 and is expressed in accordance with our expectations
set out in Section 4. The language is implemented atop Pygame: a collection of Python
modules that are designed to support creation of games.2 The language compiler can take
a user-defined game written in VGDL and construct a working pygame implementation.
While a work in progress, the prototype is already capable of constructing games that mimic
those discussed throughout our sessions. Figure 7 shows a working implementation of Space
Invaders that has been developed using the prototype.

Referring back to the core language components in Section 4 and how we envisaged
Space Invaders to be represented using this approach in Section 6.1, the game is currently
implemented as follows:

Map: The map is defined separate from the game logic and is shown in Figure 8. As
discussed in Section 6.1, we have represented the screen bounds, the avatar, base tiles
and spawn points for the aliens. The map definition assigns specific symbols to each of
these objects, with the corresponding mapping in the game definition listing in Figure 7
(lines 11-13).
Objects: Game objects are defined in the SpriteSet section of Figure 7. Note that
upon defining the type of sprite and the class it adheres to, we introduce properties
that are relevant to that entity. A simple example is the base tiles which are identified
as immovable white objects. Meanwhile the aliens express the probability of fire, their
movement speed and the type of behaviour they will exhibit. Note keywords such as
‘Bomber and ‘Missile’ which are pre-defined types in the language. The indentation in the
language can be used to denote hierarchical object definitions, e.g. both sam and bomb
inherit the properties from missile, which allows statements like in line 22 that indicate
the collision effect of any subclass of missile with a base object. Also, the sam missiles
which are launched by the avatar are rightfully declared as singletons.
Player Definition & Avatars: The player is acknowledged in as the avatar (line 3).
Furthermore, it is classified as a FlakAvatar, a pre-defined type, that provides a working
implementation of the control scheme and movement constraints required for Space
Invaders play.
Events: The collision matrix shown in Table 1 has been implemented in the InteractionSet
within Figure 7. Note that in the majority of instances, the behaviour is to kill the sprites

1 The source code is open-source (BSD licence), and the repository is located at https://github.com/
schaul/py-vgdl.

2 Pygame is freely available from http://www.pygame.org.

https://github.com/schaul/py-vgdl
https://github.com/schaul/py-vgdl
http://www.pygame.org
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1 BasicGame
2 SpriteSet
3 avatar > FlakAvatar stype=sam
4 base > Immovable color=WHITE
5 missile > Missile
6 sam > orientation =UP color=BLUE singleton =True
7 bomb > orientation =DOWN color=RED speed =0.5
8 alien > Bomber stype=bomb prob =0.01 cooldown =3 speed =0.75
9 portal > SpawnPoint stype=alien delay =16 total =20

10 LevelMapping
11 0 > base
12 1 > avatar
13 2 > portal
14 TerminationSet
15 SpriteCounter stype= avatar limit =0 win=False
16 MultiSpriteCounter stype1 = portal stype2 =alien limit =0 win=True
17 InteractionSet
18 avatar EOS > stepBack
19 alien EOS > turnAround
20 missile EOS > killSprite
21 missile base > killSprite
22 base missile > killSprite
23 base alien > killSprite
24 avatar alien > killSprite
25 avatar bomb > killSprite
26 alien sam > killSprite

Figure 7 A definition of the Space Invaders game from a working prototype of the Video Game
Description Language. While a work in progress, this definition satsifies many of the considerations
from our discussions in Sections 4 and 6.1.

1 wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
2 w w
3 w2 w
4 w000 w
5 w000 w
6 w w
7 w w
8 w w
9 w w

10 w 000 000000 000 w
11 w 00000 00000000 00000 w
12 w 0 0 00 00 00000 w
13 w 1 w
14 wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

Figure 8 A representation of the Space Invaders environment. Each character represents either
the screen boundary, a component of a bunker base, the player and spawn points for the enemy
players. While the game map is constructed here, the relation to the game entities is defined in
the LevelMapping section of the game definition in Figure 7.
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that are involved in the collision. Naturally this would need to handle more complex
interactions in future games. Referring back to the event table shown in Table 2, the
player inputs have been modelled within the FlakAvatar type in the language, meanwhile
the probability that drives enemy fire has been declared as a property of the alien entity.
Rules: The TerminationSet defines the conditions for winning and losing the game. The
game states that having zero avatars will result in failure. Meanwhile should the number
of aliens and unused spawn points reach zero,the game will declare the player as winner.

While this is a work in progress, the prototype already provides playable implementations
of Space Invaders and Frogger, with definitions of games with continuous physics such as
Lunar Lander are in their early stages. It is our intent to continue developing this prototype
prior to developing the build that will operate in the GVGP framework. It is encouraging
that we have reached this stage within a relatively short period of time since our discussions
in Dagstuhl, and we will continue to expand the language until it satisfies our goals.

References
1 C. Browne. Evolutionary game design. IEEE Transactions on Computational Intelligence

and AI in Games, pages 11–21, 2011.
2 Casanova. Casanova project page. http://casanova.codeplex.com, 2012.
3 Michael Cook and Simon Colton. Multi-faceted evolution of simple arcade games. In

Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG), 2011.
4 Michael Genesereth and Nathaniel Love. General game playing: Overview of the aaai

competition. AI Magazine, 26:62–72, 2005.
5 Vladimir Lifschitz. Answer set programming and plan generation. Artificial Intelligence,

138(1):39–54, 2002.
6 Giuseppe Maggiore, Alvise Spanò, Renzo Orsini, Michele Bugliesi, Mohamed Abbadi, and

Enrico Steffinlongo. A formal specification for casanova, a language for computer games.
In Proceedings of the 4th ACM SIGCHI symposium on Engineering interactive computing
systems, pages 287–292. ACM, 2012.

7 T. Mahlmann, J. Togelius, and G. Yannakakis. Towards procedural strategy game gen-
eration: Evolving complementary unit types. Applications of Evolutionary Computation,
pages 93–102, 2011.

8 Graham Nelson. The Inform Designer’s Manual. Placet Solutions, 2001.
9 Mark Nelson and Michael Mateas. Towards automated game design. In Procedings of the

10th Congress of the Italian Association for Artificial Intelligence, 2007.
10 Adam M. Smith and Michael Mateas. Variations forever: Flexibly generating rulesets

from a sculptable design space of mini-games. In Proceedings of the IEEE Conference on
Computational Intelligence and Games (CIG), 2010.

11 Julian Togelius and Jürgen Schmidhuber. An experiment in automatic game design. In Pro-
ceedings of the IEEE Symposium on Computational Intelligence and Games (CIG), 2008.

12 Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron Browne.
Search-based procedural content generation: a taxonomy and survey. IEEE Transactions
on Computational Intelligence and Games, 3:172–186, 2011.

13 Wikipedia. Frogger. http://en.wikipedia.org/w/index.php?title=Frogger, 2012.
14 Wikipedia. Lunar lander. http://en.wikipedia.org/w/index.php?title=Lunar_

lander_(arcade_game), 2012.
15 Wikipedia. Space invaders. http://en.wikipedia.org/w/index.php?title=Space_

Invaders, 2012.

http://casanova.codeplex.com
http://en.wikipedia.org/w/index.php?title=Frogger
http://en.wikipedia.org/w/index.php?title=Lunar_lander_(arcade_game)
http://en.wikipedia.org/w/index.php?title=Lunar_lander_(arcade_game)
http://en.wikipedia.org/w/index.php?title=Space_Invaders
http://en.wikipedia.org/w/index.php?title=Space_Invaders


Artificial and Computational Intelligence for
Games on Mobile Platforms
Clare Bates Congdon1, Philip Hingston2, and Graham Kendall3

1 Department of Computer Science, The University of Southern Maine, USA
congdon@usm.maine.edu

2 School of Computer and Security Science, Edith Cowan University, Australia
p.hingston@ecu.edu.au

3 School of Computer Science, University of Nottingham, UK and Malaysia
graham.kendall@nottingham.ac.uk

Abstract
In this chapter, we consider the possibilities of creating new and innovative games that are
targeted for mobile devices, such as smart phones and tablets, and that showcase AI (Artificial
Intelligence) and CI (Computational Intelligence) approaches. Such games might take advantage
of the sensors and facilities that are not available on other platforms, or might simply rely on
the “app culture” to facilitate getting the games into users’ hands. While these games might
be profitable in themselves, our focus is on the benefits and challenges of developing AI and CI
games for mobile devices.
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Keywords and phrases Games, mobile, artificial intelligence, computational intelligence
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1 Introduction

Games are an appealing application to showcase AI (Artificial Intelligence) and CI (Com-
putational Intelligence) approaches because they are popular and ubiquitous, attracting a
diverse range of users.

Mobile games are easier to bring to market than commercial (large scale) video games.
This makes them a practical choice for development and study in an academic environment,
using relatively small teams of academics and students, who are able to work on relatively
low budgets. For example, the small screen size and lack of powerful graphics hardware
typical of mobile devices means that simple graphics, often only 2 or 2.5 inches, are expected,
so that large teams of highly skilled artists and 3D modellers are not required.

Mobile devices usually provide a wider variety of input data (touch, location, images,
video, sound, acceleration, orientation, personal data, data from/about other users etc.)
than is normally available on a desktop or laptop computer and offer a full range of output
options (images, video, animation, sound, vibration, wireless, bluetooth, infrared) as well.
In addition, the popularity of mobile devices allows developers to recruit large numbers
of casual users, whose interactions provide another potentially large data source for game
data mining, using techniques such as those described in [6]. Novel game mechanics and
interaction methods might be made possible by processing these input data using AI and CI
methodologies.

Computational power and battery life present two potential obstacles to intensive AI/CI-
based games, and some potential designs will require offloading some of the computation
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to servers. It might also be difficult to implement large-scale, complex game worlds due to
the limited resources that are available. There are also significant challenges in developing
AI/CI libraries that can work with low memory, limited battery power etc., adapting or
developing AI/CI methods to work effectively in games that are played in short bursts, using
unreliable communications, and providing real-time responses. However, these constraints
provide significant research opportunities.

Mobile devices are still “young” enough to provide opportunities for developers to
implement innovative products without having to employ large specialist teams (e.g. graphic
designers, musicians etc.), although some specialists are still required of course. However,
devices are becoming more capable – for example, the original iPhone had a screen resolution
of 480x320 pixels, a single 2 Megapixel still camera, and a storage capacity of 4–8 GB, while
the iPhone 5 is 1136x640 pixels, has two 8 Megapixel cameras and can record 1080p HD video
at 30 fps, has a storage capacity of 16–64 GB, and has in-built voice recognition. Applications
are also becoming more sophisticated – for example, technologies like Web3D and game
engines like Unity3D are bringing 3D graphics to mobile platforms [5]. Inevitably, game
players will come to expect more and more from mobile games, so the opportunity for small
players and enthusiasts will not last long (perhaps several years, in our estimation). Those
who are interested in this area might want to explore, and capitalize, on those opportunities
now. Moreover, CI/AI both provide significant opportunities both in terms of research
challenges and also to make the games more interesting and more fun to play. We would like
to see the research community take up the challenge to showcase what can be done with
the limited resources available on mobile devices, but also utilizing the larger number of
sensors (e.g. movement detection) and other options (e.g. location awareness) which are not
available on traditional “living room” game consoles.

The aim of this chapter is to outline the limitations of mobile computing, with respect to
utilizing AI/CI, but also draw out some of the potential advantages that could be exploited
now (or certainly in the years to come) as the convergence of technology continues and offers
greater opportunities than are available at present.

The rest of the chapter is presented as follows. In the next section, we present the (limited)
work that has been carried out on AI/CI for mobile devices. In Section 3 we lay out what we
believe are the defining characteristics of mobile environments. In Section 4 we outline the
challenges faced when using mobile devices. Section 5 presents the opportunities that arise
when using a mobile device, rather than a desktop, console, or other stationary computer. In
Section 6 we provide some insight as to what AI/CI can offer mobile computation. We also
outline some possible projects that would be feasible at this time, as well as some thoughts
as to what might be possible in the next 5–10 years. Section 7 concludes the chapter.

2 Prior Work

We were able to find only a limited amount of work that considers AI/CI in mobile games
and there seems to be limited scientific literature about using AI/CI on mobile devices at all.
In this section, we summarize the few papers we did find, on AI/CI for games as well as for
non-games on mobile devices.

In one gaming example, Aiolli and Palazi [1] adapted an existing machine learning
algorithm to enable it to work within the reduced computational resources of a mobile
phone. Their target was the game “Die guten und die bösen Geister”, which is a board
game requiring the player to identify which game pieces (Ghosts) are “good” and which are
“bad”. Therefore, an AI opponent for the game would need to be able to perform a simple
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classification task. The more usual classification algorithms were rejected on the basis of
requiring too much memory or too much computation. Instead the authors opted for a very
simple system based on two prototype feature vectors, one for good and one for bad ghosts.
Unfortunately, they did not report any comparison of performance of this simple scheme
over more complex classifiers, but the point is that for such applications, there is a trade-off
to evaluate between accuracy and computational resource requirements. There was also no
evaluation of the different schemes in terms of player satisfaction.

In a more recent example by Jordan et al. [10], the authors report on a research prototytpe
BeatTheBeat, in which game levels are matched to background music tracks based on features
extracted from the audio signal, and these are allocated to cells on a game board using a
self-organising map.

In a paper discussing the potential uses of AI methods in serious mobile game, Xin [13]
suggests that, while AI methods could add value to such games, computational requirements
might require a client-server solution, offloading the AI to a server.

Although not focusing on games, Kruger and Malaka [11] argue that AI has a role in
solving many of the challenges of mobile applications, including

Location awareness
Context awareness
Interaction metaphors and interaction devices for mobile systems
Smart user interfaces for mobile systems
Situation adapted user interfaces

This paper introduces a special issue of the journal Applied Artificial Intelligence containing
articles describing the state of the art as it was in 2004. Many of these same challenges may
provide opportunities for novel mobile game concepts based on AI/CI.

In [2], Baltes et al. describe their experience with implementing high-level real-time
AI tasks such as vision, planning and learning for small robots, using smart phones to
provide sensing, communication and computation. Although their aims are different from
ours, many of the research challenges in terms of implementing AI solutions with limited
computational resources are similar. Their robots’ agent architectures are based on behaviour
trees described using a XML schema, and translated off-line into efficient C code. Vision
is based on fast approximate region detection. A standard algorithm was found to be
too slow and was modified to take advantage of specific domain knowledge (e.g. expected
object colors). Another high-level task that they tackled was multi-agent simultaneous
location and mapping (SLAM). Once again, the task was simplified by taking advantage
of the structured environment (robot soccer). BlueTooth was used to share information
between agents. A particle filter method was used to maintain estimates of the robots’ poses,
with a limited particle population size dictated by the available memory. We see that the
researchers used a variety of strategies to cope with the limitations of the computing platform:
offline pre-processing, modification and simplification of algorithms for specific tasks and
environments, and sharing of information between mobile devices. We expect that some of
the same strategies and even some of the same algorithms will be applicable in both the
robotics and games domains.

3 Characteristics of a Mobile Environment

Our working definition of a mobile device for game playing is a device that is networked,
and is small enough to be mobile, yet still provides a platform for general computation. In
the future, one might imagine that many kinds of mobile devices might be used in games.
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For example, a car’s GPS system might be used in a futuristic version of a scavenger hunt
car rally (scavenger hunt games for mobile phones already exist – e.g. SCVNGR, textClues).
However, at the present time, we are chiefly thinking of smart phones and tablets.

While computational resources (CPU, memory, persistent storage) are available on these
devices, they are all limited in comparison to standard platforms, and limited battery power
is an additional (and major) consideration.

On the plus side, these devices usually have a number of other features that are often not
available, and especially not all together, on “standard” gaming platforms:

location services – whether by GPS, WiFi or cell tower triangulation;
personal ownership – generally one person is more or less the sole user of a particular
device.
Internet access – to data, services and other users;
multiple modes of connectivity – WiFi, Bluetooth, 3G/4G may be provided, and it
is expected that connectivity will not be continuously available.
a range of non-standard sensors – touch screen, camera (for image capture and
subsequent processing), microphone will probably be provided, and others may be, such
as a gyroscope, accelerometer and video camera;
non-standard outputs – a small screen, some sound, possibly vibration.
other app data – apps may be able to share data, especially with social media platforms.

Also, usage patterns for these devices are often different from those on standard game
platforms such as PCs – games are often played in short bursts (waiting for a meeting, on a
bus/train etc.), and gameplay may be interruptible.

In designing and implementing games for mobile devices, these differences combine both to
provide challenges, which AI and CI have the potential to solve, and to provide opportunities
for novel game concepts based on or supported by AI and CI methods.

4 Challenges When Using AI/CI on Mobile Devices

Mobile devices introduce a number of constraints to game design:

Limited CPU and memory in some ways harken back to the days of early video games.
Small screen size limits graphical complexity.
The reality that these devices are typically used when running on a battery further
encourages limiting CPU and memory usage beyond what is physically available on these
devices.
However, real-time responses are often called for with mobile devices.
Connectivity issues must be kept in mind, as devices may lose signal either while out of
range of a cell tower or due to a user opting not to pay for wi-fi access at a given location.

It is our thinking that these challenges provide interesting constraints when designing
AI/CI-based games, as will be discussed in the next section.

5 Opportunities When Using AI/CI on Mobile Devices

There are some limitations to using mobile devices for gaming (such as small screen size,
limited battery life, less powerful processors etc.) but there are also many opportunities for
utilizing mobile devices, which are not present on static devices. We briefly mentioned some
of these in the introduction, but in this section we discuss these opportunities in a little more
detail.
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5.1 Small Screen
Having a smaller screen could be seen as a limitation but it could also be viewed as an
opportunity. Having limited graphic capabilities means that the programmers may not have
to focus as much on this aspect of the system as would be the case if you were designing
a system that had a large screen, high resolution and a powerful graphics processor to
assist with the processing required in rendering the screen (although screen resolutions are
improving and mobile phone GPUs are becoming more powerful). If a programmer’s (or
researcher’s) skills are in AI/CI, then having a platform which is relatively easy to program
could be an advantage as you are able to focus on the AI/CI, without having to be so
concerned about the graphics. This may also reduce the need for artists on the project
team. Of course, as technology continues to develop, the advantages that we outline here
will gradually diminish, and the quality of graphics and art will become a higher priority.

5.2 Location Awareness
A static computer, by its nature, is stationary, and this could be seen as one of its major
limitations. A gaming device that is able to be in different geographical locations at different
times, opens up a range of possibilities that were not available even a few years ago. It is
obvious that having devices that can be moved around offers many opportunities but the
focus of this chapter is to look at those opportunities from an AI/CI point of view. AI/CI
could be utilized in a variety of ways. As the player roams around the game (both physically
and within the game world) the AI/CI agent could tailor the game playing experience to
meet the expectations of the players.

5.3 Interaction with Other Players
Having a capability such as Bluetooth provides opportunities to meet with other players
that are in a similar location, but you were not aware that they were there. This would
be useful in locations such as a city center but imagine how many people are potentially
with a few feet of you at a sporting event or a concert. Once the application had identified
potential game ‘buddies’ the AI/CI could be used to validate the other person’s skill level,
whether they are actually a match for you to play with etc. A lot of innovation in gameplay
is taking place in the mobile market. A couple of examples are Fingle (a bit like the classic
ice-breaking game, Twister, but for hands on a tablet – http://fingleforipad.com/) and
Swordfight (an example of a Phone-to-Phone Mobile Motion Game [15]).

5.4 Social Media
Mobile platforms already take advantage of the many social platforms that are available.
Facebook and Twitter are probably the most well known but there are hundreds, if not
thousands, of other platforms that offer users the ability to communicate with one another.
Indeed many people, we suspect, use their phone more for texting and updating their status
rather than for making phone calls. If a networked, mobile platform is used for game playing,
users might want to update their various social networking sites with the games they are
playing, their progress, their high scores, who they are playing with etc. This could place
a burden on the user who does not have the time to disseminate all this information, but
still wishes it to be known. AI/CI could be used to learn when/what the user wishes to
update to social networking sites. For example, a user might always tweet a new high score,
but not update their facebook page. Another user might keep a certain person regularly
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updated about their progress through a game via social media messages aimed at just that
user. The challenge is to learn what to update and when, and provide the API (Applications
Programming Interface) to the various social media feeds, many of which already exist.

5.5 AI/CI Libraries for Use in Mobile Games
The limited CPU and memory resources typically available on mobile devices suggest the
need for AI and CI libraries specifically designed for mobile applications. Two approaches
come to mind. Firstly, for applications that require execution on the device itself, stripped
down and simplified implementations of common algorithms would be useful. On the other
hand, for applications where a client-server model is appropriate, cloud or web service based
implementations would be a good solution.

In the academic literature, we could not find any examples of the first kind of any substance.
However, there are many examples of small libraries from the open-source community that
could provide a good starting point. Many of these examples are implemented in Lua, a
scripting-like language with object-oriented capabilities that is commonly used for games.
Some examples are Abalhas, which is a PSO implementation in Lua (by Alexandre Erwin
Ittner, available at http://ittner.github.com/abelhas/), LuaFuzzy, a fuzzy logic library
written in Lua (http://luaforge.net/projects/luafuzzy/) and LuaFann, a fast artificial
neural net implementation (http://luaforge.net/projects/luafann). One could perhaps
envisage a collection of small, modular library components, written in Lua, and covering
these AI and CI technologies, along with others such as evolutionary algorithms, a Lua
version of OpenSteer, an A∗ implementation, a lightweight rule-based system library perhaps
based on CLIPS, and so on.

Of course, this is only one possible development path. For example, web-based develop-
ment using JavaScript in conjunction with native code, as discussed by Charland et al [4]
is another possibility. There are also existing open-source AI and CI codes, such as JMLR
MLOSS (http://jmlr.csail.mit.edu/mloss/), implemented in various languages such as
C++, Java or Python. While there may be issues such as size and portability to overcome,
much of this could also be utilised : we point out the Lua pathway as one that might work
particularly well for mobile games.

There are also examples of cloud-based implementations of AI and CI technologies that
might be utilised in a client-server approach for mobile games. For example, there is Merelo et
al.’s cloud-based evolutionary algorithm [7], Li’s cloud-based fuzzy system [12] and Haqquni et
al.’s cloud-based neural network system [9]. Apple’s SIRI is an example where local processing
is combined with higher performance cloud-based processing to solve an AI problem – speech
recognition.

6 What Can AI/CI Offer for Games on Mobile Devices

6.1 Procedural Content Generation
Using AI/CI methods for Procedural Content Generation (PCG) in games is an active
research area with some notable successes in recent years. Spore is one high-profile example
in the commercial arena. We argue that several factors make mobile games well suited for
PCG. Firstly, in terms of typical length of play sessions and complexity of typical game
environments, mobile games are smaller in scale than many standard video games. This
should mean that PCG is achievable with limited computational resources, and could be
done locally on the device, without having to offload the task to a server. Second, some
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of the more interesting AI/CI methods for PCG make use of player preferences, either in
real-time or offline. Mobile games with many players would have a ready source for the
training data needed to drive these systems.

For example, Interactive Evolutionary Computation (IEC) is a CI technique that could be
very well suited for mobile games. Hastings et al. have applied this technique successfully in
Galactic Arms Race [8]. This game features weapons defined by particle systems controlled
by a kind of neural network called a Compositional Pattern Producing Network, and these
are evolved using cgNEAT, a version of Neuro-Evolution by Augmenting Topologies, where
fitness is determined by popularity of player choices in the game. The authors coined the
term collaborative content evolution to describe this approach.

The mobile game-playing population could provide an ideal environment for collaborative
content evolution, with a large pool of players, playing many short game sessions, providing
a very large number of judgements to feed into fitness calculations. Crowd-sourcing used
in this way should enable content to evolve rapidly, giving game players a constantly novel,
changing game experience, guided by the preferences of the players themselves.

6.2 Personalisation and Customisation
Recently, CI techniques are being used to adapt gameplay to optimise player satisfaction
in real time. For example, Yannakakis and Hallam reported success with using neural
network based user models adjusted in real time to improve player satisfaction in “playware”
games [14]. Using the kind of lightweight libraries proposed in 5.5, this kind of gameplay
adaptation and other customisation could be added to mobile games, and neural networks
and other machine learning methods have already been proven to be effective for adaptation
in other, non-mobile games.

6.3 Ubiquitous Games etc.
The terms ubiquitous or pervasive computing have been in use for some time now. As far back
as 2002, these terms were also applied to games (see e.g. [3]). There’s obviously a considerable
overlap between these kinds of games and mobile games – mobile devices provide the means
of achieving ubiquity/pervasiveness. A related concept is that of the augmented reality
game. Here too, modern mobile devices have the camera, audio, and display capabilities to
support augmented reality applications. For ubiquitous games, real-time adaptation with CI
algorithms running on the device, could be combined with periodic sychronisation with a
cloud-based repository, so that the learned personal profile can be shared across locations
and devices. For augmented reality games, either a generic light-weight augmented reality
library or perhaps some application specific implementation in the style of Baltes et al. [2],
could be used.

7 Conclusions

Mobile platforms are already widespread and their use is largely for interacting with social
media sites and for tweeting. Some people also use them for what they were originally designed
for, making phone calls. Game playing is becoming more widespread on these devices, more so
on phones than tablets, with around a third of mobile phone owners reportedly playing mobile
games (see, for example http://www.infosolutionsgroup.com/popcapmobile2012.pdf).
Computational Intelligence and Artificial Intelligence are not often present in these games,
or if present, are unsophisticated. However, there is a window of opportunity where we are
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able to integrate these technologies into these games, with less of the now usual overhead
of having to work with graphic designers, musicians, plot design etc. As mobile platforms
develop the complex, large teams associated with console based game design are likely to
converge such that it may be more difficult, if not impossible, to enter this market.

In this chapter, we have outlined some of the opportunities and challenges in introducing
CI/AI onto mobile platforms. We hope that the research community will take up the many
research challenges that exist in this exciting, fast moving area.
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