
The Constraint Satisfaction
Problem: Complexity and
Approximability

Dagstuhl Seminar 15301

Edited by

Andrei Krokhin
Stanislav Živný

Dagstuh l Fo l l ow-Ups – Vo l . 7 www.dagstuh l .de/d fu

Editors
Andrei Krokhin Stanislav Živný
School of Engineering and Computing Sciences Department of Computer Science
University of Durham, UK University of Oxford, UK
andrei.krokhin@durham.ac.uk standa.zivny@cs.ox.ac.uk

ACM Classification 1998
F.2.2 Nonnumerical Algorithms and Problems

ISBN 978-3-95977-003-3

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-003-3.

Publication date
February, 2017

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/DFU.Vol7.15301.i

ISBN 978-3-95977-003-3 ISSN 1868-8977 http://www.dagstuhl.de/dfu

http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://dnb.d-nb.de
http://dx.doi.org/10.4230/DFU.Vol7.15301.i
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://drops.dagstuhl.de/dfu
http://www.dagstuhl.de/dfu

iii

DFU – Dagstuhl Follow-Ups

The series Dagstuhl Follow-Ups is a publication format which offers a frame for the publication of
peer-reviewed papers based on Dagstuhl Seminars. DFU volumes are published according to the principle
of Open Access, i.e., they are available online and free of charge.

Editorial Board

Gilles Barthe (IMDEA Software Institute)
Bernd Becker (University of Freiburg)
Stephan Diehl (University of Trier)
Hans Hagen (TU Kaiserslautern)
Reiner Hähnle (TU Darmstadt)
Hannes Hartenstein (Karlsruhe Institute of Technology)
Oliver Kohlbacher (University of Tübingen)
Stephan Merz (INRIA Nancy - Grand-Est)
Bernhard Mitschang (University of Stuttgart)
Bernhard Nebel (University of Freiburg)
Raimund Seidel (Editor-in-Chief, Saarland University, Schloss Dagstuhl)
Bernt Schiele (Max Planck Institute for Informatics)
Albrecht Schmidt (University of Stuttgart)
Arjen P. de Vries (Radboud University)
Klaus Wehrle (Aachen University)
Verena Wolf (Saarland University)

ISSN 1868-8977

http://www.dagstuhl.de/dfu

15301

http://www.dagstuhl.de/dagpub/1868-8977
http://www.dagstuhl.de/dfu

Contents

Preface
Andrei Krokhin and Stanislav Živný . vii

Chapter 01
Polymorphisms, and How to Use Them

Libor Barto and Andrei Krokhin and Ross Willard . 1

Chapter 02
Absorption in Universal Algebra and CSP

Libor Barto and Marcin Kozik . 45

Chapter 03
Constraint Satisfaction Problems over Numeric Domains

Manuel Bodirsky and Marcello Mamino . 79

Chapter 04
Hybrid Tractable Classes of Constraint Problems

Martin C. Cooper and Stanislav Živný . 113

Chapter 05
Backdoor Sets for CSP

Serge Gaspers, Sebastian Ordyniak, and Stefan Szeider . 137

Chapter 06
On the Complexity of Holant Problems

Heng Guo and Pinyan Lu . 159

Chapter 07
Parameterized Constraint Satisfaction Problems: a Survey

Gregory Gutin and Anders Yeo . 179

Chapter 08
Counting Constraint Satisfaction Problems

Mark Jerrum . 205

Chapter 09
The Complexity of Valued CSPs

Andrei Krokhin and Stanislav Živný . 233

Chapter 10
Algebra and the Complexity of Digraph CSPs: a Survey

Benoît Larose . 267

Chapter 11
Approximation Algorithms for CSPs

Konstantin Makarychev and Yury Makarychev . 287

Chapter 12
Quantified Constraints in Twenty Seventeen

Barnaby Martin . 327

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz Center for Informatics, Germany

http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/en/publications/dfu/
http://www.dagstuhl.de/en/about-dagstuhl/

Preface

This volume is based on the Dagstuhl Seminar 15301 “The Constraint Satisfaction Problem:
Complexity and Approximability” held in July 2015 and organised by Andrei A. Bulatov
(Simon Fraser University), Venkatesan Guruswami (Carnegie Mellon University), Andrei
Krokhin (Durham University), and Dániel Marx (Hungarian Academy of Sciences).

Overview of the Seminar

The constraint satisfaction problem, or CSP in short, provides a unifying framework in
which it is possible to express, in a natural way, a wide variety of computational problems
dealing with mappings and assignments, including satisfiability, graph colourability, and
systems of equations. The CSP framework originated 30-35 years ago independently in
artificial intelligence, database theory, and graph theory, under three different guises, and
it was realised only in the late 1990s that these are in fact different faces of the same
fundamental problem. Nowadays, the CSP is extensively used in theoretical computer
science, being a mathematical object with very rich structure that provides an excellent
laboratory both for classification methods and for algorithmic techniques, while in AI and
more applied areas of computer science this framework is widely regarded as a versatile and
efficient way of modelling and solving a variety of real-world problems, such as planning and
scheduling, software verification and natural language comprehension, to name just a few.
An instance of CSP consists of a set of variables, a set of values for the variables, and a set
of constraints that restrict the combinations of values that certain subsets of variables may
take. Given such an instance, the possible questions include (a) deciding whether there is an
assignment of values to the variables so that every constraint is satisfied, or optimising such
assignments in various ways, (b) counting satisfying assignments, exactly or approximately,
or (c) finding an assignment satisfying as many constraints as possible. There are many
important modifications and extensions of this basic framework, e.g. those that deal with
valued or global constraints.

Constraint satisfaction has always played a central role in computational complexity
theory; appropriate versions of CSPs are classical complete problems for most standard
complexity classes. CSPs constitute a very rich and yet sufficiently manageable class of
problems to give a good perspective on general computational phenomena. For instance, they
help to understand which mathematical properties make a computational problem tractable
(in a wide sense, e.g. polynomial-time solvable or non-trivially approximable, fixed-parameter
tractable or definable in a weak logic). It is only natural that CSPs play a role in many
high-profile conjectures in complexity theory, exemplified by the Dichotomy Conjecture of
Feder and Vardi and the Unique Games Conjecture of Khot.

The recent flurry of activity on the topic of the seminar is witnessed by three previous
Dagstuhl seminars, titled “Complexity of constraints” (06401) and “The CSP: complexity
and approximability” (09441, 12541), that were held in 2006, 2009, and 2012 respectively.
This seminar was a follow-up to the 2009 and 2012 seminars. Indeed, the exchange of ideas
at the 2009 and 2012 seminars has led to new ambitious research projects and to establishing
regular communications channels, and there is a clear potential of a further systematic
interaction that will keep on cross-fertilizing the areas and opening new research directions.
The 2015 seminar brought together forty three researchers from different highly advanced
areas of constraint satisfaction and involved many specialists who use universal-algebraic,
The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz Center for Informatics, Germany

http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/en/publications/dfu/
http://www.dagstuhl.de/en/about-dagstuhl/

viii Preface

combinatorial, geometric and probabilistic techniques to study CSP-related algorithmic
problems. The participants presented, in 28 talks, their recent results on a number of
important questions concerning the topic of the seminar. One particular feature of this
seminar was a significant increase in the number of talks involving multiple subareas and
approaches within its research direction – a definite sign of the growing synergy, which is one
of the main goals of this series of seminars.

The seminar was well received as witnessed by the high rate of accepted invitations and
the great degree of involvement by the participants. Because of the multitude of impressive
results reported during the seminar and the active discussions between researchers with
different expertise areas, the organisers regard this seminar as a great success. With steadily
increasing interactions between such researchers, we foresee a new seminar focussing on the
interplay between different approaches to studying the complexity and approximability of
the CSP.

Follow-Up

For some of the topics presented at the Dagstuhl Seminar 15301 there are excellent surveys.
Some other topics are still too nascent to justify survey articles at this point. For several
topics for which no surveys presently exist or the current ones are already outdated due to
the recent progress, we felt that the time is ripe to produce such surveys as a follow-up to
the Dagstuhl Seminar 15301.

Overview of the Volume

The first chapter in this volume is introductory and provides detailed explanations of the
so-called algebraic approach to decision CSPs over finite domains. The algebraic approach
has been behind several breakthroughs in the last decade. The remaining chapters are more
advanced and specialised.

The second chapter gives an overview of absorption, a powerful algebraic technique used
in the proof of the “bounded width theorem” and more generally in the study of decision
CSPs. The third chapter is about CSPs with infinite numerical domains and constraints
defined by using arithmetical operations. The fourth chapter explores so-called hybrid CSPs,
which are classes of CSPs that are neither language- nor structure-based. The fifth chapter
provides an overview of research on CSPs and backdoors, which is a concept that allows for
a formalisation of being “close to a tractable class”. The sixth chapter deals with Holant
problems, which are special types of CPSs in which every variable appears in exactly two
constraints. The seventh chapter studies CSPs from the parametrised perspective. The eight
chapter gives an overview of the counting variants of CSPs. The ninth chapter is concerned
with valued CSPs, which are generalisations of CSPs to optimisation problems. The tenth
chapter investigates CSPs specialised to digraphs. The eleventh chapter gives a good account
of the available approximation algorithms for CSPs. Finally, the twelfth chapter provides an
overview of quantified CSPs.

Acknowledgements

On behalf of the Dagstuhl Seminar 15301 organisers, we wish to express their gratitude to
the Scientific Directors of the Dagstuhl Centre for their support of the seminar. We are
grateful to Dr. Marc Herbstritt, Member of the Scientific Staff of the Schloss Dagstuhl –

Preface ix

Leibniz Center for Informatics, for his help with preparing this volume. Finally, we wish to
thank the participants of the seminar, the authors of the chapters in this volume, and the
anonymous reviewers of the chapters. This volume would not have been possible without the
contributions of all these colleagues.

January 2017 Andrei Krokhin and Stanislav Živný

15301

List of Authors

Libor Barto
Charles University in Prague, Czech republic
libor.barto@gmail.com

Manuel Bodirsky
TU Dresden, Germany
manuel.bodirsky@tu-dresden.de

Martin C. Cooper
University of Toulouse III, France
cooper@irit.fr

Serge Gaspers
UNSW Australia and Data61, CSIRO
sergeg@cse.unsw.edu.au

Heng Guo
Queen Mary, University of London, UK
h.guo@qmul.ac.uk

Gregory Gutin
Royal Holloway, University of London, UK
gutin@cs.rhul.ac.uk

Mark Jerrum
Queen Mary, University of London, UK
m.jerrum@qmul.ac.uk

Marcin Kozik
Jagiellonian University, Poland
marcin.kozik@uj.edu.pl

Andrei Krokhin
University of Durham, UK
andrei.krokhin@durham.ac.uk

Benoît Larose
Université du Québec à Montréal, Canada
blarose@lacim.ca

Pinyan Lu
Shanghai University of Finance and
Economics, China
lu.pinyan@mail.shufe.edu.cn

Konstantin Makarychev
Microsoft Research, USA
komakary@microsoft.com

Yury Makarychev
Toyota Technological Institute at Chicago,
USA
yury@ttic.edu

Marcello Mamino
TU Dresden, Germany
marcello.mamino@tu-dresden.de

Barnaby Martin
University of Durham, UK
barnaby.d.martin@durham.ac.uk

Sebastian Ordyniak
TU Wien, Austria
ordyniak@ac.tuwien.ac.at

Stefan Szeider
TU Wien, Austria
szeider@ac.tuwien.ac.at

Ross Willard
University of Waterloo, Canada
ross.willard@uwaterloo.ca

Anders Yeo
Singapore University of Technology and
Design, Singapore and
University of Johannesburg, South Africa
anders.yeo.work@gmail.com

Stanislav Živný
University of Oxford, UK
standa.zivny@cs.ox.ac.uk

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz Center for Informatics, Germany

http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/en/publications/dfu/
http://www.dagstuhl.de/en/about-dagstuhl/

Polymorphisms, and How to Use Them
Libor Barto∗1, Andrei Krokhin2, and Ross Willard†3

1 Department of Algebra, Faculty of Mathematics and Physics, Charles
University, Prague, Czech Republic
libor.barto@gmail.com

2 School of Engineering and Computing Sciences, University of Durham,
Durham, UK
andrei.krokhin@durham.ac.uk

3 Department of Pure Mathematics, University of Waterloo, Waterloo, Canada
ross.willard@uwaterloo.ca

Abstract
This article describes the algebraic approach to Constraint Satisfaction Problem that led to
many developments in both CSP and universal algebra. No prior knowledge of universal algebra
is assumed.

1998 ACM Subject Classification F.2.0 [Analysis of Algorithms and Problem Complexity] Gen-
eral, F.2.0 [Discrete Mathematics] General

Keywords and phrases Constraint satisfaction, Complexity, Universal algebra, Polymorphism

Digital Object Identifier 10.4230/DFU.Vol7.15301.1

1 Introduction

The Constraint Satisfaction Problem (CSP) provides a common framework for expressing a
wide range of both theoretical and real-life combinatorial problems [111]. Roughly, these are
problems where one is given a collection of constraints on overlapping sets of variables and the
goal is to assign values to the variables so as to satisfy the constraints. This computational
paradigm is very general, and includes many specific well-known problems from several areas
of Computer Science and Mathematics. In the last 20 years, complexity-theoretic aspects
of CSPs have attracted a great deal of attention at the top level in Theoretical Computer
Science. The main reason for this is that the CSP paradigm strikes a perfect balance between
generality and structure: it is general enough to reflect very many important computational
phenomena, yet it has enough structure that can be exploited to gain very deep insights
into these phenomena. The CSP paradigm is often used to tackle the following fundamental
general question: What kind of mathematical structure in computational problems allows for
efficient algorithms?

The topic of this paper is a very active theoretical subfield which studies the computational
complexity and other algorithmic properties of the decision version of CSP over a fixed
constraint language on a finite domain. This restricted framework is still broad enough to
include many decision problems from the class NP, yet it is narrow enough to potentially
allow for complete classifications of all such CSP problems.

∗ L. Barto gratefully acknowledges the support of the Grant Agency of the Czech Republic, grant GAČR
13-01832S.

† R. Willard gratefully acknowledges the support of the Natural Sciences and Engineering Research
Council of Canada.

© Libor Barto, Andrei Krokhin, and Ross Willard;
licensed under Creative Commons License BY

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný; pp. 1–44

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol7.15301.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3

2 Polymorphisms, and How to Use Them

One particularly important achievement is the understanding of what makes the problems
over a fixed constraint language computationally easy or hard. It is not surprising that
hardness comes from a lack of symmetry. However, the usual objects capturing symmetry,
automorphisms (or endomorphisms) and their groups (or semigroups), are not sufficient in
this context. It turns out that the complexity of the CSP over a fixed constraint language is
determined by more general symmetries of it: polymorphisms and their clones.

Our aim is to introduce the basics of this exciting area in a way that is understandable
to readers with a basic knowledge of computational complexity (see [106, 3]). Our particular
focus is on explaining, with worked-out examples, how polymorphisms are applied to obtain
positive and negative algorithmic results and why this approach is natural for many classi-
fication problems about CSPs and constraint languages. We do not assume any knowledge
of algebra and minimize the algebraic terminology that we (define and) use, so the deep
universal algebra, which is at the technical core of many advanced results in this direction,
stays in the background. Many papers in the reference list contain deep algebra, though.

The structure of the survey is as follows. In Section 2 we give the basic definitions and
examples of CSPs over a fixed constraint language, and discuss the main goals of the research
programme that we survey. In Section 3 we describe various standard reductions between
CSPs with different constraint languages, which on the one hand allows one to group together
constraint languages with the same computational properties of the corresponding decision
CSPs, and on the other hand paves the path to the algebraic approach to our classification
problems. In Section 4 we explain how polymorphisms are used as classifiers for constraint
languages and how this leads to hardness results and complexity classification conjectures.
In Section 5 we explain how polymorphisms are used to guarantee correctness of algorithms
that do not use polymorphisms in their execution. In Section 6 we discuss an algorithm that
does use polymorphisms in an essential way in its execution.

2 CSP over a Fixed Constraint Language

A constraint – such as R(x3, x1, x4) – restricts the allowed values for a tuple of variables
– in this case (x3, x1, x4) – to be an element of a particular relation on the domain – in
this case R ⊆ D3.1 By an n-ary relation R on a domain D we mean a subset of the n-th
cartesian power Dn. It is sometimes convenient to work with the corresponding predicate
which is a mapping from Dn to {true, false} specifying which tuples are in R. We will use
both formalisms, so e.g. (a, b, c) ∈ R and R(a, b, c) both mean that the triple (a, b, c) ∈ D3

is from the relation R.
An instance of the CSP is a list of constraints, e.g.,

R(x), S(y, y, z), T (y, w),

where R, S, T are relations of appropriate arity on a common fixed domain D and x, y, z, w
are variables. A mapping f assigning values from the domain to the variables is a solution if
it satisfies all the constraints, that is, in our example,

R(f(x)) and S(f(y), f(y), f(z)) and T (f(y), f(w)) .

A standard formal definition of an instance of the CSP over a finite domain goes as
follows.

1 There are also other types of constraints considered in the literature, e.g. valued and global con-
straints [111].

L. Barto, A. Krokhin, and R. Willard 3

I Definition 1. An instance of the CSP is a triple P = (V,D, C) with
V a finite set of variables,
D a finite domain,
C a finite list of constraints, where each constraint is a pair C = (x, R) with

x a tuple of variables of length n, called the scope of C, and
R an n-ary relation on D, called the constraint relation of C.

An assignment, that is, a mapping f : V → D, satisfies a constraint C = (x, R) if f(x) ∈ R,
where f is applied component-wise. An assignment f is a solution if it satisfies all constraints.

Three basic computational problems associated with an instance are the following:
Decision. Does the given instance have a solution? (A related problem, the search
problem, is to find some solution if at least one solution exists.)
Optimization. Even if the instance has no solution, find an optimal assignment, i.e., one
that satisfies the maximum possible number of constraints. (Approximation algorithms
are also extensively studied, where the aim is, for example, to find an assignment that
satisfies at least 80% of the number of constraints satisfied by an optimal assignment.)
Counting. How many solutions does the given instance have? (This problem also has an
approximation version: approximate counting.)

To study the computational complexity of these problems we need to specify a representation
of instances. In particular, we will assume that the constraint relation in every constraint is
given by a list of all its members. Note, however, that for most of the problems considered
in this article any reasonable representation can be taken.

2.1 Constraint Languages
Even the easiest of the problems, decision, is computationally hard: It contains many
NP-complete problems including, e.g., 3-SAT (see Example 3). However, certain natural
restrictions ensure tractability. The main types of restrictions that have been studied are
structural restrictions, which limit how constraints interact, and language restrictions, which
limit the choice of constraint relations.

In this paper, we focus just on decision problems with language restrictions. See [92]
for optimization problems and a generalization to valued CSPs, [70, 102] for approximation,
[81] for counting, [24, 25, 107] for a generalization to infinite domains, and [105] for work on
structural restrictions.

I Definition 2. A constraint language D is a finite set of relations on a common finite
domain, D. We use CSP(D) to denote the restriction of the general CSP decision problem
to instances in which the domain is D and all constraint relations are from D.

We remark that constraint languages (on a finite domain) are often defined to also include
infinite sets of relations. For such languages, one can define the complexity in terms of finite
subsets, or else one has to specify the choice of representation of instances. For simplicity,
we focus on finite constraint languages.

2.2 Examples
I Example 3. An instance of the standard NP-complete problem [106, 3], 3-SAT, is a
Boolean formula in conjunctive normal form with exactly three literals per clause. For
example, the formula,

ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x4 ∨ x5 ∨ ¬x1) ∧ (¬x1 ∨ ¬x4 ∨ ¬x3)

Chapte r 01

4 Polymorphisms, and How to Use Them

is a satisfiable instance of 3-SAT. (Any assignment making x1 and x2 false, satisfies ϕ.)
3-SAT is equivalent to CSP(D3SAT), where D3SAT = {0, 1} and

D3SAT = {Sijk : i, j, k ∈ {0, 1}}, where Sijk = {0, 1}3 \ {(i, j, k)} .

For example, the above formula ϕ corresponds to the following instance of CSP(D3SAT)

S010(x1, x2, x3), S101(x4, x5, x1), S111(x1, x4, x3) .

More generally, for a natural number k, k-SAT denotes a similar problem where each
clause is a disjunction of k literals.

Since 3-SAT is NP-complete, it follows that k-SAT is NP-complete for each k ≥ 3. On the
other hand, 2-SAT is solvable in polynomial time, and is in fact complete for the complexity
class NL (non-deterministic logarithmic space) under log-space reductions [106, 3] (see also
Example 9).

I Example 4. 1-in-3-SAT is CSP(D1in3SAT) where D1in3SAT contains the single relation
{(0, 0, 1), (0, 1, 0), (1, 0, 0)}. This problem is well known to be NP-complete [112].

I Example 5. HORN-3-SAT is a restricted version of 3-SAT, where each clause may have
at most one positive literal. This problem is equivalent to CSP(DHornSAT) for DHornSAT =
{S110, S111, C0, C1} where C0 = {0} and C1 = {1}. HORN-3-SAT is solvable in polynomial
time, in fact, it is a P-complete problem under log-space reductions [3, 106].

I Example 6. For a fixed natural number k, the k-COLORING problem is to decide whether
it is possible to assign colors {0, 1, . . . , k − 1} to the vertices of an input graph in such a way
that adjacent vertices receive different colors. This problem is equivalent to CSP(DkCOLOR),
where Dk = {0, 1, 2, . . . , k − 1} and DkCOLOR = {6=k} consists of a single relation – the
binary inequality relation 6=k = {(a, b) ∈ D2

k : a 6= b}.
Indeed, given an instance of CSP(DkCOLOR), we can form a graph whose vertices are the

variables and whose edges correspond to the binary constraints (that is, x has an edge to y
iff the instance contains the constraint x 6=k y). It is easily seen that the original instance
has a solution if and only if the obtained graph is k-colorable. The translation in the other
direction is similar.

The k-COLORING problem is NP-complete for k ≥ 3 [106, 3]. 2-COLORING is equivalent
to deciding whether an input graph is bipartite. It is solvable in polynomial time, in fact, it
is in the complexity class L (where L stands for logarithmic space) by a celebrated result of
Reingold [109], and it is an L-complete problem under first-order reductions.

I Example 7. Given two digraphs G = (V (G), E(G)) and H = (V (H), E(H)), a mapping
f : V (G) → V (H) is a homomorphism from G to H if f preserves edges, that is, (u, v) ∈
E(G) implies (f(u), f(v)) ∈ E(H). The problem whether an input digraph G admits a
homomorphism to a fixed digraph H is also known as the H-COLORING problem and has
been actively studied in graph theory [72], see also [96]. The k-COLORING problem is a
special case of H-COLORING where H is the complete graph on k vertices.

For any digraph H, let D = V (H) and let DH be the language that contains just the
binary relation E(H). For any digraph H, the problem CSP(DH), corresponds to the H-
COLORING problem, where the input digraph G is given by the scopes of the constraints.
If we add all nonempty subsets of V (H) as unary relations to DH , then the resulting CSP is
known as LIST H-COLORING [72]. If we add just the singleton subsets of V (H) as unary
relations to DH , then the resulting CSP is known as One-or-All LIST H-COLORING [63, 64].

L. Barto, A. Krokhin, and R. Willard 5

I Example 8. Let p be a prime number. An input of 3-LIN(p) is a system of linear equations
over the p-element field GF(p), where each equation contains 3 variables, and the question
is whether the system has a solution. This problem is equivalent to CSP(D3LINp), where
D3LINp = GF(p) and D3LINp consists of all affine subspaces Rabcd of GF(p)3 of dimension 2,
where

Rabcd = {(x, y, z) ∈ GF(p)3 : ax+ by + cz = d} .

This problem is solvable in polynomial time, e.g. by Gaussian elimination.2 It is complete
for a somewhat less familiar complexity class ModpL [46].

I Example 9. An instance of the s, t-connectivity problem, STCON, consists of a directed
graph and two of its vertices, s and t. The question is whether there exists a directed path
from s to t.

A closely related (but not identical) problem is CSP(DSTCON), where the domain is
DSTCON = {0, 1} and DSTCON = {C0, C1, I}, C0 = {0}, C1 = {1}, I = {(0, 0), (0, 1), (1, 1)}.
Indeed, given an instance of CSP(DSTCON) we form a directed graph much as we did in
Example 6 and label some vertices 0 or 1 according to the unary constraints. Then the
original instance has a solution if and only if there is no directed path from a vertex labeled
1 to a vertex labeled 0. Thus CSP(DSTCON) can be solved by invoking the complement of
STCON, the s, t-non-connectivity problem, several times.

Both STCON and CSP(DSTCON) can clearly be solved in polynomial time. By the
Immerman-Szelepcsényi theorem [75, 115] both problems are NL-complete (under log-space
reductions).

In the same way, the s, t-connectivity problem for undirected graphs is closely related
to CSP(DUSTCON), where DUSTCON = {0, 1} and DUSTCON = {C0, C1,=}. These problems
are L-complete by [109].

2.3 The Dichotomy Conjecture
The most fundamental problem in the area was formulated in the landmark paper by Feder
and Vardi [65].

I Conjecture 10 (The Dichotomy Conjecture). For each finite constraint language D, the
problem CSP(D) is in P or is NP-complete.3

Recall that if P 6= NP, then there are problems of intermediate complexity in NP [95].
Feder and Vardi argued that the class of CSPs over fixed constraint languages is a good
candidate for the largest natural class of problems which exhibit a P versus NP-complete
dichotomy.

At that time the conjecture was supported by two major cases: the dichotomy theorem
for all languages over a two-element domain by Schaefer [112] and the dichotomy theorem
for languages consisting of a single binary symmetric relation by Hell and Nešetřil [71].

2 The problem of solving general systems of linear equations over GF(p) without the restriction on number
of variables cannot be faithfully phrased as CSP(D), even if we allow D to consist of all affine subspaces,
since the input representation of the latter problem can be substantially larger. However, a system of
linear equations can be easily rewritten to an instance of 3-LIN(p) by introducing new variables.

3 It is conjectured in [34] that the dichotomy remains true without the finiteness assumption on D (the
domain D still needs to be finite), if constraint relations in inputs are given by full lists of their members.
Namely, the local-global conjecture states that CSP(D) is in P (NP-complete) whenever CSP(D′) is in
P (NP-complete) for every (some) finite D′ ⊆ D.

Chapte r 01

6 Polymorphisms, and How to Use Them

Feder and Vardi identified two sources of polynomial-time solvability and made several
important contributions towards understanding them. In particular, they observed that
the known polynomial cases were tied to algebraic closure properties and asked whether
polynomial solvability for CSP can always be explained in such a way. This was confirmed
by Jeavons, Cohen and Gyssens [80, 78], and these and subsequent papers based on this
connection to algebra brought the area to another level, which probably could not be accessed
with only combinatorial tools (such as those in [112] or [71]).

2.4 Alternative Views

Note that if we order (or just name) relations in a constraint language D with domain D,
then D can be viewed as a relational structure (D;R1, R2, . . .), or equivalently as a relational
database, with universe D.

Recall that a Boolean conjunctive query over the database D is an existential sentence
whose quantifier-free part is a conjunction of atoms. CSP(D) is exactly the problem of
deciding whether D satisfies a given Boolean conjunctive query. For example, the instance

R1(x), R1(w), R3(y, y, z), R7(y, w), R7(x, y) (1)

has a solution if and only if the sentence

(∃x, y, z, w ∈ D) R1(x) ∧R1(w) ∧R3(y, y, z) ∧R7(y, w) ∧R7(x, y)

is true in D.
From this perspective, it is natural to ask what happens if we allow some other combination

of logical connectives from {∃,∀,∧,∨,¬,=, 6=}. It turns out that out of the 27 cases only
3 are interesting (the other cases either reduce to these, or are almost always easy or hard
by known results): {∃,∧} which is CSP, {∃,∀,∧} which is so-called quantified CSP, and
{∃,∀,∧,∨}. Determining the complexity of quantified CSP is also an active research area [49]
with a possible trichotomy – P, NP-complete or PSPACE-complete. Recently, a tetrachotomy
was obtained for the last case [101] – for every D, the corresponding problem is either in P,
NP-complete, co-NP-complete, or Pspace-complete.

The CSP over a fixed language can also be formulated as the homomorphism problem
between relational structures with a fixed target structure [65, 78]. Assume that we have
two relational structures E = (E;S1, S2, . . .) and D = (D;R1, R2, . . .) which are similar,
i.e. they have the same number of relations and the corresponding relations have the same
arity. A homomorphism from E to D is a mapping h : E → D such that, for all i, if
a = (a1, a2, . . .) ∈ Si then h(a) = (h(a1), h(a2), . . .) ∈ Ri. Then CSP(D) is equivalent to the
problem of deciding whether a given relational structure E similar to D has a homomorphism
to D. The idea of the translation is shown in Examples 6 and 9. In general, to see the
translation from the homomorphism form to the constraint form, view the set E as the
set of variables and transform every tuple x in a relation Si in E to a constraint Ri(x).
To see the translation back, let E (the domain of E) be the set of all variables appearing
in a given CSP instance, and let each relation Si contain all tuples x such that this CSP
instance contains a constraint Ri(x). For example, if we translate the CSP(D) instance
appearing above in (1) into a relational structure E , then we have E = {x, y, z, w} and
S1 = {x,w}, S3 = {(y, y, z)}, S7 = {(y, w), (x, y)}, with all the other relations Si empty.

L. Barto, A. Krokhin, and R. Willard 7

3 Reductions Between Constraint Languages

This section describes relational constructions that allow one to reduce one CSP with a fixed
constraint language to another. These constructions have algebraic counterparts, described
in the following section, and this translates many (complexity) classification problems about
constraint languages into algebraic classifications.

If a computational problem A can simulate (in some sense) another problem B, then A
is at least as hard as B. This simple idea is widely used in computational complexity; for
instance, NP-completeness is often shown by a gadget reduction of a known NP-complete
problem to the given one. A crucial fact for the algebraic theory of the CSP is that a so
called primitive positive (pp-, for short) interpretation between constraint languages gives
such a reduction between corresponding CSPs (more precisely, if D pp-interprets E , then
CSP(E) is reducible to CSP(D)). Pp-interpretations have been, indirectly, one of the main
subjects of universal algebra for the last 80 years!

We will define three increasingly more general techniques for simulation between CSPs:

pp-definition ⊆ pp-interpretation ⊆ pp-construction .

In Section 4 we give algebraic characterizations for these techniques, which guide the algebraic
approach.

The algebraic theory of CSPs was developed in a number of papers including [80, 78, 34,
97, 20]. The viewpoint taken here is close to [20, 24]. All results in this section come from
these sources unless stated otherwise.

To simplify formulations, all structures (relational or algebraic) are assumed to have finite
domains, all constraint languages are assumed to contain finitely many relations, all of them
nonempty. By a reduction we mean a log-space reduction (although first-order reductions
are often possible under additional weak assumptions).

3.1 Primitive Positive Interpretations (= Gadgets)
An important special case of pp-interpretability is pp-definability.

I Definition 11. Let D, E be constraint languages on the same domain D = E. We say
that D pp-defines E (or E is pp-definable from D) if each relation in E can be defined by a
first order formula which only uses relations in D, the equality relation, conjunction and
existential quantification.

This terminology comes from model theory, where a first order formula is called primitive
if it has the form ∃ȳ

∧
i<n αi(x̄, ȳ) where each αi(x̄, ȳ) is an atomic or negated atomic formula.

A primitive positive (or pp-) formula is a negation-free primitive formula.
Rephrasing the above definition without using logic, D pp-defines E if D and E have the

same domain and every relation Ri in E can be represented by a gadget using relations from
D, as follows. There is an instance Pi of CSP(D∪{=}) and subset Xi of variables in Pi such
that the set of all solutions to Pi, when projected down to Xi, gives precisely the relation Ri.

I Example 12. Recall constraint languages D3SAT,DHorn3SAT, and DSTCON from Ex-
amples 3, 5, and 9. We now show that D3SAT pp-defines DHorn3SAT, which in turn
pp-defines DSTCON. To show the first definition, notice that C0(x) = S111(x, x, x) and
C1(x) = S000(x, x, x). For the second, it is enough to check that I(x, y) holds if and only if
∃z(C1(z) ∧ S110(z, x, y)) holds.

I Theorem 13. If D pp-defines E, then CSP(E) is reducible to CSP(D).

Chapte r 01

8 Polymorphisms, and How to Use Them

Proof by Example. Let R be an arbitrary ternary relation on a domain D. Consider the
relations on D defined by

S(x, y) iff (∃z)R(x, y, z) ∧R(y, y, x), T (x, y) iff R(x, x, x) ∧ (x = y) ,

where the existential quantification is understood over D. The relations S and T are defined
by pp-formulae, therefore the constraint language D = {R} pp-defines the constraint language
E = {S, T}.

We sketch the reduction of CSP(E) to CSP(D) using the instance

S(x3, x2), T (x1, x4), S(x2, x4) .

We first replace S and T with their pp-definitions by introducing a new variable for each
quantified variable:

R(x3, x2, y1), R(x2, x2, x3), R(x1, x1, x1), x1 = x4, R(x2, x4, y2), R(x4, x4, x2)

and then we get rid of the equality constraint x1 = x4 by identifying these variables. This
way we obtain an instance of CSP(D):

R(x3, x2, y1), R(x2, x2, x3), R(x1, x1, x1), R(x2, x1, y2), R(x1, x1, x2) .

Clearly, the new instance of CSP(D) has a solution if and only if the original instance
does. J

This simple theorem provides a quite powerful tool for comparing CSPs over different
languages on the same domain. A more powerful tool, which can also be used to compare
languages with different domains, is pp-interpretability. Informally, a constraint language D
pp-interprets E , if the domain of E is a pp-definable relation (from D) modulo a pp-definable
equivalence, and the relations of E (viewed, in a natural way, as relations on D) are also
pp-definable from D.4 Formally:

I Definition 14. Let D, E be constraint languages. We say that D pp-interprets E if there
exist a natural number n, a set F ⊆ Dn, and an onto mapping f : F → E such that D
pp-defines

the relation F ,
the f -preimage of the equality relation on E, and
the f -preimage of every relation in E ,

where by the f -preimage of a k-ary relation S on E we mean the nk-ary relation f−1(S) on
D defined by

f−1(S)(x11, . . . , x1k, x21, . . . , x2k, . . . , xn1, . . . , xnk)

iff

S(f(x11, . . . , xn1), . . . , f(x1k, . . . , xnk)) .

When F = E = Dn and f is the identity mapping, we also say that E is a pp-power of D.

I Theorem 15. If D pp-interprets E, then CSP(E) is reducible to CSP(D).

Proof Sketch. The properties of the mapping f from Definition 14 allow us to rewrite an
instance of CSP(E) to an instance of the CSP over a constraint language which is pp-definable
from D. Then we apply Theorem 13. J

4 This is the classical notion of interpretation from model theory restricted to pp-formulas.

L. Barto, A. Krokhin, and R. Willard 9

3.2 Homomorphic Equivalence, Cores and Singleton Expansions
Let D and E be constraint languages with domains D and E, respectively. We say that D
and E are homomorphically equivalent if the relations in them can be ordered so that D and
E become similar structures and there exist homomorphisms e : D → E and g : E → D (recall
definitions from Section 2.4).

I Theorem 16. Let D and E be homomorphically equivalent constraint languages. Then
CSP(D) and CSP(E) are reducible to each other.

Proof Idea. An instance of CSP(D) has a solution if and only if the corresponding instance
of CSP(E), obtained by replacing each Ri ∈ D with Si ∈ E , has a solution. Specifically,
direct applications of mappings e and g transform solutions of one instance to solutions of
another one. J

A mapping f : D → D is called an endomorphism of D if it is a homomorphism from D
to itself, that is, f(R) := {(f(a1), f(a2), . . .) | (a1, a2, . . .) ∈ R} ⊆ R for every R ∈ D.

A language D is a core if every endomorphism of D is a bijection. It is not hard to
show that if f is an endomorphism of a constraint language D with minimal range, then
f(D) = {f(R) | R ∈ D} is a core. Moreover, this core is unique up to isomorphism, therefore
we speak about the core of D.

An important fact is that we can add all singleton unary relations to a core constraint
language without increasing the complexity of its CSP. For a constraint language D, its
singleton expansion is the language E = D ∪ {Ca : a ∈ D}, where Ca denotes the unary
relation Ca = {a}.

I Theorem 17. Let D be a core constraint language and let E be the singleton expansion of
D. Then CSP(E) is reducible to CSP(D).

Proof Idea. The crucial step is to observe that the set of endomorphisms of D, viewed as a
|D|-ary relation, is pp-definable from D. More precisely, the relation

S = {(f(a1), . . . , f(an)) : f is an endomorphism of D} ,

where a1, . . . , an is a list of all elements of D, is pp-definable from D (even without existential
quantification). Indeed, f is, by definition, an endomorphism of D if for every R ∈ D of arity
ar(R) and every (b1, . . . , bar(R)) ∈ R we have (f(b1), . . . , f(bar(R))) ∈ R. This directly leads
to a pp-definition of S:

S(xa1 , . . . , xan
) iff

∧
R∈D

∧
(b1,...,bar(R))∈R

R(xb1 , . . . , xbar(R)) .

Given an instance of CSP(E) we introduce new variables xa1 , . . . , xan
, we replace every

constraint of the form Ca(x) by x = xa, and we add the constraint S(xa1 , . . . , xan). In this
way we obtain an instance of CSP(D ∪ {=}). Clearly, if the original instance has a solution,
then the new instance has a solution as well. In the other direction, if g is a solution to the
new instance, then its values on xa1 , . . . , xan

determine an endomorphism f of D. As D is a
core, f is a bijection, thus f−1 is an endomorphism as well, and f−1 ◦ g restricted to the
original variables is a solution of the original instance. J

We will call constraint languages containing all singleton unary relations idempotent. Note
that an idempotent constraint language is automatically a core as the only endomorphism is
the mapping that sends each element to itself.

Chapte r 01

10 Polymorphisms, and How to Use Them

An interesting property of an idempotent constraint language D is that the search problem
for CSP(D) is solvable in polynomial time whenever CSP(D) is. The idea is to use self-
reduction: for a satisfiable instance, find good values for variables, in order, by checking
satisfiability of the instance enhanced with appropriate unary singleton constraints.

3.3 Example
I Example 18. We show that 3-SAT is reducible to 3-COLORING via singleton expansion
and a pp-interpretation with n = 1.

Recall the constraint language D3COLOR = {6=3} of 3-COLORING from Example 6 and
the constraint language D3SAT = {S000, . . . , S111} of 3-SAT from Example 3.

Since D3COLOR is a core, CSP(D′3COLOR), where D′3COLOR = {6=3, C0, C1, C2}, is redu-
cible to CSP(D3COLOR) by Theorem 17. By Theorem 15, it is now enough to show that
D′3COLOR pp-interprets D3SAT. We give a pp-interpretation with n = 1, F = {0, 1}, and f
the identity map (see Definition 14). The unary relation {0, 1} can be pp-defined by

F (x) iff (∃y) C2(y) ∧ x 6=3 y (iff x 6= 2) .

The preimage of the equality relation is the equality relation on {0, 1} which is clearly
pp-definable. The relation S000 can be defined by

S000(x1, x2, x3) iff (∃y1, y2, y3, z) C2(z) ∧ y1 6=3 y2 ∧ y2 6=3 y3 ∧ y1 6=3 y3

∧
∧

i=1,2,3
z 6=3 xi ∧ T (xi, yi) ,

where T is the binary relation

T (x, y) iff (∃u, v) C1(u) ∧ u 6= v ∧ x 6= v ∧ y 6= v

The other relations Sijk are defined similarly.
While it is easy to verify that the presented pp-definitions work, it is not so easy to

find them without any tools. The proof of Theorem 32 gives an algorithm to produce
pp-definitions whenever they exist (although the obtained definitions will usually be very
long).

3.4 Pp-Constructibility
We now discuss how the reductions from the previous two subsections can be combined.
I Definition 19. A constraint language D pp-constructs a constraint language E if there is
a sequence of constraint languages D = C1, . . . , Ck = E such that, for each 1 ≤ i < k

Ci pp-interprets Ci+1, or
Ci is homomorphically equivalent to Ci+1, or
Ci is a core and Ci+1 its singleton expansion.
The following is a corollary of Theorems 15, 16, and 17.

I Corollary 20. If D pp-constructs E, then CSP(E) is reducible to CSP(D).
It turns out that any finite sequence of operations in pp-constructibility can be replaced

by only two operations. Recall the notion of pp-power from Definition 14.
I Theorem 21. A constraint language D pp-constructs a constraint language E if and only
if E is homomorphically equivalent to a pp-power of D.

An example of idempotent constraint languages D and E such that D pp-constructs E ,
but does not pp-interpret E , can be found in [20].

L. Barto, A. Krokhin, and R. Willard 11

3.5 Tractability Conjecture
Pp-constructibility is a reflexive and transitive relation on the class of constraint languages.
By identifying equivalent languages, i.e. languages which mutually pp-construct each other,
we get a partially ordered set, the pp-constructibility poset, in which D ≤ E iff D pp-constructs
E . Corollary 20 then says that the “higher” we are in the poset the “easier” the CSP we are
dealing with. 3-SAT is terribly hard – we will see later (see Example 33) that its constraint
language is the least element of this poset. Strikingly, all known NP-complete CSPs have
this property. Bulatov, Jeavons and Krokhin [34] conjectured that this is not a coincidence.

I Conjecture 22 (Tractability Conjecture). If a constraint language D does not pp-construct
the language of 3-SAT, then CSP(D) is solvable in polynomial time.

This conjecture (together with the matching hardness result) is also known as the algebraic
dichotomy conjecture because many equivalent formulations, including the original one, are
stated in terms of algebraic operations; see subsection 4.4.

Actually, the original conjecture in [34] was stated (in an equivalent algebraic form) for
the case when D is an idempotent language and instead of pp-construction it used what was
essentially pp-interpretation with n = 1, but this is equivalent to the conjecture stated above
(see [33, 20]).

Remarkably, the seminal paper of Feder and Vardi included a conjecture very similar
to the Tractability conjecture; see [65, Conjecture 2]. In essence, their conjecture was that
CSP(D) should be solvable in polynomial time provided the core of D does not pp-define a
constraint language whose core is isomorphic to the language of 1-in-3-SAT (see Example 4).
This conjecture as stated is false. Indeed, the language D3COLOR = {6=3} of 3-COLORING
is a core, it is invariant under under all permutations of {0, 1, 2}, and it is easy to see that all
relations pp-definable in D3COLOR also have this invariance property. Therefore, D3COLOR
cannot pp-define any relation whose core has a two-element domain, and yet CSP(D3COLOR)
is obviously NP-complete. Note that we showed in Example 18 that the singleton expansion
of D3COLOR can pp-interpret (with n = 1) the language of 3-SAT. In fact, it follows (see
Example 33) that D3COLOR pp-constructs all constraint languages.

Similar hardness results and conjectures have been formulated for other computational/-
descriptive complexity classes. See subsection 4.4.

3.6 Other Reductions
Recall that if two constraint languages pp-construct each other, then their corresponding
CSP problems are equivalent up to logspace reductions. Thus to understand the complexity
of CSPs (for example, to resolve the Tractability conjecture), it suffices to consider just one
constraint language from each equivalence class in the pp-constructibility poset.

By combining Theorems 16 and 17, we obtain the “reduction to the idempotent case.”

I Theorem 23. For every constraint language D there is an idempotent constraint language
D′ such that D and D′ pp-construct each other.

The following theorem has appeared in various closely related forms in the literature. It
is useful because it allows one to work only with binary constraints, which often simplifies
the design and analysis of algorithms for CSPs.

I Theorem 24. For any constraint language D, there is a constraint language D′ such that
all relations in D′ are at most binary, and
D and D′ pp-construct each other.

Chapte r 01

12 Polymorphisms, and How to Use Them

Proof Sketch. Let ` be the maximum arity of a relation in D. Define a constraint language
D′ as follows. Let D′ = D`. For each relation R (say of arity k) in D, D′ contains a unary
relation R′ such that (a1, . . . , a`) ∈ R′ if and only if (a1, . . . , ak) ∈ R. In addition, for all
1 ≤ k ≤ `, D′ contains a binary relation Ek defined as follows: ((a1, . . . , a`), (b1, . . . , b`)) ∈ Ek
if and only if a1 = bk. It can be seen directly from definitions that D′ is a pp-power of D,
and so D pp-constructs D′.

In the opposite direction, for each unary relation R′ ∈ D′, consider the following relation on
D′: R′′(x1, . . . , xk) = ∃xR : R′(xR)∧E1(x1, xR)∧ . . .∧Ek(xk, xR). Let D′′ = {R′′ | R ∈ D},
so D′ pp-defines D′′. Now, it is straightforward to check that D and D′′ are homomorphically
equivalent, with mappings e : D → D` and g : D` → D defined as e(x) = (x, . . . , x) and
g((x1, . . . , x`)) = x1. J

By using Theorem 23, Theorem 24 can be strengthened to make D′ idempotent.
At the expense of forgoing pp-constructible equivalence, we can replace any constraint

language with a language consisting of a single binary relation. The following result is
essentially from [65]; see also the improvement in [45].

I Theorem 25. For every constraint language D there is a digraph H = (V,E) such that
1. {E} pp-constructs D, and
2. CSP({E}) is logspace-reducible to (and hence equivalent to) CSP(D).

It is known [83] that the previous theorem cannot be improved so that D and {E} each
pp-construct the other.

It follows from the previous theorem that every CSP(D) is logspace-equivalent to an
H-coloring problem. In a similar vein, Feder and Vardi proved [65] that every CSP(D) is
logspace-equivalent to some CSP(E) where E is the singleton expansion of a partial ordering,
and also to CSP(E ′) where E ′ is the singleton expansion of the (symmetric irreflexive)
edge relation of a bipartite graph. These results, while undoubtedly interesting, might be
taken to suggest that the CSP classification problem needs to be tackled through a careful
analysis of combinatorial objects such as digraphs, posets, or bipartite graphs. However,
another interpretation is that these objects are complex enough to encode all CSPs. The
algebraic approach, that we are about to describe, gives a better, more fruitful, alternative
for complexity analysis of CSPs.

4 Polymorphisms as Classifiers of Constraint Languages

4.1 Definitions and Examples

The link between relations and operations is provided by a natural notion of compatibility.
An n-ary operation f on a finite set D (that is, a mapping f : Dn → D) is compatible with a
k-ary relation R ⊆ Dk if f applied component-wise to any n-tuple of elements of R gives an
element of R. In more detail, whenever (aij) is an n× k matrix such that every row is in R,
then f applied to the columns gives a k-tuple which is in R as well. If f is compatible with
R then one also says that f is a polymorphism of R, and that R is invariant under f .

I Example 26. Consider the ternary majority operation f on {0, 1}, which always returns
the (unique) repeated value among its arguments. It is a very easy exercise to check that
this operation is compatible with any binary relation on {0, 1}: indeed, applying f to the
columns of any 3× 2 matrix with 0/1 entries always gives one of the rows of this matrix.

L. Barto, A. Krokhin, and R. Willard 13

We say that an operation f on D is a polymorphism of a constraint language D if f is
compatible with every relation in D. Note that a unary polymorphism is the same as an
endomorphism. Endomorphisms can be thought of as symmetries, so polymorphisms can be
viewed as symmetries of higher arities.

I Example 27. Every polymorphism f of an idempotent constraint language is algebraically
idempotent, that is, it satisfies f(a, a, . . . , a) = a for each a in the domain.

I Example 28. It is very easy to check that the binary operation f(x, y) = min(x, y) on {0, 1}
is a polymorphism of DHornSAT from Example 5. For example, to see that f is compatible
with the relation S110 = {0, 1}3 \{(1, 1, 0)}, notice that, for any 2×3 matrix with 0/1 entries,
if f applied to the columns of the matrix gives tuple (1, 1, 0) then one of the rows of the
matrix must be this same tuple.

I Example 29. The ternary operation f(x, y, z) = x − y + z mod p on GF(p) is a poly-
morphism of D3LINp from Example 8. Indeed, each relation in this structure is an affine
subspace of GF(p)3 and f applied to the columns of a 3× 3 matrix gives a triple, which is
an affine combination of its rows (with coefficients 1, -1, 1).

In fact, it is easy to check that f is compatible with R ⊆ GF(p) if and only if it is an
affine subspace of GF(p). It follows that if f is a polymorphism of D, then an instance of
CSP(D) can be written as a system of linear equations over GF(p) and therefore CSP(D) is
solvable in polynomial time, for example, by Gaussian elimination.

Observe that for p = 2, f is the ternary minority function f(x, y, z) = x+ y + z mod 2.

I Example 30. Consider the following generalisation of the operation f from Example 26.
For any finite set D, the dual discriminator operation on D is the ternary operation d such
that d(x, y, z) = x if x, y, z are all different and, otherwise, d(x, y, z) is the repeated value
among x, y, z. It is a useful easy exercise to check that d is compatible with a binary relation
R on D if and only if the relation has one of the following forms:
(∨) x = a ∨ y = b for a, b ∈ D,
(π) x = π(y) where π is a permutation on D,
(×) A×B where A and B are subsets of D,
(∩) intersection of a relation of type (∨) or (π) with a relation of type (×).
The key observation is that, for any binary relation R compatible with d, and for any
a, a′, b, b′, c ∈ D with b 6= b′, we have d((a′, c)(a, b), (a, b′)) = (a, c). We remark that, generally,
it is rare to have such an explicit description of relations having a given polymorphism.

Another useful way of viewing polymorphisms is that they provide an algebraic structure
on solution sets of instances. In other words, they provide a uniform way to combine solutions
to instances to form a new solution, which we illustrate with the following example.

I Example 31. Recall the majority operation f on {0, 1} from Example 26. Consider any
2-SAT instance, for example, this one: (x ∨ y) ∧ (y ∨ z) ∧ (y ∨ u) ∧ (x ∨ u). Take any three
solutions to this instance: for example, a,b, c described in the diagram below. It is easy to
check that they are indeed solutions: simply check that each of them satisfies each constraint
in the instance. If we apply f to these solutions coordinate-wise, as described in the diagram,
we obtain a new assignment f(a,b, c). It is also a solution to this instance, and there is no
need to go through the constraints in the instances to check that each constraint is satisfied,
since this is directly guaranteed by the fact that f is compatible with all binary relations on
{0, 1}.

Chapte r 01

14 Polymorphisms, and How to Use Them

x y z u

a = (1 1 1 0) sat
b = (1 1 0 1) sat
c = (1 0 0 0) sat

f ↓ f ↓ f ↓ f ↓

f(a,b, c) = (1 1 0 0) sat

Notice that f cannot be used to combine solutions to HORN-3-SAT or 3-SAT instances.
Indeed, the relation S111 = {0, 1}3 \ {(1, 1, 1)} is not compatible with f ; it is easy to see that
applying f to tuples (0, 1, 1), (1, 0, 1), (1, 1, 0) ∈ S111 gives (1, 1, 1). We discuss polymorphisms
of D3SAT again in Example 33.

We remark that many algorithms that we discuss in the subsequent sections use poly-
morphisms, in design or in analysis, to combine solutions of subinstances of a given CSP
instance in order to maintain or improve useful problem-specific properties of such solutions.

4.2 Polymorphisms as an Algebraic Counterpart of pp-Definability
The set of all polymorphisms of D will be denoted by D. This algebraic object has the
following two properties.

D contains all projections5, that is, all operations of the form

πni (a1, . . . , an) = ai.

D is closed under composition, that is, any operation built from operations in D by
composition also belongs to D.

For example, if D contains a unary operation h, a binary operation g and a ternary operation
f then the operation f ′(x, y, z) = f(f(x, x, h(y)), g(y, z), g(z, x)) is also in D.

Sets of operations with these properties are called concrete clones (or function clones, or
simply clones); therefore we refer to D as the clone of polymorphisms of D 6. It is known
that every concrete clone is the clone of polymorphisms of some (possibly infinite) constraint
language [67, 26].

The notions of polymorphism and invariance form the basis of a well-known Galois
correspondence between sets of relations and operations on a finite set [67, 26], which implies
that the clone of polymorphisms controls pp-definability in the following sense.

I Theorem 32. Let D, E be constraint languages with D = E. Then D pp-defines E if and
only if D ⊆ E.

Proof Sketch. The implication “⇒” follows directly from definitions. For the other implica-
tion it is enough to prove that if R is a relation compatible with every polymorphism of D,
then R is pp-definable from D. A crucial step is a more general version of the observation
made in the proof of Theorem 17: For any k, the set of k-ary polymorphisms of D can be
viewed as a |D|k-ary relation S on D, and this relation is pp-definable from D. Now R can
be defined from such a relation S (where k is the number of tuples in R) by existential
quantification over suitable coordinates. This proof is illustrated in Example 34 below. J

5 In some research communities such operations are called dictators.
6 Similar fonts will be used to denote other languages and their corresponding clones, e.g. E and E.

L. Barto, A. Krokhin, and R. Willard 15

In view of this result, Theorem 13 says that the complexity of CSP(D) only depends
on the clone D. More precisely, if D ⊆ E, then CSP(E) is reducible to CSP(D). Moreover,
the proof of Theorem 32 gives a generic pp-definition of E from D, which gives us a generic
reduction of CSP(E) to CSP(D).

I Example 33. It is a nice exercise to show that the language D3SAT of 3-SAT has no
polymorphisms except for the projections, and the same holds for the language of 1-in-3-SAT.
This means (by Theorem 32) that D3SAT pp-defines every constraint language with domain
{0, 1}. It follows (see also Theorem 38) that D3SAT pp-constructs (in fact, even pp-interprets)
every constraint language, so it is the least element of the pp-constructibility poset, as
claimed earlier. Moreover, it follows from Theorem 32 that D3SAT and D1in3SAT pp-define
each other, hence they are in the same (i.e. the least) element of the pp-constructibility poset.

I Example 34. Another nice exercise for the reader is to show that the language D′3COLOR =
{6=3, C0, C1, C2} on the domain {0, 1, 2} (see Example 18) also does not have any polymorph-
isms except for projections. It follows that every relation on {0, 1, 2} is pp-definable from
D′3COLOR. We show how the proof of Theorem 32 produces a pp-definition of some relation,
say, the binary relation

R = {(0, 1), (0, 2), (1, 1), (2, 2)} .

Since R contains 4 pairs, we pp-define the 34-ary relation

S = {(f(0, 0, 0, 0), f(0, 0, 0, 1), . . . , f(2, 2, 2, 2)) : f is a 4-ary polymorphism
of D′3COLOR}.

which corresponds to the set of all 4-ary polymorphisms of D′3COLOR:

S(x0000, . . . , x2222) iff
∧
i

xiiii = i ∧
∧

i1 6=i2,j1 6=j2,k1 6=k2,l1 6=l2

xi1j1k1l1 6=3 xi2j2k2l2 .

Let’s see that the above formula actually defines S: it is clear that indices show how to
interpret each 34-tuple in S as a 4-ary operation on {0, 1, 2}. The first

∧
-part in the above

formula states that the interpreted operation is compatible with C0, C1, C2, while the second
one states that it is compatible with 6=3. Now we existentially quantify over all variables
in S but x0012 and x1212 – the exceptions are those variables whose indices correspond to
the first and the second (resp.) coordinates of pairs in R. The obtained binary relation
R′(x0012, x1212) contains R since S contains the four tuples corresponding to the cases when
f is a projection π4

i : {0, 1, 2}4 → {0, 1, 2}, and R′ is contained in R since R is compatible
with every polymorphism of D′3COLOR.

Note that the definition of S000 from Example 18 obtained in this way contains 37

variables.

For other examples similar to Example 34, but worked out in more detail, see [77].
The proof of Theorem 32 (see also the above example) gives an algorithm for constructing

a pp-definition of a relation R from a given structure D, whenever there is one. This
pp-definition can be terribly long. However, the algorithm is optimal in the sense that the
problem of deciding of whether such a pp-definition exists is co-NEXPTIME-hard [118].

4.3 Height-1 Identities and pp-Constructibility
We explained above that the complexity of CSP(D) depends only on the polymorphisms of
D. In this section, we refine this statement by specifying the properties of polymorphisms

Chapte r 01

16 Polymorphisms, and How to Use Them

that determine the complexity: these are identities satisfied by polymorphisms, i.e. equations
that hold for all choices of values for the variables, and more specifically height-1 identities,
i.e. those in which each side has exactly one occurrence of an operation symbol.

We will explain identities by example.

I Example 35. A binary operation f on D is called a semilattice operation if it satisfies the
following three identities

f(f(x, y), z) = f(x, f(y, z)), f(x, y) = f(y, x), and f(x, x) = x,

which means that the above equalities hold for all choices of values in D for the variables.
The first identity above (known as associativity) is not height-1, as both sides have two
occurrences of f . The second identity (commutativity) is height-1. The third identity
(idempotence) is not height-1 as its right side has no occurrence of an operation symbol.

In general, identities can involve more than one operation, e.g. f3(x, x, y) = f4(x, x, x, y).
Note that height-1 identities involving operations in a clone can be expressed “within” the
clone. For example, the identity f3(x, x, y) = f4(x, x, x, y) is satisfied iff the statement
f3(π2

1 , π
2
1 , π

2
2) = f4(π2

1 , π
2
1 , π

2
1 , π

2
2) is true in the clone.

I Definition 36. A mapping H from a clone D to a clone E is called an h1 clone homo-
morphism if

it preserves the arities of operations,
it preserves height-1 identities; that is,

H(g(πki1 , . . . , π
k
in)) = H(g)(πki1 , . . . , π

k
in)

where g ∈ D is n-ary.

Note that while an h1 clone homomorphism preserves height-1 identities, it is not required
to preserve non-height-1 identities.

I Example 37. Assume that D contains a semilattice operation f and H is an h1 clone
homomorphism from D to E. Then the operation H(f) on E is commutative, but not
necessarily idempotent or associative. However, if g = f(f(x, y), z) then H(g) satisfies iden-
tities such as H(g)(x, y, z) = H(g)(y, z, x) = H(g)(y, x, z) and H(g)(x, x, y) = H(g)(x, y, y)
because they are height-1 and g satisfies them.

The following is proved in [20].

I Theorem 38. Let D, E be constraint languages. Then D pp-constructs E if and only if
there exists an h1 clone homomorphism from D to E.

Thus if D ≤ E in the pp-constructibility ordering (i.e. D pp-constructs E), then E satisfies
all properties of the form “there exist operations f1, . . . , fn satisfying height-1 identities
Λ1, . . . ,Λk” which are satisfied by D.7 A compactness argument shows that the converse is
also true: if D � E , then there is a finite system of height-1 identities which is satisfied by
some operations from D but is not satisfied by any operations in E. Since the position of
D in the pp-constructibility ordering determines the complexity of CSP(D) up to logspace
reductions, we have that the following holds unconditionally:

7 Algebraists call such properties strong (height-1) Mal’tsev conditions.

L. Barto, A. Krokhin, and R. Willard 17

The complexity of CSP(D), up to logspace reductions, depends only on
the finite systems of height-1 identities satisfied by the operations in the
clone of polymorphisms of D.

More is true. Suppose C is a set of constraint languages with the property that if D ∈ C and
CSP(E) is logspace reducible to CSP(D), then E ∈ C. (For example, C could be the class of
D for which CSP(D) is in P.) Then C is an upward-closed subset of the pp-constructibility
partial order. Assume that C is not the set of all constraint languages. It follows that
1. There exist E1, E2, . . . such that C = {D : D � Ei for all i}, and hence
2. C is the set of constraint languages D such that for every i there exists a finite system of

height-1 identities which is not satisfied by Ei but is satisfied by D.
In other words, C can be characterized by a set of “forbidden” constraint languages (with
respect to pp-constructibility), and also by a (possibly infinite) disjunction of (possibly
infinite) systems of height-1 identities on polymorphisms. One advantage of this perspective
is that it replaces a negative characterization of a class of interest (forbidden constraint
languages) with a positive one (existence of polymorphisms satisfying height-1 identities).
For this observation to be useful, however, the height-1 identities must be manageable, and
the discovery of manageable height-1 identities characterizing classes of interest is one of the
achievements of the algebraic method. We will illustrate this in the following subsection.

4.4 Classifications and Conjectures
In this section we give examples in which classes of constraint languages are characterized
both by forbidden constraint languages and by height-1 identities of polymorphisms.

For the sake of readability, our terminology will stray from longstanding traditions in the
literature. Specifically, our definitions of Taylor, weak NU, cyclic, and Siggers operations do
not require that the operation is idempotent. We will write idempotent Taylor, idempotent
weak NU, etc. for what is ordinarily called Taylor, weak NU, etc.8 (Note that we cannot
bring ourselves to apply this convention to Mal’tsev, majority and NU operations.) It’s easy
to see that a language D has one of the polymorphisms mentioned in this section (e.g. Taylor)
if and only if the core of D has an idempotent version of that polymorphism. Hence, even
though we state all conjectures in this section without assuming idempotence, it is enough
to prove them in the idempotent case.

I Definition 39. A Taylor operation is a k-ary (k ≥ 2) operation f such that, for each
1 ≤ i ≤ k, f satisfies an identity of the form

f(zi,1, . . . , zi,i−1, x
i
, zi,i+1, . . . , zi,k) = f(z′i,1, . . . , z′i,i−1, y

i
, z′i,i+1, . . . , z

′
i,k) (2)

where all zi,j , z′i,j are in {x, y}.

A useful way to view this definition is that the identities (2) prevent f from being the ith
projection (for each i) whenever the domain has more than one element. In fact, it is easy to
see that Taylor identities are the weakest height-1 identities involving a single operation that
prevent this operation from being a projection.

The following theorem can be derived from [116] (see also [34]).

8 [50] uses quasi-Taylor, quasi-WNU etc. for the not-necessarily-idempotent versions.

Chapte r 01

18 Polymorphisms, and How to Use Them

I Theorem 40. For any constraint language D, the following are equivalent:
1. D does not pp-construct the language of 3-SAT.
2. D has a Taylor polymorphism of some arity.

The class of constraint languages which do not pp-construct the language of 3-SAT is
precisely the class of D for which the Tractability conjecture asserts that CSP(D) is in P.
Hence constraint languages with Taylor polymorphisms are of particular interest. Although
the defining condition of a Taylor operation looks rather cumbersome, it has been shown
that, rather surprisingly, for any constraint language D, the property of having a Taylor
polymorphism is equivalent to a number of simpler conditions, as described below.

A weak near-unanimity (WNU) operation is a k-ary (k ≥ 2) operation f satisfying the
identities

f(y, x, x, . . . , x, x) = f(x, y, x, . . . , x, x) = . . . = f(x, x, x, . . . , x, y); (3)

A cyclic operation is a k-ary (k ≥ 2) operation f satisfying the identity

f(x1, x2, . . . , xk) = f(x2, . . . , xk, x1); (4)

A Siggers operation is a 4-ary operation f satisfying the identity 9

f(y, x, y, z) = f(x, y, z, x). (5)

I Theorem 41. For every constraint language D, the following are equivalent:
1. D has a Taylor polymorphism;
2. D has a WNU polymorphism [104];
3. D has a cyclic polymorphism [13];
4. D has a Siggers polymorphism [85, 113].

For other conditions equivalent to the presence of an (idempotent) Taylor polymorphism,
see [18, 33, 34, 73, 94].

I Corollary 42. If a constraint language D has no Taylor (equivalently, no WNU, cyclic, or
Siggers) polymorphism then CSP(D) is NP-complete.

Using the above results, the Tractability conjecture (Conjecture 22), combined with
Corollary 42, can be re-stated as follows.

I Conjecture 43 (Algebraic Dichotomy Conjecture). If a constraint language D has a Taylor
(equivalently, a WNU, cyclic, or Siggers) polymorphism, then CSP(D) is solvable in polyno-
mial time; otherwise, it is NP-complete.

More informally, the (open part of the) Algebraic Dichotomy Conjecture says:

If D has a nontrivial higher-dimensional symmetry (hence providing a
nontrivial way to combine solutions), then CSP(D) should be tractable.

We remark that Conjecture 43 is often misquoted as “CSP(D) is NP-complete if all poly-
morphisms of D are projections, and CSP(D) is tractable otherwise.” This form of the
conjecture is false, as the following example shows.

9 Using different variables, f(r, a, r, e) = f(a, r, e, a) – mnemonic due to Ryan O’Donnell.

L. Barto, A. Krokhin, and R. Willard 19

I Example 44. Consider the map f : {0, 1, 2} → {0, 1} such that f(0) = 0 and f(1) =
f(2) = 1 and consider the constraint language D = {f−1(Sijk) | Sijk ∈ D3SAT} on {0, 1, 2}.
Note that any relation in D cannot distinguish elements 1 and 2, in the sense that any 1
anywhere in it can be replaced by 2 and vice versa. Hence, if we take any projection πni on
{0, 1, 2} and any operation f : {1, 2}n → {1, 2} and define f ′ on {0, 1, 2} so that

f ′(t) =
{

f(t), if t ∈ {1, 2}n
πni (t), otherwise

then f ′ is a polymorphism of D. It is clear that CSP(D) is NP-complete and has many
polymorphisms other than projections. One can even take the singleton expansion of D – it
would be a core, and each operation f ′ built above would remain a polymorphism provided
f is idempotent. However, all height-1 identities satisfied by such operations must also be
satisfied by projections.

I Example 45. We show how to apply cyclic operations to prove the dichotomy theorem for
undirected graphs [71].

Let R be a symmetric binary relation viewed as an undirected graph and let D = {R}. If
R contains a loop then CSP(D) is trivially tractable. If R is bipartite, then the core of D is
an edge and CSP(D) is essentially 2-COLORING, which is tractable.

Let D′ = {R′,} be the singleton expansion of the core of D. If R is not bipartite and
does not contain a loop, then R′ does not contain a loop, but does contain a closed walk
a1, a2, . . . , ap, a1 for some prime p > |D′|. It was shown in [13] that if D′ contains some
idempotent cyclic operation then it contains such an operation of every prime arity greater
than |D′|, so we can assume that D′ contains a cyclic operation t of arity p. Since t is a
polymorphism, the pair

t((a1, a2), . . . , (ap−1, ap), (ap, a1)) = (t(a1, . . . , ap), t(a2, . . . , ap, a1))

is in R′, but it is a loop since t is cyclic. This contradiction shows that D′ does not contain
an idempotent cyclic operation of arity p, and hence it does not have an idempotent cyclic
operation of any arity. Because D′ is idempotent, D′ has no cyclic operation. D pp-constructs
D′; hence D has no cyclic operation (as the height-1 identity characterizing a cyclic operation
of D would also be satisfied by some operation of D′). Hence D does not have a cyclic
polymorphism, so CSP(D) is NP-complete.

I Example 46. A digraph is called smooth if it contains neither sources nor sinks, i.e. all
its vertices have positive in- and out-degrees. It was shown in [17] that if a smooth digraph
has a WNU polymorphism then its core must be a disjoint union of directed cycles. If a
smooth digraph H has such a form, it is an easy exercise to show that the corresponding
H-COLORING problem CSP(DH) is solvable in polynomial time. If H does not have such
a form, then CSP(DH) is NP-complete by Corollary 42.

Consider the digraph H having only 3 vertices x, y, z and 4 edges yx, xy, yz, zx. It is a
smooth core digraph, so it follows from the above that the corresponding problem CSP(DH)
is NP-complete. It can be easily checked that it is the smallest digraph with this property.
Moreover, this digraph was used in [85] to obtain identity (5) above, which can be viewed as
follows: if a digraph with a Siggers polymorphism contains H as a subdigraph, then it also
contains a loop.

Next, we consider the class of constraint languages D for which CSP(D) has bounded width
(meaning that all unsatisfiable instances of CSP(D) can be refuted via local propagation).

Chapte r 01

20 Polymorphisms, and How to Use Them

The “obvious” obstructions to bounded width, besides 3-SAT, are 3-LIN(p) for primes p. Let
C be the set of constraint languages which do not pp-construct the language of 3-LIN(p) for
any prime p. A notable success of the algebraic method was the proof that C is precisely the
set of constraint relations having bounded width [14, 31]. The original proof of Barto and
Kozik [12] hinged on the equivalence of the first and second items in the following theorem.

I Theorem 47. For any constraint language D, the following are equivalent:
1. D does not pp-construct the language of 3-LIN(p), for any p;
2. D has WNU polymorphisms of all but finitely many arities [99, 104];
3. D has a k-ary WNU polymorphism for each k ≥ 3 (see [91]);
4. D has a ternary WNU polymorphism f3 and a 4-ary WNU polymorphism f4 such that

f3(x, x, y) = f4(x, x, x, y) [91];
5. for some k ≥ 3, D has a k-ary polymorphism f satisfying, for each 1 ≤ i ≤ k, an identity

of the form

f(zi,1, . . . , zi,i−1, x
i
, zi,i+1, . . . , zi,k) = f(zi,1, . . . , zi,i−1, y

i
, z′i,i+1, . . . , z

′
i,k) (6)

where all zi,j , z′i,j are in {x, y} [91].

For other conditions equivalent to those from Theorem 47, see [18, 73, 82, 94].
We will discuss CSPs of bounded width in detail in Section 5.
As a third example, consider the class of constraint languages D for which CSP(D) has

bounded linear width, meaning that all unsatisfiable instances of CSP(D) can be refuted
via local propagation in a linear fashion (think refuting unsatisfiable 2-SAT instances by
following paths). This refutation property can be formalised via Linear Datalog, among
other equivalent ways, see [44]. Another way to express this property is that every instance
CSP(D) can solved by forming, in logspace, a certain directed graph (of local inferences) and
solving STCON on this digraph, see [44, 62]. This shows that problems CSP(D) of bounded
linear width are in complexity class NL.

The obvious obstructions to bounded linear width are 3-LIN(p) for primes p and HORN-
3-SAT. Let C ′ be the class of constraint languages which do not pp-construct the language
of 3-LIN(p) for any prime p, nor the language of HORN-3-SAT. Thus C ′ contains the class
of constraint languages whose CSP has bounded linear width (and possibly more). The
following theorem gives a manageable algebraic characterization of C ′.

I Theorem 48. For any constraint language D, the following are equivalent:
1. D pp-constructs neither the language of 3-LIN(p), for any p, nor that of HORN-3-SAT;
2. for some n ≥ 2, D has ternary polymorphisms d0, . . . , dn satisfying the following identit-

ies [73]:

d0(x, y, z) = d0(x, x, x), (7)
dn(x, y, z) = dn(z, z, z), (8)
di(x, y, y) = di+1(x, y, y) and di(x, y, x) = di+1(x, y, x) if i is even, i < n, (9)
di(x, x, y) = di+1(x, x, y) if i is odd, i < n. (10)

3. for some k ≥ 3, D has a k-ary polymorphism f satisfying, for each 1 ≤ i ≤ k, an identity
of the form

f(x, . . . , x, x
i
, zi,i+1, . . . , zi,k) = f(x, . . . , x, y

i
, z′i,i+1, . . . , z

′
i,k) (11)

where all zi,j , z′i,j are in {x, y} [66].

L. Barto, A. Krokhin, and R. Willard 21

It is known [91] that the above theorem cannot have an equivalent condition involving
only a bounded number of functions of bounded arity (such as Siggers polymorphism or
condition (4) from Theorem 47), so at least one of the number and the arity of operations
involved in any characterization must be unbounded.

This theorem has an interesting complexity-theoretic consequence. HORN-3-SAT is
P-complete (and thus unlikely to be in NL). The relationship of problems 3-LIN(p), and
hence of classes ModpL, with the class NL is unknown (though there is evidence that NL
is contained in ModpL for every p [2, 110]). As mentioned above, bounded linear width
guarantees membership in NL [52], and moreover, all problems CSP(D) known to be in NL
have bounded linear width.

I Corollary 49. Let D be a constraint language having polymorphisms satisfying one of
the equivalent conditions in Theorem 47. If D has no ternary polymorphisms satisfying
conditions (7)–(10), or equivalently, no polymorphism satisfying condition (11), of Theorem 48,
then CSP(D) is P-complete and cannot have bounded linear width.

As mentioned earlier, the class of constraint languages having polymorphisms witnessing
the equivalent conditions of Theorem 48 contains the class of constraint languages whose CSP
has bounded linear width. It was suggested in [97] that the two classes actually coincide.

I Conjecture 50 (Bounded Linear Width Conjecture). If a constraint language D has poly-
morphisms as described in one of the equivalent conditions in Theorem 48 then CSP(D) has
bounded linear width and hence belongs to NL.

We discuss progress towards resolving Conjecture 50 in Section 5.7.
If for some reason you are interested in the class of constraint languages which do not

pp-construct the language of HORN-3-SAT, but with no restriction on pp-constructing the
language of any 3-LIN(p), then you are in luck; algebraic descriptions of this class are also
known. For example:

I Theorem 51 ([73]). For any constraint language D, the following are equivalent:
D does not pp-construct the language of HORN-3-SAT.
for some k ≥ 3, D has a k-ary polymorphism f satisfying, for each 1 ≤ i ≤ k, an identity
of the form

f(x, . . . , x, x
i
, zi,i+1, . . . , zi,k) = f(z′i,1, . . . , z′i,i−1, y

i
, z′i,i+1, . . . , z

′
i,k) (12)

where all zi,j , z′i,j are in {x, y}.

Example 12 shows that the structure DHornSAT from Example 5 pp-defines the structure
DSTCON from Example 9. Thus, by forbidding DSTCON instead of DHornSAT in Theorem 51,
we further restrict the class of constraint languages, but again obtain a class with a known
algebraic characterization.

I Theorem 52 ([68]). For any constraint language D, the following are equivalent:
D does not pp-construct DSTCON;
for some t ≥ 2, D has ternary polymorphisms p0, . . . , pt satisfying the following identities:

p0(x, y, z) = p0(x, x, x), (13)
pt(x, y, z) = pt(z, z, z), (14)
pi(x, x, y) = pi+1(x, y, y) for all i < t. (15)

Chapte r 01

22 Polymorphisms, and How to Use Them

Here is one final example characterizing forbidden languages by height-1 identities.

I Theorem 53 ([73]). For any constraint language D, the following are equivalent:
D pp-constructs neither the language of 3-LIN(p), for any p, nor that of STCON;
for some n ≥ 0, D has 4-ary polymorphisms f0, . . . , fn satisfying the following identities:

f0(x, y, y, z) = f0(x, x, x, x) (16)
fn(x, x, y, z) = fn(z, z, z, z) (17)
fi(x, x, y, x) = fi+1(x, x, y, x) and fi(x, x, y, y) = fi+1(x, x, y, y), for i < n. (18)

Some problems CSP(D) can be solved by forming a certain undirected graph (of local
inferences) on a given instance and then solving STCON on this graph, see [62]. This property
is called bounded symmetric width, and the corresponding CSPs belong to the complexity
class L.

It was shown in [97] that any language not satisfying the conditions of Theorem 53 cannot
have bounded symmetric width and that the corresponding CSP is hard for at least one of
complexity classes NL and ModpL (for some p).

I Conjecture 54 (Bounded Symmetric Width Conjecture, [97]). If a constraint language D has
polymorphisms as described in one of the equivalent conditions in Theorem 53 then CSP(D)
has bounded symmetric width and hence belongs to L.

We discuss progress towards resolving Conjecture 54 in Section 5.7.
It is interesting to note that the complexity classifications obtained or conjectured through

these algebraic results are obviously conditional on complexity-theoretic assumptions, while
the classifications related to (various notions of) width are unconditional.

4.5 Taxonomy of Systems of Linear Identities
Although the reader might find the identities in Theorems 40, 41, 47, 48, 51, 52 and 53 to be
somewhat random, in fact it is something of a minor miracle that the classes of constraint
languages considered in those theorems have manageable algebraic descriptions. The proofs
of these theorems are highly nontrivial and use sophisticated tools from universal algebra.
What made their discovery possible is the serendipitous fact that universal algebraists have
been studying the connection between identities and “good algebraic structure” for almost
50 years.

In particular, the systems of identities appearing in Theorems 40, 41, 51, 52 and 53, as well
as some equivalent characterizations of the classes described in Theorems 47 and 48, when
strengthened by adding idempotency, have been known to be of fundamental importance
since the 1980s in the context of “tame congruence theory” [73]. Height-1 identities and
idempotency identities f(x, x, . . . , x) = x are both examples of linear identities; these are
identities in which each side has at most one occurrence of an operation symbol.

In addition to these well-studied systems of linear identities arising in tame congruence
theory, there is a robust taxonomy of “classical” systems of linear identities, all stronger than
the Taylor identities. This allows one to approach classification problems, and especially
their positive parts, for language-based CSP (such as Conjecture 43) as follows. First prove
the result for stronger systems of identities, and then move to weaker identities, gradually
approaching the identities which determine the (conjectured) boundary.

We now introduce some (more) of the more important linear identities that have played
a role in the algebraic theory of CSP. Most of these identities have been studied in universal
algebra before the link with the CSP was discovered.

L. Barto, A. Krokhin, and R. Willard 23

A near-unanimity (NU) operation is an n-ary (n ≥ 3) operation f which satisfies

f(y, x, x, . . . , x, x) = f(x, y, x, . . . , x, x) = . . . = f(x, x, x, . . . , x, y) = x; (19)

The last equality in (19) is the difference between NU and WNU operations. A ternary
NU operation is usually called a majority operation. The dual discriminator operation
from Example 30 is a majority operation which was often used as a starting point in
many CSP-related classifications.
For example, the operation f(x1, . . . , xn) =

∨
i<j (xi ∧ xj) on {0, 1} is an NU operation.

A symmetric operation is an n-ary operation satisfying all identities of the form

f(x1, x2, . . . , xn) = f(xπ(1), xπ(2), . . . xπ(n)), (20)

where π is a permutation of the set {1, 2, . . . , n}.
A totally symmetric (TS) operation is an n-ary operation satisfying all identities of the
form

f(x1, x2, . . . , xn) = f(y1, y2, . . . yn), (21)

where {y1, y2, . . . , yn} = {x1, x2, . . . , xn}. This includes all identities of the form (20) as
well as identities such as f(x, x, y) = f(x, y, y).
If f2(x1, x2) is a semilattice operation (Example 35) then, for all n ≥ 2, fn(x1, . . . , xn) =
f2(x1, f2(x2, (. . . f2(xn−1, xn)))) is a TS operation.
A Mal’tsev 10 operation is a ternary operation f satisfying the identities

f(x, x, y) = f(y, x, x) = y. (22)

If in addition it satisfies f(x, y, x) = y then it is called a minority operation.
A typical Mal’tsev operation is f(x, y, z) = x− y + z where (D,+) is an Abelian group
(see Example 29).
Ternary operations d0, d1, . . . , dn are Jónsson operations if they satisfy the identities of
Theorem 48, as well as the identities

di(x, y, x) = x for all i ≤ n. (23)

Ternary operations d0, d1, . . . , dn, p are Gumm operations if d0, . . . , dn satisfy all the
identities of Jónsson operations except equation (8) from Theorem 48, as well as the
identities

dn(x, y, y) = p(x, y, y) and p(x, x, y) = y. (24)

For k ≥ 2, an k-edge operation is a (k + 1)-ary operation f satisfying identities

f(x, x, y, y, y, . . . , y, y) = y

f(x, y, x, y, y, . . . , y, y) = y

f(y, y, y, x, y, . . . , y, y) = y (25)
f(y, y, y, y, x, . . . , y, y) = y

...
f(y, y, y, y, y, . . . , y, x) = y

10 Sometimes spelled as Maltsev/Mal’cev/Malcev – correctly pronounced with the soft ‘l’ followed by ‘ts’.

Chapte r 01

24 Polymorphisms, and How to Use Them

Taylor ≡ cyclic ≡ WNU ≡ Siggers
Conjecture 43

Thm.47
(Bounded Width)

f(x, y) = f(y, x) Thm.51

symmetric
of all arities

Thm.48
Conjecture 50

Thm.52
k-edge

for some k
TS of all arities

(Width 1)

NU of some arity Thm.53
Conjecture 54 Mal’tsev

majority

Gumm

Jónsson

Figure 1 Taxonomy of important systems of linear identities. Upward paths in the diagram
correspond to weakening conditions, i.e. increasing corresponding classes of constraint languages.

An easy way to parse these identities is this: these are Mal’tsev identities glued with
the NU identities as follows. If f depends on the first three variables only, then these
identities are the same as (22), but with the first two coordinates swapped (in particular,
2-edge is essentially permuted Mal’tsev). If f depends on all but the first two variables,
then these identities are the same as (19), but with x and y swapped.

Figure 1 shows the relative strength of the mentioned linear identities on finite domains.
The higher items correspond to weaker conditions, and hence to larger classes of constraint
languages. More precisely, if a constraint language has polymorphisms witnessing one set
of identities in the diagram, then these operations can be composed with themselves and
projections to obtain operations satisfying the identities “higher” in the diagram. Such a
composition is possible in any function clone on any (finite or infinite) domain. Each edge
shown in the diagram is strict in the foregoing sense; however, Barto has shown that two
of the edges collapse in the following weaker sense: if a constraint language (on a finite
domain, with finitely many relations) has Jónsson polymorphisms then it must also have an
NU polymorphism [8]. A similar statement holds for Gumm and edge polymorphisms [9].

By the convention we have followed in this paper, the systems of identities enclosed in
rectangles are idempotent by definition, while the systems of identities circled in ovals are
height-1 and hence are not assumed to be idempotent. The systems circled in thick ovals,
when restricted to the idempotent case, correspond to robust tame congruence theoretic
conditions.

We note that [76] contains a useful list (and a diagram) of many universal-algebraic
conditions relevant for the CSP, though their list is oriented more (than ours) towards
prominence of conditions in universal algebra.

L. Barto, A. Krokhin, and R. Willard 25

Not all natural-looking linear identities make a good choice for attacks on the open
conjectures. For example, commutativity (in the dashed oval in Figure 1) is one of the simplest
of the Taylor-type identities, but approaching Conjecture 43 by looking at commutative
(or commutative idempotent) polymorphisms is not (known to be) a great idea. On the
other hand, finding a CSP algorithm for constraint languages satisfying the identities of
Theorem 51 would likely be viewed as a more “natural” (and more feasible) step.

The problems of deciding whether a given constraint language has a given type of
polymorphism(s) are sometimes called “meta-problems.” See [50] for a survey and new results
on the complexity of meta-problems.

5 Polymorphisms in Algorithms I: Proving Correctness

The most natural idea to decide an instance of the CSP is to first derive some “obvious”
consequences of the constraints. If, for example, an instance of HORN-3-SAT (see Example 5)
contains the constraints C1(x), C1(y), and S110(x, y, z), then we can derive a new constraint
C1(z). This information can be then used to derive, e.g., C1(w) from S110(z, x, w), etc. In
fact, for HORN-3-SAT, if we cannot derive any new unary constraints in this way and we
do not get contradictory unary constraints like C0(x) and C1(x), then the instance has a
solution: simply obey the unary constraints and set the values of the remaining variables to 0.
This is essentially the standard unit propagation (polynomial) algorithm for HORN-3-SAT.

More generally, given an instance of CSP(D) we can try to derive the strongest “obvious”
unary constraints.11 For some constraint languages all unsatisfiable instances can be refuted
in this way. Such languages are said to have width 1 and they are discussed in Subsection 5.1.

We illustrate a stronger constraint propagation (or local consistency) procedure by
considering the following instance of CSP(D2COLOR) (see Example 6).

x1 6= x2, x2 6= x3, x3 6= x4, x4 6= x5, x5 6= x1 .

From x1 6= x2 and x2 6= x3 we can derive a new binary constraint x1 = x3. Using this
and x3 6= x4, we can derive x1 6= x4. Finally, from x1 6= x4, x4 6= x5, we conclude that
x1 = x5, which contradicts the constraint x1 6= x5, and we refute the instance. In this
particular example, it was enough to derive new binary constraints by considering at most
three variables at a time. In fact, every unsatisfiable instance of 2-COLORING can be
refuted in this way; we say that D2COLOR has width (2,3). In Subsection 5.3, we give a more
general result that will also apply to e.g. 2-SAT.

An even stronger consistency algorithm could derive all k-ary constraints that can be
derived from the instance by considering at most l variables at a time. As long as k and l
are fixed, we get a polynomial time algorithm that, for some constraint languages, correctly
decides every instance of the CSP. The limit of such approaches is now fully understood, see
Subsection 5.5.

We warn the reader that there are many related, but somewhat different notions capturing
the required level of local consistency. In order to add to the confusion, we use the term
“width (k, l)” for what is more often called “relational width (k, l)”. However, the notion of
“solvability by a local consistency algorithm” (meaning “having width (k, l) for some k, l”) is
the same for all common choices of definitions.

11The relations of the derived constraints do not need to belong to D.

Chapte r 01

26 Polymorphisms, and How to Use Them

5.1 1–Minimality and TS Polymorphisms
The idea of the strongest obvious unary constraints can be formalized as follows.

I Definition 55. An instance of the CSP is 1–minimal (or arc consistent) if it contains a
unique unary constraint Px(x) for each variable x and, for any constraint R(x1, . . . , xk) and
any i = 1, . . . k, the projection12 of R onto the i-th coordinate is equal to Pxi

.

Every instance of the CSP can be converted in polynomial time to a 1-minimal instance
with the same set of solutions. A straightforward (although not optimal) way to achieve this
is as follows.

for every variable x do Px := D; add the constraint D(x)
repeat

for every constraint R(x1, . . . , xk) do
let R′ := R ∩

∏
i Pxi

for i = 1 to k do Pxi
:= Pxi

∩ projiR′
replace R(x1, . . . , xk) with R′(x1, . . . , xk)

end for
until none of the Px’s changed

We allow ourselves to call this algorithm the 1-minimality algorithm, since different imple-
mentations will derive the same unary constraints.

If any of the Px’s are empty after running the algorithm, then the original instance has no
solution and we say that the 1-minimality algorithm refutes the instance. For some constraint
languages, every non-refuted instance has a solution and thus we obtain a polynomial time
algorithm for the corresponding CSP.

I Definition 56. We say that a constraint language D, or CSP(D), has width 1 if the
1-minimality algorithm refutes every unsatisfiable instance of CSP(D) (and thus CSP(D) is
solvable in polynomial time).

The following theorem [65, 60] characterizes width 1 languages in terms of polymorphisms.
The proof shows a simple application of polymorphisms, namely TS polymorphisms, to prove
correctness of an algorithm. Recall that the value of a TS operation t depends only on the
set of its arguments, and we will write t({d1, . . . , dn}) instead of t(d1, . . . , dn).

I Theorem 57. A constraint language D admits TS polymorphisms of all arities if and only
if D has width 1.

Sketch of Proof. Assume that D admits TS polymorphisms of all arities, take an instance
of CSP(D), run the 1-minimality algorithm, and assume that the instance is not refuted,
that is, Px is nonempty for every variable x. We need to show that the resulting instance
has a solution.

Note that the constraint relations of the resulting 1-minimal instance may not belong to D.
However, each new relation is defined in a primitive positive way from the original constraints;
therefore all polymorphisms of D are still compatible with the relations in the new instance.
Take a TS polymorphism t of a sufficiently large arity n and define f(x) := t(d1, . . . , dn)
where Px = {d1, . . . , dn}.

12Not to be confused with projection operations πn
i .

L. Barto, A. Krokhin, and R. Willard 27

We claim that f is a solution. So, let us consider a constraint R(x1, . . . , xk) and show
that (f(x1), . . . , f(xk)) ∈ R. Take an n× k matrix so that its rows are in R and the set of
elements in the i-th column is equal to Pxi

. This is easily achieved from 1-minimality as
soon as n ≥ |D| · k. Now the identities that define a TS operation guarantee that t applied
to the columns gives (f(x1), . . . , f(xk)) and this tuple is in R, as t is compatible with R.

For the other implication, it is possible to create an instance of CSP(D) which is not
refuted by 1-minimality and which essentially says that D has TS polymorphisms of all
arities. We refer the reader to [65, 60] for details. J

Note that we do not need to (explicitly) know any TS polymorphism to run the 1-
minimality algorithm, but these polymorphisms guarantee that the algorithm correctly
decides all instances.

5.2 Linear Programming and Symmetric Polymorphisms
Another line of research discovered a connection between consistency notions and certain
convex programming relaxations of the CSP, namely the canonical Linear Programming (LP)
relaxation and the canonical Semidefinite Programming (SDP) relaxation. We now outline
the LP relaxation here and describe the SDP relaxation in Section 5.6.

For simplicity, we will restrict to instances that contain variables x1, . . . , xn and exactly
one binary constraint Pi,j(xi, xj) for every 1 ≤ i < j ≤ n (and no other constraints). In
particular, there are m = n(n− 1)/2 constraints. The task to find an assignment satisfying
the maximum number of constraints can be phrased as a 0–1 integer program as follows.
The variables are λi,a ∈ {0, 1} for each 1 ≤ i ≤ n, a ∈ D (where D is the domain) and
σi,j,a,b ∈ {0, 1} for each 1 ≤ i < j ≤ n, a, b ∈ D. The intended meaning is that λi,a = 1 iff xi
is assigned the value a and σi,j,a,b = 1 iff xi is assigned a and xj is assigned b. The task is to
maximize

Opt = 1
m

∑
1≤i<j≤n

∑
(a,b)∈Pi,j

σi,j,a,b

subject to the constraints∑
a∈D

λi,a = 1 for each 1 ≤ i ≤ n∑
b∈D

σi,j,a,b = λi,a for each 1 ≤ i < j ≤ n, a ∈ D∑
a∈D

σi,j,a,b = λj,b for each 1 ≤ i < j ≤ n, b ∈ D

Since we are only concerned with deciding whether a solution exists, we only care whether
all the constraints are satisfied, that is, whether Opt = 1.

The canonical (or basic) LP relaxation relaxes the 0–1 constraints to λi,a ∈ [0, 1] and
σi,j,a,b ∈ [0, 1]. The optimization problem thus becomes solvable in polynomial time, but
the new optimum OptLP may be greater than Opt. We say that this relaxation decides
the CSP if an instance has a solution whenever OptLP = 1. The canonical LP relaxation
is at least as strong as 1-minimality. Indeed, it is not hard to see that if OptLP = 1, then
Px = {a ∈ D : λi,a > 0}, together with appropriately restricted binary constraints, is
1-minimal. In fact, the relaxation is somewhat stronger [93]:

I Theorem 58. CSP(D) is decided by the canonical LP relaxation if and only if D has
symmetric polymorphisms of all arities.

Chapte r 01

28 Polymorphisms, and How to Use Them

Sketch of Proof. Assume that D admits symmetric polymorphisms of all arities. Take an
instance of CSP(D) and solve its canonical LP relaxation. If OptLP < 1 then clearly the
instance is not satisfiable. Assume that OptLP = 1 and show that in this case the instance
is satisfiable. In fact, we show that a symmetric polymorphism of appropriate arity can be
used to round an optimal LP solution to a satisfying assignment.

Take an optimal LP solution and denote the values taken by variables by σ∗i,j,a,b and λ∗i,a.
We can assume that all these values are rational. Let N be an integer such that N · σ∗i,j,a,b is
integer for all i, j, a, b (and hence, from LP constraints, all numbers N ·λ∗i,a are also integers).
Let s be a symmetric polymorphism of arity N . For each variable xi in the original CSP
instance, let f(xi) = s(d1, . . . , dN) where each value a appears among the di’s exactly N ·λ∗i,a
times. This definition is correct because

∑
a∈D λ

∗
i,a = 1 (from LP constraints) and because s

is symmetric (so the order of the di’s is irrelevant). We will show that f is a solution.
Note that, since OptLP = 1, we have that, for each i, j,

∑
(a,b)∈Pi,j

σi,j,a,b = 1. In
particular, if σi,j,a,b > 0 for some a, b then (a, b) ∈ Pij . Fix indices i, j. Take any N × 2
matrix such that each pair (a, b) ∈ Pij appears as a row in the matrix exactly N ·σ∗i,j,a,b times.
The LP constraints and the fact that s is symmetric directly imply that, when applying s to
the columns of this matrix, one gets (f(xi), f(xj)).

For the other implication, if D has no symmetric polymorphism of some arity m, then it
is possible to construct an unsatisfiable instance of CSP(D) with OptLP = 1. We refer the
reader to [93] for details. J

It was claimed in [93] that any structure D has symmetric polymorphisms of all arities if
and only if it has TS polymorphisms of all arities, but this claim turned out to be false – see
Example 99 in [94] for a counter-example.

5.3 (2,3)-Minimality and Majority Polymorphisms
Next we introduce a stronger consistency notion than 1-minimality. For clarity, we define
this concept only for binary instances, that is, instances containing only unary and binary
constraints. A general definition will be given in Subsection 5.5.

I Definition 59. A binary instance of the CSP is (2, 3)–minimal if it contains a unique
unary constraint Px(x) for each variable x and a unique binary constraint Px,y(x, y) for any
pair of distinct variables x, y such that

for every pairwise distinct variables x, y, z and every (a, b) ∈ Px,y, there exists c ∈ Pz
such that (a, c) ∈ Px,z and (b, c) ∈ Py,z;
for any pairwise distinct variables x, y, Px,y = P−1

y,x and the projection of Px,y onto the
first (second, respectively) coordinate is equal to Px (Py, resp.).

It is helpful to visualize a binary (2, 3)-minimal instance as a multipartite graph: it has
one partite set for each variable x, whose set of vertices is equal to (a disjoint copy of) Px,
and vertices a ∈ Px, b ∈ Py are adjacent if (a, b) ∈ Px,y. The first condition in Definition 59
then means that by restricting to any three partite sets we obtain a graph in which every
edge belongs to a triangle. Note that a solution of the instance corresponds to a clique that
contains exactly one vertex from each partite set.

Similarly to 1-minimality, every (binary) instance of the CSP can be converted in
polynomial time to a (2, 3)-minimal instance with the same set of solutions. We say that the
original instance is refuted by this algorithm if some Px is empty.

I Definition 60. We say that a constraint language D has width (2, 3) if the (2, 3)-minimality
algorithm refutes every unsatisfiable instance of CSP(D).

L. Barto, A. Krokhin, and R. Willard 29

The following theorem [65, 79] says that each constraint language with a majority
polymorphism, such as any set of unary and binary relations on {0, 1} (see Example 26), has
width (2, 3). In particular, we get that 2-COLORING and 2-SAT are solvable in polynomial
time.

I Theorem 61. If a constraint language D has a majority polymorphism, then D has
width (2, 3).

Sketch of Proof. We will only consider binary instances.
Take a majority polymorphism m of D and consider the (2, 3)-minimal instance associated

to a given instance of CSP(D). As in the proof of Theorem 57, it can be argued that m is
compatible with Px and Px,y for any x, y. We show that the instance has a solution provided
every Px is nonempty.

Recall from the remarks after Definition 59 that “every edge extends to a triangle”. We
will show that “every triangle extends to a 4–clique”. Take any variables x, y, z, w and
any a ∈ Px, b ∈ Py, c ∈ Pz that form a triangle, that is, (a, b) ∈ Px,y, (a, c) ∈ Px,z, and
(b, c) ∈ Py,z. Using the edge–to–triangle property three times we get d1, d2, d3 ∈ Pw such
that bcd1, acd2, and abd3 are triangles. We claim that d = m(d1, d2, d3) together with a, b, c
form a 4–clique. By the second property from Definition 59, there exists a′ ∈ Px such
that (a′, d1) ∈ Px,w. Applying m to the columns of the 3 × 2 matrix with rows (a′, d1),
(a, d2), (a, d3) (all in Px,w) gives (m(a′, a, a),m(d1, d2, d3)) ∈ Px,w, which is equal to (a, d) –
here we use one of the identities defining a majority operation. Similarly, (b, d) ∈ Py,w and
(c, d) ∈ Pz,w, which proves the claim.

In a similar way, we can show that every 4–clique extends to a 5–clique, and so on.
Summarizing, every edge extends to a |V |–clique – a solution to the instance. J

The proof shows that for a constraint language D with a majority polymorphism, a
greedy algorithm can be used to find a solution to any instance of CSP(D): after running
the (2, 3)–minimality algorithm, we pick, one by one, assignments to variables so that they
stay consistent with the constraints. Such languages are said to have strict width (2, 3) and
they are in fact characterized by the existence of a majority polymorphism [65].

The arguments can be easily generalized to NU polymorphisms if an appropriate consist-
ency level is enforced. Namely, a constraint language has an NU polymorphism of arity n if
and only if it has strict width (n− 1, n) [65].

5.4 Interlude: Boolean CSPs
Before we move on to discuss the general concept of bounded width, we show how to use
polymorphisms to prove Schaefer’s dichotomy theorem [112] for CSPs over a two–element
domain. The only additional fact we need is the following lemma.

I Lemma 62. Every idempotent (recall Example 27) clone on D = {0, 1} that contains a
non–projection contains one of the following operations: the binary max, the binary min, the
ternary majority, or the ternary minority.

Sketch of Proof. An old result by Post [108] completely describes all clones on {0, 1} and
we can thus simply use his classification. However, proving this lemma is significantly easier
than the full classification and we sketch one possible approach.

The only binary idempotent operations are the two projections, max, and min. Therefore,
let us assume that the only binary operations in our idempotent clone are projections. Then,
for each ternary operation f , the operations h(x, y) = f(x, x, y), h′(x, y) = f(x, y, x), and

Chapte r 01

30 Polymorphisms, and How to Use Them

h′′(x, y) = f(y, x, x) must all be projections. This reduces the number of idempotent ternary
operations to be considered to 8. Now 3 of them are projections, then there are the majority
and the minority. The remaining 3 operations differ only in the order of arguments, so we
are left with 1. This is the so called Pixley operation and both majority and minority can
be composed from it. It remains to show that each idempotent operation f is a projection
provided the clone does not contain any non–projection binary or ternary operation. This
can be done e.g. by case analysis using only that each g(x, y, z) = f(x/y/z, . . . , x/y/z) is a
projection. J

We are ready to show a simple proof of the dichotomy theorem for Boolean CSPs.

I Theorem 63. Let D be a constraint language with domain D = {0, 1}. Then
either its polymorphism clone contains a constant unary operation or one of the four
operations in Lemma 62 and then CSP(D) is solvable in polynomial time, or
CSP(D) is NP–complete.

Proof. If the polymorphism clone D of D contains a constant unary operation with value
a, then all relations contain a constant tuple (a, a, . . . , a) and then all instances of CSP(D)
have a solution. Otherwise, D is a core. Then either D contains only essentially unary
operations, or not. In the first case, the singleton expansion E has only trivial polymorphisms
(=projections), E pp-defines (by Theorem 32) all structures on {0, 1} including D3SAT , and
then CSP(E) as well as CSP(D) are NP–complete by Theorem 13 and Theorem 17. In
the second case, the polymorphism clone also contains an idempotent non–projection. By
the previous lemma, D contains one of the four operations and then CSP(D) is solvable in
polynomial time by Theorem 57, Theorem 61, or Example 29. J

As a non–trivial exercise, the reader may verify a finer description of the polynomial
cases: if D has min as a polymorphism then D is pp-definable from DHornSAT (and dually
for max), if D has the majority polymorphism then D is pp-definable from D2SAT, and if D
has the minority polymorphism then D is pp-definable from D3LIN2.

We remark that classifications of Boolean CSPs with respect to other complexity classes
and with respect to width notions mentioned in previous section can be found in [1, 97].

5.5 Characterization of Bounded Width
An elegant way to formalize “polynomial solvability by constraint propagation” in general is
by means of (k, l)-minimality.

I Definition 64. Let 1 ≤ k ≤ l be integers. An instance of the CSP is (k, l)-minimal if
no scope of a constraint contains repeated variables,
every l-element set of variables is within the scope of some constraint, and
for any at most k-element set of variablesW and any two constraints whose scope contains
W , the projections of these constraints onto W coincide.

The reader may notice a formal difference between this definition and its special case
in Definition 59. Indeed, a (2, 3)-minimal instance in the latter does not contain any
ternary constraints, while the former one requires that any triple of variables is covered
by a constraint. However, the difference is only cosmetic. The sole purpose of the second
condition in Definition 64 is to ensure an analogue of the first condition in Definition 59.

For fixed k, l, there is a straightforward polynomial algorithm, the (k, l)–minimality
algorithm, to transform any CSP instance into a (k, l)-minimal instance with the same set of
solutions. As before, instances with an empty constraint relation are refuted.

L. Barto, A. Krokhin, and R. Willard 31

I Definition 65. We say that a constraint language D has width (k, l) if the (k, l)–minimality
algorithm refutes every unsatisfiable instance of CSP(D).

We say that D has width k if it has width (k, l) for some l and it has bounded width if it
has width k for some k. (Recall again that bounded width CSPs are solvable in polynomial
time.)

The notion of bounded width comes in various versions and equivalent forms. Bounded
width is equivalent to solvability by a Datalog program [65], to the existence of a winning
strategy in a certain pebble game [65], to having bounded treewidth duality [44], and to
definability in an infinitary finite-variable logic [4, 87].

As mentioned in Subsection 4.4, a typical problem which cannot be efficiently solved by
local propagation algorithms is solving systems of linear equations [65].

I Theorem 66. For any prime p, the constraint language D3LINp does not have bounded
width.

There is an analogue of Corollary 20 for bounded width [100]: If D pp-constructs E and
D has bounded width, then so does E . Therefore, pp-constructing D3LINp is the “obvious”
obstruction to having bounded width. Is it the only obstruction? A positive answer was
conjectured in several equivalent forms in [65, 100, 36] (see also [98]).

The process of resolving this, so called bounded width conjecture, nicely illustrates the
role of universal algebra in identifying meaningful intermediate classes.

Extending the positive result for semilattice polymorphisms, Bulatov [37] confirmed the
conjecture for constraint languages with so called 2–semilattice polymorphisms.
Very natural candidates for extending the positive result for near unanimity polymorph-
isms are constraint languages with Jónsson polymorphisms (see Subsection 4.5). Indeed,
clones with Jónsson operations are among the most studied objects in universal algebra.
Partial results were obtained in [86, 48] and a full solution for Jónsson polymorphisms
given in [11].

Helped greatly by these partial results, the bounded width conjecture was confirmed in [14]
and independently in an unpublished manuscript by Bulatov [31] (see also [42]).

I Theorem 67. A constraint language D has bounded width if and only if D does not
pp-construct D3LINp for any prime p.

The proof from [14] is, to some extent, explained in another survey [16] in this volume.
Here we only mention two differences from the arguments in Theorems 57 and 61. First,
polymorphisms characterizing the necessary condition for bounded width, such as those in
Theorem 47, are not used directly. They are first iteratively composed to get polymorphisms
of large arities with properties helpful for the proof. Second, the solution is not directly
obtained from a sufficiently consistent instance. Instead, polymorphisms serve to “condense”
the constraints to smaller and smaller subsets of the domain, while preserving a sufficient
degree of consistency.

5.6 Sufficient Levels of Consistency
Bounded width CSPs are those for which enforcing a certain level of local consistency
guarantees a solution. What degree of consistency is actually needed?

The proof of Theorem 66 from [14] uses a consistency notion which is, for binary instances,
stronger than 1-minimality and weaker than (2, 3)–minimality. A small refinement from [10]

Chapte r 01

32 Polymorphisms, and How to Use Them

shows that an appropriate notion of consistency, still weaker than (2, 3)–minimality, is enough
in general. In particular, any bounded width CSP has width (2, 3).

A substantial strengthening of Theorem 66 by Kozik [90] weakens the consistency require-
ment even further. In particular, his result implies that the following consistency procedure,
so called Singleton Arc Consistency, or SAC, is sufficient: ensure that, for each variable x
and any a ∈ Px, the 1-minimality algorithm does not refute the instance even with the added
unary constraint Ca(x).

As we mentioned before, there is a connection between consistency notions and certain
convex programming relaxations of the CSP, namely the canonical Linear Programming (LP)
relaxation (see Section 5.2) and the canonical Semidefinite Programming (SDP) relaxation.

Again for simplicity, we will restrict to instances that contain variables x1, . . . , xn and
exactly one binary constraint Pi,j(xi, xj) for every 1 ≤ i < j ≤ n (and no other constraints).
In particular, there are m = n(n−1)/2 constraints. To describe the canonical SDP relaxation,
we will re-use notation from the Section 5.2, but the variables λi,a now become vectors
in Euclidean space (of dimension O(n)), σi,j,a,b is required to be equal to the dot product
λi,a · λj,b (which is required to be non-negative) and the first constraint is replaced by the
requirement that λi,a, a ∈ D are pairwise orthogonal and sum up to a fixed unit vector
(the remaining two constraints are then redundant). As before, we say that this relaxation
decides a CSP if OptSDP = 1 only if the instance has a solution. It was proved in [15] that
the canonical SDP relaxation not only decides every bounded width CSP, but it can also
be used to give a polynomial time robust algorithm for such CSPs, that is, provide “almost
solutions” even to “almost satisfiable” instances. More formally, a robust algorithm is an
approximation algorithm which, on every instance where (1− ε)-fraction of constraints can
be satisfied, returns an assignment that satisfies at least (1− g(ε))-fraction of constraints,
where g is such that g(ε)→ 0 as ε→ 0. By combining this result from [15] with [69, 57], we
get that efficient robust solvability is equivalent to bounded width.

I Theorem 68. The following are equivalent for any constraint language D.
D has bounded width.
D has width (2, 3).
CSP(D) is solvable by SAC.
CSP(D) is decided by the canonical SDP relaxation.
CSP(D) has a robust polynomial algorithm (this item is only equivalent to the rest if P 6=
NP).

5.7 Results About Linear and Symmetric Width
We briefly discussed the notions of linear width and symmetric width in Section 4.4. These
notions, introduced in [52] and [62], respectively, attract attention for several reasons. They
have many natural equivalent descriptions in terms of logic and in combinatorial terms
(see, e.g. [44]). They have natural necessary conditions in terms of very simple forbidden
constraint languages and well-known algebraic conditions (see Theorems 48 and 53). These
necessary conditions are conjectured to be sufficient, see Conjectures 50 and 54. Moreover,
having bounded linear (resp. symmetric) width is conjectured to be the single reason for
CSP(D) to be in NL and L, respectively.

Progress towards Conjecture 50 has been made by using the taxonomy from Section 4.5.
The conjecture has been confirmed for increasingly weaker assumptions: that D has the dual
discriminator polymorphism [52], a majority polymorphism [56], an NU polymorphism [19]
(and hence Jónsson polymorphisms [8]). In [47], the conjecture was also confirmed for a

L. Barto, A. Krokhin, and R. Willard 33

class of constraint languages consisting of (possibly all) languages of width 1 that satisfy
the conditions of Theorem 48; this class contains languages without NU polymorphisms. It
seems that that the current results approach the full conjecture very closely, and the next
step will probably be the full resolution of the conjecture.

To have bounded symmetric width for a language D, it is necessary that D has bounded
linear width and satisfies the conditions of Theorem 52 (see Fig. 1). It was shown in [59]
that any constraint language of bounded linear width that has a Mal’tsev polymorphism
has bounded symmetric width. Other partial results towards Conjecture 54 (specifically
related to H-COLORING) can be found in [54]. Recently Kazda proved [84] that every
structure D having bounded linear width and satisfying the conditions of Theorem 52 in
fact has bounded symmetric width. Thus, a characterization of CSPs of bounded linear
width would also give a characterization of CSPs of bounded symmetric width. In particular,
Conjecture 54 reduces to Conjecture 50.

6 Polymorphisms in Algorithms II: Cogs in the Works

Gaussian elimination not only solves 3-LIN(p), it also describes all the solutions in the sense
that the algorithm can output a small (polynomial in n, the number of variables) set of
points in GF(p)n so that the affine hull of these points is equal to the solution set of the
original instance. A sequence of papers [65, 35, 32, 53] culminating in [74, 23] pushed this
idea, in a way, to its limit.

6.1 Few Subpowers
We need some terminology to state the result. Let D be a constraint language and D its
clone of polymorphisms. Let us call a relation on D a subpower of D if it is pp-definable
from D, or equivalently by Theorem 32, if it is invariant under all the polymorphisms of D.
Note that the set of solutions of any instance of CSP(D) can be viewed as a subpower of D.
If R is a subpower of D and X ⊆ R, then we say that X is an algebraic generating set of R
if R is the smallest subpower of D containing X. In this case R is precisely the set of values
of polymorphisms of D applied coordinate-wise to tuples from X. Now D has few subpowers
if it satisfies any of the equivalent conditions in the following theorem.

I Theorem 69 ([23]). For any clone D, the following are equivalent.
1. There is a polynomial p such that |{R ⊆ Dn | R is a subpower of D}| ≤ 2p(n)

2. There is a polynomial q such that each subpower R ⊆ Dn of D has an algebraic generating
set with at most q(n) elements.

3. For some k ≥ 2, D contains a k-edge operation.

The name “few subpowers” comes from condition (1) of the above theorem, but we will
use conditions (2) and (3). See Section 4.5 for the definition of a k-edge operation.

To describe the examples to follow, we need a few more definitions.

I Definition 70. Let X ⊆ Dn.
1. If i1, i2, . . . , ik is a sequence of indices from {1, . . . , n}, then the projection of X onto

coordinates i1, . . . , ik, denoted proji1,...,ikX, is the set {(ai1 , . . . , aik) : (a1, . . . , an) ∈ R}.
2. A fork (of arity n) is a triple (i, a, b) with 1 ≤ i ≤ n, a, b ∈ D, and a 6= b.
3. A realization of a fork (i, a, b) is a pair a,b ∈ Dn satisfying aj = bj for all j < i and

(ai, bi) = (a, b). If a,b ∈ X then we say that (i, a, b) is realized in X.

Chapte r 01

34 Polymorphisms, and How to Use Them

I Example 71. Suppose D has a Mal’tsev polymorphism (see Subsection 4.5) and D is its
clone of polymorphisms. Then D has few subpowers [32]. To prove this, let R ⊆ Dn be a
subpower of D. We will show that R has a generating set of size at most q(n) := cn where
c = |D|2.

We say that a subset X ⊆ R witnesses single projections and forks if (i) projiR = projiX
for all i = 1, . . . , n, and (ii), R and X realize the same forks. It is easy to see that if X is a
minimal subset of R which witnesses single projections and forks, then |X| ≤ q(n).

It turns out that if X ⊆ R and X witnesses single projections and forks, then X generates
R. To see this, let R′ be the set of tuples obtained by applying polymorphisms of D
coordinate-wise to tuples from X. Clearly, R′ is a subpower of D and X ⊆ R′ ⊆ R. To prove
that R′ = R, let i be maximum index so that proj1,2,...,iR = proj1,2,...,iR′, and suppose for the
sake of contradiction that i < n. Choose a ∈ R satisfying proj1,2,...,i+1(a) 6∈ proj1,2,...,i+1R

′

(such a must exist by our choice of i and assumption that i 6= n). Also by our choice of i,
there is a tuple b ∈ R′ satisfying proj1,2,...,i(b) = proj1,2,...,i(a). Since a,b ∈ R, they witness
that R realizes the fork (i + 1, ai+1, bi+1). X must also realize this fork, say by c,d. Let
e = f(b,d, c) where f is the Mal’tsev polymorphism of D and the application of f to b,d, c
is done coordinate-wise. The first i+ 1 coordinates of b,d, c have the form

b = (a1, . . . , ai, bi+1,)
d = (c1, . . . , ci, bi+1,)
c = (c1, . . . , ci, ai+1,).

Because f is a Mal’tsev polymorphism, it satisfies f(y, x, x) = f(x, x, y) = y for all x, y ∈ D.
In particular, ej = f(aj , cj , cj) = aj for j = 1, . . . , i, and ei+1 = f(bi+1, bi+1, ai+1) = ai+1.
That is, a and e agree on the first i+ 1 coordinates. Also note that e ∈ R′ since b, c,d ∈ R′
and R′ is invariant under f . But this is contrary to the choice of a.

The above proof that R′ = R used only the following properties of R′: (i) X ⊆ R′ ⊆ R,
and (ii) R′ is invariant under the Mal’tsev polymorphism f . This proves that R is the closure
of X under f , meaning that R is the output Y of the following “closure” algorithm.

input X, f
let Y := X

repeat
for every a,b, c ∈ Y do

let Y := Y ∪ {f(a,b, c)}
end for

until Y doesn’t change

This observation is used crucially in the few subpowers algorithm.

I Example 72. Suppose D has a majority polymorphism (see Subsection 4.5). Then its
clone of polymorphisms D has few subpowers [6]. Indeed, if R ⊆ Dn is a subpower of D,
X ⊆ R, and X and R have the same “double projections,” that is, proji,jX = proji,jR for
all 1 ≤ i, j ≤ n, then X generates R. Indeed, let R′ be the subpower generated by X, so
X ⊆ R′ ⊆ R. The idea of the proof that R′ = R is very similar to the proof of Theorem 61;
show that R′ and R have the same projection onto any triple of coordinates, then any 4-tuple
of coordinates, etc. Since a suitable set X ⊆ R having the same double projections as R can
be found satisfying |X| ≤ cn2, R has a small generating set. As in the previous example, the
proof actually shows that R is the closure of X under the majority polymorphism.

More generally, if D has a k-ary NU polymorphism, then a subpower R ⊆ Dn is generated
by any set X ⊆ R which has the same projection as R onto each set of coordinates of size

L. Barto, A. Krokhin, and R. Willard 35

k − 1. Such an X can always be found satisfying |X| ≤ dnk−1 (for a suitable constant d).
Again R is the closure of X under the NU polymorphism.

Note that if D, R, and X are as in either Example 71 or 72, then one cannot expect to
efficiently run the closure algorithm to construct R from X, since the size of R could be
exponential in the size of X. However, one can efficiently calculate the projection of R onto
any small set s of coordinates (say of size at most 5), and even find a (small) subset of R
containing X whose projection onto s agrees with R. This is because R is the closure of X
under a single fixed operation f , so we can simply run the closure algorithm for X and f , but
adding new elements to Y only when their projection onto s is new. With this restriction,
there is a constant upper bound (|D||s|) to the number of times the main loop of the closure
algorithm will be repeated; hence this restricted algorithm runs in polynomial time. This
observation is one of the fundamental tools of the few subpowers algorithm.

6.2 The Few Subpowers Algorithm
I Theorem 73 ([74]). Let D be an idempotent constraint language. If the clone of poly-
morphisms D has few subpowers, then CSP(D) can be solved in polynomial time (moreover,
the algorithm can output a generating set for the set of all solutions).

Suppose D has few subpowers. The main idea of the few subpowers algorithm, which can
be traced back to [65], is the following. Given a CSP(D) instance P = (V,D, C) with, say, all
constraint relations at most binary, we can enumerate V = {x1, . . . , xn} and C = (C1, . . . , Cm)
and consider the decreasing sequence

Dn = R0 ⊇ R1 ⊇ · · · ⊇ Ri ⊇ · · · ⊇ Rm (26)

of subpowers of D, where Ri is the set of solutions to the first i constraints. The aim of the
algorithm is to construct a small generating set Xi for each Ri. Then Xm will be a small
generating set for the set of solutions to P , so P has a solution if and only if Xm is not
empty. It should be easy to construct the generating set X0 for Dn. Thus the chief task of
the algorithm is that of finding the “next” Xi+1 given Xi and Ci+1. We sketch how this is
done in the two easiest cases: D has a majority or Mal’tsev polymorphism.

Case 1. D has a majority polymorphism f . We assume that X is a small subset of
the subpower R which has the same double projections as R, and C is a (say) binary
constraint ((xk, x`), S). Let R′ be the “next” subpower determined by X and C; that is,
R′ = {a ∈ R : S(ak, a`)}. The goal is to find a small subset X ′ of R′ which has the same
double projections as R′. This is easy. As shown in Example 72, R is the closure under f of X.
Thus for each pair (i, j) of coordinates, we can (using the restricted closure algorithm for f)
find a small subset Xi,j of R satisfying proji,j,k,`Xi,j = proji,j,k,`R. If we let X1 =

⋃
i<j Xi,j ,

then the set X ′ = {a ∈ X1 : S(ak, a`)} is a small subset of R′ and has the same double
projections as R′, as required. Note that the few subpowers algorithm in this case consists of
repeated applications of the restricted closure algorithm using the majority polymorphism.

The case when D has an NU polymorphism is handled similarly.

Case 2. D has a Mal’tsev polymorphism f . We assume that X is a small subset of
the subpower R which witnesses single projections and forks, and C is an at-most binary
constraint. Again let R′ be the “next” subpower determined by X and C. The goal this time
is to find a small subset X ′ of R′ witnessing single projections and forks (of R′). Witnessing

Chapte r 01

36 Polymorphisms, and How to Use Them

single projections is done analogously to the argument in the majority case. Witnessing
forks requires some ingenuity.13 We first show how to do this in a very special case: C is
a singleton unary constraint (xk, {c}) (recall that D is idempotent) and the projections of
R onto each coordinate j < k have size 1. In this situation, necessary conditions for a fork
(i, a, b) to be realized in R′ are
1. i > k

2. (i, a, b) is realized in X, say by a,b.
3. R has a tuple c whose projection on coordinates k, i satisfies (ck, ci) = (c, a).
(Note that we can efficiently find a,b, c when they exist, or determine that they do not exist.)
In fact, these conditions are also sufficient, because the tuples c and d := f(c,a,b) belong to
R′ and can be shown to realize the fork (i, a, b) by reasoning similar to that in Example 71,
using the Mal’tsev operation identities.

Now we consider the general case where C is a (say) binary constraint ((xk, x`), S). Let
(i, a, b) be a fork. A necessary condition for (i, a, b) to be realized in R′ is that R contain
a tuple c whose projection onto coordinates i, k, ` is in {a} × S. Because R is the closure
under f of X, we can find such c when it exists, by the restricted closure algorithm. Suppose
such c is found. Note that c ∈ R′ and ci = a. Now a key property of R′ is that if the fork
(i, a, b) is realized in R′, then c is one half of such a realization. For suppose u,v ∈ R′ realize
(i, a, b). Then d := f(c,u,v) is in R′ and, arguing as above, c,d realize (i, a, b).

So we just need to search for a tuple d in R which agrees with c on its first i−1 coordinates,
equals b at coordinate i, and which satisfies (dk, d`) ∈ S. This search is accomplished by
cutting down R to the subrelation R1 = {x ∈ R : x1 = c1 & x2 = c2 & · · · & xi−1 = ci−1}.
Using the previous “special case” argument i − 1 times, we can find a small subset X1 of
R1 which witnesses projections and forks for R1, and then use X1 and the restricted closure
algorithm to search for an element d ∈ R1 (if it exists) whose projection onto coordinates
i, k, ` is in {b} × S. These searches can be done in polynomial time, using the restricted
closure algorithm.

In summary, the implementation of the few subpowers algorithm in the Mal’tsev case is
a carefully orchestrated sequence of applications of the restricted closure algorithm for the
Mal’tsev polymorphism, with some additional computations using this polymorphism.

In general, the few subpowers algorithm [74] works more or less as the union of the NU
and Mal’tsev cases, following Dalmau [53] who was the first to combine these two cases.
By Theorem 69, if the polymorphism clone of D has few subpowers, then D has a k-edge
polymorphism for some k ≥ 2. A notion of “nice” small generating sets (analogous to
witnessing all (k − 1)-ary projections and forks) for subpowers is worked out in [23], and
the above argument in the Mal’tsev case is more or less repeated verbatim. The point we
wish to make here is that the edge polymorphism is used essentially and repeatedly by the
algorithm. Without an edge polymorphism, the above implementation of the few subpowers
algorithm cannot be executed.

6.3 Limits of the Few Subpowers Algorithm
Given an operation f on a finite set D, let Df be the (infinite) set of all relations invariant
under f . CSP(Df) is called a “global” problem encompassing all of the “local” problems
CSP(D) where D ranges over finite subsets of Df .

13This argument is due to Dalmau [32, 53].

L. Barto, A. Krokhin, and R. Willard 37

If the polymorphism clone D of Df contains a k-edge operation, then the few subpowers
algorithm as formulated in [74] actually solves the global problem CSP(Df) in polynomial
time.14 Conversely, suppose there exists a polynomial-time algorithm which solves the global
problem CSP(Df) and broadly follows the “small generating sets” algorithm-idea outlined
at the beginning of Subsection 6.2. An essential requirement of this algorithm-idea is that

There is a polynomial p(n) such that if R ⊆ Dn is a subpower of D and R occurs as
Ri in equation (26), for some instance of CSP(Df), then R has a generating set of
size at most p(n).

Because of how Df is defined, every subpower R ⊆ Dn of D can arise as Ri in equation (26)
for some instance of CSP(Df) (for the simple reason that every subpower R belongs to Df).
Hence the displayed requirement and Theorem 69 imply D must contain a k-edge operation.
It is in this sense that polymorphism clones having a k-edge operation form the natural “limit”
of the “small generating sets” algorithm-idea outlined at the beginning of Subsection 6.2.

However if one is primarily interested (as we are) in CSP over finite constraint languages,
rather than in global problems, then the limit of the “small generating sets” algorithm-idea
is not settled. If D is finite, then the subpowers of the polymorphism clone which arise as Ri
in equation (26) are precisely the relations which are pp-definable from D without using ∃.
It is not known if there exists a finite constraint language D which does not have a k-edge
polymorphism for any k, and yet which has the property that every ∃-free pp-defined relation
R has a small generating set. If such a constraint language D exists, it might be a candidate
for a “small generating sets” algorithm more general than the few subpowers algorithm.

6.4 Combining Algorithms

Suppose D is idempotent, has a Taylor polymorphism, but does not have polymorphisms as
described in Theorem 47 implying bounded width (see Theorem 67), nor does D have an
edge polymorphism implying few subpowers. What tools are available to solve CSP(D)?

Starting from an instance P = (V,D, C) of CSP(D), one strategy is to “shrink” P to a
1-minimal CSP instance Q satisfying the following properties:
1. You can prove that Q has a solution if and only if P does.
2. The constraint relations of Q are pp-definable from D.
3. For each x ∈ V , if Qx(x) is the unique unary constraint of Q on x, then Qx is a proper

subset of D.

Suppose now that there exists a polymorphism f of D such that for each x ∈ V , the
restriction of f to Qx is an edge operation. Then the few subpowers algorithm, suitably
adapted, can determine whether Q (and hence P) has a solution. Similarly, if D has
polymorphisms which, when restricted to each Qx, satisfy identities implying bounded width,
then the (2,3)-minimality algorithm will correctly tell whether Q (and hence P) has a solution.

Thus a possible strategy is to shrink P to the point where some polymorphism(s) of
D become “nice” when restricted to the new domain of each variable. This is essentially
the strategy followed (along with much deeper tricks) to prove the results described in this
subsection. The first result of this kind is the following result of Bulatov [38].

14For this result it is important to maintain the convention that each constraint relation is given by a list
of its members – not, for example, by a small generating set.

Chapte r 01

38 Polymorphisms, and How to Use Them

I Theorem 74. Suppose D has a Taylor polymorphism and |D| = 3. Then CSP(D) is
solvable in polynomial time. Hence the Dichotomy Conjecture holds for constraint languages
with domains of size 3.

Reading [38] is not for the faint at heart – the core argument is over 40 pages of dense
mathematical argument involving consideration of many cases.

The second result that we want to mention is the solution [39, 7, 41], due originally to
Bulatov, of the Dichotomy Conjecture in the “conservative” case.

I Theorem 75. Suppose D includes every nonempty subset of D as a unary relation. If D
has a Taylor polymorphism, then CSP(D) is solvable in polynomial time.

An operation f is called conservative if f(a1, . . . , an) ∈ {a1, . . . , an} for all ai ∈ D. The
above theorem can be equivalently re-stated as “if a constraint language D has a conservative
Taylor polymorphism then CSP(D) is tractable.” The first proof from [39] was quite long
and involved, but the more recent papers [7, 41] give two different much shorter proofs.

Technically, Bulatov’s approach in [39, 41] is via a careful analysis of a colored graph
associated with a constraint language (see [36, 42]). The domain of this graph is the
same as the domain of the languages, and the colored edges reflect the local structure of
polymorphisms. The approach in [7] is based on absorption theory, see survey [16].

See also [43] for a brief overview of other attempts, as well as a new approach, to combine
known algorithms for solving CSP(D).

7 Conclusion

We have seen that the complexity of the decision problem for CSP over a fixed constraint
language on a finite domain depends on “higher arity symmetries” – polymorphisms of the
language, and more specifically, on the identities satisfied by these polymorphisms. Significant
progress has been achieved using this insight, but the main problem, the dichotomy conjecture,
is still open. The view shared by many experts at the Dagstuhl seminar (to which this
volume is a follow-up) is that the main obstacle towards further progress is the insufficient
understanding of the convoluted ways in which system of linear equations can appear in CSP
instances.

The authors are often being asked to give a specific example of a (preferably small) con-
straint language D that has a Taylor polymorphism, but such that CSP(D) is not yet known
to be tractable. A computer-assisted analysis of small digraphs and their polymorphisms
(with respect to the taxonomy from Fig.1) can be found in [22]. There is an example of a
6-element digraph D there, whose singleton expansion has a Taylor polymorphism, but such
that neither the bounded width algorithm nor the few subpowers algorithm alone can solve
CSP(D). However, it was shown [103] that an ad hoc combination of the two algorithms
solves it. It is the authors’ belief that such explicit examples are not easy to find, but they
tend not to provide useful insights into how to overcome the difficulties in resolving the
dichotomy conjecture.

Polymorphisms have been successfully applied to other variants of CSP over a fixed
constraint language. For the (exact) counting problem, the dichotomy has been proved
in [40] and then substantially simplified in [61], with polymorphisms (and universal algebra
in general) playing a considerable role. This is discussed in survey [81] in this volume, along
with many developments in complexity classification of approximate counting problems and
for computing partition functions, where there are still many open problems.

L. Barto, A. Krokhin, and R. Willard 39

A generalization of the algebraic theory for the exact optimization problem (where
the goal is find an optimal solution), and for the more general valued CSPs, was given
in [51]. The so-called fractional polymorphisms, which are special probability distributions
on polymorphisms, play a key role there. Very strong classification results are known in this
direction [88, 89, 117], see survey [92] in this volume. In essence, complexity classifications
here are complete, but there are many open questions regarding approximate optimization.

The two different views on optimization – maximize satisfaction or minimize dissatisfac-
tion – are obviously equivalent when the goal is to find an optimal solution. However, they
exhibit very different behavior with respect to approximation. For the emerging applicability
of polymorphisms for the analysis of approximability of the maximization version, see [29, 30].
For the minimization version, there is a series of results about the so-called robust approxim-
ation algorithms for CSPs where polymorphisms (and their taxonomy) play a significant role.
The full characterization of constraint languages admitting a robust algorithm is known [15]
(see Theorem 47), but the refined classification (taking the quality of approximation into
account) is far from complete, see [57, 58, 55].

The so-called weak polymorphisms have recently been applied to the so-called promise
CSPs [5, 27, 28], with motivation coming from the study of inapproximability. An interesting
feature of weak polymorphisms is that they cannot be composed, and yet they can be useful
for complexity analysis.

We have only discussed languages with finite domains. The algebraic theory extends
to interesting subclasses of the infinite domain CSP; see surveys [24, 25, 107] and recent
results [20, 21]. This area contains very many open problems.

Is the polymorphism approach only applicable to CSPs over fixed languages? Or are we
merely seeing a piece of a bigger theory?

Polymorphisms have recently been applied, for example, in a non-CSP context of social
choice theory [114]. Are there other applications of polymorphisms beyond algebra and CSP?

Acknowledgment. The authors thank Eric Allender for explaining state-of-the-art know-
ledge about relationships between complexity classes NL and ModpL. The authors also thank
anonymous referees for providing many useful comments.

References

1 Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, and Heribert Vollmer.
The complexity of satisfiability problems: Refining Schaefer’s theorem. Journal of Com-
puter and System Sciences, 75(4):245–254, 2009.

2 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting uniform
and nonuniform upper bounds. J. Comput. Syst. Sci., 59(2):164–181, 1999.

3 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2009.

4 Albert Atserias, Andrei A. Bulatov, and Anuj Dawar. Affine systems of equations and
counting infinitary logic. Theor. Comput. Sci., 410(18):1666–1683, 2009.

5 Per Austrin, Johan Håstad, and Venkatesan Guruswami. (2 + ε)-Sat is NP-hard. In
Proceedings, Foundations of Computer Science (FOCS), pages 1–10, 2014.

6 Kirby A. Baker and Alden F. Pixley. Polynomial interpolation and the Chinese remainder
theorem for algebraic systems. Mathematische Zeitschrift, 143:165–174, 1975.

7 Libor Barto. The dichotomy for conservative constraint satisfaction problems revisited. In
Proceedings, Logic in Computer Science (LICS), pages 301–310, 2011.

Chapte r 01

40 Polymorphisms, and How to Use Them

8 Libor Barto. Finitely related algebras in congruence distributive varieties have near unan-
imity terms. Canad. J. Math., 65(1):3–21, 2013.

9 Libor Barto. Finitely related algebras in congruence modular varieties have few subpowers.
to appear in J. European Math. Soc., 2015.

10 Libor Barto. The collapse of the bounded width hierarchy. J. Log. Comput., 26(3):923–943,
2016.

11 Libor Barto and Marcin Kozik. Congruence distributivity implies bounded width. SIAM
Journal on Computing, 39(4):1531–1542, 2009.

12 Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width. In
Proceedings, Foundations of Computer Science (FOCS), pages 595–603, 2009.

13 Libor Barto and Marcin Kozik. Absorbing subalgebras, cyclic terms, and the constraint
satisfaction problem. Logical Methods in Computer Science, 8(1), 2012.

14 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consist-
ency methods. J. ACM, 61(1):3:1–3:19, January 2014.

15 Libor Barto and Marcin Kozik. Robustly solvable constraint satisfaction problems. SIAM
Journal on Computing, 45(4):1646–1669, 2016.

16 Libor Barto and Marcin Kozik. Absorption in universal algebra and CSP. In The Constraint
Satisfaction Problem: Complexity and Approximability, pages 45–78. 2017.

17 Libor Barto, Marcin Kozik, and Todd Niven. The CSP dichotomy holds for digraphs with
no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM
J. Comput., 38(5):1782–1802, 2008/09.

18 Libor Barto, Marcin Kozik, and David Stanovský. Mal’tsev conditions, lack of absorption,
and solvability. Algebra universalis, 74(1):185–206, 2015.

19 Libor Barto, Marcin Kozik, and Ross Willard. Near unanimity constraints have bounded
pathwidth duality. In Proceedings, Logic in Computer Science (LICS), pages 125–134, 2012.

20 Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of reflections. to appear
in Israel J. Math., 2016.

21 Libor Barto and Michael Pinsker. The algebraic dichotomy conjecture for infinite domain
constraint satisfaction problems. In Proceedings, Logic in Computer Science (LICS), pages
615–622, 2016.

22 Libor Barto and David Stanovský. Polymorphisms of small digraphs. Novi Sad J. Math.,
40(2):95–109, 2010.

23 Joel Berman, Pawel Idziak, Petar Marković, Ralph McKenzie, Matthew Valeriote, and
Ross Willard. Varieties with few subalgebras of powers. Transactions of The American
Mathematical Society, 362:1445–1473, 2010.

24 Manuel Bodirsky. Constraint satisfaction problems with infinite templates. In Nadia
Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors, Complexity of Constraints,
volume 5250 of Lecture Notes in Computer Science, pages 196–228. Springer, 2008.

25 Manuel Bodirsky and Marcello Mamino. Constraint satisfaction problems over numeric
domains. In The Constraint Satisfaction Problem: Complexity and Approximability, pages
79–111. 2017.

26 V.G. Bodnarčuk, L.A. Kalužnin, V.N. Kotov, and B.A. Romov. Galois theory for Post
algebras. I, II. Kibernetika (Kiev), (3):1–10; ibid. 1969, no. 5, 1–9, 1969.

27 Joshua Brakensiek and Venkatesan Guruswami. New hardness results for graph and hy-
pergraph colorings. Electronic Colloquium on Computational Complexity (ECCC), 23:29,
2016.

28 Joshua Brakensiek and Venkatesan Guruswami. Promise constraint satisfaction: Algebraic
structure and a symmetric boolean dichotomy. Electronic Colloquium on Computational
Complexity (ECCC), 23:183, 2016.

L. Barto, A. Krokhin, and R. Willard 41

29 Jonah Brown-Cohen and Prasad Raghavendra. Combinatorial optimization algorithms via
polymorphisms. CoRR, abs/1501.01598, 2015.

30 Jonah Brown-Cohen and Prasad Raghavendra. Correlation decay and tractability of CSPs.
In Proceedings, Automata, Languages, and Programming (ICALP), pages 79:1–79:13, 2016.

31 Andrei Bulatov. Bounded relational width. manuscript, 2009.
32 Andrei Bulatov and Víctor Dalmau. A simple algorithm for Mal’tsev constraints. SIAM J.

Comput., 36(1):16–27 (electronic), 2006.
33 Andrei Bulatov and Peter Jeavons. Algebraic structures in combinatorial problems. Tech-

nical Report MATH-AL-4-2001, Technische Universität Dresden, 2001.
34 Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of con-

straints using finite algebras. SIAM J. Comput., 34:720–742, March 2005.
35 Andrei A. Bulatov. Mal’tsev constraints are tractable. Electronic Colloquium on Compu-

tational Complexity (ECCC), (034), 2002.
36 Andrei A. Bulatov. A graph of a relational structure and constraint satisfaction problems.

In Proceedings, Logic in Computer Science (LICS), pages 448–457, 2004.
37 Andrei A. Bulatov. Combinatorial problems raised from 2-semilattices. J. Algebra,

298(2):321–339, 2006.
38 Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-

element set. J. ACM, 53(1):66–120 (electronic), 2006.
39 Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM

Trans. Comput. Logic, 12(4):24:1–24:66, July 2011.
40 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J.

ACM, 60(5):34:1–34:41, October 2013.
41 Andrei A. Bulatov. Conservative constraint satisfaction re-revisited. J. Comput. System

Sci., 82(2):347–356, 2016.
42 Andrei A. Bulatov. Graphs of relational structures: restricted types. In Proceedings, Logic

in Computer Science (LICS), pages 642–651, 2016.
43 Andrei A. Bulatov. Constraint Satisfaction Problems over semilattice block Mal’tsev algeb-

ras. CoRR, arXiv:1701.02623, 2017.
44 Andrei A. Bulatov, Andrei Krokhin, and Benoit Larose. Complexity of constraints. chapter

Dualities for Constraint Satisfaction Problems, pages 93–124. Springer-Verlag, Berlin,
Heidelberg, 2008.

45 Jakub Bulin, Dejan Delic, Marcel Jackson, and Todd Niven. A finer reduction of constraint
problems to digraphs. Logical Methods in Computer Science, 11(4), 2015.

46 Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph Meinel. Structure
and importance of logspace-mod class. Mathematical systems theory, 25(3):223–237, 1992.

47 Catarina Carvalho, Víctor Dalmau, and Andrei Krokhin. CSP duality and trees of bounded
pathwidth. Theoretical Computer Science, 411(34-36):3188–3208, 2010.

48 Catarina Carvalho, Víctor Dalmau, Petar Marković, and Miklós Maróti. CD(4) has
bounded width. Algebra Universalis, 60(3):293–307, 2009.

49 Hubie Chen. Meditations on quantified constraint satisfaction. In Logic and Program
Semantics, pages 35–49, 2012.

50 Hubie Chen and Benoit Larose. Asking the metaquestions in constraint tractability.
arXiv:1604.00932, April 2016.

51 David A. Cohen, Martin C. Cooper, Páidí Creed, Peter Jeavons, and Stanislav Živný. An
algebraic theory of complexity for discrete optimisation. SIAM Journal on Computing,
42(5):1915–1939, 2013.

52 Víctor Dalmau. Linear Datalog and bounded path duality for relational structures. Logical
Methods in Computer Science, 1(1), 2005.

Chapte r 01

42 Polymorphisms, and How to Use Them

53 Víctor Dalmau. Generalized majority-minority operations are tractable. Log. Methods
Comput. Sci., 2(4):4:1, 14, 2006.

54 Víctor Dalmau, László Egri, Pavol Hell, Benoit Larose, and Arash Rafiey. Descriptive
complexity of list h-coloring problems in logspace: A refined dichotomy. In Proceedings,
Logic in Computer Science (LICS), pages 487–498, 2015.

55 Víctor Dalmau, Marcin Kozik, Andrei Krokhin, Konstantin Makarychev, Yury Makarychev,
and Jakub Opršal. Robust algorithms with polynomial loss for near-unanimity CSPs. In
Proceedings, Discrete Algorithms (SODA), pages 340–357, 2017.

56 Víctor Dalmau and Andrei Krokhin. Majority constraints have bounded pathwidth duality.
European Journal of Combinatorics, 29(4):821–837, 2008.

57 Víctor Dalmau and Andrei Krokhin. Robust satisfiability for CSPs: Hardness and al-
gorithmic results. ACM Trans. Comput. Theory, 5(4):15:1–15:25, November 2013.

58 Víctor Dalmau, Andrei Krokhin, and Rajsekar Manokaran. Towards a characterization
of constant-factor approximable Min CSPs. In Proceedings, Discrete Algorithms (SODA),
pages 847–857, 2015.

59 Víctor Dalmau and Benoit Larose. Maltsev + datalog –> symmetric datalog. In Proceedings,
Logic in Computer Science (LICS), pages 297–306, 2008.

60 Víctor Dalmau and Justin Pearson. Closure functions and width 1 problems. In Proceedings,
Principles and Practice of Constraint Programming (CP), pages 159–173, 1999.

61 Martin E. Dyer and David Richerby. An effective dichotomy for the counting constraint
satisfaction problem. SIAM J. Comput., 42(3):1245–1274, 2013.

62 László Egri, Benoit Larose, and Pascal Tesson. Symmetric datalog and constraint satis-
faction problems in logspace. In Proceedings, Logic in Computer Science (LICS), pages
193–202, 2007.

63 Tomas Feder and Pavol Hell. List homomorphisms to reflexive graphs. J. Combin. Theory
Ser. B, 72(2):236–250, 1998.

64 Tomas Feder, Pavol Hell, and Jing Huang. List homomorphisms and circular arc graphs.
Combinatorica, 19(4):487–505, 1999.

65 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1998.

66 Ralph Freese and Ralph McKenzie. Maltsev families of varieties closed under join or Maltsev
product. Algebra Universalis, in press.

67 David Geiger. Closed systems of functions and predicates. Pacific J. Math., 27:95–100,
1968.

68 J. Hagemann and A. Mitschke. On n-permutable congruences. Algebra Universalis, 3(1):8–
12, 1973.

69 Johan Håstad. Some optimal inapproximability results. J. ACM, 48:798–859, July 2001.
70 Johan Håstad. On the efficient approximability of constraint satisfaction problems. In

Surveys in combinatorics 2007, volume 346 of London Math. Soc. Lecture Note Ser., pages
201–221. Cambridge Univ. Press, Cambridge, 2007.

71 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Combin. Theory Ser.
B, 48(1):92–110, 1990.

72 Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms, volume 28 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004.

73 David Hobby and Ralph McKenzie. The structure of finite algebras, volume 76 of Contem-
porary Mathematics. American Mathematical Society, Providence, RI, 1988.

74 Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross Willard.
Tractability and learnability arising from algebras with few subpowers. SIAM J. Comput.,
39(7):3023–3037, 2010.

L. Barto, A. Krokhin, and R. Willard 43

75 Neil Immerman. Nondeterministic space is closed under complementation. SIAM J. Com-
put., 17(5):935–938, October 1988.

76 Marcel Jackson, Tomasz Kowalski, and Todd Niven. Complexity and polymorphisms for
digraph constraint problems under some basic constructions. International Journal of
Algebra and Computation, 26(07):1395–1433, 2016.

77 Peter Jeavons. Constructing constraints. In Proceedings, Principles and Practice of Con-
straint Programming (CP), pages 2–16, 1998.

78 Peter Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200(1–2):185–204, 1998.

79 Peter Jeavons, David Cohen, and Martin Cooper. Constraints, consistency and closure.
Artificial Intelligence, 101(1-2):251–265, 1998.

80 Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. J. ACM,
44(4):527–548, 1997.

81 Mark Jerrum. Counting constraint satisfaction problems. In The Constraint Satisfaction
Problem: Complexity and Approximability, pages 201–228. 2017.

82 Jelena Jovanović, Petar Marković, Ralph McKenzie, and Matthew Moore. Optimal strong
Mal’cev conditions for congruence meet-semidistributivity in locally finite varieties. Algebra
universalis, 76(3):305–325, 2016.

83 Alexandr Kazda. Maltsev digraphs have a majority polymorphism. European J. Combin.,
32(3):390–397, 2011.

84 Alexandr Kazda. n-permutability and linear datalog implies symmetric datalog. CoRR,
abs/1508.05766, 2015.

85 Keith Kearnes, Petar Marković, and Ralph McKenzie. Optimal strong Mal’cev conditions
for omitting type 1 in locally finite varieties. Algebra Universalis, 72(1):91–100, 2014.

86 Emil Kiss and Matthew Valeriote. On tractability and congruence distributivity. Log.
Methods Comput. Sci., 3(2):2:6, 20 pp. (electronic), 2007.

87 Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint
satisfaction. J. Comput. Syst. Sci., 61(2):302–332, 2000.

88 Vladimir Kolmogorov, Andrei Krokhin, and Michal Rolinek. The complexity of general-
valued CSPs. In Proceedings, Foundations of Computer Science (FOCS), pages 1246–1258,
2015.

89 Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. The power of linear program-
ming for general-valued CSPs. SIAM J. Comput., 44(1):1–36, 2015.

90 Marcin Kozik. Weak consistency notions for all the CSPs of bounded width. In Proceedings,
Logic in Computer Science (LICS), pages 633–641, 2016.

91 Marcin Kozik, Andrei Krokhin, Matt Valeriote, and Ross Willard. Characterizations of
several Maltsev conditions. Algebra universalis, 73(3):205–224, 2015.

92 Andrei Krokhin and Stanislav Živný. The complexity of valued CSPs. In The Constraint
Satisfaction Problem: Complexity and Approximability, pages 229–261, 2017.

93 Gabor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan Zhou. Linear
programming, width-1 CSPs, and robust satisfaction. In Proceedings, Innovations in The-
oretical Computer Science (ITCS), pages 484–495, 2012.

94 Gábor Kun and Mario Szegedy. A new line of attack on the dichotomy conjecture. European
Journal of Combinatorics, 52, Part B:338–367, 2016. Special Issue: Recent Advances in
Graphs and Analysis.

95 Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22:155–171,
1975.

96 Benoît Larose. Algebra and the complexity of digraph CSPs: a survey. In The Constraint
Satisfaction Problem: Complexity and Approximability, pages 263–282. 2016.

Chapte r 01

44 Polymorphisms, and How to Use Them

97 Benoît Larose and Pascal Tesson. Universal algebra and hardness results for constraint
satisfaction problems. Theor. Comput. Sci., 410:1629–1647, April 2009.

98 Benoit Larose, Matt Valeriote, and László Zádori. Omitting types, bounded width and the
ability to count. Internat. J. Algebra Comput., 19(5):647–668, 2009.

99 Benoit Larose and László Zádori. Taylor terms, constraint satisfaction and the complexity
of polynomial equations over finite algebras. Internat. J. Algebra Comput., 16(3):563–581,
2006.

100 Benoit Larose and László Zádori. Bounded width problems and algebras. Algebra Univer-
salis, 56(3-4):439–466, 2007.

101 Florent Madelaine and Barnaby Martin. A tetrachotomy for positive first-order logic
without equality. In Proceedings, Logic in Computer Science (LICS), pages 311–320, 2011.

102 Konstantin Makarychev and Yuri Makarychev. Approximation algorithms for CSPs. In The
Constraint Satisfaction Problem: Complexity and Approximability, pages 283–320. 2017.

103 Petar Marković. Private communication, 2011.
104 Miklós Maróti and Ralph McKenzie. Existence theorems for weakly symmetric operations.

Algebra Universalis, 59(3-4):463–489, 2008.
105 Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive

queries. J. ACM, 60(6):42:1–42:51, November 2013.
106 Christos H. Papadimitriou. Computational complexity. Addison-Wesley Publishing Com-

pany, Reading, MA, 1994.
107 Michael Pinsker. Algebraic and model theoretic methods in constraint satisfaction. CoRR,

abs/1507.00931, 2015.
108 Emil L. Post. The Two-Valued Iterative Systems of Mathematical Logic. (AM-5). Annals

of Mathematics Studies. Princeton University Press, 1941.
109 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, September

2008.
110 Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM J. Com-

put., 29(4):1118–1131, 2000.
111 Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming

(Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.
112 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings, Theory of

Computation (STOC), pages 216–226, 1978.
113 Mark H. Siggers. A strong Mal’cev condition for locally finite varieties omitting the unary

type. Algebra universalis, 64(1-2):15–20, 2010.
114 Mario Szegedy and Yixin Xu. Impossibility theorems and the universal algebraic toolkit.

CoRR, abs/1506.01315, 2015.
115 Róbert Szelepcsényi. The method of forced enumeration for nondeterministic automata.

Acta Inf., 26(3):279–284, November 1988.
116 Walter Taylor. Varieties obeying homotopy laws. Canad. J. Math., 29(3):498–527, 1977.
117 Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. J. ACM,

63(4):37:1–37:33, 2016.
118 Ross Willard. Testing expressibility is hard. In Proceedings, Principles and Practice of

Constraint Programming (CP), pages 9–23, 2010.

Absorption in Universal Algebra and CSP
Libor Barto∗1 and Marcin Kozik†2

1 Department of Algebra, Faculty of Mathematics and Physics, Charles
University, Prague, Czech Republic
libor.barto@gmail.com

2 Theoretical Computer Science, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland
marcin.kozik@uj.edu.pl

Abstract
The algebraic approach to Constraint Satisfaction Problem led to many developments in both
CSP and universal algebra. The notion of absorption was successfully applied on both sides of
the connection. This article introduces the concept of absorption, illustrates its use in a number
of basic proofs and provides an overview of the most important results obtained by using it.

1998 ACM Subject Classification G.2.1. Combinatorics

Keywords and phrases Constraint satisfaction problem, Algebraic approach, Absorption

Digital Object Identifier 10.4230/DFU.Vol7.15301.45

1 Introduction

Absorption is a simple concept, which has found several interesting applications in universal
algebra and constraint satisfaction. The aim of this survey is to show what results have been
achieved using absorption and, more importantly, to explain how absorption is applied to
prove these results.

1.1 Results
In constraint satisfaction, absorption is mostly applied in the study of the computational
and descriptive complexity of the Constraint Satisfaction Problem (CSP) over a fixed finite
relational structure (also known as a template or a constraint language). In this paper, a
relational structure A = (A;R1, . . . , Rk) consists of a finite set A, called a domain or a
universe, and a finite sequence of (finitary) relations R1, . . . , Rn. A primitive positive formula,
or pp-formula, over A is a first order formula over A that uses only existential quantification,
conjunction, and equality. The constraint satisfaction problem over A, written CSP(A), is
the problem of deciding whether an input pp-sentence is true. Thus, for a relational structure
A with a ternary relation R ⊆ A3 and a binary relation S ⊆ A2, an instance of CSP(A) is
e.g.

(∃x1)(∃x2)(∃x3)(∃x4)R(x1, x3, x2) ∧ S(x1, x1) ∧ S(x1, x4) ∧ (x2 = x1).

The clauses in the instance are often called constraints as they are constraining the possible
values of the tuples of variables.

∗ L. Barto was partially supported by the Grant Agency of the Czech Republic grant 13-01832S.
† M. Kozik was partially supported by NSC grant UMO-2014/13/B/ST6/01812.

© Libor Barto and Marcin Kozik;
licensed under Creative Commons License BY

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný; pp. 45–77

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol7.15301.45
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3

46 Absorption in Universal Algebra and CSP

Known results suggest that, for any relational structure A, the problem CSP(A) is
tractable (i.e. solvable in polynomial time), or NP-complete. The conjecture postulating
this separation is known as the CSP dichotomy conjecture [30]. The concept of absorption
allowed the confirmation of this conjecture for the CSPs over digraphs with no sources or
sinks [11] and the simplification of the proof of the dichotomy theorem [3] for conservative
CSPs [24] (i.e. CSPs over structures that contain all unary relations).

A closely related line of research studies the power of consistency methods in CSP. The
applicability of consistency algorithms to CSPs with fixed template was determined [10] using
absorption (independently in [20] using different tools). Moreover, it was shown that basic
algorithms, such as (2, 3)-minimality [6] or Singleton Arc Consistency [42], solve all the CSPs
solvable by local consistency. At the same time, the templates solvable by local consistency
were proved to be exactly those with CSPs having robust approximation algorithms [9] – all
these proofs are based on absorption.

A significant step towards understanding the power of “linear consistency” and characteriz-
ing the CSPs in NL has been made in [13], and a related result studying robust approximation
with a polynomial loss appeared in [27] – both of these proofs rely on absorption as well.

The contributions of absorption to universal algebra mostly concern equational conditions
for finite algebras. In this paper, an algebra A = (A; f1, f2, . . .) consists of a finite universe
A and a set of (finitary) operations on A, called the basic operations (this set sometimes
needs to be indexed so that, e.g, one can define direct products). A term operation of A is
any operation on A obtained by composing the basic operations. An equational condition
stipulates the existence of term operations satisfying certain identities, that is, universally
quantified equations (the term “equational condition” is nonstandard and used instead
of a closely related, but different concept of a Mal’tsev condition). Equational conditions
often characterize properties of invariant relations, for instance, the existence of a term
operations m satisfying the identities m(x, x, y) = y = m(y, x, x) characterizes permutability
of compatible equivalences in a sense which is made precise in Theorem 13. Nontrivial
information about the shape of invariant relations under some equational condition is also
the core of some CSP results, such as the aforementioned dichotomy theorem for digraphs
with no sources and sinks, see the discussion after Theorem 18.

Equational conditions are intimately related to the fixed template CSPs in that the
complexity of CSP(A) is determined by the equational conditions satisfied by the associated
algebra of polymorphisms, see Subsection 1.3 for a brief explanation and references. A
chief product of absorption in this context is a characterization of the conjectured border-
line [22] between tractable and NP-complete CSPs by means of cyclic operations [8]. Other
contributions of absorption are concerned with new equational and relational conditions
for properties that are important in CSP and/or universal algebra, including congruence
distributivity (see Section 5.3), modularity [38], and meet semi-distributivity [12]. For
polymorphism algebras of relational structures, a surprising collapse of equational conditions
has emerged [4, 2], which also impacted some other computational problems parametrized
by relational structures [19, 26]. Not so closely related to computational complexity is the
connection of solvability and absorption discovered in [12] (see Theorem 35), which allowed
to greatly simplify the proofs of some classical universal algebraic results.

The results on the CSP and universal algebra coming from absorption have been used in
several other works, including the reduction of valued CSP to CSP in [40] (which uses cyclic
operations), or further characterizations of the conjectured borderline between tractable/NP-
complete CSPs in [49, 7, 8].

L. Barto and M. Kozik 47

1.2 Why is Absorption Useful
The success of absorption is a product of three factors.

Absorption transfers connectivity. The connectivity in the slogan is meant in a wide sense,
it might be strong connectivity or connectivity in a directed graph as well as any other
property resembling connectivity. The most basic example of “transferring connectivity”
appears already in Proposition 3. Further in Section 4.2 we display the notion of a Prague
instance which can be viewed as a connectivity condition. Finally, in Section 7.2 we
exhibit other properties which are transferred by absorption; these properties do not
resemble connectivity – it is usually hidden in the proofs.

Connectivity is common. The reason why absorbing connectivity, or structural conditions in
general, is useful is that equational conditions are often reflected in structural/connectivity
properties of compatible relations (see Section 5). In the CSP, connectivity can be provided
by local consistency checking algorithms running in polynomial time, and transferring
it to smaller instances sometimes allows to construct a solution. Section 4 gives some
examples of this phenomenon.

Absorption is common. The two factors would not be so useful if absorption was rare.
Fortunately, quite mild assumptions enforce either a significant restriction on the shape
of compatible relations, or an interesting absorption. This is shown in Section 6 together
with some applications.

1.3 CSP and Universal Algebra
The link between the fixed template CSP and universal algebra hinges on two Galois
connections: the Pol–Inv Galois connection between relational structures and algebras [32, 18]
and the Mod-Id Galois connection between classes of algebras and sets of identities [16].
The first connection implies that the complexity CSP(A) depends only on a certain algebra
associated to A [18, 36, 35], and the second one that only the equational conditions satisfied
by the algebra matter [22].

We proceed to introduce definitions and results that are behind [35] and that are essential
for understanding the next section. Other concepts and results are introduced when the need
for them arises; the index at the end of the paper is constructed to help with such scattered
definitions. For further details we refer the reader to the recent survey on CSP basics [5] or
its revision [14].

A homomorphism between two relational structures A = (A;R1, . . . , Rn) and A′ =
(A′;R′1, . . . , R′n) is a map from A to A′ which, when computed coordinatewise, maps Ri to
R′i. The n-th power of relational structure A = (A;R1, . . . , Rn) is An with the universe An

and relations R′i defined coordinatewise (i.e. a tuple of elements of An is in R′i if they are in
Ri on every coordinate). Polymorphisms of a structure are generalizations of endomorphisms.
An operation f : An → A is a polymorphism of A if it is a homomorphism from An to A.
When f is a polymorphism of A = (A;R), we also say that f is compatible with R, or that
R is invariant under f .

To every relational structure A, we associate an algebra A, denoted A = Pol(A), on the
same domain whose operations are all the polymorphisms of A. By [18, 36, 35], a relation
is pp-definable (that is, definable by a pp-formula) from A if and only if it is compatible
with every polymorphism of A. Since CSP(B) can be easily reduced to CSP(A) whenever A
pp-defines B (ie. every relation of B is pp-definable from A), it follows that A determines
the complexity of CSP(A).

Chapte r 02

48 Absorption in Universal Algebra and CSP

0 1

2

00 11

22

12

21

02

20

0110

Figure 1 The underlying graph of Kc
3 and its second power.

Given an algebra A, a subset A′ of A closed with respect to basic operations of A is
called a subuniverse of A. Such subset, if it is non empty, defines a subalgebra of A denoted
by A′ ≤ A. A subuniverse is the same as a unary relation invariant under all the basic
operations in A.

2 Example

In this section, we work out an example, which illustrates several basic concepts and motivates
the concept of absorption (this concept actually emerged in a quite similar context). We will
show that the undirected complete graph with constants, that is, the relational structure

Kc
3 = ({0, 1, 2};R,C0, C1, C2), R = {(x, y) ∈ {0, 1, 2}2 : x 6= y}, Ci = {i}

has no other polymorphisms than the projections. By remarks in Subsection 1.3, this is
equivalent to proving that each relation on {0, 1, 2} is pp-definable from Kc

3. In particular,
any computational problem parametrized by a relational structure, whose complexity depends
on the pp-definability strength of the structure, is bound to be hard over Kc

3.
In our example, a polymorphism of arity n is a homomorphism from the n-th power of

Kc
3 to Kc

3. Figure 1 shows the second power of the relation R; the relations corresponding to
Ci in this power are {(ii)}.

2.1 One and Two Element Sets Are Preserved by Polymorphisms
The first observation is that every vertex in the power graph is mapped to an element which
appears on some coordinate; in other words, each subset is a subuniverse of the polymorphism
algebra Pol(Kc

3).
In the power graph, the element (2, . . . , 2) is in the relation corresponding to C2 and

therefore f : (2, . . . , 2) 7→ 2. This shows that {2} is a subuniverse of the polymorphism
algebra; similarly, the other two singletons are subuniverses as well. The neighbors of
(2, . . . , 2) must be mapped to neighbors of 2, but each vertex indexed by 0’s and 1’s is a
neighbor of (2, . . . , 2) and thus it has to be mapped into {0, 1}. That {0, 2} and {1, 2} are
subuniverses is shown similarly.

A more compact way to show that U = {0, 1} is invariant under every polymorphism is
by observing that this unary relation is pp-definable from Kc

3 by the formula

U(x) iff (∃y)C2(y) ∧R(y, x) .

In words, U is the set of R-neighbors of the invariant relation C2.

L. Barto and M. Kozik 49

2.2 Unary and Binary Polymorphisms Are Trivial
The relational structure Kc

3 has no endomorphisms other than the identity. Indeed, we have
already observed that each unary f maps i to i.

For binary polymorphisms, consider the picture in Figure 1 and let f be any homomor-
phism from the second power of Kc

3 into Kc
3. The function f maps (i, i) to i for every i, and

thus the values on the inner triangle are fixed. Choose an arbitrary vertex, say (0, 1). By the
previous section, it can be mapped to 0 or to 1. Without loss of generality, assume it maps
to 0. Then (1, 0), as a neighbor of (0, 1) and (2, 2) which are mapped to 0 and 2 respectively,
has to map to 1. Further (2, 0), as a neighbor of (0, 1) and (1, 1), needs to be mapped to 2.
Continuing in this way we establish that f is the first projection, and if (0, 1) were mapped
to 1 we would obtain the second projection.

2.3 Polymorphisms of Higher Arities
Consider now an arbitrary polymorphism f of arity n ≥ 3. We define binary operations fi,
i ∈ [n], by

fi(x, y) = f(x, . . . , x, y, x, . . . , x) with y at the i-th place.

The set of polymorphisms of any relational structure is a clone, that is, it contains all
the projections and is closed under composition. In particular, the binary operations fi

are also polymorphisms of Kc
3. Since the only binary polymorphisms of our structure are

projections, for every i ∈ [n], either fi(x, y) = x for all x, y ∈ {0, 1, 2}, or fi(x, y) = y for all
x, y ∈ {0, 1, 2}. We distinguish two cases.
(a) There exist i such that fi(x, y) = y.
(b) For all i, fi(x, y) = x.

2.4 Polymorphisms with fi(x, y) = y for some i

For simplicity assume i = 1. The reasoning is illustrated by the following figure.

1 a

2 6=1 0 1

0 6=1 2 1

1 1

0 1

2

Take an arbitrary tuple and, without loss of generality, assume that it has 1 on the first
coordinate (tuple 1a in the figure). Find a neighbour of this tuple with 2 on the first
coordinate and elements different from 1 on the remaining coordinates. This element is
denoted by 2 6=1 and an analogous element with 0 on the first coordinate is denoted by 0 6=1.
Both of theses elements are adjacent to 1 1 (the vertex with 1’s only); the first is also adjacent
to 0 1 and the second to 2 1.

The three elements 1 1, 0 1, and 2 1 are mapped to 1, 0, and 2, respectively, which forces
2 6=1 7→ 2 and 0 6=1 7→ 0. This in turn forces 1 a 7→ 1, i.e. the polymorphism is the first
projection.

From what we have just shown, it follows that fi(x, y) = y cannot simultaneously hold
for two different i’s. There is a deeper reason to it. If, say, f1(x, y) = f2(x, y) = y, then the

Chapte r 02

50 Absorption in Universal Algebra and CSP

ternary polymorphism

m(x, y, z) = f(x, z, y, y, . . . , y)

is a Mal’tsev operation, that is, it satisfies m(x, x, y) = y = m(y, x, x) for all x, y ∈ {0, 1, 2}.
A Mal’tsev polymorphism drastically restricts the shape of relations, for instance, a binary
relation invariant under a Mal’tsev operation is rectangular (see Section 5.2), which is not
the case for R.

2.5 Polymorphisms with fi(x, y) = x for all i

This is the most interesting part of the analysis. In this case, the polymorphism f satisfies

f(y, x, . . . , x) = f(x, y, x, . . . , x) = · · · = f(x, . . . , x, y) = x .

Operations satisfying these identities are called near unanimity (or NU) operations.
It is possible to derive a contradiction by an ad hoc argument (as in the previous section)

by considering where various vertices of the power graph need to be mapped. We will show
a nicer argument, which can be used in more general situations.

Consider the following part of the powergraph:

000...000

211...111

100...000

021...111

110...000

002...111

111...000

000...211

111...100

000...021

111...110

000...002

111...111

Every vertex in the bottom row is adjacent to (2, . . . , 2) which is mapped to 2, so bottom
elements are mapped to {0, 1} (as already observed). But, also, every vertex in the top
row is adjacent to a vertex of the form (2, . . . , 2, 0, 2, . . . , 2), which is mapped to 2 by the
assumption on f . Thus all the vertices in the path are mapped into {0, 1} and we get a path
from 0 to 1 of even length – this is clearly impossible.

It is often useful to look at a binary relation R ⊆ A2 as a bipartite graph. The partite
sets are disjoint copies of A (one copy is on the left, the other one on the right) and edges
correspond to pairs in R. The relation R in our example is shown in Figure 2 on the left.
Note that the elements 0 and 1 (on the left) are disconnected in the subgraph induced by
both copies of {0, 1}. However, the above path provides a connection from 0 to 1 (see the
right part of Figure 2), a contradiction again.

Crucial for the given argument was a pleasant property of the set {0, 1} and operation f :
not only are elements consisting of 0’s and 1’s mapped to {0, 1}, f tolerates one exception.

3 Absorption and More Absorption

The notion of absorption (defined below) generalizes the property of singletons and the set
{0, 1} that made the reasoning in Subsection 2.5 possible. However, before diving into the
definitions we make a couple of remarks.

First, we restrict to idempotent algebras. An algebra A is idempotent if, for every
operation f and all a ∈ A, f(a, . . . , a) = a. Equivalently, one can require that every one-
element subset of A is a subuniverse of A. This is not a severe restriction: In the CSP, one
can often restrict to the relational structures that contain the singleton unary relations; their

L. Barto and M. Kozik 51

0

1

2

0

1

2

{0, 1} {0, 1}

(a) R as a bipartite graph

0

1

2 2

{0, 1} {0, 1}

(b) A connection from 0 to 1

Figure 2 Bipartite viewpoint.

polymorphism algebras are idempotent. In universal algebra, many properties of algebras
depend only on certain idempotent algebras associated to them, their full idempotent reducts.
We wish to stress that in all definitions and theorems we will implicitly assume that algebras
are finite and idempotent.

Second, the operation defining absorption in an algebra is not always one of the basic
operations of the algebra – it can be any term operation. Polymorphisms of any relational
structure are closed under composition, so there is no difference in such a situation.

3.1 Absorption

There are in fact several useful notions of absorption: (directed) Jónsson absorption (see
Section 5.3) or (directed) Gumm absorption [2, 38]. The one that appears the most useful
resembles near unanimity operations.

I Definition 1 (Absorption). A subalgebra B of A is absorbing with respect to an n-ary
term operation f of A if f(a1, . . . , an) ∈ B whenever the set of indices {i : ai /∈ B} has at
most one element. The fact is denoted B Pf A, or B P A if f is not important. We also
say that B absorbs A, that f absorbs A into B, and so on.

In Subsection 2.5, we have observed that {0, 1} absorbs A = Pol(Kc
3) with respect to f .

More formally, we should say that the subalgebra of Pol(Kc
3) with universe {0, 1} absorbs A,

but subalgebras are determined by their universes, so we can safely disregard this formal
distinction when A is clear from the context.

Algebras with absorbing subuniverses are common. For example, most two-element
algebras have proper absorbing subalgebras: It is known that if a two-element algebra
contains an operation which is not affine over the two-element field, then it contains the
binary minimum operation, or the binary maximum operation, or the majority (the only
ternary NU operation on a two–element universe). In the first case, {0} is absorbing; in the
second case, {1} is absorbing; and in the third case, both singletons are absorbing. These
absorptions are behind the polynomial algorithm for Horn-SAT, and can be used to construct
polynomial algorithms for 2-SAT as well.

In any algebra with a near–unanimity operation, every one-element subalgebra is absorbing
with respect to this operation. The converse is also true, if every one element subuniverse
absorbs A, then A has a near unanimity term. It is not immediate, since the absorptions
can be witnessed by different operations, but this problem can be fixed by composing terms
in a way introduced in the next paragraph.

Chapte r 02

52 Absorption in Universal Algebra and CSP

If B Pf A and C Pg A, where f is n-ary and g is m-ary, then both absorptions are also
witnessed by the star composition of f and g (denoted f ? g) which is an nm-ary operation
defined by

f ? g(x1, . . . , xnm) = f(g(x1, . . . , xm), g(xm+1, . . . , x2m), . . . , g(xnm−m+1, . . . , xnm)).

Several other simple properties of absorption can be shown using the star composition, e.g.
one can prove that the relation “is an absorbing subuniverse of” is transitive, or that an
intersection of absorbing subuniverses is again absorbing.

3.2 Absorption from Absorption: Propagation
This section explains how to use compatible relations, or subpowers (defined in the next
paragraph), in order to propagate the property of “being an absorbing subuniverse” from one
subuniverse to another. An example of such a situation appeared already in Subsection 2.5:
the fact that {2} was absorbing implied that the set {0, 1}, the set of all R-neighbors of {2},
was absorbing as well.

Before stating the general version of the property, we recall several basic definitions.
The n-th power of A with universe A is the algebra with universe An and the operations
computed coordinatewise. A subpower of A is any subuniverse (or a subalgebra) of a power
of A. In other words, a subpower of A is an n-ary relation invariant under coordinate-wise
action of any operation of A. When A = Pol(A), then subuniverses of A are exactly the
relations pp-definable from A.

It is easy to prove that the set of all the subpowers of an algebra is closed under pp-
definitions. The following proposition gives an analogue for absorption. The proof of the
proposition is left as an exercise.

I Proposition 2 (Propagation of Absorption). Let A be an algebra and let R ≤ An be a
subpower defined from subpowers S1, . . . ,Sk by a pp-formula φ. Moreover, let S′1 P S1, . . . ,
S′k P Sk.

Then the subpower defined by the pp-formula obtained from φ by replacing each Si(. . .)
by S′i(. . .) absorbs R.

Note that A P A for any algebra A, so, in the proposition, S′i can be equal to Si.
The proposition above is often used to “walk” with absorption, a first example of the

“walking” was already in Subsection 2.5. To put the construction into slightly more general
terms, consider subalgebras R ≤ A2 and B P A. The set C of out-neighbors of B in the
directed graph with edge-set R is pp-defined by the formula

C(y) iff (∃x)B(x) ∧R(x, y).

It absorbs the subalgebra D of A defined by

D(y) iff (∃x)A(x) ∧R(x, y) equivalently D(y) iff (∃x)R(x, y).

In particular, if every a ∈ A has an in-neighbor, then D = A and we get that C absorbs A.
This construction will be generalized in the next section.

4 Connectivity

In this section, we will show that if a smaller subpower absorbs a bigger one, then some
structural properties (like connectivity) of the bigger subpower transfer to the smaller one.

L. Barto and M. Kozik 53

A similar situation appeared in Section 2.5: the relation R defined a connected bipartite
graph, but its restriction to {0, 1} (on both sides) was absorbing and disconnected – this
contradiction concluded the proof in Section 2.

We will illustrate the slogan “absorption transfers connectivity” using two examples: First
we study a single binary relation and obtain a result which will be used later to prove, e.g.,
the Loop Lemma (which is Theorem 18). Later we focus on a more complex example: a
microstructure graph arising from an instance of a CSP.

In order to simplify the applications of Proposition 2, we will be working with subdirect
subpowers. A subset R of A1 × · · · ×An is called subdirect if, for each i, the projection of R
onto the i-th coordinate is equal to Ai.

4.1 Absorbing Linkedness
The first notion that is preserved by absorption is “linkedness”. A subset R ⊆ A2 is called
linked if R is connected when regarded as a bipartite graph (exactly like in Section 2.5).
Similarly, we can talk about a, b ∈ A being linked, but, as every element of A has two copies
in the bipartite graph, we need to specify whether we mean left or right a and left or right b.

The same relation R ⊆ A2 can also be regarded as a directed graph and we talk about
in/out-neighbors, sinks, sources, directed walks, etc. The digraph R is smooth if R is subdirect
in A2, in other words, R has no sources and no sinks. The smooth part of R is the maximal
subset B of A such that R ∩B2 is smooth.

Note that the linkedness (i.e. the connectivity of the bipartite graph) is equivalent to
neither strong nor weak connectivity of the directed graph (but it implies the weak one).
The following proposition states that the linkedness transfers to absorbing subuniverses.

I Proposition 3. Let R ≤ A2 be subdirect, linked, and let A have a proper absorbing
subalgebra. Then there exists B, a proper subalgebra of A, such that R ∩B2 is a linked and
subdirect in B2.

Proof. First we look for a proper absorbing subalgebra D P A such that R ∩ D2 has a
nonempty smooth part. This is achieved by “walking”: think of C ⊆ A as being on the
left side of the bipartite graph, define C ′ as the set of all neighbors (i.e. on the right) of
vertices from C, and put (C, left) v (C ′, right) – this is a step from left to right. Similarly,
for a step from C ′ on the right to C ′′ on the left (C ′′ contains all the neighbors of C ′), put
(C ′, right) v (C ′′, left). Finally, close v under composition with itself.

Let B′ be proper absorbing subalgebra of A. Whenever (B′, left) v (C, left) or (B′, left) v
(C, right), then C, by Proposition 2, is an absorbing subuniverse of A. Since R is linked,
(B′, left) v (A, left) and therefore there is D, say on the left, such that (B′, left) v (D, left)
and by stepping to the right from D we obtain A, i.e. every vertex in the right A has a
neighbor in the left D.

Looking at R as a directed graph, this property of D means that every vertex in A has
an incoming edge from a vertex in D. It follows that there exists an arbitrarily long directed
walk entirely in D, which immediately provides a directed cycle in the directed graph induced
by R on D. Therefore, the smooth part of R ∩D2, denoted by B, is nonempty.

The subuniverse D absorbs A by Proposition 2. Moreover, by the same proposition, the
smooth part of D ∩R2 (i.e. B) absorbs the smooth part of R (which is the whole A). This
last fact holds since the smooth part of a directed graph can be pp-defined as the set of
vertices with a directed walk of length |A| from them and to them.

Finally, a generalization of the argument from Section 2.5 shows that B ∩A2 is linked:
Take any a, b ∈ B (on the left) and a link a = a0, a1, a2, . . . , a2k = b from a to b (even

Chapte r 02

54 Absorption in Universal Algebra and CSP

members are on the left, the odd ones on the right). Consider a term operation f witnessing
B P A. Then, for any i, the sequence

f(a, . . . , a︸ ︷︷ ︸
(i−1)×

, a0, b, . . . , b), f(a, . . . , a, a1, b, . . . , b), . . . , f(a, . . . , a, a2k, b, . . . , b)

provides a link from

f(a, . . . , a︸ ︷︷ ︸
i×

, b, . . . , b) to f(a, . . . , a︸ ︷︷ ︸
(i−1)×

, b, . . . , b)

which lies fully in B. By concatenating these links we get a link in B from a = f(a, . . . , a)
to b = f(b, . . . , b). J

The proof above exhibits a structure common to almost all the proofs using absorption. It
splits into two stages:

Walking stage finds a substructure which is “subdirect” and “absorbing” (here finds B
absorbing A such that the restriction of R to B2 is subdirect in B2).
Reducing stage uses absorption to transfer an additional property (here linkedness of
R is transferred to the restriction of R by B2).

In the remaining part of the paper, we will see more proofs following this pattern. Here we
present a corollary which is an easy consequence of the proposition above.

I Corollary 4. Let R be a subdirect linked subalgebra of A2 and assume that every non–
singleton subalgebra of A (including A itself) has a proper absorbing subalgebra. Then R
contains a constant pair.

Proof. The corollary is proved by a repeated application of Proposition 3. Indeed, after
a first application of Proposition 3 to R and A, we obtain B and if |B| = 1, we have a
constant tuple in R. Otherwise, R ∩B2 is linked and subdirect in B and, as B has a proper
absorbing subuniverse, we can apply Proposition 3 again. In a finite number of steps, we
arrive at a one–element B, which finishes the proof. J

The structure of this proof is also typical, most of the proofs using absorption perform a
sequence of reductions decreasing the sizes of underlying algebras until each one has only
one element.

Note that algebras with a near-unanimity term, or algebras with a semilattice term, or
products of such algebras all satisfy the assumptions of the corollary.

4.2 Connectivity in CSP
The results presented in this section are parts of a proof of the bounded width conjecture of
Feder and Vardi [30]. This conjecture, its motivation and resolution, are discussed in more
detail in Section 7. In here we focus on a single obstacle, which had to be overcome in order
for the proof to work. The obstacle can be phrased as follows: is there a single consistency
algorithm solving the CSP over all the binary templates with near-unanimity polymorphisms?
We ought to note that already Feder and Vardi [30] showed that near-unanimity templates
can be solved in polynomial time. However, their algorithm depends on the arity of the
near-unanimity term and therefore does not reach our goal.

We move on to a list of consistency notions in search of a consistency notion that will
be transferred by absorption the way the linkedness was transferred in Proposition 3. We
start, however, with a consistency notion which plays the role played by subdirectness in
Proposition 3 – it is the most basic and important consistency notion, the arc consistency.

L. Barto and M. Kozik 55

4.2.1 Arc Consistency of a CSP Instance
In practical applications, arc consistency is often used to quickly disqualify some of the
instances with no solutions. Unfortunately, a rather strong structure of the template is
needed [30, 28] for arc consistency to solve the associated CSP.

We say that an instance with a variable set V is arc consistent with {Px}x∈V if for
every constraint R(x1, . . . , xn), the relation R is subdirect in Px1 × · · · × Pxn . The following
algorithm turns an arbitrary instance into an arc consistent instance with the same set of
solutions.

for every variable x do Px := A

repeat
for every constraint R(x1, . . . , xn) do

let R′ := R ∩
∏

i Pxi

for i = 1 to n do Pxi := Pxi ∩ proji R′
substitute constraint R(x1, . . . , xn) with R′(x1, . . . , xn)

end for
until none of the Px’s changed

It is clear that the output instance is arc consistent and has the same set of solutions as the
input instance. The AC algorithm derives a contradiction if at least one of the sets Px is
empty; this means that the algorithm correctly detected an unsolvable instance.

Note that all the sets Px as well as the new relations in the output instance are pp-
definable from the relations in the original instance, therefore all the polymorphisms of the
template are compatible with the new instance. In other words, if A is a template and
A = Pol(A) the associated algebra, then every Px is a subuniverse of A and determines a
subalgebra Px of A.

Arc consistency solves a CSP over A if it derives a contradiction on every unsolvable
instance over A. Such CSPs are said to have width 1 and include the CSP over the template
A = ({0, 1};C0, C1,≤), which is essentially the problem of finding a directed path in a directed
graph, or over A = ({0, 1}; {0, 1}3 \ {(1, 1, 0)}, {0, 1}3 \ {(1, 1, 1}), which is Horn-3-SAT.

A simple example of an instance where the arc consistency algorithm fails to detect a
problem uses the template A = ({0, 1}; 6=), whose CSP is essentially 2-colorability, and the
instance

(∃x)(∃y)(∃z)x 6= y ∧ y 6= z ∧ z 6= x,

which corresponds to the triangle. The arc consistency algorithm on this instance does not
update any constraints and outputs the original instance with the sets Px = Py = Pz = {0, 1}.

The following picture shows the problematic instance as a multipartite graph called the
microstructure graph of the instance: the graph has a copy of Px for every variable x and the
edges between Px and Py are given by a constraint R(x, y).

0 1

0

1

0

1
Px

Py

Pz

Chapte r 02

56 Absorption in Universal Algebra and CSP

Such a graph is well defined if all the constraints are binary, and every pair of variables
appears in at most one constraint. This is not a very restrictive condition and we discuss
such instances in the next section.

Note that the template A = ({0, 1}; 6=) has a majority polymorphism, and therefore
arc consistency fails to work for binary templates with near unanimity polymorphisms. In
order to answer the questions posted in the section above we need to work with a different
consistency notion.

4.2.2 (2,3)-Consistent, Simplified Instances
In order to simplify presentation, we impose the following restrictions on CSP instances:

all the constraints are binary and
for every two distinct variables x, y, there is a unique constraint Pxy(x, y) and Pxy = P−1

yx .
We call an instance simplified if these conditions are satisfied. We note that, by an appropriate
preprocessing, every instance can be turned into a simplified instance on a, possibly different,
template with the same complexity of the associated CSP.

The arc consistency algorithm, over a simplified instance, finds algebras Px and restricts
the constraints so that Pxy is subdirect in Px × Py. If arc consistency fails to solve a
particular CSP(A) (as was the case in the example in the previous section) we may try to
solve the problem by enforcing a stronger form of consistency. The next, after arc consistency,
standard consistency notion is the (2, 3)-consistency, also known as path consistency.

I Definition 5. A simplified instance is (2, 3)-consistent if it is arc consistent and for
every pairwise different variables x, y, z and any (a, b) ∈ Pxy there exists c ∈ Pz such that
(a, c) ∈ Pxz and (b, c) ∈ Pyz.

Both arc consistency and (2, 3)-consistency have simple interpretations in the microstruc-
ture graphs of simplified instances: arc-consistency means that every vertex is adjacent to
some vertex in every other partite set, (2, 3)-consistency further ensures that, for any pairwise
different x, y, z, every edge in Px ∪ Py (or, more precisely, in the union of the disjoint copies
of Px and Py in the microstructure graph) extends to a triangle in Px ∪ Py ∪ Pz.

Already Feder and Vardi [30] noted that, over a template with majority polymorphism,
every simplified (2, 3)-consistent instance has a solution. The reasoning, however, did not
extend to near unanimity operations of higher arities.

At present, we know that the (2, 3)-consistency is transferred by absorption in the same
way the linkedness is transferred in Proposition 3:

I Proposition 6. Take a (2, 3)-consistent simplified instance such that at least one Px has a
proper absorbing subuniverse. Then there exist P′x P Px (at least one proper) and P′xy P Pxy

which form a (2, 3)-consistent instance.

This would finish our search for a consistency notion transferred by absorption, except for
the fact that more involved tools are required in order to prove this proposition. These tools
are presented and discussed in Section 7, while here we continue the search for a consistency
notion for which an analogue of Proposition 3 can be proved directly.

4.2.3 Prague Instances
In this section, we study notions weaker than (2, 3)-consistency. A concept underlying all
the definitions in this section is the notion of a pattern. In a simplified instance, a pattern p
is a sequence of variables (x1, x2, . . . , xk−1, xk). If the first and the last variable of a pattern

L. Barto and M. Kozik 57

coincide, we call it a circle. An element a is connected to b by p = (x1, x2, . . . , xk−1, xk) if
there exists (a = a1, a2, . . . , ak−1, ak = b) such that (ai, ai+1) ∈ Pxixi+1 if xi 6= xi+1, and
ai = ai+1 otherwise. We write p + q for the concatenation of patterns, and kp for the
concatenation of k copies of p.

The following notion of consistency is a first approximation to the notion of a Prague
instance:

I Definition 7. A simplified instance is a circle instance if it is arc-consistent and for every
pattern p = (x = x1, x2, . . . , xk = x), every a ∈ Px is connected to itself by p.

Unfortunately, the notion suffers from the same problem as (2, 3)-consistency.
One can state a result transferring the consistency:

I Proposition 8. Take a simplified circle instance such that at least one Px has a proper
absorbing subuniverse. Then there exist P′x P Px (at least one proper) which together with
P ′xy = Pxy ∩ (P ′x × P ′y) form a simplified circle instance.

The proof, yet again, requires tools from Section 7.
In order to introduce the final consistency notion of this section, we need one more

definition. In a simplified instance, a, b ∈ Px are connected in the set of variables I (x needs
to belong to I) if they are connected by a pattern with all the variables in I. Equivalently,
we can restrict the microstructure graph to Py’s with y ∈ I and ask for the usual undirected
connectivity of vertices. We say that a, b are connected in the variables of p if they are
connected in I, where the set I consists of the variables that appear in p.

Finally, we can define the notion of a Prague instance, a consistency notion for which an
analogue of Propositions 3, 6 or 8 can be shown directly.

I Definition 9. A simplified instance is a Prague instance if it is arc consistent and for every
circle pattern at x and every a, b ∈ Px, the vertices a, b are connected by kp, for some natural
number k, whenever they are connected in the variables of p.

It is left as an exercise for the reader to prove that every (2, 3)-consistent instance is a circle
and a Prague instance. Moreover, the number k, in the definition of Prague instance, can be
chosen to depend only on p and not on a, b.

Note that the example in Section 4.2.1, although arc consistent, is neither a circle nor
a Prague instance. Indeed, 0, 1 ∈ Px are connected in {x, y, z} but not connected by any
power of (x, y, x, z, x) (nor any power of (x, y, z, x, y, z, x)) and therefore does not contradict
the following proposition (which is an analogue of Proposition 3).

I Proposition 10. Take a simplified Prague instance such that at least one Px has a proper
absorbing subuniverse. Then there exist P′x P Px (at least one proper) which together with
P ′xy = Pxy ∩ P ′x × P ′y form a simplified Prague instance.

Proof. As usual, the proof splits into two stages. In the walking stage, we find P′x’s such
that

P′x P Px for every x,
for some x, the algebra P′x is a proper subalgebra of Px, and
putting P ′xy = Pxy ∩ Px × Py produces an arc consistent instance.

In the reduction stage, we will show that this instance is a Prague instance.
The walking stage is similar to the one in the proof of Proposition 3: we put (B, x) v (C, y)

whenever the set C consists of elements of Py which have a neighbor in B in the bipartite

Chapte r 02

58 Absorption in Universal Algebra and CSP

graph Pxy (B is on the left, while C on the right). Yet again, we close v under composition
with itself and disregard the pairs with the full sets Px, i.e. the pairs of the form (x, Px).

Let B0 be a proper absorbing subuniverse of Px0 . We walk, as far as we can, from
(B0, x0) to end up in a maximal strong component of v (which may contain a single pair).
We denote the set of all the pairs in this component by P. Note that if (B, x) ∈ P and C
consists of neighbors of B in Pxy (from left to right), then C is either Py, or the pair (C, y)
belongs to P.

If (B, x) and (B′, x) are in P, then (B, x) v (B′, x) v (B, x). Let p denote the pattern
describing the walk witnessing (B, x) v (B′, x) v (B, x). Pick a ∈ B′ \ B and b ∈ B such
that a is reachable from b by the appropriate initial part of p. But then b is connected to a
in the vertices of p but, as a /∈ B, not by any kp, a contradiction.

Thus, for a given x, there is at most one pair (B, x) ∈ P and we let P ′x = B in such a
case. If there is no such a pair, we put P ′x = Px. Each set P ′x absorbs Px (exactly like in
the proof of Proposition 3), at least one of them is proper (actually all that arise from P
are proper), and they define an arc consistent instance. That last property follows from the
choice of P as the maximal strong component. We are done with the walking stage and
proceed to the reducing stage.

Let a be in P′x and p be a pattern such that b ∈ P′x is connected to a in the variables
of p. Find m and a′, b′ such that a′ is reachable from itself and from a by mp in the new
instance; and, similarly, from b′ one can reach b′ and b by mp also in the new instance. Since
a′ and b′ are connected in the variables of p in the original instance, we get k such that b′ is
reachable from a′ in by (mk)p in the original instance.

Now we take a term operation f witnessing the absorptions P ′x P Px and apply it as
shown in the following picture. The black arrows are realizations of (mk)p in the new
instance, and the yellow arrows are realizations of the same pattern in the original instance.
On the right-hand side of the picture is the result of the pointwise application of f to the
realizations of (mk)p and the grey part indicates where absorption is used to ensure that the
resulting elements are in the new instance.

a a a a a f(a, a, a, a, . . . , a, a) = a. . .

a′ a′ a′ a′ a′ f(a′, a′, a′, a′, . . . , a′, a′) = a′. . .

b′ a′ a′ a′ a′ f(b′, a′, a′, a′, . . . , a′, a′). . .

b′ b′ a′ a′ a′ f(b′, b′, a′, a′, . . . , a′, a′). . .

b′ b′ b′ a′ a′ f(b′, b′, b′, a′, . . . , a′, a′). . .

b′ b′ b′ b′ a′ f(b′, b′, b′, b′, . . . , b′, a′). . .

b′ b′ b′ b′ b′ f(b′, b′, b′, b′, . . . , b′, b′) = b′. . .

b b b b b f(b, b, b, b, . . . , b, b) = b. . .

(mk)p (mk)p (mk)p (mk)p (mk)p (mk)p

(mk)p (mk)p (mk)p (mk)p (mk)p (mk)p

(mk)p (mk)p (mk)p (mk)p (mk)p (mk)p

(mk)p (mk)p (mk)p (mk)p (mk)p (mk)p

(mk)p (mk)p (mk)p (mk)p (mk)p (mk)p

(mk)p (mk)p (mk)p (mk)p (mk)p (mk)p

L. Barto and M. Kozik 59

Thus b can be reached from a by a sufficiently large multiple of p in the new instance. This
finishes the proof of the reduction. J

The following corollary, which is an analogue of Corollary 4, immediately follows from the
previous proposition.

I Corollary 11. Take a simplified Prague instance. If every non–singleton subalgebra of
every Px (including Px itself) has a proper absorbing subuniverse, then the instance has a
solution.

The corollary gives a polynomial time algorithm for CSPs over templates with a near-
unanimity polymorphism, semilattice polymorphism, etc. using a single consistency notion:
the notion of a Prague instance. This settles the question posed at the beginning of Section 4.2.

5 Equational Descriptions

In this section, we present several results showing how equational conditions impact properties
of invariant relations. In fact, equational conditions influence invariant relations of all algebras
in a variety rather than an individual algebra. We start by defining this concept.

An equivalence on the universe of an algebra A is a congruence
if it is invariant, as a binary relation, under the operations in A; in other words, it is a

subpower of A. An algebra A can be factored modulo its congruence α to obtain a quotient
A/α: the compatibility of A with α ensures that operations can be defined using arbitrarily
chosen representatives. A variety generated by an algebra A, denoted V(A), is the smallest
class of algebras containing A and closed under taking powers, subalgebras, and quotients
(and isomorphic copies).

Varieties provide the second step in the algebraic approach to the CSP: from the algebra
A = Pol(A) to the variety generated by A. This step is meaningful as every relational
structure B compatible with an (as always finite) algebra B ∈ V(A) defines a CSP not harder
than CSP(A) [22]. The “not harder” statement can be understood as an existence of a
LOGSPACE reduction from CSP(B) to CSP(A), but the connection between A and B is
much closer: many structural properties are transferred from A to B.

We can talk about B’s, compatible with algebras in the variety generated by A, totally
bypassing the algebraic nomenclature and using pp-interpretations instead [17]. A relational
structure B = (B,S1, . . . , Sm) is pp-interpretable in A if there are

a relation R′ ⊆ An and an equivalence α on R′, both pp-definable1 in A;
relations S′1, . . . , S′m on R′/α also pp-definable1 in A

such that B and (R′/α, S′1, . . . , S′m) are isomorphic. It is easy to see that a relational structure
is pp-interpretable in A if and only if it compatible with an algebra in V(Pol(A)).

A part of the Mod–Id Galois connection gives a link between identities and varieties [16]:
An algebra B (of the same signature as A) is in V(A) if and only if B satisfies all the
identities satisfied by A, equivalently, by all members of V(A).

The identities true in a variety are closely connected to particular members of the variety:
the free algebras. The free algebra in V(A) over n generators can be described as the
subalgebra of AAn whose universe is the set of n-ary term operations of A. For a k-ary

1 The relation α is viewed here as a binary relation on R′ and a (2n)-ary relation over A. The relations
S′

i are ki-ary over R′ or (kin)-ary over A and independent of the choice of representatives for an α-class
on any coordinate.

Chapte r 02

60 Absorption in Universal Algebra and CSP

basic or term operation f of A, the corresponding operation f in the free algebra acts as
composition: for any g1, . . . , gk in the free algebra, we have

f(g1, . . . , gk) : (x1, . . . , xn) 7→ f(g1(x1, . . . , xk), g2(x1, . . . , xk), . . . , gk(x1, . . . , xk))

The free algebra is the smallest (with respect to inclusion) subalgebra of AAn containing the
projections π1, π2, . . . , πn (where πi : (x1, . . . , xn) 7→ xi). We also say that the free algebra is
generated by the projections. Very often, important properties of algebras are determined by
the structure of subpowers of F, in particular, smooth digraphs on the free algebra on two
elements are used in Sections 5.2 and 6.3. Free algebras are also behind both the Pol–Inv
and Mod–Id Galois connections.

Looking from the relational side, note that if A is the algebra of polymorphisms of a
relational structure A, i.e. A = Pol(A), then the universe of the n-generated free algebra in
V(A) is the set of n-ary polymorphisms of A.

5.1 Decomposable Relations and near Unanimity
The near unanimity operations were among the most prominent operations in the previous
sections. One of the relational descriptions is by means of decomposable relations, which
appear naturally in the study of CSP (comp. [30]).

A k-decomposition of an n-ary relation R over A is another n-ary relation Rk over A
defined by:

(a1, . . . , an) ∈ Rk if
(
for all 1 ≤ j1 < · · · < jk ≤ n tuple (aj1 , . . . , ajk

) ∈ proj{j1,...,jk}(R)
)

where proj{j1,...,jk}(R) is the k-ary relation obtained by taking elements of R and selecting
only the coordinates j1, . . . , jk. Clearly, R ⊆ Rk and the relation R is called k-decomposable
if Rk = R. Note that, for example, 2-decomposability of all the relations in the template of a
CSP allows a trivial transformation of every instance to an equivalent simplified instance (it
suffices to take the binary projections of constraints and intersect them if necessary).

The Baker–Pixley theorem [1] below provides identities equivalent to decomposability of
all relations in a variety.

I Theorem 12. For an algebra A the following are equivalent:
1. the algebra A has a near-unanimity term operation of arity k + 1;
2. for every B ∈ V(A), every subpower of B is k-decomposable.

Proof. To prove item 1 from 2 we consider the free algebra F for A over 2 generators and let
R ≤ Fk+1 be generated by the tuples which are π1 on all coordinates except for one where
they are π2.

As R is the smallest subalgebra of Fk+1 containing the generators, its elements are
obtained by applying the term operations of F to the generators. More formally,

R = {f
(
(π1, . . . , π1, π2), (π1, . . . , π1, π2, π1), . . . , (π2, π1, . . . , π1)

)
:

f is a k + 1-ary term op.}
= {
(
f(π1, . . . , π1, π2), . . . , f(π1, π2, π1, . . . , π1), f(π2, π1, . . . , π1)

)
:

f as above}
= {
(
(x, y) 7→ f(x, . . . , x, y), . . . , (x, y) 7→ f(x, y, x, . . . , x), (x, y) 7→ f(y, x, . . . , x)

)
:

f as above}

L. Barto and M. Kozik 61

To simplify the notation, we will write f(x, . . . , x, y) instead of (x, y) 7→ f(x, . . . , x, y), so
that the generators are (x, . . . , x, y), (x, . . . , x, y, x), . . . , (y, x, . . . , x) and

R = {
(
f(x, . . . , x, y), . . . , f(x, y, x . . . , x), f(y, x, . . . , x)

)
: f is (k + 1)-ary term op. of A}.

Since R is k-decomposable, the tuple (x, . . . , x) is in R. The description of the elements of
R implies that there is a (k + 1)-ary term f such that(

f(x, . . . , x, y), . . . , f(x, y, x . . . , x), f(y, x, . . . , x)
)

= (x, . . . , x).

This f is clearly a near unanimity operation.
It remains to show that if an algebra has a (k + 1)-ary near unanimity term operation,

denote it by f , then all the subpowers of any B ∈ V(A) are k-decomposable.
Let R ≤ B(k+1) and let Rk be the k-decomposition of R. To show that Rk ⊆ R, we take

an arbitrary tuple (a1, . . . , ak+1) from Rk and will show that it belongs to R. The structure
of Rk implies that for every i there is a tuple in R which differs from (a1, . . . , ak+1) only on
the i-th coordinate. Applying the near-unanimity operation f to such tuples we get

f
(
(?, a2, . . . , ak+1), (a1, ?, a2, . . . , ak+1), . . . , (a1, . . . , ak, ?)

)
= (a1, . . . , ak+1).

This shows that Rk = R, i.e. that R is k-decomposable. For relations of higher arity, the
reasoning is similar and we conclude that all the subpowers of B are k-decomposable. J

Note that the algebras in the statement of the theorem can be equivalently characterized as
algebras with every one-element subuniverse absorbing (comp. Section 3).

In case that A = Pol(A), item 1 says that A has a near unanimity polymorphism and
item 2 is equivalent to the following statement: for every B = (B;R) pp-interpretable in A,
the relation R is k-decomposable.

We proceed to studying other classes of algebras. Every class will be defined by identities
and posses a structural counterpart (playing a role similar to the one played by decomposability
for near unanimity algebras).

5.2 Rectangular Relations and Mal’tsev Term
Rectangularity is another natural property of relations. A subset R of B × C is called
rectangular if it is a disjoint union of products of the form B′ × C ′, where B′ ⊆ B and
C ′ ⊆ C. Equivalently R is rectangular if, when regarded as a bipartite graph, it is a disjoint
union of bicliques, which means that every two linked elements b ∈ B and c ∈ C are adjacent.
The following theorem [45] is a counterpart of Theorem 12 for rectangular relations.

I Theorem 13. For an algebra A the following are equivalent:
1. the algebra A has a Maltsev term operation i.e. f such that

f(x, x, y) = f(y, x, x) = y ;

2. for any B ∈ V(A), any R ≤ B2 is rectangular.

Proof. In order to prove the implication from 2 to 1, we proceed exactly like in the proof
of Theorem 12: We choose R to be the subalgebra of F2 (F is still the free algebra on two
generators) generated by (π1, π2), (π1, π1) and (π2, π1) also denoted as (x, y), (x, x), (y, x).
The relation R is rectangular and thus includes the pair (y, y). This implies that we have a
ternary term operation which generates this pair in R, i.e.

f
(
(x, y), (x, x), (y, x)

)
= (y, y).

Chapte r 02

62 Absorption in Universal Algebra and CSP

This operation is clearly the required Mal’tsev operation.
For the other implication, take any R ≤ B×C and let (a, b), (a′, b), (a′, b′) ∈ R. Then

f((a, b), (a′, b), (a′, b′)) = (a, b′) ∈ R which proves rectangularity. J

A more familiar form of the second item is the following.
3. for any B ∈ V(A) and α, β congruences on B the α and β permute, i.e. α ◦ β = β ◦ α .

We leave it as an exercise to the reader to show that this additional property is equivalent to
item 2. A hint: to prove that 3 implies 2, use the kernels of the projections of R onto the
two coordinates.

For relational structures associated to algebras with a near unanimity operation, the
tractability of CSP was provided by [30] or by Corollary 11. The relational structures with
associated Mal’tsev algebras define tractable CSPs as well [21], but the algorithm is beyond
the scope of this article.

5.3 Congruence Distributivity
In this section, we describe a class of algebras that significantly benefited from absorption. It
also motivated a study of weaker forms of absorption (comp. Section 5.3.2) which, in many
cases, allow for stronger version of theorems. For instance, in Proposition 10, the standard
absorption can be substituted with any of the weaker forms from Section 5.3.2.

In order to define the class, we need to introduce a new notion: For equivalences α, β on
a set A,

the smallest equivalence containing α and β is denoted by α ∨ β and
by α ∧ β we denote the intersection of α and β.

We say that an algebra A generates a congruence distributive variety (CD variety), if for
every B ∈ V(A), and every α, β, γ congruences on B, we have

α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ).

Note that equivalence on the right side is always contained in the one on the left, so only
one of the inclusions bears consequences.

To illustrate the connection between distributivity of congruences and the structure of
relations, we consider R ⊆ B × C ×D and assume that the projection kernels ηB, ηC , and
ηD, satisfy the distributive law, i.e.

ηB ∧ (ηC ∨ ηD) ⊆ (ηB ∧ ηC) ∨ (ηB ∧ ηD).

Two triples (b, c, d) and (b′, c′, d′) are equivalent modulo the left equivalence, if they are
equivalent modulo ηB and modulo ηC ∨ ηD. The former simply means that b = b′, while
the latter takes place exactly when there is a sequence (b, c, d) = (b1, c1, d1), (b2, c1, d2),
(b3, c2, d2), (b4, c2, d3), . . . , (b2k−1, ck, dk) = (b′, c′, d′); put otherwise, c and c′ are linked in
the projection of R to the second and third coordinates.

The two triples are equivalent modulo the right side if and only if such a sequence exists
with b1 = b2 = · · · = b2k−1 = b. To give this description a more lucid form, we regard R as
a B-labeled bipartite graph with partitions C and D – a triple (b, c, d) corresponds to an
edge (c, d) labeled by b (so the edges can have multiple labels). Now the inclusion can be
interpreted in the following way: If c, c′ ∈ C are incident to a b-labeled edge and they are
linked, then they are linked by b-labeled edges.

The identities characterizing congruence distributivity are derived from the connectivity
property of a subpower of a free algebra, by a proof similar to the proofs in Sections 5.1

L. Barto and M. Kozik 63

and 5.2: Let F denote the 2–generated free algebra for A and let R be the subalgebra of F3

generated by

(x, x, x), (y, x, y), (x, y, y)

which can be described as

R =
{(

(p(x, y, x), p(x, x, y), p(x, y, y)
)

: p is a ternary term operation of A
}

Since A generates a CD variety, the relation R satisfies the connectivity property discussed
above.

The vertices x and y are incident to x-labeled edges (namely (x, x) and (y, y) coming from
the generators of the algebra) and they are linked. Therefore, they must be linked by x-labeled
edges. This produces a sequence (x, x = b1, c1), (x, b2, c1), (x, b2, c2), (x, b3, c2), . . . , (x, bn =
y, cn−1), and the ternary term operations p1, . . . , p2n−1 generating this sequence satisfy

x = p1(x, x, y)
pi(x, y, y) = pi+1(x, y, y) for odd 1 ≤ i ≤ 2n− 3
pi(x, x, y) = pi+1(x, x, y) for even 1 ≤ i ≤ 2n− 2
pi(x, y, x) = x for all 1 ≤ i ≤ 2n− 1 (‡)

p2n−1(x, x, y) = y.

Term operations satisfying such identities are called Jónsson terms, and the following
theorem [37] states an equivalence in the spirit of Theorems 12 and 13.

I Theorem 14. The following are equivalent for an algebra A.
1. A has Jónsson terms.
2. For each subalgebra R of B×C×D regarded as a B-labeled bipartite graph as above and

for each b ∈ B, c, c′ ∈ C,
if c, c′ ∈ C are incident to a b-labeled edge and
they are linked,

then they are linked by b-labeled edges.
3. Any three congruences α, β, and γ of any algebra in V(A) satisfy

α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ)

5.3.1 Near Unanimity and Directed Jónsson Terms
Near unanimity terms are stronger than Jónsson terms. This can be seen in the structure of
subpowers i.e. one can prove item 2 of Theorem 14 using near unanimity operations; or by a
direct syntactic argument as follows.

Let A be an algebra with an n-ary near unanimity term operation f . Define term
operations q1(x, y, z), . . . , qn(x, y, z) by putting

qi(x, y, z) = f(x, . . . , x, y
↑

(n−i+1)

, z, . . . , z).

These terms satisfy

x = q1(x, x, y)
qi(x, y, y) = qi+1(x, x, y) for all 1 ≤ i < n

qi(x, y, x) = x for all 1 ≤ i ≤ n (‡)
qn(x, y, y) = y.

Chapte r 02

64 Absorption in Universal Algebra and CSP

Term operations satisfying such identities are called directed Jónsson terms. It is easy to see
that putting p2i−1(x, y, z) = qi(x, y, z), p2i(x, y, z) = qi(x, z, z) we obtain Jónsson terms and
therefore directed Jónsson terms imply Jónsson terms.

It can be shown that the reverse implication also holds, even for infinite algebras [38].
Moreover, directed Jónsson terms have their own relational condition, i.e. we can extend
Theorem 14 by two additional, equivalent conditions:
4. A has directed Jónsson terms.
5. For each subalgebra R of B×C×C regarded as a B-labeled digraph b ∈ B, c, c′ ∈ C,

if both c and c′ have b-labeled loops
and there is a directed walk from c to c′

then there is a directed b-labeled walk from c to c′.

5.3.2 Jónsson Absorption
The definition of absorption is similar to the conditions imposed on near unanimity terms.
In a similar way, we can talk about Jónsson absorption or directed Jónsson absorption: we
say that B Jónsson absorbs (directed Jónsson absorbs) A when there is sequence of terms
like in the definition of Jónsson terms (directed Jónsson terms) but with the condition (‡)
replaced by pi(B,A,B) ⊆ B.

Quite a few results (e.g. Proposition 10) can be strengthen by relaxing the assumptions
and allowing Jónsson absorption or directed Jónsson absorption instead of the absorption
from Definition 1. However, as an analysis of such relaxations is beyond the scope of this
article, we move to yet another application of absorption.

6 Absorption in Taylor Algebras and Its Consequences

Proper absorption is common, even if algebras do not satisfy restrictive conditions. In fact,
relatively mild assumption on the algebra forces either a strong restriction on the shape of
compatible relations, or proper absorption.

From the algebraic perspective, the aforementioned mild assumption is, roughly, that the
algebra is not “equationally trivial”. By this, we mean that it has a set of term operations
which satisfy some identities that cannot be satisfied by projections. By the Mod–Id Galois
correspondence, this is equivalent to requiring that no algebra in V(A) is a G-set, where a
G-set (in our idempotent world) is an algebra whose every operation is a projection and which
has at least 2 elements. The theorem of Taylor [50] provides an equational characterization
of this class:

I Theorem 15. The following are equivalent for an algebra A.
1. V(A) does not contain a G-set.
2. A has a Taylor term operation, that is, a term operation t that for each i satisfies an

identity of the form

t(. . . , x
↑
i

, . . .) = t(. . . , y
↑
i

, . . .),

where . . . stand for some sequences of x’s and y’s.

An algebra satisfying the equivalent conditions in Theorem 15 is called a Taylor algebra.
Taylor algebras are central to the algebraic approach to CSP: whenever Pol(A) does not
contain a Taylor operation then CSP(A) is NP-complete and the tractability conjecture

L. Barto and M. Kozik 65

(also known as the algebraic dichotomy conjecture) states that, otherwise it is solvable in
polynomial time. The reason behind the hardness part is that if Pol(A) is not Taylor, then
A pp-interprets every relational structure compatible with the G-set in the variety, but every
relational structure is compatible with a G-set.

6.1 Absorption Theorem
The following theorem is used to produce a proper absorption [8].

I Theorem 16 (Absorption Theorem). Let A and B be Taylor algebras (of the same signature)
and R a subdirect linked subalgebra of A×B. Then either A or B has a proper absorbing
subalgebra, or R = A×B.

Proof Strategy. Assume that neither of the algebras have a proper absorbing subalgebra.
The strategy of the proof is the following.

We produce a transitive term operation in A and B. An operation t on A is transitive if,
for each a, b ∈ A and each coordinate i, there exists a tuple (a1, . . . , an) with ai = a such
that t(a1, . . . , an) = b. Such terms are produced by star composing a Taylor term (see
Proposition 2.7 in [8]) using the fact that A has no proper absorbing subalgebra with
respect to the binary operations which appear in the Taylor equations.
We show that a maximal set X ⊆ A (or Y ⊆ B) such that each a ∈ A (b ∈ B) is
adjacent to a common neighbor of all elements of X (Y), absorbs A (B). Having X or
Y nonempty can be obtained by replacing R by a suitable relational composition of the
form R ◦R−1 ◦R ◦
The last item implies that necessarily X = A or Y = B. In the first case, R has a
nonempty right center – the set of elements b ∈ B adjacent to every element of A. we
show that the right center absorbs B. Therefore it is equal to B and then R = A×B.

J

The theorem implies that the non-rectangularity of a binary relation R ≤ A×B enforces
proper absorption in a subalgebra of A or B. Indeed, let R be a non-rectangular relation.
Viewing R as a bipartite graph we get a connected component which is not a biclique. The
elements of this component which are on the left form a set A′ which is a subuniverse of
A, and similarly elements on the right form, denoted by B′, form a subuniverse of B. The
relation R ∩ (A′ ×B′) is subdirect and linked in A′ ×B′ and is not the full product. The
absorption theorem guarantees a proper absorption in A′ or B′.

I Example 17. Going back to the example in Section 2, we will use the Absorption theorem
to show that the polymorphism algebra A of Kc

3 is not Taylor. This is equivalent to proving
that Kx

3 pp-interprets every finite structure. In Section 2, we proved a stronger claim, but,
by the discussion above, the weaker claim still implies that CSP(Kc

3) is NP-complete.
Assume for a contradiction that A is Taylor. The inequality relation R is a subdirect

subalgebra of A2 and it is linked. By the absorption theorem, A has a proper absorbing
subalgebra. This however directly contradicts Proposition 3, as there is no B with R ∩B2

subdirect and linked.

6.2 Loop Lemma
The absorption theorem makes it possible to relax the assumptions of Corollary 4 in two
ways:

Chapte r 02

66 Absorption in Universal Algebra and CSP

instead of assuming that every non-singleton subalgebra of A has a proper absorbing
subuniverse, we assume that it is Taylor,
instead of assuming that the relation is linked, we assume that R has algebraic length 1,
i.e. there is a closed oriented walk in R with one more forward than backward edges.

The generalized theorem [11, 8] states:

I Theorem 18 (Loop Lemma). Let A be a Taylor algebra. If R ≤ A2 is subdirect and has
algebraic length 1, then it has a loop.

Proof. We present only a sketch of the proof. The proof supposes that A has more than one
element (as otherwise the claim holds) and restricts R to a proper subalgebra of A while
preserving subdirectness and algebraic length 1. The reasoning splits in two parts depending
on the existence of a proper absorbing subuniverse in A.

If A has an absorbing subuniverse, then the standard two-stage reasoning, as in the
proof of Proposition 3, can be used. In the walking stage, we find B a proper absorbing
subuniverse of A such that R restricted to B is subdirect. Then, in the reduction stage, we
show that R restricted to B has algebraic length 1.

If A has no absorbing subuniverse, we take the smallest n such that R composed n-times
with itself is linked. Such an n exists since the algebraic length of R is one. Since A has no
absorbing subuniverses, the n-fold composition of R with itself is full (note that if n = 1 we
found the needed loop). We set B′ to consist of all the vertices on the right-hand side of a
linked component of R composed with itself (n− 1)-times. It is easy to see that R restricted
to B′ contains at least one cycle and we define B as the set of all the elements which are
in some cycle in B′. Direct graph-theoretical considerations, using the fact that the n-fold
composition of R is full, show that R restricted to B has algebraic length one. J

A relatively simple consequence of the loop lemma is the CSP dichotomy over relational
structures consisting of a single subdirect binary relation [11, 8] (these are exactly the smooth
digraphs in the terminology of that paper). Theorem 18 is used as the main tool in showing
that a core of such a graph is a disjoint union of directed cycles (which puts the CSP of such
a graph in P), or it has no Taylor polymorphism and the CSP is NP-complete.

6.3 Siggers Term
The Loop lemma, and earlier a similar result for undirected graphs [33, 23], can be used to
prove [49, 39] that every Taylor algebra has Taylor operations of a very particular form.

I Corollary 19 (Taylor Implies Siggers). Every Taylor algebra has a 4-ary term operation s
and a 6-ary term s′ such that

s(x, y, z, x) = s(y, x, y, z) and s′(x, y, x, z, y, z) = s′(y, x, z, x, z, y).

Proof. The argument is very similar to the reasoning in the proof of Theorem 13. Consider F
– the free algebra on three generators and let R be the subalgebra of F2 generated by (x, y),
(y, x), (z, y), and (x, z) for s (or (x, y), (y, x), (x, z), (z, x), (y, z), (z, y) for s′). In both cases,
R is subdirect in F2 and has algebraic length one. (For s′, the relation R is additionally
symmetric.) The loop lemma provides a loop in R which implies the appropriate term. J

The operations from the corollary are called Sigger’s terms (a 4-ary one and a 6-ary one).
The identities of 4-ary Siggers can be rewritten as s(a, r, e, a) = s(r, a, r, e) which serves as
an easy mnemonic. As both of the Sigger’s operations are automatically Taylor, Corollary 19

L. Barto and M. Kozik 67

provides an alternative characterization of Taylor algebras. It is quite surprising that (for
finite idempotent algebras!) nontrivial identities always imply one specific nontrivial identity,
a relatively nice and simple one at that. Even more surprising is a very recent result of
Olšák [48] providing specific nontrivial identities satisfied by any idempotent Taylor algebra,
not necessarily finite. His proof also uses absorption in a substantial way.

6.4 Cyclic Terms
Another equational characterization of Taylor algebras uses cyclic operations [8]. An operation
t of arity n ≥ 2 on a set A is cyclic if t(x1, . . . , xn) = t(x2, . . . , xn, x1).

I Theorem 20 (Taylor Implies Cyclic). If A is Taylor and p is a prime number greater than
|A|, then A has a cyclic term operation of arity p.

Proof. The proof splits into two, uneven, parts. The first important step is to reduce the
problem to a question about compatible relations. Namely, it is enough to prove that each
nonempty p-ary subpower R of A which is invariant under cyclic shifts (called cyclic relation)
contains a constant tuple. This fact provides term operations which are cyclic with respect
to one tuple. These “local cyclic operations” can be composed to a global one which finishes
the proof.

In order to prove the constant tuples in cyclic relations we employ the Loop lemma.
Consider a cyclic subpower R ≤ Ap and let S be the projection of R onto all but the last
coordinate. By cyclic invariance, S is equal to the projection to all but the first coordinate,
therefore the binary relation

T = {((a1, . . . , ap−1), (a2, . . . , ap)) : (a1, . . . , ap) ∈ R}

is a subdirect subalgebra of S2. If we knew that T has algebraic length one, the Loop lemma
would give us a loop in T , which clearly implies a constant tuple in T . Showing that T has
algebraic length 1 is the technical core of the proof. J

The cyclic terms strengthen the characterization of Taylor algebras by means of weak NU
operations [47] – these are such that their value on the tuples (x, . . . , x, y, x, . . . , x) does not
depend on the position of y (but is not necessarily equal to x like for the NU operations).
Corollary 19 also follows from Theorem 20 as both Siggers operations can be obtained by
identification of variables in a cyclic operation of suitable chosen prime arity, as observed
in [43].

The cyclic terms, or more precisely their characterization by cyclic relations, allow to
formulate the algebraic CSP dichotomy conjecture by means of properties of pp-definable
relations as follows:

I The Algebraic CSP Dichotomy Conjecture. Let A be a relational structure. If, for
some (equivalently all) prime number p > |A|, every p-ary cyclic relation pp-definable from
A has a constant tuple, then CSP(A) is tractable. Otherwise, it is NP-complete.

6.5 Conservative CSPs
One of the biggest classes of CSPs known to exhibit the dichotomy was obtained by Bula-
tov [24]. His result confirms the algebraic dichotomy conjecture for all conservative CSPs,
that is, CSPs over relational structures that contain all the unary relations.

I Theorem 21 (Bulatov). Assume that A contains all the unary relations and let A = Pol(A).
If A is a Taylor algebra, then CSP(A) is tractable, else it is NP-complete.

Chapte r 02

68 Absorption in Universal Algebra and CSP

Note that the conservativity of A is equivalent to the fact that each subset of A is a subuniverse
of A.

Bulatov’s proof of Theorem 21 uses his technique of local analysis of finite algebras and
is rather long and technical. Absorption allowed to provide a significantly shorter proof [3].

One ingredient of this alternative proof is the following fact stated in Theorem 36: If P
is a Taylor algebra such that no subalgebra of P has a proper absorbing subuniverse (such
algebras are called hereditarily absorption free), then P has a Maltsev term operation (comp.
Theorem 36). For conservative algebras, this fact can be easily proved from Theorem 20:
Consider a cyclic term t and observe that t(a, a, . . . , a, b) is necessarily equal to b for any
a, b ∈ P , since the result must be either a or b (from conservativity) and it cannot be a
as otherwise {a} would absorb {a, b}. But then m(x, y, z) = t(x, y, y, . . . , y, z) is a Maltsev
term.

The next ingredient is a certain “Rectangularity theorem” for conservative algebras
(Theorem III.7 in [3]). Its simplified version is as follows.

I Proposition 22. Let P,P′ be conservative Taylor algebras and R a subdirect subalgebra of
P×P′. Let, moreover, Q and Q′ be minimal absorbing subalgebras of P and P′ such that
R ∩ (Q×Q′) 6= ∅ and R ∩ (Q× (P ′ \Q′)) 6= ∅. Then Q×Q′ ⊆ R.

Proof. The conservativity and the last assumption on R can be used to show that R∩(Q×Q′)
is a subdirect, linked subuniverse of Q×Q′ (we omit the proof here). Then the claim follows
from the minimality of Q,Q′ and the Absorption theorem. J

The Rectangularity theorem together with the reduction techniques shown in the proof of
Proposition 10 are used to transform a CSP instance into an arc consistent instance with each
Px hereditarily absorption free and which has a solution whenever the original instance had.
The idea is, imprecisely, that Proposition 10 allows to find a subinstance of a Prague instance
where the Px’s in the subinstance are minimal absorbing subuniverses of the Px’s in the
original instance. The Rectangularity theorem now guarantees the propagation of a solution
to a suitably chosen subinstance. We continue in this way until every Px is hereditarily
absorption free. After the transformation is performed, all Px’s have Maltsev operations
and we can apply the Bulatov–Dalmau algorithm for Maltsev constraints mentioned in
Section 5.2.

Using Maróti’s technique from [46], Bulatov has revisited and significantly simplified his
original proof [25]. Notably, some parts of the revised proof (including e.g. the Rectangularity
theorem) turned out to be very similar to the sketched proof by means of absorption – the
interaction between absorption and Bulatov’s local analysis deserves further attention.

7 Applications of Absorption to Local Consistency Checking

One of the main achievements of absorption is the characterization of the CSPs solvable
by “local consistency methods”. In general, a local consistency checking algorithm (LCC
algorithm), operates on a family of local solutions to a CSP by removing the local solutions
which are “inconsistent”. The arc-consistency checking algorithms was an example of such
an algorithm.

Systems of linear equations over the p-element field can be solved in polynomial time,
but not by any LCC algorithm [30]. The restriction of the problem to equations involving at
most 3 variables have the same properties and is equivalent to CSP(Zp), where the domain
of Zp is the p-element field GF (p) and the relations are affine subspaces of GF (p)3.

L. Barto and M. Kozik 69

The solvability by local consistency checking is preserved by pp-interpretations and
homomorphic equivalence [44], therefore a necessary condition for CSP(A) to be solvable by
LCC is that A does not pp-interpret a structure homomorphically equivalent (that is with
homomorphisms to and from) with Zp. We call structures satisfying this necessary condition
Zp–avoiding. The bounded width theorem states that, as conjectured in [44], this necessary
condition is also sufficient. The theorem was proved using absorption [10] and independently
by Bulatov [20] using his local analysis technique.

I Theorem 23. If A is Zp-avoiding, then CSP(A) is solvable in polynomial time by local
consistency checking.

The plan for this section is first to prove the theorem for simplified instances using Prague
instances from Section 4.2.3. Then we will move on to discuss other consistency notions
for simplified instances, including consistency notions easier to compute. The section is
concluded by an overview of results concerning consistency notions and algorithms that do
not assume the simplicity of instances.

7.1 Prague Instances and Local Consistency Checking
Recall the definition of the simplified Prague instance from Section 4.2.3, and note that
Proposition 10 reduces the Prague instance if at least one of the Px’s has a proper absorbing
subuniverse. Unfortunately, this is not always the case for Zp-avoiding structures. Luckily,
we can use the following lemma (Lemma 7.6 in [10], see also [12]) instead.

I Lemma 24. Let A be Zp-avoiding. If A = Pol(A) is simple (has only trivial congruences)
and has no proper absorbing subalgebra, then for every b ∈ A there is an n-ary operation f
of A and elements a1, . . . , an such that

f(a1, . . . , ai−1, a, ai+1, . . . , an) = b for all i and all a ∈ A.

In the situation of the lemma, we say that f points to b. This operation is the missing tool
necessary to tackle the following theorem:

I Theorem 25. Let A be Zp-avoiding. Then every non-trivial Prague instance over A has a
solution.

Proof. The basic idea, and the structure of the proof is the same as in the proof of Theorem 18:
we will show that every nontrivial Prague instance over A = Pol(A) has a solution by shrinking
the sets Px until they are singletons. In case some Px has a proper absorbing subalgebra, we
use Proposition 10. It remains to deal with the case of no absorption.

In this case we choose x so that |Px| > 1 and take a maximal proper congruence αx of
Px. For any y 6= x consider the quotient of Pxy modulo αx:

Ry = {(a/αx, b) : (a, b) ∈ Pxy} ≤ Px/αx ×Py.

The partition of Px/αx into the components of linkedness of Ry defines a congruence of Px/αx,
which, as αx is maximal, is either the equality relation, or the full relation Px/αx × Px/αx.
We will say that the variable y is of type (1) when the relation is equality and of type (2) if
it is full.

In both cases, we get a non-trivial information about Pxy. In the first case, R−1
y is a

graph of a surjection Py → Px/αx. Its kernel, denoted αy, is a congruence of Py and Pxy

modulo αx × αy is an isomorphism between Px/αx and Py/αy. In the second case, Ry is

Chapte r 02

70 Absorption in Universal Algebra and CSP

linked. Neither Py nor Px/αx have any proper absorbing subuniverses (because absorption
can be lifted from quotients) and the Absorption theorem implies that Ry is the full product.
Translating this to the original relation Pxy we get that each vertex in Py is adjacent to an
element in each αx-block.

To shrink the instance, we choose one equivalence block of αx and, for all y’s of type (1),
we choose a block of αy mapped to the chosen block of αx by Ry. For all the other y we
take the whole Py. Such a new, strictly smaller simplified instance is arc consistent because
of the information we obtained in the previous paragraph.

So far the argument only required that A is Taylor, but now we need to use Lemma 24
to choose an operation pointing in Px/αx to the chosen block of αx. Using this operation,
together with the structure of the Ry’s, we are able to imitate the reasoning from the proof
of Proposition 10 and prove that the new instance is Prague. This finishes the reduction. J

The theorem, modulo the reduction to simplified instances, proves Theorem 23. This
reduction is rather direct but results in very inefficient consistency notions for the original
CSP. In Section 7.3 we discuss consistency notions which can be applied without reducing to
simplified instances.

7.2 (2,3)-Consistency, Circle Instances and Semidefinite Programming
To complete section 4.2.2, we will provide a sketch of a proof of Proposition 6. The proposition
states that if, in a simplified (2, 3)-consistent instance, at least one of the Px’s has an absorbing
subuniverse then the instance has a proper (2, 3)-consistent subinstance.

In order to prove this proposition, we require the following theorem which, despite
surprising assumptions, is extremely useful [42].

I Theorem 26. Let an instance of the CSP be arc consistent and such that for every variable
x and a ∈ Px, the map x 7→ a extends to a solution. If, for every x, we have P′x P Px, and
the restriction of the instance to the P ′x’s is arc consistent, then the restriction to the P ′x’s
has a solution.

We will not provide a sketch of the proof, only mention that it hinges on the following
proposition from [13] which vaguely resembles the loop lemma:

I Proposition 27. Let R′ P R be subdirect subpowers of An and for every a ∈ A the tuple
(a, . . . , a) belongs to R. Then R′ contains a constant tuple.

Proof. We present a sketch of the proof which splits into the usual stages. The walking
stage finds a proper B such that R′ ∩Bn is subdirect in Bn. The reduction stage is easy,
indeed, having such B we can restrict both R′ and R to Bn. The assumptions of the theorem
are satisfied for such restrictions and we can repeat the argument until A is a one-element
algebra and the theorem holds.

In order to complete the walking stage, we use pp-formulas which are trees and define a
pre-order on subalgebras of A: B v B′ if B′ can be pp-defined from R′ and B by a tree
pp-formula. We can show, using absorption, that this preorder contains elements which are
not below the empty set, and, by the (omitted) definition of tree pp-formulas, we can choose
an appropriate B there. J

Before launching into the proof of Proposition 6, we need to establish one more fact.
Given a simplified CSP instance, we can construct another simplified instance (usually
infinite) which has a solution if and only if the original instance contains a (2, 3)-consistent
subinstance. The idea is to, following Definition 5, construct the instance in steps:

L. Barto and M. Kozik 71

1. start with a copy Px0y0 of any constraint Pxy from the original instance
2. for each new constraint Pxiyj

, consider every variable w (different from x and y) and
introduce into the constructed instance new constraints Pxi,wk

and Pyj ,wk
(where k is

such that wk is a new variable) and repeat.

The following example illustrates first few steps of this procedure:

I Example 28. The following picture presents an instance on four variables {x, y, z, v} with
the constraints Pxy,Pyz,Pzv,Pvx,Pzx,Pyv together with a part of the instance which is
responsible for its (2, 3)-consistency.

x y

zv

x0 y0

z0

v0 v1

v2

y1

y2 x1

x2

z1z2

The constructed instance is infinite, but by a compactness argument (using the fact that
A is finite), a large enough, finite part of the infinite instance plays the same role. This final
remark allows us to finish the proof of Proposition 6.

Proof of Proposition 6. The proof starts with a (2, 3)-consistent instance over Px’s. The
walking stage which, for every x, finds P′x P Px defining a proper arc consistent, absorbing
subinstance of the original instance goes in exactly the same way as it was done in the
proof of Proposition 10. The proof is actually simpler as we work with strictly stronger
assumptions here.

The reduction stage follows from Theorem 26. Indeed, take a finite part of the simplified
instance responsible for (2, 3)-consistency of the original instance. After setting Pxi

to Px in
this new instance, we get that for every a ∈ Pxi the map xi 7→ a extends to a solution. The
restriction of this instance to P ′xi

= P ′x is an arc consistent, absorbing subinstance which, by
Theorem 26, has a solution in P ′xi

’s.
Thus every finite part of the instance responsible for consistency of the original instance can

be solved in the P ′x’s and therefore, by compactness reasoning, we can find a (2, 3)-consistent
subinstance of the original instance inside the P ′x’s, which proves the proposition. J

The analogue for a circle instance, Proposition 8, can be proved in an almost identical way.
Using Proposition 8 and a refinement of the non-absorbing part of the proof of Theorem 25
we can establish the following theorem.

I Theorem 29. Let A be Zp-avoiding. Then every non-trivial circle instance over A has a
solution.

Now we are very close to defining a consistency notion which corresponds directly to
semidefinite programming (SDP) relaxations of CSP instances. Each simplified CSP instance
can be relaxed to a problem solvable by the semidefinite programming. This relaxation has
very useful properties: among other things, it allows us to “almost solve almost solvable

Chapte r 02

72 Absorption in Universal Algebra and CSP

instances” of CSP of bounded width [9]. More precisely, if the instance is “almost solvable”,
i.e. solvable after forgetting a small number of constraints, we can use the solution to the
SDP relaxation to produce an instance which does not forget many constraints and is
pq-consistent [41].

I Definition 30. An arc consistent simplified instance is pq-consistent if for every a ∈ Px

and every p, q circle patterns at x, a is reachable from itself via j(p+ q) + p for some j.

The pq-consistency implies solvability for instances which are Zp-avoiding by a proof almost
identical to the proof for circle instances:

I Theorem 31. Let A be Zp-avoiding. Then every pq-consistent instance over A has a
solution.

7.3 Consistency Notions for All Instances

A characterization of the set of templates whose CSP is solvable by local consistency checking
was conjectured by Feder and Vardi in [30]. Even after the conjecture was confirmed [10], it
was not clear whether a single consistency notion suffices to deal with all these problems.
Note that up till now, all the consistency notions worked for simplified instances, and it
is not hard to generalize them to all instances over binary constraints. But incorporating
constraints of higher arities destroys the uniformity of the reasoning.

The first result identifying a consistency notion that works for all the Zp-avoiding
templates is [6, 20]. The result uses the concept of (2, 3)-minimality which will not be defined
in this paper. The proof of this result in [6] is a small refinement of the proof of Theorem 23.

I Theorem 32. Let A be Zp-avoiding. Then every (2, 3)-minimal instance over A has a
solution.

Further results established other consistency notions which work for all the Zp-avoiding
templates. Here we define Singleton Arc Consistency (SAC) [29], a well established notion of
consistency. We present an algorithm for SAC using a pseudocode similar to that used for
arc consistency:

for every variable x do add constraint Px := A to the instance
repeat

for every variable x and every a ∈ Px do
run arc consistency with additional, temporary constraint x = a

if the last AC derived a contradiction do substitute Px with Px \ {a}
end for

until none of the Px’s changed

Similarly as in the case of arc consistency, we say that an instance is a SAC instance if it
can be returned by the algorithm above. The following theorem states that SAC works,
uniformly, for all the CSPs solvable by local consistency checking.

I Theorem 33. Let A be Zp-avoiding. Then every SAC instance over A has a solution.

This theorem follows from generalizations of Theorems 29 and 31 to arbitrary instances.

L. Barto and M. Kozik 73

8 Abelianness Versus Absorption

One of the chief achievements of universal algebra is finding suitable generalizations of several
concepts in group theory, like abelianness, solvability, and the commutator [31, 34]. Here we
only introduce the most basic concept of an abelian algebra.

I Definition 34. An algebra A is abelian if one of the equivalent conditions is satisfied:
For every term function t elements a, b and tuples c, d:

t(a, c) = t(a, d) implies that t(b, c) = t(b, d);

the set {(a, a) : a ∈ A} is a block of some congruence on A2.

Examples of abelian algebras include the polymorphism algebras of Zp from Section 7.
This indicates that abelian algebras are natural obstacles for proving the dichotomy conjecture
by means of refining the local consistency algorithms. In fact, A is not Zp-avoiding if and
only if some subalgebra of Pol(A) has a nontrivial abelian quotient [51].

8.1 Abelianness Prevents Absorption
The notion of absorption is, in a sense, complementary to abelianness: the following theorem
says that an abelian algebra has no non-trivial absorbing subuniverses. In fact, even a weaker
property, solvability, prevents absorption [12].

I Theorem 35. If A is abelian, then no subalgebra of A has a proper absorbing subalgebra.

Proof. We only show a special case, that an abelian algebra cannot have a 1-element
absorbing subuniverse.

Assume that {a} absorbs an algebra A and α is a congruence of A2 from the definition of
abelianness (the second item). Then {(a, a)} absorbs A2 and thus {(a, a)/α} absorbs A2/α.
This in turns implies that (a, a)/α absorbs A2, but, from the abelianness of A, (a, a)/α is
not linked while A2 is. Since the linkedness is absorbed by a version of the argument from
Proposition 3, we reach a contradiction. J

The algebras satisfying the conclusion of the previous theorem are called hereditarily
absorption free, or HAF for short (note that they have already appeared in Section 6.5).
This theorem is interesting in combination with the following simple consequence of the
Absorption theorem [12].

I Theorem 36. If A is HAF and Taylor, then A has a Maltsev term operation.

Proof. In context of Sections 5.2 and 6.1 the proof is natural: to prove Maltsev it suffices to
show that the free algebra F has rectangular subpowers. On the other hand, if an algebra
B is Taylor and HAF, then all its subalgebras have rectangular subpowers because of the
Absorption theorem. It is, therefore, enough to show that F is HAF. But F is a subpower of
A and every subpower of a HAF algebra is HAF. We leave it for the reader as an exercise to
prove the latter fact. J

By combining the last two theorems, we get that each abelian (or just solvable) Taylor
algebra has a Maltsev term operation. This fact was known before absorption [34], but its
proof was quite long and used heavy machinery.

Chapte r 02

74 Absorption in Universal Algebra and CSP

8.2 Absorption Theorem for Higher Arity Relations
Abelianness is also an obstacle for generalizing the Absorption theorem to higher arities. The
following example shows that a naive generalization does not work in general – even if all
the binary projections of a ternary relation are full and the relation is not full, no absorbing
subalgebra needs to exist.

I Example 37. Consider an algebra A over {0, 1} with a single ternary plus, i.e. x, y, z 7→
x + y + z mod 2. The relation {(a, b, c) : a + b + c = 0 mod 2} is a non-full subuniverse
of A3 and has full binary projections. However it is easy to see, that the algebra has no
non-trivial absorbing subuniverses.

Actually, every abelian algebra can participate in a problematic ternary relation. Indeed,
take an abelian algebra A and let α be a congruence on A2 from the definition of abelianness.
It is easy to see that {(a, b, (a, b)/α) : a, b ∈ A} is a non-trivial, subdirect subuniverse of
A2 × (A2/α) and has all the binary projections linked.

We finish with a theorem witnessing that abelianness is the only obstacle. Its proof is
left as a harder exercise for the reader.

I Theorem 38. Let A1, . . .An be Taylor algebras (in the same signature) and let R, subdirect
in
∏n

i=1 Ai, be such that all the binary projections of R are linked. Then
1. some Ai has a proper absorbing subuniverse, or
2. some Ai has a proper congruence α such that Ai/α is abelian, or
3. R =

∏n
i=1 Ai.

9 Conclusions

The simple concept of absorption proved surprisingly useful in universal algebra and CSP.
The main contribution of absorption to CSP is a proof of the characterization of CSPs
of bounded width, and the main contribution to algebra is the existence of cyclic terms.
However, the concept is not yet well understood even for finite Taylor algebras.

The main obstacle to applying absorption outside of CSPs of bounded width is the
incompatibility with abelian algebras. In particular, to prove the CSP dichotomy conjecture
one needs to be able to operate on instances which in some parts have absorption, but
in other parts are e.g. abelian. Currently, apart from very few basic results, we lack the
knowledge to work with such instances.

Another challenge in the field is to bridge the gap between the absorption theory and the
local approach used by Bulatov. The structure of an algebra imposed by Bulatov’s colored
graphs is similar to the one imposed by absorption (or lack of absorption), but the concepts
are seemingly different.

An active direction of research is to extend the results obtained by absorption to infinite
algebras. In this direction, we already know that the characterization by directed Jónsson
terms extends [38], an analogue of a Sigger’s term exists [48], etc. However, many questions
remain. In particular, we do not know the correct extent and statement of the loop lemma
for infinite algebras, although some facts are known [15].

References
1 Kirby A. Baker and Alden F. Pixley. Polynomial interpolation and the Chinese remainder

theorem for algebraic systems. Mathematische Zeitschrift, 143:165–174, 1975. doi:10.
1007/BF01187059.

http://dx.doi.org/10.1007/BF01187059
http://dx.doi.org/10.1007/BF01187059

L. Barto and M. Kozik 75

2 Libor Barto. Finitely related algebras in congruence modular varieties have few subpowers.
to appear in JEMS.

3 Libor Barto. The dichotomy for conservative constraint satisfaction problems revisited. In
26th Annual IEEE Symposium on Logic in Computer Science—LICS 2011, pages 301–310.
IEEE Computer Soc., Los Alamitos, CA, 2011.

4 Libor Barto. Finitely related algebras in congruence distributive varieties have near una-
nimity terms. Canad. J. Math., 65(1):3–21, 2013. doi:10.4153/CJM-2011-087-3.

5 Libor Barto. The constraint satisfaction problem and universal algebra. The Bulletin of
Symbolic Logic, 21:319–337, 9 2015. doi:10.1017/bsl.2015.25.

6 Libor Barto. The collapse of the bounded width hierarchy. Journal of Logic and Compu-
tation, published online 2014. doi:10.1093/logcom/exu070.

7 Libor Barto and Marcin Kozik. New conditions for Taylor varieties and CSP. In Proc. of the
2010 25th Annual IEEE Symposium on Logic in Computer Science, LICS’10, pages 100–109,
Washington, DC, USA, 2010. IEEE Computer Society. doi:10.1109/LICS.2010.34.

8 Libor Barto and Marcin Kozik. Absorbing subalgebras, cyclic terms, and the constraint
satisfaction problem. Logical Methods in Computer Science, 8(1), 2012. doi:10.2168/
LMCS-8(1:7)2012.

9 Libor Barto and Marcin Kozik. Robust satisfiability of constraint satisfaction problems.
In Proceedings of the 44th symposium on Theory of Computing, STOC’12, pages 931–940,
New York, NY, USA, 2012. ACM. doi:10.1145/2213977.2214061.

10 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consis-
tency methods. J. ACM, 61(1):3:1–3:19, January 2014. doi:10.1145/2556646.

11 Libor Barto, Marcin Kozik, and Todd Niven. The CSP dichotomy holds for digraphs with
no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM
J. Comput., 38(5):1782–1802, 2008/09.

12 Libor Barto, Marcin Kozik, and David Stanovský. Mal’tsev conditions, lack of ab-
sorption, and solvability. Algebra universalis, 74(1):185–206, 2015. doi:10.1007/
s00012-015-0338-z.

13 Libor Barto, Marcin Kozik, and Ross Willard. Near unanimity constraints have bounded
pathwidth duality. In Proceedings of the 2012 27th Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 125–134. IEEE Computer Soc., Los Alamitos, CA, 2012.
doi:10.1109/LICS.2012.24.

14 Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of reflections.
Manuscript, 2015.

15 Libor Barto and Michael Pinsker. The algebraic dichotomy conjecture for infinite domain
constraint satisfaction problems. Manuscript, 2016.

16 Garrett Birkhoff. On the structure of abstract algebras. Proc. Camb. Philos. Soc., 31:433–
454, 1935.

17 Manuel Bodirsky. Constraint satisfaction problems with infinite templates. In Na-
dia Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors, Complexity of Con-
straints, volume 5250 of Lecture Notes in Computer Science, pages 196–228. Springer, 2008.
doi:10.1007/978-3-540-92800-3_8.

18 V.G. Bodnarčuk, L.A. Kalužnin, V.N. Kotov, and B.A. Romov. Galois theory for Post
algebras. I, II. Kibernetika (Kiev), 5(3):1–10; ibid. 1969, no. 5, 1–9, 1969.

19 Simone Bova, Hubie Chen, and Matthew Valeriote. Generic expression hardness results
for primitive positive formula comparison. Inf. Comput., 222:108–120, January 2013. doi:
10.1016/j.ic.2012.10.008.

20 Andrei Bulatov. Bounded relational width. Manuscript, 2009.
21 Andrei Bulatov and Víctor Dalmau. A simple algorithm for Mal′tsev constraints. SIAM J.

Comput., 36(1):16–27 (electronic), 2006.

Chapte r 02

http://dx.doi.org/10.4153/CJM-2011-087-3
http://dx.doi.org/10.1017/bsl.2015.25
http://dx.doi.org/10.1093/logcom/exu070
http://dx.doi.org/10.1109/LICS.2010.34
http://dx.doi.org/10.2168/LMCS-8(1:7)2012
http://dx.doi.org/10.2168/LMCS-8(1:7)2012
http://dx.doi.org/10.1145/2213977.2214061
http://dx.doi.org/10.1145/2556646
http://dx.doi.org/10.1007/s00012-015-0338-z
http://dx.doi.org/10.1007/s00012-015-0338-z
http://dx.doi.org/10.1109/LICS.2012.24
http://dx.doi.org/10.1007/978-3-540-92800-3_8
http://dx.doi.org/10.1016/j.ic.2012.10.008
http://dx.doi.org/10.1016/j.ic.2012.10.008

76 Absorption in Universal Algebra and CSP

22 Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM J. Comput., 34:720–742, March 2005. doi:
10.1137/S0097539700376676.

23 Andrei A. Bulatov. H-coloring dichotomy revisited. Theoret. Comput. Sci., 349(1):31–39,
2005.

24 Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM
Trans. Comput. Logic, 12(4):24:1–24:66, July 2011. doi:10.1145/1970398.1970400.

25 Andrei A. Bulatov. Conservative constraint satisfaction re-revisited. J. Comput. Syst. Sci.,
82(2):347–356, March 2016. doi:10.1016/j.jcss.2015.07.004.

26 Hubie Chen and Matthew Valeriote. Learnability of solutions to conjunctive queries: The
full dichotomy. In COLT, volume 40 of JMLR Workshop and Conference Proceedings, pages
326–337. JMLR.org, 2015.

27 Victor Dalmau, Marcin Kozik, Andrei Krokhin, Konstantin Makarychev, Yury Makarychev,
and Jakub Opršal. Robust algorithms with polynomial loss for near-unanimity CSPs. sub-
mitted.

28 Víctor Dalmau and Justin Pearson. Closure functions and width 1 problems. In Prin-
ciples and Practice of Constraint Programming – CP’99, 5th International Conference,
Alexandria, Virginia, USA, October 11-14, 1999, Proceedings, pages 159–173, 1999. doi:
10.1007/978-3-540-48085-3_12.

29 Romuald Debruyne and Christian Bessiere. Some practicable filtering techniques for the
constraint satisfaction problem. In In Proceedings of IJCAI’97, pages 412–417, 1997.

30 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic snp
and constraint satisfaction: A study through datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1998. doi:10.1137/S0097539794266766.

31 Ralph Freese and Ralph McKenzie. Commutator theory for congruence modular varieties,
volume 125 of London Mathematical Society Lecture Note Series. Cambridge University
Press, Cambridge, 1987.

32 David Geiger. Closed systems of functions and predicates. Pacific J. Math., 27:95–100,
1968.

33 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Combin. Theory Ser.
B, 48(1):92–110, 1990.

34 David Hobby and Ralph McKenzie. The structure of finite algebras, volume 76 of Contem-
porary Mathematics. American Mathematical Society, Providence, RI, 1988.

35 Peter Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200(1–2):185–204, 1998. doi:10.1016/S0304-3975(97)00230-2.

36 Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. J. ACM,
44(4):527–548, 1997.

37 Bjarni Jónsson. Algebras whose congruence lattices are distributive. Math. Scand., 21:110–
121 (1968), 1967.

38 Alexandr Kazda, Marcin Kozi, Ralph McKenzie, and Matthew Moore. Absorption and
directed Jónsson terms. submitted.

39 Keith Kearnes, Petar Marković, and Ralph McKenzie. Optimal strong mal’cev conditions
for omitting type 1 in locally finite varieties. Algebra universalis, 72(1):91–100, 2014. doi:
10.1007/s00012-014-0289-9.

40 Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolinek. The complexity of general-
valued csps. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foun-
dations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 1246–1258. IEEE Computer Society, 2015. URL: http://dx.doi.org/10.1109/
FOCS.2015.80, doi:10.1109/FOCS.2015.80.

http://dx.doi.org/10.1137/S0097539700376676
http://dx.doi.org/10.1137/S0097539700376676
http://dx.doi.org/10.1145/1970398.1970400
http://dx.doi.org/10.1016/j.jcss.2015.07.004
http://dx.doi.org/10.1007/978-3-540-48085-3_12
http://dx.doi.org/10.1007/978-3-540-48085-3_12
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1016/S0304-3975(97)00230-2
http://dx.doi.org/10.1007/s00012-014-0289-9
http://dx.doi.org/10.1007/s00012-014-0289-9
http://dx.doi.org/10.1109/FOCS.2015.80
http://dx.doi.org/10.1109/FOCS.2015.80
http://dx.doi.org/10.1109/FOCS.2015.80

L. Barto and M. Kozik 77

41 Marcin Kozik. Weak consistency notions for all the CSPs of bounded width. URL: https:
//arxiv.org/abs/1605.00565.

42 Marcin Kozik. Weak consistency notions for all the CSPs of bounded width. In Proceedings
of the Thirty-First Annual ACM-IEEE Symposium on Logic in Computer Science (LICS
2016), pages 633–641. IEEE Computer Society Press, July 2016.

43 Marcin Kozik, Andrei Krokhin, Matt Valeriote, and Ross Willard. Characterizations
of several maltsev conditions. Algebra universalis, 73(3):205–224, 2015. doi:10.1007/
s00012-015-0327-2.

44 Benoit Larose and László Zádori. Bounded width problems and algebras. Algebra Univer-
salis, 56(3-4):439–466, 2007.

45 A. I. Mal’tsev. On the general theory of algebraic systems. Mat. Sb. N.S., 35(77):3–20,
1954.

46 Miklóś Maróti. Tree on top of maltsev. Manuscript, 2010.
47 Miklós Maróti and Ralph McKenzie. Existence theorems for weakly symmetric operations.

Algebra Universalis, 59(3-4):463–489, 2008.
48 Miroslav Olšák. The weakest non-trivial term condition for idempotent algebras.

Manuscript, 2016.
49 Mark H. Siggers. A strong mal’cev condition for locally finite varieties omitting the unary

type. Algebra universalis, 64(1-2):15–20, 2010. doi:10.1007/s00012-010-0082-3.
50 Walter Taylor. Varieties obeying homotopy laws. Canad. J. Math., 29(3):498–527, 1977.
51 Matthew A. Valeriote. A subalgebra intersection property for congruence distributive vari-

eties. Canad. J. Math., 61(2):451–464, 2009. doi:10.4153/CJM-2009-023-2.

Chapte r 02

https://arxiv.org/abs/1605.00565
https://arxiv.org/abs/1605.00565
http://dx.doi.org/10.1007/s00012-015-0327-2
http://dx.doi.org/10.1007/s00012-015-0327-2
http://dx.doi.org/10.1007/s00012-010-0082-3
http://dx.doi.org/10.4153/CJM-2009-023-2

Constraint Satisfaction Problems over Numeric
Domains∗

Manuel Bodirsky1 and Marcello Mamino2

1 Institut für Algebra, TU Dresden, Dresden, Germany
manuel.bodirsky@tu-dresden.de

2 Institut für Algebra, TU Dresden, Dresden, Germany
marcello.mamino@tu-dresden.de

Abstract
We present a survey of complexity results for constraint satisfaction problems (CSPs) over the
integers, the rationals, the reals, and the complex numbers. Examples of such problems are
feasibility of linear programs, integer linear programming, the max-atoms problem, Hilbert’s
tenth problem, and many more. Our particular focus is to identify those CSPs that can be
solved in polynomial time, and to distinguish them from CSPs that are NP-hard. A very helpful
tool for obtaining complexity classifications in this context is the concept of a polymorphism
from universal algebra.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Constraint satisfaction problems, Numerical domains

Digital Object Identifier 10.4230/DFU.Vol7.15301.79

1 Introduction

Many computational problems from many different research areas in theoretical computer
science can be formulated as Constraint Satisfaction Problems (CSPs) where the variables
might take values from an infinite domain. There is a considerable literature about the
computational complexity of particular infinite domain CSPs, but there are only few system-
atic complexity results. Most of these results belong to two research directions. One is the
development of the universal-algebraic approach, which has been so successful for studying the
complexity of finite-domain constraint satisfaction problems. The other direction is to study
constraint satisfaction problems over some of the most basic and well-known infinite domains,
such as the numeric domains Z (the integers), Q (the rational numbers), R (the reals), or C
(the complex numbers), and to focus on constraint relations that are first-order definable
from usual addition and multiplication on those domains. In this way, many computational
problems that are of fundamental importance in computer science and mathematics can
be studied in the same framework. Several recent results are concerned with obtaining a
systematic understanding of the computational complexity of such CSPs; and this survey
article is devoted to presenting these recent results in a common context, and to highlight
some of the common threads that are likely to be fruitful also in the future.

For a fixed structure Γ with finite relational signature τ , the constraint satisfaction
problem CSP(Γ) is the problem of deciding whether a given finite conjunction of atomic

∗ The authors have received funding from the German Science Foundation (DFG, project number 622397)
and from the European Research Council (ERC, grant agreement number 681988, CSP-Infinity).

© Manuel Bodirsky and Marcello Mamino;
licensed under Creative Commons License BY

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný; pp. 79–111

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol7.15301.79
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3

80 Constraint Satisfaction Problems over Numeric Domains

τ -formulas is satisfiable in Γ. That is, for a given instance

R1(x̄1) ∧ · · · ∧Rm(x̄m)

of this problem where x̄1, . . . , x̄m are tuples of variables, we want to decide whether there
exists an assignment of values to those variables such that all the conjuncts (the ‘constraints’)
are satisfied. We often refer to Γ as the template of the CSP. The computational complexity
of CSP(Γ) has been studied intensively when the template Γ has a finite domain; it is always
in NP, and Feder and Vardi [35] conjectured that it is either in P or NP-complete; see
Barto [6] for a short survey on the state of the art concerning progress towards proving the
conjecture.

When the template Γ might have an infinite domain, there is no hope for a complete
classification of the complexity of CSP(Γ) in general [16]: every computational problem is
equivalent (under polynomial-time Turing reductions) to a problem of the form CSP(Γ).
Indeed, even individual templates over numeric domains, usually as a consequence of their
practical significance, are the focus of large branches of current mathematical research. This
research fixes many points on the complexity map of CSPs. More recently, we have seen
systematic results that provide complexity results for entire areas of interesting, albeit less
expressive, templates in this map. In this introduction, and in our survey, we first discuss
known concrete templates and then move on to more systematic classifications.

A famous example of a computational problem that can be formulated as a CSP over a
numeric domain is Hilbert’s 10th problem. It is CSP(Z;R+, R∗, R=1) where

R+ stands for the ternary addition relation {(x, y, z) ∈ Q3 | x+ y = z},
R∗ stands for the ternary multiplication relation {(x, y, z) ∈ Q3 | x ∗ y = z}, and
R=1 stands for the unary relation {1}.

Matiyasevich [79], building upon results of Davis, Putnam, and Robinson, showed that this
computational problem is undecidable (for a reference see [80]).

Another example, sitting at the opposite end of the complexity spectrum, is the feasibility
problem for linear programs. It can be formulated as CSP(Γlin) for Γlin := (Q;≤, R+, R=1)
where R+ and R=1 are defined as before, but over the rational numbers instead of the integers.
Then CSP(Γlin) is easily seen to be polynomial-time equivalent to the feasibility problem for
linear programs (see Section 2.3), which is a computational problem of outstanding theoretical
and practical interest [94]. The complexity of this problem has been an open problem until
Khachiyan’s discovery that the ellipsoid method gives a polynomial-time algorithm [64] (see
Section 3). It is natural to ask which relations can be added to Γlin so that the resulting
expanded structure still has a CSP that can be solved in polynomial time; this is discussed
in Section 4.1.

The choice of the domain of Γ might or might not have an impact on the computational
complexity of CSP(Γ). For example, the structure (Q;≤, R+, R=1) has the same CSP as
the structure (R;≤, R+, R=1) (where R+ and R=1 are defined as above but over R instead
of Q). On the other hand, if we consider the problem CSP(Z;R+, R∗, R=1) and replace
the integers Z by the reals or the complex numbers, and adapt the interpretation of the
relations R+, R∗, and R=1 correspondingly, the complexity of the CSP changes dramatically:
CSP(R;R+, R∗, R=1) is equivalent to the existential theory of the reals, which is decidable
(see Section 5). Even better complexity results are known for CSP(C;R+, R∗, R=1) (again,
see Section 5). If we consider the structure (Z;≤, R+, R=1) instead of (Q;≤, R+, R=1) we
obtain the famous NP-complete integer program feasibility problem.

Also over the integers there are many natural CSPs that can be solved in polynomial
time. Well-known examples are

M. Bodirsky and M. Mamino 81

linear Diophantine equation systems: here the constraints are of the form

a1x1 + · · ·+ akxk = a0

for constants a0, a1, . . . , ak ∈ Z. Such systems can be solved efficiently using linear algebra,
via an appropriate implementation of an algorithm computing the Smith Normal form and
a careful analysis of the size of the coefficients that appear during the computation [61, 29].
Difference logic: here the constraints are of the form x− y ≤ c for c ∈ Z. Such systems
can be solved efficiently using shortest path computations (see, e.g., [32]).

So far, we have seen a powerful framework that captures many natural and important
computational problems, but a systematic picture is missing. For some restricted settings,
however, there is a complete classification of the polynomial-time tractable and the NP-hard
cases. We present two such settings; more follows in the main body of the text. The first
such setting is the class of structures with domain Q that are definable over (Q;<) with the
order alone. This includes for example the structure (Q; Betw) where

Betw := {(x, y, z) ∈ Q3 | x < y < z ∨ z < y < x}

is the so-called betweenness relation. The problem CSP(Q; Betw) is known as the betweenness
problem in theoretical computer science and known to be NP-complete. Also the cyclic
ordering problem, and CSPs from temporal reasoning such as the Point Algebra [101] and
the Ord-Horn class [85] can be cast in this form.

In general, when Γ is a structure that has the same domain as some structure ∆, and all
relations in Γ are first-order definable in ∆ (we do allow equality in first-order formulas), we
refer to Γ as a first-order reduct of ∆ (we first consider the expansion of ∆ by all first-order
definable relations, and then take a reduct in the usual sense, that is, we drop some of
the relations). Classifying the CSPs of first-order reducts of some structure ∆ therefore
corresponds to a bottom-up approach to classifying CSPs, since first-order reducts of a
structure ∆ are typically ‘simpler’ than ∆.

The main result of Bodirsky and Kára [20] states that CSP(Γ) is, for all first-order
reducts Γ of (Q;<), either in P or NP-complete (Section 7). One of the central ideas
of the classification in [20] is that the powerful universal-algebraic approach to constraint
satisfaction, which has been developed for finite-domain CSPs, can be applied here, too.
The reason for this is that first-order reducts of (Q;<) satisfy a strong model-theoretic
condition, ω-categoricity, which can be seen as a finiteness condition via the characterization
of Ryll-Nardzewski: a countably infinite structure Γ is ω-categorical if and only if the
automorphism group of Γ has finitely many orbits of k-tuples, for all k ≥ 1. For ω-categorical
Γ, the complexity of CSP(Γ) is completely captured by the so-called polymorphisms of Γ (see
Section 2.2); they are a generalization of the concept of an endomorphism to higher arities.
The extension of the theory of finite-domain CSPs to (subclasses of) ω-categorical structures
has advanced significantly [8, 9, 23] and is outside the scope of this survey.

Structures on numerical domains are typically not ω-categorical. Consider for example
the structure (Z; Succ) for Succ = {(x, y) | x = y + 1}, the integers with the successor
relation. Its automorphism group has only one orbit, but infinitely many orbits of pairs,
and is therefore not ω-categorical by the theorem of Ryll-Nardzewski mentioned above. The
structure (Z; Succ) can be seen as one of the ‘simplest’ structures over a numerical domain
and with finite signature that is not ω-categorical. Following again the bottom-up approach,
we study the class of CSPs for first-order reducts of (Z; Succ). This class contains non-trivial
CSPs that can be solved in polynomial time; let us mention for example

CSP(Z; {(x, x, x+ 1), (x, x+ 1, x), (x, x+ 1, x+ 1) | x ∈ Z}) . (1)

Chapte r 03

82 Constraint Satisfaction Problems over Numeric Domains

For first-order reducts Γ of (Z; Succ), we almost have a dichotomy: CSP(Γ) is in P, or
NP-complete, or there exists a finite structure Γ′ such that Γ and Γ′ have the same CSP [24]
(Section 8). Hence, the truth of the Feder-Vardi conjecture would imply that also the class of
structures definable over the integers using the successor relation has a complexity dichotomy.

The border between polynomial-time tractable and NP-hard CSPs for first-order reducts
of (Z; Succ) can again be described using polymorphisms, and polymorphisms also play
an important role in the proof of the classification [24]. However, in order to work with
polymorphisms even when the structure Γ is not ω-categorical, we might have to pass
to a structure which has the same CSP as Γ, but a different domain. The point is that
polymorphisms with certain properties might only exist when the structure is sufficiently
saturated, in the model-theoretic sense. For example, instead of (Z; Succ), we would consider
the structure (Q; {(x, y) | x = y + 1}), which has the same CSP, but a richer set of
(automorphisms and) polymorphisms. These phenomena are one of the reasons why the
numeric domains Z, Q, R, and C should not be discussed in isolation; indeed, there are many
fruitful cross-connections between classifications over these domains.

Certain polymorphisms are of particular importance over numeric domains. An important
example for first-order reducts of (Q; +, ∗) and of (R; +, ∗) is the operation (x, y) 7→ (x+y)/2;
such a reduct Γ has this polymorphism if and only if all relations of Γ are convex. Convexity
has recently become a very active topic also in real algebraic geometry [50, 66, 49, 48]. Many
of the central questions that are relevant to CSPs are open.

Another remarkable polymorphism for numeric domains is (x, y) 7→ max(x, y) (or, dually,
(x, y) 7→ min(x, y)). If a finite structure Γ has max as a polymorphism, then CSP(Γ) is known
to be in P [53, 54]. The same is true for first-order reducts of (Q;<), and for first-order
reducts of (Z; Succ) (an example of such a reduct is the structure from (1)). But already
for first-order reducts Γ over (Q;<,+, 1) it is an open problem whether having max as a
polymorphisms implies that CSP(Γ) can be solved by a polynomial-time algorithm; such
an algorithm would also imply polynomial-time tractability for many problems of open
computational complexity in seemingly different areas of theoretical computer science: the
model-checking problem of the propositional µ-calculus, solving mean payoff games and
simple stochastic games; these connections are discussed in Section 6.

Researchers in model theory have obtained remarkable results in the classification of
first-order reducts of structures like (C; +, ∗) or (R; +, ∗) up to first-order interdefinability.
For instance, Marker and Pillay [76] prove that any first-order reduct Γ of (C; +, ∗) that
contains + is either a first-order reduct of an expansion of (C; +) by constants, or the complex
multiplication ∗ has a first-order definition in Γ. Similar results are available for (R; +, ∗)
instead of (C; +, ∗); see [86, 75, 77, 39]. In order to be applicable for complexity analysis
for CSPs, we would need refinements of these results for primitive positive definability (see
Section 2.1) instead of first-order definability.

Finally, we also discuss classes of constraint satisfaction problems over numeric domains
that provably do not have a complexity dichotomy: this turns out to be the case for first-order
reducts of (Z; +, ∗); a proof can be found in Section 9. We were unable to prove such a
non-dichotomy result for first-order reducts of (R; +, ∗). On the other hand, we have seen
that already classifying first-order reducts of (Q; 1,+,≤) presents considerable challenges.
We discuss in Section 10 what the next steps for the bottom-up approach to classifying CSPs
on numerical domains might be.

M. Bodirsky and M. Mamino 83

2 Constraint Satisfaction Problems

We use standard notation and terminology from model theory; see e.g. [52]. For better
readability we abuse notation and identify formulas with the relations they define; e.g., we
write (Q;x > y2) for the relational structure (Q; {(x, y) ∈ Q2 | x > y2}).

2.1 Primitive Positive Formulas
A first-order formula is primitive positive if it is of the form

∃x1, . . . , xn (ψ1 ∧ · · · ∧ ψm)

where ψ1, . . . , ψn are atomic formulas; that is, no negation, disjunction, and universal
quantification is allowed (but equality is allowed). The constraint satisfaction problem
for a relational τ -structure Γ can then be rephrased as follows: given a primitive positive
τ -sentence φ (i.e., a primitive positive formula without free variables, formed with relations
from Γ), does φ hold in Γ?

The relevance of primitive positive formulas for the CSP comes from the following lemma,
due to which works over finite and infinite structures alike [53]).

I Lemma 1 (Jeavons–Cohen–Gyssens). Let Γ be a relational structure, and R a relation that
can be defined using a primitive positive formula over Γ . Then CSP(Γ, R), that is, the CSP
for the expansion of Γ by the relation R, is log-space equivalent to CSP(Γ).

The proof idea is to replace occurrences of R in an instance by their primitive positive
definition, introducing new variables for the existentially quantified variables in these defini-
tions (in optimization, even if not presented at this level of generality, this idea is commonly
used, and the newly introduced variables are called slack variables).

2.2 Polymorphisms
Which relations are primitive positive definable over a given structure? This can be a difficult
question, but we have seen in the previous section that it is an important question when we
want to study the computational complexity of a CSP. A very important tool for answering
this question are polymorphisms.

I Definition 2. A function f : Bk → B preserves a relation R ⊆ Bm if for all

(a1
1, . . . , a

m
1), . . . , (a1

k, . . . , a
m
k) ∈ R

we have that (f(a1
1, . . . , a

1
k), . . . , f(am1 , . . . , amk)) ∈ R. When Γ is a relational structure then

f is called a polymorphism of Γ if f preserves all relations of Γ.

In other words, f is a polymorphism of Γ if and only if f is a homomorphism from Γk to
Γ. Unary polymorphisms are also called endomorphisms, and automorphisms are precisely
the bijective endomorphisms whose inverse is also an endomorphism. It is well-known that
the set of all automorphisms forms a permutation group, the set of all endomorphisms a
transformation monoid, and the set of all polymorphisms a function clone, which are a
central topic in universal algebra. The key fact that links polymorphisms with primitive
positive definability is that when R is primitive positive definable in Γ , then R is preserved
by the polymorphisms of Γ (for any structure Γ over any domain). This is useful in the
contrapositive to show that something is not primitive positive definable over Γ : it suffices

Chapte r 03

84 Constraint Satisfaction Problems over Numeric Domains

to exhibit a polymorphism of Γ that does not preserve R. This test gives a necessary and
sufficient criterion for structures Γ over a finite domain [25], and also for many infinite
structures Γ , e.g., when Γ is countably categorical (see Section 7). And even when Γ is not
countably categorical, polymorphisms can be an important tool (see Section 8).

2.3 Infinite Signatures
We now come to an important issue that we hid so far, but which is an important aspect of
CSPs, in particular of CSPs over numeric domains: the problem of encoding instances if the
structure Γ has an infinite signature. An infinite signature is natural when we want to view
for example the feasibility problem for linear programs as a CSP. There, the constraints in an
instance of the CSP are of the form a1x1 + · · ·+ anxn ≥ a0, for some a0, a1, . . . , an ∈ Q. So
we would consider the signature that contains a relation symbol for each of those relations;
there is a countably infinite number of them.

Also over finite domains, many well-known computational problems call for CSP formula-
tions with templates Γ having an infinite signature, for example:

Horn-SAT: the signature contains for every n ≥ 0 a symbol for the relations defined over
{0, 1} by the Boolean expression ¬x1 ∨ · · · ∨ ¬xn ∨ x0 or by ¬x1 ∨ · · · ∨ ¬xn.
Linear equations over a finite field F : the signature contains for every n ≥ 0 and
a0, a1, . . . , an ∈ F a symbol for the n-ary relation defined by a1x1 + · · ·+ anxn = a0.

However, when the signature of Γ is infinite, the computational complexity of CSP(Γ)
depends on how the symbols of the signature of Γ are represented in the input instances to
CSP(Γ). For finite structures Γ , the standard way to represent a relation symbol R from the
signature of Γ is by an explicit list of tuples that are in the relation R. When the domain of Γ
is infinite, this is typically no longer an option (already the basic relations < over Q or Succ
over Z contain infinitely many tuples, so they cannot be stored explicitly). Alternatively, we
can use symbolic representations of relations; how precisely these representations might look
like depends on the domain, and might also depend on the specific algorithmic result that
we want to establish. We list a couple of options.

1. In general, when Γ is a first-order reduct of some structure ∆ with a finite signature, we
can represent a relation R of Γ by its first-order definition in ∆.

2. More specifically, for first-order reducts Γ of (Q;<) we can use the fact that (Q;<) has
quantifier elimination (see, e.g., Hodges [52]), so we can represent a relation R from Γ by
its quantifier-free definition over (Q;<) in disjunctive normal form (DNF).

3. Likewise, the structure (Z; s) has quantifier elimination, where s is the unary successor
function, and again we might use quantifier-free formulas in DNF to represent the relations
of first-order reducts of these structures. In this situation, we have to point out another
subtlety, namely how to represent terms of the form sn(x) := s(s(· · · s(x) · · ·)): whether
n is coded in unary or in binary can make the difference between an easy and a hard
problem (see e.g. the problems from Definition 38 and Definition 40 in Section 6).

4. Finally, also for the structure (Q;<,+) we can use the fact that (Q;<,+) has quantifier
elimination in the language that additionally contains a constant symbol for each rational
number [36], so we can represent a relation R from Γ by its quantifier-free definition in
disjunctive normal form (DNF). Here it is natural to assume that the constants for the
rational numbers are represented in binary.

Option (1) listed above is not well-suited for obtaining polynomial-time results for CSPs,
since already deciding whether a single relation, even when represented by a quantifier-free
formula, is empty or not is NP-hard. For the representations given in (2)-(4), on the other

M. Bodirsky and M. Mamino 85

hand, many interesting algorithms exist that solve the CSP for infinite-signature reducts in
polynomial time. We would like to stress that when the signature of Γ is finite, these input
representation issues do not arise: all the representations given above would give the same
complexity results for CSP(Γ).

In some cases there is a different approach to deal with infinite signatures. Let Γ be a
relational structure and let Γ′ be the structure obtained from Γ by dropping some of the
relations (i.e., Γ′ is a reduct of Γ in the classical sense). We say that the relations of Γ′ form
a basis for Γ if all relations in Γ have a primitive positive definition over Γ′. In this case,
and if the signature of Γ′ is finite, then we can use primitive positive formulas over Γ′ to
represent the relations from Γ . The following lemma illustrates this approach (and justifies
our presentation of linear program feasibility in the introduction); the proof is easy and can
be found in [18].

I Lemma 3. Every relation

R := {(x1, . . . , xk) ∈ Qk | a1x1 + · · ·+ akxk ≥ a0}

for a0, a1, . . . , ak ∈ Q has a primitive positive definition over (Q;≤, R+, R=1). Moreover, we
can find a primitive positive definition whose size is polynomial in the representation size of
a0, a1, . . . , ak when represented in binary.

We would like to mention that for CSPs of templates with infinite signature it makes
sense to consider the restricted version where only k variables are allowed in the input, for a
fixed natural number k. The fact that k-variable integer linear program feasibility can be
decided in polynomial time, for example, is a celebrated result of Lenstra [72].

For finite domains it is an open problem whether there are infinite constraint languages Γ
such that CSP(Γ) is computationally hard if the relations in the constraints are represented
explicitly, but where the computational hardness is not already witnessed by a finite subset
of the relations of Γ; see the discussion in [26].

3 Linear Programming

Our journey through constraint satisfaction problems over numeric domains begins with the
linear program feasibility problem. This problem will serve as a model, and also as a tool for
further investigations.

I Definition 4. The problem linear program feasibility is the CSP of the structure
with domain R and all the relations of the form

Rlp
a1,...,an,c :=

{
x ∈ Rn

∣∣ a1x1 + · · ·+ anxn ≥ c
}

with a1, . . . , an, c ∈ Q.

We assume, in our definition, that the variables range over the real numbers, but the
coefficients must be rational. The restriction on the coefficients is justified by the need to
manipulate them computationally. Nevertheless, one might want to abstract from the details
of number representation. This might have practical reasons, because some applications rely
on fixed precision floating point arithmetic implemented in hardware. Also, theoretically at
least, one might pick the coefficients in a subset of the reals (or even of a non-Archimedean real-
closed field) that is larger than the rational subfield, and yet admits an explicit representation.
This approach leads to a model of computation in which (real) numbers are treated as black-
box entities, and algorithms have access to an oracle that performs a certain set of basic

Chapte r 03

86 Constraint Satisfaction Problems over Numeric Domains

operations on them. The complexity of algorithms is thus measured by the number of
arithmetic operations and (crucially) order comparisons performed as a function of the
amount of numerical inputs: this is the so-called Blum-Shub-Smale model of computation.
An algorithm is said to be strongly polynomial if it is polynomial in both the Turing machine
(or bit) model, and in the Blum-Shub-Smale model.

Linear programming is usually formulated as an optimization problem where the goal
is to maximize a given linear function over the feasibility region. It is well known that
linear programming is polynomial-time equivalent to the linear program feasibility problem
(both in the Turing and in the Blum-Shub-Smale model). The groundbreaking application,
due to Khachiyan, of the ellipsoid method provided the first polynomial-time algorithm for
the linear program feasibility problem [64]. Other polynomial time algorithms addressing
directly the optimization problem followed, notably Karmarkar’s interior point projective
method [62], and later barrier-function interior point methods (see for instance [103]). What
all this techniques have in common is that they rely on infinite approximation procedures.
To get from such methods a polynomial time decision procedure, one needs some a priori
information of such nature, as to guarantee that the decision is determined by a degree of
approximation obtainable in polynomial time. For example, Khachiyan’s ellipsoid method
needs a bound from below to the volume of the feasibility region (assuming that it has non-
empty interior), and interior point methods require, essentially, to bound the representation
size of the optimum (which is necessarily a rational number or ±∞). Thus neither of
the known polynomial time algorithms could solve linear program feasibility on a
non-Archimedean field, and none, in particular, is strongly polynomial.

The existence of a strongly polynomial algorithm for linear programming is, today, possibly
the most important related problem. Dantzig’s simplex method requires the complement of
a pivoting rule to make a complete algorithm. Despite its practical effectiveness, no known
pivoting rule has provably polynomial time, and most can be explicitly defeated [65, 55, 5, 43,
38, 37]. Sub-exponential randomized simplex algorithms have been constructed by Kalai [60]
and Matoušek, Sharir, and Welzl [81]; see [47] for a recent improvement. If one restricts
linear program feasibility to instances with specific properties, in some cases, strongly
polynomial algorithms are known. By work of Tardos [97], this is the case if the coefficients ai
in Definition 4 are integral and bounded by a fixed constant. Megiddo describes a strongly
polynomial algorithm for the case of two variables per inequality [82] and the same author
gives a linear time combinatorial algorithm in fixed dimension [83] (i.e., for a fixed number
of variables).

By formulating linear programming in the integer domain we obtain a well-known
variation.

I Definition 5. The problem integer linear program feasibility is the CSP of the
structure with domain Z and all the relations of the form

Rilp
a1,...,an,c :=

{
x ∈ Zn

∣∣ a1x1 + · · ·+ anxn ≥ c
}

with a1, . . . , an, c ∈ Z.

As opposed to the real numbers formulation, integer linear program feasibility
is NP-complete. Indeed, even the special case in which the variables are restricted to the
set {0, 1} is among Karp’s 21 problems [63]. We list a few notable polynomial-time restrictions.
In the totally unimodular case (i.e., the instances are of the form Ax̄ = c̄ where the matrix A
is totally unimodular), satisfiability in R implies satisfiability in Z, hence integer linear
program feasibility can be solved in strongly polynomial time by Tardos’s algorithm.

M. Bodirsky and M. Mamino 87

The fixed dimension case is solved in polynomial time by an algorithm of Lenstra [72]. By
contrast to the real domain situation, the restriction to two variables per inequality is still
NP-complete, by a result of Lagarias [71].

We will devote the next two sections to CSPs that expand linear programming. In
particular, we will consider semilinear and algebraic constraints.

4 Semilinear Constraints

We say that a subset of Rn is semilinear if it can be defined by a finite Boolean combination
of linear inequalities with integer coefficients. A relational structure with domain R is called
semilinear if all its relations are. In particular, the template for linear program feasibility
is semilinear. As for linear programming, in the semilinear context, the domains R and Q
are interchangeable. Formally, we choose to state the results hereafter for R.

4.1 Semilinear Expansions of Linear Programming
For semilinear expansions of linear programming, a P–NP-complete dichotomy has been
proven by Bodirsky, Jonsson, and von Oertzen [18]. This dichotomy has then been extended
by Jonsson and Thapper to all semilinear expansions of (R; +) in [59]. The dichotomy is
based on the notion of essential convexity.

I Definition 6. A subset S of Rn is called essentially convex if for all a, b ∈ S the straight
line segment intersects the complement S̄ of S in finitely many points.

I Theorem 7 (Bodirsky–Jonsson–von Oertzen). Let R1, . . . , Rn be semilinear relations. Then
CSP(R;R=1, R+,≤, R1, . . . , Rn) is in P if R1, . . . , Rn are essentially convex, and it is NP-
complete otherwise.

The hardness result in Theorem 7 follows from an even more general condition formulated
in Lemma 30 in the next section. The algorithmic part is provided by the equivalence, for
semilinear relations, of essential convexity and the class Horn-DLR proposed by Jonsson and
Bäckström [57].

I Definition 8. A semilinear relation is called Horn-DLR (disjunctive linear relations) if it
can be defined by a conjunction of clauses either of the form

p1 6= 0 ∨ · · · ∨ pn 6= 0

or of the form

p1 6= 0 ∨ · · · ∨ pn 6= 0 ∨ p0 ≤ 0

where p0, . . . , pn are linear terms with coefficients in Z.

I Lemma 9 (Bodirsky–Jonsson–von Oertzen). A semilinear relation is essentially convex if
and only if it is Horn-DLR.

In turn, Horn-DLR constraints (represented by conjunctions of clauses as in Definition 8,
with the coefficients expressed in binary) can be solved in polynomial time thanks to a
resolution-like algorithm discovered by Jonsson and Bäckström [57] and independently by
Koubarakis [69].

Chapte r 03

88 Constraint Satisfaction Problems over Numeric Domains

Convex semilinear relations can be characterised by a polymorphism. In fact, if S ⊂ Rn
is semilinear then S is convex if and only if it is preserved by the midpoint function

(x, y) 7→ x+ y

2

(to see this, observe that if p, q ∈ S, then S contains a dense subset of the segment between p
and q, so by being semilinear, S contains all but finitely many of the points of that segment).
We mention that the same argument also works in an even more general setting, namely for
semialgebraic relations, that will be introduced in Definition 18 in the next section. It would
be desirable to also have a polymorphism characterisation of essentially convex semilinear
relations. This is, unfortunately, not possible.

I Observation 10. There is no function f : Rn → R such that a semilinear relation S is
essentially convex if and only if f preserves S.

Proof. For a contradiction, assume that such a function f exists. Without loss of generality,
f depends on all its arguments. We will prove that f is injective, but first we see how to
obtain a contradiction from this fact. Consider restriction of f to the diagonal

g : R→ R
x 7→ f(x, x, . . . , x)

For each rational x, the singleton {x} is clearly semilinear and essentially convex, therefore
g|Q is the identity. The order relation {(x, y) | x < y} is a semilinear essentially convex
set, therefore g is order preserving. It follows from the density of Q in R that g is the
identity from R to R. In particular, the image of g is precisely R, so f can not be injective
unless n = 1. In this case, f = g is the identity and it preserves every set.

It remains to prove that f is injective. The relation x = y ⇒ u = v is essentially convex,
therefore it must be preserved by f . We claim that this implies the injectivity. Suppose
that there are distinct a, b ∈ Rn such that f(a) = f(b). We want to prove that f violates
x = y ⇒ u = v. Pick i such that ai 6= bi. Since f depends on every argument, there are
c, d ∈ Rn with cj = dj for all j 6= i, and ci 6= di such that f(c) 6= f(d). We claim that
(a, b, c, d) witnesses that f violates x = y ⇒ u = v. In fact, for all j 6= i, we have cj = dj ,
and, a fortiori, aj = bj ⇒ cj = dj . Also ai = bi ⇒ ci = di, because, by construction, the
premise of the implication is false. We conclude that for all j ∈ {1, . . . , n} we have that
ai = bi implies ci = di. However, f(a) = f(b) and f(c) 6= f(d). J

Nevertheless, one can see that essentially convex sets can be characterised by a poly-
morphism in a non-Archimedean extension on Q. All totally ordered vector spaces over Q
have the same semilinear CSP. In fact, the first-order theory of non-trivial totally ordered
vector spaces over Q is complete (see for instance [99][Chapter 2, Remark 7.9]). Therefore
we can replace R with such a non-Archimedean extension in the study of semilinear CSPs.
I Remark. Let Q[ε] denote the Q-vector space of all polynomials in one indeterminate ε with
rational coefficients. Consider the order on Q[ε] which is induced by viewing ε as a positive
number that is smaller than all positive rational numbers; formally, we order the polynomials
lexicographically with respect to their coefficients, starting with the constant term, then the
coefficient of degree one, and so on in increasing order of degree. Semilinear and essentially
convex subsets of (Q[ε])d are defined as for the reals. Now, let S be a semilinear relation, let
φ be the Boolean combination of inequalities with integer coefficients that defines S, and let
S′ be the semilinear relation defined by φ on Q[ε]. Then the following are equivalent:

M. Bodirsky and M. Mamino 89

S is essentially convex;
S′ is essentially convex;
S′ is preserved by the following function

f : (Q[ε])2 → Q[ε]

(α(ε), β(ε)) 7→ γ(ε) :=
(

1
2 + ε

)
α(ε2) +

(
1
2 − ε

)
β(ε2) .

Proof Sketch. If S is not essentially convex, then this is witnessed by rational points, and it
is easy to see that S′ cannot be preserved by f . Conversely, we prove that f preserves all
essentially convex sets over Q[ε]. Observe that f is injective, because

α(ε2) =
(

1
2 + 1

4ε

)
γ(ε) +

(
1
2 −

1
4ε

)
γ(−ε)

and β(ε2) =
(

1
2 −

1
4ε

)
γ(ε) +

(
1
2 + 1

4ε

)
γ(−ε) .

Therefore, using the syntactic characterization of essential convexity in [57] (which holds in
all ordered Q-vector spaces by the completeness mentioned above), we only need to prove
that f preserves all the rational constants, +, and the positivity relation x > 0, and this is
immediate. J

Jonsson and Thapper prove a dichotomy result for the larger class of all semilinear
expansions of (R; +) [59]. These include all the CSPs covered by Theorem 7, but also
contain templates that may not be able to express full linear programming. For instance,
expanding linear programming by the non essentially convex relation |x− y| > 1 produces
an NP-complete CSP, nevertheless (R; +, |x− y| > 1) is tractable. In its short form, Jonsson
and Thapper’s result reads as follows.

I Theorem 11 (Jonsson–Thapper). Let R1, . . . , Rn be semilinear relations. Then the problem
CSP(R;R+, R1, . . . , Rn) is either in P or NP-complete.

Theorem 11 comes with explicit tractability conditions. Unfortunately, these conditions
are too complex to fit comfortably into our survey. However, we can get a feeling of the
insights by looking at the special case of semilinear expansions of (R;R+, R=1).

I Corollary 12. Let R1, . . . , Rn be semilinear relations. Then CSP(R;R+, R=1, R1, . . . , Rn)
is in P if one of the following conditions is satisfied:
1. all unary relations primitively positively definable in (R;R+, R=1, R1, . . . , Rn) are essen-

tially convex;
2. all unary relations primitively positively definable in (R;R+, R=1, R1, . . . , Rn) are either

singletons or unbounded (i.e. not contained in an interval);
otherwise, it is NP-complete.

Here the first case is dealt with by reduction to the essentially convex case, the second by
a procedure, called affine consistency, that approximates from above the affine span of the
feasibility region of the input constraints.

For every semilinear structure Γ with finite signature CSP(Γ) is in NP; this can be
observed from a more general result which also holds for semilinear structures with an
infinite signature. When the semilinear relations in Γ are represented by quantifier-free
formulas where the constants in the polynomials are represented in binary, then we can
check satisfiability of an instance non-deterministically by first guessing a disjunct for each

Chapte r 03

90 Constraint Satisfaction Problems over Numeric Domains

disjunction in the formula, and then checking in polynomial time the satisfiability of the
resulting feasibility problem obtained as the conjunction of the selected (strict or non-strict)
linear inequalities, e.g. using the algorithm of Jonsson and Bäckström [57].

4.2 Semilinear Constraints over the Integers
Semilinear subsets of Zn and semilinear structures with domain Z are defined analogously as
above for R. A special case of tractable semilinear constraints over the integers has been
found by Jonsson and Lööw [58].

I Definition 13. A semilinear structure Γ over R is called scalable if for every relation R of
Γ and for every (x1, . . . , xk) ∈ R there exists a positive a ∈ R such that (bx1, . . . , bxk) ∈ R
for all b > a.

I Definition 14. A semilinear structure Γ with domain R has the integer property if all
satisfiable instances of CSP(Γ) are satisfiable over Z.

I Theorem 15 (Jonsson–Lööw). All scalable semilinear structures have the integer property.

A partial converse to Theorem 15 is given by the following result of Jonsson and Thap-
per [59].

I Theorem 16 (Jonsson–Thapper). Let Γ be a semilinear structure such that CSP(Γ, R+)
has the integer property. Then Γ is scalable.

The following observation shows that CSPs of semilinear structures over the integers in
fixed dimension are in P, using Lenstra’s algorithm.

I Observation 17. For every fixed d ∈ N there is a polynomial time algorithm deciding the
satisfiability over Z of Boolean combinations of formulas of the form p(x1, . . . , xn) ≥ 0 where
p is a linear polynomial with variables x1, . . . , xn and integer coefficients that are represented
in binary.

Proof. For each input formula φ, our algorithm first extracts the list of the linear polynomials
p1, . . . , pk appearing in φ. We say that two points x̄, ȳ ∈ Rd have the same type if sign(pi(x̄)) =
sign(pi(ȳ)) for all i = 1, . . . , k, where

sign(x) =

1 if x > 0
0 if x = 0
−1 if x < 0

.

Clearly the truth value of φ(x̄) depends only on the type of x̄.
It is easy to prove that there are points in Rd of at most τd(k) distinct types, where

τd(k) =
d∑
i=0

2i
(
k

i

)
.

In fact, we claim that there are at most τd(k) types, and that this bound is tight when the
hyperplanes pk = 0 are in general position. By induction on k, we add the polynomials one
by one. At the k-th step, we create at most τd−1(k − 1) new types with pk = 0, and exactly
as many in general position. Now we count the pk ≷ 0 types. For each of the new pk = 0
types, we see that its restriction to p1, . . . , pk−1, that we had at the (k − 1)-th step, splits

M. Bodirsky and M. Mamino 91

into two new types corresponding to pk < 0 and pk > 0. The remaining part of the (k− 1)-th
step types is incompatible with either pk < 0 or pk > 0, so it does not produce any new
non-empty type. Thus we get the recurrence τd(k) = 2τd−1(k − 1) + τd(k − 1), hence the
formula.

In particular, τd(k) is polynomial in k, therefore we can compute a list of all these types
in polynomial time by solving at most

∑k−1
i=0 τd(i) linear programs. Now, using Lenstra’s

algorithm, we can exclude those types that do not contain points in Zd, and finally we check
the truth value of φ for each of the remaining ones. J

5 Algebraic Constraints

Adding zero sets of polynomials to the set of basic constraints will rapidly bring about
intractability. In the integer domain, the general problem of the satisfiability of a single
(multi-variate) polynomial equation, also known as Hilbert’s 10th problem, is undecidable
by the celebrated result of Davis, Matiyasevich, Putnam, and Robinson. In fact, they show
that satisfiability of a 13 variable polynomial is undecidable over N, later improved by
Matiyasevich to 9 (see [78] and [56]). Using the 4 squares theorem, therefore, satisfiability
of a single polynomial equation in Z is also undecidable for a fixed dimension (just replace
each variable xi with y2

i,1 + y2
i,2 + y2

i,3 + y2
i,4). We are not aware of any decidability result in

dimension 2. It has been proven by Manders and Adleman [74] that deciding the satisfiability
of a single equation of the form

ax2 + bx = c

over N is NP-complete. The decidability of satisfiable polynomial equations over the rationals
is a major open problem. For more details on Hilbert’s tenth problem and its extension to Q,
we refer the reader to [80] and [95].

One might consider a reduct of integer arithmetic in which only multiplication, and no
addition, is available. It is well known that this fragment, called Skolem arithmetic, has a
decidable first-order theory. Exploratory work on CSPs of reducts of Skolem arithmetic has
been published by Glaßer, Jonsson, Martin [42].

The natural relations to consider as basic constraints over the real numbers are the
semialgebraic relations.

I Definition 18. A subset of Rn is called semialgebraic if it can be represented as a finite
Boolean combination of basic semialgebraic sets of the form

{
x̄ ∈ Rn

∣∣ p(x̄) ≥ 0
}
where p is

a polynomial with integer coefficients.

Semialgebraic sets over R are a rich yet manageable class that forms the basis of real
algebraic geometry. The computational treatment of semialgebraic geometry goes back to
Tarski’s decision procedure for the first-order theory of the reals [98].

I Theorem 19 (Tarski). There is an effective quantifier elimination procedure for the first-
order theory of the structure (R; 0, 1, <,+,×).

The complexity bound on Tarski’s original procedure is very large: a tower of exponentials
as high as the size of the input. Collins’ cylindrical algebraic decomposition provides a
method running in polynomial time for fixed dimension (fixed number of variables in the
formula), and doubly exponential in the dimension [30]. This bound has been further
improved to exponential in the dimension by Renegar [88, 89, 90]. Of special interest to us
is the subproblem known as the existential theory of the reals.

Chapte r 03

92 Constraint Satisfaction Problems over Numeric Domains

I Definition 20. The problem existential theory of the reals is the CSP for the
structure with domain R and all the relations of the form

Retr
n,p =

{
x̄ ∈ Rn

∣∣ p(x̄) = 0
}

where p ∈ Z[x1, . . . , xn] is represented as a list of coefficients, in binary.

The best bound currently known on the complexity of existential theory of the
reals is the following, obtained by Canny [28].

I Theorem 21 (Canny). The problem existential theory of the reals is in PSPACE.

We chose basic relations of the form p(x) = 0. Adding to this set also all the relations of
the form p(x) ≥ 0 and p(x) > 0 would not increase the complexity of existential theory
of the reals. In fact, the first is clearly equivalent to ∃y p(x) − y2 = 0 and x 6= 0 is
defined by ∃y xy + 1 = 0. More generally, it is easy to see that the semialgebraic relations
are precisely those that have a primitive positive definition over the structure (R; (Retr

n,p)n,p).
As for linear programming, we chose to present the existential theory of the reals as an
infinite signature CSP, it is however an easy exercise to find a finite basis for it. A non-trivial
equivalence between the existential theory of the reals and the following CSP has been
established by Schaefer and Štefankovič [92][Theorem 4.1]

I Definition 22. The problem strict inequalities is the CSP of the structure with domain
R and the relations of the form

Rstrict
n,p =

{
x̄ ∈ Rn

∣∣ p(x̄) > 0
}

where p ∈ Z[x1, . . . , xn] is represented as a list of coefficients, in binary.

I Theorem 23 (Schaefer–Štefankovič). The problems strict inequalities and existential
theory of the reals are polynomial time equivalent.

Observe that the sets primitively positively definable in (R; (Rstrict
n,p)n,p) are necessarily

open, therefore a strict subset of all semialgebraic sets. A number of other problems, many
of a geometric flavour, have been proven to be equivalent to existential theory of
the reals. We will mention two such results due to Kratochvíl and Matoušek [70], and
Schaefer [91] respectively.

I Definition 24. The problem intersection graph of segments is the CSP of the
structure with domain R4 and the binary relations Int and its negation ¬Int, defined as
follows. Let Sx2,y2

x1,y1
denote the straight line segment in R2 with endpoints (x1, y1) and (x2, y2).(

(x1, y1, x2, y2)(x′1, y′1, x′2, y′2)
)
∈ Int ⇔ Sx2,y2

x1,y1
∩ Sx

′
2,y

′
2

x′
1,y

′
1
6= ∅

I Theorem 25 (Kratochvíl–Matoušek). The problems intersection graph of segments
and existential theory of the reals are polynomial time equivalent.

I Definition 26. The problem unit length linkages is the CSP for the structure with
domain R2 and the relation

Rull =
{(

(x, y), (x′, y′)
) ∣∣ (x− x′)2 + (y − y′)2 = 1

}
denoting that the Euclidean distance of (x, y) and (x′, y′) is one.

M. Bodirsky and M. Mamino 93

I Theorem 27 (Schaefer). The problems unit length linkages and existential theory
of the reals are polynomial time equivalent.

The existential theory of the reals has a natural analogue in the complex field. The
problem of deciding the satisfiability of a system of polynomial equations in C has been
called the Hilbert Nullstellensatz problem.

I Definition 28. Hilbert Nullstellensatz problem is the CSP of the structure with
domain C and the relations of the form

Rhn
n,p =

{
x̄ ∈ Cn

∣∣ p(x̄) = 0
}

where p ∈ Z[x1, . . . , xn] is represented as a list of coefficients, in binary.

It is not hard to reduce Hilbert Nullstellensatz problem to existential theory
of the reals, but a far lower complexity bound for Hilbert Nullstellensatz problem
is known conditionally to the generalized Riemann Hypothesis, thanks to the following result
of Koiran [67, 68].

I Theorem 29 (Koiran). Assuming the generalized Riemann Hypothesis, Hilbert Null-
stellensatz problem is in the class Arthur-Merlin, hence, a fortiori, at the second level
of the polynomial hierarchy (Π2).

For the Blum-Shub-Smale model of computation, Hilbert Nullstellensatz problem
and existential theory of the reals are both NP-complete, for the complex and the
real Turing machine model respectively, see [12].

In order for a semialgebraic expansion of linear programming to attain a complexity class
below NP, it is necessary to restrict the template to essentially convex relations, because of
the following result of Bodirsky, Jonsson, and von Oertzen [18][Lemma 3.5].

I Lemma 30 (Bodirsky–Jonsson–von Oertzen). Let R be a semialgebraic set which is not
essentially convex, and suppose that the failure of essential convexity is witnessed by a segment
with rational endpoints, then CSP(R;R+, R=1,≤, R) is NP-hard.

The technical assumption about rational endpoints is indeed necessary, see [18][Remark 3.6].
Even convexity is far from being a sufficient condition for tractability. One obstacle comes
from the well-known sum of square roots problem.

I Definition 31. The problem sum of square roots is the following computational task:
Input: a1, . . . , an, b ∈ N
Output:

YES if b ≤ √a1 + · · ·+√an,
NO otherwise.

It is a long standing open problem to characterise the complexity of this problem. The
membership in NP of sum of square roots is also open and would imply that the Euclidean
travelling salesman problem is NP-complete [40]. In fact, sum of square roots is not
even known to be in the polynomial hierarchy, and the best upper bound today is the fourth
level of the counting hierarchy [2]. Unfortunately, already very simple CSPs, for instance the
expansion of the template for linear program feasibility by the relation x2 ≤ y, can simulate
sum of square roots.

Chapte r 03

94 Constraint Satisfaction Problems over Numeric Domains

I Observation 32. sum of square roots is polynomial time many-one reducible to

CSP(R, R+;R=1,+, x2 ≤ y) .

Proof.

b ≤
√
a1 + · · ·+

√
an ⇔ ∃x1, . . . , xn ∈ R

b = x1 + · · ·+ xn

x2
1 ≤ a1

...
x2
n ≤ an

J

I Observation 33. sum of square roots is polynomial time many-one reducible to

CSP(R;R+, R=1, x
2 + y2 ≤ 1) .

Proof. It suffices to find a primitive positive definition for the relation 0 ≤ x ≤
√
k of

size O(log k) for all constant k ∈ N. We use the following equivalence

x2 ≤ k ⇔ ∃a, b ∈ R

a2 + b2 ≤ 1
(k + 1)a = 2x
(k + 1)b = k − 1

observing that the linear relations (k + 1)a = 2x and (k + 1)b = k − 1 admit a succinct
primitive positive definition by iterated doubling. J

There is a connection between convex semialgebraic CSPs and semidefinite programming.
A spectrahedron is a subset of Rd of the form{

x̄ ∈ Rd
∣∣ x1A1 + · · ·+ xdAd +B is positive semidefinite

}
where A1, . . . , Ad, B are real symmetric matrices of the same size. Semidefinite programming
is the task of minimizing linear functions over spectrahedral domains. The relations that
are primitively positively definable over spectrahedra are called semidefinite representable.
Clearly all semidefinite representable relations are convex and semialgebraic. The converse
has been conjectured by Helton and Nie [48]: they conjecture that every convex semialgebraic
set is semidefinite representable. Helton and Nie’s conjecture has been proven in dimensions
two [93], and it remains one of the most important open problems in the field. The Helton-Nie
conjecture implies that every CSP for a template with finitely many convex semialgebraic
relations would be a special case of the semidefinite program feasibility problem. Not much
is known about the complexity of this problem. By Ramana’s duality [87] it is either in
NP∩ coNP or outside of NP∪ coNP. By results of Tarasov and Vyalyi [96] the evaluation of
arithmetic circuits (PosSLP) is reducible to it, thus also sum of square roots (for the
reduction from sum of square roots to PosSLP see [2]).

In fixed dimension, all semialgebraic CSPs are in P by the cylindrical decomposition
algorithm [30]. However, if we except Boolean combinations of linear inequalities (with
algebraic coefficients), we do not know any expansion of linear programming by a convex
non-linear semialgebraic relation which has a CSP in P. The theory of primitive positive
definability for reducts of the real field structure is not developed. For instance, we do not
know whether the relation x6 ≤ y is primitively positively definable over linear relations
and x2 ≤ y.

M. Bodirsky and M. Mamino 95

6 Maximum as a Polymorphism

The maximum polymorphism describes interesting classes of semi-linear CSPs both in the
rational and in the integer domain. To begin with, it has been proven by Jeavons and
Cooper [54] that, for finite domains, if all the relations of a template are preserved by the
maximum polymorphism (according to some total ordering of the domain) then the CSP is
in P. The same authors observe that the CSP of all max-closed relations on a finite domain
is maximally tractable, in other words adding any further constraints to it would make it
NP-complete. Formally we have:

I Theorem 34 (Jeavons–Cooper). Any max-closed CSP instance containing c constraints
each of them satisfied by at most t tuples can be solved in time O(c2t2).

I Theorem 35 (Jeavons–Cooper). Given a structure (D;<) where 3 ≤ |D| < ∞ and <

is a total order on D, denote by M2,D the (finite) set of all binary max-closed relations
over D. Let R be any relation over D which is not max-closed. Then CSP(D;M2,D, R) is
NP-complete.

Observe that the statement of Theorem 34 is uniform in the constraints, in the sense
that the algorithm takes the constraints (represented in table form) as part of its input.
Therefore, Theorem 34 is adapted to situations in which the relevant domain is not fixed.
This algorithm is, indeed, the well-known arc consistency procedure. Generally speaking,
algorithms of this variety keep, for each variable, a list of allowed values, and iterate over
the constraints to check whether any of the allowed values can be excluded. Obviously the
procedure converges to a fixed point after at most n · d iterations, where n denotes the size of
the domain and d the number of variables of the input instance. If at any time some variable
has no more allowed values, the instance is unsatisfiable. Otherwise, there might or there
might not be a solution.

Jeavons and Cooper obtain Theorem 34 by showing that, despite providing in general
only a one-sided test, arc consistency correctly decides all max-closed CSPs. Jeavons, Cohen,
and Gyssens extended this result to finite domain CSPs having a semilattice polymorphism,
defined as follows.

IDefinition 36. The operation f : D2 → D is called a semilattice operation if it is idempotent,
commutative, and associative:

f(x, x) = x, f(x, y) = f(y, x), f(x, f(y, z)) = f(f(x, y), z).

I Theorem 37 (Jeavons–Cohen–Gyssens). A finite domain CSP whose relations are preserved
by a semilattice operation is in P.

To complete the picture for finite domain problems, let us point out that arc consistency
naturally extends to a class of algorithms based on establishing local consistency. The finite
domain CSPs that can be solved by this method have been recently characterized by Barto
and Kozik [7].

Theorem 34 gives us a method to solve infinite domain CSPs through a technique
termed sampling in [21, Definition 2.1]. We say that an infinite template Γ has a sampling
procedure if for every instance I of CSP(Γ) we can construct in polynomial time a finite
substructure ΓI of Γ such that I is satisfiable if and only if I is satisfiable as an instance
of CSP(ΓI). Clearly, Theorem 34 coupled with a sampling procedure for Γ provides a
polynomial-time decision procedure for CSP(Γ) whenever Γ is closed under maximum. This

Chapte r 03

96 Constraint Satisfaction Problems over Numeric Domains

general method has provided polynomial and weakly polynomial time algorithms for several
concrete CSPs in the past. Most notably the following results, published respectively by
Hochbaum and Naor [51], and by Bezem, Nieuwenhuis, and Rodríguez-Carbonell [10].

I Definition 38. The problem monotone TVPI integer programming (for two variables
per inequality) is the CSP of the structure with domain Z and all the relations of the form

RmTVPI
a,b,c =

{
(x, y) ∈ Z2 ∣∣ ax− by ≥ c}

where a, b ∈ N and c ∈ Z.

I Theorem 39 (Hochbaum–Naor). A solution to an instance of monotone TVPI integer
programming taking values from {−N, . . . , N} can be computed in time polynomial in N
and the size of the instance.

I Definition 40. The problem max-atoms is the CSP of the structure with domain Z and
all the relations of the form

Rma
c =

{
(x, y, z) ∈ Z3 ∣∣ max(x, y) + c ≥ z

}
for c ∈ Z.

I Theorem 41 (Bezem–Nieuwenhuis–Rodríguez-Carbonell). The problem max-atoms can be
solved in weakly polynomial time.

The proofs of these theorems rely on the observation that the respective signatures
are max-closed (and the relations RmTVPI

a,b,c are indeed also min-closed). Broadly speaking,
both results provide algorithms of the weakly polynomial kind: Theorem 41 explicitly,
Theorem 39 because one can compute bounds xmax

i and xmin
i polynomial in the size of the

instance [94][§17.1]. One might wonder whether these results can be improved to actually
yield a polynomial algorithm. At least for Theorem 41 this is unfortunately not the case.

I Theorem 42 (Lagarias). The problem monotone TVPI integer programming is
NP-complete.

Lagarias reduces monotone TVPI integer programming to the problem weak
partition [71], which was proven NP-complete ultimately by reduction from knapsack [100].
Theorems 39 and 42 together say that monotone TVPI integer programming is weakly
NP-complete (assuming P 6= NP). It can be observed, however, that being max-closed does
not imply tractability in the integer domain even for finite signature CSPs.

I Example 43. CSP(Z ; x = 1, x = −1, x = 2y, x+ y ≥ z) is NP-complete.

Proof. Our CSP is clearly in NP, because it is a sub-problem of integer linear program-
ming. NP-hardness is proven through a reduction from monotone TVPI integer pro-
gramming. The constraint ax−by ≥ c with a, b ∈ N is equivalent to ax+(2β−b)y−c ≥ 2βy,
where β is the smallest exponent such that 2β ≥ b. This is, in turn, equivalent to the primitive
positive formula

∃ z1, z2, z3, z4, z5, z6

ax ≥ z1

(2β − b)y ≥ z2

z1 + z2 ≥ z3

z4 = sign(−c)
|c| z4 ≥ z5

z3 + z5 ≥ z6

z6 = 2βy

.

M. Bodirsky and M. Mamino 97

All atomic relations in this formula are of the types x+y ≥ x , x = 2y , 1 , −1 except z6 = 2βy
and those of the form kv1 ≥ v2 for k ≥ 0 and v1, v2 denoting variables. Relations of the first
kind are easily expressed by chaining β constraints of the type x = 2y. To express kv1 ≥ v2
we proceed recursively:

0 ≥ v2 ⇔ ∃t t = 2 ∗ t ∧ t+ t ≥ v2 for k = 0
kv1 ≥ v2 ⇔ ∃t k′v1 ≥ t ∧ t+ t ≥ v2 for k = 2k′ even
kv1 ≥ v2 ⇔ ∃t 2k′′v1 ≥ t ∧ t+ v1 ≥ v2 for k = 2k′′ + 1 odd.

J

The concept of primitive positive interpretation formalises a powerful form of simulation of
a CSP by another CSP, generalising the notion of primitive positive definability to templates
that have different domains; for the technical definition see [14]. Since the existence of a
semilattice polymorphism is preserved by primitive positive interpretations, the CSP of
example 43 cannot interpret primitively positively any NP-complete finite domain CSP, yet
it is NP-complete.

The situation changes for the max-atoms problem. First of all, one can formulate max-
atoms also for the rational or the real domains, however, as it was observed already in [10],
the real, rational, and integer formulations are polynomial-time equivalent. Max-atoms is
also unlikely to be NP-complete because it was proven in the same paper to be in NP∩ coNP.
The original proof of NP ∩ coNP membership constructs small unsatisfiability certificates
using an appropriate proof system. The result, however, can be better understood through a
connection with mean payoff games implicit in the work of Möhring, Skutella, and Stork on
scheduling under and/or precedence constraints [84], and later discovered independently by
Atserias and Maneva [4].

Mean payoff games are a class of so-called graph-games. The setup for a game G is a
finite graph G whose edges (EG) are labelled integer weights {we}e∈EG

. The play takes place
between two players, which we call Max and Min, taking turns at moving a token along
the edges of G. The graph G has no sinks, and the vertices are divided into two subsets
VG = V max

G t V min
G , the first belongs to Max, the second to Min. The token is initially on

some vertex v0, and each player selects the next move when the token is on a vertex belonging
to him. The value of a (infinite) play v0, v1, . . . is

val(v0, v1, . . .) = lim inf
n→∞

1
n+ 1

n∑
i=0

w(vi,vi+1) .

Player Max wants to maximize this value, Min wants to minimize it. The following theorem
was proven by Eherenfeucht and Mycielski [34].

I Theorem 44 (Ehrenfeucht–Mycielski). Given a mean payoff game G and a starting vertex v0
in the graph of G, there is a value val(G, v0) and a pair of memoryless strategies σ and τ
(not depending on v0) for Max and Min respectively, such that Max can secure a value not
smaller than val(G, v0) by playing according to σ, and Min can secure a value not larger
than val(G, v0) by playing according to τ .

Here memoryless means that at all times the move to play depends only on the current
position of the token (and not, for instance, on the previous play or on a random choice).

Chapte r 03

98 Constraint Satisfaction Problems over Numeric Domains

I Definition 45. The problem mean payoff games is the following computational task:
Input: a mean payoff game G.
Output:

YES if val(G, v0) ≥ 0 for all starting vertices v0 in the graph of G,
NO otherwise.

It turns out that max-atoms and mean payoff games are equivalent in the following
precise sense [84].

I Theorem 46 (Möhring–Skutella–Stork). The problems max-atoms and mean payoff
games are polynomial-time many-one reducible to each other.

The NP ∩ coNP membership of mean payoff games was first observed by Zwick and
Paterson [104][Theorem 4.2], and it is essentially a consequence of the symmetric nature of
the game. In fact, although Definition 45 is not symmetric in its form, standard arguments
(see for instance [102][Propositions 2.7, 2.8]) prove that that the decision problem mean
payoff games is polynomial-time Turing equivalent to solving mean payoff games (i.e.,
computing a pair of optimal memoryless strategies with the property from Theorem 44).

Theorem 46 is actually a re-discovery of the concept of potential transformation, which has
been known for games since the work of Gurvich, Karzanov, and Khachiyan [45]. The set of
conditions that a potential transformation must satisfy in order to witness val(G, v0) ≥ 0 for
all v0 is, indeed, precisely the corresponding max-atoms instance in Atserias and Maneva’s
reduction.

The problem max-atoms has been, in turn, proven equivalent to a number of other well-
known computational tasks, most notably scheduling under and-or precedence constraints,
and solving two-sided systems of max-plus linear equations. The problem two sided max-
plus linear systems is the problem of deciding whether a given system of equalities of the
form

max(a1 + x1, . . . , am + xm) = max(b1 + y1, . . . , bn + yn)

with a1, . . . , am, b1, . . . , bn ∈ Z has a solution. As for max-atoms, it is immaterial whether
we are looking for a solution over Z, Q, or R.

I Theorem 47 (Bezem–Nieuwenhuis). The problems max-atoms and two sided max-plus
linear systems are polynomial-time many-one reducible to each other.

Max-plus algebra studies the algebraic properties of the tropical semiring, which can be
defined as the structure R ∪ {−∞} with the standard ring operations + and × replaced
by max and + respectively. Its study is motivated by applications to scheduling and routing
problems, as well as more abstract connections to algebraic geometry. Two-sided max-plus
linear systems are precisely the analogue in the tropical semiring of standard systems of
linear equations.

The best known algorithms for this cluster of equivalent problems come apparently from
the game perspective. They are weakly polynomial, for instance Zwick and Paterson’s [104],
or sub-exponential (randomized), for instance Halman’s [46], or both, as Björklund and
Vorobyov’s [11]. Other algorithms are known to converge quickly in practice (similarly to the
simplex algorithm for linear programming), for example Gurvich, Karzanov, and Khachiyan’s
procedure [45] and its variants.

The problem of the existence of a polynomial-time solution for mean payoff games, or
equivalently max-atoms, has been described as presenting now exactly the same challenge

M. Bodirsky and M. Mamino 99

as linear programming did before 1979 [102]. This description is grounded essentially on
observations of an algorithmic nature. For instance, the two sub-exponential algorithms
cited above are based precisely on adapting the sub-exponential method of Matoušek Sharir
and Welzl for combinatorial linear programming [81]. A formal connection is presented by
Allamigeon, Benchimol, Gaubert, and Joswig [1]: if there is a combinatorial pivoting rule for
the simplex method yielding polynomial time convergence, then mean payoff games are in P.

We obtain an interesting development considering the following formulation of max-atoms
over the real numbers, which we know to be equivalent to the problem over Z.

I Definition 48. The problem max-atoms over R is defined as the CSP of R with all the
relations of the form

RmaR
c =

{
(x, y, z) ∈ R3 ∣∣ max(x, y) + c ≥ z

}
for c ∈ Q.

Obviously the constraints RmaR
c are semilinear, closed under maximum, and it is also

apparent that these constraints are preserved by all translations tk(x) := x+ k for k ∈ Q.
The class of max-closed translation-invariant semilinear sets has been studied in the context
of tropical geometry, where these sets have been called tropically convex [33] (in this field, it
is customary to consider the dual situation, using min instead of max). Formally, tropically
convex sets are the tropical analogue of the convex cones in classical geometry. In this
sense, the CSP for tropically convex relations is the notional analogue of linear program
feasibility for tropical geometry. One can observe that not all tropically convex relations
arise as feasibility regions of instances of max-atoms over R. An example of such a relation
is the relation defined by x ≤ (y + z)/2, and more generally the relations of the form
{(x, y, z) | (a+ b)x ≤ ay + bz} for a, b 6= 0.

Bodirsky and Mamino [22] give a finite basis for tropically convex semilinear relations.

I Theorem 49 (Bodirsky–Mamino). A subset of Rn is semilinear, max-closed, and translation-
invariant if and only if it is primitively positively definable over

(R;x = 1, x = −1, <, 2x ≤ y + z , x ≤ y ∨ x ≤ z) .

The CSP for tropically convex semilinear relations is equivalent to solving an extension of
mean payoff games called stochastic mean payoff games [22]. These are defined similarly to
the deterministic case, except that the set of vertices is partitioned in three components VG =
V max
G t V min

G t V rand
G ; when the token is on a vertex in the new component V rand

G , the next
move is selected uniformly at random. The goal for Max (resp. Min) is to maximize (resp.
minimize) the expected value of the play.

I Definition 50. The problem tropically convex constraints is

CSP(R;x = 1, x = −1, <, 2x ≤ y + z, x ≤ y ∨ x ≤ z) .

I Theorem 51 (Bodirsky–Mamino). The problem tropically convex constraints is
polynomial-time Turing equivalent to solving stochastic mean payoff games, thus in NP ∩
coNP.

Stochastic mean payoff games are a generalization of mean payoff games, and they have
the same computational complexity as Condon’s simple stochastic games [3]. There are
many connections between mean payoff games, stochastic mean payoff games, and simple
stochastic games: they all admit optimal memoryless strategies [41, 73, 31], they all are
in NP ∩ coNP, and similar algorithmic approaches are used to solve them [46]. On the other

Chapte r 03

100 Constraint Satisfaction Problems over Numeric Domains

hand, tropically convex constraints is in some respects a problem more robust than
max-atoms. For instance, tropically convex constraints is a finite language CSP. On
the contrary, max-atoms does not admit a finite basis, and any finite signature restriction
of max-atoms is immediately in P by sampling.

Max-atoms does not have a polymorphism definition, i.e., the feasibility regions of max-
atoms over R cannot be singled out among all the semilinear sets by means of a poly-
morphism condition. The class of semilinear relations preserved by all polymorphisms of
the template for max-atoms over R turns out to be precisely the class of tropically convex
semilinear relations [22].

The NP∩coNP membership of tropically convex constraints can be illustrated, for
the special case of closed constraints (i.e., positive Boolean combinations of weak inequalities),
by a duality statement.
Let On be the class of functions mapping

(
Q∪{+∞}

)n to Q∪{+∞} of either of the following
forms

(x1 . . . xn) 7→ max(xj1 + k1 . . . xjm + km)
(x1 . . . xn) 7→ min(xj1 + k1 . . . xjm

+ km)

(x1 . . . xn) 7→ α1xj1 + · · ·+ αmxjm

α1 + · · ·+ αm
+ k

where k, ki ∈ Q and αi ∈ Q>0.
For any given vector of operators ō ∈ Onn consider the following satisfiability problems:

the primal P (ō) and the dual D(ō)

P (ō) :
{
x̄ ∈ Qn

x̄ < ō(x̄)
D(ō) :

{
ȳ ∈

(
Q ∪ {+∞}

)n \ {+∞}n
ȳ ≥ ō(ȳ)

where < and ≥ are component-wise.

I Theorem 52 (Bodirsky–Mamino). For any ō ∈ Onn one and only one of the problems P (ō)
and D(ō) is satisfiable.

The special case of Theorem 52 for max-atoms has been observed constraints already
in [44].

7 Reducts of the Order of the Rationals

If we want to classify the CSP for first-order reducts Γ of an infinite structure ∆, the simplest
structure to start with is the structure ∆ with the empty signature. An example of such a
reduct Γ is (Q; 6=, x = y ⇒ u = v); its CSP can be solved in polynomial time. On the other
hand, the CSP for (Q;x = y 6= z ∨ x 6= y = z) is NP-complete. The complexity of the CSP
for such reducts has been classified: a reduct Γ of a countably infinite structure without
any structure either has a constant polymorphism or a binary injective polymorphism, and
CSP(Γ) is in P, or all polymorphisms of Γ can be written as an injection composed with
projections, in which case CSP(Γ) is NP-complete [19]. Instead of giving further details of this
fundamental result, we immediately step to a larger class that is of particular relevance for
numeric domains, namely to reducts Γ of (Q;<). This class contains many interesting CSPs
(some of which have been mentioned in the introduction), and classifying the complexity of
CSP(Γ) is considerably more difficult.

We first state an older result, which provides a pre-classification of reducts of (Q;<) that
plays an important role in the proof of the complexity classification. Let Γ be a first-order

M. Bodirsky and M. Mamino 101

reduct of (Q;<) with finite relational signature. Cameron [27] proved that Aut(Γ) equals
one out of the following five groups:

Aut(Q;<);
Aut(Q; Betw) where Betw = {(x, y, z) ∈ Q3 | x < y < z ∨ z < y < x} is the betweenness
relation that we have already seen in the introduction;
Aut(Q; Cycl) where Cycl = {(x, y, z) ∈ Q3 | x < y < z ∨ y < z < x ∨ z < y < x} is the
so-called cyclic order relation;
Aut(Q; Sep) where Sep is the relation that contains all (x, y, u, v) ∈ Q4 such that the
sets [x, y] \ [u, v], [x, y] ∩ [u, v], and [u, v] \ [x, y] are non-empty, where [p, q] denotes the
smallest interval that contains p and q;
Aut(Q; =), the symmetric group on Q consisting of all permutations of Q.

Classifications of the automorphism groups of reducts Γ are too coarse for obtaining complexity
results for CSP(Γ); we need to look at polymorphisms. Here are some binary operations over
Q that are of particular importance when classifying the complexity of CSP(Γ) for reducts
Γ of (Q;<). The first one is the maximum operation, (x, y) 7→ max(x, y), which we have
already seen in the introduction. The following operations are more difficult to describe; for
illustrations, see Figure 1.

Let mx: Q2 → Q be any operation that satisfies

mx(x, y) < mx(x′, y′)⇔ min(x, y) < min(x′, y′)
∨ (min(x, y) = min(x′, y′) = x′ = y′ < max(x, y)).

The relations ≤ and 6= are not preserved by mx; however, mx preserves for example the
relation X := {(x, y, z) ∈ Q3 | x = y < z ∨ x = z < y ∨ y = z < x}.
Let mi: Q2 → Q be any operation that satisfies

mi(x, y) < mi(x′, y′)⇔ min(x, y) < min(x′, y′)
∨ (min(x, y) = min(x′, y′) = x < x′).

Relations preserved by mi are for instance ≤, 6=, and the relation of arity four given
by x 6= u ∨ y < u ∨ z ≤ u; a syntactic description of all the relations with a first-order
definition over (Q;<) that are preserved by mi, due to Michał Wrona, can be found
in [14].
Let ll : Q2 → Q be any operation that satisfies

ll(x, y) < ll(x′, y′)⇔ min(x, y) < min(x′, y′)
∨ (min(x, y) = min(x′, y′) ∧ x < x′)
∨ (min(x, y) = min(x′, y′) = x < y′).

(Here we slightly deviate from the terminology Bodirsky and Kára [20]; the operation ll
that we present here has a simpler behaviour that relates more clearly to the operations
mx and mi, but the smallest polymorphism clone of a reduct of (Q;<) that contains it
is the same as for the operation described in [20].) The relation ll preserves 6=, ≤, but
also the relations defined by x = y ⇒ u = v and x > min(y, z) that we have encountered
before.

In all cases, it can be shown that such functions exist.
Each of these operations f has a dual f∗, defined by f∗(x, y) := −f(−x,−y); for example,

the minimum operation is the dual of the maximum operation. Finally, there is the constant

Chapte r 03

102 Constraint Satisfaction Problems over Numeric Domains

2 0 1 2
1 0 1 1
0 0 0 0
min 0 1 2

2 0 2 4
0 0 3 2
1 1 0 0
mx 0 1 2

2 2 5 6
1 2 3 4
0 0 1 1
mi 0 1 2

2 4 7 8
1 3 5 6
0 0 1 2
ll 0 1 2

Figure 1 Illustration for the operations min, mx, mi, and ll (in this order).

function whose image has cardinality one; clearly, having a constant polymorphism implies
that Γ has the same CSP as a one-element structure, and hence CSP(Γ) is in P. But also
if Γ has one of the other operations described above as a polymorphism, or one of their
duals, then CSP(Γ) can be solved in polynomial time. We mention that the polynomial-time
algorithms can also treat reducts Γ with an infinite signature when the relation symbols are
represented by quantifier-free formulas in disjunctive normal form (recall that (Q;<) has
quantifier elimination). We can now state the classification result (from [20]; also see [14]).

I Theorem 53 (Bodirsky–Kára). Let Γ be a reduct of (Q;<) with finite relational signature.
Then Γ has ll, min, mx, mi, one of their duals, or a constant operation as polymorphism,
and CSP(Γ) is in P, or CSP(Γ) is NP-hard.

It is natural to ask which semilinear relations can be added to the tractable cases of
this theorem so that the CSP of the resulting expanded structure is still tractable. The
polymorphism max and its algorithmic relevance in this context has already been discussed
earlier in Section 6. On the other hand, the operations ll, mx, and mi can be adapted to
preserve additional relations that are definable in (Q;<,+, 1), and we quickly reach CSPs of
open computational complexity; some will be listed in Section 10.

8 Reducts of the Successor Relation over the Integers

The structure (Z; Succ) of the integers with the successor relation is among the simplest
structures that is not ω-categorical, and it is a reduct of most of the interesting structures
over the integers, such as (Z;<) or (Z; +, 1). Hence, the class of reducts of these two more
expressive structures includes the reducts of (Z; Succ), and following the bottom-up approach
mentioned in the introduction, we study the CSPs of reducts of (Z; Succ) first.

Moreover, the structure (Z; Succ) has the same CSP as the structure (Q;x = y + 1),
and reducts of (Z; Succ) have the same CSP as the corresponding reducts of (Q;x = y + 1).
Hence, even when we want to classify the complexity of the CSP for reducts of (Q; +, 1) we
have to classify the complexity of CSPs for reducts of (Z; Succ).

Let Γ be a first-order reduct of (Z; Succ) with finite relational signature. We want to
describe the border between those Γ whose CSP can be solved in polynomial time and
those whose CSP is NP-hard, because we believe that the shape of this description could be
paradigmatic for complexity classifications of larger classes of CSPs over numeric domains.
In order to state the classification, we introduce certain binary operations.

I Definition 54. For d ∈ Z, d ≥ 1, the d-modular max is the binary operation maxd : Z2 → Z
defined by

maxd(x, y) :=
{

max(x, y) if x ≡ y modulo d
x otherwise.

If Γ has a d-modular max as a polymorphism, for some d ≥ 1, then CSP(Γ) can be solved
in polynomial time [15]. In a nutshell, the idea is that the situation for d > 1 can be reduced

M. Bodirsky and M. Mamino 103

to the situation for d = 1. For d = 1, we obtain the regular max operation, and we can solve
CSP(Γ) using the sampling technique that has been described in Section 6.

We now describe another family of reducts of (Z; Succ) whose CSP can be solved in
polynomial time. Note that the structure (Q; {(x, y) | x = y+1}) is isomorphic to (Q; {(x, y) |
x = y + 1})2; let si be any isomorphism. It can be shown that a relation with a first-order
definition in (Q; {(x, y) | x = y + 1}) is preserved by i if and only if it has a Horn definition
over (Q; s) where s is the successor function. With this description, it is not difficult to come
up with an algorithm for reducts of (Z; Succ) with i as a polymorphism.

We would like to state that all other first-order reducts Γ of (Z; Succ) with finite relational
signature have an NP-hard CSP; an in fact, this is true when Succ has a primitive positive
definition in Γ. But otherwise, unfortunately, life is not as simple as that. It might be
that Γ has the same CSP as some other reduct Γ′ of (Z; Succ), and that Γ′ has max as
a polymorphism. Allowing such changes in the choice of the template greatly helps in
classification projects. When Γ is ω-categorical, then there is a good theory for finding the
(up to isomorphism unique) ‘nicest’ template to work with; we have to refer to [13, 17] for a
discussion. The main point is that in these nicer templates, many of the basic relations are
primitive positive definable. For reducts Γ of (Z; Succ), we can replace Γ by some structure
Γ′ with the same CSP such that Succ is primitive positive definable in Γ′, unless Γ is of a
‘degenerate’ form; see Theorem 55 for a formal statement. Unlike the ω-categorical situation,
we do not have an a-priori justification for this phenomenon. With this perspective, we can
now phrase the complete classification statement from [24].

I Theorem 55. Let Γ be a reduct of (Z; Succ) with finite signature. Then there exists a
structure ∆ such that CSP(∆) equals CSP(Γ) and one of the following cases applies.
1. ∆ has a finite domain, and Feder and Vardi conjectured that CSP(∆) is in P or NP-

complete.
2. ∆ is a reduct of (Q; =), and CSP(∆) is either in P or NP-complete by Theorem 53.
3. ∆ is a reduct of (Z; Succ) and Succ is primitive positive definable in ∆. In this case, if ∆

has a d-modular max or a d-modular min polymorphism, then CSP(∆) is in P; otherwise,
CSP(∆) is NP-complete.

9 The Unclassifiable

In this section we make essential use of the following theorem, which is due to Davis,
Matiyasevich, Putnam, and Robinson.

I Theorem 56 (See e.g. [80]). A subset of Z is recursively enumerable if and only if it has a
primitive positive definition in (Z; ∗,+, 1), the integers with addition and multiplication.

I Theorem 57. For every recursively enumerable problem P there exists a reduct Γ of
(Z; ∗,+, 1) with finite relational signature such that CSP(Γ) is polynomial-time Turing equi-
valent to P.

Proof. Code P as a set L of natural numbers, viewing the binary encodings of natural
numbers as bit strings. More precisely, s ∈ P if and only if the number represented in binary
by the string 1s is in L. That is, we append the symbol 1 at the front so that for instance
00 ∈ P and 01 ∈ P correspond to different numbers in L. Now consider the structure
Γ := (Z;S,D,L′, N) where

S is the binary relation defined by

S(x, y)⇔
(
(y = x+ 1 ∧ x ≥ 0) ∨ (x = y = −1)

)
;

Chapte r 03

104 Constraint Satisfaction Problems over Numeric Domains

D is the binary relation defined by

D(x, y)⇔
(
(y = 2x ∧ x ≥ 0) ∨ (x = y = −1)

)
;

L′ := L ∪ {−1};
N := {0}.

Clearly, if P is recursively enumerable, then L and L′ are recursively enumerable, too.
We have to verify that CSP(Γ) is polynomial time equivalent to P. We first show that

there is a polynomial-time reduction from P to CSP(Γ). View an instance of P as a number
n ≥ 0 as above, and let η(x) be a primitive positive definition for x = n in Γ. It is possible to
find such a definition in polynomial time by repeatedly doubling (y = x+x) and incrementing
(y = x+ 1) the value 0 (this also follows from the more general Lemma 3). It is clear that n
codes a yes-instance of P if and only if ∃x(η(x) ∧ L′(x)) is true in Γ.

To reduce CSP(Γ) to P, we present a polynomial-time algorithm for CSP(Γ) that uses
an oracle for P (so our reduction will be a polynomial-time Turing reduction). Let φ be
an instance of CSP(Γ), and let H be the undirected graph whose vertices are the variables
W of φ, and which has an edge between x and y if φ contains the constraint S(x, y) or the
constraint D(x, y). Compute the connected components of H. If a connected component does
not contain x with a constraint N(x) in φ, then we can set all variables of that component
to −1 and satisfy all constraints involving those variables.

Otherwise, suppose that we have a component C that does contain x0 with a constraint
N(x0). Observe that by connectivity, if there exists a solution, then all variables in C must
take non-negative value. Consider the following linear system: for each constraint of the
form S(x, y) for x, y ∈ C we add y = x+ 1 and x ≥ 0 to the system, and for each constraint
of the form D(x, y) for x, y ∈ D we add z = 2x and x ≥ 0. Subject to x0 = 0 this system
has either one or no solution. As we have discussed earlier, one can check in polynomial time
whether a linear system with 2 variables per constraint has an integer solution, and if there
is no solution, the algorithm rejects. Otherwise, the algorithm assigns to each variable x ∈ C
its unique integer value, and if φ contains a constraint L′(x), we call the oracle for P with
the binary encoding of this value. If any of those oracle calls has a negative result, reject.
Otherwise, we have found an assignment that satisfies all constraints, and accept. J

The universal-algebraic approach fails badly when it comes to analyzing the computational
complexity of CSP(Γ) for the structure Γ from the proof of Theorem 57: the semi-lattice
operation (x, y) 7→ max(x, y) preserves Γ for all structures Γ considered in the previous
proof, and from that we cannot draw any consequences for the computational complexity of
CSP(Γ).

10 Next Steps for . . .

Constraint Satisfaction Problems over a numeric domain, such as Z, Q, R, C, for a fixed set
of constraints that are first-order definable using addition and multiplication, provide an
extremely rich class of natural and fundamental computational problems. A great variety of
problems from the literature can be expressed in this way. Many of these problems have an
open computational complexity status, and belong to the central topics of research in their
respective fields.

The universal-algebraic approach, which has originally been developed for finite-domain
constraint satisfaction, will most likely only be of limited help for studying the complexity of
computational complexity of the famously open problems. However, this approach is useful

M. Bodirsky and M. Mamino 105

for for relating these problems, for obtaining classification results, and for identifying new
polynomial-time restrictions.

We state a list of concrete open problems, which we structure according to the numeric
domain.

10.1 . . . the Integers
There is the obvious goal: classify the complexity of CSP(Γ) for first-order reducts Γ of
(Z;<,+, 1). This being a very ambitious goal, we propose substeps and concrete relevant
questions.

1. Classify the complexity of first-order reducts of (Z; Succ, 0).
2. Classify the complexity of first-order reducts of (Z; +).
3. What is the complexity of CSP(Z;≤,Succ, x = 2y)?

10.2 . . . the Rationals
Again, there is the obvious goal: classify the complexity of CSP(Γ) for first-order reducts Γ
of (Q;<,+, 1). A complete answer would involve the solution of long-standing open problems
from the literature, e.g., the complexity of mean payoff games.

4. What is the complexity of CSP(Γ) for first-order reducts Γ of (Q;<,+, 1) with max as a
polymorphism? Already containment in NP ∩ coNP is unclear.

5. What is the complexity of CSP(Q;X,RSucc) where X := {(x, y, z) ∈ Q3 | x = y < z ∨
x = z < y ∨ y = z < x} is the relation from the introduction?

6. Classify the complexity of CSP(Γ) for first-order reducts Γ of (Q; +).

10.3 . . . the Reals
Is it possible to classify the complexity of CSP(Γ) for first-order reducts Γ of (R; +, ∗)?
This goal is at least as difficult as the initial goal from Section 10.2, since 1 and < are
first-order definable in (R; +, ∗), and since every reduct of (R; +, <, 1) has the same CSP as
the corresponding reduct of (Q; +, <, 1).

7. What is the computational complexity of the problem CSP(R, R+;R=1,+, x2 ≤ y) from
Observation 32?

8. What is the computational complexity of the problem CSP(R;R+, R=1, x
2 +y2 ≤ 1) from

Observation 33?
The classification for first-order reducts of (R; +, ∗) is probably strictly more difficult, because
a complete complexity classification might provide the solution to further famous computa-
tional problems of open complexity, e.g., the sums-of-square-roots problem or the feasibility
problem for semidefinite programs.

10.4 . . . and the Complex Numbers
Also over the complex numbers, many fundamental questions are open. The obvious general
question is whether we can classify CSP(Γ) for all first-order reducts of (C; +, ∗). Clearly,
if Γ is a first-order reduct of (R2;≤,+, 1, i) (with the usual identification of C and R2),
then CSP(Γ) can be reduced to a linear program feasibility problem. On the other hand,
for characterizing the reducts Γ with an NP-hard CSP, it would be interesting to have a
primitive positive version of the theorem of Marker and Pillay mentioned in the introduction.
More precisely, we are interested in the following mathematical question.

Chapte r 03

106 Constraint Satisfaction Problems over Numeric Domains

9. Let R ⊆ Cn be the relation defined over (C; +, ∗) by p(x1, . . . , xn) = 0 for some non-
linear polynomial p. Is there a primitive positive definition of complex multiplication in
(C; +, 1, R)?

Acknowledgement. The authors would like to thank the referee for the many comments
that helped to improve the readability.

References
1 Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig. Combinat-

orial simplex algorithms can solve mean payoff games. SIAM J. Optim., 24(4):2096–2117,
2014.

2 Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On
the complexity of numerical analysis. SIAM J. Comput., 38(5):1987–2006, 2008/09. doi:
10.1137/070697926.

3 Daniel Andersson and Peter Bro Miltersen. The complexity of solving stochastic games
on graphs. In Algorithms and Computation, 20th International Symposium, ISAAC 2009,
Honolulu, Hawaii, USA, December 16-18, 2009. Proceedings, pages 112–121, 2009.

4 A. Atserias and E. Maneva. Mean-payoff games and the max-atom problem, 2009. URL:
https://www.cs.upc.edu/~atserias/papers/mean-payoff-games-max-atom/mpma.
pdf.

5 D. Avis and V. Chvátal. Notes on bland’s pivoting rule. In Polyhedral Combinatorics, pages
24–34. Springer Berlin Heidelberg, 1978.

6 L. Barto. The constraint satisfaction problem and universal algebra. The Bulletin of
Symbolic Logic, 21(3):319–337, 2015.

7 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consist-
ency methods. Journal of the ACM, 61(1):3:1–3:19, 2014.

8 Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of reflections. Preprint
arXiv:1510.04521, 2015.

9 Libor Barto and Michael Pinsker. The algebraic dichotomy conjecture for infinite domain
constraint satisfaction problems. In Proceedings of LICS’16, pages 615–622, 2016. Preprint
arXiv:1602.04353.

10 Marc Bezem, Robert Nieuwenhuis, and Enric Rodríguez-Carbonell. The max-atom problem
and its relevance. In Proceedings of the International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR), pages 47–61, 2008.

11 Henrik Björklund and Sergei Vorobyov. Combinatorial structure and randomized subex-
ponential algorithms for infinite games. Theoretical Computer Science, 349(3):347–360,
2005.

12 Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and real compu-
tation. Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp.

13 Manuel Bodirsky. Cores of countably categorical structures. Logical Methods in Computer
Science, 3(1):1–16, 2007.

14 Manuel Bodirsky. Complexity classification in infinite-domain constraint satisfaction. Mé-
moire d’habilitation à diriger des recherches, Université Diderot – Paris 7. Available at
arXiv:1201.0856, 2012.

15 Manuel Bodirsky, Víctor Dalmau, Barnaby Martin, Antoine Mottet, and Michael Pinsker.
Distance constraint satisfaction problems. Information and Computation, 247:87–105, 2016.

16 Manuel Bodirsky and Martin Grohe. Non-dichotomies in constraint satisfaction complex-
ity. In Luca Aceto, Ivan Damgard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna
Ingólfsdóttir, and Igor Walukiewicz, editors, Proceedings of the International Colloquium

http://dx.doi.org/10.1137/070697926
http://dx.doi.org/10.1137/070697926
https://www.cs.upc.edu/~atserias/papers/mean-payoff-games-max-atom/mpma.pdf
https://www.cs.upc.edu/~atserias/papers/mean-payoff-games-max-atom/mpma.pdf

M. Bodirsky and M. Mamino 107

on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science,
pages 184–196. Springer Verlag, July 2008.

17 Manuel Bodirsky, Martin Hils, and Barnaby Martin. On the scope of the universal-algebraic
approach to constraint satisfaction. Logical Methods in Computer Science (LMCS), 8(3:13),
2012. An extended abstract that announced some of the results appeared in the proceedings
of Logic in Computer Science (LICS’10).

18 Manuel Bodirsky, Peter Jonsson, and Timo von Oertzen. Essential convexity and com-
plexity of semi-algebraic constraints. Logical Methods in Computer Science, 8(4), 2012.
An extended abstract about a subset of the results has been published under the title
Semilinear Program Feasibility at ICALP’10.

19 Manuel Bodirsky and Jan Kára. The complexity of equality constraint languages. Theory of
Computing Systems, 3(2):136–158, 2008. A conference version appeared in the proceedings
of Computer Science Russia (CSR’06).

20 Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction prob-
lems. Journal of the ACM, 57(2):1–41, 2009. An extended abstract appeared in the Pro-
ceedings of the Symposium on Theory of Computing (STOC).

21 Manuel Bodirsky, Dugald Macpherson, and Johan Thapper. Constraint satisfaction tract-
ability from semi-lattice operations on infinite sets. Transaction of Computational Logic
(ACM-TOCL), 14(4):1–30, 2013.

22 Manuel Bodirsky and Marcello Mamino. Max-closed semilinear constraints. In Proceedings
of CSR, pages 88–101, 2016.

23 Manuel Bodirsky and Antoine Mottet. Reducts of finitely bounded homogeneous structures,
and lifting tractability from finite-domain constraint satisfaction. In Proceedings of LICS’16,
pages 623–632, 2016. Preprint available under ArXiv:1601.04520.

24 Manuel Bodirsky, Antoine Mottet, and Barnaby Martin. Constraint satisfaction prob-
lems over the integers with successor. In Proceedings of ICALP, pages 256–267, 2015.
ArXiv:1503.08572.

25 V.G. Bodnarčuk, L.A. Kalužnin, V.N. Kotov, and B.A. Romov. Galois theory for Post
algebras, part I and II. Cybernetics, 5:243–539, 1969.

26 Andrei A. Bulatov and Peter Jeavons. Algebraic structures in combinatorial problems.
Technical report MATH-AL-4-2001, Technische Universität Dresden, 2001.

27 Peter J. Cameron. Transitivity of permutation groups on unordered sets. Mathematische
Zeitschrift, 148:127–139, 1976.

28 John Canny. Some algebraic and geometric computations in PSPACE. In Proceedings of
the Twentieth Annual ACM Symposium on Theory of Computing (STOC), pages 460–467,
New York, NY, USA, 1988. ACM.

29 T.-W. J. Chou and G.E. Collins. Algorithms for the solution of systems of linear Diophant-
ine equations. SIAM Journal on Computing, 11:687–708, 1982.

30 George E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In Automata Theory and Formal Languages (2nd GI Conference Kaiser-
slautern), pages 134–183. Springer Berlin, Heidelberg, 1975.

31 Anne Condon. The complexity of stochastic games. Information and Computation,
96(2):203–224, 1992. doi:10.1016/0890-5401(92)90048-K.

32 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms. MIT Press, 2009. Third edition.

33 Mike Develin and Bernd Sturmfels. Tropical convexity. Documenta Mathematica, 9:1–27,
2004.

34 Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff games. In-
ternational Journal of Game Theory, 8(2):109–113, 1979.

Chapte r 03

http://dx.doi.org/10.1016/0890-5401(92)90048-K

108 Constraint Satisfaction Problems over Numeric Domains

35 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory. SIAM Journal on
Computing, 28:57–104, 1999.

36 Jeanne Ferrante and Charles Rackoff. A decision procedure for the first order theory of
real addition with order. SIAM Journal on Computing, 4(1):69–76, 1975.

37 Oliver Friedmann. A subexponential lower bound for zadeh’s pivoting rule for solving
linear programs and games. In Integer Programming and Combinatoral Optimization: 15th
International Conference (IPCO, New York), pages 192–206. Springer Berlin Heidelberg,
2011.

38 Oliver Friedmann, Thomas Dueholm Hansen, and Uri Zwick. Subexponential lower bounds
for randomized pivoting rules for the simplex algorithm. In Proceedings of the Forty-third
Annual ACM Symposium on Theory of Computing (STOC), pages 283–292, New York, NY,
USA, 2011. ACM. doi:10.1145/1993636.1993675.

39 Joseph A. Gallian. Contemporary Abstract Algebra. Brooks/Core, 2006.
40 M.R. Garey, R. L. Graham, and D. S. Johnson. Some NP-complete geometric problems.

In Eighth Annual ACM Symposium on Theory of Computing (Hershey, Pa., 1976), pages
10–22. Assoc. Comput. Mach., New York, 1976.

41 D. Gillette. Stochastic games with zero probabilities. Contributions to the Theory of Games,
3:179–187, 1957.

42 Christian Glaßer, Peter Jonsson, and Barnaby Martin. Circuit satisfiability and constraint
satisfaction around skolem arithmetic. In Pursuit of the Universal – 12th Conference on
Computability in Europe, CiE 2016, Paris, France, June 27 – July 1, 2016, Proceedings,
pages 323–332, 2016.

43 Donald Goldfarb and William Y. Sit. Worst case behavior of the steepest edge simplex
method. Discrete Applied Mathematics, 1(4):277–285, 1979. doi:10.1016/0166-218X(79)
90004-0.

44 Dima Grigoriev and Vladimir V. Podolskii. Tropical effective primary and dual Nullstel-
lensätze. In 32nd International Symposium on Theoretical Aspects of Computer Science,
STACS 2015, March 4-7, 2015, Garching, Germany, pages 379–391, 2015.

45 V.A. Gurvich, A.V. Karzanov, and L.G. Khachiyan. Cyclic games and finding minimax
mean cycles in digraphs. Zh. Vychisl. Mat. i Mat. Fiz., 28(9):1407–1417, 1439, 1988.

46 Nir Halman. Simple stochastic games, parity games, mean payoff games and discounted
payoff games are all LP-type problems. Algorithmica, 49(1):37–50, 2007. doi:10.1007/
s00453-007-0175-3.

47 Thomas Dueholm Hansen and Uri Zwick. An improved version of the random-facet pivot-
ing rule for the simplex algorithm. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
pages 209–218, 2015.

48 J.William Helton and Jiawang Nie. Sufficient and necessary conditions for semidefinite
representability of convex hulls and sets. SIAM Journal on Optimization, 20(2):759–791,
2009.

49 J.William Helton and Jiawang Nie. Semidefinite representation of convex sets. Math.
Program., 122(1):21–64, 2010.

50 J.William Helton and Victor Vinnikov. Linear matrix inequality representation of sets.
Communications on Pure and Applied Mathematics, 60(5), 2007.

51 Dorit S. Hochbaum and Joseph Naor. Simple and fast algorithms for linear and integer
programs with two variables per inequality. SIAM Journal on Computing, 23(6):1179–1192,
1994.

52 Wilfrid Hodges. Model theory. Cambridge University Press, 1993.

http://dx.doi.org/10.1145/1993636.1993675
http://dx.doi.org/10.1016/0166-218X(79)90004-0
http://dx.doi.org/10.1016/0166-218X(79)90004-0
http://dx.doi.org/10.1007/s00453-007-0175-3
http://dx.doi.org/10.1007/s00453-007-0175-3

M. Bodirsky and M. Mamino 109

53 Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. Journal
of the ACM, 44(4):527–548, 1997.

54 P.G. Jeavons and M.C. Cooper. Tractable constraints on ordered domains. Artificial
Intelligence, 79(2):327–339, 1995.

55 R.G. Jeroslow. The simplex algorithm with the pivot rule of maximizing criterion improve-
ment. Discrete Mathematics, 4(4):367–377, 1973.

56 J. P. Jones. Universal diophantine equation. Journal of Symbolic Logic, 47(3):549–571,
1982.

57 Peter Jonsson and Christer Bäckström. A unifying approach to temporal constraint reas-
oning. Artificial Intelligence, 102(1):143–155, 1998.

58 Peter Jonsson and Tomas Lööw. Computation complexity of linear constraints over the
integers. Artificial Intelligence, 195:44–62, 2013.

59 Peter Jonsson and Johan Thapper. Constraint satisfaction and semilinear expansions
of addition over the rationals and the reals. Journal of Computer and System Sciences,
82(5):912–928, 2016. doi:10.1016/j.jcss.2016.03.002.

60 Gil Kalai. A subexponential randomized simplex algorithm (extended abstract). In Pro-
ceedings of the Twenty-fourth Annual ACM Symposium on Theory of Computing (STOC),
pages 475–482, New York, NY, USA, 1992. ACM. doi:10.1145/129712.129759.

61 Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the Smith
and Hermite normal forms of an integer matrix. SIAM J. Comput., 8(4):499–507, 1979.

62 N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4(4):373–395, 1984. doi:10.1007/BF02579150.

63 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations: Proceedings of a symposium on the Complexity of Computer Computations,
pages 85–103, Boston, MA, 1972. Springer US.

64 L. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademii Nauk
SSSR, 244:1093–1097, 1979.

65 Victor Klee and George J. Minty. How good is the simplex algorithm? In Inequalities, III
(Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory
of Theodore S. Motzkin), pages 159–175. Academic Press, New York, 1972.

66 Igor Klep. An exact duality theory for semidefinite programming based on sums of squares.
Mathematics of Operations Research, 38:569–590, 2013.

67 Pascal Koiran. Hilbert’s Nullstellensatz is in the polynomial hierarchy. J. Complexity,
12(4):273–286, 1996.

68 Pascal Koiran. Hilbert’s Nullstellensatz is in the polynomial hierarchy. Technical Report
DIMACS Technical report 96-27, Center for Discrete Mathematics and Theoretical Com-
puter Science, July 1996.

69 M. Koubarakis. Tractable disjunctions of linear constraints: Basic results and applications
to temporal reasoning. Theoretical Computer Science, 266:311–339, 2001.

70 J. Kratochvil and J. Matousek. Intersection graphs of segments. Journal of Combinatorial
Theory, Series B, 62(2):289–315, 1994. doi:10.1006/jctb.1994.1071.

71 J.C. Lagarias. The computational complexity of simultaneous Diophantine approximation
problems. SIAM Journal on Computing, 14(1):196–209, 1985.

72 H.W. Lenstra. Integer programming with a fixed number of variables. Mathematics of
Operations Research, 8(4):538–548, 1983.

73 Thomas M. Liggett and Steven A. Lippman. Stochastic games with perfect information
and time average payoff. SIAM Review, 11(4):604–607, 1969.

74 Kenneth L. Manders and Leonard Adleman. NP-complete decision problems for binary
quadratics. Journal of Computer and System Sciences, 16(2):168–184, 1978.

Chapte r 03

http://dx.doi.org/10.1016/j.jcss.2016.03.002
http://dx.doi.org/10.1145/129712.129759
http://dx.doi.org/10.1007/BF02579150
http://dx.doi.org/10.1006/jctb.1994.1071

110 Constraint Satisfaction Problems over Numeric Domains

75 David Marker, Yaacov Peterzil, and Anand Pillay. Additive reducts of real closed fields.
Journal of Symbolic Logic, 57(1):109–117, 1992.

76 David Marker and Anand Pillay. Reducts of (C,+, ∗) which contain +. J. Symb. Log.,
55(3):1243–1251, 1990.

77 Gary A. Martin. Definability in reducts of algebraically closed fields. Journal of Symbolic
Logic, 53(1):188–199, 1988.

78 Ju. V. Matijasevic. Some purely mathematical results inspired by mathematical logic. In
Foundations of Mathematics and Computability Theory, pages 121–127. Reidel, Dordrecht,
1977.

79 Yuri Matiyasevich. Enumerable sets are Diophantine. Doklady Akademii Nauk SSSR,
191:279–282, 1970.

80 Yuri V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, Massachusetts,
1993.

81 J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear programming.
Algorithmica, 16(4):498–516, 1996. doi:10.1007/BF01940877.

82 Nimrod Megiddo. Towards a genuinely polynomial algorithm for linear programming. SIAM
Journal on Computing, 12(2):347–353, 1983.

83 Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. J. ACM,
31(1):114–127, January 1984. doi:10.1145/2422.322418.

84 Rolf H. Möhring, Martin Skutella, and Frederik Stork. Scheduling with and/or precedence
constraints. SIAM Journal on Computing, 33(2):393–415, 2004.

85 Bernhard Nebel and Hans-Jürgen Bürckert. Reasoning about temporal relations: A max-
imal tractable subclass of Allen’s interval algebra. Journal of the ACM, 42(1):43–66, 1995.

86 Ya’acov Peterzil. Reducts of some structures over the reals. J. Symb. Log., 58(3):955–966,
1993.

87 Motakuri V. Ramana. An exact duality theory for semidefinite programming and its com-
plexity implications. Mathematical Programming, 77:129–162, 1997.

88 James Renegar. On the computational complexity and geometry of the first-order theory
of the reals. Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The
decision problem for the existential theory of the reals. Journal of Symbolic Computation,
13(3):255–299, 1992. doi:10.1016/S0747-7171(10)80003-3.

89 James Renegar. On the computational complexity and geometry of the first-order theory
of the reals. Part II: The general decision problem. Preliminaries for quantifier elimination.
Journal of Symbolic Computation, 13(3):301–327, 1992. doi:10.1016/S0747-7171(10)
80004-5.

90 James Renegar. On the computational complexity and geometry of the first-order theory of
the reals. Part III: Quantifier elimination. Journal of Symbolic Computation, 13(3):329–352,
1992. doi:10.1016/S0747-7171(10)80005-7.

91 Marcus Schaefer. Realizability of graphs and linkages. In Thirty Essays on Geometric
Graph Theory, pages 461–482. Springer New York, 2013.

92 Marcus Schaefer and Daniel Štefankovič. Fixed points, Nash equilibria, and the existential
theory of the reals. Theory of Computing Systems, pages 1–22, 2015.

93 Claus Scheiderer. Semidefinite representation for convex hulls of real algebraic curves, 2012.
Preprint, arXiv:1208.3865.

94 Alexander Schrijver. Theory of Linear and Integer Programming. Wiley – Interscience
Series in Discrete Mathematics and Optimization, 1998.

95 Alexandra Shlapentokh. Hilbert’s tenth problem: Diophantine classes and extensions to
global fields, volume 7 of New Mathematical Monographs. Cambridge University Press,
2007.

http://dx.doi.org/10.1007/BF01940877
http://dx.doi.org/10.1145/2422.322418
http://dx.doi.org/10.1016/S0747-7171(10)80003-3
http://dx.doi.org/10.1016/S0747-7171(10)80004-5
http://dx.doi.org/10.1016/S0747-7171(10)80004-5
http://dx.doi.org/10.1016/S0747-7171(10)80005-7

M. Bodirsky and M. Mamino 111

96 Sergey P. Tarasov and Mikhail N. Vyalyi. Semidefinite programming and arithmetic circuit
evaluation. Discrete Applied Mathematics, 156(11):2070–2078, 2008. In Memory of Leonid
Khachiyan (1952–2005).

97 Éva Tardos. A strongly polynomial algorithm to solve combinatorial linear programs. Op-
erations Research, 34(2):250–256, 1986. URL: http://www.jstor.org/stable/170819.

98 Alfred Tarski. A decision method for elementary algebra and geometry: Prepared for
publication with the assistance of J. C.C. McKinsey. Technical report, RAND Corporation,
Santa Monica, CA, 1951.

99 Lou van den Dries. Tame topology and o-minimal structures, volume 248 of London
Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1998.
doi:10.1017/CBO9780511525919.

100 Peter van Emde Boas. Another NP-complete partition problem and the complexity of com-
puting short vectors in a lattice. Technical Report Technical Report 81-04, Mathematische
Instituut, University of Amsterdam, 1981.

101 Marc Vilain, Henry Kautz, and Peter van Beek. Constraint propagation algorithms for
temporal reasoning: A revised report. Reading in Qualitative Reasoning about Physical
Systems, pages 373–381, 1989.

102 Sergei Vorobyov. Cyclic games and linear programming. Discrete Applied Mathematics,
156(11):2195–2231, 2008. In Memory of Leonid Khachiyan (1952–2005). doi:10.1016/j.
dam.2008.04.012.

103 Margaret H. Wright. The interior-point revolution in optimization: history, recent devel-
opments, and lasting consequences. Bull. Amer. Math. Soc., 42:39–56, 2005.

104 Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158(1&2):343–359, 1996.

Chapte r 03

http://www.jstor.org/stable/170819
http://dx.doi.org/10.1017/CBO9780511525919
http://dx.doi.org/10.1016/j.dam.2008.04.012
http://dx.doi.org/10.1016/j.dam.2008.04.012

Hybrid Tractable Classes of Constraint Problems∗

Martin C. Cooper1 and Stanislav Živný2

1 IRIT, University of Toulouse III, Toulouse, France
cooper@irit.fr

2 Dept. of Computer Science, University of Oxford, Oxford, UK
standa.zivny@cs.ox.ac.uk

Abstract
We present a survey of complexity results for hybrid constraint satisfaction problems (CSPs)
and valued constraint satisfaction problems (VCSPs). These are classes of (V)CSPs defined by
restrictions that are not exclusively language-based or structure-based.

1998 ACM Subject Classification F.4.1 Mathematical Logic, G.2.1 Combinatorics, G.2.2 Graph
Theory, F.1.3 Complexity Measures and Classes, G.1.6 Optimization

Keywords and phrases Constraint satisfaction problems, Optimisation, Tractability

Digital Object Identifier 10.4230/DFU.Vol7.15301.113

1 Introduction

A fundamental challenge in computer science is to map out the frontier of the complexity
class P, the class of decision problems that can be solved in polynomial time. The constraint
satisfaction problem (CSP) is a generic combinatorial problem which includes in a natural
way many important NP-complete problems such as SAT or graph-colouring. The valued
constraint satisfaction problem (VCSP) can be seen as an even richer language than the CSP
since it provides a general framework in which to express both constraint satisfaction problems
and constrained optimisation problems. The identification of tractable classes of generic
problems, such as the (V)CSP, has led not only to a deeper understanding of tractability, but
also to wider application areas of well-known algorithms. Indeed, recent research has shown
that very few algorithmic techniques suffice to solve all tractable language-based classes of
(V)CSPs [1, 35, 40].

Many real-world problems can be modelled as classical and well-studied NP-complete
problems, such as SAT, CSP or VCSP. This has the advantage that generic solvers exist
which are efficient on many instances, but has the disadvantage of not taking into account
specificities of the particular problem which could perhaps guarantee the existence of a
polynomial-time algorithm. Obvious specificities include the type of constraints or cost
functions that can occur or the structure of the hypergraph of constraint scopes. Much
research effort has been devoted to identifying tractable language-based classes [2, 5] or
tractable structural classes [32], with many notable successes. However, it is natural to ask
whether interesting classes of instances can be defined in other ways.

∗ The authors were supported by EPSRC grant EP/L021226/1. Stanislav Živný was supported by a
Royal Society University Research Fellowship. This work was partly done while the second author was
visiting the Simons Institute for the Theory of Computing at UC Berkeley. This project has received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 714532). The paper reflects only the authors’ views
and not the views of the ERC or the European Commission. The European Union is not liable for any
use that may be made of the information contained therein.

© Martin C. Cooper and Stanislav Živný;
licensed under Creative Commons License BY

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný; pp. 113–135

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol7.15301.113
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3

114 Hybrid Tractable Classes of Constraint Problems

One way of defining classes of instances is by simultaneously placing restrictions both
on the language of possible constraints (or cost functions) and on the structure of the
hypergraph of constraint (cost function) scopes. Such classes are known as hybrid classes,
and by extension all classes which are not exclusively language-based nor structure-based are
also known as hybrid [24]. This larger meaning is the one we apply in this chapter.

As an example of a hybrid tractable class, consider a company which wishes to give
bonuses to its employees (chosen from a finite set of possible amounts). Each employee
has a grade, with higher grades corresponding to more important posts. Some, but not all,
employees have an immediate boss to whom they report. In this case, the employee and
the immediate boss must receive bonuses such that the sum of the bonuses of the employee
and the boss is bounded above and below by a specified amount. On the other hand, if
an employee has no immediate boss, then the rule is that they must not receive a bigger
bonus than anyone at a higher grade. We will see, in Example 1, that this bonus-assignment
problem falls in a hybrid tractable class.

As another example, consider the same company which now wants to assign staff to a
project, minimising total salary costs while respecting constraints concerning the minimum
number of personnel from each section, the maximum total number of staff on the project,
as well as the availability of each member of staff. Again, we will see, in Example 4, that
this problem falls into a hybrid tractable class

An important way to classify work on hybrid tractability is how classes of instances are
defined. We consider the following ways of defining a class of instances of (V)CSPs:

independent restrictions on both the language of constraints (or cost functions) and on
the structure of the instance.
excluding generic sub-instances (known as forbidden patterns).
properties that are required to hold after a preprocessing operation, such as establishing
a certain level of consistency, has been performed.
graph properties of the (weighted) microstructure of the instance.
instances which are so strongly constrained that this implies a polynomial bound on
search-tree size (or, on the contrary, so weakly constrained that there is always a solution).

Historically, different hybrid classes have been identified by attempting to generalise
language or structural restrictions, or to determine a large class of instances solved by a
particular algorithmic technique, or to translate known results from another field, usually
graph theory, to (V)CSPs. The field of hybrid tractability has not yet reached maturity and
is notably lacking a general theory which would allow us to express all the above types of
restrictions, together with language and structural restrictions, in a common language. Such
a unified language would no doubt lead to a greater understanding and new applications.

2 Independent Language and Structure Restrictions

A constraint satisfaction problem (CSP) instance I is given by a triple 〈X,D,C〉, where
X = {X1, . . . , Xn} is a finite set of variables, D is a finite set of values, and C is a finite
set of constraints. Each constraint c ∈ C is a pair 〈v, R〉, where v, the constraint scope, is
a list of k variables from X and R ⊆ Dk, the constraint relation, is a k-ary relation on D.
We call k the arity of the constraint. We note that different constraints within the same
instance can have different arity. The question is whether there is an assignment of values to
the variables that satisfies all the constraints. More formally, to decide whether there is an
assignment s : X → D such that for every c ∈ C with c = (v, R) and v = (Xi1 , . . . , Xik), we
have 〈s(Xi1), . . . , s(Xik)〉 ∈ R.

M.C. Cooper and S. Živný 115

In language-based classes of CSPs, one restricts the set of constraint relations R on D
that can appear in any instance. A finite set of relations on a fixed finite set D is called
a constraint language and we denote by CSP(Γ) the class of CSP instances in which all
constraint relations belong to Γ.

In structure-based classes of CSPs, one restricts the type of interactions of the constraint
scopes s (by restricting the hypergraph of the constraint scopes s on X) that can appear in
any instance.

We remark that an equivalent definition of CSPs is the following: given two relational
structures A and B, is there a homomorphism from A to B? Language-based CSPs correspond
to fixing B to a single relational structure (corresponding to a constraint language) whereas
structure-based CSPs correspond to requiring A ∈ A for some (infinite) class A of relational
structures [34].

In this section we will discuss known results on the complexity of CSPs that impose
independent restrictions on the structure of the instance and on the constraint language.

2.1 Planarity
A constraint language is called Boolean if the domain D is equal to {0, 1}.

The incidence graph of a CSP instance I = 〈X,D,C〉 has X ∪ C as its vertex set and
(Xi, c) is an edge, for Xi ∈ X and c ∈ C, if Xi ∈ v where c = (v, R).

For a Boolean constraint language Γ, we denote by CSPp(Γ) the set of CSP instances
from CSP(Γ) with planar incidence graphs and with the condition that, for each constraint
in the instance, the variables in the scope of the constraint appear in the clockwise order (in
some fixed planar embedding).

The complexity of Boolean planar language-restricted CSPs has recently been established.
First, it was shown that, apart from Boolean constraint languages Γ where CSP(Γ) is
tractable (and thus also CSPp(Γ) is tractable), CSPp(Γ) is intractable unless Γ is an even
∆-matroid [26]. Secondly, the tractability of CSPp(Γ) for even ∆-matroids was shown [38].
In order to define even ∆-matroids we need some further notation.

We use ⊕ for the exclusive or. For a tuple t over {0, 1}, we denote by t the tuple
obtained from t by flipping all values; i.e., t = t ⊕ (1, . . . , 1). We say that a relation R

is self-complementary if for every t ∈ R we have t ∈ R. For a self-complementary R, we
denote by dR the relation {(t1 ⊕ t2, t2 ⊕ t3, . . . , tk ⊕ t1) | (t1, . . . , tk) ∈ R}. We say that Γ is
self-complementary if every R ∈ Γ is self-complementary. We define dΓ = {dR |R ∈ Γ}. A
set M ⊆ {0, 1}k is a ∆-matroid if for all 〈t1, . . . , tk〉, 〈t′1, . . . , t′k〉 ∈ M and every 1 ≤ i ≤ k

with ti 6= t′i there is 1 ≤ j ≤ k with tj 6= t′j such that t with ti and tj flipped also belongs to
M . (We also allow the case of i = j, in which case the new tuple that is required to belong
to M is obtained from t by flipping the ith position.) A ∆-matroid M is called even if all
tuples in M have the same parity of the number of 1s. (Note that in this case i and j cannot
be the same in the definition of ∆-matroids as this would change the parity of 1s.) Finally, a
Boolean constraint language is called an even ∆-matroid if Γ is self-complementary and each
relation in dΓ is an even ∆-matroid.

We now give an example of a constraint language that can be used to model the perfect
matching problem in graphs as a planar CSP [26]. LetMk ⊆ {0, 1}k be the relation containing
the k-tuples in which precisely one coordinate is set to one (and all others are set to zero).
It is easy to check that Mk is an even ∆-matroid for every k. Let Γpm be the constraint
language on {0, 1} with dΓ = ∪k≥1Mk. It can be checked that Γ is self-complementary
and by definition dΓ is an even ∆-matroid. Hence Γpm is an even ∆-matroid. For a graph
G = (V,E), we construct an instance IG = 〈E, {0, 1}, C〉 of Boolean CSP(Γpm) with a

Chapte r 04

116 Hybrid Tractable Classes of Constraint Problems

constraint 〈〈e1, . . . , ek〉,Mk〉 ∈ C for every degree-k vertex of G incident to edges e1, . . . , ek.
It is clear that perfect matchings in G are in 1-to-1 correspondence with satisfying assignments
to IG.

2.2 Bounded Occurrence

Another natural restriction is that of bounded occurrence of variables in the constraints.
We denote by CSPk(Γ) the class of instances of CSP(Γ) in which every variable appears
in at most k constraints. Feder showed that for Boolean constraint languages that contain
constants, CSP3(Γ) is as hard as CSP(Γ) [27]. Here a constant is a unary singleton relation.
On the Boolean domain D = {0, 1}, there are only two constants c0 = {(0)} and c1 = {(1)}.

Boolean CSPs in which every variable appears exactly in two constraints are called edge
CSPs in [38] but have been long known as Holant problems in the counting community. We
denote by CSPe(Γ) the set of CSP instances from CSP(Γ) in which every variable appears in
exactly two constraints. (The case of a variable appearing in at most two constraints, CSP2(Γ),
can be reduced to this case [27]). Feder showed that if Γ is a Boolean constraint language
including constants such that CSP(Γ) is intractable then CSPe(Γ) is intractable unless Γ is a
∆-matroid. Tractability has been shown for several special classes of ∆-matroids [27, 21]
and most recently for even ∆-matroids [38] (where the reader can find more references). For
instance, CSPe(Γpm) captures precisely the perfect matching problem in graphs.

2.3 Lifted Languages

Two recent papers [39, 52] study certain hybrid classes of CSPs in which the algebraic
machinery developed for the computational complexity of constraint languages is (partially)
applicable. In particular, it has been shown that the complexity of the class of CSP(Γ)
instances in which the structure (hypergraph of constraint scopes) is closed under inverse
homomorphisms can be shifted to the analysis of the complexity of a CSP(Γ′) instance,
where Γ′ is a new, “lifted” language [39, 52]. A class of structures H is closed under inverse
homomorphisms if whenever there is a homomorphism from R′ to R ∈ H then R′ ∈ H.
Examples of such structures include classes of acyclic or k-colourable graphs. Non-examples
include classes of planar or perfect graphs.

3 Forbidden Patterns

The notion of forbidden pattern is based on the idea that local properties of an instance
may guarantee tractability and that a natural local property is the exclusion of those sub-
instances which are obstructions to polynomial-time solution algorithms. Classifying graphs
by excluding substructures is classical in graph theory and a CSP instance can be represented
by a labelled graph, known as its microstructure, so this approach has the advantage that it
sometimes allows us to use known results from graph theory.

For the moment, the study of forbidden patterns has been mostly limited to binary CSPs
with no structure on the variables or domain values except possibly a total order. In this
section, we begin with some formal definitions before presenting certain tractable classes
defined by forbidden patterns. We then go on to consider extensions to non-binary CSPs
and explore classes defined by excluding patterns as topological minors.

M.C. Cooper and S. Živný 117

3.1 Definitions

A binary CSP instance requires the assignment of values from some specified finite domain D
to a finite set X of variables {X1, . . . , Xn}. Each variable Xi has its own domain of possible
values D(Xi) ⊆ D. Without loss of generality, in this section we assume that each pair of
variables, Xi, Xj ∈ X is constrained by a constraint relation Rij . A constraint is non-trivial
if it is not the Cartesian product of the domains of the two variables. A solution to a binary
CSP instance is an assignment s of values to variables, such that, for each constraint Rij ,
〈s(Xi), s(Xj)〉 ∈ Rij .

The constraint graph of an instance I is GI = 〈VI , EI〉, where VI = X is the set of
variables of I and EI is the set of pairs {Xi, Xj} for which Rij is non-trivial. The instance I
is arc consistent if ∀i 6= j ∈ {1, . . . , n}, ∀a ∈ D(Xi), ∃b ∈ D(Xj) such that 〈a, b〉 ∈ Rij . The
instance I is directional arc consistent if ∀i < j ∈ {1, . . . , n}, ∀a ∈ D(Xi), ∃b ∈ D(Xj) such
that 〈a, b〉 ∈ Rij .

One possible presentation of a binary CSP instance is as a labelled graph whose vertices
are the set of possible variable-value assignments. This (labelled) graph is known as the
(coloured) microstructure [37, 10, 50, 6, 43]. An n-variable binary CSP instance I in this
microstructure presentation is an n-partite graph 〈A1, . . . , An, E

+〉, where the ith part Ai
corresponds to the set of possible assignments 〈Xi, a〉 to variable Xi and there is an edge in
E+ between 〈Xi, a〉 ∈ Ai and 〈Xj , b〉 ∈ Aj if and only if (a, b) ∈ Rij . We refer to individual
variable-value assignments, such as 〈Xi, a〉 (i.e., the vertices of this n-partite graph) as points.
If v is some variable of the instance we use the notation Av to represent the set of possible
assignments to v. (Sets Av are sometimes called potatoes.) Thus Ai and AXi are synonyms.

An instance I can also be presented as a negative microstructure which is the n-partite
labelled graph 〈A1, . . . , An, E

−〉, where there is an edge in E− between points p ∈ Ai and
q ∈ Aj (for i 6= j) if and only if there is no edge between p and q in E+.

We refer to edges in E+ as positive edges and edges in E− as negative edges. We now
generalise the notion of microstructure and negative microstructure to obtain patterns: a
pattern is a labelled n-partite graph which has a set of positive edges, E+, and a set of
negative edges, E−.

A binary CSP instance can be seen as a special kind of pattern where the parts correspond
to the variables of the instance and there is exactly one positive or negative edge between
each pair of possible assignments to each pair of distinct variables. Positive edges connect
assignments that are allowed by the constraint on the corresponding pair of variables, and
negative edges connect assignments that are disallowed by this constraint.

A pattern P = 〈A1, . . . , An, E
+, E−〉 is a partially specified instance: there may be pairs

of points p ∈ Ai, q ∈ Aj (with i 6= j) such that there is neither a positive edge nor a negative
edge between p and q. A point is said to be isolated if it does not belong to any edges in
E+ or E−. We do not specifically disallow the possibility that two points in a pattern are
joined by both positive and negative edges: such patterns cannot occur as a subpattern in
an instance but can occur as a topological minor (c.f. Section 3.6).

In order that pattern exclusion be natural we define a pattern P as occurring in an-
other pattern Q if, after arbitrary renaming and then possible merging of points, we get a
substructure of Q.

A pattern P ′ = 〈A′1, . . . , A′n, E′+, E′−〉 is a homomorphic image of a pattern P =
〈A1, . . . , An, E

+, E−〉 if there exists a surjective mapping f :
⋃n
i=1 Ai →

⋃n
i=1 A

′
i such that

∀p, q ∈
⋃n
k=1 Ak, p and q belong to the same part Ai if and only if f(p) and f(q) belong

to the same part A′j ,

Chapte r 04

118 Hybrid Tractable Classes of Constraint Problems

• •
•��

���

•

Z1

�
�

�
�

�
�

�
�

a

b

c

d

• •
•��

���

•

Z2

�
�

�
�

�
�

�
�e

g h • •
•��

���

•
PPPPP •

XI

�
�

�
�

�
�

�
�

�
�

�
�

a′

b′
c′

d′
e′

w

• •
•��

���

•
PPPPP

MC

�
�

�
�

�
�

�
�

α

β

γ

δ
α > β
γ > δ

Figure 1 Four patterns.

∀i, j ∈ {1, . . . , n} with i 6= j, ∀p ∈ Ai, ∀q ∈ Aj : {p, q} ∈ E+ ⇒ {f(p), f(q)} ∈ E′+ and
{p, q} ∈ E− ⇒ {f(p), f(q)} ∈ E′−.

Note that forming a homomorphic image of a pattern allows the parts to be renamed, and
points p, q within the same part to be merged (provided there is no third point r such that
{p, r} and {q, r} are different types of edges).

We will say that a pattern P occurs as a sub-pattern of a pattern Q if Q can be transformed
into a homomorphic image of P by a sequence of the following substructure operations:

removal of (positive or negative) edges,
removal of isolated points, and
removal of empty parts.

A binary CSP instance is a pattern in which a part Ai corresponds to the set of assignments
to a variable; hence elimination of a part corresponds to the elimination of a variable.

Consider the three patterns Z1, Z2 and XI shown in Figure 1. Points are represented by
bullets, and points representing assignments to the same variable v are grouped together
within an oval representing Av. Solid lines represent positive edges (i.e., compatibility of
the corresponding pair of points) and dashed lines negative (i.e., incompatibility) edges.
For example, the pattern Z1 consists of 4 points a, b ∈ Av0 , c, d ∈ Av1 , two positive edges
E+ = {ac, bd} and one negative edge E− = {bd}. Z1 occurs in Z2 since Z2 can be transformed
into a homomorphic image of Z1 by removal of edge gh and point g (under a homomorphism
that maps a and b to the same point e in Z2). The pattern Z2 occurs in XI (as a subpattern)
since XI can be transformed into a homomorphic image of Z2 by removal of the edges a′d′
and d′e′ followed by the removal of the (then) isolated point e′ together with the (then)
empty part w. By transitivity of the occurrence relation, Z1 also occurs in XI.

We also consider patterns with structure in the sense of relations between the points in a
pattern. In this case the homomorphism f in the definition of homomorphic image, above,
must preserve the structure of the pattern. This structure may be, for example, an order on
the parts (i.e., variables) or an order on points within a part (i.e., domain values). Patterns
(such as Z1, Z2 and XI in Figure 1) without any such structure are known as flat patterns [6].
The pattern MC in Figure 1 has the structure consisting of the partial order: α > β, γ > δ.
Since XI is a flat pattern, MC does not occur in XI since this partial order clearly cannot be
preserved by a homomorphism from MC to XI. On the other hand, Z1 occurs in MC (via a
homomorphism which maps both a and b to α, c to δ and d to γ) since Z1 has no structure
to be preserved.

A class of binary CSP instances can be defined by forbidding a pattern P . We use the
notation CSPSP(P) to represent the set of binary CSP instances in which the pattern P does

M.C. Cooper and S. Živný 119

�
�

�
•

•
�
�

�
•

•
�
�

�
•

• �
�

�
•

•

�
�

�
•

•
�
�

�
•

•
�
�

�
•

•

�
�

�
•

•
�
�

�
•

•
�
�

�
•

•

...

...

...

v

Figure 2 The negative pattern Pivot(k), where the number of edges in each of the three branches
leaving the central variable v is k.

not occur as a subpattern. We say that a pattern P is tractable if there is a polynomial-time
algorithm to solve CSPSP(P) and intractable if CSPSP(P) is NP-hard. The pattern MC is
tractable since CSPSP(MC) is the class of binary max-closed instances [36]. On the other
hand, we know that Z2 is intractable since it does not satisfy a necessary condition for
tractability described in Section 3.2. If P occurs as a subpattern of Q, then CSPSP(P) ⊆
CSPSP(Q) and hence P is tractable if Q is tractable [6]. Thus we can immediately deduce
that Z1 is tractable (since it occurs in MC) and that XI is intractable (since Z2 occurs in XI).

An important point is that applying any reduction operation which eliminates domain
elements, such as arc consistency, SAC (Singleton Arc Consistency) or neighbourhood
substitution [24], cannot introduce a pattern in an instance. On the other hand, reduction
operations, such as 3-consistency, which modify constraints may introduce patterns.

A pattern P (such as pattern Z1 in Figure 1) is mergeable if there exists some pattern Q
(such as the pattern Z1 without the edge ac or the point a) such that Q is a homomorphic
image of P but P is not a homomorphic image of Q; otherwise, P is unmergeable. A point p
(such as e′ in pattern XI in Figure 1) is called dangling if p belongs to at most one positive
edge {p, q} and no negative edges (and p belongs to no other relation, such as a partial order,
in the case of patterns with structure). The corresponding dangling reduction consists in
removing both the edge {p, q} and the point p (together with the part to which p belonged
if this part becomes empty after removal of p). Dangling points provide no information in
arc-consistent instances, in the sense that P occurs in an instance I if and only if the pattern
P ′ occurs in I where P ′ is the result of applying a dangling reduction to P . Thus, using the
fact that establishing arc consistency cannot introduce patterns, we have that P is tractable
if and only if P ′ is tractable.

An unmergeable pattern with no dangling points is called irreducible. In Figure 1, pattern
Z1 is mergeable, whereas patterns Z2 and XI are unmergeable. The point e′ in pattern XI is
dangling (as is the point a in the pattern Z1) but not β and δ in pattern MC (because of the
partial order relation on these points). Thus of the four patterns in Figure 1, only Z2 and
MC are irreducible.

3.2 Characterising Tractable Patterns
The theoretical tools necessary to provide a complete characterisation of tractable patterns
have yet to be discovered. Indeed, characterising tractable patterns would appear to be, in
general, even more difficult than characterising tractable constraint languages or tractable
constraint-hypergraph structures. Nevertheless, certain characterisation results have been
proved. One important result concerns the negative edges in a tractable unmergeable pattern.
It has been shown that the “skeleton” of a tractable unmergeable pattern, consisting of just

Chapte r 04

120 Hybrid Tractable Classes of Constraint Problems

•

Q
Q
Q

•

�
�
�•����

��������
•

•

�
�
�•����

��������
•

•

•

NEGTRANS

����

��������
Figure 3 Tractable triangle patterns.

•

•

•

�
�
�

•Q
Q
Q

T1

����

�����
�

�
�

•

•

•

�
�
�

•PPP
•

T2

����

�
�

�
��
�

�
�

•

•

•

�
�
�
•PPP

•

T3

����

�
�

�
��

�
�
�

•

•

•

�
�
�

•Q
Q
Q
•

�
�
�

T4

����

�����
�

�
� •

•

•

�
�
�
•Q

Q
Q

T5

����

�����
�

�
�

Figure 4 The five tractable irreducible flat patterns on 3 variables and 2 constraints.

the negative edges, must occur as a subpattern of (possibly multiple copies of) the pattern
Pivot(k), shown in Figure 2, for some constant k [6]. Unfortunately, very little is known
about the positive edges that can be added to such skeletons of negative edges.

Given that a general characterisation seems, for the moment, out of reach, certain special
cases have been studied, such as triangle patterns and 2-constraint patterns [19, 15]. Figure 3
shows the three tractable flat patterns on a triangle of 3 points and 3 edges [19]. Although
the first two patterns define fairly trivial classes, the third one, called NEGTRANS, is
interesting since CSPSP(NEGTRANS) includes non-trivial instances composed of arbitrary
unary constraints and non-overlapping All-Different constraints [48, 55]. The class of binary
CSP instances satisfying this negative-transitivity property has been generalised to a large
tractable class of optimisation problems involving cost functions of arbitrary arity which we
will discuss in Section 7 [19]. Figure 4 shows the five tractable irreducible flat patterns on 3
variables and 2 constraints [15]. CSPSP(T4) is interesting since it includes all binary CSP
instances with zero-one-all constraint relations [13] (which can be seen as a generalisation of
2SAT to non-Boolean domains).

Given the relatively modest successes in defining new and useful tractable classes by
forbidding flat patterns, it is natural to consider possible extensions of patterns by studying
structured patterns, non-binary patterns and other forms of occurrence than subpattern
occurrence. These three extensions are the subject of the remainder of this section.

3.3 Partially-Ordered Patterns
The pattern BTP shown in Figure 5 is known as a broken triangle (since the positive edges
can be said to form a triangle which is broken at variable z). Forbidding this pattern on all
triples of variables x < y < z defines a tractable class CSPSP(BTP) [16]. This class includes
all binary CSP instances whose constraint graph is a tree T since, ordering the variables
according to a pre-order of T , each variable z is constrained by at most one variable y < z,
its parent in T , and hence the broken-triangle pattern cannot occur. If a variable ordering
exists such that the broken-triangle pattern does not occur, then this order can be found
in polynomial time: it suffices to establish arc consistency and then successively eliminate
variables v which are not the right-hand variable z of a broken triangle (since we know that
such a variable v can be the last variable in the ordering among the remaining variables).

M.C. Cooper and S. Živný 121

�
�

�
•

�
�

�
•

�
�

�
•

•XXXXXXXX
\
\
\
\
\�
�
�
�
�

x

y

z

x < y < z

Figure 5 A binary CSP instance satisfies the broken triangle property if this pattern (known as
a broken triangle or BTP) does not occur in the instance.

CSPSP(BTP) is solved by arc consistency since the BTP is exactly the obstruction which
prevents an arc-consistent instance being backtrack-free. Indeed, even if the variable order is
unknown, MAC (Maintaining Arc Consistency) solves CSPSP(BTP) [16]. Thus, most CSP
solvers will automatically solve in polynomial time all instances in CSPSP(BTP).

I Example 1. Consider a company which wishes to give bonuses to its n employees. Each
employee i ∈ {1, . . . , n} has a grade gradei, with higher grades corresponding to more
important posts. Some, but not all, employees have an immediate boss to whom they report.
The company wants to assign bonuses so that each employee’s bonus is a multiple of 50 euros
between 5% and 20% of their salary. If an employee i has an immediate boss bi, then the
sum of the bonuses of i and bi must be no less than 10% and no more than 30% of the salary
of bi. On the other hand, if an employee i has no immediate boss then the rule is that they
must not receive a bigger bonus than anyone at a higher grade.

Let the variable xi be the bonus assigned to employee i. We assume that employees are
numbered so that (gradei > gradej)⇒ (i < j). Thus, for example, employee number 1 is
the CEO of the company. The domain of xi is the multiples of 50 between 5% and 20% of
the salary sali of employee i. If employee i has a boss bi, then there is a binary constraint
0.1salbi

≤ xi+xbi
≤ 0.3salbi

. Indeed, this is the only constraint between xi and the variables
xj (j < i). If employee i has no boss, then there are binary constraints xi ≤ xj for each
j ∈ {1, . . . , i − 1} such that gradej > gradei. In either case, it is easy to verify that xi
cannot be the rightmost variable in the broken triangle pattern shown in Figure 5. Thus, this
problem falls in CSPSP(BTP) and is solved by arc consistency. The constraint graph is of
unbounded tree-width: for example, if no-one has a boss but everyone is at a different grade,
then the constraint graph is the complete graph. Furthermore, the language of constraints is
NP-hard. Thus, this bonus-assignment problem defines a truly hybrid tractable class.

We have seen that broken-triangle free instances are solved by arc consistency. Arc
consistency is also a decision procedure for CSPSP(EMC) where EMC (Extended Max-
Closed) is the pattern shown in the top left of Figure 6. EMC is particularly interesting
because CSPSP(EMC) is a strict generalisation of binary max-closed CSPs [36] (since the
pattern MC shown in Figure 1 is a subpattern of EMC).

I Example 2. Consider a binary CSP instance I with integer domains and in which all
binary constraints are of the following form:

aXi + bXj ≥ c

where a, b, c are non-zero constants. We say that Xi occurs positively (respectively, negatively)
if a > 0 (a < 0). These constraints are max-closed if and only if at least one of the variables

Chapte r 04

122 Hybrid Tractable Classes of Constraint Problems

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX���
���

��\
\
\
\
\�
�
�
�
�

x z
x < z
α > β
γ > δ

α

β

γ

δ

EMC

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX���
���

��\
\
\
\
\�
�
�
�
�

y

x z

x < y, z
α > β

α

β

BTX

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX���
���

��
\
\
\
\
\�
�
�
�
�

y

z

y < z
α > β

α

β

BTI

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX���
���

��
\
\
\
\
\�
�
�
�
�

LX

Figure 6 Partially-ordered patterns that are solved by arc consistency.

Xi, Xj occurs positively [36]. Suppose that in I, for all constraints on a pair of variables
Xi < Xj in which both variables occur negatively, the variable Xj only occurs negatively in
other constraints. Then I ∈ CSPSP(EMC), and hence is solved by arc consistency.

In fact, if we consider only unmergeable patterns to which we then add a partial order to
the variables and/or the domains, then there are just five patterns P such that arc consistency
is a decision procedure for CSPSP(P): BTP and the patterns EMC, BTX, BTI and LX
shown in Figure 6 [20]. Given a fixed total order of the domain, there is a polynomial-time
algorithm to find a total variable ordering such that any one of these patterns does not
occur in an instance (or to determine that no such ordering exists). However, if the domain
and variable orders are both unknown, then EMC, BTX and BTI become NP-complete to
detect [20].

3.4 Non-Binary CSPs
Most work on forbidden-pattern tractability has been restricted to binary CSPs. Indeed,
notions such as microstructure and forbidden pattern do not (yet) have a widely-accepted
generalisation to non-binary constraints. Nonetheless, the notion of arbitrary-arity patterns
can be said to be already present in language classes defined by a polymorphism [11]. A
polymorphism can be viewed as a forbidden pattern in each constraint relation R of the
instance. The forbidden pattern corresponding to a polymorphism f : Dr → D consists
of a set of r positive tuples and one negative tuple. The positive tuples t1, . . . , tr ∈ R

are consistent assignments to the same variables and the negative tuple f(t1, . . . , tr) /∈ R
is the assignment to the same variables resulting from the pointwise application of f to
the t1, . . . , tr. By forbidding the pattern (t1, . . . , tr ∈ R, f(t1, . . . , tr) /∈ R), we impose the
well-known polymorphism condition t1, . . . , tr ∈ R =⇒ f(t1, . . . , tr) ∈ R [11].

As we have seen in Section 3.3, in the binary CSP, the broken-triangle property defines
a tractable class CSPSP(BTP). Although the definition of tractable classes by forbidden

M.C. Cooper and S. Živný 123

�
�

�
• �
�

�
•

�
�

�
•

•
hhhhhhA
A
A
A

z
�
�
�
�
�

a

b

t<z

X

Y

u<z

Figure 7 Illustration of a directional general-arity broken triangle.

patterns in general-arity CSPs is an area which remains largely unexplored, a generalisation
of the broken-triangle class CSPSP(BTP) to general-arity CSPs has recently been given [14].

Purely for notational convenience we assume that a CSP instance I is given in the form
of a set of negative (incompatible) tuples NoGoods(I), where a tuple is a set of variable-value
assignments, and that the predicate Good(I, t) is true iff the tuple t does not contain any
pair of distinct assignments to the same variable and @t′ ⊆ t such that t′ ∈ NoGoods(I). We
write Good as a predicate whereas Nogoods(I) is a set to emphasize the asymmetry between
the notions of positive and negative tuples. This asymmetry is not evident in the case of
binary CSPs nor in the case of polymorphisms.

We suppose that a total ordering < of the variables of a CSP instance I is given. We write
t<x to represent the subset of the tuple t consisting of assignments to variables occurring
before x in the order <, and V ars(t) to denote the set of all variables assigned by t.

I Definition 3. A directional general-arity broken triangle (DGABTP) on assignments a, b
to variable z in a CSP instance I is a pair of tuples t, u (containing no assignments to variable
z) satisfying the following conditions:
1. t<z and u<z are non-empty,
2. Good(I, t<z ∪ u<z) ∧ Good(I, t<z ∪ {〈z, a〉}) ∧ Good(I, u<z ∪ {〈z, b〉}),
3. t ∪ {〈z, b〉} ∈ NoGoods(I) ∧ u ∪ {〈z, a〉} ∈ NoGoods(I),
4. ∃t′ s.t. V ars(t′) = V ars(t) ∧ (t′)<z = t<z ∧ t′ ∪ {〈z, a〉} /∈ NoGoods(I),
5. ∃u′ s.t. V ars(u′) = V ars(u) ∧ (u′)<z = u<z ∧ u′ ∪ {〈z, b〉} /∈ NoGoods(I).
I satisfies the directional general-arity broken-triangle property (DGABTP) according to the
variable ordering < if no directional general-arity broken triangle occurs on any pair of values
a, b for any variable z.

Points (1), (2) and (3) of Definition 3 are illustrated by Figure 7. This figure is similar to
Figure 5 except that X,Y are sets of variables and t<z,u<z are tuples. Note that the sets
X = V ars(u<z) and Y = V ars(t<z) may overlap. Solid lines now represent partial solutions
(i.e., consistent assignments to subsets of variables). The two dashed lines represent nogoods
(i.e., tuples not in the constraint relation on its variables) u ∪ {〈z, a〉} and t ∪ {〈z, b〉} which
possibly involve assignments to variables w > z. In the case of binary CSPs, a directional
general-arity broken triangle is equivalent to a broken triangle as shown in Figure 5 (since
nogoods, being binary, involve no other variables w > z and the sets X,Y are necessarily
singletons). Points (4) and (5) of Definition 3 are technical conditions (which always hold
if a weak form of directional consistency holds) ensuring that the DGABTP can be tested
in polynomial time for a given order whether constraints are given as tables of satisfying
assignments or as nogoods.

Any instance I satisfying the DGABTP can be solved in polynomial time by repeatedly
applying the following two operations: (i) merge two values in the last remaining variable

Chapte r 04

124 Hybrid Tractable Classes of Constraint Problems

(according to the order <); (ii) eliminate this variable when its domain becomes a singleton.
Merging values a, b ∈ D(z) in a general-arity CSP instance I consists of replacing a, b in D(z)
by a new value c which is compatible with all variable-value assignments compatible with at
least one of the assignments 〈z, a〉 or 〈z, b〉, thus producing an instance I ′ with the new set
of nogoods defined as follows:

NoGoods(I ′) = {t ∈ NoGoods(I) | 〈z, a〉, 〈z, b〉 /∈ t}
∪ {t ∪ {〈z, c〉} | t ∪ {〈z, a〉} ∈ NoGoods(I) ∧

∃t′ ∈ NoGoods(I) s.t. t′ ⊆ t ∪ {〈z, b〉}}
∪ {t ∪ {〈z, c〉} | t ∪ {〈z, b〉} ∈ NoGoods(I) ∧

∃t′ ∈ NoGoods(I) s.t. t′ ⊆ t ∪ {〈z, a〉}} .

In general, merging a pair of values in an instance I may produce an instance I ′ which is
satisfiable even though I was not, but forbidding directional general-arity broken triangles
prevents this from happening. Eliminating a variable z whose domain is a singleton {a}
consists in making the assignment 〈z, a〉 and eliminating 〈z, a〉 from all nogoods.

Unfortunately, when the variable order is not given, testing the existence of a variable
ordering for which a CSP instance satisfies the DGABTP is NP-complete in the general-arity
case [14]. This can be contrasted with the binary case in which this test is polytime.

Note that the set of general-arity CSP instances whose dual instance satisfies the BTP,
denoted by DBTP, also defines a tractable class which can be recognised in polynomial time
even if the ordering of the variables in the dual instance is unknown [44]. This DBTP class
is incomparable with DGABTP (which is equivalent to BTP in binary CSP) since DBTP is
known to be incomparable with the BTP class already in the special case of binary CSP [44].
A general-arity broken triangle can be said to be centred on a pair of values in the domain
of a variable whereas a broken triangle in the dual instance is centred on a pair of tuples
in a constraint relation. One consequence of this is that eliminating tuples from constraint
relations cannot introduce broken triangles in the dual instance, whereas the DGABTP is
only invariant under elimination of domain values. On the other hand, the DGABTP is
invariant under adding a complete constraint (i.e., whose relation is the direct product of the
domains of the variables in its scope) whereas this operation can introduce broken triangles
in the dual instance. Another important difference is that DGABTP depends on an order on
the variables whereas DBTP depends on an order on the constraints.

The generalisation of forbidden patterns to non-binary constraints is a largely unexplored
area of research, but the generalisation of BTP to DGABTP has highlighted the asymmetry
between positive and negative tuples when constraints are non-binary.

3.5 Quantified Patterns
The notion of forbidding patterns has also been extended to rules based on applying a
sequence of quantifiers to the variables and values in a pattern. This has led to the discovery
of novel variable-elimination or value-elimination techniques [7, 12]. As an example, consider
the broken triangle pattern shown in Figure 5. It is known that we can eliminate variables
which are not the right-hand variable of a broken triangle: the resulting instance is satisfiable
if and only if the original instance was satisfiable [16]. This variable-elimination rule can
be strictly generalised to the following rule illustrated in Figure 8: a variable z can be
eliminated from an instance I without changing the satisfiability of I if for all other variables
y, ∀a ∈ D(y), ∃b ∈ D(z) with ab a positive edge in I such that no broken triangle exists
including this edge ab [12]. The class of binary CSP instances, known as ∀∃BTP, which are

M.C. Cooper and S. Živný 125

�
�

�
•

�
�

�
•

�
�

�
•

•XXXXXXXX
\
\
\
\
\�
�
�
�
�

x

y

z

x, y < z

a

b

Figure 8 In the ∀∃BTP class, for all pairs of variables y < z, ∀a ∈ D(y), ∃b ∈ D(z) such that for
all variables x < z, the broken triangle pattern shown does not occur.

such that all variables can be eliminated according to this rule strictly generalises the tractable
class CSPSP(BTP), since the BTP imposes the same condition but for all b ∈ D(Xk).

Let I be a binary arc-consistent CSP instance in the ∀∃BTP class and let s be a solution
to the instance obtained by eliminating the last variable z from I. We will give a sketch
proof that s can be extended to a solution for I. (We refer the reader to [12] for full details.)
By assumption, ∀y ∈ X \ {z}, ∀a ∈ D(y), ∃bya ∈ D(z) with abya a positive edge such that
∀x ∈ X \ {y, z}, ∀c ∈ D(x) with ac a positive edge and byac a negative edge, ∀d ∈ D(z) with
cd a positive edge, ad is also a positive edge. For v ∈ X \ {z}, let Im(v) := {d ∈ D(z) | s(v)d
a positive edge}, where s(v) is the value assigned to variable v by s. If x, y ∈ X \ {z}
are such that s(x)bys(y) is a negative edge, then the ∀∃BTP property implies that Im(x) (
Im(y) [12]. Now choose some y ∈ X \ {z} such that Im(y) is minimal for inclusion among
the sets Im(v) (v ∈ X \ {z}). Then the assignment 〈z, bys(y)〉 is compatible with all the
assignments s(x) (x ∈ X \ {y, z}), otherwise we would have Im(x) (Im(y) (contradicting
the minimality of Im(y)). Therefore, s can be extended to a solution to I, by making the
assignment s(z) = bs(y).

3.6 Topological Minor Patterns
We now present a new operation on patterns which allows us to define the notion of a
topological minor of a pattern (and hence of a binary CSP instance). This new operation
is analogous to the operation of eliminating subdivisions (vertices of degree 2) that is used
to define a topological minor of a graph [25]. However, since patterns contain two kinds of
edges, the definition is slightly more complicated.

This new operation, path reduction, will sometimes lead to the introduction of edges in
E+ ∩ E− in a coloured microstructure 〈A1, . . . , An, E

+, E−〉. This is why we do not impose
the restriction that E+ and E− be disjoint in a pattern.

In a pattern P = 〈A1, . . . , An, E
+, E−〉, we say that two parts Ai, Aj are directly connected

if there is at least one (positive or negative) edge {p, q} ∈ E+ ∪ E− with p ∈ Ai and q ∈ Aj .
If Ai, Aj are not directly connected and Ak is directly connected only to Ai and Aj , then

the following operation can be performed, which is known as path reduction:
1. ∀p ∈ Ai, ∀q ∈ Aj : if ∃r ∈ Ak such that {p, r}, {r, q} ∈ E+, then introduce a new positive

edge {p, q},
2. ∀p ∈ Ai, ∀q ∈ Aj : if ∃r, s ∈ Ak such that {p, r}, {s, q} ∈ E−, then introduce a new

negative edge {p, q},
3. remove the part Ak and all edges containing points in Ak.

This operation is illustrated in Figure 9. Positive and negative edges are treated differently
in this definition; this is because for p ∈ Ai and q ∈ Aj to be part of a solution to the

Chapte r 04

126 Hybrid Tractable Classes of Constraint Problems

• •
•• •

•
�
�

�
�

�
�

�
�

�
�

�
�

wx y

a

b
e

f

c

d
−→

• •
••

�
�

�
�

�
�

�
�

x y

a

b

c

d

Figure 9 Path reduction removes the part w.

�
�

�
•

•

�
�

�
•

•

�
�

�
•

•

Figure 10 A pattern which defines the class of acyclic binary CSP instances when forbidden as a
topological minor.

sub-instance on variables Xi, Xj , Xk, the points p and q must both be compatible with some
common point r ∈ Ak, whereas p and q may be incompatible if they are each incompatible
with some point in Ak, not necessarily the same point. In Figure 9, after the path reduction
operation which eliminates w, we have a positive edge ac (thanks to the edges ae and ec),
but no positive edge bc. We also have a negative edge bd (thanks to the edges be and fd). As
in the case of non-binary patterns (c.f. Section 3.4), it is essential to introduce an asymmetry
between positive and negative edges in order to obtain a useful notion.

A pattern P occurs as a topological minor of a pattern Q if Q can be transformed
into a homomorphic image of P by a sequence of substructure operations (listed above in
Section 3.1) and path reductions.

We use the notation CSPTM(P) to represent the set of binary CSP instances in which the
pattern P does not occur as a topological minor. For each pattern P there are therefore two
distinct notions of tractability: a pattern P is sub-pattern tractable if there is a polynomial-
time algorithm to solve CSPSP(P); a pattern P is topological-minor tractable if there is a
polynomial-time algorithm to solve CSPTM(P). A pattern which is sub-pattern tractable is
topological-minor tractable since any pattern that occurs as a sub-pattern will also occur as
a topological minor.

One important tractable class of binary CSP instances is the class of instances whose
constraint graph is acyclic [28]. However, this class cannot be defined by a finite set of
forbidden sub-patterns [9]. On the other hand, it is straightforward to characterise the class
of acyclic instances by forbidding a single pattern as a topological minor. Forbidding the
pattern shown in Figure 10 as a topological minor exactly defines the class of binary CSP
instances whose constraint graph is acyclic. Indeed, this idea can easily be extended to any
of the tractable classes of binary CSP instances defined by imposing any fixed bound on
the treewidth of the constraint graph [29] using the graph minor theorem [49]. However, it
remains to be seen whether the notion of patterns occurring as topological minors can be
used to define a practically useful and genuinely novel tractable class.

M.C. Cooper and S. Živný 127

4 Classes Requiring a Level of Consistency

Some hybrid tractable classes have been defined which guarantee global consistency if some
local property holds after establishing a certain level of local consistency. One example is
that the constraints can be decomposed into the join of arity-r constraints after establishing
strong d(r − 1) + 1 consistency, where d is the maximum domain size [23]. Of course, in
general, establishing this level of consistency introduces constraints of order d(r − 1), so the
assumption that constraints are of arity r is very strong. This class has been generalised to
the class of arity-r CSP instances which are strongly ((m+ 1)(r − 1) + 1)-consistent, where
given an r-ary constraint and an instantiation of r − 1 of the variables that participate in
the constraint, the parameter m (called the tightness) is an upper bound on the number of
instantiations of the rth variable that satisfy the constraint in the case that this is not the
whole domain [54].

Naanaa [46] has proposed a generalisation of m-tightness. Let E be a finite set and let
{Ei}i∈I be a finite family of subsets of E. The family {Ei}i∈I is said to be independent if
and only if for all J (I,⋂

i∈I
Ei (

⋂
j∈J

Ej .

In particular, observe that {Ei}i∈I cannot be independent if ∃j 6= j′ ∈ I such that Ej ⊆ Ej′ ,
since in this case and with J = I \ {j′} we would have⋂

i∈I
Ei =

⋂
j∈J

Ej .

Let I be a CSP instance whose variables are totally ordered by <. Let 〈σ,R〉 be an r-ary
constraint whose scope σ contains a variable x and let t be a tuple that instantiates the r− 1
remaining variables of σ. Denote by Rx(t) the set of values in D(x) that can extend t to form
a tuple in the relation R. The directional extension of tuple t to variable x w.r.t. R and < is
defined to be Rx(t) if x is the last (w.r.t. the order <) variable in σ, and D(x) otherwise. A
family of extensions of tuples t ∈ T is said to be consistent if and only if the tuple formed by
the join ./t∈T t of the corresponding tuples is consistent. With respect to the ordering <,
the directional rank of x in I is the size of the largest independent and consistent family of
directional extensions to x, and the directional rank κ of I is the maximum directional rank
over all its variables. If I is a CSP instance with constraints of arity no greater than r which
has directional rank no greater than κ and is directional strong (κ(r − 1) + 1)-consistent,
then I is globally consistent [46]. In general, establishing this level of consistency introduces
constraints of arity κ(r − 1) which is no greater than r only if κ = 1 or (κ = 2 ∧ r = 2).

There is an interesting link between directional rank and forbidden patterns. Directional
rank 1 is equivalent to the broken triangle property (i.e., forbidding as a subpattern the
pattern shown in Figure 5) and directional rank κ > 1 subsumes an extension of the broken
triangle property known as (κ + 1)-BTP [17]. A binary CSP instance satisfies k-BTP
if for all variables z and for all sets S of k variables occurring before z in the variable
ordering, ∃x, y ∈ S such that there are no broken triangles on variables x, y, z. We can see
that 2-BTP corresponds exactly to the broken triangle property. If a binary CSP instance
satisfies 3-BTP after establishment of directional strong 3-consistency, then it has directional
rank κ = 2 and is directional strong (κ(r − 1) + 1)-consistent (since r = 2), and hence is
globally consistent [46]. Directional rank 2 strictly subsumes 3-BTP since it is equivalent to
forbidding (as a subpattern) the pattern shown in Figure 11. This is a natural generalisation

Chapte r 04

128 Hybrid Tractable Classes of Constraint Problems

�
�

�
•

�
�

�
•

�
�

�
•

•

•

•
�

�

�


``````````

�
�
�
�

Q
Q
Q
Q
Q
Q

Q
Q
Q
Q
Q
Q

@
@
@
@
@
@

C
C
C
C
C
C
C
C













�
�
�
�

Figure 11 A binary CSP instance has directional rank 2 if this pattern does not occur in the
instance.

of the broken-triangle pattern shown in Figure 5, but, unfortunately, we also require strong
directional 3-consistency to obtain a tractable class and establishing this level of consistency
may introduce the pattern.

5 Microstructure-Based Classes

We recall the definition of microstructure. We have seen that a binary CSP instance on
variables X1, . . . , Xn can be represented by the domain D(Xi) of each variable Xi and a
binary relation Rij for each pair of variables Xi, Xj (i 6= j) consisting of all possible consistent
assignments to this pair of variables. If I is a binary CSP instance, then its microstructure
is a graph 〈A,E〉 where A = {(Xi, a) | a ∈ D(Xi)} is the set of possible variable-value
assignments and E = {{(Xi, a), (Xj , b)} | (a, b) ∈ Rij} [37]. The microstructure relies on
both the structure and the relations of the instance I and so is a natural place to look for
hybrid tractable classes. In this section we study properties of the graph 〈A,E〉 in which A is
not partitioned into parts corresponding to variables (as was the case in patterns, studied in
Section 3). Ignoring variable information has the obvious disadvantage that we lose possibly
valuable information, but has the advantage that deep theorems from graph theory can be
directly applied.

The complement of a graph G = 〈V,E〉 is the graph with vertices V and whose edges are
the non-edges of G. The microstructure complement is the complement of the microstructure.
Solutions to I are in one-to-one correspondence with the n-cliques of the microstructure of I
and with the size-n independent sets of the microstructure complement of I.

The chromatic number of a graph is the smallest number of colours required to colour
its vertices so that no two adjacent vertices have the same colour. A graph G is perfect if
for every induced subgraph H of G, the chromatic number of H is equal to the size of the
largest clique contained in H. Since a maximum clique in a perfect graph can be found in
polynomial time [33], the class of binary CSP instances with a perfect microstructure is
tractable as a direct consequence, as observed in [50]. Perfect graphs can also be recognized
in polynomial time [3].

For a class of graphs C, a graph G is C-free if no induced subgraph of G is isomorphic to
any graph in C. The cycle of order k is the graph with vertices v1, . . . , vk and edges {vk, v1}
and {vi, vi+1} for i = 1, . . . , k − 1. A hole is a cycle of length k ≥ 5. An antihole is the
complement of a hole. An alternative definition of perfect graphs is that a graph is perfect
if and only if it is (odd-hole,odd-antihole)-free [4]. Chordal graphs are examples of perfect
graphs. Interesting examples of binary CSP instances whose microstructure is perfect are



M.C. Cooper and S. Živný 129

instances with unary constraints together with a global AllDifferent constraint [50],
instances which are arc consistent and max-closed after independent (and possibly
unknown) permutations of each domain [31].

6 Weakly or Strongly Constrained Instances

One way to define a tractable class is to only allow a small number of weak constraints,
in order to guarantee that the instance is always satisfiable. For example, if each variable
is in the scope of at most t constraints and in each constraint relation the proportion of
tuples that are disallowed is strictly less than 1/e(r(t− 1) + 1), where e is the base of natural
logarithms and r the arity of the constraint, then the instance is necessarily satisfiable [47].

Another way to define a tractable class is to consider only instances which are sufficiently
strongly constrained so that there is necessarily only a small number of partial solutions
examined during search (and hence a small number of solutions). A simple example of a
condition that guarantees a polynomial number of solutions is functionality. A constraint
〈σ,R〉 is functional on variable Xi ∈ σ if the relation R contains no two assignments differing
only at variable Xi. A CSP instance is functional with root set of size k if there exists
a variable ordering X1 < . . . < Xn such that, for all i ∈ {k + 1, . . . , n}, there is some
constraint 〈σ,R〉 with Xi ∈ σ ⊆ {X1, . . . , Xi} that is functional on Xi. (Note that this
implies tractability.) In the case of binary CSP instances, a minimum root set can be found in
polynomial time [22]. Unfortunately, determining the size of a minimum root set is NP-hard
for ternary CSP instances [8].

Another condition that guarantees a backtracking search tree of polynomial size (assuming
domain size bounded by a constant) is the k-Turan property [8] which we now define. Indeed,
this property is very strong since it guarantees a polynomial-size search tree for all variable
orderings. We say that a subset of variables S represents another set T if S ⊆ T . An
(n, k)-Turan system is a pair 〈X,B〉 where B is a collection of subsets of the n-element set
X such that every k-element subset of X is represented by some set in B. For example, let
C4Turan be the class of binary CSP instances over a set of variables X, each with a Boolean
domain, in which each constraint is equivalent to a 3SAT clause and for each quadruple of
distinct variables Xi, Xj , Xk, X` there is at least one ternary constraint whose scope is a
subset of these variables. In this example, every 4-element subset of the set of n variables X
is represented by the scope of some ternary constraint, and hence 〈X,S〉, where S is the set
of constraint scopes, is an (n, 4)-Turan system. An n-variable CSP instance over domain D
and variables X is k-Turan if 〈X,B〉 forms an (n, k)-Turan system where B is the set of the
scopes of the constraints 〈σ,R〉 for which

∀a, b ∈ D, {a, b}|σ| * R .

This condition says that at least one tuple is disallowed by the constraint over each Boolean
subdomain {a, b} of D. In the class C4Turan, all constraints satisfy this condition and hence
C4Turan is tractable since all instances in this class satisfy the 4-Turan property. Generalising
this example, the class of k-SAT instances where every k′-tuple of variables, where k′ ≥ k, is
restricted by a clause is k′-Turan and hence tractable.

It is an open question whether the k-Turan property can be relaxed in a way that
guarantees a polynomial-size search tree for just one variable ordering, rather than all
variable orderings, while imposing a weaker condition than functionality.

Chapte r 04



130 Hybrid Tractable Classes of Constraint Problems

7 Valued CSPs

CSPs are inherently decision problems. In this section we discuss hybrid classes of valued CSPs,
which is a generalisation of CSPs to problem that capture both decision and optimisation
problems (and their combinations).

We denote by Q = Q∪{∞} the set of extended rationals. A valued constraint satisfaction
problem (VCSP) instance I is given by a triple 〈X,D,C〉, where X = {X1, . . . , Xn} is a finite
set of variables, D is a finite set of values, and C : Dn → Q is an objective function expressed
as a sum of valued constraints, i.e., C(X1, . . . , Xn) =

∑q
i=1 γi(vi), where γi : Dki → Q is

a cost function of arity ki and vi ∈ Xki is the scope of the valued constraint γi(vi). The
question is to find an assignment of values to the variables that minimises the objective
function C.

The class of VCSP instances with {0,∞}-valued cost functions corresponds to the class
of CSP instances. VCSP instances with {0, 1}-valued cost functions are known as Min-CSPs.
VCSP instances with Q-valued cost functions are known as finite-valued CSPs [53].

Similarly to the case of CSPs, language-restricted VCSPs parameterised by the set of
allowed cost functions in the instance have been studied [42]. In this section we will mention
known results on the complexity of hybrid classes of VCSPs.

The idea of lifted languages briefly discussed in Section 2.3 has also been applied to
certain VCSPs [39, 52].

7.1 JWP and Generalisations
The study of hybrid classes of VCSPs was initiated in [18], where an interesting hybrid class
called the joint winner property (JWP) was discovered. A class of binary VCSPs satisfies the
JWP if for any three variable-value assignments (to three distinct variables), the multiset of
pairwise costs imposed by the binary valued constraints does not have a unique minimum. If
there is no valued constraint with the scope, say, v = 〈Xi, Xj〉, then we view it as a 0-valued
constraint γ(v), where γ : D2 → Q is the constant-0 binary cost function. Note that the
unary valued constraints in a VCSP that satisfies the JWP can be arbitrary. JWP generalises
the tractable pattern NEGTRANS discussed in Section 3.2, as the NEGTRANS pattern
precisely forbids the combination of one 0 cost and two ∞ costs.

Following the discovery of JWP, Cooper and Živný classified classes of binary CSPs,
Min-CSPs, finite-valued CSPs, and VCSPs parametrised by the allowed types of costs in
triples of variable-value assignments (called triangles) [19]. In all studied cases, JWP was
essentially the only interesting tractable case. Moreover, [19] generalised JWP to the tractable
class of VCSPs with the cross-free convex (CFC) property.

A function g : {0, . . . , s} → Q is called convex on the interval [l, u] if g is Q-valued on the
interval [l, u] and the derivative of g is nondecreasing on [l, u], that is, g(m+ 2)− g(m+ 1) ≥
g(m+ 1)− g(m) for all m = l, . . . , u− 2.

Sets A1, . . . , Ar ⊆ A are called cross-free if for all 1 ≤ i, j ≤ r, either Ai ⊆ Aj , or Ai ⊇ Aj ,
or Ai ∩Aj = ∅, or Ai ∪Aj = A [51].

We interpret a solution s : X → D to a VCSP instance I = 〈X,D,C〉 as its set of variable-
value assignments {〈Xi, s(Xi)〉 | i = 1, . . . , n}. If Ai is a set of variable-value assignments of
a VCSP instance I and s a solution to I, then we use the notation |s ∩Ai| to represent the
number of variable-value assignments in the solution s that lie in Ai.

Finally we have everything we need to define the CFC property. Let I be a VCSP instance.
Let A1, . . . , Ar be cross-free sets of variable-value assignments of I. Let si be the number
of distinct variables occurring in the set Ai. Instance I satisfies the cross-free convexity



M.C. Cooper and S. Živný 131

property if the objective function of I is g(s) = g1(|s ∩A1|) + . . .+ gr(|s ∩Ar|), where each
gi : [0, si] → Q (i = 1, . . . , r) is convex on an interval [li, ui] ⊆ [0, si] and gi(z) = ∞ for
z ∈ [0, li − 1] ∪ [ui + 1, si].

We remark that the functions gi above are not the cost functions associated with the
valued constraints. Note that similarly to JWP, the addition of any unary cost function
cannot destroy the cross-free convexity property because for each variable-value assignment
〈Xi, a〉 we can add the singleton Ai = {〈Xi, a〉}, which is necessarily either disjoint from or
a subset of any other set Aj (and furthermore the corresponding function gi : {0, 1} → Q is
trivially convex).

A special case of the CFC property are global cardinality constraints [48, 56] on cross-free
sets.

I Example 4. To give a concrete example, consider a company which needs to assign staff to
a project, minimising total salary cost while respecting constraints concerning the minimum
number of personnel from each section, the maximum total number of staff on the project,
as well as the availability of each member of staff. We can code this as a VCSP with a
boolean variable Xi for each member of staff with Xi assigned the value true if the person in
question is assigned to the project. The availability of each member of staff, as well as his/her
salary, can be coded as a unary cost function. Assuming each member of staff belongs to a
single section of the company, the remaining constraints are global cardinality constraints on
cross-free sets.

The employees, numbered from 1 to n, are partitioned into sections Sj (j = 1, . . . , t).
Let Aj = {〈Xi, true〉 | i ∈ Sj} (j = 1, . . . , t), A0 =

⋃t
j=1 Aj , and At+i = {〈Xi, true〉}

(i = 1, . . . , n). The sets Ai (i = 0, . . . , t + n) are cross-free. Let g≤m : {0, . . . , n} → Q be
the function given by g≤m(x) = 0 if x ≤ m and g≤m(x) = ∞ if x > m, with g≥m defined
similarly. For i = 1, . . . , n, let hi : {0, 1} → Q be the function given by hi(0) = 0 and hi(1)
equal to the salary of employee i if he/she is available to work on the project, ∞ if not.
Suppose that the project requires at least ni employees from section i, for each i = 1, . . . , t,
making a total of at most N staff members. Then the objective function is

g≤N (|s ∩A0|) +
t∑

j=1
g≥ni

(|s ∩Aj |) +
n∑
i=1

hi(|s ∩At+i|) .

The functions g≤N and g≥ni are convex (indeed constant) on the interval on which they are
finite, and each hi is trivially convex on the interval [0, 1].

It has recently been shown1 that the class of convex cross-free VCSPs is a special case of
M]-convex functions studied in [45] and that JWP precisely captures binary M]-completable
functions.

7.2 Planarity
Similarly to the planar CSPs discussed in Section 2.1, one can define planar VCSPs. Fulla and
Živný gave necessary conditions on the tractability of planar VCSPs [30]. In particular, they
showed that if Γ is a Boolean valued constraint language such that VCSP(Γ) is intractable
then VCSPp(Γ) is intractable unless Γ is self-complementary in the valued sense; i.e., for every
γ ∈ Γ and every tuple t, γ(t) = γ(t). This is a generalisation of the self-complementarity

1 Personal communication with Yuni Iwamasa and Kazuo Murota.

Chapte r 04



132 Hybrid Tractable Classes of Constraint Problems

condition for planar CSPs from [26] discussed in Section 2.1. Furthermore, [30] obtained a
dichotomy for planar VCSPs for conservative language (i.e., languages containing all {0, 1}-
valued unary cost functions) over arbitrary finite domains. As it turns out the planarity
restriction does not give any new tractable languages in this setting, and the classification
from [30] sharpens the classification of conservative valued constraint languages obtained
in [41].

References

1 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consist-
ency methods. J. ACM, 61(1):3:1–3:19, 2014. doi:10.1145/2556646.

2 Andrei Bulatov, Andrei Krokhin, and Peter Jeavons. Classifying the Complexity of
Constraints using Finite Algebras. SIAM Journal on Computing, 34(3):720–742, 2005.
doi:10.1137/S0097539700376676.

3 Maria Chudnovsky, Gérard Cornuéjols, Xinming Liu, Paul Seymour, and Kristina Vuskovic.
Recognizing Berge graphs. Combinatorica, 25(2):143–186, 2005.

4 Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect
graph theorem. Annals of Math., 164(1):51–229, 2006.

5 David A. Cohen, Martin C. Cooper, Páidí Creed, Peter Jeavons, and Stanislav Živný. An
algebraic theory of complexity for discrete optimisation. SIAM Journal on Computing,
42(5):915–1939, 2013. URL: http://zivny.cz/publications/cccjz13sicomp-preprint.
pdf, doi:10.1137/130906398.

6 David A. Cohen, Martin C. Cooper, Páidí Creed, Dániel Marx, and András Z. Salamon.
The tractability of CSP classes defined by forbidden patterns. J. Artif. Intell. Res. (JAIR),
45:47–78, 2012. doi:10.1613/jair.3651.

7 David A. Cohen, Martin C. Cooper, Guillaume Escamoche, and Stanislav Živný. Variable
and value elimination in binary constraint satisfaction via forbidden patterns. Journal
of Computer and System Sciences, 81(7):1127–1143, 2015. URL: http://zivny.cz/
publications/ccez15jcss-preprint.pdf, doi:10.1016/j.jcss.2015.02.001.

8 David A. Cohen, Martin C. Cooper, Martin J. Green, and Dániel Marx. On guaranteeing
polynomially bounded search tree size. In Jimmy Ho-Man Lee, editor, CP 2011, volume
6876 of Lecture Notes in Computer Science, pages 160–171. Springer, 2011. doi:10.1007/
978-3-642-23786-7_14.

9 David A. Cohen, Martin C. Cooper, Peter G. Jeavons, and Stanislav Živný. Tractable
classes of binary CSPs defined by excluded topological minors. In Qiang Yang and Michael
Wooldridge, editors, IJCAI 2015, pages 1945–1951. AAAI Press, 2015. URL: http://
ijcai.org/papers15/Abstracts/IJCAI15-276.html.

10 David A. Cohen, Peter Jeavons, Christopher Jefferson, Karen E. Petrie, and Barbara M.
Smith. Symmetry definitions for constraint satisfaction problems. Constraints, 11(2-3):115–
137, 2006. doi:10.1007/s10601-006-8059-8.

11 David A. Cohen and Peter G. Jeavons. The complexity of constraint languages. In Francesca
Rossi, Peter van Beek, and Toby Walsh, editors, Handbook of Constraint Programming,
pages 245–280. Elsevier, 2006.

12 Martin C. Cooper. Beyond consistency and substitutability. In Barry O’Sullivan, editor,
CP 2014, volume 8656 of Lecture Notes in Computer Science, pages 256–271. Springer,
2014. doi:10.1007/978-3-319-10428-7_20.

13 Martin C. Cooper, David A. Cohen, and Peter Jeavons. Characterising tractable constraints.
Artif. Intell., 65(2):347–361, 1994. doi:10.1016/0004-3702(94)90021-3.

http://dx.doi.org/10.1145/2556646
http://dx.doi.org/10.1137/S0097539700376676
http://zivny.cz/publications/cccjz13sicomp-preprint.pdf
http://zivny.cz/publications/cccjz13sicomp-preprint.pdf
http://dx.doi.org/10.1137/130906398
http://dx.doi.org/10.1613/jair.3651
http://zivny.cz/publications/ccez15jcss-preprint.pdf
http://zivny.cz/publications/ccez15jcss-preprint.pdf
http://dx.doi.org/10.1016/j.jcss.2015.02.001
http://dx.doi.org/10.1007/978-3-642-23786-7_14
http://dx.doi.org/10.1007/978-3-642-23786-7_14
http://ijcai.org/papers15/Abstracts/IJCAI15-276.html
http://ijcai.org/papers15/Abstracts/IJCAI15-276.html
http://dx.doi.org/10.1007/s10601-006-8059-8
http://dx.doi.org/10.1007/978-3-319-10428-7_20
http://dx.doi.org/10.1016/0004-3702(94)90021-3


M.C. Cooper and S. Živný 133

14 Martin C. Cooper, Aymeric Duchein, Achref El Mouelhi, Guillaume Escamocher, Cyril
Terrioux, and Bruno Zanuttini. Broken triangles: From value merging to a tractable class
of general-arity constraint satisfaction problems. Artificial Intelligence, 234:196–218, 2016.

15 Martin C. Cooper and Guillaume Escamocher. Characterising the complexity of constraint
satisfaction problems defined by 2-constraint forbidden patterns. Discrete Applied Math-
ematics, 184:89–113, 2015. doi:10.1016/j.dam.2014.10.035.

16 Martin C. Cooper, Peter G. Jeavons, and András Z. Salamon. Generalizing constraint
satisfaction on trees: Hybrid tractability and variable elimination. Artif. Intell., 174(9-
10):570–584, 2010. doi:10.1016/j.artint.2010.03.002.

17 Martin C. Cooper, Philippe Jégou, and Cyril Terrioux. A microstructure-based family of
tractable classes for CSPs. In Gilles Pesant, editor, CP 2015, volume 9255 of Lecture Notes
in Computer Science, pages 74–88. Springer, 2015. doi:10.1007/978-3-319-23219-5_6.

18 Martin C. Cooper and Stanislav Živný. Hybrid tractability of valued constraint problems.
Artificial Intelligence, 175(9-10):1555–1569, 2011. URL: http://zivny.cz/publications/
cz11aij-preprint.pdf, doi:10.1016/j.artint.2011.02.003.

19 Martin C. Cooper and Stanislav Živný. Tractable triangles and cross-free convexity in
discrete optimisation. J. Artif. Intell. Res. (JAIR), 44:455–490, 2012. doi:10.1613/jair.
3598.

20 Martin C. Cooper and Stanislav Živný. The power of arc consistency for CSPs defined by
partially-ordered forbidden patterns. In 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS, 2016.

21 Víctor Dalmau and Daniel K. Ford. Generalized satisfability with limited occurrences
per variable: A study through delta-matroid parity. In Proceedings of the 28th In-
ternational Symposium on Mathematical Foundations of Computer Science (MFCS’03),
volume 2747 of Lecture Notes in Computer Science, pages 358–367. Springer, 2003. doi:
10.1007/978-3-540-45138-9_30.

22 Philippe David. Using pivot consistency to decompose and solve functional CSPs. J. Artif.
Intell. Res. (JAIR), 2:447–474, 1995. doi:10.1613/jair.167.

23 Rina Dechter. From local to global consistency. Artif. Intell., 55(1):87–108, 1992. doi:
10.1016/0004-3702(92)90043-W.

24 Rina Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003. URL: http:
//www.elsevier.com/wps/find/bookdescription.agents/678024/description.

25 Reinhard Diestel. Graph Theory. Springer, fourth edition, 2010.
26 Zdeněk Dvořák and Martin Kupec. On Planar Boolean CSP. In Proceedings of the 42nd

International Colloquium on Automata, Languages and Programming (ICALP’15), volume
9134 of Lecture Notes in Computer Science, pages 432–443. Springer, 2015.

27 Tomás Feder. Fanout limitations on constraint systems. Theoretical Computer Science,
255(1-2):281–293, 2001. doi:10.1016/S0304-3975(99)00288-1.

28 Eugene C. Freuder. A sufficient condition for backtrack-free search. J. ACM, 29(1):24–32,
1982.

29 Eugene C. Freuder. A sufficient condition for backtrack-bounded search. J. ACM, 32:755–
761, 1985.

30 Peter Fulla and Stanislav Živný. On Planar Valued CSPs. In Proceedings of the 41st
International Symposium on Mathematical Foundations of Computer Science (MFCS’16),
volume 58 of LIPIcs, pages 39:1–39:14. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2016. Full version arXiv:1602.06323. doi:10.4230/LIPIcs.MFCS.2016.39.

31 Martin J. Green and David A. Cohen. Domain permutation reduction for constraint satis-
faction problems. Artif. Intell., 172(8-9):1094–1118, 2008.

32 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. J. ACM, 54(1):1–24, March 2007.

Chapte r 04

http://dx.doi.org/10.1016/j.dam.2014.10.035
http://dx.doi.org/10.1016/j.artint.2010.03.002
http://dx.doi.org/10.1007/978-3-319-23219-5_6
http://zivny.cz/publications/cz11aij-preprint.pdf
http://zivny.cz/publications/cz11aij-preprint.pdf
http://dx.doi.org/10.1016/j.artint.2011.02.003
http://dx.doi.org/10.1613/jair.3598
http://dx.doi.org/10.1613/jair.3598
http://dx.doi.org/10.1007/978-3-540-45138-9_30
http://dx.doi.org/10.1007/978-3-540-45138-9_30
http://dx.doi.org/10.1613/jair.167
http://dx.doi.org/10.1016/0004-3702(92)90043-W
http://dx.doi.org/10.1016/0004-3702(92)90043-W
http://www.elsevier.com/wps/find/bookdescription.agents/678024/description
http://www.elsevier.com/wps/find/bookdescription.agents/678024/description
http://dx.doi.org/10.1016/S0304-3975(99)00288-1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.39


134 Hybrid Tractable Classes of Constraint Problems

33 Martin Grötschel, Laszlo Lovasz, and Alexander Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1:169–198, 1981.

34 Pavol Hell and Jaroslav Nešetřil. Colouring, constraint satisfaction, and complexity. Com-
puter Science Review, 2(3):143–163, 2008. doi:10.1016/j.cosrev.2008.10.003.

35 Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross Willard.
Tractability and learnability arising from algebras with few subpowers. SIAM J. Comput.,
39(7):3023–3037, 2010. doi:10.1137/090775646.

36 Peter G. Jeavons and Martin C. Cooper. Tractable constraints on ordered domains. Artif.
Intell., 79(2):327–339, 1995.

37 Philippe Jégou. Decomposition of domains based on the micro-structure of finite constraint-
satisfaction problems. In Richard Fikes and Wendy G. Lehnert, editors, Proceedings of the
11th National Conference on Artificial Intelligence (AAAI’93), pages 731–736. AAAI Press /
The MIT Press, 1993. URL: http://www.aaai.org/Library/AAAI/1993/aaai93-109.
php.

38 Alexandr Kazda, Vladimir Kolmogorov, and Michal Rolínek. Even delta-matroids and
the complexity of planar Boolean CSPs. In Proceedings of the 28th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’17), 2017.

39 Vladimir Kolmogorov, Michal Rolínek, and Rustem Takhanov. Effectiveness of structural
restrictions for hybrid CSPs. In Proceedings of the 26th International Symposium on Al-
gorithms and Computation (ISAAC’15), volume 9472 of Lecture Notes in Computer Science,
pages 566–577. Springer, 2015. doi:10.1007/978-3-662-48971-0_48.

40 Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. The power of linear pro-
gramming for general-valued csps. SIAM J. Comput., 44(1):1–36, 2015. doi:10.1137/
130945648.

41 Vladimir Kolmogorov and Stanislav Živný. The complexity of conservative valued CSPs.
Journal of the ACM, 60(2), 2013. Article No. 10. URL: http://zivny.cz/publications/
kz13jacm-preprint.pdf, doi:10.1145/2450142.2450146.

42 Andrei Krokhin and Stanislav Živný. The complexity of valued CSPs. In Andrei Krokhin
and Stanislav Živný, editors, The Constraint Satisfaction Problem: Complexity and Ap-
proximability, volume 7 of Dagstuhl Follow-Ups, pages 229–261. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.229.

43 Achref El Mouelhi, Philippe Jégou, and Cyril Terrioux. Different classes of graphs to
represent microstructures for CSPs. In Madalina Croitoru, Sebastian Rudolph, Stefan
Woltran, and Christophe Gonzales, editors, Graph Structures for Knowledge Representation
and Reasoning – Third International Workshop, GKR 2013, volume 8323 of Lecture Notes
in Computer Science, pages 21–38. Springer, 2013. doi:10.1007/978-3-319-04534-4_3.

44 Achref El Mouelhi, Philippe Jégou, and Cyril Terrioux. A hybrid tractable class for non-
binary CSPs. Constraints, 20(4):383–413, 2015. doi:10.1007/s10601-015-9185-y.

45 Kazuo Murota. Discrete Convex Analysis. SIAM, 2003.
46 Wady Naanaa. Unifying and extending hybrid tractable classes of CSPs. J. Exp. Theor.

Artif. Intell., 25(4):407–424, 2013.
47 Justin K. Pearson and Peter G. Jeavons. A survey of tractable constraint satisfaction

problems. Technical Report CSD-TR-97-15, Royal Holloway, University of London, July
1997.

48 Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. In 12th
National Conference on Artificial Intelligence (AAAI’94), volume 1, pages 362–367, 1994.

49 Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s conjecture. J. Comb.
Theory, Ser. B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.

http://dx.doi.org/10.1016/j.cosrev.2008.10.003
http://dx.doi.org/10.1137/090775646
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://dx.doi.org/10.1007/978-3-662-48971-0_48
http://dx.doi.org/10.1137/130945648
http://dx.doi.org/10.1137/130945648
http://zivny.cz/publications/kz13jacm-preprint.pdf
http://zivny.cz/publications/kz13jacm-preprint.pdf
http://dx.doi.org/10.1145/2450142.2450146
http://dx.doi.org/10.4230/DFU.Vol7.15301.229
http://dx.doi.org/10.1007/978-3-319-04534-4_3
http://dx.doi.org/10.1007/s10601-015-9185-y
http://dx.doi.org/10.1016/j.jctb.2004.08.001


M.C. Cooper and S. Živný 135

50 András Z. Salamon and Peter G. Jeavons. Perfect constraints are tractable. In Peter J.
Stuckey, editor, CP 2008, volume 5202 of Lecture Notes in Computer Science, pages 524–
528. Springer, 2008. doi:10.1007/978-3-540-85958-1_35.

51 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of
Algorithms and Combinatorics. Springer, 2003.

52 Rustem Takhanov. Hybrid (V)CSPs and algebraic reductions. CoRR, abs/1506.06540,
2015. URL: http://arxiv.org/abs/1506.06540.

53 Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. Journal
of the ACM, 63(4), 2016. Article No. 37. URL: http://zivny.cz/publications/
tz16jacm-preprint.pdf, doi:10.1145/2974019.

54 Peter van Beek and Rina Dechter. Constraint tightness and looseness versus local and
global consistency. J. ACM, 44(4):549–566, 1997. doi:10.1145/263867.263499.

55 Willem Jan van Hoeve and Irit Katriel. Global constraints. In Francesca Rossi, Peter van
Beek, and Toby Walsh, editors, Handbook of Constraint Programming, chapter 6, pages
169–208. Elsevier, 2006.

56 Willem Jan van Hoeve, Gilles Pesant, and Louis-Martin Rousseau. On global warming:
Flow-based soft global constraints. Journal of Heuristics, 12(4-5):347–373, 2006. doi:
10.1007/s10732-006-6550-4.

Chapte r 04

http://dx.doi.org/10.1007/978-3-540-85958-1_35
http://arxiv.org/abs/1506.06540
http://zivny.cz/publications/tz16jacm-preprint.pdf
http://zivny.cz/publications/tz16jacm-preprint.pdf
http://dx.doi.org/10.1145/2974019
http://dx.doi.org/10.1145/263867.263499
http://dx.doi.org/10.1007/s10732-006-6550-4
http://dx.doi.org/10.1007/s10732-006-6550-4




Backdoor Sets for CSP∗

Serge Gaspers1, Sebastian Ordyniak2, and Stefan Szeider3

1 UNSW Australia (The University of New South Wales), Sydney, Australia; and
Data61 (formerly: NICTA), CSIRO, Australia
sergeg@cse.unsw.edu.au

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
ordyniak@ac.tuwien.ac.at

3 Algorithms and Complexity Group, TU Wien, Vienna, Austria
szeider@ac.tuwien.ac.at

Abstract
A backdoor set of a CSP instance is a set of variables whose instantiation moves the instance into
a fixed class of tractable instances (an island of tractability). An interesting algorithmic task is
to find a small backdoor set efficiently: once it is found we can solve the instance by solving a
number of tractable instances. Parameterized complexity provides an adequate framework for
studying and solving this algorithmic task, where the size of the backdoor set provides a natural
parameter. In this survey we present some recent parameterized complexity results on CSP
backdoor sets, focusing on backdoor sets into islands of tractability that are defined in terms of
constraint languages.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Backdoor sets, Constraint satisfaction problems, Parameterized complex-
ity, Polymorphisms

Digital Object Identifier 10.4230/DFU.Vol7.15301.137

1 Introduction

The Constraint Satisfaction Problem (CSP) is a central and generic computational problem
which provides a common framework for many theoretical and practical applications [32].
An instance of CSP consists of a collection of variables that must be assigned values subject
to constraints, where each constraint is given in terms of a relation whose tuples specify the
allowed combinations of values for specified variables. The problem was originally formulated
by Montanari [47], and has been found equivalent to the homomorphism problem for relational
structures [19] and the problem of evaluating conjunctive queries on databases [37]. In general,
CSP is NP-complete. A central line of research is concerned with the identification of classes
of instances for which CSP can be solved in polynomial time. Such classes are often called
“islands of tractability” [37, 38].

A prominent way of defining islands of tractability for CSP is to restrict the relations that
may occur in the constraints to a fixed set Γ, called a constraint language. A finite constraint
language is tractable if CSP restricted to instances using only relations from Γ, denoted

∗ NICTA was funded by the Australian Government through the Department of Communications and the
Australian Research Council (ARC) through the ICT Centre of Excellence Program. Serge Gaspers is
the recipient of an ARC Future Fellowship (FT140100048) and acknowledges support under the ARC’s
Discovery Projects funding scheme (DP150101134). Stefan Szeider acknowledges the support by the
Austrian Science Fund (FWF), grant reference P26696.

© Serge Gaspers, Sebastian Ordyniak, and Stefan Szeider;
licensed under Creative Commons License BY

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný; pp. 137–157

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol7.15301.137
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3


138 Backdoor Sets for CSP

CSP(Γ), can be solved in polynomial time. Schaefer’s famous Dichotomy Theorem [52]
identifies all islands of tractability in terms of tractable constraint languages over the two-
element domain. Since then, many extensions and generalizations of this result have been
obtained [11, 34, 39, 53]. The Dichotomy Conjecture of Feder and Vardi [18] states that for
every finite constraint language Γ, CSP(Γ) is either NP-complete or solvable in polynomial
time. Schaefer’s Dichotomy Theorem shows that the conjecture holds for two-element
domains; more recently, Bulatov [4] showed the conjecture to be true for three-element
domains.

If a CSP instance does not belong to a known island of tractability, none of the above
tractability results apply. What if an instance does not belong to an island, but is “close” to
an island in a certain way? Can we exploit this closeness algorithmically and possibly scale
the island’s tractability to the considered instance? In order to answer this question one
needs to provide a definition for the distance of a CSP instance from an island of tractability
(or, more generally, from a class H of CSP instances). The notion of (strong or weak)
backdoor sets, introduced by Williams et al. [55], provides natural distance measures. A
strong backdoor set of a CSP instance I into a class H of CSP instances is a set B of variables
of I such that for all instantiations of the variables in B, the reduced instance belongs to H
(we provide a more formal definition in Section 2.5). The set B is a weak backdoor set if for
at least one instantiation the reduced instance is satisfiable and belongs to H.

Once we know a strong backdoor set of size k into an island of tractability H for a
CSP instance I over a finite domain of size d, we can solve I by solving at most dk many
tractable instances that arise by all the possible instantiations of the backdoor set (I is
satisfiable if and only if at least one of the reduced instances is). Similarly, if we know a
weak backdoor set of size k, we can actually find a satisfying assignment again by solving all
reduced instances that arise from instantiating the backdoor set and belong to H. The size
of a smallest backdoor set provides a notion of distance of the instance from H.

Overall, if we can solve an instance I of a class H in polynomial time, say in time p(|I|),
then we can solve an instance for which we know a strong backdoor set of size k into H
in time dkp(|I|). This is an exponential running time with the special feature that it is
exponential not in the instance size |I|, but in the domain size and backdoor set size only.
Problems that admit solution of this type are called fixed-parameter tractable [13]. In fact,
fixed-parameter tractability provides a desirable way of scaling with the parameter (in this
case, the backdoor set size), much preferred over a scaling of the form |I|k, where the order
of the polynomial depends on k.

The backdoor set approach for CSP consistes of two parts, first finding a possibly small
backdoor set and second using the backdoor set to solve the CSP instance.

This brings up the question: under which circumstances one can efficiently detect a weak
or strong backdoor set of size at most k, if one exists? Stated more specifically: under which
circumstances is the problem of detecting a weak or strong backdoor set fixed-parameter
tractable when parameterized by the size of a smallest backdoor set?

The systematic study of the parameterized complexity of this backdoor set detection
problem in the context of propositional satisfiability (SAT) was initiated by Nishimura et
al. [48], and has since then received a lot of attention (see the survey paper [29]). Over the
last few years, this research has been extended to the area of CSP and the present article
provides a survey for some of the results in this direction. Namely we will focus on strong
backdoor sets into classes of CSP instances defined via restrictions on the allowed constraint
languages.

This survey is structured as follows: In Section 2 we provide the preliminaries about
CSP, parameterized complexity, and the backdoor set approach. We also show the first



S. Gaspers, S. Ordyniak, and S. Szeider 139

very general results about the application of the backdoor sets approach to CSP that will
provide the skeleton for the results in the remaining sections. Sections 3–6 cover the main
results of this survey, i.e., they cover the application of strong backdoor sets to CSP using
more and more general and evolved base classes defined via restrictions on the constraint
language. Starting with base classes defined via a single constraint language in Section 3
the exposition goes on to cover bases classes defined via finite and infinite sets of constraint
languages in Sections 4 and 5. The results presented in Sections 3 and 4 are based on [28]
and the results from Section 5 are based on [26]. Section 5.1 then gives an overview how the
results in Section 5 can be applied for Valued CSP and are based on [25]. Section 6 is based
on recent work [27] and outlines how even large backdoor sets can be exploited, as long as
the backdoor set induces a graph with a sufficiently simple structure. Section 7 is devoted to
a brief exposition of related work. We conclude in Section 8.

2 Preliminaries

2.1 Constraint Satisfaction
Let V be an infinite set of variables and D a finite set of values. A constraint of arity ρ over
D is a pair (S,R) where S = (x1, . . . , xρ) is a sequence of variables from V and R ⊆ Dρ is a
ρ-ary relation. The set var(C) = {x1, . . . , xρ} is called the scope of C. A value assignment
(or assignment, for short) α : X → D is a mapping defined on a set X ⊆ V of variables.
An assignment α : X → D satisfies a constraint C = ((x1, . . . , xρ), R) if var(C) ⊆ X and
(α(x1), . . . , α(xρ)) ∈ R. For a set of constraints I we write var(I) =

⋃
C∈I var(C) and

rel(I) = {R : (S,R) ∈ C,C ∈ I }.
A finite set I of constraints is satisfiable if there exists an assignment that satisfies all the

constraints in I. The Constraint Satisfaction Problem (CSP, for short) asks, given a finite
set I of constraints, whether I is satisfiable. Therefore we refer to a finite set of constraints
also as a CSP instance.

Let α : X → D be an assignment. For a ρ-ary constraint C = (S,R) with S = (x1, . . . , xρ)
we denote by C|α the constraint (S′, R′) obtained from C as follows. R′ is obtained from
R by (i) deleting all tuples (d1, . . . , dρ) from R for which there is some 1 ≤ i ≤ ρ such that
xi ∈ X and α(xi) 6= di, and (ii) removing from all remaining tuples all coordinates di with
xi ∈ X. S′ is obtained from S by deleting all variables xi with xi ∈ X. For a set I of
constraints we define I|α as {C|α : C ∈ I }.

A constraint language (or language, for short) Γ over a finite domain D is a set Γ of
relations (of possibly various arities) over D. By CSP(Γ) we denote CSP restricted to
instances I with rel(I) ⊆ Γ. A constraint language Γ is globally tractable if there is a
polynomial-time algorithm solving any CSP instance I ∈ CSP(Γ) in polynomial time. A
constraint language Γ is efficiently recognizable if there is an algorithm, which, for any CSP
instance I, determines whether rel(I) ⊆ Γ in time polynomial in |I|. Clearly, every finite
constraint language is efficiently recognizable.

2.2 Polymorphisms
Here we introduce the concept of polymorphism, one of the most common ways to define
infinite (tractable) constraint languages. Let D be a finite set of values, ρ and n be natural
numbers, let R ⊆ Dρ, and let t ∈ R. We denote by t[i] the i-th coordinate of t, where
i is a natural number with 1 ≤ i ≤ ρ. A n-ary operation over D is a function from Dn
to D. We say R is closed under some n-ary operation ϕ over D if R contains the tuple

Chapte r 05



140 Backdoor Sets for CSP

〈ϕ(t1[1], . . . , tn[1]), . . . , ϕ(t1[ρ], . . . , tn[ρ])〉 for every sequence t1, . . . , tn (of not necessarily
distinct) tuples in R.

For a sequence t1, . . . , tn of tuples of a relation R we will often write ϕ[t1, . . . , tn] to
denote the tuple 〈ϕ(t1[1], . . . , tn[1]), . . . , ϕ(t1[ρ], . . . , tn[ρ])〉. The operation ϕ is also said to
be a polymorphism of R.

Let ϕ be an n-ary operation over D. We denote by Γ(ϕ) the constraint language over D
consisting of all relations that are closed under ϕ and we write CSP(ϕ) as an abbreviation
for CSP(Γ(ϕ)). We say that the operation ϕ is tractable if Γ(ϕ) is globally tractable. We
extend the notion of closedness under the polymorphism ϕ from relations to constraints and
entire CSP instances in the natural way, i.e., we say that a constraint C = (S,R) of a CSP
instance I is closed under the operation ϕ if R ∈ Γ(ϕ) and we say that the same applies to
the CSP instance I if I ∈ CSP(ϕ).

2.3 Base Classes
As base classes for the backdoor set approach we use classes of CSP instances that are
defined via (possibly singular) sets of constraint languages. We will consider two basic
types of constraint languages, finite and infinite constraint languages. Whereas finite
constraint languages will always be represented explicitly, we will characterize infinite
constraint languages via polymorhisms and sets of infinite constraint languages via types of
polymorphisms.

The following are well-known types of operations.
An operation ϕ : D → D is constant if there is a d ∈ D such that for every d′ ∈ D, it
holds that ϕ(d′) = d;
An operation ϕ : Dn → D is idempotent if for every d ∈ D it holds that ϕ(d, . . . , d) = d;
An operation ϕ : Dn → D is conservative if for every d1, . . . , dn ∈ D it holds that
ϕ(d1, . . . , dn) ∈ {d1, . . . , dn};
An operation ϕ : D2 → D is a min/max operation if there is an ordering of the elements
of D such that for every d, d′ ∈ D, it holds that ϕ(d, d′) = ϕ(d′, d) = min{d, d′} or
ϕ(d, d′) = ϕ(d′, d) = max{d, d′}, respectively;
An operation ϕ : D3 → D is a majority operation if for every d, d′ ∈ D it holds that
ϕ(d, d, d′) = ϕ(d, d′, d) = ϕ(d′, d, d) = d;
An operation ϕ : D3 → D is an minority operation if for every d, d′ ∈ D it holds that
ϕ(d, d, d′) = ϕ(d, d′, d) = ϕ(d′, d, d) = d′;
An operation ϕ : D3 → D is a Mal’cev operation if for every d, d′ ∈ D it holds that
ϕ(d, d, d′) = ϕ(d′, d, d) = d′.

We denote by VAL, MINMAX, MAJ, AFF, and MAL the classes of CSP instances I,
which are closed under some constant, min/max, majority, minority, or Mal’cev operation,
respectively. These are some of the most well-known classes of tractable CSP instances and
are closely related to (generalizations of) the well-known Schaefer languages [52].

When applying the backdoor set approach to base classes defined via sets of infinite
constraint languages, it will become convenient to define more general types of operations
than the standard ones introduced above. Namely, we will define predicates of operations
(called tractable polymorphism predicates) allowing us to employ the backdoor set approach.

Let P(ϕ) be a predicate for the operation ϕ. We call P(ϕ) a tractable polymorphism
predicate if the following conditions hold.
N1. There is a constant c(P) such that for all finite domains D, all operations ϕ over D for

which P holds are of arity at most c(P).



S. Gaspers, S. Ordyniak, and S. Szeider 141

N2. Given a operation ϕ and a domain D, one can check in polynomial time whether P(ϕ)
holds on all of the at most |D|c(P) tuples over D,

N3. Every operation for which P holds is tractable.

For a tractable polymorphism predicate P we define ∆(P) to be the set of all constraint
languages that are closed under some operation for which P holds. Note that the classes VAL,
MINMAX, MAJ, AFF, and MAL as well as combination of these classes can easily be defined
via tractable polymorphism predicates. Moreover also much more general types of operations
such as semilattice operations (sometimes called ACI operation) [34] (a generalization of
min/max), k-ary near unanimity operations [35, 19] (a generalization of majority), k-ary
edge operations [33] (a generalization of Mal’cev), and the two operations of arities three and
four [40] that capture the bounded width property [1] (a generalization of semilattice and
near unanimity operations) can be defined via tractable polymorphism predicates. Finally,
we would like to note here that the property of belonging to a tractable algebraic variety [5]
is an example of a tractable polymorphism predicate.

2.4 Parameterized Complexity
A parameterized problem Π is a problem whose instances are tuples (I, k), where k ∈ N is
called the parameter. We say that a parameterized problem is fixed parameter tractable
(FPT in short) if it can be solved by an algorithm which runs in time f(k) · |I|O(1) for some
computable function f ; algorithms with a running time of this form are called FPT algorithms.
FPT also denotes the class of all fixed-parameter tractable decision problems. The notions
of W[i]-hardness (for i ∈ N) are frequently used to show that a parameterized problem is
not likely to be FPT. The W[i] classes and FPT are closed under parameterized reductions,
which are FPT algorithms reducing any instance (I, k) of a parameterized problem Π to
an instance (I ′, k′) of a parameterized problem Π′ such that (I, k) is a yes-instance for Π
if and only if (I ′, k′) is a yes-instance for Π′, and k′ is upper bounded by a function of
k. An FPT algorithm for a W[i]-hard problem would imply that the Exponential Time
Hypothesis fails [9]. We refer the reader to other sources [14, 23] for an in-depth introduction
to parameterized complexity.

We also consider parameterized problems with multiple parameters k1, . . . , k` or param-
eterized by a set T = {k1, . . . , k`} of natural numbers, whose instances are tuples (I, T ),
where ki ∈ N, 1 ≤ i ≤ `, are the parameters. Such parameterized problems are equivalent to
parameterized problems with a single parameter k1 + · · ·+ k`.

2.5 Backdoors
Let I be an instance of CSP over D and let H be a class of CSP instances. A set B of
variables of I is called a strong backdoor set into H (or shortly strong H-backdoor set) if for
every assignment α : B → D it holds that I|α ∈ H. Notice that if we are given a strong
backdoor set B of size k into a class H of CSP instances that can be solved in polynomial
time, then it is possible to solve the entire instance in time |D|k · |I|O(1). In general for a
class H of CSP instances the application of the backdoor set approach usually requires the
solution to the following two subproblems.

Strong H-Backdoor Set Detection
Input: A CSP instance I over the same domain as H and a non-negative integer k.
Question: Find a strong H-backdoor set for I of cardinality at most k, or determine
that no such strong backdoor set exists.

Chapte r 05



142 Backdoor Sets for CSP

Strong H-Backdoor Set Evaluation
Input: A CSP instance I over the same domain as H and a strong H-backdoor set for I.
Question: Determine whether I is satisfiable.

We will consider the parameterized complexity of the above problems depending on various
base classes H defined via restrictions on the allowed constraint languages as well as the
following parameters:

arity denoting the maximum arity of the given CSP instance,
dom denoting the maximum domain of the given CSP instance, and
bd-size denoting the bound on the backdoor set size given as an input to the Strong
H-Backdoor Set Detection problem or the size of the backdoor set given as an input
to the Strong H-Backdoor Set Evaluation problem, respectively.
bd-sizeH denoting the smallest size of a strong H-backdoor set for the provided CSP
instance.

As it turns out for all the results surveyed here, the complexity of the above prob-
lems solely depends on the following two properties of the base class H. For a set
T ⊆ {arity, dom, bd-size}, we say that a class of CSP instances H is:

T -tractable if there is an FPT-algorithm parameterized by T that solves every CSP
instance in H.
T -detectable if there is an FPT algorithm parameterized by T , denoted by AH, that, given
a CSP instance I and a set B ⊆ var(I), determines whether B is a strong H-backdoor set
of I, and if not, outputs a set Q ⊆ var(I) \B whose size can be bounded by a function of
T , such that every strong H-backdoor set of I containing B contains at least one variable
in Q.

I Theorem 1. Strong H-Backdoor Set Evaluation is fixed-parameter tractable pa-
rameterized by T ∪ {dom, bd-size} for every T -tractable class H of CSP instances.

Proof. We solve such an instance I ∈ H by going over all of the at most dombd-size assignments
of the variables in the given backdoor set and checking for each of those whether the reduced
instance is satisfiable by using the algorithm implied because H is T -tractable. J

I Theorem 2. Strong H-Backdoor Set Detection is fixed-parameter tractable param-
eterized by T ∪ {bd-size} for every T -detectable class H of CSP instances.

Proof. We will employ a branching algorithm that employs AH as a subroutine. The main
ingredient of the algorithm is a recursive function, which is called with a set B of at most k
variables representing a partial backdoor set. The algorithm simply returns the value of the
recursive function called with the empty set of variables and the recursive function consists
of the following steps.
1. The function executes the algorithm AH on I and B.
2. If Step 1 concludes that B is a strong H-backdoor set, then the function returns Yes,
3. otherwise, let Q be the set of variables returned by the algorithm AH in Step (1). Then,

if |B| = k, the function returns No,
otherwise the function branches on all variables in Q, i.e., for every variable q ∈ Q,
the function calls itself on the set B ∪ {q}. If any of these calls returns Yes, then the
function returns Yes, otherwise it returns No.

This concludes the description of the algorithm. Its correctness follows from the properties of
algorithm AH. Because of the properties of the algorithm AH the number of times that the
recursive function calls itself recursively is bounded by a function of T . Moreover since the



S. Gaspers, S. Ordyniak, and S. Szeider 143

recursive function does not call itself when |B| = k, the depth of the recursion is at most k.
It follows that the total number of calls to the recursive function is bounded by a function of
T ∪{k}. Finally, the time required for each call of the recursive function is dominated by the
time required by AH. This shows that SBD(H) is fixed-parameter tractable parameterized
by T ∪ {bd-size}. J

3 Basic Results

In this section we consider the backdoor set approach for classes H of CSP instances defined
by a single constraint language Γ. It is easy to see that any such class H is ∅-tractable if
and only if the defining constraint language Γ is globally tractable. Hence we obtain from
Theorem 1 that if Γ is globally tractable, then Strong H-Backdoor Set Evaluation
is fixed-parameter tractable parameterized by {dom, bd-size}. We will now show that if
Γ is additionally efficiently recognizable, then Strong H-Backdoor Set Detection is
fixed-parameter tractable parameterized by {arity, bd-size}. Because of Theorem 2 it is
sufficient to show that H is {arity}-detectable.

I Lemma 3. CSP(Γ) is {arity}-detectable for every efficiently recognizable constraint
language Γ.

Proof. Let H = CSP(Γ). It is sufficient to give the algorithm AH. Let I be the given CSP
instance, B be the given set of variables of I, let m and t be the number of constraints and the
maximum number of tuples in any constraint of I, respectively. Observe that B is a strong
H-backdoor set if and only if for every constraint C = (S,R) of I it holds that C|α ∈ H
for every assignment α of the variables in B ∩ S. By ordering the tuples in R according
to the assignments of the variables in B ∩ S, this can be checked in time O(t log t) times
the time required to determine whether I ∈ H. Hence executing this for every constraint
requires O(m · t log t · |I|O(1)) time. If C|α ∈ H for every constraint C = (S,R) and every
such assignment of the variables in B∩S, then the algorithm returns Yes. Otherwise there is
a constraint C = (S,R) and an assignment α of the variables in B ∩S such that C|α /∈ H. In
this case B is not a strong H-backdoor set and the algorithm returns the set S \B, which we
claim satisfies the properties of the set Q given in the statement of the algorithm. Towards
showing this, assume for a contradiction that this is not the case, i.e., there is a strong
H-backdoor set B′ with B ⊆ B′ that does not contain a variable in S \B. Note that because
B ⊆ B′ and B′ does not contain any variable in S \B, it holds that B′ ∩ S = B ∩ S. Hence
the assignment α as given above contradicts our assumption that B′ is a strong H-backdoor
set, because C|α /∈ H. J

As an immediate consequence of the above lemma and Theorem 2 we obtain the following.

I Theorem 4. Strong CSP(Γ)-Backdoor Set Detection is fixed-parameter tractable
parameterized by {arity, bd-size} for every efficiently recognizable constraint language Γ.

This leads to our main result for base classes H defined via single constraint languages.

I Corollary 5. CSP is fixed-parameter tractable parameterized by {arity, dom, bd-sizeH}
for every efficiently recognizable and globally tractable constraint language Γ.

If the constraint language Γ is finite, then the above result can even be improved to
fixed-parameter tractability with respect to the single parameter backdoor set size. This is
because any finite constraint language has bounded domain and bounded arity, i.e., bounded

Chapte r 05



144 Backdoor Sets for CSP

by some fixed constants say D and R, respectively. Hence any input CSP instance with
domain larger than D or with arity at least R+ k (where k is the size of the backdoor set)
can immediately be identified as a No-instance and thus the above algorithm only needs to
be applied to CSP instances of domain at most D and arity at most R+ k. Since all finite
constraint languages are efficiently recognizable, we obtain the following corollary.

I Corollary 6. CSP is fixed-parameter tractable parameterized by bd-sizeCSP(Γ) for every
globally tractable finite constraint language Γ.

In the following we show that when considering infinite constraint languages (in particular
constraint languages defined via polymorphisms), then it is not possible to drop the arity
parameter. In particular, we will show that Strong CSP(ϕ)-Backdoor Set Detection
is not fixed-parameter tractable parameterized by the size of the backdoor set alone for any
tractable idempotent operation ϕ.

I Theorem 7. Strong CSP(ϕ)-Backdoor Set Detection is fixed-parameter intractable
(W[2]-hard) parameterized by bd-size for every tractable idempotent operation ϕ, even for
CSP instances over the Boolean domain.

Proof. We start by introducing what we call “Boolean barriers” of operations since they
form the basis of the proof. Let ϕ : Dn → D be an n-ary operation over D. We say a set λ
of r(λ)-ary tuples over {0, 1} is a Boolean barrier for ϕ if there is a sequence 〈t1, . . . , tn〉 of
(not necessarily distinct) tuples in λ such that ϕ(t1, . . . , tn) /∈ λ. We call a Boolean barrier λ
of ϕ minimal if |λ| is minimal over all Boolean barriers of ϕ. For an operation ϕ, we denote
by λ(ϕ) a minimal Boolean barrier of ϕ. For our reduction below, we will employ the fact
that every tractable operation ϕ has a non-empty Boolean barrier of finite size. The reason
that a Boolean barrier must exist is simply because if ϕ would not have a Boolean barrier
then every Boolean CSP instance would be closed under ϕ and thus tractable, which unless
P = NP is not possible. To see that λ(ϕ) is finite first note that |λ(ϕ)| is at most as large as
the arity rϕ of ϕ. Moreover, r(λ) ≤ 2rϕ because there are at most 2rϕ distinct rϕ-ary tuples
over {0, 1}. Hence the size of λ(ϕ) is at most rϕ · 2rϕ .

We are now ready to show the theorem via a parameterized reduction from the well-known
W[2]-hard Hitting Set problem [13]. Let 〈U,F , k〉 be an instance of Hitting Set, where U
is a set (often refered to as the universe), F is a familly of subsets of U and k is a non-negative
integer. Note that the Hitting Set problem asks whether there is a subsets H ⊆ U of the
universe U with cardinality and most k such that H ∩ F 6= ∅ for every F ∈ F . We construct
a CSP instance I such that (U,F) has a hitting set of size at most k if and only if I has a
strong CSP(ϕ)-backdoor set of size at most k.

In the following let λ(ϕ) = {t1, . . . , tn} and r denote the arity of the tuples in λ(ϕ).
The variables of I are {xu : u ∈ U } ∪ { o1(F ), . . . , or(F ) : F ∈ F }. Furthermore,
for every F ∈ F with F = {u1, . . . , u|F |}, C contains a constraint R(F ) with scope
〈o1(F ), . . . , or(F ), xu1 , . . . , xu|F |〉 whose relation contains the row

ti[1], . . . , ti[r], 〈i mod 2, . . . , i mod 2︸ ︷︷ ︸
|F | times

〉

for every i in 1 ≤ i ≤ n. This completes the construction of I. Suppose that F has a hitting
set B of size at most k. We claim that Bu = {xu : u ∈ B } is a strong CSP(ϕ)-backdoor set
of I. Let α be an assignment of the variables in B. We claim that I|α is closed under ϕ and
hence Bu is a strong CSP(ϕ)-backdoor set of I. Note that because ϕ is idempotent every
relation containing only a single tuple is closed under ϕ, it holds that |λ(ϕ)| > 1. Because B



S. Gaspers, S. Ordyniak, and S. Szeider 145

is a hitting set of H, it follows that every relation of I|α contains at least one tuple less than
the corresponding relation in I. Hence any relation of I|α contains less tuples than |λ(ϕ)|,
which is the minimal size of any boolean barrier for ϕ, which implies that I|α is closed under
ϕ, as required.

For the reverse direction, suppose that I has a strong CSP(ϕ)-backdoor set B of size
at most k. Because no constraint of I is closed under ϕ, we obtain that B has to contain
at least one variable from every constraint of I. Since the only variables that are shared
between R(F ) and R(F ′) for distinct F, F ′ ∈ F are the variables in {xu : u ∈ U }, it follows
that B is a hitting set of size at most k for F , as required. J

4 Heterogeneous Base Classes

In the previous section, we considered so-called homogeneous base classes defined via a single
globally tractable constraint language. In this section we introduce a more general form of
base classes (called heterogeneous base classes) that are defined via a set of globally tractable
constraint languages. In particular, given a set of globally tractable constraint languages ∆,
let CSP(∆) be the class of all CSP instances in

⋃
Γ∈∆ CSP(Γ). The size of a backdoor set

into a heterogeneous base class can be much smaller than the minimum size of a backdoor
set into any of its homogeneous base classes. Therefore, backdoor sets into heterogeneous
base classes are considerably more powerful but also more complicated to handle. Even the
evaluation of backdoor sets into heterogeneous base classes needs to be handled carefully.
Namely, because the given set ∆ can be infinite the class CSP(∆) of CSP instances is not a
priory ∅-tractable even if the considered constraint languages are globally tractable.

We start by showing that backdoor sets into heterogeneous base classes can be arbitrarily
smaller than backdoor sets into their homogeneous counterparts. For the construction of the
example let ϕmin be the min-type operation and let ϕmaj be the majority-type operation
both defined on the ordered domain (0, 1).

I Proposition 8. For every natural number n, there is a CSP instance In such that In has
a strong CSP({ϕmin, ϕmaj})-backdoor set of size one but every strong CSP({ϕmin})-backdoor
set and every strong CSP({ϕmaj})-backdoor set of In has size at least n.

Proof. Let MAJ[a, b, c, d] be the constraint with scope (a, b, c, d) and whose relation contains
all possible tuples that set d to 0 except for the tuple (1, 1, 1, 0). Then MAJ[a, b, c, d] is
not closed under ϕmaj but happens to be closed under ϕmin. Similarly, let MIN[a, b, c]
be the constraint with scope (a, b, c) and whose relation contains the tuples (0, 1, 1) and
(1, 0, 1). Then MIN[a, b, c] is not closed under ϕmin but happens to be closed under ϕmaj.
We claim that the CSP instance In with variables {y1, . . . , y3n} ∪ {z1, . . . , z2n} ∪ {x} and
constraints MAJi = MAJ[y3i+1, y3i+2, y3i+3, x] and MINi = MIN[z2i+1, z2i+2, x] for every i
with 0 ≤ i ≤ n− 1, satisfies the claim of the proposition. Towards showing this first note
that {x} is a strong CSP({ϕmin, ϕmaj})-backdoor set of In of size 1. This is because for
the assignment α with α(x) = 0, it holds that In|α ∈ CSP(ϕmin) and for the assignment α
with α(x) = 1, it holds that In|α ∈ CSP(ϕmaj). Moreover it is straightforward to verify that
every strong CSP(ϕmin)-backdoor set of In has to contain at least one variable from every
constraint MINi that is not x and similarly every strong CSP(ϕmaj)-backdoor set of In has
to contain at least one variable from every constraint MAJi that is not x. Hence the size
of every strong CSP(ϕmin)-backdoor set as well as any strong CSP(ϕmaj)-backdoor set is at
least n. J

Chapte r 05



146 Backdoor Sets for CSP

The following auxiliary lemma provides a useful property for detecting backdoor sets into
heterogeneous base classes.

I Lemma 9. Let ∆ be a set of constraint languages, I a CSP instance, and B a set of
variables of I. If there is an assignment α of the variables in B such that I|α /∈ CSP(∆),
then any strong CSP(∆)-backdoor set B′ with B ⊆ B′ contains at least one variable from
the set Q = (

⋃
Γ∈∆ var(CΓ)) \B, where for any Γ ∈ ∆, CΓ is a constraint of I|α such that

CΓ /∈ CSP(Γ).

Proof. Let H = CSP(∆). Assume for a contradiction that this is not the case, i.e., there is
a strong H-backdoor set B′ for I with B ⊆ B′ and B′ does not contain any variable from Q.
Because B is not a strong H-backdoor set there is an assignment α such that I|α /∈ H. Let
α′ be any assignment of the variables in B′ that agrees with α on the variables in B. Because
B′ is a strong H-backdoor set, it follows that there is a constraint language Γ ∈ ∆ such
that I|α′ ∈ CSP(Γ). We claim that B′ contains at least one variable from every constraint
C ∈ I|α with C /∈ CSP(Γ). For if not, then let C be such a constraint with an empty
intersection with B′. It follows that C ∈ I|α′ but because C /∈ CSP(Γ) this contradicts our
assumption that I|α′ ∈ CSP(Γ). J

In the following we will give our first example of a heterogeneous base class, which can
be employed for the backdoor set approach. Namely, we will show this for any finite set
∆ of finite globally tractable constraint languages. We start by showing that CSP(∆) is
∅-tractable, which, because of Theorem 1, implies that Strong CSP(∆)-Backdoor Set
Evaluation is fixed-parameter tractable parameterized by bd-size (because the domain is
finite).

I Proposition 10. CSP(∆) is ∅-tractable for every finite set ∆ of finite and globally tractable
constraint languages.

Proof. Let H = CSP(∆). We can solve a CSP instance I ∈ H by going over all constraint
languages Γ ∈ ∆, checking whether I is in CSP(Γ) and if so solving I in polynomial time.
This can be achieved in polynomial time because there are only finitely many constraint
languages in ∆ and each of them can be recognized in polynomial time (because it is
finite). J

The next lemma shows that for any such set ∆, CSP(∆) is also {bd-size}-detectable.

I Lemma 11. CSP(∆) is {bd-size}-detectable for every finite set ∆ of finite constraint
languages.

Proof. It is sufficient to give the algorithm ACSP(∆). Let I be a CSP instance and let B
be the given set of variables of I. Because ∆ contains only finitely many finite constraint
languages, it holds that the maximum domain value D as well as the maximum arity R of any
of its languages is also finite. Hence w.l.o.g. we can assume that the maximum domain value
of I is at most D and similarly the maximum arity of I is at most R+ k, since otherwise
we can simply return No. To determine whether B is a strong CSP(∆)-backdoor set, we
test for every assignment α of the variables in B whether I|α ∈ CSP(Γ) for some constraint
language Γ ∈ ∆. Because there are at most D|B| assignments of the variables in B, there
are finitely many constraint languages in ∆, and verifying whether I|α ∈ CSP(Γ) for some
finite constraint language can be done in polynomial time, the total time required by this
step of the algorithm is O(D|B||I|O(1)). If the above test holds for every assignment of the
variables in B, then the algorithm returns Yes. Otherwise there is an assignment α of the



S. Gaspers, S. Ordyniak, and S. Szeider 147

variables in B such that I|α /∈ CSP(∆). Hence we obtain from Lemma 9 that any strong
CSP(∆)-backdoor set B′ with B ⊆ B′ contains at least one variable from the set Q as given
in the statement of Lemma 9. Because the size of this set Q is at most |∆|(R+ k) ∈ O(k)
and the set Q can be computed within the running time of the first step of the algorithm,
the lemma follows. J

As an immediate consequence of the above lemma and Theorem 2, we obtain the following.

I Theorem 12. Strong CSP(∆)-Backdoor Set Detection is fixed-parameter tractable
parameterized by bd-size for every finite set ∆ of finite constraint languages.

The above discussion leads directly to our main result for heterogeneous base classes defined
via finite constraint languages.

I Corollary 13. CSP is fixed-parameter tractable parameterized by bd-sizeCSP (∆) for every
finite set ∆ of globally tractable finite constraint languages.

This concludes our discussion for heterogeneous base classes defined via finite constraint
languages. In the following we will consider sets of infinite constraint languages defined
via a tractable polymorphism predicate P. Namely, let H = CSP(∆(P)) for a tractable
polymorphism predicate P . We will show that CSP is fixed-parameter tractable parameterized
by arity, dom, and the size of a smallest strong H-backdoor set. We will also show that none
of these three parameters can be dropped without sacrificing fixed-parameter tractability.
Crucial to this result is the fact that even though a tractable polymorphism predicate holds
for a potentially infinite set of operations, the number of operations is bounded for a fixed
domain.

I Lemma 14. Let P be a tractable polymorphism predicate and D be a finite set. Then
there are at most ddc(P) operations on D that satisfy P, and computing all these operations
is fixed-parameter tractable parameterized by |D|.

Proof. This follows because there are at most ddc(P)
c(P)-ary operations on D and because

of Property N2 for each of those one can test in polynomial time whether it satisfies P. J

We show next that Strong H-Backdoor Set Evaluation is fixed-parameter tractable
parameterized by {dom, bd-size}. Because of Theorem 1 it is sufficient to show that H is
{dom}-tractable.

I Lemma 15. CSP(∆(P)) is {dom}-tractable for every tractable polymorphism predicate P.

Proof. We first compute the set P of all operations on the domain D of I using Lemma 14.
We then check for every such operation ϕ ∈ P whether I is closed under ϕ in time O(m·tc(P)),
where m is the number of constraints of I and t is the maximum number of tuples occurring
in any constraint of I. If it is we use the fact that ϕ is tractable to solve I in polynomial
time. J

We now turn to the detection of backdoor sets into H.

I Lemma 16. CSP(∆(P)) is {arity, dom, bd-size}-detectable for every tractable polymor-
phism predicate P.

Proof. Let H = CSP(∆(P)). It is sufficient to give the algorithm AH. Let I be the given
CSP instance over D and let B be the given set of variables of I.

Chapte r 05



148 Backdoor Sets for CSP

We first compute the set P of all operations on D for which P holds by employing
Lemma 14. Observe that a set B of variables of I is a strong H-backdoor set if and only if it
is a strong CSP(P )-backdoor set, where CSP(P ) =

⋃
ϕ∈P CSP(ϕ).

To determine whether B is a strong CSP(P )-backdoor set, we test for every assignment α
of the variables in B whether I|α ∈ CSP(P ). Because there are at most dombd-size assignments
of the variables in B, at most domdomc(P) operations in P , and verifying whether I|α ∈ CSP(ϕ)
for any ϕ ∈ P can be achieved in polynomial time, the total time required by this step of the
algorithm is at most O(dombd-sizedomdomc(P) |I|O(1)). If the above holds for every assignment
of the variables in B, then the algorithm returns Yes. Otherwise there is an assignment α
such that I|α /∈ CSP(P ). Hence we obtain from Lemma 9 that any strong H-backdoor set
B′ with B ⊆ B′ contains at least one variable from the set Q given in the statement of the
lemma. Because the size of this set Q is at most |P | · arity ≤ domdomc(P) · arity and the set
Q can be computed within the running time of the first step of the algorithm, the lemma
follows. J

The following theorem follows immediately from the above lemma and Theorem 2.

I Theorem 17. Strong CSP(∆(P))-Backdoor Set Detection is fixed-parameter
tractable parameterized by {arity, dom, bd-size} for every tractable polymorphism pred-
icate P.

The above results naturally lead to our main result of this section.

I Corollary 18. CSP is fixed-parameter tractable parameterized by {arity, dom,
bd-sizeCSP(∆(P))} for every tractable polymorphism predicate P.

It turns out that we cannot avoid to parameterize by both the maximum domain value
and the arity in the above theorem. We have already seen in Theorem 7 that even if we
consider just a single idempotent tractable operation ϕ, then Strong CSP(ϕ)-Backdoor
Set Detection is fixed-parameter intractable parameterized by {bd-size, dom} (even for
boolean domain). Because it is easy to define a tractable polymorphism predicate that only
holds for a single idempotent operation, this result generalizes to tractable polymorphism
predicates. Hence it only remains to consider the case where we parameterize only by the
maximum arity and backdoor set size. The proof of the following theorem can be found
in [28, Theorem 12]. Note that since the reduction employed in the hardness result does
strongly depend on the considered tractable polymorphism predicate it is difficult to obtain
a general result as in Theorem 7, but it can be stated to include some of the arguably most
prominent types of operations.

I Theorem 19. Strong H-Backdoor Set Detection is fixed-parameter intractable
(W[2]-hard) parameterized by {arity, bd-size} for every H ∈ {MINMAX, MAJ, AFF,
MAL}, even for CSP instances with arity 2.

5 Scattered Base Classes

Thus far we have considered a setting in which the reduced CSP instance for each assignment
of the backdoor set variables belonged entirely to a single tractable constraint language. To
ensure that the reduced CSP instance is tractable, which is sufficient for an application of
the backdoor set approach, there is however a natural and more general possibility: Instead
of belonging entirely to a single tractable constraint language, the CSP instance could consist
of a disjoint union of (pairwise variable disjoint) CSP instances, each belonging to some



S. Gaspers, S. Ordyniak, and S. Szeider 149

tractable constraint language. This type of tractable base class is particularly interesting in
combination with the backdoor set approach, since now the variables of the backdoor set can
be naturally employed to separate the CSP instance into parts only interacting with each
other through the variables in the backdoor set.

More specifically, a CSP instance I is connected if either it consists of at most one
constraint, or for each partition of I into nonempty sets I1 and I2, there exists at least
one constraint c1 ∈ I1 and one constraint c2 ∈ I2 that share at least one variable. A
connected component of I is a maximal connected subinstance I ′ of I. These notions
naturally correspond to the connectedness and connected components of standard graph
representations of CSP instances.

Now, given a set ∆ of constraint languages, we define the scattered class ⊕(∆) of CSP
instances I where each connected component I ′ of I belongs to CSP(Γ) for some Γ ∈ ∆.

We start by showing that backdoor sets into scattered base classes can be arbitrarily
smaller than backdoor sets into their heterogeneous counterparts. For the construction of
the example let ϕmin be the min-type operation and let ϕmaj be the majority-type operation
both defined on the ordered domain {0, 1}.

I Proposition 20. For every natural number n, there is a CSP instance In such that In has a
strong ⊕(∆({ϕmin, ϕmaj})))-backdoor set of size zero but every strong CSP({ϕmin, ϕmaj})-back-
door set of In has size at least n.

Proof. Let MAJ[a, b, c] be the constraint with scope (a, b, c) and whose relation contains
all possible tuples except for the tuple (1, 1, 1). Then MAJ[a, b, c] is not closed under
ϕmaj but it is closed under ϕmin. Similarly, let MIN[a, b] be the constraint with scope
(a, b) and whose relation contains the tuples (0, 1) and (1, 0). Then MIN[a, b] is not closed
under ϕmin but it is closed under ϕmaj. We claim that the CSP instance In with variables
{y1, . . . , y3n} ∪ {z1, . . . , z2n} and constraints MAJi = MAJ[y3i+1, y3i+2, y3i+3] and MINi =
MIN[z2i+1, z2i+2] for every i with 0 ≤ i ≤ n − 1, satisfies the claim of the proposition.
Towards showing this first note that the empty set is a strong ⊕(∆(({ϕmin, ϕmaj}))-backdoor
set of In of size 0. This is because In is the disjoint union of variable disjoint constraints,
which are either closed under ϕmin or under ϕmaj. However it is straightforward to verify
that every strong CSP({ϕmin, ϕmaj})-backdoor set of In has to either contain at least one
variable from every constraint MINi or at least one variable from every constraint MAJi.
Hence the size of any strong CSP({ϕmin, ϕmaj})-backdoor set is at least n. J

Below we will present an algorithm that detects scattered base classes. For this algorithm
it is convenient to deal only with constraint languages that are closed under assignments
(as we will define next). This has the advantage that there is no danger that a partially
constructed backdoor set becomes invalidated by adding another variable to the backdoor
set. In fact, in the orginal paper which introduced backdoor sets [55], this property is even
part of the definition. We will also assume that the considered constraint languages contain
a redundant constraint which can be used within the algorithm to artificially connect parts
of the instance.

A constraint language Γ is closed under assignments if for every C = (S,R) such that
R ∈ Γ and every assignment α, it holds that R′ ∈ Γ where C|α = (S′, R′). The lemma
below shows that languages closed under assignments are closely related to semi-conservative
languages. For a constraint language Γ over a domain D we denote by Γ∗ the smallest
constraint language over D that contains Γ ∪ {D2} and is closed under assignments; notice
that Γ∗ is uniquely determined by Γ. For a set ∆ of constraint languages we denote by ∆∗
the set {Γ∗ : Γ ∈ ∆ }

Chapte r 05



150 Backdoor Sets for CSP

I Lemma 21. If ∆ is a set of globally tractable semi-conservative constraint languages, then
⊕(∆∗) is also globally tractable.

Proof. Evidently, if a semi-conservative language Γ is globally tractable, then so is Γ∗: first,
all constraints of the form (S,D2|α) can be detected in polynomial time and removed from
the instance without changing the solution, and then each constraint C ′ = (S′, R′) with
R′ ∈ Γ∗ \ Γ can be expressed in terms of the conjunction of a constraint C = (S,R) with
R ∈ Γ and unary constraints over variables in var(C) \ var(C ′). Now, if each Γ∗ ∈ ∆∗ is
globally tractable, also ⊕(∆∗) is globally tractable, as we can solve connected components
independently. J

The main technical result for scattered base classes is the next lemma.

I Theorem 22. Let ∆ be a finite set of finite constraint languages. Then there is an
FPT-algorithm that, given a CSP instance I and a parameter k, either finds a strong
CSP(⊕(∆∗))-backdoor set of size at most k or correctly decides that none exists.

We sketch the main ingredients of the algorithm and refer for the ArXiv version of the
original paper [26] for details.

The algorithm uses the technique of iterative compression [50] to transform the problem
into a structured subproblem. In this technique, the idea is to start with a sub-instance
and a trivial solution for this sub-instance and iteratively expand the sub-instances while
compressing the solutions till we solve the problem on the original instance. Specifically, for
backdoor detection we are given additional information about the desired solution in the
input: we receive an ‘old’ strong backdoor set which is slightly bigger than our target size,
along with information about how this old backdoor set interacts with our target solution.

Further more, the algorithm considers only solutions for instances of the iterative com-
pression problem which have a certain inseparability property and uses an FPT algorithm
to test for the presence of such solutions. To be more precise, the algorithm only looks for
solutions which leave the omitted part of the old strong backdoor set in a single connected
component. Interestingly, even this base case requires the extension of state of the art
separator techniques to a CSP setting.

Finally, the general instances of the iterative compression problem are handled using a
new pattern replacement technique, which is somehow similar to the protrusion replacement
technique [3] but allows the preservation of a much larger set of structural properties (such
as containment of disconnected forbidden structures and connectivity across the boundary).
This pattern replacement procedure is interleaved with the technique of important separator
sequences [44] as well as the above algorithm for inseparable instances.

I Corollary 23. Let ∆ be a finite set of globally tractable semi-conservative finite constraint
languages. Then CSP(⊕(∆)) is fixed-parameter tractable parameterized by the backdoor set
size.

Proof. Let I be the given CSP instance over domain D and k a parameter such that I has
a strong CSP(⊕(∆))-backdoor set of size ≤ k. Since CSP(⊕(∆)) ⊆ CSP(⊕(∆∗)), I has also
a strong CSP(⊕(∆∗))-backdoor set of size ≤ k, and we compute this backdoor set using
Theorem 22. Because of Lemma 21, CSP(⊕(∆∗)) is globally tractable. Hence we can use
the backdoor set by solving all the instances that arise by instantiating the backdoor set
variables. As the considered languages are finite, they are over a finite domain D, and so the
number of tractable instances to consider is at most |D|k. J



S. Gaspers, S. Ordyniak, and S. Szeider 151

It might be possible to generalize Corollary 23 to sets of constraint languages characterized
by tractable polymorphism predicates. Since the algorithm is already quite complicated for
the finite case, this has not yet been checked in detail.

5.1 Extension to Valued CSP
Valued CSP (or VCSP for short) is a powerful framework that entails among others the
problems CSP and Max-CSP as special cases [56]. A VCSP instance consists of a finite set
of cost functions over a finite set of variables which range over a domain D, and the task is
to find an instantiation of these variables that minimizes the sum of the cost functions. The
VCSP framework is robust and has been studied in different contexts in computer science.
In its full generality, VCSP considers cost functions that can take as values the rational
numbers and positive infinity. CSP (feasibility) and Max-CSP (optimization) arise as special
cases by limiting the values of cost functions to {0,∞} and {0, 1}, respectively. Clearly
VCSP is in general intractable. Over the last decades much research has been devoted
into the identification of tractable VCSP subproblems. An important line of this research
(see, e.g., [36, 39, 54]) is the characterization of tractable VCSPs in terms of restrictions on
the underlying valued constraint language Γ, i.e., a set Γ of cost functions that guarantees
polynomial-time solvability of all VCSP instances that use only cost functions from Γ. The
VCSP restricted to instances with cost functions from Γ is denoted by VCSP[Γ].

The definitions of strong backdoor sets, scattered base classes, etc., generalize straightfor-
wardly from the CSP setting to VCSP, and we omit the details. A valued constraint language
is conservative if it contains all unary cost functions [39].

Theorem 23 generalizes to VCSP in the following way:

I Theorem 24. Let ∆ be a finite set of globally tractable conservative valued constraint
languages of bounded domain size and bounded arity. Then VCSP(⊕(∆)) is fixed-parameter
tractable parameterized by the backdoor set size.

Here it is important to note that a valued constraint language of bounded domain and
arity can be infinite. Hence the technique used for establishing Theorem 23 does not directly
apply. However, it turns out that one can transform the backdoor set detection problem from
a general scattered class VCSP(⊕(∆)) to a scattered class VCSP(⊕(∆′)) over a finite set ∆′
of finite valued constraint languages. The reduction does not preserve VCSP solutions, but
preserves backdoor sets. Once the backdoor set is found, one applies it to the original VCSP
instance.

6 Backdoors of Small Treewidth

In this section we outline a new concept that allows us to algorithmically exploit a backdoor
set even if it is large, as long as it induces a graph with a sufficiently simple structure.
More specifically, we associate with the backdoor set a certain torso graph and measure its
structure in terms of the widely used graph invariant treewidth. Minimizing this treewidth
over all strong backdoor sets X of a CSP instance I into CSP(Γ) (for a fixed constraint
language Γ) gives as a new “hybrid” parameter, the backdoor-treewidth.

Let I be a CSP instance and X a subset of its variables. We define the torso graph of
I with respect to X, denoted torsoI(X), as follows. The vertex set of torsoI(X) is X, and
the graph contains an edge {x, y} if x and y appear together in the scope of a constraint or
x and y are in the scopes of constraints that belong to the same connected component of
I −X (see Section 5). Here I −X denotes the CSP instance obtained from I by deleting

Chapte r 05



152 Backdoor Sets for CSP

the variables x ∈ X from all constraint scopes and deleting the corresponding entries from
the constraint relations.

Let G = (V,E) be a graph. A tree decomposition of G is a pair (T,X = {Xt}t∈V (T )) where
T is a tree and X is a collection of subsets of V such that: (i) for each edge {u, v} ∈ E there
exists a node t of T such that {u, v} ⊆ Xt, and (ii) for each v ∈ V , the set {t | v ∈ Xt} induces
in T a nonempty connected subtree. The width of (T,X ) is equal to max{|Xt|−1 | t ∈ V (T )}
and the treewidth of G, denoted tw(G), is the minimum width over all tree decompositions
of G.

Let I be a CSP instance and X a strong backdoor set of I into CSP(Γ). The width of X
is the treewidth of the torso graph torsoI(X), and the backdoor-treewidth of I with respect
to Γ is the smallest width over all strong backdoor sets X of I into CSP(Γ).

I Theorem 25. For each finite constraint language Γ, there is an FPT-algorithm that, given
a CSP instance I and a parameter k, either finds a strong CSP(Γ)-backdoor set of with at
most k or correctly decides that none exists.

The proof of the theorem makes use of a new notion of “boundaried CSP instances” defined
in the spirit of boundaried graphs, and uses a new replacement framework inspired by the
graph replacement tools dating back to the results of Fellows and Langston [20], combined
with the so-called recursive-understanding technique [31]

Once a backdoor set of small with is found, one can apply standard dynamic programming
techniques to solve CSP and #CSP.

I Corollary 26. For each finite (#-)tractable constraint language Γ, CSP (or #CSP, re-
spectively) is fixed-parameter tractable parameterized by the backdoor treewidth with respect
to Γ.

7 Related Work

Related work on backdoor sets for CSP includes a paper by Bessière et at. [2] who consider
so-called partition backdoor sets which are less general than the backdoor sets we considered
in Section 4 (see [28, Section 7]); they also provide some initial empirical results which show
that this concept has practical potential. A further work on CSP backdoor sets is a paper
by Carbonnel et al. [7] who show W[2]-hardness for strong backdoor set detection when
parameterized by the size of the backdoor set, even for CSP-instances with only one constraint
(however with unbounded domain and unbounded arity). They also give a fixed-parameter
algorithm for strong backdoor set detection parameterized by the size of the backdoor set
and the maximum arity of any constraint, if the base class is “h-Helly” for a fixed integer
h and under the additional assumption that the domain is a finite subset of the natural
numbers, which comes with a fixed ordering (see also the recent survey by Carbonnel and
Cooper [8]).

As mentioned at the beginning of this survey, there is much work on backdoor sets in
the context of SAT, most of it is covered in the survey paper [29]. More recent additions
include the detection of strong backdoor sets with respect to the base class of CNF formulas
whose incidence graph is of bounded treewidth [24, 30]. We would like to note that in
SAT the application of a partial assignment to a CNF formula results in the deletion of all
satisfied clauses, which provides an additional power for strong backdoor sets, and provides
an additional challenge for their detection.

The parameterized complexity of finding and using backdoor sets has been studied for
several problems besides SAT and CSP, including the satisfiability of quantified Boolean



S. Gaspers, S. Ordyniak, and S. Szeider 153

formulas [51], disjunctive answer set programming [21, 22], abductive reasoning [49], abstract
argumentation [15], planning [41, 42], and linear temporal logic [46].

Finally, we would like to mention that in the area of graph algorithms the notion
of modulators [6] is closely related to the concept of backdoor sets. A modulator of a
graph G into a fixed graph class C is a set M of vertices of G such that deleting M

from G moves G into the class C. By considering modulators into graph classes C where
certain NP-hard graph problems can be solved in polynomial time, one can often lift the
tractability of the problem to fixed-parameter tractability for general graphs, parameterized
by the size of the modulator. Therefore the fixed-parameter tractability of the detection
of modulators (parameterized by modulator size) is of interest. Important results include
modulators to bipartite graphs [43, 50], to chordal graphs [45], and to forests [12]. Recently
alternative parameterizations of modulators that are more general than their size have been
explored [16, 17].

8 Conclusion

We presented parameterized complexity results on CSP backdoor sets into bases classes defined
via restrictions on the constraint languages. The presented results show that the notion of
CSP backdoor sets provides an interesting area of research, which on one side builds upon
and extends classical CSP-tractability results (in form of the considered base classes), and on
the other side uses advanced algorithmic methods from the area of parameterized complexity.
There are plenty of questions that are mostly unexplored, such as CSP backdoor sets into
base classes defined by structural properties, base classes defined by “hybrid” concepts like
forbidden patterns [10], or CSP backdoor sets for instances with global constraints. Another
promising direction of future research is to parameterize backdoor sets not by their size but
by structural properties of the backdoor set and how it interacts with the rest of the instance,
similar to the parameters that have been considered for modulators [16, 17]; we have outlined
first results into this direction in Section 6. We hope that this survey stimulates further
research on CSP backdoor sets.

References

1 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consis-
tency methods. J. of the ACM, 61(1):3:1–3:19, 2014.

2 Christian Bessiére, Clément Carbonnel, Emmanuel Hebrard, George Katsirelos, and Toby
Walsh. Detecting and exploiting subproblem tractability. In Francesca Rossi, editor, IJ-
CAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013. IJCAI/AAAI, 2013.

3 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (Meta) kernelization. In 2009 50th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2009), pages 629–638. IEEE Computer Soc.,
Los Alamitos, CA, 2009.

4 Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-
element set. J. of the ACM, 53(1):66–120, 2006.

5 Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM J. Comput., 34(3):720–742, 2005.

6 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996.

Chapte r 05



154 Backdoor Sets for CSP

7 Clément Carbonnel, Martin C. Cooper, and Emmanuel Hebrard. On backdoors to tractable
constraint languages. In Principles and Practice of Constraint Programming – 20th Inter-
national Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, volume
8656 of Lecture Notes in Computer Science, pages 224–239. Springer Verlag, 2014.

8 Clément Carbonnel and Martin C. Cooper. Tractability in constraint satisfaction problems:
a survey. Constraints, pages 1–30, 2015. doi:10.1007/s10601-015-9198-6.

9 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower
bounds via parameterized complexity. J. of Computer and System Sciences, 72(8):1346–
1367, 2006.

10 David A. Cohen, Martin C. Cooper, Páidí Creed, Dániel Marx, and András Z. Salamon.
The tractability of CSP classes defined by forbidden patterns. J. Artif. Intell. Res., 45:47–
78, 2012.

11 Nadia Creignou. A dichotomy theorem for maximum generalized satisfiability problems. J.
of Computer and System Sciences, 51(3):511–522, 1995.

12 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M.M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 150–159. IEEE
Computer Society, 2011. doi:10.1109/FOCS.2011.23.

13 R.G. Downey and M.R. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer Verlag, New York, 1999.

14 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

15 Wolfgang Dvorák, Sebastian Ordyniak, and Stefan Szeider. Augmenting tractable frag-
ments of abstract argumentation. Artificial Intelligence, 186:157–173, 2012.

16 Eduard Eiben, Robert Ganian, and Stefan Szeider. Meta-kernelization using well-structured
modulators. In Thore Husfeldt and Iyad A. Kanj, editors, Parameterized and Exact
Computation – 10th International Symposium, IPEC 2014, Patras, Greece, September
16-18, 2015. Revised Selected Papers, volume 43 of LIPIcs, pages 114–126, 2015. doi:
10.4230/LIPIcs.IPEC.2015.114.

17 Eduard Eiben, Robert Ganian, and Stefan Szeider. Solving problems on graphs of high
rank-width. In Algorithms and Data Structures Symposium (WADS 2015), August 5-7,
2015, University of Victoria, BC, Canada, LNCS, pages 314–326. Springer Verlag, 2015.
URL: http://arxiv.org/abs/1507.05463, doi:10.1007/978-3-319-21840-3_26.

18 Tomás Feder and Moshe Y. Vardi. Monotone monadic snp and constraint satisfaction. In
S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA,
USA, pages 612–622. ACM, 1993.

19 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic snp
and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998.

20 Michael R. Fellows and Michael A. Langston. An analogue of the myhill-nerode theorem
and its use in computing finite-basis characterizations (extended abstract). In 30th Annual
Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina,
USA, 30 October – 1 November 1989, pages 520–525. IEEE Computer Society, 1989.

21 Johannes Klaus Fichte and Stefan Szeider. Backdoors to normality for disjunctive logic
programs. ACM Trans. Comput. Log., 17(1), 2015. doi:10.1145/2818646.

22 Johannes Klaus Fichte and Stefan Szeider. Backdoors to tractable answer set programming.
Artificial Intelligence, 220:64–103, March 2015. doi:10.1016/j.artint.2014.12.001.

http://dx.doi.org/10.1007/s10601-015-9198-6
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.114
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.114
http://arxiv.org/abs/1507.05463
http://dx.doi.org/10.1007/978-3-319-21840-3_26
http://dx.doi.org/10.1145/2818646
http://dx.doi.org/10.1016/j.artint.2014.12.001


S. Gaspers, S. Ordyniak, and S. Szeider 155

23 Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

24 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, M. S. Ramanujan, and Saket
Saurabh. Solving d-SAT via backdoors to small treewidth. In Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 630–641, 2015.

25 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Backdoors to valued constraint
satisfaction. In Proceedings of CP 2016, the 22nd International Conference on Principles
and Practice of Constraint Programming Toulouse, France 5-9 September 2016, Lecture
Notes in Computer Science. Springer Verlag, 2016. to appear.

26 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Discovering archipelagos of tractabil-
ity for constraint satisfaction and counting. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, Jan-
uary 10-12, 2016, pages 1670–1681, 2016. Full version to appear in the ACM Transactions
on Algorithms. doi:10.1137/1.9781611974331.ch114.

27 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Combining treewidth and backdoors
for CSP. In Proceedings of STACS 2017, the 34th International Symposium on Theoretical
Aspects of Computer Science, 2017. To appear. URL: https://arxiv.org/abs/1610.
03298.

28 Serge Gaspers, Neeldhara Misra, Sebastian Ordyniak, Stefan Szeider, and Stanislav Živný.
Backdoors into heterogeneous classes of SAT and CSP. J. of Computer and System Sciences,
2015. To appear, a preliminary version is available from https://arxiv.org/abs/1509.05725.

29 Serge Gaspers and Stefan Szeider. Backdoors to satisfaction. In Hans L. Bodlaender,
Rod Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate Algorithmic
Revolution and Beyond – Essays Dedicated to Michael R. Fellows on the Occasion of His
60th Birthday, volume 7370 of Lecture Notes in Computer Science, pages 287–317. Springer
Verlag, 2012.

30 Serge Gaspers and Stefan Szeider. Strong backdoors to bounded treewidth SAT. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 489–498. IEEE Computer Society, 2013.

31 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Lance Fortnow and Salil P. Vadhan, editors,
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose,
CA, USA, 6-8 June 2011, pages 479–488. ACM, 2011.

32 Pavol Hell and Jaroslav Nesetril. Colouring, constraint satisfaction, and complexity. Com-
puter Science Review, 2(3):143–163, 2008.

33 Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross Willard.
Tractability and learnability arising from algebras with few subpowers. SIAM J. Comput.,
39(7):3023–3037, 2010.

34 Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. J. of
the ACM, 44(4):527–548, 1997.

35 Peter Jeavons, David A. Cohen, and Martin C. Cooper. Constraints, consistency and
closure. Artificial Intelligence, 101(1-2):251–265, 1998.

36 Peter Jeavons, Andrei A. Krokhin, and Stanislav Živný. The complexity of valued constraint
satisfaction. Bulletin of the European Association for Theoretical Computer Science, 113,
2014.

37 Phokion G. Kolaitis. Constraint satisfaction, databases, and logic. In IJCAI-03, Proceed-
ings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco,
Mexico, August 9-15, 2003, pages 1587–1595. Morgan Kaufmann, 2003.

Chapte r 05

http://dx.doi.org/10.1137/1.9781611974331.ch114
https://arxiv.org/abs/1610.03298
https://arxiv.org/abs/1610.03298


156 Backdoor Sets for CSP

38 Phokion G. Kolaitis and Moshe Y. Vardi. A logical approach to constraint satisfaction. In
Finite model theory and its applications, Texts Theoret. Comput. Sci. EATCS Ser., pages
339–370. Springer Verlag, 2007.

39 Vladimir Kolmogorov and Stanislav Živný. The complexity of conservative valued CSPs.
J. of the ACM, 60(2):Art. 10, 38, 2013.

40 Marcin Kozik, Andrei Krokhin, Matt Valeriote, and Ross Willard. Characterizations of
several Maltsev Conditions. Algebra Universalis, 73(3-4):205–224, 2015.

41 Martin Kronegger, Sebastian Ordyniak, and Andreas Pfandler. Backdoors to planning.
In Carla E. Brodley and Peter Stone, editors, Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, July 27-31, 2014, Québec City, Québec, Canada.,
pages 2300–2307. AAAI Press, 2014.

42 Martin Kronegger, Sebastian Ordyniak, and Andreas Pfandler. Variable-deletion backdoors
to planning. In Blai Bonet and Sven Koenig, editors, Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA.,
pages 3305–3312. AAAI Press, 2015.

43 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Algo-
rithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.

44 Daniel Lokshtanov and M. S. Ramanujan. Parameterized tractability of multiway cut with
parity constraints. In ICALP 2012, Automata, languages, and programming. Part I, volume
7391 of Lecture Notes in Computer Science, pages 750–761. Springer Verlag, 2012.

45 Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–768,
2010.

46 Arne Meier, Sebastian Ordyniak, M. S. Ramanujan, and Irena Schindler. Backdoors for
linear temporal logic. In 11th International Symposium on Parameterized and Exact Com-
putation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 23:1–23:17. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, 2016. doi:10.4230/LIPIcs.IPEC.2016.23.

47 Ugo Montanari. Networks of constraints: fundamental properties and applications to pic-
ture processing. Information Sciences, 7:95–132, 1974.

48 Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Detecting backdoor sets with
respect to Horn and binary clauses. In Proceedings of SAT 2004 (Seventh International
Conference on Theory and Applications of Satisfiability Testing, 10–13 May, 2004, Vancou-
ver, BC, Canada), pages 96–103, 2004.

49 Andreas Pfandler, Stefan Rümmele, and Stefan Szeider. Backdoors to abduction. In Pro-
ceedings of IJCAI 2013, the 23th International Joint Conference on Artificial Intelligence,
August 3-9, 2013, Beijing, China, 2013.

50 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper.
Res. Lett., 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

51 Marko Samer and Stefan Szeider. Backdoor sets of quantified Boolean formulas. Journal of
Automated Reasoning, 42(1):77–97, 2009. URL: https://www.ac.tuwien.ac.at/files/
pub/SamerSzeider09a.pdf.

52 Thomas J. Schaefer. The complexity of satisfiability problems. In Conference Record of the
Tenth Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978), pages
216–226. ACM, 1978.

53 Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. In Symposium
on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
695–704. ACM, 2013.

54 Johan Thapper and Stanislav Živný. Necessary conditions for tractability of valued CSPs.
SIAM J. Discrete Math., 29(4):2361–2384, 2015.

http://dx.doi.org/10.1145/2566616
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.23
http://dx.doi.org/10.1016/j.orl.2003.10.009
https://www.ac.tuwien.ac.at/files/pub/SamerSzeider09a.pdf
https://www.ac.tuwien.ac.at/files/pub/SamerSzeider09a.pdf


S. Gaspers, S. Ordyniak, and S. Szeider 157

55 Ryan Williams, Carla Gomes, and Bart Selman. Backdoors to typical case complexity. In
Georg Gottlob and Toby Walsh, editors, Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, IJCAI 2003, pages 1173–1178. Morgan Kaufmann,
2003.

56 Stanislav Živný. The complexity of valued constraint satisfaction problems. Cognitive
Technologies. Springer Verlag, 2012.

Chapte r 05





On the Complexity of Holant Problems

Heng Guo1 and Pinyan Lu2

1 School of Mathematical Sciences, Queen Mary University of London,
London, UK
h.guo@qmul.ac.uk

2 Institute for Theoretical Computer Science, School of Information
Management and Engineering, Shanghai University of Finance and Economics,
Shanghai, China
lu.pinyan@mail.shufe.edu.cn

Abstract
In this article we survey recent developments on the complexity of Holant problems. We discuss
three different aspects of Holant problems: the decision version, exact counting, and approximate
counting.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics.

Keywords and phrases Computational complexity, Counting complexity, Dichotomy theorems,
Approximate counting, Holant problems

Digital Object Identifier 10.4230/DFU.Vol7.15301.159

1 Introduction

Ladner’s theorem [53] states that if P 6= NP then there is an infinite hierarchy of intermediate
problems that are not polynomial time interreducible. For certain restrictions of these classes,
however, dichotomy theorems can be achieved. For NP a dichotomy theorem would state
that any problem in the restricted subclass of NP is either in P or NP-complete (or both, in
the eventuality that NP equals P.)

The restrictions for which dichotomy theorems are known can be framed in terms of local
constraints, most importantly, Constraint Satisfaction Problems (CSP) [58, 28, 4, 5, 6, 33,
38, 27, 37], and Graph Homomorphism Problems [34, 42, 8]. Explicit dichotomy results,
where available, manifest a total understanding of the class of computation in question,
within polynomial time reduction, and modulo the collapse of the class.

In this article we survey dichotomies in a framework for characterizing local properties
that is more general than those mentioned in the previous paragraph, namely the so-called
Holant framework [18, 19]. A particular problem in this framework is characterized by a set
of signatures as defined in the theory of Holographic Algorithms [65, 64]. The CSP framework
can be viewed as a special case of the Holant framework in which equality relations of any
arity are always assumed to be available in addition to the stated constraints. The extension
from CSP to Holant problems enables us to express certain important problems such as graph
matchings, which escape CSP [40] but are expressible in the Holant framework. Moreover,
for the same constrain language, Holant problems contain potentially more structure than
CSP. Indeed, in the Holant framework, new tractable cases emerge, the most notable among
which is holographic algorithms [65].

© Heng Guo and Pinyan Lu;
licensed under Creative Commons License BY

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný; pp. 159–177

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol7.15301.159
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3


160 On the Complexity of Holant Problems

The graph matching problem plays an important role in the studies of complexity theory,
leading to many exciting developments. Here is an (incomplete) list of related complexity
and algorithmic results:

There is a polynomial time algorithm to decide if a given graph has a perfect matching or
not. This is the remarkable blossom algorithm by Edmonds [35]. In fact, in that paper,
Edmonds proposed the complexity class P as the class of tractable problems.
Counting perfect matchings is #P-Complete. This is proved by Valiant [60], right after
he defined the class #P [61]. This problem is interesting since it shows that counting
version may be much harder than the decision version for the same problem.
Counting Perfect Matchings for planar graph is polynomial time solvable. This is the
famous FKT algorithm [48, 59, 49]. It also serves as the computational primitive for
Holographic algorithms [65].
There is a polynomial time algorithm to compute the parity of the number of (perfect)
matchings. The algorithm utilizes the fact that the value of permanent and determinate
is the same modular 2. Thus matching problems have an interesting complexity transition
from P and ⊕P to #P.
There is a fully polynomial-time randomized approximation scheme (FPRAS) for approx-
imately counting matchings. This is one of the first canonical examples of approximate
counting [45]. The known algorithm is randomized. Deterministic algorithm is known for
bounded degree graphs but open for general graphs [1].
There is a FPRAS for approximately counting perfect matchings for bipartite graphs. The
same algorithm can be used to approximate the permanent of nonnegative matrixes [47].
However it is a long-standing open question to generalize this algorithm to arbitrary
graphs (or to show the impossibility for such an algorithm to exist).

From this list, we can see that the graph matching problem often sits right at the boundary
between tractability and intractability. In order to understand the boundary of polynomial-
time computation through the lens of dichotomy theorems, it is intrinsically important to
include matching problems into consideration. Hence the natural framework to express
matching problems, namely Holant problems, are more desirable (and more challenging at
the same time) to understand than the conventional CSP framework. In this survey, we
summarize results for both decision version and counting version of Holant problems with a
focus on counting problems, since there is a lot of great progress in the last several years.

The Holant framework is strongly influenced by the development of holographic algorithms
and holographic reductions [65, 64, 16, 18]. Indeed, holographic reductions are developed and
applied as one of the primary techniques, which has not been used in the study of counting
CSP (#CSP) previously. One advantage of the Holant framework is its flexibility. The
conventional #CSP can be viewed as a special sub-framework of Holant by assuming that all
equality functions are freely available. It is natural to assume other freely available classes
of functions, such as the set of unary functions. When all unary functions are present, the
framework becomes similar to the “conservative” case of CSP. We emphasize that the Holant
framework is more flexible as a priori it assumes less freely available functions than the CSP.

In this survey, we put our attention mainly on Holant problems that cannot be expressed
in the CSP framework. We will assume some familiarity to CSP as well as basic and classical
dichotomy theorems for the CSP framework. Hence we can focus on new and interesting
phenomena which are unique for the Holant framework.



H. Guo and P. Lu 161

Organization of the Survey
In Section 2, we formally define the framework of Holant Problems and some other basic
notations. Section 3 summarizes some results for the decision version of Holant problems.
Section 4 is the main section. We carefully discuss complexity dichotomies for the (exact)
counting version of the Holant framework. Section 5 surveys some approximate counting
results.

2 Definitions and Background

A signature grid Ω = (G,F , π) is a tuple, where G = (V,E) is a graph, F is a set of functions,
and π is a mapping from the vertex set V to F . A function f ∈ F with arity k is a mapping
[q]k → C, and the mapping π satisfies that the arity of π(v) (which is a function f ∈ F) is
the same as the degree of v for any v ∈ V . Here we may consider any function with the
range of a ring rather than just C, but we choose C in this survey for clarity. Let fv := π(v)
be the function on v. An assignment σ of edges is a mapping E → [q]. The weight of σ
is the evaluation

∏
v∈V fv(σ |E(v)), where E(v) denotes the set of incident edges of v. The

(counting version of) Holant problem on the instance Ω is to compute the sum of weights of
all assignments; namely,

HolantΩ =
∑
σ

∏
v∈V

fv(σ |E(v)). (1)

We also write Holant(Ω;F) when we want to emphasize the function set F .
The term Holant was first coined by Valiant in [65] to denote an exponential sum of the

above form. Cai, Xia and Lu first formally introduced this framework of counting problems
in [18, 19]. We can view each function fv as a truth table, and then we can represent it by a
vector in Cqd(v) , or a tensor in (Cq)⊗d(v). The vector or the tensor is called the signature
of a function. When we say “function”, we put a slight emphasis on that it is a mapping.
When we say “signature”, we put a slight emphasis on that it is ready to go through linear
transformations. However most of the time in this survey, we use the two terms “function”
and “signature” interchangeably without special attention.

A Holant problem is parameterized by a set of functions.

I Definition 1. Given a set of functions F , we define a counting problem Holant(F):
Input: A signature grid Ω = (G,F , π);
Output: HolantΩ.

We will use Pl-Holant(F) to denote the problem where the input graph is planar.
The main goal here is to characterize what kind of function set F makes the problem

Holant(F) tractable (or hard).
The main focus of this survey is for functions over the Boolean domain {0, 1}, which

we call Boolean functions. We use the following notations to denote some special functions.
Let =k denote the equality function of arity k. Let ∆s denote the constant unary function
which gives value 1 on inputs s ∈ [q], and 0 on all other inputs. Let ExactOnek denote the
function that is one if the input has Hamming weight 1 and zero otherwise. Let EO be the
set of ExactOnek functions for all integers k. Then Holant(EO) is the same as the problem
of counting perfect matchings.

A function is symmetric iff its function value is preserved under any permutation of
its inputs. A symmetric function f on Boolean variables can be expressed by a compact
signature [f0, f1, . . . , fk], where fi is the value of f on inputs of Hamming weight i. For the

Chapte r 06



162 On the Complexity of Holant Problems

Boolean domain [2] = {0, 1}, =k function has the signature [1, 0, . . . , 0, 1] with k + 1 entries
and ∆0 has [1, 0]. Moreover, ExactOnek has signature [0, 1, 0, . . . , 0] of k + 1 entries.

Multiplying a signature f ∈ F by a scaler c 6= 0 will not change the complexity of
Holant(F). So we always view f and cf as the same signature. In other words, we consider
the projective space of vectors or tensors.

Another important property of signatures is degeneracy.

I Definition 2. A signature is called degenerate iff it can be decomposed into a tensor
product of unary signatures.

In particular, a symmetric signature over a Boolean domain is degenerate iff it can be
expressed as λ[x, y]⊗k.

We use Holant (F | G) to denote the Holant problem over signature grids with a bipartite
graph H = (U, V,E), where each vertex in U or V is assigned a signature in F or G,
respectively. Signatures in F are considered as row vectors (or covariant tensors); signatures
in G are considered as column vectors (or contravariant tensors) (see, for example [30]).
In this setting we sometimes write the Holant sum as Holant(Ω;F | G) for input Ω. Let
Pl-Holant (F | G) denote the Holant problem over signature grids with a planar bipartite
graph.

2.1 Holographic Reductions
One key technique for Holant problems is holographic reductions. To introduce the idea, it is
convenient to consider bipartite graphs. For a general graph, we can always transform it into
a bipartite graph while preserving the Holant value as follows. For each edge in the graph,
we replace it by a path of length two. (This operation is called the 2-stretch of the graph and
yields the edge-vertex incidence graph.) Each new vertex is assigned the binary Equality
signature (=2) = [1, 0, 1]. Recall that Holant (F | G) denotes the Holant problem over
signature grids with a bipartite graph H = (U, V,E), where each vertex in U or V is assigned
a signature in F or G, respectively. Hence we have that Holant(F) ≡T Holant (=2| F).

For a 2-by-2 matrix T and a signature set F , define TF = {g | ∃f ∈ F of arity
n, g = T⊗nf}, and similarly for FT . Whenever we write T⊗nf or TF , we view the
signatures as column vectors; similarly for fT⊗n or FT as row vectors. In the special case
that T =

[ 1 1
1 −1

]
, we use F̂ to denote TF .

Let T be an invertible 2-by-2 matrix. The holographic transformation defined by T is
the following operation: given a signature grid Ω = (H,π) of Holant (F | G), for the same
bipartite graph H, we get a new grid Ω′ = (H,π′) of Holant

(
FT | T−1G

)
by replacing each

signature in F or G with the corresponding signature in FT or T−1G.

I Theorem 3 (Valiant’s Holant Theorem [65]). If T ∈ C2×2 is an invertible matrix, then we
have Holant(Ω;F | G) = Holant(Ω′;FT | T−1G).

Therefore, an invertible holographic transformation does not change the complexity of the
Holant problem in the bipartite setting. Furthermore, there is a special kind of holographic
transformation, the orthogonal transformation, that preserves the binary equality and thus
can be used freely in the standard setting.

I Theorem 4 (Theorem 2.6 in [20]). If T ∈ O2(C) is an orthogonal matrix (i.e. TT T = I2),
then Holant(Ω;F) = Holant(Ω′;TF).

We frequently apply a holographic transformation defined by the matrix Z = 1√
2

[ 1 1
i −i

]
(or sometimes without the nonzero factor of 1√

2 since this does not affect the complexity). This



H. Guo and P. Lu 163

matrix has the property that the binary Equality signature (=2) = [1, 0, 1] is transformed
to [1, 0, 1]Z⊗2 = [0, 1, 0] = (6=2), the binary Disequality signature.

By Theorem 3, we have that

Holant(F) ≡ Holant
(
[1, 0, 1]T⊗2 | T−1F

)
Pl-Holant(F) ≡ Pl-Holant

(
[1, 0, 1]T⊗2 | T−1F

)
,

where T ∈ GL2(C) is nonsingular. This leads to the notion of C-transformable.

I Definition 5. Let F and C be two sets of signatures. We say F is C-transformable if there
exists a T ∈ GL2(C) such that [1, 0, 1]T⊗2 ∈ C and F ⊆ TC.

The following lemma is immediate.

I Lemma 6. If F is C-transformable, then we have the following reductions.

Holant(F) ≤T Holant(C);
Pl-Holant(F) ≤T Pl-Holant(C).

Clearly, if Holant(C) or Pl-Holant(C) is tractable, then Holant(F) or Pl-Holant(F) is tractable
for any C-transformable set F .

2.2 Counting Constraint Satisfaction Problems
An instance of counting constraint satisfaction problems (#CSP(F)) has the following
bipartite view. We have a set of vertices standing for variables and another set for functions
(or constraints). Connect a variable vertex to a constraint vertex if the variable appears in
the constraint. This bipartite graph is also known as the constraint graph. Moreover, each
variable can be viewed as an Equality function, as it forces the same value for all adjacent
edges. Under this view, we see that

#CSP(F) ≡T Holant (EQ | F) ,

where EQ = {=1,=2,=3, . . . } is the set of Equality signatures of all arities.
The relationship between #CSP and Holant problems is the following:

#CSP(F) ≡T Holant(EQ ∪ F);
Pl-#CSP(F) ≡T Pl-Holant(EQ ∪ F).

Reductions from left to right are trivial. For the other direction, we take a signature grid
Ω for the problem on the right and create a bipartite signature grid Ω′ for the problem on
the left such that both signature grids have the same Holant value. We simply create the
equivalent bipartite grid Ω′′ of Ω by replace each edge with a path of length 2 with =2 in
the middle point, as described earlier. Then we contract all Equality signatures that are
connected with each other, resulting in Ω′ where Equality signatures are on one side and
signatures from F on the other.

3 Decision Version

In the decision version, we focus on the functions taking values in {0, 1} and ask the question
if the Holant value (as defined in (1)) is zero or not, or equivalently ask if there exists an

Chapte r 06



164 On the Complexity of Holant Problems

assignment to satisfy all constraints or not. In this case, a function is a relation and it can
also be viewed as a subset of all the possible assignments.

For the decision version of the CSP framework, it is a long standing open question to
prove a dichotomy in general. But if we restrict to the Boolean domain, a classification is
given by Schaefer [58] as one of the first computational complexity dichotomy theorems. The
same dichotomy holds even if we restrict to the instances where each variable appears in at
most three constraints. On the other hand, the decision version of Holant is equivalent to
CSP where each variable appears at most twice. Its complexity classification, even for the
Boolean domain, is still wide open and very interesting. To see why this is challenging, note
that the perfect matching problem is a Holant problem defined by the ExactOnek function
(with signature [0, 1, 0 . . . , 0]). Deciding the existence of a perfect matching is polynomial
time solvable due to Edmonds’s remarkable blossom algorithm [36]. However Edmonds’s
algorithm is highly non-trivial. Indeed it is much more complicated than any of the tractable
cases in Schaefer’s dichotomy for the CSP framework, and utilizes a lot of special structures
intrinsic to the problem. It is hard to rule out the possibility of other similar tractable
problems. The following family of ∆-matroid relations turn out to be the main obstacle. Let
ei denote the unit vector which is 0 on all indices other than i, on which its entry is 1.

I Definition 7. Let M be a subset of {0, 1}d. It is called a ∆-matroid if for any pair of
vectors x, y ∈M that differ on some index i, either x⊕ ei ∈M , or there exists another index
j 6= i on which x and y also differ and x⊕ ei ⊕ ej ∈M .

We say a relation R (or a {0, 1} valued function f) is a ∆-matroid if the set of allowed
assignments of R (or the set of inputs x such that f(x) = 1) is a ∆-matroid.

It is easy to verify that the perfect matching function (ExactOnek function) is a ∆-
matroid according to the definition, but there are many more functions that are ∆-matroids.
In particular, it was shown that there are functions in this family which cannot be expressed
by composition of ExactOnek functions. Feder showed the following hardness result:
unless all relations in F are ∆-matroids, the decision Holant(F) has the same complexity as
CSP(F) [39]. Based on this hardness result, we have the following classification result.

I Theorem 8. All decision Holant(F) problems are divided into three classes according
to F :
1. Every function in F is a ∆-matroid;
2. If CSP(F) is tractable according to the dichotomy classification of Schaefer [58], then

Holant(F) is also tractable;
3. Otherwise, Holant(F)is NP-complete.

The only remaining open case is the complexity of ∆-matroid functions in the Holant
framework. A number of tractable classes of ∆-matroids have been identified [26, 39, 29, 41,
50], but it seems to be still quite challenging to settle the complexity for the whole class. A
recurring theme is the connection between ∆-matroids and matching problems. Here we
mention two known tractable classes of ∆-matroids.

For a symmetric relation [f0, f1, . . . , fk] where fi ∈ {0, 1}, the number of consecutive 0’s
between two 1’s is called a gap. For example, [0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0] have two gaps with
length 2 and 3 respectively, while the one 0 in the beginning and two 0’s at the end are not
viewed as gaps. It is not difficulty to verify that, a symmetric relation is a ∆-matroid if and
only if it has no gap with length larger than one. For all symmetric ∆-matroid relations, the
decision Holant problem is tractable [26].

I Theorem 9. If all the relations in F are symmetric and ∆-matroid, i.e. the largest gap of
any relation in F has length 1, then there is a polynomial time algorithm to decide Holant(F).



H. Guo and P. Lu 165

Another broad family of tractable functions is called even ∆-matroid relations, shown
recently by Kazda, Kolmogorov, and Rolínek [50]. A ∆-matroid relation M is called even if
all vectors in M have the same parity of their Hamming weights; that is, they all have even
Hamming weights or all have odd Hamming weights.

I Theorem 10. If F contains only even ∆-matroid relations, then decision Holant(F) can
be solved in polynomial time.

This tractability result for even ∆-matroid relations leads to a complete complexity
dichotomy of Boolean CSP on planar graphs (see [31, 50]).

4 Exact Counting

There has been a lot of progress in understanding the complexity of computing the Holant
sum exactly. In particular, we have a thorough understanding of Holant problems defined by
Boolean symmetric functions, even if the input is restricted to planar graphs and the weights
are complex.

The following theorem is a combination of [11, 9], the culminating results from a long
line of research [23, 19, 21, 51, 52, 15, 14, 13, 44]. We are interested in general input graphs
as well as planar graphs. The Holant framework was first proposed to systematically study
the power of Valiant’s holographic algorithms [65], which was designed to solve counting
problems in planar graphs. When inputs are planar graphs, the problem is denoted by
Pl-Holant(F).

I Theorem 11. Let F be a set of Boolean symmetric functions with complex weights.
Holant(F) either has a polynomial time algorithm, or is #P-hard to compute. This dichotomy
also holds for Pl-Holant(F) (but the tractable criterion is different).

In fact, we know more than merely that the dichotomy holds. (This is non-trivial due to
Ladner’s Theorem [53]) We have a complete explicit criteria for tractable sets of functions
in Theorem 11. In order to describe the criteria, we will first introduce some families of
functions that appear as tractable cases in the dichotomy theorem.

4.1 Tractable Families
We summarize several known sets of tractable Boolean functions with complex weights.
The first one is very simple. If all signatures are degenerate or binary, then the problem is
tractable.

For a binary signature, define its matrix as

Mf :=
[
f(00) f(01)
f(10) f(11)

]
. (2)

Connecting f to g via one edge gives another signature h with the matrix Mh = MfMg.

I Lemma 12. Let F be a set of complex weighted symmetric signatures in Boolean variables.
Then Holant(F) is computable in polynomial time if all non-degenerate signatures in F are
of arity at most 2.

Proof. We first replace degenerate signatures by a bunch of equivalent unary signatures.
Then any instance of Holant(F) can be decomposed into paths and cycles. The Holant is a
product of all paths and cycles.

Chapte r 06



166 On the Complexity of Holant Problems

For a path, we remove the two endpoints, leaving a binary signature f composed by a
series of binary signatures. Compute the signature matrix Mf of f by multiplying all binary
signatures along the path. Then the Holant is vMfu

T, where v and u are the two unary
signatures at endpoints.

For a cycle, we arbitrarily break an edge getting a path with two dangling edges. Similar
to the above case, we multiply matrices of all binary signatures along this path, getting M .
The trace of M is the Holant. J

We further note that for a binary signature f and T ∈ C2×2, let g = fT⊗2. Then

Mg = TMfT
T. (3)

This can be seen by viewing T as a binary, and then treating g as connecting T , f , and T T

sequentially.

4.1.1 Affine Signatures
I Definition 13 (Definition 3.1 in [25]). A k-ary function f(x1, . . . , xk) is affine if it has the
form

λ · χAx=0 · i
∑n

j=1
〈vj ,x〉,

where λ ∈ C, x = (x1, x2, . . . , xk, 1)T, A is a matrix over F2, vj is a vector over F2, and χ is a
0-1 indicator function such that χAx=0 is 1 if and only if Ax = 0. Note that the dot product
〈vj , x〉 is calculated over F2, while the summation

∑n
j=1 on the exponent of i =

√
−1 is

evaluated as a sum mod 4 of 0-1 terms. We use A to denote the set of all affine functions.

The matrix A defines an affine space which is the support of the signature f (and hence
the name). Notice that there is no restriction on the number of rows in the matrix A. It is
permissible that A is the zero matrix so that χAx=0 = 1 holds for all x. An equivalent way
to express the exponent of i is as a quadratic polynomial where all cross terms have an even
coefficient (cf. [7]).

It is known that the set of non-degenerate symmetric signatures in A is precisely the
nonzero signatures (λ 6= 0) in F1 ∪ F2 ∪ F3 with arity at least 2, where F1, F2, and F3 are
three families of signatures defined as

F1 =
{
λ
(
[1, 0]⊗k + ir[0, 1]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
,

F2 =
{
λ
(
[1, 1]⊗k + ir[1,−1]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
, (4)

F3 =
{
λ
(
[1, i]⊗k + ir[1,−i]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
.

We explicitly list these signatures up to an arbitrary constant multiple from C, see Table 1.
The tractability of A is first shown in [25]. It was later generalized to arbitrary domain

size using Gauss sums [7]. Together with Lemma 6, we have the following.

I Lemma 14. Let F be any set of symmetric, complex-valued signatures in Boolean variables.
If F is A-transformable, then Holant(F) is computable in polynomial time.

4.1.2 Product-Type Signatures
I Definition 15 (Definition 3.3 in [25]). A function is of product type if it can be expressed
as a product of unary functions, binary equality functions ([1, 0, 1]), and binary disequality
functions ([0, 1, 0]). We use P to denote the set of product-type functions.



H. Guo and P. Lu 167

Table 1 List of all non-degenerate affine signatures.

1. [1, 0, . . . , 0,±1]; (F1, r = 0, 2)
2. [1, 0, . . . , 0,±i]; (F1, r = 1, 3)
3. [1, 0, 1, 0, . . . , 0 or 1]; (F2, r = 0)
4. [1,−i, 1,−i, . . . , (−i) or 1]; (F2, r = 1)
5. [0, 1, 0, 1, . . . , 0 or 1]; (F2, r = 2)
6. [1, i, 1, i, . . . , i or 1]; (F2, r = 3)
7. [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)]; (F3, r = 0)
8. [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)]; (F3, r = 1)
9. [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)]; (F3, r = 2)
10. [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)]. (F3, r = 3)

An alternate definition for P, implicit in [22], is the tensor closure of signatures with
support on two complementary bit vectors. It is easily shown (cf. Lemma A.1 in the
full version of [44]) that if f is a symmetric signature in P, then f is degenerate, binary
Disequality 6=2, or [a, 0, . . . , 0, b] for some a, b ∈ C.

The tractability of P is due to a straightforward propagation algorithm (see, for example
[25]). Together with Lemma 6, we have the following.

I Lemma 16. Let F be any set of symmetric, complex-valued signatures in Boolean variables.
If F is P-transformable, then Holant(F) is computable in polynomial time.

4.1.3 Vanishing Signatures
Vanishing signatures define Holant problems where the Holant sum is always 0.

I Definition 17. A set of signatures F is called vanishing if Holant(Ω;F) = 0 for every
signature grid Ω. A signature f is called vanishing if the singleton set {f} is vanishing.

A useful way to understand vanishing signatures is via a low rank tensor decomposition.
To state these decompositions, we use the following definition.

I Definition 18. Let Sn be the symmetric group of degree n. Then for positive integers t
and n with t ≤ n and unary signatures v, v1, . . . , vn−t, we define

Symt
n(v; v1, . . . , vn−t) =

∑
π∈Sn

n⊗
k=1

uπ(k),

where the ordered sequence (u1, u2, . . . , un) = (v, . . . , v︸ ︷︷ ︸
t copies

, v1, . . . , vn−t).

With this notation we can define the vanishing degree.

I Definition 19. A nonzero symmetric signature f of arity n has positive vanishing degree
k ≥ 1, denoted by vd+(f) = k, if k ≤ n is the largest positive integer such that there exists
n− k unary signatures v1, . . . , vn−k such that

f = Symk
n([1, i]; v1, . . . , vn−k).

If f cannot be expressed as such a symmetrization form, we define vd+(f) = 0. If f is the
all zero signature, define vd+(f) = n+ 1.

We define negative vanishing degree vd− similarly, using −i instead of i.

Chapte r 06



168 On the Complexity of Holant Problems

It is possible that both vd+(f) and vd−(f) are nonzero. For example, vd+(=2) =
vd−(=2) = 1.

The following theorem completely characterizes symmetric vanishing signatures. It is
proved in [11]. For σ ∈ {+,−}, let Vσ := {f | 2 vdσ(f) > arity(f)}.

I Theorem 20. Let F be a set of symmetric signatures. Then F is vanishing if and only if
F ⊆ V+ or F ⊆ V−.

Obviously, vanishing signatures define tractable Holant problems. The algorithm is simple
– just output 0! However, vanishing signatures can be combined with other functions and
remain tractable. The following two lemma are shown in [11].

I Lemma 21. Let σ = + or −. Let F be a set of complex weighted symmetric signatures
in Boolean variables. Then Holant(F) is computable in polynomial time if F ⊆ Vσ ∪ {f |
vdσ(f) ≥ 1& arity(f) = 2}.

I Lemma 22. Let σ = + or −. Let F be a set of complex weighted symmetric signatures in
Boolean variables. Then Holant(F) is computable in polynomial time if any non-degenerate
signature f ∈ F satisfies that vdσ(f) ≥ arity(f)− 1.

Lemma 21 can be understood as putting vanishing signatures and certain kind of binary
signatures together remain tractable. Lemma 22 can be understood as highly vanishing
signatures (vdσ(f) ≥ arity(f)− 1) can be put together with all unary signatures and remain
tractable, since unary signatures automatically satisfy the condition vdσ(f) ≥ arity(f)−1 = 0.

4.1.4 Matchgate Signatures
Matchgates were introduced by Valiant [63, 62] to give polynomial-time algorithms for a
collection of counting problems over planar graphs. As the name suggests, problems express-
ible by matchgates can be reduced to computing a weighted sum of perfect matchings. The
latter problem is tractable over planar graphs by Kasteleyn’s algorithm [49]. Historically the
algorithm was first found by Temperley and Fisher for Z2 [59] and independently by Kasteleyn
[48]. It was later generalized to general planar graphs by Kastelyn [49]. Hence sometimes
it is also called the FKT algorithm. These counting problems are naturally expressed in
the Holant framework using matchgate signatures, denoted by M. Thus Pl-Holant(M) is
tractable.

Formally, recall that EO is the set of ExactOnek functions for all integers k. Let WEO
be the set of weighted ExactOnek functions for all k. Then M contains signatures that
can be realized as an WEO-gate (realizable by functions in the set WEO). Holographic
transformations extend the reach of the FKT algorithm even further by Lemma 6, as stated
below.

I Lemma 23. Let F be any set of symmetric, complex-valued signatures in Boolean variables.
If F is M-transformable, then Pl-Holant(F) is computable in polynomial time.

Matchgate signatures are characterized by the matchgate identities (for an up-to-date
treatment, see [10] for the identities and a self-contained proof). Any matchgate signature f
must satisfy the parity condition, which asserts that the support of f has to contain entries
of only even or odd Hamming weights, but not both. For symmetric matchgates, they have
0 for every other entry and form a geometric progression with the remaining entries. We
explicitly list all the symmetric signatures in M (see [10]).



H. Guo and P. Lu 169

I Proposition 24. Let f be a symmetric signature in M. Then there exists a, b ∈ C and
n ∈ N such that f takes one of the following forms:
1. [an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn] (of arity 2n ≥ 2);
2. [an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn, 0] (of arity 2n+ 1 ≥ 1);
3. [0, an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn] (of arity 2n+ 1 ≥ 1);
4. [0, an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn, 0] (of arity 2n+ 2 ≥ 2).
In the last three cases with n = 0, the signatures are [1, 0], [0, 1], and [0, 1, 0]. Any multiple
of these is also a matchgate signature.

Note that perfect matching signatures, [0, 1, 0, · · · , 0], and their reversal are special cases
when b = 0 or a = 0 in the last two cases.

Similar to vanishing signatures, signatures in M have low rank decompositions as well.

I Proposition 25. Let f be a symmetric signature in M of arity n. Then there exist
a, b, λ ∈ C such that f takes one of the following forms:

1. [a, b]⊗n + [a,−b]⊗n =
{

2[an, 0, an−2b2, 0, . . . , 0, bn] n is even,
2[an, 0, an−2b2, 0, . . . , 0, abn−1, 0] n is odd;

2. [a, b]⊗n − [a,−b]⊗n =
{

2[0, an−1b, 0, an−3b3, 0, . . . , 0, abn−1, 0] n is even,
2[0, an−1b, 0, an−3b3, 0, . . . , 0, bn] n is odd;

3. λ Symn−1
n ([1, 0]; [0, 1]) = [0, λ, 0, . . . , 0];

4. λ Symn−1
n ([0, 1]; [1, 0]) = [0, . . . , 0, λ, 0].

The understanding of matchgates was further developed in [17], which characterized,
for every symmetric signature, the set of holographic transformations under which the
transformed signature becomes a matchgate signature.

4.1.5 An Extra Planar Tractable Case
In [9], towards a complete planar dichotomy theorem, a new tractable case was found for
planar graphs.

Recall that EO is the set of functions ExactOnek for all arities k, and Z =
[ 1 1
i −i

]
. Let

EO′ be the set of inverses of ExactOnek for all arities k. Namely, f ∈ EO′ requires the input
to have hamming weight exactly (arity−1). Let WEQ denotes the set of weighted equality
functions. Moreover, let F∗ denote F with all degenerate signatures [a, b]⊗m replaced by
unary [a, b]. Then we have the following lemma [9].

I Lemma 26. Let F be a set of symmetric Boolean functions. If F ⊆ ZP ∪ Z(EO) or
F ⊆ ZP ∪ Z(EO′), and the greatest common divisor of the arities of the signatures in
F∗ ∩ Z(WEQ) is at least 5, then Holant(F) is tractable.

The algorithm of this special case is a recursive procedure to find edges that either have
to be a particular value, or do not have satisfying assignments. We can show that either
these edges show up in the graph, or the instance falls into one of the tractable cases above.
The existence of these edges (namely, when the instance is not solvable by previous cases) is
due to the degree rigidity of a planar graph. (For example, the average degree of a planar
graph cannot be more than 6.)

4.2 The Full Dichotomy
After introducing tractable families, we can finally state the dichotomy theorem in full detail.

Chapte r 06



170 On the Complexity of Holant Problems

I Theorem 27. Let F be any set of symmetric, complex-valued functions in Boolean variables.
Then Pl-Holant(F) is #P-hard unless F satisfies one of the following conditions:
1. All non-degenerate signatures in F are of arity at most 2;
2. F is A-transformable;
3. F is P-transformable;
4. F ⊆ Vσ ∪ {f | vdσ(f) ≥ 1& arity(f) = 2} for some σ ∈ {+,−};
5. Any non-degenerate signature f ∈ F satisfies arity(f)− vdσ(f) ≤ 1 for some σ ∈ {+,−}.
6. F is M-transformable;
7. F ⊆ ZP ∪ Z(EO) or F ⊆ ZP ∪ Z(EO′), and the greatest common divisor of the arities

of the signatures in F∗ ∩ Z(WEQ) is at least 5.
In each exceptional case, Pl-Holant(F) is computable in polynomial time. If F satisfies
conditions 1 to 5, then Holant(F) is computable in polynomial time without planarity;
otherwise Holant(F) is #P-hard.

4.3 Beyond Boolean and Symmetric Functions
In full generality, we would like to understand the complexity of Holant problems defined
by any set of functions, rather than just symmetric Boolean functions. However, the
understanding of those Holant problems is far from complete.

Still in the Boolean domain, the best dichotomy result we know of regarding asymmetric
functions is [22]. A crucial constraint for the result of [22] is that it requires unary functions
to be available freely. This corresponds to the “conservative” case in the study of CSP
problems. We use Holant∗(F) to denote these problems.

For asymmetric functions, we need to be careful to state the result. Let 〈F〉 of a set
F denote its tensor closure; namely, 〈F〉 is the minimum set containing F , closed under
tensor product. This closure exists, being the set of all functions obtained by taking a finite
sequence of tensor products from F .

Let T be the set of all unary and binary functions. Let E be the set of all functions
f such that f is zero except on two inputs (x1, . . . , xn) and (1− x1, . . . , 1− xn). In other
words, f ∈ E iff its support is contained in a pair of complementary points. We think of E as
a generalized form of equality functions. LetM be the set of all functions f such that f is
zero except on n+ 1 inputs whose Hamming weight is at most 1, where n is the arity of f .
We think ofM as a generalized form of matchings.

Recall that Z =
[ 1 1
i −i

]
. Let Z ′ =

[ 1 1
−i i

]
. Then we have the following theorem [22].

I Theorem 28. Let F be any set of complex valued functions in Boolean variables. The
problem Holant∗(F) is polynomial time computable, if (1) F ⊆ 〈T 〉, or (2) there exists an
orthogonal matrix H such that F ⊆ H, or (3) F ⊆ 〈ZE〉 or F ⊆ 〈Z ′E〉, or (4) F ⊆ 〈ZM〉
or F ⊆ 〈Z ′E〉. In all other cases, Holant∗(F) is #P-hard. The dichotomy is still true even
if the inputs are restricted to planar graphs.

Going beyond the Boolean domain, [24] gives a dichotomy theorem regarding Holant∗

problems defined by a single ternary symmetric function over a domain of size 3. The
statement is rather technical and we refer the interested readers to [24] for details.

For even larger domain sizes, we know the complexity of counting k-edge-colourings over
(planar) d-regular graphs for any pair of integers (k, d) [12]. Edge colourings are special cases
of Holant problems where the domain size is k and the constraint on the vertex requires that
all inputs are distinct. Following this path a dichotomy is known for Holant problems defined
by ternary functions and with certain high symmetry [12]. This symmetry requirement is
inspired by the All-Distinct constraint of edge colorings. For simplicity here we only



H. Guo and P. Lu 171

state the edge coloring result and refer the reader to [12] for the more technical dichotomy
theorem.

I Theorem 29. Counting k-edge-colourings is #P-hard over planar d-regular (multi-)graphs
if k ≥ d ≥ 3.

Note that if d ≤ 2 the problem is trivial, and if k < d there is no such colourings.

5 Approximate Counting

In this last section, we study the approximation version of counting problems. For any given
parameter ε > 0, the algorithm outputs a number Ẑ such that (1 − ε)Z ≤ Ẑ ≤ (1 + ε)Z,
where Z is the accurate Holant summation of the input instance. We also require that the
running time of the algorithm is bounded by poly(n, 1/ε), where n is the number of vertices of
the given graph. This is called a fully polynomial-time approximation scheme (FPTAS). The
randomized relaxation of FPTAS is called fully polynomial-time randomized approximation
scheme (FPRAS), which uses random bits in the algorithm and requires that the final output
is within the range [(1− ε)Z, (1 + ε)Z] with high probability.

Recall that we may view Holant problems as a CSP where each variable appears at most
twice. The CSP problem with a degree bound is not necessarily of the same computational
complexity as the problem without the degree bound even if the degree bound is larger
than 2. New and interesting tractable families show up. For degree bounds larger than 2, a
partial classification was known (see, for example [32]). On the other hand, the situation of
Holant (bounded degree 2) is wide open, and it seems that there are many more tractable
problems. Here we list a number of interesting ones.

Matching. There is an FPRAS for counting the number of matchings, even with weights [45].
Parity Function. A parity function is a symmetric function of form [a, b, a, b, · · · ]. If the

constraint in each vertex is a parity function, there is an FPRAS for computing the
partition function for any weighted graphs [46]. By transforming to this Holant problem
(which was called the “subgraph world” problem in [46]) of parity functions, an FPRAS
for ferromenaginic Ising model was given by Jerrum and Sinclair [46]

SAT. For SAT instances where each variable appears in at most two clauses, there is an
FPRAS to count the number of satisfying assignments [3].

Not-All-Equal. Let NotAllEqualk be the symmetric function that is 0 if the input has
Hamming weights 0 or k, and 1 otherwise; namely its signature is [0, 1, 1, · · · , 1, 0] with
k+ 1 entries. Let NAE be the set of NotAllEqualk functions for all integers k. There
is an FPRAS for Holant(NAE) [57].

5.1 Winding
One powerful approach to design approximate counting algorithms is Markov Chain Monte
Carlo (MCMC). The key step is to prove that the Markov chain is rapidly mixing, namely, it
is very close to the stationary distribution after polynomial number of steps. Canonical paths
argument, introduced by [45, 46] is one of the two main tools (the other one is coupling) to
prove rapid mixing of the Markov chain. To make use of canonical paths, one needs to design
paths between each pair of states for the Markov chain and prove that the overall congestion
at each transition of the Markov chain is low. However, it is typically a very difficult task to
come up with a low congestion routing, especially because there are usually exponentially
many states corresponding to the Markov chain.

Chapte r 06



172 On the Complexity of Holant Problems

There are some successful examples such as the matching problem mentioned above. The
symmetric difference of two matchings of a graph is a disjoint union of paths and cycles. Then,
the natural and successful canonical paths for matchings is “(un-)winding” the edges one by
one following an arbitrary order of these paths and cycles. Another important successful
example is the “subgraph world” problem (or the parity function problem, as described in
the last section) transformed from ferromagnetic Ising model [46]. For this problem, the
symmetric difference of two configurations can be any graphs. The key observation is that
we may utilize the path-cycle decomposition. Jerrum and Sinclair’s canonical paths simply
do an arbitrary path-cycle decomposition and unwind edges following these paths and cycles.
Since the constraint in each vertex for that problem is simply the parity function, one can
prove that these canonical paths indeed have low congestion.

In an unpublished manuscript [57], McQuillan proposed a beautiful generalization of this
path-cycle decomposition idea called winding. The idea was further developed in [43]. Here
is the definition of windable functions.

I Definition 30. For any finite set J and any configuration x ∈ {0, 1}J , define Mx to
be the set of partitions of {i | xi = 1} into pairs and at most one singleton. A function
f : {0, 1}J → R+ is windable if there exist values B(x, y,M) ≥ 0 for all x, y ∈ {0, 1}J and
all M ∈Mx⊕y satisfying:
1. f(x)f(y) =

∑
M∈Mx⊕y

B(x, y,M) for all x, y ∈ {0, 1}J , and
2. B(x, y,M) = B(x⊕ S, y ⊕ S,M) for all x, y ∈ {0, 1}J and all S ∈M ∈Mx⊕y.
Here x⊕ S denotes the vector obtained by changing xi to 1− xi for the one or two elements
i in S.1

To get a rapidly mixing Markov chain, we assign two values to the two half-edges of each
edge. We call it consistent if the two values are the same. A normal edge assignment is
therefore an assignment of half-edges without inconsistency. We call these assignments perfect.
A near-perfect assignment is one where there are two inconsistencies along edges. Windable
functions admit a rapidly mixing Markov chain, by moving between perfect assignments and
near-perfect assignments. Due to the design of the algorithm, the number of inconsistencies
cannot be one.

However since we enlarge the state space slightly, merely a rapidly mixing Markov chain
is not sufficient to guarantee a polynomial time algorithm. We also need to be able to hit
perfect assignments with at least inverse polynomial probability. This can be stated as
a bound between the Holant sum of all perfect assignments and that of all near-perfect
assignments. More precisely, recall (1). The weight of an assignment can be naturally extend
to near-perfect assignments, and their Holant sum is to simply add all weights up. Denote by
Z0 the Holant of all perfect assignments, and Z2 that of all near-perfect assignments. Then
we need to ensure that Z2/Z0 is bounded above by a polynomial for the MCMC algorithm
to run in polynomial time.

I Theorem 31. There exists an FPRAS to compute the partition function of Holant(F) if
all the functions in F are windable and Z2/Z0 is bounded above by a polynomial of the input
size.

One can verify that the matching constraint [45] and the parity function [46] are indeed
windable. Thus both of these two FPRASes can be viewed as special cases of Theorem 31.

1 This definition is taken from [43], which simplifies the original definition from [57].



H. Guo and P. Lu 173

However for a general function, it is still quite difficulty to tell whether it is windable or
not. A clear characterization was given for all symmetric functions in [43] by solving a set
of linear equations. With this powerful approach and characterization in hand, one can
design a number of new FPRAS for approximate counting by simply verifying that the local
constraint functions are windable. One such example is counting b-matchings, which is a
natural generalization of matchings. A subset of edges for a graph is called a b-matching if
every vertex is incident to at most b edges in the set. Hence 1-matching is the conventional
definition of matching for a graph. Huang, Lu, and Zhang [43] showed that there exists an
FPRAS to count b-matchings when b ≤ 7 for any graphs.

Another problem one can resolve using this approach is a generalization of the edge cover
problem. A subset of edges for a graph is called an edge cover if every vertex is incident to
at least one edge in the set. Previously, MCMC based approximation algorithm for counting
edge covers was only known for 3-regular graphs [2] by Bezáková and Rummler. In fact,
they also used canonical paths to get rapid mixing and used path-cycle decompositions to
construct canonical paths. However, due to the lack of a systematic approach, Bezáková and
Rummler stopped at the special case of 3-regular graphs. Using the winding approach and
the systematic characterization of windable functions, one can show that there exist a convex
combination of path-cycle decompositions which works for general graphs [43]. Moreover,
one can generalize it to b-edge-covers by requiring that every vertex is incident to at least
b edges in the set. This approach yields an FPRAS to count b-edge-covers for b ≤ 2 [43].
We note that FPTAS based on the correlation decay technique for counting edge covers for
general graphs was known [54, 55]. However, it seems that the correlation decay approach
have intrinsic difficulties for 2-edge-covers.

It is still open whether there exists an FPRAS for counting b-matchings for b > 7 or
counting b-edge-covers for b > 2.

5.2 Fibonacci Functions
Correlation decay is another idea based on which one may design approximate counting
algorithms. This approach has the advantage of yielding deterministic algorithms, namely
FPTAS. Here we present FPTAS for a family of functions called Fibonacci Functions.

Fibonacci Functions by themselves are tractable, as they are P-transformable (see
Lemma 16). We extend the framework a bit by allowing edge weights. An edge-weighted
Holant instance Ω = (G, {fv|v ∈ V }, {λe|e ∈ E}) is a tuple defined as follows. G = (V,E)
is a graph. fv is a function with arity dv: {0, 1}dv → R+, where dv is the degree of v
and R+ denotes non-negative real numbers. Edge weight λe is a mapping {0, 1} → R+. A
configuration σ of edges is a mapping E → {0, 1} and has a weight

wΩ(σ) =
∏
e∈E

λe(σ(e))
∏
v∈V

fv(σ |E(v)),

where E(v) denotes the set of incident edges of v. The counting problem on the instance Ω
is to compute the partition function (or the Holant sum):

Z(Ω) =
∑
σ

(∏
e∈E

λe(σ(e))
∏
v∈V

fv(σ |E(v))
)
.

We use Holant(F ,Λ) to denote the problem of computing the above quantity, where all
functions are from F and all edge weights are from the set Λ. This version and its complexity
are slightly different from the decision version and exactly counting as described in the
previous two sections.

Chapte r 06



174 On the Complexity of Holant Problems

A Fibonacci function f is a symmetric function [f0, f1, . . . , fk], satisfying that fi =
cfi−1 + fi−2 for some constant c. For example, the parity function [a, b, a, b, . . .] is a special
Fibonacci function with c = 0. If there is no edge weights (or equivalently all the weights are
equal to 1) and all the node functions are Fibonacci functions with the same parameter c,
we have a polynomial time algorithm to compute the partition function exactly [18]. If we
allow edges to have non-trivial weights or different functions to have different parameters
in Fibonacci gates, then the exact counting problem becomes #P-hard [19, 11]. Thus, it is
interesting to study the problem in the approximation setting. Indeed, these edge-weighted
Holant problems have connections with ferromagnetic 2-spin systems. For more details, see
[56].

We use Fp,qc to denote a subfamily of Fc such that fi+1 ≥ pfi and fi+1 ≤ qfi for all
i = 0, 1, · · · , d − 1. When the upper bound q is not given, we simply write Fpc . We use
Fp,qc1,c2

to denote
⋃
c1≤c≤c2

Fp,qc . We use Λλ1,λ2 to denote the set of edge weights λe such that
λ1 ≤ λe ≤ λ2.

Lu, Wang and Zhang [56] give the following algorithms.

I Theorem 32. For any c > 0 and p > 0, there exists λ1(p, c) < 1 and λ2(p, c) > 1 such
that there is an FPTAS for Holant(Fpc ,Λλ1(p,c),λ2(p,c)).

I Theorem 33. Let p > 0. Then there is an FPTAS for Holant(Fp1.17,+∞,Λ1,+∞).

References
1 Mohsen Bayati, David Gamarnik, Dimitriy Katz, Chandra Nair, and Prasad Tetali. Simple

deterministic approximation algorithms for counting matchings. In Proceedings of STOC,
pages 122–127, 2007.

2 Ivona Bezáková and William A Rummler. Sampling edge covers in 3-regular graphs. In
Mathematical Foundations of Computer Science 2009, pages 137–148. Springer, 2009.

3 Russ Bubley and Martin Dyer. Graph orientations with no sink and an approximation for
a hard case of no. sat. Technical report, Association for Computing Machinery, New York,
NY (United States), 1997.

4 Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-
element set. J. ACM, 53(1):66–120, 2006. doi:10.1145/1120582.1120584.

5 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. In Luca
Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors, ICALP (1), volume 5125 of Lecture Notes in Computer
Science, pages 646–661. Springer, 2008. doi:10.1007/978-3-540-70575-8_53.

6 Andrei A. Bulatov and Víctor Dalmau. Towards a dichotomy theorem for the count-
ing constraint satisfaction problem. In FOCS, pages 562–571. IEEE Computer Soci-
ety, 2003. URL: http://csdl.computer.org/comp/proceedings/focs/2003/2040/00/
20400562abs.htm.

7 Jin-Yi Cai, Xi Chen, Richard J. Lipton, and Pinyan Lu. On tractable exponential sums.
In FAW, pages 148–159. Springer Berlin Heidelberg, 2010.

8 Jin-Yi Cai, Xi Chen, and Pinyan Lu. Graph homomorphisms with complex values: A di-
chotomy theorem. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer
auf der Heide, and Paul G. Spirakis, editors, ICALP (1), volume 6198 of Lecture Notes in
Computer Science, pages 275–286. Springer, 2010. doi:10.1007/978-3-642-14165-2_24.

9 Jin-Yi Cai, Zhiguo Fu, Heng Guo, and Tyson Williams. A Holant dichotomy: Is the FKT
algorithm universal? In FOCS, pages 249–260, 2015.

10 Jin-Yi Cai and Aaron Gorenstein. Matchgates revisited. Theory Comput., 10(7):167–197,
2014.

http://dx.doi.org/10.1145/1120582.1120584
http://dx.doi.org/10.1007/978-3-540-70575-8_53
http://csdl.computer.org/comp/proceedings/focs/2003/2040/00/20400562abs.htm
http://csdl.computer.org/comp/proceedings/focs/2003/2040/00/20400562abs.htm
http://dx.doi.org/10.1007/978-3-642-14165-2_24


H. Guo and P. Lu 175

11 Jin-Yi Cai, Heng Guo, and Tyson Williams. A complete dichotomy rises from the capture
of vanishing signatures. In STOC, pages 249–260, 2013.

12 Jin-Yi Cai, Heng Guo, and Tyson Williams. The complexity of counting edge colorings and
a dichotomy for some higher domain Holant problems. In FOCS, pages 601–610, 2014.

13 Jin-Yi Cai, Sangxia Huang, and Pinyan Lu. From Holant to #CSP and back: Dichotomy
for Holantc problems. Algorithmica, 64(3):511–533, 2012.

14 Jin-Yi Cai and Michael Kowalczyk. Spin systems on k-regular graphs with complex edge
functions. Theor. Comput. Sci., 461:2–16, 2012.

15 Jin-Yi Cai and Michael Kowalczyk. Partition functions on k-regular graphs with {0, 1}-
vertex assignments and real edge functions. Theor. Comput. Sci., 494(0):63–74, 2013.

16 Jin-Yi Cai and Pinyan Lu. Holographic algorithms: From art to science. J. Comput. Syst.
Sci., 77(1):41–61, 2011. doi:10.1016/j.jcss.2010.06.005.

17 Jin-Yi Cai and Pinyan Lu. Holographic algorithms: From art to science. J. Comput. Syst.
Sci., 77(1):41–61, 2011.

18 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Holographic algorithms by fibonacci gates and
holographic reductions for hardness. In FOCS’08: Proceedings of the 49th Annual IEEE
Symposium on Foundations of Computer Science, Washington, DC, USA, 2008. IEEE Com-
puter Society.

19 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Holant problems and counting CSP. In Mi-
chael Mitzenmacher, editor, STOC, pages 715–724. ACM, 2009. doi:10.1145/1536414.
1536511.

20 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Computational complexity of Holant problems.
SIAM J. Comput., 40(4):1101–1132, 2011.

21 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. A computational proof of complexity of some
restricted counting problems. Theor. Comput. Sci., 412(23):2468–2485, 2011.

22 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Dichotomy for Holant∗ problems of boolean domain.
In SODA’11: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete
algorithms, 2011.

23 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Holographic reduction, interpolation and hardness.
Computational Complexity, 21(4):573–604, 2012.

24 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Dichotomy for Holant∗ problems with domain size
3. In SODA, pages 1278–1295, 2013.

25 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. The complexity of complex weighted Boolean
#CSP. J. Comput. System Sci., 80(1):217–236, 2014.

26 Gérard Cornuéjols. General factors of graphs. Journal of Combinatorial Theory, Series B,
45(2):185–198, 1988.

27 N. Creignou, S. Khanna, and M. Sudan. Complexity classifications of boolean constraint
satisfaction problems. SIAM Monographs on Discrete Mathematics and Applications, 2001.

28 Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting prob-
lems. Inf. Comput., 125(1):1–12, 1996.

29 Victor Dalmau and Daniel K Ford. Generalized satisfiability with limited occurrences per
variable: A study through delta-matroid parity. In International Symposium on Mathem-
atical Foundations of Computer Science, pages 358–367. Springer, 2003.

30 C.T. J. Dodson and T. Poston. Tensor Geometry. Graduate Texts in Mathematics 130.
Springer-Verlag, New York, 1991.

31 Zdeněk Dvořák and Martin Kupec. On planar boolean csp. In International Colloquium
on Automata, Languages, and Programming, pages 432–443. Springer, 2015.

32 Martin E. Dyer, Leslie Ann Goldberg, Markus Jalsenius, and David Richerby. The com-
plexity of approximating bounded-degree Boolean #CSP. Inf. Comput., 220:1–14, 2012.
doi:10.1016/j.ic.2011.12.007.

Chapte r 06

http://dx.doi.org/10.1016/j.jcss.2010.06.005
http://dx.doi.org/10.1145/1536414.1536511
http://dx.doi.org/10.1145/1536414.1536511
http://dx.doi.org/10.1016/j.ic.2011.12.007


176 On the Complexity of Holant Problems

33 Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. The complexity of weighted
boolean #CSP. CoRR, abs/0704.3683, 2007. URL: http://arxiv.org/abs/0704.3683.

34 Martin E. Dyer, Leslie Ann Goldberg, and Mike Paterson. On counting homomorphisms
to directed acyclic graphs. J. ACM, 54(6), 2007. doi:10.1145/1314690.1314691.

35 Jack Edmonds. Maximum matching and a polyhedron with 0, 1 vertices. J. of Res. the
Nat. Bureau of Standards, 69 B:125–130, 1965.

36 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–467,
1965.

37 John Faben. The complexity of counting solutions to generalised satisfiability problems
modulo k. CoRR, abs/0809.1836, 2008.

38 T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP and
constraint satisfaction: A study through Datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1999.

39 Tomás Feder. Fanout limitations on constraint systems. Theoretical Computer Science,
255(1):281–293, 2001.

40 M. Freedman, L. Lovász, and A. Schrijver. Reflection positivity, rank connectivity, and
homomorphism of graphs. J. AMS, 20:37–51, 2007.

41 James F Geelen, Satoru Iwata, and Kazuo Murota. The linear delta-matroid parity problem.
Journal of Combinatorial Theory, Series B, 88(2):377–398, 2003.

42 Leslie Ann Goldberg, Martin Grohe, Mark Jerrum, and Marc Thurley. A complexity
dichotomy for partition functions with mixed signs. SIAM J. Comput., 39(7):3336–3402,
2010. doi:10.1137/090757496.

43 Lingxiao Huang, Pinyan Lu, and Chihao Zhang. Canonical paths for mcmc: from art to
science. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 514–527. SIAM, 2016.

44 Sangxia Huang and Pinyan Lu. A dichotomy for real weighted Holant problems. In IEEE
Conference on Computational Complexity, pages 96–106. IEEE Computer Society, 2012.

45 Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM J. Comput.,
18(6):1149–1178, 1989. doi:10.1137/0218077.

46 Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the ising
model. SIAM Journal on Computing, 22(5):1087–1116, 1993.

47 Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation al-
gorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM,
51:671–697, July 2004. doi:10.1145/1008731.1008738.

48 P.W. Kasteleyn. The statistics of dimers on a lattice. Physica, 27:1209–1225, 1961.
49 P.W. Kasteleyn. Graph theory and crystal physics. In (F. Harary, editor, Graph Theory

and Theoretical Physics, pages 43–110. Academic Press, London, 1967.
50 Alexandr Kazda, Vladimir Kolmogorov, and Michal Rolínek. Even delta-matroids and the

complexity of planar boolean CSPs. arXiv preprint arXiv:1602.03124, 2016.
51 Michael Kowalczyk. Classification of a class of counting problems using holographic re-

ductions. In Hung Q. Ngo, editor, COCOON, volume 5609 of Lecture Notes in Computer
Science, pages 472–485. Springer, 2009. doi:10.1007/978-3-642-02882-3_47.

52 Michael Kowalczyk and Jin-Yi Cai. Holant problems for regular graphs with complex edge
functions. In the proceeding of STACS, 2010.

53 Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22(1):155–
171, 1975.

54 Chengyu Lin, Jingcheng Liu, and Pinyan Lu. A simple FPTAS for counting edge covers. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 341–348, 2014. doi:10.1137/1.9781611973402.25.

http://arxiv.org/abs/0704.3683
http://dx.doi.org/10.1145/1314690.1314691
http://dx.doi.org/10.1137/090757496
http://dx.doi.org/10.1137/0218077
http://dx.doi.org/10.1145/1008731.1008738
http://dx.doi.org/10.1007/978-3-642-02882-3_47
http://dx.doi.org/10.1137/1.9781611973402.25


H. Guo and P. Lu 177

55 Jingcheng Liu, Pinyan Lu, and Chihao Zhang. FPTAS for counting weighted edge covers. In
Algorithms – ESA 2014 – 22th Annual European Symposium, Wroclaw, Poland, September
8-10, 2014. Proceedings, pages 654–665, 2014.

56 Pinyan Lu, Menghui Wang, and Chihao Zhang. FPTAS for weighted Fibonacci gates and
its applications. In ICALP, pages 787–799, 2014.

57 Colin McQuillan. Approximating holant problems by winding. arXiv preprint
arXiv:1301.2880, 2013.

58 T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth annual
ACM symposium on Theory of computing, page 226. ACM, 1978.

59 H.N.V. Temperley and M.E. Fisher. Dimer problem in statistical mechanics-an exact
result. Philosophical Magazine, 6:1061–1063, 1961.

60 Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8:189–201, 1979.

61 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Com-
put., 8(3):410–421, 1979.

62 Leslie G. Valiant. Expressiveness of matchgates. Theor. Comput. Sci., 289(1):457–471,
2002.

63 Leslie G. Valiant. Quantum circuits that can be simulated classically in polynomial time.
SIAM J. Comput., 31(4):1229–1254, 2002. URL: http://epubs.siam.org/sam-bin/dbq/
article/37702.

64 Leslie G. Valiant. Accidental algorthims. In FOCS’06: Proceedings of the 47th Annual
IEEE Symposium on Foundations of Computer Science, pages 509–517, Washington, DC,
USA, 2006. IEEE Computer Society. doi:10.1109/FOCS.2006.7.

65 Leslie G. Valiant. Holographic algorithms. SIAM J. Comput., 37(5):1565–1594, 2008.
doi:10.1137/070682575.

Chapte r 06

http://epubs.siam.org/sam-bin/dbq/article/37702
http://epubs.siam.org/sam-bin/dbq/article/37702
http://dx.doi.org/10.1109/FOCS.2006.7
http://dx.doi.org/10.1137/070682575




Parameterized Constraint Satisfaction Problems:
a Survey
Gregory Gutin∗1 and Anders Yeo2

1 Royal Holloway, University of London, Egham, Surrey, UK; and
University of Haifa, Mount Carmel, Haifa, Israel
gutin@cs.rhul.ac.uk

2 Singapore University of Technology and Design, Singapore; and
University of Johannesburg, Auckland Park, South Africa
anders.yeo.work@gmail.com

Abstract
We consider constraint satisfaction problems parameterized above or below guaranteed values.
One example is MaxSat parameterized above m/2: given a CNF formula F with m clauses,
decide whether there is a truth assignment that satisfies at least m/2 + k clauses, where k is
the parameter. Among other problems we deal with are MaxLin2-AA (given a system of linear
equations over F2 in which each equation has a positive integral weight, decide whether there is
an assignment to the variables that satisfies equations of total weight at leastW/2+k, whereW is
the total weight of all equations), Max-r-Lin2-AA (the same as MaxLin2-AA, but each equation
has at most r variables, where r is a constant) and Max-r-Sat-AA (given a CNF formula F

with m clauses in which each clause has at most r literals, decide whether there is a truth
assignment satisfying at least

∑m
i=1(1 − 2ri ) + k clauses, where k is the parameter, ri is the

number of literals in clause i, and r is a constant). We also consider Max-r-CSP-AA, a natural
generalization of both Max-r-Lin2-AA and Max-r-Sat-AA, order (or, permutation) constraint
satisfaction problems parameterized above the average value and some other problems related
to MaxSat. We discuss results, both polynomial kernels and parameterized algorithms, obtained
for the problems mainly in the last few years as well as some open questions.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Constraint satisfaction problems, Fixed-parameter tractability

Digital Object Identifier 10.4230/DFU.Vol7.15301.179

1 Introduction

While the main body of papers in the area of parameterized algorithms and complexity deals
with problems on graphs and hypergraphs, in this paper we will consider parameterized
constraint satisfaction problems (CSPs). This article is an update of survey paper [27] on
the topic. We provide basic terminology and notation on parameterized algorithms and
complexity in Section 2.

To the best of our knowledge, the first study of parameterized CSPs was almost twenty
years ago by Cai and Chen [7] on standard parameterization of MaxSat. In MaxSat, we
are given a CNF formula F with m clauses and asked to determine the maximum number of
clauses of F that can be satisfied simultaneously by a truth assignment. In the standard
parametrization of MaxSat, denoted by k-MaxSat, we are to decide whether there is a

∗ G. Gutin’s research was partially supported by Royal Society Wolfson Research Merit Award.

© Gregory Gutin and Anders Yeo;
licensed under Creative Commons License BY

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný; pp. 179–203

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol7.15301.179
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3


180 Parameterized Constraint Satisfaction Problems: a Survey

truth assignment which satisfies at least k clauses of F , where k is the parameter. However,
in the next paper on the topic Mahajan and Raman [41] already observed that the standard
parameterization of MaxSat is not in the spirit of parameterized complexity. Indeed, it
is well-known (and shown below, in Section 6) that there exists a truth assignment to the
variables of F which satisfies at least m/2 clauses. Thus, for k ≤ m/2 every instance of
k-MaxSat is positive and thus only for k > m/2 the problem is of any interest. However,
then the parameter k is quite large “in which range the fixed-parameter tractable algorithms
are infeasible” [41].

Also it is easy to see that k-MaxSat has a kernel with a linear number of clauses. Indeed,
consider an instance I of k-MaxSat. As we mentioned above, if k ≤ m/2 then I is a positive
instance. Otherwise, we have k > m/2 and m ≤ 2k − 1. Such a kernel should be viewed as
large rather than small as the bound 2k − 1 might suggest at the first glance.

The bound m/2 is tight as we can satisfy only half clauses in the instances consisting of
pairs (x), (x̄) of clauses. This suggest the following parameterization of MaxSat above tight
bound introduced by Mahajan and Raman [41]: decide whether there is a truth assignment
which satisfies at least m/2 + k clauses of F , where k is the parameter.

To the best our knowledge, [41] was the first paper on problems parameterized above
or below tight bounds. Since then a large number of papers have appeared on the topic,
some on graph and hypergraph problems and others on CSPs. In this survey paper, we
will overview results on CSPs parameterized above or below tight bounds, as well as some
methods used to obtain these results. Since some graph problems can also be viewed as
those on CSPs, we will mention some results initially proved for graphs. While not going
into details of the proofs, we will discuss some ideas behind the proofs. We will also consider
some open problems in the area.

In the remainder of this section we give an overview of the paper and its organization.
In the next section we provide basics on parameterized algorithms and complexity. In

Section 3, we describe the Strictly-Above-Below-Expectation Method (SABEM) introduced
in [26]. The method uses some tools from Probabilistic Method and Harmonic Analysis. A
relatively simple example illustrates the method.

Another example for SABEM is given in Section 4, which is devoted to the Maximum
r-CSPs parameterized above the average value, where r is a positive integral constant. In
general, the Maximum r-CSP is given by a set V of n Boolean variables and a set of m
Boolean formulas; each formula is assigned an integral positive weight and contains at most
r variables from V . The aim is to find a truth assignment which maximizes the weight of
satisfied formulas. Averaging over all truth assignments, we can find the average value A of
the weight of satisfied formulas. It is easy to show that we can always find a truth assignment
to the variables of V which satisfied formulas of total weight at least A. Thus, a natural
parameterized problem is whether there exists a truth assignment that satisfies formulas of
total weight at least A+ k, where k is the parameter (k is a nonnegative integer). We denote
such a problem by Max-r-CSP-AA.

In Subsection 4.1, we consider the Max-r-Lin2-AA problem, which is a special case of
Max-r-CSP-AA when every formula is a linear equation over F2 with at most r variables.
For Max-r-Lin2-AA, we have A = W/2, where W is the total weight of all equations. It is
well-known that, in polynomial time, we can find an assignment to the variables that satisfies
equations of total weight at least W/2, but, for any ε > 0 it is NP-hard to decide whether
there is an assignment satisfying equations of total weight at least W (1 + ε)/2 [31]. We will
prove a result by Gutin, Kim, Szeider and Yeo [26] that Max-r-Lin2-AA has a kernel of
quadratic size. We will mention some other results, in particular, a result of Crowston et
al. [11] that Max-r-Lin2-AA has a kernel with at most (2k − 1)r variables.



G. Gutin and A. Yeo 181

In Subsection 4.2, we give a proof scheme of a result by Alon et al. [2] that Max-r-CSP-
AA has a kernel of polynomial size. The main idea of the proof is to reduce Max-r-CSP-AA
to Max-r-Lin2-AA and use results on Max-r-Lin2-AA and a lemma on bikernels given in
the next section. The result of Alon et al. [2] solves an open question of Mahajan, Raman and
Sikdar [42] not only for Max-r-Sat-AA but for the more general problem Max-r-CSP-AA.
The problem Max-r-Sat-AA is a special case of Max-r-CSP-AA when every formula is a
clause with at most r variables. For Max-r-Sat-AA, the reduction to Max-r-Lin2-AA
can be complemented by a reduction from Max-r-Lin2-AA back to Max-r-Sat-AA, which
yields a kernel of quadratic size.

(Note that while the size of the kernel for Max-r-CSP-AA is polynomial, any bound on
the degree of the polynomial is unknown so far.)

Section 5 is devoted to two parameterizations of MaxLin2. The first is MaxLin2-AA,
which is the same problem as Max-r-Lin2-AA, but the number of variables in an equation
is not bounded. Thus, MaxLin2-AA is a generalization of Max-r-Lin2-AA. We present a
scheme of a proof by Crowston et al. [11] that MaxLin2-AA is fixed-parameter tractable
(FPT) and has a kernel with polynomial number of variables. This result solved an open
question of Mahajan et al. [42] of whether MaxLin2-AA is FPT, but we still do not know
whether MaxLin2-AA has a kernel of polynomial size and we present only partial results on
the topic. The second parameterization of MaxLin2 is as follows. Let W be the total weight
of all equations in MaxLin2. We are to decide whether there is an assignment satisfying
equations of total weight at least W − k, where k is a nonnegative parameter. This problem
was proved to be W[1]-hard by Crowston et al. [14]. Following [14] we will discuss special
cases of this problem giving its classification into fixed-parameter tractable and W[1]-hard
cases.

In Section 6 we consider several parameterizations of Max-Sat different from Max-r-
Sat-AA. Subsection 6.1 is devoted to MaxSat-A(m/2), where given a CNF formula F
with m clauses, we are to decide whether there is a truth assignment with satisfies at least
m/2 + k clauses of F , where k is the parameter.

In Subsection 6.2 we consider Max-r(n)-Sat-AA, which is the same problem as Max-
r-Sat-AA, but r(n) now depends on n. We discuss bounds on r(n), which make Max-
r(n)-Sat-AA either fixed-parameter tractable or not fixed-parameter tractable under the
assumption that the Exponential Time Hypothesis (ETH) holds (we introduce ETH in the
next section).

Results on MaxSat parameterized above or below various other tight bounds are discussed
in Subsection 6.3. We will consider the above-mentioned parameterization of MaxSat above
m/2 and some “stronger” parameterizations of MaxSat introduced or inspired by Mahajan
and Raman [41]. The stronger parameterizations are based on the notion of a t-satisfiable
CNF formula (a formula in which each set of t clauses can be satisfied by a truth assignment)
and asymptotically tight lower bounds on the maximum number of clauses of a t-satisfiable
CNF formula satisfied by a truth assignment for t = 2 and 3. We will describe linear-variable
kernels obtained for both t = 2 and 3. We will also consider the parameterization of 2-Sat
below the upper bound m, the number of clauses. This problem was proved to be fixed-
parameter tractable by Razgon and O’Sullivan [48]. Raman et al. [47] and Cygan et al. [17]
designed faster parameterized algorithms. for the problem.

In Section 7 we discuss parameterizations above average for Ordering CSPs. An Ordering
CSP of arity r is defined by a set V = {x1, . . . , xn} of variables and a set of constraints. Each
constraint is a disjunction of clauses of the form xi1 < xi2 < · · · < xir . A linear ordering α
of V satisfies such a constraint if one of the clauses in the disjunction agrees with α. The

Chapte r 07



182 Parameterized Constraint Satisfaction Problems: a Survey

objective of the problem is to find an ordering of V which satisfies the maximum number
of constraints. For the only nontrivial Ordering CSP of arity 2, 2-Linear Ordering,
Guruswami, Manokaran and Raghavendra [22] proved that it is impossible to find, in
polynomial time, an ordering that satisfies at least |C|(1 + ε)/2 constraints for every ε > 0
provided the Unique Games Conjecture (UGC) of Khot [35] holds. (Note that |C|/2 is the
expected number of constraints satisfied by a random uniformly-distributed ordering of V.)
Similar approximation resistant results were proved for all Ordering CSPs of arity 3 by
Charikar, Guruswami and Manokaran [8] and for Ordering CSPs of any arity by Guruswami
et al. [21].

Thus it makes sense to consider Ordering CSPs parameterized above average. It was
proved by Gutin, Kim, Szeider and Yeo [26] that 2-Linear Ordering parameterized above
average is fixed-parameter tractable. Gutin, Iersel, Mnich and Yeo [23] showed that all
Ordering CSPs of arity 3 parameterized above average are fixed-parameter tractable and
conjectured the same results for every arity r ≥ 2. Recently, Makarychev, Makarychev
and Zhou [43] proved the conjecture. All the results can be proved using SABEM. This is
already illustrated in Subsection 4.1 for 2-Linear Ordering parameterized above average.
In Section 7, we provide a proof scheme for Betweenness parameterized above average
by Gutin, Kim, Szeider and Yeo [25] who solved an open question of Benny Chor stated in
Niedermeier’s monograph [44]. This scheme was used also by Makarychev, Makarychev and
Zhou [43], but their proof involves significantly more involved tools from Harmonic Analysis
and we only provide some general remarks on their proof. We will also briefly discuss an
interesting generalization of the result of Makarychev, Makarychev and Zhou [43].

We complete the paper with Section 8, where we briefly discuss two open problems.

2 Basics on Parameterized Algorithms and Complexity

A parameterized problem Π can be considered as a set of pairs (I, k) where I is the problem
instance and k (usually a nonnegative integer) is the parameter. Π is called fixed-parameter
tractable (FPT) if membership of (I, k) in Π can be decided by an algorithm of runtime
O(f(k)|I|c), where |I| is the size of I, f(k) is an arbitrary function of the parameter k
only, and c is a constant independent from k and I. Such an algorithm is called an FPT
algorithm. Let Π and Π′ be parameterized problems with parameters k and k′, respectively.
An FPT-reduction R from Π to Π′ is a many-to-one transformation from Π to Π′, such that
(i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π′ with k′ ≤ g(k) for a fixed computable function g, and
(ii) R is of complexity O(f(k)|I|c).

If the nonparameterized version of Π (where k is just part of the input) is NP-hard,
then the function f(k) must be superpolynomial provided P 6=NP. Often f(k) is “moderately
exponential,” which makes the problem practically feasible for small values of k. Thus, it is
important to parameterize a problem in such a way that the instances with small values of k
are of real interest.

When the decision time is replaced by the much more powerful |I|O(f(k)), we obtain the
class XP, where each problem is polynomial-time solvable for any fixed value of k. There is a
number of parameterized complexity classes between FPT and XP (for each integer t ≥ 1,
there is a class W[t]) and they form the following tower:

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P] ⊆ XP.

Here W[P] is the class of all parameterized problems (I, k) that can be decided in f(k)|I|O(1)

time by a nondeterministic Turing machine that makes at most f(k) log |I| nondeterministic



G. Gutin and A. Yeo 183

steps for some function f . For the definition of classes W[t], see, e.g., [16, 18] (we do not use
these classes in the rest of the paper).

Π is in para-NP if membership of (I, k) in Π can be decided in nondeterministic time
O(f(k)|I|c), where |I| is the size of I, f(k) is an arbitrary function of the parameter k only,
and c is a constant independent from k and I. Here, nondeterministic time means that we can
use nondeterministic Turing machine. A parameterized problem Π′ is para-NP-complete if it
is in para-NP and for any parameterized problem Π in para-NP there is an FPT-reduction
from Π to Π′.

Given a pair Π,Π′ of parameterized problems, a bikernelization from Π to Π′ is a
polynomial-time algorithm that maps an instance (I, k) to an instance (I ′, k′) (the bikernel)
such that (i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π′, (ii) k′ ≤ f(k), and (iii) |I ′| ≤ g(k) for
some functions f and g. The function g(k) is called the size of the bikernel. A kernelization
of a parameterized problem Π is simply a bikernelization from Π to itself. Then (I ′, k′) is a
kernel. The term bikernel was coined by Alon et al. [2]; in [4] a bikernel is called a generalized
kernel.

It is well-known that a parameterized problem Π is fixed-parameter tractable if and only
if it is decidable and admits a kernelization [16, 18]. This result can be extended as follows:
A decidable parameterized problem Π is fixed-parameter tractable if and only if it admits a
bikernelization from itself to a decidable parameterized problem Π′ [2].

Due to applications, low degree polynomial size kernels are of main interest. Unfortunately,
many fixed-parameter tractable problems do not have kernels of polynomial size unless the
polynomial hierarchy collapses to the third level [4, 5, 19]. For further background and
terminology on parameterized complexity we refer the reader to the monographs [16, 18].

The following lemma of Alon et al. [2] inspired by a lemma from [5] shows that polynomial
bikernels imply polynomial kernels.

I Lemma 1. Let Π,Π′ be a pair of decidable parameterized problems such that the nonpa-
rameterized version of Π′ is in NP, and the nonparameterized version of Π is NP-complete.
If there is a bikernelization from Π to Π′ producing a bikernel of polynomial size, then Π has
a polynomial-size kernel.

Recently many lower bound results for parameterized complexity were proved under the
assumption that the Exponential Time Hypothesis (EHT) (see [16]) holds. ETH claims that
3-SAT cannot be solved in O(2δn) time for some δ > 0, where n is the number of variables
in the CNF formula of 3-SAT.

Henceforth [n] stands for the set {1, 2, . . . , n}.

3 Strictly Above/Below Expectation Method

This section briefly describes basics of the method.
Let us start by outlining the very basic principles of the probabilistic method which

will be implicitly used later. Given random variables X1, . . . , Xn, the fundamental property
known as linearity of expectation states that E(X1 + . . .+Xn) = E(X1) + . . .+ E(Xn). The
averaging argument utilizes the fact that there is a point for which X ≥ E(X) and a point
for which X ≤ E(X) in the probability space. Also a positive probability P(A) > 0 for some
event A means that there is at least one point in the probability space which belongs to A.
For example, P(X ≥ k) > 0 tells us that there exists a point for which X ≥ k.

A random variable is discrete if its distribution function has a finite or countable number
of positive increases. A random variable X is symmetric if −X has the same distribution

Chapte r 07



184 Parameterized Constraint Satisfaction Problems: a Survey

function as X. If X is discrete, then X is symmetric if and only if P(X = a) = P(X = −a)
for each real a. Let X be a symmetric variable for which the first moment E(X) exists. Then
E(X) = E(−X) = −E(X) and, thus, E(X) = 0. The following easy to prove [26] result, is the
simplest tool of the Strictly Above/Below Expectation method as it allows us sometimes to
show that a certain random variable takes values (significantly) above/below its expectation.

I Lemma 2. If X is a symmetric random variable and E(X2) is finite, then

P( X ≥
√
E(X2) ) > 0.

We will illustrate the usefulness of the lemma using the 2-Linear Ordering Above
Average problem. Let D = (V,A) be a digraph on n vertices with no loops or parallel arcs
in which every arc ij has a positive integral weight wij . Consider an ordering α : V → [n]
and the subdigraph Dα = (V, {ij ∈ A : α(i) < α(j)}) of D. Note that Dα is acyclic.

2-Linear Ordering Above Average (2-Linear Ordering-AA)
Instance: A digraph D = (V,A), each arc ij has an integral positive weight wij , and
a positive integer κ.
Parameter: The integer κ.
Question: Is there a subdigraph Dα of D of weight at least W/2 + κ, where W =∑

ij∈A wij ?

Mahajan, Raman, and Sikdar [42] asked whether 2-Linear Ordering-AA is FPT for the
special case when all arcs are of weight 1. Gutin et al. [26] solved the problem by obtaining
a quadratic kernel for the problem. In fact, the problem can be solved using the following
result of Alon [1]: there exists an ordering α such that Dα has weight at least ( 1

2 + 1
16|V | )W.

However, the proof in [1] uses a probabilistic approach for which a derandomization is not
known yet and, thus, we cannot find the appropriate α deterministically. Moreover, the
probabilistic approach in [1] is quite specialized. Thus, we will briefly describe a solution
from [26]. Consider the following reduction rule:

I Reduction Rule 1. Assume D has a directed 2-cycle iji; if wij = wji delete the cycle, if
wij > wji delete the arc ji and replace wij by wij − wji, and if wji > wij delete the arc ij
and replace wji by wji − wij.

It is easy to check that the answer to 2-Linear Ordering-AA for a digraph D is Yes if
and only if the answer to 2-Linear Ordering-AA is Yes for a digraph obtained from D

using the reduction rule as long as possible. Note that applying Rule 1 as long as possible
results in an oriented graph, i.e., a digraph with no directed 2-cycle.

I Theorem 3 ([26]). 2-Linear Ordering-AA has a kernel with O(κ2) arcs.

Proof. Consider a random ordering: α : V → [n] and a random variable X(α) defined by
X(α) = 1

2
∑
ij∈A xij(α), where xij(α) = wij if α(i) < α(j) and xij(α) = −wij , otherwise.

It is easy to see that X(α) =
∑
{wij : ij ∈ A,α(i) < α(j)} −W/2. Thus, the answer to

2-Linear Ordering-AA is Yes if and only if there is an ordering α : V → [n] such that
X(α) ≥ κ.

By Rule 1, we may assume that the input of 2-Linear Ordering-AA is an oriented
graph D = (V,A). Let α : V → [n] be a random ordering. Since X(−α) = −X(α), where
−α(i) = n+ 1− α(i), X is a symmetric random variable and, thus, we can apply Lemma 2.
It was proved in [26] that E(X2) ≥ |A|/12. By this inequality and Lemma 2, we have



G. Gutin and A. Yeo 185

P( X ≥
√
|A|/12 ) > 0. Thus, if

√
|A|/12 ≥ κ, there is an ordering β : V → [n] such that

X(β) ≥ k and so the answer to 2-Linear Ordering-AA is Yes. Otherwise,
√
|A|/12 ≥ κ

implying |A| ≤ 12κ2 and we are done. J

By deleting isolated vertices (if any), we can obtain a kernel with O(κ2) arcs and vertices.
Kim and Williams [36] proved that 2-Linear Ordering has a kernel with a linear number
of variables.

If a random variable X is not symmetric then the following lemma can be used instead
of Lemma 2.

I Lemma 4 (Alon et al. [2]). Let X be a real random variable and suppose that its first, second
and fourth moments satisfy E[X] = 0, E[X2] = σ2 > 0 and E[X4] ≤ cE[X2]2, respectively,
for some constant c. Then P(X > σ

2
√
c
) > 0.

To check whether E[X4] ≤ cE[X2]2 we often can use the following well-known inequality
whose proof can be found in [16] and [45].

I Lemma 5 (Hypercontractive Inequality [6]). Let f = f(x1, . . . , xn) be a polynomial of
degree r in n variables x1, . . . , xn each with domain {−1, 1}. Define a random variable X by
choosing a vector (ε1, . . . , εn) ∈ {−1, 1}n uniformly at random and setting X = f(ε1, . . . , εn).
Then E[X4] ≤ 9rE[X2]2.

If f = f(x1, . . . , xn) is a polynomial in n variables x1, . . . , xn each with domain {−1, 1},
then it can be written as f =

∑
I⊆[n] cI

∏
i∈S xi, where [n] = {1, . . . , n} and cI is a real for

each I ⊆ [n].
The following dual, in a sense, form of the Hypercontractive Inequality was proved by

Gutin and Yeo [28]; for a weaker result, see [26].

I Lemma 6. Let f = f(x1, . . . , xn) be a polynomial in n variables x1, . . . , xn each with
domain {−1, 1} such that f =

∑
I⊆[n] cI

∏
i∈S xi. Suppose that no variable xi appears in

more than ρ monomials of f . Define a random variable X by choosing a vector (ε1, . . . , εn) ∈
{−1, 1}n uniformly at random and setting X = f(ε1, . . . , εn). Then E[X4] ≤ (2ρ+ 1)E[X2]2.

The following lemma is easy to prove, cf. [26]. In fact, the equality there is a special case
of Parseval’s Identity in Harmonic Analysis, cf. [45].

I Lemma 7. Let f = f(x1, . . . , xn) be a polynomial in n variables x1, . . . , xn each with
domain {−1, 1} such that f =

∑
I⊆[n] cI

∏
i∈I xi. Define a random variable X by choosing

a vector (ε1, . . . , εn) ∈ {−1, 1}n uniformly at random and setting X = f(ε1, . . . , εn). Then
E[X2] =

∑
i∈I c

2
I .

We will give a relatively simple application of Lemmas 5 and 7 in Subsection 4.1. Another
application is in Subsection 7.2.

4 Boolean Max-r-CSPs Above Average

Throughout this section, r is a positive integral constant. Recall that the problem Max-
r-CSP-AA is given by a set V of n Boolean variables and a set of m Boolean formulas;
each formula is assigned an integral positive weight and contains at most r variables from
V . Averaging over all truth assignments, we can find the average value A of the weight of
satisfied formulas. We wish to decide whether there exists a truth assignment that satisfies
formulas of total weight at least A+ k, where k is the parameter (k is a nonnegative integer).

Chapte r 07



186 Parameterized Constraint Satisfaction Problems: a Survey

Recall that the problem Max-r-Lin2-AA is a special case of Max-r-CSP-AA when
every formula is a linear equation over F2 with at most r variables and that Max-Lin2-AA
is the extension of Max-r-Lin2-AA when we do not bound the number of variables in an
equation. We will see that for both Max-r-CSP-AA and Max-Lin2-AA, A = W/2, where
W is the total weight of all equations.

Subsection 4.1 is devoted to parameterized complexity results on Max-r-Lin2-AA which
are not only of interest by themselves, but also as tools useful for Max-r-CSP-AA. In
particular, we will prove that Max-r-Lin2-AA has a kernel of quadratic size. Since some
basic results on Max-r-Lin2-AA hold also for Max-Lin2-AA, in general, we will show
them for Max-Lin2-AA.

In Subsection 4.2, we give a proof scheme of a result by Alon et al. [2] that Max-
r-CSP-AA has a a kernel of polynomial size. The main idea of the proof is to reduce
Max-r-CSP-AA to Max-r-Lin2-AA and use the above kernel result on Max-r-Lin2-AA
and Lemma 1. This shows the existence of a polynomial-size kernel, but does not allow us
to obtain a bound on the degree of the polynomial. We complete the section, by pointing
out that for Max-r-Sat-AA, the reduction to Max-r-Lin2-AA can be complemented by
a reduction from Max-r-Lin2-AA back to Max-r-Sat-AA and so we obtain a quadratic
kernel for Max-r-Sat-AA.

4.1 Max-r-Lin-AA
In the Max-Lin2-AA problem, we are given a system S consisting of m linear equations in n
variables over F2 in which each equation is assigned a positive integral weight. If we add the
requirement that every equation has at most r variables then we get Max-r-Lin2-AA. Let
us write the system S as

∑
i∈I zi = bI , I ∈ F , and let wI denote the weight of an equation∑

i∈I zi = bI . Clearly, m = |F|. Let W =
∑
I∈F wI and let sat(S) be the maximum total

weight of equations that can be satisfied simultaneously.
For each i ∈ [n], set zi = 1 with probability 1/2 independently of the rest of the variables.

Then each equation is satisfied with probability 1/2 and the expected weight of satisfied
equations is W/2 (as our probability distribution is uniform, W/2 is also the average weight
of satisfied equations). Hence W/2 is a lower bound; to see its tightness consider a system
of pairs of equations of the form

∑
i∈I zi = 0,

∑
i∈I zi = 1 of weight 1. The aim in

both Max-Lin2-AA and Max-r-Lin2-AA is to decide whether for the given system S,
sat(S) ≥W/2 + k, where k is the parameter. It is well-known that, in polynomial time, we
can find an assignment to the variables that satisfies equations of total weight at least W/2,
but, for any ε > 0 it is NP-hard to decide whether there is an assignment satisfying equations
of total weight at least W (1 + ε)/2 [31].

Henceforth, it will often be convenient for us to consider linear equations in their
multiplicative form, i.e., instead of an equation

∑
i∈I zi = bI with zi ∈ {0, 1}, we will consider

the equation
∏
i∈I xi = (−1)bI with xi ∈ {−1, 1}. Clearly, an assignment z0 = (z0

1 , . . . , z
0
n)

satisfies
∑
i∈I zi = bI if and only if the assignment x0 = (x0

1, . . . , x
0
n) satisfies

∏
i∈I xi =

(−1)bI , where x0
i = (−1)z0

i for each i ∈ [n].
Let ε(x) =

∑
I∈F wI(−1)bI

∏
i∈I xi (each xi ∈ {−1, 1}) and note that ε(x0) is the

difference between the total weight of satisfied and falsified equations when xi = x0
i for each

i ∈ [n]. We will call ε(x) the excess and the maximum possible value of ε(x) the maximum
excess. The following claim is easy to check.

I Lemma 8. Observe that the answer to Max-Lin2-AA and Max-r-Lin2-AA is Yes if
and only if the maximum excess is at least 2k.



G. Gutin and A. Yeo 187

Let A be the matrix over F2 corresponding to the set of equations in S, such that aji = 1
if i ∈ Ij and 0, otherwise.

Consider two reduction rules for Max-Lin2-AA introduced by Gutin et al. [26].

I Reduction Rule 2. If we have, for a subset I of [n], an equation
∏
i∈I xi = b′I with weight

w′I , and an equation
∏
i∈I xi = b′′I with weight w′′I , then we replace this pair by one of these

equations with weight w′I + w′′I if b′I = b′′I and, otherwise, by the equation whose weight is
bigger, modifying its new weight to be the difference of the two old ones. If the resulting
weight is 0, we delete the equation from the system.

I Reduction Rule 3. Let t = rankA and suppose columns ai1 , . . . , ait of A are linearly
independent. Then delete all variables not in {xi1 , . . . , xit} from the equations of S.

I Lemma 9 ([26]). Let S′ be obtained from S by Rule 2 or 3. Then the maximum excess
of S′ is equal to the maximum excess of S. Moreover, S′ can be obtained from S in time
polynomial in n and m.

I Definition 10. If we cannot change a weighted system S using Rules 2 and 3, we call it
irreducible.

Now we are read to prove the following result.

I Theorem 11 ([26]). The problem Max-r-Lin2-AA admits a kernel with at most O(k2)
variables and equations.

Proof. Let the system S be irreducible. Consider the excess

ε(x) =
∑
I∈F

wI(−1)bI

∏
i∈I

xi. (1)

Let us assign value −1 or 1 to each xi with probability 1/2 independently of the other variables.
Then X = ε(x) becomes a random variable. By Lemma 7, we have E(X2) =

∑
I∈F w

2
I .

Therefore, by Lemmas 4 and 5,

P[ X ≥
√
m/(2 · 3r) ] ≥ P

 X ≥√∑
I∈F

w2
I/(2 · 3

r)

 > 0.

Hence by Remark 8, if
√
m/(2 · 3r) ≥ 2k, then the answer to Max-r-Lin2-AA is Yes.

Otherwise, m = O(k2) and, by Rule 3, we have n ≤ m = O(k2). J

The bound on the number of variables can be improved and it was done by Crowston et
al. [12] and Kim and Williams [36]. The best known improvement is by Crowston et al. [11]:

I Theorem 12. The problem Max-r-Lin2-AA admits a kernel with at most (2k − 1)r
variables.

Theorem 12 implies the following:

I Corollary 13. There is an algorithm of runtime 2O(k) +mO(1) for Max-r-Lin2-AA.

Kim and Williams [36] proved that the last result is best possible, in a sense, if the
Exponential Time Hypothesis (ETH) holds.

I Theorem 14 ([36]). If Max-3-Lin2-AA can be solved in O(2εk2εm) time for every ε > 0,
then ETH does not hold.

Chapte r 07



188 Parameterized Constraint Satisfaction Problems: a Survey

4.2 Max-r-CSP-AA and Max-r-Sat-AA
Consider first a detailed formulation of Max-r-CSP-AA. Let V = {v1, . . . , vn} be a set of
variables, each taking values −1 (True) and 1 (False). We are given a set Φ of Boolean
functions, each involving at most r variables, and a collection F of m Boolean functions,
each f ∈ F being a member of Φ, each with a positive integral weight and each acting on
some subset of V . We are to decide whether there is a truth assignment to the n variables
such that the total weight of satisfied functions is at least A + k, where A is the average
weight (over all truth assignments) of satisfied functions and k is the parameter.

Note that A is a tight lower bound for the problem, whenever the family Φ is closed
under replacing each variable by its complement, since if we apply any Boolean function to
all 2r choices of literals whose underlying variables are any fixed set of r variables, then any
truth assignment to the variables satisfies exactly the same number of these 2r functions.

Note that if Φ consists of clauses, we get Max-r-Sat-AA. In Max-r-Sat-AA, A =∑m
j=1 wj(1− 2−rj ), where wj and rj are the weight and the number of variables of Clause j,

respectively. Clearly, A is a tight lower bound for Max-r-Sat.
Following [3], for a Boolean function f of weight w(f) and on r(f) ≤ r Boolean variables

xi1 , . . . , xir(f) , we introduce a polynomial hf (x), x = (x1, . . . , xn) as follows. Let Sf ⊂
{−1, 1}r(f) denote the set of all satisfying assignments of f . Then

hf (x) = w(f)2r−r(f)
∑

(v1,...,vr(f))∈Sf

[
r(f)∏
j=1

(1 + xijvj)− 1].

Let h(x) =
∑
f∈F hf (x). It is easy to see (cf. [2]) that the value of h(x) at some x0

is precisely 2r(U − A), where U is the total weight of the functions satisfied by the truth
assignment x0. Thus, the answer to Max-r-CSP-AA is Yes if and only if there is a truth
assignment x0 such that h(x0) ≥ k2r.

Algebraic simplification of h(x) will lead us the following (Fourier expansion of h(x),
cf. [45]):

h(x) =
∑
S∈F

cS
∏
i∈S

xi, (2)

where F = {∅ 6= S ⊆ [n] : cS 6= 0, |S| ≤ r}. Thus, |F| ≤ nr. The sum
∑
S∈F cS

∏
i∈S xi

can be viewed as the excess of an instance of Max-r-Lin2-AA and, thus, we can reduce
Max-r-CSP-AA into Max-r-Lin2-AA in polynomial time (since r is fixed, the algebraic
simplification can be done in polynomial time and it does not matter whether the parameter
of Max-r-Lin2-AA is k or k′ = k2r). By Theorem 11, Max-r-Lin2-AA has a kernel
with O(k2) variables and equations. This kernel is a bikernel from Max-r-CSP-AA to
Max-r-Lin2-AA. Thus, by Lemma 1, we obtain the following theorem of Alon et al. [2].

I Theorem 15. Max-r-CSP-AA admits a polynomial-size kernel.

Applying a reduction from Max-r-Lin2-AA to Max-r-Sat-AA in which each monomial
in (2) is replaced by 2r−1 clauses, Alon et al. [2] obtained the following:

I Theorem 16. Max-r-Sat-AA admits a kernel with O(k2) clauses and variables.

Using also Theorem 12, it is easy to improve this theorem with respect to the number of
variables in the kernel. Note that this result was first obtained by Kim and Williams [36].

I Theorem 17. Max-r-Sat-AA admits a kernel with O(k) variables.



G. Gutin and A. Yeo 189

4.3 Max-r-CSP-AA with global cardinality constraint
Recall the formulation of Max-r-CSP-AA: V = {v1, . . . , vn} is a set of variables, each
taking values from {−1, 1}. We are given m Boolean formulas, each with an integral positive
weight. We wish to decide if we can satisfy clauses with a total weight of k more than the
average weight (if every variables is assigned −1 or 1 with equal probability).

Chen and Zhou [9] consider the unweighted case of Max-r-CSP-AA but allow for a
global cardinality constraint. That is, we can restrict the number of 1’s (or −1’s) to be a
given fraction of the total number of variables. Consider the sum

∑n
i=1 vi and note that

this is an integer between −n and n. We now consider the case when
∑n
i=1 vi = αn and

−p0 ≤ α ≤ p0 for some fixed integer p0 < 1. Note that α may depend on n, but has to
be bounded by constants −p0 and p0 (p0 does not depend on n and will be considered a
constant in the complexity). We now formally describe the problem.

Let 0 ≤ p0 < 1 be a constant and for every n, let αn satisfy −p0 ≤ αn ≤ p0. We consider
all instances that satisfy the following:

n∑
i=1

vi = αnn .

For example if αn = 0 then we require to be equally many 1’s and −1’s in the assignments to
v1, v2, . . . , vn (this is called a bisection constraint). If αn = 1/2 then we require exactly one
quarter of all variables v1, v2, . . . , vn to be assigned −1 and three quarters to be assigned 1.

One application of the global cardinality constraint can be found in the MaxBisection
problem where we are given a graph G and want to partition the vertices into two equal-size
sets such that we have the maximum possible number of edges between the two sets. Let
v1, v2, . . . , vn be the vertices of the graph G and, with abuse of notation, also the variables
in our instance of Max-r-CSP-AA. If vivj is an edge in G then add the constraint vi 6= vj .
Adding the global cardinality constraint

∑n
i=1 vi = 0 now gives us an instance of Max-r-

CSP-AA (with global cardinality constraint) which has a solution k above the average if
and only if MaxBisection has a solution with k more edges in the cut than an average cut
(given that both partite sets are equally large).

If we do not require both partite sets to be equally large we get the problem MaxCut,
in which every edge has probability 1/2 of belonging to a random cut. However for the
MaxBisection problem this probability is slightly higher. Consider en edge vivj in the
graph G. Without loss of generality, let vi be assigned 1. Of the remaining n− 1 vertices
n/2− 1 will be assigned 1 and n/2 will be assigned −1. Therefore the probability that vivj
is in the cut will be as follows.

n/2
n− 1 = 1

2 + 1
2(n− 1) .

Therefore in the MaxBisection-AA we are looking to decide if there is a solution with at
least m

(
1
2 + 1

2(n−1)

)
+ k edges in the cut, where k is the parameter.

MaxBisection-AA was shown to be FPT and have a O(k2) kernel by Chen and Zhou [9].
This significantly improves a result by Gutin and Yeo [29] who showed a similar result when
looking for a solution with at least m/2 + k edges, where k is the parameter.

In fact, in [9] it is proved that each unweighted Max-r-CSP-AA with a global cardinality
constraint is FPT and has a kernel of size O(k2).

I Theorem 18 ([9]). For every p0 with 0 < p0 ≤ 1 there exists a kernel of size O(k2) for
the unweighted Max-r-CSP-AA with global cardinality constraint (given by p0).

Chapte r 07



190 Parameterized Constraint Satisfaction Problems: a Survey

If m ∈ nO(r) (which is the case if we do not repeat constraints), then in Theorem 18 the
polynomial algorithm that produces the kernel has runtime nO(r) (where r was the number
of variables in each constraint). If m 6∈ nO(r), it is not difficult to obtain a runtime of mO(r).

The size of the kernel in Theorem 18 depends on p0 and r, but in the theorem these are
constants. Theorem 18 furthermore implies the following result (where p0 and r again are
considered constants).

I Theorem 19 ([9]). For every 0 < p0 ≤ 1 and unweighted instance Max-r-CSP-AA with
global cardinality constraint (given by p0) and m ∈ nO(1) there exists an algorithm with
runtime nO(1) + 2O(k2) that decides if there is a solution satisfying k constraints more than
the average.

The proofs of the above results are deep and beyond the scope of this survey. They
use a version of the hypercontractive inequality where the probability space is given by
all assignments satisfying the global cardinality constraint. Therefore the variables are
not independent, which complicates matters compared to previous proofs of the ordinary
hypercontractive inequality. The proof of this new hypercontractive inequality relies on the
analysis of the eigenvalues of several nO(r) × nO(r) set-symmetric matrices.

5 Parameterizations of MaxLin2

In the Max-Lin2 problem, we are given a system S of m linear equations in n variables
over F2 in which each equation is assigned a positive integral weight. Our aim is to find am
assignment to the variables that maximizes the total weight of satisfied equations. In this
section, we will consider the following two parameterizations of Max-Lin2 :

MaxLin2-AA is the same problem as Max-r-Lin2-AA, but the number of variables in
an equation is not bounded. Thus, MaxLin2-AA is a generalization of Max-r-Lin2-AA.
In Subsection 5.1 we present a scheme of a recent proof by Crowston et al. [11] that
MaxLin2-AA is FPT and has a kernel with polynomial number of variables. This result
finally solved an open question of Mahajan et al. [42]. Still, we do not know whether
MaxLin2-AA has a kernel of polynomial size and we are able to give only partial results
on the topic.
LetW be the total weight of all equations in S. In Subsection 5.2 we consider the following
parameterized version of MaxLin2: decide whether there is an assignment satisfying
equations of total weight at least W − k, where k is a nonnegative parameter.

5.1 MaxLin2-AA
Let S be an irreducible system of Max-Lin2-AA (recall Definition 10). Consider the
following algorithm introduced in [12]. We assume that, in the beginning, no equation or
variable in S is marked.

Algorithm H
While the system S is nonempty do the following:
1. Choose an equation

∏
i∈I xi = b and mark a variable xl such that l ∈ I.

2. Mark this equation and delete it from the system.
3. Replace every equation

∏
i∈I′ xi = b′ in the system containing xl by∏

i∈I∆I′ xi = bb′, where I∆I ′ is the symmetric difference of I and I ′ (the
weight of the equation is unchanged).
4. Apply Reduction Rule 2 to the system.



G. Gutin and A. Yeo 191

The maximum H-excess of S is the maximum possible total weight of equations marked
by H for S taken over all possible choices in Step 1 of H. The following lemma indicates the
potential power of H.

I Lemma 20 ([12]). Let S be an irreducible system. Then the maximum excess of S equals
its maximum H-excess.

This lemma gives no indication on how to choose equations in Step 1 of Algorithm H.
As the problem Max-Lin2-AA is NP-hard, we cannot hope to obtain an polynomial-time
procedure for optimal choice of equations in Step 1 and, thus, have to settle for a good
heuristic. For the heuristic we need the following notion first used in [12]. Let K and M be
sets of vectors in Fn2 such that K ⊆M . We say K is M -sum-free if no sum of two or more
distinct vectors in K is equal to a vector in M . Observe that K is M -sum-free if and only if
K is linearly independent and no sum of vectors in K is equal to a vector in M\K.

The following lemma was proved implicitly in [12]; we provide a short proof of this result.

I Lemma 21. Let S be an irreducible system of Max-Lin2-AA and let A be the matrix
corresponding to S. Let M be the set of rows of A (viewed as vectors in Fn2 ) and let K be an
M -sum-free set of k vectors. Let wmin be the minimum weight of an equation in S. Then, in
time in (nm)O(1), we can find an assignment to the variables of S that achieves excess of at
least wmin · k.

Proof. Let {ej1 , . . . , ejk
} be the set of equations corresponding to the vectors in K. Run

Algorithm H, choosing at Step 1 an equation of S from {ej1 , . . . , ejk
} each time, and let

S′ be the resulting system. Algorithm H will run for k iterations of the while loop as no
equation from {ej1 , . . . , ejk

} will be deleted before it has been marked.
Indeed, suppose that this is not true. Then for some ejl

and some other equation e in S,
after applying Algorithm H for at most l − 1 iterations ejl

and e contain the same variables.
Thus, there are vectors vj ∈ K and v ∈ M and a pair of nonintersecting subsets K ′ and
K ′′ of K \ {v, vj} such that vj +

∑
u∈K′ u = v +

∑
u∈K′′ u. Thus, v = vj +

∑
u∈K′∪K′′ u, a

contradiction to the definition of K. J

The main result of this subsection is the following theorem whose proof is based on
Theorems 23 and 25.

I Theorem 22 ([11]). The problem MaxLin2-AA has a kernel with at most O(k2 log k)
variables.

I Theorem 23 ([12]). Let S be an irreducible system of MaxLin2-AA and let k ≥ 2. If
k ≤ m ≤ 2n/(k−1) − 2, then the maximum excess of S is at least k. Moreover, we can find
an assignment with excess of at least k in time mO(1).

This theorem can easily be proved using Lemma 21 and the following lemma.

I Lemma 24 ([12]). Let M be a set in Fn2 such that M contains a basis of Fn2 , the zero
vector is in M and |M | < 2n. If k is a positive integer and k+ 1 ≤ |M | ≤ 2n/k then, in time
|M |O(1), we can find an M -sum-free subset K of M with at least k + 1 vectors.

I Theorem 25 ([11]). There exists an n2k(nm)O(1)-time algorithm for MaxLin2-AA that
returns an assignment of excess of at least 2k if one exists, and returns No otherwise.

The proof of this theorem in [11] is based on constructing a special depth-bounded search
tree.

Now we will present the proof of Theorem 22 from [11].

Chapte r 07



192 Parameterized Constraint Satisfaction Problems: a Survey

Proof of Theorem 22. Let L be an instance of MaxLin2-AA and let S be the system of L
with m equations and n variables. We may assume that S is irreducible. Let the parameter
k be an arbitrary positive integer.

If m < 2k then n < 2k = O(k2 log k). If 2k ≤ m ≤ 2n/(2k−1) − 2 then, by Theorem 23
and Remark 8, the answer to L is Yes and the corresponding assignment can be found in
polynomial time. If m ≥ n2k − 1 then, by Theorem 25, we can solve L in polynomial time.

Finally we consider the case 2n/(2k−1) − 2 ≤ m ≤ n2k − 2. Hence, n2k ≥ 2n/(2k−1).

Therefore, 4k2 ≥ 2k + n/ logn ≥
√
n and n ≤ (2k)4. Hence, n ≤ 4k2 logn ≤ 4k2 log(16k4) =

O(k2 log k).
Since S is irreducible, m < 2n and thus we have obtained the desired kernel. J

Now let us consider some cases where we can prove that MaxLin2-AA has a polynomial-
size kernel. Consider first the case when each equation in S has odd number of variables. Then
we have the following theorem proved by Gutin et al. [26] using the Strictly Above/Below
Expectation Method (in particular, Lemmas 2 and 7).

I Theorem 26. The following special case of MaxLin2-AA admits a kernel with at most
4k2 variables and equations: there exists a subset U of variables such that each equation in
Ax = b has odd number of variables from U .

Let us turn to results on MaxLin2-AA that do not require any parity conditions. One
such result is Theorem 11. Gutin et al. [26] also proved the following ‘dual’ theorem.

I Theorem 27. Let ρ ≥ 1 be a fixed integer. Then MaxLin2-AA restricted to instances
where no variable appears in more than ρ equations, admits a kernel with O(k2) variables
and equations.

The proof is similar to that of Theorem 11, but Lemma 6 (in fact, its weaker version
obtained in [26]) is used instead of Lemma 5.

5.2 MaxLin2-B
In 2011, Arash Rafiey asked to determine the parameterized complexity of the following
parameterized problem denoted MaxLin2-B. Let W be the total weight of all equations in
S. Let us we consider the following parameterized version of MaxLin2: decide whether there
is an assignment satisfying equations of total weight at least W − k, where k is a nonnegative
parameter.

Crowston, Gutin, Jones and Yeo [14] proved that MaxLin2-B is W[1]-hard. This
hardness result prompts us to investigate the complexity of MaxLin2-B in more detail by
considering special cases of this problem. Let Max-(≤ r,≤ s)-Lin2 (Max-(= r,= s)-Lin2,
respectively) denote the problem MaxLin2 restricted to instances, which have at most
(exactly, respectively) r variables in each equation and at most (exactly) s appearances of any
variable in all equations. In the special case when each equation has weight 1 and there are no
two equations with the same left-hand side, MaxLin2-B will be denoted by MaxLin2-B[m].
Crowston et al. [14] proved that MaxLin2-B remains hard even after significant restrictions
are imposed on it, namely, even Max-(= 3,= 3)-Lin2-B[m] is W[1]-hard.

No further improvement of this result is possible unless FPT=W[1] as Crowston et al. [14]
proved that Max-(≤ 2,*)-Lin2-B is fixed-parameter tractable, where symbol * indicates
that no restriction is imposed on the number of appearances of a variable in the equations.
Moreover, they showed that the nonparameterized problem Max-(*,≤ 2)-Lin2 is polynomial
time solvable, where symbol * indicates that no restriction is imposed on the number of
variables in any equation.



G. Gutin and A. Yeo 193

6 Parameterizations of MaxSat

In the well-known problem MaxSat, we are given a CNF formula F with m clauses and
asked to determine the maximum number of clauses of F that can be satisfied by a truth
assignment. In this section, we overview results on various parameterizations of MaxSat apart
from Max-r-Sat-AA, where r is a constant (see Theorems 16 and 17 for this parameterized
problem).

6.1 MaxSat above m/2
Let us assign True to each variable of F with probability 1/2 and observe that the probability
of a clause to be satisfied is at least 1/2 and thus, by linearity of expectation, the expected
number of satisfied clauses in F is at least m/2. Thus, by the averaging argument, there
exists a truth assignment to the variables of F which satisfies at least m/2 clauses of F .

Let us denote by sat(F ) the maximum number of clauses of F that can be satisfied by
a truth assignment. The lower bound sat(F ) ≥ m/2 is tight as we have sat(H) = m/2 if
H = (x1)∧ (x̄1)∧ · · · ∧ (xm/2)∧ (x̄m/2). Consider the following parameterization of MaxSat
above tight lower bound introduced by Mahajan and Raman [41].

MaxSat-A(m/2)
Instance: A CNF formula F with m clauses (clauses may appear several times in F )
and a nonnegative integer k.
Parameter: k.
Question: sat(F ) ≥ m/2 + k?

Mahajan and Raman [41] proved that MaxSat-A(m/2) admits a kernel with at most 6k+ 3
variables and 10k clauses. Crowston et al. [15] improved this result, by obtaining a kernel
with at most 4k variables and (2

√
5 + 4)k clauses. The improved result is a simple corollary

of a new lower bound on sat(F ) obtained in [15], which is significantly stronger than the
simple bound sat(F ) ≥ m/2. We give the new lower bound below, in Theorem 34.

For a variable x in F , let m(x) denote the number of pairs of unit of clauses (x), (x̄) that
have to be deleted from F such that F has no pair (x), (x̄) any longer. Let var(F ) be the set
of all variables in F and let m̈ =

∑
x∈var(F )m(x). The following is a stronger lower bound

on sat(F ) than m/2.

I Theorem 28. For a CNF formula F , we have sat(F ) ≥ m̈/2 + φ̂(m − m̈), where φ̂ =
(
√

5− 1)/2 ≈ 0.618.

6.2 Max-r(n)-Sat-AA
Max-r(n)-Sat-AA is a generalization of Max-r-Sat-AA, where r(n) is no longer just a
constant, it depends on n. The following results for Max-r(n)-Sat-AA were obtained by
Crowston et al. [13].

I Theorem 29. Max-r(n)-Sat-AA is para-NP-complete for r(n) = dlogne.

Assuming ETH, one can prove the following stronger result.

I Theorem 30. Assuming ETH, Max-r(n)-Sat-AA is not FPT for any r(n) ≥ log logn+
φ(n), where φ(n) is any unbounded strictly increasing function of n.

Chapte r 07



194 Parameterized Constraint Satisfaction Problems: a Survey

The following theorem shows that Theorem 30 provides a bound on r(n) which is not far
from optimal.

I Theorem 31 ([13]). Max-r(n)-Sat-AA is FPT for r(n) ≤ log logn− log log logn− φ(n),
for any unbounded strictly increasing function φ(n).

6.3 Parameterizations for MaxSat with t-Satisfiable CNF Formulas
A CNF formula F is t-satisfiable if for any t clauses in F , there is a truth assignment which
satisfies all of them. It is easy to check that F is 2-satisfiable if and only if m̈ = 0 and clearly
Theorem 28 is equivalent to the assertion that if F is 2-satisfiable then sat(F ) ≥ φ̂m. The
proof of this assertion by Lieberherr and Specker [38] is quite long; Yannakakis [51] gave the
following short probabilistic proof. For x ∈ var(F ), let the probability of x being assigned
True be φ̂ if (x) is in F , 1− φ̂ if (x̄) is in F , and 1/2, otherwise, independently of the other
variables. Let us bound the probability p(C) of a clause C to be satisfied. If C contains
only one literal, then, by the assignment above, p(C) = φ̂. If C contains two literals, then,
without loss of generality, C = (x ∨ y). Observe that the probability of x assigned False is
at most φ̂ (it is φ̂ if (x̄) is in F ). Thus, p(C) ≥ 1− φ̂2. If C containes more than two literals
then it is easy to see that p(C) ≥ 1 − φ̂2. It remains to observe that 1 − φ̂2 = φ̂. Now to
obtain the bound sat(F ) ≥ φ̂m apply linearity of expectation and the averaging argument.

Note that φ̂m is an asymptotically tight lower bound: for each ε > 0 there are 2-satisfiable
CNF formulae F with sat(F ) < m(φ̂+ε) [38]. Thus, the following problem stated by Mahajan
and Raman [41] is natural.

Max-2S-Sat-A(φ̂m)
Instance: A 2-satisfiable CNF formula F with m clauses (clauses may appear several
times in F ) and a nonnegative integer k.
Parameter: k.
Question: sat(F ) ≥ φ̂m+ k?

Mahajan and Raman [41] conjectured that Max-2S-Sat-A(φ̂m) is FPT. Crowston et al. [15]
solved this conjecture in the affirmative; moreover, they obtained a kernel with at most
(7 + 3

√
5)k variables. This result is an easy corollary from a lower bound on sat(F ) given in

Theorem 34, which, for 2-satisfiable CNF formulas, is stronger than the one in Theorem 28.
The main idea of [15] is to obtain a lower bound on sat(F ) that includes the number of
variables as a factor. It is clear that for general CNF formula F such a bound is impossible.
For consider a formula containing a single clause c containing a large number of variables. We
can arbitrarily increase the number of variables in the formula, and the maximum number of
satisfiable clauses will always be 1. We therefore need a reduction rule that cuts out ‘excess’
variables. Our reduction rule is based on the notion of an expanding formula given below.
Lemma 32 and Theorem 33 show the usefulness of this notion.

A CNF formula F is called expanding if for each X ⊆ var(F ), the number of clauses
containing at least one variable from X is at least |X| [20, 50]. The following lemma and
its parts were proved by many authors, see, e.g., Fleischner et al. [20], Lokshtanov [40] and
Szeider [50].

I Lemma 32. Let F be a CNF formula and let V and C be its sets of variables and clauses.
There exists a subset C∗ ⊆ C that can be found in polynomial time, such that the formula
F ′ with clauses C \ C∗ and variables V \ V ∗, where V ∗ = var(C∗), is expanding. Moreover,
sat(F ) = sat(F ′) + |C∗|.



G. Gutin and A. Yeo 195

The following result was shown by Crowston et al. [15]. The proof is nontrivial and
consists of a deterministic algorithm for finding the corresponding truth assignment and a
detailed combinatorial analysis of the algorithm.

I Theorem 33. Let F be an expending 2-satisfiable CNF formula with n variables and m
clauses. Then sat(F ) ≥ φ̂m+ n(2− 3φ̂)/2.

Lemma 32 and Theorem 33 imply the following:

I Theorem 34. Let F be a 2-satisfiable CNF formula and let V and C be its sets of variables
and clauses. There exists a subset C∗ ⊆ C that can be found in polynomial time, such that
the formula F ′ with clauses C \ C∗ and variables V \ V ∗, where V ∗ = var(C∗), is expanding.
Moreover, we have

sat(F ) ≥ φ̂m+ (1− φ̂)m∗ + (n− n∗)(2− 3φ̂)/2,

where m = |C|, m∗ = |C∗|, n = |V | and n∗ = |V ∗|.

Let us turn now to 3-satisfiable CNF formulas. If F is 3-satisfiable then it is not hard
to check that the forbidden sets of clauses are pairs of the form {x}, {x̄} and triplets of the
form {x}, {y}, {x̄, ȳ} or {x}, {x̄, y}, {x̄, ȳ}, as well as any triplets that can be derived from
these by switching positive literals with negative literals.

Lieberherr and Specker [39] and, later, Yannakakis [51] proved the following: if F is 3-
satisfiable then sat(F ) ≥ 2

3w(C(F )). This bound is also asymptotically tight. Yannakakis [51]
gave a probabilistic proof which is similar to his proof for 2-satisfiable formulas, but requires
consideration of several cases and, thus, not as short as for 2-satisfiable formulas. For details
of his proof, see, e.g., Gutin, Jones and Yeo [24] and Jukna [33] (Theorem 20.6). Yannakakis’s
approach was extended by Gutin, Jones and Yeo [24] to prove the following theorem using a
quite complicated probabilistic distribution for a random truth assignment.

I Theorem 35. Let F be an expanding 3-satisfiable CNF formula with n variables and m
clauses. Then sat(F ) ≥ 2

3m+ ρn, where ρ(> 0.0019) is a constant.

This theorem and Lemma 32 imply the following:

I Theorem 36. Let F be a 3-satisfiable CNF formula and let V and C be its sets of variables
and clauses. There exists a subset C∗ ⊆ C that can be found in polynomial time, such that
the formula F ′ with clauses C \ C∗ and variables V \ V ∗, where V ∗ = var(C∗), is expanding.
Moreover, we have

sat(F ) ≥ 2
3m+ 1

3m
∗ + ρ(n− n∗),

where ρ(> 0.0019) is a constant, m = |C|, m∗ = |C∗|, n = |V | and n∗ = |V ∗|.

Using this theorem it is easy to obtain a linear-in-number-of-variables kernel for the
following natural analog of Max-2S-Sat-A(φ̂m), see [24] for details.

Max-3S-Sat-A( 2
3m)

Instance: A 3-satisfiable CNF formula F with m clauses and a nonnegative integer k.
Parameter: k.
Question: sat(F ) ≥ 2

3m+ k?

Now let us consider the following important parameterization of r-Sat below the tight upper
bound m:

Chapte r 07



196 Parameterized Constraint Satisfaction Problems: a Survey

r-Sat-B(m)
Instance: An r-CNF formula F with m clauses (every clause has at most r literals)
and a nonnegative integer k.
Parameter: k. Question: sat(F ) ≥ m− k?

Since Max-r-Sat is NP-hard for each fixed r ≥ 3, r-Sat-B(m) is not FPT unless P=NP.
However, the situation changes for r = 2: Razgon and O’Sullivan [48] proved that 2-Sat-
B(m) is FPT. The algorithm in [48] is of complexity O(15kkm3) and, thus, Max-2-Sat-B(m)
admits a kernel with at most 15kk clauses. Raman et al. [47] and Cygan et al. [17] designed
algorithms for 2-Sat-B(m) of runtime 9k(km)O(1) and 4k(km)O(1), respectively. Kratsch
and Wahlström [37] proved that 2-Sat-B(m) admits a randomized kernel with a polynomial
number of variables. The existence of a deterministic polynomial kernel 2-Sat-B(m) is an
open problem.

7 Ordering CSPs

In this section we will discuss recent results in the area of Ordering Constraint Satisfaction
Problems (Ordering CSPs) parameterized above average. Ordering CSPs include several well-
known problems such as Betweenness, Circular Ordering and Acyclic Subdigraph
(which is equivalent to 2-Linear Ordering). These three problems have applications in
circuit design and computational biology [10, 46], in qualitative spatial reasoning [32], and
in economics [49], respectively. Our main interest are Ordering CSPs parameterized above
average, Ordering CSPs-AA.

2-Linear Ordering-AA was already considered in Subsection 3. In the next subsection,
we give some basic definitions and results on Ordering CSPs. In Subsection 7.2, we give a
proof scheme that Betweenness-AA is fixed-parameter tractable. The proof uses SABEM
supplemented by additional approaches. In Subsection 7.3, we discuss how to combine
fixed-parameter tractability of 2-Linear Ordering-AA and Betweenness-AA to show
that 3-Linear Ordering-AA is fixed-parameter tractable. Finally, in Subsection 7.4, we
briefly discuss the recent paper of Makarychev, Makarychev and Zhou [43], where it was
proved that any Ordering CSP-AA is fixed-parameter tractable. Moreover, the authors of
[43] extended their result to a linear programming generalization of Ordering CSPs-AA.

7.1 Basic Definitions and Results
Let us define Ordering CSPs of arity 3. The reader can easily generalize it to any arity r ≥ 2
and we will do it below for Linear Ordering of arity r. Let V be a set of n variables and
let

Π ⊆ S3 = {(123), (132), (213), (231), (312), (321)}

be arbitrary. A constraint set over V is a multiset C of constraints, which are permutations
of three distinct elements of V . A bijection α : V → [n] is called an ordering of V. For an
ordering α : V → [n], a constraint (v1, v2, v3) ∈ C is Π-satisfied by α if there is a permutation
π ∈ Π such that α(vπ(1)) < α(vπ(2)) < α(vπ(3)). Thus, given Π the problem Π-CSP, is the
problem of deciding if there exists an ordering of V that Π-satisfies all the constraints. Every
such problem is called an Ordering CSP of arity 3. We will consider the maximization version
of these problems, denoted by Max-Π-CSP, parameterized above the average number of
constraints satisfied by a random ordering of V (which can be shown to be a tight bound).



G. Gutin and A. Yeo 197

Table 1 Ordering CSPs of arity 3 (after symmetry considerations).

Π ⊆ S3 Name Complexity

Π0 = {(123)} Linear Ordering-3 polynomial

Π1 = {(123), (132)} polynomial

Π2 = {(123), (213), (231)} polynomial

Π3 = {(132), (231), (312), (321)} polynomial

Π4 = {(123), (231)} NP-comp.

Π5 = {(123), (321)} Betweenness NP-comp.

Π6 = {(123), (132), (231)} NP-comp.

Π7 = {(123), (231), (312)} Circular Ordering NP-comp.

Π8 = S3 \ {(123), (231)} NP-comp.

Π9 = S3 \ {(123), (321)} Non-Betweenness NP-comp.

Π10 = S3 \ {(123)} NP-comp.

Guttmann and Maucher [30] showed that there are in fact only 13 distinct Π-CSP’s of
arity 3 up to symmetry, of which 11 are nontrivial. They are listed in Table 1 together with
their complexity. Note that if Π = {(123), (321)} then we obtain the Betweenness problem
and if Π = {(123)} then we obtain 3-Linear Ordering.

Gutin et al. [23] proved that all 11 nontrivial Max-Π-CSP problems are NP-hard (even
though four of the Π-CSP are polynomial).

Now observe that given a variable set V and a constraint multiset C over V , for a random
ordering α of V , the probability of a constraint in C being Π-satisfied by α equals |Π|6 . Hence,
the expected number of satisfied constraints from C is |Π|6 |C|, and thus there is an ordering
α of V satisfying at least |Π|6 |C| constraints (and this bound is tight). A derandomization
argument leads to |Πi|

6 -approximation algorithms for the problems Max-Πi-CSP [8]. No
better constant factor approximation is possible assuming the Unique Games Conjecture [8].

We will study the parameterization of Max-Πi-CSP above tight lower bound:

Π-Above Average (Π-AA)
Input: A finite set V of variables, a multiset C of ordered triples of distinct variables

from V and an integer κ ≥ 0.
Parameter: κ.
Question: Is there an ordering α of V such that at least |Π|

6 |C|+ κ constraints of C
are Π-satisfied by α?

In [23] it is shown that all 11 nontrivial Π-CSP-AA problems admit kernels with O(κ2)
variables. This is shown by first reducing them to 3-Linear Ordering-AA (or 2-Linear
Ordering-AA), and then finding a kernel for this problem, which is transformed back to
the original problem. The first transformation is easy due to the following:

I Proposition 37 ([23]). Let Π be a subset of S3 such that Π /∈ {∅,S3}. There is a
polynomial time transformation f from Π-AA to 3-Linear Ordering-AA such that an
instance (V, C, k) of Π-AA is a Yes-instance if and only if (V, C0, k) = f(V, C, k) is a
Yes-instance of 3-Linear Ordering-AA.

Proof. From an instance (V, C, k) of Π-AA, construct an instance (V, C0, k) of 3-Linear

Chapte r 07



198 Parameterized Constraint Satisfaction Problems: a Survey

Ordering-AA as follows. For each triple (v1, v2, v3) ∈ C, add |Π| triples (vπ(1), vπ(2), vπ(3)),
π ∈ Π, to C0.

Observe that a triple (v1, v2, v3) ∈ C is Π-satisfied if and only if exactly one of the triples
(vπ(1), vπ(2), vπ(3)), π ∈ Π, is satisfied by 3-Linear Ordering. Thus, |Π|6 |C|+ k constraints
from C are Π-satisfied if and only if the same number of constraints from C0 are satisfied by
3-Linear Ordering. It remains to observe that |Π|6 |C|+k = 1

6 |C0|+k as |C0| = |Π| · |C|. J

r-Linear Ordering (r ≥ 2) can be defined as follows. An instance of such a problem
consists of a set of variables V and a multiset of constraints, which are ordered r-tuples of
distinct variables of V (note that the same set of r variables may appear in several different
constraints). The objective is to find an ordering α of V that maximizes the number of
constraints whose order in α follows that of the constraint (we say that these constraints are
satisfied). It is well-known that 2-Linear Ordering is NP-hard (it follows immediately
from the fact proved by Karp [34] that the feedback arc set problem is NP-hard). It is easy
to extend this hardness result to all r-Linear Ordering problems (for each fixed r ≥ 2).
Note that in r-Linear Ordering Above Average (r-Linear Ordering-AA), given a
multiset C of constraints over V we are to decide whether there is an ordering of V that
satisfies at least |C|/r! + κ constraints.

7.2 Betweenness-AA
Let V = {v1, . . . , vn} be a set of variables and let C be a multiset of m betweenness
constraints of the form (vi, {vj , vk}). For an ordering α : V → [n], a constraint (vi, {vj , vk})
is satisfied if either α(vj) < α(vi) < α(vk) or α(vk) < α(vi) < α(vj). In the Betweenness
problem, we are asked to find an ordering α satisfying the maximum number of constraints
in C. Betweenness is NP-hard as even the problem of deciding whether all betweenness
constraints in C can be satisfied by an ordering α is NP-complete [46].

Let α : V → [n] be a random ordering and observe that the probability of a constraint in
C to be satisfied is 1/3. Thus, the expected number of satisfied constraints is m/3. A triple
of betweenness constraints of the form (v, {u,w}), (u, {v, w}), (w, {v, u}) is called a complete
triple. Instances of Betweenness consisting of complete triples demonstrate that m/3 is a
tight lower bound on the maximum number of constraints satisfied by an ordering α. Thus,
the following parameterization is of interest:

Betweenness Above Average (Betweenness-AA)
Instance: A multiset C of m betweenness constraints over variables V and an integer
κ ≥ 0.
Parameter: The integer κ.
Question: Is there an ordering α : V → [n] that satisfies at least m/3 + κ constraints
from C?

In order to simplify instances of Betweenness-AA we introduce the following reduction
rule.

I Reduction Rule 4. If C has a complete triple, delete it from C. Delete from V all variables
that appear only in the deleted triple.

Benny Chor’s question (see [44, p. 43]) to determine the parameterized complexity
of Betweenness-AA was solved by Gutin, Kim, Mnich and Yeo [25] who proved that
Betweenness-AA admits a kernel with O(κ2) variables and constraints (in fact, [25]



G. Gutin and A. Yeo 199

considers only the case when C is a set, not a multiset, but the proof for the general case is
the same [23]). Below we briefly describe the proof in [25].

Suppose we define a random variable X(α) just as we did for 2-Linear Ordering.
However such a variable is not symmetric and therefore we would need to use Lemma 7 on
X(α). The problem is that α is a permutation and in Lemma 7 we are looking at polynomials,
f = f(x1, x2 . . . , xn), over variables x1, . . . , xn each with domain {−1, 1}. In order to get
around this problem the authors of [25] considered a different random variable g(Z), which
they defined as follows.

Let Z = (z1, z2, . . . , z2n) be a set of 2n variables with domain {−1, 1}. These 2n
variables correspond to n variables z∗1 , z∗2 , . . . , z∗n such that z2i−1 and z2i form the binary
representation of z∗i . That is, z∗i is 0, 1, 2 or 3 depending on the value of (z2i−1, z2i) ∈
{(−1,−1), (−1, 1), (1,−1), (1, 1)}. An ordering: α : V → [n] complies with Z if for every
α(i) < α(j) we have z∗i ≤ z∗j . We now define the value of g(Z) as the average number of
constraints satisfied over all orderings which comply with Z. Let f(Z) = g(Z)−m/3, and
by Lemma 38 we can now use Lemma 7 on f(Z) as it is a polynomial over variables whose
domain is {−1, 1}. We consider variables zi as independent uniformly distributed random
variables and then f(Z) is also a random variable. In [25] it is shown that the following
holds if Reduction Rule 4 has been exhaustively applied.

I Lemma 38. The random variable f(Z) can be expressed as a polynomial of degree 6. We
have E[f(Z)] = 0. Finally, if f(Z) ≥ κ for some Z ∈ {−1, 1}2n then the corresponding
instance of Betweenness-AA is a Yes-instance.

I Lemma 39 ([23]). For an irreducible (by Reduction Rule 4) instance we have E[f(Z)2] ≥
11
768m.

I Theorem 40 ([23]). Betweenness-AA has a kernel of size O(κ2).

Proof. Let (V, C) be an instance of Betweenness-AA. We can obtain an irreducible
instance (V ′, C′) such that (V, C) is a Yes-instance if and only if (V ′, C′) is a Yes-instance
in polynomial time. Let m′ = |C′| and let f(Z) be the random variable defined above. Then
f(Z) is expressible as a polynomial of degree 6 by Lemma 38; hence it follows from Lemma 5
that E[f(Z)4] ≤ 236E[f(Z)2]2. Consequently, f(Z) satisfies the conditions of Lemma 4,
from which we conclude that P

(
f(Z) > 1

4·218

√
11
768m

′
)
> 0, by Lemma 39. Therefore, by

Lemma 38, if 1
4·218

√
11
768m

′ ≥ κ then (V ′, C′) is a Yes-instance for Betweenness-AA.
Otherwise, we have m′ = O(κ2). This concludes the proof of the theorem. J

By deleting variables not appearing in any constraint, we obtain a kernel with O(κ2)
constraints and variables.

7.3 3-Linear Ordering-AA
In this subsection, we will give a short overview of the proof in [23] that 3-Linear Ordering
has a kernel with at most O(κ2) variables and constraints.

Unfortunately, approaches which we used for the 2-Linear Ordering-AA problem and
the Betweenness-AA problem do not work for this problem. In fact, if we wanted to
remove subsets of constraints where only the average number of constraints can be satisfied
such that after these removals we are guaranteed to have more than the average number of
constraints satisfied, then, in general case, an infinite number of reduction rules would be
needed [23].

Chapte r 07



200 Parameterized Constraint Satisfaction Problems: a Survey

However, we can reduce an instance of 3-Linear Ordering-AA to instances of
Betweenness-AA and 2-Linear Ordering-AA as follows. With an instance (V, C)
of 3-Linear Ordering-AA, we associate an instance (V,B) of Betweenness-AA and two
instances (V,A′) and (V,A′′) of 2-Linear Ordering-AA such that if Cp = (u, v, w) ∈ C,
then add Bp = (v, {u,w}) to B, a′p = (u, v) to A′, and a′′p = (v, w) to A′′.

Let α be an ordering of V and let dev(V, C, α) denote the number of constraints satisfied
by α minus the average number of satisfied constraints in (V, C), where (V, C) is an instance
of 3-Linear Ordering-AA, Betweenness-AA or 2-Linear Ordering-AA.

I Lemma 41 ([23]). Let (V,C, κ) be an instance of 3-Linear Ordering-AA and let α be
an ordering of V . Then

dev(V, C, α) = 1
2 [dev(V,A′, α) + dev(V,A′′, α) + dev(V,B, α)] .

Therefore, we want to find an ordering satisfying as many constraints as possible from both of
our new type of instances (note that we need to use the same ordering for all the problems).

Suppose we have a No-instance of 3-Linear Ordering-AA. As above, we replace it by
three instances of Betweenness-AA and 2-Linear Ordering-AA. Now we apply the
reduction rules for Betweenness-AA and 2-Linear Ordering-AA introduced above as
well as the proof techniques described in the previous sections in order to show that the total
number of variables and constraints left in any of our instances is bounded by O(κ2). We then
transform these reduced instances back into an instance of 3-Linear Ordering-AA as
follows. If {v, {u,w}} is a Betweenness constraint then we add the 3-Linear Ordering-
AA constraints (u, v, w) and (w, v, u) and if (u, v) is an 2-Linear Ordering-AA constraint
then we add the 3-Linear Ordering-AA constraints (u, v, w), (u,w, v) and (w, u, v) (for
any w ∈ V ). As a result, we obtain a kernel of 3-Linear Ordering-AA with at most O(κ2)
variables and constraints.

This result has been partially improved by Kim and Williams [36] who showed that
3-Linear Ordering-AA has a kernel with at most O(κ) variables.

7.4 Ordering CSPs AA
Recall that an Ordering CSP of arity r is defined by a set V = {x1, . . . , xn} of variables and
set of constraints. Each constraint is a disjunction of clauses of the form xi1 < xi2 < · · · < xir .
A linear ordering α of V satisfies such a constraint if one of the clauses in the disjunction
agrees with α.

Gutin, Iersel, Mnich and Yeo [23] conjectured that all Ordering CSPs parameterized
above average are fixed-parameter tractable. One of the difficulties in proving this conjecture
is that, as we mentioned in the previous subsection, we may need an infinite number of
reduction rules. The approach of the previous section will not work as it is designed for the
case when some Ordering CSPs of the same arity have already proved to be fixed-parameter
tractable. Recently, Makarychev, Makarychev and Zhou [43] proved the conjecture. Their
proof uses SABEM together the idea to define variables xi not on a discrete domain, but
on the continuous interval [−1, 1]. Such a domain allows to order all the variables with ties
being almost impossible.

Makarychev, Makarychev and Zhou [43] also use the Efron-Stein decomposition instead
of the (standard) Fourier Analysis on [−1,+1]n since “we have no control over the Fourier
coefficients of the functions we need to analyze.” For terminology and results on the Efron-
Stein decomposition, see [43] and for a more detailed account [45]. Here we will only give
some very basic definitions. Let (Ω, µ) be a probability space and consider the product



G. Gutin and A. Yeo 201

probability space (Ωn, µn). Let f : Ωn → R be a function (random variable). Informally, the
Efron-Stein decomposition of f is f =

∑
S⊆[n] fS , where fS depends only on variables xi,

i ∈ S. The functions fS have some very useful properties such as E[fSfT ] = 0 if S 6= T (this
implies that the variance of f equals the sum of the variances of fS in the decomposition).
To use the Efron-Stein decomposition for SABEM, Makarychev, Makarychev and Zhou [43]
obtained the following Hypercontractive Inequality for functions defined on arbitrary product
probability spaces:

I Theorem 42. Consider f ∈ L2(Ωn, µn). Let f =
∑
S⊆[n] fS be the Efron-Stein decomposi-

tion of f and let d = max{t : fS 6= 0 and |S| = d}. Assume that for every S1, S2, S3, S4,

E[fS1fS2fS3fS4 ] ≤ C(E[f2
S1

]E[f2
S1

]E[f2
S1

]E[f2
S1

])1/2 . (3)

Then

E[f(X1, . . . , Xn)4] ≤ 81dCE[f(X1, . . . , Xn)2]2 . (4)

Note that Condition (3) is usually much easier to verify than Inequality (4 [43].
The idea to use a continuous domain allows one to define various systems of linear

inequalities rather than just those of the form xi1 < xi2 < · · · < xir . For example, we
can require that x4 is to the left of the average of x1, x2 and x3, which corresponds to the
system 3x4 − x1 − x2 − x3 < 0. Makarychev, Makarychev and Zhou [43] define the following
generalization of Ordering CSPs. An (r, b)-LP CSP is defined by a set V = {x1, . . . , xn} of
variables taking values in [−1, 1] and set of constraints. Each constraint is a disjunction of
clauses of the form Ax < c, where A is a matrix with integral entries in the range [−b, b]
and there are at most r non-zero columns in A, and c is a vector with integral entries in the
range [−b, b]. The aim is to assign distinct real values to variables xi so as to maximize the
number of satisfied constraints. Makarychev, Makarychev and Zhou [43] proved that every
(r, b)-LP CSP above average is also fixed-parameter tractable.

8 Two Open Problems

Many results described in the previous sections were obtained in order to solve open problems.
Two problems stated a while ago remain unsolved. The first is whether r-Sat-B(m), usually
called Almost 2-Sat, admits a (deterministic) polynomial kernel. It seems it widely believed
to be the case, but no proof is obtained. The second is whether Max-2-Lin-AA admits
a polynomial kernel (in the number of constraints). For the second problem, the possible
answer is unclear.

References
1 N. Alon, Voting paradoxes and digraphs realizations, Advances in Applied Math. 29:126–

135, 2002.
2 N. Alon, G. Gutin, E. J. Kim, S. Szeider, and A. Yeo, Solving MAX-r-SAT above a tight

lower bound. Algorithmica 61(3):638-655, 2011.
3 N. Alon, G. Gutin and M. Krivelevich. Algorithms with large domination ratio. J. Algo-

rithms 50:118–131, 2004.
4 H.L. Bodlaender, R.G. Downey, M.R. Fellows, and D. Hermelin, On problems without

polynomial kernels. J. Comput. Syst. Sci. 75(8):423–434, 2009.
5 H.L. Bodlaender, S. Thomassé, and A. Yeo, Kernel bounds for disjoint cycles and disjoint

paths. Theor. Comput. Sci. 412(35): 4570–4578, 2011.

Chapte r 07



202 Parameterized Constraint Satisfaction Problems: a Survey

6 A. Bonami, Étude des coefficients de Fourier des fonctions de Lp(G). Ann. Inst. Fourier,
20(2):335–402, 1970.

7 L. Cai and J. Chen, On fixed-parameter tractability and approximation of NP optimization
problems, J. Comput. Syst. Sci. 54:465–474, 1997.

8 M. Charikar, V. Guruswami, and R. Manokaran, Every permutation CSP of arity 3 is
approximation resistant. Proc. Computational Complexity 2009, 62–73.

9 X. Chen and Y. Zhou, Parameterized Algorithms for Constraint Satisfaction Problems
Above Average with Global Cardinality Constraints. Manuscript

10 B. Chor and M. Sudan. A geometric approach to betweenness. SIAM J. Discrete Math.,
ll(4):511-523, 1998.

11 R. Crowston, M. Fellows, G. Gutin, M. Jones, F. Rosamond, S. Thomassé and A. Yeo,
Satisfying more than half of a system of linear equations over GF(2): A multivariate
approach. J. Comput. Syst. Sci. 80(4): 687-696 (2014).

12 R. Crowston, G. Gutin, M. Jones, E. J. Kim, and I. Ruzsa. Systems of linear equations over
F2 and problems parameterized above average. Proc. SWAT 2010, Lect. Notes Comput.
Sci. 6139: 164–175, 2010.

13 R . Crowston, G. Gutin, M. Jones, V. Raman, and S. Saurabh, Parameterized Complexity
of MaxSat Above Average. Theor. Comput. Sci. 511:77-84, 2013.

14 R. Crowston, G. Gutin, M. Jones and A. Yeo, Parameterized Complexity of Satisfying
Almost All Linear Equations over F2, Theory Comput. Syst. 52(4):719–728, 2013.

15 R. Crowston, G. Gutin, M. Jones, and A. Yeo, A new lower bound on the maximum number
of satisfied clauses in Max-SAT and its algorithmic applications. Algorithmica 64(1): 56-68
(2012).

16 M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer-Verlag, 2015.

17 M. Cygan, M. Pilipczuk, M. Pilipczuk, and J.O. Wojtaszczyk, On Multiway Cut parame-
terized above lower bounds. ACM Trans. Comput. Theory 5(1):1–11, 2013.

18 R.G. Downey and M.R. Fellows, Fundamentals of Parameterized Complexity. Springer,
2013.

19 H. Fernau, F.V. Fomin, D. Lokshtanov, D. Raible, S. Saurabh, and Y. Villanger, Kernel(s)
for problems with no kernel: On out-trees with many leaves. Proc. STACS 2009, 421–432.

20 H. Fleischner, O. Kullmann and S. Szeider, Polynomial-time recognition of minimal unsatis-
fiable formulas with fixed clause-variable difference. Theoret. Comput. Sci., 289(1):503–516,
2002.

21 V. Guruswami, J. Håstad, R. Manokaran, P. Raghavendra, and M. Charikar, Beating the
random ordering is hard: Every ordering CSP is approximation resistant. SIAM J. Comput.
40(3): 878–914 (2011).

22 V. Guruswami, R. Manokaran, and P. Raghavendra, Beating the random ordering is hard:
Inapproximability of maximum acyclic subgraph. Proc. FOCS 2008, 573–582.

23 G. Gutin, L. van Iersel, M. Mnich, and A. Yeo, Every ternary permutation constraint
satisfaction problem parameterized above average has a kernel with a quadratic number of
variables, J. Comput. Syst. Sci., in press, doi:10.1016/j.jcss.2011.01.004.

24 G. Gutin, M. Jones, D. Scheder, and A. Yeo, A New Bound for 3-Satisfiable MaxSat and
its Algorithmic Application. Inf. Comput. 231:117-124, 2013.

25 G. Gutin, E. J. Kim, M. Mnich, and A. Yeo. Betweenness parameterized above tight lower
bound. J. Comput. Syst. Sci., 76:872–878, 2010.

26 G. Gutin, E. J. Kim, S. Szeider, and A. Yeo. A probabilistic approach to problems param-
eterized above tight lower bound. J. Comput. Syst. Sci. 77: 422–429, 2011.

27 G. Gutin and A. Yeo, Constraint satisfaction problems parameterized above or below tight
bounds: a survey. In Fellows Festschrift, Lect. Notes Comput. Sci. 7370 (2012), 257–286.

http://dx.doi.org/10.1016/j.jcss.2011.01.004


G. Gutin and A. Yeo 203

28 G. Gutin and A. Yeo, Hypercontractive inequality for pseudo-boolean functions of bounded
Fourier width. Discrete Appl. Math. 160 (2012), 2323–2328.

29 G. Gutin and A. Yeo, Note on maximal bisection above tight lower bound. Information
Proc. Letters. 110 (2010) 966–969.

30 W. Guttmann and M. Maucher. Variations on an ordering theme with constraints. Proc.
4th IFIP International Conference on Theoretical Computer Science-TCS 2006, pp. 77–90,
Springer.

31 J. Håstad, Some optimal inapproximability results. J. ACM 48: 798–859, 2001.
32 A. Isli and A.G. Cohn. A new approach to cyclic ordering of 2D orientations using ternary

relation algebras. Artif. Intelligence, 122(1-2):137–187, 2000.
33 S. Jukna, Extremal Combinatorics With Applications in Computer Science, Springer-

Verlag, 2001.
34 R.M. Karp, Reducibility among combinatorial problems, Proc. Complexity of Computer

Computations, Plenum Press, 1972.
35 S. Khot, On the power of unique 2-prover 1-round games. Proc. STOC 2002, 767–775.
36 E. J. Kim and R. Williams, Improved parameterized algorithms for constraint satisfaction.

Proc. IPEC 2011, Lect. Notes Comput. Sci. 7112 (2011) 118–131.
37 S. Kratsch and M. Wahlström, Representative Sets and Irrelevant Vertices: New Tools for

Kernelization. In 54th Annual Symposium on Foundations of Computer Science (FOCS),
450–459, 2012.

38 K. J. Lieberherr and E. Specker, Complexity of partial satisfaction. J. ACM, 28(2):411-421,
1981.

39 K. J. Lieberherr and E. Specker, Complexity of partial satisfaction, II. Tech. Report 293,
Dept. of EECS, Princeton Univ., 1982.

40 D. Lokshtanov, New Methods in Parameterized Algorithms and Complexity, PhD thesis,
Bergen, 2009.

41 M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat and Max-
Cut. J. Algorithms, 31(2):335–354, 1999. Preliminary version in Electr. Colloq. Comput.
Complex. (ECCC), TR-97-033, 1997.

42 M. Mahajan, V. Raman, and S. Sikdar. Parameterizing above or below guaranteed values.
J. Computer System Sciences, 75(2):137–153, 2009. Preliminary version in Proc. IWPEC
2006, Lect. Notes Comput. Sci. 4169: 38–49, 2006.

43 K. Makarychev, Y. Makarychev and Y. Zhou, Satisfiability of Ordering CSPs Above Aver-
age Is Fixed-Parameter Tractable. In FOCS 2015, 975–993.

44 R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
45 R. O’Donnell, Analysis of Boolean Functions, Cambridge UP, 2014.
46 J. Opatrný, Total ordering problem. SIAM J. Comput., 8: 111–114, 1979.
47 V. Raman, M. S. Ramanujan and S. Saurabh, Paths, Flowers and Vertex Cover. Proc. ESA

2011, Lect. Notes Comput. Sci. 6942: 382–393, 2011.
48 I. Razgon and B. O’Sullivan. Almost 2-SAT is fixed-parameter tractable. J. Comput. Syst.

Sci. 75(8):435–450, 2009.
49 G. Reinelt, The linear ordering problem: Algorithms and applications, Heldermann Verlag,

1985.
50 S. Szeider, Minimal unsatisfiable formulas with bounded clause-variable difference are fixed-

parameter tractable. J. Comput. Syst. Sci., 69(4):656–674, 2004.
51 M. Yannakakis, On the approximation of maximum satisfiability. J. Algorithms, 17:475–502,

1994.

Chapte r 07





Counting Constraint Satisfaction Problems∗

Mark Jerrum

School of Mathematical Sciences, Queen Mary, University of London, London, UK
m.jerrum@qmul.ac.uk

Abstract
This chapter surveys counting Constraint Satisfaction Problems (counting CSPs, or #CSPs) and
their computational complexity. It aims to provide an introduction to the main concepts and
techniques, and present a representative selection of results and open problems. It does not cover
holants, which are the subject of a separate chapter.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation algorithms, Computational complexity, Constraint satis-
faction problems, Counting problems, Partition functions

Digital Object Identifier 10.4230/DFU.Vol7.15301.205

1 Introduction

In this chapter, we shall be working within the usual CSP framework, or natural extensions
of it, but our interest will be in counting assignments that satisfy all the constraints, rather
than just determining whether one exists. We can make a swift entry into the topic by
minimally adapting the classical CSP framework. Having done this, we shall briefly discuss the
limitations of this simple-minded approach, and how the model can be refined to encompass
a wider range of situations.

A Constraint Satisfaction Problem (CSP) typically has a finite domain D, which we
identify with {0, . . . , q − 1}, or possibly {1, . . . , q}, for some positive integer q. Keeping
close to classical decision CSPs, a constraint language Γ is a set of relations of various
arities on D. Given a finite constraint language Γ, an instance of #CSP(Γ), the counting
CSP with constraint language Γ, is specified by a set of variables X = {x1, . . . , xn} and a
set C = {(R1,x1), . . . , (Rm,xm)} of constraints. Each constraint is a pair: a relation Ri ∈ Γ
of some arity k, and a scope xi = (xsi,1 , . . . , xsi,k

), which is a k-tuple of variables from X.
An assignment σ is a mapping from X to D. The assignment σ is said to be satisfying, or to
satisfy the instance (X,C), if the scope of every constraint is mapped to a tuple that is in
the corresponding relation, that is to say, σ satisfies the formula

∧m
i=1(σ(xi) ∈ Ri), where

σ(xi) = (σ(xsi,1), . . . , σ(xsi,k
)).

Given an instance (X,C) of a CSP with constraint language Γ, the decision problem
CSP(Γ) asks us to determine whether any assignment σ exists that satisfies (X,C). The
counting problem #CSP(Γ) asks us to determine the number of assignments that satisfy
(X,C).

By varying the constraint language Γ we obtain infinite families of decision problems
CSP(Γ) and counting problems #CSP(Γ). We wish to classify these problems according to
their computational complexity. A simple observation is that the counting CSP cannot be
easier than its decision twin, but can be harder. For example, consider the binary relation on

∗ This work was partially supported by the EPSRC grant EP/N004221/1.

© Mark. Jerrum;
licensed under Creative Commons License BY

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný; pp. 205–231

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol7.15301.205
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3


206 Counting Constraint Satisfaction Problems

{0, 1} defined by NAND = {(0, 0), (0, 1), (1, 0)}, and the constraint language Γ = {NAND}
consisting of this single relation. Since the relation NAND is symmetric, we can view an
instance of CSP(Γ) or #CSP(Γ) as an undirected graph G whose vertices represent variables
and whose edges represent scopes. The decision problem CSP(Γ) asks whether G contains
an independent set; this decision problem is trivial, since every graph has the empty set of
vertices as an independent set. In contrast, #CSP(Γ) is the problem of counting independent
sets in G, which is #P-complete. As we shall see, even estimating the number of independent
sets in G within relative error 1± ε is computational intractable, assuming RP 6= NP.

Many of the motivating examples for counting CSPs come from statistical physics.
Variables represent states of atoms, say, and constraints represent interactions between pairs,
triples, etc., of atoms. These interactions are not usually “hard” constraints that can be
modelled by relations. Because of this, even more than in the case of valued CSPs (VCSPs),
there is a strong motivation to extend the above setting for counting CSPs to include weights.
With this in mind, we replace the set Γ of relations by a set of functions F . Each function
f ∈ F is of the form f : Dk → R, where R is a commutative semiring: common choices for R
are C, R, R≥0, or some computationally tractable subrings of these, such as Q or the algebraic
reals. An instance of a (weighted) counting CSP is specified by a set of variables X and a
collection of functional “constraints”

{
(f1,x1), . . . , (fm,xm)

}
, where fi ∈ F is a function of

arity k, and xi = (xsi,1 , . . . , xsi,k
) is a scope. Then the required output for the counting CSP

is the quantity

Z(X,C) =
∑

σ:X→D

m∏
i=1

fi(σ(xi)).

Relative to usual decision CSPs we have replaced relations by functions, conjunction by
multiplication and existential quantification by summation. This is a strict extension of
classical decision CSPs, which we can recover by setting R to be the semiring ({0, 1},∨,∧).
Even VCSPs can be viewed in this light by taking R = (R≥0,min,+). However, although
some techniques can be traded between these CSP variants, they maintain strong identities
of their own.

There is already an extensive body of work on counting CSPs, and it is not possible
to cover all of it here. The most significant omission is surely holants, which are, roughly
speaking, read-twice counting CSPs. Holants generalise counting CSPs; for example, the
generating function of perfect matchings in a graph (the dimer model in statistical physics)
can be expressed as a holant, but not as a counting CSP. Holants have a special flavour and
an extensive literature of their own, and are the subject of a separate chapter in this volume.

In deciding how to organise the material in this survey, a number of different attributes
can be taken into account. CSPs on a two-element domain have a special prominence and are
often easier to deal with. The same is true of conservative CSPs in which unary functions are
given free. Bijunctive CSPs (all functions in F have arity at most 2), and more specifically
CSPs with one symmetric binary function are not only potentially easier to handle, but
have a particular importance because of their connection with spin models in statistical
physics. However, it seems to me that the clearest division in terms of the flavour of the
results and the techniques employed is between exact and approximate computation. I have
therefore decided to make this the high level split. Within these two parts, the material will
be organised as far as is possible into special cases, such as Boolean, conservative, partition
functions, etc.



M. Jerrum 207

2 Exact Computation

A combinatorial (i.e., unweighted) counting problem specifies a function Σ∗ → N that maps
problem instances, encoded over an alphabet Σ, to natural numbers. A function f : Σ∗ → N
is in the complexity class #P if there exists a nondeterministic Turing machine M such
that, for all x ∈ Σ∗, the number of accepting computations of M on input x ∈ Σ∗ is equal
to f(x). The relative complexity of counting problems is customarily investigated using
Turing reductions. Thus, a problem f is said to be #P-hard if every problem g ∈ #P is
polynomial-time Turing reducible to f . If, in addition, f ∈ #P, then the problem f is
said to be #P-complete. It is clear that #CSP(Γ) is in #P for any finite set of relations Γ,
since we can construct a Turing machine M that, given an instance (X,C) of #CSP(Γ),
nondeterministically chooses an assignment σ : X → D to the variables X, and accepts if all
constraints C are satisfied by σ. The complexity class #P was introduced by Valiant, who
also made the initial exploration of the phenomenon of #P-completeness [54].

To make sense of a counting CSP with real or complex weights as a computational
problem, we need to restrict the real or complex numbers to some suitable subfield, say
rational, algebraic or polynomial-time computable. A weighted counting CSP is no longer
a member of #P, for the banal reason that it does not in general produce integer outputs.
Nevertheless, at least if we restrict attention to finite sets of functions F taking rational or
algebraic values, it will be the case that #CSP(F) ∈ FP#P, i.e., that #CSP(F) is solvable
by a polynomial-time deterministic Turing machine with a #P-oracle. Also, we can still
expect #CSP(F) to be #P-hard in many cases, thus locating the computational complexity
up to polynomial-time Turing reductions. For some comments on the complexity of counting
problems with rational weights (in the context of the Tutte polynomial) see [37]. We will
ignore the issue of representing real and complex numbers in the remainder of the survey.

2.1 Boolean #CSPs
Just as with decision CSPs, the first step historically in the exploration of counting CSPs
was the resolution of the Boolean case. This was achieved by Creignou and Hermann [15].
It turns out to be helpful to identify the 2-element domain D with the 2-element field F2.
Then we can say that a relation R ⊆ {0, 1}k is affine if and only if it is the solution set to a
system of linear equations over F2.

I Theorem 1. Let Γ be a finite set of relations on the domain {0, 1}. If every relation in Γ
is affine then #CSP(Γ) is in FP; otherwise #CSP(Γ) is #P-complete.

This result is pessimistic when compared to Schaefer’s dichotomy for classical (decision)
CSPs. Recall that a relation is bijunctive if it is equivalent to a conjunction of clauses with at
most two literals, 0-valid (respectively, 1-valid) if it is empty or contains the all-0 (respectively,
all-1) tuple, and Horn (respectively, dual-Horn) if it is equivalent to a conjunction of Horn
(respectively, dual-Horn) clauses. Any of the conditions affine, bijunctive, 0/1-valid, Horn
or dual-Horn is sufficient to ensure tractability of the decision problem. For counting, only
affine will do. The constraint language Γ = {IMP} consisting solely of the implies relation
IMP = {(0, 0), (0, 1), (1, 1)} neatly illustrates the point: IMP is bijunctive, 0-valid, 1-valid,
Horn and dual-Horn and yet #CSP(Γ) is #P-complete, being essentially equivalent to
counting downsets in a partial order [51].

In broad brushstrokes, Creignou and Hermann’s proof of Theorem 1 runs as follows.
Denote by OR the relation OR = {(0, 1), (1, 0), (1, 1)}. If Γ is affine then any instance of
#CSP(Γ) defines an affine relation. Thus the set of solutions to the instance (X,C) forms

Chapte r 08



208 Counting Constraint Satisfaction Problems

an affine subspace of FX2 , whose dimension d can be computed by standard linear algebra
techniques. The required output for the instance is then 2d. If Γ is not affine, then one of the
relations NAND, OR or IMP can (in a suitable sense) be implemented in terms of relations
in Γ. Since all of #CSP({NAND}), #CSP({OR}) and #CSP({IMP}) are #P-complete, this
completes the proof. It is an interesting exercise to translate the proof into the language
of clones and Post’s lattice, and also an instructive one, as it hints at what survives of the
universal algebra approach, and what does not, in the passage from decision to counting.
We’ll sketch how this works once suitable concepts and notation have been introduced.

The next step is to add positive real weights. So now F is a finite set of functions of
the form {0, 1}k → R≥0 (with the arity k possibly varying), and we are interested in the
complexity of #CSP(F). A dichotomy similar to Theorem 1 continues to hold. Denote by P
the set of all functions that can be expressed as a product of nullary and unary functions,
binary equality functions and binary disequality functions; these functions are said to be
of product type. Denote by A the set of functions whose support is an affine relation, and
whose range is a subset of {0, b} for some b ∈ R≥0; these functions are said to be pure affine.
In other words, to get a pure affine function we interpret an affine relation as a 0,1-function,
then multiply that function by a positive constant. Dyer, Goldberg and Jerrum [21] show
that #CSP(F) is in FP if F ⊂ P or F ⊂ A. In all other cases, #CSP(F) is #P-hard.

Notice that the addition of non-negative real weights did not significantly change the
statement of the dichotomy, only its proof. The first indication that something new and
interesting happens when we extend the domain to negative real numbers comes with the
following example. Denote by H2 : {0, 1}2 → R the function defined by H2(x, y) = −1 if
x = y = 1 and H2(x, y) = +1 otherwise. We can interpret #CSP({H2}) as the problem of
counting induced subgraphs of a graph G which have an even (or odd) number of edges. To
see this, view an instance (X,C) of #CSP({H2}) as an undirected graph G, with vertex
set X and with edges determined by the scopes of the constraints in C. An assignment to
variables in X can be interpreted as the indicator function of a vertex subset U ⊆ V (G) of
G. If the subgraph G[U ] induced by U has as even (respectively, odd) number of edges then
it contributes an additive +1 (respectively, −1) to the solution of the instance (X,C). Given
that the total number of induced subgraphs is 2|V (G)|, the solution to the counting CSP
easily yields the number of induced subgraphs with an even (or odd) number of edges.

It transpires that #CSP({H2}) ∈ FP. As we saw, the required output for an instance
(X,C) is a sum of 2|X| terms, each of them ±1. Letting X = {x1, . . . , xn}, consider the
quadratic form over F2 defined by Q(X) =

∑
{i,j}∈S xixj , where S is the set of all scopes

of constraints in C. Note that Q(X) = 0 if the assignment to variables corresponds to a
+1 term and Q(X) = 1 otherwise. So the number of positive terms in the sum is equal to
the number of solutions to Q(X) = 0, and once we know the number of positive terms, we
know the sum itself. Now any quadratic form over F2 is equivalent under linear substitutions
of variables to a quadratic form over a possibly smaller number of variables, in canonical
form [48, Thm 6.30]. This canonical form allows easy calculation of the number of solutions.
This tractable example was first noted in the context of counting CSPs by Goldberg, Grohe,
Jerrum and Thurley [35], and it, and others like it, substantially complicate the classification
programme when negative or complex weights are involved.

Nevertheless, the challenges were incrementally overcome, and the Boolean #CSP di-
chotomy was extended to arbitrary real weights by Bulatov, Dyer, Goldberg, Jalsenius and
Richerby [3], and then extended further to arbitrary complex weights by Cai, Lu and Xia [13].
Let A denote the set of complex functions f(x1, . . . , xk) that are the product of a pure affine
function (defined as above, but with b ∈ C now a complex number) and a certain rotation



M. Jerrum 209

ω(x1, . . . , xk), which takes values in the set of fourth roots of unity. Specifically, identify the
Boolean domain with the field F2, and denote by x′ the vector (x1, . . . , xk, 1) ∈ Fk+1

2 of argu-
ments to f , extended to the right by the constant 1. Then there are vectors a1, . . . ,am ∈ Fk+1

2 ,
such that the value of the rotation ω(x1, . . . , xk) is given by iL1(x′)+L2(x′)+···+Ln(x′), where
i =
√
−1, and each Lj(x′) is the indicator function for aj · x′ = 1. Note that the dot product

is computed over F2, whereas the sum L1(x′) + L2(x′) + · · ·+ Ln(x′) is computed over Z
or, equivalently, over Z4. This completes the definition of A. As before let P be the set of
all functions which can be expressed as a product of nullary and unary functions, binary
equality functions and binary disequality functions (now extended to complex functions).
Cai, Lu and Xia [13] proved the following dichotomy.

I Theorem 2. Suppose F is a finite set of functions mapping Boolean inputs to complex
numbers. If F ⊂ A or F ⊂ P, then #CSP(F) is in FP. Otherwise, #CSP(F) is #P-hard.

This wraps up the Boolean case as far as the complexity of exact computation is concerned.
We not only have a dichotomy, but one that takes an explicit form which is quite easy to
comprehend, even in its most general statement (Theorem 2). Unfortunately, this happy
state of affairs will not continue as we move to domains of cardinality greater than two.

2.2 Graph Homomorphisms and Partition Functions

Another natural subclass of counting CSPs, and one that has important connections to other
fields, is obtained by restricting the constraint language Γ to a single binary symmetric
relation. It is natural to view this relation as an undirected graph H, and the instance
also as an undirected graph G whose vertices correspond to variables, and whose edges
correspond to the scopes of the constraints. A (graph) homomorphism from G to H is
a function φ : V (G) → V (H) such that {φ(u), φ(v)} ∈ E(H) whenever {u, v} ∈ E(H).
Thus, the problem #CSP(Γ) is equivalent to counting homomorphisms from G to H. This
correspondence gives rise to the alternative names H-homomorphisms or H-colourings for
this restriction of counting CSPs. In the latter case, we are thinking of the vertices of H as
“colours”, and viewing a homomorphism from G to H as a colouring of the vertices of G in
which the colours of adjacent vertices of G are constrained by the adjacency relation of H.
We see that CSPs with one symmetric relation generalise usual graph colouring, in the same
way that Boolean CSPs generalise the usual CNF satisfiability problem.

It is customary to allow the fixed graph H to have loops but not parallel edges; in other
words, we do not assume that the single relation in Γ is irreflexive. To focus on the irreflexive
situation would exclude some interesting and natural examples. For a graph H, possibly
with loops, but without parallel edges, denote by #H-Col is the following problem: given a
graph G, return the number of graph homomorphisms from G to H. By way of example, if
K ′2 is the connected graph on two vertices with a loop on one of them, and K3 is the complete
graph on three vertices with no loops, then #K ′2-Col asks for the number of independent
sets, in G, and #K3-Col the number of (proper, vertex) 3-colourings. The first step in the
study of the complexity of #H-Col was made by Dyer and Greenhill [23] who proved the
following dichotomy. Say that a graph is reflexive if all its vertices have loops and irreflexive
if it is loop-free.

I Theorem 3. If every connected component of H is a reflexive complete graph or an
irreflexive complete bipartite graph, then #H-Col is in FP. Otherwise, #H-Col is #P-
complete.

Chapte r 08



210 Counting Constraint Satisfaction Problems

The next step is to add weights. A weighted graph H on q vertices, can be thought of
as a weighted adjacency matrix, which is a symmetric q × q matrix A = (aij : 0 ≤ i, j < q)
with non-negative real entries. In statistical physics terminology, the matrix A defines a spin
model. We’ll refer to the matrix A as the interaction matrix of the model. For an instance G,
which is an undirected graph, the partition function ZA of this model is defined as follows:

ZA(G) =
∑

σ:V (G)→[q]

∏
{u,v}∈E(G)

aσ(u),σ(v), (1)

where [q] = {0, . . . , q − 1}. By way of example, consider the following matrices

AλIsing =
(
λ 1
1 λ

)
and ABIS =


0 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0

 . (2)

(The second matrix may look a little mysterious, but it provides an illuminating test case,
and will play an important role in the second part of this survey.) These interaction matrices
yield, respectively, the partition functions of the classical Ising model (ferromagnetic in the
case λ > 1 and antiferromagnetic when λ < 1) and the independent set (or hard-core) model
on a bipartite graph. This correspondence between, on the one hand, partition functions of
spin models in statistical physics and, on the other, weighted counting CSPs with a single
symmetric binary function has led to this special case of counting CSPs being extensively
studied.

As before, the generalisation to non-negative weights goes smoothly. Bulatov and Grohe [4]
showed that an analogue of Theorem 3 holds for the computation of ZA, with the role of
the reflexive complete graph being taken by a rank-1 interaction matrix A, and that of the
irreflexive bipartite graph being taken by an adjacency matrix in block form

( 0 B
B> 0

)
, where

B is of rank 1. Technically, we must also replace the conclusion of “#P-completeness” by
“#P-hardness”, as the required output is no longer an integer. Note that, unfortunately, all
non-trivial spin systems, including the ones specified by ABIS and AλIsing (with λ 6= 1) have
hard-to-compute partition functions.

Generalising to arbitrary real weights, as we saw earlier, significantly increases the
complexity. The 2× 2 matrix H2 we encountered in the previous section is one of an infinite
sequence of matrices leading to tractable partition functions. Other Hadamard matrices yield
tractable functions on larger domains. However, this is far from the end of the story: not
every Hadamard matrix yields a tractable counting CSP, and not every tractable Boolean
counting CSP arises directly from a Hadamard matrix. Nevertheless, Goldberg, Grohe,
Jerrum and Thurley [35] showed that there is a dichotomy into FP and #P-hard. The
characterisation is too complicated to describe here, though it is decidable. Cai, Chen and
Lu [11] made the final step, generalising to complex weights. Again there is a dichotomy
which is decidable (in fact in polynomial time) but too complex to describe here. It seems at
this point that we have come a long way, but we’ll see in Section 2.4 that we can go a quite
a bit further yet.

2.3 Send in the Clones
Before studying general counting CSPs it is worth taking time to digress into functional
clones, the counting analogue of relational clones, or co-clones.

Let D be a finite domain, Uk be the set of functions Dk → R≥0, and U = ∪∞k=0 Uk. Denote
by EQ the equality function defined by EQ(x, y) = 1 if x = y and EQ(x, y) = 0 otherwise.



M. Jerrum 211

A set of functions F ∈ U is a functional clone of it contains equality, and is closed under
variable introduction, variable renaming, product, and summation over a variable. If F ⊆ U
is some (usually finite) set of functions, then 〈F〉# denotes the functional clone generated
by F , that is to say, the minimal functional clone containing F . We say that a function
f ∈ U is pps-definable over F if f ∈ 〈F〉#. Relative to classical pp-definability, we have
replaced conjunction by product and existential quantification by summation over a variable.
However, the idea is the same: a function f is pps-definable over F if it can be “implemented”
in terms of functions in F , in just the same way as a relation is pp-definable over Γ if it
can be “implemented” in terms of relations in Γ. Also, just as in the relational case, if
〈F〉# = 〈F ′〉# then #CSP(F) and #CSP(F ′) are of equivalent computational complexity.
For details, refer to [8], but note that there the subscript # is dropped from the notation for
functional clones, since functional clones are the main object of study in that article. Note
also that a more inclusive notion of functional clone is defined there which requires closure
under taking limits of sequences of functions of the same arity.

Observe that even if we start in the unweighted or relational situation with a finite set of
functions with range {0, 1}, then pps-definablity will soon generate more general functions
and take us into the weighted situation. Thus, with D = {0, 1},

g(x, y) =
∑

z∈{0,1}

IMP(x, z) IMP(z, y),

defines the function g taking the values g(0, 0) = g(1, 1) = 1, g(1, 0) = 0 and g(0, 1) = 2. As
an aside, the rationale for introducing limits is the following. It is fairly easy to check that
the functional clone 〈U0 ∪ {IMP}〉# contains, for all n ∈ N, the unary function f(x) defined
by f(0) = 2−n and f(1) = 1, but not the function defined by f(0) = 0 and f(1) = 1. This is
a trivial example, but it suggests that in some situations it may be reasonable to include
limits.

Both the utility of functional clones and their limitations can be appreciated by reproving
Theorem 1 using this technology. First a little notation. For a function f : Dk → R≥0, define
supp f ⊆ {0, 1}k to be the relation supp f = {x ∈ Dk : f(x) > 0}. Extend this notation to
sets of functions F ⊆ U via suppF = {R : R = supp f, for some f ∈ F}. If F is a functional
clone then suppF is a relational clone, and, moreover, for any set of functions F ⊆ U we have
supp〈F〉# = 〈suppF〉, where 〈Γ〉 denotes the relational clone generated by a set of relations Γ.
To appreciate this fact, consider the homomorphism ϕ : (R≥0,+,×)→ ({0, 1},∨,∧} defined
by ϕ(x) = 0 if x = 0 and ϕ(x) = 1 if x > 0, and its action on the closure operations of
pps-definability; alternatively, refer to [8].

So to the proof of Theorem 1. We specialise the above definitions to the Boolean domain
{0, 1}. In making use of Post’s lattice, we refer to Böhler, Creignou, Reith and Vollmer [1]
and Creignou, Kolaitis and Zanuttini [16], and employ their terminology. So suppose Γ is
a finite subset of affine relations, that is to say Γ ⊂ IL2. As we noted earlier, the set of
satisfying assignments to an instance of #CSP(Γ) can be expressed as the solution set to a
system of linear equations over F2, and so #CSP(Γ) is in FP.

Now suppose Γ 6⊆ IL2. For a relation R ⊆ {0, 1}k, denote by funR the derived function
f : {0, 1}k → R≥0 defined by f(x) = 1 if x ∈ R and f(x) = 0 otherwise. Extend fun to sets
of relations via fun Γ = {funR : R ∈ Γ}. Then the relational clone C generated by Γ is

C = 〈Γ〉 = 〈supp fun Γ〉 = supp〈fun Γ〉#. (3)

We know that C is not IL2, nor any relational clone that lies below IL2 in Post’s lattice of
relational clones. Inspecting Figure 2 of [1], we see that this implies that C contains one

Chapte r 08



212 Counting Constraint Satisfaction Problems

of relational clones IS2
1, IS2

0, IM or IN. In the first, second and third cases cases (see [16,
Table 2]), C contains NAND, OR and IMP, respectively. By (3), this is turn implies that
〈fun Γ〉# contains a function f such that supp f is one of those three relations. But we know,
from routine direct arguments, or from [4], that #CSP({f}) is #P-hard in any of those three
cases. In this context, note that the interaction matrix

A =
(
f(0, 0) f(0, 1)
f(1, 0) f(1, 1)

)
associated with f is necessarily of rank 2. The final case, C ⊇ IN presents a slight fly in the
ointment. The relational clone IN contains precisely the relations that are 0-valid, 1-valid
and “complementive”, i.e., invariant under interchange of 0 and 1. In this case, 〈fun Γ〉#
contains a function f such that supp f is the relation {0, 1}3 \ {(1, 1, 0), (0, 0, 1)}. Although
one or other of the binary functions f(x, y, z) EQ(y, z) or

∑
z∈{0,1} f(x, y, z) may fail the

rank-2 test, it may be verified that at least one will pass. This demonstrates that Γ 6⊆ IL2
implies #CSP(Γ) is #P-hard, and completes the proof.

This argument could be carried through without using functional clones, using a theorem
of Bulatov and Dalmau’s [7, Thm 2], but part of the motivation for writing down the proof
in the language of functional clones was to introduce a concept that will be important later.
Even at this stage it is possible to appreciate the limitations of the utility of functional
clones. We may very well be interested in sets F of functions, all of which have the complete
relation as their supports. In that case, the above line of argument yields nothing. Bulatov’s
“max-co-clones” [6] may be viewed partly as a response to this failing.

2.4 #CSPs in General
The Feder-Vardi conjecture for decision CSPs [27] is famously open in its original form but,
remarkably, has been resolved positively for counting CSPs by Bulatov [5]. The original
proof was streamlined by Dyer and Richerby [24], who reduced the dependence on universal
algebra and showed that the dichotomy is decidable. In order to state the dichotomy in
the form given by Dyer and Richerby, we require some definitions. A matrix is said to be a
rank-one block matrix if it can be transformed (by row and column permutations) into block
diagonal form, such that every block has rank one. A ternary relation R ⊆ A1 ×A2 ×A3 is
balanced if the balance matrix

M(x, y) = |{z ∈ A3 : (x, y, z) ∈ R}|, for all x ∈ A1 and y ∈ A2

is a rank-one block matrix. A set of relations Γ over domain D is strongly balanced if every
ternary relation that is pp-definable over Γ is balanced.

I Theorem 4. Suppose Γ is a finite set of relations over a finite domain D. If Γ is strongly
balanced then #CSP(Γ) is in FP. Otherwise, #CSP(Γ) is #P-complete. Moreover, the
dichotomy is decidable.

It is possible to offer some hints towards the proof. First, some definitions. A binary
relation B ⊆ A1 × A2 is rectangular if (a, c), (a, d), (b, c) ∈ B implies (b, d) ∈ B for all
a, b ∈ A1 and c, d ∈ A2. Suppose R ⊆ Dn is a relation of arity n ≥ 2. For each non-trivial
partition of [n] into blocks of size k and n−k there is a natural isomorphism between Dn and
Dk ×Dn−k under which R can be viewed as a binary relation on Dk ×Dn−k. We say that
R is rectangular if every expression of R as a binary relation on Dk ×Dn−k, for 1 ≤ k < n,
is rectangular. A constraint language Γ is strongly rectangular if every relation in 〈Γ〉 of



M. Jerrum 213

arity at least 2 is rectangular. Finally a relation R ⊆ Dn is strongly rectangular if 〈{R}〉 is
strongly rectangular. Dyer and Richerby [24] show that if Γ is strongly balanced then Γ is
strongly rectangular, but that the converse does not hold. They also show that if Γ is not
strongly balanced then #CSP(Γ) is #P-complete; this strengthens a result of Bulatov and
Dalmau [7] that if Γ is not strongly rectangular then #CSP(Γ) is #P-complete.

The really difficult part of the proof is demonstrating tractability in the case that Γ is
strongly balanced. For this we need the concept of a frame, which provides is a compact
representation for strongly rectangular relations. Say that a set D′ ⊆ D is i-equivalent in
a relation R if R contains tuples which agree on their first i − 1 elements and whose ith
elements are exactly the members of D′. A frame for a relation R ⊆ Dn is a relation F ⊆ R
satisfying two properties: (i) whenever R contains a tuple whose ith component is a then F
also contains such a tuple, and (ii) for 1 < i ≤ n, any set that is i-equivalent in R must also
be i-equivalent in F . It can be shown that every strongly rectangular relation R ⊆ Dn has a
small frame, specifically, one of cardinality n |D|.

In the decision world, Bulatov and Dalmau [2] showed (though expressed in different
terminology) that CSP(Γ) ∈ FP for every strongly rectangular constraint language Γ. This
result cannot translate to counting CSPs unless #P ⊆ FP. However, it can be reproved
with the technology of frames, giving a pointer as to how to proceed. Suppose (X,C) is
an instance of CSP(Γ) with |X| = n. Note that the n-ary relation R defined by (X,C) is
strongly rectangular, since 〈{R}〉 ⊆ 〈Γ〉 and Γ is strongly rectangular. We can construct a
small frame for R iteratively, starting with a frame for the complete relation R0 = Dn Let
R0 ⊇ R1 ⊇ · · · ⊇ R|C| = R be a sequence of relations in which Ri is obtained from Ri−1
by removing the tuples that violate the ith constraint. At each step the frame is updated
so that it represents the current relation. The process ends with a frame for R. It can be
shown that a frame is empty iff the relation it represents is empty, so this process yields a
polynomial-time algorithm for the decision problem CSP(Γ) in the case that Γ is strongly
rectangular.

Dyer and Richerby demonstrate that frames can be used to count solutions, under the
stronger assumption that Γ is strongly balanced. As before, they construct a frame for the
relation R. Their approach is then one of dynamic programming based on a carefully selected
set of subproblems. For 1 ≤ i < j ≤ n, let Ni,j(a) be the number of prefixes (u1, . . . , ui) ∈ Di

such that there is a tuple (u1, . . . , un) ∈ R with uj = a. The key step of the iteration is
computing Ni,j(·) for each j > i, given Ni−1,j(·) for each j ≥ i, and it turns out that this
can be achieved using the property of strong balance. At the end of the process, summing
Nn−1,n(a) over a ∈ D gives |R|.

The universal algebra doesn’t go away, but is reduced to an easy to digest and intuitively
appealing fragment. A Mal’tsev operation is a ternary operation ϕ : D3 → D satisfying
ϕ(a, a, b) = ϕ(b, a, a) = b for all a, b ∈ D. An important fact proved in [24] is that a
constraint language is strongly rectangular if and only if it has a Mal’tsev polymorphism.
This fact has two important consequences. First, it allows an efficient implementation of
membership testing in a strongly rectangular relation R given only a frame for R. Second, it
allows an efficient (in NP) test for strong rectangularity. (Note that the definition of strong
rectangularity in itself does not even imply decidability.) Testing strong rectangularity is the
first step in testing strong balance. It transpires that deciding strong balance (and hence the
dichotomy itself) is in NP.

The resolution of the counting version of the Feder-Vardi conjecture is a major achievement.
One might ask how it is that the counting version has been resolved while the original decision
version has not. Of course, this is a vague, possibly nonsensical question. However, it is

Chapte r 08



214 Counting Constraint Satisfaction Problems

difficult to avoid the thought that tractability results are generally harder to prove than
intractability results, and #CSP(Γ) simply has fewer tractable cases than CSP(Γ).

Perhaps as remarkable as the dichotomy for relational constraint languages itself is the
fact that it has been extended to the weighted case. The first step, to non-negative real
weights, was taken by Cai, Chen and Lu [10]. As we have seen already, the extension of
dichotomies in counting CSPs to arbitrary real weights adds new possibilities for tractable
cases that must be taken into account, and the further extension to complex weights provides
further complications. This line of work culminated with Cai and Chen [9], who proved the
existence of a dichotomy in the complex weighted case. They provide three rather clean
conditions on a set of complex functions F – block orthogonality, Mal’tsev and type partition
– that taken together imply #CSP(F) ∈ FP. If any of the conditions fail, then #CSP(F) is
#P-hard. Unfortunately, the conditions are not currently known to be decidable.

Although the conditions of block orthogonality, Mal’tsev and type partition, are really
quite clean, it would take too much space to define them here. Nor is it feasible to give a
sketch of the proof techniques. For those things the reader should consult the really lucid
exposition of the definitions and proof sketch to be found in the conference version of Cai
and Chen’s paper [9]. Suffice it to say that the main ingredients of Dyer and Richerby’s work
survive, namely the compact representation of relations and the Mal’tsev polymorphism
that allows information to be extracted from it, but completely new ideas need to be added,
particularly in the definition and application of the type partition condition.

In summary, there has been massive progress in our understanding of the computational
complexity of counting CSPs. In fact, the main questions in the basic setting have been all
but answered. That is not to say that there is not much work to do: for example, with the
notable exception of the extensive literature on read-twice #CSPs or holants, there is not
a great deal of work on restricted instances, e.g., planar [44], and perhaps none at all on
infinite domains.

3 Approximate Computation

We saw in Section 2 that certain non-trivial counting CSPs are exactly solvable using
interesting algorithmic techniques, such as reduction to a system of linear equations over
a finite field or to a quadratic form over F2. However, the general picture is gloomy, with
intractability results dominating. This observation has prompted the search for approximation
algorithms. An encouraging sign is that the partition function of a ferromagnetic Ising system
(i.e., an instance of the two-spin model specified by the interaction matrix AλIsing, with λ > 1)
can be computed with small relative error in polynomial time [45]. Note that the interaction
matrix AλIsing has rank two, so the partition function is #P-hard to compute exactly.

Before embarking on the study of specific counting CSPs, we need to say a something
about the computational complexity of approximate counting problems in general. There
is a well-established framework for this. We provide only an informal description here and
direct the reader to Dyer, Goldberg, Greenhill and Jerrum [19] for precise definitions.

The standard notion of efficient approximation algorithm is Fully Polynomial Randomised
Approximation Scheme, or FPRAS. This is a randomised algorithm that is required to
produce a solution within relative error specified by a tolerance ε > 0, in time polynomial
in the instance size and ε. Under some mild condition, an efficient algorithm that provides
only very weak approximations can be boosted to the achieve the quality of approximation
demanded by an FPRAS. As a consequence, in the context of counting problems, there is just



M. Jerrum 215

one notion of approximation algorithm, namely FPRAS.1 In this aspect, counting problems
provide a contrast with optimisation problems, which exhibit a hierarchy of possible degrees
of approximability.

Evidence for the non-existence of an FPRAS for a problem Π can be obtained through
Approximation-Preserving (or AP-) reductions. These are polynomial-time Turing reductions
that preserve (closely enough) the error tolerance. The key feature of the definition is
that the class of problems admitting an FPRAS is closed under AP-reducibility. Every
problem in #P is AP-reducible to #SAT, so #SAT is complete for #P with respect to
AP-reductions. In the other direction, we know, using the bisection technique of Valiant
and Vazirani [55, Corollary 3.6], that #SAT can be approximated (in the FPRAS sense) by
a polynomial-time probabilistic Turing machine equipped with an oracle for the decision
problem SAT. Thus, the counting version of any NP-complete decision problem is complete
for #P with respect to AP-reductions. Note the contrast with exact computation, where
there may exist NP-complete decision problems whose counting analogue is not #P-hard
under classical Turing reducibility.

We can summarise the situation as follows. Assuming we restrict attention to counting
problems in #P (and this includes all problems of the form #CSP(Γ)), the hardest problems Π
are those that are complete for #P with respect to AP-reducibility. Since such problems are
AP-interreducible with #SAT, we will use the shorthand “Π is #SAT-equivalent”, omitting
the qualification “with respect to AP-reducibility” for brevity. We know that these problems
do not have an FPRAS unless RP = NP. At the risk of overemphasising the point, in the
context of approximate computation, the complexity of a problem that is AP-interreducible
with #SAT lies only a little above NP (formally in the class FPNP) and presumably far
below #P.

Sometimes we have to settle for weaker evidence of computational intractability. The
problem of counting independent sets in a bipartite graph is denoted by #BIS. The problem
#BIS appears to be of intermediate complexity: on the one hand, there is no known FPRAS
for #BIS (and it is generally believed that none exists) but, on the other hand, there is no
known AP-reduction from #SAT to #BIS. The fact that #BIS is complete for a certain
complexity class #RHΠ1 with respect to AP-reducibility [19], can be interpreted as evidence
for the special status of #BIS and the problems AP-interreducible with it.

If there is an AP-reduction from #BIS to Π, we say that Π is #BIS-hard. We conjecture
that no FPRAS for #BIS exists, in which case the same is true for all #BIS-hard problems. If
there exists an AP-reduction from Π to #BIS, we say that Π is #BIS-easy; if Π is #BIS-hard
and #BIS-easy then we say that Π is #BIS-equivalent. Many problems are in this last
class, including counting downsets in a partial order [19], estimating the partition function
of the Widom-Rowlinson model [19] or of the ferromagnetic Ising model with an external
field [36]. In the absence of NP-hardness, the claim of #BIS-equivalence is currently almost
the strongest one can make for an approximate counting problem Π, in that it locates the
complexity of Π quite precisely.

3.1 Boolean #CSPs
As usual, restricting attention to Boolean #CSPs, i.e., those with domain-size two, allows
us to make a brisk start. Let us further simplify matters by considering the unweighted

1 This is not quite accurate. Another sweet spot is occupied by algorithms that provide an additive
approximation to the logarithm of the solution, within ±εn, where n is the instance size.

Chapte r 08



216 Counting Constraint Satisfaction Problems

case. Recall that IL2 is the clone of affine relations, i.e., relations that can be expressed
as the solution set of a system of linear equations over F2. Define the relational clone IM2
by IM2 = 〈IMP, δ0, δ1〉, where δ0 and δ1 are the unary relations δ0 = {(0)} and δ1 = {(1)}.
Dyer, Goldberg and Jerrum [22] prove the following.

I Theorem 5. Let Γ be a Boolean constraint language. If every relation in Γ is in IL2,
then #CSP(Γ) is in FP. Otherwise, if every relation in Γ is in IM2 then #CSP(Γ) is
#BIS-equivalent. Otherwise, #CSP(Γ) is #SAT-equivalent.

Using the language of functional clones and Post’s lattice, it is possible to hint at a
proof. For example, letting C = 〈Γ〉, any constraint language covered by the final part of the
theorem will satisfy C 6⊆ IL2 and C 6⊆ IM2. Consulting Post’s lattice of relational clones [1,
Fig. 2], we find that C contains one of IS2

1, IS2
0 or IN. In the first two cases we can find an

AP-reduction from the problem of counting independent sets in a general graph to #CSP(Γ),
and in the third case an AP-reduction from the problem of evaluating the partition function
of the antiferromagnetic Ising model. Both the independent set and antiferromagnetic Ising
problems are #SAT-equivalent, showing that #CSP(Γ) is also. This sketch can be completed
to a proof of the final part of the theorem.

Assuming that there is no FPRAS for #BIS, Theorem 5 is a discouraging result, as it
says that the only Boolean counting CSPs that are efficiently approximable are the affine
ones, which we already know to be exactly solvable. So relaxing the problem specification
appears to have gained us nothing. Although we shall not be discussing restricted problem
instances extensively in this survey, it is worth pointing out that Dyer, Goldberg, Jalsenius
and Richerby [20] have shown that the hardness results in Theorem 5 continue to hold for
instances of degree at most six, where the degree of a CSP instance is the maximum number
of occurrences of any variable in the instance.

The next step is to introduce weights. We restrict attention to non-negative real weights,
as this situation seems to give the greatest scope for positive results. (If negative weights
are allowed, it is likely that we will be required to compute a small quantity that is the
difference of two much larger quantities, and it will be hard to achieve small relative error.)
Recall the material on functional clones from Section 2.3. No generally applicable theory of
polymorphisms for functional clones exists. However, some interesting functional clones can
be defined by operations reminiscent of multimorphisms or fractional polymorphisms in the
study of valued CSPs (VCSPs).

Denote by Bk the set of functions {0, 1}k → R≥0, and write B = ∪∞k=0Bk. A function
f ∈ Bn is log-supermodular (lsm) if

f(x ∨ y)f(x ∧ y) ≥ f(x)f(y), for all x,y ∈ Bn, (4)

where ∧ and ∨ denote meet and join in the Boolean lattice, which are equivalent to pointwise
min and max. The terminology is justified by the observation that f ∈ Bn is lsm if and only
if log f is supermodular. Note the similarity to multimorphisms in the study of VCSPs, but
with multiplication replacing addition. We denote by LSM ⊂ B the class of all lsm functions.

In the weighted situation we need to work with functional clones that are closed under
taking limits of sequences of functions; as our functions are defined on a finite domain we
don’t need to be specific about the notion of convergence. The clone generated by a set of
functions F with the additional limiting operation is denoted 〈F〉#,ω There is no general
result to the effect that sets of functions defined by conditions such as (4) are clones; each
case must be handled individually. In this instance we do have a clone [8, Lemma 4.2].

I Lemma 6. 〈LSM〉#,ω = LSM.



M. Jerrum 217

The non-trivial part of the proof lies in showing that LSM is closed under the operation
of summing over a variable. It turns out that this requirement can be viewed as a special
case of the Ahlswede-Daykin four-functions theorem.

As usual, we can say more about the conservative case, where all unary functions B1 are
given free. Bulatov, Dyer, Goldberg, Jerrrum and McQuillan show [8].

I Theorem 7. Suppose F ⊆ B.
If F 6⊆ 〈NEQ,B1〉# then 〈IMP,B1〉#,ω ⊆ 〈F ,B1〉#,ω.
If, in addition, F 6⊆ LSM then 〈F ,B1〉#,ω = B.

Informally, every non-trivial functional clone contains 〈IMP,B1〉#,ω and any non-trivial
clone containing a non-lsm function is in fact B. In other words, all the interesting action
takes place between 〈IMP,B1〉#,ω and LSM.

Care is needed to obtain computational consequences from Theorem 7. In particular, it
is necessary to introduce computationally efficient versions of B and of the closure operation
〈 · 〉#,ω. These are needed so that we can compute efficiently with functions in B, and so that
we can utilise the limiting operation in the proofs. This programme can in fact be carried
out (see [8] for details), resulting in the following classification theorem, in which we assume
that the necessary efficient versions of concepts are used.

I Theorem 8. Suppose F is a finite subset of B.
1. If F ⊆ 〈NEQ,B1〉# then there is an FPRAS for #CSP(F).
2. Otherwise,

(a) there is a finite subset S of B1 such that #CSP(F , S) is #BIS-hard, and
(b) if F 6⊆ LSM then there is a finite subset S of B1 such that #CSP(F , S) is #SAT-

equivalent.

The polynomial-time algorithm guaranteed in the first part of the theorem needs to
compute sufficiently accurate approximations to functions in F ∩ B1; it is for this reason
only that we specify an FPRAS and not an exact algorithm. The second part of the theorem
may be conveniently illustrated with reference to the Ising model. The ferromagnetic Ising
model with a field is covered by part (2a) of the theorem, and hence its partition function
is #BIS-hard. (In fact the partition function is #BIS-equivalent, as can be seen from [8,
Lemma 7.1] or Theorem 11(1b).) The antiferromagnetic Ising model with a field is covered
by part (2b), and hence its partition function is #SAT-equivalent. These special cases were
known earlier ([36] and [45]), but Theorem 8 places these isolated intractability results in a
general setting. The Ising model will be discussed at greater length in §3.3.2.

It is natural to ask if Theorem 7 can be strengthed to a strict trichotomy. Unfortunately
the answer is no. Consider the function g : {0, 1}4 → R≥0 defined by

g(x1, x2, x3, x4) =


4, if x1 + x2 + x3 + x4 = 4;
2, if x1 + x2 + x3 + x4 = 3; and
1, otherwise.

The function g is in LSM but not in 〈IMP,B1〉#,ω [8, Lemma 11.9]. Nevertheless, it is entirely
possible that #CSP({g}∪B1) is #BIS-easy, since AP-reduction is a more liberal notion than
pps-definabilty.

Theorem 8 encapsulates most of what is known about the computational complexity of
general conservative Boolean counting CSPs. When we go beyond conservative, we know
rather little. We do not even have a complete understanding of #CSP(F) when F ⊂ B2.

Chapte r 08



218 Counting Constraint Satisfaction Problems

The problem is that the boundary between tractable and intractable becomes intimately tied
up with the existence of phase transition in spin systems. However, much attention has been
directed to this issue, and the restriction to the case where F contains a single symmetric
binary functions is now well understood, as we shall see in the next section.

3.2 Graph Homomorphisms
We turn to the case of a single binary relation, which can be viewed as an undirected graph H,
possibly with loops. As before, we look first at the conservative case, which means that
arbitrary unary relations are available in addition to the binary relation H. In the graph
theory community, this situation is described as list H-colouring. Formally, the problem
#List-H-Col is defined as follows. An instance is a graph G and a collection of colour sets
S = {Sv ⊆ Q : v ∈ V (G)}, where Q = V (H). The required output is the number of list
H-colourings of (G,S), i.e., the number of mappings σ : V (G)→ Q such that σ(v) ∈ Sv for
all v ∈ V (G), and (σ(u), σ(v)) ∈ E(H) for all (u, v) ∈ E(G).

A class of graphs is hereditary if it is closed under taking induced subgraphs; the class of
bipartite graphs is a simple example. A moment’s thought reveals that any maximal class
of graphs H for which #List-H-Col is tractable for H ∈ H must be hereditary. On the
basis of that general consideration, we expect hereditary graph classes to feature in any
complexity classification of #List-H-Col. Two graph classes turn out to be important here.
There are many equivalent definitions of these, but the matrix characterisation is perhaps
easiest to grasp. Say that a 0,1-matrix A = (ai,j : 0 ≤ i < n, 0 ≤ j < m) has staircase
form if the 1s in each row are contiguous and the following condition is satisfied: letting
αi = min{j : ai,j = 1} and βi = max{j : ai,j = 1}, we require that the sequences (αi) and
(βi) are non-decreasing. A graph is a bipartite permutation graph if the rows and columns of
its biadjacency matrix can be (independently) permuted so that the resulting biadjacency
matrix has staircase form. A graph is a proper interval graph if the rows and columns of its
adjacency matrix can be (simultaneously) permuted so that the resulting adjacency matrix
has staircase form. The decision version of #List-H-Col was studied by Feder, Hell and
Hwang [26], who established a dichotomy between FP and NP-complete. Goldberg and
Jerrum prove the following trichotomy for the counting version [30]. Recall that a graph H
is reflexive if every vertex has a loop and irreflexive if no vertex has a loop.

I Theorem 9. Suppose H is a connected undirected graph, possibly with loops.
If H is an irreflexive complete bipartite graph or a reflexive complete graph then
#List-H-Col is in FP.
Otherwise, if H is an irreflexive bipartite permutation graph or a reflexive proper interval
graph then #List-H-Col is #BIS-equivalent.
Otherwise, #List-H-Col is #SAT-equivalent.

The most interesting part of the proof lies in demonstrating #SAT-hardness in the final
case of the theorem. Here, alternative “excluded subgraph” characterisations of the hereditary
classes are useful. For example, a graph that is not a bipartite permutation graph must
contain either an induced cycle of length other than four, or one of three special graphs.
It is enough, then, to verify that each of these possible subgraphs corresponds to a hard
list-colouring problem.

In the non-conservative situation, that is to say, the straight graph homomorphism
counting problem called #H-Col, the situation becomes more complicated. Formally,
#H-Col is defined as follows. An instance is a graph G and the required output is the
number of H-colourings of G, i.e., the number of mappings σ : V (G) → V (H) such that



M. Jerrum 219

(σ(u), σ(v)) ∈ E(H) for all (u, v) ∈ E(G). For #H-Col we do not have a general complexity
classification or even a plausible conjecture. We do, however, have the following complexity
lower bound for non-trivial graphs H, due to Galanis, Goldberg and Jerrum [29].

I Theorem 10. Let H be a graph, possibly with self-loops but without parallel edges. If
every connected component of H is non-trivial (i.e., neither a reflexive complete graph nor
an irreflexive complete bipartite graph), then #H-Col is #BIS-hard.

The proof extends ideas from earlier work of Goldberg, Kelk and Paterson [42] concerning
the related problem of sampling H-colourings.

There are some quite small graphs, two of them with as few as four vertices, that get in
the way of a neat classification in the style of Theorem 9. Take, for example, the reflexive
4-cycle C∗4 . We know from Theorem 10 that #C∗4 -Col is #BIS-hard, but that is all; the
problem #C∗4 -Col is not known either to be #BIS-easy or to be #SAT-hard. An extensive
exploration of the complexity of #H-Col, undertaken by Kelk [46], suggests a potentially
rich classification.

3.3 Partition Functions
By a partition function we mean a counting CSP, #CSP(F), where F is a single binary
function, usually, but not necessarily, symmetric. We will assume in this section that the
function is symmetric unless explicitly stated otherwise. Note that in the symmetric case,
the problem instance can be viewed as an undirected graph. Despite being very restrictive,
this special case is important because it covers partition function of spin models in statistical
physics. In view of this, we’ll use the term spin model as a shorthand for a counting CSP
of the above form. Recall that a spin model with q spins can be represented by a q × q
interaction matrix A. We say that A is irreducible if, for every pair i, j ∈ [q], there exists an
integer t such that (At)ij > 0. If A is not irreducible then the domain [q] can be partitioned
into equivalence classes of interacting spins, and the partition function (1) decomposed into
a sum of component partition functions, one for each equivalence class. (This assumes that
the instance graph G is connected; the modification for disconnected G is easy.)

3.3.1 The Conservative Case
We look first at the conservative case, which translates to unary functions being freely
available. In terms of spin models in physics, “conservative” corresponds to the existence of
an applied field.

Let A = (aij : 0 ≤ i, j < q) be an q × q matrix of non-negative reals. Given a graph G
and an assignment h = (hv : v ∈ V (G)) of unary non-negative real functions to the vertices
of G, we are interested in computing the extended partition function

ZA(G,h) =
∑

σ:V (G)→[q]

∏
{u,v}∈E(G)

aσ(u),σ(v)
∏

v∈V (G)

hv(σ(v)). (5)

Specifically, we would like to know the computational complexity of the following problem.

Name. EvalZc(A).
Instance. A graph G and an assignment of unary functions h = (hv : v ∈ V (G)) to the

vertices of G.
Output. ZA(G,h), where ZA is the extended partition function (5).

Chapte r 08



220 Counting Constraint Satisfaction Problems

The subscript “c” in the problem name is intended to indicate “conservative”. In the
conservative situation, we can restrict attention to irreducible interaction matrices A, since
the complexity of computing the partition function ZA is determined by the maximum
complexity of computing ZA′ for any block A′ of A.

A certain class of spins models have to be treated separately. These are ones in which
the spins can be partitioned into two blocks such that two spins can only be adjacent if
they occur in different blocks. Such a spin model is called imprimitive, while the others are
primitive. The interaction matrix of an imprimitive model can be written in block form:

A =
(

0 B

Bᵀ 0

)
. (6)

The following result is due to by Goldberg and Jerrum [39]. Although we’ll be encountering
a more general result later, this one has the advantage of providing an explicit and clearly
effective characterisation. We say that matrix A is log-supermodular if every 2× 2 submatrix
has non-negative determinant.

I Theorem 11.
1. Suppose A is primitive.

(a) If A has rank 1, then EvalZc(A) ∈ FP
(b) Otherwise, if there is a simultaneous permutation of the rows and columns of A that

renders A log-supermodular, then EvalZc(A) is #BIS-equivalent.
(c) Otherwise, EvalZc(A) is #SAT-equivalent.

4. Now suppose A is imprimitive. Write A in the form (6).
(a) If B has rank 1, then EvalZc(A) ∈ FP.
(b) Otherwise, if there are independent permutations of the rows and columns of B that

render B log-supermodular, then EvalZc(A) is #BIS-equivalent.
(c) Otherwise, EvalZc(A) is #SAT-equivalent.

The log-supermodularity conditions in Theorem 11 are natural generalisations to the
weighted situation of the graph-theoretic conditions in Theorem 9. However, it is not the
case that one theorem is a generalisation of the other. It is true that Theorem 11 covers a
wider range of interaction matrices, but at the same time it permits a wider range of unary
functions h in the problem instance. In fact, Theorem 11 no longer holds if the functions
in h are resticted to take values in {0, 1}, which is the situation in Theorem 9 [30].

3.3.2 Boolean Domain
As usual, we can say more about domain size two. As we are considering symmetric
interactions, the interaction matrix can, after suitable normalisation, be written as A = ( β 1

1 γ )
with β, γ ∈ R≥0. Also, the problem instance is just an undirected graph G. As well as the
weights for pairs of spins given by A, it is quite common to introduce weights for individual
spins: 1 for spin 0 and λ for spin 1. The quantity we wish to study is the extended partition
function (5) with A = ( β 1

1 γ ), and with hv given by hv(0) = 1 and hv(1) = λ, for all v ∈ V (G).
For future convenience, we define the problem of interest in the general q setting. So letting
the domain or set of spins be Q = [q], we model the external field as a function h : Q→ R≥0.
As usual, A is a q × q matrix of non-negative reals.

Name. EvalZ(A, h).
Instance. A graph G.
Output. ZA(G,h), where ZA is the extended partition function (5), and hv = h for all

v ∈ V (G).



M. Jerrum 221

We employ the following conventions: the function h : Q → R≥0 will be specified as a
column vector whose ith entry is h(i); also, if h is the all-1 vector, then we omit h from the
problem name. With this notation, the problem of immediate interest is EvalZ

(
( β 1

1 γ ), ( 1
λ )
)
.

Although this problem formulation does not fit the CSP framework exactly, it is natural
when viewed from the perspective of spin models with an external field.

Up to this point in our study of the complexity of approximating counting CSPs, the only
tractable examples have been trivial. The situation now changes. Jerrum and Sinclair [45]
presented an FPRAS for the partition function of the ferromagnetic Ising model, i.e., for
EvalZ

(
( β 1

1 γ ), ( 1
λ )
)
in the case β = γ ≥ 1 and λ = 1 In fact, the algorithm they presented

works also in the presence of an external field, i.e., for EvalZ
(
( β 1

1 γ ), ( 1
λ )
)
, with λ 6= 1. The

reader may wonder how this result may be squared with Theorem 11. The matrix A, after
all, has rank 2 and is log-supermodular, so Theorem 11 classifies the partition function as
#BIS-equivalent. To resolve the paradox, note that the #BIS-equivalence result relates to a
setting in which different functions hv can be assigned to different vertices of the instance G.
A varying field can be accommodated by the algorithm of [45] provided either spin 0 is always
favoured, or spin 1 always favoured. Intractability apparently arises when 0- and 1-favouring
fields are mixed. This phenomenon had been investigated earlier: see [36].

For the rest of the section we concentrate on the complexity of EvalZ
(
( β 1

1 γ ), ( 1
λ )
)
. An

early investigation was carried out by Goldberg, Jerrum and Paterson [41], who mapped out
some easy and hard regions in “phase space” (β, γ, λ) ∈ R≥0, but left quite a bit unclassified.
To describe the more refined results that followed, we need to introduce a further parameter ∆,
which is a uniform upper bound on the degrees of vertices of the instance graph G. We
start our survey with the independent set or “hard-core” model, whose interaction matrix is
AIS = ( 1 1

1 0 ). After the Ising model, it is perhaps the most intensively studied spin model.
Note that the partition function we are required to evaluate is ZλIS(G) =

∑
σ λ
|σ|, where

the sum ranges over all independent sets σ of G, and |σ| = |σ−1(1)| denotes the size of the
independent set σ.

Weitz [57] proved the following surprising and very influential result.

I Theorem 12. Let λc = (∆− 1)∆−1/(∆− 2)∆. There is an FPRAS for EvalZ
(
( 1 1

1 0 ), ( 1
λ )
)

restricted to graphs of maximum degree ∆, when λ < λc.

To appreciate the result, it is important to understand the significance of the critical
value λc. Given a finite graph G, there is a natural probability distribution on independent
sets on G that assigns probability λ|σ|/ZλIS(G) to each independent set σ. Let T∆,` denote
the ∆-regular tree with root r and depth `. For each ` fix some boundary configuration
τ` : ∂ T∆,` → {0, 1} on the the leaves ∂ T∆,` of T∆,`. If λ < λc then Pr(σ(r) = 1) (i.e., the
probability that the root r of the tree is in the independent set σ) tends to a limit, as `→∞,
independently of the sequence of boundary conditions (τ` : ` ∈ N). If λ > λc, then the limit
does not exist.

Since the ideas used to prove Theorem 12 have been influential, we provide a sketch
of Weitz’s approach here. Unlike previous approaches via Markov chain simulation, his
approach leads to a deterministic approximation algorithm, technically a Fully Polynomial-
Time Approximation Scheme or FPTAS. The formal definition of FPRAS is similar to that
of FPRAS, except that the algorithm is deterministic, and the result is always within relative
error 1 ± ε, rather than merely with high probability. Weitz’s FPTAS for estimating the
partition function ZλIS(G) is based on an ingenious recursive algorithm for computing the
probability that vertex v is occupied in a randomly chosen independent set in G. If this
probability pv can be estimated to sufficient accuracy then the partition function ZλIS(G) can

Chapte r 08



222 Counting Constraint Satisfaction Problems

be estimated recursively, by estimating the partition function ZλIS(G− v) of the graph G with
vertex v and incident edges removed, and multiplying that quantity by (1− pv)−1. Note that
pv ≤ λ/(λ+ 1), so this multiplicative factor is not too sensitive to errors in the evaluation
of pv.

Now we look at the same computation in a different way. We define a self-avoiding walk
tree Tsaw(G, v) whose vertices correspond to self-avoiding walks in G starting at vertex v.
The root r of the tree corresponds to the self-avoiding walk of length 0, and the edges of the
tree to extensions of a walk of length ` by one edge to a walk of length ` + 1. Since G is
finite, so is the tree Tsaw(G, v). Also, the degrees of vertices in the tree are bounded by ∆.
Another ingenious ingredient in this approach is the rule for setting the boundary condition
at the leaves of Tsaw(G, v). A leaf arises when a self-avoiding walk loops back on itself, and
the boundary condition in some sense encodes the cycle structure of G.

The probability that the root r is occupied in a randomly chosen independent set in
Tsaw(G, v) is easily computed using a simple recursive algorithm based on the inductive
structure of the tree. The crucial observation is that, provided the boundary condition for
Tsaw(G, v) is set correctly, this recursive algorithm on the tree goes through exactly the same
sequence of operations as the more complex recursive algorithm on the graph G alluded to
earlier. The upshot is that we can compute the occupation probability pv for vertex v in the
graph G by computing the occupation probability of the root r of the tree Tsaw(G, v).

We are not done, because the number of self-avoiding walks in G starting from v is
exponential in n = |V (G)|. So although the self-avoiding walk tree is finite, it is nevertheless
exponentially large in n. At this point we use the fact that λ < λc. When this condition
holds, correlations in the tree decay exponentially fast, and the influence of vertices at depth
greater than c lnn becomes small enough to be ignored, without altering the computed
occupation probability of the root by too much. As a consequence, the recursive procedure
for evaluating the occupation probability can be truncated at depth O(logn), while retaining
adequate accuracy. This description necessarily skates over all the details, and even omits
completely some critical issues.

One of those issues is the distinction between weak and strong spatial mixing. It is
sufficiently important that we need to give some brief notes here. Earlier, we informally
described a property that the sequence of trees T∆,` might possess, namely the occupation
probability of the root tends to a limit as `→∞, independently of the sequence of boundary
conditions τ`. This property is weak spatial mixing. Roughly speaking, the property of strong
spatial mixing obtains if the limit continues to exist even if the configuration σ (in this case
an independent set) is fixed on some of the internal vertices of the trees.

Weitz’s technique was extended by other authors. Sinclair, Srivastava and Thurley [52]
considered the antiferromagnetic Ising model with a constant field on a graph of maximum
degree ∆. Formally, they were interested in approximating EvalZ

(
( β 1

1 β ), ( 1
λ )
)
when β < 1

and λ > 0, and the instance graph G has maximum degree ∆. For some critical value
λc(β,∆), we say that of β and λ are in the uniqueness region of the regular tree of degree
∆ if either β ≥ ∆−2

∆ , or β < ∆−2
∆ and max{λ, λ−1} > λc(β,∆). The critical value λc is

determined by the existence of a fixed point to a certain recursion. (Determining λc is a
contribution on the paper.) In the interior of the uniqueness region, the trees (T∆,` : ` ∈ N)
with degree ∆ exhibit the decay of correlations phenomenon known as weak spatial mixing,
which we saw earlier in the case of the independent set model. (Outside of the uniqueness
region, decay of correlations does not occur.) An important step in the argument is showing
that weak spatial mixing implies strong spatial mixing. Then Weitz’s self avoiding tree leads
to:



M. Jerrum 223

I Theorem 13. If β < 1 and λ > 0 are in the interior of the uniqueness region of the infinite
regular tree of degree ∆, then there is a FPTAS for EvalZ

(
( β 1

1 β ), ( 1
λ )
)
restricted to graphs

of degree at most ∆.

The algorithms in Theorems 12 and 13 have rather natural limits of validity, and it
is reasonable to ask whether matching intractability results can be found. Outside of the
uniqueness region, we do not have decay of correlations, which leaves open the possibility
that we can construct gadgets of maximum degree ∆ in which the spins are correlated at the
global (or “macroscopic”) level. Consider a regular bipartite graph B∆ of degree ∆ that is
locally tree-like, a natural choice being a uniform random such graph. If ∆ = 6 then λc < 1
and we are outside the tree uniqueness region when λ = 1. This observation suggests that
B∆ may exhibit correlation at a global level. What we expect to happen is that a typical
independent set will be asymmetric: a definite majority of the vertices in the independent set
will accumulate on the left or right side of the bipartition of B∆. We can then plausibly use
B∆ as a bistable gadget in a reduction from an NP-hard decision or optimisation problem, to
the problem EvalZ(( 1 1

1 0 )) (evaluating the partition function of the independent set model
at λ = 1). In a rather basic form, this programme was carried through by Dyer, Frieze and
Jerrum [18], to show that approximating EvalZ(( 1 1

1 0 )) is #SAT-equivalent when ∆ ≥ 25.
In other words, there is no FPRAS for counting independent sets in a graph of maximum
degree 25, unless RP = NP.

Of course, 25 is a long way from 6. Using much more delicate arguments, Mossel, Weitz
and Wormald [50] proved a negative result for λ just above the critical value λc of Theorem 12;
specifically they showed that local Markov chain Monte Carlo algorithms for evaluating
EvalZ

(
( 1 1

1 0 ), ( 1
λ )
)
have exponential mixing time. Developing this theme, Sly and Sun [53]

(see also Galanis, Štefankovič, Vigoda [28]), proved a general intractability result (i.e., one
not restricted to a particular algorithmic technique, but conditional on standard complexity
theoretic assumptions).

I Theorem 14. The problem EvalZ
(
( β 1

1 γ ), ( 1
λ )
)
restricted to graphs of maximum degree ∆

is #SAT-equivalent in either of the following cases:
[The independent set model.] β = 1, γ = 0 and λ > λc = (∆− 1)∆−1/(∆− 2)∆.
[The antiferromagnetic Ising model.] β = γ < 1, and β and λ are outside of the uniqueness
region of the ∆-regular tree.

The complexity classification of antiferromagnetic two-spin systems, i.e., satisfying βγ < 1,
culminates with the work of Li, Lu and Yin [47]. They show the following result, where, by
convention, ∆ =∞ indicates that there is no upper bound on vertex degree.

I Theorem 15. Suppose βγ < 1 and ∆ ≥ 3 or ∆ =∞. Suppose also that, for all ∆′ ≤ ∆,
the parameters (β, γ, λ) lie in the interior of the uniqueness region of the infinite ∆′-regular
tree. Then there exists an FPTAS for the problem EvalZ

(
( β 1

1 γ ), ( 1
λ )
)
restricted to graphs of

maximum degree at most ∆.

Combined with the negative results of Sly and Sun [53], this essentially completes the
analysis of antiferromagnetic two-spin models, except at the boundary of the uniqueness
region. We have a dichotomy between models that admit a FPTAS and those which are
#SAT-equivalent, and everything is down to the uniqueness condition on regular trees of
the appropriate degrees. It should be remembered, however, that we have restricted our
attention to symmetric models, i.e., ones where the instance is an undirected graph, and the
interaction matrix is symmetric. The non-symmetric situation is currently too complex to
analyse completely.

Chapte r 08



224 Counting Constraint Satisfaction Problems

In the absence of an external field (i.e., when λ = 1), the complexity of ferromagnetic
models (i.e., those with βγ ≥ 1), is easy to describe: they all admit an FPRAS by reduction
to the ferromagnetic Ising model with a consistent field [41, 45]. However, if β > γ and λ > 1
(or β < γ and λ < 1) then a tension arises between the interactions between sites, which tend
to pull in one direction, and the action of the field, which tends to pull in the other. How this
tension resolves itself is not completely understood, but Liu, Lu and Zhang [49] and Guo and
Lu [43] have extracted a great deal of information. It is reasonable to conjecture that there
is a dichotomy, with all spin models either admitting an FPRAS or being #BIS-equivalent.

Finally, there in another way in which essentially ferromagnetic models can arise which
exhibit the tension alluded to above, namely by restricting an antiferromagnetic model to a
bipartite graph. Although we could in principle treat these by inverting the role 0 and 1 in
one side of the bipartition, we would then lose symmetry, which, as we observed, is currently
fatal. In fact, there is a dichotomy for bipartite antiferromagnetic models between spin
models that admit an FPRAS and those that are #BIS-equivalent, as was shown by Cai,
Galanis, Goldberg, Guo, Jerrum, Štefankovič and Vigoda [12].

3.3.3 Domain Size Greater Than Two
We have covered the conservative situation. So now suppose a symmetric q × q interaction
matrix A is given, and we want to know the complexity of approximating EvalZ(A), i.e,
the complexity of computing an approximation to partition function ZA(G) defined in (1).
In the Boolean case, there is a natural distinction between ferromagnetic (βγ > 1) and
antiferromagnetic (βγ < 1) models. When q > 2 it is less clear what these terms should
mean. Since A is symmetric, we know its eigenvalues are real. Suppose further that A is
irreducible. By the Perron-Frobenius theorem, A has at least one positive eigenvalue. Galanis,
Štefankovič and Vigoda say that a model is antiferromagnetic if all the other eigenvalues are
negative.

The q state Potts model with interaction matrix

Aq,BPotts =


B 1 · · · 1
1 B 1
...

. . .
1 1 B

 ∈ Rq×q≥0 ,

is antiferromagnetic under this, or any other reasonable definition of the term, when B < 1.
EvalZ(Aq,BPotts) is #SAT-hard by a rather direct reduction from maximum q-way cut in a
graph, which is an NP-hard optimisation problem. However, we can discuss, as we did in the
case q = 2, the computational complexity of approximating EvalZ(Aq,BPotts), for restricted
instances of degree at most ∆. Galanis, Štefankovič and Vigoda [32] prove the following.

I Theorem 16. Suppose q ≥ 4 is even, ∆ > q and 0 ≤ B < (∆−q)/∆. Then EvalZ(Aq,BPotts),
restricted to graphs of degree at most ∆, is #SAT-equivalent.

The reduction employed in proving this result again employs random ∆-regular bipartite
graphs as bistable gadgets. The condition for these gadgets to have distinguishable “phases”
relates to a certain threshold in an infinite regular tree of degree ∆. However the picture
is more complicated than in the case q = 2, and there is more than one critical value
of B. The specific threshold that is relevant to Theorem 16 is the uniqueness threshold for
“semi-translation-invariant measures”. These are invariant measures on an infinite regular
tree of degree ∆ that are invariant under automorphisms of the tree that move the root a



M. Jerrum 225

distance of two. Proving that the gadgets have the appropriate bistability property below
the threshold is challenging. Some ingenious devices are introduced to simplify the technical
details of the proof, but the paper still runs to 60 pages.

Theorem 16 provides a natural boundary beyond which the partition function of the
antiferromagnetic Potts model is hard to approximate. Unlike the q = 2 case, we don’t know
whether we can approach the boundary arbitrary closely from the other side. This is because
Weitz’s approach has not so far been generalised to q > 2. As an illustration of the gap, in
the special case B = 0, we have intractability when q < ∆, but the best general positive
result requires q > 11

6 ∆ [56].
Galanis, Štefankovič, Vigoda and Yang [31] say that a model is ferromagnetic if the

interaction matrix A is positive definite. An example is, of course, the ferromagnetic Potts
model defined by the interaction matrix Aq,BPotts with q ≥ 2 and B > 1. When q = 2, we
know that an FPRAS exists [45]. In contrast, Goldberg and Jerrum [38] provide evidence of
computational intractability when q > 2.

I Theorem 17. EvalZ(Aq,BPotts) is #BIS-hard, for all q ≥ 3 and B > 1.

What is the essential difference between the q = 2 and q > 2 situations that explains
apparent switch from tractability to intractability? In both situations, there is a phase
transition from a disordered to an ordered phase as B increases. However, the nature of
that transition is different when q > 2 than when q ≤ 2. This difference can be appreciated
by looking at typical configurations of the Potts model on a complete graph when B is a
little below and a little above the critical value, which we’ll call Bo. Configurations are
assignments σ : V (G) → [q] of spins to the vertices of G, and they occur with probability
implicitly given by (1). Suppose we observe the fraction of vertices that are assigned the
majority spin. For B < Bo, this fraction is roughly q−1 (the “disordered phase”) but when
B > Bo it is strictly greater (the “ordered phase”).

If we plot the fraction of majority spins as a function of B, we find a discontinuity at Bo:
a discontinuity of the derivative when q = 2 and of the function itself when q > 2. A phase
transition of the latter kind is called “first-order”. At a first-order phase transition, the
disordered and ordered phases coexist, and it is this that allows us to construct a bistable
gadget, the two phases coding true and false. It appears that we cannot use such a gadget to
code an NP-hard problem, but we can code the problem #BIS [38]. When q = 2, the phase
transition is “second-order”, and does not permit gadget construction.

Actually, using the random cluster formulation of the Potts model, we can make sense of
the Potts partition function for non-integer q; with this interpretation, Theorem 17 holds for
all q > 2. Note that this is best possible, as we noted earlier.

Galanis, Štefankovič, Vigoda and Yang [31] greatly strengthen this result so that it
applies to bounded degree graphs. Suppose q ≥ 3 and ∆ ≥ 3. Define Bo = Bo(q,∆) =
(q − 2)/[(q − 1)1−2/∆ − 1]; the significance of Bo is that it is the point of coexistence of
ordered and disordered phases in the infinite regular tree of degree ∆.

I Theorem 18. EvalZ(Aq,BPotts) is #BIS-hard, for all q ≥ 3, ∆ ≥ 3 and B > Bo(q,∆).

The gadgets used in this proof are again random regular graphs. There are substantial
technical hurdles to overcome, particularly in describing the phase transition in a very precise
way, and proving rigorously that the description is correct.

The majority of spin models are neither ferromagnetic nor antiferromagnetic in the the
sense described above, i.e., the number of negative eigenvalues is in the range [1, q− 2]. What
then? As a test case, we can take the interaction matrix associated with the Widom-Rowlinson

Chapte r 08



226 Counting Constraint Satisfaction Problems

model, namely

AWR =

1 1 0
1 1 1
0 1 1

 .

The eigenvalues of this matrix are 1 and 1±
√

2, so the model is neither ferromagnetic nor
antiferromagnetic in the technical sense. This matrix AWR fits the second part of Theorem 11,
so computing EvalZc(AWR) is #BIS-equivalent. Evidently, the model does not allow us to
encode a hard partitioning problem, such as maximum cut in a graph, and so does not feel
“antiferromagnetic”.

On the other hand, if we replace the off-diagonal 1s by 2s, to get the modified matrix A′WR
then the eigenvalues are 1 and 1± 2

√
2 which is still indeterminate. (Replacing each 1 on the

diagonal by 1 + ε would also work.) We are now in situation of the third part of Theorem 11,
so that EvalZc(A′WR) is #SAT-equivalent. Indeed it is not too difficult to see that the
external fields are not really required, so that EvalZ(A′WR) is also #SAT-equivalent. (We
just need to extract the latent antiferromagnetic Ising model embedded in the top-left 2× 2
submatrix of A′WR, which can be done with standard gadgetry.) This model feels genuinely
antiferromagnetic. In summary, if the number of negative eigenvalues of A is in the range
[1, q − 2] then the spin model with interaction matrix A may exhibit either ferromagnetic or
antiferromagnetic characteristics.

3.4 #CSPs in General
Progress has been made towards classifying the complexity of approximating general counting
CSPs, but only in the conservative case. Fix a finite domain D, and recall that Uk, for all
k ∈ N, is the class of all functions Dk → R≥0, and that U = ∪∞k=0 Uk. In particular, U1 is
the set of unary functions, which are given free in the conservative case. Recall also the class
of functions LSM that is defined in the case |D| = 2 by (4).

To state the main result concerning general counting CSPs, we require some further
definitions. Recall the notion of functional clone from §2.3. A set of functions F is weakly
log-modular if, for all binary functions f ∈ 〈F〉# and elements a, b ∈ D,

f(a, a)f(b, b) = f(a, b)f(b, a) or f(a, a) = f(b, b) = 0 or f(a, b) = f(b, a) = 0;

F is weakly log-supermodular if, for all binary functions f ∈ 〈F〉# and elements a, b ∈ D,

f(a, a)f(b, b) ≥ f(a, b)f(b, a) or f(a, a) = f(b, b) = 0.

Finally, a problem Π is LSM-easy if there is a finite set G ⊂ LSM of log-supermodular
functions (over the Boolean domain) such that Π is AP-reducible to #CSP(G).

Chen, Dyer, Goldberg, Jerrum, Lu, McQuillan and Richerby [14] studied general counting
CSPs and found the following classification.

I Theorem 19. Let F ⊆ U be a set of functions that includes all unary functions U1.
If F is weakly log-modular then #CSP(G) is in FP for every finite G ⊂ F .
If F is weakly log-supermodular but not weakly log-modular, then #CSP(G) is LSM-easy
for every finite G ⊂ F and #BIS-hard for some such G.
If F is weakly log-supermodular but not weakly log-modular and consists of functions
of arity at most two, then #CSP(G) is #BIS-easy for every finite G ⊂ F and #BIS-
equivalent for some such G.
If F is not weakly log-supermodular, then #CSP(G) is #SAT-easy for every finite G ⊂ F
and #SAT-equivalent for some such G.



M. Jerrum 227

This theorem is clearly more general than Theorem 11, but the latter provides more
insight into the particular counting CSPs (i.e., partition functions) that it covers. Indeed, it
is not obvious that the classification provided by Theorem 19 is decidable. However there is a
kind of multimorphism underlying weak log-submodularity that can be tested fairly directly,
and weak-modularity is essentially equivalent to another condition, known as “balance”, that
was already known to be decidable.

We saw already (see the comments following Theorem 11) that Theorem 19 does not in
general establish a trichotomy. However, it does in the “bijunctive” case where all functions
have arity at most 2.

4 Esoterica

Faben and Jerrum [25] considered the complexity of the problem ⊕H-Col of computing the
parity of the number of H-colourings of a graph. This can be viewed as a counting CSP over
F2, of the form #CSP({f}), where f : D2 → F2 is a symmetric binary function. Define ⊕P
to be the class of functions Σ∗ → {0, 1} that can be expressed as the number of accepting
computations of a polynomial-time nondeterministic Turing machine, reduced modulo 2. It
is tempting to conjecture that ⊕H-Col exhibits a dichotomy between FP and ⊕P-complete.
However, the dichotomy here, if it exists, has a very different flavour to conventional counting
CSPs.

In order to understand the possible nature of the dichotomy, we introduce a reduction
system on undirected graphs in which a single transition has the following form. Suppose H
is an undirected graph, possibly with loops. If π is an involution of H (automorphism of
order 2), remove from H all vertices that are moved by π and denote the resulting graph by
Hπ. Then H → Hπ is a possible transition of the system. If H has no involution, then no
transition from H is possible; in this case, H is a normal form. This reduction system is
confluent, that is to say, for each H there is a unique normal form H0 such that H →∗ H0.
where →∗ is the transitive closure of the reduction relation →. Call a graph trivial if it has
zero vertices, one vertex (with or without a loop), or two disconnected vertices, one with
a loop and one without. Suppose H is a graph and H0 is its normal form. It is easy to
show that ⊕H-Col in FP if H0 is trivial. Faben and Jerrum conjecture that ⊕H-Col is
⊕P-complete if H0 is not trivial, and confirm the conjecture in the special case that H is a
tree.

The conjecture for general graphs is still open. However, Göbel, Goldberg and Richerby
confirm the conjecture for cactus graphs [33] and square-free graphs [34]. A graph is a cactus
if every edge is in at most one (simple) cycle. Note that trees are a special case of cactus
graphs. A graph is square-free if it contains no (not necessarily induced) 4-cycle.

Finally, one can study variants of #CSP(Γ) in which only minimal (or maximal) satisfying
assignments are to be counted. Durand and Hermann consider the problem of “propositional
circumscription” [17]. Fix the domain to be D = {0, 1}. A circumscription problem is defined
as usual by a constraint language Γ of relations of various arities over D. An instance (X,C)
is specified by a set of variables X and constraints C. Instead of counting all satisfying
assignments, we are required to count just the minimal such assignments. A satisfying
assignment σ : X → {0, 1} is mininal if there does not exist a satisfying assignment σ′ 6= σ

such that σ′(x) ≤ σ(x) for all x ∈ X.
The first thing to note is that we are (apparently) no longer working within the complexity

class #P. A non-deterministic polynomial-time Turing machine can guess an assignment
σ : X → {0, 1} and decide whether it is satisfying, but it cannot in general decide whether a

Chapte r 08



228 Counting Constraint Satisfaction Problems

satisfying assignment is minimal. Indeed, Durand and Hermann show that circumscription
in general is # · coNP-complete and hence, presumably, not in #P. (Roughly, a problem is
in # · coNP if it is a witness counting problem for which witness checking is in coNP. In this
case, deciding whether a satisfying assignment σ is minimal is clearly in coNP.)

However, Durand and Hermann prove that certain circumscription problems are in fact
#P-complete: examples include ones whose constraint language Γ that are bijunctive (all
relations in Γ have arity at most two), or that are affine or dual Horn. In contrast, the
circumscription problems deriving from constraint languages that are Horn, or that are both
affine and bijunctive, are in FP (trivially, in the former case).

Within a similar framework, Goldberg and Jerrum [40] consider the problem of counting
satisfying assignments that are locally maximal. The crucial difference with Durand and
Hermann lies in the “locally” and not in the “maximal”. A satisfying assignment σ is locally
maximal if any assignment σ′ that can be obtained from σ by flipping a single 0 to a 1 is
unsatisfying. Local maximality can easily be tested in polynomial time, so we find ourselves
again working within the complexity class #P.

It turns out that counting locally maximal satisfying assignments can sometimes be
easier than counting all satisfying assignments, but never harder. One kind of constraint
language Γ that is trivially tractable in this variant is one in which all relations R ∈ Γ are
monotone (increasing). A relation R of arity k is monotone if for all (x1, . . . , xk) ∈ R and
all i ∈ [k], it is the case that (x1, . . . , xi−1, 1, xi+1, . . . , xk) ∈ R. Actually, this definition can
be relaxed slightly to essentially monotone, while retaining tractability. Let Z ⊆ [n] be the
set of indices for which R forces xi = 0; that is, i ∈ Z if (x1, . . . , xk) ∈ R implies xi = 0.
Then R is essentially monotone if it is locally monotone when restricted to the variables
{xi : i ∈ [k] \ Z} (and with the variables in Z set to 0).

Goldberg and Jerrum [40] show that the dichotomy for exact counting (Theorem 1) and
the trichotomy for approximate counting (Theorem 5) carry over to locally maximal CSPs
provided we add an additional case asserting tractability in the case that every relation in Γ
is essentially monotone.

Acknowledgements. My understanding of the topic, such as it is, was acquired through
collaborations with many people. I therefore thank my coauthors: Andrei Bulatov, Jin-Yi
Cai, Xi Chen, Martin Dyer, John Faben, Alan Frieze, Andreas Galanis, Leslie Ann Goldberg,
Catherine Greenhill, Martin Grohe, Heng Guo, Pinyan Lu, Colin McQuillan, Mike Paterson,
David Richerby, Alistair Sinclair, Daniel Štefankovič, Mark Thurley and Eric Vigoda. Any
misunderstandings are my own.

References

1 Elmar Böhler, Nadia Creignou, Steffen Reith, and Heribert Vollmer. Playing with Boolean
blocks, part II: Constraint satisfaction problems. ACM SIGACT Newsletter, 35:22–35,
2004.

2 Andrei Bulatov and Víctor Dalmau. A simple algorithm for Mal′tsev constraints. SIAM J.
Comput., 36(1):16–27 (electronic), 2006. doi:10.1137/050628957.

3 Andrei Bulatov, Martin Dyer, Leslie Ann Goldberg, Markus Jalsenius, and David Richerby.
The complexity of weighted Boolean #CSP with mixed signs. Theoret. Comput. Sci.,
410(38-40):3949–3961, 2009. doi:10.1016/j.tcs.2009.06.003.

4 Andrei Bulatov and Martin Grohe. The complexity of partition functions. Theoret. Comput.
Sci., 348(2-3):148–186, 2005. doi:10.1016/j.tcs.2005.09.011.

http://dx.doi.org/10.1137/050628957
http://dx.doi.org/10.1016/j.tcs.2009.06.003
http://dx.doi.org/10.1016/j.tcs.2005.09.011


M. Jerrum 229

5 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J.
ACM, 60(5):Art 34, 41, 2013. doi:10.1145/2528400.

6 Andrei A. Bulatov. Boolean max-co-clones. Algebra Universalis, 74(1-2):139–162, 2015.
doi:10.1007/s00012-015-0336-1.

7 Andrei A. Bulatov and Víctor Dalmau. Towards a dichotomy theorem for the counting
constraint satisfaction problem. Inform. and Comput., 205(5):651–678, 2007. doi:10.
1016/j.ic.2006.09.005.

8 Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum, and Colin McQuillan.
The expressibility of functions on the Boolean domain, with applications to counting CSPs.
J. ACM, 60(5):Art. 32, 36, 2013. doi:10.1145/2528401.

9 Jin-Yi Cai and Xi Chen. Complexity of counting CSP with complex weights. In STOC’12
– Proceedings of the 2012 ACM Symposium on Theory of Computing, pages 909–919. ACM,
New York, 2012. doi:10.1145/2213977.2214059.

10 Jin-Yi Cai, Xi Chen, and Pinyan Lu. Non-negatively weighted #CSP: an effective com-
plexity dichotomy. In 26th Annual IEEE Conference on Computational Complexity, pages
45–54. IEEE Computer Soc., Los Alamitos, CA, 2011.

11 Jin-Yi Cai, Xi Chen, and Pinyan Lu. Graph homomorphisms with complex values: a
dichotomy theorem. SIAM J. Comput., 42(3):924–1029, 2013. doi:10.1137/110840194.

12 Jin-Yi Cai, Andreas Galanis, Leslie Ann Goldberg, Heng Guo, Mark Jerrum, Daniel Šte-
fankovič, and Eric Vigoda. #BIS-hardness for 2-spin systems on bipartite bounded de-
gree graphs in the tree non-uniqueness region. Journal of Computer and System Sciences,
82(5):690–711, 2016. doi:http://dx.doi.org/10.1016/j.jcss.2015.11.009.

13 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. The complexity of complex weighted Boolean #CSP.
J. Comput. System Sci., 80(1):217–236, 2014. doi:10.1016/j.jcss.2013.07.003.

14 Xi Chen, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum, Pinyan Lu, Colin McQuillan,
and David Richerby. The complexity of approximating conservative counting CSPs. J.
Comput. System Sci., 81(1):311–329, 2015. doi:10.1016/j.jcss.2014.06.006.

15 Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting prob-
lems. Inform. and Comput., 125(1):1–12, 1996. doi:10.1006/inco.1996.0016.

16 Nadia Creignou, Phokion Kolaitis, and Bruno Zanuttini. Structure identification of Boolean
relations and plain bases for co-clones. J. Comput. System Sci., 74(7):1103–1115, 2008.
doi:10.1016/j.jcss.2008.02.005.

17 Arnaud Durand and Miki Hermann. On the counting complexity of propositional circum-
scription. Inform. Process. Lett., 106(4):164–170, 2008. doi:10.1016/j.ipl.2007.11.006.

18 Martin Dyer, Alan Frieze, and Mark Jerrum. On counting independent sets in sparse
graphs. SIAM J. Comput., 31(5):1527–1541, 2002. doi:10.1137/S0097539701383844.

19 Martin Dyer, Leslie Ann Goldberg, Catherine Greenhill, and Mark Jerrum. The relative
complexity of approximate counting problems. Algorithmica, 38(3):471–500, 2004. Approx-
imation algorithms. doi:10.1007/s00453-003-1073-y.

20 Martin Dyer, Leslie Ann Goldberg, Markus Jalsenius, and David Richerby. The complexity
of approximating bounded-degree Boolean #CSP. Inform. and Comput., 220/221:1–14,
2012. doi:10.1016/j.ic.2011.12.007.

21 Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. The complexity of weighted Boolean
#CSP. SIAM J. Comput., 38(5):1970–1986, 2008/09. doi:10.1137/070690201.

22 Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. An approximation trichotomy for
Boolean #CSP. J. Comput. System Sci., 76(3-4):267–277, 2010. doi:10.1016/j.jcss.
2009.08.003.

23 Martin Dyer and Catherine Greenhill. The complexity of counting graph homomorphisms.
Random Structures Algorithms, 17(3-4):260–289, 2000. doi:10.1002/1098-2418(200010/
12)17:3/4<260::AID-RSA5>3.3.CO;2-N.

Chapte r 08

http://dx.doi.org/10.1145/2528400
http://dx.doi.org/10.1007/s00012-015-0336-1
http://dx.doi.org/10.1016/j.ic.2006.09.005
http://dx.doi.org/10.1016/j.ic.2006.09.005
http://dx.doi.org/10.1145/2528401
http://dx.doi.org/10.1145/2213977.2214059
http://dx.doi.org/10.1137/110840194
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcss.2015.11.009
http://dx.doi.org/10.1016/j.jcss.2013.07.003
http://dx.doi.org/10.1016/j.jcss.2014.06.006
http://dx.doi.org/10.1006/inco.1996.0016
http://dx.doi.org/10.1016/j.jcss.2008.02.005
http://dx.doi.org/10.1016/j.ipl.2007.11.006
http://dx.doi.org/10.1137/S0097539701383844
http://dx.doi.org/10.1007/s00453-003-1073-y
http://dx.doi.org/10.1016/j.ic.2011.12.007
http://dx.doi.org/10.1137/070690201
http://dx.doi.org/10.1016/j.jcss.2009.08.003
http://dx.doi.org/10.1016/j.jcss.2009.08.003
http://dx.doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.3.CO;2-N
http://dx.doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.3.CO;2-N


230 Counting Constraint Satisfaction Problems

24 Martin E. Dyer and David Richerby. An effective dichotomy for the counting constraint
satisfaction problem. SIAM J. Comput., 42(3):1245–1274, 2013. doi:10.1137/100811258.

25 John Faben and Mark Jerrum. The complexity of parity graph homomorphism: an initial
investigation. Theory Comput., 11:35–57, 2015. doi:10.4086/toc.2015.v011a002.

26 Tomas Feder, Pavol Hell, and Jing Huang. Bi-arc graphs and the complexity of list homo-
morphisms. J. Graph Theory, 42(1):61–80, 2003. doi:10.1002/jgt.10073.

27 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory. SIAM J. Comput.,
28(1):57–104 (electronic), 1999. doi:10.1137/S0097539794266766.

28 Andreas Galanis, Qi Ge, Daniel Štefankovič, Eric Vigoda, and Linji Yang. Improved in-
approximability results for counting independent sets in the hard-core model. Random
Structures Algorithms, 45(1):78–110, 2014. doi:10.1002/rsa.20479.

29 Andreas Galanis, Leslie Ann Goldberg, and Mark Jerrum. Approximately Counting
H-Colorings is #BIS-Hard. SIAM J. Comput., 45(3):680–711, 2016. doi:10.1137/
15M1020551.

30 Andreas Galanis, Leslie Ann Goldberg, and Mark Jerrum. A complexity trichotomy for
approximately counting list H-colourings. CoRR, abs/1602.03985, 2016. Extended abstract
to appear in Proc. International Colloquium for Automata, Languages and Programming
(ICALP), 2016. URL: http://arxiv.org/abs/1602.03985.

31 Andreas Galanis, Daniel Štefankovič, Eric Vigoda, and Linji Yang. Ferromagnetic Potts
Model: Refined #BIS-hardness and Related Results. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014,
September 4-6, 2014, Barcelona, Spain, volume 28 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 677–691. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.677.

32 Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability for antiferromag-
netic spin systems in the tree nonuniqueness region. J. ACM, 62(6):50:1–50:60, December
2015. doi:10.1145/2785964.

33 Andreas Göbel, Leslie Ann Goldberg, and David Richerby. The complexity of counting
homomorphisms to cactus graphs modulo 2. ACM Trans. Comput. Theory, 6(4):Art. 17,
29, 2014. doi:10.1145/2635825.

34 Andreas Göbel, Leslie Ann Goldberg, and David Richerby. Counting homomorphisms to
square-free graphs, modulo 2. ACM Trans. Comput. Theory, 8(3):12:1–12:29, May 2016.
doi:10.1145/2898441.

35 Leslie Ann Goldberg, Martin Grohe, Mark Jerrum, and Marc Thurley. A complexity
dichotomy for partition functions with mixed signs. SIAM J. Comput., 39(7):3336–3402,
2010. doi:10.1137/090757496.

36 Leslie Ann Goldberg and Mark Jerrum. The complexity of ferromagnetic Ising with local
fields. Combin. Probab. Comput., 16(1):43–61, 2007. doi:10.1017/S096354830600767X.

37 Leslie Ann Goldberg and Mark Jerrum. Inapproximability of the Tutte polynomial. Inform.
and Comput., 206(7):908–929, 2008. doi:10.1016/j.ic.2008.04.003.

38 Leslie Ann Goldberg and Mark Jerrum. Approximating the partition function of the ferro-
magnetic Potts model. J. ACM, 59(5):Art. 25, 31, 2012. doi:10.1145/2371656.2371660.

39 Leslie Ann Goldberg and Mark Jerrum. A complexity classification of spin systems with
an external field. Proceedings of the National Academy of Sciences, 112(43):13161–13166,
2015. doi:10.1073/pnas.1505664112.

40 Leslie Ann Goldberg and Mark Jerrum. The complexity of counting locally maximal
satisfying assignments of Boolean CSPs. Theoret. Comput. Sci., 634:35–46, 2016. doi:
10.1016/j.tcs.2016.04.008.

http://dx.doi.org/10.1137/100811258
http://dx.doi.org/10.4086/toc.2015.v011a002
http://dx.doi.org/10.1002/jgt.10073
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1002/rsa.20479
http://dx.doi.org/10.1137/15M1020551
http://dx.doi.org/10.1137/15M1020551
http://arxiv.org/abs/1602.03985
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.677
http://dx.doi.org/10.1145/2785964
http://dx.doi.org/10.1145/2635825
http://dx.doi.org/10.1145/2898441
http://dx.doi.org/10.1137/090757496
http://dx.doi.org/10.1017/S096354830600767X
http://dx.doi.org/10.1016/j.ic.2008.04.003
http://dx.doi.org/10.1145/2371656.2371660
http://dx.doi.org/10.1073/pnas.1505664112
http://dx.doi.org/10.1016/j.tcs.2016.04.008
http://dx.doi.org/10.1016/j.tcs.2016.04.008


M. Jerrum 231

41 Leslie Ann Goldberg, Mark Jerrum, and Mike Paterson. The computational complexity
of two-state spin systems. Random Structures Algorithms, 23(2):133–154, 2003. doi:10.
1002/rsa.10090.

42 Leslie Ann Goldberg, Steven Kelk, and Mike Paterson. The complexity of choosing an
H-coloring (nearly) uniformly at random. SIAM J. Comput., 33(2):416–432 (electronic),
2004. doi:10.1137/S0097539702408363.

43 Heng Guo and Pinyan Lu. Uniqueness, spatial mixing, and approximation for ferromagnetic
2-spin systems. CoRR, abs/1511.00493, 2015. URL: http://arxiv.org/abs/1511.00493.

44 Heng Guo and Tyson Williams. The complexity of planar Boolean #CSP with com-
plex weights. In Automata, languages, and programming. Part I, volume 7965 of Lec-
ture Notes in Comput. Sci., pages 516–527. Springer, Heidelberg, 2013. doi:10.1007/
978-3-642-39206-1_44.

45 Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising
model. SIAM J. Comput., 22(5):1087–1116, 1993. doi:10.1137/0222066.

46 Steven Kelk. On the relative complexity of approximately counting H-colourings. PhD
thesis, Warwick University, 2003.

47 Liang Li, Pinyan Lu, and Yitong Yin. Correlation decay up to uniqueness in spin systems. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 67–84. SIAM, Philadelphia, PA, 2012. Full version available at arXiv:1111.7064.

48 Rudolf Lidl and Harald Niederreiter. Finite fields, volume 20 of Encyclopedia of Mathem-
atics and its Applications. Cambridge University Press, Cambridge, second edition, 1997.
With a foreword by P. M. Cohn.

49 Jingcheng Liu, Pinyan Lu, and Chihao Zhang. The complexity of ferromagnetic two-
spin systems with external fields. In Approximation, Randomization, and Combinator-
ial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, September 4-
6, 2014, Barcelona, Spain, volume 28 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 843–856. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2014.
doi:10.4230/LIPIcs.APPROX-RANDOM.2014.843.

50 Elchanan Mossel, Dror Weitz, and Nicholas Wormald. On the hardness of sampling inde-
pendent sets beyond the tree threshold. Probab. Theory Related Fields, 143(3-4):401–439,
2009. doi:10.1007/s00440-007-0131-9.

51 J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing
the probability that a graph is connected. SIAM J. Comput., 12(4):777–788, 1983. doi:
10.1137/0212053.

52 Alistair Sinclair, Piyush Srivastava, and Marc Thurley. Approximation algorithms for two-
state anti-ferromagnetic spin systems on bounded degree graphs. J. Stat. Phys., 155(4):666–
686, 2014. doi:10.1007/s10955-014-0947-5.

53 Allan Sly and Nike Sun. Counting in two-spin models on d-regular graphs. Ann. Probab.,
42(6):2383–2416, 2014. doi:10.1214/13-AOP888.

54 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Com-
put., 8(3):410–421, 1979. doi:10.1137/0208032.

55 Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions. Theoret.
Comput. Sci., 47(1):85–93, 1986. doi:10.1016/0304-3975(86)90135-0.

56 Eric Vigoda. Improved bounds for sampling colorings. J. Math. Phys., 41(3):1555–1569,
2000. doi:10.1063/1.533196.

57 Dror Weitz. Counting independent sets up to the tree threshold. In STOC’06: Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, pages 140–149. ACM, New
York, 2006. doi:10.1145/1132516.1132538.

Chapte r 08

http://dx.doi.org/10.1002/rsa.10090
http://dx.doi.org/10.1002/rsa.10090
http://dx.doi.org/10.1137/S0097539702408363
http://arxiv.org/abs/1511.00493
http://dx.doi.org/10.1007/978-3-642-39206-1_44
http://dx.doi.org/10.1007/978-3-642-39206-1_44
http://dx.doi.org/10.1137/0222066
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.843
http://dx.doi.org/10.1007/s00440-007-0131-9
http://dx.doi.org/10.1137/0212053
http://dx.doi.org/10.1137/0212053
http://dx.doi.org/10.1007/s10955-014-0947-5
http://dx.doi.org/10.1214/13-AOP888
http://dx.doi.org/10.1137/0208032
http://dx.doi.org/10.1016/0304-3975(86)90135-0
http://dx.doi.org/10.1063/1.533196
http://dx.doi.org/10.1145/1132516.1132538




The Complexity of Valued CSPs∗

Andrei Krokhin1 and Stanislav Živný2

1 School of Engineering and Computing Sciences, University of Durham, UK
andrei.krokhin@durham.ac.uk

2 Department of Computer Science, University of Oxford, UK
standa.zivny@cs.ox.ac.uk

Abstract
We survey recent results on the broad family of problems that can be cast as valued constraint
satisfaction problems (VCSPs). We discuss general methods for analysing the complexity of
such problems, give examples of tractable cases, and identify general features of the complexity
landscape.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, G.1.6 Optimization

Keywords and phrases Constraint satisfaction problems, Optimisation, Tractability

Digital Object Identifier 10.4230/DFU.Vol7.15301.233

1 Introduction

Computational problems from many different areas involve finding an assignment of values
to a set of variables, where that assignment must satisfy some specified feasibility conditions
and optimise some specified objective function. In many such problems the objective function
can be represented as a sum of functions, each of which depends on some subset of the
variables. Examples include: Gibbs energy minimisation, Markov Random Fields (MRF),
Conditional Random Fields (CRF), Min-Sum Problems, Minimum Cost Homomorphism,
Constraint Optimisation Problems (COP) and Valued Constraint Satisfaction Problems
(VCSP) [11, 30, 87, 110, 114, 116].

We focus in this article on a generic framework for such problems that captures their
general form. Bringing all such problems into a common framework draws attention to
common aspects that they all share, and allows a very general algebraic approach for analysing
their complexity to be developed. The primary motivation for this line of research is to
understand the general picture of complexity within this general framework, rather than to
develop specialised techniques for specific applications.

We will give an overview of this algebraic approach, and the results that have been
obtained by using it. We will focus on algorithms for solving problems to optimality and on
the computational complexity of such problems. Although there is a survey from two years
ago [61], the recent massive progress [43, 77, 78, 105, 72] justifies a new survey.

The generic framework we use is the valued constraint satisfaction problem (VCSP),
defined formally as follows. Throughout the paper, let D be a fixed finite set and let
Q = Q ∪ {∞} denote the set of rational numbers with (positive) infinity.

∗ Stanislav Živný was supported by a Royal Society University Research Fellowship.This project has
received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 714532). The paper reflects only the authors’
views and not the views of the ERC or the European Commission. The European Union is not liable
for any use that may be made of the information contained therein.

© Andrei Krokhin and Stanislav Živný;
licensed under Creative Commons License BY

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný; pp. 233–266

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol7.15301.233
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3


234 The Complexity of Valued CSPs

I Definition 1. We denote the set of all functions φ : Dm → Q by Φ(m)
D and let ΦD =⋃

m≥1 Φ(m)
D . We will often call the functions in ΦD cost functions over D.

Let V = {x1, . . . , xn} be a set of variables. A valued constraint over V is an expression
of the form φ(x) where x ∈ V m and φ ∈ Φ(m)

D . The number m is called the arity of the
constraint, the function φ is called the constraint function, and the tuple x the scope of the
constraint.

We will call the elements of D labels (for variables), and say that the cost functions in
ΦD take values.

I Definition 2. An instance of the valued constraint satisfaction problem (VCSP) is specified
by a finite set V = {x1, . . . , xn} of variables, a finite set D of labels, and an objective function
Φ expressed as follows:

Φ(x1, . . . , xn) =
q∑
i=1

φi(xi) (1)

where each φi(xi), 1 ≤ i ≤ q, is a valued constraint over V . Each constraint can appear
multiple times in Φ. The goal is to find an assignment of labels to the variables (or labelling)
that minimises Φ.

Note that the value of the function Φ for any assignment of labels to the variables in
V is given by the sum of the values taken by the constraints; this value will sometimes be
called the cost of the assignment. An infinite value for any constraint indicates an infeasible
assignment.

If the constraint functions in some VCSP instance are finite-valued, i.e., take only finite
values, then every assignment is feasible, and the problem is to identify an assignment with
minimum possible cost (i.e., we need to deal only with the optimisation issue). On the
other hand, if each constraint function in an instance takes only two values: one finite value
(possibly specific to the constraint) and ∞, then all feasible assignments are equally good,
and so the only question is whether any such assignment exists (i.e., we need to deal only
with the feasibility issue). If we have neither of the above cases then we need to deal with
both feasibility and optimisation. To emphasise where this can happen we sometimes call
VCSPs general-valued.

In Section 2 we give examples to show that many standard combinatorial optimisation
problems can be conveniently expressed in the VCSP framework. In Section 3 we define
certain algebraic properties of the constraints that can be used to identify tractable cases.
Section 4 describes the basics of a general algebraic theory for analysing the complexity of
different forms of valued constraints. In Sections 5 and 6 we use this algebraic theory to
identify several tractable and intractable cases. In Section 7 we discuss the oracle model for
representing the objective function. Finally, Section 8 gives a brief summary and identifies
some open problems.

2 Problems and Frameworks Captured by the VCSP

In this section we will give examples of specific problems and previously studied frameworks
that can be expressed as VCSPs with restricted forms of constraints.

I Definition 3. Any set Γ ⊆ ΦD is called a valued constraint language over D, or simply a
language. We will denote by VCSP(Γ) the class of all VCSP instances in which the constraint
functions are all contained in Γ.



A. Krokhin and S. Živný 235

Valued constraint languages may be infinite, but it will be convenient to follow [17, 25] and
define the complexity of a valued constraint language in terms of its finite subsets. We
assume throughout that P 6=NP.

I Definition 4. A valued constraint language Γ is called tractable if VCSP(Γ′) can be solved
(to optimality) in polynomial time for every finite subset Γ′ ⊆ Γ, and Γ is called NP-hard if
VCSP(Γ) is NP-hard for some finite Γ′ ⊆ Γ.

One advantage of defining tractability in terms of finite subsets is that the tractability of
a valued constraint language is independent of whether the cost functions are represented
explicitly (say, via full tables of values, or via tables for the finite-valued parts) or implicitly
(via oracles).

I Example 5 (1-in-3-Sat). Let D = {0, 1} and let Γ1-in-3 be the language that contains just
the single ternary cost function φ1-in-3 : D3 → Q defined by

φ1-in-3(x, y, z) def=
{

0 if exactly one of x, y, z is 1
∞ otherwise

.

The problem VCSP(Γ1-in-3) is exactly the 1-in-3-Sat problem. This problem is NP-hard [95,
44], so Γ1-in-3 is NP-hard.

I Example 6 (NAE-Sat). Let D = {0, 1} and let Γnae be the language that contains just the
single ternary cost function φnae : D3 → Q defined by

φnae(x, y, z)
def=

{
∞ if x = y = z

0 otherwise
.

The problem VCSP(Γnae) is exactly the Not-All-Equal-Sat problem, also known as the
3-Uniform Hypergraph 2-Colourability problem. This problem is NP-hard [44], so Γnae is
NP-hard.

I Example 7 (Max-k-Cut). Let Γxor be the language that contains just the single binary cost
function φxor : D2 → Q defined by

φxor(x, y) def=
{

1 if x = y

0 if x 6= y
.

The problem VCSP(Γxor) corresponds to the problem of minimising the number of mono-
chromatic edges in a k-colouring (where k = |D|) of the graph G formed by the scopes of the
constraints. This problem is known as the Maximum k-Cut problem (or simply Max-Cut
when |D| = 2), and is NP-hard [44].

Hence, for any choice of D with |D| ≥ 2, the language Γxor is NP-hard.

I Example 8 (Potts model). Let ΓPotts be the language that contains all unary cost functions
and the single binary cost function φPotts: D2 → Q defined by

φPotts(x, y) def=
{

0 if x = y

1 if x 6= y
.

The problem VCSP(ΓPotts) corresponds to finding the minimum energy state of the Potts
model (with external field) from statistical mechanics [93]. This model is also used as the
basis for a standard Markov Random Field approach to a wide variety of problems in machine
vision [11]. For |D| = 2, the function φPotts is submodular (see Example 19) and we will show
that this implies that ΓPotts is tractable. For |D| > 2, ΓPotts is NP-hard as it includes, as a
special case, the multiway cut problem, which is NP-hard [34].

Chapte r 09



236 The Complexity of Valued CSPs

I Example 9 ((s, t)-Min-Cut). Let G = (V,E) be a directed weighted graph such that for
every (u, v) ∈ E there is a weight w(u, v) ∈ Q≥0 and let s, t ∈ V be distinguished source
and target nodes. Recall that an (s, t)-cut C is a subset of vertices V such that s ∈ C but
t 6∈ C. The weight, or the size, of an (s, t)-cut C is defined as

∑
(u,v)∈E,u∈C,v 6∈C w(u, v).

The (s, t)-Min-Cut problem consists in finding a minimum-weight (s, t)-cut in G. We can
formulate the search for a minimum-weight (s, t)-cut in G as a VCSP instance as follows.

Let D = {0, 1}. For any label d ∈ D and cost c ∈ Q, we define

ηcd(x) def=
{

0 if x = d

c if x 6= d
.

For any weight w ∈ Q≥0, we define

φwcut(x, y) def=
{
w if x = 0 and y = 1
0 otherwise

.

We denote by Γcut the set {η∞0 , η∞1 } ∪ {φwcut | w ∈ Q≥0}. A minimum-weight (s, t)-cut in
a graph G with set of nodes V = {x1, . . . , xn} corresponds to the set of variables assigned
the label 0 in a minimal cost assignment to the VCSP instance defined by

Φ(x1, . . . , xn) def= η∞0 (s) + η∞1 (t) +
∑

(xi,xj)∈E

φ
w(xi,xj)
cut (xi, xj).

The unary constraints ensure that the source and target nodes must be assigned the labels 0
and 1, respectively, in any minimal cost assignment.

Furthermore, it is an easy exercise to show that any instance of VCSP(Γcut) on n variables
can be solved in O(n3) time by a reduction to (s, t)-Min-Cut and then using the standard
algorithm [45]. Hence Γcut is tractable.

I Example 10 (Minimum Vertex Cover). The Minimum Vertex Cover problem asks for a
minimum size set W of vertices in a given graph G = (V,E) such that each edge in E has at
least one endpoint in W . This problem is NP-hard [44].

Let D = {0, 1}. We define

φvc(x, y) def=
{
∞ if x = y = 0
0 otherwise

.

We denote by Γvc the language {φvc, η
1
0}, where η1

0 is the function defined in Example 9
that imposes unit cost for any variable assigned the label 1. A minimum vertex cover in a
graph G with set of vertices V = {x1, . . . , xn} corresponds to the set of vertices assigned the
label 1 in some minimum cost assignment to the VCSP(Γvc) instance defined by

Φ(x1, . . . , xn) def=
∑
xi∈V

η1
0(xi) +

∑
(xi,xj)∈E

φvc(xi, xj).

The binary constraints ensure that in any minimal cost assignment at least one endpoint of
each edge belongs to the vertex cover.

Furthermore, it is easy to convert any instance of VCSP(Γvc) to an equivalent instance
of Minimum Vertex Cover by repeatedly assigning the label 1 to all variables which do not
appear in the scope of any unary constraints and removing these variables and all constraints
involving them. Hence Γvc is NP-hard.



A. Krokhin and S. Živný 237

We will now show how several broad frameworks previously studied in the literature
can be expressed as special cases of the VCSP with restricted languages. We will discuss
algorithms and complexity classifications for them in Sections 5 and 6.

I Example 11 (CSP). The standard constraint satisfaction problem (CSP) over any fixed set
of possible labels D can be seen as the special case of the VCSP where all cost functions take
only the values 0 or ∞, representing allowed (satisfying) and disallowed tuples, respectively.
Such constraints and cost functions are sometimes called crisp. In other words, the CSP can
be seen as VCSP(Γcrisp), where Γcrisp is the language consisting of all cost functions on some
fixed set D with range {0,∞}. Note that the CSP can also be cast as the homomorphism
problem for relational structures [37] (cf. Example 12).

Since the CSP includes many known NP-hard problems, such as 1-in-3-Sat (Example 5)
and Graph-3-Colouring, the language Γcrisp is clearly NP-hard. However, many tractable
subsets of Γcrisp have been identified [95, 62, 37, 17, 13, 18, 57, 6], mostly through an algebraic
approach whose extension we discuss in Section 4. There are many surveys on the complexity
of the CSP, see the books [33, 32, 80], and also [22, 51, 2].

Feder and Vardi conjectured that the CSP exhibits a dichotomy: that is, every finite
language Γ ⊆ Γcrisp is either tractable or NP-hard [37], thus excluding problems of intermediate
complexity, as given by Ladner’s Theorem (assuming P 6=NP) [83]. The Algebraic Dichotomy
conjecture, which we state formally and discuss in Section 6, specifies the precise boundary
between tractable and NP-hard crisp languages [17].

I Example 12 (Digraph Homomorphism). Given two digraphs G = (V (G), E(G)) and
H = (V (H), E(H)), a mapping f : V (G) → V (H) is a homomorphism from G to H if f
preserves edges, that is, (u, v) ∈ E(G) implies (f(u), f(v)) ∈ E(H).

The problem whether an input digraph G admits a homomorphism to a fixed digraph H is
also known as the H-Colouring problem and has been actively studied in graph theory [50, 51],
see also [84].

For any digraph H, let D = V (H) and let ΓH be the language that contains just the
single binary cost function φH : D2 → Q defined by

φH(x, y) def=
{

0 if (x, y) ∈ E(H)
∞ otherwise .

For any digraph H, the problem VCSP(ΓH), which is a special case of the CSP (Example 11),
corresponds to the H-colouring problem, where the input digraph G is given by the scopes of
the constraints. If we add all unary crisp functions to ΓH then the resulting VCSP is known
as List H-Colouring [50, 51].

It is known that both the Feder-Vardi conjecture and the Algebraic Dichotomy conjecture
are equivalent to their restrictions to the H-colouring problem [20, 37].

I Example 13 (Max-CSP). An instance of the (weighted) maximum constraint satisfaction
problem (Max-CSP) is an instance of the CSP where the goal is to maximise the (weighted)
number of satisfied constraints.

When seeking the optimal solution, maximising the number of satisfied constraints is the
same as minimising the number of unsatisfied constraints. Hence for any instance Φ of the
Max-CSP, we can define a corresponding VCSP instance Φ′ in which each constraint c of
Φ is associated with a constraint over the same scope in Φ′ which assigns cost 0 to tuples
allowed by c, and cost 1 to tuples disallowed by c. It follows that Max-CSP is equivalent
to VCSP(ΓMax), where ΓMax is the language consisting of cost functions whose values are
restricted to zero and one.

Chapte r 09



238 The Complexity of Valued CSPs

For D = {0, 1}, the complexity of all subsets of ΓMax has been completely classified in [70].
Initial results for languages over arbitrary finite sets appeared in [21].

I Example 14 (Min-Cost-Hom). Here and in the following examples let Γunary consist of all
unary cost functions and let Γmc = Γcrisp ∪ Γunary (where Γcrisp is defined in Example 11).
Problems of the form VCSP(Γ) with Γ ⊆ Γmc have been studied under the name of the
Minimum-Cost Homomorphism problem (or Min-Cost-Hom) [49, 52, 100, 101, 110, 111].
Note that the first three of these papers assume that Γunary ⊆ Γ, while the last three do not.
In [49, 52] Γ is assumed to be of the form {φH} ∪ Γunary, where φH is a binary crisp cost
function, as in Example 12.

In any instance of VCSP(Γmc), the crisp constraints specify the CSP part, i.e., the
feasibility aspect of the problem, while the unary constraints specify the optimisation aspect.
More precisely, the unary constraints specify the costs of assigning labels to individual
variables. Complexity classifications for special cases of Min-Cost-Hom will be discussed in
Section 6.

I Example 15 (Min-Ones). An instance of the Boolean Minimum Ones (Min-Ones) problem
is an instance of the CSP over D = {0, 1} where the goal is to satisfy all constraints and
minimise the number of variables assigned the label 1. Such instances correspond to Min-
Cost-Hom instances over {0, 1} in which all unary constraints are of the form η1

0 as defined in
Example 9 (which impose a unit cost for any variables assigned the label 1). A classification
of the complexity of all subsets of this language was obtained in [70, 33].

I Example 16 (Min-Sol). The Minimum Solution problem (Min-Sol) [67, 65] is a gener-
alisation of Min-Ones from Example 15 to D being a larger set of non-negative integers,
where the only allowed unary cost function is a particular finite-valued injective function,
namely u(x) = wx for some positive w ∈ Q. Thus, this problem is also a subproblem
of Min-Cost-Hom. A complexity classification for Min-Sol problems will be discussed in
Section 6.

3 Polymorphisms and Fractional Polymorphisms

To develop general tools to classify the complexity of different valued constraint languages,
we will now define certain algebraic properties of cost functions.

A function f : Dk → D is called a k-ary operation on D. The k-ary projections, defined
for all 1 ≤ i ≤ k, are the operations e(k)

i such that e(k)
i (x1, . . . , xk) = xi. For any tuples

x1, . . . ,xk ∈ Dm, we denote by f(x1, . . . ,xk) the tuple in Dm obtained by applying f to
x1, . . . ,xk componentwise.

For a cost function φ : Dm → Q, we denote by Feas(φ) = {x ∈ Dm | φ(x) is finite} the
feasibility relation of φ. We will view Feas(φ) both as a relation and as a {0,∞}-valued cost
function. Recall from Example 11 that {0,∞}-valued cost functions are called crisp.

Any valued constraint language Γ defined on D can be associated with a set of operations
on D, known as the polymorphisms of Γ, and defined as follows.

I Definition 17 (Polymorphism). Let φ : Dm → Q be a cost function. We say that a k-ary
operation f : Dk → D is a polymorphism of φ if, for any x1, . . . ,xk ∈ Feas(φ) we have that
f(x1, . . . ,xk) ∈ Feas(φ).

For any valued constraint language Γ over a set D, we denote by Pol(Γ) the set of all
operations on D which are polymorphisms of all φ ∈ Γ. We denote by Pol(k)(Γ) the k-ary
operations in Pol(Γ).



A. Krokhin and S. Živný 239

x1
x2
...

xk

x′1 = f1(x1, . . . ,xk)
x′2 = f2(x1, . . . ,xk)

...
x′n = fn(x1, . . . ,xk)

x1[1] x1[2] . . . x1[m]
x2[1] x2[2] . . . x2[m]

...
xk[1] xk[2] . . . xk[m]

x′1[1] x′1[2] . . . x′1[m]
x′2[1] x′2[2] . . . x′2[m]

...
x′n[1] x′n[2] . . . x′n[m]

φ−→

φ(x1)
φ(x2)

...
φ(xk)


1
k

k∑
i=1

φ(xi)

≥

φ−→

φ(x′1)
φ(x′2)

...
φ(x′n)


n∑
i=1

Pr
ω

[fi]φ(x′i)

Figure 1 Probabilistic definition of a fractional polymorphism.

Note that trivially the projections are polymorphisms of all valued constraint languages.
For {0,∞}-valued cost functions (relations) this notion of polymorphism corresponds

precisely to the standard notion of polymorphism for relations [10, 62]. This notion of
polymorphism has played a key role in the analysis of complexity for the CSP [62, 17].
However, for the analysis of the VCSP we need a more flexible notion that assigns weights to
polymorphisms [23].

I Definition 18 (Fractional Polymorphism). Let φ : Dm → Q be a cost function. A function
ω : Pol(k)(φ)→ Q≥0 is called a k-ary fractional polymorphism of φ if it satisfies the following
conditions:∑

f∈Pol(k)(φ) ω(f) = 1;
for any x1, . . . ,xk ∈ Feas(φ)

∑
f∈Pol(k)(φ)

ω(f)φ(f(x1, . . . ,xk)) ≤ 1
k

k∑
i=1

φ(xi) . (2)

We define supp(ω) = {f | ω(f) > 0) to be the support of ω.

I Remark. The definition of a fractional polymorphism can be re-stated in probabilistic
terms, as follows. Any fractional polymorphism ω can be seen as a probability distribution
over Pol(k)(φ). We can then re-write Inequality (2) as follows:

Ef∼ω[φ(f(x1, . . . ,xk))] ≤ avg{φ(x1), . . . , φ(xk)}. (3)

This is illustrated in Figure 1, which should be read from left to right. Let ω be a
probability distribution on Pol(k)(φ) and let supp(ω) = {f1, . . . , fn}. Starting with the
m-tuples x1, . . . ,xk, we first apply operations f1, . . . , fn to these tuples componentwise,
thus obtaining the m-tuples x′1, . . . ,x′n. Inequality 3 amounts to comparing the average
of the values of φ applied to the tuples x1, . . . ,xk with the weighted sum of the values of
φ applied to the tuples x′1, . . . ,x′n, which is the expected value of φ(f(x1, . . . ,xk)) as f is
drawn from ω.

Examples of fractional polymorphisms include fractional projections: a k-ary fractional
projection ω is defined by ω(e(k)

1 ) = . . . = ω(e(k)
k ) = 1

k . In this case, Inequality 2 holds
trivially with equality. Hence, fractional projections are trivially fractional polymorphisms of
all valued constraint languages.

Chapte r 09



240 The Complexity of Valued CSPs

If ω is a fractional polymorphism of φ, then we say that φ admits ω as a fractional
polymorphism. We say that a language Γ admits a fractional polymorphism ω if ω is a
fractional polymorphism of every cost function φ ∈ Γ. It is easy to see that in this case
ω is also a fractional polymorphism of any function Φ arising as an instance of VCSP(Γ).
The intuition behind the notion of fractional polymorphism is that it allows one to combine
several feasible assignments for an instance of VCSP(Γ), in a randomised way, into a new
feasible assignment so that the expected value of the new assignment (non-strictly) improves
the average value of the original assignments.

Note that if Γ consists of crisp functions then the k-ary fractional polymorphisms of Γ
are all possible probability distributions on Pol(k)(Γ).

A more restricted form of fractional polymorphism was introduced earlier in [25] and is
known as a multimorphism. This is essentially a k-ary fractional polymorphism where the
value of ω(f) is of the form `/k, where ` ∈ N, for every f ∈ supp(ω).

One can specify a k-ary multimorphism as a k-tuple f = 〈f1, . . . , fk〉 of k-ary operations
fi on D, where each operation f with ω(f) = `/k for some ` > 0 appears ` times, and then
the definition simplifies as follows: for all x1, . . . ,xk ∈ Feas(φ),

k∑
i=1

φ(fi(x1, . . . ,xk)) ≤
k∑
i=1

φ(xi) . (4)

Fractional polymorphisms (including the special cases of multimorphisms) have proved to
be a valuable tool for identifying tractable valued constraint languages, as we will illustrate
in this section. Closely related algebraic objects, known as weighted polymorphisms, will be
discussed in Section 4.

I Example 19 (Submodularity). For any finite set V , a rational-valued function h defined on
subsets of V is called a set function. A set function h is called submodular if for all subsets
S and T of V ,

h(S ∩ T ) + h(S ∪ T ) ≤ h(S) + h(T ). (5)

Submodular functions are a key concept in operational research and combinatorial optimisa-
tion (see, e.g. [38, 96, 109] for extensive information about them). They are often considered
to be a discrete analogue of convex functions. Examples of submodular functions include cuts
in graphs, matroid rank functions, and entropy functions. There are combinatorial algorithms
for minimising submodular functions in polynomial time (see [96, 38], and also [59]).

If we set D = {0, 1}, then any set function h on V can be associated with a (|V |-ary)
cost function φ defined on the characteristic vectors of subsets of V . The intersection and
union operations on subsets correspond to the Min and Max operations on the associated
characteristic vectors. Hence h is submodular if and only if the associated cost function φ
satisfies the following inequality:

φ(Min(x1,x2)) + φ(Max(x1,x2)) ≤ φ(x1) + φ(x2) .

But this means that φ admits the 2-ary fractional polymorphism ωsub, defined by ωsub(Min) =
ωsub(Max) = 1

2 . This is equivalent to saying that φ admits 〈Min,Max〉 as a multimorphism.

I Example 20 (Generalised Submodularity). Let D be a finite lattice, i.e., a partially ordered
set, where each pair of elements {a, b} has a least upper bound, ∨(a, b), and a greatest lower
bound, ∧(a, b). We denote by Γsub the set of all cost functions over D that admit 〈∨,∧〉 as a
multimorphism. Using a polynomial-time strongly combinatorial algorithm for minimising
submodular functions, it was shown in [25] that Γsub is tractable when D is a totally ordered
lattice (i.e., a chain). More general lattices will be discussed in Section 5 and Section 7.



A. Krokhin and S. Živný 241

I Example 21 (Max). We denote by Γmax the set of all cost functions (over some fixed finite
totally ordered set D) that admit 〈Max,Max〉 as a multimorphism, where Max : D2 → D is
the binary operation returning the larger of its two arguments. Note that Γmax includes all
monotonic decreasing finite-valued cost functions, as well as some non-monotonic crisp cost
functions [25]. It was shown in [25] that Γmax is tractable.

I Example 22 (Min). We denote by Γmin the set of all cost functions (over some fixed finite
totally ordered set D) that admit 〈Min,Min〉 as a multimorphism, where Min : D2 → D is
the binary operation returning the smaller of its two arguments. The tractability of Γmin was
established in [25].

I Example 23 (Bisubmodularity). For a given finite set V , bisubmodular functions are
functions defined on pairs of disjoint subsets of V with a requirement similar to Inequality 5
(see [38, 92] for the precise definition). Examples of bisubmodular functions include rank
functions of delta-matroids [38].

A property equivalent to bisubmodularity can be defined on cost functions on the set
D = {0, 1, 2}. We define two binary operations Min0 and Max0 as follows:

Min0(x, y) def=
{

0 if 0 6= x 6= y 6= 0
Min(x, y) otherwise ,

Max0(x, y) def=
{

0 if 0 6= x 6= y 6= 0
Max(x, y) otherwise .

We denote by Γbis the set of finite-valued cost functions that admit 〈Min0,Max0〉 as a
multimorphism. The language Γbis can be shown to be tractable using the results of [92] (see
also [38]).

The definitions of Min0 and Max0 still make sense whenD = {0, 1, 2 . . . , k}, k ≥ 3. In that
case, functions on D that admit 〈Min0,Max0〉 as a multimorphism are called k-submodular ;
they were introduced in [54]. The tractability of k-submodular general-valued constraint
languages was shown in [73] and will be discussed in Section 5.

I Example 24 (Skew Bisubmodularity). Let D = {0, 1, 2}. Recall the definition of operations
Min0 and Max0 from Example 23. We define

Max1(x, y) def=
{

1 if 0 6= x 6= y 6= 0
Max(x, y) otherwise .

A function φ: Dm → Q is called α-bisubmodular [55], for some real 0 < α ≤ 1, if φ admits
the fractional polymorphism ω defined by ω(Min0) = 1

2 , ω(Max0) = α
2 , ω(Max1) = 1−α

2 .
Note that 1-bisubmodular functions are (ordinary) bisubmodular functions as defined in
Example 23. It is shown in [55] that each distinct value of α is associated with a distinct
class of α-bisubmodular functions. The tractability of α-bisubmodular valued constraint
languages was shown in [73] and will be discussed in Section 5.

I Example 25 ((Symmetric) Tournament Pair). A binary operation f : D2 → D is called a
tournament operation if (i) f is commutative, i.e., f(x, y) = f(y, x) for all x, y ∈ D; and (ii) f
is conservative, i.e., f(x, y) ∈ {x, y} for all x, y ∈ D. The dual of a tournament operation is
the unique tournament operation g satisfying x 6= y ⇒ g(x, y) 6= f(x, y).

A tournament pair is a pair 〈f, g〉, where both f and g are tournament operations. A
tournament pair 〈f, g〉 is called symmetric if g is the dual of f .

Chapte r 09



242 The Complexity of Valued CSPs

Let Γ be an arbitrary language that admits a symmetric tournament pair as a multi-
morphism. It was shown in [24], by a reduction to the minimisation problem for submodular
functions (cf. Example 20), that any such Γ is tractable. A different proof of tractability of Γ
will be discussed in Section 5. It is shown in [73] that any finite-valued language that admits
a symmetric tournament pair multimorphism also admits the submodularity multimorphism
with respect to some totally ordered lattice on D (cf. Example 20).

Now let Γ be an arbitrary language that admits any tournament pair as a multimorphism.
It was shown in [24], by a reduction to the symmetric tournament pair case, that any such Γ
is also tractable. Again, the tractability of Γ will be discussed in more detail in Section 5.

I Example 26 (Tournament in the support). Let Γ be an arbitrary language that admits a
binary fractional polymorphism ω such that supp(ω) contains a tournament operation, as
defined in Example 25. The tractability of Γ was shown in [105], thus generalising Example 25,
and will be discussed in Section 5.

I Example 27 (1-Defect). Let b and c be two distinct elements of D and let (D;<) be a
partial order which relates all pairs of elements except for b and c. We call 〈f, g〉, where
f, g : D2 → D are two binary operations, a 1-defect if f and g are both commutative and
satisfy the following conditions:

If {x, y} 6= {b, c}, then f(x, y) = Min(x, y) and g(x, y) = Max(x, y).
If {x, y} = {b, c}, then {f(x, y), g(x, y)} ∩ {x, y} = ∅, and f(x, y) < g(x, y).

The tractability of languages that admit a 1-defect multimorphism was shown in [66],
and was used in the classification of the Max-CSP over a four-element set (see Section 5).

I Example 28 (Majority). A ternary operation f : D3 → D is called a majority operation if
f(x, x, y) = f(x, y, x) = f(y, x, x) = x for all x, y ∈ D.

Let f = 〈f1, f2, f3〉 be a triple of ternary operations such that f1, f2 and f3 are all majority
operations. Let φ : Dm → Q be anm-ary cost function that admits f as a multimorphism. By
Inequality (4), for all x,y ∈ Dm, 3φ(x) ≤ φ(x)+φ(x)+φ(y) and 3φ(y) ≤ φ(y)+φ(y)+φ(x).
Therefore, if both φ(x) and φ(y) are finite, then we have φ(x) ≤ φ(y) and φ(y) ≤ φ(x), and
hence φ(x) = φ(y). In other words, the range of φ is {c,∞}, for some finite c ∈ Q.

Let ΓMjty be the set of all cost functions that admit as a multimorphism some triple
f = 〈f1, f2, f3〉 of arbitrary ternary majority operations. The tractability of ΓMjty was shown
in [25].

I Example 29 (Minority). A ternary operation f : D3 → D is called a minority operation if
f(x, x, y) = f(x, y, x) = f(y, x, x) = y for all x, y ∈ D. Let ΓMnty be the set of cost functions
that admit as a multimorphism some triple f = 〈f1, f2, f3〉 of arbitrary ternary minority
operations. A similar argument to the one in Example 28 shows that the cost functions in
ΓMnty have range {c,∞}, for some finite c ∈ Q. The tractability of ΓMnty was shown in [25].

I Example 30 (MJN). Let f = 〈f1, f2, f3〉 be three ternary operations such that f1 and f2
are majority operations, and f3 is a minority operation. Let ΓMJN be the set of cost functions
that admit f as a multimorphism. The tractability of ΓMJN was shown in [74], generalising
an earlier tractability result for a specific f of this form from [25].

I Example 31 (Majority in the support). Let Γ be an arbitrary language admitting a ternary
fractional polymorphism ω such that supp(ω) contains a majority operation. The tractability
of Γ was shown in [105], thus generalising Examples 28 and 30, and will be discussed in
Section 5.



A. Krokhin and S. Živný 243

Other tractable valued constraint languages defined by fractional polymorphisms include
the so-called L#-convex languages [38], as well as the weakly and strongly tree-submodular
languages defined in [71]. Hirai [53] recently introduced a framework of submodular functions
on modular semilattices (defined by a type of fractional polymorphism) that generalises
many examples given above, including standard submodularity, k-submodularity, skew
bisubmodularity, and tree submodularity. See [53] for the natural (but somewhat technical)
definition of this very general framework.

4 A General Algebraic Theory of Complexity

We have seen in the previous section that many tractable cases of the VCSP can be
defined by having a particular fractional polymorphism. The algebraic theory developed
in [23, 77, 78, 43] establishes that, in fact, every tractable valued constraint language
can be exactly characterised by an associated set of algebraic objects known as weighted
polymorphisms, which are different but equivalent to fractional polymorphisms. This extends
(parts of) the algebraic theory previously developed for the CSP [19, 17, 62] that has led to
significant advances in understanding the landscape of complexity for the CSP over the last
10 years (e.g., [1, 6, 13, 14, 16, 18, 57]). In this section, we will give a brief overview of the
main results of this algebraic theory for the VCSP. We refer the reader to [23, 77, 78, 43] for
full details and proofs.

First we consider the effect of extending a valued constraint language Γ ⊆ ΦD to a possibly
larger valued constraint language. We first define and study a notion of expressibility for
valued constraint languages. This notion has played a key role in the analysis of complexity
for the CSP and VCSP [17, 62, 25, 116].

I Definition 32. We say that an m-ary cost function φ is expressible over a constraint lan-
guage Γ if there exists an instance Φ ∈ VCSP(Γ) with variables V = {x1, . . . , xn, y1, . . . , ym},
such that

φ(y1, . . . , ym) = min
x1,...,xn

Φ(x1, . . . , xn, y1, . . . , ym) .

For a cost function φ, we denote by Opt(φ) = {x ∈ Feas(φ) | ∀y : φ(x) ≤ φ(y)} the
optimality relation, which contains the tuples on which φ is minimised. Similarly to Feas(φ),
we will view Opt(φ) both as a relation and as a crisp cost function.

I Definition 33. A valued constraint language Γ ⊆ ΦD is called a weighted relational clone
if it contains the binary equality relation and the unary empty relation; is closed under
expressibility, scaling by non-negative rational constants, addition of rational constants, and
operators Feas and Opt. We define wRelClone(Γ) to be the smallest weighted relational
clone containing Γ.

I Example 34. Let D = {0, 1} and let u1 be the unary crisp cost function defined by
u1(0) =∞ and u1(1) = 0. We will show that φ1-in-3 ∈ wRelClone({φxor, u1}), where φ1-in-3
is from Example 5 and φxor is from Example 7.

First observe that φ(x, y, z) = φxor(x, y) + φxor(x, z) + φxor(y, z) satisfies φ(0, 0, 0) =
φ(1, 1, 1) = 3 and φ(x, y, z) = 1 otherwise. Next observe that φ′(x, y, z) = minw∈D(φ(x, y, z)+
u1(w)+φxor(x,w)+φxor(y, w)+φxor(z, w)) satisfies φ′(0, 0, 0) = 3, φ′(1, 1, 1) = 6, φ′(x, y, z) = 2
if there is exactly one 1 among {x, y, z} and φ′(x, y, z) = 3 otherwise. Thus, φ1-in-3 = Opt(φ′)
and we have φ1-in-3 ∈ wRelClone({φxor, u1}).

Chapte r 09



244 The Complexity of Valued CSPs

I Theorem 35 ([23, 43]). A valued constraint language Γ is tractable if wRelClone(Γ) is
tractable and NP-hard if wRelClone(Γ) is NP-hard.

I Remark. For weighted relational clones that are not finitely generated, the rational values
are replaced by real values in Definition 1, Definition 33 requires topological closedness, and
Theorem 35 holds only up to an arbitrary additive error; we refer the reader to [43] for more
details.
We now develop tools that will allow an alternative characterisation of any weighted relational
clone. We first recall some basic terminology from universal algebra [10, 99]. We denote
by OD the set of all finitary operations on D and by O(k)

D the k-ary operations in OD. Let
f ∈ O(k)

D and g1, . . . , gk ∈ O(`)
D . The superposition of f and g1, . . . , gk is the `-ary operation

f [g1, . . . , gk] such that f [g1, . . . , gk](x1, . . . , x`) = f(g1(x1, . . . , x`), . . . , gk(x1 . . . , x`)).
A set F ⊆ OD is called a clone of operations if it contains all the projections on D and is

closed under superposition. It is easy to verify that the set of operations Pol(Γ) is a clone.
Clones are actively studied in universal algebra; for example, all (countably many) clones on
D = {0, 1} are known, but the situation is known to be much more complicated for larger
sets D (see, e.g., [10, 99]). We denote by JD the clone of all projections on D.

I Definition 36. A k-ary weighting is a function ω : O(k)
D → Q such that ω(f) < 0 only if f

is a projection and
∑
f∈O(k)

D

ω(f) = 0.

We denote by WD the set of all possible weightings on D and by W(k)
D the set of k-ary

weightings in WD.
Since a weighting is simply a rational-valued function satisfying certain linear inequalities

it can be scaled by any non-negative rational to obtain a new weighting. Similarly, any two
weightings of the same arity can be added to obtain a new weighting.

The notion of superposition can also be extended to weightings in a natural way, by
forming a superposition with each argument of the weighting, as follows.

I Definition 37. For any ω ∈W(k)
D and any g1, . . . , gk ∈ O(`)

D , we define the superposition
of ω and g1, . . . , gk, to be the function ω[g1, . . . , gk] : O(`)

D → Q defined by

ω[g1, . . . , gk](f ′) def=
∑

f∈O(k)
D

f [g1,...,gk]=f ′

ω(f) . (6)

It follows immediately from the definition of superposition that the sum of the weights
in any superposition ω[g1, . . . , gk] is equal to the sum of the weights in ω, which is zero, by
Definition 36. However, it is not always the case that an arbitrary superposition satisfies
the other condition in Definition 36, that negative weights are only assigned to projections.
Hence we make the following definition:

I Definition 38. If the result of a superposition is a valid weighting, then that superposition
will be called a proper superposition.

For a weighting ω ∈W(k)
D , we denote supp(ω) = {f ∈ O(k)

D | ω(f) > 0}.

I Definition 39. Let W be a non-empty set of weightings on a fixed domain D. We define
supp(W ) = JD ∪

⋃
ω∈W supp(ω).

We callW a weighted clone if it is closed under non-negative scaling, addition of weightings
of equal arity, and proper superposition with operations from supp(W ).



A. Krokhin and S. Živný 245

For any weighted clone W , supp(W ) is a clone, which we call the support clone of W .
This easy but important fact has been observed in [77, 78, 105, 43]. We remark that the
inclusion of the Opt operator in the definition of weighted relational clones [43] ensures
that there is no need for distinguishing the support clone from the positive support clone of
weighted clones [77, 78].

I Example 40. For any clone, C, the set WC containing all possible weightings of C is a
weighted clone with support clone C.

I Example 41. For any clone, C, the set W0
C containing all zero-valued weightings of C is

a weighted clone with support clone C. W0
C contains exactly one weighting of each possible

arity, which assigns the value 0 to all operations in C of that arity.

I Remark. For weighted clones that are not finitely generated, the rational weights are
replaced by real weights in Definition 36 and Definition 39 requires topological closedness;
again, we refer the reader to [43] for more details.

We link weightings and cost functions by the concept of weighted polymorphisms.

I Definition 42 (Weighted Polymorphism). Let φ : Dm → Q be a cost function and let ω be
a k-ary weighting on D. We call ω a weighted polymorphism of φ if supp(ω) ⊆ Pol(φ) and
for any x1, . . . ,xk ∈ Feas(φ)∑

f∈supp(ω)

ω(f)φ(f(x1, . . . ,xk)) ≤ 0 . (7)

For a set W ⊆WD which may contain weightings with different support clones over D,
we can extend each of these weightings with zeros, as necessary, so that they are weightings
of the same support clone C, where C is the smallest clone containing all the clones that are
support clones of weightings in W . For any set W ⊆WD, we define wClone(W ) to be the
smallest weighted clone containing this set of extended weightings obtained from W .

I Definition 43. For any W ⊆WD, we denote by Imp(W ) the set of all cost functions in
ΦD which admit all weightings ω ∈W as weighted polymorphisms.1

It follows immediately from the definition of a Galois connection [10] that, for any set D,
the mappings wPol and Imp form a Galois connection between WD and ΦD, as illustrated
in Figure 2. A characterisation of this Galois connection for finite sets D is given by the
following theorem from [23, 43]:

I Theorem 44 (Galois Connection for Valued Constraint Languages [23, 43]).
1. For any finite D, and any finite Γ ⊆ ΦD, Imp(wPol(Γ)) = wRelClone(Γ).
2. For any finite D and any finite W ⊆WD, wPol(Imp(W )) = wClone(W ).

I Remark (fractional vs. weighted polymorphisms). Fractional and weighted polymorphisms
are effectively the same things, just written differently. A k-ary fractional polymorphism ω

can be transformed into a weighted polymorphism if, in Inequality 2, we move the right-hand
side to the left and write φ(xi) as φ(e(k)

i (x1, . . . ,xi, . . . ,xk)). A similar simple manipulation
transforms a k-ary weighted polymorphism into a fractional one.

1 The name Imp is chosen to suggest that such cost functions are improved by weightings in W in the
sense of the remark and discussion after Definition 18.

Chapte r 09



246 The Complexity of Valued CSPs

ΦD

∅

WD

∅

Sets of
cost functions

Sets of
weightings

Γ

wPol(Γ)

Imp(wPol(Γ))
= wRelClone(Γ)

wPol

Imp

ΦD

∅

WD

∅

Sets of
cost functions

Sets of
weightings

F

Imp(F)

wPol(Imp(F))
= wClone(F)wPol

Imp

Figure 2 Galois connection between ΦD and WD.

Each of the two concepts is more convenient to work with depending on the context.
Fractional polymorphisms are more convenient to work with when describing properties
of operations in the support of fractional polymorphisms, and this relates to algorithmic
and complexity consequences discussed in Sections 5 and 6. On the other hand, weighted
polymorphisms are more convenient to work with when building an algebraic theory [23, 43,
77, 78].

It follows from Theorem 44 that to identify all tractable valued constraint languages on a
finite set D it is sufficient to study the possible weighted clones of weighted polymorphisms on
D. This provides an algebraic approach to the identification of tractable cases. In particular,
it follows that weighted polymorphisms completely determine the computational complexity
of valued constraint languages (the same way polymorphisms determine the computational
complexity of crisp languages [62]).

For a valued constraint language Γ we denote by supp(Γ) the support clone of the weighted
clone of weighted polymorphisms of Γ; i.e., supp(Γ) = supp(wPol(Γ)).

I Definition 45. A valued constraint language Γ is called a core if all unary operations
in supp(Γ) are bijections. Moreover, Γ is called a rigid core if the only unary operation in
supp(Γ) is the identity operation.



A. Krokhin and S. Živný 247

For d ∈ D, let ud be a unary function on D such that ud(d) = 0 and ud(x) =∞ if x 6= d.
Rigid cores are important due to the following result.

I Theorem 46 ([77, 78]).
1. For any valued constraint language Γ there exists a valued constraint language Γ′ which is

a core such that VCSP(Γ) and VCSP(Γ′) are polynomial-time equivalent.
2. For any core valued constraint language Γ there exists a valued constraint language Γ′

which is a rigid core such that VCSP(Γ) and VCSP(Γ′) are polynomial-time equivalent.

The core language Γ′ in Theorem 46 (1) is built from Γ as follows. Let u ∈ supp(Γ)
be a unary operation with the minimum size of the set range U = u(D) among all such
operations. Then Γ|U = {φ|U | φ ∈ Γ} is a core. The rigid core language Γ′ in Theorem 46 (2)
is Γ′ = Γ|U ∪ {ud | d ∈ U}, with domain U .

A k-ary operation f : Dk → D is called idempotent if f(x, . . . , x) = x for every x ∈ D. It
is easy to show that Γ is a rigid core if and only if every operation from supp(Γ) is idempotent.

Thus, the intuition behind moving to the rigid core is that (a) one removes labels from
the domain that can always be (uniformly) replaced in any solution to an instance without
increasing its value, and (b) algebras with only idempotent operation are known to have
much more structure (than the general case), leading to the applicability of more powerful
algebraic results.

The Galois connection described in Theorem 44 implies the following result.

I Theorem 47. Let Γ and Γ′ be two valued constraint languages on the same domain and
of finite size. If wPol(Γ) ⊆ wPol(Γ′) then VCSP(Γ′) polynomial-time reduces to VCSP(Γ).

This is a generalisation of the analogous result for the CSP: if Pol(Γ) ⊆ Pol(Γ′) for crisp
languages Γ and Γ′ then CSP(Γ′) polynomial-time reduces to CSP(Γ) [62].

The algebraic theory of the CSP extends beyond clones to finite algebras and varieties of
algebras (see [19, 17, 85], see also the surveys in [32]), where a variety is a class of algebras over
the same signature defined by a set of identities. This extension explains why the complexity
of a (crisp) language is determined by the identities, i.e., universally quantified equations,
satisfied by its polymorphisms, which is why we usually define the relevant operations by
identities. This extension was instrumental in obtaining most state-of-the-art results in this
area (e.g. [1, 4, 6, 13, 14, 16, 18, 57, 85]). The basics of this theory were extended to VCSPs
in [77, 78], introducing weighted algebras and weighted varieties, which produced a hardness
result and a tractability conjecture for VCSPs – we discuss them in Section 6.

While weighted clones were introduced primarily for the understanding of the compu-
tational complexity of valued constraint languages, there have been several studies of the
purely algebraic structure of weighted clones [113, 112, 104, 63].

5 Algorithms

A curious feature of research into the tractability of constraint languages is that all languages
known to be tractable have been shown tractable by using very few algorithmic techniques.

Despite many tractability results concerning crisp languages (i.e., the CSP), only two
algorithmic techniques have so far been sufficient, and the applicability of each of them
individually has been characterised by specific algebraic conditions.

The first technique is based on enforcing local consistency, which is a natural algorithm for
dealing with (crisp) constraints. There are several closely related variants of this algorithm,
we will describe one of them. Fix parameters 1 ≤ κ ≤ `. For a given CSP instance,

Chapte r 09



248 The Complexity of Valued CSPs

this algorithm starts by adding a new constraint for each subset of variables of size `, the
new constraints initially allowing all tuples. Then the algorithm repeatedly discards (i.e.,
disallows) tuples of labels in the constraints as follows. For every set W of at most κ variables
and every pair of constraints φ1, φ2 whose scopes contain W , discard all assignments for φ1
whose restriction on W is inconsistent with the restriction of φ2 to W . Eventually, either all
assignments (for at least one constraint) are discarded or else local consistency is established;
this procedure takes polynomial time for any fixed D and any fixed κ, `. The former case
implies no feasible assignments. One says that a CSP has relational width (κ, `) if the latter
case implies the existence of a feasible assignment. A CSP has bounded relational width
if it has relational width (κ, `) for some κ, `. The power of local consistency, i.e., a precise
characterisation of crisp languages that give rise to VCSP instances solvable by some form of
local consistency, has recently been established [3, 6, 14, 86] (see also [15, 75]).

I Theorem 48 (Bounded Width [3, 6, 14, 86]). Let Γ be a crisp language. Then the following
are equivalent:
1. VCSP(Γ) has bounded relational width;
2. VCSP(Γ) has relational width (2,3);
3. For all but finitely many k, Pol(Γ) contains a k-ary operation satisfying, for all x, y ∈ D,

f(y, x, x, . . . , x) = f(x, y, x, x, . . . , x) = f(x, x, . . . , x, y); (8)

4. For every k ≥ 3, Pol(Γ) contains a k-ary operation satisfying (8);

A k-ary (k ≥ 2) idempotent operation satisfying (8) is called a weak near-unanimity
operation. We remark that that there are many algebraic conditions equivalent to Pol(Γ)
containing weak near-unanimity operations of all but finitely many arities. One such condition
is that Pol(Γ) contains two weak near-unanimity operations, 3-ary w3 and 4-ary w4, such
that w3(x, x, y) = w4(x, x, x, y) [76].

The second standard algorithmic technique for the CSP is based on the property of
having a polynomial-sized representation (a generating set) for the solution set of any
instance [16, 57]. Roughly, the algorithm works by starting from the empty set and adding
the constraints of the instance one by one while maintaining (in polynomial time) a small
enough representation of the current solution set (of feasible assignments). At the end (i.e.,
after all constraints have been added), either this representation is non-empty and contains a
solution to the instance or else there is no solution. In a way, this technique is a generalisation
of Gaussian elimination. This algorithm is often called “few subpowers” because it is related
to a certain algebraic property to do with the number of subalgebras in powers of an algebra.
The power of this algorithm was established in [57]. A k-ary (k ≥ 3) operation f : Dk → D

is called an edge operation if, for all x, y ∈ D,

f(y, y, x, x, . . . , x) = f(y, x, y, x, x, . . . , x) = x

and, for all 4 ≤ i ≤ k,

f(x, . . . , x, y, x, . . . , x) = x where y is in position i.

I Theorem 49 (Few Subpowers [57]). Let Γ be a crisp language. Then VCSP(Γ) is solvable
by the few subpowers algorithm if Pol(Γ) contains an edge operation.

The converse to this theorem is true in the following sense: the absence of edge operations
from Pol(Γ) implies that the presence of small enough representations is not guaranteed,
see [57] for details. Interestingly, the few subpowers algorithm makes use of the actual edge



A. Krokhin and S. Živný 249

operations in its work (in contrast with bounded width, where the weak near-unanimity
operations are used only to guarantee correctness).

For the general VCSP another algorithm, based on linear programming, has been the most
thoroughly investigated. Every VCSP instance has a natural integer linear programming
(ILP) formulation. Let Φ be a VCSP instance defined by Φ(x) =

∑q
i=1 φi(xi), with a set of

variables V . For each i, let Si be the set of variables appearing in xi; assignments to xi are
naturally associated with elements in DSi .

The ILP formulation involves variables µx(a), where x ∈ V and a ∈ D, and λi(s), where
1 ≤ i ≤ q and s ∈ DSi . All variables take values in {0, 1}. The intuition is that µx(a) = 1 in
a solution to the ILP formulation if x is assigned label a in the corresponding solution to Φ.
The ILP formulation includes constraints (9c) that ensure that, for any x ∈ V , exactly one
variable µx(a) is assigned 1. Similarly, λi(s) = 1 corresponds to s being assigned to xi. The
ILP formulation also includes constraints (9b) enforcing consistency between the two types
of variables in the ILP. The ILP instance BILP(Φ) associated with Φ is defined as follows:

BILP(Φ) def= min
q∑
i=1

∑
s∈DSi

φi(s)λi(s) (9a)

s.t.
∑

s∈DSi | s(x)=a

λi(s) = µx(a), 1 ≤ i ≤ q, x ∈ Si, a ∈ D (9b)

∑
a∈D

µx(a) = 1, x ∈ V (9c)

λi(s) = 0, 1 ≤ i ≤ q, φi(s) =∞ (9d)

Note that terms in (9a) corresponding to (9d) are assumed to be equal to 0.
If we allow the variables in BILP(Φ) to take arbitrary real values in the interval [0, 1], we

obtain a relaxation called the basic LP relaxation (BLP) of Φ, denoted by BLP(Φ). The
variables can then be seen as probability distributions on D and DSi , respectively. The
marginalization constraints (9b) impose that µx is the marginal of λi(s), for each constraint
and each variable x in the scope of that constraint.

We remark that an LP relaxation of the VCSP, similar or closely related to (9), has been
proposed independently by many authors; we refer the reader to [73] and the references
therein.

Given a VCSP instance Φ, the optimal value of BLP(Φ), which can be found in polynomial
time, is always a lower bound for the optimal value of Φ. We say that BLP solves Φ if the
optimal value of BLP(Φ) is equal to the optimal value of Φ. Moreover, we say that BLP
solves a valued constraint language Γ if BLP solves every instance Φ ∈ VCSP(Γ). It is shown
in [73] that in all cases where BLP solves Γ, a standard self-reduction method can be used
to obtain an assignment that minimises any Φ in VCSP(Γ) in polynomial time. For d ∈ D,
let ud be a unary function on D such that u(d) = 0 and u(x) =∞ if x 6= d. For rigid cores,
the self-reduction method goes through the variables in some order, finding d ∈ D for the
current variable v such that instances Φ and Φ + ud(v) have the same optimal value (which
can be checked by BLP), updating Φ := Φ + ud(v), and moving to the next variable. At the
end, the instance will have a unique feasible assignment whose value is the optimum of the
original instance. Hence if BLP solves Γ, then Γ is tractable.

The power of BLP for valued constraint languages was fully characterised in [103].
To state this result, we first introduce some further terminology about operations. A k-
ary operation f : Dk → D is called symmetric if for every permutation π on {1, . . . , k},
f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)). A fractional polymorphism ω is called symmetric if

Chapte r 09



250 The Complexity of Valued CSPs

supp(ω) is non-empty and contains symmetric operations only. Finally, we say that an
operation f is generated from a set of operations F ⊆ OD if f ∈ Clone(F ).

I Theorem 50 (Power of BLP for Arbitrary Languages [103]). Let Γ be a valued constraint
language. Then the following are equivalent:
1. BLP solves Γ;
2. For every k ≥ 2, Γ admits a k-ary symmetric fractional polymorphism;
3. For every k ≥ 2, Γ admits a fractional polymorphism (not necessarily k-ary) ωk such that

supp(ωk) generates a symmetric k-ary operation.

Condition (3) has turned out to be very useful for proving the tractability of many valued
constraint languages. A binary operation f : D2 → D is called a semilattice operation if f is
associative, commutative, and idempotent. Since any semilattice operation trivially generates
symmetric operations of all arities, Theorem 50 shows that any valued constraint language with
a binary fractional polymorphism whose support includes a semilattice operation is solvable
using the BLP. This immediately implies that all of the following cases are solvable using
the BLP, and hence tractable: languages with a (generalised) submodular multimorphism
(Example 20), a bisubmodular multimorphism (Example 23), a k-submodular multimorphism
for any k (Example 23), a symmetric tournament pair multimorphism (Example 25), or a
skew bisubmodular fractional polymorphism (Example 24), or the fractional polymorphisms
describing submodularity on modular semilattices [53]. Moreover, a not very difficult
argument can be used to show that languages with a 1-defect multimorphism (Example 27)
also satisfy condition (3) of Theorem 50 [103], and thus are tractable.

Examples of problems VCSP(Γ) that are tractable, but not solvable by BLP, include
(the crisp) 2-Sat problem and 3-Lin-k, the (crisp) problem of solving system of linear
equations modulo k with 3 variables per equation, and some languages with a tournament
pair multimorphism (Example 25).

Recall that, for any crisp language Γ, any probability distribution on k-ary polymorphisms
of Γ is a fractional polymorphism of Γ. Thus, Theorem 50 can be re-stated for crisp languages
as follows.

I Theorem 51 (Power of BLP for Crisp Languages [82]). Let Γ be a crisp constraint language.
Then the following are equivalent:
1. BLP solves Γ;
2. For every k ≥ 2, Pol(Γ) contains a k-ary symmetric polymorphism;

It is unknown whether condition (2) in Theorem 51 is decidable, hence the same can be
said about the conditions in Theorem 50.

Recent work identified a sufficient instance-based condition for binary CSPs admitting a
cyclic polymorphism (cf. Section 6) that are solvable by BLP [12].

For valued constraint languages where the cost functions take only finite values, The-
orem 50 has been strengthened further [73].

I Theorem 52 (Power of BLP for Finite-Valued Languages [73]). Let Γ be a valued con-
straint language where every cost function takes only finite values. Then the following are
equivalent:
1. BLP solves Γ;
2. For every k ≥ 2, Γ admits a k-ary symmetric fractional polymorphism;
3. For some k ≥ 2, Γ admits a k-ary symmetric fractional polymorphism;
4. Γ admits a binary symmetric fractional polymorphism;
5. Γ admits a fractional polymorphism ω such that supp(ω) generates a symmetric operation.



A. Krokhin and S. Živný 251

In contrast with Theorems 50 and 51, condition (4) in Theorem 52 is decidable because
deciding whether Γ admits a fixed-arity symmetric fractional polymorphism (by its definition)
amounts to solving a linear program.

The Sherali-Adams hierarchy [97] provides successively tighter LP relaxations of an integer
LP. Higher levels of this hierarchy can potentially solve more VCSPs than BLP does. Fix
parameters 1 ≤ κ ≤ l. For a VCSP instance Φ(x) =

∑q
i=1 φi(xi), with a set of variables

V , its Sherali-Adams relaxation SAκ,`(Φ) is defined as follows. First, we ensure that every
non-empty S ⊆ V with |S| ≤ ` appears in some term φi(xi), possibly by adding 0-valued
constraints (this is similar to how we start the local consistency algorithm described above).
The variables are λi(s) for every 1 ≤ i ≤ q and every tuple s ∈ DSi , they take values in the
interval [0, 1].

SAκ,`(Φ) def= min
q∑
i=1

∑
s∈DSi

φi(s)λi(s) (10a)

s.t. λj(t) =
∑

s∈DSi : s|Sj
=t

λi(s), 1 ≤ i, j ≤ q, Sj ⊆ Si, |Sj | ≤ κ, t ∈ Sj

(10b)∑
s∈DSi

λi(s) = 1, 1 ≤ i ≤ q (10c)

λi(s) = 0, 1 ≤ i ≤ q, φi(s) =∞ (10d)

As with BLP, terms in (10a) corresponding to (10d) are assumed to be equal to 0.
Say that a valued language Γ has valued relational width (κ, `) if the optimum value of

SAκ,`(Φ) is equal to the optimal value of Φ for every instance Φ of VCSP(Γ). Also, say that
Γ has bounded valued relational width if it has valued relational width (κ, `) for some κ, `.

I Theorem 53 (Power of SA for Arbitrary Languages [105, 108]). Let Γ be a valued constraint
language. Then the following are equivalent:
1. Γ has bounded valued relational width;
2. Γ has valued relational width (2,3);
3. For every k ≥ 3, supp(Γ) contains a k-ary (not necessarily idempotent) operation satisfying

the weak near-unanimity identities described in (8).

We remark that condition (3) in the above theorem plays a role not only here and in
Theorem 48, it also characterize the so-called robust approximability of CSPs [5].

Examples of languages solvable by SA but not by BLP include (the crisp) 2-Sat problem
and certain languages admitting a tournament pair multimorphism (cf. Example 25), see [73,
Example 5] for more details. The problem 3-Lin-k mentioned above is an example of a
tractable problem (solvable by few subpowers) not solvable by SA.

Finally, we also remark that it has recently been shown that if a valued constraint
language Γ does not have bounded valued relational width then not only is VCSP(Γ) not
solved by a constant level of the Sherali-Adams hierarchy but actually VCSP(Γ) is not solved
even by linear levels of the Lasserre semidefinite programming relaxation [107].

6 Complexity Classifications

As mentioned before, the ultimate goal of the research direction that we survey is to obtain
complexity classifications: clear descriptions of which VCSPs are tractable and which are not.
The usual way to approach this task has been to first restrict constraint languages under

Chapte r 09



252 The Complexity of Valued CSPs

consideration to rigid cores, this can be done without loss of generality [77, 78]. After that,
one proves an algebraic dichotomy theorem, which states that every rigid core language either
expresses some NP-hard problem and therefore is NP-hard itself, or else it has polymorphisms
with some nice properties (usually in the form of identities).

We mentioned above that the tractability of constraint languages seems to arise from
very few algorithmic techniques. Interestingly, the hardness of constraint languages seems to
arise from a single specific problem 1-in-3-Sat (see Example 5)!

A Taylor operation is a k-ary (k ≥ 2) idempotent operation f such that, for each 1 ≤ i ≤ k,
it satisfies an identity of the form

f(�1,�2, . . . ,�k) = f(41,42, . . . ,4k) (11)

where �i = x,4i = y and �s,4t ∈ {x, y} for all s, t. (Note that such identities are the
weakest identities that prevent f from being a projection.) The following theorem can be
derived from [102] (see also [17]).

I Theorem 54. For a crisp constraint language Γ on D that is a rigid core,
either Pol(Γ) contains a Taylor operation,
or else wRelClone(Γ) contains a crisp function φ such that

Opt(φ) = {(x, y, z) ∈ A3 | φ1-in-3(g(x), g(y), g(z)) = 0} (12)

for some A ⊆ D and some function g : A→ {0, 1}.
It follows from Theorem 35 that if a crisp rigid core Γ has no Taylor polymorphism then
VCSP(Γ) is NP-hard.

For a crisp language Γ that is a rigid core, having a Taylor polymorphism is equivalent to
any one of the following conditions:
1. Γ has a weak near-unanimity polymorphism of some arity k ≥ 2 [19, 90];
2. Γ has a cyclic polymorphism [4], i.e. a k-ary (k ≥ 2) idempotent polymorphism f such

that

f(x1, x2, . . . , xk) = f(x2, . . . , xk, x1); (13)

3. Γ has a 6-ary Siggers polymorphism [98], i.e. a 6-ary idempotent polymorphism f that
satisfies identities

f(x, x, x, x, y, y) = f(x, y, x, y, x, x),
f(y, y, x, x, x, x) = f(x, x, y, x, y, x);

One can visualise these identities by thinking of a three-element complete graph (triangle)

whose vertices are
(
x

x

)
,
(
x

y

)
,
(
y

x

)
. Then the pairs of vertices that appear in the

6 coordinates (first coordinate on the right and the first coordinate on the left, and so
on) give a complete list of edges of the triangle, each edge being a pair of directed edges
in opposite directions.

4. Γ has a 4-ary polymorphism f [69] (sometimes also called a Siggers polymorphism)
satisfying the identity2

f(y, x, y, z) = f(x, y, z, x),

2 Using different variables, f(r, a, r, e) = f(a, r, e, a) – mnemonic due to Ryan O’Donnell.



A. Krokhin and S. Živný 253

The Algebraic CSP Dichotomy conjecture (originally stated in [17] in a different, but
equivalent, form) mentioned in Example 11 is the following.

I Conjecture 55 (Algebraic CSP Dichotomy Conjecture). A crisp language Γ that is a rigid
core is tractable if Γ has a Taylor polymorphism (or, equivalently, satisfies one of the four
conditions above), and it is NP-hard otherwise.

The hardness part is known, as explained above, and it is the tractability part that is the
conjecture. This conjecture refines the original Feder-Vardi dichotomy conjecture [37] by
specifying the boundary in algebraic terms. Conjecture 55 was confirmed in many special
cases, for example, for crisp languages over two-element sets [95] and three-element sets [13]
and for crisp languages containing all unary crisp functions [18, 1]. The conjecture is still
open, but widely believed to hold in full generality.

Obviously, a complete classification of VCSPs would include a complete classification for
crisp languages. It turns out, however, that the latter classification implies the former one as
we now discuss.

A fractional operation ω is said to be cyclic if all operations in supp(ω) are cyclic. The
following lemma is contained in the proof of Theorem 50 in [78].

I Lemma 56. Let Γ be a rigid core on a set D. Then the following are equivalent:
1. supp(Γ) contains a Taylor operation of arity at least 2;
2. Γ has a cyclic fractional polymorphism of (some) arity at least 2;
3. Γ has a cyclic fractional polymorphism of every prime arity p > |D|.

The following theorem is Corollary 51 from [78].

I Theorem 57 ([78]). Let Γ be a valued constraint language that is a rigid core. If supp(Γ)
does not contain a Taylor operation then Γ is NP-hard.

It is actually shown in [78] that if supp(Γ) does not contain a Taylor operation then
wRelClone(Γ) contains a (not necessarily crisp) function φ satisfying condition (12).

Kozik and Ochremiak state a conjecture (which they attribute to L. Barto) that the
above theorem describes all NP-hard valued constraint languages, and all other languages
are tractable. Using Lemma 56, we restate their original conjecture via cyclic fractional
polymorphisms.

I Conjecture 58 (Algebraic VCSP Dichotomy Conjecture [77, 78]). Let Γ be a valued constraint
language that is a rigid core. If Γ has a cyclic fractional polymorphism of arity at least 2,
then Γ is tractable, and it is NP-hard otherwise.

Note that, for fixed D, the problem of checking whether a given finite rigid core Γ has
a cyclic fractional polymorphism of some arity can be solved in polynomial time. Indeed,
if p > |D| is some fixed prime number, then it is sufficient to check for a cyclic fractional
polymorphism of arity p. Such polymorphisms, by definition, are solutions to a system of
linear inequalities. Since the number of cyclic operations of arity p on D is constant (because
we assume that D is a fixed finite set), the system will have size polynomial in Γ and its
feasibility can be decided by linear programming.

Recall that, for a (possibly infinite) crisp language, any probability distribution on
polymorphisms (of the same arity) is a fractional polymorphism. Then Theorem 57 is a direct
generalisation of the above-mentioned corresponding result for crisp languages. Moreover,
Conjecture 58, when restricted to crisp languages, gives precisely Conjecture 55.

Chapte r 09



254 The Complexity of Valued CSPs

For a constraint language Γ, let Feas(Γ) = {Feas(φ) | φ ∈ Γ}. Thus, CSP(Feas(Γ)) is
the problem of deciding whether an given instance of VCSP(Γ) has a feasible solution. It is
obvious that, for VCSP(Γ) to be tractable, CSP(Feas(Γ)) must also be tractable.

I Theorem 59 (Classification of General-Valued Languages [72]). Let Γ be a valued constraint
language over domain D that is a rigid core. If the following conditions hold then VCSP(Γ)
is tractable:
1. Γ has a cyclic fractional polymorphism of arity at least 2, and
2. Feas(Γ) is tractable.
Otherwise, Γ is not tractable.

Notice that the above theorem shows that a classification for crisp languages implies
the classification for all languages, whether or not the boundary is as predicted by the
Algebraic CSP Dichotomy Conjecture. In particular, it follows that Conjecture 55 implies
Conjecture 58. Moreover, if the Algebraic CSP Dichotomy Conjecture holds then condition (2)
can be removed from Theorem 59, since it would be implied by condition (1).

Theorem 59 implies classification within any class of languages Γ such that the classification
for the class of corresponding languages Feas(Γ) is known. For example, this is the case for
the class of languages containing all unary crisp functions [18, 1] or for the class of languages
over a two- or three-element domain [95, 13].

The necessity of conditions (1-2) in Theorem 59 is clear. To explain why they are sufficient,
we need to give a definition.

Let Φ be a VCSP instance over variables V . For each variable v ∈ V , let Dv = {d ∈ D |
d = σ(v) for some feasible solution σ for Φ}. Then the (1,∞)-minimal instance Φ̄ associated
with Φ is the VCSP instance obtained from Φ by adding, for each v ∈ V , the constraint
uDv

(xv), where uDv
is a crisp function such that uDv

(d) = 0 if and only if d ∈ Dv. Note
that if Γ is a rigid core and the problem CSP(Feas(Γ)) is tractable, then, for any instance Φ
of VCSP(Γ), one can construct the associated (1,∞)-minimal instance in polynomial time.
Indeed, to find out whether a given d ∈ D is in Dv, one only needs to decide whether the
CSP instance obtained from Feas(Φ) by adding the constraint ud(xv) is satisfiable. Since
Γ is a rigid core, one can assume that ud ∈ Γ, so the latter instance is also an instance of
CSP(Feas(Γ)).

If Γ is a rigid core satisfying the conditions in Theorem 59 then, for every instance Φ of
VCSP(Γ), the optimal value of BLP (Φ̄) is the same as the optimal value of Φ, as proved
in [72]. This algorithm (first computing Φ̄ and then finding its optimal value) allows one to
find the optimal value of any instance in polynomial time and then find an optimal solution
via self-reduction, as discussed earlier.

We would like to point out two surprising features of Theorem 59. The first one is that
the algorithm described above that solves all tractable cases uses feasibility checking only as
a black-box. The second one is that the proof of Theorem 59 does not involve structural
universal algebra used for CSP classifications and also in the proof of Theorem 57.

Tighter tractability conditions (than those given in Theorem 59) are known for a number
of important special cases.

For finite-valued languages, condition (2) in Theorem 59 is trivial and can be removed,
while condition (1) can be replaced by a much stronger condition.

I Theorem 60 (Classification of Finite-Valued Languages [106]). Let Γ be a finite-valued
constraint language that is a core. Either Γ has a binary symmetric fractional polymorphism
(and hence is solvable by BLP), or else Γ is NP-hard.



A. Krokhin and S. Živný 255

It is shown in [106] that, for any NP-hard finite-valued Γ, wRelClone(Γ) contains a
binary function φ such that minarg(φ) = {(a, b), (b, a)} for some distinct a, b ∈ D (which can
be obtained from Γ even without using the operator Opt), thus simulating Max-Cut (see
Example 7). We have seen in Example 34 that, on domain {0, 1}, wRelClone({φxor, u0, u1})
contains φ1-in-3. Since weighted relational clones are closed under scaling by non-negative ra-
tional constants and addition of rational constants, we have φ1-in-3 ∈ wRelClone({φ, u0, u1}).

Theorem 60 generalises several previous classification results for finite-valued languages.
Tractability in these earlier results was often characterised by (more) specific binary symmetric
fractional polymorphisms:

A core {0, 1}-valued language3 over a two-element set [70, 33], or over a three-element
set [64], or including all unary {0, 1}-valued functions [36] is tractable if it is submodular
on a chain (cf. Examples 19 and 20), and NP-hard otherwise.
A core {0, 1}-valued language over a four-element set [66] is tractable if it is submodular
on some lattice (cf. Example 20) or 1-defect (cf. Example 27) and NP-hard otherwise.
A core finite-valued language over a two-element set [25] is tractable if it is submodular
(cf. Example 19) and NP-hard otherwise.
A core finite-valued language over a three-element set [55] is tractable if it is submodular on
a chain (cf. Example 20) or skew bisubmodular (cf. Example 24) and NP-hard otherwise.
A finite-valued language containing all {0, 1}-valued unary cost functions [74] is tractable
if it is submodular on a chain (cf. Example 25) and NP-hard otherwise.

Theorem 60 also implies a classification of the so-called Min-0-Ext problems [53].

A tight complete complexity classification for valued constraint languages over a two-
element set was established in [25]. Note that on a two-element set there is precisely one
majority operation, as defined in Example 28, which we will denote by Mjrty, and precisely
one minority operation, as defined in Example 29, which we will denote by Mnrty. There
are also precisely two constant operations, which will be denoted Const0 and Const1.

I Theorem 61 (Classification of Boolean Languages [25]). A valued constraint language Γ
on D = {0, 1} is tractable if it admits at least one of the following eight multimorphisms.
Otherwise wRelClone (Γ) contains φ1-in-3 and Γ is NP-hard.
1. 〈Const0〉
2. 〈Const1〉
3. 〈Min,Min〉,
4. 〈Max,Max〉,
5. 〈Min,Max〉,
6. 〈Mjrty,Mjrty,Mjrty〉,
7. 〈Mnrty,Mnrty,Mnrty〉,
8. 〈Mjrty,Mjrty,Mnrty〉.

Let us compare Theorem 61 with a classification of crisp Boolean languages, originally
established by Schaefer in [95] and restated here using polymorphisms (see, e.g. [22]): A
crisp constraint language on D = {0, 1} is tractable if it admits one of the following six
polymorphisms: Const0, Const1, Min, Max, Mjrty, Mnrty; otherwise it is NP-hard. These
six tractable cases are covered by cases (1-4), (6), and (7) in Theorem 61. The six cases
correspond to sets of Boolean relations that are 0-valid, or 1-valid, or expressible by Horn

3 {0, 1}-valued languages correspond to Max-CSPs, cf. Example 13.

Chapte r 09



256 The Complexity of Valued CSPs

clauses, dual Horn clauses, 2-clauses, or linear equations over the field with 2 elements,
respectively.

The hardness part of Theorem 61 can be rederived using the algebraic theory described
in Section 4; see [31, 23] for details. We remark that if we restrict to core Boolean valued
constraint languages, the first two cases in Theorem 61 disappear as those languages are not
cores (and in fact are solvable trivially). The original proof of Theorem 61 identified φnae
(Example 6) and φxor (Example 7) as sources of hardness [25]. However, for rigid cores we
have seen in Example 34 how to obtain φ1-in-3 from φxor and it is well known that φ1-in-3 and
φnae can express each other in this case (see, e.g. [95]).

Another general complexity classification result concerns languages that contain all {0, 1}-
valued unary cost functions. Note that a fractional polymorphism ω is called conservative if
f(x1, . . . , xk) ∈ {x1, . . . , xk} for all f ∈ supp(ω).

I Theorem 62 (Classification of Conservative Languages [74]). Let Γ be a valued constraint
language on a set D such that Γ contains all {0, 1}-valued unary cost functions on D. Then
either Γ admits a conservative binary multimorphism 〈f1, f2〉 and a conservative ternary
multimorphism 〈f ′1, f ′2, f ′3〉 and there is a family M of 2-element subsets of D, such that:
1. for every {a, b} ∈ M , 〈f1, f2〉 restricted to {a, b} is a symmetric tournament pair (see

Example 25), and
2. for every {a, b} 6∈ M , 〈f ′1, f ′2, f ′3〉 restricted to {a, b} is an MJN multimorphism (see

Example 30),
in which case Γ is tractable, or else Γ is NP-hard.

It is shown in [108] that the tractable cases in Theorem 62 can be equivalently characterised
by the condition that supp(Γ) contains a majority operation (see also Example 31).

The original algorithm for solving the tractable cases identified in Theorem 62 was similar
to (and in fact inspired) the general algorithm for tractable VCSPs: after establishing some
sort of local consistency, any instance admits a symmetric tournament pair multimorphism [74]
and is thus solvable using BLP. It was shown in [108] that all tractable languages identified
in Theorem 62 in fact have valued relational width (2,3).

Recall the Min-Cost-Hom and Min-Sol problems discussed in Examples 14 and 16
respectively. Recall that a Min-Cost-Hom problem corresponds to VCSP(Γ) for some
language Γ containing only crisp cost functions and unary cost functions. We now briefly
describe the classification results so far obtained for these problems that give more information
than the general Theorem 59. It may seem that the Min-Cost-Hom framework is rather more
restrictive than the (general-valued) VCSP. However, it was shown in [26], by adapting the
main result of [20], that for every problem VCSP(Γ), where Γ is finite, there is a polynomial-
time equivalent Min-Cost-Hom problem, VCSP(Γ′), where Γ′ contains only a single crisp
binary function and a single finite-valued unary function. This mirrors a similar reduction
from the general CSP (Example 11) to the digraph homomorphism problem (Example 12)
which was first established in [37].

The complexity classification for Min-Cost-Hom for languages containing all unary cost
functions was established in [100]. The tractable case can be reduced, after a preprocessing
step using local consistency techniques, to a certain problem on perfect graphs known to be
solvable in polynomial time using linear programming [48]. For the special case of digraphs
(i.e., when the only non-unary cost function allowed is a single binary crisp cost function), a
complexity classification in graph-theoretic terms was obtained in [52]. The classification of
Min-Cost-Hom for languages containing all unary crisp cost functions was initially studied
in [101] and fully established in [110].



A. Krokhin and S. Živný 257

The complexity of Min-Cost-Hom for all languages over a three-element set was classified
in [111]. The only tractable cases either admit a fractional polymorphism with a semilattice
operation in its support or a certain type of tournament pair. The former case is tractable
using BLP by Theorem 50 and the latter case is tractable using a reduction to the result
in [100] discussed above.

Min-Sol problems are Min-Cost-Hom problems where the only unary cost function in Γ is
a specific injective and finite-valued cost function. The classification of Min-Sol problems
for various special cases was established in [70, 65, 68, 110]. It was shown in [108] that
every Min-Sol problem satisfies either the conditions of Theorem 57 or the conditions of
Theorem 53, thus providing a full dichotomy for such problems. That dichotomy, as well as
Theorem 62, are corollaries of the following result, which does not follow from Theorem 59.

I Theorem 63 (Classification of General-Valued Languages with an Injective Function [108]).
Let Γ be a valued constraint language Γ on D that is a rigid core. Assume that Γ can express
a unary finite-valued cost function u : D → Q that is injective, i.e. u(a) 6= u(b) for any
a 6= b ∈ D. Then either Γ has bounded valued relational width (and hence is solvable by SA),
or Γ is NP-hard.

7 The Oracle Model

In this paper we have assumed that the objective function in our problem is represented as a
sum of functions each defined on some subset of the variables. There is a rich tradition in
combinatorial optimisation of studying problems where the objective function is represented
instead by a value-giving oracle. In this model a problem is tractable if it can be solved in
polynomial time using only polynomially many queries to the oracle (where the polynomial
is in the number of variables). Note that any query to the oracle can be simulated in linear
time in the VCSP model. Hence, a tractability result (for a class of functions) in the oracle
model automatically transfers to the VCSP model, while hardness results automatically
transfer in the opposite direction.

One class of functions that has received particular attention in the oracle model is the
class of submodular functions (cf. Example 19). There are several known algorithms for
minimising a (finite-valued) submodular function using only a polynomial number of calls to
a value-giving oracle (see [58, 59, 88, 96]).

The fastest general (strongly polynomial) algorithm [88] runs in O(n3 log2 n · EO +
n4 logO(1) n) time, where EO is the time for function evaluation by oracle. However, for some
submodular valued constraint languages Γ, VCSP(Γ) can be solved more efficiently than
by using these general approaches. For example, the (submodular) language Γcut defined
in Example 9 can be solved in cubic time using the Min-Cut-based algorithm described in
Example 9. A similar efficient approach can be used for all languages that are expressible over
Γcut. However, it was shown in [115, 117] that not all submodular functions are expressible
over Γcut, so this approach cannot be directly extended to solve arbitrary submodular VCSP
instances. It is currently an open question whether the minimisation problem for submodular
functions defined by sums of bounded arity submodular functions in the VCSP model is
easier than general submodular function minimisation in the oracle model.

Other classes of finite-valued functions that can be efficiently minimised in the oracle model
include bisubmodular and α-bisubmodular functions (Examples 23 and 24) [39, 41, 92, 42, 56],
functions with a 1-defect multimorphism (Example 27) [66], and functions that are submodular
on certain lattices (Example 20) [40, 79, 81]. The complexity of submodular function

Chapte r 09



258 The Complexity of Valued CSPs

minimisation in the oracle model over arbitrary non-distributive lattices is still unknown (in
the VCSP model, all such language are tractable, by Theorem 50).

The following general problem was mentioned in [55, 66, 103]: which fractional/weighted
polymorphisms ω are sufficient to guarantee an efficient minimization algorithm, in the
value-oracle model, for the class of functions Imp(ω)? This problem can be asked only for
classes of finite-valued functions, or for classes of general-valued functions – in the latter case,
some representation of feasible tuples should be part of input. Natural candidates for which
the question is open include the k-submodularity multimorphism for k ≥ 3 from Example 23
and submodularity multimorphisms on many lattices from Example 20.

8 Conclusions and Future Directions

We have shown that the valued constraint satisfaction problem is a powerful general framework
that can be used to express many standard combinatorial optimisation problems. The general
problem is NP-hard, but there are many special cases that have been shown to be tractable.
In particular, by considering restrictions on the cost functions we allow in problem instances,
we have identified a range of different sets of cost functions that ensure tractability.

These restricted sets of cost functions are referred to as valued constraint languages, and
we have described in Section 4 the very general algebraic techniques now being developed to
classify the complexity of these languages.

This classification is still incomplete. In fact, even in the special case of the CSP
(Example 11), where all cost functions take only the values 0 or ∞, there is still no complete
classification of complexity for the corresponding constraint languages. This problem has been
studied for many years, beginning with the seminal work of Feder and Vardi who conjectured
that any such language will be either tractable or NP-complete [37]. This conjecture is
still unresolved. However, the Algebraic Dichotomy conjecture (see Conjecture 55) specifies
the boundary between tractable and NP-hard languages, and it has been proved in many
important cases. It was stated in [61] that “it is desirable to develop the algebraic theory
of VCSPs to the point where one could make a credible algebraic dichotomy conjecture for
the VCSP, in order to have a specific target to aim at.” Now, only two years after [61],
this algebraic theory has been developed, the VCSP dichotomy conjecture stated (see
Conjecture 58) and proved to be equivalent to Conjecture 55 (see Theorem 59).

It is an interesting open question to find tight(er) conditions characterising tractable
cases, both for the general case and for important special cases. For example, the tractability
condition for finite-valued languages (see Theorem 60), is considerably tighter then the
condition from Conjecture 58. It could probably be made tighter still: for |D| = 2, 3, tight
(i.e., irreducible) descriptions are given in [25, 55], respectively.

Another interesting open question is to improve the efficiency of the general algorithm
for tractable VCSPs described after Theorem 59. The current algorithm involves solving the
feasibility problem for a given instance many (specifically, O(|V | · |D|)) times, perhaps this
can be improved.

In this survey, we looked only at solving VCSPs to optimality. There is plenty of literature
on (in)approximability of CSP-related problems (see, e.g., the recent survey [89]), but many
problems about the approximability of VCSPs are still open: for example, the open problems
from [35], stated there for {0, 1}-valued CSPs, make perfect sense for arbitrary VCSPs. Note
that the equivalence of maximisation and minimisation as described in Example 13 does
not work when dealing with approximation properties. Fixed-parameter approximability for
{0, 1}-valued CSPs was considered in [9]. An interesting application of VCSP classifications
to study fixed-parameter tractability appeared in [60].



A. Krokhin and S. Živný 259

In this survey, we looked at VCSPs over finite domains. There is a significant line of
research dealing with CSPs over infinite domains – see [94, 7] and also [8]. The complexity
of VCSPs over infinite domains is almost unexplored beyond CSPs.

The algebraic theory of the VCSP presented in Section 4 is based on the notion of a
weighted clone. Not much is known about weighted clones, and this direction is wide open for
purely algebraic investigation. Some specific open problems include the (possible) description
of weighted clones for D = {0, 1}, the identification of minimal weighted clones, and the
investigation of classes of weighted clones supported by a given ordinary clone. Some partial
results are presented in two MSc theses [113, 112] and in [104, 63].

In this survey we have focused on the complexity of valued constraint satisfaction problems
with restricted constraint languages. It is also possible to ensure tractability by restricting the
structure of the constraint scopes – so-called structural restrictions [46, 47, 91]. Combining
structural restrictions with language restrictions leads to so-called hybrid restrictions, and
these provide a promising source of new tractable cases [27, 28] which has so far been very
little explored – see survey [29].

Acknowledgements. We would like to thank Pete Jeavons for his useful comments that
improved the presentation of this paper.

References
1 Libor Barto. The dichotomy for conservative constraint satisfaction problems revisited. In

Proceedings of the 26th IEEE Symposium on Logic in Computer Science (LICS’11), pages
301–310. IEEE Computer Society, 2011. doi:10.1109/LICS.2011.25.

2 Libor Barto. Constraint satisfaction problem and universal algebra. ACM SIGLOG News,
1(2):14–24, 2014. doi:10.1145/2677161.2677165.

3 Libor Barto. The collapse of the bounded width hierarchy. J. Log. Comput., 26(3):923–943,
2016. doi:10.1093/logcom/exu070.

4 Libor Barto and Marcin Kozik. Absorbing Subalgebras, Cyclic Terms, and the Constraint
Satisfaction Problem. Logical Methods in Computer Science, 8(1), 2012. doi:10.2168/
LMCS-8(1:7)2012.

5 Libor Barto and Marcin Kozik. Robust satisfiability of constraint satisfaction problems. In
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New
York, NY, USA, May 19-22, 2012, pages 931–940, 2012.

6 Libor Barto and Marcin Kozik. Constraint Satisfaction Problems Solvable by Local Con-
sistency Methods. Journal of the ACM, 61(1), 2014. Article No. 3. doi:10.1145/2556646.

7 Manuel Bodirsky. Complexity classification in infinite-domain constraint satisfaction.
CoRR, abs/1201.0856, 2012. URL: http://arxiv.org/abs/1201.0856.

8 Manuel Bodirsky. Constraint Satisfaction Problems over Numeric Domains. In Andrei
Krokhin and Stanislav Živný, editors, The Constraint Satisfaction Problem: Complexity
and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 79–111. Schloss Dagstuhl
– Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.
15301.79.

9 Édouard Bonnet, László Egri, and Dániel Marx. Fixed-parameter approximability of
Boolean MinCSPs. CoRR, abs/1601.04935, 2016.

10 Ferdinand Börner. Basics of Galois connections. In Complexity of Constraints, volume 5250
of Lecture Notes in Computer Science, pages 38–67. Springer, 2008.

11 Yuri Boykov, Olga Veksler, and Ramin Zabih. Markov Random Fields with Efficient
Approximations. In 1998 Conference on Computer Vision and Pattern Recognition
(CVPR’98), pages 648–655, 1998. doi:10.1109/CVPR.1998.698673.

Chapte r 09

http://dx.doi.org/10.1109/LICS.2011.25
http://dx.doi.org/10.1145/2677161.2677165
http://dx.doi.org/10.1093/logcom/exu070
http://dx.doi.org/10.2168/LMCS-8(1:7)2012
http://dx.doi.org/10.2168/LMCS-8(1:7)2012
http://dx.doi.org/10.1145/2556646
http://arxiv.org/abs/1201.0856
http://dx.doi.org/10.4230/DFU.Vol7.15301.79
http://dx.doi.org/10.4230/DFU.Vol7.15301.79
http://dx.doi.org/10.1109/CVPR.1998.698673


260 The Complexity of Valued CSPs

12 Jonah Brown-Cohen and Prasad Raghavendra. Correlation Decay & Tractability of CSPs.
In Proceedings of the 43rd International Colloquium on Automata, Languages and Program-
ming (ICALP’16), 2016.

13 Andrei Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element
set. Journal of the ACM, 53(1):66–120, 2006. doi:10.1145/1120582.1120584.

14 Andrei Bulatov. Bounded relational width. Unpublished manuscript, 2009.
15 Andrei Bulatov. Graphs of relational structures: restricted colours. In LICS’16, 2016. To

appear.
16 Andrei Bulatov and Víctor Dalmau. A simple algorithm for Mal’tsev constraints. SIAM

Journal on Computing, 36(1):16–27, 2006. doi:10.1137/050628957.
17 Andrei Bulatov, Andrei Krokhin, and Peter Jeavons. Classifying the Complexity of

Constraints using Finite Algebras. SIAM Journal on Computing, 34(3):720–742, 2005.
doi:10.1137/S0097539700376676.

18 Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM
Transactions on Computational Logic, 12(4), 2011. Article 24. doi:10.1145/1970398.
1970400.

19 Andrei A. Bulatov and Peter G. Jeavons. Algebraic structures in combinatorial problems.
Technical Report MATH-AL-4-2001, Technische Universität Dresden, 2001.

20 Jakub Bulin, Dejan Delic, Marcel Jackson, and Todd Niven. A finer reduction of constraint
problems to digraphs. Logical Methods in Computer Science, 11(4), 2015. doi:10.2168/
LMCS-11(4:18)2015.

21 David Cohen, Martin Cooper, Peter Jeavons, and Andrei Krokhin. Supermodular Func-
tions and the Complexity of MAX-CSP. Discrete Applied Mathematics, 149(1-3):53–72,
2005. doi:10.1016/j.dam.2005.03.003.

22 David Cohen and Peter Jeavons. The complexity of constraint languages. In F. Rossi,
P. van Beek, and T. Walsh, editors, The Handbook of Constraint Programming. Elsevier,
2006.

23 David A. Cohen, Martin C. Cooper, Páidí Creed, Peter Jeavons, and Stanislav Živný. An
algebraic theory of complexity for discrete optimisation. SIAM Journal on Computing,
42(5):915–1939, 2013. URL: http://zivny.cz/publications/cccjz13sicomp-preprint.
pdf, doi:10.1137/130906398.

24 David A. Cohen, Martin C. Cooper, and Peter G. Jeavons. Generalising submodularity and
Horn clauses: Tractable optimization problems defined by tournament pair multimorphisms.
Theoretical Computer Science, 401(1-3):36–51, 2008. doi:10.1016/j.tcs.2008.03.015.

25 David A. Cohen, Martin C. Cooper, Peter G. Jeavons, and Andrei A. Krokhin. The
Complexity of Soft Constraint Satisfaction. Artificial Intelligence, 170(11):983–1016, 2006.
doi:10.1016/j.artint.2006.04.002.

26 David A. Cohen, Martin C. Cooper, Peter G. Jeavons, Andrei A. Krokhin, Robert Powell,
and Stanislav Živný. Binarisation for Valued Constraint Satisfaction Problems, August
2016. arXiv:1608.01628. URL: http://arxiv.org/abs/1608.01628.

27 Martin C. Cooper and Stanislav Živný. Hybrid tractability of valued constraint problems.
Artificial Intelligence, 175(9-10):1555–1569, 2011. URL: http://zivny.cz/publications/
cz11aij-preprint.pdf, doi:10.1016/j.artint.2011.02.003.

28 Martin C. Cooper and Stanislav Živný. Tractable triangles and cross-free convexity in
discrete optimisation. Journal of Artificial Intelligence Research, 44:455–490, 2012. URL:
http://zivny.cz/publications/cz12jair-preprint.pdf, doi:10.1613/jair.3598.

29 Martin C. Cooper and Stanislav Živný. Hybrid Tractable Classes of Constraint Prob-
lems. In Andrei Krokhin and Stanislav Živný, editors, The Constraint Satisfaction Prob-
lem: Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 113–135.

http://dx.doi.org/10.1145/1120582.1120584
http://dx.doi.org/10.1137/050628957
http://dx.doi.org/10.1137/S0097539700376676
http://dx.doi.org/10.1145/1970398.1970400
http://dx.doi.org/10.1145/1970398.1970400
http://dx.doi.org/10.2168/LMCS-11(4:18)2015
http://dx.doi.org/10.2168/LMCS-11(4:18)2015
http://dx.doi.org/10.1016/j.dam.2005.03.003
http://zivny.cz/publications/cccjz13sicomp-preprint.pdf
http://zivny.cz/publications/cccjz13sicomp-preprint.pdf
http://dx.doi.org/10.1137/130906398
http://dx.doi.org/10.1016/j.tcs.2008.03.015
http://dx.doi.org/10.1016/j.artint.2006.04.002
http://arxiv.org/abs/1608.01628
http://zivny.cz/publications/cz11aij-preprint.pdf
http://zivny.cz/publications/cz11aij-preprint.pdf
http://dx.doi.org/10.1016/j.artint.2011.02.003
http://zivny.cz/publications/cz12jair-preprint.pdf
http://dx.doi.org/10.1613/jair.3598


A. Krokhin and S. Živný 261

Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:
10.4230/DFU.Vol7.15301.113.

30 Yves Crama and Peter L. Hammer. Boolean Functions – Theory, Algorithms, and Applic-
ations. Cambridge University Press, 2011.

31 Páidí Creed and Stanislav Živný. On minimal weighted clones. In Proceedings of
the 17th International Conference on Principles and Practice of Constraint Program-
ming (CP’11), volume 6876 of Lecture Notes in Computer Science, pages 210–224.
Springer, 2011. URL: http://zivny.cz/publications/cz11cp-mwc-preprint, doi:10.
1007/978-3-642-23786-7_18.

32 Nadaia Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors. Complexity of Con-
straints: An Overview of Current Research Themes, volume 5250 of Lecture Notes in Com-
puter Science. Springer, 2008. doi:10.1007/978-3-540-92800-3.

33 Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity Classification of Boolean
Constraint Satisfaction Problems, volume 7 of SIAM Monographs on Discrete Mathematics
and Applications. SIAM, 2001.

34 Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and
Mihalis Yannakakis. The Complexity of Multiterminal Cuts. SIAM Journal on Computing,
23(4):864–894, 1994. doi:10.1137/S0097539792225297.

35 Víctor Dalmau and Andrei Krokhin. Robust satisfiability for CSPs: Hardness and al-
gorithmic results. TOCT, 5(4):15, 2013.

36 Vladimir Deineko, Peter Jonsson, Mikael Klasson, and Andrei Krokhin. The approximab-
ility of Max CSP with fixed-value constraints. Journal of the ACM, 55(4), 2008. Article
16. doi:10.1145/1391289.1391290.

37 Tomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic
SNP and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM
Journal on Computing, 28(1):57–104, 1998. doi:10.1137/S0097539794266766.

38 Satoru Fujishige. Submodular Functions and Optimization, volume 58 of Annals of Discrete
Mathematics. North-Holland, Amsterdam, 2nd edition, 2005.

39 Satoru Fujishige and Satoru Iwata. Bisubmodular Function Minimization. SIAM Journal
on Discrete Mathematics, 19(4):1065–1073, 2005. doi:10.1137/S0895480103426339.

40 Satoru Fujishige, Tamás Király, Kazuhisa Makino, Kenjiro Takazawa, and Shin-ichi
Tanigawa. Minimizing submodular functions on diamonds via generalized fractional
matroid matchings. Technical Report RIMS-1812, Kyoto University, 2015.

41 Satoru Fujishige and Shin-ichi Tanigawa. Polynomial combinatorial algorithms for skew-
bisubmodular function minimization. Technical Report RIMS-1837, Kyoto University, 2015.

42 Satoru Fujishige, Shin-ichi Tanigawa, and Yuichi Yoshida. Generalized skew bisubmodu-
larity: A characterization and a min-max theorem. Discrete Optimization, 12:1–9, 2014.
doi:10.1016/j.disopt.2013.12.001.

43 Peter Fulla and Stanislav Živný. A Galois Connection for Valued Constraint Lan-
guages of Infinite Size. ACM Transactions on Computation Theory, 8(3), 2016. Art-
icle No. 9. URL: http://www.cs.ox.ac.uk/Stanislav.Zivny/homepage/publications/
fz16toct-preprint.pdf, doi:10.1145/2898438.

44 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, 1979.

45 Andrew V. Goldberg and Robert Endre Tarjan. A New Approach to the Maximum Flow
Problem. Journal of the ACM, 35(4):921–940, 1988. doi:10.1145/48014.61051.

46 Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Tractable Optimization Prob-
lems through Hypergraph-Based Structural Restrictions. In Proceedings of the 36th In-
ternational Colloquium on Automata, Languages and Programming (ICALP’09), Part II,

Chapte r 09

http://dx.doi.org/10.4230/DFU.Vol7.15301.113
http://dx.doi.org/10.4230/DFU.Vol7.15301.113
http://zivny.cz/publications/cz11cp-mwc-preprint
http://dx.doi.org/10.1007/978-3-642-23786-7_18
http://dx.doi.org/10.1007/978-3-642-23786-7_18
http://dx.doi.org/10.1007/978-3-540-92800-3
http://dx.doi.org/10.1137/S0097539792225297
http://dx.doi.org/10.1145/1391289.1391290
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1137/S0895480103426339
http://dx.doi.org/10.1016/j.disopt.2013.12.001
http://www.cs.ox.ac.uk/Stanislav.Zivny/homepage/publications/fz16toct-preprint.pdf
http://www.cs.ox.ac.uk/Stanislav.Zivny/homepage/publications/fz16toct-preprint.pdf
http://dx.doi.org/10.1145/2898438
http://dx.doi.org/10.1145/48014.61051


262 The Complexity of Valued CSPs

volume 5556 of Lecture Notes in Computer Science, pages 16–30. Springer, 2009. doi:
10.1007/978-3-642-02930-1_2.

47 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Journal of the ACM, 54(1):1–24, 2007. doi:10.1145/1206035.
1206036.

48 Martin Grötschel, Laszlo Lovasz, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988.

49 Gregory Gutin, Pavol Hell, Arash Rafiey, and Anders Yeo. A dichotomy for minimum
cost graph homomorphisms. European Journal of Combinatorics, 29(4):900–911, 2008.
doi:10.1016/j.ejc.2007.11.012.

50 Pavol Hell and Jaroslav Nešetřil. Graphs and Homomorphisms. Oxford University Press,
2004.

51 Pavol Hell and Jaroslav Nešetřil. Colouring, constraint satisfaction, and complexity. Com-
puter Science Review, 2(3):143–163, 2008. doi:10.1016/j.cosrev.2008.10.003.

52 Pavol Hell and Arash Rafiey. The Dichotomy of Minimum Cost Homomorphism Problems
for Digraphs. SIAM Journal on Discrete Mathematics, 26(4):1597–1608, 2012. doi:10.
1137/100783856.

53 Hiroshi Hirai. Discrete convexity and polynomial solvability in minimum 0-extension prob-
lems. Math. Program., 155(1-2):1–55, 2016. doi:10.1007/s10107-014-0824-7.

54 Anna Huber and Vladimir Kolmogorov. Towards Minimizing k-Submodular Functions. In
Proceedings of the 2nd International Symposium on Combinatorial Optimization (ISCO’12),
volume 7422 of Lecture Notes in Computer Science, pages 451–462. Springer, 2012. doi:
10.1007/978-3-642-32147-4_40.

55 Anna Huber, Andrei Krokhin, and Robert Powell. Skew bisubmodularity and valued CSPs.
SIAM Journal on Computing, 43(3):1064–1084, 2014. doi:10.1137/120893549.

56 Anna Huber and Andrei A. Krokhin. Oracle tractability of skew bisubmodular functions.
SIAM J. Discrete Math., 28(4):1828–1837, 2014. doi:10.1137/130936038.

57 Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross Willard.
Tractability and learnability arising from algebras with few subpowers. SIAM Journal on
Computing, 39(7):3023–3037, 2010. doi:10.1137/090775646.

58 Satoru Iwata. Submodular Function Minimization. Mathematical Programming, 112(1):45–
64, 2008. doi:10.1007/s10107-006-0084-2.

59 Satoru Iwata and James B. Orlin. A Simple Combinatorial Algorithm for Submodular
Function Minimization. In Proceedings of the 20th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’09), pages 1230–1237, 2009. doi:10.1145/1496770.1496903.

60 Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, LP-branching
and FPT algorithms. CoRR, abs/1310.2841, 2014. URL: http://arxiv.org/abs/1310.
2841v2.

61 Peter Jeavons, Andrei Krokhin, and Stanislav Živný. The complexity of valued con-
straint satisfaction. Bulletin of the European Association for Theoretical Computer Science
(EATCS), 113:21–55, 2014. URL: http://zivny.cz/publications/jkz14.pdf.

62 Peter G. Jeavons, David A. Cohen, and Marc Gyssens. Closure Properties of Constraints.
Journal of the ACM, 44(4):527–548, 1997. doi:10.1145/263867.263489.

63 Peter G. Jeavons, Andrius Vaicenavičius, and Stanislav Živný. Minimal weighted clones
with Boolean support. In Proceedings of the 46th IEEE International Symposium on
Multiple-Valued Logic (ISMVL’16). IEEE, 2016. URL: http://zivny.cz/publications/
jvz15ismvl-preprint.pdf.

64 Peter Jonsson, Mikael Klasson, and Andrei Krokhin. The Approximability of Three-
valued MAX CSP. SIAM Journal on Computing, 35(6):1329–1349, 2006. doi:10.1137/
S009753970444644X.

http://dx.doi.org/10.1007/978-3-642-02930-1_2
http://dx.doi.org/10.1007/978-3-642-02930-1_2
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1016/j.ejc.2007.11.012
http://dx.doi.org/10.1016/j.cosrev.2008.10.003
http://dx.doi.org/10.1137/100783856
http://dx.doi.org/10.1137/100783856
http://dx.doi.org/10.1007/s10107-014-0824-7
http://dx.doi.org/10.1007/978-3-642-32147-4_40
http://dx.doi.org/10.1007/978-3-642-32147-4_40
http://dx.doi.org/10.1137/120893549
http://dx.doi.org/10.1137/130936038
http://dx.doi.org/10.1137/090775646
http://dx.doi.org/10.1007/s10107-006-0084-2
http://dx.doi.org/10.1145/1496770.1496903
http://arxiv.org/abs/1310.2841v2
http://arxiv.org/abs/1310.2841v2
http://zivny.cz/publications/jkz14.pdf
http://dx.doi.org/10.1145/263867.263489
http://zivny.cz/publications/jvz15ismvl-preprint.pdf
http://zivny.cz/publications/jvz15ismvl-preprint.pdf
http://dx.doi.org/10.1137/S009753970444644X
http://dx.doi.org/10.1137/S009753970444644X


A. Krokhin and S. Živný 263

65 Peter Jonsson, Fredrik Kuivinen, and Gustav Nordh. MAX ONES Generalized to Larger
Domains. SIAM Journal on Computing, 38(1):329–365, 2008. doi:10.1137/060669231.

66 Peter Jonsson, Fredrik Kuivinen, and Johan Thapper. Min CSP on Four Elements: Moving
Beyond Submodularity. In Proceedings of the 17th International Conference on Principles
and Practice of Constraint Programming (CP’11), volume 6876 of Lecture Notes in Com-
puter Science, pages 438–453. Springer, 2011. doi:10.1007/978-3-642-23786-7_34.

67 Peter Jonsson and Gustav Nordh. Introduction to the maximum solution Problem. In
Complexity of Constraints, volume 5250 of Lecture Notes in Computer Science, pages 255–
282. Springer, 2008. doi:10.1007/978-3-540-92800-3_10.

68 Peter Jonsson and Johan Thapper. Approximability of the maximum solution problem
for certain families of algebras. In Proceedings of the 4th International Computer Science
Symposium in Russia (CSR’09), volume 5675 of Lecture Notes in Computer Science, pages
215–226. Springer, 2009. doi:10.1007/978-3-642-03351-3_21.

69 Keith Kearnes, Petar Marković, and Ralph McKenzie. Optimal strong Mal’cev conditions
for omitting type 1 in locally finite varieties. Algebra Universalis, 72(1):91–100, 2014.
doi:10.1007/s00012-014-0289-9.

70 Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David Williamson. The approximab-
ility of constraint satisfaction problems. SIAM Journal on Computing, 30(6):1863–1920,
2000. doi:10.1137/S0097539799349948.

71 Vladimir Kolmogorov. Submodularity on a tree: Unifying L]-convex and bisubmodular
functions. In Proceedings of the 36th International Symposium on Mathematical Founda-
tions of Computer Science (MFCS’11), volume 6907 of Lecture Notes in Computer Science,
pages 400–411. Springer, 2011. doi:10.1007/978-3-642-22993-0_37.

72 Vladimir Kolmogorov, Andrei Krokhin, and Michal Rolinek. The complexity of general-
valued CSPs. In IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1246–1258, 2015. doi:10.
1109/FOCS.2015.80.

73 Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. The power of linear pro-
gramming for general-valued CSPs. SIAM Journal on Computing, 44(1):1–36, 2015.
doi:10.1137/130945648.

74 Vladimir Kolmogorov and Stanislav Živný. The complexity of conservative valued CSPs.
Journal of the ACM, 60(2), 2013. Article No. 10. URL: http://zivny.cz/publications/
kz13jacm-preprint.pdf, doi:10.1145/2450142.2450146.

75 Marcin Kozik. Weaker consistency notions for all the CSPs of bounded width. In LICS’16,
2016. To appear. Full version is available as arXiv:1605.00565.

76 Marcin Kozik, Andrei Krokhin, Matt Valeriote, and Ross Willard. Characterizations
of several Maltsev conditions. Algebra Universalis, 73(3):205–224, 2015. doi:10.1007/
s00012-015-0327-2.

77 Marcin Kozik and Joanna Ochremiak. Algebraic properties of valued constraint satisfaction
problem. In Proceedings of the 42nd International Colloquium on Automata, Languages
and Programming (ICALP’15), volume 9134 of Lecture Notes in Computer Science, pages
846–858. Springer, 2015. doi:10.1007/978-3-662-47672-7_69.

78 Marcin Kozik and Joanna Ochremiak. Algebraic properties of valued constraint satisfaction
problem. CoRR, abs/1403.0476, 2015.

79 Andrei Krokhin and Benoit Larose. Maximizing Supermodular Functions on Product Lat-
tices, with Application to Maximum Constraint Satisfaction. SIAM Journal on Discrete
Mathematics, 22(1):312–328, 2008. doi:10.1137/060669565.

80 Andrei Krokhin and Stanislav Živný, editors. The Constraint Satisfaction Problem:
Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups. Schloss Dagstuhl

Chapte r 09

http://dx.doi.org/10.1137/060669231
http://dx.doi.org/10.1007/978-3-642-23786-7_34
http://dx.doi.org/10.1007/978-3-540-92800-3_10
http://dx.doi.org/10.1007/978-3-642-03351-3_21
http://dx.doi.org/10.1007/s00012-014-0289-9
http://dx.doi.org/10.1137/S0097539799349948
http://dx.doi.org/10.1007/978-3-642-22993-0_37
http://dx.doi.org/10.1109/FOCS.2015.80
http://dx.doi.org/10.1109/FOCS.2015.80
http://dx.doi.org/10.1137/130945648
http://zivny.cz/publications/kz13jacm-preprint.pdf
http://zivny.cz/publications/kz13jacm-preprint.pdf
http://dx.doi.org/10.1145/2450142.2450146
http://dx.doi.org/10.1007/s00012-015-0327-2
http://dx.doi.org/10.1007/s00012-015-0327-2
http://dx.doi.org/10.1007/978-3-662-47672-7_69
http://dx.doi.org/10.1137/060669565


264 The Complexity of Valued CSPs

– Leibniz-Zentrum fuer Informatik, 2017. URL: http://www.dagstuhl.de/dagpub/
978-3-95977-003-3.

81 Fredrik Kuivinen. On the complexity of submodular function minimisation on diamonds.
Discrete Optimization, 8(3):459–477, 2011. doi:10.1016/j.disopt.2011.04.001.

82 Gábor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan Zhou. Linear pro-
gramming, width-1 CSPs, and robust satisfaction. In Innovations in Theoretical Computer
Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages 484–495, 2012.

83 Richard E. Ladner. On the Structure of Polynomial Time Reducibility. Journal of the
ACM, 22:155–171, 1975. doi:10.1145/321864.321877.

84 Benoît Larose. Algebra and the Complexity of Digraph CSPs: a Survey. In Andrei Krokhin
and Stanislav Živný, editors, The Constraint Satisfaction Problem: Complexity and Approx-
imability, volume 7 of Dagstuhl Follow-Ups, pages 267–285. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.267.

85 Benoit Larose and Pascal Tesson. Universal Algebra and Hardness Results for Constraint
Satisfaction Problems. Theoretical Computer Science, 410(18):1629–1647, 2009. doi:10.
1016/j.tcs.2008.12.048.

86 Benoit Larose and László Zádori. Bounded width problems and algebras. Algebra Univer-
salis, 56(3-4):439–466, 2007. doi:10.1007/s00012-007-2012-6.

87 Steffen L. Lauritzen. Graphical Models. Oxford University Press, 1996.
88 Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method

and its implications for combinatorial and convex optimization. In IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20
October, 2015, pages 1049–1065, 2015. Full version is available at arXiv:1508.04874.

89 Konstantin Makarychev and Yuri Makarychev. Approximation Algorithms for CSPs. In
Andrei Krokhin and Stanislav Živný, editors, The Constraint Satisfaction Problem: Com-
plexity and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 287–325. Schloss Dag-
stuhl – Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.
Vol7.15301.287.

90 Miklós Maróti and Ralph McKenzie. Existence theorems for weakly symmetric operations.
Algebra Universalis, 59(3-4):463–489, 2008. doi:10.1007/s00012-008-2122-9.

91 Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive
queries. Journal of the ACM, 60(6), 2013. Article No. 42. doi:10.1145/2535926.

92 S. Thomas McCormick and Satoru Fujishige. Strongly polynomial and fully combinatorial
algorithms for bisubmodular function minimization. Mathematical Programming, 122(1):87–
120, 2010. doi:10.1007/s10107-008-0242-9.

93 Marc Mezard and Andrea Montanari. Information, Physics, and Computation. Oxford
University Press, 2009.

94 Michael Pinsker. Algebraic and model theoretic methods in constraint satisfaction. CoRR,
abs/1507.00931, 2015. URL: http://arxiv.org/abs/1507.00931.

95 Thomas J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOC’78), pages 216–226. ACM, 1978.
doi:10.1145/800133.804350.

96 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of
Algorithms and Combinatorics. Springer, 2003.

97 Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems. SIAM J. Discrete
Math., 3(3):411–430, 1990. doi:10.1137/0403036.

98 Mark H. Siggers. A strong Mal’cev condition for locally finite varieties omitting the unary
type. Algebra Universalis, 64(1):15–20, 2010. doi:10.1007/s00012-010-0082-3.

http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://dx.doi.org/10.1016/j.disopt.2011.04.001
http://dx.doi.org/10.1145/321864.321877
http://dx.doi.org/10.4230/DFU.Vol7.15301.267
http://dx.doi.org/10.1016/j.tcs.2008.12.048
http://dx.doi.org/10.1016/j.tcs.2008.12.048
http://dx.doi.org/10.1007/s00012-007-2012-6
http://dx.doi.org/10.4230/DFU.Vol7.15301.287
http://dx.doi.org/10.4230/DFU.Vol7.15301.287
http://dx.doi.org/10.1007/s00012-008-2122-9
http://dx.doi.org/10.1145/2535926
http://dx.doi.org/10.1007/s10107-008-0242-9
http://arxiv.org/abs/1507.00931
http://dx.doi.org/10.1145/800133.804350
http://dx.doi.org/10.1137/0403036
http://dx.doi.org/10.1007/s00012-010-0082-3


A. Krokhin and S. Živný 265

99 A. Szendrei. Clones in Universal Algebra, volume 99 of Seminaires de Mathematiques
Superieures. University of Montreal, 1986.

100 Rustem Takhanov. A Dichotomy Theorem for the General Minimum Cost Homomorphism
Problem. In Proceedings of the 27th International Symposium on Theoretical Aspects of
Computer Science (STACS’10), pages 657–668, 2010. doi:10.4230/LIPIcs.STACS.2010.
2493.

101 Rustem Takhanov. Extensions of the Minimum Cost Homomorphism Problem. In
Proceedings of the 16th International Computing and Combinatorics Conference (CO-
COON’10), volume 6196 of Lecture Notes in Computer Science, pages 328–337. Springer,
2010. doi:10.1007/978-3-642-14031-0_36.

102 Walter Taylor. Varieties obeying homotopy laws. Canadian Journal of Mathematics,
29(3):498–527, 1977.

103 Johan Thapper and Stanislav Živný. The power of linear programming for valued CSPs.
In Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS’12), pages 669–678. IEEE, 2012. URL: http://zivny.cz/publications/
tz12focs-preprint.pdf, doi:10.1109/FOCS.2012.25.

104 Johan Thapper and Stanislav Živný. Necessary Conditions on Tractability of Valued Con-
straint Languages. SIAM Journal on Discrete Mathematics, 29(4):2361–2384, 2015. URL:
http://zivny.cz/publications/tz15sidma-preprint.pdf, doi:10.1137/140990346.

105 Johan Thapper and Stanislav Živný. Sherali-Adams relaxations for valued CSPs. In
Proceedings of the 42nd International Colloquium on Automata, Languages and Pro-
gramming (ICALP’15), volume 9134 of Lecture Notes in Computer Science, pages 1058–
1069. Springer, 2015. URL: http://zivny.cz/publications/tz15icalp-preprint.pdf,
doi:10.1007/978-3-662-47672-7_86.

106 Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. Journal
of the ACM, 63(4), 2016. Article No. 37. URL: http://zivny.cz/publications/
tz16jacm-preprint.pdf, doi:10.1145/2974019.

107 Johan Thapper and Stanislav Živný. The limits of SDP relaxations for general-valued CSPs,
December 2016. arXiv:1612.01147. URL: http://arxiv.org/abs/1612.01147.

108 Johan Thapper and Stanislav Živný. The power of Sherali-Adams relaxations for general-
valued CSPs. Technical report, arXiv:1606.02577, 2016.

109 Donald Topkis. Supermodularity and Complementarity. Princeton University Press, 1998.
110 Hannes Uppman. The Complexity of Three-Element Min-Sol and Conservative Min-Cost-

Hom. In Proceedings of the 40th International Colloquium on Automata, Languages, and
Programming (ICALP’13), volume 7965 of Lecture Notes in Computer Science, pages 804–
815. Springer, 2013. doi:10.1007/978-3-642-39206-1_68.

111 Hannes Uppman. Computational Complexity of the Extended Minimum Cost Homomorph-
ism Problem on Three-Element Domains. In Proceedings of the 31st International Sym-
posium on Theoretical Aspects of Computer Science (STACS’14), volume 25, pages 651–662,
2014. doi:10.4230/LIPIcs.STACS.2014.651.

112 Andrius Vaicenavičius. A study of weighted clones. Master’s thesis, Mathematical Institute,
University of Oxford, 2014.

113 Jiří Vančura. Weighted Clones. Master’s thesis, Department of Algebra, Charles University,
2014.

114 Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.
doi:10.1561/2200000001.

115 Stanislav Živný. The Complexity and Expressive Power of Valued Constraints. PhD
thesis, University of Oxford, 2009. URL: http://ora.ouls.ox.ac.uk/objects/uuid:
63facf22-7c2b-4d4a-8b6f-f7c323759ca0.

Chapte r 09

http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2493
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2493
http://dx.doi.org/10.1007/978-3-642-14031-0_36
http://zivny.cz/publications/tz12focs-preprint.pdf
http://zivny.cz/publications/tz12focs-preprint.pdf
http://dx.doi.org/10.1109/FOCS.2012.25
http://zivny.cz/publications/tz15sidma-preprint.pdf
http://dx.doi.org/10.1137/140990346
http://zivny.cz/publications/tz15icalp-preprint.pdf
http://dx.doi.org/10.1007/978-3-662-47672-7_86
http://zivny.cz/publications/tz16jacm-preprint.pdf
http://zivny.cz/publications/tz16jacm-preprint.pdf
http://dx.doi.org/10.1145/2974019
http://arxiv.org/abs/1612.01147
http://dx.doi.org/10.1007/978-3-642-39206-1_68
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.651
http://dx.doi.org/10.1561/2200000001
http://ora.ouls.ox.ac.uk/objects/uuid:63facf22-7c2b-4d4a-8b6f-f7c323759ca0
http://ora.ouls.ox.ac.uk/objects/uuid:63facf22-7c2b-4d4a-8b6f-f7c323759ca0


266 The Complexity of Valued CSPs

116 Stanislav Živný. The complexity of valued constraint satisfaction problems. Cognitive Tech-
nologies. Springer, 2012. doi:10.1007/978-3-642-33974-5.

117 Stanislav Živný, David A. Cohen, and Peter G. Jeavons. The Expressive Power of
Binary Submodular Functions. Discrete Applied Mathematics, 157(15):3347–3358, 2009.
URL: http://zivny.cz/publications/zcj09dam-preprint.pdf, doi:10.1016/j.dam.
2009.07.001.

http://dx.doi.org/10.1007/978-3-642-33974-5
http://zivny.cz/publications/zcj09dam-preprint.pdf
http://dx.doi.org/10.1016/j.dam.2009.07.001
http://dx.doi.org/10.1016/j.dam.2009.07.001


Algebra and the Complexity of Digraph CSPs: a
Survey
Benoît Larose

LACIM, Université du Québec à Montréal, Montréal, Canada
blarose@lacim.ca

Abstract
We present a brief survey of some of the key results on the interplay between algebraic and
graph-theoretic methods in the study of the complexity of digraph-based constraint satisfaction
problems.

1998 ACM Subject Classification A.1 Introductory and Survey, D.3.2 Constraint and Logic
Languages, F.2.2 Computations on Discrete Structures

Keywords and phrases Constraint satisfaction problems, Polymorphisms, Digraphs

Digital Object Identifier 10.4230/DFU.Vol7.15301.267

1 Introduction

At the expense of elegance and tradition, and since in all likelyhood the reader is already
acquainted with some or all aspects of the topic at hand, we shall spare her the customary
high-level introductory paragraphs, and refer to [10, 24, 75, 51] for more detailed accounts
on motivation, background, and history of the field; in particular, we highly recommend the
paper [60] for an excellent overview of algebraic methods in the study of digraph CSPs, as well
as a wealth of interesting examples. In brief: the constraint satisfaction problem is a natural,
flexible framework which encompasses several decision problems which are ubiquitous and
fundamental in computer science; the introduction of powerful algebraic techniques in the
pioneering work of [46], [61], [62] and [20] has led to a much deeper understanding of the
algorithmic complexity of fixed-template CSPs; precise conjectures have been formulated
linking the algorithmic and descriptive complexity of these CSPs to the algebraic properties
of the fixed template. Very roughly, the paradigm underlying this theory is the following:
if the template supports structure-preserving operations (polymorphisms) that obey “nice
enough” identities, then the associated decision problem should be well-behaved from an
algorithmic point of view; and if no such operations are present, then the problem is hard
for some well-known complexity class. The present paper, concerned with the interplay
of algebraic and graph-theoretic techniques in the study of these conjectures, focuses on
CSPs whose fixed template is a digraph, possibly with some extra unary constraints. These
are known in the literature under various names, such as graph or digraph homomorphism
problems, digraph list homomorphism problems, digraph with constants problem, digraph
retraction problem, one-or-all list homomorphism problems, and so on.

Why digraphs? Obviously these structures offer a good source of examples to test
conjectures because they are simple, natural and we have powerful representation techniques
for digraphs (in other words, we can draw them). One can sometimes hope to explicitly
describe combinatorial properties that turn out to characterise the complexity. On the other
hand, digraphs are flexible enough to encode complex problems. Secondly, various natural
conditions can be imposed on digraphs to obtain subfamilies such as simple graphs, graphs

© Benoît Larose;
licensed under Creative Commons License BY

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný; pp. 267–285

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol7.15301.267
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3


268 Algebra and the Complexity of Digraph CSPs: a Survey

with loops, posets, tournaments, acyclic digraphs, etc. as to make testing some difficult
conjectures more amenable; in this respect, the considerable literature on graph theory is a
powerful tool. Thirdly, and perhaps more interestingly, the proofs of some strong general
theorems on CSPs rely on results specifically on digraphs, see for instance [12]. It should
also be noted that the complexity of CSPs on digraphs has been studied well before algebraic
tools were introduced; in fact the concept of graph homomorphism can be traced back to the
mid 20th century, and its complexity-theoretic aspects at least as far back as the late 70’s.

To streamline the presentation, and in order to make this survey accessible to both
mathematician and computer scientist alike, we shall avoid more involved universal algebraic
concepts and results concerning varieties, tame congruence theory and such, and try to
rephrase the relevant results only in terms of polymorphisms of structures whenever possible;
for a more detailed account we refer the gentle reader to [10, 24]. The small price to pay
for this approach is that some of the terminology we use is slightly non-standard (namely
Definitions 6 and 7). Similarly, we avoid most technicalities concerning complexity issues
and refer the reader to [2, 86] for these.

We make no claim at comprehensiveness, and obviously certain editorial choices have
been made as to the inclusion or not of certain results. The literature on the complexity
of digraph homomorphism is quite vast, so we shall focus mainly on those results involving
algebraic techniques. Fixed-template constraint satisfaction problem involving digraphs that
appear in the literature can be roughly classified into one of four different categories: (i) the
“straightforward” CSP (H) where H is a digraph; (ii) the so-called CSP with constants, or
retraction problem, or one-or-all list homomorphism problem CSP (H+c) where H+c is the
structure consisting of the digraph H together with all unary singleton relations {h} with
h ∈ H; (iii) the list homomorphism or conservative constraint satisfaction problem CSP (H+l)
where H+l is the structure consisting of the digraph H together with all non-empty unary
relations S with S ⊆ H; (iv) constraint satisfaction problems of one of the above forms but
with various restrictions on the inputs (bounded degree, connected lists, bipartite inputs,
etc.) Since this last case has not been much investigated with the use of algebraic tools we
focus mainly on cases (i), (ii), (iii): in the sequel we shall refer to CSPs of one of these forms
as digraph CSPs.

Some of the questions we wish to address in this paper are the following: are the dichotomy
conjectures proved for a particular class of digraphs? Is there a combinatorial characterisation
of the digraphs admitting such and such polymorphisms? Is there a combinatorial description
of the digraphs whose CSP is solvable with such and such restriction on a given resource?
Is there some collapse (of Mal’tsev conditions or complexity) for such and such class of
digraphs?

Here is a brief outline of the paper: in section 2 we first introduce the basic notation
and concepts in algebra, (descriptive) complexity and graphs that we require in the sequel.
We shall then state in section 3 the important general results on CSPs we need later on,
as well as the conjectures that will orient our presentation. In section 4 we present results
on CSPs on digraphs and consider various subfamilies of digraphs; sections 5 and 6 deal
with the variants of the CSP alluded to earlier, namely digraphs with constants and the list
homomorphism problem. Section 7 closes the paper with a series of open problems.

2 Preliminaries

Where we set our notation and define our terms.



B. Larose 269

2.1 Relational Structures and Digraphs
A (finite) relational structure is a tuple H = 〈H; θ1, · · · , θr〉 where H is a non-empty, finite
set, and for each 1 ≤ i ≤ r, θi is a relation of arity ρi on H, i.e. θi ⊆ Hρi ; the signature
of H is the sequence (ρ1, . . . , ρr). In the sequel, all structures will be assumed finite, and
equipped with finitely many basic relations. Let Hi = 〈Hi;µi1, · · · , µir〉, i = 1, 2 be two
structures of the same signature ρ1, . . . , ρr. The product of H1 and H2, is the relational
structure H1 ×H2 = 〈H1 ×H2;µ1, · · · , µr〉 of the same signature as the Hi where for every
j = 1, . . . , r, ((x1, y1), . . . , (xρj

, yρj
)) ∈ µj if (x1, . . . , xρj

) ∈ µ1
j and (y1, . . . , yρj

) ∈ µ2
j . This

extends naturally to any number of factors, and we use the notation Hk to denote the product
of k copies of the structure H.

Let G = 〈G;µ1, · · · , µr〉 be a structure with the same signature as H. A function
f : G→ H is a homomorphism from G to H, and we write f : G→ H, if for every 1 ≤ i ≤ r,
(f(x1), . . . , f(xρi

)) ∈ θi whenever (x1, . . . , xρi
) ∈ µi. If there exist homomorphisms from G

to H and from H to G, we say that G and H are homomorphically equivalent. A structure
H is a core if every homomorphism f : H→ H is a bijection. It is well-known and easy to
verify that every finite relational structure is homomorphically equivalent to a core which is
unique up to isomorphism; hence we may speak of the core of a structure.

I Definition 1. Let H be a relational structure. The set of structures that admit a homo-
morphism to H is denoted by CSP (H).

Viewed as a decision problem, CSP (H) consists in determining on input G whether
there exists a homomorphism from G to H. Obviously if H′ and H are homomorphically
equivalent then CSP (H′) = CSP (H); in particular, for every structure H, we have that
CSP (H) = CSP (H′) where H′ is the core of H.

I Definition 2. Let H = 〈H; θ1, . . . , θr〉 be a structure.
Let H+c = 〈H; θ1, . . . , θr, {h} (h ∈ H)〉 be the structure obtained from H by adding every
singleton unary relation {h} (h ∈ H) to H as a basic relation.
Let H+l = 〈H; θ1, . . . , θr, S (∅ ⊂ S ⊆ H)〉 be the structure obtained from H by adding
every non-empty subset S ⊆ H to H as a basic relation.

Viewed as a decision problem, CSP (H+c) takes as input a structure G of the same
signature as H where certain elements of G have been “pre-coloured" by some value in H;
one must decide if there exists a homomorphism from G to H that respects the pre-colouring.
This problem is known in the literature as the homomorphism extension problem [78], or
one-or-all list homomorphism problem [40], and can easily seen to be equivalent to the
so-called retraction problem [40]. On the other hand, CSP (H+l) takes as input a structure G
of the same signature as H where certain elements of G are assigned a list of prescribed values
in H; one must decide if a homomorphism f exists from G to H such that f(x) belongs to
the list assigned to x. This is known as the list homomorphism problem, and such problems
are also known as conservative CSPs. Notice that the structures H+c and H+l are cores.

2.2 Digraphs
A digraph is a relational structure H = 〈H, θ〉 with a single binary relation θ; the members
of H are the vertices of H and the elements of θ are called arcs. If (h, h′) is an arc we say
that h is an in-neighbour of h′ and h′ is an out-neighbour of h; we also say that h and h′ are
neighbours. The digraph G = 〈G; ρ〉 is an induced subdigraph of H if G ⊆ H and ρ = θ ∩G2.
A digraph H is connected (strongly connected) if for every distinct h, h′ ∈ H there exists a

Chapte r 10



270 Algebra and the Complexity of Digraph CSPs: a Survey

sequence h = x0, . . . , xn = h′ of vertices of H such that xi and xi+1 are neighbours ((xi, xi+1)
is an arc, respectively) for all 0 ≤ i ≤ n − 1. A connected component (strong connected
component) of H is a connected (strongly connected respectively) induced subdigraph of H
maximal with respect to inclusion. A digraph H = 〈H; θ〉 is bipartite if H = A ∪B with A
and B disjoint such that θ ⊆ A×B ∪B ×A.

An arc of the form (h, h) is a loop; the digraph H is reflexive if θ contains all loops,
and is symmetric if (h, h′) ∈ θ implies (h′, h) ∈ θ; symmetric digraphs are often called
graphs, and a simple graph is a graph without loops. The underlying graph of a digraph H
is the graph obtained from H by replacing every arc by a symmetric edge. A digraph is
antisymmetric if (h, h′), (h′, h) ∈ θ implies h = h′, and it is transitive if (h, h′′) ∈ θ whenever
(h, h′), (h′, h′′) ∈ θ. A poset is a reflexive, antisymmetric, transitive digraph.

An oriented path is a digraph with vertex set {x0, . . . , xn} (n ≥ 1) such that, for every
i = 0, . . . , n − 1, precisely one of (xi, xi+1) or (xi+1, xi) is an arc, and there are no other
arcs; an oriented cycle is a digraph with vertex set {x0, . . . , xn} (n ≥ 1) such that, for every
i = 0, . . . , n − 1, precisely one of (xi, xi+1) or (xi+1, xi) is an arc, precisely one of (x0, xn)
or (xn, x0) is an arc and there are no other arcs. The net length (or algebraic length) of an
oriented cycle is the number of forward arcs minus the number of backward arcs according
to some fixed traversal of the cycle. An oriented cycle is balanced if it has net length 0, and
unbalanced otherwise. An n-vertex oriented cycle of net length n we call a directed cycle
(or circle). An oriented tree is an antisymmetric digraph whose underlying graph is a tree,
i.e. an acyclic connected graph.

2.3 Polymorphisms
Let H be a relational structure. A polymorphism of H of arity k is a homomorphism from
Hk to H. If f is a polymorphism of H we also say that H admits f , or that H is invariant
under f . A polymorphism is idempotent if it satisfies f(x, x, . . . , x) = x for all x ∈ H, and is
conservative if f(x1, . . . , xn) ∈ {x1, . . . , xn} for all xi ∈ H.

We use the convenient notation f(x1, . . . , xk) ≈ g(y1, . . . , yn) to indicate equality where
all variables are universally quantified, and call such an expression a linear identity.

A semilattice operation is an associative, idempotent, commutative binary operation. Let
k ≥ 2; a k-ary operation f is cyclic if it obeys

f(x1, . . . , xk) ≈ f(xk, x1, . . . , xk−1);

it is symmetric if, for every permutation σ of the set {1, . . . , k}, it obeys the identity

f(x1, . . . , xk) ≈ f(xσ(1), . . . , xσ(k));

and finally call f totally symmetric (TS) if

f(x1, . . . , xk) ≈ f(y1, . . . , yk)

whenever {x1, . . . , xk} = {y1, . . . , yk}.
For k ≥ 3, the operation f is a near-unanimity (NU) operation if it obeys the identity

f(x, . . . , x, y, x, . . . , x) ≈ x

for any position of the lone y. A 3-ary NU operation is called a majority operation. For
k ≥ 2, the idempotent operation f is a weak near-unanimity (WNU) operation if it obeys
the identities

f(x, . . . , x, y, x, . . . , x) ≈ f(x, . . . , x, y, x, . . . , x)



B. Larose 271

for any positions of the lone y’s.
A 3-ary operation f is Mal’tsev if it obeys the identities

f(y, y, x) ≈ f(x, y, y) ≈ x.

A 4-ary, idempotent operation f is Siggers if it satisfies the identity

f(a, r, e, a) ≈ f(r, a, r, e).

We now gather some well-known implications involving the special polymorphisms defined
here; as some of these results are folklore, we give a general reference only [24] (see also [66].)

I Proposition 3. If a structure admits a (conservative) semilattice polymorphism then it
admits (conservative) idempotent k-ary TS polymorphisms for all k ≥ 2. A structure admits
a Siggers polymorphism if and only if it admits a WNU polymorphism. If a structure admits
an idempotent polymorphism f which is cyclic, symmetric, TS, NU or Mal’tsev then it
admits a WNU polymorphism; moreover, in each case, if f is conservative, so is the WNU
polymorphism.

2.4 Datalog
Many naturally occurring tractable CSPs fall within one of two families of CSPs, namely
problems of bounded width and those with few subpowers. The first family consists of problems
solvable by local consistency methods; the CSPs in the second family are those that are
solvable by an algorithm that shares many characteristics with Gaussian elimination; both
classes of problems are characterised by identities [13], [18, 58]. As far as we can tell very
little is known about digraph problems with few subpowers which do not have bounded
width.

It is convenient for us to describe problems of bounded width with the use of the logic
programming language Datalog; for more details see for instance [75]. A Datalog program is
a finite set of rules of the form

T0 : − T1, . . . , Tn

where each Ti is an atomic formula R(xi1 , . . . , xik ) from some fixed signature. Then T0 is
called the head of the rule, and the sequence T1, . . . , Tn the body of the rule. There are two
kinds of relational predicates occurring in the program: predicates R that occur at least once
in the head of a rule are called intensional database predicates (IDBs) and are not part of τ .
The other predicates which occur only in the body of a rule are called extensional database
predicates and must all lie in τ . One special IDB, which is 0-ary, is the goal predicate of the
program. Each Datalog program is a recursive specification of the IDBs, with semantics
obtained via least fixed-points of monotone operators. The goal predicate is initially set to
false, and the Datalog program accepts a structure G if its goal predicate evaluates to true
on G.

A Datalog program is linear if each of its rules has at most one occurrence of an IDB in
its body. Given a rule t of the form

I : − J, T1, . . . , Tn

of a linear Datalog program where I and J are IDB’s, its symmetric complement ts is the
rule

J : − I, T1, . . . , Tn;

Chapte r 10



272 Algebra and the Complexity of Digraph CSPs: a Survey

if t has no IDB in the body then we let ts = t. A linear program is said to be symmetric
if it contains the symmetric complement of each of its rules. Finally, a Datalog program is
non-recursive if the body of every rule contains only EDB’s.

I Definition 4. A class C of structures is said to be definable in (linear, symmetric, non-
recursive) Datalog if there is a (linear, symmetric, non-recursive) Datalog program which
accepts precisely the structures from C.

By their nature, Datalog programs define homomorphism closed classes of structures,
hence in the context of CSPs a Datalog program accepts precisely the structures that do not
map to the target structure; for instance it is a nice exercise to write up a symmetric Datalog
program that recognises precisely non-bipartite graphs. To simplify the presentation we shall
just say that CSP (H) is definable in (linear, symmetric, non-recursive) Datalog rather than
introduce extra notation. CSPs definable in Datalog are said to be of bounded width; CSPs
definable in non-recursive Datalog are precisely those that are first-order definable; this was
first proved in [3]; a slightly more refined result is Theorem 2 of [23]. CSP (H) has width
1 if it is recognised by a Datalog program whose IDBs are at most unary; a structure H
has this property precisely if it admits a set polymorphism, or equivalently, if it admits TS
polymorphisms of all arities [38, 33].

If CSP (H) is definable in Datalog, then it is tractable; if it is definable in linear (symmetric)
Datalog then it is solvable in non-deterministic (deterministic) logspace (see [75]). Combining
results from [9], [83] and [66], the following characterises CSPs of bounded width.

I Theorem 5. Let H be a core structure. Then the following are equivalent:
1. CSP (H) has bounded width;
2. there is some N such that H admits k-ary WNU polymorphisms for all k ≥ N ;
3. H admits idempotent polymorphisms v and w satisfying

v(x, x, y) ≈ v(x, y, x) ≈ v(y, x, x)
w(x, x, x, y) ≈ w(x, x, y, x) ≈ w(x, y, x, x) ≈ w(y, x, x, x)
v(y, x, x) ≈ w(y, x, x, x).

3 General Results

3.1 Three Conjectures and Some Results
It follows from deep results in universal algebra [57] that the existence of certain well-behaved
polymorphisms on a structure H is equivalent to the impossibility of obtaining from H certain
“minimal” structures via so-called pp-interpretations. It turns out that the CSPs associated
to these minimal structures are logspace reducible to the original CSP [20, 75]; and hence
the non-existence of the polymorphisms gives rise to natural hardness results, which are
presented in Theorem 9 below. Conversely, it is believed (at least by some ...) that the
presence of these polymorphisms should give complexity upper bounds (Conjecture 8). For
completeness’ sake we now define the polymorphisms in question.

I Definition 6. Let H be a structure, and n ≥ 2. We say that H is n-permutable if there
exist 3-ary polymorphisms {f1, . . . , fn−1} of H that satisfy for i ≤ n− 2 the identities

x ≈ f1(x, y, y)
fi(x, x, y) ≈ fi+1(x, y, y)

fn−1(x, x, y) ≈ y.



B. Larose 273

In particular a structure is 2-permutable precisely when it admits a Mal’tsev polymorphism.

Let t be a k-ary operation on the set H and let A be a k × k matrix with entries in H.
We write t[A] to denote the k×1 matrix whose entry on the i-th row is the value of f applied
to row i of A.

I Definition 7 ([66, 47]). Let H be a structure. We say that H is join semidistributive if
there exists a k-ary idempotent polymorphism of H satisfying t[A] = t[B] where A and B
are k× k matrices with entries in {x, y} such that aii = x for all i, aij = bij = x for all i > j

and bii = y for all i.

I Conjecture 8. Let H be a core structure.
1. [20] If H admits a WNU polymorphism then CSP (H) is tractable.
2. [75] If H is join-semidistributive then CSP (H) is definable in linear Datalog (and hence

is solvable in non-deterministic logspace).
3. [75] If CSP (H) has bounded width and H is n-permutable for some n ≥ 2 then CSP (H)

is definable in symmetric Datalog (and hence is solvable in logspace).

The first of these conjectures is known as the algebraic dichotomy conjecture; the “converse”
of all three conjectures holds:

I Theorem 9. Let H be a core structure.
1. [20] If H admits no WNU polymorphism then CSP (H) is NP-complete.
2. [75] If H is not join-semidistributive then CSP (H) is not expressible in linear Datalog

and is P-hard.
3. [75] If H is not n-permutable for any n then CSP (H) is not expressible in symmetric

Datalog and is NL-hard.

We gather in the next theorem some special cases of the conjectures that are known to
hold.

I Theorem 10. Let H be a core structure.
1. [16] If H admits an NU polymorphism then CSP (H) is definable in linear Datalog;
2. [32] If CSP (H) has bounded width and H is 2-permutable then CSP (H) is definable in

symmetric Datalog;
3. [65] If CSP (H) is definable in linear Datalog and H is n-permutable for some n ≥ 2 then

CSP (H) is definable in symmetric Datalog.

Since join semidistributive structures automatically satisfy the equivalent conditions of
Theorem 5 (see [66]), statement (3) in the previous result reduces the symmetric Datalog
conjecture to the linear Datalog conjecture.
First-order definable CSPs are in a sense the “easiest” of all non-trivial CSPs. It is known
that CSPs that are not first-order definable are logspace-hard [75], and hence there are no
fixed template CSPs with complexity strictly between AC0 and L. Furthermore, first-order
definable CSPs cannot be characterised in a purely algebraic way in the sense of the above
conjectures: indeed, adding the equality relation to a structure’s basic relations does not
change its polymorphisms but will make the CSP trivially logspace-hard. On the other
hand, there exists a fairly simple combinatorial description of first-order definable CSPs
via a dismantling algorithm [71], which in many special cases allows an explicit description
of the underlying structures, see section 6 for some examples. It is known that the core
of a structure H with first-order definable CSP admits an NU polymorphism [71], and by
Theorem 9 it must also be k-permutable for some k ≥ 2; furthermore, it follows from [85]
that the CSP has tree duality, and hence the core of H must also admit idempotent TS
polymorphisms of all arities.

Chapte r 10



274 Algebra and the Complexity of Digraph CSPs: a Survey

3.2 Reductions to Digraph Problems
Digraph CSPs are, in full generality, as difficult as CSPs on more general templates. In fact,
this remains true even for restricted families of digraphs. We say that two problems A and
B are poly-time (logspace, first-order) equivalent if there exists polynomial time (logspace,
first-order) reductions both from A to B and from B to A.

I Theorem 11. Let H be a relational structure.
1. [46] There exists a digraph D(H) such that CSP (D(H)) and CSP (H) are poly-time

equivalent.
2. [46] There exists a bipartite graph B(H) such that CSP (B(H)+c) and CSP (H) are

poly-time equivalent.
3. [46] There exists a poset P (H) such that CSP (P (H)+c) and CSP (H) are poly-time

equivalent.
4. [40] There exists a reflexive graph R(H) such that CSP (R(H)+c) and CSP (H) are poly-

time equivalent.

Feder and Vardi [46] actually refine results (1)-(3) by imposing various stringent conditions
on the digraphs, bipartite graphs and posets. Unfortunately, the reductions given do not seem
to behave well with respect to polymorphisms. The next result handles this situation, and
guarantees that all interesting polymorphism identities will be preserved, with the notable
exception of Malt’sev polymorphisms; indeed, Kazda [63] has shown that every digraph that
admits a Mal’tsev polymorphism also admits a majority polymorphism, a property which
does not hold for structures in general.

Let Z = 〈Z; θ〉 be the digraph with Z = {0, 1, 2, 3} and θ = {(0, 1), (2, 1), (2, 3)}. A linear
identity f(x1, . . . , xk) ≈ g(y1, . . . , yn) is balanced if the variables appearing on each side are
the same, i.e. {x1, . . . , xk} = {y1, . . . , yn}. Call a set Γ of linear identities idempotent if for
each operation symbol f appearing in some identity of Γ the identity f(x, . . . , x) ≈ x is in Γ.
We say that a structure H obeys or satisfies Γ if for each operation symbol f appearing in Γ
it admits a polymorphism fH such that the set {fH} satisfies the identities in Γ.

I Theorem 12 ([26]). Let H be a relational structure. There exists a digraph D(H) such
that the following hold:
1. The problems CSP (D(H)) and CSP (H) are logspace equivalent;
2. H is a core if and only if D(H) is a core;
3. If Γ is an idempotent set of linear identities such that

(a) Z satisfies Γ,
(b) every identity in Γ is either balanced or contains at most two variables,
then H satisfies Γ if and only if D(H) satisfies Γ.

We remark that condition (a) is not very restrictive since Z satisfies all interesting identities
in the present context, with the exception of 2-permutability (but it is 3-permutable) [26].

4 CSP (H)

Obviously if the digraph H has a loop the problem CSP (H) is trivial as any digraph G then
admits a constant homomorphism to H; consequently in this section all digraphs are assumed
to have no loops. We begin with a classic result of Hell and Nešetřil’s, reformulated in its
stronger form that shows the algebraic dichotomy conjecture holds.

I Theorem 13 ([50, 21]). Let H be a symmetric digraph. If H is bipartite then CSP (H) is
tractable; otherwise H admits no WNU polymorphism and hence CSP (H) is NP-complete.



B. Larose 275

If H is a non-trivial bipartite graph then its core is an edge, and hence the problem
CSP (H) is in fact logspace-complete [1]. Other algebraic proofs of Hell and Nešetřil’s result
can be found in [12] and [93].

Arguably the simplest digraphs are oriented paths and cycles; the classification of the
complexity of their associated CSPs was completed by Feder [39]. The case of balanced
cycles is settled by a reduction to so-called bipartite boolean constraint-satisfaction problems
that are shown to be either tractable or NP-complete, but the polymorphism behaviour is
not quite transparent in the proof.

I Theorem 14 ([56, 48, 39]). Let H be a digraph.
1. If H is an oriented path, then it admits (conservative) majority and semilattice polymorph-

isms;
2. If H is an unbalanced oriented cycle, then it admits a (conservative) majority polymorph-

ism;
3. If H is a balanced oriented cycle, then CSP (H) is either tractable or NP-complete.

There are known oriented trees with NP-complete CSP [48], [49]; the smallest known
example is a 33-vertex triad [14]: a polyad is an oriented tree whose underlying graph has a
unique vertex of degree greater than 2; a triad is a polyad with a unique vertex of degree 3.
The algebraic dichotomy conjecture has been verified for a restricted family of triads called
special triads [14], generalised to special polyads [11], and then to special oriented trees [25].
It turns out that the tractable CSPs on special oriented trees all have bounded width, and
Bulín conjectures this holds for all oriented trees [25].

A semi-complete digraph is a digraph (without loops) such that there is at least one arc
between every two vertices; this family includes complete graphs and tournaments as special
cases. A dichotomy was first proved for semi-complete digraphs in [5]; the polymorphism
behaviour of these digraphs is completely described in [60], Theorem 8.1. A digraph is locally
semi-complete if if for every vertex v of H, both the sets of in- (out-) neighbours of v induce
semicomplete digraphs. A dichotomy for CSPs on connected locally semi-complete digraphs
is proved in [6], Theorem 6.1; it turns out that the dividing line between tractability and
NP-completeness is exactly the same for the list homomorphism problem on these digraphs
([6], Theorem 6.2).

A digraph is smooth if it has no sinks or sources, i.e. if every vertex has both in- and
out-degree at least 1. The next result proves the algebraic dichotomy conjecture for CSPs on
smooth digraphs, as well as confirming a conjecture of Bang-Jensen and Hell [4]:

I Theorem 15 ([15]). Let H be a smooth digraph. If each connected component of the core
of H is a circle, then CSP (H) is tractable, otherwise H admits no WNU polymorphism (and
hence CSP (H) is NP-complete).

5 CSP (H+c)

If we add to H all unary singleton relations as possible constraints, we obtain the problem
CSP (H+c) which is in general harder than CSP (H), unless H is itself a core, in which
case the problems are logspace equivalent [62]. Notice that the polymorphisms of H+c are
precisely the idempotent polymorphisms of H. For instance, if H is the symmetric 6-cycle,
then its core is the symmetric edge and hence CSP (H) is logspace-complete; on the other
hand, H admits no idempotent polymorphisms other than projections (exercise), and hence
by Theorem 9 above the problem CSP (H+c) is NP-complete. In the other direction, any
complexity upper bound on the list homomorphism problem for H also applies to CSP (H+c);

Chapte r 10



276 Algebra and the Complexity of Digraph CSPs: a Survey

notice also that the polymorphisms of H+l are precisely the conservative polymorphisms
of H.

One of the interesting aspects of the decision problem CSP (H+c) from a combinatorial
point of view is that, since H+c is a core for any digraph H, we may consider digraphs with
possible loops. We start by examining a few results on mixed digraphs, then consider results
on mixed undirected graphs, and then finally move on to reflexive digraphs. We shall use the
following terminology: A reflexive oriented path (cycle, tree) is an oriented path (cycle, tree)
where all loops have been added.

5.1 CSP (H+c) for Mixed Digraphs
An antisymmetric semi-complete digraph H is called a tournament, i.e. for every pair of
distinct vertices u and v exactly one of (u, v), (v, u) is an arc of H. A tournament of mixed
type is obtained from a tournament by adding some (perhaps not all) loops; more generally,
we use the same terminology and talk about mixed (di)graphs, etc.

I Theorem 16 ([92]). Let H be a tournament of mixed type. Then either CSP (H+c) has
bounded width or H admits no idempotent WNU polymorphism, and hence CSP (H+c) is
NP-complete.

A strongly bipartite digraph is a digraph H = 〈H; θ〉 where H is the disjoint union of
two non-empty sets A and B and θ ⊆ A× B; equivalently, a digraph is strongly bipartite
if every vertex is a source or a sink. The retraction problems for these digraphs exhibit a
sharp collapse: indeed, by Theorem 10 the presence of an NU polymorphism guarantees that
CSP (H+c) is definable in linear Datalog; in the present case we actually get all the way
down to non-recursive Datalog:

I Theorem 17 ([45]). Let H be a connected strongly bipartite digraph. Then the following
are equivalent:
1. H admits an NU polymorphism;
2. CSP (H+c) is first-order definable.

5.2 CSP (H+c) for Mixed Undirected Graphs
A (mixed) pseudotree is a connected undirected graph that contains at most one cycle
(other than loops, which are permitted.) The complexity of CSP (H+c) for pseudotrees is
characterised in the next result, although the polymorphism behaviour of the tractable case
is not transparent in the proof.

I Theorem 18 ([43]). Let H be a mixed pseudotree. If the loops of H induce a disconnected
graph, or H contains an induced cycle of length at least 5, or a reflexive 4-cycle or an
irreflexive 3-cycle, then CSP (H+c) is NP-complete. Otherwise CSP (H+c) is tractable.

The special case of mixed undirected cycles is worth delineating. We note that the result
invokes [90] which classifies the complexity of CSP (H+c) for all mixed undirected graphs
with at most 4 vertices.

I Theorem 19 ([43]). Let H be a mixed undirected cycle on n ≥ 3 vertices. If n = 3 and H
has at least one loop, or if n = 4, H has at least one non-loop and the loops of H induce a
connected graph, then CSP (H+c) is tractable. Otherwise, CSP (H+c) is NP-complete.



B. Larose 277

Analogous to Theorem 17 above, retraction problems on bipartite graphs also exhibit
some collapse, although not quite as sharp as in the strongly bipartite case. Notice that a non-
trivial bipartite graph without loops cannot admit an idempotent binary TS polymorphism
and hence its retraction problem cannot be first-order definable.

I Theorem 20 ([70]). Let H be a connected, irreflexive bipartite graph. If H admits an
NU polymorphism then CSP (H+c) is definable in symmetric Datalog, and hence solvable in
logspace.

Combined with Theorem 9, it follows that a bipartite graph with an NU polymorphism must
be k-permutable for some k ≥ 2. R. Willard has verified that the converse holds if k ≤ 5,
however there exists a 6-permutable bipartite graph that admits no NU polymorphism [91].

5.3 CSP (H+c) for Reflexive Digraphs
A digraph is intransitive if, whenever (u, v), (v, w), (u,w) are arcs then |{u, v, w}| ≤ 2. Notice
that any digraph of girth at least 4 (i.e. whose underlying graph contains no induced cycle of
size 3 or less) is intransitive, in particular oriented trees as well as oriented cycles on 4 or
more vertices are intransitive. 1

I Theorem 21 ([69]). Let H be an intransitive reflexive digraph. Then the following are
equivalent:
1. H admits a WNU polymorphism;
2. H admits a majority polymorphism;
3. H is a disjoint union of oriented trees;
if any of these conditions hold, CSP (H+c) is definable in linear Datalog; otherwise CSP (H+c)
is NP-complete.

The fact that reflexive oriented trees admit a majority polymorphism is from [42] (the majority
operation defined in the undirected case in Corollary 2.58 of [51] respects orientations.)

Reflexive trees also admit a semilattice polymorphism [88]; hence the problem CSP (H+c)
has width 1. We note in passing that there exist reflexive graphs whose retraction problem
has width 1 but admit no semilattice polymorphism [55]; in fact, M. Siggers has recently
found examples of such reflexive graphs that even admit a majority polymorphism [89]. A
stronger statement than the last theorem holds for reflexive oriented cycles with at least
4 vertices, even allowing symmetric edges, which are in fact idempotent trivial, i.e. their
only idempotent polymorphisms are projections [69]. The theorem as well as this last result
are proved using a natural topological structure underlying reflexive digraphs; topological
methods have also been used to study polymorphisms on digraphs in [30], [34], [74], [79].

Gumm terms characterise the important property of congruence modularity in varieties
of algebras; by a result of Barto [7], a digraph H admits Gumm polymorphisms exactly
when it admits edge or cube terms, i.e. when CSP (H+c) has few subpowers (and hence is
tractable.) In general the existence of Gumm polymorphisms does not imply the existence of
NU polymorphisms (although the converse is true); the next result shows that for reflexive
digraphs these conditions are actually equivalent. This result generalises [84] and [77] which
previously proved it for bounded posets and general posets respectively. The fact that width
1 is implied by the presence of an NU polymorphism was first proved for posets in [78].

1 For completeness’ sake we note briefly the behaviour of the remaining reflexive cycles: the directed cycle
H = 〈{0, 1, 2}; θ〉 with θ = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2), (2, 0)} is idempotent trivial, and all other
3-cycles admit either a majority or a semilattice polymorphism.

Chapte r 10



278 Algebra and the Complexity of Digraph CSPs: a Survey

I Theorem 22 ([81]). Let H be a connected reflexive digraph. Then the following are
equivalent:
1. H admits Gumm polymorphisms;
2. H admits an NU polymorphism.
If these conditions hold, then H admits idempotent TS polymorphisms of all arities, and
hence CSP (H+c) has width 1.

Combined with Theorem 42 of [27], it follows from the last statement that reflexive
digraphs admitting a majority polymorphism are precisely those for which CSP (H+c) has
so-called path duality.

Reflexive digraphs whose retraction problem is first-order definable have a nice description:

I Theorem 23 ([73]). Let H be a connected reflexive digraph. If H is k-permutable for some
k ≥ 2 then it is strongly connected. Consequently, the following are equivalent:
1. CSP (H+c) is first-order definable;
2. H is strongly connected and admits an NU polymorphism.

The sum G ⊕ H of two reflexive digraphs G and H is the digraph obtained from the
disjoint union of the digraphs, adding all arcs of the form (g, h) with g ∈ G and h ∈ H.
A reflexive digraph is series-parallel if it can be obtained from copies of the one element
digraph using disjoint unions and sums. It is easy to see that such a digraph is in fact
a poset. Equivalently, a poset is series-parallel if it is N-free, i.e. it does not contain the
digraph Z (defined in section 3.2) as an induced subdigraph. The following result describes a
dichotomy for series-parallel posets; the tractable posets are also characterised by a finite list
of forbidden retracts, as well as a simple topological condition.

I Theorem 24 ([30]). Let H be a connected, series-parallel poset. Then the following are
equivalent:
1. H admits a WNU polymorphism;
2. H admits idempotent TS polymorphisms of all arities k ≥ 2.
If these conditions hold, then CSP (H+c) has width 1, otherwise it is NP-complete.

There is a similar characterisation of series-parallel posets admitting an NU polymorph-
ism [76]. For other work on the study of polymorphisms on posets the reader may consult
the references of [84], [79] and [77]. There also has been extensive work on the study of
polymorphisms on reflexive graphs, but most results relevant to this survey can be obtained
as special cases of the above results of reflexive digraphs; for instance the analogs of Theor-
ems 22 and 23 were first proved for reflexive graphs in [72] and [31]. [80] contains various
interesting examples, [44] describes explicit generators for the variety of reflexive graphs, [19]
studies NU polymorphisms on reflexive graphs, and [55, 87] investigate semilattice and lattice
polymorphisms on these same graphs. [17] studies the idempotent polymorphisms of digraphs
with at most 5 vertices.

6 CSP (H+l)

Recall that the polymorphisms of the structure H+l are precisely the conservative polymorph-
isms of H. The proof of the algebraic dichotomy conjecture for the conservative case is due
to Bulatov (see [8] for an alternative proof):

I Theorem 25 ([22]). Let H be a structure. If H admits a conservative WNU polymorphism
then CSP (H+l) is tractable, otherwise it is NP-complete.



B. Larose 279

It turns out that a stronger result holds for structures whose basic relations are at most
binary:

I Theorem 26 ([64]). Let H be a structure whose basic relations are at most binary. If H
admits a conservative WNU polymorphism then CSP (H+l) has bounded width.

Hell and Rafiey had obtained this result earlier in the case of digraph CSPs (i.e. for a
single binary relation) [52], as a by-product of a graph-theoretic description of the tractable
cases, in terms of digraph asteroidal triples (DAT); because the definition of a DAT is rather
involved and technical we do not give it here. In a very recent paper [54], Hell and Rafiey
have characterised digraphs admitting a conservative semilattice polymorphism; the following
result is implicit in their proof, and shows that there is quite a bit of collapse for digraphs in
the conservative case. Note that the equivalence of the last two conditions does not hold for
general structures, see example 99 in [67].

I Theorem 27 ([54]). Let H be a digraph. Then the following are equivalent:
1. H admits a conservative semilattice polymorphism;
2. H admits conservative cyclic polymorphisms of all arities;
3. H admits conservative symmetric polymorphisms of all arities;
4. H admits conservative TS polymorphisms of all arities, i.e. CSP (H+l) has width 1.

The logspace conjecture (Conjecture 8 (3)) has been verified for at most binary struc-
tures [29]; here we state the graph-theoretic description of the digraphs with CSP (H+l)
definable in symmetric Datalog which is from [36].

Let H be a digraph, and let x, y ∈ H. We say that (x, y) is an edge if either (x, y) or (y, x)
is an arc of H. A sequence of vertices x0, . . . , xn, (n ≥ 0) in H such that (xi, xi+1) is an edge
for all 0 ≤ i ≤ n− 1 is called a walk in H from x0 to xn; we call the pair (xi, xi+1) a forward
(backward) edge if (xi, xi+1) ((xi+1, xi) respectively) is an arc. Two walks P = x0, . . . , xn and
Q = y0, . . . , yn in H are congruent, if they follow the same pattern of forward and backward
edges, i.e., when (xi, xi+1) is an arc if and only if (yi, yi+1) is an arc. Suppose P,Q and
R = z0, . . . , zn are pairwise congruent walks. We say that (xi, yi+1) is a faithful edge from
P to Q if it is an edge of H in the same direction (forward or backward) as (xi, xi+1). We
say that P avoids Q in H if there is no faithful edge from P to Q; R protects Q from P if
the existence of faithful edges (xi, zi+1) and (zj , yj+1) implies that j ≤ i. The digraph H
contains a circular N if there exist vertices x, y ∈ H, congruent walks P from x to x, Q from
y to y and R from y to x such that P avoids Q and R protects Q from P .

I Theorem 28 ([29, 36]). Let H be a digraph. Then the following are equivalent:
1. H does not contain a circular N;
2. H is k-permutable for some k ≥ 2;
3. CSP (H+l) is definable in symmetric Datalog.
If one of these conditions holds then CSP (H+l) is solvable in logspace, otherwise it is NL
hard.

[35] contains related results on oriented trees; digraphs that admit a conservative semilattice
polymorphism are characterised in [53]. The digraphs with first-order definable list homo-
morphism problem also admit a nice graph-theoretic description [59]: two arcs (x1, y1) and
(x2, y2) of a digraph H are said to be separated if neither (x1, y2) nor (x2, y1) is an arc of H.
A hindering bicycle in H is a subset {x0, . . . , xn, y0, . . . , yn} of vertices of H (n ≥ 0) such
that (i) (xi, xi+1), (yi, yi+1) and (xi, yi+1) are arcs of H for all i = 0, . . . , n (indices modulo
n+ 1) and (ii) (xi+1, yi) is not an arc of H for any i = 0, . . . , n (indices modulo n+ 1).

Chapte r 10



280 Algebra and the Complexity of Digraph CSPs: a Survey

I Theorem 29 ([59]). Let H be a digraph. Then the following are equivalent:
1. H contains no separated arcs nor any hindering bicycle;
2. CSP (H+l) is first-order definable.

The special case of graphs (with loops allowed) in interesting in its own right. The
algebraic dichotomy conjecture for list homomorphism problems has a very neat dividing
line in this context: the graphs such that CSP (H+l) is tractable are the so-called bi-arc
graphs [41], which are precisely the graphs that admit a conservative majority polymorphism
[19]. In [70] it is shown that among these, the graphs whose list homomorphism problem has
width 1 are the bi-arc graphs that do not have a loopless edge; equivalently, these are the
graphs that admit a binary conservative WNU polymorphism.

Since the presence of a majority polymorphism guarantees the CSP is definable in
linear Datalog, Conjecture 8 (2) for the list homomorphism problem on graphs follows
from the above; the proof of Conjecture 8 (3) in this special case can be found in [37]; an
explicit description by finitely many forbidden subgraphs is given for the graphs H such that
CSP (H+l) is definable in symmetric Datalog.

7 Open Problems and Further Discussion

We list, in no particular order, some open questions and problems, as well as further discussion
of the results presented earlier.

1. If H is an oriented tree such that CSP (H) is tractable, does it also have bounded
width [25]?

2. There is very little known about digraphs admitting (conservative) cube or edge terms,
i.e. such that the problems CSP (H), CSP (H+c) and CSP (H+l) have few subpowers.
Investigate.

3. Characterise those digraphs H whose list homomorphism problem is definable in linear
Datalog and confirm Conjecture 8 (2) in this case.

4. Give a (simple?) graph-theoretic characterisation of digraphs that admit a conservative
NU polymorphism.

5. Which posets admit a semilattice polymorphism? Does there exist a poset that admits
TS polymorphisms of all arities, or even an NU polymorphism, but no semilattice
polymorphism?

6. There exist posets whose retraction problem is tractable but does not have bounded
width [68] 2, but the ones that are known are quite large. Find small examples of such
posets. Same question for reflexive graphs.

7. There exists an acyclic digraph H such that CSP (H) is tractable but does not have
bounded width [3] but it is quite large; find some amenable examples.

8. M. Maróti [82] has analysed small reflexive digraphs by computer and obtained several
6-element examples whose retraction problem has bounded width but not width 1; there
are no such examples for posets nor reflexive graphs of size at most 8. Investigate.

9. Topological methods would appear promising in the analysis of polymorphisms on reflexive
digraphs, but there has been only preliminary work in this direction. For instance, is there
a characterisation of reflexive digraphs admitting a WNU polymorphism via homotopy
groups of idempotent subalgebras analogous to the case of posets? See the remarks after
Corollary 4.5 in [77], but see also Proposition 1.3 of [72].

2 L. Barto has verified that the example there is indeed tractable without the assumption that P 6= NP .



B. Larose 281

10. The complexity of deciding if a relational structure admits such and such “nice” poly-
morphism has been investigated in [28]. For many identities, the hardness results for
general structures are still valid for structures with at most binary basic relations; how-
ever, for a single binary relation, i.e. a digraph, the problem often turns out to be better
behaved. Investigate.

Acknowledgements. The author wishes to thank Gary MacGillivray, Miklós Maróti, Mark
Siggers, Matt Valeriote and Ross Willard for useful discussions.

References
1 Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, and Heribert Vollmer.

The complexity of satisfiability problems: refining Schaefer’s theorem. In Mathematical
foundations of computer science 2005, volume 3618 of Lecture Notes in Comput. Sci., pages
71–82. Springer, Berlin, 2005. doi:10.1007/11549345_8.

2 Sanjeev Arora and Boaz Barak. Computational complexity. Cambridge University Press,
Cambridge, 2009. A modern approach. doi:10.1017/CBO9780511804090.

3 Albert Atserias. On digraph coloring problems and treewidth duality. European J. Combin.,
29(4):796–820, 2008. doi:10.1016/j.ejc.2007.11.004.

4 Jørgen Bang-Jensen and Pavol Hell. The effect of two cycles on the complexity of colourings
by directed graphs. Discrete Appl. Math., 26(1):1–23, 1990. doi:10.1016/0166-218X(90)
90017-7.

5 Jørgen Bang-Jensen, Pavol Hell, and Gary MacGillivray. The complexity of colouring
by semicomplete digraphs. SIAM J. Discrete Math., 1(3):281–298, 1988. doi:10.1137/
0401029.

6 Jørgen Bang-Jensen, Gary MacGillivray, and Jacobus Swarts. The complexity of colouring
by locally semicomplete digraphs. Discrete Math., 310(20):2675–2684, 2010. doi:10.1016/
j.disc.2010.03.033.

7 L. Barto. Finitely related algebras in congruence modular varieties have few subpowers. to
appear in JEMS.

8 Libor Barto. The dichotomy for conservative constraint satisfaction problems revisited. In
26th Annual IEEE Symposium on Logic in Computer Science – LICS 2011, pages 301–310.
IEEE Computer Soc., Los Alamitos, CA, 2011.

9 Libor Barto. The collapse of the bounded width hierarchy. Journal of Logic and Compu-
tation, 2014. doi:10.1093/logcom/exu070.

10 Libor Barto. The constraint satisfaction problem and universal algebra. Bull. Symb. Log.,
21(3):319–337, 2015. doi:10.1017/bsl.2015.25.

11 Libor Barto and Jakub Bulín. CSP dichotomy for special polyads. Internat. J. Algebra
Comput., 23(5):1151–1174, 2013. doi:10.1142/S0218196713500215.

12 Libor Barto and Marcin Kozik. Absorbing subalgebras, cyclic terms, and the constraint sat-
isfaction problem. Log. Methods Comput. Sci., 8(1):1:07, 27, 2012. doi:10.2168/LMCS-8(1:
7)2012.

13 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consist-
ency methods. J. ACM, 61(1):3, 2014.

14 Libor Barto, Marcin Kozik, Miklós Maróti, and Todd Niven. CSP dichotomy for
special triads. Proc. Amer. Math. Soc., 137(9):2921–2934, 2009. doi:10.1090/
S0002-9939-09-09883-9.

15 Libor Barto, Marcin Kozik, and Todd Niven. The CSP dichotomy holds for digraphs with
no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM
J. Comput., 38(5):1782–1802, 2008/09. doi:10.1137/070708093.

Chapte r 10

http://dx.doi.org/10.1007/11549345_8
http://dx.doi.org/10.1017/CBO9780511804090
http://dx.doi.org/10.1016/j.ejc.2007.11.004
http://dx.doi.org/10.1016/0166-218X(90)90017-7
http://dx.doi.org/10.1016/0166-218X(90)90017-7
http://dx.doi.org/10.1137/0401029
http://dx.doi.org/10.1137/0401029
http://dx.doi.org/10.1016/j.disc.2010.03.033
http://dx.doi.org/10.1016/j.disc.2010.03.033
http://dx.doi.org/10.1093/logcom/exu070
http://dx.doi.org/10.1017/bsl.2015.25
http://dx.doi.org/10.1142/S0218196713500215
http://dx.doi.org/10.2168/LMCS-8(1:7)2012
http://dx.doi.org/10.2168/LMCS-8(1:7)2012
http://dx.doi.org/10.1090/S0002-9939-09-09883-9
http://dx.doi.org/10.1090/S0002-9939-09-09883-9
http://dx.doi.org/10.1137/070708093


282 Algebra and the Complexity of Digraph CSPs: a Survey

16 Libor Barto, Marcin Kozik, and Ross Willard. Near unanimity constraints have bounded
pathwidth duality. In Proceedings of the 2012 27th Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 125–134. IEEE Computer Soc., Los Alamitos, CA, 2012.
doi:10.1109/LICS.2012.24.

17 Libor Barto and David Stanovský. Polymorphisms of small digraphs. Novi Sad J. Math.,
40(2):95–109, 2010.

18 J. Berman, P. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard. Variet-
ies with few subalgebras of powers. Transactions of the American Mathematical Society,
362(3):1445–1473, 2010.

19 Richard C. Brewster, Tomas Feder, Pavol Hell, Jing Huang, and Gary MacGillivray. Near-
unanimity functions and varieties of reflexive graphs. SIAM J. Discrete Math., 22(3):938–
960, 2008. doi:10.1137/S0895480103436748.

20 A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the Complexity of Constraints using
Finite Algebras. SIAM Journal on Computing, 34(3):720–742, 2005.

21 Andrei A. Bulatov. H-coloring dichotomy revisited. Theoret. Comput. Sci., 349(1):31–39,
2005. doi:10.1016/j.tcs.2005.09.028.

22 Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM
Trans. Comput. Log., 12(4):24, 2011.

23 Andrei A. Bulatov, Andrei A. Krokhin, and Benoit Larose. Dualities for constraint satisfac-
tion problems. In Complexity of Constraints – An Overview of Current Research Themes
(Result of a Dagstuhl Seminar), volume 5250 of Lecture Notes in Computer Science, pages
93–124. Springer, 2008. doi:10.1007/978-3-540-92800-3_5.

24 Andrei A. Bulatov and Matthew Valeriote. Recent results on the algebraic approach to the
CSP. In Complexity of Constraints – An Overview of Current Research Themes (Result
of a Dagstuhl Seminar), volume 5250 of Lecture Notes in Computer Science, pages 68–92.
Springer, 2008. doi:10.1007/978-3-540-92800-3_4.

25 Jakub Bulín. On the complexity of h-coloring for special oriented trees. arXiv:1407.1779v2,
2014.

26 Jakub Bulín, Dejan Delić, Marcel Jackson, and Todd Niven. A finer reduction of constraint
problems to digraphs. Log. Methods Comput. Sci., 11(4):4:18, 33, 2015.

27 Catarina Carvalho, Víctor Dalmau, and Andrei Krokhin. Two new homomorphism dualities
and lattice operations. J. Logic Comput., 21(6):1065–1092, 2011. doi:10.1093/logcom/
exq030.

28 Hubie Chen and Benoit Larose. Asking the metaquestions in constraint tractability.
arXiv:1604.00932, 2016.

29 Víctor Dalmau, László Egri, Pavol Hell, Benoit Larose, and Arash Rafiey. Descriptive
complexity of list h-coloring problems in logspace: A refined dichotomy. In 30th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July
6-10, 2015, pages 487–498, 2015. doi:10.1109/LICS.2015.52.

30 Víctor Dalmau, Andrei Krokhin, and Benoit Larose. Retractions onto series-parallel posets.
Discrete Math., 308(11):2104–2114, 2008. doi:10.1016/j.disc.2006.08.010.

31 Víctor Dalmau, Andrei A. Krokhin, and Benoit Larose. First-order definable retraction
problems for posets and reflexive graph. In 19th IEEE Symposium on Logic in Computer
Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings, pages 232–241, 2004.
doi:10.1109/LICS.2004.1319617.

32 Víctor Dalmau and Benoit Larose. Maltsev + datalog –> symmetric datalog. In Proceedings
of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008,
24-27 June 2008, Pittsburgh, PA, USA, pages 297–306, 2008. doi:10.1109/LICS.2008.14.

33 Victor Dalmau and Justin Pearson. Closure Functions and Width 1 Problems. In CP 1999,
pages 159–173, 1999.

http://dx.doi.org/10.1109/LICS.2012.24
http://dx.doi.org/10.1137/S0895480103436748
http://dx.doi.org/10.1016/j.tcs.2005.09.028
http://dx.doi.org/10.1007/978-3-540-92800-3_5
http://dx.doi.org/10.1007/978-3-540-92800-3_4
http://dx.doi.org/10.1093/logcom/exq030
http://dx.doi.org/10.1093/logcom/exq030
http://dx.doi.org/10.1109/LICS.2015.52
http://dx.doi.org/10.1016/j.disc.2006.08.010
http://dx.doi.org/10.1109/LICS.2004.1319617
http://dx.doi.org/10.1109/LICS.2008.14


B. Larose 283

34 C. Delhommé. Projection properties and reflexive binary relations. Algebra Universalis,
41(4):255–281, 1999. doi:10.1007/s000120050115.

35 Lászlo Egri. Space complexity of list h-coloring revisited: the case of oriented trees.
arXiv:1510.07124, 2015.

36 László Egri, Pavol Hell, Benoit Larose, and Arash Rafiey. Space complexity of list H -
colouring: a dichotomy. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages
349–365, 2014. doi:10.1137/1.9781611973402.26.

37 László Egri, Andrei Krokhin, Benoit Larose, and Pascal Tesson. The complexity of the
list homomorphism problem for graphs. Theory Comput. Syst., 51(2):143–178, 2012. doi:
10.1007/s00224-011-9333-8.

38 T. Feder and M. Vardi. The computational structure of monotone monadic SNP and
constraint satisfaction: A study through Datalog and group theory. SIAM Journal on
Computing, 28:57–104, 1999.

39 Tomás Feder. Classification of homomorphisms to oriented cycles and of k-partite sat-
isfiability. SIAM J. Discrete Math., 14(4):471–480 (electronic), 2001. doi:10.1137/
S0895480199383353.

40 Tomas Feder and Pavol Hell. List homomorphisms to reflexive graphs. J. Combin. Theory
Ser. B, 72(2):236–250, 1998. doi:10.1006/jctb.1997.1812.

41 Tomas Feder, Pavol Hell, and Jing Huang. Bi-arc graphs and the complexity of list homo-
morphisms. J. Graph Theory, 42(1):61–80, 2003. doi:10.1002/jgt.10073.

42 Tomas Feder, Pavol Hell, and Jing Huang. List homomorphisms and retractions to reflexive
digraphs. Manuscript, 2007.

43 Tomás Feder, Pavol Hell, Peter Jonsson, Andrei Krokhin, and Gustav Nordh. Retractions
to pseudoforests. SIAM J. Discrete Math., 24(1):101–112, 2010. doi:10.1137/080738866.

44 Tomás Feder, Pavol Hell, Benoît Larose, Cynthia Loten, Mark Siggers, and Claude Tardif.
Graphs admitting k-NU operations. Part 1: The reflexive case. SIAM J. Discrete Math.,
27(4):1940–1963, 2013. doi:10.1137/120894312.

45 Tomás Feder, Pavol Hell, Benoît Larose, Mark Siggers, and Claude Tardif. Graphs admit-
ting k-NU operations. Part 2: The irreflexive case. SIAM J. Discrete Math., 28(2):817–834,
2014. doi:10.1137/130914784.

46 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory. SIAM J. Comput.,
28(1):57–104 (electronic), 1999. doi:10.1137/S0097539794266766.

47 Ralph Freese and Ralph McKenzie. Maltsev families of varieties closed under join or maltsev
product. Preprint, 2015.

48 Wolfgang Gutjahr, Emo Welzl, and Gerhard Woeginger. Polynomial graph-colorings. Dis-
crete Appl. Math., 35(1):29–45, 1992. doi:10.1016/0166-218X(92)90294-K.

49 P. Hell, J. Nešetřil, and X. Zhu. Complexity of tree homomorphisms. Discrete Appl. Math.,
70(1):23–36, 1996. doi:10.1016/0166-218X(96)00099-6.

50 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Combin. Theory Ser.
B, 48(1):92–110, 1990. doi:10.1016/0095-8956(90)90132-J.

51 Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms, volume 28 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004. doi:
10.1093/acprof:oso/9780198528173.001.0001.

52 Pavol Hell and Arash Rafiey. The dichotomy of list homomorphisms for digraphs. In
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1703–1713. SIAM, Philadelphia, PA, 2011.

53 Pavol Hell and Arash Rafiey. Monotone proper interval digraphs and min-max orderings.
SIAM J. Discrete Math., 26(4):1576–1596, 2012. doi:10.1137/100783844.

Chapte r 10

http://dx.doi.org/10.1007/s000120050115
http://dx.doi.org/10.1137/1.9781611973402.26
http://dx.doi.org/10.1007/s00224-011-9333-8
http://dx.doi.org/10.1007/s00224-011-9333-8
http://dx.doi.org/10.1137/S0895480199383353
http://dx.doi.org/10.1137/S0895480199383353
http://dx.doi.org/10.1006/jctb.1997.1812
http://dx.doi.org/10.1002/jgt.10073
http://dx.doi.org/10.1137/080738866
http://dx.doi.org/10.1137/120894312
http://dx.doi.org/10.1137/130914784
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1016/0166-218X(92)90294-K
http://dx.doi.org/10.1016/0166-218X(96)00099-6
http://dx.doi.org/10.1016/0095-8956(90)90132-J
http://dx.doi.org/10.1093/acprof:oso/9780198528173.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780198528173.001.0001
http://dx.doi.org/10.1137/100783844


284 Algebra and the Complexity of Digraph CSPs: a Survey

54 Pavol Hell and Arash Rafiey. Bi-arc digraphs and conservative polymorphisms.
arXiv:1608.03368, 2016.

55 Pavol Hell and Mark Siggers. Semilattice polymorphisms and chordal graphs. European J.
Combin., 36:694–706, 2014. doi:10.1016/j.ejc.2013.10.007.

56 Pavol Hell and Xu Ding Zhu. The existence of homomorphisms to oriented cycles. SIAM
J. Discrete Math., 8(2):208–222, 1995. doi:10.1137/S0895480192239992.

57 D. Hobby and R. McKenzie. The Structure of Finite Algebras, volume 76 of Contemporary
Mathematics. American Mathematical Society, 1988.

58 P. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard. Tractability and
learnability arising from algebras with few subpowers. SIAM J. Comput., 39(7):3023–3037,
2010.

59 Adrien Lemaître. Complexité des homomorphismes de graphes avec listes. PhD thesis,
Université de Montréal (Canada), 2012.

60 Marcel Jackson, Tomasz Kowalski, and Todd Niven. Complexity and polymorphisms for
digraph constraint problems under some basic constructions. to appear in Internat. J.
Algebra Comput. (arXiv:1304.4986), 2016.

61 P. Jeavons, D. Cohen, and M. Cooper. Constraints, consistency, and closure. Artificial
Intelligence, 101(1-2):251–265, 1998.

62 Peter Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200:185–204, 1998.

63 Alexandr Kazda. Maltsev digraphs have a majority polymorphism. European Journal of
Combinatorics, 32(3):390–397, 2011.

64 Alexandr Kazda. CSP for binary conservative relational structures. Algebra Universalis,
75(1):75–84, 2016. doi:10.1007/s00012-015-0358-8.

65 Alexandr Kazda. n-permutability and linear datalog implies symmetric datalog.
arXiv:1508.05766v1, 2016.

66 Marcin Kozik, Andrei Krokhin, Matt Valeriote, and Ross Willard. Characterizations of
several Maltsev conditions. Algebra Universalis, 73(3-4):205–224, 2015. doi:10.1007/
s00012-015-0327-2.

67 Gábor Kun and Mario Szegedy. A new line of attack on the dichotomy conjecture. European
J. Combin., 52(part B):338–367, 2016. doi:10.1016/j.ejc.2015.07.011.

68 B. Larose and L. Zádori. Bounded width problems and algebras. Algebra Universalis,
56(3-4):439–466, 2007.

69 Benoit Larose. Taylor operations on finite reflexive structures. Int. J. Math. Comput. Sci.,
1(1):1–21, 2006.

70 Benoît Larose and Adrien Lemaître. List-homomorphism problems on graphs and arc
consistency. Discrete Math., 313(22):2525–2537, 2013. doi:10.1016/j.disc.2013.07.
018.

71 Benoit Larose, Cynthia Loten, and Claude Tardif. A characterisation of first-order con-
straint satisfaction problems. Log. Methods Comput. Sci., 3(4):4:6, 22, 2007. doi:
10.2168/LMCS-3(4:6)2007.

72 Benoit Larose, Cynthia Loten, and László Zádori. A polynomial-time algorithm for near-
unanimity graphs. J. Algorithms, 55(2):177–191, 2005. doi:10.1016/j.jalgor.2004.04.
011.

73 Benoit Larose and Mark Siggers. Reflexive digraphs admitting nu polymorphisms. In
preparation.

74 Benoit Larose and Claude Tardif. A discrete homotopy theory for binary reflexive structures.
Adv. Math., 189(2):268–300, 2004. doi:10.1016/j.aim.2003.11.011.

http://dx.doi.org/10.1016/j.ejc.2013.10.007
http://dx.doi.org/10.1137/S0895480192239992
http://dx.doi.org/10.1007/s00012-015-0358-8
http://dx.doi.org/10.1007/s00012-015-0327-2
http://dx.doi.org/10.1007/s00012-015-0327-2
http://dx.doi.org/10.1016/j.ejc.2015.07.011
http://dx.doi.org/10.1016/j.disc.2013.07.018
http://dx.doi.org/10.1016/j.disc.2013.07.018
http://dx.doi.org/10.2168/LMCS-3(4:6)2007
http://dx.doi.org/10.2168/LMCS-3(4:6)2007
http://dx.doi.org/10.1016/j.jalgor.2004.04.011
http://dx.doi.org/10.1016/j.jalgor.2004.04.011
http://dx.doi.org/10.1016/j.aim.2003.11.011


B. Larose 285

75 Benoît Larose and Pascal Tesson. Universal algebra and hardness results for constraint
satisfaction problems. Theoret. Comput. Sci., 410(18):1629–1647, 2009. doi:10.1016/j.
tcs.2008.12.048.

76 Benoit Larose and Ross Willard. Nu series parallel posets. preprint, 2016.
77 Benoit Larose and László Zádori. Algebraic properties and dismantlability of finite posets.

Discrete Math., 163(1-3):89–99, 1997. doi:10.1016/0012-365X(95)00312-K.
78 Benoit Larose and László Zádori. The complexity of the extendibility problem for fi-

nite posets. SIAM J. Discrete Math., 17(1):114–121 (electronic), 2003. doi:10.1137/
S0895480101389478.

79 Benoit Larose and László Zádori. Finite posets and topological spaces in locally finite
varieties. Algebra Universalis, 52(2-3):119–136, 2004. doi:10.1007/s00012-004-1819-7.

80 Cynthia Loten. Retractions of chordal and related graphs. PhD thesis, Simon Fraser Uni-
versity (Canada), 2004.

81 M. Maróti and L. Zádori. Reflexive digraphs with near unanimity polymorphisms. Discrete
Math., 312(15):2316–2328, 2012. doi:10.1016/j.disc.2012.03.040.

82 Miklós Maróti. Personal communication, 2016.
83 Miklós Maróti and Ralph McKenzie. Existence theorems for weakly symmetric operations.

Algebra Universalis, 59(3-4):463–489, 2008. doi:10.1007/s00012-008-2122-9.
84 Ralph McKenzie. Monotone clones, residual smallness and congruence distributivity. Bull.

Austral. Math. Soc., 41(2):283–300, 1990. doi:10.1017/S0004972700018104.
85 Jaroslav Nešetřil and Claude Tardif. Duality theorems for finite structures (characterising

gaps and good characterisations). J. Combin. Theory Ser. B, 80(1):80–97, 2000. doi:
10.1006/jctb.2000.1970.

86 Christos H. Papadimitriou. Computational complexity. Addison-Wesley Publishing Com-
pany, Reading, MA, 1994.

87 Mark Siggers. Distributive lattice polymorphism on reflexive graphs. arXiv:1411.7879,
2014.

88 Mark Siggers, 2016. Personal communication.
89 Mark Siggers. Reflexive graphs with near-unanimity but no semilattice polymorphisms.

preprint, 2016.
90 Narayan Vikas. Computational complexity classification of partition under compaction and

retraction. In Computing and combinatorics, volume 3106 of Lecture Notes in Comput. Sci.,
pages 380–391. Springer, Berlin, 2004. doi:10.1007/978-3-540-27798-9_41.

91 Ross Willard, 2015. Personal communication.
92 Alexander Wires. Dichotomy for finite tournaments of mixed-type. Discrete Math.,

338(12):2523–2538, 2015. doi:10.1016/j.disc.2015.06.024.
93 Alexander Wires. A quasi-Mal’cev condition with unexpected application. Algebra Univer-

salis, 73(3-4):335–346, 2015. doi:10.1007/s00012-015-0322-7.

Chapte r 10

http://dx.doi.org/10.1016/j.tcs.2008.12.048
http://dx.doi.org/10.1016/j.tcs.2008.12.048
http://dx.doi.org/10.1016/0012-365X(95)00312-K
http://dx.doi.org/10.1137/S0895480101389478
http://dx.doi.org/10.1137/S0895480101389478
http://dx.doi.org/10.1007/s00012-004-1819-7
http://dx.doi.org/10.1016/j.disc.2012.03.040
http://dx.doi.org/10.1007/s00012-008-2122-9
http://dx.doi.org/10.1017/S0004972700018104
http://dx.doi.org/10.1006/jctb.2000.1970
http://dx.doi.org/10.1006/jctb.2000.1970
http://dx.doi.org/10.1007/978-3-540-27798-9_41
http://dx.doi.org/10.1016/j.disc.2015.06.024
http://dx.doi.org/10.1007/s00012-015-0322-7




Approximation Algorithms for CSPs
Konstantin Makarychev1 and Yury Makarychev2

1 Microsoft Research, Redmond, WA, USA
komakary@microsoft.com

2 Toyota Technological Institute at Chicago, Chicago, IL, USA
yury@ttic.edu

Abstract
In this survey, we offer an overview of approximation algorithms for constraint satisfaction prob-
lems (CSPs) – we describe main results and discuss various techniques used for solving CSPs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Constraint satisfaction problems, Approximation algorithms, SDP, UGC

Digital Object Identifier 10.4230/DFU.Vol7.15301.287

1 Introduction

We start with recalling standard definitions and introducing the notation.

Constraint Satisfaction Problems. In a constraint satisfaction problem (CSP), we are
given a set of variables x1, . . . , xn taking values in a domain D of size d, and a set of m
constraints (predicates) that depend on the specific problem at hand. Our goal is to find an
assignment to the variables that maximizes the number of satisfied constraints. In a weighted
CSP, every constraint has a positive weight and our goal is to maximize the total weight of
satisfied constraints. All results that we discuss in this survey apply to both unweighted and
weighted CSPs. However, for simplicity of exposition, we will only consider the unweighted
case. We will say that a CSP is a k-CSP if all constraints have arity at most k.

An instance is (1− ε)-satisfiable if the optimal solution satisfied at least a (1− ε) fraction
of the constraints.

Approximation Algorithms. An approximation algorithm is a (randomized) polynomial-
time algorithm that finds an approximate solution. The most common measure of an
approximation algorithm’s performance is its approximation factor. An algorithm for a
maximization problem has an approximation factor α ≤ 1 if it finds a solution of value at
least αOPT, where OPT is the value of the optimal solution; an algorithm for a minimization
problem has an approximation factor α ≥ 1 if it finds a solution of value at most αOPT. We
will say that an algorithm is an α-approximation algorithm if it has an approximation factor
of α.

Objectives. We consider several objectives for constraint satisfaction problems:
1. Maximize the number of satisfied constraints. An α-approximation algorithm for this

objective finds a solution that satisfies at least αOPT constraints.
2. Find a solution that satisfies a 1−f(ε) fraction of the constraints given a (1−ε)-satisfiable

instance; where f is some function that tends to 0 as ε→ 0 (f should not depend on n).
© Konstantin Makarychev and Yury Makarychev;
licensed under Creative Commons License BY

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný; pp. 287–325

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol7.15301.287
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3


288 Approximation Algorithms for CSPs

3. Minimize the number of unsatisfied constraints. An α-approximation algorithm for this
objective finds a solution that satisfies at least a (1−αε) fraction of the constraints given
a (1− ε)-satisfiable instance; the approximation factor α may depend on n.

Approximation results for these objectives are often very different. In particular, it makes
sense to study objectives (2) and (3) for a given CSP only if there is a polynomial-time
algorithm that satisfies all the constraints when all of them are satisfiable. Consider an
example – Max 2-Lin(2). This problem is a Boolean CSP of arity 2 with constraints of the
form xi ⊕ xj = c (the problem is a generalization of Max Cut). We can get the following
results for objectives (1)–(3): obtain a 0.87856-approximation for the maximization variant
of the problem [18], satisfy a 1−O(

√
ε) fraction of the constraints if the optimal solution

satisfies a 1− ε fraction of the constraints [18], and get an O(
√

logn)-approximation for the
minimization variant [1]. The first result applies to all instances of Max 2-Lin(2); however,
the guarantee it provides for almost satisfiable instances is very weak – even if the instance is
completely satisfiable it only guarantees that a 0.87856 fraction of the constraints is satisfied.
In contrast, the second result is most interesting for almost satisfiable instances; it guarantees
that in such instances the algorithm satisfies almost all constraints. Finally, the third result is
meaningful only when the instance is (1− c/ logn) satisfiable, and, is particularly interesting
when ε� 1/ log2 n – then it gives a much better approximation guarantee than the second
result.

Techniques. Most state-of-the-art approximation algorithms for constraint satisfaction
problems – with the notable exception of the algorithms for Minimum Horn Deletion and
Minimum Multiway Cut problems – are based on semidefinite programming (SDP). However,
algorithms for different types of CSPs use very different techniques, and challenges that arise
in designing them are quite different. The key parameters that determine what techniques
to use are the arity k of the CSP, the domain size d, and the objective.

Boolean 2-CSPs have the simplest SDP relaxations: each variable xi is encoded by a unit
vector ūi; in the intended integral solution ūi is equal to a fixed unit vector v̄0 ∈ Sn−1 if xi
is true, and ūi is equal to −v̄0 if xi is false. The SDP objective function equals the sum of
contributions of individual constraints. The contribution of a constraint φ(xi, xj) is

∑
α,β∈{0,1}:φ(α,β)

〈v̄0 − (−1)αūi, v̄0 − (−1)β ūj〉
4

= 1
4

∑
α,β∈{0,1}:φ(α,β)

(
1 + (−1)α+β〈ūi, ūj〉 − (−1)α〈ūi, v̄0〉 − (−1)β〈ūj , v̄0〉

)
(1)

Here, the summation is over Boolean values α and β that satisfy the predicate φ(α, β); 0
and 1 represent false and true, respectively. For example, the contribution of the constraint
xi ⊕ xj = 0 is (1 + 〈ūi, ūj〉)/2, the contribution of xi ∨ xj is (3 + 〈ūi + ūj , v̄0〉 − 〈ūi, ūj〉)/4.
The SDP relaxation has constraints ‖ūi‖2 = 1 and, possibly, some additional constraints
that depend on the CSP.

Let us consider how an SDP algorithm works at a high level. We solve the SDP relaxation
and find a (nearly) optimal SDP solution {ūi}. The SDP solution may be very different from
the intended solution; in particular, vectors {ūi} do not have to be equal or close to vectors
v̄0 or −v̄0. We use a randomized rounding procedure to transform the set of vectors ūi to a
Boolean assignment for variables xi. To ensure that the value of the obtained assignment is
large, we want to transform near-by vectors to the same value with a high probability and
antipodal vectors to opposite values. For some problems, we do the rounding in one step; for



K. Makarychev and Y. Makarychev 289

other problems, we use an iterative procedure to do the rounding. In the former case, it is
instructive to think of the rounding procedure as consisting of two actions:

Generate a random partition (A,Sn−1 \A) of the unit sphere Sn−1 into two pieces, which
is symmetric about the origin (that is, A = −(Sn−1 \A)).
Assign xi = 1 if x ∈ A, and xi = 0 if x /∈ A.

Usually, the distribution of random partitions of Sn−1 does not depend on the SDP solution,
except that it may depend on the value of the SDP solution. To prove an approximation
guarantee for this algorithm, we need to lower bound the probability that each constraint
φ(xi, xj) is satisfied in terms of its SDP contribution. To this end, we only have to analyze
how the random partition divides vectors ūi and ūj depending on the angles between them
and between them and v̄0.

SDP relaxations for non-Boolean 2-CSPs are more complex. Consider a 2-CSP with
domain size d > 2; let D = {1, . . . , d} be its domain. Note that we can no longer encode
a variable xi with only one vector ui. Instead, we introduce d SDP vectors ūi1, . . . , ūid
for each xi. In the intended solution, ūij = v̄0 if xi = j and ūij = 0 otherwise. The
SDP contribution of the constraint φ(xi, xj) equals

∑
α,β∈D:φ(α,β)〈ūiα, ūjβ〉. The SDP has

constraints that require that
∑d
j=1 ūij = v̄0 (this constraint can be written equivalently as∥∥∑d

j=1 ūij − v̄0
∥∥2 = 0),

∑d
j=1 ‖ūij‖2 = 1, all vectors ui1, . . . , uid are mutually orthogonal, as

well as additional constraints that depend on the CSP. Informally, we can interpret ‖uij‖2 as
the desired probability of the event xi = j and 〈ui1j1 , ui2j2〉 as the desired probability of the
event xi1 = j1 and xi2 = j2. Then the SDP constraints say that the sum of the probabilities
of the events xi = j over all j is equal to 1, and events xi = j1 and xi = j2 are mutually
exclusive.

Rounding an SDP solution for a non-Boolean 2-CSP is considerably more challenging
than rounding an SDP solution for a Boolean 2-CSP. Now for each variable xi, we want to
choose exactly one vector ūij among d vectors ūi1, . . . , ūid and assign xi = j. Note that we
cannot simply use the same approach as before – choose a random subset A of Euclidean
space, and let xi = j if ūij ∈ A, because we cannot choose a random subset A so that
exactly one of any k orthogonal vectors belong to A (in contrast, it is easy to find a subset
A of Sn−1 so that exactly one of the vectors ū and −ū is in A). Consequently, if we try to
implement such a scheme, we will sometimes assign no value or more than one value to xj .
One approach to fix this problem is to use an iterative rounding procedure:

Find a random subset A such that the probability that two given orthogonal vectors
belong to it is sufficiently small (namely, it should it be at most 1/dc for some c > 1).
Assign xi = j, if ūij ∈ A and there is no j′ 6= j such that ūij′ ∈ A. Get a partial
assignment to variables xi.
If there are unassigned variables, repeat this procedure. Do not change the values of the
already assigned variables.

We note that some algorithms do not use this approach and assign values to all variables
in one step (see e.g. [12]). However, as we will see in Section 3, this approach allows
us to considerably simplify the algorithms’ analysis; loosely speaking, to lower bound
the probability that φ(xi, xj) is satisfied, we only need to lower bound the probabilities
Pr (ūi2j2 ∈ A | ūi1j1 ∈ A) and Pr (ūi1j1 ∈ A | ūi2j2 ∈ A) for j1, j2 ∈ D satisfying the constraint
φ(j1, j2) (both probabilities are over the random choice of A). When we do that, we can
restrict our attention to vectors ūi1j1 and ūi2j2 , and do not have to analyze all possible
spatial configurations of vectors ūi11, . . . , ūi1d, ūj11, . . . , ūj1d. Nevertheless, the analysis is
still more complicated than that for Boolean 2-CSPs. Particularly, it is very important to
properly handle both directions and lengths of vectors.

Chapte r 11



290 Approximation Algorithms for CSPs

Rounding SDPs for most CSPs of arity k > 2 – and especially non-Boolean CSPs of
arity k > 2 – poses additional challenges. The standard SDP relaxation for CSPs of arity
k > 2 is somewhat similar to that for non-Boolean 2-CSPs; the key difference is that for
each constraint φ(xi1 , . . . , xik ) and each satisfying assignment xi1 = j1, . . . , xik = jk for
this constraint, we have an additional SDP vector variable v̄(i1,j1),...,(ik,jk). In the intended
solution, v̄(i1,j1),...,(ik,jk) = v̄0 if xi1 = j1, . . . , xik = jk, and v̄(i1,j1),...,(ik,jk) = 0, otherwise.
The SDP objective function equals the sum of ‖v̄(i1,j1),...,(ik,jk)‖2 over all variables v̄.... There
are additional SDP constraints of the form 〈v(i1,j1),...,(ik,jk), uit,jt〉 = ‖v(i1,j1),...,(ik,jk)‖2 and
〈v(i1,j1),...,(ik,jk), uit,j′〉 = 0 if j′ 6= jt. The main challenge is that for such problems as Max
k-And, to lower bound the probability that a constraint φ(xi1 , . . . , xik ) is satisfied, we have
to analyze the spatial configuration of all dk vectors xi11, . . . , xi1d, . . . , xik1, . . . , xikd and
vector v̄(i1,j1),...,(ik,jk).

Metric Embedding Techniques. Low-distortion metric embedding techniques are among
the most powerful and widely used in combinatorial optimization. Not surprisingly, they are
also employed for solving certain CSPs: Min UnCut, Min 2CNF Deletion, and Unique Games
(in all these problems, the objective is to minimize the number of unsatisfied constraints).
However, we do not describe any algorithms that use metric embeddings in this survey; we
refer the reader to papers [1, 14].

1.1 Overview of Known Results for CSPs
In this section, we give an overview of known approximation results for constraint satisfaction
problems.

Boolean CSPs. First, we discuss the results for Boolean CSPs with the maximization
objective (objective (1) in our list). The results are summarized in Figure 1. When we
describe a CSP, we write zi to denote a literal xi or x̄i. The most basic Boolean Max 2-CSP
problem is Max Cut. In this problem, each constraint is of the form xi 6= xj , or, equivalently,
xi ⊕ xj = 1. Goemans and Williamson designed a 0.87856 approximation algorithm for the
problem [18]. Later, Khot, Kindler, Mossel, and O’Donnell showed that this algorithm is
optimal assuming the Unique Games Conjecture (UGC)[30]. The best unconditional hardness
result was obtained by Håstad [23], who showed that it is NP-hard to obtain a better than
16/17 ≈ 0.94117 approximation (i.e., for every constant δ > 0, it is impossible to get a
(16/17− δ) approximation in polynomial time if P 6= NP ). All these results for Max Cut
also apply to a more general Max 2-Lin(2) problem, a Boolean 2-CSP with constraints of the
form xi ⊕ xj = c (where c ∈ {0, 1}).

Lewin, Livnat, and Zwick gave a 0.94016-approximation algorithm for Max 2-SAT, a
problem with disjunctive constraints of the form zi∨zj [36]; Austrin proved that this algorithm
is optimal assuming UGC [5]. Lewin et al. also designed a 0.87401-approximation algorithm
for Max 2-And, a problem with conjunctive constraints of the form zi∧zj . This problem is the
most general maximization Boolean 2-CSP – there is an approximation-preserving reduction
from any Max Boolean 2-CSP to Max 2-And (thus, if there is an α-approximation for Max
2-And, then there is an α-approximation for any Boolean 2-CSP). Therefore, the algorithm
by Lewin et al. gives a 0.87401 approximation for any Boolean 2-CSP. The approximation
factor of 0.87401 is not known to be optimal – the best upper bound, due to Austrin [5], is
0.87435; note that the gap between the lower and upper bounds is less than 0.0004.

Now consider CSPs of greater arities. In Max 3-SAT, each constraint is a disjunction of
at most 3 literals: zi1 ∧ · · · ∧ zit (t ≤ 3); in Max E3-SAT, each constraint is a disjunction of



K. Makarychev and Y. Makarychev 291

problem constraints approx. factor optimal?
(zi is either xi or x̄i) upper bound

Max Cut xi 6= xj 0.87856 [18] yes [30]Max 2-Lin(2) xi ⊕ xj = cij
Max 2-SAT zi ∨ zj 0.94016 [36] yes [5]
Max Di-Cut x̄i ∧ xj

0.87401 [36]
0.87856 [30]

Max 2-And zi ∧ zj 0.87435 [5]
Any Boolean 2-CSP Boolean 2-CSP 0.87435 [5]
Max 3-SAT

∨t
j=1 zij (t ≤ 3) 7/8 [28, 51] yes [23]

Max E3-SAT
∨3
j=1 zij

Any Boolean k-CSP Boolean k-CSP (0.62661−o(1))k
2k [40] (1+o(1))k

2k [6, 11]
Max k-And zi1 ∧ · · · ∧ zik
Max SAT

∨t
j=1 zij 0.7968 [7] 7/8 [23]

conj. 0.8434 [7]
Max Ek-SAT (k ≥ 3)

∨k
j=1 zij 1− 1/2k yes [23]

Max k-All-Equal zi1 = · · · = zik
0.88007 k

2k [13] (2+o(1))k
2k [6, 11]

Max k-NAE-SAT zi1 = · · · = zit (t ≤ k) 0.7499 [49] 0.87856 [30]
conj. 0.8279 [7]

Max k-Lin(2) (k ≥ 3) zi1 ⊕ · · · ⊕ zik = 0 1/2 yes [23]

Figure 1 List of known positive and negative results for Boolean CSPs with the maximization
objective. Some hardness results assume UGC and some assume only that P 6= NP .

exactly 3 literals. There is a trivial 7/8-approximation algorithm for Max 3E-SAT – simply
choose each xi uniformly at random from {0, 1} (the algorithm can be easily derandomized
using the method of conditional expectations). Max 3-SAT is more difficult – Karloff and
Zwick showed how to get a 7/8-approximation if a certain conjecture is true [28]; then, Zwick
gave a computer-assisted proof that there is indeed a 7/8-approximation algorithm for the
problem [51]. Håstad showed that Max E3-SAT is approximation resistant [23] and, thus,
Max E3-SAT and Max 3-SAT do not admit a better than 7/8 approximation if P 6= NP .

Avidor, Berkovitch, and Zwick [7] studied the general Max SAT problem, in which each
constraint is a disjunction of an arbitrary number of literals. They showed how to get a
0.7968 approximation for the problem; additionally, they gave an algorithm that gets a
0.8434 approximation if a certain conjecture is true. No hardness results have been proved
specifically for Max SAT; however, Håstad’s 7/8 hardness for Max E3-SAT also applies
to Max SAT. Finally, we note that Max Ek-SAT, the problem in which each constraint
is a disjunction of exactly k literals, is considerably simpler than Max SAT. The random
assignment algorithm gives a 1− 1/2k approximation; Håstad showed that there is no better
approximation algorithm for the problem when k ≥ 3 [23].

Consider an arbitrary Boolean k-CSP with the maximization objective. There ia an
approximation-preserving reduction from the problem to Max k-And (the problem in
which every constraint is a conjunction of k literals1). The algorithm by Makarychev

1 The variant of the problem, in which each constraint is a conjunction of at most k literals, is equivalent
to the variant, in which each constraint is a conjunction of exactly k literals.

Chapte r 11



292 Approximation Algorithms for CSPs

problem objective satisfied constraints optimal?
hardness result

Max Cut
(2) 1−O(

√
ε) [18, 13] yes [30]Max 2-SAT

Any Boolean 2-CSP
Max Cut

(3) 1−O(ε
√

logn) [1] No O(1) approx. [30]Max 2-SAT
Any Boolean 2-CSP
Max Horn SAT (2) 1− 8 log log 1

ε/ log 1
ε [50] 1− Ω

(
1/ log 1

ε

)
[22]

Max Horn 2-SAT (2) and (3) 1− 2ε [22] yes [22]

Figure 2 List of known results for almost satisfiable instances of Boolean CSPs. The table shows
what fraction of the constraints we can satisfy if the optimal solution satisfies a (1− ε) fraction of
the constraints. Note that the minimization versions of Max Cut, Max 2-SAT, and Max Horn SAT
are known as Min Uncut, Min 2-CNF Deletion, and Min Horn Deletion, respectively.

and Makarychev [40] gives a (0.62661− o(1))k/2k approximation for Max k-And and thus
for any Max Boolean 2-CSP (the little o(1) term tends to 0 as k →∞). Austrin and Mossel
proved a (1 + o(1))k/2k hardness of approximation if UGC [6] is true; later, Chan proved
that this hardness result holds if P 6= NP . Note that the lower and upper bounds differ only
by a constant factor; we conjecture that the algorithm in [40] actually gets a (1− o(1))k/2k
approximation. We note that the first asymptotically optimal, up to constant factors, upper
and lower bounds for the problem were obtained by Samorodnitsky and Trevisan [46] and
by Charikar, Makarychev, Makarychev [13], respectively. The algorithm in [13] gives a
0.44003k/2k approximation for all values of k.

In Figure 1, we also summarize known results for several other Max Boolean CSPs: Max
Di-Cut, Max k-All-Equal, Max k-NAE-Equal, and Max k-Lin(2).

Now, we briefly describe results for almost satisfying instances of Boolean CSPs (with
objectives (2) and (3) from our list). The results are shown in Figure 2. The algorithm by
Goemans and Williamson for Max Cut satisfies a 1−O(

√
ε) fraction of the constraints if the

optimal solution satisfies a 1− ε fraction of the constraints [18]. Charikar, Makarychev, and
Makarychev [13] gave an algorithm for all Boolean 2-CSPs with the same approximation
guarantee of 1−O(

√
ε). Khot, Kindler, Mossel, and O’Donnell [30] showed that these results

are asymptotically optimal if UGC is true.
Agarwal, Charikar, Makarychev, and Makarychev designed an O(

√
logn) approximation

algorithms for Min Uncut and Min 2-CNF Deletion, the minimization versions of Max Cut
and Max 2-SAT, respectively. The algorithm for Min 2-CNF Deletion gives an O(

√
logn)

approximation to arbitrary minimization Boolean 2-CSPs. The (1−O(
√
ε))-hardness result

by Khot et al. implies that there is no constant factor approximation for Min Uncut,
Min 2-CNF Deletion, and, in general, Min Boolean 2-CSPs if UGC is true. Chlebík and
Chlebíková proved an unconditional 8

√
5− 15 ≈ 2.88854 NP-hardness of approximation for

Min 2-CNF Deletion [15]. Håstad, Huang, Manokaran, O’Donnell, and Wright [24] proved
an unconditional 11/8 = 1.375 NP-Hardness of approximation for Min Uncut.

Finally, we describe results for Max Horn SAT(Min Horn Deletion). Recall that a Horn
clause is a disjunction of literals with at most one positive (non-negated) literal.2 There is

2 Some authors define a Horn clause as a disjunction of literals with at most one negated literal (see



K. Makarychev and Y. Makarychev 293

no approximation algorithm specifically for Horn SAT with the maximization objective; the
approximation algorithm by Avidor et al. for arbitrary SAT instances also gives a 0.7968
approximation for Max Horn SAT [7]. Zwick [50] designed an algorithm for (1− ε) satisfiable
instances of Max Horn SAT (which is also called Min Horn Deletion); the algorithm satisfies
at least a (1− 8 log log 1

ε/ log 1
ε ) fraction of the constraints. Guruswami and Zhou proved an

almost matching UGC-hardness result of (1− Ω(1/ log 1
ε )) (note that the upper and lower

bounds differ by a log log 1
ε factor) [22]. They also presented an algorithm that satisfies a

(1− 2ε) fraction of the constraints given a (1− ε)-satisfiable instance of Max Horn 2-SAT
and showed that this result is optimal (if UGC is true) [22].

Non-Boolean Max k-CSP. In Max k-CSP(d), an instance is a CSP with arbitrary con-
straints of arity k over a domain of size d. There is an approximation preserving reduction
from Max k-CSP(d) to the CSP with constraints of the form (xi1 = j1) ∧ · · · ∧ (xik = jk).
Makarychev and Makarychev designed an Ω(dk/dk) approximation algorithm3 for the case
when k ≥ Ω(log d). Very recently, Manurangsi, Nakkiran, and Trevisan [43] gave an
Ω(d log d/dk) approximation algorithm for d ≤ O(log d) (see also [32]). Relying on the
work of Austrin and Mossel [6], Håstad proved a hardness of Ω(kd/dk) for k ≥ d, assuming
UGC [40]. Later, Chan proved that this hardness result holds if P 6= NP [11]. His results
also imply an O(d2/dk) hardness of approximation for k < d and an O(log d/

√
d) hardness

for k = 2. Additionally, Manurangsi et al. [43] showed an 2O(k log k)d (log d)k/2

dk -hardness of
approximation, assuming UGC (this result gives a better upper bound on the approximation
factor when k � log d

log log d ). To summarize, the best known approximation factor for the
problem is Ω(dmax(k, log d)/dk); it is known to be optimal up to a constant factor when
k ≥ d (if P 6= NP ).

Other CSPs. We describe known results for Unique Games in Section 3 and results for
Minimum Multiway Cut in Section 5.

Universal Algorithm for CSPs. In Section 6, we discuss two very important general results
on approximability of CSPs: the result by Raghavendra [44] that shows that semidefinite
programming gives the best possible approximation for many CSPs and the universal
approximation algorithm for CSPs by Raghavendra and Steurer [45].

1.2 Organization
In Section 2, we describe the algorithm by Goemans–Williamson for Max Cut and discuss
algorithms for other Boolean 2-CSPs. In Section 3, we describe known results for Unique
Games and give an approximation algorithm for the problem, as well as present the framework
of orthogonal separators. Then in Section 4, we discuss techniques for solving CSPs of
arities k > 2. In Section 5, we discuss the Minimum Multiway Cut problem and present
the algorithm by Călinescu, Karloff, and Rabani [10]. This is the only algorithm based
on linear programming that we give in this survey; all other algorithms are based on
semidefinite programming. Finally, in Section 6, we discuss the results by Raghavendra [44]

e.g. [50]). The two definitions are different; however, by negating all literals, an instance of one problem
can be transformed to an instance of the other problem of the same value.

3 We write the approximation factor as dk/dk and not as k/dk−1, because it is easier to compare it to
the approximation factor 1/dk of the random assignment algorithm, when it is written in this form.

Chapte r 11



294 Approximation Algorithms for CSPs

and Raghavendra and Steurer [45] and describe and analyze the universal rounding algorithm
for (generalized) 2-CSPs with nonnegative predicates [45]. We conclude the paper with a list
of open problems.

2 Boolean CSPs or Arity 2: Max Cut and Max 2-SAT

In this section, we describe the Goemans–Williamson approximation algorithm [18] for Max
Cut and discuss approximation algorithms for other Boolean 2-CSPs.

Max Cut problem may be stated as a graph partitioning or constraint satisfaction problem.
In the graph partitioning formulation, we are given a graph G = (V,E), and our goal is to
find a cut (S, S̄) so as to maximize the number of cut edges. In the CSP formulation, we
are given a set variables x1, . . . , xn and a set of constraints of the form xi 6= xj ; our goal
is to find a Boolean assignment that maximizes the number of satisfied constraints. There
is a simple correspondence between the two formulations: vertices correspond to variables,
edges correspond to the constraints, and a solution (S, S̄) corresponds to a CSP solution
that assigns 1 (true) to vertices in S and 0 (false) to vertices in S̄. Below, we consider the
CSP formulation of the problem. We note that all results we describe in this section also
apply to a more general Max 2-Lin(2) problem.

I Theorem 1 ([18]). There exists a randomized polynomial-time approximation algorithm
for Max Cut that finds a solution of value at least αGWOPT, in expectation, where αGW ≈
0.87856.

Proof. We write the following standard SDP relaxation for Max Cut.

maximize 1
4

∑
constraint xi 6=xj

‖ūi − ūj‖2

subject to
‖ūi‖2 = 1 for every i ∈ {1, . . . , n} .

There is an SDP vector variable ūi for each CSP variable xi. The only constraint in the SDP
requires that all vectors ūi be unit vectors.

Let us verify this is indeed a relaxation; that is, the optimal value of the SDP is at most
OPT. To this end, consider an optimal solution xi = x̂i. Now, pick an arbitrary unit vector
v̄0, and define a feasible SDP solution ūi = v̄0 if xi = 1, and ūi = −v̄0 if xi = 0. Observe
that 1

4‖ūi − ūj‖
2 = 1 if xi 6= xj , and 1

4‖ūi − ūj‖
2 = 0, otherwise. Thus, the value of this

SDP solution equals OPT. Therefore, the value of the optimal SDP solution is at most OPT.
We denote the value of the SDP solution by SDP.

The Goemans–Williamson approximation algorithm solves the SDP relaxation and finds
an optimal solution {ūi}. Now, it chooses a random hyperplane H passing through the origin.
The hyperplane partitions space into two half-spaces A and Ā (we arbitrarily choose which
of the half-spaces is A and which is Ā). The algorithm returns the following solution:

xi =
{

1, if ūi ∈ A,
0, if ūi ∈ Ā.

Let us analyze this algorithm. Consider a constraint xi 6= xj . We lower bound the probability
that it is satisfied. Consider the two dimensional plane P passing through ūi and ūj . Note



K. Makarychev and Y. Makarychev 295

that the intersection between P and the random hyperplane H is a random line l in P ,
passing through the origin. Consider line l and the angle formed by vectors ūi and ūj ; note
that l goes through the vertex of the angle.

ūi

ūj l
case 1

ūi

ūj

l

case 2

There are two cases: (1) P separates the sides of the angle and (2) it does not. In the former
case, ūi and ūj lie in different half-spaces w. r. t. H; that is, one of them is in A and the other
is in Ā. The algorithm assigns different values to xi and xj , and thus satisfies the constraint
xi 6= xj . In the latter case, ūi and ūj lie in the same half-space w. r. t. H; the algorithm
assigns the same value to xi and xj , and thus violates the constraint xi 6= xj . We conclude
that the probability that the constraint xi 6= xj is satisfied equals the probability that l
goes between ūi and ūj . This probability equals the angle between ūi and ūj divided by π:
arccos〈ūi, ūj〉/π. We compare this probability with the SDP contribution of the constraint
xi 6= xj : 1

4‖ūi − ūj‖
2 = 1−〈ūi,ūj〉

2 .

Pr (xi 6= xj)
/

1− 〈ūi, ūj〉
2 = 2

π

arccos〈ūi, ūj〉
1− 〈ūi, ūj〉

≥ min
x∈[−1,1]

2
π

arccosx
1− x ≡ αGW ≥ 0.87856.

Here, αGW is the minimum of the function 2
π

arccos x
1−x on [−1, 1]. Numerically, it is greater

than and approximately equal to 0.87856.
We conclude that, in expectation, the algorithm satisfies at least∑
constraint xi 6=xj

Pr (xi 6= xj) ≥
αGW

4
∑

constraint xi 6=xj

‖ūi − ūj‖2 = αGWSDP ≥ αGW OPT

constraints, as required. Note that if we run the algorithm sufficiently many times and
output the best of the solutions we find, we get at least an (αGW − δ) approximation with
high probability (for a polynomially small δ). J

I Theorem 2 (Goemans and Williamson [18]). Given a (1− ε)-satisfiable instance of Max
Cut, the Goemans–Williamson algorithm finds a solution of value at least 1 − O(

√
ε), in

expectation.

Proof. Let m be the number of the constraints. As we showed in the proof of Theorem 1, in
expectation, the fraction of the constraints satisfied by the Goemans–Williamson algorithm
is

1
m

∑
constraint xi 6=xj

Pr (xi 6= xj) = 1
m

∑
constraint xi 6=xj

arccos〈ūi, ūj〉
π

.

Note that cosx ≥ 1− x2/2. Since cosx is decreasing on [0, π], we have x ≤ arccos(1− x2/2);
letting y = x2/2−1, we get arccos y = π−arccos(−y) ≤ π−

√
2(y + 1). Thus, arccos〈ūi,ūj〉

π ≥

1−
√

2
√

1+〈ūi,ūj〉
π . Applying Jensen’s inequality and using that

1
m

∑
constr. xi 6=xj

1− 〈ūi, ūj〉
2 = SDP

m
≥ OPT

m
≥ 1− ε,

Chapte r 11



296 Approximation Algorithms for CSPs

we get that the fraction of satisfied constraints is at least

1
m

∑
constraint xi 6=xj

(
1−
√

2
√

1 + 〈ūi, ūj〉
π

)
≥ 1−

√
2
π

√
1 + 1

m

∑
constr. xi 6=xj

〈ūi, ūj〉 ≥ 1− 2
√
ε

π
,

in expectation. Running this rounding procedure many times, we can find a solution satisfying
a 1− 2(1−δ)

√
ε

π fraction of the constraints with high probability. J

Approximation algorithms for other Boolean 2-CSPs are more complex. Consider the
Max 2-SAT problem, in which constraints are of the form zi∨zj (where zi and zj are literals).
Notationally, it is convenient to introduce variables x−1, . . . , x−n for the negated literals
x̄1, . . . , x̄n; that is, let x−i = x̄i. Then, every constraint can be written as xi ∨ xj , where
i, j ∈ {±1, . . . ,±n}. We write an SDP relaxation for the problem. We have SDP variables
ū±1, . . . , ū±n for CSP variables x±1, . . . , x±n. We require that ūi = −ū−i.

maximize 1
4

∑
constraint xi∨xj

(3 + 〈ūi + ūj , v̄0〉 − 〈ūi, ūj〉)

subject to
3 + 〈ūi + ūj , v̄0〉 − 〈ūi, ūj〉

4 ≤ 1 for every i ∈ {±1, . . . ,±n}

ūi = −ū−i for every i ∈ {±1, . . . ,±n}
‖ūi‖2 = ‖v0‖2 = 1 for every i ∈ {1, . . . ,±n}

Note that we need an extra variable v̄0 in the relaxation for Max 2-SAT (which was absent
in the relaxation for Max Cut). Variable v̄0 represents true; accordingly, −v̄0 represents
false. In the intended SDP solution corresponding to a CSP solution, v̄0 is an arbitrary unit
vector, and ūi = v̄0 if xi = 1, ūi = −v̄0 if xi = 0. Note that the assignments to ūi and ū−i
are consistent: one of them is equal to v̄0 and the other to −v̄0.

Let us informally discuss what properties a rounding procedure for Max 2-SAT should
satisfy. First, note that if ūi is close to v̄0, then the SDP contribution of every constraint of
the form xi ∨ xj (for every j) is close to 1 (in particular, if ūi = v̄0, then the contribution is
1). Hence, we want to round ūi to 1 with high probability. Similarly, if ūi is close to −v̄0,
then the SDP contribution of every constraint of the form x−i ∨ xj is close to 1; hence, we
want to round ūi to 0 with high probability. We get the following heuristic:

Heuristic Rule 1: If |〈ūi, v̄0〉| is “large”, use threshold rounding. Namely, round ūi to 1 if
〈ūi, v̄0〉 > 0; round ūi to 0 if 〈ūi, v̄0〉 < 0.

On the other hand, if |〈ūi, v̄0〉| is 0 or small (then ūi is far from both v̄0 and −v̄0), we
get no or little information from 〈ūi, v̄0〉 whether to round ūi to 1 or 0. Note that the set of
vectors S = {ū : 〈ū, v̄0〉 = 0} is a sphere, which has no distinguished direction. Hence, it is
natural to use the Goemans–Williamson rounding procedure for vectors in S.

Heuristic Rule 2: If 〈ūi, v̄0〉 is “small’, use the Goemans–Williamson algorithm.
Now we need to combine these two heuristics and get a rounding procedure that works

for all vectors, including vectors ūi for which |〈ūi, v̄0〉| is neither “small” not “large”. Lewin,
Livnat, and Zwick [36] use a clever combination of an “outward rotation” and “skewed”
rounding to achieve that in their 0.94016-approximation algorithm for Max 2-SAT. We



K. Makarychev and Y. Makarychev 297

describe a somewhat simpler algorithm by Charikar et al. [13] that satisfies a (1−O(
√
ε))

fraction of the constraint given a (1− ε) satisfiable instance. The algorithm solves the SDP
relaxation and finds vectors ūi. Let ε′ = 1− SDP/m (note that ε′ ≤ ε since SDP ≥ OPT).
The algorithm chooses a random Gaussian vector g with independent components distributed
as N (0, 1). For every i, it lets

xi =
{

1, if 〈ūi, v̄0 +
√
ε′ g〉 > 0,

0, if 〈ūi, v̄0 +
√
ε′ g〉 < 0.

Note that the algorithm always assigns opposite values to xi and x−i, since 〈ūi, v̄0 +
√
ε′ g〉 =

−〈ū−i, v̄0 +
√
ε′ g〉. If ūi is close to v̄0 or −v̄0, then 〈ūi, v̄0〉 is larger in absolute value than

〈ūi,
√
ε′ g〉 with high probability; thus, we essentially use threshold rounding (Heuristic Rule

1); however, if 〈ūi, v̄0〉 = 0, then the algorithm rounds ui depending on the sign of 〈ūi, g〉;
that is, it uses the Goemans–Williamson rounding (namely, all vectors in the half-space
{u : 〈u, g〉 > 0} are rounded to 1; vectors in the half-space {u : 〈u, g〉 < 0} are rounded to 0).

To analyze this algorithm, Charikar et al. upper bound the probability that each constraint
xi ∨ xj is not satisfied. Let the SDP contribution of the constraint xi ∨ xj be 1− ε′ij ; then,
the average of all ε′ij is ε′. It is proved in [13] that the probability that xi ∨ xj is violated is
O(
√
ε′ + ε′ij/

√
ε+
√
ε′). Averaging over all constraints and using Jensen’s inequality, we get

that the expected fraction of violated constraints is O(
√
ε′) = O(

√
ε), as required.

Interestingly, this algorithm differs from many other algorithms in that it may violate a
constraint xi ∨ xj even if the SDP contribution of the constraint is equal to 1 (then, ε′ij = 0);
loosely speaking, the algorithm violates the constraint even if the SDP “thinks” that the
constraint is “certainly” satisfied. In contrast, the Goemans–Williamson algorithm always
satisfies a constraint xi 6= xj if its contribution 1

4‖ūi − ūj‖
2 is 1 (then, vectors ūi and ūj are

antipodal). It turns out that this difference is not accidental: if an algorithm never violates
constraints whose SDP contribution is 1, then it can solve instances with hard constraints;
however, Guruswami and Lee showed that no polynomial-time algorithm for Max 2-SAT
with hard constraints can distinguish between (1− ε)-satisfiable and at-most-ε-satisfiable
instances (if UGC is true) [21].

3 Unique Games

In this section, we define the Unique Games problem, overview known results, and describe
an algorithm for Unique Games.

I Definition 3 (Unique Games). Unique Games is a constraint satisfaction problem of arity
2, in which every constraint has the form xj = πij(xi) for some permutation πij of the
domain D.

Observe that for every fixed value of the variable xi, there is a unique value for the variable
xj that satisfies the constraint between xi and xj . Hence, it is easy to find an exact solution
for a completely satisfiable instance of Unique Games: We simply guess the value of one
variable and then prorogate the values to all other variables (we do this for each connected
component of the constraint graphs). However, this algorithm fails even if 1% of all the
constraints are violated in the optimal solution. Khot [29] conjectured that if the optimal
solution satisfies a (1− ε) fraction of the constraints, then it is NP-hard to find a solution
satisfying even a δ fraction of the constraints. The conjecture is known as Khot’s Unique
Games Conjecture. We state it formally below.

Chapte r 11



298 Approximation Algorithms for CSPs

I Definition 4 (Unique Games Conjecture (UGC) [29]). For every positive ε and δ, there
exists a d such that given an instance of Unique Games on a domain of size d, it is NP-hard
to distinguish between the following two cases:

There exists a solution satisfying a (1− ε) fraction of all the constraints.
Every assignment satisfies at most a δ fraction of all the constraints.

It is unknown whether the conjecture is true or false. However, UGC has proved to be
very useful in obtaining hardness of approximation results. Researchers showed very strong
hardness of approximation results that rely on UGC for such problems as Vertex Cover [31],
Max Cut and Max 2-Lin(q) [30], ordering CSPs [20], and general MAX CSPs [44] (we
discuss the last result in Section 6). Today, we do not know how to obtain similar results
under weaker complexity assumptions. That is why UGC has gained a lot of popularity in
approximation algorithms and hardness of approximation communities. By now, the question
whether the conjecture is true of false is one of the major open questions in theoretical
computer science.

There are several general purpose approximation algorithms for the problem [29, 48, 19, 12,
14]. The best approximation algorithms by Charikar, Makarychev, and Makarychev [12] and
by Chlamtac, Makarychev, and Makarychev [14] find solutions satisfying a 1−O(

√
ε log k)

fraction and 1 − O(ε
√

logn log k)) fraction of all the constraints (respectively) given a
(1 − ε)-satisfiable instance. Khot, Kindler, Mossel, and O’Donnell [30] showed that there
is no polynomial-time algorithm that satisfies more than a 1− c

√
ε log k fraction of all the

constraints if UGC is true. Thus, the algorithm [12] cannot be improved for general instances
of Unique Games if UGC is true. However, there are known better algorithms for special
families of Unique Games. Arora et al. [4] showed that UGC does not hold for instances of
Unique Games whose constraint graphs are expanders (see also [39]). Kolla, Makarychev,
and Makarychev [33] showed that the Unique Games Conjecture does not hold for random
and semi-random instances of Unique Games. Finally, Arora, Barak, and Steurer [2] designed
a sub-exponential (super-polynomial) algorithm for arbitrary instances of Unique Games.
Given a (1 − ε)-satisfiable instance, their algorithm finds a solution satisfying a (1 − εc)
fraction of all the constraints (for some fixed c > 0) in time exp(dnεc).

We now present an SDP-based approximation algorithm for Unique Games by Charikar,
Makarychev, and Makarychev [12]. The exposition of the algorithm follows the paper by
Chlamtac, Makarychev, and Makarychev [14] (see also [8, 37]).

I Theorem 5 (Charikar, Makarychev, Makarychev [12]). There exists an approximation
algorithm that given a (1− ε)-satisfiable instance of Unique Games, finds a solution satisfying
a 1−O(

√
ε log d) fraction of all the constraints.

The approximation of Theorem 5 cannot be improved if the Unique Games conjecture is
true [30]. We prove Theorem 5 using the technique of orthogonal separators [14].

In the next section, we present a standard SDP relaxation for Unique Games (without `22
triangle inequalities). Then, in Section 3.2, we introduce a technique of orthogonal separators.
However, we postpone the proof of existence of orthogonal separators to Section 3.4. In
Section 3.3, we present the approximation algorithm and prove Theorem 5. Finally, in
Section 3.5, we give some useful bounds on the Gaussian distribution.

3.1 SDP Relaxation
We use a standard SDP relaxation for 2CSPs over non-Boolean domain D. We let G = (V,E)
be the constraint graph: The vertices of the graph correspond to the variables xi, the



K. Makarychev and Y. Makarychev 299

edges correspond to the constraints xj = πij(xi). Formally, V = {1, . . . , n}, E = {(i, j) :
there is a constraint xj = πij(xi)}. To simplify the notation, we assume that the graph does
not have parallel edges; i.e. there is at most one constraint between every pair of variables xi
and xj . Note that this restriction on instances can easily be removed. In the SDP relaxation,
we have a vector ūia for every vertex i ∈ V and label a ∈ D. In the intended integral solution,
the vector ūia is the indicator of the event “xi = a”. That is, if x∗i is the optimal solution,
then the corresponding integral solution is as follows:

ū∗ia =
{

1, if x∗i = a;
0, otherwise.

Observe that if a constraint (i, j) is satisfied then ū∗jπij(a) = ū∗ia for all a ∈ D. If the constraint
is violated, then ū∗ia = ū∗jπij(a) = 0 for all but exactly two a’s: ū∗ixi

= 1, but ū∗jπij(xi) = 0;
and ū∗jxj

= 1, but ū∗
iπ−1

ij
(xj) = 0. Thus,

1
2
∑
a∈D
‖ū∗ia − ū∗jπij(a)‖

2 =
{

0, if assignment x∗ satisfies constraint (i, j);
1, if assignment x∗ violates constraint (i, j).

Therefore, the number of violated constraints equals

1
2
∑

(i,j)∈E

∑
a∈D
‖ū∗ia − ū∗jπij(a)‖

2. (2)

Our goal is to minimize this expression. Note that for a fixed variable xi, one and only one
ū∗ia equals 1. Hence, (1) 〈ū∗ia, ū∗ib〉 = 0, if a 6= b; and (2)

∑
a∈D ‖ū∗ia‖2 = 1. We now write the

SDP relaxation (in this SDP, unlike many SDPs we consider in this survey, the objective
measures the number of unsatisfied constraints).

minimize 1
2
∑

(u,v)∈E

∑
a∈D
‖ūia − ūjπuv(a)‖2

subject to
〈ūia, ūjb〉 = 0 for all i ∈ V and a 6= b∑
a∈D
‖ūia‖2 = 1 for all i ∈ V

This is a relaxation, since for ūia = ū∗ia, the SDP value equals the number of violated
constraints (see (2)); and ū∗ia is a feasible solution for the SDP.

3.2 Orthogonal Separators – Overview
The main technical tool of the algorithm is a procedure for sampling a random subset of
vectors, called an orthogonal separator, from the set of all vectors ūia in the SDP solution.
The distribution of the subset must satisfy certain properties which we describe in this
section. Orthogonal separators are used not only in algorithms for Unique Games, but also in
various graph partitioning algorithms [3, 8, 34, 37, 38, 41]. In fact, one can think of Unique
Games as of certain graph partitioning problem.

Let X be a set of vectors in `2 of length at most 1. We say that a distribution over
subsets of X is an m-orthogonal separator of X with `2 distortion D, probability scale α > 0
and separation threshold β < 1, if the following conditions hold for S ⊂ X chosen randomly
according to this distribution:

Chapte r 11



300 Approximation Algorithms for CSPs

1. For all ū ∈ X, Pr(ū ∈ S) = α‖ū‖2.
2. For all ū, v̄ ∈ X with 〈ū, v̄〉 ≤ βmax(‖ū‖2, ‖v̄‖2),

Pr(ū ∈ S and v̄ ∈ S) ≤ αmin(‖ū‖2, ‖v̄‖2)
m

.

3. For all ū, v̄ ∈ X,

Pr(IS(ū) 6= IS(v̄)) ≤ αD ‖ū− v̄‖ ·min(‖ū‖, ‖v̄‖) + α
∣∣‖ū‖2 − ‖v̄‖2∣∣,

where IS is the indicator of the set S; i.e. IS(ū) = 1, if ū ∈ S; IS(ū) = 0, if ū /∈ S.

In most cases, it is convenient to use a slightly weaker (but simpler) bound on Pr(IS(ū) 6=
IS(v̄)).
3’. For all ū, v̄ ∈ X,

Pr(IS(ū) 6= IS(v̄)) ≤ αD′‖ū− v̄‖ ·max(‖ū‖, ‖v̄‖).

The property (3′) follows from (3) with D′ = D + 2, since∣∣‖ū‖2 − ‖v̄‖2∣∣ =
∣∣‖ū‖ − ‖v̄‖∣∣ · (‖ū‖+ ‖v̄‖) ≤ ‖ū− v̄‖ · 2 max(‖ū‖, ‖v̄‖).

The last inequality follows from the (regular) triangle inequality for vectors ū, v̄ and (ū− v̄).
Our algorithm for Unique Games relies on the following theorem.

I Theorem 6 (see Chlamtac, Makarychev, Makarychev [14]). There exists a polynomial-
time randomized algorithm that given a set of vectors X in the unit ball and parameter m,
generates an m-orthogonal separator with `2 distortion D = O

(√
logm

)
, probability scale

α ≥ poly(1/m) and separation threshold β = 0.

I Remark. Chlamtac, Makarychev, Makarychev [14] proved that there exists an `22 orthogonal
separator satisfying conditions (1), (2), and (3′′):

3”. For all ū, v̄ ∈ X, Pr(IS(ū) 6= IS(v̄)) ≤ αD̃‖ū− v̄‖2, where D̃ = O(
√

logn log k).

If we use this type of orthogonal separators in the algorithm that we present in the next
section, we will get an approximation algorithm that satisfies a 1−O(ε

√
logn log k) fraction

of the constraints given a 1− ε satisfiable instance.

3.3 Approximation Algorithm
We now present an approximation algorithm for Unique Games that uses orthogonal separa-
tors. We prove Theorem 6 and show how to generate orthogonal separators in Section 3.4.
Consider the algorithm presented in Figure 3.

I Lemma 7. The algorithm satisfies the constraint between variables i and j with probability
1−O(D√εij), where D is the distortion of the orthogonal separator sampled by the algorithm,
and εij is the SDP contribution of the term corresponding to the edge (i, j):

εij = 1
2
∑
a∈D
‖ūia − ūjπij(a)‖2.



K. Makarychev and Y. Makarychev 301

Input: An instance of Unique Games.
Output: Assignment of labels to vertices.
1. Solve the SDP. Let X = {ūia : i ∈ V, a ∈ D}.
2. Mark all variables as active.
3. while (there are active variables)

a. Produce an m-orthogonal separator S ⊂ X with distortion D and probability scale α
as in Theorem 6, where m = 4k and D = O(

√
logm).

b. For all active variables xi:
Let Si = {a : ūia ∈ S} .
If Si contains exactly one element a, then let xi = a; mark the variable xi as
inactive.

4. If the algorithm performs more than n/α iterations, assign arbitrary values to any
remaining variables (note that α ≥ 1/poly(d)).

Figure 3 Approximation algorithm for Unique Games.

Proof. If (D + 2)√εij ≥ 1/8, then the statement holds trivially, so we assume that (D +
2)√εij < 1/8. For the sake of analysis, we also assume that πij is the identity permutation
(we can simply rename the values of the variable xj so that πij is the identity; this clearly
does not affect the execution of the algorithm).

Consider the first iteration in which we assign a value to one of the variables, xi or xj . At
the end of this iteration, we mark the constraint xi = πij(xj) as satisfied or not: If we assign
the same value a ∈ D to xi and xj , we mark the constraint as satisfied (recall that we assume
that πij is the identity permutation); otherwise, we conservatively mark the constraint as
violated (a constraint marked as violated in the analysis may potentially be satisfied by
the algorithm). Consider one iteration of the algorithm at which both xi and xj are active.
There are three possible cases:
1. Both sets Si and Sj are equal and contain exactly one element, then the constraint

xj = πij(xi) is satisfied after this iteration.
2. The sets Si and Sj are equal, but contain more than one or none elements, then no values

are assigned at this iteration to xi and xj .
3. The sets Si and Sj are not equal, then the constraint may be violated.

Let us estimate the probabilities of each of these events. Using that for all a 6= b the
vectors ūia and ūib are orthogonal, and properties 1 and 2 of orthogonal separators we get
(below α is the probability scale): for a fixed a,

Pr (|Si| = 1; a ∈ Si) = Pr (a ∈ Su)− Pr (a ∈ Su and b ∈ Su for some b 6= a)

≥ Pr (a ∈ Su)−
∑

b∈D\{a}

Pr (a, b ∈ Su)

≥ α‖ūia‖2 −
∑

b∈D\{a}

αmin(‖ūia‖2, ‖ūib‖2)
4d

≥ α‖ūia‖2 −
α

4d
∑

b∈D\{a}

‖ūia‖2

≥ α‖ūia‖2
(

1− (d− 1)
4d

)
≥ 3α‖uia‖2

4 .

Chapte r 11



302 Approximation Algorithms for CSPs

Then, using that
∑
a∈D ‖ūia‖2 = 1, we get

Pr (|Si| = 1) =
∑
a∈D

Pr (|Si| = 1; a ∈ Si) ≥
∑
a∈D

3α‖uia‖2

4 = 3α
4 . (3)

Thus, at every iteration of the algorithm when xi is active, we assign a value to xi with
probability at least 3α/4. The probability that the constraint (i, j) is violated is at most

Pr (Si 6= Sj) ≤
∑
a∈D

Pr (IS(ūia) 6= IS(ūja)) .

We use property 3 of orthogonal separators (see property (3′)) to upper bound the right
hand side

Pr (Si 6= Sj) ≤ αD′
∑
a∈D
‖ūia − ūja‖ ·max(‖ūia‖, ‖ūja‖).

By Cauchy–Schwarz,

Pr (Su 6= Sv) ≤ αD′
√∑
a∈D
‖ūia − ūja‖2 ·

√∑
a∈D

max(‖ūia‖2, ‖ūja‖2)

≤ αD′
√∑
i∈D

2εij ·
√∑
a∈D
‖ūia‖2 + ‖ūja‖2︸ ︷︷ ︸

=
√

2

= 2αD′√εij .

Finally, the probability of satisfying the constraint is at least

Pr (|Su| = 1 and Su = Sv) ≥
3
4α− 2αD′√εij ≥

1
2 α.

Here, we used the assumption D′√εij ≤ 1/8. Since the algorithm performs n/α iterations,
the probability that it does not assign any value to xi or xj before step 4 is exponentially
small. At each iteration the probability of failure is at most O(D√εij) times the probability
of success, thus the probability that the constraint is not satisfied is O(D√εij). J

We now show that the approximation algorithm satisfies a 1−O(
√
ε log d) fraction of all

the constraints.

Proof of Theorem 5. By Lemma 7, the expected number of unsatisfied constraints is equal
to ∑

(u,v)∈E

O(
√
εij log d).

By Jensen’s inequality for the function t 7→
√
t,

1
|E|

∑
(u,v)∈E

√
εij log d ≤

√√√√ 1
|E|

∑
(i,j)∈E

εij log d =

√
SDP
|E|

log d.

Here, SDP =
∑

(i,j)∈E εij denotes the SDP value. If OPT ≤ ε|E|, then SDP ≤ OPT ≤ ε|E|.
Hence, the expected cost of solution is upper bounded by O(

√
ε log k)|E|. J



K. Makarychev and Y. Makarychev 303

3.4 Orthogonal Separators – Proofs
Proof of Theorem 6. In the proof, we denote the probability that a Gaussian N (0, 1)
random variable X is greater than a threshold t by Φ̄(t). We use the following algorithm
for generating m-orthogonal separators with `2 distortion: Assume w.l.o.g. that all vectors
ū lie in Rn. Fix a threshold t = Φ̄−1(1/m) (i.e., fix t such that Φ̄(t) = 1/m). Sample
independently a random Gaussian n dimensional vector g ∼ N (0, I) in Rn and a random
number r in [0, 1]. Return the set

S = {ū : 〈ū, g〉 ≥ t‖ū‖ and ‖ū‖2 ≥ r}.

We note that the idea of using threshold rounding was first used by Karger, Motwani,
and Sudan [26] in their algorithm for approximate graph coloring. We claim that S is an
m-orthogonal separator with `2 distortion O(

√
logm), probability scale α = 1/m and β = 0.

Let us verify that S satisfies the required conditions.

1. For every nonzero vector ū ∈ X, we have

Pr(ū ∈ S) = Pr(〈ū, g〉 ≥ t‖ū‖ and r ≤ ‖ū‖2) =
= Pr(〈ū/‖ū‖, g〉 ≥ t)︸ ︷︷ ︸

1/m

·Pr(r ≤ ‖ū‖2)︸ ︷︷ ︸
‖ū‖2

= ‖ū‖2/m ≡ α‖ū‖2.

Here we used that 〈ū/‖ū‖, g〉 is distributed as N (0, 1), since ū/‖ū‖ is a unit vector. Then,
by the choice of the threshold t, we have Pr(〈ū/‖ū‖, g〉 ≥ t) = 1/m. If ū = 0, then
Pr(r ≤ ‖ū‖2) = 0, hence Pr(ū ∈ S) = 0.

2. For every ū, v̄ ∈ X with 〈ū, v̄〉 = 0, we have

Pr(ū, v̄ ∈ S) = Pr(〈ū, g〉 ≥ t; 〈v̄, g〉 ≥ t; r ≤ ‖ū‖2 and r ≤ ‖v̄‖2)
= Pr(〈ū, g〉 ≥ t‖ū‖ and 〈v̄, g〉 ≥ t‖v̄‖) · Pr(r ≤ min(‖ū‖2, ‖v̄‖2)).

The random variables 〈ū, g〉 and 〈v̄, g〉 are independent, since ū and v̄ are orthogonal vectors.
Hence,

Pr(ū, v̄ ∈ S) = Pr(〈ū, g〉 ≥ t‖ū‖) · Pr(〈v̄, g〉 ≥ t‖v̄‖) · Pr(r ≤ min(‖ū‖2, ‖v̄‖2)).

Note that ū/‖ū‖ is a unit vector, and 〈ū/‖ū‖, g〉 ∼ N (0, 1). Thus,

Pr(〈ū, g〉 ≥ t‖ū‖) = Pr(〈ū/‖ū‖, g〉 ≥ t) = 1/m.

Similarly, Pr(〈v̄, g〉 ≥ t‖v̄‖) = 1/m. Then, Pr(r ≤ min(‖ū‖2, ‖v̄‖2)) = min(‖ū‖2, ‖v̄‖2), since
r is uniformly distributed in [0, 1]. We get

Pr(ū, v̄ ∈ S) = min(‖ū‖2, ‖v̄‖2)
m2 = αmin(‖ū‖2, ‖v̄‖2)

m
.

3. If IS(ū) 6= IS(v̄), then either ū ∈ S and v̄ /∈ S, or ū /∈ S and v̄ ∈ S. Thus,

Pr(IS(ū) 6= IS(v̄)) = Pr(ū ∈ S; v̄ /∈ S) + Pr(ū /∈ S; v̄ ∈ S).

We upper bound the both terms on the right hand side using the following lemma (switching
ū and v̄ for the second term) and obtain the desired inequality.

Chapte r 11



304 Approximation Algorithms for CSPs

I Lemma 8. If ‖ū‖2 ≥ ‖v̄‖2, then

Pr(ū ∈ S; v̄ /∈ S) ≤ αD‖ū− v̄‖ ·min(‖ū‖, ‖v̄‖) + α
∣∣‖ū‖ − ‖v̄‖∣∣;

otherwise,

Pr(ū ∈ S; v̄ /∈ S) ≤ αD‖ū− v̄‖ ·min(‖ū‖, ‖v̄‖).

Proof of Lemma 8. We have

Pr(ū ∈ S; v̄ /∈ S) = Pr(〈ū, g〉 ≥ t‖ū‖; r ≤ ‖ū‖2; v /∈ S).

The event {v̄ /∈ S} is the union of two events {〈v̄, g〉 ≥ t‖v̄‖ and r ≤ ‖v̄‖2} and {r ≥ ‖v̄‖2}.
Hence,

Pr(ū ∈ S; v̄ /∈ S) ≤ Pr(〈ū, g〉 ≥ t‖ū‖; 〈v̄, g〉 < t‖v̄‖; r ≤ min(‖ū‖2, ‖ū‖2)) (4)
+ Pr(〈ū, g〉 ≥ t‖ū‖; ‖v̄‖2 ≤ r ≤ ‖ū‖2).

Let gu = 〈ū/‖ū‖, g〉 and gv = 〈v̄/‖v̄‖, g〉. Both gu and gv are standard N (0, 1) Gaussian
random variables. Thus, Pr(gu ≥ t) = Pr(gv ≥ t) = 1/m = α. We write (4) as follows:

Pr(ū ∈ S; v̄ /∈ S) = Pr(gu ≥ t; gv < t) Pr(r ≤ min(‖ū‖2, ‖v̄‖2)) (5)
+ Pr(gu ≥ t) Pr(‖v̄‖2 ≤ r ≤ ‖ū‖2)

= Pr(gu ≥ t; gv < t) ·min(‖ū‖2, ‖v̄‖2) + αPr(‖v̄‖2 ≤ r ≤ ‖ū‖2). (6)

To finish the proof we need to estimate Pr(gu ≥ t; gv < t) and Pr(‖v̄‖2 ≤ r ≤ ‖ū‖2). Since
r is uniformly distributed in [0, 1], Pr(‖v̄‖2 ≤ r ≤ ‖ū‖2) = ‖ū‖2 − ‖v̄‖2, if ‖ū‖2 − ‖v̄‖2 > 0;
and Pr(‖v̄‖2 ≤ r ≤ ‖ū‖2) = 0, otherwise.

We use Lemma 10 to upper bound Pr(gu ≥ t; gv < t):

Pr(gu ≥ t; gv < t) ≤ O
(√

1− cov(gu, gv) ·
√

logm/m
)
. (7)

The covariance of gu and gv equals cov(gu, gv) = 〈ū/‖ū‖, v̄/‖v̄‖〉 and ‖ū − v̄‖2 = ‖ū‖2 +
‖v̄‖2 − 2〈ū, v̄〉. Hence,

1− cov(gu, gv) = 1− ‖ū‖
2 + ‖v̄‖2 − ‖ū− v̄‖2

2‖ū‖ ‖v̄‖ = ‖ū− v̄‖
2 − (‖ū‖2 + ‖v̄‖2 − 2‖ū‖ ‖v̄‖)

2‖ū‖ ‖v̄‖

= ‖ū− v̄‖
2 − (‖ū‖ − ‖v̄‖)2

2‖ū‖ ‖v̄‖ ≤ ‖ū− v̄‖
2

2‖ū‖ ‖v̄‖ .

We plug this bound in (7) and get

Pr(gu ≥ t; gv < t) ≤ α · ‖ū− v̄‖√
‖ū‖ ||v̄‖

·O(
√

logm) ≤ α · ‖ū− v̄‖
min(‖ū‖, ‖v̄‖) ·O(

√
logm).

Now, Lemma 8 follows from (6). This concludes the proof of Lemma 8 and Theorem 6. J
J

3.5 Gaussian Distribution
In this section, we prove several useful estimates on the Gaussian distribution. Let X ∼
N (0, 1) be one dimensional Gaussian random variable. Denote the probability that X ≥ t
by Φ̄(t):

Φ̄(t) = Pr(X ≥ t).

The first lemma gives a very accurate estimate on Φ̄(t) for large t.



K. Makarychev and Y. Makarychev 305

I Lemma 9. For every t > 0,

t√
2π (t2 + 1)

e−
t2
2 < Φ̄(t) < 1√

2π t
e−

t2
2 .

Proof. Write

Φ̄(t) = 1√
2π

∫ ∞
t

e−
x2
2 dx = 1√

2π

[
−e− x2

2

x

∣∣∣∣∣
∞

t

−
∫ ∞
t

e−
x2
2

x2 dx

]

= 1√
2πt

e−
t2
2 − 1√

2π

∫ ∞
t

e−
x2
2

x2 dx.

Thus,

Φ̄(t) < 1√
2πt

e−
t2
2 .

On the other hand,

1√
2π

∫ ∞
t

e−
x2
2

x2 dx <
1√

2πt2

∫ ∞
t

e−
x2
2 dx = Φ̄(t)

t2
.

Hence,

Φ̄(t) > 1√
2πt

e−
t2
2 − Φ̄(t)

t2
,

and, consequently,

Φ̄(t) > t√
2π(t2 + 1)

e−
t2
2 . J

I Lemma 10. Let X and Y be Gaussian N (0, 1) random variables with covariance
cov(X,Y ) = 1− 2ε2. Pick the threshold t > 1 such that Φ̄(t) = 1/m for m > 3. Then

Pr(X ≥ t and Y ≤ t) = O(ε
√

logm/m).

Proof. If εt ≥ 1 or ε ≥ 1/2, then we are done, since ε
√

logm = Ω(εt) = Ω(1) and

Pr(X ≥ t and Y ≤ t) ≤ Pr(X ≥ t) = 1
m
.

So we assume that εt ≤ 1 and ε < 1/2. Let

ξ = X + Y

2
√

1− ε2
; η = X − Y

2ε .

Note that ξ and η are N (0, 1) Gaussian random variables with covariance 0. Hence, ξ and η
are independent. We have

Pr
(
X ≥ t and Y ≤ t

)
= Pr

(√
1− ε2 ξ + εη ≥ t and

√
1− ε2 ξ − εη ≤ t

)
.

Denote by E the following event:

E =
{√

1− ε2 ξ + εη ≥ t and
√

1− ε2 ξ − εη ≤ t
}
.

Chapte r 11



306 Approximation Algorithms for CSPs

Then,

Pr
(
X ≥ t and Y ≤ t

)
= Pr(E and εη ≤ t) + Pr(E and εη ≥ t).

Observe that the second probability on the right hand side is very small. It is upper bounded
by Pr(εη ≥ t), which, in turn, is bounded as follows:

Pr(εη ≥ t) = 1√
2π

∫ ∞
t/ε

e−
x2
2 dx = Φ̄(t/ε) ≤ O

(ε e− t2
2ε2

t

)
≤ O

(ε e− t2
2

t

)
= O(ε/m).

We now estimate the first probability:

Pr(E and εη ≤ t) = Eη[Pr(E and η ≤ t/ε | η)]

= 1√
2π

∫ t/ε

0
Pr(E | η = x) e−x

2/2 dx

= 1√
2π

∫ t/ε

0
Pr(
√

1− ε2ξ ∈ [t− εx, t+ εx]) e−x
2/2 dx.

The density of the random variable
√

1− ε2 ξ in the interval (t− εx, t+ εx) for x ∈ [0, t/ε] is
at most

1√
2π(1− ε2)

e
−(t−εx)2

2(1−ε2) ≤ 1
2 e

−(t−εx)2
2 ≤ 1

2 e
−t2

2 · eεtx ≤ 1
2 e

−t2
2 · ex,

here we used that ε ≥ 1/2 and εt ≥ 1. Hence,

Pr(t− εx ≤
√

1− ε2 ξ ≤ t+ εx) ≤ εx e
−t2

2 · ex.

Therefore,

Pr(E and εη ≤ t) ≤ ε e
−t2

2
√

2π

∫ t/ε

0
xex · e

−x2
2 dx ≤ ε e

−t2
2

√
2π

∫ ∞
0

xex · e
−x2

2 dx︸ ︷︷ ︸
O(1)

.

The integral in the right hand side does not depend on any parameters, so it can be upper
bounded by some constant (e.g. one can show that it is upper bounded by 2

√
2π). We get

Pr(E and εη ≤ t) ≤ O(ε e
−t2

2 ) = O(ε · tΦ̄(t)) = O(ε
√

logm/m).

This finishes the proof. J

4 CSPs of Higher Arities

In this section, we discuss techniques for solving Max k-CSP(d). We will not present any
approximation algorithms for Max k-CSP(d), but rather we will describe an SDP relaxation
for the problem and explain why rounding this SDP is challenging. To be specific, we
will focus our attention on the regime when k > Ω(log d). In this regime, the best known
approximation is Ω(dk/dk) [40].

Consider an instance of Max k-CSP(d). As we noted in the introduction, we may assume
that all constraints are of the form (xi1 = j1)∧ · · · ∧ (xik = jk). We write an SDP relaxation
for the problem. In the SDP, we have two sets of variables. First, we have a variable ūij for



K. Makarychev and Y. Makarychev 307

each xi and j ∈ D; second, we have a variable v̄C = v̄(i1,j1),...,(ik,jk) and for each constraint
C of the form (xi1 = j1) ∧ · · · ∧ (xik = jk). We denote the set of the constraints by C.

maximize
∑
C∈C
‖v̄C‖2

subject to
d∑
j=1
‖ūij‖2 = 1 for every i (8)

〈ūij1 , ūij2〉 = 0 for every i and j1 6= j2

〈ūij , v̄C〉 = ‖v̄C‖2 for every C ∈ C and clause xi = j in C
〈ūij , v̄C〉 = 0 for every C ∈ C and clause xi = j not in C (9)

In the intended solution, for some unit vector v̄0, we have ūij = v̄0 if xi = j, and ūij = 0,
otherwise; v̄C = v̄0 if C is satisfied, and v̄C = 0, otherwise. Let us first consider a very basic
rounding algorithm for the problem and discuss when it works and when it does not:
1. Choose a random Gaussian vector g with independent components distributed as N (0, 1).
2. For every i, let xi = arg maxj |〈ūij , g〉|.

We analyze the algorithm. Let us consider a CSP constraint C ∈ C and estimate with
what probability the algorithm satisfies it. Keep in mind that we want to get an Ω(kd/dk)
approximation, so the desired probability is Ω(kd |v̄C |2/dk). By renaming variables and
values, we may assume that C is (x1 = 1) ∨ · · · ∨ (xk = 1). Denote ξij = 〈ūij , g〉. Note that
ξij is a Gaussian random variable with mean 0 and variance ‖ūij‖2. The probability that
C is satisfied equals Pr (|ξi1| > |ξij | for all i and j 6= 1). It is instructive to consider a very
special case when the following two assumptions hold.
1. Since 〈ūi1, v̄C〉 = ‖v̄c‖2 for all i, we can write ūi1 = v̄C + ū⊥i1 where ū⊥i1 ⊥ v̄C . Let us

assume that all vectors ū⊥i1 are equal to 0, and thus ūi1 = · · · = ūid = v̄C .
2. Let us assume that all vectors ūij with j 6= 1 have the same length.
The first assumption is not essential, and we make it to slightly simplify the computations;
however, the second assumption is crucial for our analysis. We have, ξ11 = · · · = ξk1. Let
ξ = ξi1, η be a random variable distributed as N (0, ‖ūij‖2), and ρ = Var [ξ] /Var [η] =
‖v̄C‖2/‖ūij‖2, where j 6= 1. Assume that ρ ≤ 1. It follows from (9) that all random variables
ξij , with j 6= 1, are independent from ξ. Thus, for every M ,

Pr(|ξ| > |ξij | for all i and j 6= 1) ≥ Pr (|ξ| ≥M and |ξij | < M for all i and j 6= 1)

= Pr (|ξ| ≥M) Pr (|ξij | < M for i and j 6= 1)
Šidák
≥ Pr (|ξ| ≥M)

∏
i; j 6=1

Pr (|ξij | < M)

= Pr (|ξ| ≥M) Pr (|η| < M)k(d−1)
.

Here, we used Šidák’s theorem to get the inequality on the second line. From Lemma 9, it
is easy to prove that Pr (|η| ≥M) ≤ Pr (|ξ| ≥M)ρ for every threshold M (see [40, Lemma
2.4]). Let p = 1/(ρk(d − 1)) and M be such that Pr (|η| ≥M) = p. Then the probability
that the constraint is satisfied is at least

p1/ρ(1− p)k(d−1) ≈
(

1
ρk(d− 1)

)1/ρ
e−pk(d−1) ≈

(
1
ρkd

)1/ρ
e−1/ρ =

(
1

eρkd

)1/ρ
. (10)

When ρ > c/k (for sufficiently large c), the probability of satisfying C is, loosely speaking, of
order 1/dk/c, which is much greater than the desired probability dk‖v̄C‖2/dk. On the other

Chapte r 11



308 Approximation Algorithms for CSPs

hand, when ρ < c/k, we can use the random assignment rounding. Indeed, from (8) and our
assumptions, we get

1 = ‖ūi1‖2 +
∑
j

‖ūij‖2 = ‖v̄C‖2 + d− 1
ρ
‖v̄C‖2.

Thus, ‖v̄C‖2 ≈ ρ/d < c/(dk) and the desired probability of satisfying the constraint is
O(1/dk), which is less than the probability 1/dk with which the random assignment algorithm
satisfies the constraint (when constants in the O(·)-notation are appropriately chosen). We
see that if choose uniformly at random one of the two algorithms, the basic SDP rounding
and the random assignment, we will satisfy every clause with the desired probability.

This argument can be made formal. However, it crucially uses that all vectors ūij , for
j 6= 1, have the same length. If some of them are considerably longer than 1/

√
d, they will be

chosen disproportionately often. For instance, assume that ‖vC‖2 = c/(dk), a δ fraction of
vectors ūij have length approximately 1/

√
δd, and the remaining vectors ūij are equal to 0. In

this setting, there are d′ ≈ δd non-zero vectors ūij for every i, and ρ′ = ‖v̄C‖2/‖ūij‖2 ≈ cδ/k
(for j > 1 such that ūij 6= 0). Now, loosely speaking, we can use formula (10) with ρ = ρ′ and
d = d′ to estimate the probability of satisfying the constraint4. We get that the probability
is approximately 1/dk/(cδ), which is much less than the desired probability when δ � 1/c.

Let us discuss how we can fix the algorithm. If we knew that ‖ūi1‖2 ≤ O(1/d) for all i,
we would be able to restrict our attention only to those values j such that ‖ūij‖2 ≤ O(1/d);
that is, for each i, we would choose j that maximizes |ξij | only among those j for which
‖ūij‖2 ≤ O(1/d). That would eliminate values j that the rounding procedure chooses with
disproportionately large probabilities and thus fix the algorithm. On the other hand, if we
knew that ‖ūi1‖2 > c/d for all i (for some sufficiently large constant c > 1), then we would
be able to find a good assignment using another algorithm: for every i, we would choose
j uniformly at random among those j for which ‖ūij‖2 > c/d. Note that for every i, there
are at most d/c such values of j. Therefore, the probability that we choose j = 1 for every
i is at least (c/d)k � dk/dk, as desired. In fact, of course, we may have ‖ūi1‖2 < c/d for
some values of i and ‖ūi1‖2 > c/d for other values of i. Nevertheless, it is shown in [40] that
it is possible to combine these two approaches and get an Ω(dk/dk) approximation (when
k = Ω(log d)). We refer the reader to [40] for details.

5 Minimum Multiway Cut

In this section, we describe known approximation results for the Minimum Multiway Cut
problem. From a CSP viewpoint, the problem is a CSP of arity 2 over a domain D with two
types of constraints:

Equality constraints of the form xi = xj .
Unary constraints of the form xi = j, where j ∈ D.

The objective is to minimize the number of unsatisfied constraints. The problem is usually
stated as a graph partitioning problem.

I Definition 11. We are given a graph G = (V,E) and a set of terminals T = {s1, . . . , sd} ⊂
V . We need to partition the graph into d pieces P1, . . . , Pd such that si ∈ Pi. Our goal is to
minimize the number of cut edges.

4 We showed that formula (10) is a lower bound on the probability that C is satisfied; but, in fact, it
gives a reasonable estimate on the probability.



K. Makarychev and Y. Makarychev 309

s2s1

s3

e2e1

e3

e2e1

e3

s2s1

s3

Figure 4 The figure shows (1) an input graph, (2) a feasible LP solution, (3) a random partitioning,
and (4) the corresponding cut in the graph.

Observe that the two formulations are equivalent. Given a CSP instance, we construct a
graph instance of the problem as follows: we introduce a vertex vi for each variable xi and
add auxiliary vertices s1, . . . , sd; for each constraint xi1 = xi2 , we add an edge (vi1 , vi2); for
each constraint xi = j we add an edge (vi, sj). Similarly, we can transform a graph instance
to a CSP instance. Note that there is a one-to-one correspondence between solutions to
the problems: an assignment A : {xi} → D corresponds to the partitioning P1, . . . , Pd with
Pj = {vi : A(xi) = j} and vice versa. Below, we will discuss the Multiway Cut problem
in the standard graph partitioning formulation. Note that the problem can be solved in
polynomial-time when d = 2 (then, it is equivalent to the Minimum Cut problem), but it is
NP-hard for every d ≥ 3 [16].

Minimum Multiway Cut was introduced by Dahlhaus, Johnson, Papadimitriou, Seymour,
and Yannakakis [16] in 1994. Since then, a number of approximation algorithms have been
proposed in the literature [16, 10, 27, 9, 47]. The best known algorithm is due to Sharma
and Vondrák [47]. The algorithm gets a 1.309017 approximation; there is also a variant of
the algorithm that gets a 1.2965 approximation, but the analysis of this algorithm is only
computer-verified. Freund and Karloff [17] proved an integrality gap of 8/7− o(1) for the
problem. Manokaran, Naor, Raghavendra, and Schwartz [42] proved that the hardness of
approximation factor for Minimum Multiway Cut is equal to the integrality gap if UGC
holds. The results of [17, 42] imply a 8/7− o(1) hardness of approximation (if UGC is true).

We note that the maximization version of the problem, in which the objective is to
maximize the number of satisfied constraints received much less attention. Langberg, Rabani,
and Swamy [35] designed a (2 +

√
2)/4 ≈ 0.85355 approximation algorithm for the problem

and showed an integrality gap of 6/7− o(1) ≈ 0.85714− o(1).

All known approximation algorithms for Minimum Multiway Cut – other than the 2-
approximation algorithm by Dahlhaus et al. – use the linear programming (LP) relaxation
by Călinescu, Karloff, and Rabani [10]. The recent algorithms by Buchbinder, Naor, and
Schwartz [9] and Sharma and Vondrák [47] are significantly more involved than the algorithm
by Călinescu et al. and, in particular, require computer-assisted fine tuning of the parameters
to get the best approximation factors. Thus, in this survey, we describe the original LP
relaxation and algorithm by Călinescu, Karloff, and Rabani [10].

Consider the following relaxation for the problem. For every vertex u, we introduce
d LP variables u1, . . . , ud and let ū = (u1, . . . , ud). Let ∆ = {x̄ ∈ Rd : x1 + · · · + xd =
1, x1 ≥ 0, . . . , xd ≥ 0}; ∆ is a simplex with vertices e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),
. . . , ed = (0, . . . , 0, 1) (see Figure 4). We write the following linear program.

Chapte r 11



310 Approximation Algorithms for CSPs

minimize 1
2
∑

(u,v)∈E

‖ū− v̄‖1

subject to
s̄j = ej for every j ∈ {1, . . . , d} ,
ū ∈ ∆ for every vertex u.

It is easy to see that this program is indeed a linear program – we can write the objective
function as a linear function by introducing auxiliary variables. Namely, introduce additional
LP variables yuvi; add inequalities yuvi ≥ ui − vi and yuvi ≥ vi − ui. Then, replace each
term ‖ū− v̄‖1 in the objective function with the expression

∑k
i=1 yuvi.

We denote the value of an optimal solution by OPT, and the value of LP by LP.

I Claim 12. The LP is a relaxation of the problem. That is, LP ≤ OPT.

Proof. Consider an optimal solution P1, . . . , Pd. Let ū = ei for u ∈ Pi. Clearly, ū is a feasible
LP solution. We compute the value of this solution. Consider an edge e = (u, v). Suppose
that u ∈ Pi and v ∈ Pj . The contribution of e to the objective function is

‖u− v‖1
2 = ‖ei − ej‖12 =

{
1, if i 6= j,

0, if i = j.

That is, the contribution of e is 1 if e is cut, and 0, otherwise. Thus, the total contribution
of all edges equals the number of cut edges. We get that the value of the LP solution {ū} is
OPT. Therefore, LP ≤ OPT. J

I Definition 13. Given a feasible LP solution, we define a distance function d(·, ·) on the
vertices of the graph:

d(u, v) = 1
2‖ū− v̄‖.

Let Br(u) be the ball of radius r around vertex u w. r. t. distance d(·, ·): Br(u) =
{v : d(u, v) < r}.

Now, we describe the algorithm by Călinescu, Karloff, and Rabani [10].

I Theorem 14 (Călinescu, Karloff, and Rabani [10]). There exists a 3/2-approximation
algorithm for Minimum Multiway Cut.

Proof. The algorithm is presented in Figure 5. We prove that the algorithm always returns
a feasible solution.

I Claim 15. The algorithm returns a feasible solution.

Proof. Note that si ∈ Br(si) and si /∈ Br(sj) for every j 6= i. Therefore, si necessarily lies
in Pi, as required. J

Now we compute the expected cost of the solution. Consider an edge e = (u, v). Note
that

d(u, si) = ‖ū− ei‖2 =
(1− ui) +

∑
j 6=i uj

2 = (1− ui) + (1− ui)
2 = 1− ui.



K. Makarychev and Y. Makarychev 311

Approximation Algorithm for Multiway Cut
Input: graph G = (V,E) and a set of terminals T = {s1, . . . , sd} ⊂ V .
Output: a partition P1, . . . , Pd of V such that si ∈ Pi.

solve the LP relaxation for Minimum Multiway Cut. Define d(u, v) = 1
2‖ū− v̄‖1.

choose a random permutation π of {1, . . . , d}
choose r uniformly at random from (0, 1)
let A = ∅
for i = π(1), π(2), . . . , π(d− 1) do

let Pi = Br(si) \A
let A = A ∪ Pi

let Pπ(d) = V \A
return partition P1, . . . , Pd
Figure 5 Approximation algorithm for Multiway Cut.

Let

Ai = min(d(u, si), d(v, si)) and Bi = max(d(u, si), d(v, si)).

We have,

Bi −Ai = |d(u, si)− d(v, si)| = |ui − vi|.

We may assume without loss of generality that

A1 ≤ A2 ≤ · · · ≤ Ad. (11)

Let us write i ≺ j if π−1(i) < π−1(j) (i precedes j in the order defined by π). We say that an
index i settles the edge (u, v) if i is the first index w.r.t. π such that u ∈ Br(si) or v ∈ Br(si)
(or both). In other words, index i settles edge e if Ai ≤ r and Aj > r for all j ≺ i. Let Ei be
the event that i settles (u, v). Note that at most one of the events Ei happens. (If no event
Ei happens than u and v belong to Pπ(k), and the edge (u, v) is not cut.)

When the event Ei happens, we add either one or both of the vertices u and v to Pi. Note
that in the former case, the edge (u, v) is cut since u ∈ Pi and v /∈ Pi; in the latter case, the
edge (u, v) is not cut since u, v ∈ Pi. We conclude that

Pr (e is cut) =
d−1∑
i=1

Pr (Ei and |{u, v} ∩Br(si)| = 1) =
d−1∑
i=1

Pr (Ei and Ai ≤ r < Bi) .

We are going to show now that Pr (Ei|r) ≤ 1/2 for every i > 1. Consider the event Li that
i � 1. Since events i � 1 and 1 � i are equiprobable, event Li happens with probability 1/2.
We claim that when Li happens Ei does not happen, and, therefore,

Pr (Ei|r) ≤ 1− Pr (Li|r) = 1
2 .

Assume to the contrary that both events happen. Then
r ≥ Ai and r < Aj for every j ≺ i,
and 1 ≺ i,

Chapte r 11



312 Approximation Algorithms for CSPs

therefore, r ≥ Ai and r < A1; thus, Ai < A1, which contradicts to our assumption (11). We
have,

Pr (e is cut) =
d−1∑
i=1

Pr (Ei and Ai ≤ r < Bi) =
d−1∑
i=1

Er [Pr (Ei|r) Pr (Ai ≤ r < Bi|r)]

≤ (B1 −A1) +
k∑
i=2

Bi −Ai
2 = B1 −A1

2 +
k∑
i=1

Bi −Ai
2

= |u1 − v1|
2 +

k∑
i=1

|ui − vi|
2 = |u1 − v1|+ ‖ū− v̄‖1

2 .

Observe that

‖u− v‖1 ≥ |u1 − v1|+

∣∣∣∣∣
k∑
i=2

ui −
k∑
i=2

vi

∣∣∣∣∣ = |u1 − v1|+ |(1− u1)− (1− v1)| = 2 |u1 − v1|.

Thus Pr (e is cut) ≤ 3‖ū− v̄‖1/4. By the linearity of expectation, the expected number of
cut edges is at most∑

(u,v)∈E

3
4‖ū− v̄‖1 = 3 LP

2 ≤ 3 OPT
2 .

We proved that our algorithm gives a 3/2 approximation, in expectation. By running this
algorithm many times we can get a (3/2 + ε) approximation with high probability. In fact,
the algorithm can be easily derandomized using the method of conditional expectations. J

6 Universal Rounding Algorithm

In this section, we discuss the hardness of approximation result by Raghavendra [44] and
universal rounding algorithm by Raghavendra and Steurer [45]. Then, we describe in detail
the rounding algorithm for a special case of CSPs of arity 2.

We consider a class of generalized CSPs of arity k with variables over a fixed domain
D = {1, . . . , d} and predicates from a constant-size set Λ. Every predicate π ∈ Λ is a function
from Dk to [−1, 1]. We shall refer to this class of CSPs as k-CSP Λ. The value of a solution
x∗i for instance I of k-CSP Λ equals

1
|Π|

∑
π(xi1 ,...,xik

)∈Π

π(x∗i1 , . . . , x
∗
ik

),

where Π is the set of predicates in I. The expression above has a normalization factor 1/|Π|;
thus the value of any solution lies in the range [−1, 1]. Note that a regular (non-generalized)
CSP is simply a generalized CSP in which all predicates take only values 0 and 1. We say
that a predicate π is nonnegative if π is nonnegative on every assignment. Observe that
finding an assignment of maximum value in an instance of k-CSP Λ is equivalent to finding
an assignment of minimum value in the instance where every predicate π is replaced with
−π. Thus, all results stated for maximization versions of generalized CSPs can be easily
translated to results for minimization versions of generalized CSPs and vice versa. However,
as we discuss later, the results for minimization and maximization CSPs with nonnegative
predicates – and, in particular, results for minimization and maximization regular CSPs –
are quite different.



K. Makarychev and Y. Makarychev 313

In a breakthrough paper [44], Raghavendra showed that assuming the Unique Games
Conjecture, the best possible approximation for many CSPs can be obtained by solving a
standard SDP relaxation. To formally state his result, we describe the SDP relaxation and
introduce some notation. First, we formulate the SDP for CSPs of arity 2; then, in the next
section, we present the SDP for CSPs of higher arities. As we discussed earlier, for each
variable xi, we introduce SDP vector variables ūi1, . . . , ūid. We also introduce a special unit
vector v0.

maximize 1
|Π|

∑
π(xi,xj)∈Π

∑
a,b∈D

π(a, b)〈ūia, ūjb〉 (12)

subject to (13)∑
a∈D

ūia = v0 for all i (14)

〈ūia, ūib〉 = 0 for all i, j ∈ [n]; a 6= b (15)
〈ūia, ūjb〉 ≥ 0 for each constraint π(xi, xj) ∈ Π and a, b ∈ D (16)

Let OPT = opt(I) be the value of the optimal solution for instance I, and SDP = sdp(I)
be the value of the optimal SDP solution for I. Define gap as follows:

gap(s) = inf{opt(I) : sdp(I) ≥ s}.

That is, gap(s) equals the minimum possible optimum value of an instance I with SDP value
at least s.

I Theorem 16 (Raghavendra [44]). Assuming the Unique Games Conjecture, for every
positive ε and every s ∈ (−1, 1), it is NP-hard to distinguish between instances I with
opt(I) ≥ s and opt(I) ≤ gap(s+ ε) + ε.

Note that since we can find the optimal solution of the SDP in polynomial time, we can
distinguish instances with (A) opt(I) > s and (B) opt(I) < gap(s)− ε: If sdp(I) > gap(s),
then I is in the set (A), otherwise I is in the set (B). Furthermore, Raghavendra [44] and
then, Raghavendra and Steurer [45] showed that given an instance with SDP value at least
s, we can find an assignment of value at least gap(s − ε) − ε. We present a proof of this
theorem for 2-CSPs with nonnegative predicates in Section 6.2.

I Theorem 17 (Raghavendra and Steurer [45]). For every class of problems k-CSP Λ and
every positive ε, there exists a randomized polynomial time algorithm that given an instance I
of k-CSP Λ with the SDP value SDP finds a solution {x∗i } of value at least gap(SDP− ε)− ε.

This result applies to both minimization and maximization problems. For a minimization
problem, the algorithm by Raghavendra and Steurer [45] finds a solution of cost at most
gapmin(SDP + ε) + ε, where gapmin(s) = sup{opt(I) : sdp(I) ≤ s}.

Let us discuss what the results by Raghavendra [44] and Raghavendra and Steurer [45]
imply for the three objectives we introduced in the introduction. Consider a generalized
k-CSP Λ, and let α be the integrality gap of its SDP relaxation. Can we get an (α − ε)
approximation using the algorithm by Raghavendra and Steurer [45]? Generally speaking, no.
If the value of the optimal solution OPT is positive, but is very close to 0, then gap(SDP−ε)−ε
may be negative. Hence, we cannot even guarantee that the algorithm finds a solution of
positive value.

Now, assume that all predicates π ∈ Λ are nonnegative (in particular, this condition
holds for regular CSPs), then the optimal value of any maximization k-CSP Λ is bounded

Chapte r 11



314 Approximation Algorithms for CSPs

away from 0 by some positive β (as we will see in a moment) and thus the algorithm always
returns a solution of value at least

α(SDP− ε)− ε ≥ αOPT− 2ε = αOPT− 2β(ε/β) ≥ (α− 2ε/β) OPT,

which is an (α− 2ε/β) approximation to the optimal value. Here we used that gap(s) ≥ αs.
The constant β equals the expected value of a predicate π on a random input for the

worst predicate π ∈ Λ:

β = min
π∈Λ

Ex1,...,xk∈D[π(x1, . . . , xk)].

The value of a random assignment is at least β, in expectation, for any instance of k-CSP Λ.
Thus the optimal value of any maximization k-CSP Λ is at least β.

Similarly, Theorem 16 implies that no algorithm can achieve a better than an (α+O(ε))
approximation if UGC holds. Indeed, consider an integrality gap instance I with the
integrality gap α′ ≤ α+ ε. Then, by Theorem 16, it is NP-hard to find a solution of value at
least α′(SDP+ε)+ε given an instance of value SDP. Thus no algorithm has an approximation
factor better than

α′(SDP + ε) + ε

SDP ≤ α′ + 2ε
SDP ≤ α

′ + 2β(ε/β)
OPT ≤ α+ ε+ 2ε/β.

I Corollary 18 (Raghavendra and Steurer [45], Raghavendra [44]). For every maximization
k-CSP Λ with nonnegative predicates and every positive ε, there exists a polynomial time
(α− ε)-approximation algorithm, where α is the integrality gap of the SDP relaxation from
Section 6.1. Further, for every positive ε, there is no (α + ε)-approximation algorithm if
UGC holds.

Note that for many maximization CSPs the best approximation ratio α is still not known.
From Theorems 16 and 17, we cannot get an analog of Corollary 18 for minimization

versions of generalized CSPs with nonnegative predicates and for regular CSPs with objective
(3) (described in the introduction). The reason for that is that the cost of a minimization
CSP can be arbitrarily close to 0.5 Similarly, we cannot get an analog of Corollary 18 for
objective (2). What we can get is the following. Let f(δ) = 1− gap(1− δ). There exists an
algorithm that given a (1− δ)-satisfiable instance and parameter ε > 0, finds an assignment
satisfying a (1− f(δ + ε)− ε) fraction of the constraints. The running time of the algorithm
is polynomial in n and exponential in 1/ε. Note that typically we have to take δ = O(ε) to
make this guarantee interesting. However, if we, say, let δ = ε, we get an algorithm with
running time exponential in 1/δ.

6.1 SDP Relaxation for k-CSPs with k > 2

The SDP relaxation for CSPs of arity k > 2 consists of two parts: a semidefinite program
and a linear program connected by special constraints. The SDP part has the same variables
ūia and v̄0 as the SDP relaxation for k = 2. These variables must satisfy SDP constraints
(14) and (15).

5 In fact, most minimization CSPs studied in the literature – such as Min UnCut, Min 2CNF Deletion
and Unique Games (with objective (3)) – do not admit a constant factor approximation if UGC holds.
Their worst case instances have cost o(1).



K. Makarychev and Y. Makarychev 315

The LP part has a variable pi1...ik (a1, . . . , ak) ∈ [0, 1] for every predicate π(xi1 , . . . , xik )
and (a1, . . . , ak) ∈ Dk. For every predicate π(xi1 , . . . , xik ), we define a local probability
distribution on the assignments to the variables xi1 , . . . , xik :

P̃ri1,...,ik
(
(xi1 , . . . , xik ) ∈ E

)
=

∑
(a1,...,ak)∈E

pi1...ik (a1, . . . , ak).

Formally, every P̃ri1,...,ik is a linear combination of the LP variables pi1...ik (a1, . . . , ak). Now
we can write the objective function as follows:

1
|Π|

∑
π(xi1 ,...,xik

)∈Π

∑
(a1,...,xk)∈Dk

π(a1, . . . , ak)P̃ri1,...,ik
(
xi1 = a1, . . . , xik = ak

)
.

We add an LP constraint P̃ri1,...,ik
(
(xi1 , . . . , xik ) ∈ Dk

)
= 1. We then connect the LP and

SDP by imposing the constraints

P̃ri1,...,ik (xi = a) = ‖ūia‖2

P̃ri1,...,ik (xi = a, xj = b) = 〈ūia, ūjb〉

for all predicates π(xi1 , . . . , xik ) and i, j ∈ {i1, . . . , ik}. We refer the reader to the paper by
Raghavendra [44] for more discussion on this SDP relaxation.

6.2 Rounding Algorithm for 2-CSPs with Nonnegative Predicates
The main observation behind the universal rounding algorithm is that for every SDP solution
ūia there exists another SDP solution ū′ia with a constant number (depending on ε and d) of
distinct vectors ū′ia that has approximately the same SDP value as the original solution ūia.
Here is the formal statement we need.

I Theorem 19. For every positive ε, there exists a randomized polynomial time algorithm
that given an instance I of a 2-CSP with the set of predicates Π and an SDP solution ūia of
value SDP returns a set of predicates Π′ of size at least (1− ε)|Π|, an SDP solution ū′ia for
the instance with predicates Π′ of value at least SDP − ε, and a set W of size at most f(ε, d)
(for some function f depending only on ε and d) such that each tuple wi = (ū′i1, . . . , ū′id)
belongs to W. The algorithm fails with exponentially small probability.

We prove Theorem 19 in Section 6.3. We now present and analyze the universal rounding
algorithm.

The algorithm works in three phases: First, it solves the SDP relaxation and obtains
a set of vectors ūia. Then, using Theorem 19, the algorithm transforms the SDP solution
into another solution ū′ia of approximately the same value such that the number of distinct
tuples wi = (ū′i1, . . . , ū′id) is upper bounded by some function f(ε, d) of ε and d, which does
not depend on the number of variables and constraints. We denote the set of all wi by W.
The algorithm identifies variables xi that are mapped to the same tuple of vectors w and
obtains a new instance Ĩ of 2-CSP Λ. Formally, the instance Ĩ has a variable x′w for each
w ∈ W and a constraint π(x′wi

, x′wj
) for each constraint π(xi, xj) in I. Note that Ĩ has at

most f(ε, d) variables. The algorithm finds the optimal solution x∗w for Ĩ by enumerating all
d|W| possible solutions. Finally, the algorithm outputs the solution xi = x∗wi

for the original
instance I.

Chapte r 11



316 Approximation Algorithms for CSPs

Input: An instance I of 2-CSP Λ, parameter ε > 0.
Output: A solution xi of value at least gap(SDP− ε)− ε.
1. Solve the SDP and obtain vectors ūia.
2. Transform vectors ūia to vectors ū′ia and construct the set W using the algorithm from

Theorem 19. Let wi = (ū′i1, . . . , ū′id) for each i. By Theorem 19, wi ∈ W.
3. Build a new instance Ĩ of 2-CSP Λ: For each w ∈ W , create a variable x′w in Ĩ. For each

constraint π(xi, xj) between xi and xj in I, add the constraint π(x′wi
, x′wj

) between x′wi

and x′wj
to Ĩ.

4. Find the optimal solution x∗wi
for Ĩ by enumerating all possible solutions of Ĩ.

5. Output the solution xi = x∗wi
.

The running time of the algorithm is exponential in |W| but is polynomial in n, since the
size of W is upper bounded by f(ε, d) which depends only on ε and d. We show that the
algorithm finds a solution of cost at least gap(SDP− ε). Denote by I ′ and Ĩ ′ subinstances
of I and Ĩ in which we removed predicates from Π \ Π′ and kept predicates from Π′. By
Theorem 19, the value of the SDP solution ū′ia on the instance I ′ is at least SDP−ε. Observe
that the SDP solution ū′ia corresponds to a feasible SDP solution for the instance Ĩ ′ in which
the vectors for the variable x′wi

are ū′i1, . . . , ū′id. This SDP solution is well defined, since
(ū′i1, . . . , ū′id) = wi = wj = (ū′j1, . . . , ū′jd) if wi = wj . The value of the SDP solution ū′ia on
the instance I ′ equals the value of the corresponding SDP solution on Ĩ ′ since for every
constraint π(xi, xj) in I ′, we have a constraint π(x′wi

, x′wj
) in Ĩ ′, and the SDP value of the

constraint π is the same in instances I ′ and Ĩ ′: It is equal to
∑
ab π(a, b)〈ū′ia, ū′jb〉. Since the

optimal SDP value of the instance I ′ is at least SDP− ε, the value of the optimal solution
x∗wi

for I ′ is at least gap(SDP− ε) (by the definition of gap(·)). The value of the solution
xi = x∗wi

for the instance I ′ is the same as the value of the solution x∗wi
for Ĩ ′. If we omit the

normalization factor 1/|Π| in the definition of the value of a solution, then the value of the
solution xi for the instance I will be greater than or equal to the value of the solution xi for
the instance I ′, since the value of removed predicates – predicates in Π \Π′ – is nonnegative.
With the normalization, we get that the value of the solution xi for the original instance I is
lower bounded by (|Π′|/|Π|) · gap(SDP− ε) ≥ (1− ε)gap(SDP− ε) ≥ gap(SDP− ε)− ε.

6.3 Proof of Theorem 19
Proof. We describe an algorithm for constructing the set W and vectors ū′ia. The algorithm
works in three steps: At the first step, it embeds the original SDP solution ūia into a low
dimensional space using the Johnson–Lindenstrauss transform [25]. Denote the embedding of
the vector ūia by ϕ(ūia). At the second step, the algorithm slightly perturbs vectors ϕ(ūia),
so that the perturbed vectors ϕ′(ūia) satisfy all SDP constraints. At this step, the algorithm
also removes some predicates from the set Π. Finally, at the third step, the algorithm picks an
η-net (for sufficiently small η; η = ε/Cd) in the set of tuples (ϕ′(ūi1), . . . , ϕ′(ūid)) equipped
with the norm `2 ⊕∞ · · · ⊕∞ `2 and for every i finds wi ∈ W closest to (ϕ′(ūi1), . . . , ϕ′(ūid)).
It lets ū′ia be the a-th component of wi. We show that for most variables xi, xj and values
a, b ∈ D, 〈ū′ia, v̄′jb〉 ≈ 〈ūia, v̄jb〉, and hence the SDP value of the solution ū′ia approximately
equals the SDP value of the optimal SDP solution ūia. We describe each step of the algorithm
in detail below. We use the following notation in the proof: for every nonzero vector ū, let
ν(ū) = ū/‖ū‖. Let ν(0) = 0.



K. Makarychev and Y. Makarychev 317

Input: An SDP solution {ūia} of value SDP and a parameter ε ∈ (0, 1).
Output: A set W of size at most f(ε, d) and an SDP solution {ū′ia} of value at least SDP− ε
such that wi = (ū′i1, . . . , ū′id) ∈ W for each i.
1. Embed ūia into a low dimensional space using the Johnson–Lindenstrauss transform as

described in Section 6.3.1 and obtain vectors ϕ′(ūia).
2. Transform vectors ϕ(ūia) to vectors ϕ′(ūia) using the Gram–Schmidt process (see

Lemma 24) and the procedure from Lemma 25 with µ = d2(3d+1 d+ 1)η.
3. Find an η-net W in the set of all tuples (ϕ′(ūi1), . . . , ϕ′(ūid)). For each i, let wi be the

vector in W closest to (ϕ′(ūi1), . . . , ϕ′(ūid)) in the norm `2 ⊕∞ · · · ⊕∞ `2. Let ū′ia be the
a-th component of the tuple wi.

6.3.1 Step I: Johnson–Lindenstrauss Transform
We use the Johnson–Lindenstrauss lemma and two simple corollaries which we state now.

I Theorem 20 (Johnson–Lindenstrauss [25]). For every η ∈ (0, 1) and δ ∈ (0, 1), there exists
an integer m = O(log(1/δ)/ε2) and a family Φ of linear operators from Rn to Rm such that
for every ū ∈ Rn and a random ϕ ∈ Φ, we have

Pr
ϕ

(‖ū‖2 ≤ ‖ϕ(ū)‖2 ≤ (1 + η)‖ū‖2) ≥ 1− δ.

Moreover, a random operator ϕ can be sampled from Φ in randomized polynomial time.

I Corollary 21. For every η ∈ (0, 1), δ ∈ (0, 1) and every unit vector v̄0 ∈ Rn, there exists
an integer m = O(log(1/δ)/ε2) and a family Φ of linear operators from Rn to Rm such that
for every ū ∈ Rn and a random ϕ ∈ Φ, we have ‖ϕ(v̄0)‖ = 1 a.s. and

Pr
ϕ

((1− η)‖ū‖2 ≤ ‖ϕ(ū)‖2 ≤ (1 + η)‖ū‖2) ≥ 1− δ. (17)

Moreover, a random operator ϕ can be sampled from Φ in randomized polynomial time.

Proof. We simply let ϕ(ū) = ϕ̃(ū)/‖ϕ̃(v̄0)‖, where ϕ̃ is the random operator from Theorem 20.
J

I Corollary 22. For a random ϕ ∈ Φ from Corollary 21 we have: for every ū, v̄ ∈ Rn

Pr
ϕ

(〈ν(ū), ν(v̄)〉 − 3η ≤ 〈ϕ(ν(ū)), ϕ(ν(v̄))〉 ≤ 〈ν(ū), ν(v̄)〉+ 3η) ≥ 1− 4δ.

Proof. Consider ϕ from Corollary 21. Assume that ϕ preserves the lengths of vectors ν(ū),
ν(v̄), and (ν(ū) ± ν(v̄)) up to a factor (1 ± η) (as in Equation (17)). This happens with
probability at least 1− 4δ. We have

2〈ϕ(ν(ū)), ϕ(ν(v̄))〉 = ‖ϕ(ν(ū)) + ϕ(ν(v̄))‖2 − ‖ϕ(ν(ū))‖2 − ‖ϕ(ν(v̄))‖2

≥ (1− η) ‖ν(ū) + ν(v̄)‖2 − (1 + η) ‖ν(ū)‖2 − (1 + η) ‖ν(v̄)‖2

≥
(
‖ν(ū) + ν(v̄)‖2 − ‖ν(ū)‖2 − ‖ν(v̄)‖2

)
−

− η
(
‖ν(ū) + ν(v̄)‖2 + ‖ν(ū)‖2 + ‖ν(v̄)‖2

)
≥ 2〈ν(ū), ν(v̄)〉 − 6η.

By applying the bound above to vectors ū and −v̄, we get 〈ϕ(ν(ū)), ϕ(ν(v̄))〉 ≤ 〈ν(ū), ν(v̄)〉+
3η. J

Chapte r 11



318 Approximation Algorithms for CSPs

At the first step, the algorithm embeds vectors ūia into m = O(log(1/δ′)/ε2) dimensional
space for δ′ = η/(8d2) and η′ = η/6 using Corollary 22. We show that vectors ϕ(ūia) satisfy
the SDP constraint (14), almost satisfy SDP constraints (16), and almost preserve inner
products between vectors.

I Lemma 23.
1. For every i ∈ [n],

∑
a∈D ϕ(ūia) = ϕ(v0), and ‖ϕ(v0)‖ = 1 a.s.

2. For every i ∈ [n],

Pr
ϕ

(
|〈ν(ϕ(ūia)), ν(ϕ(ūib))〉| ≤ η for all a 6= b

)
≥ 1− η.

3. For all i, j ∈ [n],

Pr
ϕ

(
〈ϕ(ūia), ϕ(ūjb)〉 ≥ 〈ūia, ūjb〉 − η for all a, b

)
≥ 1− η.

Proof. Item 1 holds because ϕ is a linear operator and
∑
a∈D ūia = v̄0. Then, for ev-

ery a 6= b, we have 〈ūia, ūib〉 = 0, and hence 〈ν(ūia), ν(ūib)〉 = 0. By Corollary 22,
|〈ϕ(ν(ūia)), ϕ(ν(ūib))〉| ≤ η/2 with probability at least 1 − η/d2 for each a 6= b, and, by
Corollary 21, ‖ϕ(ν(ūia))‖ ≥ 1− η/6 with probability 1− η/(4d2) for each a. Thus, for every
i ∈ V , with probability at least 1− η, we have for all a, b:

|〈ν(ϕ(ūia)), ν(ϕ(ūib))〉| =
|〈ϕ(ν(ūia)), ϕ(ν(ūib))〉|
‖ϕ(ν(ūia))‖ ‖ϕ(ν(ūia))‖ ≤

η/2
(1− η/6)2 < η.

Hence, item 2 holds. Similarly, for every i, j ∈ V , with probability at least 1− η, we have for
all a, b,

〈ϕ(ūia), ϕ(ūjb)〉 ≥ 〈ūia, ūjb〉 − η‖ūia‖‖ūjb‖/2 ≥ 〈ūia, ūjb〉 − η/2,

and ‖ϕ(ūia)‖ ≤ (1 + η/6)‖ūia‖, ‖ϕ(ūjb)‖ ≤ (1 + η/6)‖ūjb‖. Consequently,

〈ϕ(ūia), ϕ(ūjb)〉 ≥ 〈ūia, ūjb〉 − η

for all a, b with probability 1− η. Hence, item 3 holds. J

6.3.2 Step II: Fixing Violated SDP Constraints
Lemma 23 shows that vectors ϕ(ūia) satisfy SDP constraints (14) and almost satisfy con-
straints (15) and (16) as 〈ūia, ūjb〉 ≈ 〈ϕ(ūia), ϕ(ūjb)〉 for most i, j ∈ [n] and a, b ∈ D. At the
second step, the algorithm slightly perturbs vectors ϕ(ūia) to fix all SDP constraints. First,
the algorithm applies the Gram–Schmidt orthogonalization process (described in Lemma 24
below) to vectors ϕ(ūi1), . . . , ϕ(ūid) for each i ∈ [n] and obtains vectors ϕ⊥(ūi1), . . . , ϕ⊥(ūid)
that satisfy constraints (15). Then, the algorithm transforms vectors ϕ⊥(ūia) into vectors
ϕ′(ūia) using the procedure from Lemma 25 with µ = d2(3d+1 d + 1)η. This fixes most
constraints (16). The algorithm removes those predicates π ∈ Π for which the constraint (16)
is still violated. We denote obtained vectors by ϕ′(ūia) and the set of remained predicates
by Π′. We now state Lemma 24 and Lemma 25.

I Lemma 24 (Gram–Schmidt process). There exists a polynomial time algorithm that given
vectors v̄1, . . . , v̄d of length at most 1.5 returns vectors v̄′1, . . . , v̄′d such that (1) 〈v̄′a, v̄′b〉 = 0
for a 6= b, (2)

∑
a v̄a =

∑
a v̄
′
a, and (3) ‖v̄′a − v̄a‖ ≤ 3ddη, where η = maxa,b |〈ν(v̄a), ν(v̄b)〉|.



K. Makarychev and Y. Makarychev 319

I Lemma 25. There exists a polynomial-time algorithm that transforms any set of vectors
v̄ia satisfying the SDP constraints (14) and (15) into a set of vectors v̄′ia also satisfying SDP
constraints (14) and (15) for some unit vector v̄′0 such that 〈v̄′ia, v̄′jb〉 = (1−µ)〈v̄ia, v̄jb〉+µ/d2

for all i, j ∈ [n], i 6= j, a, b ∈ D, where µ ∈ [0, 1] is a parameter.

We first show that vectors ϕ′(ūia) satisfy all SDP constraints for the instance with predicates
Π′ and estimate the value of this SDP solution. Then, we prove Lemmas 24 and 25.

I Lemma 26. Vectors ϕ′(ūia) together with the vector v̄′0 = ϕ′(v0) satisfy all SDP constraints
for the set of predicates Π′. Further the expected value of the SDP solution ϕ′(ūia) is at least
(1 − 2µ)SDP, where SDP is the value of the solution ūia. The expectation is taken over a
random embedding ϕ ∈ Φ.

Proof of Lemma 26. First, observe that vectors ϕ′(ūia) satisfy all SDP constraints (16),
simply because we remove all predicates π(xi, xj) for which these constraints are violated.
By Lemma 25, vectors ϕ′(ūia) satisfy SDP constraints (14) and (15) if vectors ϕ⊥(ūia)
satisfy these constraints. By Lemma 23, item 1, we have

∑
a∈D ϕ(ūia) = ϕ(v0) for all

i. The Gram–Schmidt process preserves all sums
∑
a∈D ϕ(ūia) (by Lemma 24, item 2).

Hence, vectors ϕ⊥(ūia) satisfy SDP constraints (14). For every i, the Gram–Schmidt
process transforms vectors ūi1, . . . , ūid into orthogonal vectors; thus, ϕ⊥(ūia) satisfy SDP
constraints (15). This shows that vectors ϕ′(ūia) form a feasible SDP solution.

We now estimate the SDP value of the solution ϕ′(ūia). Let

Vη = {i ∈ [n] : |〈ν(ϕ(ūia)), ν(ϕ(ūib))〉| ≤ η for a 6= b; and ‖ϕ(ūia)‖2 ≤ 1.5 for all a};
Πη = {π(xi, xj) ∈ Π : 〈ϕ(ūia), ϕ(ūjb)〉 ≥ 〈ūia, ūib〉 − η for a, b ∈ D; i, j ∈ Vη}.

By Lemma 23, the sets Vη and Πη contain almost all variables and predicates, respectively.
Specifically, for every i, Pr(i ∈ Vη) ≥ 1−2η; for all π(xi, xj) ∈ Π, Pr(π(xi, xj) ∈ Πη) ≥ 1−5η.
We show that for all π(xi, xj) ∈ Πη, SDP constraints (16) are satisfied, and, thus, Πη ⊂ Π′.
We use the following simple claim.

I Claim 27. Consider four vectors v̄1, v̄2 and v̄′1, v̄′2. Suppose that ‖v̄1−v̄′1‖ ≤ η, ‖v̄2−v̄′2‖ ≤ η,
and ‖v̄′1‖, ‖v̄′2‖ ≤ 1 for some positive η < 1, then 〈v̄′1, v̄′2〉 ≥ 〈v̄1, v̄2〉 − 3η.

Proof. We have 〈v̄1, v̄2〉 =
〈
v̄′1 − (v̄′1 − v̄1), v̄′2 − (v̄′2 − v̄2)

〉
≥ 〈v̄′1, v̄′2〉 − ‖v̄′1 − v̄1‖ ‖v̄′2‖ −

‖v̄′1‖ ‖v̄′2 − v̄2‖ − ‖v̄′1 − v̄1‖‖v̄′2 − v̄2‖ ≥ 〈v̄′1, v̄′2〉 − 3η. J

By the definition of Πη, we have 〈ϕ(ūia), ϕ(ūjb)〉 ≥ 〈ūia, ūjb〉 − η. By Lemma 24, item 3,
and Claim 27, we have 〈ϕ⊥(ūia), ϕ⊥(ūjb)〉 ≥ 〈ϕ(ūia), ϕ(ūjb)〉 − 3ddη. Then, by Lemma 25,
〈ϕ′(ūia), ϕ′(ūjb)〉 = (1 − µ)〈ϕ⊥(ūia), ϕ⊥(ūjb)〉+ µ/d2. Putting these inequalities together,
we get

〈ϕ′(ūia), ϕ′(ūjb)〉 ≥ (1− µ)〈ūia, ūib〉 − (3d+1 d+ 1)η + µ/d2 = (1− µ)〈ūia, ūib〉. (18)

Here, we used that µ/d2 = (3d+1 d+ 1)η. Equation (18) implies that SDP constraints (16)
are satisfied for vectors ϕ′(ūia).

We now estimate the value of the SDP solution. For every predicate π(xi, xj) in Πη, we
have∑

a,b∈D

π(a, b)〈ϕ′(ūia), ϕ′(ūjb)〉 ≥ (1− µ)
∑
a,b∈D

π(a, b)〈ūia, ūjb〉.

Every predicate π(xi, xj) in Π belongs to Π′ with probability at least (1 − 5η). Thus the
expected SDP value for vectors ϕ′(ūia) is at least (|Π|/|Π′|) (1−5η)(1−µ)SDP ≥ (1−2µ)SDP.

Chapte r 11



320 Approximation Algorithms for CSPs

The multiplicative factor (|Π|/|Π′|) ≥ 1 is due to the normalization factor 1/|Π| in the SDP
objective. This finishes the proof of Lemma 26. J

Proof of Lemma 24. In the proof, we denote the projection of a vector v̄ to a non-zero
vector ū by projū v̄:

projū v̄ = 〈ū, v̄〉
‖ū‖2

ū = 〈v̄, ν(ū)〉ν(ū).

As before ν(ū) = ū/‖ū‖ for ū 6= 0. Observe that projū v̄ is collinear with ū; and (v̄ − projū v̄)
is orthogonal to ū.

We describe an algorithm that transforms vectors v̄1, . . . v̄d to orthogonal vectors v̄′1, . . . , v̄′d.
The algorithm works in d iterations. After iteration t, it obtains a set of vectors v̄1(t), . . . , v̄d(t)
satisfying the following properties: (1′) 〈v̄a(t), v̄b(t)〉 = 0 for a, b ≤ t, and a 6= b, (2′)∑
a v̄a(t) =

∑
a v̄a, (3′) ‖ν(v̄a(t))− ν(v̄a)‖ ≤ 3aη for a ≤ t and v̄a(t) = v̄a for a > t, and (4′)

‖v̄a(t)− v̄a‖ ≤ 3tη for all a. The algorithm returns vectors v̄′a = v̄a(d). Note that the desired
conditions (1)–(3) follow from the conditions (1′)–(4′) on vectors v̄a(d). At the first iteration,
we set v̄a(1) = v̄a for all a. At iteration t ≥ 2, we let

v̄t(t) = v̄t(t− 1)−
∑
a<t

projv̄a(t−1) v̄t(t− 1); (19)

v̄b(t) = v̄b(t− 1) + projv̄b(t−1)(v̄t(t− 1)− v̄t(t))
)

for b < t; (20)

v̄b(t) = v̄t(t− 1) for b > t. (21)

We prove by induction that properties (1′)–(4′) hold. It is easy to see that the properties
hold for vectors v̄a(0), since v̄a(0) = v̄a. Consider t > 1. Observe that vectors v̄a(t) are
collinear with vectors v̄a(t − 1) for a < t and v̄a(t) = v̄a(t − 1) for a > t. The only vector
that changes the direction is the vector v̄t(t). The sum

∑
a<t projv̄a(t−1) v̄t(t− 1) equals the

projection of the vector v̄t(t− 1) to the span of orthogonal vectors v̄1(t− 1), . . . , v̄t−1(t− 1).
Hence, v̄t(t) is orthogonal to v̄1(t− 1), . . . , v̄t−1(t− 1), and, also, to vectors v1(t), . . . , v̄t−1(t),
which are collinear with v̄1(t− 1), . . . , v̄t−1(t− 1). Thus, property (1′) holds for t. The sum
of vectors on the left hand side of (19–21) equals the sum of vectors on the right hand side
of (19–21). Thus, property (2′) holds. For all a 6= t, we have ν(v̄a(t)) = ν(v̄a(t− 1)). So we
need to check (3′) only for a = t. Since v̄t(t− 1) = vt and ν(v̄t(t− 1)) = ν(v̄t), we get

‖v̄t(t)− v̄t‖ = ‖
∑
b<t

projv̄b(t) v̄t‖ = ‖
∑
b<t

〈ν(v̄b(t)), v̄t〉 ν(v̄b(t))‖ ≤
∑
b<t

|〈ν(v̄b(t)), v̄t〉|

=
∑
b<t

(
|〈ν(v̄b), v̄t〉|+ |〈ν(v̄b(t))− ν(v̄b), v̄t〉|

)
≤
∑
b<t

(
|〈ν(v̄b), ν(v̄t)〉| · ‖v̄t‖+ ‖ν(v̄b(t))− ν(v̄b)‖ ‖v̄t‖|

)
≤ ‖v̄t‖ ·

∑
b<t

(
|〈ν(v̄b), ν(v̄t)〉|+ ‖ν(v̄b(t))− ν(v̄b)‖

)
.

We now upper bound |〈ν(v̄b), ν(v̄t)〉| ≤ η and ‖ν(v̄b(t)) − ν(v̄b)‖ ≤ 3bη and obtain the
following inequality:

‖v̄t(t)− v̄t‖ ≤
∑
b<t

(η + 3bη)‖v̄t‖ =
(
(t− 1) + (3t − 3)/2

)
η‖v̄t‖ ≤ 0.6 · 3tη‖v̄t‖. (22)

The last inequality can be easily verified numerically. Let α be the angle between v̄t(t) and
v̄t. The formula above shows that sin(α) = ‖v̄t(t) − v̄t‖/‖v̄t‖ ≤ 0.6 · 3dη. Observe that



K. Makarychev and Y. Makarychev 321

‖ν(v̄t(t))− ν(v̄t)‖ = 2 sin(α/2) and 2 sin(α/2) = sin(α)/ cos(α/2) < 3d, since cos(α/2) > 0.6,
if sinα < 1/3. This proves property (3′).

Finally, property (4′) holds, since for a < t, ‖v̄a(t)− v̄a(t−1)‖ = |〈v̄t(t)− v̄t(t−1), ν(v̄a(t−
1))〉| ≤ 3tη by (22); ‖v̄t(t)− v̄t(t−1)‖ ≤ 3tη also by (22); and for a > t, v̄a(t) = v̄a(t−1). J

Proof of Lemma 25. Observe that it is sufficient to prove Lemma 25 for µ∗ = 1: If vectors
z̄ia satisfy the conditions of this lemma for µ∗ = 1, then vectors v̄′ia =

√
1− µ v̄ia ⊕

√
µ z̄ia

satisfy the conditions of the lemma for any µ (with v̄′0 =
∑
a v̄
′
ia, which does not depend

on i). Here ⊕ denotes the direct sum. This follows from the following identity: 〈v̄′ia, v̄′jb〉 =
(1− µ)〈v̄ia, v̄jb〉+ µ〈z̄ia, z̄jb〉.

To construct vectors z̄ia, consider the random assignment algorithm. The algorithm
independently assigns a random value from D to every variable xi. Let xrndia be the indicator
random variable of the event that the algorithm sets xi = a. The random variables xrndia

lie in the L2 space equipped with the standard inner product 〈xrndia , xrndjb 〉 = E[xrndia xrndjb ].
It easy to see that ‖xrndia ‖2 = 1/d, 〈xrndia , xrndjb 〉 = 1/d2 for i 6= j, 〈xrndia , xrndib 〉 = 0 for a 6= b.
Furthermore,

∑
a x

rnd
ia = 1 for every i. We isometrically embed xrndia from L2 into `2 and

obtain vectors z̄ia. J

6.3.3 Step III: Rounding to a η-Net
At the last step, the algorithm picks an η-net in the set of all tuples (ϕ′(ūi1), . . . , ϕ′(ūid))
equipped with the norm `2 ⊕∞ · · · ⊕∞ `2. In this norm, the distance between two tuples
(ϕ′(ūi1), . . . , ϕ′(ūid)) and (ϕ′(ūj1), . . . , ϕ′(ūjd)) equals maxa∈D ‖ϕ′(ūia) − ϕ′(ūja)‖2. We
denote the η-net by W. The size of an η-net in the m-dimensional space, where all vectors
ϕ′(ūia) lie, is upper bounded by (1 + 2/η)m. Thus the size of W is upper bounded by
(1 + 2/η)md. This number, (1 + 2/η)md, depends on m, d and η, which in turn depend only
on ε and d. For each i ∈ [n], the algorithm picks wi ∈ W closest to (ϕ′(ūi1), . . . , ϕ′(ūid)),
sets ū′ia to be the a-th component of wi, and outputs all vectors ū′ia.

Observe that for each i there is a j such that ū′ia = ϕ′(ūja) for all a. Thus, vectors
ū′ia satisfy all SDP constraints. We need to lower bound the SDP value of the solution
ū′ia. Note that for each i and a, ‖ūia − ϕ′(ūia)‖ ≤ η, since W is an η-net. By Claim 27,
〈ū′ia, ū′jb〉 ≥ 〈ϕ′(ūia), ϕ′(ūjb)〉−3η. Thus, the value of the SDP solution u′ia is at least the value
of the SDP solution for ϕ′(ūia) minus 3d2η. Thus, it is lower bounded by (1−2µ)SDP−3d2η ≥
SDP− d2(3d+1 d+ 4)η, where SDP is the SDP value of the solution ūia. This finishes the
proof of Theorem 20. J

7 Open Problems

The most important open problem in the field is to prove or disprove the Unique Games
Conjecture. Here, we list some other interesting open problems.

I Open Problem 1. Close the gap between the known approximation factors and hardness
results for the following problems: Max 2-And, Max SAT, Multiway Cut.

I Open Problem 2. We know that the best possible approximation factor for Max k-And
and all Boolean k-CSPs is ckk/2k, where ck = Θ(1). Find the limit of ck as k →∞.

Austrin and Mossel [6] and Chan [11] showed that ck ≤ 1 + o(1). We conjecture that
this upper bound is tight, ck = 1 ± o(1), and, moreover, the algorithm from [40] has an
approximation factor of (1− o(1))k/2k.

Chapte r 11



322 Approximation Algorithms for CSPs

I Open Problem 3. Prove or disprove that the currently best known approximation factor
of Ω(dmax(k, log d)/dk) for k-CSP(d) is asymptotically optimal. It is known that this
approximation factor is optimal when d = Ω(k) [11].

I Open Problem 4. Suppose that the integrality gap of a minimization k-CSP Λ is αn (αn
may depend on the number of variables n). Does there exist a polynomial-time algorithm
with an approximation factor (1 + ε)αn for every positive ε?

References

1 Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. O(
√

logn)
approximation algorithms for Min UnCut, Min 2CNF Deletion, and directed cut problems.
In Proceedings of the Symposium on Theory of Computing, pages 573–581, 2005. doi:
10.1145/1060590.1060675.

2 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique
games and related problems. In In Proceedings of the Symposium on Foundations of Com-
puter Science, pages 563–572, 2010. doi:10.1109/FOCS.2010.59.

3 Sanjeev Arora, Rong Ge, and Ali Kemal Sinop. Towards a better approximation for sparsest
cut? In Proceedings of the Foundations of Computer Science, pages 270–279, 2013.

4 Sanjeev Arora, Subhash A. Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani, and
Nisheeth K. Vishnoi. Unique games on expanding constraint graphs are easy. In Proceedings
of the Symposium on Theory of Computing, pages 21–28, 2008. doi:10.1145/1374376.
1374380.

5 Per Austrin. Towards sharp inapproximability for any 2-CSP. SIAM Journal on Computing,
39(6):2430–2463, 2010.

6 Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise inde-
pendence. Computational Complexity, 18(2):249–271, 2009.

7 Adi Avidor, Ido Berkovitch, and Uri Zwick. Improved approximation algorithms for Max
NAE-SAT and Max SAT. In Approximation and Online Algorithms, pages 27–40. Springer,
2005.

8 Nikhil Bansal, Uriel Feige, Robert Krauthgamer, Konstantin Makarychev, Viswanath Na-
garajan, Joseph Naor, and Roy Schwartz. Min-max graph partitioning and small set ex-
pansion. In FOCS, pages 17–26, 2011.

9 Niv Buchbinder, Joseph Seffi Naor, and Roy Schwartz. Simplex partitioning via exponential
clocks and the multiway cut problem. In Proceedings of the Symposium on Theory of
Computing, pages 535–544, 2013.

10 Gruia Călinescu, Howard Karloff, and Yuval Rabani. An improved approximation algorithm
for multiway cut. In Proceedings of the Symposium on Theory of Computing, pages 48–52,
1998.

11 Siu On Chan. Approximation resistance from pairwise independent subgroups. In Proceed-
ings of the Symposium on Theory of Computing, pages 447–456. ACM, 2013.

12 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms
for unique games. In Proceedings of the Symposium on Theory of Computing, pages 205–214,
2006. doi:10.1145/1132516.1132547.

13 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms
for maximum constraint satisfaction problems. ACM Transactions on Algorithms (TALG),
5(3):32, 2009.

14 Eden Chlamtac, Konstantin Makarychev, and Yury Makarychev. How to play unique games
using embeddings. In Proceedings of the Symposium on Foundations of Computer Science,
pages 687–696, 2006.

http://dx.doi.org/10.1145/1060590.1060675
http://dx.doi.org/10.1145/1060590.1060675
http://dx.doi.org/10.1109/FOCS.2010.59
http://dx.doi.org/10.1145/1374376.1374380
http://dx.doi.org/10.1145/1374376.1374380
http://dx.doi.org/10.1145/1132516.1132547


K. Makarychev and Y. Makarychev 323

15 Miroslav Chlebík and Janka Chlebíková. On approximation hardness of the Minimum
2SAT-Deletion problem. In Proceedings of the International Symposium on Mathematical
Foundations of Computer Science, pages 263–273, 2004.

16 Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and
Mihalis Yannakakis. The Complexity of Multiterminal Cuts. SIAM Journal on Computing,
23:864–894, 1994. doi:10.1137/S0097539792225297.

17 Ari Freund and Howard Karloff. A lower bound of 8/(7+ 1k- 1) on the integrality ratio of
the călinescu–karloff–rabani relaxation for multiway cut. Information Processing Letters,
75(1):43–50, 2000.

18 Michel X. Goemans and David P. Williamson. Improved approximation algorithms for Max-
imum Cut and Satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, 1995.

19 Anupam Gupta and Kunal Talwar. Approximating unique games. In Proceedings of the
Symposium on Discrete Algorithm, pages 99–106, 2006.

20 Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghavendra, and
Moses Charikar. Beating the random ordering is hard: Every ordering CSP is approxima-
tion resistant. SIAM Journal on Computing, 40(3):878–914, 2011.

21 Venkatesan Guruswami and Euiwoong Lee. Complexity of approximating csp with bal-
ance/hard constraints. In Proceedings of the Conference on Innovations in Theoretical
Computer Science, pages 439–448, 2014.

22 Venkatesan Guruswami and Yuan Zhou. Tight bounds on the approximability of almost-
satisfiable horn sat and exact hitting set. In Proceedings of the Symposium on Discrete
Algorithms, pages 1574–1589, 2011.

23 Johan Håstad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001.

24 Johan Håstad, Sangxia Huang, Rajsekar Manokaran, Ryan O’Donnell, and John Wright.
Improved NP-Inapproximability for 2-Variable Linear Equations. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM 2015, August 24-26, 2015, Princeton, NJ, USA, volume 40 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 341–360. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.341.

25 William B Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a
Hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

26 David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by semidef-
inite programming. Journal of the ACM (JACM), 45(2):246–265, 1998.

27 David R Karger, Philip Klein, Cliff Stein, Mikkel Thorup, and Neal E Young. Rounding al-
gorithms for a geometric embedding of minimum multiway cut. Mathematics of Operations
Research, 29(3):436–461, 2004.

28 Howard Karloff and Uri Zwick. A 7/8-approximation algorithm for MAX 3SAT? In Pro-
ceedings of the Foundations of Computer Science, pages 406–415, 1997.

29 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
Symposium on Theory of Computing, pages 767–775, 2002.

30 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproxima-
bility results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput., 37(1):319–357,
2007.

31 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2−ε.
In IEEE Conference on Computational Complexity, pages 379–386, 2003.

32 Guy Kindler, Alexandra Kolla, and Luca Trevisan. Approximation of non-boolean 2CSP.
In Proceedings of the Symposium on Discrete Algorithms, pages 1705–1714, 2016.

Chapte r 11

http://dx.doi.org/10.1137/S0097539792225297
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.341


324 Approximation Algorithms for CSPs

33 Alexandra Kolla, Konstantin Makarychev, and Yury Makarychev. How to play unique
games against a semi-random adversary: Study of semi-random models of unique games.
In Proceedings of the Symposium on Foundations of Computer Science, pages 443–452,
2011.

34 Robert Krauthgamer, Joseph Seffi Naor, and Roy Schwartz. Partitioning graphs into bal-
anced components. In Proceedings of the Symposium on Discrete Algorithms, pages 942–949,
2009.

35 Michael Langberg, Yuval Rabani, and Chaitanya Swamy. Approximation algorithms for
graph homomorphism problems. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 176–187. Springer, 2006.

36 Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for the MAX
2-SAT and MAX DI-CUT problems. In Integer Programming and Combinatorial Optimiza-
tion, pages 67–82. Springer, 2002.

37 Anand Louis and Konstantin Makarychev. Approximation algorithm for sparsest k-
partitioning. In Proceedings of the Symposium on Discrete Algorithms, pages 1244–1255,
2014.

38 Anand Louis and Yury Makarychev. Approximation Algorithms for Hypergraph Small Set
Expansion and Small Set Vertex Expansion. In Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, September
4-6, 2014, Barcelona, Spain, volume 28 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 339–355. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2014.
doi:10.4230/LIPIcs.APPROX-RANDOM.2014.339.

39 Konstantin Makarychev and Yury Makarychev. How to play unique games on expanders. In
Approximation and Online Algorithms, volume 6534 of Lecture Notes in Computer Science,
pages 190–200. Springer Berlin / Heidelberg, 2011.

40 Konstantin Makarychev and Yury Makarychev. Approximation algorithm for non-Boolean
Max k-CSP. Theory of Computing, 10(13):341–358, 2014.

41 Konstantin Makarychev and Yury Makarychev. Nonuniform graph partitioning with un-
related weights. In Proceedings of the International Colloquium on Automata, Languages,
and Programming, pages 812–822, 2014.

42 Rajsekar Manokaran, Joseph Seffi Naor, Prasad Raghavendra, and Roy Schwartz. Sdp gaps
and ugc hardness for multiway cut, 0-extension, and metric labeling. In Proceedings of the
fortieth annual ACM symposium on Theory of computing, pages 11–20, 2008.

43 Pasin Manurangsi, Preetum Nakkiran, and Luca Trevisan. Near-optimal UGC-hardness of
approximating Max k-CSPr. In Proceedings of the Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (to appear), 2016.

44 Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP?
In Proceedings of the Symposium on Theory of Computing, pages 245–254, 2008. doi:
10.1145/1374376.1374414.

45 Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In Proceedings of the Symposium on Theory of Computing, pages 755–764, 2010. doi:
10.1145/1806689.1806792.

46 Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with optimal
amortized query complexity. In Proceedings of the Symposium on Theory of Computing,
pages 191–199, 2000.

47 Ankit Sharma and Jan Vondrák. Multiway cut, pairwise realizable distributions, and de-
scending thresholds. In Proceedings of the Symposium on Theory of Computing, pages
724–733, 2014.

48 Luca Trevisan. Approximation algorithms for unique games. In Proceedings of the Sympo-
sium on Foundations of Computer Science, pages 197–205, 2005.

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.339
http://dx.doi.org/10.1145/1374376.1374414
http://dx.doi.org/10.1145/1374376.1374414
http://dx.doi.org/10.1145/1806689.1806792
http://dx.doi.org/10.1145/1806689.1806792


K. Makarychev and Y. Makarychev 325

49 Jiawei Zhang, Yinyu Ye, and Qiaoming Han. Improved approximations for Max set splitting
and Max NAE SAT. Discrete Applied Mathematics, 142(1):133–149, 2004.

50 Uri Zwick. Finding almost-satisfying assignments. In Proceedings of the Symposium on
Theory of Computing, pages 551–560, 1998.

51 Uri Zwick. Computer assisted proof of optimal approximability results. In Proceedings of
the Symposium on Discrete Algorithms, pages 496–505, 2002.

Chapte r 11





Quantified Constraints in Twenty Seventeen
Barnaby Martin

School of Engineering and Computing Sciences, University of Durham, UK
barnaby.d.martin@durham.ac.uk

Abstract
I present a survey of recent advances in the algorithmic and computational complexity theory
of non-Boolean Quantified Constraint Satisfaction Problems, incorporating some more modern
research directions.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Quantified constraints, Constraint satisfaction problems, Computational
complexity, Parameterized complexity, Universal algebra

Digital Object Identifier 10.4230/DFU.Vol7.15301.327

1 Introduction

The Quantified Constraint Satisfaction Problem (QCSP) might be thought of as the dissolute
younger brother of its better-studied restriction, the Constraint Satisfaction Problem (CSP).
The CSP has been called Königsproblem1 as it sits at the interface between Combinatorics,
Logic and Universal Algebra. The QCSP is a logical generalisation of the CSP whose
combinatorial definition is ugly. Similarly, although the algebraic theory of the QCSP is
useful, its algebraic objects are a bit unwieldy since surjective operations are not closed under
composition. CSPs are ubiquitous in Computer Science, especially when one considers them
in their infinite-domain generality, while QCSPs can not nearly claim to be so important
in applications. This is no doubt due to modelling difficulties induced by the universal
quantifier in the absence of disjunction, together with the lack of ability to relativise (guard)
the universal quantifiers. The variant of QCSP in which both quantifiers may be relativised
(for the CSP this is called the list or conservative case) has in fact been fully classified [7].
The only remaining QCSPs for which such relativisation is not desirable are the Boolean
QCSPs. These are long since classified and Quantified Satisfiability itself, better-known as
QBF (Quantified Boolean Formulas) – which is indeed useful – may be considered its own
research area, and is therefore left out of the scope of this survey (see [75]).

In my papers on QCSP, I have often cited its use in planning [93] and modelling non-
monotonic reasoning [56], but inspection of both these papers reveals this is just the Boolean
case of QBF. There are various claims for the usefulness of non-Boolean QCSPs but specific
explanations are sparse and even the examples given for QCSPs often involve more than just
conjunction in the quantifier-free part (Example 1 in [89] is of this form). Thus, what is left
of the true non-Boolean QCSP is a problem I believe to be mostly of interest to theorists,
especially those who are not afraid of getting their hands dirty. For this is the lot of the
researcher into complexity of QCSPs! However, in this quagmire there is still beauty to be
found and interesting structured classifications are known often mixing curiously techniques
combinatorial and algebraic. Indeed, the complexity researcher can even draw succour from

1 King of problems, rather than problem of kings.

© Barnaby Martin;
licensed under Creative Commons License BY

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný; pp. 327–346

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol7.15301.327
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3


328 Quantified Constraints in Twenty Seventeen

the spurious claim that QCSPs are more important than CSPs since a classification for the
former embeds that of the latter.

1.1 Previous Surveys

I know of two previous articles on general QCSPs that might be considered as surveys,
both written by Hubie Chen [32, 36]. Neither is marketed as as a survey, [32] serves as an
introduction to the topic and [36] is a more reflective piece from the viewpoint of the author.
In this survey, I will try to be more comprehensive, within the scope, and at least in regard
of recent work. However, this article is not intended to be introductory, and will not even
contain definitions for all the concepts introduced.

After a section of background, this survey will have three principal sections, corresponding
to what I see as the three largest research themes into non-Boolean QCSPs in the past decade.
In Section 4, I will survey the state-of-the-art in classical complexity classifications for QCSP
while in Section 5, I will discuss the recent work done in the area of their parameterized
complexities. In Section 6, I will look at new algorithms for QCSPs and proof theories for
their evaluation.

2 Preliminaries

In this article we tend toward the logical definitions for constraint satisfaction. A constraint
language may therefore be seen as a relational first-order structure (possibly with constants).
Relational structures are denoted B with domain B of cardinality |B|. Infinity might appear
in two guises, either in the domain size or number of relations in the signature. When there
is an infinite number of relations there is an issue as to how they are encoded, so we prefer
to avoid this within computational problems. When we describe a constraint language as
finite, we mean both in the domain size and the number of relations. We sometimes talk of a
constraint language or structure (or CSP) with constants where we assume that all elements
of the domain are named by their own constant.

The logic associated with CSP, the fragment of first-order containing just ∃, ∧ and =,
is usually known as primitive positive (pp) logic. The generalisation to QCSP involves the
restoration of ∀ to primitive positive logic and appears in the literature, like the devil, under
a myriad of names. In older mathematical logic texts it is known as positive Horn [74] while
more modern works term it quantified constraint formulas [33], quantified conjunctive-positive
[41], quantified conjunctive [20, 37], conjunctive positive [28] and even few [32] (this last is
from forall-exists-wedge). The foundational [18] even leaves the logic unnamed. Since positive
conjunctive is not among these names, it is the designation this article will use.

For a constraint language B, the problem QCSP(B) takes as input a sentence φ of positive
conjunctive logic and returns a yes-instance precisely when φ is true on B, denoted B |= φ.
The problem CSP(B) is defined similarly but for primitive positive logic. We sometimes also
refer to the (Q)CSP of B as a disingenuous shorthand for (Q)CSP(B).

Note that, in fullest generality, the (so-called uniform) QCSP takes as input a pair (φ,B),
where we may imagine finite B to be given by listing domain and tuples in relations, and
asks whether B |= φ. The (non-uniform) problems QCSP(B) are examples of right-hand
restrictions of QCSP, where left-hand restrictions involve limiting the form of the positive
conjunctive sentence that may be input.

A quantifier block (sequence of quantified variables) is in Π2k when it begins with
universally quantified variables and alternates between the two quantifiers no more than



B. Martin 329

2k − 1 times thereafter. Π2k-CSP(B) is the restriction of QCSP(B) in which the positive
conjunctive input is restricted to be prenex with quantifier block Π2k.

A homomorphism from a structure A to a structure B in the same signature is a function
f from A to B such that for each k-ary relation R, if R(x1, . . . , xk) holds in A, then
R(f(x1), . . . , f(xk)) holds in B. An endomorphism of B is a homomorphism from B to
itself. A structure is a core when all of its endomorphisms are automorphisms. The CSP is
well-known to be equivalent to the homomorphism problem, that given finite input A and B,
asks whether there is a homomorphism from A to B? In this guise, it is apparent whence
the names left- and right-hand restrictions, seen in the previous paragraph, arose. Let us
dwell a little on what makes the CSP equivalent to the homomorphism problem, i.e. how
we translate between primitive positive sentences and relational structures. This is through
the juxtaposition of canonical query and canonical database [77], where one turns a prenex
primitive positive sentence to a relational structure by mapping variables vi to elements vi

and positive atoms R(v1, . . . , vk) in the conjunction to tuples (v1, . . . , vk) in a relation R.
An algebra is a first-order functional structure. Algebras are denoted A with domain A. If

R is anm-ary relation over B and f is a k-ary operation on B, then we say f preserves R if, for
any (x1

1, . . . , x
m
1 ), . . . , (x1

k, . . . , x
m
k ) ∈ R we have also (f(x1

1, . . . , x
1
k), . . . , f(xm

1 , . . . , x
m
k )) ∈ R.

When f preserves R we also say that R is invariant under f and f is a polymorphism of
R. A constraint language B is preserved by f if all of its relations are. Note that the
unary polymorphisms of B are precisely its endomorphisms (whence the term polymorphism).
Let Pol(B) be the set of polymorphisms of B and let Inv(A) be the set of relations on A
which are invariant under (each of) the operations of A. Pol(B) is an object known in
Universal Algebra as a clone, which is a set of operations containing all projections and closed
under composition (superposition). I will conflate sets of operations over the same domain
and algebras just as I do sets of relations over the same domain and constraint languages
(relational structures). Indeed, the only technical difference between such objects is the
movement away from an ordered signature, which is not something we will ever need. Let 〈A〉
be the clone generated by (the set of operations) of A and let s(〈A〉) be this clone restricted
to its surjective operations. Finally, let sPol(B) be the set of surjective polymorphisms of
B and let 〈B〉pp and 〈B〉pc be the class of relations definable on B in primitive positive and
positive conjunctive logic, respectively.

The algebraic approach to CSP and QCSP is based on the following observations, each
producing a Galois Correspondence. Let B be a constraint language and A an algebra, over
the same finite domain. Then,

Inv(Pol(B)) = 〈B〉pp [63, 14] & Inv(sPol(B)) = 〈B〉pc [18]
Pol(Inv(A)) = 〈A〉 [92] & sPol(Inv(A)) = s(〈A〉).

We consider a Galois Correspondence to be an order-inverting isomorphism between two
lattices. This is exactly in line with the original correspondence of Evariste Galois, except
that we will allow our lattices to be infinite. The order-inverting isomorphisms are given
by Inv and Pol, for the CSP above left, between clones and sets of relations closed under
primitive positive definability. For the QCSP above right, they are given by Inv and sPol,
between the surjective reducts of clones and sets of relations closed under positive conjunctive
definability (the second part of this correspondence, appearing on the bottom row above, is
seldom noted in the literature). It is stated in [33] that a careful reading of the proof from
[18] shows that conjunctive positive definability in 〈B〉pc may even be replaced with its Π2
fragment. Thus, on finite structures, positive conjunctive logic collapses to its Π2 fragment.

The consequence of the Galois Correspondence is that whenever Pol(B) ⊆ Pol(B′) there
is a logspace reduction from CSP(B′) to CSP(B). Note that B and B′ must share the same

Chapte r 12



330 Quantified Constraints in Twenty Seventeen

domain. Similarly, when sPol(B) ⊆ sPol(B′) there is a logspace reduction from QCSP(B′) to
QCSP(B). Thus, the (surjective) polymorphisms control the complexity of these problems.

I assume a basic familiarity with the modern theory of Computational Complexity. For
more details on complexity classes, I refer the reader to [91] for (classical) Complexity Theory
and [54] for Parameterized Complexity. Further, I will carelessly use tractable as a synonym
for polynomially solvable. For finite B, we note that the problems CSP(B), Π2k-CSP(B) and
QCSP(B) are in the complexity classes NP, ΠP

2k and Pspace, respectively.

2.1 More Algebra
Let [n] := {1, . . . , n}. An operation f is called idempotent if, for each x, f(x, . . . , x) = x. It
is a majority if it is ternary and satisfies f(x, x, y) = f(x, y, x) = f(y, x, x) = x. It is Mal’tsev
if it is ternary and satisfies f(x, x, y) = f(y, x, x) = y. On a totally ordered domain, the
binary operations min and max return the minimum and maximum of their two arguments,
respectively. A semilattice operation is a binary operation that is associative, commutative
and idempotent. Both min and max are semilattice operations. For 2-semilattice, one relaxes
associativity to the weaker condition f(f(x, x), y) = f(x, f(x, y)). A unit for a semilattice
operation f is an element i so that f(x, i) = x for all x. A k-ary operation f is called a set
operation if f(x1, . . . , xk) = f(y1, . . . , yk) whenever {x1, . . . , xk} = {y1, . . . , yk}. An algebra
is called idempotent trivial if all of its idempotent operations are projections. A constraint
language is called idempotent trivial if its polymorphism clone is.

Majority operations can be generalised to k-ary near-unanimity operations, which satisfy
f(x, . . . , x, y) = f(x, . . . , y, x) = . . . = f(y, . . . , x, x) = x. This definition can now be
relaxed for weak near-unanimity operations which are idempotent operations that only satisfy
f(x, . . . , x, y) = f(x, . . . , y, x) = . . . = f(y, . . . , x, x). Finally, a k-ary operation t is Taylor if
it satisfies a system of identities t(x1

i , . . . , t
k
i ) = t(y1

i , . . . , y
k
i ), for i ∈ [k], in the variables x

and y, where xi
i = x and yi

i = y. One can see that weak near-unanimities are examples of
Taylor operations.

For a finite-domain algebra A we associate a function fA : N→ N, giving the cardinality of
the minimal generating sets of the sequence A,A2,A3, . . . as f(1), f(2), f(3), . . ., respectively.
We may say A has the g-GP if f(m) ≤ g(m) for all m. The question then arises as to
the growth rate of f and specifically regarding the behaviours constant, logarithmic, linear,
polynomial and exponential. Wiegold proved in [98] that if A is a finite semigroup then fA is
either linear or exponential, with the former prevailing precisely when A is a monoid. This
dichotomy classification may be seen as a gap theorem because no growth rates intermediate
between linear and exponential may occur. We say A enjoys the polynomially generated
powers property (PGP) if there exists a polynomial p so that fA = O(p) and the exponentially
generated powers property (EGP) if there exists a constant b so that fA = Ω(g) where
g(i) = bi.

For a finite-domain, idempotent algebra A, k-collapsibility may be seen as a special form
of the PGP in which the generating set for Am is constituted of all tuples (x1, . . . , xm) in
which at least m − k of these elements are equal. k-switchability may be seen as another
special form of the PGP in which the generating set for Am is constituted of all tuples
(x1, . . . , xm) in which there exists ai < . . . < ak′ , for k′ ≤ k, so that

(x1, . . . , xm) = (x1, . . . , xa1 , xa1+1, . . . , xa2 , xa2+1, . . . , . . . , xa′
k
, xa′

k
+1, . . . , xm),

where x1 = . . . = xa1−1, xa1 = . . . = xa2−1, . . . , xak′ = . . . = xam
. Thus, a1, a2, . . . , ak′ are

the indices where the tuple switches value. Note that these are not the original definitions
[33, 35] but they are provably equivalent [27]. We say that A is collapsible (switchable) if there



B. Martin 331

exists k such that it is k-collapsible (k-switchable). For any finite algebra, k-collapsibility
implies k-switchability and for any 2-element algebra, k-switchability implies k-collapsibility.
Chen originally introduced switchability because he found a 3-element algebra that enjoyed
the PGP but was not collapsible [35].

An alternative algebraic formulation of the CSP and QCSP has the form, for the latter, of
QCSP(A) for some algebra A. One might imagine a restriction here to surjective operations
but it seems tractability may be found beyond this. The input to this problem is of the
form (φ,B) where B is a finite constraint language which is invariant under A. Note that B
and A share the same domain and for fixed, finite A, the problem to determine if input B is
invariant under A is in polynomial time.

2.2 Various Digraphs
A digraph is a structure with a single binary relation E; if this is symmetric then it is further
a graph. A (self-)loop on a vertex x is an instance of (x, x) ∈ E. A graph without self-loops
is termed irreflexive and a graph with loops on every vertex is termed reflexive. Sometimes
we term a graph partially reflexive to emphasise we are somewhere inbetween.

A clique is an irreflexive graph where all distinct vertices are adjacent. A k-partite graph
is one whose vertices may be partitioned into k classes where there are no edges between
vertices in the same class. If all other edges are present one refers to a complete k-partite (or
multipartite) graph. A graph is a tree if it is connected and contains no cycles, and a forest
is the disjoint union of trees. A pseudotree is a connected graph with at most one cycle, and
a pseudoforest is the disjoint union of pseudotrees.

A semicomplete digraph is an irreflexive graph so that for distinct x, y at least one of
(x, y), (y, x) ∈ E. A tournament further satisfies that precisely one of (x, y), (y, x) ∈ E. A local
tournament satisfies, for every x and distinct y and z, such that either both (x, y), (x, z) ∈ E
or both (y, x), (z, x) ∈ E, that there be precisely one of the edges (y, z) or (z, y) in E. A
source (respectively, sink) in a digraph is a vertex with in-degree (respectively, out-degree)
zero. A digraph is smooth if it has neither source nor sink.

2.3 The Modern Study of CSPs
The foundational paper for studying the complexity of CSPs came in 1978 from Thomas
Schaefer [95] in which he proved a P versus NP-complete dichotomy for Boolean CSPs. The
classification has six tractable classes which we will give below alongside their associated
polymorphism. The characterisation with polymorphisms appeared first in [70] which is the
foundational paper for the algebraic approach to CSPs.

0-valid (constant 0) Horn (min) bijunctive (majority)
1-valid (constant 1) dual Horn (max) affine (Mal’tsev)

Note that there are unique operations on the Boolean domain that are majority and Mal’tsev,
respectively. Obviously, this applies also to min and max once the order 0 < 1 is assumed.
The outstanding conjecture in the area of finite-domain CSPs was later formulated by Feder
and Vardi in [58] and is that these are all either in P or are NP-complete, which is surprising
given these CSPs appear to form a large microcosm of NP, and NP itself is thought unlikely
to have this dichotomy property since the work of [79]. It seems Feder and Vardi tried very
hard to reproduce an argument à la Ladner, in a logic that can express all finite-domain
CSPs, yet failed. The original Feder-Vardi conjecture did not specify where the boundary
between P and NP-complete should be, but this has now been concretely conjectured in

Chapte r 12



332 Quantified Constraints in Twenty Seventeen

the algebraic language [21]. This conjecture remains unsettled, although dichotomy is now
known on substantial classes, e.g. structures with domains of size ≤ 3 [95, 22] and smooth
digraphs [68, 5].2

The conjectured complexity delineation in [21] was that a finite-domain constraint language
B that is expanded with all constants should be so that its CSP is NP-complete precisely if
Pol(B) has a G-set as a factor. Remember that all polymorphisms of a constraint language
expanded with its constants are idempotent. We will not define what it is for a G-set to be a
factor since there are various more modern specifications that are more user-friendly for our
purposes. For example, the condition for tractability is equivalent to possessing a Taylor
operation [81] or a weak near-unanimity operation [84]. We note that the backward direction
to this conjecture is known to be true [21].

3 Background

Schaefer announced a dichotomy theorem for Boolean QCSP in the same paper as he proved
the dichotomy for Boolean CSP [95]. The proof was omitted and the result in any case could
ostensibly only apply to the situation with constants (0 and 1) allowed in instances. The
resolution of the Pspace-hard cases in the case where constants do not appear was finally
given much later, independently in [47] and [48]. Schaefer was also quite vague about how to
extend the polynomial algorithms for subclasses of Boolean CSP to the same subclasses of
Boolean QCSP, and articles fleshing out these algorithms continued for a number of years:
[72] (Horn and dual-Horn cases), [1] (bijunctive case).

The situation for non-Boolean QCSPs seems to have been taken up largely only in the
new millennium with two communities working on the problem, one more applied, with a
background in Constraint Programming [16, 15, 64, 60] and one more theoretical with a
background in Algorithms and Complexity (and often Universal Algebra) [18, 33]. Both
communities are united in their attempts to take established algorithmic methods for CSPs,
such as local consistency and linear equations and adapt them for QCSPs. I belong to the
theoretical community, and the main thrust of this survey will be in this direction.

Following Schaefer, and in line with the like program for CSPs, the bulk of the research into
complexity of QCSPs in the theoretical community has been in the non-uniform, right-hand
framework in which one parameterises the problem by the constraint language. We already
noted that such a complexity taxonomy for QCSPs embeds the similar one for CSPs. This is
because CSP(B) and QCSP(B ] 1) are polynomially equivalent for all B, where B ] 1 denotes
the disjoint union of B with an isolated element. The algebraic approach to QCSP was
pioneered in [17] whose expanded journal version (also with another author) appeared much
later as [18]. This early work gave the Inv-sPol Galois Correspondence already mentioned
and provided uniform explanations of QCSP tractability for classes of problems based on
the presence of certain surjective (even idempotent) polymorphisms. This fruitful approach
was continued in [33] where the key idea of collapsibility was introduced. Collapsibility was
originally introduced as a (relational) property of constraint languages but was later explored
as a property of idempotent algebras [33]. When a constraint language B, expanded with all
constants, is collapsible then the evaluations of instances φ of QCSP(B) may be reduced to a
polynomial system of instances of CSP(B), and so the maximal complexity of the problem is

2 Petar Markovic announced a proof of dichotomy for 4-element domains in 2011. The argument has
since passed several years in confinement for refinement. It is in preparation as this goes to press. Very
recently, Dmitriy Zhuk has announced a proof for the 5-element case (at AAA 91, February 2016, Brno).



B. Martin 333

reduced to NP [33]. If, further CSP(B) is in P, then this yields polynomial solvability for the
QCSP.

Another manner of extension of ideas from the CSP to the QCSP arises in [39] where the
notion of establishing strong k-consistency3 is generalised for the QCSP. Establishing strong
k-consistency is a well-known procedure for solving various CSPs, dating back to at least
[53, 97] and is now known to be an algorithm for an even larger class of problems since its
relationship with a certain pebble game was uncovered in [78]. It will be convenient to assume
that our constraint language is closed under projections of its relations and further that our
input φ is closed under projections of its aliquot atoms (thus, for example, if it contains an
atom R(v1, . . . , vk) then it also contains atoms corresponding to each ∃viR(v1, . . . , vk)). We
say that φ is k-consistent (with respect to B) if, for every assignment α of k − 1 variables
x1, . . . , xk−1 from φ to elements from B that satisfy the conjuncts of φ that involve no
other variables than x1, . . . , xk−1, and for every variable xk from φ, the assignment α can be
extended to xk such that all conjuncts of φ that involve no other variables than x1, . . . , xk are
satisfied on B by the extension of α. We say that φ is strongly k-consistent if φ is j-consistent
for all j with 2 ≤ j ≤ k. We would say that φ is globally consistent if φ is k-consistent for all
k > 0.

When strong k-consistency implies global consistency, then we have that establish-
ing strong k-consistency will be an algorithm for the CSP. Further, establishing strong-k-
consistency is an algorithm for the CSP for a large class of constraint languages including
those preserved by near-unanimity [71] and set [50] polymorphisms.

In [39], a suitable pebble game is found for the variant of establishing k-consistency
associated with the QCSP and this gives positive algorithms for left-hand restrictions where
a generalisation of treewidth comes into play (we will return to this line of enquiry later).
Returning to the land of dexterity, establishing k-consistency is shown to be a polynomial
algorithm for QCSP(B) when B is preserved by a near-unanimity operation. Something
stronger than establishing [strong] k-consistency is termed establishing default k-consistency
[39] and this is shown to give a polynomial algorithm for QCSP(B) when B is preserved
by an idempotent set operation f that has an additional property termed unique minimal
coherent set with respect to f [39, 31]. As it happens, both of these classes of polymorphism
bestow collapsibility and so the polynomial algorithm is implied from [33], together with the
corresponding works on the CSP [50]. However, the direct algorithm explained through the
pebble game gives a simple and unifying description of these tractabilities.

3.1 Constants and Idempotency
The complexity classification problem for finite-domain CSPs is greatly facilitated by the fact
that one may assume that all constants are primitive positive definable, up to isomorphism.
This is due to the key notion of cores (recall these are structures for which all endomorphisms
are automorphisms). Every finite-domain constraint language is homomorphically equivalent
to a constraint language that is a core and in this core all constants are primitive positive
definable up to isomorphism. In the algebraic language this corresponds to the assumption,
without loss of generality, that all polymorphisms are idempotent. A robust notion of core
for positive conjunctive logic and QCSP is not exactly known. The putative notion Q-core of
[42] has been successfully deployed in complexity classifications [85, 83], as we shall see later;
however, many of its properties (even “uniqueness”) are not yet clear. Thus, it is not known

3 The authors of [39] call this establishing k-consistency but I align with, inter alia, [78].

Chapte r 12



334 Quantified Constraints in Twenty Seventeen

if the QCSP algebraic classification may be reduced, from sets of surjective operations, to
idempotent clones. Certainly, a constraint language, agreeing on all positive conjunctive
sentences, with constants up to isomorphism positive conjunctive definable, is not always
possible [42]. As a result of this, a certain amount of the literature on QCSP classifications is
based on the idempotent assumption and consequently only deals with constraint languages
already expanded with constants. This is true for many of the papers in which algebra plays
a central role, for example, [33, 27]. Even in the foundational [18], all of the polymorphisms
giving tractability are idempotent (if the idempotent reduct of sPol(B) is tractable for QCSP
then clearly so is sPol(B) itself). Thus, although the results of [18] apply where sPol(B)
need not contain only idempotent operations, the work itself may be said to focus on the
idempotent. Several works involving combinatorial results operate in the wilderness outside
of idempotency [86, 85, 83] but the only totally algebraic paper in this terra incognita (sic!) is
[44]. In this last work, the object of study is QCSP(A) where A is a monoid. It follows from
collapsibility that this problem is always in NP and the authors give a P versus NP-complete
dichotomy with the condition for tractability being that A is a block group that is generated
by its regular elements. The condition for tractability of CSP(A), even in the more general
situation in which A is a semigroup, is just A being a block group [23]. The really interesting
thing about the QCSP classification here is an explanation of tractability through a binary
monoid operation f that may not be idempotent. Curiously, the tractability comes from a
term operation generated by f that may not even be surjective (though f itself is). However,
when this term operation is restricted to the so-called idempotents of A it is surjective (indeed,
idempotent).

4 Classical Complexity

The modern sport for complexity classifications for QCSP was apparent already in [18]. In
this paper the new algebraic methods were leveraged to obtain the first trichotomy for QCSP.
A binary relation is a graph of a permutation if it is the set of pairs {(i, π(i)) : i ∈ [n]} for
some permutation π. Let B be a constraint language on [n] that contains all (n!) graphs of
permutations. Then QCSP(B) is either in P, is NP-complete or is Pspace-complete (Theorem
7.4 in [18] deals with n ≥ 3, the remainder come from Schaefer [95]). The polynomial cases
possess either a majority or Mal’tsev polymorphism. For NP membership of the NP-complete
cases, an early form of “collapsibility” appears as Proposition 7.1. Then, for the remaining
cases of NP-hardness, the classification for CSP from [49] is cited.

The next QCSP classification seems to have come in [30]. 2-semilattice polymorphisms r
are sufficient to make the CSP tractable [24] but for QCSP(Inv(r)), Chen observed two types
of behaviours, namely being in P and being co-NP-hard [30]. The separating criterion has to
do with the number of strongly connected minimal components in the graph given by E(x, y)
iff r(a, b) = a. When this number of minimal components is one (it is unique) the problem
is in P, otherwise it is co-NP-hard. The situation for semilattice operations s is more fully
understood. QCSP(Inv(s)) is in P, if f has a unit, else QCSP(Inv(s)) is Pspace-complete
(the Pspace-hardness in this case seems to be due to Bulatov in [18] and did not appear in
any previous version of that paper).

A largely combinatorial approach to QCSP complexity was followed in the works [86, 85,
83], deriving various classifications, although the algebraic method was used for tractability
arguments in the latter two. These papers were an amusing diversion for their authors but
do not necessarily shed much light on how one might argue for complexity classifications
in general. The graphs considered in these papers are all instances of partially reflexive



B. Martin 335

pseudoforests, for which a complexity classification for the Retraction problem is known.
The Retraction problem may be seen as the CSP in which all constants are available (the
CSP classification for partially reflexive pseudoforests without constants is nearly trivial).

In [85] a dichotomy is given for QCSP(H) whereH is a partially reflexive forest. In the case
of partially reflexive forests, this is between NL and NP-hard, whereas for partially reflexive
paths it is between NL and Pspace-complete. A key idea here is loop-connectedness, which
asks whether the subgraph induced by the self-loops is connected. This plays an important
role in the classification of the Retraction problem for (partially reflexive) pseudoforests in [59].
In [85] it is noted that loop-connectivity of a partially reflexive tree H is a sufficient criterion
for NL membership of QCSP(H), and this is witnessed by a majority polymorphism (thus
even when H is expanded with constants the problem remains in NL). However, it is not a
necessary condition and a simple example is furnished by the undirected path on five vertices,
P10100, with the middle vertex as well as one end a loop. This is clearly not loop-connected,
yet QCSP(P10100) is in NL. Indeed, QCSP(P10100) coincides with QCSP(P100), where P100 is
the undirected path on three vertices with a loop at one end. Clearly, P100 is loop-connected,
and so the result follows. It is here where the notion of Q-core explored in [42] is useful,
because the Q-core of P10100 is P100. Indeed, when H is a partially reflexive tree that is a
Q-core all of the known classifications for the QCSP (from [86, 85, 83]) are consistent, in the
sense of P versus NP-hard, with the classification for the Retraction problem in [59]. Note
that the jump from pseudotrees to pseudoforests creates a disconnected graph which causes
a collapse in QCSP complexity to NP; and even further to NL, in the case that the graph
has a loop or is bipartite.

The QCSP complexity classification for irreflexive pseudotrees is given in [86] (one can
easily infer the result for irreflexive pseudoforests). Finally, the classification for partially
reflexive cycles is given in [83]. An interesting observation appearing in this classification is
the identification of a QCSP tractable graph C1110, the undirected 4-cycle with three self-
loops, without a majority polymorphism. Indeed, C1110 is even a Q-core. This is surprising
because all tractable cases from the classification for partially reflexive forests possess these
majorities in their Q-core.

In [27], a QCSP classification is given for the case of partially reflexive paths expanded with
constants. Here, the distinction between NL and NP-hard perfectly follows the classification
of [59], but now the case NP-complete becomes possible (some NL cases become NP-complete,
for example, this is the case for P10100 expanded with constants). Thus, we reach here a
classification which is a trichotomy between NL, NP-complete and Pspace-complete, where
we had a dichotomy without constants between NL and Pspace-complete. Note that once we
expand with constants we have a constraint language that is both a core and a Q-core.

In [51], a more advanced marriage of combinatorics and algebra was attempted, and for
the first-time this mixed approach gave quite sophisticated algebraically proven lower bounds.
Semicomplete digraphs are cores so one may assume without affecting QCSP complexity that
they are expanded with constants naming their vertices and that their polymorphisms are all
idempotent. The complexity classification for QCSP(H), where H is a semicomplete digraph,
given in [51] is rooted in the long proof that smooth semicompletes with more than one cycle
are idempotent trivial. It follows that QCSP(H) is Pspace-complete in this case [18]. Note
that the only smooth semicompletes with no more than one cycle are the directed 2- and
3-cycles. It turns out QCSP(H) is also Pspace-complete when H is a smooth semicomplete
with more than one cycle with a sequence of sinks added (respectively, sources added). The
remainder of the classification is simple, if H has both a source and a sink, then QCSP(H) is
in NP; and if H is the directed 2- or 3-cycle with a sequence of sinks (respectively, sources)

Chapte r 12



336 Quantified Constraints in Twenty Seventeen

added, then QCSP(H) is in NL. The NP-complete cases (source and sink plus more than
one cycle) can be inferred from the classification for the CSP [4].

4.1 Bounded Alternation
An interesting restriction of the QCSP addresses the case where one allows only bounded
alternation of the quantifiers in a (prenex) input instance. An interesting application for the
Π2-CSP is given in Section 3 of [6] (but note the universal quantifiers are relativised). The
situation for Boolean constraint languages parallels the QCSP, with the problems Π2k-CSP(B)
being ΠP

2k-complete precisely when QCSP(B) is Pspace-complete [69].
Bounded alternation reappeared in the theoretical study of the QCSP in the remarkable

paper [34] where it was noted that for certain constraint languages B, Π2k-CSP(B) is in co-NP,
for each k. Indeed, an example of co-NP-completeness may be given by some constraint
languages invariant under a semilattice operation without unit [34, 30]. In fact, if f is a
semilattice operation, then either Π2k-CSP(Inv(f)) is in P, if f has a unit, or otherwise Π2k-
CSP(Inv(f)) is co-NP-complete. Let us recall the dichotomy for the QCSP in this situation,
already mentioned, that QCSP(Inv(f)) is in P, if f has a unit, else QCSP(Inv(f)) is Pspace-
complete [18]. So, it seems for bounded alternation QCSP, there are three complexity regimes
above P: NP-complete, co-NP-complete and maximal complexity (Π2k-complete), where for
the QCSP there are only NP-complete and Pspace-complete.

Chen proved in [35] that a computationally effective form of PGP is sufficient to place
Π2k-CSP(A) in NP. Subsequently, Zhuk has proved that switchability is the only type of
PGP for finite algebras [101], thus all forms of PGP associated with finite-domain Π2k-CSP
and QCSP are computationally effective.

4.2 Counting Quantifiers
Quite recently has appeared, in the context of the CSP, the study of counting quantifiers of
the form ∃≥j [87]. These quantifiers allow one to assert the existence of at least j elements
such that the ensuing property holds, so on a structure B with domain of size |B|, the
quantifiers ∃≥1 and ∃≥|B| are precisely ∃ and ∀, respectively. Thus one can study variants of
CSP(B) in which the input sentence to be evaluated on B remains positive conjunctive in its
quantifier-free part, but is quantified by various counting quantifiers from some non-empty
set. For X ⊆ {1, . . . , |B|}, X 6= ∅, the X-CSP(B) takes as input a sentence given by a
conjunction of atoms quantified by quantifiers of the form ∃≥j for j ∈ X. It then asks
whether this sentence is true on B. In this fashion, the X-CSP may be seen as a natural
generalisation of the CSP and QCSP.

In [87] a panoply of classifications is given for X-CSP(B), mostly for the situation where B
is some kind of graph. In general, as with the QCSP, complexities of the form P, NP-complete
and Pspace-complete are readily available and classifications are either trichotomies or
dichotomies between P and NP-hard. Interestingly, when one has access to all the quantifiers
∃≥1, . . . ,∃≥|B| the intermediate complexity NP-complete seems to disappear (at least I do not
know a case of it). The problems X-CSP(H) are completely characterised, for any X ⊆ [|H|],
when H is an undirected clique or cycle, into the classes P, NP-complete and Pspace-complete.
Then the problem {1, 2}-CSP(H) is considered where H is an undirected graph, something
of a companion to the theorem of Hell and Nešetřil that these CSPs are in P if H is bipartite
and are NP-complete otherwise. The authors show that {1, 2}-CSP(H) is in P if H is a forest
or a bipartite graph with a 4-cycle, and is NP-hard otherwise. For bipartite graphs H that are
neither forest nor contain a 4-cycle it is even shown that {1, 2}-CSP(H) is Pspace-complete.



B. Martin 337

Finally, a trichotomy theorem is shown for {1, 2}-CSP(H) when H is a complete multipartite
graph, with such problems being either in L, NP-complete or Pspace-complete.

The algebraic method, so potent in understanding the complexity of CSPs and QCSPs
has recently been tailored to counting quantifiers [25]. The algebraic objects may be seen
as a kind of expanding polymorphism. Call an operation f : Bk → B j-expanding if, for
all X1, . . . , Xk ⊆ B such that |X1| = . . . = |Xk| = j, we have |f(X1, . . . , Xk)| ≥ j. This
condition at j = 1 is trivial (it says that f is a function) and at j = |B| asserts surjectivity.
For X ⊆ {1, . . . , |B|}, we say that f is X-expanding if it is j-expanding for all j ∈ X. Now,
the relations that are X-pp-definable over B are exactly those that are preserved by the
X-expanding polymorphisms of B. In the case of {1}-pp and {1, |B|}-pp, this includes the
Galois Correspondences we have already met.

Applying this algebraic theory, as was done with the QCSP, à la [18], would be splendid
but a number of the arguments seem to fail for expanding polymorphisms (though Mal’tsev
seems to go through).

4.3 Infinite Domains
The study of QCSP(B), for infinite-domain B, is not as advanced as the like program for
CSPs, and was pioneered in [8]. The authors gave an L, NP-complete, co-NP-hard trichotomy
for equality languages, which are those constraint languages that admit a first-order definition
in (Q; =).

In the modern systematic study of infinite-domain CSPs, the first classification following
equality languages was that for temporal languages [10], that admit a first-order definition
in (Q;<), and it seems the major thrust in infinite-domain QCSPs today is in this class.
Note that (Q; =) and (Q;<) both admit quantifier elimination and all first-order definable
relations are already quantifier-free definable, say in conjunctive normal form (CNF). For
the classification of [8] a key role is played by negative and positive languages. The latter
do not permit negation of any form while the former is broadly the opposite, allowing only
disequalities in CNFs except for singleton clauses (conjuncts) of equality. When B is an
equality language, QCSP(B) is in L if B is negative, QCSP(B) is NP-complete if B positive
but not negative4, and co-NP-hard otherwise.

In the papers [29, 28], a classification for QCSPs is given for the positive temporal
languages, that is with a positive definition in (Q;≤), where the authors show that these
QCSPs are either in L, NL-complete, P-complete, NP-complete or Pspace-complete. Each of
these cases is both algebraically and syntactically characterised. In the history of temporal
CSPs, the fragment Ord-Horn played a key role [90]. In [46] a subclass known as Guarded
Ord-Horn is established as tractable for QCSP. The significance of this class is noted in [100]
where it is shown that Guarded Ord-Horn languages are the only tractable case within the
dually-closed (if language B over numeric domain pp-defines k-ary R then it also pp-defines
{(−x1, . . . ,−xk) : (x1, . . . , xk) ∈ R}) Ord-Horn languages. That is, when B is a dually-closed
temporal language that is not Guarded Ord-Horn, then QCSP(B) is co-NP-hard [100].

In [9] it is shown that temporal constraint languages with polymorphism min (also max)
and mx (also its dual) have a tractable QCSP. I will leave the polymorphism mx undefined
but suffice it to say that it plays an important role in the temporal CSP classification [11].

Counting quantifiers have also been taken to the domain of the equality languages in [88]
with various classifications given. Here it is appropriate to also consider quantifiers of the

4 A relation is both negative and positive when it is just a conjunction of equalities.

Chapte r 12



338 Quantified Constraints in Twenty Seventeen

form ∀>j , meaning that the associated binding holds on all but at most j elements of the
domain.

5 Parameterized Complexity

There has been a plethora of papers in recent years devoted to the parameterized complexity
of model-checking classes of structures in various fragments of first-order logic. QCSP(B) is
nothing other than the model-checking problem for positive conjunctive logic on the singleton
class {B} and so it is unsurprising that this new line of research impinges upon its study.

The paper [20] considers the positive conjunctive model-checking problem for posets
where the sentence and poset are both input but where the poset is restricted to come from a
certain class. A preliminary result shows a concrete, four-element poset for which the QCSP
is NP-hard (most likely one could prove this is Pspace-complete). The main result then is
that model-checking positive conjunctive logic on bounded width posets is FPT, where the
parameter is the sentence size. In fact, they prove a stronger result where the class of posets
is unrestricted, that is model-checking positive conjunctive logic on posets is FPT, where
the parameter is the sentence size plus the poset width. The paper is a companion to one
proving a result similar to the first but for existential logic [19]. This line of enquiry was
pursued by other authors culminating in the demonstration that model-checking first-order
logic on posets is FPT when the parameter is the sentence size plus the poset width [62].
Parameterized intractability also features in [20], where the model-checking problem for
positive conjunctive logic on posets of bounded depth and bounded cover-degree is shown to
be co-W[2]-hard.

Another research direction has to do with left-hand restrictions, where the class from
which the input sentence comes is restricted. In this area results usually may appear in
both classical and parameterized flavours since they appear as gaps between P and not FPT
(assuming W[1] = FPT). The first outstanding result in this area is due to Grohe [66], in
which it is noted, when relational arity is bounded, that if the restricted class of primitive
positive sentences does not possess bounded tree-width, the model-checking problem for this
class is not FPT, unless W[1] = FPT. In this line of research the parameter is always the
size of the sentence. The converse, that bounded-treewidth yields tractability for this model-
checking problem was already known [61], so this result gives a typical type of classification
theorem, based on a complexity-theoretic assumption. It is not immediately apparent what
the graph-theoretic property of bounded-treewidth means for a class of sentences, yet the
translation between primitive positive sentences and relational structures through canonical
query and canonical database has been discussed. It is similarly possible to consider such
measures for other classes of arity-bounded first-order formulas, and this line of thought was
pursued by other authors. Bounded treewidth alone does not guarantee tractability for the
model-checking problem for positive conjunctive logic unless both the relational arity and
constraint language size are bound [65].

A precursor of Grohe’s result was furnished in [67] where only classes of sentences satisfying
a certain closure property (broadly speaking that of isomorphism, when the sentence is
viewed as a graph) were considered. This situation was generalised for positive conjunctive
logic in [40] and then to full first-order logic in [38]. The key notion in these works, and the
closure condition alluded to, is graphical closure. A class of sentences is graphically closed if
it satisfies two types of closure, the first syntactic and the second graphical. The syntactic
closure deals with types of logical equivalence including de Morgans laws, associativity,
commutativity and distributivity, together with some rules when a bound variable does



B. Martin 339

not a appear free in a literal in a conjunct or disjunct. The graphical closure deals with
substitutions of relation symbols in atoms, such that if, e.g., E and F are ternary relation
symbols in the signature, then any sentence containing the atoms E(x, y, x) may have this
substituted by F (x, y, x) (di-graphical might be more appropriate here, since the order and
multiplicity of x and y matter). The main result of [38] uses a relative of tree-width to
discern for which graphically closed sets of sentences Φ of bounded arity model-checking
first-order logic is FPT. Specifically, if Φ satisfies a condition known as bounded thickness
then the model-checking problem is in P and therefore FPT; otherwise it is not (assuming
FPT 6= W [1]). The restriction of bounded thickness to positive conjunctive sentences is
elimination width, for which the gap between P and not FPT was proved in [40]. The
polynomial result of that paper subsumes the earlier polynomial result of [39], where the
notion of treewidth was differently generalised for positive conjunctive logic.

Finally, a true analog of Grohe’s Theorem, for positive conjunctive logic, not making the
assumption of graphical closure, has been given in [43].

A further investigation into parameterized complexity comes in the very recent [57] where
a new parameter prefix pathwidth is introduced for QBF. Atserias and Oliva [2] had previously
shown that, in contrast to SAT, many of the well-known decompositional parameters (such
as treewidth and pathwidth) do not reduce the complexity of QBF. The main reason for this
appears to be a blindness of these parameters towards the quantifier dependencies between
variables of a QBF formula. Prefix pathwidth mitigates some of these difficulties and it is
proved that QBF is FPT with respect to this parameter (and the width of the dependency
poset). The result directly applies also to QCSP with any bounded domain size and hence
has been eligble for inclusion in this survey.

6 Proof Theory and Evaluation

The canonical proof system for propositional formulas in CNF is Resolution [52, 94] in which
one tries to prove a system of clauses is contradictory. This, therefore, gives the proof theory
for SAT. Resolution has been extended for QBF to the popular system of Q-Resolution
[76]. Q-Resolution, being a system for QBF, is outside the scope of this survey, but in [37]
Chen identifies two of its weaknesses as being the restriction to the Boolean domain as well
as requiring the input sentence to be in prenex form. In his QCSP proof system (glorious
in its anonymity) he overcomes these shortcomings. Egly [55] had previously proposed a
proof system for non-prenex QBF, but Chen’s system appears to be the first to allow for the
possibility of a non-Boolean domain. The width notion of this proof system is associated
with the notion of k-judge-consistency which implies an earlier notion of consistency which
Chen and Dalmau used to demonstrate algorithmic tractability in [39].

Recall the positive conjunctive sentence width notion arising from [38] (cf. Section 5) was
elimination width. We now designate the Q-width of a positive conjunctive sentence to be the
maximum of its elimination width and any arity of a relation appearing within. Chen’s work
[37] has an algorithmic side-effect, giving a simple generic polynomial method for deciding
the (uniform) instances (φ,B) of QCSP where we assume φ has Q-width bounded by some
constant k. Of course the polynomiality of this has long since been known but relies on
such non-trivial-but-tractable devices as the computing of tree decompositions. The positive
algorithmic result from [37] extends that from the earlier [39] in two important ways: firstly,
there is no prenex assumption; and, secondly, the notion of Q-width is more general than the
generalised treewidth. We also already mentioned that k-judge consistency implies the earlier
notion of consistency, which can be seen as a further generality of [37] over [39], though this

Chapte r 12



340 Quantified Constraints in Twenty Seventeen

allows the condition in the former to activate the algorithm in the latter. It might also be
said that in [37] a bird’s eye view of the landscape is obtained through a marriage between
the proof system and its associated algorithm.

7 Future Prospects

In [36], Chen made a number of natural conjectures regarding QCSPs, typically concerning
idempotent algebras A. My favourite speculated that QCSP(A) should be in NP if A has
the PGP and is otherwise Pspace-complete (see Conjectures 5 and 6 in [36]). Dmitriy
Zhuk has settled the backward direction by proving that the only form of PGP for finite-
domain algebras is switchability [101]. I suspect there is some tight relationship between
NP-membership for the QCSP, and PGP in the associated algebra, which will soon find
expression.

A structure is ω-categorical if it is up to isomorphism the only countably infinite model of
its first-order theory. The Galois Correspondence Inv-Pol is known to hold for ω-categorical
constraint languages [12] and has been instrumental in a number of recent CSP classifications
(e.g. [11, 13]). For the operational side one needs to insist the clones satisfy a certain
topological (local) closure [96]. It is not known whether Inv(sPol(B)) = 〈B〉pc for ω-categorical
B. The best general result in this direction involves the periomorphisms of [45] which work
on periodic elements in Bω, which have the form (b1, . . . , bk)ω. The periodic elements induce
a countable substructure Bper in Bω and a periomorphism is a homomorphism from this
structure to B. The fact that Bper is countable permits the use of a standard back-and-
forth argument whence it is shown that if a relation is invariant under the periomorphisms
of ω-categorical B, then indeed it is positive conjunctive definable. The correspondence
Inv(sPol(B)) = 〈B〉pc is known, a posteriori, when B is an equality language [8]. For languages
first-order definable in (Q;<) it is still in general open.

Meanwhile, let us leave the unfinished classification for temporal QCSPs to ponder that
for equality languages. In the conference version of [8] the trichotomy was announced to
be between L, NP-complete and Pspace-complete but the greater lower bound was reduced
to co-NP-hard in the journal version. The culprit is the erroneous supporting Theorem
4.1, for which one can construct a counterexample, and from which the missing Galois
Correspondence of the previous paragraph would have followed (Theorem 4.1 holds for
infinite direct products). The major open question from the journal version is whether
QCSP(Q;x = y → y = z), known to be co-NP-hard, is in fact Pspace-complete. Were this
to be Pspace-complete, it would complete the promotion of all the outstanding co-NP-hard
cases to Pspace-complete. However, were it to be in co-NP, for example, there would remain
additional work to be done, not to mention that the trichotomy would become a tetrachotomy,
since many cases, including QCSP(Q;x = y → u = v), are known to be Pspace-complete.

It would be interesting to unite the results of [86, 85, 83] into a QCSP classification for
partially reflexive pseudoforests with the classes likely to be NL, NP-complete and Pspace-
complete. Even a partial classification into NL and NP-hard might require a patience and
diligence that could remain unrewarded by the result. For partially reflexive pseudoforests
that are Q-cores, most likely the NL/ NP-hard boundary follows that for Retraction [59].

A number of open questions arise regarding CSP with counting quantifiers and the most
interesting relate to potential applications of the new algebraic theory. A more combinatorial
question is as to the precise complexity of {2}-CSP(K4), where K4 is the 4-clique, which is
known to be in P but not in L or NL. This question is interesting as it is the only case in the
classification of X-CSP(H) in [87], where H is an undirected clique or cycle, that is known
to be in P but not L.



B. Martin 341

The question of the idempotent remains a thorn in our side. For every finite B, is there a
finite C so that, say, QCSP(B) and QCSP(C) are polynomially equivalent, and all constants
are positive conjunctive definable in C up to isomorphism? We know this is not true if we
strengthen polynomial equivalence to positive conjunctive equivalent [42].

The QCSP program initiated in [51] continues a fascinating combinatorial-algebraic
program itself well-established, e.g. in [80, 26, 3]. Bandelt has classified both which reflexive
and which bipartite graphs admit a majority polymorphism (see [3]). Indeed, the distinction
between majority and not is established for partially reflexive trees in [85]. In a similar vein,
in [26] it is established precisely which digraphs have a Mal’tsev polymorphism. Curiously,
Malt’sev digraphs also have a majority [73]. The business of [51] is more in line with several
investigations of Benoit Larose into idempotent triviality (see [80]). Other recent work has
focused on whether certain constraint languages for which we know the CSP classification
follow also the conjectured algebraic classification (which indeed they do). MacGillivray
and Swarts [82] prove that the (irreflexive) locally semicomplete digraphs whose CSPs are
tractable are exactly those that admit a weak near-unanimity polymorphism, and Wires has
proved [99] that the partially reflexive tournaments whose CSP with constants is tractable
are exactly those that admit a Taylor polymorphism. Recall that a finite idempotent algebra
generates a weak near-unanimity operation iff it generates a Taylor operation. It would be
fun to establish which irreflexive locally semicomplete and partially reflexive tournaments are
idempotent trivial, with a view to leveraging this knowledge towards a QCSP classification,
of the kind in [51].

The outstanding question left open in parameterized complexity in the region of QCSP,
though somewhat superseding it, is to unify the works [38] add [43]. That is, to give a
theorem à la Grohe, as the latter, for full first-order logic.

Acknowledgements. I am grateful for helpful discussions with a number of people and
especially corrections to an early draft from Hubie Chen and Michał Wrona. I am also
grateful for corrections from an anonymous referee appointed by the editors.

References
1 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for

testing the truth of certain quantified boolean formulas. Inf. Process. Lett., 8(3):121–123,
1979.

2 Albert Atserias and Sergi Oliva. Bounded-width QBF is PSPACE-complete. J. Comput.
Syst. Sci., 80(7):1415–1429, 2014.

3 Hans-Jürgen Bandelt. Graphs with edge-preserving majority functions. Discrete Mathem-
atics, 103(1):1–5, 1992.

4 Jørgen Bang-Jensen, Pavol Hell, and Gary MacGillivray. The complexity of colouring by
semicomplete digraphs. SIAM J. Discrete Math., 1(3):281–298, 1988.

5 Libor Barto, Marcin Kozik, and Todd Niven. The CSP dichotomy holds for digraphs with
no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM
Journal on Computing, 38(5):1782–1802, 2009.

6 Frédéric Benhamou and Frédéric Goualard. Principles and Practice of Constraint Program-
ming – CP 2000: 6th International Conference, CP 2000 Singapore, September 18–21, 2000
Proceedings, chapter Universally Quantified Interval Constraints, pages 67–82. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2000.

7 Manuel Bodirsky and Hubie Chen. Relatively quantified constraint satisfaction. Con-
straints, 14(1):3–15, 2009.

Chapte r 12



342 Quantified Constraints in Twenty Seventeen

8 Manuel Bodirsky and Hubie Chen. Quantified equality constraints. SIAM J. Comput.,
39(8):3682–3699, 2010. Conference version appeared at LICS 2007.

9 Manuel Bodirsky, Hubie Chen, and Michal Wrona. Tractability of quantified temporal
constraints to the max. IJAC, 24(8):1141–1156, 2014.

10 Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction prob-
lems. In Proceedings of STOC’08, pages 29–38, 2008. Accepted for publication in J. ACM.

11 Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction prob-
lems. J. ACM, 57(2), 2010.

12 Manuel Bodirsky and Jaroslav Nešetřil. Constraint satisfaction with countable homogen-
eous templates. Journal of Logic and Computation, 16(3):359–373, 2006.

13 Manuel Bodirsky and Michael Pinsker. Schaefer’s theorem for graphs. Journal of the ACM,
62(3):Article no. 19, 1–52, 2015. A conference version appeared in the Proceedings of STOC
2011, pages 655–664.

14 V.G. Bodnarčuk, L.A. Kalužnin, V.N. Kotov, and B.A. Romov. Galois theory for Post
algebras, part I and II. Cybernetics, 5:243–539, 1969.

15 Lucas Bordeaux, Marco Cadoli, and Toni Mancini. Generalizing consistency and other
constraint properties to quantified constraints. ACM Trans. Comput. Log., 10(3), 2009.
Extended abstract appeared at AAAI 2005 titled CSP properties for for quantified con-
straints: Definitions and complexity.

16 Lucas Bordeaux and Eric Monfroy. Beyond NP: arc-consistency for quantified constraints.
In Principles and Practice of Constraint Programming – CP 2002, 8th International Con-
ference, CP 2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings, pages 371–386,
2002.

17 F. Börner, A. Krokhin, A. Bulatov, and P. Jeavons. Quantified constraints and surjective
polymorphisms. Technical Report PRG-RR-02-11, Oxford University, 2002. Conference
version appeared at CSL 2003 titled: Quantified Constraints – Algorithms and Complexity.

18 Ferdinand Börner, Andrei A. Bulatov, Hubie Chen, Peter Jeavons, and Andrei A. Krokhin.
The complexity of constraint satisfaction games and qcsp. Inf. Comput., 207(9):923–944,
2009.

19 Simone Bova, Robert Ganian, and Stefan Szeider. Model checking existential logic on
partially ordered sets. In Joint Meeting of the 23rd EACSL Annual Conf. on Computer
Science Logic (CSL) and the 29th Annual ACM/IEEE Symp. on Logic in Computer Science
(LICS), CSL-LICS’14, Vienna, Austria, July 14 – 18, 2014, pages 21:1–21:10, 2014.

20 Simone Bova, Robert Ganian, and Stefan Szeider. Quantified conjunctive queries on par-
tially ordered sets. Theor. Comput. Sci., 618:72–84, 2016. Extended abstract appeared at
IPEC 2004.

21 A. Bulatov, A. Krokhin, and P.G. Jeavons. Classifying the complexity of constraints using
finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

22 Andrei Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element
set. J. ACM, 53(1):66–120, 2006.

23 Andrei Bulatov, Peter Jeavons, and Mikhail Volkov. Finite semigroups imposing tract-
able constraints. In Proceedings of the School on Algorithmic Aspects of the Theory of
Semigroups and its Applications, Coimbra, Portugal, 2001, pages 313–329. World Scientific,
Singapore, 2002.

24 Andrei A. Bulatov. Combinatorial problems raised from 2-semilattices. Journal of Algebra,
298(2):321–339, 2006.

25 Andrei A. Bulatov and Amir Hedayaty. Galois correspondence for counting quantifiers.
Multiple-Valued Logic and Soft Computing, 24(5-6):405–424, 2015. First version appeared
on arxiv in 2012.



B. Martin 343

26 Catarina Carvalho, László Egri, Marcel Jackson, and Todd Niven. On maltsev digraphs.
Electr. J. Comb., 22(1):P1.47, 2015. Extended abstract appeared at CSR 2011.

27 Catarina Carvalho, Florent R. Madelaine, and Barnaby Martin. From complexity to al-
gebra and back: Digraph classes, collapsibility, and the PGP. In 30th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015,
pages 462–474, 2015.

28 Witold Charatonik and Michal Wrona. Quantified positive temporal constraints. In Com-
puter Science Logic, 22nd International Workshop, CSL 2008, 17th Annual Conference of
the EACSL, Bertinoro, Italy, September 16-19, 2008. Proceedings, pages 94–108, 2008.

29 Witold Charatonik and Michal Wrona. Tractable quantified constraint satisfaction prob-
lems over positive temporal templates. In Logic for Programming, Artificial Intelligence,
and Reasoning, 15th International Conference, LPAR 2008, Doha, Qatar, November 22-27,
2008. Proceedings, pages 543–557, 2008.

30 Hubie Chen. Quantified constraint satisfaction and 2-semilattice polymorphisms. In Prin-
ciples and Practice of Constraint Programming – CP 2004, 10th International Conference,
CP 2004, Toronto, Canada, September 27 – October 1, 2004, Proceedings, pages 168–181,
2004.

31 Hubie Chen. Quantified constraint satisfaction, maximal constraint languages, and sym-
metric polymorphisms. In STACS 2005, 22nd Annual Symposium on Theoretical Aspects of
Computer Science, Stuttgart, Germany, February 24-26, 2005, Proceedings, pages 315–326,
2005.

32 Hubie Chen. A rendezvous of logic, complexity, and algebra. SIGACT News, 2006.
33 Hubie Chen. The complexity of quantified constraint satisfaction: Collapsibility, sink algeb-

ras, and the three-element case. SIAM J. Comput., 37(5):1674–1701, 2008. Incorporates
extended abstract titled Collapsibility and Consistency in Quantified Constraint Satisfac-
tion presented at AAAI 2004.

34 Hubie Chen. Existentially restricted quantified constraint satisfaction. Inf. Comput.,
207(3):369–388, 2009.

35 Hubie Chen. Quantified constraint satisfaction and the polynomially generated powers
property. Algebra universalis, 65(3):213–241, 2011. An extended abstract appeared in
ICALP B 2008.

36 Hubie Chen. Meditations on quantified constraint satisfaction. In Logic and Program
Semantics – Essays Dedicated to Dexter Kozen on the Occasion of His 60th Birthday, pages
35–49, 2012.

37 Hubie Chen. Beyond q-resolution and prenex form: A proof system for quantified constraint
satisfaction. Logical Methods in Computer Science, 10(4), 2014.

38 Hubie Chen. The tractability frontier of graph-like first-order query sets. In Joint Meeting
of the 23rd EACSL Annual Conf. on Computer Science Logic (CSL) and the 29th Annual
ACM/IEEE Symp. on Logic in Computer Science (LICS), CSL-LICS’14, Vienna, Austria,
July 14-18, 2014, pages 31:1–31:9, 2014.

39 Hubie Chen and Víctor Dalmau. From pebble games to tractability: An ambidextrous
consistency algorithm for quantified constraint satisfaction. In Computer Science Logic,
19th International Workshop, CSL 2005, 14th Annual Conference of the EACSL, Oxford,
UK, August 22-25, 2005, Proceedings, pages 232–247, 2005.

40 Hubie Chen and Víctor Dalmau. Decomposing quantified conjunctive (or disjunctive) for-
mulas. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science,
LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 205–214, 2012.

41 Hubie Chen, Florent Madelaine, and Barnaby Martin. Quantified constraints and contain-
ment problems. In 23rd Annual IEEE Symposium on Logic in Computer Science, pages
317–328, 2008.

Chapte r 12



344 Quantified Constraints in Twenty Seventeen

42 Hubie Chen, Florent R. Madelaine, and Barnaby Martin. Quantified constraints and con-
tainment problems. Logical Methods in Computer Science, 11(3), 2015. Extended abstract
appeared at LICS 2008. This journal version incorporates principal part of CP 2012 Con-
tainment, Equivalence and Coreness from CSP to QCSP and Beyond.

43 Hubie Chen and Dániel Marx. Block-sorted quantified conjunctive queries. In Automata,
Languages, and Programming – 40th International Colloquium, ICALP 2013, Riga, Latvia,
July 8-12, 2013, Proceedings, Part II, pages 125–136, 2013.

44 Hubie Chen and Peter Mayr. Quantified constraint satisfaction on monoids, 2016.
45 Hubie Chen and Moritz Müller. An algebraic preservation theorem for aleph-zero categor-

ical quantified constraint satisfaction. Logical Methods in Computer Science, 9(1), 2012.
An extended abstract appeared at LICS 2012.

46 Hubie Chen and Michal Wrona. Guarded ord-horn: A tractable fragment of quantified
constraint satisfaction. In 19th International Symp. on Temporal Representation and Reas-
oning, TIME 2012, Leicester, United Kingdom, September 12-14, 2012, pages 99–106, 2012.

47 Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity Classifications of Boolean
Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applic-
ations 7, 2001.

48 Victor Dalmau. Some dichotomy theorems on constant-free quantified boolean formulas.
Technical Report LSI-97-43-R. Departament LSI (UPC), 1997.

49 Víctor Dalmau. A new tractable class of constraint satisfaction problems. Ann. Math. Artif.
Intell., 44(1-2):61–85, 2005.

50 Víctor Dalmau and Justin Pearson. Closure functions and width 1 problems. In Principles
and Practice of Constraint Programming – CP’99, 5th International Conference, Alexan-
dria, Virginia, USA, October 11-14, 1999, Proceedings, pages 159–173, 1999.

51 Petar Dapic, Petar Markovic, and Barnaby Martin. QCSP on semicomplete digraphs. In
Automata, Languages, and Programming – 41st International Colloquium, ICALP 2014,
Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages 847–858, 2014.

52 Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J.
ACM, 7(3):201–215, July 1960.

53 Rina Dechter. From local to global consistency. Artif. Intell., 55(1):87–108, 1992.
54 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.

Texts in Computer Science. Springer, 2013.
55 Uwe Egly. On sequent systems and resolution for QBFs. In Theory and Applications

of Satisfiability Testing – SAT 2012 – 15th International Conference, Trento, Italy, June
17-20, 2012. Proceedings, pages 100–113, 2012.

56 Uwe Egly, Thomas Eiter, Hans Tompits, and Stefan Woltran. Solving advanced reasoning
tasks using quantified boolean formulas. In Proc. 17th Nat. Conf. on Artificial Intelligence
and 12th Conf. on Innovative Applications of Artificial Intelligence, pages 417–422. AAAI
Press/ The MIT Press, 2000.

57 Eduard Eiben, Robert Ganian, and Sebastian Ordyniak. Using decomposition-parameters
for qbf: Mind the prefix! In AAAI 2016, 2016.

58 T. Feder and M. Vardi. The computational structure of monotone monadic SNP and
constraint satisfaction: A study through Datalog and group theory. SIAM Journal on
Computing, 28:57–104, 1999.

59 Tomás Feder, Pavol Hell, Peter Jonsson, Andrei A. Krokhin, and Gustav Nordh. Retrac-
tions to pseudoforests. SIAM J. Discrete Math., 24(1):101–112, 2010.

60 Alex Ferguson and Barry O’Sullivan. Relaxations and explanations for quantified constraint
satisfaction problems. In Principles and Practice of Constraint Programming – CP 2006,
12th International Conf., CP 2006, Nantes, France, September 25-29, 2006, Proceedings,
pages 690–694, 2006.



B. Martin 345

61 E.C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In Pro-
ceedings of the 8th National Conference on Artificial Intelligence, pages 4–9, 1990.

62 Jakub Gajarský, Petr Hlinený, Daniel Lokshtanov, Jan Obdrzálek, Sebastian Ordyniak,
M. S. Ramanujan, and Saket Saurabh. FO model checking on posets of bounded width. In
IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley,
CA, USA, 17-20 October, 2015, pages 963–974, 2015.

63 D. Geiger. Closed systems of functions and predicates. Pacific Journal of Mathematics,
27:95–100, 1968.

64 Ian P. Gent, Peter Nightingale, Andrew G.D. Rowley, and Kostas Stergiou. Solving quan-
tified constraint satisfaction problems. Artif. Intell., 172(6-7):738–771, 2008. This is an
extended version of conference papers Encoding Quantified CSPs as Quantified Boolean
Formulae (ECAI 2004) and QCSP-Solve: A Solver for Quantified Constraint Satisfaction
Problems (IJCAI 2005).

65 Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. The complexity of quantified con-
straint satisfaction problems under structural restrictions. In IJCAI-05, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland,
UK, July 30-August 5, 2005, pages 150–155, 2005.

66 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. J. ACM, 54(1), 2007. Extended abstract appeared at FOCS 2003.

67 Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the evaluation of con-
junctive queries tractable? In Proceedings on 33rd Annual ACM Symposium on Theory of
Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 657–666, 2001.

68 P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial Theory,
Series B, 48:92–110, 1990.

69 Edith Hemaspaandra. Dichotomy theorems for alternation-bounded quantified boolean
formulas. CoRR, cs.CC/0406006, 2004.

70 P.G. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200:185–204, 1998.

71 Peter Jeavons, David Cohen, and Martin Cooper. Constraints, consistency and closure. AI,
101(1-2):251–265, 1998.

72 Marek Karpinski, Hans Kleine Büning, and Peter H. Schmitt. On the computational
complexity of quantified horn clauses. In CSL’87, 1st Workshop on Computer Science
Logic, Karlsruhe, Germany, October 12-16, 1987, Proceedings, pages 129–137, 1987.

73 Alexandr Kazda. Maltsev digraphs have a majority polymorphism. Eur. J. Comb.,
32(3):390–397, 2011.

74 Jerome Keisler. Reduced products and Horn classes. Trans. Amer. Math. Soc., 117:307–328,
1965.

75 Hans Kleine Büning and Uwe Bubeck. Theory of quantified boolean formulas. In Handbook
of Satisfiability, pages 735–760. 2009.

76 Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quantified
boolean formulas. Inf. Comput., 117(1):12–18, 1995.

77 Ph.G. Kolaitis and M.Y. Vardi. Finite Model Theory and Its Applications (Texts in The-
oretical Computer Science. An EATCS Series), chapter A logical Approach to Constraint
Satisfaction. Springer-Verlag New York, Inc., 2005.

78 Ph.G. Kolaitis and M.Y. Vardi. A game-theoretic approach to constraint satisfaction. In
Proceedings of the 17th National Conference on AI, pages 175–181, 2000.

79 Richard E. Ladner. On the structure of polynomial time reducibility. J.ACM, 22(1):155–
171, 1975.

80 Benoit Larose. Taylor operations on finite reflexive structures. International Journal of
Mathematics and Computer Science, 1:1–21, 2006.

Chapte r 12



346 Quantified Constraints in Twenty Seventeen

81 Benoit Larose and László Zádori. Taylor terms, constraint satisfaction and the complexity
of polynomial equations over finite algebras. IJAC, 16(3):563–582, 2006.

82 Gary MacGillivray and Jacobus Swarts. Weak near-unanimity functions and digraph ho-
momorphism problems. Theor. Comput. Sci., 477:32–47, 2013.

83 Florent R. Madelaine and Barnaby Martin. QCSP on partially reflexive cycles – the wavy
line of tractability. In Computer Science – Theory and Applications – 8th International
Computer Science Symposium in Russia, CSR 2013, Ekaterinburg, Russia, June 25-29,
2013. Proceedings, pages 322–333, 2013.

84 Miklós Maróti and Ralph McKenzie. Existence theorems for weakly symmetric operations.
Algebra universalis, 59(3):463–489, 2008.

85 Barnaby Martin. QCSP on partially reflexive forests. In Principles and Practice of Con-
straint Programming – 17th International Conference, CP 2011, 2011.

86 Barnaby Martin and Florent Madelaine. Towards a trichotomy for quantified H-coloring.
In 2nd Conf. on Computatibility in Europe, LNCS 3988, pages 342–352, 2006.

87 Barnaby Martin, Florent R. Madelaine, and Juraj Stacho. Constraint satisfaction with
counting quantifiers. SIAM J. Discrete Math., 29(2):1065–1113, 2015. This unifies and
expands conference papers from CSR 2012 and 2014.

88 Barnaby Martin, András Pongrácz, and Michal Wrona. The complexity of counting quan-
tifiers on equality languages. In Pursuit of the Universal – 12th Conf. on Computability in
Europe, CiE 2016, Paris, France, 2016, Proceedings, pages 333–342, 2016.

89 Deepak Mehta, Barry O’Sullivan, and Luis Quesada. Extending the notion of preferred ex-
planations for quantified constraint satisfaction problems. In Theoretical Aspects of Com-
puting – ICTAC 2015 – 12th International Colloquium Cali, Colombia, October 29-31,
2015, Proceedings, pages 309–327, 2015.

90 Bernhard Nebel and Hans-Jürgen Bürckert. Reasoning about temporal relations: A max-
imal tractable subclass of Allen’s interval algebra. J. ACM, 42(1):43–66, 1995.

91 Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
92 R. Pöschel and L.,A. Kalužnin. Funktionen- und Relationenalgebren. Deutscher Verlag der

Wissenschaften, 1979.
93 Jussi Rintanen. Constructing conditional plans by a theorem-prover. Journal of Artificial

Intelligence Research, 10:323–352, 1999.
94 J.A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,

12(1):23–41, January 1965.
95 T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of STOC’78, pages

216–226, 1978.
96 Á. Szendrei. Clones in universal algebra. Séminaire de mathématiques supérieures. Presses

de l’Université de Montréal, 1986.
97 Peter van Beek. On the minimality and decomposability of constraint networks. In Proceed-

ings of the 10th National Conference on Artificial Intelligence. San Jose, CA, July 12-16,
1992., pages 447–452, 1992.

98 James Wiegold. Growth sequences of finite semigroups. Journal of the Australian Math-
ematical Society (Series A), 43:16–20, 8 1987. Communicated by H. Lausch.

99 Alexander Wires. Dichotomy for finite tournaments of mixed-type. Discrete Mathematics,
338(12):2523–2538, 2015.

100 Michal Wrona. Tractability frontier for dually-closed ord-horn quantified constraint satis-
faction problems. In Mathematical Foundations of Computer Science 2014 – 39th Interna-
tional Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part
I, pages 535–546, 2014.

101 D. Zhuk. The Size of Generating Sets of Powers. ArXiv e-prints, April 2015.


	p000-00-frontmatter
	Preface

	p001-01-barto
	Introduction
	CSP over a Fixed Constraint Language
	Constraint Languages
	Examples
	The Dichotomy Conjecture
	Alternative Views

	Reductions Between Constraint Languages
	Primitive Positive Interpretations (= Gadgets)
	Homomorphic Equivalence, Cores and Singleton Expansions
	Example
	Pp-Constructibility
	Tractability Conjecture
	Other Reductions

	Polymorphisms as Classifiers of Constraint Languages
	Definitions and Examples
	Polymorphisms as an Algebraic Counterpart of pp-Definability
	Height-1 Identities and pp-Constructibility
	Classifications and Conjectures
	Taxonomy of Systems of Linear Identities

	Polymorphisms in Algorithms I: Proving Correctness
	1–Minimality and TS Polymorphisms
	Linear Programming and Symmetric Polymorphisms
	(2,3)-Minimality and Majority Polymorphisms
	Interlude: Boolean CSPs
	Characterization of Bounded Width
	Sufficient Levels of Consistency
	Results About Linear and Symmetric Width

	Polymorphisms in Algorithms II: Cogs in the Works
	Few Subpowers
	The Few Subpowers Algorithm
	Limits of the Few Subpowers Algorithm
	Combining Algorithms

	Conclusion

	p045-02-barto
	Introduction
	Results
	Why is Absorption Useful
	CSP and Universal Algebra

	Example
	One and Two Element Sets Are Preserved by Polymorphisms
	Unary and Binary Polymorphisms Are Trivial
	Polymorphisms of Higher Arities
	Polymorphisms of type (a) for some i
	Polymorphisms of type (b) for all i

	Absorption and More Absorption
	Absorption
	Absorption from Absorption: Propagation

	Connectivity
	Absorbing Linkedness
	Connectivity in CSP
	Arc Consistency of a CSP Instance
	(2,3)-Consistent, Simplified Instances
	Prague Instances


	Equational Descriptions
	Decomposable Relations and near Unanimity
	Rectangular Relations and Mal'tsev Term
	Congruence Distributivity
	Near Unanimity and Directed Jónsson Terms
	Jónsson Absorption


	Absorption in Taylor Algebras and Its Consequences
	Absorption Theorem
	Loop Lemma
	Siggers Term
	Cyclic Terms
	Conservative CSPs

	Applications of Absorption to Local Consistency Checking
	Prague Instances and Local Consistency Checking
	(2,3)-Consistency, Circle Instances and Semidefinite Programming
	Consistency Notions for All Instances

	Abelianness Versus Absorption
	Abelianness Prevents Absorption
	Absorption Theorem for Higher Arity Relations

	Conclusions

	p078-ZZZ-Blank
	p079-03-bodirsky
	Introduction
	Constraint Satisfaction Problems
	Primitive Positive Formulas
	Polymorphisms
	Infinite Signatures

	Linear Programming
	Semilinear Constraints
	Semilinear Expansions of Linear Programming
	Semilinear Constraints over the Integers

	Algebraic Constraints
	Maximum as a Polymorphism
	Reducts of the Order of the Rationals
	Reducts of the Successor Relation over the Integers
	The Unclassifiable
	Next Steps for ...
	... the Integers
	... the Rationals
	... the Reals
	... and the Complex Numbers


	p112-ZZZ-Blank
	p113-04-cooper
	Introduction
	Independent Language and Structure Restrictions
	Planarity
	Bounded Occurrence
	Lifted Languages

	Forbidden Patterns
	Definitions
	Characterising Tractable Patterns
	Partially-Ordered Patterns
	Non-Binary CSPs
	Quantified Patterns
	Topological Minor Patterns

	Classes Requiring a Level of Consistency
	Microstructure-Based Classes
	Weakly or Strongly Constrained Instances
	Valued CSPs
	JWP and Generalisations
	Planarity


	p136-ZZZ-Blank
	p137-05-gaspers
	Introduction
	Preliminaries
	Constraint Satisfaction
	Polymorphisms
	Base Classes
	Parameterized Complexity
	Backdoors

	Basic Results
	Heterogeneous Base Classes
	Scattered Base Classes
	Extension to Valued CSP

	Backdoors of Small Treewidth
	Related Work
	Conclusion

	p158-ZZZ-Blank
	p159-06-guo
	Introduction
	Definitions and Background
	Holographic Reductions
	Counting Constraint Satisfaction Problems

	Decision Version
	Exact Counting
	Tractable Families
	Affine Signatures
	Product-Type Signatures
	Vanishing Signatures
	Matchgate Signatures
	An Extra Planar Tractable Case

	The Full Dichotomy
	Beyond Boolean and Symmetric Functions

	Approximate Counting
	Winding
	Fibonacci Functions


	p178-ZZZ-Blank
	p179-07-gutin
	Introduction
	Basics on Parameterized Algorithms and Complexity
	Strictly Above/Below Expectation Method
	Boolean Max-r-CSPs Above Average
	Max-r-Lin-AA
	Max-r-CSP-AA and Max-r-Sat-AA
	Max-r-CSP-AA with global cardinality constraint

	Parameterizations of MaxLin2
	MaxLin2-AA
	MaxLin2-B

	Parameterizations of MaxSat
	MaxSat above m/2
	Max-r-n-Sat-AA
	Parameterizations for MaxSat with t-Satisfiable CNF Formulas

	Ordering CSPs
	Basic Definitions and Results
	Betweenness-AA
	3-Linear Ordering-AA
	Ordering CSPs AA

	Two Open Problems

	p204-ZZZ-Blank
	p205-08-jerrum
	Introduction
	Exact Computation
	Boolean #CSPs
	Graph Homomorphisms and Partition Functions
	Send in the Clones
	#CSPs in General

	Approximate Computation
	Boolean #CSPs
	Graph Homomorphisms
	Partition Functions
	The Conservative Case
	Boolean Domain
	Domain Size Greater Than Two

	#CSPs in General

	Esoterica

	p232-ZZZ-Blank
	p233-09-krokhin
	Introduction
	Problems and Frameworks Captured by the VCSP
	Polymorphisms and Fractional Polymorphisms
	A General Algebraic Theory of Complexity
	Algorithms
	Complexity Classifications
	The Oracle Model
	Conclusions and Future Directions

	p267-10-larose
	Introduction
	Preliminaries
	Relational Structures and Digraphs
	Digraphs
	Polymorphisms
	Datalog

	General Results
	Three Conjectures and Some Results
	Reductions to Digraph Problems

	CSP-H
	CSP-H+c
	CSP-H+c for Mixed Digraphs
	CSP-H+c for Mixed Undirected Graphs
	CSP-H+c for Reflexive Digraphs

	CSP-H+l
	Open Problems and Further Discussion

	p286-ZZZ-Blank
	p287-11-makarychev
	Introduction
	Overview of Known Results for CSPs
	Organization

	Boolean CSPs or Arity 2: Max Cut and Max 2-SAT
	Unique Games
	SDP Relaxation
	Orthogonal Separators – Overview
	Approximation Algorithm
	Orthogonal Separators – Proofs
	Gaussian Distribution

	CSPs of Higher Arities
	Minimum Multiway Cut
	Universal Rounding Algorithm
	SDP Relaxation for k-CSPs with k > 2
	Rounding Algorithm for 2-CSPs with Nonnegative Predicates
	Proof of Theorem 19
	Step I: Johnson–Lindenstrauss Transform
	Step II: Fixing Violated SDP Constraints
	Step III: Rounding to a eta-net


	Open Problems

	p326-ZZZ-Blank
	p327-12-martin
	Introduction
	Previous Surveys

	Preliminaries
	More Algebra
	Various Digraphs
	The Modern Study of CSPs

	Background
	Constants and Idempotency

	Classical Complexity
	Bounded Alternation
	Counting Quantifiers
	Infinite Domains

	Parameterized Complexity
	Proof Theory and Evaluation
	Future Prospects


