
9th International Conference on
Fun with Algorithms

FUN 2018, June 13–15, 2018, La Maddalena Island, Italy

Edited by

Hiro Ito
Stefano Leonardi
Linda Pagli
Giuseppe Prencipe

LIPIcs – Vo l . 100 – FUN 2018 www.dagstuh l .de/ l ip i c s

Editors
Hiro Ito Stefano Leonardi
School of Informatics and Engineering Dipartimento di Ing. Informatica Automatica e Gestionale
The University of Electro-Communications Sapienza Università di Roma
itohiro@uec.ac.jp leonardi@diag.uniroma1.it

Linda Pagli Giuseppe Prencipe
Dipartimento di Informatica Dipartimento di Informatica
Università di Pisa Università di Pisa
linda.pagli@unipi.it giuseppe.prencipe@unipi.it

ACM Classification 2012
Theory of computation → Complexity classes, Theory of computation → Algorithm design techniques,
Theory of computation → Computability, Theory of computation → Approximation algorithms analysis,
Mathematics of computing → Combinatorics, Mathematics of computing → Combinatorial algorithms,
Computing methodologies

ISBN 978-3-95977-067-5

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-067-5.

Publication date
June, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.FUN.2018.0

ISBN 978-3-95977-067-5 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-067-5
http://www.dagstuhl.de/dagpub/978-3-95977-067-5
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-067-5
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

FUN 2018

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe 0:ix

Invited Papers

Mind the Gap
Martín Farach-Colton . 1:1–1:1

Evolution of Impossible Objects
Kokichi Sugihara . 2:1–2:8

Regular Papers

Who witnesses The Witness? Finding witnesses in The Witness is hard and
sometimes impossible

Zachary Abel, Jeffrey Bosboom, Erik D. Demaine, Linus Hamilton, Adam Hesterberg,
Justin Kopinsky, Jayson Lynch, and Mikhail Rudoy . 3:1–3:21

Tracks from hell – when finding a proof may be easier than checking it
Matteo Almanza, Stefano Leucci, and Alessandro Panconesi . 4:1–4:13

How Bad is the Freedom to Flood-It?
Rémy Belmonte, Mehdi Khosravian Ghadikolaei, Masashi Kiyomi,
Michael Lampis, and Yota Otachi . 5:1–5:13

How long does it take for all users in a social network to choose their communities?
Jean-Claude Bermond, Augustin Chaintreau,
Guillaume Ducoffe, and Dorian Mazauric . 6:1–6:21

On the Complexity of Two Dots for Narrow Boards and Few Colors
Davide Bilò, Luciano Gualà, Stefano Leucci, and Neeldhara Misra 7:1–7:15

On the PSPACE-completeness of Peg Duotaire and other Peg-Jumping Games
Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti, and Mirko Rossi 8:1–8:15

On the Exact Complexity of Polyomino Packing
Hans L. Bodlaender and Tom C. van der Zanden . 9:1–9:10

Kings, Name Days, Lazy Servants and Magic
Paolo Boldi and Sebastiano Vigna . 10:1–10:13

Computational Complexity of Generalized Push Fight
Jeffrey Bosboom, Erik D. Demaine, and Mikhail Rudoy . 11:1–11:21

SUPERSET: A (Super)Natural Variant of the Card Game SET
Fábio Botler, Andrés Cristi, Ruben Hoeksma, Kevin Schewior, and Andreas Tönnis 12:1–12:17

A Cryptographer’s Conspiracy Santa
Xavier Bultel, Jannik Dreier, Jean-Guillaume Dumas, and Pascal Lafourcade 13:1–13:13

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:vi Contents

Cooperating in Video Games? Impossible! Undecidability of Team Multiplayer
Games

Michael J. Coulombe and Jayson Lynch . 14:1–14:16

A Muffin-Theorem Generator
Guangqi Cui, John Dickerson, Naveen Durvasula, William Gasarch, Erik Metz,
Jacob Prinz, Naveen Raman, Daniel Smolyak, and Sung Hyun Yoo 15:1–15:19

God Save the Queen
Jurek Czyzowicz, Konstantinos Georgiou, Ryan Killick, Evangelos Kranakis,
Danny Krizanc, Lata Narayanan, Jaroslav Opatrny, and Sunil Shende 16:1–16:20

Restricted Power – Computational Complexity Results for Strategic Defense
Games

Ronald de Haan and Petra Wolf . 17:1–17:14

Computational Complexity of Motion Planning of a Robot through Simple
Gadgets

Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy 18:1–18:21

The Computational Complexity of Portal and Other 3D Video Games
Erik D. Demaine, Joshua Lockhart, and Jayson Lynch . 19:1–19:22

Faster Evaluation of Subtraction Games
David Eppstein . 20:1–20:12

Making Change in 2048
David Eppstein . 21:1–21:13

Pick, Pack, & Survive: Charging Robots in a Modern Warehouse based on
Online Connected Dominating Sets

Heiko Hamann, Christine Markarian, Friedhelm Meyer auf der Heide, and
Mostafa Wahby . 22:1–22:13

Selection Via the Bogo-Method – More on the Analysis of Perversely Awful
Randomized Algorithms

Markus Holzer and Jan-Tobias Maurer . 23:1–23:21

Herugolf and Makaro are NP-complete
Chuzo Iwamoto, Masato Haruishi, and Tatsuaki Ibusuki . 24:1–24:11

The Fewest Clues Problem of Picross 3D
Kei Kimura, Takuya Kamehashi, and Toshihiro Fujito . 25:1–25:13

Uniform Distribution On Pachinko
Naoki Kitamura, Yuya Kawabata, and Taisuke Izumi . 26:1–26:14

The complexity of speedrunning video games
Manuel Lafond . 27:1–27:19

Gender-Aware Facility Location in Multi-Gender World
Valentin Polishchuk and Leonid Sedov . 28:1–28:16

Card-Based Zero-Knowledge Proof for Sudoku
Tatsuya Sasaki, Takaaki Mizuki, and Hideaki Sone . 29:1–29:10

Contents 0:vii

The Complexity of Escaping Labyrinths and Enchanted Forests
Florian D. Schwahn and Clemens Thielen . 30:1–30:13

Card-based Protocols Using Triangle Cards
Kazumasa Shinagawa and Takaaki Mizuki . 31:1–31:13

The Power of One Secret Agent
Tami Tamir . 32:1–32:15

FUN 2018

Preface

FUN with Algorithms is dedicated to the use, design, and analysis of algorithms and data
structures, focusing on results that provide amusing, witty but nonetheless original and
scientifically profound contributions to the area. Donald Knuth’s famous quote captures this
spirit nicely:.... pleasure has probably been the main goal all along. But I hesitate to admit it,
because computer scientists want to maintain their image as hard-working individuals who
deserve high salaries. Sooner or later society will realise that certain kinds of hard work are
in fact admirable even though they are more fun than just about anything else.

The previous FUNs were held in Elba Island, Italy; in Castiglioncello, Tuscany, Italy; in
Ischia Island, Italy; in San Servolo Island, Venice, Italy; in Lipari Island, Sicily, Italy; and
in La Maddalena Island, Sardinia, Italy. Special issues of Theoretical Computer Science,
Discrete Applied Mathematics, and Theory of Computing Systems were dedicated to them.

This volume contains the papers presented at the 9th International Conference on Fun
with Algorithms 2018, held on June 13-5, 2018, on La Maddalena Island, Italy. The call for
papers attracted 55 submissions from all over the world, addressing a wide variety of topics,
reviewed by three Program Committee members. After a careful reviewing process and a
thorough discussion, the committee decided to accept 30 papers. In addition, the program
featured two invited talks by Martin Farach-Colton and Kokichi Sugihara. Extended versions
of selected papers will appear in a special issue of the journal Theoretical Computer Science.

We thank all authors who submitted their work to FUN 2018, all Program Committee
members for their expert assessments and the ensuing discussions, all external reviewers for
their kind help, and Atsuki Nagao for taking care of the web management of the conference.
We used EasyChair (http://www.easychair.org/), that greatly facilitated the entire prepara-
tion of the conference, for handling submissions, reviews, the selection of papers, and the
production of this volume. Warm thanks also go to Michael Wagner for following carefully
the process of proceedings’ publication in LIPIcs series.

May, 2018

Hiro Ito
Stefano Leonardi

Linda Pagli
Giuseppe Prencipe

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Conference Organization

Program Committee
Anna Bernasconi, U. Pisa, Italy
Allan Borodin, U. Toronto, Canada
Artur Czumaj, U. Warwick, UK
Erik Demaine, MIT, USA
David Eppstein, U. California Irvine, USA
Guy Even, Tel-Aviv University, Israel
Michele Flammini, GSSI & L’Aquila U., Italy
Rudolf Fleischer, GUtech, Oman
Paola Flocchini, Ottawa U., Canada
Fedor Fomin, U. Bergen, Norway
Naveen Garg, IIT Delhi, India
Fabrizio Grandoni, IDSIA Lugano, Switzerland
Takashi Horiyama, Saitama U., Japan
John Iacono, U. Libre Bruxelles, Belgium
Hiro Ito, UEC, Japan (co-chair)
Marc van Kreveld, Utrecht U., Netherlands
Stefan Langerman, U. Libre Bruxelles, Belgium
Stefano Leonardi, Sapienza U. Rome, Italy
(co-chair)
Anna Lubiw, U. Waterloo, Canada
Flaminia Luccio, Ca’ Foscari U. Venice, Italy
S. Muthu Muthukrishnan, Rutgers U., USA
Yoshio Okamoto, UEC, Japan
Mike Paterson, U. Warwick, UK
David Peleg, Weizmann Inst. Sci., Israel
Nadia Pisanti, ERABLE Team INRIA & U.
Pisa, Italy
Geppino Pucci, U. Padova, Italy
Laura Sanità, U. Waterloo, Canada
Aravind Srinivasan, U. Maryland, College Park,
USA
Hideki Tsuiki, Kyoto U., Japan
Ryuhei Uehara, JAIST, Japan
Yushi Uno, Osaka Prefecture U., Japan
Aaron Williams, Bard College at Simon’s Rock,
USA

Steering Commitee
Erik Demaine, MIT, USA
Fabrizio Grandoni, IDSIA, Switzerland
Linda Pagli, U. Pisa, Italy
Giuseppe Prencipe, U. Pisa, Italy
Nicola Santoro, Carleton U., Canada
Ugo Vaccaro, U. Salerno, Italy

Organizers
Linda Pagli, U. Pisa, Italy
Giuseppe Prencipe, U. Pisa, Italy
Atsuki Nagao, Ochanomizu U., Japan (web
manager)

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

External Reviewers

Afrouz Jabalameli
Akihiro Uejima
Akira Suzuki
Alessio Conte
Andrea Marino
Ben Sach
Claudio Gallicchio
Daniele Frigioni
Davide Bilò
Eyal Kushilevitz
Giovanni Viglietta
Jun Kawahara
Junichi Teruyama
Kazuhisa Seto
Kazuo Iwama
Konstantinos Georgiou
Luca Versari
Luciano Gualà
Paweł orSchmidt
Stefano Leucci
Suguru Tamaki
Tom van der Zanden
Waldo Gálvez
Ziv Scully

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

List of Authors

Adam Hesterberg
Massachusetts Institute of Technology
United States
achester@mit.edu

Alessandro Panconesi
Sapienza University of Rome
Italy
ale@di.uniroma1.it

Andreas Tönnis
Univesidad de Chile
Chile
atoennis@uni-bonn.de

Andrés Cristi
Universidad de Chile
Chile
andres.cristi.e@gmail.com

Augustin Chaintreau
Columbia University
United States
augustin@cs.columbia.edu

Christine Markarian
University of Paderborn
Germany
chrissm@mail.uni-paderborn.de

Chuzo Iwamoto
Hiroshima University
Japan
chuzo@hiroshima-u.ac.jp

Clemens Thielen
University of Kaiserslautern
Germany
thielen@mathematik.uni-kl.de

Daniel Smolyak
University of Maryland
United States
dsmolyak@gmail.com

Danny Krizanc
Wesleyan University
United States
dkrizanc@wesleyan.edu

David Eppstein
University of California, Irvine
United States
david.eppstein@gmail.com

Davide Bilò
University of Sassari, Italy
Italy
davide.bilo@uniss.it

Dorian Mazauric
INRIA
France
dorian.mazauric@inria.fr

Erik D. Demaine
Massachusetts Institute of Technology
United States
edemaine@mit.edu

Erik Metz
University of Maryland
United States
emetz1618@gmail.com

Evangelos Kranakis
Carleton UniversityComputer Science
Canada
kranakis@scs.carleton.ca

Fábio Botler
Universidad de Valparaíso
Chile
fabio.botler@gmail.com

Florian David Schwahn
University of Kaiserslautern
Germany
fschwahn@mathematik.uni-kl.de

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xvi Authors

Friedhelm Meyer Auf der Heide
Heinz Nixdorf Institute & Department of
Computer Science, University of Paderborn
Germany
fmadh@upb.de

Guangqi Cui
Montgomery Blair High School
United States
bestwillcui@gmail.com

Guido Proietti
Università L’Aquila, Italy and Istituto di Analisi
dei Sistemi ed Informatica, IASI-CNR, Roma
Italy
guido.proietti@univaq.it

Guillaume Ducoffe
ICI
Romania
guillaume.ducoffe@ici.ro

Hans L. Bodlaender
Utrecht University
Netherlands
H.L.Bodlaender@uu.nl

Heiko Hamann
University of Lübeck
Germany
hamann@iti.uni-luebeck.de

Hideaki Sone
Tohoku University
Japan
tm-paper+cardanysone@g-mail.tohoku-
university.jp

Isaac Grosof
Carnegie Mellon University
United States
isaacbg227@gmail.com

Jacob Prinz
University of Maryland
United States
jacobeliasprinz@gmail.com

Jan-Tobias Maurer
"Institut f""ur Informatik, Universit""at Giessen"
Germany
jan.t.maurer@math.uni-giessen.de

Jannik Dreier
LORIA, Université de Lorraine, INRIA, CNRS
France
jannik.dreier@loria.fr

Jaroslav Opatrny
Concordia University
Canada
opatrny@cs.concordia.ca

Jayson Lynch
Massachusetts Institute of Technology
United States
jaysonl@mit.edu

Jean-Claude Bermond
CNRS
France
jean-claude.Bermond@inria.fr

Jean-Guillaume Dumas
Université Grenoble Alpes
France
jean-guillaume.dumas@univ-grenoble-alpes.fr

Jeffrey Bosboom
Massachusetts Institute of Technology
United States
jbosboom@csail.mit.edu

John Dickerson
University of Maryland
United States
john@cs.umd.edu

Joshua Lockhart
University College London
United Kingdom
jlockhart06@qub.ac.uk

Jurek Czyzowicz
Universite du Quebec en Outaouais
Canada
jurek.czyzowicz@uqo.ca

Authors 0:xvii

Justin Kopinsky
Massachusetts Institute of Technology
United States
jkopin@mit.edu

Kazumasa Shinagawa
Tokyo Institute of Technology, AIST
Japan
shinagawa.k.aa@m.titech.ac.jp

Kei Kimura
Toyohashi University of Technology
Japan
kimura@cs.tut.ac.jp

Kevin Schewior
Universidad de Chile
Chile
kschewior@gmail.com

Konstantinos Georgiou
Ryerson University
Canada
konstantinos@ryerson.ca

Lata Narayanan
Concordia University
Canada
lata@cs.concordia.ca

Leonid Sedov
Linkoping University
Sweden
leo@gmail.com

Linus Hamilton
Massachusetts Institute of Technology
United States
linyks@gmail.com

Luciano Gualà
Dipartimento di Matematica, Universitá di Tor
Vergata, Roma
Italy
guala@mat.uniroma2.it

Manuel Lafond
University of Ottawa
Canada
mlafond2@uOttawa.ca

Markus Holzer
Institut für Informatik, Universität Giessen
Germany
holzer@informatik.uni-giessen.de

Masashi Kiyomi
Yokohama City University
Japan
masashi@yokohama-cu.ac.jp

Masato Haruishi
Hiroshima University
Japan

Matteo Almanza
Sapienza University of Rome
Italy
matteojug@gmail.com

Mehdi Khosravian Ghadikolaei
LAMSADE, Université Paris Dauphine
France
m.khosravian@gmail.com

Michael Coulombe
MIT
United States
mcoulomb@mit.edu

Michael Lampis
LAMSADE, Université Paris Dauphine
France
michail.lampis@dauphine.fr

Mikhail Rudoy
Massachusetts Institute of Technology
United States
mrudoy@gmail.com

Mirko Rossi
University of Rome Tor Vergata
Italy
r.mirko25@gmail.com

FUN 2018

0:xviii Authors

Mostafa Wahby
University of Lübeck
Germany
wahby@iti.uni-luebeck.de

Naoki Kitamura
Nagoya Institute of Technology
Japan
ktmr522@yahoo.co.jp

Naveen Durvasula
Montgomery Blair High School
United States
140.naveen.d@gmail.com

Naveen Raman
Richard Montgomery High School
United States
nav.j.raman@gmail.com

Neeldhara Misra
Indian Institute of Technology, Gandhinagar
India
mail@neeldhara.com

Paolo Boldi
University of Milan
Italy
paolo.boldi@unimi.it

Pascal Lafourcade
LIMOS, University Clermont Auvergne
France
pascal.lafourcade@udamail.fr

Petra Wolf
University of Tübingen
Germany
wolfp@informatik.uni-tuebingen.de

Rémy Belmonte
The University of Electro-Communications
Japan
remybelmonte@gmail.com

Ronald de Haan
University of Amsterdam
Netherlands
me@ronalddehaan.eu

Ruben Hoeksma
Universität Bremen
Germany
hoeksma@uni-bremen.de

Ryan Killick
Carleton University
Canada
RyanKillick@cmail.carleton.ca

Sebastiano Vigna
University of Milan
Italy
sebastiano.vigna@unimi.it

Stefano Leucci
ETH Zurich
Italy
stefano.leucci@inf.ethz.ch

Sung Hyun Yoo
Bergen County Academies
United States
sunnyyoo812@gmail.com

Sunil Shende
Rutgers University
United States
sunil.shende@rutgers.edu

Taisuke Izumi
Nagoya Institute of Technology
Japan
t-izumi@nitech.ac.jp

Takaaki Mizuki
Tohoku University
Japan
mizuki@cc.tohoku.ac.jp

Takuya Kamehashi
Toyohashi University of Technology
Japan
kamehashi@algo.cs.tut.ac.jp

Tami Tamir
The Interdisciplinary Center
Israel
tami@idc.ac.il

Authors 0:xix

Tatsuaki Ibusuki
Hiroshima University
Japan

Tatsuya Sasaki
Tohoku University
Japan
tatsuya.sasaki.p2@dc.tohoku.ac.jp

Tom van der Zanden
Utrecht University
Netherlands
T.C.vanderZanden@uu.nl

Toshihiro Fujito
Toyohashi University of Technology
Japan
fujito@cs.tut.ac.jp

Valentin Polishchuk
Linkoping University
Sweden
valentin.polishchuk@liu.se

William Gasarch
University of Maryland
United States
gasarch@cs.umd.edu

Xavier Bultel
Université d’Auvergne
France
xavier.bultel@udamail.fr

Yota Otachi
Kumamoto University
Japan
otachi@cs.kumamoto-u.ac.jp

Yuya Kawabata
Nagoya Institute of Technology
Japan
29414043@stn.nitech.ac.jp

Zachary Abel
Massachusetts Institute of Technology
United States
zabel@math.mit.edu

FUN 2018

Mind the Gap
Martín Farach-Colton1

Rutgers University, Department of Computer Science, Piscataway, NJ 08854, USA
martin@farach-colton.com

https://orcid.org/0000-0003-3616-7788

Abstract
As a New Yorker, I’m painfully aware of space. There is, after all, nothing more luxurious
than empty space! So when it comes to algorithms, I’m all in favor of leaving holes in my data
structures. In this talk, I’ll explore the advantages of pampering algorithms with some much
needed breathing room.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases library sort, Italian island, packed memory arrays, weight balanced trees,
Italians know how to throw a conference

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.1

Category Invited Paper

1 Supported by NSF CCF 1637458, NIH 1 U01 CA198952-01, a NetAPP Faculty Fellowship and a gift
from Dell/EMC.

© Martín Farach-Colton;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin@farach-colton.com
https://orcid.org/0000-0003-3616-7788
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Evolution of Impossible Objects

Kokichi Sugihara
Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 4-21-1 Nakano,
Nakano-ku, Tokyo 164-8525, Japan
http://www.isc.meiji.ac.jp/~kokichis/
kokichis@isc.meiji.ac.jp

Abstract
Impossible objects – 3D objects that can create a visual effect that seems impossible – can be
classified by generation based on the order in which they were discovered or produced. The first
generation consists of objects whose appearance when observed from a certain viewpoint matches
a picture of an impossible object. Many such objects can be created, as there are multiple 3D
objects that will project the same two-dimensional picture, including shapes that the human
vision system is unable to perceive. The gap between the mathematical and the psychological
can also create other types of “impossible” visual effects. Impossible objects are here classified
into seven groups.

2012 ACM Subject Classification Applied computing → Computer-aided design

Keywords and phrases Ambiguous cylinder, anomalous picture, impossible motion, impossible
object, optical illusion

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.2

Category Invited Paper

Acknowledgements This work is supported by the Grant-in-Aid for Basic Scientific Research
(A) No. 16H01728 of MEXT.

1 Introduction

“Anomalous pictures” or “pictures of impossible objects” are a class of pictures that give
viewers the impression of a 3D structure that is perceived to be impossible [2, 16]. A typical
example of such a picture is the endless loop of stairs proposed by Penrose and Penrose [6]
and which appears in Escher’s “Ascending and Descending” [4].

It was once thought that impossible objects exist only in the mind and that they could
not be constructed as actual 3D structures. However, several tricks were soon found for
creating 3D structures that could reproduce pictures of impossible objects. One such trick
is to make a discontinuous structure appear to be continuous when seen from a particular
viewpoint [5, 7]. A second trick is to use curved surfaces instead of planar surfaces [1, 3].

Sugihara describes a third trick [8, 9] in which the creator uses angles other than 90
degrees to produce a rectangular look. He called this the “non-rectangularity trick”. He
extended the trick in various directions and proposed new types of impossible objects,
including “impossible motion objects” in which the inserted motions appear to be impossible;
“ambiguous cylinders”, whose mirror images appear to be impossible; and “partly invisible
objects”, parts of which disappear when reflected in a mirror.

In this presentation, we classify Sugihara’s impossible objects according to their generation
and present typical examples. We also touch on some of the underlying mathematics.

© Kokichi Sugihara;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 2; pp. 2:1–2:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.isc.meiji.ac.jp/~kokichis/
mailto:kokichis@isc.meiji.ac.jp
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Evolution of Impossible Objects

(a) (b) (c)

Figure 1 First-generation “anomalous object”: (a) picture of an endless loop of stairs; (b) solid
object producing the same picture; (c) another view of the object.

2 First-Generation “Anomalous Objects”

Not all of the 3D objects represented in anomalous pictures are impossible; in some cases,
they can be constructed as 3D solid objects. An example is shown in Fig. 1, where panel
(a) shows a picture of an endless loop of stairs and panel (b) shows an object made from
paper whose appearance from above coincides with the picture. The stairs at the top of the
four walls form a loop, suggesting that if we continue to ascend the stairs, we will eventually
come back to the starting point, which is impossible since ascending the stairs should bring
us always to a higher position. Fig. 1 (c) shows another view of the object, from which we
can see that the stairs on the left rear wall are not normal. Note that in this realization, all
faces are planar and the structures that look connected are actually connected.

This kind of realization can be found mathematically in the following way. As illustrated
in Fig. 2, let us fix an (x, y, z) Cartesian coordinate system, place a picture on the z = 1
plane, and fix the viewpoint at the origin. We are interested in judging whether the object
represented by the picture is realizable. Let (xi, yi, 1) be the coordinates of the i-th vertex
in the picture. The associated vertex in 3D space, if it exists, should have coordinates
(xi/ti, yi/ti, 1/ti), where ti is an unknown variable, because the vertex should be on the
half-line emanating from the origin and passing through the vertex (xi, yi, 1). For the j-th
face, let

ajx + bjy + cjz + 1 = 0 (1)

be the equation of the plane containing the face. All the coefficients aj , bj , cj are unknowns.
Suppose that the i-th vertex is on the j-th face. Then we can substitute the coordinates

of the vertex into the face equation and obtain

ajxi + bjyi + cj + ti = 0,

which is linear in the unknowns ti, aj , bj , cj . We obtain a similar equation for each such
vertex and face pair. Collecting them all, we get a system of linear equations

Aw = 0, (2)

where A is a constant matrix and w is the vector of unknown variables.
Pictures also have relative depth information. As shown in Fig. 3, let l be an edge

separating the j-th face and the k-th face. Suppose that l is a convex edge and the k-th face

K. Sugihara 2:3

Figure 2 Object and its projection.

Figure 3 Relative depth.

contains the i-th vertex. Then the plane containing the j-th face passes between the i-th
vertex and the viewpoint, which is represented by

ajxi + bjyi + cj + ti < 0. (3)

Collecting all similar inequalities, we get the system of linear inequalities

Bw > 0. (4)

We can then prove that the picture represents a polyhedral object if and only if the
system of equations (2) and inequalities (4) has solutions [8]. Thus, we can determine the
realizability of impossible objects. The object shown in Fig. 1 corresponds to a solution of
the system of equations and inequalities. In this way, we can construct a potentially large
number of 3D objects whose projections coincide with anomalous pictures. We classify this
type of impossible object as first generation and call the objects “anomalous objects”.

3 Second-Generation “Impossible Motion Objects”

If a given picture is correct, then the associated system of equations (2) and inequalities (4)
has solutions but they are not unique. We can utilize this property to construct another type
of impossibility. Let D be a picture of an ordinary 3D object. The system of (2) and (4)
contains a solution corresponding to the original object, but it contains many other solutions.
Each solution corresponds to an object whose appearance is the same as the original object
but whose actual shape is different. For example, a picture of a slope ascending rightward also
contains a solution corresponding to a slope ascending leftward. By choosing an appropriate

FUN 2018

2:4 Evolution of Impossible Objects

(a) (b) (c)

Figure 4 Second-generation “impossible motion object”: (a) two walls with holes; (b) a rod
penetrating two windows; (c) another view.

solution, we can create the impression of impossible motion such as a ball climbing a slope
against gravity [10].

An example is shown in Fig. 4, where panel (a) shows an object composed of two walls
with rectangular holes, and panel (b) shows the motion of a rigid straight rod penetrating
through two windows. Fig. 4(c) shows another view of the object, from which we can see
that the actual shape of the object is different from what we perceive when we see the image
in Fig. 4(a).

We classify this type of impossible object as second generation and name the objects
“impossible motion objects”.

4 Cylinder-Type Impossible Objects

Anomalous objects and impossible motion objects create an “impossible” visual effect when
they are seen from a single special viewpoint. Another way to generate a sense of impossibility
is to observe an object from two or more viewpoints. If the appearance of the object is so
different when seen from the different viewpoints that the viewer is unable to believe that it
is the same object, then we may well have found a new impossible object. On the basis of
this idea, we can construct several additional classes of impossible objects.

4.1 Third-Generation “Ambiguous Cylinders”
The system of linear equations and equalities described in (2) and (4) has infinitely many
solutions if the associated picture is correct. This implies that the same 2D appearance can
be realized by many different 3D shapes, and, consequently, we may construct a 3D object
that projects two desired appearances when the object is seen from two special viewpoints.
This kind of object can be found by solving two systems of (2) and (4) corresponding to two
pictures with respect to two viewpoints.

An example is shown in Fig. 5. As shown in panel (a), when the cylinder is viewed
directly, it has the shape of a full moon, but when it is reflected in the vertical mirror behind,
it has the shape of a star.

We classify these types of impossible objects as third generation and call them “ambiguous
cylinders” [11].

4.2 Fourth-Generation “Partly invisible Objects”
The design method used for ambiguous cylinders can also be used to create another visual
illusion in which part of an object disappears when it is seen from a second viewpoint. To

K. Sugihara 2:5

(a) (b)

Figure 5 Third-generation “ambiguous cylinder”: (a) full moon and star; (b) another view.

(a) (b)

Figure 6 Fourth-generation “partly invisible object”: (a) object VH; (b) another view.

understand how this might work, consider an object composed of two parts, A and B. We
can construct an ambiguous cylinder in such a way that part A appears as it is from both
viewpoints, whereas part B appears as A when seen from the second viewpoint. The resulting
object is such that, when we see the object from the second viewpoint, parts A and B overlap
and, as a consequence, one is hidden by the other.

An example is given in Fig. 6. In panel (a), the object appears to be a regular hexagonal
cylinder on its side, while the lower half disappears in the mirror. As shown in panel (b), the
lower half is actually horizontal and gets hidden behind the upper half when seen from the
second viewpoint.

We classify these types of impossible objects as fourth generation and name them “partly
invisible objects” [14].

4.3 Fifth-Generation “Topology-Disturbing Objects”
We can apply the design method for ambiguous cylinders in still another way, one whereby
we create objects whose topology changes in the mirror. An example is shown in Fig. 7. As
shown in panel (a), the object appears in both views to consist of two circular cylinders;
however, the cylinders are separated in the direct view, while they appear to be mutually

FUN 2018

2:6 Evolution of Impossible Objects

(a) (b)

Figure 7 Fifth-generation “topology-disturbing objects”: (a) two vertically aligned cylinders; (b)
another view.

(a) (b) (c) (d)

Figure 8 Sixth-generation “deformable objects”: (a) arrow that likes to face rightward; (b), (c),
(d) sequence of other views.

intersecting in the mirror. In other words, the shape of each part does not change, but their
topology is disturbed in the mirror. The actual shape of the object can be understood when
we see it from another direction, as in panel (b).

We classify these types of impossible objects as fifth generation and name them “topology-
disturbing objects” [15].

4.4 Sixth-Generation “Deformable Objects”
Some ambiguous cylinders create another interesting visual effect in the sense that the
rotation of the object around a vertical axis generates the impression of a dynamic change of
shape. An example is shown in Fig. 8, where panels (a), (b), (c), and (d) show pictures of
the object being rotated around a vertical axis by approximately 0, 40, 100, and 150 degrees.
The object appears to be an arrow facing rightward; however, if we rotate it by 180 degrees
around the vertical axis, it again faces rightward. Moreover, during the rotation, the object
appears to be deforming continuously [13].

We call this type of impossible object sixth generation and name the objects “deformable
objects”.

4.5 Eighth-Generation “Reflexively Fused Objects”
Another application of the ambiguous cylinder is to make part of the goal shape as a solid
object and to provide the remaining part by its mirror image. An example is shown in Fig. 9,
where panel (a) shows an object, panel (b) shows the same object placed on a horizontally

K. Sugihara 2:7

(a) (b) (c)

Figure 9 Eighth-generation “reflexively fused object”: (a) object alone; (b) object on a horizontally
oriented mirror; (c) another view.

(a) (b)

Figure 10 Seventh-generation “height-reversal object”: (a) amphitheater and hill; (b) another
view.

oriented mirror so that the object and its mirror image are fused, and panel (c) shows another
view of the object on the mirror. The object itself is meaningless, but the object together
with its mirror image gives a meaningful shape. This type of an object can be constructed in
the following way. We first decompose a goal shape into an upper part and a lower part, next
transform the lower part into its height-reversed version, and finally apply the ambiguous
cylinder method to this pair of the shapes.

We call this type of impossible object eighth generation and name the objects “reflexively
fused objects”.

5 Seventh-Generation “Height Reversal Objects”

A picture placed on a horizontal plane can sometimes generate two interpretations of a 3D
object whose height is reversed when the object is seen from mutually opposite sides with
the same slant angle [12]. If we add to such a picture a 3D object showing the direction of
gravity and place a vertical mirror behind it, then the direct view and the mirror image give
quite different impressions of the 3D surfaces. An example is shown in Fig. 10. The direct
view appears to be an amphitheater with the stage at the bottom, whereas the mirror image
appears to be a hill.

We classify these types of impossible objects as seventh generation and name them
“height-reversal objects” [12].

FUN 2018

2:8 Evolution of Impossible Objects

6 Concluding Remarks

We have classified objects that generate the impression of impossibility into several generations
and shown an example object for each generation, where all of objects involve visual illusions.

The mathematics behind the illusions is based on the principle that a single image does
not have depth information and hence there are many possible 3D shapes that give the same
2D appearance. By combining this mathematical property with the psychological preferences
of human vision systems, we can effectively create many new visual effects, with potential
applications to toys, tourism, magic, and so on. Our next goal is to realize these various
applications.

References
1 G. Elber. Modeling (seemingly) impossible models. Computer and Graphics, 35(3):632–638,

2011.
2 B. Ernst. The Eye Beguiled: Optical Illusion. Benedikt Taschen Verlag GmbH, 1992.
3 B. Ernst. Impossible World. Taschen GmbH, 2006.
4 M. C. Escher. M. C. Escher: The Graphic Work, 25th Edition. Taschen America, 2008.
5 R. L. Gregory. The Intelligent Eye. Weidenfeld and Nicolson, 1970.
6 L. S. Penrose and R. Penrose. Impossible objects: a special type of visual illusion. British

Journal of Psychology, 49(1):31–33, 1958.
7 A. I. Seckel. Master of Deception. Sterling Publishing Co., Inc., 2004.
8 Kokichi Sugihara. Machine Interpretation of Line Drawings. The MIT Press, 1996.
9 Kokichi Sugihara. Three-dimensional realization of anomalous pictures: An application of

picture interpretation theory to toy design. Pattern Recognition, 30(7):1061–1067, 1997.
10 Kokichi Sugihara. Design of solids for antigravity motion illusion. Computational Geometry:

Theory and Applications, 47(6):675–682, 2014.
11 Kokichi Sugihara. Ambiguous cylinders: A new class of impossible objects. Computer

Aided Drafting, Design and Manufacturing, 25(3):19–25, 2015.
12 Kokichi Sugihara. Height reversal generated by rotation around a vertical axis. Journal of

Mathematical Psychology, 68-69(October-December):7–12, 2015.
13 Kokichi Sugihara. Anomalous mirror symmetry generated by optical illusion. Symmetry,

8(4):2–22, 2016.
14 Kokichi Sugihara. A new type of impossible objects that become partly invisible in a mirror.

Japan Journal of Industrial and Applied Mathematics, 33(3):525–535, 2016.
15 Kokichi Sugihara. Topology-disturbing objects: A new class of 3d optical illusion. Journal

of Mathematics and the Arts, 12(1):2–18, 2018.
16 J. T. Unruh. Impossible Objects. Sterling Publishing Co., Inc., 2001.

Who witnesses The Witness? Finding witnesses in
The Witness is hard and sometimes impossible

Zachary Abel
MIT EECS Department, 50 Vassar St., Cambridge, MA 02139, USA
zabel@mit.edu

Jeffrey Bosboom
MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
jbosboom@csail.mit.edu

Erik D. Demaine
MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
edemaine@mit.edu

Linus Hamilton
MIT Mathematics Department, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
luh@mit.edu

Adam Hesterberg
MIT Mathematics Department, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
achester@mit.edu

Justin Kopinsky
MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
jkopin@mit.edu

Jayson Lynch
MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
jaysonl@mit.edu

Mikhail Rudoy1

MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
mrudoy@gmail.com

Abstract
We analyze the computational complexity of the many types of pencil-and-paper-style puzzles
featured in the 2016 puzzle video game The Witness. In all puzzles, the goal is to draw a path
in a rectangular grid graph from a start vertex to a destination vertex. The different puzzle
types place different constraints on the path: preventing some edges from being visited (broken
edges); forcing some edges or vertices to be visited (hexagons); forcing some cells to have certain
numbers of incident path edges (triangles); or forcing the regions formed by the path to be
partially monochromatic (squares), have exactly two special cells (stars), or be singly covered
by given shapes (polyominoes) and/or negatively counting shapes (antipolyominoes). We show
that any one of these clue types (except the first) is enough to make path finding NP-complete
(“witnesses exist but are hard to find”), even for rectangular boards. Furthermore, we show that
a final clue type (antibody), which necessarily “cancels” the effect of another clue in the same
region, makes path finding Σ2-complete (“witnesses do not exist”), even with a single antibody
(combined with many anti/polyominoes), and the problem gets no harder with many antibodies.

1 Now at Google Inc.

© Jeffrey Bosboom, Erik D. Demaine, Linus Hamilton, Adam Hesterberg,
Justin Kopinsky, Jayson Lynch, and Mikhail Rudoy;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 3; pp. 3:1–3:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zabel@mit.edu
mailto:jbosboom@csail.mit.edu
mailto:edemaine@mit.edu
mailto:luh@mit.edu
mailto:achester@mit.edu
mailto:jkopin@mit.edu
mailto:jaysonl@mit.edu
mailto:mrudoy@gmail.com
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Who witnesses The Witness? Finding witnesses in The Witness is hard/impossible

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases video games, puzzles, hardness

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.3

Related Version https://arXiv.org/abs/1804.10193

Acknowledgements We thank Jason Ku and Quanquan Liu for helpful discussions related to
this paper. Most figures were produced using SVG Tiler (https://github.com/edemaine/svgtiler),
based on SVG source code from TheWindmill (https://github.com/thefifthmatt/windmill-client/),
a clone of Witness-style puzzles distributed under Apache License 2.0.

1 Introduction

The Witness [9] is an acclaimed 2016 puzzle video game designed by Jonathan Blow (who
originally became famous for designing the 2008 platform puzzle game Braid, which is
undecidable [5]). The Witness is a first-person adventure game, but the main mechanic of
the game is solving 2D puzzles presented on flat panels (sometimes CRT monitors) within
the game. The 2D puzzles are in a style similar to pencil-and-paper puzzles, such as Nikoli
puzzles. Indeed, one clue type in Witness (triangles) is very similar to the Nikoli puzzle
Slitherlink (which is NP-complete [10]).

In this paper, we perform a systematic study of the computational complexity of all
single-panel puzzle types in The Witness, as well as some of the 3D “metapuzzles” embedded
in the environment itself. Table 1 summarizes our single-panel results, which range from
polynomial-time algorithms (as well as membership in L) to completeness in two complexity
classes, NP (i.e., Σ1) and the next level of the polynomial hierarchy, Σ2. Table 3 summarizes
our metapuzzle results, where PSPACE-completeness typically follows immediately.

For omitted proofs, see [1].

Witness puzzles. Single-panel puzzles in The Witness (which we refer to henceforth as
Witness puzzles) consist of an m×n full rectangular grid;2 one or more start circles (drawn as
a large dot,); one or more end caps (drawn as half-edges leaving the rectangle boundary);
and zero or more clues (detailed below) each drawn on a vertex, edge, or cell3 of the
rectangular grid. Figure 1 shows a small example and its solution. The goal of the puzzle is
to find a path that starts at one of the start circles, ends at one of the end caps, and satisfies
all the constraints imposed by the clues (again, detailed below). We focus on the case of a
single start circle and single end cap, which makes our hardness proofs the most challenging.

We now describe the clue types and their corresponding constraints. Table 2 lists the
clues by what they are drawn on — grid edge, vertex, or cell — which we refer to as this
edge, vertex, or cell. While the last five clue types are drawn on a cell, their constraint

2 While most Witness puzzles have a rectangular boundary, some lie on a general grid graph. This
generalization is mostly equivalent to having broken-edge clues (defined below) on all the non-edges of
the grid graph, but the change in boundary can affect the decomposition into regions. We focus here on
the rectangular case because it is most common and makes our hardness proofs most challenging.

3 We refer to the unit-square faces of the rectangular grid as cells, given that “squares” are a type of clue
and “regions” are the connected components outlined by the solution path and rectangle boundary.

http://dx.doi.org/10.4230/LIPIcs.FUN.2018.3
https://arXiv.org/abs/1804.10193
https://github.com/edemaine/svgtiler
https://github.com/thefifthmatt/windmill-client/

J. Bosboom et al. 3:3

Table 1 Our results for one-panel puzzles in The Witness: computational complexity with various
sets of allowed clue types (marked by X). Allowed polyomino clues are either arbitrary (X), or
restricted to be monominoes (X), vertical dominoes (X), or rotatable dominoes (X).

broken edge hexagon square star triangle polyomino antipolyomino antibody
complexity

X ∈ L
X Xvertices NP-complete

Xvertices OPEN
Xedges NP-complete

X1 color ∈ P
X2 colors NP-complete

X1 color OPEN
Xn colors NP-complete

X NP-complete
X X NP-complete

X OPEN
X NP-complete

X X OPEN
X X NP-complete
X NP-complete
X NP-complete

X X X X X X X ∈ NP
X X X X X Xn ∈ NP

X X2 Σ2-complete
X X X1 Σ2-complete

X X X X X X X Xn ∈ Σ2

applies to the region that contains that cell (referred to as this region), where we consider
the regions of cells in the rectangle as decomposed by the (hypothetical) solution path and
the rectangle boundary.

The solution path must satisfy all the constraints given by all the clues. (The meaning
of this statement in the presence of antibodies is complicated; see Section 8.) Note, however,
that if a region has no clue constraining it in a particular way, then it is free of any such
constraints. For example, a region without polyomino or antipolyomino clues has no packing
constraint.

As summarized in Table 1, we prove that most clue types by themselves are enough
to obtain NP-hardness. The exceptions are broken edges, which alone just define a graph
search problem; and vertex hexagons, which are related to Hamiltonian path in rectangular
grid graphs as solved in [6] but remain open. But vertex hexagons are NP-hard when
we also add broken edges. For squares, we determine that exactly two colors are needed
for hardness. For stars, we do not know whether one or any constant number of colors
are hard. For triangles, we know that 1-triangles or 3-triangles alone suffice for hardness,
but for 2-triangles the only hardness proof we know needs broken edges. For polyominoes,
monominoes alone are easy to solve [8], but monominoes plus antimonominoes are hard, as
are rotatable dominoes by themselves and vertical nonrotatable dominoes by themselves. All
problems without antibodies or without (anti)polyominoes are in NP. Antibodies combined
with (anti)polyominoes push the complexity up to Σ2-completeness, but no further.

FUN 2018

3:4 Who witnesses The Witness? Finding witnesses in The Witness is hard/impossible

Figure 1 A small Witness puzzle featuring all clue types (left) and its solution (right). (Not from
the actual video game.)

Table 2 Witness puzzle clue types and the definitions of their constraints.

clue drawn on symbol constraint
broken edge edge The solution path cannot include this edge.
hexagon edge The solution path must include this edge.
hexagon vertex The solution path must visit this vertex.
triangle cell There are three kinds of triangle clues (, ,).

For a clue with i triangles, the path must include
exactly i of the four edges surrounding this cell.

square cell A square clue has a color. This region must not have
any squares of a color different from this clue.

star cell A star clue has a color. This region must have exactly
one other star, exactly one square, or exactly one
antibody of the same color as this clue.

polyomino cell A polyomino clue has a specified polyomino shape,
and is either nonrotatable (if drawn orthogonally,
like) or rotatable by any multiple of 90◦ (if drawn
at 15◦, like). Assuming no antipolyominoes, this
region must be perfectly packable by the polyomino
clues within this region.

antipolyomino cell Like polyomino clues, an antipolyomino clue has a
specified polyomino shape and is either rotatable or
not. For some i ∈ {0, 1}, each cell in this region must
be coverable by exactly i layers, where polyominoes
count as +1 layer and antipolyominoes count as
−1 layer (and thus must overlap), with no positive
or negative layers of coverage spilling outside this
region.

antibody cell Effectively “erases” itself and another clue in this
region. This clue also must be necessary, meaning
that the solution path should not otherwise satisfy
all the other clues. See Section 8 for details.

J. Bosboom et al. 3:5

Table 3 Our results for metapuzzles in The Witness: computational complexity with various
sets of environmental features.

features complexity
sliding bridges PSPACE-complete

elevators and ramps PSPACE-complete
power cables and doors PSPACE-complete

(a) Instance of
grid-graph Hamil-
tonicity

(b) A possible so-
lution to (a)

(c) Corresponding chambers and hallways

Figure 2 An example of the Hamiltonicity framework with r = 1 and s = 4.

Witness metapuzzles. We also consider some of the metapuzzles formed by the 3D envi-
ronment in The Witness, which interact with the 2D single-panel puzzles. See Section 9
for details of these interaction models. Table 3 lists our metapuzzle results, which are all
PSPACE-completeness proofs following the infrastructure of [2] (from FUN 2014).

2 Hamiltonicity Reduction Framework

We introduce a framework for proving NP-hardness of Witness puzzles by reduction from
Hamiltonian cycle in a grid graph G of maximum degree 3. Roughly speaking, we scale G

by a constant scale factor s, and replace each vertex by a block called a chamber; refer to
Figure 2. Precisely, for each vertex v of G at coordinates (x, y), we construct a 2r + 1× 2r + 1
subgrid of vertices {sx− r, . . . , sx + r} × {sy− r, . . . , sy + r}, and all induced edges between
them, called a chamber Cv. This construction requires 2r < s for chambers not to overlap.
For each edge e = {v, w} of G, we construct a straight path in the grid from sv to sw, and
define the hallway Hv,w to be the subpath connecting the boundaries of v’s and w’s chambers,
which consists of s− 2r edges. Figure 2 illustrates this construction on a sample graph G.

FUN 2018

3:6 Who witnesses The Witness? Finding witnesses in The Witness is hard/impossible

In each reduction, we define constraints to force the solution path to visit (some part of)
each chamber at least once, to alternate between visiting chambers and traversing hallways
that connect those chambers, and to traverse each hallway at most once. Because G has
maximum degree 3, these constraints imply that each chamber is entered exactly once and
exited exactly once. Next to one chamber on the boundary of G, called the start/end chamber,
we place the start circle and end cap of the Witness puzzle. Thus any solution to the Witness
puzzle induces a Hamiltonian cycle in G. To show that any Hamiltonian cycle in G induces
a solution to the Witness puzzle, we simply need to show that a chamber can be traversed in
each of the

(3
2
)
ways.

3 Hexagons and Broken Edges

Hexagons are placed on vertices or edges of the graph and require the path to pass through
all of the hexagons. Broken edges are edges which cannot be included in the path. We show
the positive result that puzzles with just broken edges are solvable in L, and the negative
results that puzzles with just hexagons on edges are NP-complete and puzzles with just
hexagons on vertices and broken edges are NP-complete. We leave open the question of
puzzles with just hexagons on vertices (and no broken edges).

I Lemma 1. Witness puzzles containing only broken edges, multiple start circles and multiple
end caps are in L.

Proof. We keep two pointers and a counter to track which pairs of starts and ends we have
tried. For each start and end pair we run an (s, t) path existence algorithm, which is in L. If
any of these return yes, the answer is yes. Thus we’ve solved the problem with a quadratic
number of calls to a log-space algorithm, a constant number of pointers, and a counter, all of
which only require logarithmic space. J

I Lemma 2. It is NP-complete to solve Witness puzzles containing only broken edges and
hexagons on vertices.

Proof. Hamiltonian path in grid graphs is a strict subproblem. J

I Theorem 3. It is NP-complete to solve Witness puzzles containing only hexagons on edges
(and no broken edges).

Proof sketch. We use the Hamiltonicity framework; refer to Figure 3. Noting that two edge
hexagons incident to the same vertex must be consecutively traversed by the solution path,
we carefully force the solution path to traverse the boundary of every chamber separate from
the decision of which hallways to use. As with other Hamiltonicity framework reductions,
we force each chamber to be visited with an edge hexagon in its center and can deduce the
corresponding Hamiltonian cycle in the original grid graph from the set of used hallways. J

I Open Problem 1. Is there a polynomial-time algorithm to solve Witness puzzles containing
only hexagons on vertices?

4 Squares

Each square clue has a color and is placed on a cell of the puzzle. Each region formed by the
solution path and puzzle boundary must have at most one color of squares. If a puzzle has
only a single color of squares, no non-trivial constraint is applied.

J. Bosboom et al. 3:7

(a) Instance corresponding to Figure 2a (b) Solution corresponding to Figure 2b

Figure 3 Example of the Hamiltonicity framework applied to Witness with edge hexagons.

4.1 Tree-Residue Vertex Breaking
Our reduction is from tree-residue vertex breaking [4]. Define breaking a vertex of degree
d to be the operation of replacing that vertex with d vertices, each of degree 1, with the
neighbors of the vertex becoming neighbors of these replacement vertices in a one-to-one way.
The input to the tree-residue vertex breaking problem is a planar multigraph in which each
vertex is labeled as “breakable” or “unbreakable”. The goal is to determine whether there
exists a subset of the breakable vertices such that breaking those vertices (and no others)
results in the graph becoming a tree (i.e., destroying all cycles without losing connectivity).
This problem is NP-hard even if all vertices are degree-4 breakable vertices or degree-3
unbreakable vertices[4].

4.2 Squares with Squares of Two Colors
I Theorem 4. It is NP-complete to solve Witness puzzles containing only squares of two
colors.

Concurrent work [8] also proves this theorem. However, we prove this by showing that
the stronger Restricted Squares Problem is also hard, which will be useful to reduce from in
Section 5.

I Problem 1 (Restricted Squares Problem). An instance of the Restricted Squares Problem
is a Witness puzzle containing only squares of two colors (red and blue), where each cell
in the leftmost and rightmost columns, and each cell in the topmost or bottommost rows,
contains a square clue; and of these square clues, exactly one is blue, and that square clue is
not in a corner cell; and the start vertex and end cap are the two boundary vertices incident
to that blue square; see Figure 4.

I Theorem 5. The Restricted Squares Problem is NP-complete.

FUN 2018

3:8 Who witnesses The Witness? Finding witnesses in The Witness is hard/impossible

Figure 4 Boundary of the
Restricted Squares Problem.

(a) Unsolved gadget. (b) The unique solution path.

Figure 5 Unbreakable degree-3 vertex gadget

(a) Unsolved gadget (b) Unbroken solution path. (c) Broken solution path.

Figure 6 Breakable degree-4 vertex gadget

Proof sketch. We reduce from tree-residue vertex breaking and construct gadgets for an
unbreakeable degree 3 vertex (Figure 5) and a breakable degree 4 vertex (Figure 6) out of
squares. We force the solution path to take an Euler tour of these gadgets, which can only
be done if the underlying tree-residue vertex breaking graph is a tree. J

5 Stars

Star clues are in cells of a puzzle. If a region formed by the solution path and boundary of a
puzzle has a star of a given color, then the number of clues (stars, squares, or antibodies) of
that color in that region must be exactly two. A star imposes no constraint on clues with
colors different from that of the star.

I Theorem 6. It is NP-complete to solve Witness puzzles containing only stars (of arbitrarily
many colors).

Proof sketch. We reduce from the Restricted Squares Problem. For every square in the
source instance, I, we use exactly one pair of stars of a distinct color corresponding to
that square, as well as ten auxiliary colors. Figure 7 shows the high level structure of the
reduction. A subrectangle, S, of the puzzle is designated for recreating I. For each pair of
stars corresponding to a square, we place one of the two stars on the boundary of the puzzle,
and the other in S in the same position as the corresponding square in I. The solution
path will be forced to divide the overall puzzle into exactly two regions—an “inside” and
an “outside”—such that all of the boundary stars corresponding to red squares are on the
outside and all of the boundary stars corresponding to blue squares are on the inside. Then,
inside of S, the solution path must ensure that all stars corresponding to red squares are in
the outside region and all stars corresponding to blue squares are in the inside region, or
else the star constraint will be violated. Then the solution path inside of S must correspond
exactly to a solution path in I. J

J. Bosboom et al. 3:9

2

2

2

22 2

1 1

1 1 11 3

3

3

3

3 3

4 4

4 4R−1R B−1 B

squares instance

Figure 7 The boundary of the reduction. Each visual (color, number) pair represents a distinct
color in the constructed instance. All stars depicted as blue correspond to blue squares in the source
instance and must be in the inside region. Stars depicted as red correspond to red squares and must
be in the outside region. The other stars enforce this.

Table 4 Summary of Slitherlink / Witness triangle constraints. New results are bold.

Clue types Complexity
0 P [10]
1 NP-complete [Theorem 7]
2 Open
3 NP-complete [Theorem 8]
4 P [trivial]
0 and 2 NP-complete

I Open Problem 2. Is it NP-complete to solve Witness puzzles containing only a constant
number of colors of stars?

6 Triangles

Triangles are placed in cells. The number of solution path edges adjacent to that cell
must match the number of triangles. This is similar to Slitherlink, which is known to be
NP-complete [10]; however the proof in [10] relies critically on being able to force zero edges
around a cell using 0-clues, which are not available in The Witness. We characterize all
possibile combinations of constraints of these types for grid graphs. Table 4 summarizes
what is known.

I Open Problem 3. Is it NP-complete to solve Witness puzzles containing only 2-triangle
clues (and no broken edges)?

6.1 One Triangle Clues
Proving hardness of Witness puzzles containing only 1-triangle clues is made challenging
by the fact that it is impossible to (locally) force turns on the interior of the puzzle. In
particular, any rectangular interior region can be locally satisfied by a solution path which
either traverses every second row of horizontal edges in the region or every second column of
vertical edges in the region regardless of the configuration of 1-triangle clues in the region.

FUN 2018

3:10 Who witnesses The Witness? Finding witnesses in The Witness is hard/impossible

(a) Unsolved. (b) “All” or “active” solution. (c) “Nothing” or “inactive”
solution.

Figure 8 All-or-nothing gadget.

Therefore, any local arguments we want to make about gadgets on the interior of the puzzle
will need to admit the possibility of local solutions which are comprised of just horizontal or
vertical paths straight through.

I Theorem 7. It is NP-complete to solve Witness puzzles containing only 1-triangle clues.

Proof sketch. We reduce from positive 1-in-3SAT, making use of the fact that the solution
path must be a single closed path. We force the solution path to traverse all horizontal
edges except for on the interior of gadgets, in which the solution path is allowed to connect
adjacent horizontal path segments in a controlled manner (see Figure 8 for one key gadget),
such that doing so corresponds to a solution to the source 1-in-3SAT instance. J

6.2 Three Triangle Clues
I Theorem 8. It is NP-complete to solve Witness puzzles containing only 3-triangle clues.

Proof sketch. We use the Hamiltonicity framework. Adjacent 3-triangle clues must be
traversed consecutively by the solution path, so we can use them to for the solution path to
trace the boundary of each chamber. Figure 9 shows the construction of a chamber. J

7 Polyominoes

This section covers various types of polyomino and antipolyomino clues. Polyomino clues can
generally be characterized by the size and shape of the polyomino and whether or not they
can be rotated (vs.). For each region, it must be possible to place all polyominoes and
antipolyominoes depicted in that region’s clues (not necessarily within the region) so that

J. Bosboom et al. 3:11

(a) Unsolved. (b) One possible solution, using the left and
bottom edges.

Figure 9 A chamber with edges to the left, right, and below.
...

{

{

{{

Figure 10 Overview of the rotatable dominoes NP-completeness proof.

for some i ∈ {0, 1}, each cell inside the region is covered by exactly i more polyomino than
antipolyomino and each cell outside the region is covered by the same number of polyominoes
and antipolyominoes. We give several negative results showing that some of the simplest
(anti)polyomino clues suffice for NP-completeness.

Concurrent work [8] shows that Witness puzzles with squares of two colors for which
every cell contains a square clue can be solved in polynomial time. Interestingly, such puzzles
are equivalent to puzzles with only monominoes, by replacing one color of square with
monominoes and the other color with blank cells. The only constraint on the two puzzle
types is that there can be no region with a mix of square colors or, equivalently, monomino
clues and blank cells. However, the question of whether puzzles with only monominoes and
broken edges can be solved in polynomial time is still open.

7.1 Rotatable Dominoes
I Theorem 9. It is NP-complete to solve Witness puzzles containing only rotatable dominoes.

Proof sketch. We reduce from Rectilinear Steiner Tree: given n points with integer coor-
dinates (x′i, y′i) in the plane, i ∈ {1, 2, . . . , n}, and given an integer k, decide whether there
exists a rectilinear tree connecting the n points having total length at most k. As illustrated
in Figure 10, we embed the tree in the cells of a Witness puzzle, putting a domino clue

FUN 2018

3:12 Who witnesses The Witness? Finding witnesses in The Witness is hard/impossible

at each vertex of the tree, which the solution path must therefore visit. The total number
of dominoes is proportional to k, such that with careful counting, the area enclosed by
the solution path must “look like” a tree of length exactly k in the original Steiner tree
instance. J

7.2 Monominoes + Antimonominoes
I Theorem 10. It is NP-complete to solve Witness puzzles containing only monominoes and
antimonominoes.

Proof sketch. The reduction is very similar to that of Theorem 9, except that the vertices of
the Steiner tree contain antimonomino clues, and most of the other cells contain monomino
clues. We force the solution path to partition the puzzle into two regions, an “outside” region
which is entirely covered by monominoes, and an “inside” region which contains exactly as
many antimonominoes as monominoes, thereby satisfying both. We show that doing this
corresponds to a solution to the Steiner tree source instance. J

7.3 Nonrotatable Dominoes
I Theorem 11. It is NP-complete to solve Witness puzzles containing only nonrotatable
vertical dominoes.

Proof sketch. We reduce from planar rectilinear monotone 3SAT [7]. Refer to Figure 11.
We construct variable “wires” which are comprised of dominoes arranged on a diagonal which
the solution path must enclose in one of two settings. Each clause needs to “connect” to at
least one of its literals, but can only get close enough to do so if the corresponding variable
is set appropriately. J

I Open Problem 4. Is there a polynomial-time algorithm to solve Witness puzzles containing
only monominoes and broken edges?

8 Antibodies

An antibody () eliminates itself and one other clue in its region. For the antibody to be
satisfied, this region must not be satisfied without eliminating a clue; that is, the antibody
must be necessary. An antibody may be colored, but its color does not restrict which clues it
can eliminate.4 Very few Witness puzzles contain multiple antibodies, making the formal
rules for the interactions between antibodies not fully determined by the in-game puzzles.
We believe the following interpretation is a natural one: each antibody increments a count
of clues that must necessarily be unsatisfied for their containing region to be satisfied. If
there are k antibodies in a region, then there must be k clues which can be eliminated such
that those k clues were unsatisfied and all other clues were satisfied; furthermore, there must
not have been a set of fewer than k unsatisfied clues such that all other clues are satisfied5.
Antibodies cannot eliminate other antibodies. The choice of clue to eliminate need not be

4 Antibody color matters when checking if the antibody is necessary; a region containing only a star and
an antibody of the same color is unsatisfied because the antibody is not necessary.

5 Whether or not a clue is satisfied is usually determined only by the solution path; however, in the case
of polyominoes and antipolyominoes, there might be several choices of packings which satisfy different
sets of clues.

J. Bosboom et al. 3:13

(a) The puzzle. (b) The solution.

Figure 11 A Witness puzzle produced from (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬y) and its
solution (x and y are false, z is true). Shaded cells show the domino tiling on the path’s interior.

unique; for instance, a region with three white stars and one antibody is satisfied, even
though the stars are not distinguished. Formally:

I Definition 12 (Simultaneous Antibodies). A region with k antibody clues is satisfied if and
only if there exists a set S of k non-antibody clues such that eliminating all clues in S and
all k antibodies leaves the region satisfied, and there does not exist a set S′ of non-antibody
clues with |S′| < k such that eliminating all clues in S′ and only |S′| of the antibodies leaves
the region satisfied.

I Theorem 13. Witness puzzles containing all clue types except polyominoes and antipoly-
ominoes are in NP.

Proof sketch. Other than antibodies, polyominoes, and antipolyominoes, whether or not a
clue is satisfied can be easily determined from the solution path. Thus, checking whether an
antibody which eliminates such a clue is necessary is easy. J

I Theorem 14. Witness puzzles containing all clue types except antipolyominoes and for
which at least one solution eliminates at most one polyomino in each region are in NP.

Proof sketch. If at least one polyomino is eliminated in a region containing at least two
polyominoes and the region is satisfied as a result, then the region can’t be satisfied without
deleting at least one polyomino because the total area of the polyominoes is greater than
that of the region, and therefore there is no packing. J

I Theorem 15. Witness puzzles containing any set of clue types (including polyominoes,
antipolyominoes, and antibodies) are in Σ2.

FUN 2018

3:14 Who witnesses The Witness? Finding witnesses in The Witness is hard/impossible

Proof. Solving this Witness puzzle requires picking clues for antibodies to eliminate and
finding a path which respects the remaining clues, such that the regions cannot be satisfied
if only a subset of antibodies are used to eliminate clues. Membership in Σ2 requires an
algorithm which accepts only when there exists a certificate of validity for which there is
no certificate of invalidity (i.e., one alternation of ∃x∀y). A certificate of invalidity allows a
polynomial-time algorithm to check whether an instance of a given problem is false. Our
certificate of validity is a solution path, a mapping from antibodies to eliminated clues, and
a packing witness for any region with at least one uneliminated polyomino. Our certificate
of invalidity is the solution path (from the certificate of validity), a mapping of a subset of
the antibodies to eliminated clues, and a packing witness for any region with at least one
uneliminated polyomino.

Our verification algorithm begins checking the certificate of validity by verifying the
packing witnesses and checking that the antibody mapping specifies distinct eliminated
clues in the same region as each antibody. Then we remove all antibodies, polyomino and
antipolyomino clues, and eliminated clues from the Witness puzzle and run the algorithm
given in the proof of Theorem 13 to verify that the remaining clues in each region are satisfied
under the solution path.

To verify the certificate of invalidity, we again check its packing witnesses and its (partial)
antibody mapping. Then we remove the used antibodies, polyomino and antipolyomino clues,
and eliminated clues from the Witness puzzle. We replace any unused colored antibodies
with stars of their color if they are in the same region as an (uneliminated) star of that color,
then remove any remaining antibodies. We run the polynomial-time algorithm given in the
proof of Theorem 13 on the resulting Witness puzzle. Our algorithm accepts if and only if
the certificate of validity is valid and all certificates of invalidity are invalid. J

Finally, we will show that Witness puzzles in general are Σ2-complete. We will proceed
in two steps, first considering puzzles which have two (or more) antibodies which might be
eliminating polyominoes in the same region, and then considering puzzles which have only
one antibody but both polyominoes and antipolyominoes. In both cases, we will reduce from
Adversarial-Boundary Edge-Matching, a one-round two-player game defined as follows:

I Problem 2 (Adversarial-Boundary Edge-Matching). A signed color is a sign (+ or −)
together with an element of a set C of colors. Two signed colors match if they have the same
element of C and the opposite sign. A tile is a unit square with a signed color on each of its
edges.

An n × (2m) boundary-colored board is an n × (2m) rectangle together with a signed
color on each of the unit edges along its boundary. Given such a board and a multiset T of
2nm tiles, a tiling is a placement of the tiles at integer locations within the rectangle such
that two adjacent tiles have matching colors along their shared edge, and a tile adjacent to the
boundary has a matching color along the shared edge. There are two types of tiling according
to whether tiles can only be translated or can also be rotated.

The adversarial-boundary edge-matching game is a one-round two-player game played
on a 2n×m boundary-colored board B and a multiset T of 2nm tiles. Name the unit edges
along B’s top boundary e0, e1, . . . , e2n from left to right. During the first player’s turn, for
each even i = 0, 2, 4, . . . , 2n − 2, the first player chooses to leave alone or swap the signed
colors on ei and ei+1. During the second player’s turn, the second player attempts to tile
the resulting boundary-colored board B′ such that signed colors on coincident edges (whether
on tiles or on the boundary of B′) match. If the second player succeeds in tiling, the second
player wins; otherwise, the first player wins.

J. Bosboom et al. 3:15

The adversarial-boundary edge-matching problem is to decide whether the first player
has a winning strategy for a given adversarial-boundary edge-matching game; that is, whether
there exists a choice of top-boundary swaps such that there does not exist an edge-matching
tiling of the resulting boundary-colored board.

I Lemma 16. Adversarial-boundary edge-matching is Σ2-hard, with or without tile rotation,
even when the first player has a losing strategy.

Proof sketch. We reduce from from QSAT2, which is the Σ2-complete problem of decid-
ing a Boolean statement of the form ∃x1 : ∃x2 : · · · : ∃xn : ∀y1 : ∀y2 : · · · : ∀yn :
f(x1, x2, . . . , xn; y1, y2, . . . , yn) where f is a Boolean formula using and (∧), or (∨), and/or
not (¬). We convert this formula into a circuit, lay out the circuit on a square grid, and
implement each circuit element as a set of tiles, one tile for each valid state (truth table row)
of that element. The first player’s boundary-edge swaps encode a setting of true or false for
the first player’s variables. Then, as part of solving the edge-matching problem, the second
player must exhibit a setting of their variables that makes the formula false; otherwise the
first player wins. J

I Theorem 17. It is Σ2-complete to solve Witness puzzles containing two antibodies and
polyominoes.

Proof. We reduce from adversarial-boundary edge-matching with the guarantee that the
first player has a losing strategy. We create a Witness puzzle containing two antibodies.
We will force the solution path to split the puzzle into two regions, with both antibodies in
the same region and with part of the solution path encoding top-boundary swaps. In the
construction, it will be easy to find a solution path satisfying all non-antibody clues when
both antibodies are used to eliminate clues, but the antibodies themselves are only satisfied if
they are necessary. When only one antibody is used, the remaining polyominoes in one of the
regions, together with the solution path, simulate the adversarial-boundary edge-matching
instance. The remaining polyominoes cannot pack the region (necessitating the second
antibody and making the Witness solution valid) exactly when the adversarial-boundary
edge-matching instance is a YES instance. (In the context of The Witness, the human player
is the first player in an adversarial-boundary edge-matching game, and The Witness is the
second player.)

Encoding signed colors. We encode signed colors on the edges of polyominoes in binary
as unit-square tabs (for positive colors) or pockets (for negative colors) [3, Figure 7]. If the
input adversarial-boundary edge-matching instance has c colors, we need dlog2(c + 1)e bits
to encode the color6. To prevent pockets at the corners of a tile from overlapping, we do not
use the 2× 2 squares at each corner to encode colors, so tiles are built out of squares with
side length w = dlog2(c + 1)e+ 47.

Clue sets. We consider the clues in the Witness puzzle to be grouped into two clue sets, A

and B, which we place far apart on the board. We will argue that any valid solution path
must partition the puzzle into two regions, such that each set is fully contained in one of the
regions. Figure 12 shows (the intended packing of) most of the polyomino clues.

6 We cannot use 0 as a color because we need at least one tab or pocket to determine the sign.
7 At the cost of introducing disconnected polyomino clues, we could leave only one pixel at each corner

out of the color encoding; that pixel is disconnected when the colors on its edges both have pockets
next to it.

FUN 2018

3:16 Who witnesses The Witness? Finding witnesses in The Witness is hard/impossible

Figure 12 The intended packing of the puzzle after eliminating the medium polyomino (not
to scale). The left and right board-frame polyominoes slot inside the large polyomino, and the
monominoes fill the holes in the left board-frame polyomino. The stamps fill in their matching
handle slots in the large polyomino, leaving only the boundary-colored board for the simulated
adversarial-boundary edge-matching instance.

Clue set A contains:
Two antibodies.
2nw − q monominoes, where q is the total number of pockets minus the total number of
tabs across the “dies” of the “stamps” in clue set B (see below). There are 2n stamps
each having up to dlog2(c + 1)e tabs or pockets, so the total number of monominoes is
between 2nw − 2ndlog2(c + 1)e = 8n and 2nw + 2ndlog2(c + 1)e = 4nw − 8n inclusive.
A w × w square polyomino for each of the 2nm tiles in the adversarial-boundary edge-
matching instance. The edges of each polyomino are modified with tabs and pockets
encoding the signed colors on the corresponding edges of the corresponding tile. Call the
upper-left corner of the w×w square the key pixel of that polyomino (even if tabs caused
other pixels to be further up or to the left).
A “medium” sized polyomino formed from a 2n(w + 3) − 1 ×m(w + 3) + 3 rectangle
polyomino; see Figure 13. Cut a hole out of this rectangle in the image of each tile
polyomino, aligning the key pixel of each tile polyomino to a 2n×m grid with upper-left
point at the fourth row, second column of the rectangle and w + 3 intervals between rows
and columns. Regardless of the pattern of tabs and pockets on each tile, this spacing
ensures at least two rows of pixels above the top row of tile-shaped holes, at least one
row on each other side, and at least one row between adjacent holes. Then add pixels
above the upper-leftmost and upper-rightmost pixel of the rectangle (the horns) and
below the middle-bottommost pixel of the rectangle (the tail). Finally, cut 2nw pixels
out of the top row of the rectangle starting from the third pixel; this cutout is the stamp
accommodation zone.

J. Bosboom et al. 3:17

Figure 13 The medium polyomino, with boundary-colored holes matching each tile polyomino.

Two board-frame polyominoes. Again, starting from a 2n(w + 3) − 1 ×m(w + 3) + 3
rectangle polyomino, add horns and tail pixels in the same locations. Then cut out
a 2nw ×mw rectangle whose upper-left pixel is the third pixel in the top row of the
rectangle. The left, right and bottom edges of this cutout are modified with tabs and
pockets encoding the signed colors on the corresponding sides of the boundary-colored
board in the adversarial-boundary edge-matching instance. Split the polyomino vertically
along the column of edges immediately to the right of the tail pixel.
Finally, for each monomino in this clue set, cut a pixel out of the left board-frame
polyomino, starting from the second-bottommost pixel in the second column, continuing
across every other column, then continuing with the fourth-bottomost pixel in the second
column, and so on. The left board-frame polyomino has width nw + 3n, we cut pixels
out of every other column, and we do not cut holes in its left or right columns, so we
cut pixels out of nw+3n−2

2 columns. Below the mw-tall cutout and allowing two rows to
ensure cut pixels do not join with pockets encoding signed colors along the edges of the
cutout, we can cut pixels out of 3w−1

2 rows (or 3w
2 , depending on parity). This allows

up to (nw+3n−2
2)(3w−1

2) = n(w−4)2+2w(nw−3)+13n+2
4 + 4nw − 8n pixels to be cut out, but

there are at most 4nw − 8n monominoes, so we can always cut enough pixels without
interfering with any other cuts.

Clue set B contains:
A stamp polyomino for each of the 2n edge segments of the top edge of the boundary-
colored board. Each stamp is composed of a w × 2 rectangle modified to encode the
signed color on the corresponding edge segment (called the die), a pixel centered above
that rectangle, and a 2× h rectangular handle whose bottom-right pixel is immediately
above that pixel, where h = max(m(w + 3) + 7, n). Stamps corresponding to 1-indexed
edge segments 2i and 2i + 1 have pockets encoding i in binary cut into the left edge of
their handle, starting from the second-to-top row of the handle.
A “large” sized polyomino built from a 2n(w +3)+1× t rectangular polyomino, where t is
the total area of all other polyominoes so far defined. Modify this polyomino by cutting out
the middle pixel of the bottom row, the 2n(w +3)−1×m(w +3)+3 horizontally-centered
rectangle immediately above that removed pixel, and the pixels above the upper-left
and upper-right removed pixels. (That is, cut out space for the medium polyomino,
including the horns and tail but not including the stamp accommodation zone.) Then
cut out the image of each stamp in the order of their corresponding edge segments in
the adversarial-boundary edge-matching instance, aligning the leftmost-bottom pixel of
the first stamp’s die two pixels to the right of the upper-left removed pixel and aligning
successive dies immediately adjacent to one another.

FUN 2018

3:18 Who witnesses The Witness? Finding witnesses in The Witness is hard/impossible

Figure 14 Because both antibodies are surrounded by monominoes, any region containing an
antibody also contains at least one monomino.

Puzzle. The Witness puzzle is a 2n(w + 3) + 1× t rectangle. The start circle and end cap
are at the middle two vertices of the bottom row of vertices.

Placement of A clues. We place a monomino from clue set A in the cell having the start
circle and end cap as vertices, then place an antibody above that monomino, surrounded
by a monomino in each of its other three neighbors. We then place the other antibody,
surrounded by monominoes in its neighboring cells, three cells above the first antibody.
(See Figure 14.) It is always possible to surround the antibodies in this way because there
are at least 8n monominoes. We place the remaining clues from clue set A inside the
2n(w + 3)− 1×m(w + 3) + 3 rectangle one row above the bottom of the puzzle; this is always
possible because |A| ≤ 4nw − 8n + 2nm + 5.

Placement of B clues. We place the large polyomino clue in the upper-left cell of the
board and the stamp clues in the 2n cells to its right.

Argument. In any valid solution to the resulting puzzle, the large polyomino is not elim-
inated. If it were, it must be in the same region as an antibody. Because each antibody
is surrounded by monomino clues, the number of polyomino clues in this region is strictly
greater than the number of antibodies, so the region must be packed by the non-eliminated
polyomino clues. The nearest (upper) antibody is t − 4 columns and nw + 3n rows away
from the large polyomino clue, so this region has area at least t. Recall that t is the total
area of all polyomino clues except the large polyomino. If the large polyomino is eliminated,
there is no way to pack this region, even if all other polyomino clues are used.

The large polyomino is as wide and as tall as the entire puzzle, so it has a unique placement.
The large polyomino intersects its bounding box everywhere except one unit-length edge
aligned with the start vertex and end cap, so any valid solution path can only touch the
boundary at the start and end. Thus the solution path divides the puzzle into at most two
regions (an inside and an outside).

Suppose the solution path places the entire puzzle into a single region; that is, suppose
the solution path proceeds (in either direction) from the start vertex to the end cap without
leaving the boundary. Then by the assumption that the first player has a losing strategy
in the input adversarial-boundary edge-matching instance, we can pack the region while
eliminating only one clue. The large polyomino’s placement is fixed. We eliminate the
medium polyomino, place the two board-frame polyominoes inside the large polyomino, and
place the monominoes in the pixels cut out of the left board-frame polyomino. It remains
to place the stamps and tiles. By the assumption, there is a losing set of top-boundary
swaps; we swap the corresponding pairs of stamps when placing them into the cutouts in the
large polyomino, and then place the tiles in the remaining uncovered area bordered by the
board-frame polyominoes and stamp dies. Because we satisfied all non-antibody constraints

J. Bosboom et al. 3:19

after eliminating only one clue, the unused antibody is unsatisfied, so any solution path
resulting in a single region is not a valid solution to the puzzle. Thus there are exactly two
regions.

The cells containing the stamp clues are covered by the large polyomino, so any valid
solution places the stamps in the same region as the large polyomino. The handles of the
stamps are taller than the cutout in the bottom-middle of the large polyomino, so they must
instead be placed in the stamp-shaped cutouts in the large polyomino. The pockets cut
into the left edges of the handles ensure that stamps can only swap places corresponding to
top-boundary swaps in the adversarial-boundary edge-matching instance.

All clues in set A are in the other region. The monomino clue in the cell having both the
start circle and end cap as vertices cannot be in the same region as the large polyomino (else
the path could not divide the puzzle into two regions). Because each antibody is surrounded
by monomino clues, the number of polyomino clues in this region is strictly greater than the
number of antibodies, so the region must be packed by the non-eliminated polyomino clues.
When both antibodies are used to eliminate clues, they must eliminate both board-frame
polyominoes, and when only one is used, it must eliminate the medium polyomino; any
other elimination leaves polyomino clues with too much or too little area to pack the area of
the puzzle not yet covered by the large polyomino or the stamps. Thus either the medium
polyomino or both board-frame polyominoes will not be eliminated. The medium polyomino
and board-frame polyominoes have unique placements within the large polyomino determined
by the horns and tail. The intersection of the outlines of these placements covers all the A

clues, so they are all in the same other region.
By this division of the clues into regions, any valid solution path traces the inner boundary

of the large polyomino and the dies of the stamps (possibly after swapping some pairs). It
remains to show that the solution path is valid exactly when the implied set of top-boundary
swaps is a winning strategy in the adversarial-boundary edge-matching instance.

When using both antibodies to eliminate the board-frame polyominoes, the remaining
polyominoes always pack their region. The medium polyomino’s placement is fixed by the
horns and tail; the stamp accommodation zone ensures this placement is legal regardless
of the pattern of tabs on the dies of the stamps. The tile polyominoes fit directly into the
cutouts in the medium polyomino and there are exactly enough monominoes to fill in the
uncovered area in the stamp accommodation zone and the pockets of the dies.

The solution path is only valid if both antibodies are necessary. When using one antibody
to eliminate the medium polyomino, the board-frame polyominoes’ position is forced by the
horns and tail. The monominoes are the only way to fill the single-pixel holes in the left
board-frame polyomino and there are exactly enough monominoes to do so. Then the dies of
the stamps and the edges of the rectangular cutout in the board-frame polyominoes models
the boundary-colored board of the input adversarial-boundary edge-matching instance (see
Figure 12). The tile polyominoes cannot pack this area, necessitating the second antibody
and making the solution path valid, exactly when the set of top-boundary swaps is a winning
strategy in the adversarial-boundary edge-matching instance. J

I Theorem 18. It is Σ2-complete to solve Witness puzzles containing one antibody, poly-
ominoes and antipolyominoes.

Proof sketch. As in the proof of Theorem 17, we reduce from adversarial-boundary edge-
matching, and the reduction is similar. The primary difference is that the medium polyomino
is also the singular board-frame polyomino. Besides the antibody and the tile polyominoes
(same as before), clue set A contains an antipolyomino called the antikit shaped like a 1-

FUN 2018

3:20 Who witnesses The Witness? Finding witnesses in The Witness is hard/impossible

pixel-wide tree with the tile polyominoes (as antipolyominoes) at the leaves and a polyomino
shaped like the 1-pixel-wide tree (the sprue). The medium polyomino has the kit polyomino
attached to its right side and a cutout for the sprue and for the boundary-colored board.

The stamps must be placed in the large polyomino as in the previous proof. When
the antibody eliminates the medium polyomino, the antikit annihilates the sprue and tile
polyominoes, leaving no (anti)polyominoes in the inner region (so it is trivially satisfied).
When the antibody is not used, the antikit annihilates the kit-shaped part of the medium
polyomino and the sprue fits in the cutout in the medium polyomino, leaving only a boundary-
colored board for the tile polyominoes to be placed. Placing the tile polyominoes is impossible,
necessitating the antibody and making the solution path valid, exactly when the top-boundary
swaps are a winning strategy in the adversarial-boundary edge-matching instance. J

By Theorem 14, Theorem 17 and Theorem 18 are tight.

9 Metapuzzles

In this section, we analyze several of the metapuzzles that appear in The Witness. Metapuzzles
are puzzles which have one or more puzzle panels as a sub-component of the puzzle, and in
which solving the puzzle panel affects the surrounding world in a way that depends on the
choice of solution that was used to solve the panel.

9.1 Sliding Bridges
The marsh area contains sliding bridges. In this metapuzzle, each bridge has a corresponding
puzzle panel, and solving the puzzle causes the bridge to move into the position depicted by
the outline of the solution path. The following theorem demonstrates that, regardless of the
difficulty of the puzzle panels (i.e., even if it is easy to find all solutions of each individual
panel), it is PSPACE-complete to solve sliding bridge metapuzzles.

I Theorem 19. It is PSPACE-complete to solve Witness metapuzzles containing sliding
bridges.

Proof sketch. We straightforwardly construct the one-way and door gadgets of [2], which
are known to be sufficient for PSPACE-completeness. J

9.2 Elevators and Ramps
Another metapuzzle which appears in The Witness consists of groups of platforms that move
vertically at one or both ends to form an elevator or ramp, controlled by the path drawn
on puzzle panels. Because the player cannot jump or fall in The Witness, the player can
walk onto an elevator platform only if it is at the same height as the player. The player can
adjust the height of the platforms from anywhere with line-of-sight to the controlling panel,
including while on the platforms themselves. Besides the sawmill, the other building in the
quarry contains a ramp and an elevator. The marsh contains a single puzzle with a 3× 3
grid of elevators controlled by two identical panels; as a metapuzzle, our puzzle could be
built out of multiple marsh puzzles with two platforms and one panel each.

I Theorem 20. It is PSPACE-complete to solve Witness metapuzzles containing elevator
reconfiguration, even when each panel controls at most one elevator.

Proof sketch. We construct one-way and door gadgets similar to Theorem 19. J

J. Bosboom et al. 3:21

9.3 Power Cables and Doors
In the introductory area of The Witness, there are panels with two solutions, each of which
activates a power cable. Activated cables can power one other panel (allowing it to the
solved) or one door (opening it). If a cable connected to a door is depowered, the door closes.
Cables cannot be split and panels can power at most one cable at a time.

I Theorem 21. It is PSPACE-complete to solve Witness metapuzzles containing power
cables and doors.

Proof sketch. Again we construct one-way and door gadgets, with the slight complication
that all powered doors in The Witness are initially closed, so we need to give the player a
way to open exactly the set of doors which are initially open in the source instance. J

References
1 Zachary Abel, Jeffrey Bosboom, Erik D. Demaine, Linus Hamilton, Adam Hesterberg,

Justin Kopinsky, Jayson Lynch, and Mikhail Rudoy. Who witnesses The Witness? Finding
witnesses in The Witness is hard and sometimes impossible. arXiv:1804.10193, 2018.

2 Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo games
are (computationally) hard. Theoretical Computer Science, 586:135–160, 2015.

3 Erik D. Demaine and Martin L. Demaine. Jigsaw puzzles, edge matching, and polyomino
packing: Connections and complexity. Graphs and Combinatorics, 23:195–208, June 2007.

4 Erik D. Demaine and Mikhail Rudoy. Tree-residue vertex-breaking: a new tool for proving
hardness. In Proceedings of the 16th Scandinavian Symposium and Workshops on Algorithm
Theory, 2018. arXiv:1706.07900.

5 Linus Hamilton. Braid is undecidable. arXiv:1412.0784, 2014.
6 Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid

graphs. SIAM Journal on Computing, 11(4):676–686, November 1982.
7 Donald E. Knuth and Arvind Raghunathan. The problem of compatible representatives.

SIAM Journal on Discrete Mathematics, 5(3):422–427, 1992.
8 Irina Kostitsyna, Maarten Löffler, Max Sondag, Willem Sonke, and Jules Wulms. The hard-

ness of Witness puzzles. In Abstracts from the 34th European Workshop on Computational
Geometry, 2018.

9 Wikipedia. The Witness (2016 video game). https://en.wikipedia.org/wiki/The_Witness_
(2016_video_game), 2018.

10 Takayuki Yato. On the NP-completeness of the Slither Link puzzle (in Japanese). IPSJ
SIG Notes, AL-74:25–32, 2000.

FUN 2018

https://en.wikipedia.org/wiki/The_Witness_(2016_video_game)
https://en.wikipedia.org/wiki/The_Witness_(2016_video_game)

Tracks from hell – when finding a proof may be
easier than checking it
Matteo Almanza
Dipartimento di Informatica, Sapienza Università di Roma, Italy.
almanza.1597415@studenti.uniroma1.it

Stefano Leucci
Institute of Theoretical Computer Science, ETH Zürich, Switzerland.
stefano.leucci@inf.ethz.ch

https://orcid.org/0000-0002-8848-7006

Alessandro Panconesi
Dipartimento di Informatica, Sapienza Università di Roma, Italy.
ale@di.uniroma1.it

Abstract
We consider the popular smartphone game Trainyard: a puzzle game that requires the player to
lay down tracks in order to route colored trains from departure stations to suitable arrival stations.
While it is already known [Almanza et al., FUN 2016] that the problem of finding a solution to a
given Trainyard instance (i.e., game level) is NP-hard, determining the computational complexity
of checking whether a candidate solution (i.e., a track layout) solves the level was left as an
open problem. In this paper we prove that this verification problem is PSPACE-complete, thus
implying that Trainyard players might not only have a hard time finding solutions to a given
level, but they might even be unable to efficiently recognize them.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases puzzle games, solitaire games, Trainyard, verification

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.4

1 Introduction

The relationship between the Catholic Church and science and technology in the course of
history has been a long and complex one. On the one hand, there are dark and immensely
sad episodes like the condemnation of Galileo Galilei. On the other, one must acknowledge
the fantastic contribution to science and mathematics throughout the centuries at the hands
of Catholic clergymen, an all star team that includes the likes of Gregor Mendel, Francis
Bacon, Nicolaus Copernicus, and Bernard Bolzano, to name just a few.

Perhaps nothing better than the history of the railways illustrates the ambivalent rela-
tionship of the Catholic Church toward science and technology. Early adoption within the
Papal States of this revolutionary means of transportation was stymied by Pope Gregory
XVI (1765-1846) who famously warned “Chemins de fer, chemin d’enfer” (“road of iron,
road of hell”) [4, p. 164]. His successor Pious IX however, realized the potential of railway
transportation for the purposes of the Holy See. The roads of iron could not only lead to hell,
but also to holy places like the sanctuary of Lourdes. The steam engine became a facilitator
of mass pilgrimages. The all powerful Roman Curia finally gave in on October 2, 1934, when
the stately Vatican City Central Station opened [14, p. 653]. This imposing building has
been to this day the headquarters of the smallest railway system in the world—300 meters of

© Matteo Almanza, Stefano Leucci, and Alessandro Panconesi;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 4; pp. 4:1–4:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:almanza.1597415@studenti.uniroma1.it
mailto:stefano.leucci@inf.ethz.ch
https://orcid.org/0000-0002-8848-7006
mailto:ale@di.uniroma1.it
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Tracks from hell – when finding a proof may be easier than checking it

(a) (b) (c) (d)

Figure 1 Different types of tiles: (a) a red departure station, (b) a red arrival station, (c) a red
painter, (d) a splitter.

tracks in total!—an apparent contradiction that epitomizes an ambivalent attitude toward a
profound dilemma.

One must wonder why such a potentially useful and, from the point of view of Catholic
orthodoxy, apparently innocuous technology was met with such a high degree of suspicion.
The answer, it turns out, is hidden in the odd meanderings of the computational complexity
of games. The puzzle game Trainyard beautifully captures the inherent tension between two
moral imperatives, finding the right path and making sure that the path taken is indeed the
virtuous one.

In a landmark paper, Almanza et al. proved that finding the layout of a railway network
in Trainyard—a computational task easily seen to be in PSPACE—is NP-hard [2]. They left
open the question of verification, namely the computational complexity of checking whether
a given track layout delivers all trains safely to destination. In this paper we show that,
surprisingly, this task is PSPACE-complete. Interestingly, it is still possible that Trainyard
lies in NP. If this were the case then checking certificates for Trainyard would be more
difficult than finding them, unless NP = PSPACE. In moral terms, walking along the path
of virtue could prove impossibly arduous, even when you have found it. This is a bizarre
state of affairs that vindicates the cautious approach of the Roman Curia toward the railway
question.

2 Problem Definition

In a Trainyard level we are given a rectangular board in which each of the cells is either empty
or occupied by a tile. The two main tile types are departure and arrival stations: a departure
station (shown in Figure 1 (a)) hosts a single train, initially colored either blue or red, while
an arrival station (shown in Figure 1 (b)) accepts one train of a given color. The player’s
task is to route trains from departure stations to arrival stations by placing (possibly rotated
versions of) the rail pieces of Figure 2 into empty cells. The rail pieces of Figure 2 (a)–(d)
are traversed by trains in the straightforward way, while the pieces of Figure 2 (e) and (f) are
called switches and route trains going in the bottom-to-top direction towards two neighboring
tiles in an alternating fashion, i.e., each transiting train flips the state of the switch. Trains
traveling in the opposite directions are routed to the tile immediately below the switch but
they still affect the switch’s state.

To further complicate1 things, the grid also contains other special tiles that interact with
incoming trains in various ways (see Figure 1 (c) and (d)), namely:
Painters: trains traversing this tile will acquire the color of the painter tile itself. A painter

can be either red or blue. Note that a painter gadget has only two entry points located
on opposite sides of the cell.

1 Actually, the original game is even more complex that the one described in the present work. The subset
of rules and tiles described here, however, suffices for the purposes of our reduction.

M. Almanza, S. Leucci, and A. Panconesi 4:3

(a) (b) (c) (d) (e) (f)

Figure 2 Different kinds of rail pieces. Each of the pieces can be rotated by 90, 180 or 270
degrees.

Splitters: 1 splitters act both on the number of trains and on their color. A splitter has only
a single one-way entry gate, and two one-way exit gates located at the left and right side
of the cell. When a train enters a splitter, it vanishes but two new trains are created and
exit from the sides. If the incoming train was red or blue, then the outgoing trains will
also have that same color. If the incoming train was purple,2 then the new train exiting
from the left side will be blue, while the other outgoing trail will be red.

After all the rail pieces have been placed by the player, the design is put to the test:
trains exit from departure stations simultaneously and they travel on rails at a speed of one
tile per second. When a train moves from a tile to the next, the directions of the involved
rails must match. If this does not happen then the train will crash and the player loses.
Moreover, whenever two trains simultaneously occupy the same rail piece while traveling in
the same direction, they merge into a single train. The color of this resulting train depends
on the color of the two merged trains. We are only interested in the following cases: if the
merged trains had the same color, then the new train will also retain that color; if one merged
train was blue and the other was red, then the resulting train will be purple. Two trains
going in different directions can also occupy the same tile at the same time: in this case no
merge occurs but the color of both trains is still changed according to the previous rules.

The player wins iff this process eventually reaches a state in which there are no traveling
trains, each arrival station has received exactly one train of the associated color, and no
crash has occurred.

We study the computational complexity of the Trainyard-Verification problem, i.e.,
the problem of deciding whether a solution (i.e., a placement of the rail pieces) to a Trainyard
level results in a win for the player (see Figure 3). In some sense we investigate how hard it
is for the player to recognize a correct solution to a Trainyard level. Unfortunately for the
player, this tasks can not be performed efficiently, unless PSPACE = P. Indeed, we are able
to show the following:

I Theorem 1. Trainyard-Verification is PSPACE-complete.

3 Other related works

Trainyard belongs to the broad class of casual games: these games are characterized by an
intuitive gameplay which is usually organized into a series of small puzzles of increasing
difficulty. Interestingly enough, many casual games are hard to solve, not only for human
players, but also for machines: it is often the case that the computational problem of finding
a solution to a given level (instance) of a casual game turns out to be at least NP-hard.
Notable examples include e.g., Candy Crush [8], 2048 [12], Flow-Free [1], Sokoban [3], Rush

2 Purple trains can appear when a red and a blue train meet, as we explain in the following.

FUN 2018

4:4 Tracks from hell – when finding a proof may be easier than checking it

Figure 3 A correct solution to a Trainyard level, i.e., a yes-instance of Trainyard-Verification.

Hour [6], Two-Dots [13], or Peg-Solitaire [15, 9] and it might even be the case that the
success of these games is due, in part, to their challenging levels, as suggested in [5]. For a
discussion of other NP-hard and PSPACE-hard puzzles and of general tecniques for showing
their hardness, we refer the interested reader to [11] and [10].

4 Our Reduction

4.1 Preliminaries
Our reduction is from the Iterated Monotone Boolean Circuit problem (It-Mon-BC for short)
[7]. A monotone boolean circuit C is a directed acyclic graph whose non-source vertices are
labeled with either ∧ (“and”) or ∨ (“or”). The source vertices are called input-vertices, while
all the other vertices are called gates. Gates that are also sinks in G are called output-vertices.
Let vI

1 , . . . , vI
n (resp. vO

1 , . . . , vO
m) be the input-vertices (resp. output-vertices) of C, in some

order. Once a boolean value is associated to each input vertex, it is possible to evaluate the
circuit by computing a boolean value for each output-vertex. This is done by propagating
the input values from the sources towards the sinks, i.e., by considering the gates of C in
preorder and assigning a truth value to them depending on their label and on the truth value
of their in-neighbors. If x = 〈x1, . . . , xn〉 is the boolean vector containing the input values
(where xi is the initial truth value for vertex vI

i), then the evaluation of C computes a vector
y = fC(x), where fC is the function from {True, False}n to {True, False}m implemented by
the circuit and the i-th entry yi of y is the truth value corresponding to vertex vO

i . Without
loss of generality we assume that all the gates of C have in-degree 2. If n = m then we can
also compute

f t
C(x) = (fC ◦ · · · ◦ fC︸ ︷︷ ︸

t times

)(x)

by evaluating C t times, where the input of i-th evaluation, for i > 1, consists of output of
the i− 1-th evaluation.

The It-Mon-BC problem asks, given a monotone boolean circuit with n = m, an input
vector x, and an index h, to determine whether there exists a positive integer t such that
f t

C(x)h = True, i.e., if iterating C with a x as the initial input eventually causes the h-th
output to become True.

I Theorem 2 (Lemma 3 in [7]). It-Mon-BC is PSPACE-complete even when restricted to
circuits of in-degree 2 and out-degree 2.

M. Almanza, S. Leucci, and A. Panconesi 4:5

x0

uI

∨
uO

. . .
vO1 vO2 vOn

∧ ∨ ∧

vI1 vI2

. . .

∧

x1 x2

∧∨

C ′

vIn

x3. . .

C
∧
u

Figure 4 Transformation of the circuit of an It-Mon-BC instance 〈C, x〉 into an equivalent
circuit C′ having one additional input/output vertex pair (namely, uI and uO). Initially, the truth
value of the new variable x0 associated with uI is False. The output value associated to uO becomes
True as soon as the value of vO

1 is True and remains True in all subsequent iterations.

Notice that, since there can be at most 2n distinct input vectors, if (f t
C(x))h = False for

each t = 1, . . . , 2n then, by the pigeonhole principle, we can conclude that the answer to an
instance of It-Mon-BC is false. For technical convenience we assume w.l.o.g. that h = 1 and
that, once the first output becomes True, it will remain True in all the subsequent iterations
of the circuit. Notice that this latter assumption is not restrictive and can be removed by
transforming the circuit C into an equivalent circuit C ′ having the desired property as follows
(see also Figure 4): initially C ′ is a copy of C, then we add to C ′ (i) a new input-vertex
uI , (ii) a new gate u having the same label as vO

1 in C, and (iii) a new output-vertex uO

having label ∨; then, for each each edge (v, vO
1) in C, we add a corresponding edge (v, u) to

C ′, and finally we add the two edges (uI , uO) and (u, uO) to C ′. It is easy to check that, for
every input vector x and any x0 ∈ {True, False}, the truth value of the vertices vO

1 , . . . , vO
n

of C with input x coincides with the truth value of the corresponding vertices of C ′ with
input 〈x0, x1, . . . , xn〉 where x0 is the value initially assigned to uI . Moreover, as soon as
vO

1 become True, uO will also become True and will retain the True value in all subsequent
iterations. Hence, we have obtained a circuit C ′ having the desired property, modulo a
renaming of its input/output vertices.

4.2 Overview
In the following we show how to convert, in polynomial time, an instance 〈C, x, h〉 of
It-Mon-BC into a instance of Trainyard-Verification that is a valid solution iff
(f2n

C (x))h = True, thus establishing the PSPACE-hardness of Trainyard-Verification.
Notice that Trainyard-Verification clearly belongs to PSPACE as simulating a solution
only requires polynomial space. Moreover, since the number of possible states that can occur
during the simulation is at most exponential in the instance’s size, there exists an upper
limit T0 to the number of simulation steps needed: if the Trainyard level is still not solved
after T0 steps, then the simulation must be stuck in some cyclic sequence of states, hence
the Trainyard-Verification instance has a “no” answer.

A high-level picture of our reduction is shown in Figure 5. The initial input x of the
circuit C is encoded in the color of n departing trains in the “input area”, if xi = True (e.g.,
x2 in Figure 5) then the i-th departure station is red, while if xi = False (e.g., x1 and x3 in
Figure 5) the corresponding departure station is blue. The departing trains (moving in the

FUN 2018

4:6 Tracks from hell – when finding a proof may be easier than checking it

Circuit Implementation

x1 xn

2n 2n 2n

R R

. . .

. . .x2

Input

Loop & Check

Figure 5 Overview of our reduction from It-Mon-BC to Trainyard-Verification. The input
trains departing from the stations in the “Input” region traverse the “Circuit Implementation” area
exactly 2n times (using the outer loops to return to the bottom) and are then routed to the gray
check gadgets in the “Loop and Check” area.

bottom-to-top direction) then enter the “Circuit Implementation” area where they traverse
a series of gadgets that simulate the gates of the circuit C. Eventually, exactly n trains
exit from the “Circuit Implementation” area, the i-th of which encodes (in its color) the
truth value of the i-th output of the circuit. These trains are now routed to the one final
region of our Trainyard level, namely the “Loop and Check” area. This region contains n

loop gadgets that act transparently for the first 2n − 1 times they are traversed, i.e., they
let any train entering from the bottom exit unaltered from the top. These outgoing trains
are then re-routed back into the inputs of the circuit and the whole process repeats. At the
2n-th iteration, the loop gadgets stop acting transparently and instead divert the incoming
trains to the rails exiting from their right. Here each train enters a check gadget (shown in
gray in Figure 5) containing one arrival station. Collectively, these check gadgets allow the
level to be completed if and only if the train corresponding to the first output of the circuit
(which represents the first entry of f2n

C) encodes the value True.

M. Almanza, S. Leucci, and A. Panconesi 4:7

(a) (b)

R B

Figure 6 (a) Implementation of Red-Shift gadget. (b) Implementation of Blue-Shift gadget.
These gadgets convert the color scheme of a train from CS2 to CS1 and vice-versa, respectively.

An interactive demonstration of our reduction is available at: https://trainyard.
isnphard.com/verification/

4.3 Gadgets and Color Schemes
We encode the gates of C using a combination of gadgets, i.e., combinations of rails and
special tiles, and the links of C using rails between the two corresponding gadgets. Gadgets
will receive some trains as inputs (usually from the bottom), will perform some operations,
and will let the result trains exit (usually from the top). We assume that all the input
trains enter a gadget simultaneously: since a train always takes the same number of steps to
traverse a gadget3, this property can be guaranteed by choosing suitable lengths for the rails
connecting two consecutive gadgets.

The evaluation of C will be simulated by trains that will carry truth values from one
gadget to the other. Those truth values will be encoded using train colors according to two
different color schemes.
CS1: A red train represents the value True, a purple train represents the value False. Blue

trains are not allowed.
CS2: A purple train represents the value True, a blue train represents the value False. Red

trains are not allowed.

4.3.1 Converting between color schemes
Here we show how to change the color of a train that is carrying a truth value encoded using
CS1 to the correct encoding according to CS2, and vice-versa.

The conversion from CS2 to CS1 is performed by the Red-Shift gadget shown in Figure 6 (a).
The input train enters the gadget from the rail on the bottom and is split into two trains
exiting from the sides of the splitter tile. If the incoming train is blue then these two trains
will be blue as well, the one on the left side will pass through a red painter tile and will
merge back with the blue train coming from the right side into a purple train. If incoming
train is purple then the train exiting the spliter tile from the left side will be blue while the
one exiting from the right will be red. Due to the red painter gadget, the left train will also
become red, and the two trains will merge thus causing a single red train to exit from the
top of the gadget. Notice also that if the input of a Red-Shift gadget is a red train, then the
train will retain its red color. This property will be useful in the sequel.

3 with the exception of loop gadgets, as will be discussed in the following.

FUN 2018

https://trainyard.isnphard.com/verification/
https://trainyard.isnphard.com/verification/

4:8 Tracks from hell – when finding a proof may be easier than checking it

(b)(a)

Figure 7 Implementation of red (a) and blue (b) absorption gadgets.

The conversion from CS2 to CS1 is done by the Blue-Shift gadget shown in Figure 6 (b),
whose operation is symmetric to the Red-Shift gadget. Notice again that blue trains retain
their colors when traversing a Red-Shift gadget.

These two gadgets allow us to change the color of each train entering a gadget in order
to meet the expected color scheme. We can hence assume that all the appropriate color
conversions happen on the railways connecting the output of a gadget to the input of next
one. This will be particularly useful in implementing gadgets for “and” and “or” gates which
require the two input trains to be colored according to different colors schemes. As an
example notice how the blue trains that will exit the departure stations of Figure 5 (i.e.,
the stations corresponding to False inputs) immediately traverse a Red-Shift gadget. This
ensures that all the trains leaving the “Input” area will be colored according to CS1.

4.3.2 Train Absorption Gadget
Some of the gadgets will generate additional trains as a side effect of their operation. In
order to get rid of these spurious trains we would like them to merge with a train that we call
a main train. This operation should be performed with care to ensure that the color of the
main train is preserved. This can be done by using the absorption gadgets shown in Figure 7.

Let us focus on the red absorption gadget of Figure 7 (a) which shows how a main train
colored according to CS1 and entering the gadget from the leftmost rail on the bottom can
be merged with any other train entering from the rightmost rail. Once the main train reaches
the splitter, the train exiting from the right side will always be red (recall that, according to
CS1, the main train must be either red or purple). We can therefore safely merge it with
the spurious train, which has been colored red by the red painter tile, to obtain a single red
train. This red train is then merged back with the train exiting the left side of the splitter,
resulting in a single train of the same color of the incoming main train.

The blue absorption gadget gadget of Figure 7 (b) merges a main train colored according
to CS2 with any other train (entering from the leftmost rail on the bottom) and its operation
is analogous the the red absorption gadget just described.

4.3.3 Crossover Gadget
The crossover gadget allows two trains entering (at the same time) from the bottom rails to
exit (at the same time) from the top two rails in the opposite order. Its implementation is
straightforward and it is shown in Figure 8 (a). The turns in the gadget ensure that the two
input trains do not meet when the rails cross (as this might alter their original colors).

M. Almanza, S. Leucci, and A. Panconesi 4:9

(a) (b) (c)

Figure 8 Implementation of the Crossover (a), Fanout (b), and Blend (c) gadgets.

4.3.4 Fanout Gadget
The fanout gadget duplicates an input train entering from the bottom rail into two identical
trains exiting from the top two rails. This gadget is necessary as, in general, input-vertices
and gates might have two or more out-neighbors. By chaining together several fanout gadgets
it is possible to create exactly one train for each out-neighbor of a vertex, each encoding the
same truth value. The implementation of this gadget is shown in Figure 8 (b).

4.3.5 Blend Gadget
We still have to show how “and” and “or” gates of the circuit C are implemented. To this
aim it is useful to first describe an intermediate gadget that we call a blend gadget (see
Figure 8 (c)). This gadget takes two input trains entering from the bottom side: the leftmost
train is colored according to CS2 while the rightmost train is colored according to CS1.
There are four possible combinations of (valid) inputs, corresponding to the four values
in {True, False}2. In all of these cases the gadget will output three trains. Two of them,
namely the ones exiting from the left and right side of the gadget, are spurious trains and
will be dealt with by the “and” and “or” gadgets. The other train is the actual output of
the gadget and its color depends on the truth values of the input trains, as detailed in the
following table:

Left Value Right Value Left Color
(CS2)

Right Color
(CS1) Output Color

True True purple red red
True False purple purple purple
False True blue red purple
False False blue purple blue

In other words, the output train is blue if both the inputs are false, red if they are both
true, and purple if exactly one of the inputs is true. Notice that, so far, this coloring scheme
does not adhere neither to CS1 nor to CS2.

FUN 2018

4:10 Tracks from hell – when finding a proof may be easier than checking it

R

∨

B

∧

(a) (b)

Figure 9 Implementation of the “or” (a) and “and” (b) gadgets.

4.3.6 Or Gadget
The or gadget is shown in Figure 9 (a) and implements an “or” gate of the circuit C. It is
obtained by appending a Red-Shift gadget to the output of a Blend gadget. It is easy to
check that the color of the output train is red if at least one of the two inputs of the blend
gadget encodes the values True, and purple otherwise. In other words, the gadget computes
the logical or between the two signals carried by the input trains and encodes the result
according to CS1. To take care of the two extra trains exiting the Blend gadget we use two
Absorption gadgets to merge them into the output train.

4.3.7 And Gadget
The implementation of the and gadget is similar to the one of the or gadget: by appending a
Blue-Shift gadget to the output of a Blend gadget we have that the color output train is blue
if at least one of the two input trains carries the logical value False, and purple otherwise.
Thus, the and gadget computer the logical and of the two input signals and encodes the
output according to CS2. As before, we dispose of the the two spurious trains exiting from
the Blend gadget by using two Absorpion gadgets, as shown in Figure 9 (b).

4.3.8 Loop Gadget
The purpose of this gadget is to ensure that the circuit is evaluated (i.e., traversed by the
trains) exactly 2n times, where the trains exiting from the output-vertices of one iteration
constitute the input of the next evaluation. After 2n evaluations this feedback loop will break
and the output trains will be allowed to reach the check area.

The gadget implementation is recursive and it is shown in Figure 10 (a)–(d). Figure 10 (a)
shows the details of a 2-loop gadget: the first train to enter the gadget from the single rail
on the bottom will exit from the top and will cause the two switches to flip, we call the first
encountered switch (i.e., the one closer to the bottom) a counting switch. When a second

M. Almanza, S. Leucci, and A. Panconesi 4:11

2

(a)

4

(b)

8

(c)

2i−1

2i

(d)

Figure 10 Implementation of a 2i loop-gadget for i = 1 (a), i = 2 (b), i = 3 (c), and in the
general case (d).

train enters the gadget, it will now exit from the rail on the right side due to the position of
the counting switch (that will now revert to the initial state). Notice that the position of the
other (non-counting) switch plays no role in the gadget operation. Indeed, its sole purpose is
to provide an extra input that allows any train entering from the right side (i.e., moving
in the right-to-left direction) to exit from the top side of the gadget without affecting the
state of the counting switch. This allows a 2-loop to be used as a sub-gadget in the 4-loop
construction of Figure 10 (b): here the first train to exit from the right side of a 2-loop
traverses once again a counting and a non-counting switch (in order) and is routed back to
the top exit of the 2-loop; the second train to exit the 2-loop (which corresponds to the 4-th
train entering from the bottom rail) will revert the counting-switch to its original state and
it will proceed to the right. By repeating this construction one can easily obtain the 8-loop
of figure Figure 10 (c) and, more generally, the 2i-loop of Figure 10 (d). The first 2i − 1
trains entering a 2i-loop will exit from the top, while the 2i-th train will exit from the right.
Notice how after the j trains have traversed a 2i-loop, the state of the counting switches
encodes the number i mod 2i in binary, where the least-significant-bit corresponds to the
innermost counting switch.

We lay the tracks so that all the n trains entering the “Loop and Check” area (see
Figure 5) reach the 2n-loop gadgets at the same time (this can be guaranteed by tuning
the length of the railways connecting to the inputs of the loop gadgets). This is because,
in contrast to the other gadgets, the time required for a train to traverse a 2n-loop gadgets
depends on the specific iteration (i.e., on the state of the counting switches). By requiring
this additional property, we can ensure that, on every iteration, all the 2n-loop gadgets will
always change their state simultaneously and hence the n incoming trains will also exit the
gadgets simultaneously. This allows us to also synchronize the trains once they are routed
back to the “Input” area.

4.3.9 Check Gadgets

The purpose of the check gadgets (highlighted in gray in the “loop and check” area of Figure 5)
is to ensure that the solution to the Trainyard level will be valid if and only if the circuit C

of the It-Mon-BC instance is such that the first entry of y = f2n

C (x) is True. When the
loop gadgets in the “loop and check” area are traversed 2n times, the trains encoding the n

output values of f2n

C (x) will exit from the right side of their respective loop gadget. Since
we are not interested in the values y2, . . . , yn, each of the corresponding trains is colored

FUN 2018

4:12 Tracks from hell – when finding a proof may be easier than checking it

red (thus discarding its currently encoded truth value) and fed into an arrival station that
expects exactly one red train. As for the output train corresponding to y1, we assume w.l.o.g.
that it is encoded according to CS1 (if this is not the case, then it suffices to use a Red-Shift
gadget just after the output of the corresponding 2n-loop gadget). Then, the train will be
red if y1 is True and purple otherwise. Hence, it suffices to route this train into an arrival
station expecting one red train. If y1 = True, all the arrival stations will be satisfied and the
Trainyard level is won, otherwise the purple train training to enter a red station will crash
and the level will be lost.

5 Conclusions

We have proved that the problem of checking whether a candidate solution to a Trainyard
instance actually solves the level is PSPACE-complete. What is the exact complexity of
finding such a solution, however, is still an open question: we know from [2] that this problem
is NP-hard and it is easy to check that it also belongs to PSPACE (since it is possible to
enumerate all the possible track layouts). If Trainyard belongs to NP, this would mean that
computing a solution could be easier than checking it, unless NP = PSPACE. It might be
the case that a more involved certificate than the natural one (i.e., the placement of the
tracks in a solution) is needed, or that every Trainyard level that admits a solution also
allows for a simple solution, i.e., a solution that can be recognized in polynomial time.

Other examples of games for which checking the natural solution is at least NP-hard4
include Settlers of Catan and Carcassonne5, as the scoring rules involve longest-path compu-
tations.

References
1 Aaron B. Adcock, Erik D. Demaine, Martin L. Demaine, Michael P. O’Brien, Felix Reidl,

Fernando Sánchez Villaamil, and Blair D. Sullivan. Zig-zag numberlink is np-complete.
JIP, 23(3):239–245, 2015. doi:10.2197/ipsjjip.23.239.

2 Matteo Almanza, Stefano Leucci, and Alessandro Panconesi. Trainyard is NP-hard. Theo-
retical Computer Science, 2017. doi:10.1016/j.tcs.2017.09.039.

3 Joseph Culberson. Sokoban is PSPACE-complete. In Proceedings of the 1st International
Conference on Fun with Algorithms (FUN’98), volume 4, pages 65–76, 1998.

4 Giuseppe Pasolini dall’Onda and Pier Desiderio Pasolini. Memoir of Count Giuseppe Pa-
solini. Longmans, Green, and Company, 1885.

5 David Eppstein. Computational complexity of games and puzzles. https://www.ics.uci.
edu/~eppstein/cgt/hard.html.

6 Gary William Flake and Eric B. Baum. Rush hour is pspace-complete, or "why you should
generously tip parking lot attendants". Theor. Comput. Sci., 270(1-2):895–911, 2002. doi:
10.1016/S0304-3975(01)00173-6.

7 Eric Goles, Pedro Montealegre, Ville Salo, and Ilkka Törmä. Pspace-completeness of ma-
jority automata networks. Theor. Comput. Sci., 609:118–128, 2016. doi:10.1016/j.tcs.
2015.09.014.

4 More precisely, we are given the final state of the game and we want to check whether a player claiming
to be the winner is actually the winner.

5 With a suitable set of expansions: Carcassonne: Abbey & Mayor allows to have biforcations in roads
(i.e., vertices of degree 3 in the road graph) and Carcassonne: King and Scout awards bonus points to
the player that completes the longest road.

http://dx.doi.org/10.2197/ipsjjip.23.239
http://dx.doi.org/10.1016/j.tcs.2017.09.039
https://www.ics.uci.edu/~eppstein/cgt/hard.html
https://www.ics.uci.edu/~eppstein/cgt/hard.html
http://dx.doi.org/10.1016/S0304-3975(01)00173-6
http://dx.doi.org/10.1016/S0304-3975(01)00173-6
http://dx.doi.org/10.1016/j.tcs.2015.09.014
http://dx.doi.org/10.1016/j.tcs.2015.09.014

M. Almanza, S. Leucci, and A. Panconesi 4:13

8 Luciano Gualà, Stefano Leucci, and Emanuele Natale. Bejeweled, candy crush and other
match-three games are (np-)hard. In 2014 IEEE Conference on Computational Intelligence
and Games, CIG 2014, Dortmund, Germany, August 26-29, 2014, pages 1–8. IEEE, 2014.
doi:10.1109/CIG.2014.6932866.

9 Luciano Gualà, Stefano Leucci, Emanuele Natale, and Roberto Tauraso. Large peg-army
maneuvers. In Erik D. Demaine and Fabrizio Grandoni, editors, 8th International Confer-
ence on Fun with Algorithms, FUN 2016, June 8-10, 2016, La Maddalena, Italy, volume 49
of LIPIcs, pages 18:1–18:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.FUN.2016.18.

10 Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. CRC Press,
2009.

11 Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A survey of np-complete puzzles.
ICGA Journal, 31(1):13–34, 2008.

12 Stefan Langerman and Yushi Uno. Threes!, fives, 1024!, and 2048 are hard. In Erik D.
Demaine and Fabrizio Grandoni, editors, 8th International Conference on Fun with Algo-
rithms, FUN 2016, June 8-10, 2016, La Maddalena, Italy, volume 49 of LIPIcs, pages 22:1–
22:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.
FUN.2016.22.

13 Neeldhara Misra. Two dots is np-complete. In Erik D. Demaine and Fabrizio Grandoni,
editors, 8th International Conference on Fun with Algorithms, FUN 2016, June 8-10, 2016,
La Maddalena, Italy, volume 49 of LIPIcs, pages 24:1–24:12. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.FUN.2016.24.

14 Italia : Consiglio superiore dei lavori pubblici. Annali dei lavori pubblici. Eredi di A. De
Gaetani. In italian.

15 Ryuhei Uehara and Shigeki Iwata. Generalized Hi-Q is NP-complete. IEICE Transactions
(1976-1990), 73(2):270–273, 1990.

FUN 2018

http://dx.doi.org/10.1109/CIG.2014.6932866
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.18
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.22
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.22
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.24

How Bad is the Freedom to Flood-It?

Rémy Belmonte
The University of Electro-Communications, Chofu, Tokyo, Japan
remy.belmonte@uec.ac.jp

Mehdi Khosravian Ghadikolaei
Université Paris-Dauphine, PSL Research University, CNRS, UMR,
LAMSADE, 75016 Paris, France
mehdi.khosravian-ghadikolaei@dauphine.fr

Masashi Kiyomi
Yokohama City University, Yokohama, Japan
masashi@yokohama-cu.ac.jp

Michael Lampis
Université Paris-Dauphine, PSL Research University, CNRS, UMR,
LAMSADE, 75016 Paris, France
michail.lampis@dauphine.fr

Yota Otachi
Kumamoto University, Kumamoto, Japan
otachi@cs.kumamoto-u.ac.jp

https://orcid.org/0000-0002-0087-853X

Abstract
Fixed-Flood-It and Free-Flood-It are combinatorial problems on graphs that generalize a
very popular puzzle called Flood-It. Both problems consist of recoloring moves whose goal is to
produce a monochromatic (“flooded”) graph as quickly as possible. Their difference is that in
Free-Flood-It the player has the additional freedom of choosing the vertex to play in each
move. In this paper, we investigate how this freedom affects the complexity of the problem. It
turns out that the freedom is bad in some sense. We show that some cases trivially solvable for
Fixed-Flood-It become intractable for Free-Flood-It. We also show that some tractable
cases for Fixed-Flood-It are still tractable for Free-Flood-It but need considerably more
involved arguments. We finally present some combinatorial properties connecting or separating
the two problems. In particular, we show that the length of an optimal solution for Fixed-
Flood-It is always at most twice that of Free-Flood-It, and this is tight.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases flood-filling game, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.5

Related Version A full version of the paper is available at http://arxiv.org/abs/1804.08236.

Funding This work is partially supported by JSPS and MAEDI under the Japan-France Inte-
grated Action Program (SAKURA) Project GRAPA 38593YJ.

© Rémy Belmonte, Mehdi Khosravian Ghadikolaei, Masashi Kiyomi,
Michael Lampis, and Yota Otachi;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 5; pp. 5:1–5:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:remy.belmonte@uec.ac.jp
mailto:mehdi.khosravian-ghadikolaei@dauphine.fr
mailto:masashi@yokohama-cu.ac.jp
mailto:michail.lampis@dauphine.fr
mailto:otachi@cs.kumamoto-u.ac.jp
https://orcid.org/0000-0002-0087-853X
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.5
http://arxiv.org/abs/1804.08236
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 How Bad is the Freedom to Flood-It?

1

1

1

2 2

23

3 3

3
1

1

2 2

23

3 3

3
1

1

1

2 2

2

1

1

1 1

2
2

2 2

2

222

2

2

Figure 1 A flooding sequence on a 3 × 3 grid.

1

1

1

2 2

23

3 3

1

1

2 2

2
1

1

1

1

1

1 111

1

1
1

1

11

Figure 2 A flooding sequence with no restriction on selected monochromatic components.

1 Introduction

Flood-It is a popular puzzle, originally released as a computer game in 2006 by LabPixies (see
[1]). In this game, the player is presented with (what can be thought of as) a vertex-colored
grid graph, with a designated special pivot vertex, usually the top-left corner of the grid.
In each move, the player has the right to change the color of all vertices contained in the
same monochromatic component as the pivot to a different color of her choosing. Doing this
judiciously gradually increases the size of the pivot’s monochromatic component, until the
whole graph is flooded with one color. The goal is to achieve this flooding with the minimum
number of moves. See Figure 1 for an example.

Following the description above, Flood-It immediately gives rise to a natural optimization
problem: given a vertex-colored graph, determine the shortest sequence of flooding moves
that wins the game. This problem has been extensively studied in the last few years (e.g.
[10, 12, 14, 13, 7, 3, 17, 4, 15, 9]; a more detailed summary of known results is given
below), both because of the game’s popularity (and addictiveness!), but also because the
computational complexity questions associated with this problem have turned out to be
surprisingly deep, and the problem has turned out to be surprisingly intractable.

The goal of this paper is to add to our understanding of this interesting, puzzle-inspired,
optimization problem, by taking a closer look at the importance of the pivot vertex. As
explained above, the classical version of the game only allows the player to change the
color of a special vertex and its component and has been studied under the name Fixed-
Flood-It [12, 14, 13] (or Flood-It in some papers [1, 17, 3, 4, 9]). However, it is extremely
natural to also consider a version where the player is also allowed to play a different vertex
of her choosing in each turn. This has also been well-studied under the name Free-Flood-
It [1, 10, 12, 14, 13, 3, 17]. See Figure 2.

Since both versions of this problem have been studied before, the question of the impact
of the pivot vertex on the problem’s structure has (at least implicitly) been considered.
Intuitively, one would expect Free-Flood-It to be a harder problem; after all, the player
has to choose a color to play and a vertex to play it on, and is hence presented with a
larger set of possible moves. The state of the art seems to confirm this intuition, as only
some of the positive algorithmic results known for Fixed-Flood-It are known also for
Free-Flood-It, while there do exist some isolated cases where Fixed-Flood-It is tractable
and Free-Flood-It is hard, for example co-comparability graphs [5, 7] and grids of height 2
[1, 13]. Nevertheless, these results do not completely pinpoint the added complexity brought
by the task of selecting a vertex to play, as the mentioned algorithms for Fixed-Flood-It
are already non-trivial, and hence the jump in complexity is likely to be the result of the
combination of the tasks of picking a color and a vertex. More broadly, [3] presented a

R. Belmonte, M. Khosravian Ghadikolaei, M. Kiyomi, M. Lampis, and Y. Otachi 5:3

generic reduction from Fixed-Flood-It to Free-Flood-It that preserves a number of
crucial parameters (number of colors, optimal value, etc.) and gives convincing evidence that
Free-Flood-It is always at least as hard as Fixed-Flood-It, but not necessarily harder.

Our Results: We investigate the complexity of Free-Flood-It, mostly from the point of
view of parameterized complexity,1 as well as the impact on the combinatorics of the game
of allowing moves outside the pivot. Due to space constraints, some proofs are ommited and
marked with F.

Our first result is to show that Free-Flood-It is W[2]-hard parameterized by the number
of moves in an optimal solution. We recall that for Fixed-Flood-It this parameterization
is trivially fixed-parameter tractable: when a player has only k moves available, then we can
safely assume that the graph uses at most (roughly) k colors, hence one can easily consider
all possible solutions in FPT time. The interest of our result is, therefore, to demonstrate
that the task of deciding which vertex to play next is sufficient to make Free-Flood-It
significantly harder than Fixed-Flood-It. Indeed, the W[2]-hardness reduction we give,
implies also that Free-Flood-It is not solvable in no(k) time under the ETH. This tightly
matches the complexity of a trivial algorithm which considers all possible vertices and colors
to be played. This is the first concrete example showing a case where Fixed-Flood-It is
essentially trivial, but Free-Flood-It is intractable.

Motivated by this negative result we consider several other parameterizations of the
problem. We show that Free-Flood-It is fixed-parameter tractable when parameterized
by the number of possible moves and the clique-width. This result is tight in the sense that
the problem is hard when parameterized by only one of these parameters. It also implies
the fixed-parameter tractability of the problem parameterized by the number of colors and
the modular-width. In a similar vein, we present a polynomial kernel when Free-Flood-It
is parameterized by the input graph’s neighborhood diversity and number of colors. An
analogous result was shown for Fixed-Flood-It in [4], but because of the freedom to
select vertices, several of the tricks used there do not apply to Free-Flood-It, and our
proofs are slightly more involved. Our previously mentioned reduction also implies that
Free-Flood-It does not admit a polynomial kernel parameterized by vertex cover, under
standard assumptions. This result was also shown for Fixed-Flood-It in [4], but it does
not follow immediately for Free-Flood-It, as the reduction of [3] does not preserve the
graph’s vertex cover.

Motivated by the above results, which indicate that the complexity of the problem can be
seriously affected if one allows non-pivot moves, we also study some more purely combinatorial
questions with algorithmic applications. The main question we pose here is the following.
It is obvious that for all instances the optimal number of moves for Free-Flood-It is
upper-bounded by the optimal number of moves for Fixed-Flood-It (since the player has
strictly more choices), and it is not hard to construct instances where Fixed-Flood-It needs
strictly more moves. Can we bound the optimal number of Fixed-Flood-It moves needed
as a function of the optimal number of Fixed-Flood-It moves? Somewhat surprisingly, this
extremely natural question does not seem to have been explicitly considered in the literature
before. Here, we completely resolve it by showing that the two optimal values cannot be
more than a factor of 2 apart, and constructing a family of simple instances where they are
exactly a factor of 2 apart. As an immediate application, this gives a 2-approximation for
Free-Flood-It for every case where Fixed-Flood-It is known to be tractable.

1 For readers unfamiliar with the basic notions of this field, we refer to standard textbooks [2, 6].

FUN 2018

5:4 How Bad is the Freedom to Flood-It?

We also consider the problem’s monotonicity: Fixed-Flood-It has the nice property
that even an adversary that selects a single bad move cannot increase the optimal (that is, in
the worst case a bad move is a wasted move). We construct minimal examples which show
that Free-Flood-It does not have this nice monotonicity property, even for extremely
simple graphs, that is, making a bad move may not only waste a move but also make the
instance strictly worse. Such a difference was not explicitly stated in the literature, while
the monotonicity of Fixed-Flood-It was seem to be known or at least assumed. The only
result we are aware of is the monotonicity of Free-Flood-It on paths shown by Meeks and
Scott [12].

Known results: In 2009, the NP-hardness of Fixed-Flood-It with six colors was sketched
by Elad Verbin as a comment to a blog post by Sariel Har-Peled [16]. Independently to the
blog comment, Clifford et al. [1] and Fleischer and Woeginger [5] started investigations of
the complexity of the problem, and published the conference versions of their papers at FUN
2010. Below we mostly summarize some of the known results on Free-Flood-It. For more
complete lists of previous result, see e.g. [7, 10, 4].

Free-Flood-It is NP-hard if the number of colors is at least 3 [1] even for trees with
only one vertex of degree more than 2 [10, 3], while it is polynomial-time solvable for general
graphs if the number of colors is at most 2 [1, 12, 10]. Moreover, it is NP-hard even for
height-3 grids with four colors [12]. Note that this result implies that Free-Flood-It with
a constant number colors is NP-hard even for graphs of bounded bandwidth. If the number
of colors is unbounded, then it is NP-hard for height-2 grids [13], trees of radius 2 [3], and,
proper interval graphs and caterpillars [7]. Also, it is known that there is no constant-factor
approximation with a factor independent of the number of colors unless P = NP [1].

There are a few positive results on Free-Flood-It. Meeks and Scott [14] showed that
every colored graph has a spanning tree with the same coloring such that the minimum
number of moves coincides in the graph and the spanning tree. Using this property, they
showed that if a graph has only a polynomial number of vertex subsets that induce connected
subgraphs, then Free-Flood-It (and Fixed-Flood-It) on the graph can be solved in
polynomial time. This in particular implies the polynomial-time solvability on subdivisions
of a fixed graph. It is also known that Free-Flood-It for interval graphs and split graphs
is fixed-parameter tractable when parameterized by the number of colors [7].

2 Preliminaries

For a positive integer k, we use [k] to denote the set {1, . . . , k}. Given a graph G = (V, E), a
coloring function col : V → [cmax], where cmax is a positive integer, and u ∈ V , we denote by
Comp(col, u) the maximal set of vertices S such that for all v ∈ S, col(u) = col(v) and there
exists a path from u to v such that for all its internal vertices w we have col(w) = col(u).
In other words, Comp(col, u) is the monochromatic connected component that contains u

under the coloring function col.
Given G, col, a move is defined as a pair (u, i) where u ∈ V , i ∈ [cmax]. The result

of the move (u, c) is a new coloring function col′ defined as follows: col′(v) = c for all
v ∈ Comp(col, u); col′(v) = col(v) for all other vertices. In words, a move consists of
changing the color of u, and of all vertices in the same monochromatic component as u,
to c. Given the above definition we can also define the result of a sequence of moves
(u1, c1), (u2, c2), . . . , (uk, ck) on a colored graph with initial coloring function col0 in the
natural way, that is, for each i ∈ [k], coli is the result of move (ui, ci) on coli−1.

R. Belmonte, M. Khosravian Ghadikolaei, M. Kiyomi, M. Lampis, and Y. Otachi 5:5

The Free-Flood-It problem is defined as follows: given a graph G = (V, E), an
integer k, and an initial coloring function col0, decide if there exists a sequence of k moves
(u1, c1), (u2, c2), . . . , (uk, ck) such that the result colk obtained by applying this sequence of
moves on col0 is a constant function (that is, ∀u, v ∈ V we have colk(u) = colk(v)).

In the Fixed-Flood-It problem we are given the same input as in the Free-Flood-It
problem, as well as a designated vertex p ∈ V (the pivot). The question is again if there
exists a sequence of moves such that colk is monochromatic, with the added constraint that
we must have ui = p for all i ∈ [k].

We denote by OPTFree(G, col),OPTFixed(G, col, p) the minimum k such that for the
input (G, col) (or (G, col, p) respectively) the Free-Flood-It problem (respectively the
Fixed-Flood-It problem) admits a solution.

Graph parameters: The graph parameters considered in this paper are the vertex cover
number vc(G), the neighborhood diversity nd(G), the modular-width mw(G), and the clique-
width cw(G). It is known that cw(G) ≤ mw(G) ≤ nd(G) ≤ 2vc(G) + vc(G) for every graph
G [8, 11]. (See [11, 8, 2] for definitions.)

3 W[2]-hardness of Free-Flood-It

The main result of this section is that Free-Flood-It is W[2]-hard when parameterized by
the minimum length of any valid solution (the natural parameter). The proof consists of a
reduction from Set Cover, a canonical W[2]-complete problem.

Before presenting the construction, we recall two basic observations by Meeks and Vu [15],
both of which rest on the fact that any single move can (at most) eliminate a single color
from the graph, and this can only happen if a color induces a single component.

I Lemma 3.1 ([15]). For any graph G = (V, E), and coloring function col that uses cmax
distinct colors, we have OPTFree(G, col) ≥ cmax − 1.

I Lemma 3.2 ([15]). For any graph G = (V, E), and coloring function col that uses cmax
distinct colors, such that for all c ∈ [cmax], G[col−1(c)] is a disconnected graph, we have
OPTFree(G, col) ≥ cmax.

The proof of Theorem 3.6 relies on a reduction from a special form of Set Cover, which
we call Multi-Colored Set Cover (MCSC for short). MCSC is defined as follows:

I Definition 3.3. In Multi-Colored Set Cover (MCSC) we are given as input a set of
elements R and k collections of subsets of R, S1, . . . ,Sk. We are asked if there exist k sets
S1, . . . , Sk such that for all i ∈ [k], Si ∈ Si, and ∪i∈[k]Si = R.

Observe that MCSC is just a version of Set Cover where the collection of sets is given
to us pre-partitioned into k parts and we are asked to select one set from each part to form
a set cover of the universe. It is not hard to see that any Set Cover instance (S, R) where
we are asked if there exists a set cover of size k can easily be transformed to an equivalent
MCSC instance simply by setting Si = S for all i ∈ [k], since the definition of MCSC does
not require that the sub-collections Si be disjoint. We conclude that known hardness results
for Set Cover immediately transfer to MCSC, and in particular MCSC is W[2]-hard when
parameterized by k.

FUN 2018

5:6 How Bad is the Freedom to Flood-It?

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

I1

I2

Ik

L1

L2

Lk

R

u

Figure 3 The graph G = (V, E) of Free-Flood-It constructed from the given MCSC instance.
All the vertices in each Ii have color i and all black vertices have color k + 1. Boxes containing black
vertices have size 3k. Also each vertex in Li has k neighbors with degree 1 colored 1, ..., k.

Construction
We are now ready to describe our reduction which, given a MCSC instance with universe R

and k collections of sets Si, i ∈ [k], produces an equivalent instance of Free-Flood-It, that
is, a graph G = (V, E) and a coloring function col on V . We construct this graph as follows:

for every set S ∈ Si, construct a vertex in V . The set of vertices in V corresponding
to sets of Si is denoted by Ii and col(v) = i for each v ∈ Ii. I1 ∪ ... ∪ Ik induces an
independent set colored {1, ..., k}.
for each i ∈ [k], construct 3k new vertices, denoted by Li and connect all of them to all
vertices of Ii such that Li ∪ Ii induces a complete bipartite graph of size 3k × |Ii|. Then
set col(v) = k + 1 for each v ∈ Li, for all i ∈ [k].
for each vertex v ∈ Li for 1 ≤ i ≤ k, construct k new leaf vertices connected to v with
distinct colors 1, ..., k.
for each element e ∈ R, construct a vertex e. For each S ∈ Si such that e ∈ S we connect
e to the vertex of Ii that represents S.
add a special vertex u with col(u) = k + 1 which is connected it to all vertices in Ii for
i ∈ [k].

An illustration of G is shown in Fig.3. In the following we will show that (G, col) as
an instance of Free-Flood-It is solvable with at most 2k moves if and only if the given
MCSC instance has a set cover of size k which contains one set of each Si.

I Lemma 3.4. If (S1, . . . ,Sk, R) is a YES instance of MCSC then OPTFree(G, col) ≤ 2k.

Proof. Suppose that there is a solution S1, . . . , Sk of the given MCSC instance, with Si ∈ Si,
for i ∈ [k] and ∪i∈[k]Si = R. Recall that for each Si there is a vertex in Ii in the constructed
graph representing Si. Our first k moves consist of changing the color of each of these k

vertices to k + 1 in some arbitrary order.
Observe that in the graph resulting after these k moves the vertices with color k + 1 form

a single connected component: because ∪Si is a set cover, all vertices of R have a neighbor
with color k + 1; all vertices with color k + 1 in some Ii are in the same component as u; and
all vertices of ∪i∈[k]Li are connected to one of the vertices we played. Furthermore, observe

R. Belmonte, M. Khosravian Ghadikolaei, M. Kiyomi, M. Lampis, and Y. Otachi 5:7

that this component dominates the graph: all remaining vertices of ∪Ii, as well as all leaves
attached to vertices of ∪i∈[k]Li are dominated by the vertices of ∪i∈[k]Li. Hence, we can
select an arbitrary vertex with color k + 1, say u, and cycle through the colors 1, . . . , k on
this vertex to make the graph monochromatic. J

Now we establish the converse of Lemma 3.4.

I Lemma 3.5. If OPTFree(G, col) ≤ 2k, then (S1, . . . ,Sk, R) is a YES instance of MCSC.

Proof. Suppose that there exists a sequence of at most 2k moves solving (G, col). We can
assume without loss of generality that the sequence has length exactly 2k, since performing a
move on a monochromatic graph keeps the graph monochromatic. Let (u1, c1), . . . , (u2k, c2k)
be a solution, let col0 = col, and let coli denote the coloring of G obtained after the first i

moves. The key observation that we will rely on is the following:

(i) For all i ∈ [k], there exist j ∈ [k], v ∈ Ii such that colj(v) = k + 1.

In other words, we claim that for each group Ii there exists a vertex that received color
k + 1 at some point during the first k moves. Before proceeding, let us prove this claim.
Suppose for contradiction that the claim is false. Then, there exists a group Ii such that no
vertex in that group has color k + 1 in any of the colorings col0, . . . , colk. We now consider
the vertices of Li and their attached leaves. Since Li contains 3k > k + 2 vertices, there
exist two vertices v1, v2 of Li such that {u1, . . . , uk} contains neither v1, v2, nor any of their
attached leaves. In other words, there exist two vertices of Li on which the winning sequence
does not change colors by playing them or their private neighborhood directly. However,
since v1, v2 only have neighbors in I1 (except for their attached leaves), and no vertex of
I1 received color k + 1, we conclude that colk(v1) = colk(v2) = k + 1, that is, the colors
of these two vertices have remained unchanged, and the same is true for their attached
leaves. Consider now the graph G with coloring colk: we observe that this coloring uses
k + 1 distinct colors, and that each color induces a disconnected graph. This is true for colors
1, . . . , k because of the leaves attached to v1, v2, and true of color k + 1 because of v1, v2 and
the fact that no vertex of Ii has color k + 1. We conclude that OPTFree(G, colk) ≥ k + 1 by
Lemma 3.2, which is a contradiction, because the whole sequence has length 2k.

Because of claim (i) we can now conclude that for all i ∈ [k] there exists a j ∈ [k] such
that colj−1(uj) = i. In other words, for each color i there exists a move among the first k

moves of the solution that played a vertex which at that point had color i. To see that this
is true consider again for contradiction the case that for some i ∈ [k] this statement does not
hold: this implies that vertices with color i in col0 still have color i in col1, . . . , colk, which
means that no vertex of Ii has received color k + 1 in the first k moves, contradicting (i).

As a result of the above, we therefore claim that for all j ∈ [k], we have colj−1(uj) 6= k+1.
In other words, we claim that none of the first k moves changes the color of a vertex that
at that point had color k + 1. This is because, as argued, for each of the other k colors,
there is a move among the first k moves that changes a vertex of that color. We therefore
conclude that for all vertices v for which col0(v) = k + 1 we have colj(v) = k + 1 for all
j ∈ [k]. In addition, because in col0 all colors induce independent sets, each of the first k

moves changes the color of a single vertex. Because of claim (i), this means that for each
i ∈ [k] one of the first k moves changes the color of a single vertex from Ii to k + 1. We
select the corresponding set of Si in our MCSC solution.

We now observe that, since all vertices of ∪i∈[k]Li retain color k + 1 throughout the first
k moves, colk is a coloring function that uses k + 1 distinct colors, and colors 1, . . . , k induce
disconnected graphs (because of the leaves attached to the vertices of each Li). Thanks to

FUN 2018

5:8 How Bad is the Freedom to Flood-It?

Lemma 3.2, this means that col−1
k (k + 1) must induce a connected graph. Hence, all vertices

of R have a neighbor with color k + 1 in colk, which must be one of the k vertices played
in the first k moves; hence the corresponding element is dominated by our solution and we
have a valid set cover selecting one set from each Si. J

We are now ready to combine Lemmas 3.4 and 3.5 to obtain the main result of this
section.

I Theorem 3.6. Free-Flood-It is W[2]-hard parameterized by OPTFree, that is, param-
eterized by the length of the optimal solution. Furthermore, if there is an algorithm that
decides if a Free-Flood-It instance has a solution of length k in time no(k), then the ETH
is false.

Proof. The described construction, as well as Lemmas 3.4 and 3.5 give a reduction from
MCSC, which is W[2]-hard parameterized by k, to an instance of Free-Flood-It with k +1
colors, where the question is to decide if OPTFree(G, col) ≤ 2k. Furthermore, it is known
that MCSC generalizes Dominating Set, which does not admit an algorithm running in
time no(k), under the ETH [2]. Since our reduction only modifies k by a constant, we odtain
the same result for Free-Flood-It. J

We note that because of Lemma 3.1 we can always assume that the number of colors
of a given instance is not much higher than the length of the optimal solution. As a
result, Free-Flood-It parameterized by OPTFree is equivalent to the parameterization
of Free-Flood-It by OPTFree + cmax and the result of Theorem 3.6 also applies to this
parameterization. Also, as a byproduct of the reduction above, we can show a kernel lower
bound for Free-Flood-It parameterized by the vertex cover number.

I Theorem 3.7 (F). Free-Flood-It parameterized by the vertex cover number admits no
polynomial kernel unless PH = Σp

3 .

4 Clique-width and neighborhood diversity

In this section, we consider as a combined parameter for Free-Flood-It the length of an
optimal solution and the clique-width. We show that this case is indeed fixed-parameter
tractable by using the theory of the monadic second-order logic on graphs. As an application
of this result, we also show that combined parameterization by the number of colors and the
modular-width is fixed-parameter tractable.

I Theorem 4.1 (F). Given an instance (G, col) of Free-Flood-It such that G has
n vertices and clique-width at most w, it can be decided in time O(f(k, w) · n3) whether
OPTFree(G, col) ≤ k, where f is some computable function.

I Corollary 4.2 (F). Given an integer k and an instance (G, col) of Free-Flood-It such
that G has n vertices and modular-width at most w, it can be decided in time O(f(cmax, w)·n3)
whether OPTFree(G, col) ≤ k, where f is some computable function.

Since the modular-width of a graph is upper bounded by its neighborhood diversity, the
corollary above implies that Free-Flood-It is fixed-parameter tractable when parameterized
by both the neighborhood diversity and the number of colors. Here we show that Free-
Flood-It admits a polynomial kernel with the same parameterization.

I Theorem 4.3. Free-Flood-It admits a kernel of nd(G) ·cmax ·(nd(G)+cmax−1) vertices.

R. Belmonte, M. Khosravian Ghadikolaei, M. Kiyomi, M. Lampis, and Y. Otachi 5:9

Our reduction rules are as follows:
Rule TT : Let u and v be true twins of the same color in (G, col). Remove v.
Rule FT : Let F be a set of false-twin vertices of the same color in (G, col) such that
|F | = nd(G) + cmax. Remove arbitrary one vertex in F .

Observe that after applying TT and FT exhaustively in polynomial time, the obtained
graph can have at most nd(G) · cmax · (nd(G) + cmax − 1) vertices. This is because each set of
twin vertices can contain at most nd(G) + cmax − 1 vertices. Hence, to prove Theorem 4.3, it
suffices to show the safeness of the rules.

I Lemma 4.4 (F). The rules TT and FT are safe.

5 Relation Between Fixed and Free Flood-It

The main theorem of this section is the following:

I Theorem 5.1. For any graph G = (V, E), coloring function col on G, and p ∈ V we have

OPTFree(G, col) ≤ OPTFixed(G, col, p) ≤ 2OPTFree(G, col).

Theorem 5.1 states that the optimal solutions for Free-Flood-It and Fixed-Flood-It
can never be more than a factor of 2 apart. It is worthy of note that we could not hope to
obtain a constant smaller than 2 in such a theorem, and hence the theorem is tight.

I Theorem 5.2. There exist instances of Fixed-Flood-It such that OPTFixed(G, col, p) =
2OPTFree(G, col)

Proof. Consider a path on 2n + 1 vertices properly colored with colors 1, 2. If we set the
pivot to be one of the endpoints then OPTFree = 2n. However, it is not hard to obtain a
Free-Flood-It solution with n moves by playing every vertex at odd distance from the
pivot. J

Before we proceed to give the proof of Theorem 5.1, let us give a high-level description of
our proof strategy and some general intuition. The first inequality is of course trivial, so
we focus on the second part. We will establish it by induction on the number of non-pivot
moves performed by an optimal Free-Flood-It solution. The main inductive argument is
based on observing that a valid Free-Flood-It solution will either at some point play a
neighbor u of the component of p to give it the same color as p, or if not, it will at some
point play p to give it the same color as one of its neighbors. The latter case is intuitively
easier to handle, since then we argue that the move that changed p’s color can be performed
first, and if the first move is a pivot move we can easily fall back on the inductive hypothesis.
The former case, which is the more interesting one, can be handled by replacing the single
move that gives u the same color as p, with two moves: one that gives p the same color as u,
and one that flips p back to its previous color. Intuitively, this basic step is the reason we
obtain a factor of 2 in the relationship between the two versions of the game.

The inductive strategy described above faces some complications due to the fact that
rearranging moves in this way may unintentionally re-color some vertices, which makes it
harder to continue the rest of the solution as before. To avoid this we define a somewhat
generalized version of Free-Flood-It, called Subset-Free-Flood-It.

I Definition 5.3. Given G = (V, E), a coloring function col on G, and a pivot p ∈ V ,
a set-move is a pair (S, c), with S ⊆ V and S = Comp(col, u) for some u ∈ V , or
{p} ⊆ S ⊆ Comp(col, p). The result of (S, c) is the coloring col′ that sets col′(v) = c for
v ∈ S; and col′(v) = col(v) otherwise.

FUN 2018

5:10 How Bad is the Freedom to Flood-It?

We define Subset-Free-Flood-It as the problem of determining the minimum number
of set-moves required to make a graph monochromatic, and Subset-Fixed-Flood-It as
the same problem when we impose the restriction that every move must change the color of
p, and denote as OPTS-Free,OPTS-Fixed the corresponding optimum values.

Informally, a set-move is the same as a normal move in Free-Flood-It, except that
we are also allowed to select an arbitrary connected monochromatic set S that contains p

(even if S is not maximal) and change its color. Intuitively, one would expect moves that
set S to be a proper subset of Comp(col, p) to be counter-productive, since such moves
split a monochromatic component into two pieces. Indeed, we prove below in Lemma 5.4
that the optimal solutions to Fixed-Flood-It and Subset-Fixed-Flood-It coincide, and
hence such moves do not help. The reason we define this version of the game is that it gives
us more freedom to define a solution that avoids unintentionally recoloring vertices as we
transform a given Free-Flood-It solution to a Fixed-Flood-It solution.

I Lemma 5.4. For any graph G = (V, E), coloring function col on G, and pivot p ∈ V we
have OPTFixed(G, col, p) = OPTS-Fixed(G, col, p).

Proof. First, observe that OPTS-Fixed(G, col, p) ≤ OPTFixed(G, col, p) is trivial, as any
solution of Fixed-Flood-It is a solution to Subset-Fixed-Flood-It by playing the same
sequence of colors and always selecting all of the connected monochromatic component of p.

Let us also establish the converse inequality. Consider a solution (S1, c1), . . . , (Sk, ck) of
Subset-Fixed-Flood-It, where by definition we have p ∈ Si for all i ∈ [k]. We would like
to prove that (p, c1), (p, c2), . . . , (p, ck) is a valid solution for Fixed-Flood-It. Let coli be
the result of the first i set-moves of the former solution, and col′i be the result of the first i

moves of the latter solution. We will establish by induction the following:
1. For all i ∈ [k] we have Comp(coli, p) ⊆ Comp(col′i, p).
2. For all i ∈ [k], u ∈ V \Comp(col′i, p) we have coli(u) = col′i(u).

The statements are true for i = 0. Suppose that the two statements are true after i− 1
moves. The first solution now performs the set-move (Si, ci) with Si ⊆ Comp(coli−1, p) ⊆
Comp(col′i−1, p). We now have that Comp(coli, p) contains Si plus the neighbors of Si

which have color ci in coli−1. Such vertices either also have color ci in col′i−1, or are contained
in Comp(col′i−1, p); in both cases they are included in Comp(col′i, p), which establishes
the first condition. To see that the second condition continues to hold observe that every
vertex for which coli−1(u) 6= coli(u) or col′i−1(u) 6= col′i(u) belongs in Comp(col′i, p); the
colors of other vertices remain unchanged. Since in the end Comp(colk, p) = V the first
condition ensures that Comp(col′k, p) = V . J

We are now ready to state the proof of Theorem 5.1.

Proof of Theorem 5.1. As mentioned, we focus on proving the second inequality as the first
inequality follows trivially from the definition of the problems. Given a graph G = (V, E), an
initial coloring function col = col0, and a pivot p ∈ V , we suppose we have a solution to Free-
Flood-It (u1, c1), (u2, c2), . . . , (uk, ck). In the remainder, we denote by coli the coloring
that results after the moves (u1, c1), . . . , (ui, ci). We can immediately construct an equivalent
solution to Subset-Free-Flood-It from this, producing the same sequence of colorings:
(Comp(col0, u1), c1), (Comp(col1, u2), c2), . . . , (Comp(colk−1, uk), ck). We will transform
this solution to a solution of Subset-Fixed-Flood-It of length at most 2k, and then invoke
Lemma 5.4 to obtain a solution for Fixed-Flood-It of length at most 2k. More precisely,
we will show that for any G, col, p we have OPTS-Fixed(G, col, p) ≤ 2OPTS-Free(G, col, p).

R. Belmonte, M. Khosravian Ghadikolaei, M. Kiyomi, M. Lampis, and Y. Otachi 5:11

For a solution S = (S1, c1), (S2, c2), . . . , (Sk, ck) to Subset-Free-Flood-It we define
the number of bad moves of S as b(S) = |{(Si, ci) | p 6∈ Si}|. We will somewhat more strongly
prove the following statement for all G, col, p: for any valid Subset-Free-Flood-It solution
S, we have

OPTS-Fixed(G, col, p) ≤ |S|+ b(S).

Since |S|+ b(S) ≤ 2|S|, the above statement will imply the promised inequality and the
theorem.

We prove the statement by induction on |S|+ 2b(S). If |S|+ 2b(S) ≤ 2 then S is already
a Subset-Fixed-Flood-It solution, so the statement is trivial. Suppose then that the
statement holds when |S|+ 2b(S) ≤ n and we have a solution S with |S|+ 2b(S) = n + 1.
We consider the following cases:

The first move (S1, c1) has p ∈ S1. By the inductive hypothesis there is a Subset-Fixed-
Flood-It solution of length at most |S|+ b(S)− 1 for (G, col1, p). We build a solution
for Subset-Fixed-Flood-It by appending this solution to the move (S1, c1), since this
is a valid move for Subset-Fixed-Flood-It.
There exists a move (Si, ci) with Si = Comp(coli−1, u), for some vertex u in
N(Comp(coli−1, p)) \ Comp(coli−1, p) such that ci = coli−1(p). That is, there ex-
ists a move that plays a vertex u that currently has a different color than p, and as a
result of this move the component of u and p merge, because u receives the same color as
p and u has a neighbor in the component of p.
Consider the first such move. We build a solution S ′ as follows: we keep moves
(S1, c1) . . . (Si−1, ci−1); we add the moves (Comp(coli−1, p), coli−1(u)), (Comp(coli−1, p)
∪Comp(coli−1, u), coli−1(p)); we append the rest of the previous solution (Si+1, ci+1),
To see that S ′ is still a valid solution we observe that Comp(coli−1, p)∪Comp(coli−1, u)
is monochromatic and connected when we play it, and that the result of the first i− 1
moves, plus the two new moves is exactly coli. We also note that S ′ + b(S ′) = S + b(S)
because we replaced one bad move with two good moves. However, S ′+2b(S ′) < S+2b(S),
hence by the inductive hypothesis there exists a Subset-Fixed-Flood-It solution of
the desired length.
There does not exist a move as specified in the previous case. We then show that this
reduces to the first case. If no move as described in the previous case exists and the
initial coloring is not already constant, S must have a move (Si, ci) where {p} ⊆ Si ⊆
Comp(col0, p) and ci = coli−1(u) for u ∈ N(Comp(col0, p)) \Comp(col0, p). In other
words, this is a good move (it changes the color of p), that adds a new vertex u to the
connected monochromatic component of p. Such a move must exist, since if the initial
coloring is not constant, the initial component of p must be extended, and we assumed
that no move that extends it by recoloring one of its neighbors exists.

Consider the first such good move (Si, ci) as described above. We build a solution S ′ as
follows: the first move is (Comp(col0, p), col0(u)), where u is, as described above, the
neighbor of Comp(col0, p) with coli−1(u) = ci. For j ∈ [i− 1] we add the move (Sj , cj) if
u 6∈ Sj , or the move (Comp(colj−1, u) ∪Comp(col0, p), cj) if u ∈ Sj . In other words, we
keep other moves unchanged if they do not affect u, otherwise we add to them Comp(col0, p).
We observe that these moves are valid since we maintain the invariant that Comp(col0, p)
and u have the same color and since none of the first i− 1 moves of S changes the color of p

(since we selected the first such move). The result of these i moves is exactly coli. We now
append the remaining move (Si+1, ci+1), . . ., and we have a solution that starts with a good
move, has the same length and the same (or smaller) number of bad moves as S and is still
valid. We have therefore reduced this to the first case. J

FUN 2018

5:12 How Bad is the Freedom to Flood-It?

2

12 2 113 3

2

12 3 113 3

v v
(G, col) (G, col′)

u u

Figure 4 Non-monotonicity of Free-Flood-It.

6 Non-monotonicity of Free-Flood-It

As a final remark, we consider the (non-)monotonicity of the problem. A game has the
monotonicity property if no legal move makes the situation worse. That is, if Fixed-Flood-
It (or Free-Flood-It) has the monotonicity property, then no single move increases
the minimum number of steps to make the input graph monotone. We believe that the
monotonicity of Fixed-Flood-It was known as folklore and used implicitly in the literature.
On the other hand, we are not sure that the non-monotonicity of Free-Flood-It was widely
known. The only result we are aware of is by Meeks and Scott [12] who showed that on
paths Free-Flood-It has the monotonicity property. Figure 4 shows that Free-Flood-It
loses its monotonicity property as soon as the underlying graph becomes a path with one
attached vertex. The instance (G, col′) is obtained from (G, col) by playing the move (v, 3).
We can show that OPTFree(G, col) < OPTFree(G, col′).

References
1 Raphaël Clifford, Markus Jalsenius, Ashley Montanaro, and Benjamin Sach. The com-

plexity of flood filling games. Theory Comput. Syst., 50(1):72–92, 2012. doi:10.1007/
s00224-011-9339-2.

2 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

3 Michael R. Fellows, Uéverton dos Santos Souza, Fábio Protti, and Maise Dantas da Silva.
Tractability and hardness of flood-filling games on trees. Theor. Comput. Sci., 576:102–116,
2015. doi:10.1016/j.tcs.2015.02.008.

4 Michael R. Fellows, Fábio Protti, Frances A. Rosamond, Maise Dantas da Silva, and Uéver-
ton dos Santos Souza. Algorithms, kernels and lower bounds for the Flood-It game pa-
rameterized by the vertex cover number. Discrete Applied Mathematics, 2017. in press.
doi:10.1016/j.dam.2017.07.004.

5 Rudolf Fleischer and Gerhard J. Woeginger. An algorithmic analysis of the honey-bee game.
Theor. Comput. Sci., 452:75–87, 2012. doi:10.1016/j.tcs.2012.05.032.

6 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

7 Hiroyuki Fukui, Yota Otachi, Ryuhei Uehara, Takeaki Uno, and Yushi Uno. On complexity
of flooding games on graphs with interval representations. In Jin Akiyama, Mikio Kano,
and Toshinori Sakai, editors, Computational Geometry and Graphs - Thailand-Japan Joint
Conference, TJJCCGG 2012, Bangkok, Thailand, December 6-8, 2012, Revised Selected
Papers, volume 8296 of Lecture Notes in Computer Science, pages 73–84. Springer, 2012.
doi:10.1007/978-3-642-45281-9_7.

8 Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for
modular-width. In Gregory Z. Gutin and Stefan Szeider, editors, Parameterized and Ex-
act Computation - 8th International Symposium, IPEC 2013, Sophia Antipolis, France,
September 4-6, 2013, Revised Selected Papers, volume 8246 of Lecture Notes in Computer
Science, pages 163–176. Springer, 2013. doi:10.1007/978-3-319-03898-8_15.

http://dx.doi.org/10.1007/s00224-011-9339-2
http://dx.doi.org/10.1007/s00224-011-9339-2
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1016/j.tcs.2015.02.008
http://dx.doi.org/10.1016/j.dam.2017.07.004
http://dx.doi.org/10.1016/j.tcs.2012.05.032
http://dx.doi.org/10.1007/978-3-642-45281-9_7
http://dx.doi.org/10.1007/978-3-319-03898-8_15

R. Belmonte, M. Khosravian Ghadikolaei, M. Kiyomi, M. Lampis, and Y. Otachi 5:13

9 Wing-Kai Hon, Ton Kloks, Fu-Hong Liu, Hsiang Hsuan Liu, and Hung-Lung Wang. Flood-
it on AT-free graphs. CoRR, abs/1511.01806, 2015. arXiv:1511.01806.

10 Aurélie Lagoutte, Mathilde Noual, and Eric Thierry. Flooding games on graphs. Discrete
Applied Mathematics, 164:532–538, 2014. doi:10.1016/j.dam.2013.09.024.

11 Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19–37, 2012.

12 Kitty Meeks and Alexander Scott. The complexity of flood-filling games on graphs. Discrete
Applied Mathematics, 160(7-8):959–969, 2012. doi:10.1016/j.dam.2011.09.001.

13 Kitty Meeks and Alexander Scott. The complexity of free-flood-it on 2×n boards. Theor.
Comput. Sci., 500:25–43, 2013. doi:10.1016/j.tcs.2013.06.010.

14 Kitty Meeks and Alexander Scott. Spanning trees and the complexity of flood-filling games.
Theory Comput. Syst., 54(4):731–753, 2014. doi:10.1007/s00224-013-9482-z.

15 Kitty Meeks and Dominik K. Vu. Extremal properties of flood-filling games. CoRR,
abs/1504.00596, 2015. arXiv:1504.00596.

16 Elad Verbin. Comment to “Is this game NP-Hard? by Sariel Har-Peled. http://sarielhp.
org/blog/?p=2005#comment-993, 2009. Accessed: 2018-01-18.

17 Uéverton ßdos Santos Souza, Fábio Protti, and Maise Dantas da Silva. An algorithmic
analysis of Flood-it and Free-Flood-it on graph powers. Discrete Mathematics & Theoretical
Computer Science, 16(3):279–290, 2014. URL: http://dmtcs.episciences.org/2086.

FUN 2018

http://arxiv.org/abs/1511.01806
http://dx.doi.org/10.1016/j.dam.2013.09.024
http://dx.doi.org/10.1016/j.dam.2011.09.001
http://dx.doi.org/10.1016/j.tcs.2013.06.010
http://dx.doi.org/10.1007/s00224-013-9482-z
http://arxiv.org/abs/1504.00596
http://sarielhp.org/blog/?p=2005#comment-993
http://sarielhp.org/blog/?p=2005#comment-993
http://dmtcs.episciences.org/2086

How long does it take for all users in a social
network to choose their communities?

Jean-Claude Bermond
Université Côte d’Azur, CNRS, Inria, I3S, France

Augustin Chaintreau
Columbia University in the City of New York, USA

Guillaume Ducoffe1

National Institute for Research and Development in Informatics and Research Institute of the
University of Bucharest, Bucureşti, România

Dorian Mazauric2

Université Côte d’Azur, Inria, France

Abstract
We consider a community formation problem in social networks, where the users are either
friends or enemies. The users are partitioned into conflict-free groups (i.e., independent sets
in the conflict graph G− = (V,E) that represents the enmities between users). The dynamics
goes on as long as there exists any set of at most k users, k being any fixed parameter, that
can change their current groups in the partition simultaneously, in such a way that they all
strictly increase their utilities (number of friends i.e., the cardinality of their respective groups
minus one). Previously, the best-known upper-bounds on the maximum time of convergence were
O(|V |α(G−)) for k ≤ 2 and O(|V |3) for k = 3, with α(G−) being the independence number of
G−. Our first contribution in this paper consists in reinterpreting the initial problem as the study
of a dominance ordering over the vectors of integer partitions. With this approach, we obtain for
k ≤ 2 the tight upper-bound O(|V |min{α(G−),

√
|V |}) and, when G− is the empty graph, the

exact value of order (2|V |)3/2

3 . The time of convergence, for any fixed k ≥ 4, was conjectured to
be polynomial [7, 14]. In this paper we disprove this. Specifically, we prove that for any k ≥ 4,
the maximum time of convergence is an Ω(|V |Θ(log |V |)).

2012 ACM Subject Classification Networks, Theory of computation

Keywords and phrases communities, social networks, integer partitions, coloring games, graphs

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.6

Related Version The full version of the paper can be found at https://hal.inria.fr/
hal-01780627.

1 Part of this work has been done as PhD student in the project Coati at Université Côte d’Azur and during
visits at Columbia University in the City of New York. This work was also supported by the Institutional
research programme PN 1819 "Advanced IT resources to support digital transformation processes in the
economy and society - RESINFO-TD" (2018), project PN 1819-01-01"Modeling, simulation, optimization
of complex systems and decision support in new areas of IT&C research", funded by the Ministry of
Research and Innovation, Romania.

2 Part of this work has been done during his post-doc at Columbia University in the City of New York.

© Jean-Claude Bermond, Augustin Chaintreau, Guillaume Ducoffe,
and Dorian Mazauric;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 6; pp. 6:1–6:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FUN.2018.6
https://hal.inria.fr/hal-01780627
https://hal.inria.fr/hal-01780627
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 How long does it take for all users in a social network to choose their communities?

Foreword: The organizers of a wedding (party) have difficulties in arranging place settings
for the guests as there are many incompatibilities among those who do not want to be at
the same table as an "enemy" (ex girl (boy) friend, boss or employee, student or supervisor,
etc. . .). The organizers realize that they have no set of 5 pairwise friends and so allow
people place themselves. Successively each person joins a table where she has no enemies
or starts a new table. At any time a person can move from one table to another table (of
course where she has no enemy) if in doing so she increases strictly the number of friends
she has at the new table. The process converges relatively fast (linear time). Some time
later the organizers of FUN having heard about this scenario decide to use the same process
to place the participants in different groups for the social activities of the afternoon. Each
participant registers first in her own group. The organizers decide to accelerate the process
by authorizing not just one person but any subset of 4 persons to change their mind and
leave the group in which they are registered to join another group or create a new group;
these persons move only if they desire to do so, that is, they increase strictly the number
of friends. Surprisingly the process takes a very long (exponential) time and night arrives
before groups are formed. As we will discover, the exponential time derives from the fact
that at FUN all the persons are friends and there are no enemies due to the use of moves
implying 4 persons. At this point the reader (and the organizers) might ask why we see such
a difference in behaviors and how long does it takes for users of a social network to form
groups. The answers to these questions and "all you wanted to know but were afraid to ask"
will be revealed in this paper.

1 Introduction

Community formation is a fundamental problem in social network analysis. It has already
been modeled in several ways, each trying to capture key aspects of the problem. The model
studied in this paper has been proposed in [14] in order to reflect the impact of information
sharing on the community formation process. Although it is a simplified model, we show that
its understanding requires us to solve combinatorial problems that are surprisingly intricate.
More precisely, we consider the following dynamics of formation of groups (communities)
in social networks. Each group represents a set of users sharing about some information
topic. We assume for simplicity that each user shares about a given topic in only one group.
Therefore the groups will partition the set of users. We follow the approach of [14]. An
important feature is the emphasis on incompatibility between some pairs of users that we
will call enemies. Two enemies do not want to share information and so will necessarily
belong to different groups. In the general model one consider different degrees of friendship
or incompatibilities. Here we will restrict to the case where two users are either friends
or enemies – as noted in [14], even a little beyond this case, the problem quickly becomes
intractable. As an example, if we add a neutral (indifference) relation, there are instances
for which there is no stability.

The social network is often modeled by the friendship graph G+ where the vertices are
the users and an edge represents a friendship relation. We will use this graph to present the
first notions and examples. However, for the rest of the article and the proofs we will use the
complementary graph, that we call the conflict graph and denote by G−; here the vertices
represent users and the edges represent the incompatibility relation. We assign each user a
utility which is the number of friends in the group to which she belongs. Equivalently, the
utility is the size of the group minus one, as in a group there is no pair of enemies; in [14]
this is modeled by putting the utility as −∞ when there is an enemy in the group.

In the example of Figure 1, the graph depicted is the friendship graph: the edges represent
the friendship relation, and if there is no edge it corresponds to a pair of enemies. Figure 1(a)

J-C. Bermond, A. Chaintreau, G. Ducoffe, and D. Mazauric 6:3

4-déviation

Total Utility = 24 (socially optimal)
stable under 1,2, and 3-deviations

Total Utility = 20 (soc. sub-optimal)
stable under all deviations

2
2

2 2

2
2

2

2

2

2 3 3

1
11

1

1
11

1

33

2
2

(a) (b)

Figure 1 A friendship graph with 12 vertices (users). (a) 3-stable partition that is not 4-stable
but it is optimal in terms of total utility. (b) k-stable partition for any k ≥ 1 that is not optimal in
terms of total utility.

depicts a partition of 12 users composed of 4 non-empty groups each of size 3. The integers
on the vertices represent the utilities of the users which are all equal to 2. Figure 1(b) depicts
another partition consisting of 5 groups with one group of size 4 (where users have utility 3)
and 4 groups of size 2 (where users have utility 1).

In this study we are interested in the dynamics of formation of groups. Another important
feature of [14], taken into account in the dynamics, is the notion of bounded cooperation
between users. More precisely, the dynamics is as follows: initially each user is alone in her
own group. In the simplest case, a move consists for a specific user to leave the group to
which she belongs to join another group but only if this action increases strictly her utility
(acting in a selfish manner); in particular, it implies that a user does not join a group where
she has an enemy. In the k-bounded mode of cooperation, a set of at most k-users can leave
their respective groups to join another group, again, only if each user increases strictly their
utility. If the group they join is empty it corresponds to creating a new group. We call such
a move a k-deviation. Note that this notion is slightly different from that of (k+ 1)-defection
of [14]. We will say that a partition is k-stable if there does not exist a k-deviation for this
partition.

The partition of Figure 1(a) is k-stable when k ∈ {1, 2, 3}. Indeed each user has at least
one enemy in each non empty other group and so cannot join another group. Furthermore,
when k ≤ 3, if k users join an empty group their utility will be at most 2 and so will not
strictly increase. However, this partition is not 4-stable because there is a 4-deviation: the
four central users can join an empty group and so they increase their utilities from 2 to 3.
The partition obtained after such a 4-deviation is depicted in Figure 1(b). This partition
is k-stable for any k ≥ 1. Note that the utility of the other users is now 1 (instead of 2).
Thus, we deduce that this partition is not optimal in terms of total utility (the total utility
has decreased from 24 to 20); but it is now stable under all deviations. This illustrates the
fact that users act in a selfish manner as some increase their utility, but on the contrary the
global utility decreases. For more information on the suboptimality of k-stable partitions,
i.e., bounds on the price of anarchy and the price of stability, the reader is referred to [14].

FUN 2018

6:4 How long does it take for all users in a social network to choose their communities?

1.1 Related work
This above dynamics has been also modeled in the literature with coloring games. A coloring
game is played on the conflict graph. Players must choose a color in order to construct
a proper coloring of the graph, and the individual goal of each agent is to maximize the
number of agents with the same color as she has. On a more theoretical side, coloring games
have been introduced in [18] as a game-theoretic setting for studying the chromatic number
in graphs. Specifically, the authors in [18] have shown that for every coloring game, there
exists a Nash equilibrium where the number of colors is exactly the chromatic number of
the graph. Since then, these games have been used many times, attracting attention in the
study of information sharing and propagation in graphs [4, 7, 14]. Coloring games are an
important subclass of the more general Hedonic games, of which several variations have
been studied in the literature in order to model coalition formation under selfish preferences
of the agents [10, 12, 15, 5, 8, 16]. We stress that while every coloring game has a Nash
equilibrium that can be computed in polynomial-time [18], deciding whether a given Hedonic
game admits a Nash equilibrium is NP-complete [1].

If the set of edges of the conflict graph is empty (edgeless conflict graph), there exists
a unique k-stable partition, namely, that consists of the group of all the users. In [14], it
is proved that there always exists a k-stable partition for any conflict graph, but that it is
NP-hard to compute one if k is part of the input (this result was also proved independently
in [7]). Indeed, if k is equal to the number of users, a largest group in such a partition must
be a maximum independent set of the conflict graph. In contrast, it can be computed a
k-stable partition in polynomial time for every fixed k ≤ 3, by using simple better-response
dynamics [18, 7, 14]. In such an algorithm one does a k-deviation until there does not exist
any one. That corresponds to the dynamics of formation of groups that we study in this
work for larger values of k.

1.2 Additional related work and our results
In this paper we are interested in analyzing in this simple model the convergence of the
dynamics with k-deviations, in particular in the worst case. It has been proved implicitly
in [14] that the dynamics always converges within at most O(2n) steps. Let L(k,G−) be
the size of a longest sequence of k-deviations on a conflict graph G−. We first observe that
the maximum value, denoted L(k, n), of L(k,G−) over all the graphs with n vertices is
attained on the edgeless conflict graph G∅ of order n. Prior to this work, no lower bound on
L(k, n) was known, and the analysis was limited to potential function that only applies when
k ≤ 3 [7, 14] giving upper bounds of O(n2) in the case k = 1, 2 and O(n3) in the case k = 3.
In order to go further in our analysis, the key observation is that when the conflict graph is
edgeless, the dynamics depends only of the size of the groups of the partitions generated.
Following [3], let an integer partition of n ≥ 1, be a non-increasing sequence of integers
Q = (q1, q2, . . . , qn) such that q1 ≥ q2 ≥ . . . ≥ qn ≥ 0 and

∑n
i=1 qi = n. If we rank the groups

by non increasing order of their size, there is a natural relation between partition in groups
and integer partitions (the size qi of the group Xi corresponding to the integers qi of the
partition of n). Using this relation, we prove in Section 3 that the better response dynamics
algorithm reaches a stable partition in pn steps, where pn = Θ((eπ

√
2n/3)/n) denotes the

number of integer partitions. This is already far less than 2n, which was shown to be the best
upper bound that one can obtain for k ≥ 4 when using an additive potential function [14].

J-C. Bermond, A. Chaintreau, G. Ducoffe, and D. Mazauric 6:5

Table 1 Previous bounds and results we obtained on L(k, n) and L(k,G−).

k Prior to our work Our results
1 O(n2) [14] exact analysis, which implies L(1, n) ∼ (2n)3/2

3 Theorem 6
2 O(n2) [14] exact analysis, which implies L(2, n) ∼ (2n)3/2

3 Theorem 9
1-2 O(nα(G−)) [18] L(k,G−) = Ω(nα(G−)) for some G− and

α(G−) = O(
√
n)

Theorem 12

3 O(n3) [7, 14] L(3, n) = Ω(n2) Theorem 13
≥ 4 O(2n) [14] L(k, n) = Ω(nΘ(ln(n))), L(k, n) =

O(exp(π
√

2n/3)/n)
Theorem 14

Table 1 summarizes our contributions described below.
For k = 1, 2, we refine the relation between partitions into groups and integer partitions
as follows.

In the case k = 1 (Section 4.1), we prove that there is a one to one mapping between
sequences of 1-deviations in the edgeless conflict graph and chains in the dominance
lattice of integer partitions. Then, we use the value of the longest chain in this
dominance lattice obtained in [9] to determine exactly L(1, n). More precisely, if
n = m(m+1)

2 + r, with 0 ≤ r ≤ m, L(1, n) = 2
(
m+1

3
)

+ mr. The latter implies in
particular L(1, n) is of order O(n 3

2), thereby improving the previous bound O(n2).
In Section 4.2, we prove that any 2-deviation can be “replaced” (in some precise way)
either by one or two 1-deviations, and so, L(2, n) = L(1, n).
For k = 1, 2 and a general conflict graph G−, the value of L(k,G−) depends on the
independence number α(G−) (cardinality of a largest independent set) of the conflict
graph. In [18] it was proved that the convergence of the dynamics is in O(nα(G−)).
In the case of edgeless conflict graph, we have seen that L(1, n) = O(n3/2) and so
the preceding upper-bound was not tight. So we inferred that the convergence of
the dynamics was in O(n

√
α(G−)). Yet in fact we prove in Section 4.3 that, for any

α(G−) = O(
√
n), there exists a conflict graph G− with n vertices and independence

number α(G−) for which we need a sequence of at least Ω(nα(G−)) 1-deviations to
reach a stable partition. For the wedding’s example of the foreword, α(G−) = 4 and so
the sequence is linearly bounded.

Finally, our main contribution is obtained for k ≥ 3. Prior to our work, it was known
that L(3, n) = O(n3), which follows from another application of the potential function
method [14]. But nothing proved that L(3, n) > L(2, n), and in fact it was conjectured
in [7] that both values are equal. In Section 5, we prove (Theorem 13) that L(3, n) = Ω(n2)
and thus we show for the first time that deviations can delay convergence and that the
gap between k = 2 and k = 3 obtained from potential function is indeed justified. It was
also conjectured in [14] that L(k, n) was polynomial in n for k fixed. In Section 5.1 we
disprove this conjecture and prove in Theorem 14 that L(4, n) = Ω(nΘ(ln(n))). This shows
that 4-deviations are responsible for a sudden complexity increase, as no polynomial
bounds exist for L(4, n). This explains why in the foreword it takes an exponential time
for the organizers of FUN to schedule the groups.

2 Notations

Conflict graph. We refer to [2] for standard graph terminology. For the remaining of the
paper, we suppose that we are given a conflict graph G− = (V,E) where V is the set of

FUN 2018

6:6 How long does it take for all users in a social network to choose their communities?

vertices (called users or players in the introduction) and edges represent the incompatibility
relation (i.e., an edge means that the two users are enemies). The number of vertices is
denoted by n = |V |. The independence number of G−, denoted α(G−), is the maximum
cardinality of an independent set in G−. In particular, if α(G−) = n then the conflict graph
is edgeless and we denote it by G∅ = (V,E = ∅) and call it the empty graph.

Partitions and utilities. We consider any partition P = X1, . . . , Xi, . . . , Xn of the ver-
tices into n independent sets Xi called groups (colors in coloring games), with some of them
being possibly empty. In particular, two enemies are not in the same group. We rank the
groups by non increasing size, that is |Xi| ≥ |Xi+1|. For any 1 ≤ i ≤ n and for any v ∈ Xi,
the utility of vertex v is the number of other vertices in the same group as it, that is |Xi| − 1.

We use in our proofs two alternative representations of the partition P . The partition
vector associated to P is defined as

−→
Λ (P) = (λn(P), . . . , λ1(P)), where λi(P) is the number

of groups of size i. The integer partition associated to P is defined as Q = (q1, q2, . . . , qn)
such that q1 ≥ q2 ≥ . . . ≥ qn ≥ 0 and

∑n
i=1 qi = n, where qi = |Xi|.

In the example of Figure 1(a) we have a partition P of the 12 vertices into 4 groups
each of size 3 and so λ3(P) = 4 and λi(P) = 0 for i 6= 3; in other words

−→
Λ (P) =

(0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0). The corresponding integer partition is Q(P) =
(3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0). In the example of Figure 1(b) we have a partition P ′ of the 12
vertices into one group of size 4 and 4 groups each of size 2 and so λ4(P ′) = 1, λ2(P ′) = 4
and λi(P ′) = 0 for i 6= 2, 4; in other words

−→
Λ (P) = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0). The

corresponding integer partition is Q(P ′) = (4, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0).

k-deviations and k-stability. We can think of a k-deviation as a move of at most k vertices
which leave the groups to which they belong in P , to join another group (or create a new
group) with the necessary condition that each vertex strictly increases its utility, thereby
leading to a new partition P ′. A k-stable partition is simply a partition for which there
exists no k-deviation. We write L(k,G−), resp. L(k, n), for the length of a longest sequence
of k-deviations to reach a stable partition in G−, resp. in any conflict graph with n

vertices. Recall that we start with the partition consisting of n groups of size 1, that is,−→
Λ (P) = (. . . , 0, 0, 0, n).

We next define a natural vector representation for k-deviations. The difference vector −→ϕ
associated to a k-deviation ϕ from P to P ′ is equal to −→ϕ =

−→
Λ (P ′)−

−→
Λ (P). In concluding

this section, we define the difference vectors for some of the k-deviations used in our proofs:
−→α [p, q], the 1-deviation where a vertex leaves a group of size q + 1 for a group of size
p− 1 (valid when p ≥ q + 2). In that case αp = 1, αp−1 = −1, αq+1 = −1, αq = −1, and
αi = 0 for any i /∈ {q, q + 1, p− 1, p} (we omit for ease of reading the brackets [p, q]).
−→γ [p], the 3-deviation where one vertex in each of 3 groups of size p− 1 moves to a group
of size p− 3 to form a new group of size p (valid if there are at least 3 groups of size p− 1
and one of size p− 3). In that case γp = 1, γp−1 = −3, γp−2 = 3, γp−3 = −1, and γi = 0
for any i /∈ {p− 3, p− 2, p− 1, p}.
−→
δ [p], the 4-deviation where one vertex in each of 4 groups of size p− 1 moves to a group
of size p − 4 to form a new group of size p (valid if there are at least 4 groups of size
p − 1 and one of size p − 4). In that case δp = 1, δp−1 = −4, δp−2 = 4, δp−4 = −1, and
δi = 0 for any i /∈ {p− 4, p− 2, p− 1, p}. As an example, the move from the partition of
Figure 1(a) to the partition of Figure 1(b), is a 4-deviation with difference vector

−→
δ[4].

J-C. Bermond, A. Chaintreau, G. Ducoffe, and D. Mazauric 6:7

Algorithm 1 Dynamics of the system

Input: a positive integer k ≥ 1, and a conflict graph G−.
Output: a k-stable partition for G−.

1: Let P1 be the partition composed of n singletons groups.
2: Set i = 1.
3: while there exists a k-deviation for Pi do
4: Set i = i+ 1.
5: Choose one k-deviation and compute the partition Pi after this k-deviation.
6: Return the partition Pi.

3 Preliminary results

In [14], the authors prove that there always exists a k-stable partition, but that it is NP-hard
to compute one if k is part of the input (this result was also proved independently in [7]). In
contrast, it can be computed a k-stable partition in polynomial time for every fixed k ≤ 3,
by using simple better-response dynamics [18, 7, 14]. The latter results question the role of
the value of k in the complexity of computing stable partitions.

Formally, a better-response dynamics proceeds as follows. We start from the trivial
partition P1 consisting of n groups with one vertex in each of them. In particular, the
partition vector

−→
Λ (P1) is such that λ1(P1) = n and, for all other j 6= 1, λj(P1) = 0. Provided

there exists a k-deviation with respect to the current partition Pi, we pick any one of these
k-deviations ϕ and in so doing we obtain a new partition Pi+1. If there is no k-deviation,
the partition Pi is k-stable. An algorithmic presentation is given in Algorithm 1.

We now prove in Proposition 1 that better-response dynamics can be used for computing
a k-stable partition for every fixed k ≥ 1 (but not necessarily in polynomial time). It shows
that for every fixed k ≥ 1, the problem of computing a k-stable partition is in the complexity
class PLS (Polynomial Local Search), that is conjectured to lie strictly between P and NP [13].
Recall that the problem becomes NP-hard when k is part of the input.

I Proposition 1. For any k ≥ 1, for any conflict graph G−, Algorithm 1 converges to a
k-stable partition.

Proof. Let Pi, Pi+1 be two partitions for G− such that Pi+1 is obtained from Pi after some
k-deviation ϕ. Let S be the set of vertices which move (|S| ≤ k) and let j be the size of
the group they join (j = 0 if they create a new group). Then, the new group obtained
has size p = j + |S|. Note that all the vertices of S have increased their utilities and so,
they belonged in Pi to groups of size < p. Therefore, the coordinates of the difference
vector −→ϕ satisfy ϕp = 1 and ϕj = 0 for j > p, and so

−→
Λ (Pi) <L

−→
Λ (Pi+1) where <L is the

lexicographical ordering. Finally, as the number of possible partition vectors is finite, we
obtain the convergence of Algorithm 1. J

An instrumental observation for our next proofs is the following:

I Observation 1. L(k, n) is always attained on the empty conflict graph G∅ of order n.

Indeed, any sequence of k-deviations on a conflict graph G− is also a sequence in the empty
conflict graph with the same vertices. Note that the converse is not true as it can happen
that some moves allowed in the empty conflict graph are not allowed in G− as they bring
two enemies in the same group.

FUN 2018

6:8 How long does it take for all users in a social network to choose their communities?

1111111 211111

22111
2221

31111 4111 511 61

7

52
434213313223211

Figure 2 The lattice of integer partitions for n = 7.

Recall that we can associate to any partition P = X1, . . . , Xi, . . . , Xn of the vertices the
integer partition Q = (q1, q2, . . . , qn) such that q1 ≥ q2 ≥ . . . ≥ qn ≥ 0 and

∑n
i=1 qi = n by

letting qi = |Xi|. The converse is not true in general; as an example it suffices to consider a
partition with q1 > α(G−). However the converse is true when the conflict graph is empty;
indeed it suffices to associate to an integer partition any partition of the vertices obtained by
putting in the group Xi a set of qi vertices .

We can now use the value pn of the number of integer partitions (see [11]) to obtain the
following proposition which follows from Proposition 1.

I Proposition 2. Algorithm 1 reaches a stable partition in at most pn = Θ((eπ
√

2n
3)/n)

steps.

Note that this is already far less than 2n, which was shown to be the best upper bound
that one can obtain for k ≥ 4 when using an additive potential function [14].

4 Analysis for k ≤ 2

In [14], the authors proved that for k ≤ 2, Algorithm 1 converges to a stable partition in at
most a quadratic time (by using a potential function). Indeed when performing a 1-deviation
−→α [p, q], a vertex moves from a group of size q + 1 to a group of size p− 1 (with p ≥ q + 2);
the utility of this vertex increases by p − q − 1, the utility of the q other vertices of the
group of size q + 1 decreases by 1, while the utility of the vertices of the group of size p− 1
increases by 1. So the global utility increases by 2p− 2q − 2 ≥ 2 as p ≥ q + 2. Furthermore,
in a k-stable partition, the utility of a vertex is at most n − 1 and the global utility is at
most n(n− 1)/2. As a result, L(k, n) = O(n2).

In the next subsections we improve this result as we completely solve this case and give
the exact (non-asymptotic) value of L(k, n) when k ≤ 2. The gist of the proof is to use a
partial ordering that was introduced in [3], and is sometimes called the dominance ordering.

4.1 Exact analysis for k = 1 and empty conflict graph
In [3] the author has defined an ordering over the integer partitions, sometimes called the
dominance ordering which creates a lattice of integer partitions. This ordering is a direct
application of the theory of majorization to integer partitions [17].

I Definition 3. (dominance ordering) Given two integer partitions of n ≥ 1, Q =
(q1, q2, . . . , qn) and Q′ = (q′1, q′2, . . . , q′n), we say that Q′ dominates Q if

∑i
j=1 q

′
j ≥

∑i
j=1 qj ,

for all 1 ≤ i ≤ n.

The example of Figure 2 shows the dominance lattice for n = 7. We did not write in the
figure the integers equal to 0.

The two next lemmas show that there is a one to one mapping between chains in the
dominance lattice and sequences of 1-deviations in the empty conflict graph.

J-C. Bermond, A. Chaintreau, G. Ducoffe, and D. Mazauric 6:9

I Lemma 4. Let P be a partition of the vertices and P ′ be the partition obtained after a
1-deviation ϕ. Then, the integer partition Q′ = Q(P ′) dominates Q = Q(P).

Proof. In the 1-deviation ϕ a vertex v moves from a group Xk to a group Xj with qj =
|Xj | ≥ qk = |Xk|. W.l.o.g. we can suppose that the groups (ranked in non increasing
order of size) are ranked in a such a way that Xj is the first group with size |Xj | and Xk

the last group with size |Xk|. Thus, the integer partition Q(P) associated to P satisfies
q1 ≥ q2 . . . ≥ qj−1 > qj ≥ qj+1 . . . ≥ qk > qk+1 . . . ≥ qn. After the move the groups of P ′
are the same as those of P except we have replaced Xj with the group Xj ∪ v and Xk with
Xk − v. Therefore the integer partition Q′ associated to P ′ has the same elements as Q
except q′j = qj + 1 and q′k = qk − 1 and so, Q′ dominates Q. Note that this lemma holds for
any conflict graph. J

In the case n = 7, consider the partition P with one group of size 3, one of size 2 and
two of size 1. The integer partition associated to P is Q = (3, 2, 1, 1, 0, 0, 0). Let ϕ be the
1-deviation where a vertex in the group of size 1 moves to the group of size 3. We obtain the
partition P ′ with one group of size 4, one of size 2 and one of size 1. The integer partition
associated to P ′ is Q′ = (4, 2, 1, 0, 0, 0, 0) which dominates Q.

I Lemma 5. Let G∅ be the empty conflict graph and let Q,Q′ be two integer partitions
of n = |V | such that Q′ dominates Q. For any partition P associated to Q, there exists
another partition P ′ associated to Q′ such that P ′ is obtained from P by doing a sequence of
1-deviations.

Proof. As proved in [3], we have that if Q′ dominates Q then there is a finite sequence of
integer partitions Q0, . . . , Qr, . . . , Qs,with Q = Q0 and Q′ = Qs such that for each 0 ≤ r < s,
Qr+1 dominates Qr and differs from it only in two elements jr and kr with qr+1

jr
= qrjr

+ 1
and qr+1

kr
= qrkr

− 1.
The proof is now by induction on r, starting from any partition P 0 = P associated to Q.

For r > 0, we consider the partition P r associated to Qr. Recall that Qr and Qr+1 differ
only in the two groups Xjr and Xkr . As qr+1

jr
= qrjr

+ 1 and qr+1
kr

= qrkr
− 1, P r+1 can be

obtained from P r by moving a vertex from Xkr
to Xjr

. This move is valid as the conflict
graph is empty. (Note that the lemma is not valid for a general conflict graph.) J

As an example, consider the two integer partitions Q = (2, 2, 2, 1, 0, 0, 0) and Q′ =
(5, 1, 1, 0, 0, 0, 0) where Q′ dominates Q. The sequence of integer partitions is Q0 = Q,
Q1 = (3, 2, 1, 1, 0, 0, 0), Q2 = (4, 1, 1, 1, 0, 0, 0), Q3 = (5, 1, 1, 0, 0, 0, 0). Partition P 1 is
obtained from P 0 by moving a vertex of a group of size 2 to another group of size 2. Then,
P 2 is obtained by moving a vertex of the group of size 2 to the group of size 3 and P ′ is
obtained from P 2 by moving a vertex of one group of size 1 to that of size 4.

In summary we conclude that a sequence of 1-deviations with an empty conflict graph
corresponds to a chain of integer partitions, and vice versa. Therefore, by Observation 1, the
length of the longest sequence of 1-deviations with an empty conflict graph is the same as
the length of the longest chain in the dominance lattice of integer partitions. Since it has
been proven in [9] that for n = m(m+1)

2 + r, the longest chain in the Dominance Lattice has
length 2

(
m+1

3
)

+mr, we obtain the exact value for L(1, n).

I Theorem 6. Let m and r be the unique non negative integers such that n = m(m+1)
2 + r,

and 0 ≤ r ≤ m. Then, L(1, n) = 2
(
m+1

3
)

+mr.

We note that the proof in [9] is not straightforward. One can think that the longest
chain is obtained by taking among the possible 1-deviations the one which leads to the

FUN 2018

6:10 How long does it take for all users in a social network to choose their communities?

smallest partition in the lexicographic order. Unfortunately this is not true. Indeed let
n = 9. After 6 steps we get the integer partition (3, 3, 2, 1, 0, 0, 0, 0, 0). Then, by choosing
the 1-deviation that gives the smallest partition (in the lexicographic order), we get the
partition (3, 3, 3, 0, 0, 0, 0, 0, 0) and then (4, 3, 2, 0, 0, 0, 0, 0, 0). But there is a longer chain
of length 3 from (3, 3, 2, 1, 0, 0, 0, 0, 0) to (4, 3, 2, 0, 0, 0, 0, 0, 0), namely, (4, 2, 2, 1, 0, 0, 0, 0, 0),
(4, 3, 1, 1, 0, 0, 0, 0, 0), (4, 3, 2, 0, 0, 0, 0, 0, 0). However the proof in [9] implies that the following
simple construction works for any n. (see the full version).

I Proposition 7. A longest sequence of 1-deviations in the empty conflict graph is obtained
by choosing, at a given step, among all the possible 1-deviations, any one of which leads to
the smallest increase of the global utility.

4.2 Analysis for k = 2

Interestingly we will prove that any 2-deviation can be replaced either by one or two
1-deviations and so, we will prove in Theorem 9 that L(2, n) = L(1, n).

I Claim 8. If the conflict graph G− is empty, then any 2-deviation can be replaced either by
one or two 1-deviations

Proof. Consider a 2-deviation which is not a 1-deviation. In that case case two vertices ui
and uj leave their respective group Xi and Xj (which can be the same) to join a group
Xk. Let |Xi| ≥ |Xj |; in order for the utility of the vertices to increase, we should have
|Xk| ≥ |Xi| − 1 (≥ |Xj | − 1).

Case 1: |Xk| ≥ |Xj |. In that case the 2-deviation can be replaced by a sequence of two
1-deviations where firstly a vertex uj leaves Xj to join Xk and then a vertex ui leaves Xi

to join the group Xk ∪ uj whose size is now at least that of Xi.
Case 2: |Xk| = |Xi| − 1 = |Xj | − 1 = p− 2 and Xi = Xj . In that case the effect of the
2-deviation is to replace the group Xi of size p−1 with a group of size p−3 and to replace
the group Xk of size p− 2 with a group of size p. Said otherwise, the difference vector
−→ϕ associated to the 2-deviation has as non null coordinates ϕp = 1, ϕp−1 = −1, ϕp−2 =
−1, ϕp−3 = 1. We obtain the same effect by doing the 1-deviation −→α [p− 1, p− 2] where
a vertex leaves Xk to join Xi.
Case 3: |Xk| = |Xi| − 1 = |Xj | − 1 = p − 2 and Xi 6= Xj . In that case the effect
of the 2-deviation is to replace the 2 groups Xi and Xj of size p − 1 with two groups
of size p − 2 and to replace the group Xk of size p − 2 with a group of size p. Said
otherwise, the difference vector −→ϕ associated to the 2-deviation has as non null coordinates
ϕp = 1, ϕp−1 = −2, ϕp−2 = 1. We obtain the same effect by doing the 1-deviation
−→α [p− 1, p− 1] where a vertex leaves Xj to join Xi.

Note that the fact that G− is empty is needed for the proof. Indeed, in the case 2, it might
happen that all the vertices of Xk have some enemy in Xi and so, the 1-deviation we describe
is not valid. Similarly, in case 3, it might happen that all the vertices of Xi have some enemy
in Xj and so, the 1-deviation we describe is not valid. J

I Theorem 9. L(2, n) = L(1, n).

Proof. Clearly, L(2, n) ≥ L(1, n) as any 1-deviation is also a 2-deviation. By Observation 1,
the value of L(2, n) is obtained when the conflict graph G− is empty. In that case, Claim 8
implies that L(2, n) ≤ L(1, n). J

J-C. Bermond, A. Chaintreau, G. Ducoffe, and D. Mazauric 6:11

4.3 Analysis for k ≤ 2 and a general conflict graph
Using the potential function introduced at the beginning of this section, Panagopoulou and
Spirakis ([18]) proved that for every conflict graph G− with independence number α(G−),
the convergence of the dynamics is in O(nα(G−)). Indeed as we have seen each 1-deviation
increases the global utility by at least 2. But the global utility of a stable partition is at most
n(α(G−)− 1) as the groups have maximum size α(G−). If the conflict graph is empty we
have seen that L(1, n) = Θ(n3/2) that is in that case O(n

√
α(G−)). This led one of us ([6],

page 131) to conjecture that in the case of 1-deviations the worst time of convergence of the
dynamics is O(n

√
α(G−)). We disprove the conjecture by proving the following theorem:

I Theorem 10. For n =
(
m+1

2
)
, there exists a conflict graph G− with α(G−) = m = Θ(

√
n)

and a sequence of
(
m+1

3
)
valid 1-deviations, that is a sequence of Ω(n 3

2) = Ω(nα(G−))
1-deviations.

Proof. We will use part of the construction of Greene and Kleitman ([9]). Namely, they
prove that, if n =

(
m+1

2
)
, there is a sequence of

(
m+1

3
)

1-deviations transforming the partition
P1 consisting of n groups each of size 1 (the coordinates of

−→
Λ (P1) satisfy λ1 = n) into the

partition Pm consisting of m groups, one of each possible size i for 1 ≤ i ≤ m (the coordinates
of
−→
Λ (Pm) satisfy λi = 1 for 1 ≤ i ≤ m). Furthermore they prove that the moves used

are V -steps (see the proof of proposition 7 in the full version) which are nothing else than
−→α [p+ 1, p− 1] for some p (one vertex leaves a group of size p to join a group of the same size
p). One can note that in such a move the utility increases only by 2 and as the total utility
of Pm is

∑m
i=1 i(i− 1) = (m+ 1)m(m− 1)/3 the number of moves is (m+ 1)m(m− 1)/6.

The conflict graph of the counterexample will consist of m complete graphs Kj , 1 ≤ j ≤ m
where Kj has exactly j vertices. An independent set is therefore formed by taking at most
one vertex in each Kj and α(G−) = m. We will denote the elements of Kj by {xji} with
1 ≤ i ≤ j ≤ m. The group of Pm of size i will be Xi =

⋃
xji with m + 1 − i ≤ j ≤ m. So

these groups are independent sets.
Recall that n = m(m + 1)/2. For each p, 1 ≤ p ≤ m let us denote by Pp the partition

consisting of 1 group of each size i for 1 ≤ i ≤ p and n− p(p+ 1)/2 groups of size 1 (said
otherwise the coordinates of

−→
Λ (Pp) satisfy λi = 1 for 2 ≤ i ≤ p and λ1 = 1 + n− p(p+ 1)/2).

We will now describe the sequence −→σ [p− 1] of p(p− 1)/2 1-deviations which transform the
partition Pp−1 into Pp. One way to do the Greene-Keitman sequence is obtained by doing
successively the sequences

∑m
p=2
−→σ [p − 1]. More precisely we will prove by induction the

following fact:

I Claim 11. There exists a sequence −→σ [p−1] of p(p−1)/2 valid 1-deviations which transform
the partition Pp−1 into Pp such that after this sequence the group Xi[p] of size i, 1 ≤ i ≤ p
contains exactly the vertices Xi[p] =

⋃
xji+m−p with m+ 1− i ≤ j ≤ m.

Proof. (see example given after the proof)
We suppose we have built the sequence till p− 1 and that, for 1 ≤ i ≤ p− 1, Xi[p− 1] =⋃
xji+m−p+1 with m+1− i ≤ j ≤ m. In a first phase we consider the subpartition of n−p+1

elements obtained by removing the group Xp−1[p − 1]. Namely, this above subpartition
consists of the groups Xi[p − 1] for 1 ≤ i ≤ p − 2 and groups of size 1. In particular, the
subpartition is isomorphic to Pp−2 with p− 1 singleton groups removed. Our construction
ensure that these p − 1 singleton groups that are missing are not used for −→σ [p − 2]. So,
we can do the transformation −→σ [p − 2] consisting of (p − 1)(p − 2)/2 valid moves on the
partition of n − p + 1 elements not contained in Xp−1[p − 1]. It gives rise to the groups

FUN 2018

6:12 How long does it take for all users in a social network to choose their communities?

x1
1 x1

2 x1
4x1

3

x2
2 x2

4x2
3

x3
4x3

3

Group X 4 [4]

Group X 3 [4]

x4
4

Group X 2 [4]

Group X 1 [4]

Figure 3 Illustration for Example 4.

Xi[p] = Xi−1[p − 1] + xm+1−i
i+m−p. Note that at this stage we have two groups of size p − 1,

namely, the original one Xp−1[p − 1] and the new one constructed Xp−1[p]. The second
phase consists in doing p− 1 successive 1-deviations with the vertex xm+1−p

m . More precisely
we move this vertex to the group X1[p] created in the first phase, then from this group to
X2[p] and so on till Xp−2[p] and finally from Xp−2[p] to the original Xp−1[p− 1]. The moves
are valid as we move a vertex from Km+1−p and the groups did not contain any vertex of
this complete graph. Groups created in the first phase are eventually left unchanged as
xm+1−p
m joins such groups and then leaves them. Finally we have constructed a new group
Xp[p] = Xp−1[p− 1] ∪ xm+1−p

m . The groups are exactly those described in the claim. J

In order to end the proof of Theorem 10, it suffices to note that the groups Xi form an
independent set and that after

∑m
p=2
−→σ [p− 1] we have obtained the desired groups of Pm

which gives the counterexample. J

Example for m = 4. (See Figure 3.)
After −→σ [1], we have the 2 groups X2[2] = x4

4 ∪ x3
4 and X1[2] = x4

3.
First phase of −→σ [2]: we do the move of −→σ [1] on the vertices not in X2[2] and create the
groups X2[3] = x4

3 ∪ x3
3 and X1[3] = x4

2.
Second phase of −→σ [2]: now we move x2

4 to X1[3] and then from X1[3] to the original
X2[2] = x4

4 ∪ x3
4, thereby creating the group X3[3] = x4

4 ∪ x3
4 ∪ x2

4.
First phase of −→σ [3]: we do the 3 moves of −→σ [2] on the vertices not in X3[3] and create
the groups X3[4] = x4

3 ∪ x3
3 ∪ x2

3, X2[4] = x4
2 ∪ x3

2, X1[4] = x4
1.

Second phase of −→σ [3]: now we move x1
4 to X1[4] , then from X1[4] to X2[4] and finally

from X2[4] to the original X3[3] = x4
4 ∪ x3

4 ∪ x2
4, thereby creating the group X4[4] =

x4
4 ∪ x3

4 ∪ x2
4 ∪ x1

4.

We can prove a theorem analogous to Theorem 10 for any independence number α(G−).

I Theorem 12. For any α = O(
√
n), there exists a conflict graph G− with n vertices and

independence number α(G−) = α, and a sequence of at least Ω(nα) 1-deviations to reach a
stable partition.

Proof. Let G−0 be the graph of Theorem 10 for m = α. G−0 has n0 = O(α2) vertices,
independence number α, and furthermore there exists a sequence of Θ(α3) valid 1-deviations
for G−0 . Let G− be the graph obtained by taking the complete join of k = n/n0 copies of
G−0 (i.e., we add all possible edges between every two copies of G−0). By construction, G−

J-C. Bermond, A. Chaintreau, G. Ducoffe, and D. Mazauric 6:13

has order n = kn0 = O(nα2) and the same independence number α as G−0 . Furthermore,
there exists a sequence of kΘ(α3) = Ω(nα) valid 1-deviations for G−. J

Note that in any 2-deviation the global utility increases by at least 2 and so the number
of 2 deviations when the conflict graph has independence number α(G−) is also at most
O(nα(G−)). This bound is attained by using only 1-deviations as proved in Theorem 12,
which is also valid for k = 2.

5 Lower bounds for k > 2

The classical dominance ordering does not suffice to describe all k-deviations as soon as k ≥ 3.
As noted before, there is only one k-stable partition Pmax in the empty conflict graph G∅,
namely, the one consisting of one group of size n, with integer partition Qmax = (n, 0, . . . , 0)
and partition vector (1, 0, . . . , 0). Let d(Q) be the length of a longest sequence in the
dominance lattice from the integer partition Q to the integer partition Qmax. For k = 4
let P be the partition consisting of 4 groups of size 4 and one group of size 1 with integer
partition Q = (4, 4, 4, 4, 1). Apply the 4-deviation where one vertex of each group of size 4
joins the group of size 1; it leads to the partition P ′ with integer partition Q′ = (5, 3, 3, 3, 3).
Q is covered in the dominance lattice by the integer partition (5, 4, 4, 3, 1) while Q′ is at
distance 3 from it via (5, 4, 3, 3, 2) and (5, 4, 4, 2, 2) and so, d(Q′) = d(Q) + 2.

Prior to our work, it was known that L(3, n) = O(n3) ([14]). But nothing proved that
L(3, n) > L(2, n), and in fact it was conjectured in [7] that both values are equal. Theorem 13
proves for the first time that deviations can delay convergence and that the gap between
k = 2 and k = 3 obtained from potential function is indeed justified. It was also conjectured
in [14] that L(k, n) was polynomial in n for k fixed. We disprove this conjecture and prove
in Theorem 14 a much more significant result: 4-deviations are responsible for a sudden
complexity increase, as we prove that no polynomial bounds exist for L(4, n).

I Theorem 13. L(3, n) = Ω(n2).

I Theorem 14. L(4, n) = Ω(nΘ(ln(n))).

The main idea of the proofs consists in doing repeated shifted sequences (called cascades)
of deviations similar to the ones given in the example above. The proof of Theorem 13 can
be found in the full version. In the next section, we give the proof of Theorem 14 for k = 4.
We use sequences (cascades) of 4-deviations, called δ[p], and various additional tricks such
that the repetition of the process by using cascades of cascades. Our motivation for using
δ[p] as a basic building block for our construction is that it is the only type of 4-deviation
which decreases the global utility.

5.1 Case k = 4. Proof of Theorem 14
Definition of δ[p]: Consider a partition P containing at least 4 groups of size p− 1 and 1
group of size p− 4. In the 4-deviation δ[p] one vertex in each of the 4 groups of size p− 1
moves to the group of size p− 4 to form a new group of size p. The example given at the
beginning of this section corresponds to the case p = 5. The coordinates of the associated
difference vector (where we omit the bracket [p] for ease of reading) are:

Figure 4 gives a visual description of these cascades. Here we start with a sequence of
t 4-deviations δ[p] represented by black rectangles (t = 16 in the figure). The cascade so
obtained, called

−→
δ 1[p, t], is represented in red. Then we do (t− 2) such cascades represented

FUN 2018

6:14 How long does it take for all users in a social network to choose their communities?

Table 2 Difference vector of δ[p].

... δp δp−1 δp−2 δp−3 δp−4 ...
...0 1 -4 4 0 -1 0...

Figure 4 Cascades of cascades.

by red rectangles getting the cascade
−→
δ 2[p, t − 2] represented in yellow which contains

224(= 16 · 14) 4-deviations. We apply some 1-deviations to get a deviation called
−→
ζ 2[p] with

the so-called Nice Property enabling us to do recursive constructions. We do a cascade of
these

−→
ζ 2[p] (shifted by 2) represented by yellow rectangles getting the blue cascade called

−→
ζ 3[p]. We do a cascade of these

−→
ζ 3[p] (shifted by 3) represented by blue rectangles getting

the green cascade called
−→
ζ 4[p] and we finally do a cascade of these

−→
ζ 4[p] (shifted by 5)

represented by green rectangles getting the grey cascade called
−→
ζ 5[p]. The reader has to

realize that, in this example,
−→
ζ 5[p] contains 3 cascades

−→
ζ 4[p] each containing 5 cascades

−→
ζ 3[p] each consisting of 7 cascades

−→
ζ 2[p]. Altogether the cascade

−→
ζ 5[p] of this example

contains 23520 4-deviations δ[p].

The cascade
−→
δ 1[p, t]: we first do a cascade consisting of a sequence of t shifted 4-deviations

δ[p], δ[p − 1], . . . , δ[p − t + 1], for some parameter t which will be chosen later to give the
maximum number of 4-deviations.

The reader can follow the construction in Table 3 with t = 7. The coordinates of
−→
δ 1[p, t],

are given in Claim 15 and Table 4. We note that there are lot of cancellations and only 8

J-C. Bermond, A. Chaintreau, G. Ducoffe, and D. Mazauric 6:15

Table 3 Computation of δ1[p, 7].

...0 p p-1 p-2 p-3 p-4 p-5 p-6 p-7 p-8 p-9 p-10 0...
δ[p] ...0 1 -4 4 0 -1 0 0 0 0 0 0 0...

+δ[p− 1] ...0 0 1 -4 4 0 -1 0 0 0 0 0 0...
+δ[p− 2] ...0 0 0 1 -4 4 0 -1 0 0 0 0 0...
+δ[p− 3] ...0 0 0 0 1 -4 4 0 -1 0 0 0 0...
+δ[p− 4] ...0 0 0 0 0 1 -4 4 0 -1 0 0 0...
+δ[p− 5] ...0 0 0 0 0 0 1 -4 4 0 -1 0 0...
+δ[p− 6] ...0 0 0 0 0 0 0 1 -4 4 0 -1 0...
=
−→
δ 1[p, 7] ...0 1 -3 1 1 0 0 0 -1 3 -1 -1 0...

Table 4 Difference vector δ1[p, t].

... δ1
p δ1

p−1 δ1
p−2 δ1

p−3 ... δ1
p−t δ1

p−t−1 δ1
p−t−2 δ1

p−t−3 ...
...0 1 -3 1 1 0...0 -1 3 -1 -1 0...

non zero coordinates. Indeed consider the groups of size p − i for 4 ≤ i ≤ t − 1; we have
deleted such a group when doing the 4-deviation

−→
δ [p+ 4− i], then created 4 such groups

with
−→
δ [p+ 2− i], then deleted 4 such groups with

−→
δ [p+ 1− i], and finally created one with

−→
δ [p− i]. The reader can follow these cancellations in Table 3 for i = 4, 5, 6. The variation
of the number of groups of a given size p− i (which correspond to the coordinate δ1

p−i) is
obtained by summing the coefficients appearing in the corresponding column and so is 0 for
p− 4, p− 5, p− 6.

I Claim 15. For 3 ≤ t ≤ p − 3, the coordinates of the cascade
−→
δ 1[p, t] =

∑t−1
i=0
−→
δ [p − i]

satisfy: δ1
p = 1, δ1

p−1 = −3, δ1
p−2 = 1, δ1

p−3 = 1, δ1
p−t = −1, δ1

p−t−1 = 3, δ1
p−t−2 = −1,

δ1
p−t−3 = −1, and δ1

j = 0 for all the others j (see Table 4).

Proof. We have δ1
j =

∑t−1
i=0 δj [p − i]. For a given j, δj [p − i] = 0 except for the following

values of i such that 0 ≤ i ≤ t−1: i = p−j where δj [j] = 1; i = p−j−1 where δj [j+1] = −4;
i = p−j−2 where δj [j+2] = 4; i = p−j−4 where δj [j+4] = −1 (in the table it corresponds
to the non zero values in a column, whose number is at most 4). Therefore, for j > p:
δ1
j = 0 ; δ1

p = 1; δ1
p−1 = −4 + 1 = −3; δ1

p−2 = 4 − 4 + 1 = 1; δ1
p−3 = 0 + 4 − 4 + 1 = 1;

for p − 4 ≥ j ≥ p − t + 1, δ1
p−j = −1 + 0 + 4 − 4 + 1 = 0; δ1

p−t = −1 + 0 + 4 − 4 = −1;
δ1
p−t−1 = −1 + 0 + 4 = 3; δ1

p−t−2 = −1 + 0 = −1; δ1
p−t−3 = −1 and, for j ≤ p − t − 4,

δ1
j = 0. J

Validity of the cascades. We have to see when the cascades are valid, that is, to determine
how many groups we need at the beginning. For the cascade

−→
δ 1[p, t] we note that the

coordinates of any subsequence of the cascade, i.e., the coordinates of some
−→
δ 1[p, r], are all

at least −1 except δ1
p−1: which is −4 when r = 1 and then −3. Therefore such a cascade is

valid as soon as we have at least 4 groups of size p− 1 and one group of each other size p− i
(2 ≤ i ≤ t + 3). To deal in general with the validity of cascades let us now introduce the
notion of h-balanced sequence.

I Definition 16. Let h be a positive integer and let −→Φ =
∑s
j=1
−→ϕ j be a cascade consisting

of s k-deviations. We call this cascade h-balanced if, for any 1 ≤ i ≤ s, the sum of the i first
vectors, namely,

∑i
j=1
−→ϕ j , has all its coordinates greater than or equal to −h.

FUN 2018

6:16 How long does it take for all users in a social network to choose their communities?

Table 5 Computation of δ2[p, 5].

... p p-1 p-5 p-9 p-13 p-14 ...
δ1[p, 7] ...0 1 -3 1 1 0 0 0 -1 3 -1 -1 0 ...

+δ1[p-1,7] ...0 0 1 -3 1 1 0 0 0 -1 3 -1 -1 0 ...
+δ1[p-2,7] ...0 0 0 1 -3 1 1 0 0 0 -1 3 -1 -1 0 ...
+δ1[p-3,7] ...0 0 0 0 1 -3 1 1 0 0 0 -1 3 -1 -1 0 ...
+δ1[p-4,7] ...0 0 0 0 0 1 -3 1 1 0 0 0 -1 3 -1 -1 0...
=
−→
δ 2[p, 5] ...0 1 -2 -1 0 0 -1 2 0 2 1 0 0 1 -2 -1 0...

Table 6 Difference vector δ2[p, t− 2].

... δ2
p δ2

p−1 δ2
p−2 ... δ2

p−t+2 δ2
p−t+1 δ2

p−t δ2
p−t−1 δ2

p−t−2 ... δ2
p−2t+2 δ2

p−2t+1 δ2
p−2t ...

0 1 -2 -1 0 -1 2 0 2 1 0 1 -2 -1 0

For example, the cascade
−→
δ 1[p, t] described before is 4-balanced. The interest of this

notion lies in the following fact: Let pmax be the largest index j that satisfies −→Φ j 6= 0. Then,
if we start from a partition with at least h groups of each size j, for 1 ≤ j ≤ pmax, an
h-balanced sequence is valid.

Note that a sequence is itself composed of sub-sequences and the following lemma will be
useful to bound the value h of a sequence.

I Lemma 17. Let −→Φ 1 be an h1-balanced sequence and −→Φ 2 be an h2-balanced sequence. Then,−→Φ 1 +−→Φ 2 is a (max {h1, h2 −miniΦ1
i })-balanced sequence.

Proof. As −→Φ 1 is h1-balanced, the coordinates of any subsequence of −→Φ 1 are greater than or
equal to −h1. Consider a subsequence −→Φ 1 +−→Φ 3 where −→Φ 3 is a subsequence of −→Φ 2. The j-th
coordinate is Φ1

j +Φ3
j ; by definition Φ3

j ≥ −h2 and so, Φ1
j +Φ3

j ≥ Φ1
j −h2 ≥ miniΦ1

i −h2. J

The cascade
−→
δ 2[p, t−2]: We do now the following sequence of t−2 cascades

−→
δ 2[p, t−2] =∑t−3

i=0
−→
δ 1[p− i, t]. Altogether we have a sequence of t(t− 2) 4-deviations. There are a lot of

cancellations and in fact, as shown in Claim 18,
−→
δ 2[p, t− 2] has only 10 non zero coordinates.

Table 5 describes an example of computation of
−→
δ 2[p, t− 2] with t = 7.

I Claim 18. For 3 ≤ t ≤ p
2 , the coordinates of the cascade

−→
δ 2[p, t− 2] =

∑t−3
i=0
−→
δ 1[p− i, t]

satisfy: δ2
p = 1, δ2

p−1 = −2, δ2
p−2 = −1, δ2

p−t+2 = −1, δ2
p−t+1 = 2, δ2

p−t−1 = 2, δ2
p−t−2 = 1,

δ2
p−2t+2 = 1, δ2

p−2t+1 = −2, δ2
p−2t = −1, and δ2

j = 0 for all the others j (see Table 6).
Furthermore this cascade is 4-balanced.

Proof. We have δ2
j =

∑t−3
i=0 δ

1
j [p− i, t]. Using the values of δ1

j [p− i, t], we get that: for j > p,
δ2
j = 0; δ2

p = 1; δ2
p−1 = −3 + 1 = −2; δ2

p−2 = 1 − 3 + 1 = −1; for p − 3 ≥ j ≥ p − t + 3,
δ2
j = 1 + 1 − 3 + 1 = 0; δ2

p−t+2 = 1 + 1 − 3 = −1; δ2
p−t+1 = 1 + 1 = 2; δ2

p−t = −1 + 1 = 0;
δ2
p−t−1 = 3−1 = 2; δ2

p−t−2 = −1+3−1 = 1; for p−t−3 ≥ j ≥ p−2t+3, δ2
j = −1−1+3−1 = 0;

δ2
p−2t+2 = −1− 1 + 3 = 1; δ2

p−2t+1 = −1− 1 = −2, δ2
p−2t = −1, and for j < p− 2t, δ2

j = 0.
Using Lemma 17 we get that

−→
δ 2[p, t − 2] is 7-balanced; but a careful analysis shows

that this sequence is in fact 4-balanced. Indeed we will prove by induction that
−→
δ 2[p, r] =∑r−1

i=0
−→
δ 1[p − i, t] is 4-balanced for any r ≤ t − 3. That is true for r = 1, as

−→
δ 1[p, t] is

4-balanced. Suppose that it is true for r. We have
−→
δ 2[p, r + 1] =

−→
δ 2[p, r] +

−→
δ 1[p− r − 1, t].

All the coordinates of
−→
δ 2[p, r] are by the computation above at least −3, and the coordinates

J-C. Bermond, A. Chaintreau, G. Ducoffe, and D. Mazauric 6:17

Table 7 Difference vector ζ2[p].

... ζ2
p ζ2

p−1 ζ2
p−2 ζ2

p−3 ... ζ2
p−t ζ2

p−t−1 ... ζ2
p−2t+2 ζ2

p−2t+1 ζ2
p−2t ζ2

p−2t−1 ...
...0 1 0 -1 -1 0...0 1 1 0...0 -1 -1 0 1 0...

of
−→
δ 1[p− r− 1, t] are greater than −1 except for j = p− r− 2 where δ1

p−r−2[p− r− 1] = −4;
but δ2

p−r−2[p, r] = 1 (case r = 1) or 2 (case r > 1) and so, all the coordinates of
−→
δ 2[p, r + 1]

are at least −4. J

At this stage we could continue and do a cascade of
−→
δ 2[p, t − 2] but there is no more

the phenomenon of cancellation. In fact we will use the following “symmetrization” trick.
We will transform the cascade

−→
δ 2[p, t− 2] into a sequence

−→
ζ 2[p] by doing some sequence

of 1-deviations whose coordinates are given in Claim 19 The sequence obtained has only 8
non zero coefficients (4 with values 1 and 4 with values −1) arranged in a very symmetric
nice way (that we will call Nice Property). Furthermore we will be able to iterate a cascade
process on it many times keeping the property.

For p ≥ q + 2, we will denote by −→α [p, q] the 1-deviation, where a vertex leaves a group of
size q+ 1 for a group of size p− 1 (valid as p ≥ q+ 2). Let −→α 1[p, q, r] =

∑r−1
i=0
−→α [p− i, q+ i]

denote a cascade of r such 1-deviations (we need p− r + 1 ≥ q + r + 2 in order it is valid).
The coordinates of −→α 1[p, q, r] are given in the following Claim 19.

I Claim 19. For p− r ≥ q + r + 1, −→α 1[p, q, r] =
∑r−1
i=0
−→α [p− i, q + i] has only 4 non zero

coordinates namely, α1
p = 1, α1

p−r = −1, α1
q+r = −1, and α1

q = 1.

I Claim 20. For 3 ≤ t ≤ p+1
2 , the coordinates of the sequence

−→
ζ 2[p] =

−→
δ 2[p, t− 2] +−→α 1[p−

1, p− 2t− 1, t− 2] +−→α 1[p− 1, p− 2t, 2] +−→α 1[p− t+ 2, p− 2t+ 1, 1] +−→α 1[p− t, p− t− 3, 1]
satisfy: ζ2

p = 1, ζ2
p−2 = −1, ζ2

p−3 = −1, ζ2
p−t = 1, ζ2

p−t−1 = 1, ζ2
p−2t+2 = −1, ζ2

p−2t+1 = −1,
ζ2
p−2t−1 = 1 (see Table 7). Furthermore this cascade is still 4-balanced.

Proof. By Claim 19, we have the following coordinates:
for −→α 1[p− 1, p− 2t− 1, t− 2], α1

p−1 = 1, α1
p−t+1 = −1, α1

p−t−3 = −1, α1
p−2t−1 = 1;

for −→α 1[p− 1, p− 2t, 2], α1
p−1 = 1, α1

p−3 = −1, α1
p−2t+2 = −1, α1

p−2t = 1;
for −→α 1[p− t+ 2, p− 2t+ 1, 1], α1

p−t+2 = 1, α1
p−t+1 = −1, α1

p−2t+2 = −1, α1
p−2t+1 = 1;

for −→α 1[p− t, p− t− 3, 1], α1
p−t = 1, α1

p−t−1 = −1, α1
p−t−2 = −1, α1

p−t−3 = 1.
Therefore, using these values and the values of the coordinates of δ2

j given in claim 18, we
get ζ2

p = 1, ζ2
p−1 = −2 + 1 + 1 = 0, ζ2

p−2 = −1, ζ2
p−3 = 0 − 1 = −1, ζ2

p−t+2 = −1 + 1 = 0,
ζ2
p−t+1 = 2 − 1 − 1 = 0, ζ2

p−t = 0 + 1 = 1, ζ2
p−t−1 = 2 − 1 = 1, ζ2

p−t−2 = 1 − 1 = 0,
ζ2
p−t−3 = 0−1+1 = 0, ζ2

p−2t+2 = 1−1−1 = −1, ζ2
p−2t+1 = −2+1 = −1, ζ2

p−2t = −1+1 = 0
ζ2
p−2t−1 = 0 + 1.

To prove that
−→
ζ 2[p] is 4-balanced, apply Lemma 17 with −→Φ 1 =

−→
δ 2[p, t− 2] and −→Φ 2 =

−→α 1[p−1, p−2t−1, t−2]+−→α 1[p−1, p−2t, 1]+−→α 1[p−t+2, p−2t+1, 1]+−→α 1[p−t, p−t−3, 1].
We have that h1 = 4 and furthermore all the coefficients of −→Φ 1 are greater than −2 and −→Φ 2

is 2-balanced. Hence,
−→
ζ 2[p] is max(4, 2 + 2) = 4-balanced. J

Table 8 shows an example with t = 7.

I Definition 21. Nice Property: Let k ≥ 2 be a positive integer. We will say the
sequence

−→
ζ k[p] has the Nice Property, if there exist 3 integers a(k), b(k), and s(k) satisfying

1 < a(k) < b(k) < 2a(k) and b(k) < s(k)− 1 < p/2 and such that all coordinates of
−→
ζ k are

null except for:

FUN 2018

6:18 How long does it take for all users in a social network to choose their communities?

Table 8 Computation of ζ2[p] with t = 7.

... p p-1 ... p-7 p-8 ... p-15 ...
δ2[p, 5] 0 1 -2 -1 0 0 -1 2 0 2 1 0 0 1 -2 -1 0

+α[p-1,p-15,5] 0 0 1 0 0 0 0 -1 0 0 0 -1 0 0 0 0 1 0
+α[p-1,p-14,2] 0 0 1 0 -1 0 0 0 0 0 0 -1 0 -1 0 1 0 0
+α[p-5,p-13,1] 0 0 0 0 0 0 1 -1 0 0 0 0 0 -1 1 0 0 0
+α[p-7,p-10,1] 0 0 0 0 0 0 0 0 1 -1 -1 1 0 0 0 0 0 0

=
−→
ζ 2[p] 0 1 0 -1 -1 0 0 0 1 1 0 0 0 -1 -1 0 1 0

ζkp = ζkp+1−2s(k) = 1,
ζkp−a(k) = ζkp−b(k) = ζkp+1−2s(k)+b(k) = ζkp+1−2s(k)+a(k) = −1, and
ζkp+1−s(k) = ζkp−s(k) = 1.

We note the symmetry of the coordinates, as for any j, ζkp−j = ζkp+1−2s(k)+j . As an
example, the sequence

−→
ζ 2[p] satisfies the Nice Property with a(2) = 2, b(2) = 3 and

s(2) = t + 1 and is 4-balanced. Now we will show how starting with a sequence
−→
ζ k[p]

satisfying the Nice Property we can construct a sequence
−→
ζ k+1[p] having still the Nice

Property.

I Claim 22. Main construction: Let
−→
ζ k[p] be a sequence satisfying the Nice Property

with parameters a(k), b(k), s(k). Then, we can construct a sequence
−→
ζ k+1[p] satisfying the

following properties:−→
ζ k+1[p] satisfies the Nice Property with parameters
a(k + 1) = b(k),
b(k + 1) = b(k) + a(k),
s(k+1) = s(k)+a(k)r(k)/2, where r(k) is the greatest even integer such that r(k)a(k)+
b(k) < s(k)− 1;

if
−→
ζ k[p] is h(k)-balanced, then

−→
ζ k+1[p] is (h(k) + 1)-balanced;

−→
ζ k+1[p] contains r(k) + 1 sequences

−→
ζ k[p].

Proof. We will first do a cascade of
−→
ζ k[p], but we will take values of the parameters differing

by a multiple of a(k) in order for some of the coordinates to cancel. Specifically, let us define
−→Ψr =

∑r
j=0
−→
ζ k[p− ja(k)]. Using the values of Definition 21, we get the following values for

the non zero coordinates:
(1) ψrp = 1; ψrp−ja(k) = −1 + 1 = 0 for 0 < j ≤ r (cancellation phenomenom); ψrp−(r+1)a(k) =
−1;

(2) ψrp+1−2s(k)+a(k) = −1; ψrp+1−2s(k)−(j−1)a(k) = 1 − 1 = 0 for 0 < j ≤ r (cancellation);
ψrp+1−2s(k)−ra(k) = 1;

(3) for 0 ≤ j ≤ r, ψrp−b(k)−ja(k) = −1;
(4) for 0 ≤ j ≤ r, ψrp+1−2s(k)+b(k)−ja(k) = −1;
(5) for 0 ≤ j ≤ r, ψrp+1−s(k)−ja(k) = ψrp−s(k)−ja(k) = 1.
Since a(k) < b(k) < 2a(k), all the indices of the coordinates are different provided we
choose r even and nonzero such that p − b(k) − ra(k) > p + 1 − s(k) (that is equivalent
to ra(k) + b(k) < s(k) − 1). Let us denote a(k + 1) = b(k), b(k + 1) = b(k) + a(k) and
s(k + 1) = s(k) + a(k)r/2. Then −→Ψr has already part of the Nice Property for k + 1. Indeed
we have:

ψrp = 1 by (1) and ψrp+1−2s(k+1) = 1 by (2) with j = r (as 2s(k + 1) = 2s(k) + ra(k));
ψrp−a(k+1) = ψrp−b(k) = −1, ψrp−b(k+1) = ψrp−b(k)−a(k) = −1 by (3) with j = 0, 1;

J-C. Bermond, A. Chaintreau, G. Ducoffe, and D. Mazauric 6:19

ψrp+1−2s(k+1)+b(k+1) = −1 , ψrp+1−2s(k+1)+a(k+1) = −1 by (4) with j = r − 1, r;
ψrp+1−s(k+1) = ψrp−s(k+1) = 1 by (5) with j = r/2.

The remaining non zero coordinates are in number 4r: firstly there are r values −1,
namely, ψrp−b(k)−ja(k) = −1, for 2 ≤ j ≤ r, and ψrp−(r+1)a(k) = −1; then there are 2r values 1,
namely, ψrp+1−s(k+1) = ψrp−s(k+1) = 1, for j 6= r/2; and finally there are r values −1, namely,
ψrp+1−2s(k)+a(k) = −1 and ψrp+1−2s(k)+b(k)−ja(k) = −1, for 0 ≤ j ≤ r − 2. These values are
disposed in a very symmetric way and can be written: for the values −1, in the form ψrp−xm

and ψrp+1−2s(k+1)+xm
; and for the values 1, in the form ψrp−ym

and ψrp+1−2s(k+1)+ym
with

xm < ym (0 ≤ m ≤ r − 1). Furthermore, these r quadruples of values can be canceled by
adding to −→Ψr the r sequences −→α 1[p− xm, p+ 1− 2s(k + 1) + xm, ym − xm].

We claim that the sequence so obtained, with partition vector −→Ψr +
∑r−1
m=0
−→α 1[p−xm, p+

1− 2s(k + 1) + xm, ym − xm], satisfies the Nice Property with parameters a(k + 1), b(k + 1)
and s(k + 1). Indeed a(k + 1) = b(k) < b(k) + a(k) = b(k + 1), b(k + 1) = b(k) + a(k) <
b(k) + b(k) = 2a(k + 1) and b(k + 1) = b(k) + a(k) < s(k)− 1 + a(k) ≤ s(k + 1)− 1 as r ≥ 2.
We also have to ensure in the computations that p is chosen so that p ≥ 2s(k)− 1. In order
to get the maximum number of deviations we will consider this sequence for the largest
possible even integer r satisfying ra(k) + b(k) < s(k)− 1, denoted r(k) and we will denote
the sequence for this r(k) by

−→
ζ k+1[p].

We now prove that
−→
ζ k+1[p] is (h(k)+1)-balanced. We first prove by induction that −→Ψr is

(h(k) + 1)-balanced. That is true for r = 0 as
−→
ζ k[p] is h(k)-balanced. Then suppose it is true

for some r ; we apply Lemma 17 with −→Φ 1 = −→Ψr and −→Φ 2 =
−→
ζ k[p− (r+1)a(k)]. We have that

h1 = h(k) + 1 by induction hypothesis and furthermore all the coefficients of −→Φ 1 are greater
than −1; furthermore −→Φ 2 is h(k)-balanced and so, −→Ψr+1 is (max(h(k)+1, h(k)+1) = h(k)+1)-
balanced. Then when we add an −→α 1[p − xm, p + 1 − 2s(k + 1) + xm, ym − xm] which is
1-balanced we still get an (max(h(k) + 1, 1 + 1) = h(k) + 1-balanced sequence.

Finally, by construction, we get that
−→
ζ k+1[p] contains r(k) + 1 sequences

−→
ζ k[p]. J

End of the proof of Theorem 14. At this stage we have built a sequence
−→
ζ 2[p] which

satisfies the Nice Property with a(2) = 2, b(2) = 3 and s(2) = t+ 1 and is h(2)=4-balanced.
Furthermore, it contains t(t− 2) 4-deviations. See Claim 20. Then, for some well-chosen K
(to be defined later) we can apply K − 2 times the main construction (Claim 22) to construct
a sequence

−→
ζ K [p] which satisfies the Nice Property with parameters a(K), b(K) and s(K)

and is h(K)-balanced.
We have a(k) = b(k − 1), b(k) = b(k − 1) + a(k − 1) = b(k − 1) + b(k − 2) and so, we

recognize the Fibonacci recurrence relation. The kth Fibonacci number F (k) is denoted as
follows:

F (k) = 1√
5

((
1 +
√

5
2

)k
−
(

1−
√

5
2

)k)
.

Then, as a(2) = 2 = F (3) and b(2) = 3 = F (4), we get a(K) = F (K + 1) and b(K) =
F (K + 2). In fact in what follows we will only use that a(K) ≤ 2K−1 and b(K) ≤ 2K .
We have s(k + 1) = s(k) + a(k)r(k)/2; but a(k)r(k) < s(k − 1) − b(k) < s(k − 1) and so,
s(k + 1) < (3/2)× s(k) and s(K) < s(2)(3/2)K−2 = (t+ 1)(3/2)K−2.

Recall that we should have p ≥ 2s(K) − 1 so we choose p = 2s(K). Furthermore by
induction we have that h(K) = K + 2. So we need to start with a partition containing at
least K + 2 groups of each size i, 1 ≤ i ≤ p. It is easy to obtain such a starting partition
from the initial partition — which consists of n groups of size 1 — by doing a sequence of

FUN 2018

6:20 How long does it take for all users in a social network to choose their communities?

1-deviation of size (K − 2)p(p+ 1)/2; indeed we can create a group of any size i with (i− 1)
1-deviations. Therefore, we will take n = (K − 2)p(p + 1)/2 ≤ (K − 2)s(K)(2s(K) + 1).
Using the inequality s(K) < (t+ 1)(3/2)K−2 we get that

n = O(t2K(3/2)2K). (1)

On the other hand we have to lower bound the number of deviations. By construction−→
ζ k+1[p] contains r(k) + 1 sequences

−→
ζ k[p] and so, contains t(t − 2)

∏K−1
k=2 (r(k) + 1) 4-

deviations, as
−→
ζ 2[p] contains t(t − 2) 4-deviations. Recall that r(k) is the greatest even

integer r such that ra(k) + b(k) < s(k) − 1 and so, r(k) ≥ b s(k)−1−b(k)
a(k) c − 1. Using the

fact that b(k) + 1 ≤ 2a(k) and s(k) > s(2) − 1 = t, and a(k) ≤ a(K) < 2K−1 we get
r(k) ≥ t

2K−1 − 3. Then
∏K−1
k=2 (r(k) + 1) ≥ (t

2K−1 − 2)K−2 and the number D of deviations
satisfies:

D = Ω(t2(t

2K−1 − 2)K−2). (2)

We have now to choose K as a function of t. In order for the number of deviations
as given by Equation 2 to increase we need that 2K−1 is small compared to t, that is,
K << log2(t). However in view of Equation 1 we want to choose the largest possible
K. Therefore, a good choice is K = 1/2(log2(t)). In that case, we get by Equation 1
that n = O(t2 log2(t)(3/2)log2(t)), or equivalently log2(n) = O(2 log2(t) + log2(log2(t) +
log2(t)(log2(3) − log2(2))). Using log2(3) − log2(2) > 0.585 and the fact that for t large
enough log2(log2(t)) < 0.014 log2(t) we get log2(n) = O(2.6 log2(t)), that is, n = O(t2.6).
On the other hand we get by Equation 2: D = Ω((t1/2)1/2 log2(t)) = Ω(t1/4 log2(t)) and so,
D = Ω(nclog2(n)) with c = 1

4×(2.6)2 ' 1/27, thereby proving Theorem 14.

References
1 C. Ballester. NP-completeness in hedonic games. Games and Economic Behavior, 49(1):1–

30, 2004.
2 J. A. Bondy and U. S. R. Murty. Graph theory. Grad. Texts in Math., 2008.
3 T. Brylawski. The lattice of integer partitions. Discrete Mathematics, 6(3):201–219, 1973.
4 I. Chatzigiannakis, C. Koninis, P. N. Panagopoulou, and P. G. Spirakis. Distributed game-

theoretic vertex coloring. In OPODIS’10, pages 103–118, 2010.
5 J. Chen, R. Niedermeier, and P. Skowron. Stable marriage with multi-modal preferences.

In EC, 2018. to appear.
6 G. Ducoffe. Propriétés métriques des grands graphes. PhD thesis, Université Côte d’Azur,

December 2016.
7 B. Escoffier, L. Gourvès, and J. Monnot. Strategic coloring of a graph. Internet Mathem-

atics, 8(4):424–455, 2012.
8 M. Flammini, G. Monaco, and Q. Zhang. Strategyproof mechanisms for additively separable

hedonic games and fractional hedonic games. In WAOA, pages 301–316, 2017.
9 C. Greene and D. J. Kleitman. Longest chains in the lattice of integer partitions ordered

by majorization. European Journal of Combinatorics, 7(1):1–10, jan 1986.
10 J. Hajduková. Coalition formation games: A survey. International Game Theory Review,

8(04):613–641, 2006.
11 G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford University

Press, 1979.
12 M. Hoefer and W. Jiamjitrak. On proportional allocation in hedonic games. In SAGT,

pages 307–319. Springer, 2017.

J-C. Bermond, A. Chaintreau, G. Ducoffe, and D. Mazauric 6:21

13 D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search? Journal
of computer and system sciences, 37(1):79–100, 1988.

14 J. Kleinberg and K. Ligett. Information-sharing in social networks. Games and Economic
Behavior, 82:702–716, 2013.

15 M. Mnich and I. Schlotter. Stable marriage with covering constraints–a complete compu-
tational trichotomy. In SAGT, pages 320–332. Springer, 2017.

16 K. Ohta, N. Barrot, A. Ismaili, Y. Sakurai, and M. Yokoo. Core stability in hedonic games
among friends and enemies: impact of neutrals. In IJCAI, 2017.

17 I. Olkin and A. W. Marshall. Inequalities: theory of majorization and its applications,
volume 143. Academic press, 2016.

18 P. N. Panagopoulou and P. G. Spirakis. A game theoretic approach for efficient graph
coloring. In ISAAC’08, pages 183–195, 2008.

FUN 2018

On the Complexity of Two Dots for Narrow
Boards and Few Colors
Davide Bilò
University of Sassari, Italy
davide.bilo@uniss.it

https://orcid.org/0000-0003-3169-4300

Luciano Gualà
University of Rome “Tor Vergata”, Italy
guala@mat.uniroma2.it

https://orcid.org/0000-0001-6976-5579

Stefano Leucci
ETH Zürich, Switzerland
stefano.leucci@inf.ethz.ch

https://orcid.org/0000-0002-8848-7006

Neeldhara Misra
Indian Institute of Technology, Gandhinagar
mail@neeldhara.com

https://orcid.org/0000-0003-1727-5388

Abstract
Two Dots® is a popular single-player puzzle video game for iOS and Android. A level of this
game consists of a grid of colored dots. The player connects two or more adjacent dots, removing
them from the grid and causing the remaining dots to fall, as if influenced by gravity. One special
move, which is frequently a game-changer, consists of connecting a cycle of dots: this removes
all the dots of the given color from the grid. The goal is to remove a certain number of dots
of each color using a limited number of moves. The computational complexity of Two Dots has
already been addressed in [Misra, FUN 2016], where it has been shown that the general version
of the problem is NP-complete. Unfortunately, the known reductions produce Two Dots levels
having both a large number of colors and many columns. This does not completely match the
spirit of the game, where, on the one hand, only few colors are allowed, and on the other hand,
the grid of the game has only a constant number of columns. In this paper, we partially fill this
gap by assessing the computational complexity of Two Dots instances having a small number of
colors or columns. More precisely, we show that Two Dots is hard even for instances involving
only 3 colors or 2 columns. As a contrast, we also prove that the problem can be solved in
polynomial-time on single-column instances with a constant number of goals.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases puzzle, NP-complete, perfect information, combinatorial game theory

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.7

1 Introduction

Two Dots® (http://weplaydots.com/twodots.html) is a popular single-player puzzle video
game for iOS and Android. The game has been so much appreciated by the community that,
not even after 3 years from its launch, a recently introduced follow-up game, called Dots&Co®

© Davide Bilò, Luciano Gualà, Stefano Leucci, and Neeldhara Misra;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davide.bilo@uniss.it
https://orcid.org/0000-0003-3169-4300
mailto:guala@mat.uniroma2.it
https://orcid.org/0000-0001-6976-5579
mailto:stefano.leucci@inf.ethz.ch
https://orcid.org/0000-0002-8848-7006
mailto:mail@neeldhara.com
https://orcid.org/0000-0003-1727-5388
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.7
http://weplaydots.com/twodots.html
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 On the Complexity of Two Dots for Narrow Boards and Few Colors

(https://www.dots.co/dotsandco/), has already passed the 5 millions of downloads. In
its simplest form, the game is played on a vertical grid where each location initially contains
a colored dot. Dots of the same color can be “connected” by the player, as long as they are
adjacent horizontally or vertically (but never diagonally). In particular, the player selects a
path of dots of the same color which can be either simple or it can contain exactly one cycle.
In the former case only the selected dots disappear, while, in the latter case, all dots of that
color disappear. It turns out that the cyclic move is frequently a game-changer, and plays an
important role in our results too. It is clearly a popular heuristic, and the official Two Dots
tutorial even offers the helpful tip: “When in doubt, make squares”. After a move, all the
remaining dots in the area fall down as if influenced by gravity. The game provides a certain
number of moves, and demands certain goals to be met (which are typically of the form of
collecting at least so many dots of such and such a color, where a dot of a particular color is
collected whenever it is removed).

The computational complexity of the game has been analyzed in [16], where the author
showed that the problem of deciding whether an instance can be won by the player is
NP-complete even in very restricted settings. In particular, the problem remains hard when
the board has only four rows, or when there is only one goal of collecting two dots of a
particular color, even if there is no restriction on the number of moves. In [16] it is also
shown that the problem is W[1]-hard when parameterized by the number of moves. It turns
out that all these reductions use a large (i.e., typically linear in the size of the instance)
number of both different colors and columns. However, this does not completely match the
spirit of the game, where, on the one hand, only few colors are allowed, and on the other
hand, the arena of the game has only a constant number of columns, while there can be
many rows (even if the player can only see the few down-most ones). Understanding the
complexity of the game under these more realistic conditions is explicitly mentioned as open
problems in [16].
In this paper, we partially fill this gap by showing that:

the game is NP-complete even when the instance has three colors, two moves, and two
goals;1
the game is NP-complete even when the board has two columns and there is no restriction
on the number of moves;
the game is polynomial-time solvable when the board has only one column, provided that
the number of goals is constant;
the game is NP-complete even when the board has two rows.

Observe that the first two results immediately imply that the problem is not fixed
parameter tractable when parameterized w.r.t. the number of colors, or the number of
columns, unless P=NP. We leave open the problem of setting the computational complexity
of the game when the instance has both a constant number of colors and columns.

Other related results

Two Dots belongs to the class of tile-matching video games. Tile-matching games allow the
player to select a subset of tiles on the board according to some matching rule. Once selected,
the tiles are removed from the board and the board configuration is updated automatically
following the game-specific rules (for instance, all the remaining tiles might move to fill
the voids as if influenced by gravity). Other popular games of this class also exhibit a rich

1 A playable version of this reduction is available at https://twodots.isnphard.com.

https://www.dots.co/dotsandco/
https://twodots.isnphard.com

D. Bilò, L. Gualà, S. Leucci, and N. Misra 7:3

Figure 1 A depiction of a regular move. The first panel shows the set of locations of a move, the
second panel shows the voids created, and the third panel shows how dots fall due to gravity.

combinatorial structure and have been studied from the computational complexity perspective.
A noteworthy example is that of Candy Crush that has been shown to be NP-complete
together with other match-three games in [12]. Another game having a somewhat similar
mechanic to Two Dots is Flow Free: initially only a small number of dots of the board
are colored, each color appearing exactly twice, while all the other positions are filled with
uncolored dots. A move consists of connecting the two dots of a matching color by a path
that traverses only uncolored-dots, which then inherit the color of the path’s endpoints. The
player is challenged to connect all the matching pairs while coloring all the dots on the board,
which is equivalent to finding an embedding of monochromatic, non-intersecting, paths on
the game board. This problem is also known as Zig-Zag Numberlink and has been shown to
be NP-complete in [1]. The gameplay of Button and Scissors is also similar to the one of Two
Dots: the player selects a monochromatic horizontal, vertical, or diagonal path traversing at
least two dots (buttons), which are then removed (cut) from the board (the remaining dots
are unaffected by gravity). It has been shown that clearing the board is NP-hard [11] even
when only two colors are involved or when each color is used by at most 4 dots [6].

More broadly, all these games belong to the class of casual games. Casual games are
often characterized by a puzzle-like gameplay and simple rules, which make these games easy
to play, yet difficult to master. Indeed, the quality and enjoyability of puzzles has even been
linked to their computational complexity [7]. It is then not surprising that many of most
successful puzzles have been shown to be NP-complete, or even harder. This is the case,
e.g., of Tetris [5], the (n2 − 1)-puzzle (a generalized version of the famous 15-puzzle) [17],
Rush Hour [9, 8], Peg-Solitaire [18, 13], Trainyard [3], Clickomania (also known as Same
Game) [4, 2], 2048 [15], and many others [14].

Organization of the paper

The paper is organized as follows: Section 2 provides the problem definition and basic
notation used through the paper, in Section 3 we show that the problem is NP-complete
when the the number of colors is constant, and in Section 4 we address levels of the game
with a constant number of columns. Finally, the results for levels with a constant number of
rows are reported in Section 5.

2 Preliminaries

An instance of Two Dots consists of the following:
1. A m × n grid in which each position (i, j) is occupied by exactly one dot whose color

belongs to a set C.

FUN 2018

7:4 On the Complexity of Two Dots for Narrow Boards and Few Colors

Figure 2 A depiction of a cyclic move, which has the effect of eliminating all the blue dots from
the board. The example is rather similar to the above, but note the difference in the number of
voids created.

2. A natural number k, specifying the number of moves allowed in the game.
3. A set of goals G. Every element of G is a pair (c, `), where c ∈ C and ` ∈ N.

Intuitively, a player has a winning strategy in an instance of Two Dots if all the goals
can be achieved within k moves. To formalize this, we need to first define moves, and the
notion of dots being collected.

There are two types of moves in Two Dots: regular moves and cyclic moves. We first de-
scribe the regular moves, which essentially involve removing simple paths in the grid occupied
by the same color. Recall that, two dots are adjacent if they occupy two neighboring position
on the grid, either horizontally or vertically (dots aligned diagonally are not considered
adjacent). Any move (either regular or cyclic) consists of a sequence of locations 〈t1, . . . ts〉,
with s ≥ 2, such that all locations contain a dot of the same color and, for every i = 2, . . . , s,
ti is adjacent to ti−1.

In a regular move all the locations of the sequence 〈t1, . . . ts〉 are unique (see Figure 1).
In a cyclic move all the locations of the subsequence 〈t1, . . . ts−1〉 are unique and ts
coincides with tj , for some j ∈ {1, . . . , s − 4} (see Figure 2). Informally speaking, the
locations induce a cycle with a (possibly empty) dangling path from tj consisting of the
locations in {t1, . . . , tj}.

A regular move creates voids in all the locations corresponding to the sequence. A cyclic
move creates voids in all the locations of the grid containing dots whose color match the color
of the dots in the selected sequence.2 All the removed dots are collected by the player. Then
the dots “fall down” to fill out the voids — it is useful to think of the board as a vertically
oriented object, and the dots therein following the natural laws of gravity, pushing the voids
to the top.3 We refer the reader to Figure 1 for an illustration.

At the end of k moves, when the game is over, we say that the player has won if, for each
goal (c, `), the number of dots of color c collected by the player is at least `.

We wish to determine whether a Two Dots level (i.e., an instance) can be won by the
player, namely whether there exists a sequence of at most k moves that meets all the goals.

2 Our reductions work for this simplified model which somehow contains “all the hardness” of the game.
In the actual game, dots that are enclosed in the cycle of a cyclic move become bombs which, after
falling down, explode and destroy their 8-neighborhood. Our reductions still work in this general model
but we would then need to introduce additional gaps in our gadgets.

3 This is a standard approach to generalize the game, but it differs slightly from the model used in [16],
where new dots join the board to fill the voids. We point out that the results in [16] also work in our
case.

D. Bilò, L. Gualà, S. Leucci, and N. Misra 7:5

3 Hardness of levels with three colors, two moves, and two goals

In this section, we show that Two Dots is NP-complete even when the number of colors is
bounded by three. Since it is clear that Two Dots is in NP (a certificate being the sequence
of moves of a solution), we now focus on showing that Two Dots is NP-hard. A playable
version of the reduction is available at https://twodots.isnphard.com.

We reduce from the Exact Cover by 3-Sets problem (X3C for short). In an X3C
instance we are given: (i) a set I = {I1, I2, . . . , I3n} of 3n items; and (ii) a collection
S = {S1, S2, . . . , Sm} of m subsets of I, each subset having cardinality exactly 3. The
problem is that of determining whether there exists a collection S ′ ⊆ S of n sets such that⋃

S∈S′ S = I, i.e., each item belongs to exactly one set in S ′. This problem is well-known to
be NP-complete (see, for example, [10]). W.l.o.g. we will assume that n is an odd number.

The overview of our reduction is shown in Figure 3. We focus on describing the construct
in the gray box, ignoring the first and last few columns. The middle columns correspond
to items in groups of five — thus the first five columns encode the first item, and so forth.
The dots are arranged in what we refer to as wires. There is one horizontal wire made of
red dots and m horizontal wires made of blue dots. The red wire is a check-wire while the
other m wires consisting of blue dots are set-wires. There are two empty rows between
any pair of consecutive wires. To complete the board, we connect together the left (resp.
right) endpoints of the set-wires using a single column of blue dots. Then, we introduce
several more columns — the exact number of which we will specify later — on the extreme
left and the extreme right of the board. These columns are populated with blue dots on
rows corresponding to the set wires and are connected to the two blue columns joining the
set-wires with a single dot each, on the top-right and on the bottom-left position, respectively
(see Figure 3). All remaining dots in the grid are occupied by green dots.

The player is asked to eliminate a sufficiently large number of blue dots and all the red
dots in two moves. The layout of the check-wire is such that all the red dots cannot all be
eliminated in the first move. Further, we need to use at least one move to meet the goal for
the blue dots. Therefore, in a winning strategy, the first move must involve the blue dots
and achieve two things: (i) the move should clear the desired number of blue dots, and (ii)
the move should result in the “alignment” of the red dots on the check-wire. The wires are
set up in such a way that the dots on the check-wire align only when the dots removed from
the set-wires correspond to the sets of a solution of the X3C instance.

We now describe the check-wire and set-wires in greater detail. First, let us establish
some notation. Given a X3C instance with 3n items and m sets, the board in the reduced
instance of Two Dots will have 5n+ 2T columns and 4(m+ 1) rows, where T is a parameter
that we will fix later. In our discussion, we use p1, . . . , pT and q1, . . . , qT to label the first
and last T columns, respectively. The remaining columns (indexed from T + 1 to T + 5n)
are labeled by c1, . . . , c5n and use C to refer to this subset of columns. On the other hand,
we index the rows simply by their numbers, with the topmost row being the first.

The set-wires. For each set Sj ∈ S there is a two-cell tall set-wire traversing all columns
in C. The j-th wire is on rows rj = 4(j + 1) and rj − 1.

The wire is constructed as follows: For each item Ii ∈ I we consider the sub-grid consisting
of 10 cells on rows rj and rj − 1, and on columns ci to ci + 4. If Ii 6∈ Sj the lower row of
this sub-grid is filled with blue dots while the top row remains empty (see the highlighted
sub-grid corresponding to set S2 and item I4 in Figure 3). If Ii ∈ Sj then the we place a
blue dot on (i) all the cells of the bottom row of the sub-grid except for the one on column
ci + 2, and (ii) the cells on the top row of the sub-grid that are on columns ci + 1, ci + 2 and

FUN 2018

https://twodots.isnphard.com

7:6 On the Complexity of Two Dots for Narrow Boards and Few Colors

Figure 3 Overview of the reduction.

ci + 3 (see the highlighted sub-grid corresponding to set S1 and item I2 in Figure 3).
Notice that if all the dots of the set-wire corresponding to, say, the set Sj are removed,

then all the dots above row rj will fall by exactly 1 cell, except for the ones on columns ci + 1
and ci + 3 where i is such that Ii ∈ Sj : in these columns, the dots above row rj will fall by
exactly 2 cells.

Finally, since the number of items contained in each set is exactly 3, notice that the
number of blue dots in each set-wire is exactly b := 5 · (3n− 3) + 7 · 3 = 15n+ 6.

The check-wire. The check-wire is a four-cell tall wire that is initially placed at top of the
board. It is constructed simply by repeating the same pattern of 9 red dots every 5 columns,
i.e., column ci+5 has the same layout of column ci. The pattern is shown in Figure 4 (a).

Suppose that all the blue dots contained the set-wires corresponding to solution S ′ of the
X3C instance are removed by the player, from top to bottom. This would cause all the dots of
the check-wire to fall by exactly n rows, except for the dots on column ci + 1 and ci + 3 for
i = 1, . . . , 3n that will fall by exactly (n+ 1) cells. This will cause the dots on the items-wire
to arrange in the configuration shown in Figure 4 (b). Notice that, in this configuration, all
the 9 · 3n = 27n dots of the items-wire can be removed by the player using a single move.

The reduction from X3C to Two Dots

We are now able to prove our result:

I Theorem 1. Two Dots is NP-complete even when the numbers of colors, moves, and goals
are bounded by 3, 2, and 2, respectively.

Proof. Let A = 〈I = {I1, . . . , I3n},S = {S1, . . . , Sm}〉 be an instance of X3C and consider
the corresponding instance B of Two Dots as described above, where T is such that the
number η of blue dots in the first T − 2 columns (resp. the last T − 2 columns) is greater
than the number of remaining blue dots.

Assume, without loss of generality, that S is not itself a set cover for I and remember
that n is odd. We will show that at least 2η blue dots and all the red dots can be removed
from B using at most two moves if and only if A admits an exact cover by 3-sets.

D. Bilò, L. Gualà, S. Leucci, and N. Misra 7:7

I1 I2 I3n

· · ·
· · ·

· · ·
· · ·

(a)

4

I1 I2 I3n

· · ·
· · ·

· · ·
· · ·

(b)

4 + n

Figure 4 (a) Initial setup of the check-wire. (b) The check-wire once it gets aligned.

The Forward Direction. Let S ′ = {Sj1 , Sj2 , . . . , Sjn
} exact cover by 3-sets for A where

jk ∈ {1, . . . ,m} for k = 1, . . . , n. We assume, w.l.o.g., that j1 < j2 < · · · < jn. A winning
sequence of moves for the instance of B consists of:

1. connecting, in order and in a single move: all the blue dots in the fist T − 2 columns, the
single dot in the (T − 1)th column, all the dots of the set-wires on rows rj1 , . . . rjn

in a
zig-zag fashion, the single dot in the (T + 5n+ 1)th column, and finally all the dots in
the last T − 2 columns. Notice that the above move is feasible since n is odd.

2. connecting, in a single move, all the red dots. This is possible since S ′ is an exact cover,
and hence the previous move will cause the check-wire to align.

It is easily checked that both goals are satisfied (notice that the first and last T − 2 columns
contain 2η blue dots).

The Reverse Direction. Suppose now that there is a solution to the instance B of Two
Dots. From the fact that: (i) we are permitted only two moves; (ii) we have to clear all the
red dots; and (iii) all the red dots are not aligned in the initial state, it follows that the first
move has to meet the goal for the blue dots and also align the red dots on the check-wire so
that the second move can be used to eliminate all of them in one move. This means that the
first move cannot be a cycle-move, that it must involve dots that belong to both the first
and the last T − 2 columns of the board, and that it must traverse set-wires entirely and in
a zig-zag fashion. Let S ′ be the sets corresponding to the sets-wires whose dots have been
removed in the first move. Suppose, towards a contradiction, that S ′ is not an exact cover
for A. This means that at least one of the following conditions is true: (i) there exists an
item Ij that is not covered by S ′; or (ii) there exists one item Ij that belongs t ≥ 2 sets in S ′.
In the former case the number of blue dots removed from the columns associated with item
Ij is the same, and hence it will not be possible to connect all the dots in the check-wire
in a single move. In the latter case, the number of blue dots removed from the 2nd and 4th

column associated with item Ij exceeds the corresponding number of removed blue dots for
the 1st, 3rd, and 5th column by 2t. Hence, after the first move, the red dots in the check-wire
are not aligned and therefore it is not possible to meet the read goal using a single additional
move. J

FUN 2018

7:8 On the Complexity of Two Dots for Narrow Boards and Few Colors

4 Boards with a constant number of columns

In this section, we address the complexity of Two Dots on boards that have a constant number
of columns. More precisely, we show that the problem is NP-complete if the board has two
or more columns, while it is polynomial-time solvable in the one-column case. Interestingly,
our hardness result holds even when the player has an unlimited number of moves and only
one goal to achieve.

4.1 Hardness of levels with two columns, one goal and unlimited moves

We proceed here by a reduction from 3-SAT. Let C1, . . . , Cm be a set of clauses over the
variables x1, . . . , xn. We assume, without loss of generality, that every clause consists of
exactly three literals. The overall structure of the Two Dots instance that we construct is
given in Figure 5. We describe the components starting from the bottom. First, we stack
up a collection of clause gadgets, one corresponding to each variable of the 3-SAT instance.
Then, after a suitable gap, we introduce the variable gadgets, one corresponding to each
variable of the instance. Finally, we have a formula-check gadget, which is the basis for the
only goal that we have in this instance. We introduce one color for every literal and one for
every clause of the 3-SAT instance. Let the colors associated with the literals xi and xi be pi

and qi, respectively; while we denote the color associated with the clause Cj by `j . We also
have one special color that we denote by ∫ . We now describe each gadget separately and
then explain the equivalence of the instances. In the following, when we speak of gaps in
the board, we may assume these to be dots of “dummy” colors, which are newly introduced
colors distinct from the colors mentioned already, and also distinct from each other.

The clause gadgets. Consider a clause Cj . The gadget corresponding to a clause is shown
in part (a) of Figure 6. Let a, b, c be the colors corresponding to the literals of Cj . The first
row is a gap row, and the next seven rows4 consist of the following:

Dots colored `j occupy the first column on all seven rows;
Dots with colors a, b and c occupy the second column on the third, fifth and seventh
rows, respectively; and
Dots colored `j occupy the remaining rows on the second column.

After these rows, we introduce another gap row. Finally, the first column of the last three
rows are occupied by dots colored a, b and c, respectively; while the second column on the
last three rows are occupied by dummy dots. Note that because of the way the seven rows
described above are “sandwiched” between gap rows, the only way to obtain a `j-colored
square is to make a square move with at least one of a, b or c.

The variable gadgets. For a variable xi, the variable gadget consists of four rows, alternat-
ingly occupied by dots of colors pi and qi on both columns (see Figure 6(c)). To be specific,
the first and third rows have dots colored pi on both columns, while the second and fourth
rows have dots colored qi on both columns. Observe that within the scope of this gadget,
any valid gameplay can involve a square move on either pi or qi, but not both.

4 Recall that our convention is to count rows from the top.

D. Bilò, L. Gualà, S. Leucci, and N. Misra 7:9

F
o
rm

u
la

C
h
ec
k

G
a
d
g
et

V
a
ri
a
b
le

G
a
d
g
et
s

x (); x ()

y (); y ()

z (); z ()

C
la
u
se

G
a
d
g
et

(
)

(x
∨
y
∨
z
)

C
la
u
se

G
a
d
g
et

(
)

(x
∨
y
∨
z
)

×
×
×

×

×

×

×
×
×
×

×

×

×

×

×
×
×
×

∫

∫

Figure 5 Overview of the reduction. The grid cells marked × are filled with distinct colors
different from the ones used to represent variables and clauses. The goal of the game is to hit two
dots of color ∫ and the number of moves are unbounded.

FUN 2018

7:10 On the Complexity of Two Dots for Narrow Boards and Few Colors

×
×
×

×

×

×

×

(a)

×
×
××
×

× ×

(b) (c) (d)

×
×
×
×
×
×

∫

∫

(e)

Figure 6 (a) Initial setup of the clause gadget. (b) The clause gadget in its aligned state. (c)
Initial setup of the variable gadget. (d) The state of the variable gadget after one move on one of
the literals. (e) The formula-check gadget.

The formula-check gadget. The formula-check gadget is depicted in Figure 6(e). It consists
of (m + 2) rows, where the dots occupying the first and last row of the first column have
color ∫ and the interim rows comprise of one dot each of color `j , 1 ≤ j ≤ m. For all rows,
we have dummy dots occupying the second column. The only goal in the game will be to hit
two dots colored ∫ .

We are now ready to prove our main theorem for this section:

I Theorem 2. Two Dots is NP-complete on boards that have only two columns, even when
the player has to achieve only one goal with an unlimited number of moves at his disposal.

Proof. We proceed by a reduction from 3-SAT. Let an instance I of 3-SAT comprise of the
clauses C1, . . . , Cm over the variables x1, . . . , xn, where every clause consists of exactly three
literals. Let B denote the instance of Two Dots constructed as described above. Recall that
the goal is to hit two dots colored ∫ and there is no bound on the number of moves. We now
establish the equivalence of the instances.

The Forward Direction. Let τ : V → {0, 1} be a satisfying assignment for the instance I.
For any variable x for which τ(x) = 1, we eliminate the row containing dots colored qi and
perform a square move on the dots of color pi, which becomes feasible once the qi-colored
dots are removed from either row of the variable gadget. On the other hand, for any variable
x for which τ(x) = 0, we eliminate the row containing dots colored pi and perform a square
move on the dots of color qi. Observe that after each square move on a variable gadget,
the design of the clause gadgets ensures that the number of dots hit in both columns is
equal. Therefore, after these moves are complete, an `j-colored square is created for every
1 ≤ j ≤ m. Making these moves in any order leaves us with a board where the ∫ -colored
dots become adjacent, and the goal can be met with one final move.

The Reverse Direction. A winning gameplay involves a move that hits at least two ∫ -
colored dots on board. Recall that the only ∫ -colored dots are available in the formula check

D. Bilò, L. Gualà, S. Leucci, and N. Misra 7:11

gadget and that they are separated by m dots corresponding to the colors of the clauses.
Since all other adjacent locations are occupied by dummy dots, it follows that the only way
to arrive at a configuration where the two ∫ -colored dots are adjacent is to play a `j-cyclic
move for all 1 ≤ j ≤ m. For any such j, consider the clause gadget corresponding to Cj and
let a, b, c denote the colors of the literals that appear in Cj . A cycle with dots colored `j

can only manifest if there was a square move involving one of the colors a, b or c. We now
propose an assignment based on these moves: set the variable xi to 1 if the given gameplay
involved a square move on the color pi and set xi to 0 if the gameplay involved a square move
on the color qi . If the gameplay did not have a square move on either pi or qi, then set the
value of xi arbitrarily. Note that this is a well-defined assignment since no valid gameplay
can involve a square move on both pi and qi, by the design of the variable gadget and the
fact that the variable gadget is the only part of the overall construction where dots of these
colors are adjacent. To see that this is a satisfying assignment, proceed by contradiction: if a
clause Cj is not satisfied, then it is easy to see that the choice of square moves amongst the
variable gadget which led us to our assignment were such that no `j-squares were generated,
which contradicts our assumption that we started with a winning gameplay. J

4.2 A polynomial-time algorithm for levels with one column
Let B be an instance of Two Dots where the board consists of one column with n dots. For
1 ≤ i ≤ n, let c(i) denote the color of the ith dot in B. Moreover, for i ≤ j, let Bi,j denote
the subsequence of dots starting at the ith row and ending at the jth row. By a slight abuse
of notation, we also use Bi,j to denote the natural instance of Two Dots associated with this
(truncated) board. As a warm-up, and since this is instrumental to our general algorithm,
we begin by considering the case in which the goal is to remove all the dots in the board
(i.e., to clear the board) using the minimum number of moves.

4.2.1 Clearing the board
Let C(i, j) be the minimum number of moves needed to clear Bi,j , or +∞ if there exists no
such sequence of moves. We now describe a dynamic programming algorithm to compute all
the values C(i, j) (and, in particular, C(1, n)).

If j− i+ 1 ≤ 0, or if j− i+ 1 = 1, then clearly C(i, j) = 0 and C(i, j) = +∞, respectively.
We therefore consider the case in which j ≥ i+ 1. Notice that, in order to clear the board
Bi,j , the dot on the first row of Bi,j must be hit with a move connecting (at least) one other
dot. Let h be the smallest index of a row in Bi,j that contains one such dot. We distinguish
two cases:
1. The move hitting the dot on the first row of Bi,j connects exactly 2 dots.
2. The move hitting the dot on the first row of Bi,j connects 3 or more dots.

If the former case we “guess” the location h of the dot that partners with the first dot
of Bi,j . This decomposes our instance into two sub-instances corresponding to the boards
Bi+1,h−1 and Bh+1,j . In formulas:

C1(i, j) = min
i<h≤j such that c(h)=c(i)

{C(i+ 1, h− 1) + C(h+ 1, j) + 1},

where last term accounts for to the move that is used to hit the ith dot and the hth dot.
In the latter case we still guess the location h, but we now decompose the board into two

different sub-instances, namely Bi+1,h−1 and Bh,j (i.e., we still include the hth dot in the
second sub-instance). The hth dot can then be combined with another dot in row h′ > h

FUN 2018

7:12 On the Complexity of Two Dots for Narrow Boards and Few Colors

belonging to the same move that is used to hit both the ith and the hth dot. This can be
repeated recursively until the last two dots hit by the move are considered, which falls into
the former case, and thus accounts for the whole multi-dot move. In formulas:

C2(i, j) = min
i<h≤j such that c(h)=c(i)

{C(i+ 1, h− 1) + C(h, j)}.

Overall, our recurrence is given by C(i, j) = min{C1(i, j), C2(i, j)}.

4.2.2 The general case

For the sake of simplicity we describe our algorithmic approach for the case when the game
has only one goal, and our task is to determine the minimum number of moves that are needed
to achieve said goal. In particular, suppose that the single goal demands the elimination of `
red dots. Nevertheless, our approach can be easily generalized for the case of multiple goals.

We now describe a dynamic programming routine to check if there is a sequence of at
most k moves that hits at least ` red dots. To this aim, let T (i, j, δ) be the minimum number
of moves needed to gain at least δ red dots in Bi,j , or +∞ if there is no such sequence of
moves. By our definition, we have that, if δ ≤ 0, then T (i, j, δ) = 0 ∀i, j. If δ > 0 and
j <= i+ 1, then T (i, j, δ) = +∞. Otherwise, we consider the following three cases:
1. There is a solution that does not hit the ith dot.
2. There is a solution that hits the ith dot along with one other dot.
3. There is a solution that hits the ith dot along with two or more other dots.

To describe our recurrence corresponding to these cases, we denote by ∇(i′, j′) the number
of red dots in Bi′,j′ . We start by addressing the first case, in which the ith dot can be simply
ignored from the current board:

T1(i, j, δ) = T (i+ 1, j, δ).

In the second case, we “guess” the location h of the dot that partners with the ith dot in
an optimal move. To this end, we consider separately the subsequences of dots corresponding
to Bi+1,h−1 and to Bh+1,n. This two sub-instances are handled differently as, in order to
connect the ith dot with the hth dot, all the dots in Bi+1,h−1 need to be removed (while this
is not true for Bh+1,n. We can write:

T2(i, j, δ) = min
i<h≤j such that c(h)=c(i)

{C(i+ 1, h− 1) + T (h+ 1, j, δ −∇(i, h)) + 1}.

In the last case, we have the following analogous recurrence:

T3(i, j, δ) = min
i<h≤j such that c(h)=c(i)

{C(i+ 1, h− 1) + T (h, j, δ −∇(i, h− 1))}.

Overall, our recurrence is given by T (i, j, δ) = min{T1(i, j, δ), T2(i, j, δ), T3(i, j, δ)}, and
we can state the following.

I Theorem 3. Two Dots admits a polynomial time algorithm for a constant number of goals
when the board consists of only one column.

D. Bilò, L. Gualà, S. Leucci, and N. Misra 7:13

×
× ×

×
×

Figure 7 The edge gadget for the case of boards with two rows. Here we are representing an
edge e () incident on vertices u () and v ().

5 Boards with a constant number of rows

Here, we state and prove the following result, strengthening the NP-hardness result for four
rows given in [16]. Unlike for the case of two columns, the reduction in this setting employs
the use of many goals and many colors.

I Theorem 4. Two Dots is NP-complete when the board has only two rows and can be solved
in polynomial time for boards that have one row.

Proof. The hardness for the case of two rows is by a reduction from Vertex Cover. Let
the (G = (V,E), k) be an instance of Vertex Cover where V = {v1, . . . , vn} and E =
{e1, . . . , em}. Our board consists of two rows and 2n + 5m columns. For every vertex vi,
introduce four dots of color ci such that they form a square on the adjacent columns 2i− 1
and 2i. For every edge ej = (vp, vq), introduce the edge gadget shown in Figure 7, which
involves three dots that have color dj and one dot each of color cp and cq. The remaining
five positions in the grid are filled with dummy dots that have colors distinct from the colors
that correspond to edges and vertices. The goal is to hit at least two dots of color dj for
each 1 ≤ j ≤ m in at most m+ k moves.

We now argue the equivalence of these instances. In the forward direction, given a vertex
cover S ⊆ V of size k, perform the square moves on the colors corresponding to vertices in S.
This uses up the first k moves. Since S is a vertex cover, this causes at least two dots of
color dj to become adjacent in the edge gadget corresponding to ej . The remaining m moves
can be used to now meet the demands of the game. In the other direction, assume we have a
valid gameplay that meets all the goals. Note that at least m moves must be used to hit
dots of color dj . Let S denote the set of colors on which square moves were employed in the
remaining moves. Note that this is a set of at most k colors, each of which corresponds to a
vertex in the graph G. We claim that this subset is a vertex cover. Indeed, if not, observe
that the edge gadget corresponding to any uncovered edge (say ej) remains unchanged and
therefore the goal for the color dj cannot be met, contradicting our assumption that we
started with a winning gameplay.

We now turn to the case of boards with one row, where we claim that a natural greedy
algorithm solves Two Dots in polynomial time. First, note that the goal of hitting k dots of
color c can be met if and only if the total number of dots colored c present in intervals of
length at least two is at least k. Further, it is easily checked that in an optimal play, every
move hits colors for which there is a non-trivial goal left (note that this is not true in the
general game, where moves involving colors that have no goals associated with them can also
help with meeting the goals of the game). Finally, observe that we may employ a greedy
strategy here to meet any particular goal, where we proceed by hitting maximal intervals of
the longest length of a particular color first. J

FUN 2018

7:14 On the Complexity of Two Dots for Narrow Boards and Few Colors

6 Conclusions

In this paper we have settled the computational complexity of several restrictions of Two
Dots involving narrow boards and/or few colors. Some problems which are still open and
that we regard as interesting are those of understanding the computational complexity of
Two Dots for (i) boards with only two colors, and (ii) boards with a constant number of
columns and colors, which nicely captures the spirit of the game. Finally, we remark that –
by carefully positioning the wire gadgets, and employing some other small modifications –
our reduction involving 3 colors, 2 moves, and 2 goals, can be adapted to require only 1 goal.

References

1 Aaron B. Adcock, Erik D. Demaine, Martin L. Demaine, Michael P. O’Brien, Felix Reidl,
Fernando Sánchez Villaamil, and Blair D. Sullivan. Zig-zag numberlink is np-complete.
JIP, 23(3):239–245, 2015. doi:10.2197/ipsjjip.23.239.

2 Aviv Adler, Erik D Demaine, Adam Hesterberg, Quanquan Liu, and Mikhail Rudoy. Clicko-
mania is hard, even with two colors and columns. The Mathematics of Various Entertaining
Subjects: Research in Games, Graphs, Counting, and Complexity, 2:325, 2017.

3 Matteo Almanza, Stefano Leucci, and Alessandro Panconesi. Trainyard is np-hard. Theor-
etical Computer Science, 2017. doi:10.1016/j.tcs.2017.09.039.

4 Therese C. Biedl, Erik D. Demaine, Martin L. Demaine, Rudolf Fleischer, Lars Jacobsen,
and J. Ian Munro. The complexity of clickomania. CoRR, cs.CC/0107031, 2001. URL:
http://arxiv.org/abs/cs.CC/0107031.

5 Ron Breukelaar, Erik D. Demaine, Susan Hohenberger, Hendrik Jan Hoogeboom, Walter A.
Kosters, and David Liben-Nowell. Tetris is hard, even to approximate. Int. J. Comput.
Geometry Appl., 14(1-2):41–68, 2004. doi:10.1142/S0218195904001354.

6 Kyle Burke, Erik D. Demaine, Harrison Gregg, Robert A. Hearn, Adam Hesterberg, Michael
Hoffmann, Hiro Ito, Irina Kostitsyna, Jody Leonard, Maarten Löffler, Aaron Santiago,
Christiane Schmidt, Ryuhei Uehara, Yushi Uno, and Aaron Williams. Single-player and
two-player buttons & scissors games - (extended abstract). In Jin Akiyama, Hiro Ito,
Toshinori Sakai, and Yushi Uno, editors, Discrete and Computational Geometry and Graphs
- 18th Japan Conference, JCDCGG 2015, Kyoto, Japan, September 14-16, 2015, Revised
Selected Papers, volume 9943 of Lecture Notes in Computer Science, pages 60–72. Springer,
2015. doi:10.1007/978-3-319-48532-4_6.

7 Davide Eppstein. Computational complexity of games and puzzles. ht-
tps://www.ics.uci.edu/ eppstein/cgt/hard.html, accessed on the 23rd of February 2018.

8 Henning Fernau, Torben Hagerup, Naomi Nishimura, Prabhakar Ragde, and Klaus Rein-
hardt. On the parameterized complexity of the generalized rush hour puzzle. In Proceedings
of the 15th Canadian Conference on Computational Geometry, CCCG’03, Halifax, Canada,
August 11-13, 2003, pages 6–9, 2003. URL: http://www.cccg.ca/proceedings/2003/22.
pdf.

9 Gary William Flake and Eric B. Baum. Rush hour is pspace-complete, or "why you should
generously tip parking lot attendants". Theor. Comput. Sci., 270(1-2):895–911, 2002. doi:
10.1016/S0304-3975(01)00173-6.

10 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

11 Harrison Gregg, Jody Leonard, Aaron Santiago, and Aaron Williams. Buttons & scissors is
np-complete. In Proceedings of the 27th Canadian Conference on Computational Geometry,
CCCG 2015, Kingston, Ontario, Canada, August 10-12, 2015. Queen’s University, Ontario,

http://dx.doi.org/10.2197/ipsjjip.23.239
http://dx.doi.org/10.1016/j.tcs.2017.09.039
http://arxiv.org/abs/cs.CC/0107031
http://dx.doi.org/10.1142/S0218195904001354
http://dx.doi.org/10.1007/978-3-319-48532-4_6
http://www.cccg.ca/proceedings/2003/22.pdf
http://www.cccg.ca/proceedings/2003/22.pdf
http://dx.doi.org/10.1016/S0304-3975(01)00173-6
http://dx.doi.org/10.1016/S0304-3975(01)00173-6

D. Bilò, L. Gualà, S. Leucci, and N. Misra 7:15

Canada, 2015. URL: http://research.cs.queensu.ca/cccg2015/CCCG15-papers/48.
pdf.

12 Luciano Gualà, Stefano Leucci, and Emanuele Natale. Bejeweled, candy crush and other
match-three games are (np-)hard. In 2014 IEEE Conference on Computational Intelligence
and Games, CIG 2014, Dortmund, Germany, August 26-29, 2014, pages 1–8. IEEE, 2014.
doi:10.1109/CIG.2014.6932866.

13 Luciano Gualà, Stefano Leucci, Emanuele Natale, and Roberto Tauraso. Large peg-army
maneuvers. In Erik D. Demaine and Fabrizio Grandoni, editors, 8th International Confer-
ence on Fun with Algorithms, FUN 2016, June 8-10, 2016, La Maddalena, Italy, volume 49
of LIPIcs, pages 18:1–18:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.FUN.2016.18.

14 Robert A. Hearn and Erik D. Demaine. Games, puzzles and computation. A K Peters,
2009.

15 Stefan Langerman and Yushi Uno. Threes!, fives, 1024!, and 2048 are hard. In Erik D.
Demaine and Fabrizio Grandoni, editors, 8th International Conference on Fun with Al-
gorithms, FUN 2016, June 8-10, 2016, La Maddalena, Italy, volume 49 of LIPIcs, pages
22:1–22:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/
LIPIcs.FUN.2016.22.

16 Neeldhara Misra. Two dots is np-complete. In Erik D. Demaine and Fabrizio Grandoni,
editors, 8th International Conference on Fun with Algorithms, FUN 2016, June 8-10, 2016,
La Maddalena, Italy, volume 49 of LIPIcs, pages 24:1–24:12. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.FUN.2016.24.

17 Daniel Ratner and Manfred K. Warmuth. Nxn puzzle and related relocation problem. J.
Symb. Comput., 10(2):111–138, 1990. doi:10.1016/S0747-7171(08)80001-6.

18 Ryuhei Uehara and Shigeki Iwata. Generalized Hi-Q is NP-complete. IEICE Transactions
(1976-1990), 73(2):270–273, 1990.

FUN 2018

http://research.cs.queensu.ca/cccg2015/CCCG15-papers/48.pdf
http://research.cs.queensu.ca/cccg2015/CCCG15-papers/48.pdf
http://dx.doi.org/10.1109/CIG.2014.6932866
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.18
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.22
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.22
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.24
http://dx.doi.org/10.1016/S0747-7171(08)80001-6

On the PSPACE-completeness of Peg Duotaire
and other Peg-Jumping Games
Davide Bilò
Dipartimento di Scienze Umanistiche e Sociali, University of Sassari, Italy.
davide.bilo@uniss.it

https://orcid.org/0000-0003-3169-4300

Luciano Gualà
Dipartimento di Ingegneria dell’Impresa, University of Rome “Tor Vergata”, Italy.
guala@mat.uniroma2.it

https://orcid.org/0000-0001-6976-5579

Stefano Leucci
Institute of Theoretical Computer Science, ETH Zürich, Switzerland.
stefano.leucci@inf.ethz.ch

https://orcid.org/0000-0002-8848-7006

Guido Proietti
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, University of L’Aquila,
Italy, and Istituto di Analisi dei Sistemi ed Informatica, CNR, Roma, Italy.
guido.proietti@univaq.it

https://orcid.org/0000-0003-1009-5552

Mirko Rossi
Dipartimento di Ingegneria dell’Impresa, University of Rome “Tor Vergata”, Italy.
r.mirko25@gmail.com

Abstract
Peg Duotaire is a two-player version of the classical puzzle called Peg Solitaire. Players take
turns making peg-jumping moves, and the first player which is left without available moves loses
the game. Peg Duotaire has been studied from a combinatorial point of view and two versions
of the game have been considered, namely the single- and the multi-hop variant. On the other
hand, understanding the computational complexity of the game is explicitly mentioned as an
open problem in the literature. We close this problem and prove that both versions of the game
are PSPACE-complete. We also prove the PSPACE-completeness of other peg-jumping games
where two players control pegs of different colors.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases peg duotaire, pspace-completeness, peg solitaire, two-player games

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.8

1 Introduction

Peg-Jumping games are games with one or more players that are played on boards of different
shapes. Each position of the board can host at most one peg, and a move consists of jumping
a peg over an (horizontally or vertically) adjacent peg into an empty position. The move
causes the peg that is jumped over to be removed from the board (see Figure 1). Arguably,
the most popular game in this class is the single-player puzzle called Peg Solitaire (also

© Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti, and Mirko Rossi;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 8; pp. 8:1–8:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davide.bilo@uniss.it
https://orcid.org/0000-0003-3169-4300
mailto:guala@mat.uniroma2.it
https://orcid.org/0000-0001-6976-5579
mailto:stefano.leucci@inf.ethz.ch
https://orcid.org/0000-0002-8848-7006
mailto:guido.proietti@univaq.it
https://orcid.org/0000-0003-1009-5552
mailto:r.mirko25@gmail.com
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 On the PSPACE-completeness of Peg Duotaire and other Peg-Jumping Games

Figure 1 A move in peg-jumping games.

known as Hi-Q), in which the aim is to find a sequence of moves which reduces an initial
placement of pegs into a single peg (and thus, the goal is that of clearing the board). A
classical instance of the game has a cross-shaped board full of pegs except for the central
position. The Peg Solitaire is an ancient game and its history dates back to at least the 17th
century (see [2] for a comprehensive overview on the game).

Several other single-player peg-jumping games have been considered. For example, in
the Solitaire-Reachability [15], the goal is, given an initial configuration of pegs, to find a
sequence of moves that places any peg on a given target position (it is not required to remove
all the other pegs). Another prominent game in this class, with a slightly different flavor,
is the Solitaire-Army problem: given a desert region on a (usually infinite) board, and a
target position in this region, one wishes to find an initial configuration of pegs outside of
the desert that allows a peg to reach the target position through a valid sequence of moves.
In its classical formulation, introduced by J.H. Conway in 1961, the desert is a half-plane,
and the challenge is to understand what is the farthest distance in the desert that allows the
target position to be reached. Conway devised an elegant potential argument to show that
distance 5 cannot be reached on any finite board [18]. Other desert shapes have also been
considered, such as square- and rhombus-shaped deserts [8].

In this paper, we focus on 2-player peg-jumping games, mainly on Peg Duotaire, a game
introduced in [22], in which two players alternatively make a peg move and the winner is
the last player to move. Two versions of Peg Duotaire have been considered: the single-hop
Duotaire [22, 13], where each move consists of a single-hop jump, and the multi-hop Duotaire
[21], where a series of (single-hop) jumps with the same peg can be made on a given turn.
Both variants are impartial games, and they have been studied from a combinatorial point
of view, while the problem of understanding the computational complexity of Peg Duotaire
is mentioned as an open problem in the book by Hearn and Demaine (Section A.4 in [17])
and [21].

Our results

We study the problem of deciding whether the first player in a Peg Duotaire instance can
force a win. As our main result, we show that this problem is PSPACE-complete for both
versions of the game, namely the single- and the multi-hop variant. This closes the open
problem given in [17] and [21].

We also consider another peg-jumping game, namely a 2-player version of Solitaire-
Reachability. In this game, pegs are partitioned into white pegs (controlled by the first
player) and black pegs (controlled by the second player). A move of the first (resp., the
second) player consists of a jump involving only white (resp., black) pegs. However, pegs of
a given color can prevent jumps of pegs of the other color since they occupy positions of the
board. Moreover, each player has a target position that wants to reach with a peg (and the
two target positions might coincide). As a natural extension of Solitaire-Reachability, we

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and M. Rossi 8:3

assume that the winner is the first player that reaches its target position.1 However, different
types of winning conditions can be considered here. For example, we can assume –as usual
in the combinatorial game community– that the winner is the player that makes that last
move, or a combination of the two mentioned rules, e.g., a player wins by either reaching his
target position or by leaving his opponent with no available moves. We prove that all these
variants are PSPACE-complete.

Related Results

Despite of the simplicity of their rules [10, 11, 7, 5], peg-jumping games exhibit a non-trivial
combinatorial richness, and for this reason attracted the attention of many researchers over
their long history [6, 3, 4]. From a computational point of view, it has been shown that
single-player Peg Solitaire is NP-complete when the goal is to clear the entire board [23],
or when the task is to decide whether a given target position can be reached [15]. On the
other hand, deciding whether a given configuration can be transformed into a single peg is
polynomial-time solvable for rectangular boards of fixed (constant) height, since solvable
instances form a regular language [21, 22].

As far as 2-player peg-jumping games are concerned, single-hop Duotaire was introduced
in [22], and then studied in [13, 21], while the multi-hop variant has been introduced in [21],
where, besides other results, it is shown that even in the one-dimensional case, the set of
instances for which the first player wins cannot be described by a context-free language.

Another work which is close in spirit to our is [16], where the PSPACE-completeness has
been proved for another 2-player peg-jumping game called Konane, an ancient Hawaiian game
in which pegs are of two different colors, and a player moves a peg of his color by jumping it
over a peg of the opposite color in order to capture it. A peg may make multiple successive
jumps in a single move, as long as they are in a straight line (while no turns are allowed
within a single move). The first player that is unable to move wins. Due to the differences
of the rules, the reduction in [16] cannot be easily adapted to prove PSPACE-completeness
of the games we consider here. Finally, the present work contributes to the rich literature
investigating the computational complexity of combinatorial games [17, 14, 19, 1, 20, 9].

2 Single-Hop Duotaire

2.1 Overview
In this section we focus on Single-Hop Duotaire and we prove that the problem of deciding
whether the first player can force the win is PSPACE-complete.

Our reduction is from directed vertex geography (DVG). In this problem, we want to
decide whether the first player can force a win in the following game. We are given a directed
graph G and a distinguished vertex s ∈ V (G) that initially contains a token. Two players
take turns performing the following move: first the token is moved from its current vertex u

to a neighboring vertex v, traversing the edge (u, v) ∈ E(G), and then vertex u is deleted
from the graph. The first player who has no legal move loses the game (and the other player
wins).

The DVG problem is known to be PSPACE-complete even when G is planar, bipartite,
all the vertices have maximum degree 3, maximum indegree 2, and maximum outdegree 2

1 In this case, we can assume that a player with no available moves can skip his turn, and that the game
can end with a draw, whenever no player can move and no target position has been reached yet.

FUN 2018

8:4 On the PSPACE-completeness of Peg Duotaire and other Peg-Jumping Games

Original Vertex

⇒
⇒

Equivalent Subgraph

Figure 2 Vertex transformation. Original verteces with outdegree 0 (on the left), and equivalent
subgraphs (on the right).

[12]. We will furthermore assume that vertex s has outdegree 2 and no incoming edges, while
all the vertices in V (G) \ {s} have either (i) indegree 1 and outdegree 2, (ii) indegree 2 and
outdegree 1, or (iii) indegree 1 and outdegree 1. It turns out that these assumptions can
be easily guaranteed by performing suitable transformations of the input graph, as we will
discuss in the sequel.

The idea is to consider a planar embedding of G on a grid from which we build an
equivalent instance of single-hop Duotaire where the token is simulated by a specific token peg
(see Figure 7 for an example of the input graph G and of the associated single-hop Duotaire
instance). We will simulate the behavior of the vertices of G using suitable gadgets: these
gadgets take the token peg as an input, which encodes the act of placing the token on the
associated DVG vertex (as a result of a previous move), and route it to a specific output,
which corresponds to selecting the next position of the token in DVG (and hence to selecting
an outgoing edge). The token peg will be transported from a vertex output (representing one
endpoint of an edge) to a vertex input (representing the other endpoint) using a wire gadget.

Moreover, in an isolated area of the board, we place two adjacent pegs that allow the
players to play a one-time extra move that we call dummy move. Except for this dummy
move, all the other moves available to the players at any given point in time will involve the
token peg.

2.2 Transforming the input DVG instance
Here we show how an instance of DVG on a planar, bipartite graph G in which all the
vertices have maximum degree 3, maximum indegree 2, and maximum outdegree 2, can be
transformed in order to further ensure that:

s has outdegree 2 and no incoming edges.
all the vertices in V (G) \ {s} have either (i) indegree 1 and outdegree 2, (ii) indegree 2
and outdegre 1, or (iii) indegree 1 and outdegree 1.

First of all, we delete from G all the edges entering in s, and we iteratively remove all the
other vertices of indegree 0. Then, while s has exactly one outgoing edge (s, s′), we perform
the following operation: we delete s from G, we move the token to s′, and we rename s′ to s.
It is easy to see that each such operation yields an equivalent instance in which the roles
of the two players are exchanged: Player 1 can force a win in the instance preceding the
operation iff Player 2 can win in the resulting instance (recall that Player 1 is always the
first player to move, and that PSPACE is closed under complement).

After the transformation, G contains exactly 1 vertex with indegree 0 (i.e., s), which
must also have outdegree 2. All the remaining vertices of G are either of one of the forms in
(i), (ii), (iii), or they have outdegree 0 and indegree in {1, 2}. In the latter case, they can be
replaced with the equivalent subgraphs shown in Figure 2.

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and M. Rossi 8:5

Figure 3 The gadget for a vertex with indegree 1 and outdegree 2.

2.3 Gadgets
Here we describe all the gadgets. Each gadget is meant to be played in one or more
prescribed ways and is designed to ensure that any player deviating from the intended play
will necessarily lose the game.

2.3.1 Vertices with outdegree two
In our reduction there are two kinds of vertices having outdegree 2, namely the starting
vertex s (having indegree 0), and vertices having indegree 1.

Let us consider the case of vertices with indegree 1 first, which are implemented as shown
in Figure 3. Players will be able to play the gadget whenever the token peg reaches the
position marked with the black arrow. W.l.o.g., we assume that, once the token peg is
in place, it is Player 1’s turn. The intended play of the gadget follows the solid lines via
alternating moves of the players. In particular, notice that Player 2 moves the token peg into
the center of the gadget, where the solid lines meet. At this point, Player 1 can choose to
jump over either the peg immediately above, or the peg immediately below. This corresponds
to choosing which of the two outgoing edges of the associated vertex in the DVG instance
the token traverses next. The following moves are straightforward and will bring the token
peg to one of the two positions marked with the white arrows. Notice that this last move is
performed by Player 1, and hence the turn will be up to Player 2.

We now argue that any deviation from the above strategy, will cause the deviating player
to lose. In particular, all the deviations in this gadget consist of using one of the pegs of the
gadget to jump over the token peg. However, if a player plays such a move he will bring the
board in a configuration where the only available move is the dummy move. The opponent
can then use this dummy move to win the game.

On the converse, if any player plays the dummy move instead of a move involving the
token peg, the opponent can respond making a move that jumps over the token peg, thus
reaching a configuration where no move is left available to the other player (thus winning
the game).

As far as the starting vertex s is concerned, it suffices to implement it in the same way
of vertices with indegree 1 we just described, with the only exception that a peg is initially
placed in the position marked by the black arrow.

2.3.2 Vertices with outdegree 1
We first discuss vertices with outdegree 1 and indegree 2, which are implemented as shown
in Figure 4 (a). The indented ways to play this gadget carries the token peg from any of the
two input positions marked with the black arrows, to the output position marked with the
white arrow. Notice that during the corresponding sequence of moves, the players will need
to jump over the token peg along the solid black line. When this happens, the old token peg
is removed from play, nevertheless, instead of thinking of the resulting state of the board as a
configuration with no token peg, we promote the jumping peg to become the new token peg.

FUN 2018

8:6 On the PSPACE-completeness of Peg Duotaire and other Peg-Jumping Games

(a) (b) (c)

Figure 4 Gadgets for vertices with outdegree 1 and (c) indegree 1; (a) indegree 2. Picture (b)
shows how the gadget in (a) looks like once players played it, which intuitively corresponds to a
vertex already visited by the token in the associated DVG instance.

Figure 5 Wire gadgets.

As in the gadget encoding a vertex with outdegree 2, also in this case the first player
making a move is also the player making the final move –placing the token peg in the output
position (i.e., playing a gadget changes the turn of the next player to play).

We now argue that any player that deviates from the prescribed strategy is bound to
lose. As in the previous case, notice that if a player makes a move that brings the token
peg outside of the solid lines, or in the opposite direction w.r.t. the intended play, then the
opponent can respond by playing the dummy move and winning the game. Notably, this
also ensures that a token peg cannot be brought from its initial input position to the other
input position (thus traversing the solid lines in the opposite direction).

We encode vertices having indegree and outdegree 1, with the gadget of Figure 4 (c),
whose correctness is straightforward.

Wires Wire gadgets are used to encode directed edges in the DVG instance. Such a gadget
receives the token peg as an input (which coincides with one of the outputs of the vertex
gadget associated with the tail of the encoded edge), and carries it to its output (which
coincides with the input of the vertex gadget associated with the head of the encoded edge),
through an even number of alternating moves. This ensure that the player making the first
move in the wire gadget will also be the next player to play after the wire gadget has been
completely traversed. Some examples of wire gadgets are shown in Figure 5. Notice that by
repeating the shown pattern, one can lengthen or shorten wires as needed, as well as perform
90, 180, and 270-degrees turns.

This is useful as the planar embedding of the graph G in the DVG instance will determine
how to lay wires on the board. It might however happen that such an embedding results
in wires with an odd number of moves. In this case, one can restore the desired parity by
replacing any straight portion of a wire consisting of 4 moves (see Figure 6 (a)) with the
gadget shown in Figure 6 (b), which uses the same input and output positions but requires 9
moves to be traversed.

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and M. Rossi 8:7

(a)

(b)

Figure 6 Picture (b): changing-parity gadget. Exactly 9 moves are needed to traverse it. The
gadget can be used to change the parity of the length of a wire by replacing a portion of a 4-move
straight wire (shown in (a)).

2.4 Putting all together
As we already described, we build the instance of single-hop Duotaire from a planar embedding
of G, by replacing each vertex with its corresponding vertex gadget, and by connecting vertex
gadgets through wires in the way prescribed by the planar embedding (see Figure 7 for an
example).

When we embed all the gadgets on the board, we shall guarantee that every output of a
gadget can be connected to the input of the consecutive gadget through a wire. We point out
that all our gadgets are designed in such a way that this is always possible. Indeed, every
gadget satisfies the following property: if an input is in the i-th row and the j-th column,
where both i and j are even, then each output of the gadget is in i′-th row and j′-th column,
with both i′ and j′ even. This is true for the wire gadget also, which allows us to connect an
arbitrary pair of even-even positions.

We now show that if a player has a winning strategy in a DVG instance, then he can also
force a win in the corresponding single-hop Duotaire instance. Let us consider the case in
which Player 1 has a winning strategy first, and assume that all the gadgets are played in
one of the intended ways (as otherwise the deviating player will lose if his opponent plays
optimally). Remember that, initially, the token peg is placed on the input position of the
gadget corresponding to vertex s (i.e., the black arrow of Figure 3). The two outputs of this
vertex gadget correspond to the edges outgoing s in the DVG instance. Player 1 can then
play the gadget in such a way that the token peg is carried to the output corresponding to
the first edge traversed in his winning strategy, say e = (s, u). This forces the players to
traverse the wire corresponding to edge e until the input position of the gadget corresponding
to vertex u is reached. Notice that, by our choice of the wire lengths, the turn is now up
to Player 2. Since gadgets are always played in the intended way, Player 2 must also bring
the token peg to one of the output positions of the gadget, which corresponds to an edge in
DVG, say (u, v). Suppose that v is a vertex whose gadget has never been reached by the
token peg so far; when the token peg reaches the corresponding input of the v’s gadget (on
Player 1’s turn), Player 1 can respond by moving the peg towards another vertex gadget
according to the DVG move prescribed by his winning strategy. Player 1 continues to play
according to this scheme until he routes the peg toward a vertex w whose gadget was already
traversed. Notice that vertex w must have indegree 2 (and outdegree 1), hence this is the
situation depicted in Figure 4 (b) (up to symmetries). Since there are exactly 6 leftover
moves along the solid lines (and any deviation causes the deviating player to lose), plus the
dummy move, Player 1 is then able to win the game. In other words, any player attempting
to move the token peg to a vertex that was already traversed will lose the game. A similar
argument applies to the case in which Player 2 has a winning strategy in DVG.

The previous discussion, and the fact that a winning strategy for a single-hop Duotaire
instance (if any) can be found by a DFS traversal of the (implicit) game tree (whose height
is at most the number of pegs in the instance), allow us to state the following:

FUN 2018

8:8 On the PSPACE-completeness of Peg Duotaire and other Peg-Jumping Games

u

y

x

v

w

P

P

P

s

s

u v

w

x y

dummy move

token peg

G

Figure 7 A DVG instance and its corresponding Single-Hop Duotaire one. Gadgets of Figure 6
are used to guarantee that every wire needs an even number of move to be traversed.

I Theorem 1. Deciding whether the first player can force a win in single-hop Duotaire is
PSPACE-complete.

3 Multi-Hop Duotaire

In this section we prove that the problem of deciding whether the first player can force the
win in the multi-hop Duotaire is PSPACE-complete.

Our reduction is from DVG on planar bipartite graphs of maximum degree 3. On the one
hand, similarly to the reduction for single-hop Duotaire, both planarity and maximum-degree
bounds are useful for embedding the instance on a board. On the other hand, bipartiteness
is needed to uniquely associate each vertex with exactly one of the two players. Indeed, if
the token is placed on a vertex of the left-hand side of the (vertex) bipartition and, w.l.o.g.,
it is Player 1’s turn, then the player can only shift the token along an edge, if any, to reach a
vertex of the right-hand side of the bipartition. Similarly, Player 2 can only shift the token
along an edge, if any, to reach a vertex of the left-hand side of the bipartition.

The idea of the reduction is to have a token peg placed on each vertex gadget; however,
each token peg needs to be activated by another token peg before it can be moved. At the
beginning of the game, only the token peg contained in the vertex gadget representing s is
active by default. Each token peg is owned by a specific player: in the intended play, the
token pegs associated with the vertices of the left-hand side of the bipartition can be moved
only by Player 1, while the remaining token pegs can be moved only by Player 2. When a
token peg, say t, is active, the player owning t is first forced to jump over the token peg that
activated t, and then, thanks to suitable control pegs, the player is forced to continue moving
t along an edge until t reaches a new vertex gadget, if possible, and activates the token peg
of that gadget. Therefore, once a player has moved his token peg away from a vertex gadget,
no token peg is left in the gadget, and the player that tries to move his token peg inside a
previously visited vertex gadget, will lose the game, due to the presence of one dummy move
as in the single-hop Duotaire. Similarly to the reduction for single-hop Duotaire, every move
other than the dummy move involves token pegs.

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and M. Rossi 8:9

Opponent’s
response

Player’s
move

Resulting
configuration

Control-peg
configurations

Figure 8 The 6 ways of embedding control pegs to monitor each pair of consecutive black pegs.
The dots represent positions of the board nearby the control pegs that need to be empty. The picture
shows the opponent’s response when the moving player jumps only over the first of 2 consecutive
black pegs. In all the 6 cases, the countermove of the opponent generates a dummy move. In the
first 2 embeddings, the moving player can jump over the first black peg of the pair, and then also
over a control peg. We observe that in this case the token peg has reached an empty area of the
board, and the opponent wins the game by playing the dummy move.

3.1 Gadgets

Other than token pegs and (black) pegs that describe the main structure of the gadget, each
gadget contains control (gray) pegs that are used to force players to behave in the desired
way. Control pegs are embedded on the board to monitor each pair of consecutive black pegs
whose corresponding Manhattan distance is equal to 2. We use 6 types of embeddings (see
Figure 8). Basically, each configuration forces the player that is jumping over the first of 2
consecutive black pegs to jump also over the other black peg within the same move.

Wires. Wire gadgets are used to encode edges of the DVG instance as well as the vertex
s. Each such gadget receives a token peg as an input, and carries it to its output through
a single multi-hop move. This ensures that the player that is moving the token peg will
also traverse the entire wire. Three examples of wires are shown in Figure 9. To avoid that
the player moving the token peg would not traverse the entire wire, control pegs have been
added all along the wire. Observe that the embedding of control pegs that monitor a pair of
consecutive black pegs on straight wires is independent of the position of the other control
gadgets placed along the wire. Finally, notice that a wire can also make 90-degree turns both
clockwise and counterclockwise: indeed, the right-most drawing in Figure 9, being symmetric,
can be traversed in both directions.

FUN 2018

8:10 On the PSPACE-completeness of Peg Duotaire and other Peg-Jumping Games

Figure 9 Straight wires and 90-degree turns.

21 1 2

Figure 10 Vertex gadget. The rightmost drawing shows that the player that enters the gadget
from its output loses.

Vertices. Vertex gadgets (see Figure 10) are used to encode vertices of the DVG instance
that are different from s. Each such gadget receives the token peg of a player as an input,
and outputs the token peg owned by the other player in exactly 2 moves. This is done thanks
to the presence of control pegs which force the player that is entering the vertex gadget with
a token peg he owns, to terminate his move exactly when his token peg is aligned with the
token peg owned by the other player. Thus, the gadget forces the opponent to move his
token peg to the output of the gadget. We observe that no token peg remains inside a vertex
gadget once it has been visited. Furthermore, if we think of the game as if it were played on
a chessboard, we also observe that if the input token peg comes from a black (resp., white)
square of the chessboard, then the token peg contained in the vertex gadget is on a white
(resp., black) square. Finally, we observe that a player that cheats and tries to enter the
vertex gadget from its output position rather than from its input position, will lose the game.

Branches and one-way gadgets. A branch (see Figure 11) is used to model both the merge
of two distinct wires into a single wire (i.e., vertices with indegree 2), as well as the split of
one wire into two distinct wires (i.e., vertices with outdegree 2). The gadget takes one token
peg in one of the two possible input positions, and forces the moving player to exit from
the gadget either in the (unique) output position, or in the other input position. Branches
are not sufficient by themselves to model wire splits and merges, and they need to be used
together with one-way gadgets.

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and M. Rossi 8:11

Figure 11 A branch.

3
1 2 1 2

3

Figure 12 One-way gadget. The rightmost drawing shows that the player that enters the gadget
from its output loses.

One-way gadgets (see Figure 12) are used to avoid that players can cheat by visiting
branches starting from their corresponding output positions rather than from their corre-
sponding input positions. The one-way gadget takes a token peg as an input, and outputs
the token peg with 3 multi-hop moves. A one-way gadget contains two additional token
pegs, one token peg for each player, each of which must be activated before it can be moved.
Similarly to the vertex gadget, a one-way gadget outputs a token peg that is different from
the one that entered the gadget. However, differently from the vertex gadget, the one-way
gadget outputs a token peg owned by the same player that entered the gadget. A one-way
gadget is designed in such a way that a player that cheats and tries to enter such a gadget
from its output rather than its input, will lose the game.

The merge of two wires can now be modelled with a branch whose output is attached with
the input of a one-way gadget. Similarly, the split of a wire into two wires can be modelled
by using a branch and two one-way gadgets, whose inputs are attached to the output and to
any of the 2 inputs of the branch, respectively.

3.2 Putting all together

The token pegs are placed over the (chess)board in such a way that, w.l.o.g., Player 1 owns
the token pegs that are placed on black squares, while Player 2 owns the token pegs that are
placed on white squares. We observe that this induces the position of each vertex gadget on
the board, according to the vertex-player association (we recall that each player has been
associated with a specific side of the bipartition). Therefore, when it is Player 1’s turn, the
(unique) active token peg is on a black square, and the player can only move such a token
peg to activate a token peg placed on a white square, if possible. Similarly, when it is Player
2’s turn, the (unique) active token peg is on a white square, and the player can only move
such a token peg to activate a token peg placed on a black square, if possible.

FUN 2018

8:12 On the PSPACE-completeness of Peg Duotaire and other Peg-Jumping Games

uy

token peg

vw

s

dummy move
x

s

y w

v

x u

G

Figure 13 A DVG instance and its corresponding Multi-Hop Duotaire one. For the sake of
readability, some (redundant) one-way gadgets have been removed.

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and M. Rossi 8:13

target position

implementation of the circuit C

x1 x1 x2 x2 x3 x3 xn xn ⇒
xi xi xi xi

(a)

. . .

choice
gadget

(b)

target gadget of Player 2

(c)

competitive
choice
gadget

target position

Figure 14 The three ingredients of our reduction for the 2-player version of Solitaire-Reachability.
Picture (a) shows (the form of) the peg configuration resulting from the application of the transfor-
mation given in [15] to a circuit C (equivalent to the formula F). There is a choice gadget for each
variable. Picture (b): the competitive choice gadget. Picture (c): the target gadget of Player 2. If
Player 1 is forced to make the only available move in the gadget, then Player 2’s target position
becomes reachable.

Similarly to the single-hop Duotaire, the embedding shall guarantee that each output
of any gadget can be connected to the corresponding input of the consecutive gadget. This
could be a problem when the output is, for example, in an even-even position while the input
is in a odd-odd position.2 However, the one-way gadget can be used (also) to restore the
desired parity. See Figure 13 for an example multi-hop Duotaire instance obtained from a
corresponding DVG instance.

By using similar arguments to the ones we discussed for single-hop Duotaire, we can now
state the following:

I Theorem 2. Deciding whether the first player can force a win in multi-hop Duotaire is
PSPACE-complete.

4 2-player Solitaire Reachability

In this section we prove that the 2-player version of Solitaire Reachability discussed in the
introduction is PSPACE-complete. We present the reduction when the winning rule is the
following: a player wins when either he reaches his target position, or his opponent has no
available moves. Next, we show how to adapt the reduction for other winning conditions.

The main idea of the reduction is borrowed from the PSPACE-completeness reduction
of the bounded 2-player constraint logic presented in [17]. The reduction is from Positive
Conjunctive Boolean Formula Game (POS CNF), where one wants to understand whether
the first player can force a win in the following game. We are given a monotone boolean
formula F in CNF, i.e., a formula containing positive literals only. The two players alternate
choosing some variable of F that has not yet been chosen, and decide whether to assign
either true or false to that variable. The game ends after all variables of F have been chosen.

2 Notice that the cases even-odd and odd-even cannot occur because of the vertex-player association.

FUN 2018

8:14 On the PSPACE-completeness of Peg Duotaire and other Peg-Jumping Games

The first player wins if and only if F is true; therefore, the second player wins if and only
if F is false. Observe that since F is monotone, the first player has convenience to set the
chosen variables to true, while the second player will always set his variables to false.

It is well known that any CNF Boolean formula can be transformed, in polynomial
time, into an equivalent planar Boolean circuit of NAND gates only, which in turn can be
converted into an instance of Solitaire-Reachability [15]. More precisely, we use this fact to
convert F into a configuration of white pegs and a target position having the form showed in
Figure 14 (a), where there is a choice gadget for each input variable. Each choice gadget
allows to set the corresponding variable either to true or false. The reduction given in [15]
implies the following: there exists a sequence of moves placing a peg in the target position if
and only if the chosen Boolean assignment satisfies F .

In our reduction we first replace each choice gadget with a competitive choice gadget
(see Figure 14 (b)). The competitive choice gadget allows Player 1 to set the corresponding
variable either to true or false, unless Player 2 forces Player 1 to set the variable to false.
Therefore, the player that plays the gadget first essentially decides the assignment of the
variable. To complete the description of the reduction, we add the target gadget of Player
2 (see Figure 14 (c)), in which the target position of the player is occupied by a peg of his
opponent, and sufficiently many dummy moves that can be performed only by Player 2.

Clearly, since F is monotone, both players have convenience to first play all the competitive
choice gadgets, and, once the truth assignment has been chosen, Player 1 has a sequence of
moves that allows him to win the game only if the truth assignment satisfies the formula.
Conversely, if the truth assignment does not satisfy the formula, then Player 1 runs out of
moves before Player 2, frees the target position of his opponent, and Player 2 wins the game.
Therefore, Player 1 can force a win in our instance if and only if he can force a win in the
POS CNF instance.
Our reduction can be adapted to other winning conditions:

The only way a player can win is reaching the target position. In this case, we can assume
that a player with no available moves can skip his turn, and that the game can end with
a draw, whenever no player can move and no target position has been reached yet. The
reduction is exactly the same.
There is no target position and the first player that has no available moves loses the game.
The reduction is the same but we remove the target gadget of Player 2, and we add a
number of sufficiently large moves for Player 1, that are triggered only if a (white) peg is
placed in the old target position of Player 1.

References

1 Matteo Almanza, Stefano Leucci, and Alessandro Panconesi. Trainyard is np-hard. In
Erik D. Demaine and Fabrizio Grandoni, editors, 8th International Conference on Fun
with Algorithms, FUN 2016, June 8-10, 2016, La Maddalena, Italy, volume 49 of LIPIcs,
pages 2:1–2:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/
LIPIcs.FUN.2016.2.

2 John D. Beasley. The Ins and Outs of Peg Solitaire. Oxford University Press, Oxford
Oxfordshire ; New York, 1985.

3 John D. Beasley. Solitaire: Recent Developments. arXiv:0811.0851 [cs, math], nov 2008.
arXiv: 0811.0851. URL: http://arxiv.org/abs/0811.0851.

4 John D. Beasley. John and Sue Beasley’s Webpage on Peg Solitaire, oct 2015. URL: https:
//web.archive.org/web/20151010215541/http://jsbeasley.co.uk/pegsol.htm.

http://dx.doi.org/10.4230/LIPIcs.FUN.2016.2
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.2
http://arxiv.org/abs/0811.0851
https://web.archive.org/web/20151010215541/http://jsbeasley.co.uk/pegsol.htm
https://web.archive.org/web/20151010215541/http://jsbeasley.co.uk/pegsol.htm

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and M. Rossi 8:15

5 George I. Bell. A Fresh Look at Peg Solitaire. Mathematics Magazine, 80(1):16–28, feb
2007. URL: http://www.jstor.org/stable/27642987.

6 George I. Bell, Daniel S. Hirschberg, and Pablo Guerrero-Garcia. The minimum size
required of a solitaire army. arXiv:math/0612612, 2006. arXiv: math/0612612. URL:
http://arxiv.org/abs/math/0612612.

7 Arie Bialostocki. An application of elementary group theory to central solitaire - ProQuest.
URL: http://search.proquest.com/openview/5b321e9dd162151b018ab7d63304daf2/
1?pq-origsite=gscholar.

8 Bela Csakany and Rozalia Juhasz. The Solitaire Army Reinspected. Mathematics Magazine,
73(5):354–362, dec 2000.

9 Erik D. Demaine, Fermi Ma, Ariel Schvartzman, Erik Waingarten, and Scott Aaronson.
The Fewest Clues Problem. In 8th International Conference on Fun with Algorithms (FUN
2016), volume 49, pages 12:1–12:12, 2016.

10 Edsger W. Dijkstra. The checkers problem told to me by M.O. Rabin, 1992. URL: http:
//www.cs.utexas.edu/users/EWD/ewd11xx/EWD1134.PDF.

11 Martin Gardner. The Unexpected Hanging and Other Mathematical Diversions. University
of Chicago Press, Chicago, nov 1991.

12 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

13 J. P. Grossman. Periodicity in one-dimensional peg duotaire. Theor. Comput. Sci.,
313(3):417–425, 2004. doi:10.1016/j.tcs.2002.11.003.

14 Luciano Gualà, Stefano Leucci, and Emanuele Natale. Bejeweled, candy crush and other
match-three games are (np-)hard. In 2014 IEEE Conference on Computational Intelligence
and Games, CIG 2014, Dortmund, Germany, August 26-29, 2014, pages 1–8. IEEE, 2014.
doi:10.1109/CIG.2014.6932866.

15 Luciano Gualà, Stefano Leucci, Emanuele Natale, and Roberto Tauraso. Large peg-army
maneuvers. In Erik D. Demaine and Fabrizio Grandoni, editors, 8th International Confer-
ence on Fun with Algorithms, FUN 2016, June 8-10, 2016, La Maddalena, Italy, volume 49
of LIPIcs, pages 18:1–18:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.FUN.2016.18.

16 Robert A. Hearn. Amazons, Konane, and Cross Purposes are PSPACE-complete, page
287–306. Mathematical Sciences Research Institute Publications. Cambridge University
Press, 2009. doi:10.1017/CBO9780511807251.015.

17 Robert A. Hearn and Erik D. Demaine. Games, puzzles, and computation. AK Peters
Wellesley, 2009.

18 Ross Honsberger. A problem in checker jumping. Mathematical Gems II, pages 23–28,
1976.

19 David Lichtenstein and Michael Sipser. GO is polynomial-space hard. J. ACM, 27(2):393–
401, 1980. doi:10.1145/322186.322201.

20 Neeldhara Misra. Two dots is np-complete. In Erik D. Demaine and Fabrizio Grandoni,
editors, 8th International Conference on Fun with Algorithms, FUN 2016, June 8-10, 2016,
La Maddalena, Italy, volume 49 of LIPIcs, pages 24:1–24:12. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.FUN.2016.24.

21 Cristopher Moore and David Eppstein. One-Dimensional Peg Solitaire, and Duotaire.
arXiv:math/0008172, 2000. arXiv: math/0008172. URL: http://arxiv.org/abs/math/
0008172.

22 Bala Ravikumar. Peg-solitaire, string rewriting systems and finite automata. Theor. Com-
put. Sci., 321(2-3):383–394, 2004. doi:10.1016/j.tcs.2004.05.005.

23 Ryuhei Uehara and Shigeki Iwata. Generalized Hi-Q is NP-Complete. IEICE TRANSAC-
TIONS (1976-1990), E73-E(2):270–273, feb 1990.

FUN 2018

http://www.jstor.org/stable/27642987
http://arxiv.org/abs/math/0612612
http://search.proquest.com/openview/5b321e9dd162151b018ab7d63304daf2/1?pq-origsite=gscholar
http://search.proquest.com/openview/5b321e9dd162151b018ab7d63304daf2/1?pq-origsite=gscholar
http://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1134.PDF
http://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1134.PDF
http://dx.doi.org/10.1016/j.tcs.2002.11.003
http://dx.doi.org/10.1109/CIG.2014.6932866
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.18
http://dx.doi.org/10.1017/CBO9780511807251.015
http://dx.doi.org/10.1145/322186.322201
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.24
http://arxiv.org/abs/math/0008172
http://arxiv.org/abs/math/0008172
http://dx.doi.org/10.1016/j.tcs.2004.05.005

On the Exact Complexity of Polyomino Packing
Hans L. Bodlaender
Department of Computer Science, Utrecht University, Utrecht, The Netherlands and
Department of Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands
H.L.Bodlaender@uu.nl

Tom C. van der Zanden
Department of Computer Science, Utrecht University, Utrecht, The Netherlands
T.C.vanderZanden@uu.nl

Abstract
We show that the problem of deciding whether a collection of polyominoes, each fitting in a
2×O(log n) rectangle, can be packed into a 3×n box does not admit a 2o(n/ log n)-time algorithm,
unless the Exponential Time Hypothesis fails. We also give an algorithm that attains this lower
bound, solving any instance of polyomino packing with total area n in 2O(n/ log n) time. This
establishes a tight bound on the complexity of Polyomino Packing, even in a very restricted case.
In contrast, for a 2× n box, we show that the problem can be solved in strongly subexponential
time.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness, Mathematics of computing → Combinatorial algorithms

Keywords and phrases polyomino packing, exact complexity, exponential time hypothesis

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.9

1 Introduction

The complexity of games and puzzles is a widely studied topic, and the complexity of most
games and puzzles in terms of completeness for a particular complexity class (NP, PSPACE,
EXPTIME, . . .) is generally well-understood (see e.g. [5] for an overview). Results in this
area are not only mathematically interesting and fun, but are also a great educational tool
for teaching hardness reductions. However, knowing that a game or puzzle is NP-complete
does not provide a very detailed picture: it only tells us that there is unlikely to be a
polynomial-time algorithm, but leaves open the possibility that there might be a very fast
superpolynomial but subexponential-time algorithm. This issue was precisely the motivation
for introducing the Exponential Time Hypothesis [6].

The Exponential Time Hypothesis (ETH) states that there exists no algorithm solving n-
variable 3-SAT in 2o(n) time. Assuming this hypothesis, and by designing efficient reductions
(that do not blow up the instance size too much), it is possible to derive conditional lower
bounds on the running time of an algorithm.

In this paper, we study the Polyomino Packing problem from the viewpoint of exact
complexity. We give a reduction from 3-SAT, showing that Polyomino Packing can not
be solved in 2o(n/ log n) time, even if the target shape is a 3× n rectangle and each piece fits
in a 2×O(log n) rectangle. As the reduction is self-contained, direct from 3-SAT and rather
elegant, it could be an excellent example to use for teaching. We also show that this is tight:
Polyomino Packing can be solved in 2O(n/ log n) time for any set of polyominoes of total
area n that have to be packed into any shape.

© Hans L. Bodlaender and Tom C. van der Zanden;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 9; pp. 9:1–9:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:H.L.Bodlaender@uu.nl
mailto:T.C.vanderZanden@uu.nl
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 On the Exact Complexity of Polyomino Packing

Polyomino Packing appears to behave similarly to Subgraph Isomorphism on planar
graphs, which has exact complexity 2Θ(n/ log n) [1] (i.e., there exist an algorithm solving
the problem in 2O(n/ log n) time on n-vertex graphs, and unless the ETH fails there is no
2o(n/ log n)-time algorithm).

Demaine and Demaine [4] showed that packing n polyominoes of size Θ(log n)×Θ(log n)
into a square box is NP-complete. This result left open a gap, namely of whether the problem
remained NP-complete for polyominoes of area O(log n). This gap was recently closed by
Brand [3], who showed that Polyomino Packing is NP-complete even for polyominoes
of size 3 × O(log n) that have to be packed into a square. However, Brand’s construction
effectively builds up larger (more-or-less square) polyominoes by forcing smaller (rectangular)
polyominoes to be packed together in a particular way, by using jagged edges that correspond
to binary encodings of integers to enforce that certain pieces are placed together.

Our reduction also uses binary encoding of integers to force that various pieces are
placed together. However, in contrast, it gives hardness for a much more restricted case
(packing polyomino pieces of size 2×O(log n) into a rectangle of height 3) and also reduces
directly from 3-SAT, avoiding the polynomial blowup incurred by Brand’s reduction from
3-Partition, thus giving a tight (under the Exponential Time Hypothesis) lower bound.
As 3-Partition is a frequently used tool for showing hardness of various types of packing
puzzles and games, we believe that these techniques could be used to give (tight, or at least
strong) lower bounds on the complexity of other games and puzzles.

This result is tight in another sense: we show that Polyomino Packing where the
target shape is a 2×n rectangle admits a 2O(n3/4 log n)-time algorithm, so 3×n is the smallest
rectangle in which a 2Ω(n/ log n)-time lower bound can be attained.

Note that our results are agnostic to the type (free, fixed or one-sided) of polyomino
used. That is, it does not matter whether we are able to rotate (one-sided), rotate and flip
(free) or not (fixed) our polyominoes. Our reduction creates instances whose solvability is
preserved when changing the type of polyomino, while the algorithms can easily be adapted
to work with any type of polyomino. In the following, we consider the Polyomino Packing
problem, which asks whether a given set of polyominoes can be packed to fit inside a given
target shape. If we include the additional restriction that the area of the target shape is
equal to the total area of the pieces, we obtain the Exact Polyomino Packing problem.

2 Lower Bounds

I Theorem 1. Unless the Exponential Time Hypothesis fails, there exists no 2o(n/ log n)-time
algorithm for Polyomino Packing, even if the target shape is a 3×n box, and the bounding
box of each polyomino is of size 2×Θ(log n).

Proof. A weaker version of the statement follows by a simple reduction from the Ortho-
gonal Vector Crafting problem [2]. However, because obtaining the bound on the piece
size requires a deeper understanding of the proof, and to illustrate the technique, we give a
self-contained proof that closely follows the presentation of [2].

We proceed by reduction from n-variable 3-SAT, which, unless the Exponential Time
Hypothesis fails, does not admit a 2o(n)-time algorithm. By the Sparsification Lemma [7],
we can assume that the number of clauses m = O(n).

Using the following well-known construction, we can furthermore assume that each
variable occurs as a literal at most 3 times: replace each variable xi that occurs k > 3 times
by k new variables xi,1, . . . , xi,k and add the clauses (¬xi,1 ∨ xi,2) ∧ (¬xi,2 ∨ xi,3) ∧ . . . ∧
(¬xi,k−1 ∨ xi,k)∧ (¬xi,k ∨ xi,1). This only increases the total number of variables and clauses
linearly (assuming we start with a linear number of clauses).

T.C. van der Zanden and H. L. Bodlaender 9:3

x1 = 010110 011010

x1 = 101001 100101

x2 = 011001 100110

x2 = 100110 011001

c3 = 011010 010110

c3 = 100101 101001

Figure 1 Top: polyominoes corresponding to variables x1, x2 and clause c3. Bottom: the
complementary polyominoes, that mate with the polyominoes above them to form a 3× k square.
Note that the polyominoes are depicted compressed horizontally.

We remark that our construction works for general SAT formulas. The Sparsification
Lemma is only needed to achieve the stated 2Ω(n/ log n) lower bound, and the bound on the
number of occurrences of a variable is only needed to obtain the bound on the piece size.

Our construction will feature three types of polyomino: n formula-encoding polyominoes,
n variable-setting polyominoes and m clause-checking polyominoes. We number the variables
of the input formula 1, . . . , n and the clauses n + 1, . . . , n + m. With every clause or variable
we associate a bitstring of length 22 + 4dlog (n + m)e, which is obtained by taking the binary
representation of that clause/variable’s number, padding it with 0’s to obtain a bitstring of
length dlog (n + m)e, replacing every 0 by 01 and every 1 by 10 (thus ensuring the number
of 1’s in the bitstring is equal to the number of 0’s, and that the bitstring contains at most
2 consecutive zeroes or ones) and then appending a reversed copy of the bitstring to itself
(making it palindromic). Finally, we prepend 11110001111 and append 11110001111 (note
that thus the start and end of the bitstring is the only place to feature 3 or more consequitive
0’s).

For any bitstring, we can create a corresponding polyomino: given a bitstring of length k,
its corresponding polyomino fits in a 2× k rectangle, whose top row consists of k squares,
and whose bottom row has a square whenever the bitstring has a 1 in that position. For
each such polyomino, we can also create a complementary polyomino that mates with it
to form a 3 × k rectangle (which can also be seen as a flipped version of the polyomino
corresponding to the complement of the bitstring, i.e., the bitstring with all zeroes replaced
by ones and vice-versa). Figure 1 shows several example corresponding polyominoes and their
complements. Note that since the bitstrings are palindromic, the thus created polyominoes
are achiral, i.e., invariant over being flipped.

We can concatenate two polyominoes corresponding to bitstrings b1, b2 by taking the
polyomino corresponding to the concatenation of the two bitstrings b1b2.

Note that the polyomino corresponding to a variable or clause can only mate with its
complementary polyomino, it can not fit together with any polyomino corresponding to
any other variable or clause or the complement thereof. Our construction uses as building
blocks two more polyominoes: the wildcard polyomino, which is obtained as the polyomino
corresponding to the bitstring 00001110000000 . . . 00000001110000 (4dlog (n + m)e zeroes
surrounded by 00001110000, and the blocking polyomino, which is the complementary
polyomino for the wildcard. Note that the wildcard polyomino fits together with any clause
or variable polyomino, while the blocking polyomino only fits together with the wildcard
polyomino.

Since each variable occurs as a literal at most three times, we can assume that it appears
at most twice in positive form, and at most twice negated (if the variable occurs exclusively
positively or negated we can simply remove the clauses that contain it to obtain an equivalent
instance).

FUN 2018

9:4 On the Exact Complexity of Polyomino Packing

x1 = 010110 011010 x1 = 010110 011010c3 = 011010 010110 c4 = 100101 101001 x1 = 010110 011010

x1 = 101001 100101 x1 = 101001 100101

c5 = 100110 011001

c3 = 011010 010110x2 = 011001 100110 x2 = 011001 100110 x2 = 011001 100110

x2 = 100110 011001 x2 = 100110 011001

c4 = 100101 101001 c5 = 100110 011001

c3 = 100101 101001

c5 = 011001 100110

c4 = 011010 010110

Figure 2 Example of our reduction for the formula (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2). Top-
to-bottom, left-to-right: formula encoding polyomino for x1, variable-setting polyomino for x1,
clause-checking polyomino for c4, clause checking-polyomino for c5, formula-encoding polyomino
for x2, clause-checking polyomino for c3, variable-setting polyomino for x2. The polyominoes are
arranged in a way that suggests the solution x1 = false, x2 = true.

We are now ready to define the formula-encoding polyominoes. The construction will
have n variable-encoding polyominoes, one for each variable xi, and each consists of the
concatenation of 7 polyominoes: we start with a polyomino corresponding to the bitstring of
xi. Next, for each time (at most two) xi occurs positively in a clause, we take a polyomino
corresponding to (the bitstring of) that clause. If xi occurs only once in positive form, then
we take (for padding) a copy of the blocking polyomino. Then, we take another copy of the
polyomino for xi. Next, we take the polyominoes corresponding to clauses in which xi occurs
negated. Again, we add the blocking polyomino if xi only occurs negated once. Finally, we
take another copy of the polyomino corresponding to xi.

The variable-setting polyomino for xi is the polyomino formed by concatenating, in the
following order: (a) the complement polyomino for the variable, (b) 2 copies of the wildcard
polyomino, (c) another copy of the complement polyomino.

The clause-checking polyominoes are simply the following: for each clause, we take a
polyomino corresponding to the complement of its bitstring.

This completes the construction. An example of the construction is shown in Figure 2.
Note that if fixed or one-sided polyominoes are used, the formula-encoding ones are provided
with the solid row of squares on top, and the remaining polyominoes are provided with
the solid row on the bottom. We claim this set of polyominoes can be packed into a
3× 7n(22 + 4dlog (n + m)e) box if and only if the formula is satisfiable.

(⇒). Suppose the polyominoes can be packed in a 3× 7n(22 + 4dlog (n + m)e) box. We
first examine the placement of the formula-encoding polyominoes. Because each formula-
encoding polyomino starts with a row of four ones, and the largest “gap” of zeroes occurring
in one is of length three, they cannot overlap vertically; each formula-encoding polyomino
must be fully to the right of the previous. Moreover, since the width of the target rectangle
matches exactly the total width of the formula-encoding polyominoes, they must be placed
back-to-back in some arbitrary permutation.

Consider the placement of a single complementary polyomino for a clause or variable. Be-
cause wherever two formula-encoding polyominoes touch back-to-back there are 8 consecutive
rows in which 2 squares are already occupied, and the longest “gap” in a complementary
polyomino is of length at most 5 (and at the left and right edges, there is a gap of length
exactly 4, we see that the rows in which this polyomino are placed can contain only a
single formula-encoding polyomino. This rules out any undesirable shifts: no complementary
polyomino can overlap (vertically) more than one formula-encoding polyomino. Moreover,
note that this same phenomenon forces the vertical alignment of polyominoes correspond-
ing to variables or clauses in the formula-encoding polyominoes with the complementary
polyominoes in variable-setting and clause-checking polyominoes.

T.C. van der Zanden and H. L. Bodlaender 9:5

Now, consider the placement of a variable-setting polyomino (for variable xi). Since it
starts with a complementary polyomino for xi, and also ends with one xi, it must be placed
such that it only overlaps at most (and exactly) one formula-encoding polyomino, namely
the one for xi. It thus suffices to consider each formula-encoding polyomino in isolation.
Note that then, there are only two possible placements for the variable-setting polyomino for
variable xi: either overlapping the first half of the formula-encoding polyomino, with the
wildcard polyominoes used as building blocks in the variable-setting polyomino overlapping
(and thus blocking) the polyominoes corresponding to clauses that are satisfied by setting xi

to true, or, overlapping the second half of the formula-encoding polyomino, overlapping (and
thus blocking) the polyominoes corresponding to clauses that are satisfied by setting xi to
false.

Thus, the placement of the variable-setting polyominoes (unsurprisingly) corresponds to
an assignment for the variables of the formula. It is easy to see that the clause-checking
polyominoes can then be packed into the space left only if the assignment is satisfying:
if the assignment does not satisfy some clause, then all the places where the respective
clause-checking polyomino could fit are blocked by variable-setting polyominoes.

(⇐). We can consider each formula-encoding polyomino in isolation. An assignment
for the formula immediately tells us how to pack the variable-setting polyomino for xi into
the formula-encoding polyomino for xi (namely: if xi is true we place the variable-setting
polyomino in the second half, otherwise, we place it in the first half of the formula-encoding
polyomino). It is easy to see that if the assignment is satisfying, then for each clause-checking
polyomino there is at least one possible placement inside a formula-encoding polyomino. For
an example of how the pieces fit together for a satisfying assignment, see Figure 2. J

Remark that our reduction leaves gaps inside the packing. If we consider the variant
of the problem where total area of the pieces is equal to the area of the target shape, and
thus the entire rectangle must be filled (Exact Polyomino Packing), the instance can be
padded with several 1× 1 polyominoes to make the total area of the pieces equal to the area
of the target rectangle.

I Corollary 2. Unless the Exponential Time Hypothesis fails, there exists no 2o(n/ log n)-time
algorithm for Exact Polyomino Packing, even if the target shape is a 3× n box, and the
bounding box of each polyomino is of size 2×O(log n).

This raises an interesting open problem: does Exact Polyomino Packing still admit
a 2Ω(n/ log n)-time lower bound when the pieces are similarly sized, that is, each piece must
have area Θ(log n) (or even just Ω(n)). This seems to greatly limit the number of possible
interactions between two polyomino pieces, since they cannot be combined in a way that
creates small gaps.

Note that in the previous reduction we can fix the position of the formula-encoding
polyominoes in advance. The problem then reduces to packing variable-setting and clause-
checking polyominoes into the shape left when subtracting the formula-encoding polyominoes
from the 3×n rectangle, which fits inside a 2×n rectangle. Doing so we obtain the following
corollary:

I Corollary 3. Unless the Exponential Time Hypothesis fails, there exists no 2o(n/ log n)-time
algorithm for Polyomino Packing (resp., Exact Polyomino Packing), even if the target
shape fits inside a 2× n box, and the bounding box of each polyomino is of size 2×Θ(log n)
(resp., 2×O(log n)).

FUN 2018

9:6 On the Exact Complexity of Polyomino Packing

Figure 3 Packing an arbitrary 2× k polyomino into a Y-monotone polyomino results in several
pieces that are again Y-monotone.

3 Algorithms

Our lower bound applies in a rather constrained case: even for packing polyominoes with a
bounding box of size 2×O(log n) into a rectangle of size 3× n, there is no 2o(n/ log n)-time
algorithm. As we will show later, a similar lower bound can not be established when the
pieces are 1× k or 2× k rectangles (since the number of distinct such polyominoes is linear
in their area rather than exponential). An interesting question, which we answer negatively,
is whether a 2Ω(n/ log n)-time lower bound can be obtained for packing polyominoes with a
bounding box of size 2×O(log n) into a rectangle of size 2× n. Thus, the case for which we
have derived our lower bound is essentially the most restrictive possible. Note that, while
solvable in strongly subexponential time, this problem is NP-complete, as can be seen by a
simple reduction from 3-Partition.

We say that a polyomino is Y-monotone if every row consists of a number of contiguous
squares, that is, there are no gaps.

I Theorem 4. Polyomino Packing for fixed, free or one-sided polyominoes can be solved
in 2O(n3/4 log n) time if the target shape is a 2× n rectangle.

Proof. First, consider a simple O(2nnO(1))-time dynamic programming algorithm that
decides whether m polyominoes p1, . . . , pm can be packed into a target polyomino of area
n: for any subset S of (the squares of) the target polyomino (there are 2n such subsets)
and 1 ≤ k ≤ m, let B(S, k) be the proposition “the polyominoes pk, pk+1, . . . , pm can be
packed into S”. B(S, m) is simply the proposition that S is the same polyomino as pm; if
B(S, i − 1) is known for all S then B(S′, i) can be computed by trying all (polyominally
many) placements of pi within S′.

If we are dealing with free or one-sided polyominoes we first guess how many (if any)
of the 1× 2 polyominoes should be used in the vertical orientation, and how many in the
horizontal orientation. This thus converts them to fixed 1× 2 or 2× 1 polyominoes, and only
increases the running time of the algorithm by a factor n.

We augment the previously presented algorithm with the following observation: when
the target polyomino is a 2× n rectangle, and if we process the polyominoes in a fixed order,
with the polyominoes that are 1 × k rectangles being processed last (thus after the 2 × 1
polyominoes and any other polyominoes), then the target shapes considered by the dynamic
programming algorithm are always the disjoint union of several Y-monotone polyominoes (c.f.
Figure 3). Such polyominoes can be described by 3 integers: one giving the number of squares
in the bottom row, one giving the number of squares in the top row, and one giving the shift
of the top row relative to the bottom row. Note that this observation crucially depends on
processing the 1× k polyominoes last, since removing them from a 2× k polyomino does
not necessarily result in a shape that is Y-monotone, however, if only 1 × k polyominoes
remain, we can ensure this requirement remains satisfied because we can consider the top
and bottom row of each polyomino in the target shape seperately.

If each of these integers is at most n1/4−1 we call the resulting polyomino small, otherwise,
the polyomino is large. We can use the following more efficient description of the target shape:
for each polyomino in the shape that is small, we give the number of such polyominoes in the

T.C. van der Zanden and H. L. Bodlaender 9:7

Figure 4 Polyomino Packing problem (left) modelled as Subgraph Isomorphism from pattern
(middle) into host graph (right).

Figure 5 Alternative constructions to use with fixed (left) or one-sided (right) polyominoes.

target shape and we simply list each large polyomino. Since there are at most n3/4 distinct
small polyominoes, giving the quantity for each leads to at most (2n)n3/4 ≤ 2n3/4(log n+1)

cases. There are at most n3 distinct large polyominoes, but the target shape contains at most
2n3/4 of them (since each has area at least n1/3), thus contributing (n3)2n3/4 ≤ 26n3/4(log n+1)

cases. Thus, if we identify equivalent target shapes, the dynamic programming algorithm
needs to consider at most 26n3/4(log n+1)n = 2O(n3/4 log n) subproblems, and each subproblem
can be handled in polynomial time. J

Note that this algorithm only works when the target shape is a 2×n rectangle. Corollary 3
shows that we should not expect a similar algorithm for packing polyominoes into an arbitrary
target shape, even if that target shape fits in a 2× n box.

Finally, we show that our 2Ω(n/ log n)-time lower bound is tight:

I Theorem 5. Polyomino Packing for free, fixed or one-sided polyominoes can be solved
in 2O(n/ log n) time if the target shape has area n.

Proof. The problem can be modelled as Subgraph Isomorphism for an O(n)-vertex planar
graph, for which a 2O(n/ log n)-time algorithm is known [1]. The construction is as follows:
for every square in a polyomino, we take a cycle on four vertices, to which we add a fifth,
universal vertex (which can be embedded in a planar embedding in the middle of this cycle).
This fifth vertex is marked by adding a number of degree 1 vertices to it, to bring its degree
up to (at least) 9. Each edge of this cycle is associated with an edge of the square in the
polyomino. We make adjacent the endpoints of edges corresponding to adjacent edges in the
polyomino. Both the host graph and the guest graph are constructed in this way, the host
graph from the target shape (when viewed as a polyomino) and the guest graph from the
set of input polyominoes (which will thus have one connected component corresponding to
each separate polyomino that must be packed). An example for packing 3 polyominoes into
a 3× 4 rectangle is shown in Figure 4. The special (degree 9) vertices must be mapped to
other vertices that are also degree 9, and this means that the cycles corresponding to squares
can only be mapped to cycles corresponding to other squares (and not to cycles created by
making cycles adjacent since those vertices have degree less than 9).

This construction works for free polyominoes. To restrict to fixed or one-sided polyominoes,
we can modify the construction slightly to make the structure used to represent a square
asymmetric. For one-sided polyominoes, we create a structure that is rotationally symmetric
but achiral. To this end, we subdivide each edge of the cycle twice and identify one of the

FUN 2018

9:8 On the Exact Complexity of Polyomino Packing

two vertices created by this subdivision, add another vertex, adjacent to this vertex, to its
neighbours, and to the central vertex. For fixed polyominoes, we can add one additional edge
(from the center to one of the vertices of the cycle to also remove the rotational symmetry.
These constructions are depicted in Figure 5. J

To make the paper self-contained and more instructional, we give a direct proof of the
following weaker version of Theorem 5 — which illustrates in a simpler way the principles
from [1].

I Theorem 6. Polyomino Packing for free, fixed or one-sided polyominoes can be solved
in 2O(n/ log n) time if the target shape is a rectangle of area n.

Proof. If the rectangle is higher than it is wide, rotate it (and, if the polyominoes are fixed,
the polyominoes as well) 90 degrees. Consider a scanline passing over the rectangle from left
to right. At any given time, the scanline intersects at most O(

√
n) squares of the rectangle.

We can specify how the intersection of the solution with the scanline looks by, for each square,
specifying the polyomino (if any) that is placed there, along with its rotation and translation
with respect to the square. This gives at most O(n3) cases for each square, and, since the
scanline intersects at most

√
n squares, 2O(

√
n log n) cases total.

We furthermore need to specify which polyominoes have already been used in the solution
(to the left of the scanline) and which ones still need to be packed. Similar to [1], a
polyomino is large if it has area greater than c log n, and small otherwise. Since the number
of polyominoes with area k is bounded by 4.65k [8], the number of distinct small polyominoes
it at most 4.65c log n. For c ≤ 0.22, this is at most

√
n. We can specify the quantity of

each small polyomino left with a single number from 0 to n, giving (n + 1)
√

n = 2O(
√

n log n)

cases. Meanwhile, the number of large polyominoes is at most n/(c log n), and thus there are
2O(n/ log n) possible subsets of them.

The problem can now be solved by dynamic programming. For each position of the
scanline, we have 2O(n/ log n) subproblems: can a given subset of pieces (2O(n/ log n) cases)
be packed entirely to the left of the scanline (with only the pieces intersecting the scanline
possibly sticking out to the right of it) such that the intersection with the scanline looks
as specified (2O(

√
n log n) cases) (and, in the case of Exact Polyomino Packing, leaving

no gaps)? For each such subproblem, we can find its answer by deleting the pieces whose
leftmost square(s) intersect the scanline, and checking whether the instance thus obtained is
compatible with some subproblem with the scanline moved one position to the left. J

There is an interesting contrast between these two algorithms. Whereas the strongly
subexponential algorithm for the case of the 2× n rectangle works by considering the input
polyominoes in a fixed order (so that we always know which subset we have used) and uses a
bound on the number of subsets of the target shape that have to be considered, the algorithm
for the general case works the opposite way around: it considers subsets of the target shape
in a (more-or-less) fixed order (by the scanline approach) and bounds the number of possible
subsets of the input polyominoes.

Note that our 2Ω(n/ log n)-time lower bound exploits the fact that we can construct
exponentially many polyominoes that fit inside a 2 × O(log n) rectangle. If we consider
polyominoes with simpler shapes, that is, polyominoes that are a× b rectangles, then the
problem can be solved in strongly subexponential time:

I Corollary 7. Polyomino Packing can be solved in 2O(
√

n log n) time if the polyominoes
are rectangular and the target shape is a rectangle with area n.

T.C. van der Zanden and H. L. Bodlaender 9:9

Proof. Consider the algorithm presented in the proof of Theorem 6. The running time is
dominated by the number of cases for tracking a subset of the polyominoes. If the polyominoes
are rectangles, then note that the number of distinct rectangles of area at most n is also at
most n. Call a polyomino large if it has area ≥

√
n and small otherwise: there are at most√

n large polyominoes in the input, and thus at most 2
√

n subsets of them. The number of
distinct small polyominoes is at most

√
n, and thus specifying the quantity for each leads to

at most n
√

n = 2
√

n log n cases. J

4 Conclusions

In this paper, we have given a precise characterization of the complexity of (Exact)
Polyomino Packing. For a set of polyominoes of total area n, the problem can be solved
in 2O(n/ log n) time. Even when restricted to the case where the pieces are of size 2×O(log n)
and they have to be packed into a 3× n rectangle or into a given shape which fits inside a
2× n rectangle, there is no faster (up to the base of the exponentiation) algorithm unless the
Exponential Time Hypothesis fails. In contrast, in the case where the target shape is a 2× n

rectangle, a strongly subexponential algorithm exists.
We conclude by listing several interesting open problems:
Exact polyomino packing with excess pieces: we are given some target shape, and a set
of polyominoes with total area possibly exceeding the target shape. Is it possible to use
a subset of the polyominoes to build the target shape? Clearly this problem is at least
as hard as (exact) polyomino packing; however, considering the set of pieces may be
much larger than the target shape, it would be interested to study this problem from a
parameterized perspective (where the parameter k is the area of the target shape). The
problem can be solved in 2knO(1)-time (by the simple dynamic programming algorithm
of Section 3; is there a 2o(k)nO(1)-time (or even a 2o(k)2o(n/ log n)-time) algorithm?
What is the (exact) complexity of Exact Polyomino Packing when every piece has
area Ω(log n) or Θ(log n)? Our lower bound construction uses 1× 1 polyominoes to fill
the gaps in the packing. Requiring that each piece has area Ω(log n) seems to limit the
number of possible interactions between two pieces significantly.
We do not believe that our algorithm for packing polyominos into a 2× n rectangle is
tight. What is the exact complexity of this problem? This is closely related to the exact
complexity of 3-Partition with the input given in unary, which (to our knowledge) is
also an open problem.

References

1 Hans L. Bodlaender, Jesper Nederlof, and Tom C. van der Zanden. Subexponential time
algorithms for embedding h-minor free graphs. In Ioannis Chatzigiannakis, Michael Mitzen-
macher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy,
volume 55 of LIPIcs, pages 9:1–9:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016. doi:10.4230/LIPIcs.ICALP.2016.9.

2 Hans L. Bodlaender and Tom C. van der Zanden. Improved Lower Bounds for Graph
Embedding Problems. In Dimitris Fotakis, Aris Pagourtzis, and Vangelis Th. Paschos,
editors, 10th International Conference on Algorithms and Complexity (CIAC 2017), volume
10236 of LNCS, pages 92–103. Springer, 2017.

3 Michael Brand. Small polyomino packing. Information Processing Letters, 126:30–34, 2017.

FUN 2018

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.9

9:10 On the Exact Complexity of Polyomino Packing

4 Erik D. Demaine and Martin L. Demaine. Jigsaw puzzles, edge matching, and polyomino
packing: Connections and complexity. Graphs and Combinatorics, 23(1):195–208, 2007.

5 Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. CRC Press,
2009.

6 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

7 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63:512–530, 2001.

8 David A. Klarner and Ronald L. Rivest. A procedure for improving the upper bound for
the number of n-ominoes. Canad. J. Math, 25(3):585–602, 1973.

Kings, Name Days, Lazy Servants and Magic
Paolo Boldi
Università degli Studi di Milano, Italy
paolo.boldi@unimi.it

https://orcid.org/0000-0002-8297-6255

Sebastiano Vigna
Università degli Studi di Milano, Italy
sebastiano.vigna@unimi.it

https://orcid.org/0000-0002-3257-651X

Abstract
Once upon a time, a king had a very, very long list of names of his subjects. The king was also a
bit obsessed with name days: every day he would ask his servants to look the list for all persons
having their name day. Reading every day the whole list was taking an enormous amount of time
to the king’s servants. One day, the chancellor had a magnificent idea: he wrote a book with
instructions. The number of pages in the book was equal to the number of names, but following
the instructions one could find all people having their name day by looking at only a few pages
– in fact, as many pages as the length of the name – and just glimpsing at the list. Everybody
was happy, but in time the king’s servants got lazy: when the name was very long they would
find excuses to avoid looking at so many pages, and some name days were skipped. Desperate,
the king made a call through its reign, and a fat sorceress answered. There was a way to look at
much, much fewer pages using an additional magic book. But sometimes, very rarely, it would
not work (magic does not always work). The king accepted the offer, and name days parties
restarted. Only, once every a few thousand years, the magic book fails, and the assistants have
to go by the chancellor book. So the parties start a bit later. But they start anyway.

2012 ACM Subject Classification Theory of computation → Sorting and searching

Keywords and phrases Suffix trees, suffix arrays, z-fast tries, prefix search

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.10

1 Introduction

From what we can ascertain reading the enthusiastic reports of the contemporary historians,
the chancellor probably stumbled into an early version of suffix arrays [11]. His book might
have contained a table of the initial points in the list for every name, sorted lexicographically
by suffix. Indeed, the suffix array of a string s over an ordered alphabet Σ of σ elements,
in modern terms, is simply the array of the starting points of the string s$ (where $ is a
character larger than any character in Σ) sorted lexicographically by the corresponding suffix.
Suffix arrays are an extremely effective way of looking for all occurrences of a pattern in a
string, as once they are built (with some additional ancillary data), search requires only an
amount of work linear in the length of the search pattern. In modern days, a large body of
research has gone into building and representing suffix arrays efficiently (e.g., in compressed
form) [6, 4, 13, 10, 7].

In fact, at the price of an additional (and very compressible) array of integers a suffix array
can represent implicitly the suffix tree associated with the string s [1]. While asymptotically
the two approaches give the same bounds, we know that managing a billion nodes or three

© Paolo Boldi and Sebastiano Vigna;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 10; pp. 10:1–10:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paolo.boldi@unimi.it
https://orcid.org/0000-0002-8297-6255
mailto:sebastiano.vigna@unimi.it
https://orcid.org/0000-0002-3257-651X
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Kings, Name Days, Lazy Servants and Magic

arrays of a billion integers is an entirely different business, especially if you are a poor servant
that lives on bread and water.

So, why were the servants still unhappy? Well, since the pages to look at were as many
as the letter in the names, with long names they had to jump through several pages of the
book and of the list quite at random. The book was heavy, and the list too. Looking at
consecutive pages was easy, jumping around much less.

Here is when the fat sorceress came in: she said that with an additional book and
additional instructions, looking at a number of pages equal to the logarithm of the length of
the name would have been sufficient to recover the same information, together with a few
scans on the list. The only problem is that magic is tricky and once in a while (although very
rarely) it would not work: if that happens, though, sevants would realize that something
went wrong, and they could still go the old way.

Through a thorough research we have been able to reconstruct the spell. What the fat
sorceress probably discovered is a way to apply fat binary search, the main ingredient of z-fast
tries [2], to a suffix array.1 To use fat binary search, one stores some additional linear-space
information, the z-map. Then, given a pattern p of length m, one first preprocesses p in
time O(1 + (m log σ)/w), and then performs O(logm) search steps, each accessing a constant
amount of information. Then follows a verification phase, which accesses m characters, but
the interesting fact is that the characters are accessed in sequential fashion at less than σ
different positions of the original text s. Thus, in modern-day parlance, fat binary search
makes it possible to find with high probability the occurrences of pattern p in s using time
O((m log σ)/w + logm + σ) and O((m log σ)/B + logm + σ) I/Os in the cache-oblivious
model.

2 Notation and Tools

Let Σ be a fixed alphabet (of cardinality σ) not including the special symbol $, and define
Σ̂ = Σ ∪ {$}. The alphabet Σ comes endowed with a specified (arbitrary) total order, that
is inherited by Σ̂ with the proviso that $ is larger than any other character. We use ≤ to
denote the induced lexicographic order on Σ̂∗, whereas � is used to denote the prefix order.

If x ∈ Σ̂∗ is a string, x juxtaposed with an interval is the substring of x with those indices
(indices start from 0). Thus, for instance, x[a . . b] is the substring of x starting at position a
(inclusive) and ending at position b (inclusive). We will write x[a] for x[a . . a] and x[a . .] for
x[a . . |x| − 1]. By definition, x[|x| . .] = ε.

We analyze our algorithms on a unit-cost word RAM with word size w in the cache-
oblivious model [5]. In this model, the machine has a two-level memory hierarchy, where the
fast level has an unknown size of M words and the slow level has an unbounded size and is
where our data reside. We assume that the fast level plays the role of a cache for the slow
level with an optimal replacement strategy where the transfers (a.k.a. I/Os) between the two
levels are done in blocks of an unknown size of B ≤M words; the I/O cost of an algorithm
is the total number of such block transfers. Scanning is a fundamental building block in the
design of cache-oblivious algorithms: given an array of N contiguous items the I/Os required
for scanning is O(1 +N/B).

We measure space in words. Thus, we will say that a suffix array takes linear space, even if
it needs O(n logn) bits. A more detailed analysis can be performed when specific instances of
the various support structure have been instantiated (e.g., a compressed vs. non-compressed
lcp array).

1 We should mention here that trying such a spell was suggested to the sorceress by the great sorcerer of
sorcerers, Ricardo Baeza-Yates.

P. Boldi and S. Vigna 10:3

3 Static Z-Fast Tries on Arbitrary Languages

Fat binary search appeared for the first time in the context of probabilistic static z-fast
tries [2], which were originally introduced for prefix-free binary languages. Their main
purpose was to assign buckets to a larger set of strings. The basic idea is that of enriching a
standard compacted trie with a kind of acceleration map, the z-map, which makes it possible
navigate the trie quickly (i.e., using a number of accesses to the map logarithmic in the
length of the search string).

Subsequently, fat binary search was applied to dynamic z-fast tries [3], again based on
prefix-free binary strings. Dynamic z-fast tries exist in two versions: an exact version and
a signature-based version. In the first case, we store a z-map from strings to nodes, in the
second case a z-map from string signatures to nodes, and we have to handle collisions and
false positives.

In this section we start introducing exact static z-fast tries on prefix-free languages L on
a general alphabet Σ, and show how they can be used to solve the following problem: is p
the prefix of some element of L? We describe the algorithms in the exact setting, adding
assertions that may fail in the signature-based setting.

3.1 Compacted tries
A compacted trie [9] over Σ is a rooted tree such that

every node α is endowed with a string cα ∈ Σ∗ (the compacted path of α)
every arc connecting an internal node α with one of its children α′ is labelled with a
character cα,α′ ∈ Σ and cα,α′ 6= cα,α′′ for any two distinct children α′ and α′′ of α
every internal node has at least two children.

For every node α of a compacted trie, we define its name nα ∈ Σ∗ and its extent eα ∈ Σ∗ as
follows:

nroot = ε

eα = nαcα
if α′ is a child of α, then nα′ = eαcα,α′ .

For any given finite nonempty prefix-free language L ⊆ Σ∗, the compacted trie of L is the
only compacted trie2 T (L) over Σ such that L is the set of all the extents of the leaves of
T (L).

In Figure 1, we show an example of a trie with the nomenclature just introduced (and
some more that will be introduced in the following).

3.2 Exit nodes
Given a compacted trie over Σ, and given a string p, we let exit(p) be the exit node of p, that
is, the only node α such that nα � p and for every other node α′ if nα′ � p then n′α � nα.
In other words, it is the node whose name is the longest possible prefix of p. (See Figure 1
for an example of an exit node). Moreover, we call parex node of p the parent of the exit
node of p, or a special symbol ⊥ if the exit node of p is the root (note that the parex of p is
the node with the longest extent that is a proper prefix of p).

It is worth stating the following property of exit nodes:

2 In [2], we studied compacted tries only for the binary case (i.e., Σ = 2).

FUN 2018

10:4 Kings, Name Days, Lazy Servants and Magic

0
0
1
0
0
1

0 1

1
0

0
1
0

0 1

1
0

α

n
am

e
(n

α
)

h
an

d
le

(h
α
)

ex
ten

t
(e

α
)

sk
ip

in
terval

[7
..10

]exit(00100100)
Z

ε → root
00100110 → α

Figure 1 (above) The compacted trie T (L) (with the corresponding nomenclature) and its z-map.
Here L = {001001010, 0010011010010, 00100110101}.

I Lemma 1. For a given string p, exit(p) is the only node γ such that nγ � p and one of
the following mutually exclusive properties holds:

p � eγ ;
eγ ≺ p and γ does not have a p[|eγ |] child;
p and eγ are �-incomparable.

Proof. The only remaining case is that eγ � p with γ having a p[|eγ |]-child: but in this case,
that child would have a name that is still a prefix of p, longer than nγ . J

Another easy consequence of the definition is the following:

I Proposition 2. Let L ⊆ Σ∗ and consider the trie T (L). A string p ∈ Σ∗ is a prefix of
some element of L if and only if p � eexit(p). Moreover, if the latter happens then the set

{eα | α is a leaf descendant of exit(p)}

is precisely the set of x ∈ L such that p � x.

In the example of Figure 1, p = 00100100 is not the prefix of any of the strings in the
language. The name of its exit node exit(p) (the leftmost child of the root in the figure) is
0010010, which is in fact a prefix of p. Yet the extent of exit(p) is 001001010 of which p is
not a prefix. If we had taken p′ = 00100110 we would have exited at the rightmost child
of the root, whose extent 0010011010 has p′ as prefix: in fact, p′ is the prefix of two of the
elements of L, corresponding precisely to the rightmost two leaves in the trie.

A final important remark is the following: if p is not a prefix of an element of L, according
to Proposition 2, p 6� eexit(p). But more than this is true: p 6� eα for all nodes α (for
otherwise, a fortiori, p would be a prefix of the extent of a leaf).

3.3 Static z-fast tries
Let us assume that we have built the trie T (L) for a given language L of size n. Proposition 2
gives an easy way to determine if a string p of length m is a prefix of some element of L:
it is enough to locate exit(p) and then to check whether p is a prefix of its extent or not.
Moreover, the second part of the statement suggests which elements of L have p as prefix.

P. Boldi and S. Vigna 10:5

Algorithm 1 Querying the z-fast trie using fat binary search. Given a string p, it will return
either exit(p) or parex(p).

Input: a string p of length m
Output: either parex(p) or exit(p)
`, r ← 0,m
while ` ≤ r do
f ← the 2-fattest number in [` . . r]
β ← Z(p[0 . . f − 1])
if β 6= ⊥ then
`←

∣∣eβ∣∣+ 1
γ ← β

else
r ← f − 1

end if
end while
return γ

Locating exit(p) can be done trivially in O(mσ) steps, going down in the trie starting
from the root. In [2] we suggest an alternative, faster solution that needs an additional data
structure, called z-map. We briefly recall the idea.

I Definition 3 (2-fattest numbers and handles). The 2-fattest number of an interval [a . . b] of
non-negative integers is the unique integer in [a . . b] that is divisible by the largest power of
two, or equivalently, that has the largest number of trailing zeroes in its binary representation.
The handle hα of a node α of a trie is the prefix of eα whose length is 2-fattest in [|nα| . . |eα|]
(the skip interval of α).

In Figure 1 we show the (length of the) handles of each node, including the leaves: the
handle is the string ending just above the dotted lines you can see in each node.

I Definition 4 (z-map). The z-map Z(−) for the trie T (L) is a map from elements of Σ∗ to
nodes in the trie, which maps hα to α for each internal node α.

In the example of Figure 1, there are only two internal nodes, so the map contains only
two pairs. The z-map can be stored using any static dictionary with constant-time access;
we assume that the dictionary returns the special value ⊥ whenever the key is not in the
dictionary.

The usefulness of the z-map is made evident by Algorithm 1, which takes as input a
string p ∈ Σ∗ and outputs a node of the trie which is either exit(p) or parex(p): it is a
general-alphabet version of the classic fat binary search [2], and in fact, it is exactly identical
to the binary version, since the alphabet has no role in such searches. The proof from [2]
goes along in the same way.

I Theorem 5. Algorithm 1 is correct and its loop is executed at most logm times; in
particular, the z-map is accessed at most logm times.

Note that fat binary search does not use the trie structure: it only queries the z-map,
each time using a prefix of p, and computes possibly the length of the extent of a node
returned by the z-map.

If our purpose is determining whether p is the prefix of some element of L, we can start
with Algorithm 1, but then we need two things: first we must understand whether the

FUN 2018

10:6 Kings, Name Days, Lazy Servants and Magic

Algorithm 2 Given a string p, it will return either exit(p) or ⊥, depending on whether p is
the prefix of a string in L or not.

Input: a string p
Output: if p is the prefix of an element of L then exit(p), otherwise ⊥
γ ←Algorithm 1 on p
assert nγ � p
if p � eγ then

return γ /* γ is the exit node */
else

if p and eγ are �-incomparable then
return ⊥ /* γ is the exit node, but p 6� eexit(p) */

else
/* necessarily eγ ≺ p */
if γ has a child labelled p[|eγ |] then
let γ′ be the child /* γ′ is the exit node */
if p � eγ′ then

return γ′

else
assert p and eγ′ are �- incomparable or γ′ does not have a p[|eγ′ |]-child
return ⊥

end if
else

return ⊥ /* γ is the exit node, but p 6� eexit(p) */
end if

end if
end if

algorithm returned the exit node or its parent (and in the latter case we must go down to
the actual exit node), and second we need to use Proposition 2 to determine if p � eexit(p) or
not. Algorithm 2 does both things at the same time.

I Theorem 6. Algorithm 2 is correct; moreover, if the length of the strings in L is bounded
by O(w/ log σ), the algorithm uses O(logm+ σ) time and I/Os.

Proof. First of all, note that since nγ � p (as in the first assert), one can determine if
p � eγ just by comparing p[|nγ | . . |eγ |] and cγ . A similar consideration is true (later on in
the algorithm) for deciding if p � eγ′ .

Let now γ be the output of Algorithm 1; γ is either the exit node or the parex: in either
case nγ � p (which justifies the first assertion). If p � eγ , necessarily γ is the exit node and
moreover p is a prefix of some element of L by Proposition 2. If p and eγ are incomparable,
once more γ is the exit node (because none of the children of γ can have a name that is a
prefix of p), but (again using Proposition 2) we must return ⊥. The last case is that eγ ≺ p.
If γ has no child with label p

[∣∣eγ∣∣], for the same reasons as in the last case, γ is the exit node
but we must return ⊥. Otherwise, the child with label p

[∣∣eγ∣∣], say γ′, is the real exit node.
We must continue to check if p � eγ′ or not, but we can limit the check to the part of the
string p that was not checked so far. The last assertion states that γ′ is indeed the exit node.

For the complexity statement, the call to Algorithm 1 requires time O(logm) and the
same amount of I/Os to query Z(−) (every access to Z(−) is done in constant time because
of the assumption about the length of the strings in L). The comparison between p and

P. Boldi and S. Vigna 10:7

eγ (and, later, eγ′) requires time O(1 + (m log σ)/w) and O(1 + (m log σ)/B) I/Os (as we
observed above, in both cases we are comparing a substring of p with the compacted path
of a node), but m = O(w/ log σ) so these quantities are both O(1). The only case in which
Algorithm 1 needs to access the trie structure is when it needs to find the child of γ with
label p

[∣∣eγ∣∣], which can be done in time O(σ). J

It is worth noting that Algorithm 2 performs at most one access to the trie structure in
case it needs to enumerate the children of γ. Moreover, the comparisons between p and other
strings requires at most σ scans of overall m characters.

We also remark that if the z-map is modified to include also the handles of the leaves,
Algorithm 1 on a string in L never outputs the parex, which means that Algorithm 2 needs
just O(logm) time and I/Os to solve a membership query.

3.4 Signature-based static z-fast tries
If the length of the strings in L is not bounded by O(w/ log σ), the map Z(−) described in
the previous section uses superlinear space and superconstant time at every access. This is
why the “long string” version of dynamic z-fast tries [3] replaces handles with signatures:
instead of storing pairs (hα, α) we store pairs (H(hα), α) where H(−) is a suitably chosen
signature hash function. The signature-based version is designed to work with sets of at
most 2O(w) strings of length up to 2O(w), but fat binary searches return the correct result
only with high probability.

Note that by using hashes of size (c+ ε) logn, c ≥ 2, we will find distinct hash values for
all handles after a constant expected number of attempts. Indeed, under a full randomness
assumption the probability of a collision when t elements are extracted from a set of u with
replacement is well approximated by 1− e−t2/2u, which means that with the choice above
the probability of having a hash collision between distinct handles is at most

1− e−n
2/21+(c+ε) log n

= 1− e−n
2/2nc+ε

≤ 1
2nc−2+ε → 0 as n→∞.

Once the signatures are all distinct, in estimating the probability of error of a fat binary
search we have to care just about at most logm false positives, which by the union bound
happen with probability at most

2−(c+ε) logn logm = 1
ncnε

O(w) = o

(
1
nc

)
.

Note that each time we have to query the z-map, we have to compute the hash of
a potentially long prefix: to this purpose, the dynamic z-fast trie uses hash functions
that can hash any prefix of the pattern p in constant time after preprocessing p in time
O(1+(m log σ)/w) and storing a linear amount of information. We will see that even stronger
properties will be needed in Section 5.

Finally, the signature-based version needs that besides cα, also nα can be accessed in
constant time from α. This can be obtained in different ways, but usually the simplest one
(and the one used by the dynamic z-fast trie) is to store in α a pointer to a suitable element
of L. Another possibility is to store explicitly eα.

Due to signature collisions and false positives, Algorithm 1 may output a node γ that
is neither the exit node nor the parex. Let us see how this fact impacts on Algorithm 2;
looking back at Lemma 1, we have the following cases:

FUN 2018

10:8 Kings, Name Days, Lazy Servants and Magic

the node γ returned by Algorithm 1 is in fact either the exit node or the parex (because
no false positives were found during the execution, or because by chance we anyway
landed in the correct place): in this case everything goes smoothly as before;
the returned node γ is not even an ancestor of exit(p): in this case, the first assertion
(that nγ � p) fails;
finally, if γ is a proper ancestor of parex(p), then Algorithm 2 proceeds as if γ was the
parex but then the second assertion of the algorithm fails (γ′ would in that case be an
ancestor of the parex, and not the exit node as expected).

Thus, when executing Algorithm 2 in the signature-based case, we have to actually verify
the assertions, which requires time O(1 + (m log σ)/w) and O(1 + (m log σ)/B) I/Os, as we
have to compare the whole name nγ with p (the cost of verifying the assertions covers also
the cost of the comparisons with extents discussed in the proof of Theorem 6). If either
assertion fails, we have to resort to the standard naive trie search to look for the exit node.
The naive search requires, of course, time O(mσ). Summing up:

I Theorem 7. Under a full randomness assumption, let c ≥ 2 and assume that Z(−) stores
((c+ε) logn)-bit hash values without collisions. Then, in time O((m log σ)/w+logm+σ) and
with O((m log σ)/B + logm+ σ) I/Os Algorithm 2 returns the correct result with probability
at least 1 − o(1/nc); otherwise, it detects an assertion error, in which case it returns the
correct result by resorting to the standard naive search on the trie, which requires O(mσ)
time and I/Os.

4 Suffix trees and suffix arrays

For a given string s ∈ Σ∗ of length |s| = n, let Suff(s$) be the set of all the nonempty suffixes
of s$. We write T (s) as an abbreviation for T (Suff(s$)). The trie T (s) is called the suffix
tree of s. As an example, in Figure 2 we show T (ABRACADABRA).

Observe that T (s) is a trie over the alphabet Σ̂ (the addition of $ is needed to make the
language of suffixes prefix-free). It is worth noticing that in most papers on suffix trees there
are no labels on nodes; instead, arcs are labelled with a nonempty strings (and the arcs
to the children of a node have strings that differ in the first character). Our trees can be
transformed into this (perhaps more standard) representation by removing all node labels
and changing the label of each arc (α, α′) to cα,α′cα′ . For the sake of comparison, we show
in Figure 3 the alternative representation of the same trie of Figure 2.

Although in theory one could build the suffix tree of a string explicitly, much more (space-
and time-) efficient approaches are available, based on suffix arrays. The suffix array [11] sa
of s is the permutation of {0, 1, . . . , n} such that

s$[sa[0] . .] < s$[sa[1] . .] < · · · < s$[sa[n] . .].

Let us write si as an abbreviation of s$[sa[i] . .]. It is also convenient to define the lcp array
lcp defined by letting lcp[0] = lcp[n+ 2] = 0 and lcp[i+ 1], 0 ≤ i ≤ n, as the length of the
longest common prefix between si and si+1. In Figure 4, we show the suffix array and the
lcp array for our running example s = ABRACADABRA.

Every node α in the suffix tree can be identified with the interval [`α . . rα] of indices such
that k ∈ [`α . . rα] if and only if sk is the extent of one of the leaves that are descendants of
α. The interval [`α . . rα] is called the lcp-interval of node α [1]. It is easy to see that:

the lcp-interval of the root is [0 . . n];
leaves are the only nodes whose lcp-interval is a singleton;

P. Boldi and S. Vigna 10:9

Z

ε → root = [0 . . 11]
A → α0 = [0 . . 4]
BR → α1 = [5 . . 6]
RA → α2 = [9 . . 10]
ABRA → α3 = [0 . . 1]

R
A

A
D
A
B
R
A
$

A
B
R
A
$

A

R
A

A
D
A
B
R
A
$

A
B
R
A
$

A
D
A
B
R
A
$

A
D
A
B
R
A
$

A
D
A
B
R
A
$

α0 α1 α2

α3

A
B C D

R $

B
C D

$

C $

C $
C $

Figure 2 The zuffix tree T (ABRACADABRA) and its z-map (with lcp-intervals).

the lcp-intervals of the children α0, α1, . . . , αk of a node α are an ordered partition of
the lcp-interval of their parent, where the ordering is established by the lexicographic
order of the characters cα,αi .

Not only there are efficient algorithms to build the suffix array (and the associated lcp
array) [10, 7, 12]: at the price of one additional (and very compressible) array of integers
the suffix array can be made into a so-called enhanced suffix array, and then used to
represent and navigate implicitly the suffix tree [1]. More precisely, we can enumerate the
lcp-intervals [` . . `1 − 1], [`1 . . `2 − 1], . . . , [`k . . r] corresponding to the children of the node
whose lcp-interval is [` . . r]. Each child is enumerated in constant time.

It is easy to check that given a node with lcp-interval [` . . r] we can compute all the data
we need (name, extent, etc.) using only the suffix and the lcp arrays:

∣∣n[`,r]
∣∣ =

{
0 if ` = 0 and r = n (root)
1 + max(lcp[`], lcp[r + 1]) otherwise∣∣e[`,r]

∣∣ =
{
n− sa[`] + 1 if ` = r (leaf)
lcp[a] otherwise∣∣h[`,r]

∣∣ = the 2-fattest number in
[∣∣n`,r∣∣ . . ∣∣e`,r∣∣]

n[`,r] = s
[
sa[`] . . sa[`] +

∣∣n[`,r]
∣∣− 1

]
e[`,r] = s

[
sa[`] . . sa[`] +

∣∣e[`,r]
∣∣− 1

]
where a is the left extreme of the lcp-interval of the second child of [` . . r].

Getting back again to the example depicted in Figure 2, consider the leftmost grandchild of
the root, corresponding to the lcp-interval [0 . . 1]; its children are both leaves and correspond
to [0] and [1]. Its name has length 1 +max(lcp[0], lcp[2]) = 2 (see Figure 4) and its extent has
length lcp[1] = 4. Since sa[0] = 0, name and extent are s[0 . . 1] = AB and s[0 . . 3] = ABRA,
respectively. Its first child [0] has name of length 1 + max(lcp[0], lcp[1]) = 5 (its name is in
fact ABRAC), and extent of length n− sa[0] + 1 = 12 (which is in fact ABRACADABRA$).

FUN 2018

10:10 Kings, Name Days, Lazy Servants and Magic

A

B
R
A

C
A
D
A
B
R
A
$

D
A
B
R
A
$

R
A $

B
R

A

C
A
D
A
B
R
A
$

D
A
B
R
A
$

$

C
A
D
R
A
B
R
A
$

$

C
A
D
A
B
R
A
$

$

C
A
D
A
B
R
A
$

$

Figure 3 The suffix tree T (ABRACADABRA) in the alternative representation used in most
papers about suffix trees.

5 Zuffification

As we explained, there are very efficient (in fact, even very well engineered) algorithms to
build a suffix tree or an (enhanced) suffix array in linear time. What we want to do is adding
to them a z-map gadget (in the case of suffix arrays, the z-map is that of the suffix tree that
the suffix array implicitly represents). We call this process zuffification (which looks really
nice for a spell), and resulting data structures are called the zuffix tree and the (enhanced)
zuffix array.

The idea is very simple: we perform a depth-first visit of the suffix tree. For each internal
node, we can compute its handle (as explained in the previous section), the corresponding
hash, and store the correspondence between the hash and the node. We then check for
collisions in the hash values of handles, possibly restarting with a different hash function
if some collision is found, and finally build a static constant-time dictionary mapping the
hashes to the nodes.

Of course, computing a hash for x needs time O(1 + (|x| log σ)/w). However, we can
make hashing time constant by resorting to a particular kind of rolling hashing: in particular,
we want the two following properties to be true:
1. Given a string x ∈ Σ∗ and c ∈ Σ, we have H(xc) = f(H(x), c), where f can be computed

in constant time.
2. Given strings x, y ∈ Σ∗, we have H(y) = g(H(xy), H(x)), where g can be computed in

constant time.
If H is chosen in this way, we can build in linear time (by the first property) a table recording
the hashes of the prefixes of the text s. At that point, computing the hash of a(ny) substring
of s requires constant time by the second property (the values of H(x) and H(y) being
found in the table). Several types of hash functions have the properties described above: the
list includes hashing based on cyclic polynomials [15], Karp–Rabin hashing [8] and hashing
based on the remainder of the division by a general irreducible polynomial [14] (the string is
mapped to a string of bits and then interpreted as a polynomial over F2). Thus,

P. Boldi and S. Vigna 10:11

i sa[i] lcp[i] si = s$[sa[i] . .]
0 0 0 ABRACADABRA$
1 7 4 ABRA$
2 3 1 ACADABRA$
3 5 1 ADABRA$
4 10 1 A$
5 1 0 BRACADABRA$
6 8 3 BRA$
7 4 0 CADABRA$
8 6 0 DABRA$
9 2 0 RACADABRA$
10 9 2 RA$
11 11 0 $
12 0

Figure 4 The suffix array and lcp array for the string ABRACADABRA.

I Theorem 8. Zuffification can be performed in expected linear time (in fact, with high
probability) both for suffix trees and suffix arrays.

A practical improvement that slows down the construction time, but reduces significantly
the space usage, is that of recording the hashes only for prefixes whose length is multiple of
some value O(w). In the cases above, it possible to still compute the hash of a substring
quickly, albeit in some case O(w) operations might be necessary (this depends on which
instructions are considered to be atomic: for example, modern processor have constant-time
multiplication of polynomial on F2). However, we have to store much fewer prefix hashes.

5.1 Searching with zuffix arrays
We can finally completely rebuild the spell of the fat sorceress. Given a string s, we build in
linear time its enhanced suffix array, and simulate in linear time a visit of the associated
suffix tree to build the z-map, thus obtaining the zuffix array. The latter operation works in
expected linear time, because there might be collisions.

To search the zuffix array, we apply Theorem 7 to our setting, obtaining the same bounds.
More importantly, since the nodes of the simulated suffix tree are exactly the intervals of the
suffix array containing the starting points of the suffixes we are looking for, at the end of
Algorithm 2 we have found all the locations of the search pattern:

I Theorem 9. Under a full randomness assumption, given a pattern p, a zuffix array (in
time O((m log σ)/w + logm + σ) and with O((m log σ)/B + logm + σ) I/Os) returns the
interval of the underlying suffix array containing the positions at which p appears, with
probability at least 1− o(1/nc); otherwise, it returns the same result in time O(mσ).

Significant practical improvements to the space used by the z-map can be obtained using
the following theorem, which can be proved by adapting the proof of Theorem 5:

I Theorem 10. Let L be a prefix-free language, and S a parent-closed set of nodes of T (L).
Consider a map Z sending hα → α, α ∈ S. Then, Algorithm 1 returns the lowest ancestor
in S of the exit node of the pattern, or its parent.

The theorem above opens the door to a number of interesting space-time tradeoffs: for
example, eliminating c levels of leaves in Definition 4 one obtains a much smaller map, but

FUN 2018

10:12 Kings, Name Days, Lazy Servants and Magic

now locating the actual exit node (Algorithm 2) may require to go down c levels in the trie,
using time O((m log σ)/w + logm+ cσ) and with O(m log σ/B + logm+ cσ) I/Os.

An even more interesting application is in DNA searching: usually the databases are
very large, but the patterns are several orders of magnitude shorter: by building a z-map
containing only handles shorter than `, the search for patterns shorter than ` will not be
affected, but the map will be much smaller (longer patterns will still be searchable, possibly
using time O(mσ)).

6 Conclusions

The fat sorceress was actually quite good at spells: given a pattern p, after a search that is
logarithmic in |p|, a zuffix array tests p against s scanning from at most σ positions. In practice,
this means at most σ cache misses in the test phase (this fact is only partially expressed by
the I/Os in the cache-oblivious model, as the model does not consider prefetching). The
result needs an uncompressed original text, but in the context of the rise of modern low-cost
fast storage, like solid-state drives, this limitation does not seem so serious. We remark
that in our description we used enhanced suffix arrays, but nothing prevents zuffification of
compressed suffix trees [16], compressed suffix arrays [6] or even of the FM-index [4].

References
1 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees

with enhanced suffix arrays. Journal of discrete algorithms, 2(1):53–86, 2004.
2 Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Monotone minimal

perfect hashing: Searching a sorted table with O(1) accesses. In Proceedings of the 20th
Annual ACM-SIAM Symposium On Discrete Mathematics (SODA), pages 785–794, New
York, 2009. ACM Press.

3 Djamal Belazzougui, Paolo Boldi, and Sebastiano Vigna. Dynamic z-fast tries. In Edgar
Chávez and Stefano Lonardi, editors, String Processing and Information Retrieval - 17th
International Symposium, SPIRE 2010, Los Cabos, Mexico, October 11-13, 2010. Proceed-
ings, volume 6393 of Lecture Notes in Computer Science, pages 159–172. Springer, 2010.

4 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
jul 2005.

5 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. ACM Trans. Algorithms, 8(1):4:1–4:22, 2012.

6 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM Journal on Computing, 35(2):378–
407, 2005.

7 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construc-
tion. Journal of the ACM (JACM), 53(6):918–936, 2006.

8 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987.

9 Donald E. Knuth. The Art of Computer Programming. Addison–Wesley, 1973.
10 Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. Journal

of Discrete Algorithms, 3(2-4):143–156, 2005.
11 Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.

SIAM Journal on Computing, 22(5):935–948, 1993.
12 Ge Nong, Sen Zhang, and Wai Hong Chan. Linear suffix array construction by almost pure

induced-sorting. In Data Compression Conference, 2009. DCC’09., pages 193–202. IEEE,
2009.

P. Boldi and S. Vigna 10:13

13 Ge Nong, Sen Zhang, and Wai Hong Chan. Two efficient algorithms for linear time suffix
array construction. IEEE Transactions on Computers, 60(10):1471–1484, 2011.

14 W. W. Peterson and D. T. Brown. Cyclic codes for error detection. Proceedings of the IRE,
49(1):228–235, 1961.

15 Eugene Prange. Cyclic error-correcting codes in two symbols. Technical note AFCRC-TN-
57-103, Air Force Cambridge Research Center, 1957.

16 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory of Computing
Systems, 41(4):589–607, 2007.

FUN 2018

Computational Complexity of Generalized
Push Fight
Jeffrey Bosboom
MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
jbosboom@csail.mit.edu

Erik D. Demaine
MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
edemaine@mit.edu

Mikhail Rudoy1

MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
mrudoy@gmail.com

Abstract
We analyze the computational complexity of optimally playing the two-player board game Push
Fight, generalized to an arbitrary board and number of pieces. We prove that the game is
PSPACE-hard to decide who will win from a given position, even for simple (almost rectangular)
hole-free boards. We also analyze the mate-in-1 problem: can the player win in a single turn?
One turn in Push Fight consists of up to two “moves” followed by a mandatory “push”. With
these rules, or generalizing the number of allowed moves to any constant, we show mate-in-1 can
be solved in polynomial time. If, however, the number of moves per turn is part of the input, the
problem becomes NP-complete. On the other hand, without any limit on the number of moves
per turn, the problem becomes polynomially solvable again.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases board games, hardness, mate-in-one

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.11

Related Version https://arXiv.org/abs/1803.03708

Acknowledgements This work grew out of an open problem session originally started during an
MIT class on Algorithmic Lower Bounds: Fun with Hardness Proofs (6.890) in Fall 2014.

1 Introduction

Push Fight [10] is a two-player board game, invented by Brett Picotte around 1990, pop-
ularized by Penny Arcade in 2012 [9], and briefly published by Penny Arcade in 2015 [8].
Players take turns moving and pushing pieces on a square grid until a piece gets pushed off
the board or a player is unable to push on their turn. Figure 1 shows a Push Fight game in
progress, and Section 2 details the rules.

In this paper, we study the computational complexity of optimal play in Push Fight,
generalized to an arbitrary board and number of pieces, from two perspectives:

1 Now at Google Inc.

© Jeffrey Bosboom, Erik D. Demaine, and Mikhail Rudoy;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 11; pp. 11:1–11:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jbosboom@csail.mit.edu
mailto:edemaine@mit.edu
mailto:mrudoy@gmail.com
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.11
https://arXiv.org/abs/1803.03708
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Computational Complexity of Generalized Push Fight

Figure 1 A Push Fight game in progress. Photo by Brettco, Inc., used with permission.

Table 1 Summary of our results.

Computational complexity of. . .
Moves per turn Mate-in-1 Who wins?
≤ 2 P PSPACE-hard, in EXPTIME
≤ c constant P open
≤ k input NP-complete open
unlimited P open

1. Who wins? The typical complexity-of-games problem is to determine which player wins
from a given game configuration.

2. Mate-in-1: Can the current player win in a single turn?

Table 1 summarizes our results.
Generalized Push Fight is a two-player game played on a polynomially bounded board

for a potentially exponential number of moves, so we conjecture the “who wins?” decision
problem to be EXPTIME-complete, as with Checkers [11] and Chess [4]. (Certainly the
problem is in EXPTIME, by building the game tree.) In Section 4, we prove that the problem
is at least PSPACE-hard, using a proof patterned after the NP-hardness proof of Push-∗
[7]. Our proof uses a simple, nearly rectangular board, in the spirit of the original game; in
particular, the board we use is hole-free and x-monotone (see Figure 8). It remains open
whether Push Fight is in PSPACE, EXPTIME-hard, or somewhere in between.

Our mate-in-1 results are perhaps most intriguing, showing a wide variability according
to whether and how we generalize the “up to two moves per turn” rule in Push Fight. If we
leave the rule as is, or generalize to “up to c moves per turn” where c is a fixed constant
(part of the problem definition), then we show that the mate-in-1 problem is in P, i.e., can
be solved in polynomial time. However, if we generalize the rule to “up to k moves per turn”
where k is part of the input, then we show that the mate-in-1 problem becomes NP-complete.
On the other hand, if we remove the limit on the number of moves per turn, then we show
that the mate-in-1 problem is in P again. Section 3 proves these results.

The mate-in-1 problem has been studied previously for other board games. The earliest
result is that mate-in-1 Checkers is in P, even though a single turn can involve a long sequence
of jumps [3]. On the other hand, Phutball is a board game also featuring a sequence of jumps
in each turn, yet its mate-in-1 problem is NP-complete [2].

For omitted proofs, see the full version of the paper [1].

Jeffrey Bosboom, Erik D. Demaine, and Mikhail Rudoy 11:3

Figure 2 Original Push Fight board.
Shaded regions represent side rails.

Figure 3 Our notation for pieces, in
reading order: a white king, a white pawn,
a black king, a black pawn; and white and
black anchored kings (in an actual game,
there is only one anchor).

→

Figure 4 An example move.

→

Figure 5 An example push.

2 Rules

The original Push Fight board is an oddly shaped square grid containing 26 squares; see
Figure 2. Part of the boundary of this board has side rails which prevent pieces from being
pushed off across those edges. We generalize Push Fight by considering arbitrary polyomino
boards, with each boundary edge possibly having a side rail.

Push Fight is played with two types of pieces, each of which takes up a square of the
board: pawns (drawn as circles) and kings (drawn as squares). Each piece is colored either
black or white, denoting which player the piece belongs to. Standard Push Fight is played
with three kings and two pawns per player. Additionally, there is a single anchor that is
placed on top of a king after it pushes (but is never placed directly on the board). Figure 3
shows our notation for the pieces.

Push Fight gameplay consists of the two players alternating turns. During a player’s turn,
the player makes up to two optional moves followed by a mandatory push.

To make a move, a player moves one of their pieces along a simple path of orthogonally
adjacent empty squares; see Figure 4.

To push, a player moves one of their kings into an occupied adjacent square. The
piece occupying that square is pushed one square in the same direction, and this continues
recursively until a piece is pushed into an unoccupied square or off the board. If this process
would push a piece through a side rail, or would push the anchored king, the push cannot be
made. Pushes always move at least one other piece. When the push is complete, the pushing
king is anchored (the anchor is placed on top of that king). Figure 5 shows a valid push.

A player loses if any of their pieces are pushed off the board (even by their own push) or
if they cannot push on their turn.

I Definition 1. A Push Fight game state is a description of the board’s shape, including
which board edges have side rails, and for each board square, what type of piece or anchor
occupies it (if any).

Note that the position of the anchor encodes which player’s turn it is: if the anchor is on
a white king, it is black’s turn, and vice versa. If the anchor has not been placed (no turns
have been taken), it is white’s turn.

FUN 2018

11:4 Computational Complexity of Generalized Push Fight

3 Mate-in-1

We consider three variants of mate-in-1 Push Fight, varying in how the number of moves is
specified: as a constant in the problem definition, as part of the input, or without a limit.

3.1 c-Move Mate-in-1
I Problem 2. c-Move Push Fight Mate-in-1: Given a Push Fight game state, can the
player whose turn it is win this turn by making up to c moves and one push?

The standard Push Fight game has c = 2.

I Theorem 3. c-Move Push Fight Mate-in-1 is in P.

Proof Sketch. The number of possible turns is ≤ A2c+4 on a board of area A. J

3.2 k-Move Mate-in-1 is in NP
I Problem 4. k-Move Push Fight Mate-in-1: Given a Push Fight game state and a
positive integer k, can the player whose turn it is win this turn by making up to k moves and
one push?

In this section, we prove the following upper bound on the number of useful moves in a
turn:

I Theorem 5. Given a Push Fight game state on a board having n squares, if the current
player can win this turn, they can do so using at most n6 moves followed by a push.

Proof Sketch. We divide the reachable game states into ≤ n4 equivalence classes, and show
that two equivalent configurations can be reached via ≤ n2 moves within that class. J

Our bound directly implies an NP algorithm for k-Move Push Fight Mate-in-1:

I Corollary 6. k-Move Push Fight Mate-in-1 is in NP.

A turn consists of making some number of moves followed by a single push. For the purpose
of analyzing a single turn, kings other than the single king that pushes are indistinguishable
from pawns, so we can assume the current player first chooses a king, then replaces all of
their other kings with pawns before making their moves and push. The following definitions
are based on this assumption.

I Definition 7. Given a single-king game state, a board configuration is a placement of pieces
reachable by the current player making a sequence of moves.

I Definition 8. The pawnspace of a board configuration is the (possibly disconnected) region
of the board consisting of the empty squares and the squares containing the current player’s
pawns. Equivalently, the pawnspace is the region consisting of all squares not occupied by
the current player’s king or the other player’s pieces.

I Definition 9. The signature of a board configuration is a list of nonnegative integers,
where each integer is a count of the current player’s pawns in a connected component of the
configuration’s pawnspace, ordered according to row-major order on the leftmost topmost
square in the corresponding connected component.

Jeffrey Bosboom, Erik D. Demaine, and Mikhail Rudoy 11:5

I Definition 10. Given two board configurations C1 and C2 derived from the same game
state, we say that C1 ≡ C2 if and only if
1. C1 and C2 have the same pawnspace (that is, the current player’s only king occupies the

same square in C1 and C2) and
2. C1 and C2 have the same signature (that is, each connected component of the pawnspace

contains the same number of the current player’s pawns in C1 and C2).

Relation ≡ is clearly reflexive, symmetric, and transitive, so it is an equivalence relation
inducing a partition of the set of board configurations derived from a given game state into
equivalence classes. We need the following two lemmas about ≡ for our proof of Theorem 5:

I Lemma 11. For a given game state on a board with n squares, there are at most n4

equivalence classes of board configurations.

I Lemma 12. If C1 ≡ C2, then C2 can be reached from C1 in at most n2 − 1 moves without
leaving the equivalence class of C1.

We are now ready to prove Theorem 5:

I Theorem 5. Given a Push Fight game state on a board having n squares, if the current
player can win this turn, they can do so using at most n6 moves followed by a push.

Proof. By our assumption that the current player can win this turn, there exists a sequence of
moves for the current player after which they can immediately win with a push, corresponding
to a sequence of board configurations C1, C2, . . . , Cl. Configuration C1 is obtained from
the initial game state by replacing all of the current player’s kings, except the one that
ends up pushing, with pawns. Each Ci+1 can be reached from Ci in one move, and Cl is a
configuration from which the current player can win with a push.

We now define simplifying a sequence of board configurations over an equivalence class
E. If the sequence contains no configurations from E, then simplifying the sequence over E

leaves it unchanged. Otherwise, let Ai be the first configuration in the sequence in E and
Aj be the last configuration in the sequence in E. By Lemma 12, there exists a sequence
of fewer than n2 − 1 moves that transforms Ai into Aj , corresponding to a sequence of
board configurations Ai = D0, D1, . . . , Du = Aj with u ≤ n2 − 1. Then simplifying over E

consists of replacing all configurations between and including Ai and Aj with the replacement
sequence D0, D1, . . . , Du.

Notice that simplifying a sequence (over any class) never changes the first or last configu-
ration in the sequence, and each configuration in the resulting sequence remains reachable in
one move from the previous configuration in the resulting sequence. After simplifying over a
class E, the only configurations in the resulting sequence in E are those in the replacement
sequence, so the number of configurations in the sequence in E is at most n2. Furthermore,
all configurations in the replacement sequence are in E, so simplifying over E never increases
(but may decrease) the number of configurations falling in other classes.

Let C ′1, C ′2, . . . , C ′l be the result of simplifying C1, C2, . . . , Cl over every equivalence class.
By Lemma 11, there are at most n4 such classes, and by the above paragraph there are at
most n2 configurations from each class in C ′1, C ′2, . . . , C ′l , so the length of C ′1, C ′2, . . . , C ′l is at
most n6. Each configuration in C ′1, C ′2, . . . , C ′l is reachable in one move from the previous
configuration, and that sequence of at most n6 moves leaves the current player in position to
win with a push, as desired. J

FUN 2018

11:6 Computational Complexity of Generalized Push Fight

3.3 Unbounded-Move Mate-in-1
I Problem 13. Unbounded-Move Push Fight Mate-in-1: Given a Push Fight game
state, can the player whose turn it is win this turn by making any number of moves and one
push?

I Theorem 14. Unbounded-Move Push Fight Mate-in-1 is in P.

We can of course solve Unbounded-Move Push Fight Mate-in-1 by trying all possible
sequences of moves to find a board configuration from which the current player can win
with a push, but there are exponentially many board configurations, so such an algorithm
takes exponential time. Instead, we can use the fact that any two configurations in the same
equivalence class are reachable from each other in a polynomial number of moves (from
Lemma 12) to search over equivalence classes of board configurations instead of searching
over board configurations. There are at most n4 equivalence classes (by Lemma 11), so they
can be searched in polynomial time.

We will make use of the following definitions:

I Definition 15. Two equivalence classes of board configurations C1 and C2 are neighbors
if there exist board configurations b1 ∈ C1 and b2 ∈ C2 such that b1 can be reached from
b2 with a king move of exactly one square. The equivalence class graph is a graph whose
vertices are equivalence classes of board configurations and whose edges connect neighboring
equivalence classes.

An equivalence class of board configurations C is a winning equivalence class if there
exists a board configuration b ∈ C such that the player whose turn it is can win with a push.

The key idea for our algorithm is the following:

I Lemma 16. There exists a path in the equivalence class graph from the equivalence class
of the initial board configuration to a winning equivalence class if and only if there exists a
winning move sequence.

The size of the equivalence class graph is polynomial in n (by Lemma 11), so provided
the graph can be constructed and the winning equivalence classes identified, this type of
path in the equivalence class graph, if it exists, can be found in polynomial time.

Recall from Definition 10 that equivalence classes of board configurations are defined by
the pawnspace and signature, and that, for configurations derived from the same game state
(i.e., having the other player’s pieces in the same positions), the pawnspace is defined by
the position of the current player’s king. Thus we can uniquely name a class using the king
position and signature.

I Definition 17. The class descriptor of an equivalence class of board configurations for
a given game state is the ordered pair of the position of the current player’s king and the
signature defining that class.

To prove Theorem 14, we need to give polynomial-time algorithms to compute the
neighbors of an equivalence class and to decide whether a class is a winning equivalence class.

I Lemma 18. Given an initial game state and a class descriptor for some class C, we can
compute in polynomial time the equivalence classes (as class descriptors) neighboring C.

I Lemma 19. Given an initial game state and a class descriptor for some class C, we can
decide in polynomial time whether C is a winning equivalence class.

Jeffrey Bosboom, Erik D. Demaine, and Mikhail Rudoy 11:7

We are now ready to prove Theorem 14:

I Theorem 14. Unbounded-Move Push Fight Mate-in-1 is in P.

Proof. First, compute the class descriptor for the equivalence class of the initial board
configuration. Then perform a breadth- or depth-first search of the equivalence class graph,
using the algorithm given in the proof of Lemma 18 to compute the neighboring class
descriptors and the algorithm given in the proof of Lemma 19 to decide if the search has
found a winning equivalence class. Each of these procedures takes polynomial time. By
Lemma 11, there are only polynomially many equivalence classes, so the search terminates
in polynomial time. By Lemma 16, there exists a winning move sequence if and only if this
search finds a path to a winning equivalence class. J

The key idea of the above proof is that, if we do not care how many moves we make
inside an equivalence class, then it is sufficient to search the graph of equivalence classes.
Thus the above proof does not apply to k-Move Push Fight Mate-in-1, and in the next
section, we prove k-Move Push Fight Mate-in-1 is NP-hard.

3.4 k-Move Mate-in-1 is NP-hard
To prove k-Move Push Fight Mate-in-1 hard, we reduce from the following problem,
proved strongly NP-hard in [5]:

I Problem 20. Integer Rectilinear Steiner Tree: Given a set of points in R2 having
integer coordinates and a length `, is there a tree of horizontal and vertical line segments of
total length at most ` containing all of the points?

I Theorem 21. k-Move Push Fight Mate-in-1 is strongly NP-hard.

Proof Sketch. The basic idea of our reduction is to create a game state mostly full of the
current player’s pawns, but with a few empty squares (holes). The player must “move” the
holes (by moving pawns into them, creating a new hole at the pawn’s former square) to
free a king that can push one of the other player’s pieces off the board. Initially each pawn
can only travel one square (into an adjacent hole) per move, but once two holes have been
brought together, a pawn can travel two squares per move, and so on. Bringing the holes
together optimally amounts to finding a Steiner tree covering the holes’ initial positions.

Reduction: Suppose we are given an instance of Integer Rectilinear Steiner Tree
consisting of points pi = (xi, yi) with i = 1, . . . , n and length `. For convenience, and without
affecting the answer, we first translate the points so that min xi = 2 and min yi = 4 and
reorder the points such that y1 = 4.

We then build a Push Fight game state with a rectangular board with a height of max yi

and a width of n + max xi, indexed using 1-based coordinates with the origin in the bottom-
left square; refer to Figure 6. The entire boundary of the board has side rails except the
edge adjacent to square (x1, 1). There is a white king in square (x1 + n, 2) and a black king
with the anchor in square (x1 − 1, 2). There is a black pawn in square (x, y) if any of the
following are true:
1. y = 3 and x 6= x1,
2. y = 2 and either x < x1 − 1 or x > x1 + n, or
3. y = 1.
The squares (xi, yi) with 1 ≤ i ≤ n (corresponding to the points in the Integer Rectilinear
Steiner Tree instance) are empty. All remaining squares are filled with white pawns. The
output of the reduction is this Push Fight board together with k = ` + 3. J

FUN 2018

11:8 Computational Complexity of Generalized Push Fight

1 32 4 65

1

3

2

4

7

6

8

5

p1

p2

p3

p4

→

1 32 4 76 8 9 105

1

3

2

4

7

6

8

5

Figure 6 A Push Fight board (right) produced during the reduction from the points in an
example rectilinear Steiner tree instance (left).

4 Push Fight is PSPACE-hard

In this section, we analyze the problem of deciding the winner of a Push Fight game in
progress.

I Problem 22. Push Fight: Given a Push Fight game state, does the current player have
a winning strategy (where players make up to two moves per turn)?

I Theorem 23. Push Fight is PSPACE-hard.

To prove PSPACE-hardness, we reduce from Q3SAT, proved PSPACE-complete in
[12, 6]:

I Problem 24. Q3SAT: Given a fully quantified boolean formula in conjunctive normal
form with at most three literals per clause, is the formula true?

Our proof parallels the NP-hardness proof of Push-∗ in [7]. Push-∗ is a motion-planning
problem in which a robot (agent) traverses a rectangular grid, some squares of which contain
blocks. The robot can push any number of consecutive blocks when moving into a square
containing a block, provided no blocks would be pushed over the boundary of the board.
The Push-∗ decision problem asks, given a initial placement of blocks and a target location,
can the robot reach the target location by some sequence of moves? In our proof, the white
king takes the place of the Push-∗ robot2 and white pawns function as blocks. Our proof
has the additional complication that Black sets the universally quantified variables, and that
White’s moves and Black’s push must be forced at all times to keep the other gadgets intact.

Figure 7 shows an overview of the reduction. The sole white king begins at the bottom-left
of the variable gadget I block, setting existentially quantified variables as it pushes up and
right. The variable gadget II block contains black pawns and holes that allow Black to set
the universally quantified variables. After all the variables have been set, the white king
traverses the bridge to the clause gadget block. The variable and clause gadgets interact via
a pattern of holes in the connection block encoding the literals in each clause. The white

2 The Push-∗ robot can move without pushing blocks, so the correspondence is not exact.

Jeffrey Bosboom, Erik D. Demaine, and Mikhail Rudoy 11:9

connection
block

clause gadgetsbridge

va
ri
ab
le
ga
dg
et
s
I

move-wasting gadget

va
ri
ab
le
ga
dg
et
s
II

ov
er
fl
ow
bl
oc
k

re
w
ar
d
ga
dg
et

Figure 7 An overview of the Push Fight board produced by our reduction.

king can traverse the clause gadgets only if the variable gadgets were traversed in a way
corresponding to a satisfying assignment of the variables. The reward gadget contains a
boundary square without a side rail, such that the white king can push a black pawn off the
board if the white king reaches the reward gadget. The overflow block contains empty squares
needed by the variable gadgets that were not used in the connection block (for variables
appearing in few clauses). The move-wasting gadget forces White’s moves and Black’s push,
ensuring the integrity of the other gadgets. Finally, all other squares on the board are filled
with white pawns, and the boundary has side rails except at specific locations in the reward
and move-wasting gadgets. Figure 8 shows an example output of the reduction.

We first prove the behavior of each of the gadgets, then describe how the gadgets are
assembled.

4.1 Move-wasting gadget
The move-wasting gadget requires White to use both moves to prevent Black from winning
on the next turn (unless White can win in the current turn). The move-wasting gadget
contains the only black king, thus consuming (and allowing) Black’s push each turn. When
analyzing the other gadgets, we can thus assume White can only push and Black can only
move. The move-wasting gadget comprises the entire bottom three rows of the board, but
pieces only move in the far-right portion. Figure 9a shows the initial state of the gadget.
Throughout this analysis, we assume White cannot win in one turn; Section 4.5, which
analyzes the reward gadget, describes the position in which White can immediately win in
one turn, and can therefore disregard the threat from Black in the move-wasting gadget.

In the initial state, the anchor is on the black king, so it is White’s turn. White must
move the pawn above the black king to avoid losing next turn. There are only two reachable
empty squares, both in the column left of the black king. If the other square in that column
remains empty, Black can move the black king into it and push the white pawn in that
column off the board. Thus White must fill the other square in that column, and the only way
to do so is to move the pawn two columns left of the white king one square right. Figure 9b
shows the resulting position (after White pushes elsewhere in the board).

FUN 2018

11:10 Computational Complexity of Generalized Push Fight

Figure 8 The result of performing the reduction on the formula ∀x∃y (x∨¬y)∧ (¬x∨y). Gadgets
and blocks are outlined.

...

(a) Initial state

...

(b) One white turn after (a)

...

(c) One black turn after (b)

...

(d) One white turn after (c)

Figure 9 The move-wasting gadget.

Black’s only legal push is to the left, resulting in the position shown in Figure 9c.

The rightmost four columns in Figure 9c are simply the reflection of those columns in
Figure 9a, so by the same argument White must fill the column to the right of the black
king, resulting in Figure 9d.

Again, the rightmost four columns of Figures 9d and 9b are reflections of each other.
Black’s only legal push is to the right, restoring the gadget to the initial state shown in
Figure 9a. Thus until White can win in one turn, White must use both moves in the
move-wasting gadget, and at all times Black must (and can) push in the move-wasting gadget.
In the analysis of the remaining gadgets, if the white king reaches a position from which it
cannot push, we conclude that White immediately loses, because if White moves a pawn or
the king into position to push, Black can win on the next turn as explained above.

Jeffrey Bosboom, Erik D. Demaine, and Mikhail Rudoy 11:11

... p

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

Figure 10 Existential variable gadget.

... ...

0

0

0

0 0 0 0 0

000000

0

0

0

p

p - 10

0

0

Figure 11 Universal variable gadget.

4.2 Variable gadgets
The existential variable gadget forces White to fill all empty squares in one row of the
connection block, corresponding to setting the value of that variable. The universal variable
gadget allows Black to choose the value of the corresponding variable, then forces White to
similarly fill a row of empty squares. We first analyze a core gadget; the existential variable
gadget is a minor variant of the core gadget and its correctness follows directly, while the
universal variable gadget has an additional component to allow Black to choose the variable’s
value. Throughout our analysis, we take advantage of the board being filled with white
pawns to limit the number of pieces that can leave the gadget.

The core gadget occupies a rectangle of width p + 5 and height 5. When instantiated in
the reduction, the gadget lies entirely within the variable gadget I block. Integer p is one
more than the maximum number of occurrences of a literal in the input formula. The initial
state of the core gadget is shown in Figure 12. Each number along the boundary of the figure
gives the number of empty squares outside the gadget in that direction, and thus an upper
bound on the number of pieces that can leave the gadget via that edge.

The following lemma summarizes the constraints we prove about the core gadget.

I Lemma 25. Starting from the position in Figure 12, and assuming the white king does
not push down or left from this position,
(i) the white king leaves in the second-rightmost column, and
(ii) when the white king leaves either

(a) the gadget is as shown in Figure 13 and p + 1 white pawns have been pushed out
along the bottom row of the gadget, or

(b) the gadget is as shown in Figure 14 and p white pawns have been pushed out along
the second-to-bottom row of the gadget,

(iii) and no other pieces have left the gadget.

We will construct the existential and universal variable gadgets from the core gadget
such that the assumption holds. Lemma i ensures we can chain variable gadgets together

FUN 2018

11:12 Computational Complexity of Generalized Push Fight

... p

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

Figure 12 The initial configuration of the core gadget together with upper bounds on the number
of pushes out of the gadget at each boundary edge. Omitted columns do not have a given upper
bound.

...

Figure 13 The final configuration of the
core gadget after setting the variable to true.

...

Figure 14 The final configuration of the
core gadget after setting the variable to false.

in sequence without the white king escaping. The outcomes implied by Lemma iia and iib
correspond to setting the variable to true or false (respectively) by filling in the empty squares
in the connection block that could be used to satisfy a clause gadget for a clause containing
the opposite literal; that is, pushing pawns out along the bottom row of a gadget prevents all
negative literals from being used to satisfy a clause, and similarly for the second-to-bottom
row and positive literals.

Proof. We proceed by case analysis starting from Figure 12. The move-wasting gadget
consumes White’s moves, and there are no black pieces in the core gadget, so we need only
analyze the sequence of White’s pushes.

Suppose the white king first pushes right. Because of the upper bounds along the top
and bottom edges of the gadget, the only legal push in the resulting configuration is to the
right, and this remains the case until the white king reaches the fourth column from the
right of the gadget. At this point p + 1 pawns have been pushed off the right edge along the
bottom row of the gadget, so there are no empty squares remaining in that row, so pushing
right is no longer possible and the only legal push is up. Then the only legal push is again
up because of the constraints on the left edge of the gadget. Figure 15 shows the result of
this sequence of pushes.

If the white king pushes left from this position, the only possible next push is down, after
which there are no legal pushes, resulting in a loss for White. Figure 16 shows this sequence
of pushes.

Jeffrey Bosboom, Erik D. Demaine, and Mikhail Rudoy 11:13

... p

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

→
... p

0

0

0

0

0

0

0

0 0 0 0 0

000000

p

∗→
... p

0

0

0

0

0

0

0

0 0 0 0 0

000000

1

→
... p

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
... p

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
... p

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

Figure 15 One possible push sequence starting from the initial state of the core gadget. The
starred arrow elides a series of pushes to the right.

... p

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
... p

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
... p

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

Figure 16 The result of pushing left and down from the last position in Figure 16. White has no
legal pushes in the final position.

The only other legal push from the last position in Figure 15 is to the right, after which
pushes right, up, up and up again are the only legal pushes. This sequence results in the
white king, preceded by a white pawn, exiting the top of the gadget in the second-rightmost
column, as desired by Lemma i. Figure 17 shows the positions resulting from this sequence.
The final position reached is the position in Figure 13, p + 1 pawns were pushed out of the
gadget to the right along the bottom row, as desired by Lemma iia, and and no other pieces
were pushed out of the gadget, as desired by Lemma iii.

Now suppose that the white king pushes up from the initial configuration. Because of
the constraints on the gadget boundary, the only legal push is to the right until the white
king reaches the fourth column from the right of the gadget. At this point p pawns have
been pushed off the right edge along the second-to-bottom row of the gadget, so there are no
empty squares remaining in that row, so pushing right is no longer possible and the only
legal push is up. Then the only legal push is again up because of the constraints on the left
edge of the gadget. Figure 18 shows the result of this sequence of pushes.

If the white king pushes up from this position, there are no legal pushes in the resulting
position, resulting in a loss for White. Figure 19 shows this push and the resulting losing
position.

The only other legal push from the last position in Figure 18 is to the right, after which
pushes right, up, up and up again are the only legal pushes. This sequence results in the
white king, preceded by a white pawn, exiting the top of the gadget in the second-rightmost
column, as desired by Lemma i. Figure 20 shows the positions resulting from this sequence.
The final position reached is the position in Figure 14, and p pawns were pushed out of the
gadget to the right along the second-to-bottom row, as desired by Lemma iib. No other
pieces were pushed out of the gadget, as desired by Lemma iii.

This completes the case analysis. J

FUN 2018

11:14 Computational Complexity of Generalized Push Fight

... p

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
... p

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
... p

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
... p

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
... p

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
...

Figure 17 The result of pushing right from the last position in Figure 15, reaching the position
in Figure 13.

... p

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

→
... p

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

→
... p

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

∗→
... 1

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

→
...

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
...

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

Figure 18 The other possible push sequence starting from the initial state of the core gadget.
The starred arrow elides a series of pushes to the right.

Existential variable gadget:

The existential variable gadget, shown in Figure 10, is nearly the same as the core gadget,
differing only in the bottom of the leftmost column. When instantiated in the reduction,
the white king enters the gadget by pushing a white pawn up into the leftmost column,
becoming exactly the core gadget. From the position immediately after the white king
enters the gadget, the white king cannot push left (because there are no empty spaces in the
row to the left) nor down (because it just pushed up, leaving an empty space in its former
position), satisfying the assumption in Lemma 25. Thus by Lemma i, the white king leaves
the existential variable gadget in the second-rightmost column with a white pawn above it,
and by either Lemma iia or iib, all empty squares in one of two rows of the connection block
are now filled by pawns pushed out of the existential variable gadget.

Universal variable gadget:

The universal variable gadget consists of two disconnected regions. The left subregion of the
gadget occupies a (p + 6) × 5 rectangle in the variable gadget I block. As the white king
proceeds through the left region of the gadget, a subregion of the gadget reaches the initial
state of the core gadget. The right region of the gadget occupies a 4 × 4 rectangle in the
variable gadget II block and contains a black pawn to allow Black to control the value of
the variable. The bottom of the right region is one row lower than the bottom of the left

Jeffrey Bosboom, Erik D. Demaine, and Mikhail Rudoy 11:15

...

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
...

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

Figure 19 The result of pushing up from the last position in Figure 18. White has no legal
pushes in the final position.

...

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
...

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
...

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
...

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
...

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
...

Figure 20 The result of pushing right from the last position in Figure 18, reaching the position
in Figure 14.

region. The area between the two regions of the gadget (in the three rows shared by both) is
entirely filled by white pawns. Figure 11 shows the universal variable gadget, including the
pawn-filled area between the regions.

As with the existential variable gadget, when instantiated in the reduction, the white king
enters the universal variable gadget by pushing a white pawn up into the leftmost column.
Figure 21 shows the resulting position. Regardless of Black’s move, White’s only legal push
is to the right. By moving the black pawn, Black can choose between the two positions in
Figure 22, depending on which of the two rows the black pawn is in when White pushes.

In both of the resulting positions, the black pawn is surrounded, so Black can no longer
influence events in this gadget. The left region of the gadget, without the leftmost column, is
identical to the initial position of the core gadget. In both positions, the white king cannot
push left (empty space) or down (no empty spaces down in the column), satisfying the
assumption in Lemma 25. Thus either Lemma iia or Lemma iib holds. Because of the edge
constraints, in Figure 22a, only Lemma iia is possible, resulting in Figure 23a. Similarly, in
Figure 22b, only Lemma iib is possible, resulting in Figure 23b. By moving the black pawn
to select one of these two cases, Black sets the value of the corresponding variable. Then
by Lemma i, the white king leaves in the second-rightmost column of the left region (in the
variable gadget I block) of the gadget. In both cases, the black pawn remains surrounded by
white pawns in the right region of the gadget.

4.3 Bridge gadget
The bridge gadget, shown in Figure 24, brings the white king from the exit of the last variable
gadget to the entrance of the first clause gadget. When instantiated in the reduction, the
white king enters the bridge gadget from the bottom of the leftmost column, preceded by a

FUN 2018

11:16 Computational Complexity of Generalized Push Fight

... ...0

0

0

0

0 0 0 0 0

000000

0

0

0

p

p - 1

0

0

Figure 21 The universal variable gadget after the white king enters.

... ...0

0

0

0

0 0 0 0 0

000000

0

0

0

p

p - 1

0

0

(a)

... ...0

0

0

0

0 0 0 0 0

000000

0

0

0

p

p - 1

0

0

(b)

Figure 22 The two possible configurations of the universal variable gadget one white turn after
the configuration from Figure 21.

white pawn. The white king’s traversal of the bridge gadget is entirely forced. The white
king leaves the gadget by pushing a white pawn out to the right in the second-to-top row.

4.4 Clause gadget
The clause gadget, shown in Figure 25, verifies that a column below the gadget contains
at least one empty square. When instantiated in the reduction, the white king enters the
gadget from the left in the top row, preceded by a white pawn. The resulting sequence of
forced pushes includes a push down in the central column of the gadget; if there are no empty
squares below the gadget in that column, the white king has no legal pushes and White loses.
If there are more empty squares, White can continue to push down, but (when instantiated
in the reduction) there are at most three total empty squares in that column, and once those
squares are filled, White cannot push. Thus the white king must push right instead and
leave the gadget by pushing a white pawn out to the right in the second-to-top row.

4.5 Reward gadget
The reward gadget, shown in Figure 26, allows White to win if the white king reaches
the gadget. The black pawn in this gadget cannot move because it is surrounded. When
instantiated in the reduction, the white king enters the gadget from the left in the top row,
preceded by a white pawn. After pushing right until the white king is in the third column of
Figure 26, White can win by moving a white pawn and the white king, then pushing upwards
to push the black pawn off the board, as shown in Figure 27. (Recall that the move-wasting
gadget no longer binds White once White can win in one turn; Black loses before Black can
win using the move-wasting gadget.)

Jeffrey Bosboom, Erik D. Demaine, and Mikhail Rudoy 11:17

... ...0

0

0

0

0 0 0 0 0

000000

0

0

0

p - 1

0

0

0

(a)

... ...0

0

0

0

0 0 0 0 0

000000

0

0

0

p0

0

0

(b)

Figure 23 The two possible final positions of the universal variable gadget after the white king
exits.

...

0

0

0

0

0 0 0

0

0

...

00

Figure 24 The bridge gadget.

0 00

0

3

Figure 25 The clause gadget.

4.6 Layout

Having described the gadgets, it remains to show how to instantiate them in a Push Fight
game state for a given quantified 3-CNF formula. We first place gadgets with respect to
each other, remembering which squares should be left empty, then define the board as the
bounding box of the gadgets and fill any squares not recorded as empty with white pawns.
The resulting board is mostly rectangular with side rails on all boundary edges, with two
exceptions: one edge along the top of the rectangle lacks a side rail as part of the reward
gadget, and the board is extended in the bottom-right to accomodate the move-wasting
gadget along the bottom of the board.

We begin by building the variable gadget I block containing the existential variable gadgets
and the left portion of the universal variable gadgets. Gadgets are stacked from bottom to
top in the order of the quantifiers in the input formula (using the gadget corresponding to the
quantifier), with the leftmost column of each gadget aligned with the second-to-right column
of the previous gadget. (Recall that the width of the variable gadgets is defined based on
p, one more than the maximum number of occurrences of a literal in the input formula.)
This alignment allows (and requires) the white king to traverse the gadgets in sequence as
specified by Lemma 25. Figure 29 shows the relative layout of these variable gadgets.

We place the white king one square below the first variable gadget aligned with its
leftmost column, and place a white pawn one square above the white king. The white king
will push upwards into the first gadget on White’s first turn. (If the king was instead placed
directly in the variable gadget, if the first variable is universally quantified, Black would not
have a move with which to choose the value of the variable before White commits it.)

FUN 2018

11:18 Computational Complexity of Generalized Push Fight

0 0

0

0

0 0 0 0

0

...

00

00

Figure 26 The reward gadget.

0 0

0

0

0 0 0 0

0

...

00

00

→
0 0

0

0

0 0 0 0

0

...

00

00

→
0 0

0

0

0 0 0 0

0

...

00

00

Figure 27 Once the White king reaches the third column of the reward gadget, White can win
in a single turn.

We then build the variable gadget II block by placing the right regions of the universal
variable gadgets to the right of the corresponding left regions in a single column (further
right than any part of the variable gadget I section).

Next we place one clause gadget for each clause in the input formula. Each clause gadget
is directly to the right of and one square lower than the previous clause gadget. The entire
clause gadget block is further right of and above the variable gadget II block. Figure 30
shows the relative layout of the clause gadgets. Then we place a bridge gadget such that the
entrance of the bridge gadget aligns with the exit of the last variable gadget and the exit of
the bridge gadget aligns with the entrance of the first clause.

We place the reward gadget so that its entrance aligns with the exit of the last clause
gadget.

We leave empty squares in the connection block to encode the literals in each clause in
the input formula. When traversing each variable gadget, the white king pushes pawns to
the right in one of two rows. The lower (upper) row corresponds to setting the variable to
true (false), or equivalently, preventing negative (positive) literals from satisfying clauses.
Associate each row with the literal it prevents from satisfying clauses. Each clause gadget
enforces that at least one empty square remains below its middle column, corresponding to
at least one of its literals not having been ruled out by the truth assignment. To realize
this relation, for each literal in a clause, we leave an empty square at the intersection of the

Jeffrey Bosboom, Erik D. Demaine, and Mikhail Rudoy 11:19

......

......

...... ...

Figure 28 The shape of the Push Fight board produced by the reduction.

Figure 29 The layout of variable gadgets in the variable gadget I block.

column checked by the clause gadget and the row associated with that literal. All other
squares in the connection block are filled with white pawns (as are all squares in the board
whose contents are not otherwise specified).

The variable gadgets require each row associated with a literal to contain exactly p− 1, p

or p + 1 empty squares (depending on the type of gadget and whether the row is the upper
or lower row). This is at least the number of occurrences of that literal (by the definition of
p), but it may be greater. We place any remaining empty squares in each row in columns
further right than the reward gadget, forming the overflow block.

The boundary of the board is the bounding box of all the gadgets placed thus far with a
move-wasting gadget appended to the bottom of the board. The left column of the move-
wasting gadget is aligned with the leftmost column of the first (leftmost) variable gadget
and the sixth-from-right column (the rightmost column having height 3) is aligned with the
rightmost column of the overflow block. We then fill all squares not part of a gadget nor
recorded as empty with white pawns and place side rails on all boundary edges except as
described in the move-wasting and reward gadgets. The anchor is on the black king as part
of the initial state of the move-wasting gadget.

4.7 Analysis
Our analysis of gadget behavior in the preceding sections constrains the white king’s pushes
under the assumption that there are a specific number of empty spaces (often 0) in a particular
row or column on a side of the gadget. We have already discharged the assumptions regarding
the rows associated with literals by our layout of the connection and overflow blocks. For

FUN 2018

11:20 Computational Complexity of Generalized Push Fight

Figure 30 The layout of clause gadgets in the clause gadget block.

every other gadget except the variable gadgets, none of the constrained rows or columns
intersects with another gadget, so the constraints on the edges are implied by the dense sea
of white pawns outside the gadgets. For the variable gadgets, we assumed that pushing down
in the second-to-left column of a variable gadget is not possible, but that column contains
the previous variable gadget’s rightmost column. We discharge this assumption by noting
that in the final state of each variable gadget (after the white king has left the gadget), the
rightmost column of that gadget is filled with white pawns, so pushing down in that column
is indeed not possible.

Thus the white king must traverse the variable gadgets, setting the value of each variable,
then traverse through the bridge gadget to the clause gadgets, where at least one empty
space must remain in each checked column for the king to reach the reward gadget. If the
choices made while traversing the variable gadgets results in filling all of the empty spaces
in a checked column (i.e., the clause is false under the corresponding truth assignment),
then White can only push by using a move outside the move-wasting gadget and Black wins
on the next turn. If the white king successfully traverses every clause gadget (i.e., every
clause is true under the truth assignment), then White wins when the white king pushes the
black pawn off the board in the reward gadget. Thus White has a winning strategy for this
Push Fight game state if and only if the input quantified 3-CNF formula is true.

References

1 Jeffrey Bosboom, Erik D. Demaine, and Mikhail Rudoy. Computational Complexity of
Generalized Push Fight. arxiv:1803.03708, 2018. https://arxiv.org/abs/1803.03708.

2 Erik D. Demaine, Martin L. Demaine, and David Eppstein. Phutball endgames are NP-
hard. In R. J. Nowakowski, editor, More Games of No Chance, pages 351–360. Cambridge
University Press, 2002.

3 Aviezri S. Fraenkel, M. R. Garey, David S. Johnson, T. Schaefer, and Yaacov Yesha. The
complexity of checkers on an N * N board - preliminary report. In 19th Annual Symposium
on Foundations of Computer Science, Ann Arbor, Michigan, USA, 16-18 October 1978,
pages 55–64. IEEE Computer Society, 1978. doi:10.1109/SFCS.1978.36.

4 Aviezri S. Fraenkel and David Lichtenstein. Computing a perfect strategy for n x n chess
requires time exponential in n. J. Comb. Theory, Ser. A, 31(2):199–214, 1981. doi:10.
1016/0097-3165(81)90016-9.

5 M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics, 32(4):826–834, 1977. doi:DOI:10.1137/0132071.

6 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

7 Michael Hoffmann. Motion planning amidst movable square blocks: Push-* is NP-hard. In
Proceedings of the 12th Canadian Conference on Computational Geometry, pages 205–210,
2000.

8 Jerry Holkins. Exposition. https://www.penny-arcade.com/news/post/2015/12/14/
exposition, 2015.

https://arxiv.org/abs/1803.03708
http://dx.doi.org/10.1109/SFCS.1978.36
http://dx.doi.org/10.1016/0097-3165(81)90016-9
http://dx.doi.org/10.1016/0097-3165(81)90016-9
http://dx.doi.org/DOI:10.1137/0132071
https://www.penny-arcade.com/news/post/2015/12/14/exposition
https://www.penny-arcade.com/news/post/2015/12/14/exposition

Jeffrey Bosboom, Erik D. Demaine, and Mikhail Rudoy 11:21

9 Ben Kuchera. Push Fight is the best board game you’ve never heard of.
https://web.archive.org/web/20131211190946/http://penny-arcade.com/report/
article/push-fight-is-the-best-board-game-youve-never-heard-of, 2012.

10 Brett Picotte. Push Fight game. http://pushfightgame.com/, 2016. Accessed: 2017-06-
22.

11 J. M. Robson. N by N checkers is exptime complete. SIAM J. Comput., 13(2):252–267,
1984. doi:10.1137/0213018.

12 L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time (preliminary
report). In Proceedings of the 5th Annual ACM Symposium on Theory of Computing, pages
1–9, 1973. URL: https://dl.acm.org/citation.cfm?id=804029.

FUN 2018

https://web.archive.org/web/20131211190946/http://penny-arcade.com/report/article/push-fight-is-the-best-board-game-youve-never-heard-of
https://web.archive.org/web/20131211190946/http://penny-arcade.com/report/article/push-fight-is-the-best-board-game-youve-never-heard-of
http://pushfightgame.com/
http://dx.doi.org/10.1137/0213018
https://dl.acm.org/citation.cfm?id=804029

SUPERSET: A (Super)Natural Variant of the
Card Game SET

Fábio Botler
Universidad de Valparaíso, Valparaíso, Chile
fbotler@dii.uchile.cl

Andrés Cristi
Universidad de Chile, Santiago, Chile
andres.cristi@ing.uchile.cl

Ruben Hoeksma
Universität Bremen, Bremen, Germany
hoeksma@uni-bremen.de

Kevin Schewior
Universidad de Chile, Santiago, Chile
kschewior@gmail.com

Andreas Tönnis
Universidad de Chile, Santiago, Chile
atoennis@uni-bonn.de

Abstract
We consider Superset, a lesser-known yet interesting variant of the famous card game set. Here,
players look for Supersets instead of Sets, that is, the symmetric difference of two Sets that
intersect in exactly one card. In this paper, we pose questions that have been previously posed
for set and provide answers to them; we also show relations between Set and Superset.

For the regular Set deck, which can be identified with F4
3, we give a proof for the fact that

the maximum number of cards that can be on the table without having a Superset is 9. This
solves an open question posed by McMahon et al. in 2016. For the deck corresponding to Fd

3,
we show that this number is Ω(1.442d) and O(1.733d). We also compute probabilities of the
presence of a superset in a collection of cards drawn uniformly at random. Finally, we consider
the computational complexity of deciding whether a multi-value version of Set or Superset is
contained in a given set of cards, and show an FPT-reduction from the problem for set to that
for Superset, implying W[1]-hardness of the problem for Superset.

2012 ACM Subject Classification Mathematics of computing→ Combinatoric problems, Theory
of computation → Problems, reductions and completeness, Theory of computation → Fixed
parameter tractability

Keywords and phrases SET, SUPERSET, card game, cap set, affine geometry, computational
complexity

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.12

Funding This research was supported by Millenium Nucleus Information and Coordination in
Networks (ICM/FIC RC 130003). Moreover, the first author was supported by CONICYT/
FONDECYT/POSTDOCTORADO 3170878, and the last two authors acknowledge support from
CONICYT grant PCI PII 20150140.

© Fábio Botler, Andrés Cristi, Ruben Hoeksma, Kevin Schewior, and
Andreas Tönnis;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 12; pp. 12:1–12:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fbotler@dii.uchile.cl
mailto:andres.cristi@ing.uchile.cl
mailto:hoeksma@uni-bremen.de
mailto:kschewior@gmail.com
mailto:atoennis@uni-bonn.de
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 SUPERSET: A (Super)Natural Variant of the Card Game SET

Figure 1 A set is a collection of three cards that, in each of the properties, are either identical
or distinct.

1 Introduction

The famous [1, 20] game set1 [5, 28] is played with cards that have four attributes each:
The number, type, color, and shading of displayed shape(s). Each of these attributes can
take three values, and each of the possible 34 = 81 combinations of these values is contained
exactly once as a card in the deck. A set is a collection of three cards that, in each of the
properties, are either identical or distinct (see Fig. 1). Among the cards that are laid out on
the table, all players have to simultaneously find sets as fast as possible. While possibly
not evident from this description, we can assure you that the game is fun, even for a wider
audience [31], including cats [24, Figure I.5].

However, as players get better and faster, the game becomes quite fidgety and arguably
less fun. One straightforward way of making the game more difficult and thus slowing it
down is adding more properties to the cards. Unfortunately, this creates decks increasing
exponentially in size and possibly odor [14]. Other variants have been proposed [6, 14, 23, 24],
but full-contact set [6] seems only remotely related to mathematics, and projective set [14]
requires a completely different deck and seems incompatible with our gerontocracy [14].

Instead, we started playing a variant that is sufficiently more difficult, shows a rich
mathematical structure, and can be played with the same, typically odor-free, deck of cards
as set: It is easy to see that for any pair of cards there exists exactly one missing card that
completes the pair to a set. Any single card, however, serves as missing card for (actually
40) different pairs. In the variant of set considered here, the four cards from two pairs with
the same missing card form the object (see Fig. 2) that the players look for instead of sets.
Until recently, when it was published in a book [24], this variant seems to have been spread
mostly by word of mouth (as it was to one of the authors [7]), and appeared under different
names on the Internet [6, 11, 13, 23, 32].

To continue the (admittedly short) tradition of overloading2 mathematical terms, we
choose to call the new object and the emerging variant of the game superset. We consider
natural questions regarding superset: How many cards can be on the table without having
a superset? More generally, what is the probability of having a superset in a collection of
cards of a certain size chosen uniformly at random? What is the computational complexity
of finding a superset? Are there any further connections between superset and set?

1 set is a registered trademark of Cannei, LLC. The distinctive set symbols and cards are copyrights of
Cannei, LLC. All rights reserved. Used with permission from Set Enterprises, Inc.

2 Since we typeset the two central objects of this paper as set and superset, at least in written language
we do not overload the corresponding mathematical terms. We however avoid using these mathematical
terms (and thereby hopefully confusion) in this paper.

F. Botler, A. Cristi, R. Hoeksma, K. Schewior, and A. Tönnis 12:3

Figure 2 A superset is defined to be the symmetric difference of two sets that intersect in
exactly one card. Here, cards 1–3 and 3–5 form the two sets; all but the third card form the
superset.

These questions have, in fact, been considered for set already, which is partly due to the
applications of its study to affine spaces [14, 24], Fourier analysis [4], and error-correcting
codes [19]. Clearly, the study of superset has the corresponding superapplications.

Related work. We briefly survey results related to set. For a very accessible and lovely
introduction to the mathematics of set, we refer to McMahon et al. [24]. An also very
well-written and at the time fairly comprehensive survey for mathematically more versed
readers was published by Davis and Maclagan in 2003 [14].

When playing set, one typically deals 12 cards and then looks for sets among them.
Sometimes, however, there turns out to be no set, naturally leading to the question: How
many cards have to be dealt to guarantee that there is a set on the table? This question
was in fact answered before the invention of the game set in 1974, which is due to the
following connection: One can naturally identify the deck of cards with the vector space F4

3
(by identifying the components with the properties) and then sets in the deck of cards
simply correspond to lines in F4

3. So the above question is equivalent to asking what is the
maximum size of a cap, that is, a line-free collection of elements, in F4

3. This number was
settled to be 20 in 1971 [26]. The most elegant proof known to date is based on counting
so-called marked hyperplanes in two different ways, making use of the symmetries of the
vector space [14].

It is natural to ask the same question for Fd
3 with different d, which translates to a

restricted or extended deck of cards. While this question for d < 4 can be easily answered
using the same techniques as for d = 4 [14], only in 2002 did two breakthrough papers [4, 15]
settle the maximum cap size for d = 5 to be 45 by relating the problem to the Fourier
transform. For d = 6, the maximum cap size is 112 [27], as shown by the techniques similar
to those used for d ≤ 4 [14] along with a computer search, but the same paper claims that
the Fourier-transform techniques could be used instead. Interestingly, at least up to d = 6,
all maximum caps are from the same affine equivalence class, i.e., between any two of them
there is an affine transformation that maps one to the other [15, 18, 24, 27].

Finding maximum supercaps for increasingly larger fixed integers d will probably keep
(parts of) humanity busy for a while, but yet more forward-looking works have considered the
asymptotic behavior of the maximum cap size as d→∞. While {0, 1}d is easily seen to be a
cap of size 2d, more sophisticated product constructions [8, 16] yield caps of size Ω(2.217d).
On the upper-bound side, Fourier transforms yield O(3d/d) [25] and further far-from-trivial
insights about the spectrum yield O(3d/d1+ε) for some ε > 0 [3]. However, truly improving
(i.e., in terms of the base of the exponential) upon the trivial upper bound of O(3d) has been
a famous open problem [29] until recently. Only in 2016, the so-called polynomial method [12]
was utilized [17, 30] to show quite compactly that the maximum cap size is O(2.756d).

FUN 2018

12:4 SUPERSET: A (Super)Natural Variant of the Card Game SET

Table 1 Bounds on the maximum cap and supercap sizes.

dimension 1 2 3 4 5 · · · d

maximum cap size 2 4 9 20 45 · · · Ω(2.217d) ∩O(2.756d)
maximum supercap size 3 4 6 9 14 · · · Ω(1.442d) ∩O(1.733d)

One may also wonder what the probability of the presence of a set is in the initial
layout of cards or, more generally, in a k-element collection chosen uniformly at random
from Fd

3. This question has been answered exactly for small values of k and d [24] and has
been considered computationally for arbitrary values of k and d [21, 24]. An overview of
the vast amount of interesting probabilistic questions, for example, the one for the expected
number of sets, can be found in the book of MacMahon et al. [24].

Let us look at the problem of deciding whether a given set of cards has a set. As this
question is boring in terms of asymptotic running time for F4

3, we first consider Fd
3 where d

is part of the input. Saving all cards in a dictionary and then checking the dictionary for the
missing card of each pair yields an O(n2)-time randomized algorithm and an O(n2 log n)-
time deterministic algorithm [9]. Despite obvious resemblance to the 3SUM problem (three
elements a, b, c ∈ Fd

3 form a set iff a+b+c = 0), 3SUM-hardness has only been conjectured [9].
To still be able to write computational-complexity papers about the problem, Fd

v has been
considered, where v is part of the input as well. Note that a set for a larger number of values
per property can be defined either through lines (line sets, at least for v prime) or by asking
for identical or distinct values in each component (combinatorial sets), but both variants
are different [14] (see Section 2). Indeed, defining sets through lines only adds a factor
of v in the running time (because all v elements on the line have to be checked), but the
problem is NP-hard for combinatorial sets, as shown by a reduction from a multi-dimensional
matching problem [9]. This result has been subsequently improved to W[1]-hardness for
parameter v [22].

Unfortunately, none of these results is super enough yet. Yet, to date superset has
not been rigorously studied. There are only a few Internet sources: experiments showing
that there is a collection of 9 cards for d = 4 that does not have a superset [32] and
some providing estimates for the probabilities of the presence of a superset in random
collections [13, 32].

Our contribution. Analogous to the study of caps, we initiate the (rigorous) study of
supercaps, that is, collections of cards that do not contain supersets. The same as for
caps, we are interested in the maximum size of supercaps, but our techniques are different.
For d = 2, by simply counting the number of pairs within the supercap and then using the
pigeonhole principle, one can easily show an upper bound of 4 on the size of any supercap.
A bound that can be easily matched from below by hand. In three dimensions, the same
upper-bound technique allows us to prove an upper bound of 7. Yet, constructed lower-bound
examples imply a maximum size of 6. To prove an upper bound of 6, we develop a refined
counting technique that is based on the following observation [2, 11, 24]. If two pairs of
points are disjoint and their induced vectors are parallel, then they form a superset (see
Lemma 1). In F4

3, which corresponds to the actual set deck, we use the same counting
technique and a relatively short case distinction to show an upper bound of 9, which is
tight [2, 32] and thus solves an open problem [24, Question 8]. For d = 5, using the same
techniques, we can narrow down the maximum supercap size to at most 16 and at least 14,
but an exhaustive computer search shows that the maximum supercap size is indeed 14.

F. Botler, A. Cristi, R. Hoeksma, K. Schewior, and A. Tönnis 12:5

Regarding asymptotic results, we utilize the simple pigeonhole-principle technique to
obtain a non-trivial upper bound of O(3d/2) ⊂ O(1.733d) on the cardinality of any supercap.
To obtain a non-trivial lower bound, we essentially analyze an algorithm that greedily adds
elements to the supercap. The critical observation is that each card that we cannot add is
excluded by a triple of cards with which it would form a superset. Counting the number of
triples and the number of elements that each triple can exclude, we obtain a lower bound
of Ω(3d/3) ⊂ Ω(1.442d). We summarize our results on maximum supercaps along with those
known for maximum caps in Table 1.

The preceding structural insights about supercaps suffice to compute the probability of
the presence of the a superset in a k-element collection of elements from Fd

3 when k = 4
and d is arbitrary (or, alternatively, the probability of the collection being a supercap). We
also manage to compute the same probability for d = 3 and k = 5, 6, which is based on
a complete characterization of the corresponding supercaps. Since this characterization is
already fairly complicated, we do not compute the exact probabilities for d = 4 and k > 5
but experimentally determine estimates (107 samples for every k).

To consider the computational complexity of deciding whether a given collection of cards
has a superset, we define a superset (more generally) to be the symmetric difference of
two (line or combinatorial) sets that intersect in exactly one element. We note that the
polynomial-time algorithm known for deciding if a given collection of cards from Fd

v (for v

possibly fixed) has a set can be essentially generalized to the corresponding problem for
superset: One iterates through the pairs. If at least v − 3 other elements of the emerging
line are present, one then checks a dictionary for entries of the corresponding missing card(s)
and, if there are none, one saves the missing card(s) there. We then establish a close relation
between the two problems by providing an FPT reduction from the problem for combinatorial
set to the corresponding one for superset, so that the W[1]-hardness [9] carries over.

Overview of this paper. In Section 2, we give formal definitions and preliminary obser-
vations. Then, we provide bounds on the maximum supercap sizes for various d and the
asymptotic case in Section 3. In Section 4, we use insights from the previous section and
new structural properties to obtain probabilities for the presence of supersets in the random
collections of cards. We obtain results on the computations complexity in Section 5 and
conclude the paper in Section 6.

2 Preliminaries

Definitions. We begin with considering Fd
3. A collection S = {a, b, c} ⊆ Fd

3 is called a set
if a + b + c = 0. Further, a collection of elements S = {a, b, c, d} ⊂ Fd

3 is called a superset
if for some element z ∈ Fd

3 and for some x, y ∈ S, both {x, y, z} and (S \ {x, y}) ∪ {z} are
sets. We say that two pairs {a1, b1}, {a2, b2} ⊂ Fd

3 are parallel if a2 − b2 = r(a1 − b1) for
some r ∈ F3 \ {0}. Note that if S = {a1, b1, a2, b2} contains a set, then S is (ironically) not
a superset.

Moreover, a collection S of elements from Fd
3 is a cap if no set is contained in it; it is a

supercap if no superset is contained in it. We will be looking at both maximum and maximal
(super)caps: The first type of (super)cap has largest-possible size among all (super)caps; the
addition of any card to the second type of (super)cap revokes its (super)cap property. Note
that any maximum (super)cap is maximal.

To consider the complexity of determining of a given collection of cards contains a set
or superset, we define two different, yet equally natural, generalizations of a set and a
superset. For an element a ∈ Fd

v, we denote with a[i] the value of the i-th dimension of a.

FUN 2018

12:6 SUPERSET: A (Super)Natural Variant of the Card Game SET

Given a collection S = {c1, . . . , cv} ⊆ Fd
v of v elements, we say it is a combinatorial

set (or just set when not stated differently) if for all dimensions i ∈ {1, . . . , d}, either
c1[i] = . . . = cv[i] or the values c1[i], . . . , cv[i] are distinct. For prime v, we say that a
collection S ⊆ Fd

v is a line set if it is a line on Fd
v. It is not hard to see that these two

generalizations are equivalent only for v ≤ 3.
We obtain two generalizations for a superset in straightforward manner from the

generalizations of a set. A collection S ⊆ Fd
v of 2(v − 1) elements is a combinatorial (line)

superset if there is an element z ∈ Fd
v and a partition S = A ∪ B such that A ∪ {z} and

B ∪ {z} are both combinatorial (line) sets.

Preliminary observations. The following observation is used frequently in the technical
part of the paper. Given two elements a, b ∈ Fd

3, there is a unique third element in Fd
3,

namely −(a + b), that completes {a, b} to a set. More generally, for a, b ∈ Fd
v there are v− 2

unique elements x1, x2, . . . xv2 ∈ Fd
v such that {a, b, x1, x2, . . . xv2} is a line set, but there are

various ways of completing {a, b} to a combinatorial set. Regarding supersets, consider
any three elements a, b, c ∈ Fd

3: If they form a set, there is no element that completes
them to a superset; if they do not form a set, they can be extended to precisely the
supersets {a, b, c,−(a + b)}, {a, b, c,−(a + c)}, and {a, b, c,−(b + c)}. The situation for
supersets is a bit more complicated in Fd

v but irrelevant for this paper.
The following lemma contains the formal statement of a fairly well-known fact for those

that have concerned themselves with supersets [2, 11, 24]. For completeness, we still provide
a proof.

I Lemma 1. A collection S ⊂ Fd
3 with four distinct elements is a superset if and only

if {x, y} and S \ {x, y} are parallel pairs for some x, y ∈ S.

Proof. Let S = {a, b, c, d} be as in the statement. Suppose, without loss of generality, that
{a, c} and {b, d} are parallel pairs. In this case, xa,b = −(a + b) and xc,d = −(c + d) are
the (unique) elements that complete the sets Sa,b = {a, b, xa,b} and Sc,d = {x, d, xc,d}.
Now, since {a, c} and {b, d} are parallel, we can assume that b − d = −(a − c) (otherwise
b − d = a − c, and we switch a and c). Thus we have −(c + d) = −(a + b), and hence
xa,b = xc,d, which implies that S is a superset.

Now, suppose that S is a superset. We may assume, without loss of generality, that
there is an element z ∈ Fd

3 such that {a, b, z} and {c, d, z} are sets. Thus, we have
a + b + z = c + d + z = 0, and hence a + b = c + d, which implies a− c = d− b. Therefore
{a, c} and {b, d} are parallel. J

3 Bounds for supercaps

In this section we exactly determine the maximum sizes of supercaps of F2
3, F3

3, and F4
3. We

also prove non-trivial upper and lower bounds on the asymptotic behavior of the maximum
supercap size as d→∞.

3.1 Bounds for small d

In this subsection we present some auxiliary structural results along with the exact maximum
sizes of supercaps of Fd

3, for d = 2, 3, 4.

I Proposition 2. A collection of four elements of F2
3 is a supercap if and only if it contains

a set.

F. Botler, A. Cristi, R. Hoeksma, K. Schewior, and A. Tönnis 12:7

(a) (b)

Figure 3 Maximum supercaps in F2
3 and F3

3.

Proof. Let S be a collection with precisely four distinct elements of F2
3. For every pair of

elements a, b ∈ S, there is a (unique) third element xab ∈ F2
3 such that {a, b, xab} is a set.

If S does not contain a set, then xab /∈ S, for every pair of elements of S. Since there
are precisely 6 such pairs, and |F2

3 − S| = 33 − 4 = 5, there must be two different pairs,
say {a, b} and {c, d}, such that xab = xcd. Therefore, S contains a superset. Now, suppose
that S contains a set, say {a, b, c}, and another element d. If S is a superset, then we
may suppose that there is an element w in F2

3 such that, without loss of generality, {a, b, w}
and {c, d, w} are sets. Since there is a unique w such that {a, b, w} is a set, we have w = c,
which implies that {c, d, w} = {c, d} is not a set. J

This proposition immediately implies the lower-bound part of the following theorem.

I Theorem 3. A maximum supercap in F2
3 has four elements.

Proof. By Proposition 2, there exists a supercap of size 4 in F2
3. We illustrate one in

Figure 3a.
We now prove that any collection S of elements of F2

3 of size 5 contains a superset.
First, note that, if S contains two sets S1 and S2, they need to intersect, because S has
only size 5. Since S1 and S2 are non-identical, they intersect exactly in one element w,
so (S1 ∪ S2) \ {w} is a superset. Thus, if S does not contain a superset, then S contains
at most one set. If S contains a set, say P , then let x be an element of P , otherwise, let x

be any element of S. Now, note that S \ {x} contains four elements, and no set. Therefore,
by Proposition 2, S \ {x} is a superset. J

Next, note that if ϕ : Fd
3 → Fd

3 is an invertible affine transformation and S ⊂ Fd
3, then ϕ(S)

is a set (resp. superset) if and only if S is a set (resp. superset), because ϕ preserves
addition. The following result implies a lower bound for the size of a maximum supercap
of F3

3.

I Proposition 4. If S is a collection of elements of F3
3 consisting of two skew (disjoint

non-parallel) sets, then S is a supercap.

Proof. Let S be as in the statement. Since these sets are skew, their two direction vectors
and an arbitrary vector connecting them are linearly independent. So we can construct an
invertible linear transformation that maps these vectors into v1 = (1, 0, 0), v2 = (0, 1, 0),
and (0, 0, 1), respectively. We can further determine a translation such that the emerging
invertible affine transformation ϕ maps the sets into P1 = {iv1 : i ∈ F3} and P2 = {(0, 0, 1) +
jv2 : j ∈ F3}. Therefore, the element (−i,−j, 2) is the unique element that forms a set
with iv1 ∈ P1 and (0, 0, 1)+jv2 ∈ P2. Since there are precisely nine pairs consisting of a vertex
of P1 and a vertex of P2, no element in {(−i,−j, 2) : i, j ∈ F3} may complete to two different
such pairs to sets. This implies that P1∪P2 is a supercap of F3

3, so S = {ϕ−1(s) : s ∈ P1∪P2}
is as well. J

FUN 2018

12:8 SUPERSET: A (Super)Natural Variant of the Card Game SET

Let S be a collection of elements of Fd
3, for a fixed integer d. Each pair a, b ∈ S defines

a direction a − b. We say that S generates a vector v ∈ Fd
3 if there is a pair a, b ∈ S such

that v = a−b. In this case, we also say that v is generated by the pair {a, b}. By Lemma 1, if
there are distinct a, b, c, d ∈ S such that a− b is parallel to c−d, then S contains a superset.
So, to obtain an upper bound on the size of a supercap S, one can compare the number of
parallel vectors that S generates and the number of equivalence classes of parallel vectors
in the entire space. The following lemma formalizes this idea and will be used for the next
upper-bound proofs.

I Lemma 5. Let S be a supercap in Fd
3 with s elements and r sets. Then

r ≥
⌈

s2 − s− 3d + 1
4

⌉
.

Proof. Let S, s, and r be as in the statement. The number of pairs of elements of S is
(

s
2
)
.

Note that each set in S generates exactly 3 parallel vectors without creating a superset,
but there are r sets in S. Only considering one vector per set, S still generates

(
s
2
)
− 2r

vectors. Note that, since we only consider one vector per set and all sets are pairwise
disjoint (otherwise there would be a superset), any two pairs that generate parallel vectors
need to be disjoint. So, by Lemma 1, any two of the

(
s
2
)
− 2r must not be parallel. On the

other hand, we give an upper bound on the equivalence classes of parallel vectors in Fd
3 by

counting the sets that go through the origin 0 = (0, . . . , 0): Since, for any other a ∈ Fd
3,

there is a unique set containing 0 and a, and each set has size 3, there are exactly (3d−1)/2
such sets. Thus(

s

2

)
− 2r ≤ 3d − 1

2 ,

and the result follows by solving for r. J

We now apply Proposition 4 and Lemma 5 to get the following theorem.

I Theorem 6. A maximum supercap in F3
3 has six elements.

Proof. By Proposition 2, there exists a supercap of size 6 in F3
3. We illustrate one in

Figure 3b.
Now assume that S ⊂ F3

3 is a supercap of size 7. By Lemma 5, the number of sets in S

is at least 4 but there are at most two non-intersecting sets in S, a contradiction. J

The proof of the next theorem goes one step further. In this case, the application of
Lemma 5 does not directly imply a tight upper bound.

I Theorem 7. A maximum supercap in F4
3 has nine elements.

Proof. A supercap of F4
3 of size 9 was previously known [32, 2] and is illustrated in Figure 4.

For the upper bound, let S be a supercap with precisely ten different elements of F4
3. By

Lemma 5, the number of sets in S is at least d(100− 10− 81 + 1)/4e = 3. Analogously to
the proof of Proposition 4, by applying a certain invertible affine transformation, we can
suppose that two of these sets are P1 = {kv1 : k ∈ F3} and P2 = {(0, 0, 1, 0) + kv2 : k ∈ F3},
where v1 = (1, 0, 0, 0) and v2 = (0, 1, 0, 0).

Now, let P3 = {(a, b, c, d) + kv3 : k ∈ F3}. We first show that v3 = (e1, e2, 0, 0),
where e1, e2 ∈ F3 \ {0}. Let v3 = (e1, e2, e3, e4). If e4 6= 0, then P3 has an element q of the
form (x, y, z, 0). Thus, the restriction S′ of S to the affine subspace F0 = {(x, y, z, 0) : x, y, z ∈

F. Botler, A. Cristi, R. Hoeksma, K. Schewior, and A. Tönnis 12:9

Figure 4 Maximum supercap in F4
3.

F3} contains the seven elements P1∪P2∪{q}. Since F0 is isomorphic to F3
3, by Theorem 6, S′

contains a superset, a contradiction. In fact, S may not contain any element of the
form (·, ·, ·, 0) different from the elements in P1∪P2. Now, suppose that e3 6= 0. Then P3 con-
tains elements q1 and q2 of the form (·, ·, 0, d) and (·, ·, 2, d), with d 6= 0. Let A1 = (0, 0, 0, 0)
and A2 = (0, 0, 1, 0), and for i = 1, 2, consider the sets P ′1 and P ′2 defined by

P ′i = {r : s + qi + r = 0, s ∈ Pi}
= {−(s + qi) : s ∈ Pi}
= {−(Ai + kvi + qi) : k ∈ F3}
= {−(Ai + qi) + 2kvi : k ∈ F3}
= {−(Ai + qi) + kvi : k ∈ F3}.

Note that hence P ′i is parallel to Pi, for i = 1, 2. Moreover, since the vertices of P1 and P2 are
of the form (·, ·, ·, 0), the vertices of P ′1 and P ′2 are of the form (·, ·, ·, 3− d). Also, since the
vertices of P1 and q1 are of the form (·, ·, 0, ·), the vertices of P ′1 are of the form (·, ·, 0, ·); and
since the vertices of P2 are of the form (·, ·, 1, ·), and q2 is of the form (·, ·, 2, ·), the vertices
of P ′2 are of the form (·, ·, 0, ·). We conclude that P ′1 and P ′2 belong to the 2-dimensional
affine subspace F0,3−d = {(x, y, 0, 3− d) : x, y ∈ F3}. Note that P ′1 and P ′2 are not disjoint
because they are parallel, respectively, to P1 and P2. Thus, there is a vertex q∗ in P ′1 ∩ P ′2
such that s1 +q1 +q∗ = s2 +q2 +q∗ = 0, for some s1 ∈ P1 and s2 ∈ P2. Therefore, S contains
a superset, a contradiction. Now, if e1 = 0 or e2 = 0, then P3 is parallel to either P1 or P2,
a contradiction.

Now, let Fi,j = {(x, y, i, j) : x, y ∈ F3}, for i, j ∈ F3. Since v3 = (e1, e2, 0, 0), the set P3
must be contained in some affine subspace Fi∗,j∗ . Further, we must have j 6= 0 since otherwise
there are again seven elements of the form (·, ·, ·, 0). Assume, by adapting the invertible
affine transformation accordingly, that i∗ = 0 and j∗ = 1. Analogously to the proof of
Proposition 4, each element of F2,0 is the unique element that forms a set with a vertex of P1
and of P2; each element of F0,2 is the unique element that forms a set with a vertex of P1
and of P3; and each element of F2,2 is the unique element that forms a set with a vertex
of P2 and of P3; Recall that S has ten elements, i.e., there is an element q in S \ (P1∪P2∪P3).
Note that the collections F0,0 ∪F1,0 ∪F2,0, F0,0 ∪F0,1 ∪F0,2, and F1,0 ∪F0,1 ∪F2,2 are affine
subspaces isomorphic to F3

3, and, by Theorem 6, q may not belong to any of these collections.
Now, suppose that q ∈ F1,1. For each q1 ∈ P1 ⊂ F0,0, there is a vertex q2,2 ∈ F2,2 such
that q1 + q + q2,2 = 0. As noted above, each element of F2,2 forms a set with a vertex
of P2 and of P3, say q2, q3. Therefore {q1, q2, q3, q} is a superset. Analogously, if q belongs

FUN 2018

12:10 SUPERSET: A (Super)Natural Variant of the Card Game SET

Figure 5 Maximum supercap in F5
3.

to F2,1 or F1,2, we can find elements q1 ∈ P1, q2 ∈ P2, and q3 ∈ P3 such that {q1, q2, q3, q}
is a superset. This contradicts the assumption that S is a supercap and concludes the
proof. J

We conclude the subsection with a discussion of open questions, preliminary answers,
and fascinating phenomena. In F5

3, the largest supercap we can construct has size 14 (see
Figure 5), but Lemma 5 only shows an upper bound of 16 on the size of supercaps. While
an exhaustive computer search shows that 14 is indeed the right answer, we still believe
in (super) elegant proofs. Indeed, looking at the lower bounds in this section, one may
notice that, interestingly, all of them contain the maximum number of sets possible. Also,
Lemma 5 gives the loosest upper bound when the maximum number of sets are present. So
one may conjecture that, for each d, a maximum supercap is attained by a union of sets
and at most 2 additional points.

On the other hand, it has been observed [24] that the maximum supercap in four
dimensions can be partitioned into ten pairs each of which is completed to a set by the
same element. So it seems that caps and supercaps are somewhat complementary in that
maximum supercaps are far from being caps and vice versa. Unfortunately, however, we need
to push back on this line of thought a bit. As we will see in Section 4, already in F3

3 there
are maximum supercaps with only one (instead of two) sets. Also, there is a maximum
supercap in F4

3 that does not have a set at all. On a slightly different matter, this situation
is somewhat different from the one for caps in that, for any d ∈ {1, . . . , 6}, there is an affine
transormation that takes any maximum cap to any other maximum cap [15, 18, 24, 27].

As all of the phenomena pointed at here may simply be due to the (small) dimensions we
are working with, we now look at the asymptotic case.

3.2 Asymptotic supercaps

In this section we present upper and lower bounds for the size of a maximum supercap in Fd
3.

The next theorem gives the upper bound; its proof is analogous to the proof of Theorems 6
and to some of the cases of the proof of Theorem 7.

I Theorem 8. A maximum supercap in Fd
3 has less than 2 · 3 d

2 elements.

Proof. It is sufficient to prove for d ≥ 2 that, if a collection S ⊆ Fd
3 has size s = 2 · 3 d

2 , then
it contains a superset. Let S be such a collection, and suppose that S is a supercap. By

F. Botler, A. Cristi, R. Hoeksma, K. Schewior, and A. Tönnis 12:11

Lemma 5, the number of non-intersecting sets in S is at least⌈
4 · 3d − 2 · 3d/2 − 3d + 1

4

⌉
.

On the other hand, there are at most bs/3c non-intersecting sets in S. Thus, we have⌈
4 · 3d − 2 · 3d/2 − 3d + 1

4

⌉
≤
⌊

2 · 3d/2

3

⌋
.

Note that for any d ≥ 2 we have

4 · 3d − 2 · 3d/2 − 3d + 1
4 >

3 · 3d − 2 · 3d/2

4 >
3d

4 >
2 · 3d/2

3 .

Therefore, we have⌈
4 · 3d − 2 · 3d/2 − 3d + 1

4

⌉
≥ 4 · 3d − 2 · 3d/2 − 3d + 1

4 >
2 · 3d/2

3 ≥
⌊

2 · 3d/2

3

⌋
,

a contradiction. Therefore, for any superset S in Fd
3 we have |S| < 2 · 3d/2. J

The next theorem gives a lower bound for the size of a maximum supercap in Fd
3.

I Theorem 9. A maximum supercap in Fd
3 has more than 3 d

3 elements.

Proof. We prove that every maximal supercap has size at least 3 d
3 . Given a supercap S in

Fd
3, let S̄ be the collection of elements v of Fd

3−S for which there is at least one triple T in S

such that T ∪ {v} is a superset. Note that if x ∈ Fd
3 \ (S ∪ S̄), then S ∪ {x} is a supercap.

Thus, if S is a maximal supercap, then S ∪ S̄ = Fd
3. Given a, b ∈ Fd

3, let xab be the (unique)
element of Fd

3 such that {a, b, xab} is a set; and given a triple {a, b, c} ⊂ Fd
3 that is not a set,

let yc be the (unique) element of Fd
3 such that {c, xab, yc} is a set. Note that for every such

triple {a, b, c} in a supercap S, we have ya, yb, yc ∈ S̄. Moreover, if {a, b, c, y} is a superset,
then y = yz for some z ∈ {a, b, c}. Therefore, |S̄| ≤ 3

(|S|
3
)
for every supercap S in Fd

3.
Now, suppose that S is a maximal supercap and that |S| = s ≤ 3 d

3 . Since S is maximal,
we have 3d = |Fd

3| ≤ |S|+ |S̄|. Thus, we have

s3 ≤ 3d ≤ s + 3
(

s

3

)
.

Yet, s3 > s + 3
(

s
3
)
for all s > 1, contradicting our assumption, since a maximal supercap

has at least three elements. We conclude that if S is maximal, then |S| > 3 d
3 . J

4 Probabilities of the presence of a superset in random collections

In the section, we compute probabilities of k-element collections in Fd
3 being supercaps. Using

structural insights from Section 3, we get the following result, settling the question for d = 2.

I Theorem 10. A collection of four elements drawn uniformly at random without replacement
from Fd

3 is a supercap with probability 3d−5
3d−2 .

Proof. Let S = {a, b, c, d} be a collection of four elements drawn uniformly at random
without replacement from Fd

3. Consider the four elements of S in (alphabetical) order. As
noted earlier in Proposition 2, if S contains a set, then it is a supercap. Without loss of

FUN 2018

12:12 SUPERSET: A (Super)Natural Variant of the Card Game SET

generality, fix the first two elements {a, b}. The third element, c, completes a set with
probability 1

3d−2 , since exactly one of the remaining 3d − 2 elements from Fd
3 forms a set

with {a, b}. If {a, b, c} does not form a set, then there are three pairs, {a, b}, {b, c}, and {a, c}
that define different elements with which they form a set. Thus, there are exactly three
elements that can complement {a, b, c} into a superset. Therefore

Pr(S is a supercap) = 1
3d − 2 + 3d − 3

3d − 2 ·
3d − 6
3d − 3 = 3d − 5

3d − 2 . J

For d = 3, we require new structural insights.

I Proposition 11. Let S be a collection with five elements in F3
3. Then S is a supercap if

and only if either
S contains a set P and the elements not in P form a pair skew with P

or S does not contain a set and there is no hyperplane in F3
3 containing at least four

elements of S.

Proof. Let S be a collection of five elements with a set P . It is clear that if S \ P forms a
pair not skew with P , then S contains a superset either by the intersection of P and the
set containing S \ P , or by P being parallel to S \ P . Now, suppose that S \ P = {a, b}
is skew with P . It is not hard to check that a superset admits three partitions into two
pairs, and one of these partitions consists of two pairs that miss the same third element
to complete a set; and the other two of these partitions consist of two parallel pairs (see
Lemma 1). Since {a, b} is skew with P , for any c, d ∈ P , the pair ({a, b}, {c, d}) forms
a partition of {a, b, c, d} that does not consist of two pairs with a common missing third
element, and does not consist of two parallel pairs. Thus, {a, b, c, d} is not a superset.
Suppose now that S does not contain a set. Since a hyperplane in F3

3 is isomorphic to F2
3

and every superset is in a hyperplane, by proposition 2, S contains a superset if and
only if there is a set of four vertices contained in a hyperplane. J

I Proposition 12. Let S be a collection of six elements in F3
3. Then S is a supercap if and

only if either
S contains two sets that are skew, or
there are three parallel planes H1, H2, H3 that partition F3

3 such that S ∩H1 = {a, b, c, d},
S ∩H2 = {e}, and S ∩H3 = {f} where {a, b, c} = P is a set and f /∈ {−(x + e) : x ∈
S ∩H1} ∪ {x + d− e : x ∈ P}.

Proof. Let S be as in the statement and first suppose that S is a supercap. First note
that Lemma 5 implies that S must contain at least one set. If S contains two sets, they
must be skew, because otherwise the two sets (and thus at least five elements) are within
a two-dimensional affine subspace, contradicting Theorem 3. If S contains precisely one
set {a, b, c} = P , we can find a plane H1 that contains P and any fourth element d ∈ S.
Note that H1 may not contain any other element of S, because this would be a contradiction
to Theorem 3 again. Next, consider the case that there is a plane H ′ parallel to H2 such
that |S ∩ H ′| = 2. But this is not possible: Since H1 and H ′ generate 5 vectors parallel
to H1 and, among the vectors parallel to H1, there are only 4 equivalence classes of parallel
vectors, we get a contradiction to Lemma 1. Hence, there are planes H2 and H3 parallel
to H1 with S ∩H2 = {e} and S ∩H3 = {f} for some e, f ∈ F3

3. Now, since S contains only
the set P , x + e + f 6= 0 for all x ∈ H1, so f /∈ {−(x + e) : x ∈ S ∩H1}. Similarly, since S

is a supercap x + d 6= e + f for all x ∈ P , so f /∈ {x + d − e : x ∈ P}. Thus we are in the
second situation.

F. Botler, A. Cristi, R. Hoeksma, K. Schewior, and A. Tönnis 12:13

If S contains two sets that are skew, then Proposition 4 shows that S is a supercap.
If the second condition is fulfilled, then let a, . . . , f and H1, H2, H3 be as in the statement.
Note that H1 does not contain a superset by Proposition 2. If for a superset Q ⊂ S,
we have |Q ∩ H1| = 3, then, for any pair x1, x2 ∈ H1, x1 + x2 ∈ H1, but x3 + x4 /∈ H1
where {x3, x4} = Q \ {x1, x2}, a contradiction. So, if S contains a superset Q, then Q =
{e, f, y1, y2} for some y1, y2 ∈ S ∩H1. But yi + e ∈ H3 while yi + f ∈ H2 for any i ∈ {1, 2}.
If d /∈ Q, then −(y1 + y2) ∈ P , but f 6= −(x + e) for all x ∈ P by the choice of f ; a
contradiction. So Q = {e, f, d, x} for some x ∈ P . But then we must have x + d = e + f ; a
contradiction to the choice of f . J

Using these insights and counting the numbers of the corresponding objects yields the
following theorem, which settles the central question of this section for d = 3.

I Theorem 13. A collection of five (six) elements drawn uniformly at random without
replacement from F3

3 is a supercap with probability 54
115 ≈ 46.96% (18

253 ≈ 7.11%).

Proof. We count the number of supercaps of five elements using Proposition 11. The ones
that contain a set and a pair skew with it can be constructed as follows. Choose a set,
then any of the remaining (3d − 3) cards and finally any of the (3d − 9) cards that do not
complete an intersecting set or creates a parallel vector with the set. Since the last pair is
counted twice this way, the total number is

N5
set,skew = 33(33 − 1)

6 (33 − 3)(33 − 9) · 1
2 = 25272

For the ones that do not contain a set and in which no four elements are in a hyperplane,
we count first the number of collections with a set: pick first one of the 1

3
(33

2
)
possible

sets, then pick any pair on the remaining cards. With this procedure we double count the
collections composed by two intersecting sets, so the total number of collections of five
elements with a set is

N5
set = 1

3

(
33

2

)
·
(

33 − 3
2

)
− 1

3

(
33

2

)
· 1

4
(
33 − 3

)
· 3 = 30186

We now compute the number of collections without a set but with a hyperplane. It is clear
that only one hyperplane contains four points of such a collection. Pick then the first four
elements to be the ones in the same hyper plane. There are 33 options for the first, (33 − 1)
for the second, (33−3) for the third without forming a set, and only 3 for the fourth so it lies
in the same hyperplane and does not form a set. We divide by the number of permutations
of 4 elements to avoid multiple counting. For the fifth element the only condition is that it is
outside the hyperplane, so there are 33−1 · 2 options. The number of such collections is then

N5
!set,HP4 = 1

4!3
3(33 − 1)(33 − 3) · 3 · (33−12) = 37908

Now, the number of collections of five elements without a set is N5
!set =

(33

5
)
−N5

set = 50544,
and the amount of collections without a set and with no four elements in a hyperplane
is N5

!set,!HP4 = N5
!set − N5

!set,HP4 = 12636. Finally, the number of supercaps of size five
is N5

set,skew + N5
!set,!HP4 = 37908, which divided by

(33

5
)
gives the probability that a random

collection S of five elements in F3
3 is a supercap, so

Pr(S is a supercap) = 37908
80730 = 54

115 ≈ 46.96%.

FUN 2018

12:14 SUPERSET: A (Super)Natural Variant of the Card Game SET

Table 2 Probabilities (and estimates thereof) of a k-element collection from Fd
3 being a supercap,

expressed as percentages rounded to two decimals. We used a computer to estimate the probability
where indicated by an asterisk (107 samples for each corresponding cell); the other probabilities are
exact.

k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

d = 2 57.14% 0 0 0 0 0
d = 3 88.00% 46.96% 7.11% 0 0 0
d = 4 96.20% 81.68%∗ 52.08%∗ 19.25%∗ 2.34%∗ 0.01%∗

We count the number of supercaps S of six elements using Proposition 12. Note that the
number of two skew sets is exactly a sixth the number of five cards formed by a set and a
pair that is skew with it, so

N6
2sets,skew =

(33

2
)

3 · (33 − 3) · (33 − 9) · 1
12 = 4212.

Now consider the second situation in Proposition 12, and let a, . . . , f and H1, H2, H3 be as
in the statement. First note that f /∈ {−(x + e) : x ∈ S ∩H1} ensures that there is exactly
one set in S, so the two situations cannot happen simultaneously. We count the number of
collections S that fall into this situation the following way: First fix any set {a, b, c} = P

and any fourth point d. There are 9 choices for e. Since {−(x + e) : x ∈ S ∩ H1}
and {x + d− e : x ∈ P} are both contained in H3 and are disjoint, there are 2 choices left
for f . As we count each collection three times (any of the points outside the set can be the
fourth point), the total number of collections S that fall into the second situation is

N6
Case 2 =

(33

2
)

3 · (33 − 3) · 9 · 2 · 1
3 = 16848.

In total, we get

Pr(S is a supercap) =
N6

2sets,skew + N6
Case 2(33

6
) = 4212 + 16848

296010 = 18
253 ≈ 7.11%.

This concludes the proof. J

Considering the name of this conference, we leave proving similar statements for d = 4
to future work. To not disappoint the reader, we however provide probabilities that were
determined experimentally with the computer. We summarize the results in Table 2.

5 Algorithms and complexity

Chaudhuri et al. [9] as well as Lampis and Mitsou [22] consider decision problem versions
for set and show complexity results for them. In these decision problems, we are given a
collection of n elements from Fd

v and ask if the collection contains a set3. In this section, we
obtain similar results for decision problem versions of superset.

We define the problems Combinatorial Superset and Line Superset as follows:
Given a collection of elements C ⊆ Fd

v for any v, d > 0, is there a combinatorial (line)

3 Previously only these decision versions of Combinatorial Sets were considered [9, 22]. More restricted
versions with given number of values (k-Value Set) or given number of dimensions (k-Dimensional
Set) have also been considered by the same authors.

F. Botler, A. Cristi, R. Hoeksma, K. Schewior, and A. Tönnis 12:15

Superset S ⊆ C? We define k-Value Combinatorial (Line) Superset as the restricted
versions where v = k is fixed, and k-Dimensional Combinatorial (Line) Superset as
the restricted versions where d = k instead.

Note that, in order to get interesting complexity questions, the number of possible values
v of each attribute needs to be variable, as we see from the following result.

I Theorem 14. The problem k-Value Combinatorial Superset and k-Value Line
Superset can be solved in Õ(dknk−1) time, for any given k > 0.

Proof. Consider the algorithm that iteratively checks all
(

n
k−1
)
subsets of size k − 1 and

keeps an AVL tree [10] of missing k-th elements to complete a set, if such an element exists.
Then checking if the ordered list contains any duplicates decides if there is a superset in
the given collection of elements. This algorithm works independent of the considered type of
superset (combinatorial or line) and runs in Õ(dknk−1) time. J

I Theorem 15. The problem Line Superset can be solved in Õ(dvn2) time.

Proof. Each pair of elements defines exactly one line, so it suffices to check for each pair if
the collection contains v − 1 elements of the line. If so, the missing element is stored in an
ordered list. J

Note that, by similar reasoning, Line Set can also be solved in Õ(dvn2) time.

I Theorem 16. There is a O(k2n)-time reduction from k-Dimensional Combinatorial
Set to (k +1)-Dimensional Combinatorial Superset. Furthermore, it sends an instance
on v values to an instance on v + 1 values.

Proof. Let S ∈ Fk
v be an instance of k-Dimensional Combinatorial Set. That is, S is a

collection of n elements in k dimensions, each with v possible values. Through the following
procedure, we construct an instance of k + 1-Dimensional Combinatorial Superset
consisting of collection of elements S′ ∈ Fk+1

v+1 of size at most (v + 1) · n, in k + 1 dimensions,
each with v + 1 possible values.

Create a copy S0 of S on k + 1 dimensions, filling the (k + 1)-th dimension of every
element with the value v + 1. Then, create (k + 1)-dimensional copies S1, . . . , Sk of S, where
the (k + 1)-th dimension of elements in Si have value equal to the i-th dimension of that
element elements. That is, for an element c′ ∈ Si there is an element c ∈ S, such that
c′ = (c[1], . . . , c[k], c[i]).

Now, we show that S contains a set in Fk
v if and only if S′ =

⋃k
i=0 Si contains a superset

in Fk+1
v+1 (note that the union might be non disjoint). Suppose S contains a set in Fk

v , say A,
and let Ai ⊆ Si be the corresponding copy of A for all i ∈ {0, . . . , v}. Let z ∈ Fk+1

v+1 be the
element that for all j ∈ {1, . . . , k} has z[j] = a1[j], if a1[j] = a2[j], and z[j] = v +1, otherwise,
and z[k + 1] = v + 1. Then A0 ∪ {z} is a set in Fk+1

v+1. Since the elements a1, . . . , av ∈ A are
distinct and A is a set in Fk

v , there must be at least one dimension 1 ≤ j ≤ k such that the
values a1[j], . . . , av[j] are all distinct. Then Aj ∪ {z} forms a set in k + 1 dimensions and
v + 1 values, because the first k dimensions are the same as A0 ∪ {z}, and dimension k + 1
has the same values as dimension j, so the missing value in Aj is v + 1. Since by construction
we have A0 ∩Aj = ∅, we conclude that A0 ∪Aj is a superset in Fk+1

v+1.
Next, let A∪B ⊆ S′ be a superset in Fk+1

v+1 such that A∩B = ∅ and there is an element
z such that A ∪ {z} and B ∪ {z} are sets in Fk+1

v+1. This implies that |A| = |B| = v. Let
A = {a1, . . . , av} and let a′j ∈ S denote the projection of aj onto its first k dimensions, which
is the original of aj in S. If all elements a′1, . . . , a′v are different, then they form a set in Fk

v .
Now, assume that there are two elements ak and a` in A, such that a′k = a′`. Since A ∪ {z}

FUN 2018

12:16 SUPERSET: A (Super)Natural Variant of the Card Game SET

is a set, this implies that a′1 = a′2 = . . . = a′v. Moreover, the projection of z onto the first k

dimensions is equal to a′1. Therefore, if the same holds for B, then the projections of each of
the elements of B onto the first k dimensions are all equal and these projections are also
equal to a′1. However, this is a contradiction, as S′ contains at most v + 1 copies of the same
element in S (and |A ∪B| = 2v). Thus, without loss of generality, we can assume that the
elements in A are copies of different elements in S and the projection of A onto the first k

dimensions is a set in S. J

Chaudhuri et al. [9] prove that k-Dimensional Combinatorial Set is NP-complete
for k ≥ 3, and Lampis and Mitsou [22] prove that Combinatorial Set parametrized by
the number of values is W[1]-hard. These two results, together with Theorem 16, yield the
following hardness results for superset.

I Corollary 17. The problem k-Dimensional Combinatorial Superset for k ≥ 4 and
Combinatorial Superset are NP-complete.

I Corollary 18. The problem Combinatorial Superset parametrized by the number of
values v is W[1]-hard.

6 Conclusion

While it is plausible that we have exhausted (hopefully not gone beyond) the reader’s
tolerance of jokes including “super" in this paper, we believe that we have not done so to
their curiosity regarding superset. In fact, while we have made progress on many natural
questions in this paper, a few remain open: As for caps, the gaps for the maximum supercap
size for larger fixed dimensions and its asymptotic behavior would be interesting to investigate.
Also figuring out whether a subquadratic algorithm for deciding the presence of a set or
superset exists in Fd

3 seems to be an interesting open problem.
Just like set became too easy one day, we will eventually demand a variant of set more

difficult than superset. In fact, note that the term powerset is yet to be overloaded. For
instance, a powerset could be the union of three (or more) pairs that are all completed
to a set by a same element [24] or, alternatively, the symmetric difference between two
supersets that intersect in exactly one element.

References
1 Gary Antonick. The problem with SET. News Article. https://www.nytimes.com/2016/

08/22/crosswords/the-problem-with-set.html.
2 Mark Baker, Jane Beltran, Jason Buell, Brian Conrey, Tom Davis, Brianna Donaldson,

Jeanne Detorre-Ozeki, Leila Dibble, Tom Freeman, Robert Hammie, Julie Montgomery,
Avery Pickford, and Justine Wong. Sets, planets, and comets. The College Mathematics
Journal, 44(4):258–264, 2013.

3 Michael Bateman and Nets Katz. New bounds on cap sets. Journal of the American
Mathematical Society, 25(2):585–613, 2012.

4 Jürgen Bierbrauer and Yves Edel. Bounds on affine caps. Journal of Combinatorial Designs,
10:111–115, 2000.

5 BoardGameGeek. Set. https://www.boardgamegeek.com/boardgame/1198/set.
6 BoardGameGeek community. Variations on a Set. Forum thread. https://boardgamegeek.

com/thread/92588/variations-set.
7 Sebastian Brandt. Personal communcation, 2014.
8 A. R. Calderbank and P. C. Fishburn. Maximal three-independent subsets of {0, 1, 2}n.

Designs, Codes and Cryptography, 4(4):203–211, 1994.

https://www.nytimes.com/2016/08/22/crosswords/the-problem-with-set.html
https://www.nytimes.com/2016/08/22/crosswords/the-problem-with-set.html
https://www.boardgamegeek.com/boardgame/1198/set
https://boardgamegeek.com/thread/92588/variations-set
https://boardgamegeek.com/thread/92588/variations-set

F. Botler, A. Cristi, R. Hoeksma, K. Schewior, and A. Tönnis 12:17

9 Kamalika Chaudhuri, Brighten Godfrey, David Ratajczak, and Hoeteck Wee. On the
complexity of the game of Set, 2003. Manuscript.

10 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

11 Brian Corney and Brianna Donaldson. SET. Classroom material. https://www.
mathteacherscircle.org/assets/session-materials/BConreyBDonaldsonSET.pdf.

12 Ernie Croot, Vsevolod Lev, and Peter Pach. Progression-free sets in Zn
4 are exponentially

small. Annals of Mathematics, 185:331–337, 2017.
13 Daniel. Answer at Mathematics Stack Exchange. https://math.stackexchange.com/a/

202863.
14 Benjamin Lent Davis and Diane Maclagan. The card game set. The Mathematical Intel-

ligencer, 25(3):33–40, 2003.
15 Y. Edel, S. Ferret, I. Landjev, and L. Storme. The classification of the largest caps in

AG(5,3). Journal of Combinatorial Theory, Series A, 99(1):95–110, 2002.
16 Yves Edel. Extensions of generalized product caps. Designs, Codes and Cryptography,

31(1):5–14, 2004.
17 Jordan S Ellenberg and Dion Gijswijt. On large subsets of Fn

q with no three-term arithmetic
progression. Annals of Mathematics, 185:339–343, 2017.

18 R. Hill. On Pellegrino’s 20-caps in S4,3. In Combinatorics ’81 in honour of Beniamino
Segre, volume 78 of North-Holland Mathematics Studies, pages 433–447. 1983.

19 Raymond Hill. Caps and codes. Discrete Mathematics, 22(2):111–137, 1978.
20 Erica Klarreich. A simple proof from the pattern-matching card game

Set stuns mathematicians. News article. https://www.wired.com/2016/06/
simple-proof-card-game-set-stuns-mathematicians/.

21 Donald Knuth. SETSET-RANDOM. CWEB program. https://www-cs-faculty.
stanford.edu/~knuth/programs/setset-random.w.

22 Michael Lampis and Valia Mitsou. The computational complexity of the game of set and its
theoretical applications. In Latin American Theoretical Informatics Symposium (LATIN),
pages 24–34, 2014.

23 Tom Magliery. Set variants. Personal Homepage. http://magliery.com/Set/
SetVariants.html.

24 L. McMahon, G. Gordon, H. Gordon, and R. Gordon. The Joy of SET: The Many Math-
ematical Dimensions of a Seemingly Simple Card Game. Princeton University Press, 2016.
URL: https://books.google.cl/books?id=8JojDQAAQBAJ.

25 Roy Meshulam. On subsets of finite abelian groups with no 3-term arithmetic progressions.
Journal of Combinatorial Theory, Series A, 71(1):168–172, 1995.

26 Gu Pellegrino. Sul massimo ordine delle calotte in S4,3. Matematiche (Catania), 25:149–157,
1971. In Italian.

27 Aaron Potechin. Maximal caps in AG(6,3). Designs, Codes and Cryptography, 46(3):243–
259, 2008.

28 SET Enterprises, Inc. SET instructions. https://www.setgame.com/set/puzzle_rules.
29 Terence Tao. Open question: best bounds for cap sets. Blog post. https://terrytao.

wordpress.com/2007/02/23/.
30 Terence Tao. A symmetric formulation of the Croot-Lev-Pach-Ellenberg-Gijswijt capset

bound. Blog post. https://terrytao.wordpress.com/2016/05/18/.
31 The New York Times. Daily set feature. https://www.nytimes.com/crosswords/game/

set.
32 Henrik Warne. SET card game variation – complementary pairs. https://henrikwarne.

com/2013/04/07/set-card-game-variation-complementary-pairs/.

FUN 2018

https://www.mathteacherscircle.org/assets/session-materials/BConreyBDonaldsonSET.pdf
https://www.mathteacherscircle.org/assets/session-materials/BConreyBDonaldsonSET.pdf
https://math.stackexchange.com/a/202863
https://math.stackexchange.com/a/202863
https://www.wired.com/2016/06/simple-proof-card-game-set-stuns-mathematicians/
https://www.wired.com/2016/06/simple-proof-card-game-set-stuns-mathematicians/
https://www-cs-faculty.stanford.edu/~knuth/programs/setset-random.w
https://www-cs-faculty.stanford.edu/~knuth/programs/setset-random.w
http://magliery.com/Set/SetVariants.html
http://magliery.com/Set/SetVariants.html
https://books.google.cl/books?id=8JojDQAAQBAJ
https://www.setgame.com/set/puzzle_rules
https://terrytao.wordpress.com/2007/02/23/
https://terrytao.wordpress.com/2007/02/23/
https://terrytao.wordpress.com/2016/05/18/
https://www.nytimes.com/crosswords/game/set
https://www.nytimes.com/crosswords/game/set
https://henrikwarne.com/2013/04/07/set-card-game-variation-complementary-pairs/
https://henrikwarne.com/2013/04/07/set-card-game-variation-complementary-pairs/

A Cryptographer’s Conspiracy Santa
Xavier Bultel
LIMOS, University Clermont Auvergne, Campus des Cézeaux, Aubière, France
xavier.bultel@uca.fr

https://orcid.org/0000-0002-8309-8984

Jannik Dreier
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
jannik.dreier@loria.fr

https://orcid.org/0000-0002-1026-3360

Jean-Guillaume Dumas
Université Grenoble Alpes, Laboratoire Jean Kuntzmann, UMR CNRS 5224, 700 avenue
centrale, IMAG - CS 40700, 38058 Grenoble cedex 9, France
Jean-Guillaume.Dumas@univ-grenoble-alpes.fr

https://orcid.org/0000-0002-2591-172X

Pascal Lafourcade
LIMOS, University Clermont Auvergne, Campus des Cézeaux, Aubière, France
pascal.lafourcade@uca.fr

https://orcid.org/0000-0002-4459-511X

Abstract
In Conspiracy Santa, a variant of Secret Santa, a group of people offer each other Christmas
gifts, where each member of the group receives a gift from the other members of the group. To
that end, the members of the group form conspiracies, to decide on appropriate gifts, and usually
divide the cost of each gift among all participants of that conspiracy. This requires to settle the
shared expenses per conspiracy, so Conspiracy Santa can actually be seen as an aggregation of
several shared expenses problems.

First, we show that the problem of finding a minimal number of transaction when settling
shared expenses is NP-complete. Still, there exists good greedy approximations. Second, we
present a greedy distributed secure solution to Conspiracy Santa. This solution allows a group
of people to share the expenses for the gifts in such a way that no participant learns the price of
his gift, but at the same time notably reduces the number of transactions with respect to a naive
aggregation. Furthermore, our solution does not require a trusted third party, and can either
be implemented physically (the participants are in the same room and exchange money using
envelopes) or, virtually, using a cryptocurrency.

2012 ACM Subject Classification Security and privacy→ Privacy-preserving protocols, Security
and privacy → Formal security models, Theory of computation → Problems, reductions and
completeness

Keywords and phrases Secret Santa, Conspiracy Santa, Secure Multi-Party Computation, Cryp-
tocurrency, Physical Cryptography

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.13

Funding This research was conducted with the support of the FEDER program of 2014-2020, the
region council of Auvergne-Rhône-Alpes, the support of the “Digital Trust” Chair from the Uni-
versity of Auvergne Foundation, the Indo-French Centre for the Promotion of Advanced Research
(IFCPAR), the Center Franco-Indien Pour La Promotion De La Recherche Avancée (CEFIPRA)

© Xavier Bultel, Jannik Dreier, Jean-Guillaume Dumas, and Pascal Lafourcade;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 13; pp. 13:1–13:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xavier.bultel@uca.fr
https://orcid.org/0000-0002-8309-8984
mailto:jannik.dreier@loria.fr
https://orcid.org/0000-0002-1026-3360
mailto:Jean-Guillaume.Dumas@univ-grenoble-alpes.fr
https://orcid.org/0000-0002-2591-172X
mailto:pascal.lafourcade@uca.fr
https://orcid.org/0000-0002-4459-511X
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 A Cryptographer’s Conspiracy Santa

through the project DST/CNRS 2015-03 under DST-INRIA-CNRS Targeted Programme, and
the OpenDreamKit Horizon 2020 European Research Infrastructures project (#676541).

Acknowledgements Many thanks to Marie-Béatrice, Anne-Catherine, Marc, Jacques and Luc
for such great conspiracy Santas! A big thanks also to the Gilbert family for having big instances
of the Shared Expenses Problem problem regularly, and to Cyprien for asking the question of its
complexity. More thanks go to Mathilde and Gwénaël for the discussions on and propositions of
efficient algorithms.

1 Introduction

Secret Santa is a Christmas tradition, where members of a group are randomly assigned to
another person, to whom they have to offer a gift. The identity of the person offering the
present is usually secret, as well as the price of the present.

In Conspiracy Santa, a variant of Secret Santa, for each participant, the other members
of the group collude and jointly decide on an appropriate gift. The gift is then usually
bought by one of the colluding participants, and the expenses are shared among the colluding
participants.

In this setting, the price of the gift must remain secret and, potentially, also who
bought the present. At the same time, sharing the expenses usually results in numerous
transactions. Existing results in the literature (e.g., [3, 4, 5, 12]) aim at minimizing the
number of transactions, but they assume that all expenses are public, that all participants
are honest, and that communications are safe. Our goal is to propose a secure Conspiracy
Santa algorithm for cryptographers that do not want to disclose the prices.

1.1 Contributions

We provide the following contributions:

We show that the general problem of finding a solution with a minimal number of
transactions when sharing expenses is NP-complete.

We provide a secure protocol for Conspiracy Santa. The algorithm ensures that no
participant learns the price of his gift, nor who bought it. Moreover, the algorithm
reduces the number of transactions necessary compared to a naive solution (although the
solution in general is not optimal, as this could leak information).

Our secure algorithm is entirely distributed and does not require any trusted third party.
To also realize the payments in a distributed fashion, a secure peer-to-peer cryptocurrency
can be used. We also discuss a physical payment solution, using envelopes and bank
notes.

Our algorithm can also be used in the case where expenses are shared within multiple
groups. There, some people belong to several of these groups and the goal is to reduce the
number of transactions while still ensuring privacy: all participants only learn about the
expenses of their groups, not the other groups. One can also see this problem as a variant of
the dining cryptographers [7]. However, instead of respecting the cryptographers’ right to
anonymously invite everybody, we here want to respect the cryptographers’ right to privately
share expenses of multiple diners with different groups.

http://opendreamkit.org
https://ec.europa.eu/programmes/horizon2020/
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
http://cordis.europa.eu/project/rcn/198334_en.html

X. Bultel, J. Dreier, J.-G. Dumas, and P. Lafourcade 13:3

1.2 Outline
The remainder of the paper is structured as follows: in Section 2, we analyze the complexity
of the general problem of sharing expenses. In Section 3, we present our protocol to solve
the problem of privately sharing expenses in Conspiracy Santa, in a peer-to-peer setting. We
also discuss further applications of our solution, and how to realize the anonymous payments
required by the algorithm. We then conclude in Section 4.

2 The Shared Expenses Problem and its Complexity

Before analyzing the Conspiracy Santa problem in more detail, we now discuss the more
general problem of settling shared expenses with a minimal number of transactions. This
problem frequently arises, for example when a group of security researchers attends a FUN
conference and wants to share common expenses such as taxis, restaurants etc. Reducing
the overall number of transactions might then reduce the overall currency exchange fees paid
by the researchers.

In such a case, each participant covers some of the common expenses, and in the end
of the conference, some transactions are necessary to ensure that all participants payed the
same amount. Note for this first example, there are no privacy constraints, as all amounts
are public.

I Example 1. Alice, Bob, and Carole attended FUN’16. The first night, Alice payed the
restaurant for 155 e, and Bob the drinks at the bar for 52 e. The second day Carole payed
the restaurant and drinks for a total of 213 e.

The total sum is then 155 + 52 + 213 = 420 e, meaning 140 e per person. This means
that Alice payed 140 − 155 = −15 e too much, Bob needs to pay 140 − 52 = 88 e more,
and Carole has to receive 140− 213 = −73 e. In this case, the optimal solution uses two
transactions: Bob gives 15 e to Alice, and 73 e to Carole.

There are numerous applications implementing solutions to this problem (e.g., [3, 4, 5]), but
it is unclear how they compute the transactions. Moreover, in these applications all expenses
are public, making them unsuitable for Conspiracy Santa.

David Vávra wrote a master’s thesis [12] about a similar smartphone application that
allows to settle expenses within group. He discusses a greedy approximation algorithm (see
below), and conjectures that the problem is NP-complete, but without giving a formal proof.

We start by formally defining the problem.

IDefinition 2. Shared Expenses Problem (SEP). Given a multiset of valuesK = {k1, . . . , kn}
such that

∑n
i=1 ki = 0 (where a positive ki means that participant i has to pay money, and

a negative ki means that i has to be reimbursed), is there a way to do all reimbursements
using (strictly) less than n− 1 transactions?

Note that there is always a solution using n−1 transactions using a greedy approach: given the
values in K = {k1, . . . , kn}, let i be the index of the maximum value of K (i = arg maxi(ki))
and let j be the index of the minimum value of K (j = arg minj(kj)), we use one transaction
between i and j such that after the transaction either the participant i or j ends up at 0.
I.e., if |ki| − |kj | > 0, then the participant j ends up at 0, otherwise the participant i ends
up at 0. By then recursively applying the same procedure on the remaining n− 1 values, we
can do all reimbursements. Overall, this greedy solution uses n− 1 transactions in the worst
case.

FUN 2018

13:4 A Cryptographer’s Conspiracy Santa

It is easy to see that SEP ∈ NP : guess a list of (less than n− 1) transactions, and verify
for each participant that in the end there are no debts or credits left.

We show that SEP is NP-complete, for this we use a reduction from the Subset Sum
Problem [10] which can be seen as a special case of the well known knapsack problem [9].

I Definition 3. Subset Sum Problem (SSP) Given a multiset of values K = {k1, . . . , kn}, is
there a subset K ′ ⊆ K such that

∑
k′∈K′ k

′ = 0?

The Subset Sum Problem is known to be NP-complete (see, e.g., [8]).

I Theorem 4. The Shared Expenses Problem is NP-complete.

Proof. Consider the following reduction algorithm:
Given a Subset Sum Problem (SSP) instance, i.e., a multiset of values K = {k1, . . . , kn},

compute s =
∑
k∈K k. If s = 0, return yes, otherwise let K ′ = K ∪ {−s} and return the

answer of an oracle for the Shared Expenses Problem for K ′.
It is easy to see that the reduction is polynomial, as computing the sum is in O(n).
We now need to show that the reduction is correct. We consider the two following cases:
Suppose the answer to the SSP is yes, then there is a subsetK ′′ ⊆ K such that

∑
k∈K′′ k =

0. If K ′′ = K, then the check in the reduction is true, and the algorithm returns yes. If
K ′′ 6= K, then we can balance the expenses in the sets K ′′ and K ′ \K ′′ independently
using the greedy algorithm explained above. This results in |K ′′| − 1 and |K ′| − |K ′′| − 1
transactions respectively, for a total of |K ′| − |K ′′| − 1 + |K ′′| − 1 = |K ′| − 2 < |K ′| − 1
transactions. Thus there is a way to do all reimbursements using strictly less than |K ′|−1
transactions, hence the answer will be yes.
Suppose the answer to the SSP is no, then there is no subset K ′′ ⊆ K such that∑
k∈K′′ k = 0. This means that there is no subset K3 ⊆ K ′ such that the expenses within

this set can be balanced independently of the other expenses. To see this, suppose it were
possible to balance the expenses in K3 independently, then we must have

∑
k∈K3

k = 0,
contradicting the hypothesis that there is no such subset (note that w.l.o.g. K3 ⊆ K, if
it contains the added value one can simply choose K ′ \K3).
Hence any way of balancing the expenses has to involve all n participants, but building
a connected graph with n nodes requires at least n− 1 edges. Thus there cannot be a
solution with less than n− 1 transactions, and the oracle will answer no. J

3 Cryptographer’s Conspiracy Santa

Consider now the problem of organizing Conspiracy Santa, where no participant shall learn
the price of his gift. Obviously we cannot simply apply, e.g., the greedy algorithm explained
above on all the expenses, as this would imply that everybody learns all the prices.

More formally, an instance of Conspiracy Santa with n participant consists of n shared
expenses problem (sub-SEP), each with n− 1 participants and with non-empty intersections
of the participants. In each sub-SEP, the n− 1 participants freely discuss, decide on a gift,
its value vi and who pays it; then agree that their share for this gift is vi/(n− 1). Overall
the share of each participant j is∑n

i=1,i6=j vi

n− 1 .

A participants balance pj is this share minus the values of the gifts she bought.
A simple solution would be to use a trusted third party, but most cryptographers are

paranoid and do not like trusted third parties. A distributed solution would be to settle

X. Bultel, J. Dreier, J.-G. Dumas, and P. Lafourcade 13:5

the expenses for each gift within the associated conspiracy group individually, but this then
results in n instances of the problem, with n− 2 transactions each (assuming that only one
person bought the gift), for a total of n× (n− 2) transactions.

Moreover, the problem becomes more complex if several groups with non-empty in-
tersections want to minimize transactions all together while preserving the inter-group
privacy.

I Example 5. Example 1 continued. For the same conference, FUN’16, Alice, Bob and Dan
shared a taxi from the airport and Bob paid for a total of 60e, that is 20e per person. There
are two possibilities. Either Alice and Dan make two new transactions to reimburse Bob.
Or, to minimize the overall number of transactions, they aggregate both accounts, i.e. those
from Example 1 with those of the taxi ride. That is [−15, 88,−73, 0] + [20,−40, 0, 20] =
[5, 48,−73, 20]. Overall Alice thus gives 5 e to Carole, Bob reduces his debt to Carole to only
48e and Dan gives 20 e to Carole. The security issue, in this second case, is that maybe
Alice and Bob did not want Dan to know that they were having lunch with Carole, nor that
they had a debt of more than 20 e, etc.

In the next part we present our solution for the generalization of Conspiracy Santa as the
aggregation of several shared expenses problems with non-empty intersections between the
participants. This solution uses 3n transactions, preserves privacy, and does not require a
trusted third party.

3.1 A Distributed Solution using Cryptocurrencies
We suppose that all participants know a fixed upper bound B for the value of any gift.
Apart from the setup, the protocol has 3 rounds, each one with n transactions, and one
initialization phase.

Note that we consider semi-honest participants in the sense that the participants follow
honestly the protocol, but they try to exploit all intermediate information that they have
received during the protocol to break privacy.

Initialization Phase

In the setup phase, the participants learn the price of the gifts in which they participate and
can therefore compute their overall balance, pi. They also setup several anonymous addresses
in a given public transaction cryptocurrency like Bitcoin [1], ZCash [6] or Monero [2].

Finally the participants create one anonymous address which is used as a piggy bank.
They all have access to the secret key associated to that piggy bank address. For instance,
they can exchange encrypted emails to share this secret key. Protocol 1 presents the details
of this setup phase.

First Round

The idea is that the participants will round their debts or credits so that the different amounts
become indistinguishable. For this, the participants perform transactions to adjust their
balance to either 0, B or a negative multiple of B. The first participant randomly selects an
initial value between 1 and B e, and sends it to the second participant. This transaction is
realized via any private payment channel between the two participants (physical payment,
bank transfer, cryptocurrency payment, . . . , as long as no other participant learns the
transferred amount). Then the second participant adds his balance to the received amount
modulo B, and forwards the money (up to B, or such that its credit becomes a multiple of

FUN 2018

13:6 A Cryptographer’s Conspiracy Santa

Protocol 1 SEP broadcast setup
Require: An upper bound B on the value of any gift;
Require: All expenses.
Ensure: Each participant learns his balance pi.
Ensure: Each participant creates 1 or several anonymous currency addresses.
Ensure: A shared anonymous currency address.
1: One anonymous currency address is created and the associated secret key is shared

among all participants.
2: for each exchange group do
3: for each payment within the group do
4: broadcast the amount paid to all members of the group;
5: end for
6: for each participant in the group do
7: Sum all the paid amounts of all the participants;
8: Divide by the number of participants in the group;
9: This produces the in-group share by participant.
10: end for
11: end for
12: for each overall participant do
13: Add up all in-group shares;
14: Subtract all own expenses to get pi;
15: if pi < 0 then
16: Create bpi

B c anonymous currency addresses.
17: end if
18: end for

B) to the next participant, and so on. The last participant also adds his balance and sends
the resulting amount to the first participant. In the end, all participants obtain a balance
of a multiple of B, and the random amount chosen by the first participant has hidden the
exact amounts. The details are described in Protocol 2.

Second Round

The second and third rounds of the protocol require anonymous payments, for which we use
anonymous cryptocurrency addresses. These two rounds are presented in Protocol 3. In the
second round, every participant makes one public transaction of B e to the piggy bank.

Third Round

Each creditor recovers their assets via bpi

B c public transactions of B e from the piggy bank.
Note that if a participant needs to withdraw more than B e he needs to perform several
transactions. To ensure anonymity, he needs to use a different anonymous address for each
transaction. In the end, the account is empty and the number of transactions corresponds
exactly to the number of initial transactions used to credit the piggy bank’s account.

I Theorem 6. For n participants, Protocols 1, 2, 3 are correct and require 3n transactions.

Proof. Including the piggy bank, all the transactions are among participants, therefore the
sum of all the debts and credits is invariant and zero. There remains to prove that in the

X. Bultel, J. Dreier, J.-G. Dumas, and P. Lafourcade 13:7

Protocol 2 Secure rounding to multiple of the bound
Require: An upper bound B on the value of any gift;
Require: Each one of n participants knows his balance pi;
Require:

∑n
i=1 pi = 0.

Ensure: Each one of n participants has a new balance pi, either 0, B or a negative multiple
of B;

Ensure:
∑n
i=1 pi = 0;

Ensure: Each transaction is between 1 and B e;
Ensure: The protocol is zero-knowledge.
1: P1: t1

$←− [1..B] uniformly sampled at random;
2: P1: p1 = p1 − t1;
3: P1 sends t1 e to P2; . Random transaction 1..B on a secure channel
4: P2: p2 = p2 + t1;
5: for i = 2 to n− 1 do
6: Pi: ti = pi mod B;
7: Pi: if ti = 0 then ti = ti +B; end if . 1 ≤ ti ≤ B
8: Pi: pi = pi − ti;
9: Pi sends ti e to Pi+1; . Random transaction 1..B on a secure channel
10: Pi+1: pi+1 = pi+1 + ti;
11: end for
12: Pn: tn = pn mod B;
13: Pn: if tn = 0 then tn = tn +B; end if . 1 ≤ tn ≤ B
14: Pn: pn = pn − tn;
15: Pn sends tn e to P1; . Random transaction 1..B on a secure channel
16: P1: p1 = p1 + tn;

end of the protocol all the debts and credits are also zero. The value of any gift is bounded
by B, thus any initial debt for any gift is at most B/(n− 1). As participants participate to
at most n− 1 gifts, the largest debt is thus lower than B e. Then, during the first round,
all participants, except P1, round their credits or debts to multiples of B. But then, by
the invariant, after the first round, the debt or credit of P1 must also be a multiple of B.
Furthermore, any debtor will thus either be at zero after the first round or at a debt of
exactly B e. After the second round any debtor will then be either at zero or at a credit
of exactly B e. Thus after the second round only the piggy bank has a debt. Since the
piggy bank received exactly nB e, exactly n transactions of B e will make it zero and the
invariant ensures that, after the third round, all the creditors must be zero too. J

I Remarks. It is important to use a cryptocurrency such as Bitcoin, Monero or ZCash in
order to hide both the issuer and the receiver of each transaction in the third round. This
ensures that nobody can identify the users.

Note that when using Bitcoin, users can potentially be tracked if the addresses are used
for other transactions. Using Monero or Zcash can offer more privacy since the exchanged
amount can also be anonymized. Moreover, to avoid leaking the fact that some persons need
to withdraw Be multiple times, and are thus doing multiple transaction at the same time,
all the withdrawals should be synchronized. If exact synchronization is difficult to achieve,
one can decide on a common time interval, e.g., an hour, and all the transactions have to be
done at random time points during this interval, independently, whether they are executed
from the same or a different participant.

FUN 2018

13:8 A Cryptographer’s Conspiracy Santa

Protocol 3 Peer-to-peer secure debt resolution
Require: An upper bound B on the value of any gift;
Require: n participants each with a balance pi, either 0, B or a negative multiple of B.
Ensure: All balances are zero;
Ensure: The protocol is zero-knowledge.
1: parfor i = 1 to n do . Everybody sends B to the piggy bank
2: Pi: pi -=B;
3: Pi sends B e to the shared anonymous address; . Public transaction of B
4: end parfor
5: parfor i = 1 to n do
6: if pi < 0 then . Creditors recover their assets
7: parfor j = 1 to −pi

B do
8: Pi makes the shared anonymous address pay Be to one of his own anonymous

addresses; . Public transaction of B
9: end parfor
10: Pi: pi = 0.
11: end if
12: end parfor

I Example 7. We now have a look at the algorithm for our example with Alice, Bob, Carole
and Dan. As in Example 5, the initial balance vector is [5, 48,−73, 20]. They decide on an
upper bound of B = 50 e (note that to provably ensure exactly 3n = 12 transactions they
should take an upper bound larger than any expense, that is larger than 213 e, but 50 is
sufficient for our example here). For the first round, Alice randomly selects 1 ≤ t1 = 12 ≤ 50
and makes a first private transaction of t1 = 12 e to Bob. Bob then makes a private
transaction of t2 = 12 + 48 mod 50 = 10 e to Carole; Carole makes a private transaction
of t3 = 10 − 73 mod 50 = 37 e to Dan; who makes a private transaction of t4 = 37 + 20
mod 50 = 7 e to Alice. All these transactions are represented in Figure 1. The balance vector
is thus now [0, 50,−100, 50], because for instance Bob had a balance of 48 e, received 12 e
from Alice and sends 10 e to Carole, hence his new balance is 48+12−10 = 50 e. Everybody
sends 50 e to the piggy bank address, so that the balance vector becomes [−50, 0,−150, 0].
Finally there are four 50 e transactions, one to an address controlled by Alice and three to
(different) addresses controlled by Carole. These two last rounds are illustrated in Figure 2.
Note that we have exactly n = 4 transactions per round.

3.2 Security Proof
We now provide a formal security proof for our protocol. We use the standard multi-party
computations definition of security against semi-honest adversaries [11]. As stated above, we
consider semi-honest adversaries in the sense that the entities run honestly the protocols, but
they try to exploit all intermediate information that they have received during the protocol.

We start by formally defining the indistinguishability and the view of an entity.

I Definition 8 (Indistinguishability). Let η be a security parameter and Xη and Yη two
distributions. We say that Xη and Yη are indistinguishable, denoted Xη ≡ Yη, if for every
probabilistic distinguisher D we have:

Pr[x← Xη : 1← D(x)]− Pr[y ← Yη : 1← D(y)] = 0

X. Bultel, J. Dreier, J.-G. Dumas, and P. Lafourcade 13:9

A: 5 B: 48

C: -73D: 20

t1 = 12

12 e

12 + 48 = 10 mod 50

10− 73 = 37 mod 50

37 + 20 = 7 mod 50

Figure 1 First round of Example 7.

A: 0 B: 50

C: -100D: 50

Piggy Bank

50 e 50 e

50 e50 e

A: -50 B: 0

C: -150D: 0

Piggy Bank
50 e

50 e

50 e

50 e

Figure 2 On the left: second round of Example 7. On the right: third round of Example 7.
Dotted arrows represent anonymous transactions, in particular Carole uses three different anonymous
addresses.

I Definition 9 (view). Let π(I) be an n-parties protocol for the entities (Pi)1≤i≤n using
inputs I = (Ii)1≤i≤n. The view of a party Pi(Ii) (where 1 ≤ i ≤ n) during an execution of π,
denoted viewπ(I)(Pi(Ii)), is the set of all values sent and received by Pi during the protocol.

To prove that a party P learns nothing during execution of the protocol, we show that P
can run a simulator algorithm that simulates the protocol, such that P (or any polynomially
bounded algorithm) is not able to differentiate an execution of the simulator and an execution
of the real protocol. The idea is the following: since the entity P is able to generate his
view using the simulator without the secret inputs of other entities, P cannot extract any
information from his view during the protocol. This notion is formalized in Definition 10.

I Definition 10 (Security with respect to semi-honest behavior). Let π(I) be an n-parties
protocol between the entites (Pi)1≤i≤n using inputs I = (Ii)1≤i≤n. We say that π is secure
in the presence of semi-honest adversaries if for each Pi (where 1 ≤ i ≤ n) there exists a
protocol Simi(Ii) where Pi interacts with a polynomial time algorithm Si(Ii) such that:

viewSimi(Ii)(Pi(Ii)) ≡ viewπ(I)(Pi(Ii))

I Theorem 11. Our conspiracy santa protocol is secure with respect to semi-honest behavior.

Proof. We denote our protocol by SCSn(I) (for Secure Conspiracy Santa). For all 1 ≤ i ≤ n,
each entity Pi has the input Ii = (n,B, pi), where I = (Ii)1≤i≤n. For all 1 ≤ i ≤ n, we show
how to build the protocol Simi such that:

viewSimi(Ii)(Pi(Ii)) ≡ viewSCSn(I)(Pi(Ii))

FUN 2018

13:10 A Cryptographer’s Conspiracy Santa

Simulator 4 Algorithm S1 of the protocol Sim1(I1).
Require: S1 knows I1 = (n,B, p1)
1: S1 receives t1 e from P1;
2: if 0 ≤ (p1 − t1) then
3: S1 sends (B − (p1 − t1)) e to P1;
4: else if (p1 − t1) < 0 then
5: S1 sends (B − ((t1 − p1) mod B)) e to P1;
6: end if
7: for j = 1 to n− 1 do
8: S1 sends B e to the shared anonymous address;
9: end for
10: if 0 ≤ (p1 − t1) then
11: x = n;
12: else if (p1 − t1) < 0 then
13: x = n+ (p1−t1)−((t1−p1) mod B)

B ;
14: end if
15: for j = 1 to x do
16: S1 makes the shared anonymous address pay B e to an anonymous address;
17: end for

Simulator 5 Algorithm Si of the protocol Simi(Ii), where 1 < i ≤ n.
Require: Si knows I1 = (n,B, pi)
1: ti−1

$←− [1..B] ;
2: Si sends ti−1 e to Pi;
3: Si receives ti e from Pi;
4: for j = 1 to n− 1 do
5: Si sends B e to the shared anonymous address;
6: end for
7: x = n+ pi+ti−1−ti−B

B ;
8: for j = 1 to x do
9: Si makes the shared anonymous address pay B e to an anonymous address;
10: end for

Sim1 is given in Simulator 4, and Simi for 1 < i ≤ n is given in Simulator 5.
We first show that the view of P1 in the real protocol SCSn is the same as in the protocol

Sim1:
At Instruction 1 of Simulator 4, S1 receives t1 e from P1 such that 1 ≤ t1 ≤ B, as at
Instruction 3 of Protocol 2.
At Instruction 15 of Protocol 2, Pn sends tn e to P1 such that:

1 ≤ tn ≤ B
The balance of P1 is a multiple of B.

We show that these two conditions hold in the simulator. At Instruction 2 of Protocol 2,
the balance of P1 is (p1 − t1).
1. If the balance is positive, then 0 ≤ (p1 − t1) < B and S1 sends B − (p1 − t1) e to P1.

We then have:
1 ≤ B − (p1 − t1) ≤ B
The balance of P1 is B − (p1 − t1) + (p1 − t1) = B which is multiple of B.

X. Bultel, J. Dreier, J.-G. Dumas, and P. Lafourcade 13:11

2. If the balance is negative, then S1 sends (B − ((t1 − p1) mod B)) e to P1. We then
have:

1 ≤ B − ((t1 − p1) mod B) ≤ B
The balance of P1 is: B − ((t1 − p1) mod B) + (p1 − t1) = B +

⌊
p1−t1
B

⌋
· B =(⌊

p1−t1
B

⌋
+ 1
)
·B, which is a multiple of B.

At Instruction 8 of Simulator 4, S1 sends B e to the shared anonymous address (n− 1)
times, and P1 sends B e to the shared anonymous address 1 time, so together they send
B e n times to the shared anonymous address, as at Instruction 3 of Protocol 3.
At Instruction 8 of Protocol 3, the users make the shared anonymous address pay B e to
n anonymous addresses. At Instruction 16 of Simulator 4, the balance of P1 is:

0 if 0 ≤ (p1 − t1) (because P1 had B e and sent B e to the shared address).
Otherwise, the balance of P1 is B − ((t1 − p1) mod B) + (p1 − t1)− B = ((t1 − p1)
mod B) + (p1 − t1). Hence P1 receives B e from the shared anonymous address∣∣∣ ((t1−p1) mod B)+(p1−t1)

B

∣∣∣ times, and S1 receives B e from the shared anonymous

address n+ ((t1−p1) mod B)+(p1−t1)
B times. We note that ((t1−p1) mod B)+(p1−t1) ≤

0 because (p1− t1) ≤ 0 and ((t1− p1) mod B) ≤ −(p1− t1). Finally, P1 and S1 make
the shared anonymous address pay B e to n anonymous addresses because:

n+ ((t1 − p1) mod B) + (p1 − t1)
B

+
∣∣∣∣ ((t1 − p1) mod B) + (p1 − t1)

B

∣∣∣∣ = n

Finally, we deduce that the view of P1 in the real protocol SCSn is the the same as in the
simulator Sim1:

viewSim1(I1)(P1(I1)) ≡ viewSCSn(I)(P1(I1))

We then show that the view of Pi in the real protocol SCSn is the same as in the protocol
Sim1 for any 1 ≤ i ≤ n:

At instruction 3 and 9 of Protocol 2, each user Pi receives ti−1 e from Pi−1 for any
1 ≤ i ≤ n such that 1 ≤ ti−1 ≤ B. We note that each ti−1 depends on the value t1
chosen by P1. Moreover, t1 comes form a uniform distribution and acts as a one-time
pad on the values ti−1, i.e., it randomizes ti−1 such that Pi cannot distinguish whether
ti−1 was correctly generated or comes from the uniform distribution on {1, . . . , B}. At
instruction 1 of Simulator 5, Si chooses ti−1 at random in the uniform distribution on
{1, . . . , B} and sends ti−1 to Pi.
At Instruction 3 of Simulator 5, Si receives ti e from Pi such that 1 ≤ t1 ≤ B, like at
Instruction 9 of Protocol 2.
At Instruction 5 of Simulator 5, Si sends B e to the shared anonymous address (n− 1)
times, and Pi sends B e to the shared anonymous address 1 time, so together they send
B e n times to the shared anonymous address, as at Instruction 3 of Protocol 3.
At Instruction 8 of Protocol 3, the users make the shared anonymous address pay B e to n
anonymous addresses. At Instruction 9 of Simulator 5, the balance of Pi is pi+ti−1−ti−B.
Hence Pi receives B e from the shared anonymous address

∣∣∣pi+ti−1−ti−B
B

∣∣∣ times, and
Si receives B e from the shared anonymous address n+ pi+ti−1−ti−B

B times. We note
that pi + ti−1 − ti − B ≤ 0; indeed, we have ti = (pi + ti−1) mod B (Instruction 6 of
Protocol 2). Since pi ≤ B and ti−1 ≤ B, then we have (pi + ti−1)− ti ≤ B, so we have
pi + ti−1 − ti −B ≤ 0. Finally, Pi and Si make the shared anonymous address pay B e
to n anonymous addresses because:

n+ pi + ti−1 − ti −B
B

+
∣∣∣∣pi + ti−1 − ti −B

B

∣∣∣∣ = n

FUN 2018

13:12 A Cryptographer’s Conspiracy Santa

Finally, to conclude the proof, we deduce that for all 1 ≤ i ≤ n the view of Pi in the real
protocol SCSn is the the same as in the simulator Simi:

viewSimi(Ii)(Pi(Ii)) ≡ viewSCSn(I)(Pi(Ii)). J

3.3 Physical Variant

If one does not wish to use cryptocurrencies, one can use the following physical variant of
the protocol. In the first round each participant needs to transfer some money to another
participant using a private channel. A simple physical solution is that they meet and perform
the transfer face to face, while ensuring that nobody spies on them. For the second round,
the balance of all participants is a multiple of B e. During the first part of this algorithm,
everyone puts an envelope containing B e onto a stack that is in a secure room. By secure
room, we mean a place where no other participants can spy what is going on inside. In the
second part all participants enter this secure room one after the other and do the following
according to their balance:

If the balance is 0 then the participant does nothing.

If the balance is a multiple k of B e, the participant takes k envelopes from the top of
the stack, opens them and collects the corresponding k ∗B e. Then he places, in each of
the now empty k envelopes, a piece of paper that have the same shape and weight as a
the B e. These envelopes are placed under the stack of envelopes.

This method allows everyone to collect his money without revealing to the other ones how
much they have taken.

We show that this protocol is secure with respect to semi-honest behavior. For this, we
physically simulate the protocol for any participant. We first note that the first round of the
protocol is the same as Protocol 2, so this round can be simulated exactly as in the proof of
Theorem 11. We simulate the second round for any participant as follows. During the first
part of the algorithm, the simulator enters n− 1 times the secure room and puts an envelope
containing B e onto the stack. When it is his turn, the participant enters the room and
puts an envelope containing B e onto the stack. Finally, there are n envelopes containing
B e on a stack. In the second part the simulator enters the room n − 1 times and does
nothing. When it is his turn, the participant enters the room and takes k envelopes from the
top of the stack, opens them and collects the corresponding k ∗B e as in the real protocol,
where 0 ≤ k ≤ n. Since each of the n envelopes contains B e, the simulation works for any
0 ≤ k ≤ n.

We deduce that the view of the participant during the simulation is the same as during the
real protocol, which implies that our physical protocol is secure with respect to semi-honest
behavior.

I Remark. This physical protocol mimics exactly the solution using cryptocurrencies. One
advantage, though, of the physical world is that it is easier to perform transactions with 0 e.
Therefore there exists a simpler solution for the second round, where creditors do not have
to give B e in advance: if the participant is in debt he puts an envelope containing B e
onto the stack, otherwise he puts an envelope containing a piece of paper under the stack.

The first and third rounds are not modified, and the simulator for the security proof is
not modified either.

X. Bultel, J. Dreier, J.-G. Dumas, and P. Lafourcade 13:13

4 Conclusion

In this paper we showed that the Shared Expenses Problem (SEP) is NP-complete. Moreover,
we devised a privacy-preserving protocol to share expenses in a Conspiracy Santa setting
where members of a group offer each other gifts.

Our protocol ensures that no participant learns the price of his gift, while reducing the
number of transactions compared to a naive solution, and not relying on a trusted third
party. We formally prove the security of our protocol and propose two variants, one relying
on cryptocurrencies for anonymous payments, the other one using physical means, such as
envelopes, to achieve anonymous payments.

Our protocol can also be used to share expenses among different groups with non-empty
intersections, while still ensuring that each participant only learns the expenses of his group(s).

References
1 Bitcoin. https://bitcoin.org/. Accessed: 2018-02-13.
2 Monero. https://getmonero.org/. Accessed: 2018-02-13.
3 Settle up. https://settleup.io/. Accessed: 2018-02-13.
4 Splitwise. https://www.splitwise.com/. Accessed: 2018-02-13.
5 Tricount. https://www.tricount.com/. Accessed: 2018-02-13.
6 Zcash. https://z.cash/. Accessed: 2018-02-13.
7 David Chaum. The dining cryptographers problem: Unconditional sender and recipient

untraceability. J. Cryptology, 1(1):65–75, 1988. doi:10.1007/BF00206326.
8 Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction

to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.
9 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.
10 Richard M. Karp. Reducibility among combinatorial problems. In Michael Jünger,

Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Ger-
hard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50 Years of Integer
Programming 1958-2008: From the Early Years to the State-of-the-Art, pages 219–241.
Springer, Berlin, Heidelberg, 2010.

11 Qingkai Ma and Ping Deng. Secure multi-party protocols for privacy preserving data min-
ing. In Yingshu Li, Dung T. Huynh, Sajal K. Das, and Ding-Zhu Du, editors, Wireless
Algorithms, Systems, and Applications, Third International Conference, WASA 2008, Dal-
las, TX, USA, October 26-28, 2008. Proceedings, volume 5258 of Lecture Notes in Computer
Science, pages 526–537. Springer, 2008. doi:10.1007/978-3-540-88582-5_49.

12 David Vávra. Mobile Application for Group Expenses and Its Deployment. Master’s thesis,
Czech Technical University in Prague, Faculty of Electrical Engineering, Department of
Computer Graphics and Interaction, 2012.

FUN 2018

https://bitcoin.org/
https://getmonero.org/
https://settleup.io/
https://www.splitwise.com/
https://www.tricount.com/
https://z.cash/
http://dx.doi.org/10.1007/BF00206326
http://dx.doi.org/10.1007/978-3-540-88582-5_49

Cooperating in Video Games? Impossible!
Undecidability of Team Multiplayer Games
Michael J. Coulombe
MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge,
MA 02139, USA
mcoulomb@mit.edu

Jayson Lynch
MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge,
MA 02139, USA
jaysonl@mit.edu

Abstract
We show the undecidability of whether a team has a forced win in a number of well known video
games including: Team Fortress 2, Super Smash Brothers: Brawl, and Mario Kart.To do so, we
give a simplification of the Team Computation Game [7] and use that to give an undecidable
abstract game on graphs. This graph game framework better captures the geometry and common
constraints in many games and is thus a powerful tool for showing their computational complexity.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases computational complexity, undecidable, team games, imperfect informa-
tion

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.14

1 Introduction

Multiplayer videogames account for a large portion of the video game market and yet the
additional computational complexity added by coordinating different team members has not
seen much study from a theoretical standpoint. We finally bridge the gap between known
theoretical models where imperfect information team games are known to be much more
computationally complex and popular, commonly played video games.

In a series of papers [8–11], Reif and Peterson explored the computational complexity of
games of imperfect information. One surprising result was a proof that unbounded team
multiplayer games with imperfect information can be undecidable, despite having a bounded
configuration space in the game itself. This work has been expanded to include formula and
constraint logic games [7]; however, to the best of our knowledge, no commonly played game
has been shown to be undecidable using this framework.

The computational complexity of video games has started becoming a popular topic of
inquiry. Past research includes the study of classic arcade games like Pac-Man [13], classic
Nintendo games such as Mario and the Legend of Zelda [1], to more modern games like Candy
Crush [5], Portal [4], Angry Birds [12], and Braid [6]. However, all of these papers considered
single-player, perfect information versions of the game. These are both aspects that intuitively
and theoretically should make the games much more computationally challenging. This
paper critically utilizes these properties to show far stronger hardness results than usually
appears. We are aware of only one other video game, Braid, which has been shown to be
undecidable. However, it does so by the construction of a counter machine using enemy units

© Michael J. Coulombe and Jayson Lynch;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 14; pp. 14:1–14:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mcoulomb@mit.edu
mailto:jaysonl@mit.edu
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Cooperating in Video Games? Impossible! Undecidability of TeamMultiplayer Games

and thus playing such a level will require unbounded computational resources. The ability
for a bounded game state to be able to lead to an undecidable problem has been remarked
on by others are a fascinating feature of this type of problem [7].

In addition, much of the past work on video games has focused on environmental obstacles
such as toggles for moving platforms and locking doors, rather than more central mechanics
of the game. An aesthetic advantage of our proofs are that they focus on player vs player
interaction and use the central combat mechanics of the game as core elements in the
reduction.

Organization

This paper is organized into two parts. The first half deals with abstract games and builds a
framework for later reductions. In particular, Section 2 details the gadgets involved in our
team multiplayer graph game. Section 3 reduces the TEAM COMPUTATION GAME to
the TEAM GRAPH GAME using our simplification of the former, the TEAM DFA GAME,
with further details in Appendix A. The second half, Section 4, applies this framework to
show the undecidability of several popular multiplayer games.

2 Team Graph Game Components

In this section we describe the different components of our undecidability framework which
will be instantiated in the TEAM GRAPH GAME which we define and show to be undecidable
in Section 3. Roughly speaking, it is a multi-player game with two teams, which we will refer
to as blue and red, on a graph where each team wants to get one of their players to one of
the win nodes. Players take time moving from node to node and from a node other nodes
may be visible, allowing the player to determine if another player is there. In addition, some
nodes will allow a player to guard an edge. A player attempting to cross a guarded edge will
be eliminated and no longer be able to perform any useful actions. In our reduction we want
to simulate a DFA which takes input from blue and red players and changes state based
on this input. The state of the DFA will be encoded in the location of one player on the
blue team, called the runner, and we call the other blue team members executors. The DFA
entering an accept state will correspond to the runner being on a path which leads freely to
a win node. The red team will supply their inputs by guarding some of the possible paths of
the executors, while the executors will provide the blue team’s inputs by choosing among
unguarded paths to take. Both teams’ inputs will force the runner to take a certain path
through the region representing the DFA transition function. This section of the paper will
describe these gadgets and their function in detail and Section 3 will formalize and complete
the proof.

We break this framework down into several important gadgets each given their own
subsection. We require a state transition gadget to manage the state of a deterministic finite
automaton. This is described in Subsection 2.3. Both teams need to set variables which are
taken as input to the DFA which is done with the choice gadgets described in Subsection 2.2.
We need to synchronize all of the players so that the variable choices and DFA execution all
occur in the proper order. This is done with the delay gadget described in Subsection 2.1.
Finally, there is an optional initializer gadget which forces players from initial locations to
the pathways needed in the gadgets. This is described in Subsection 2.4. These gadgets are
put together in Section 3, as shown in Figure 5.

In this paper we use the following diagram conventions. Edges and nodes in the graph
potentially containing red Team players are red and use square for nodes. Edges and nodes
potentially containing blue Team players except for the runner are blue with circles as nodes.

M. J. Coulombe and J. Lynch 14:3

a

b

κ

γ

Figure 1 Gadget to delay the runner until a blue executor arrives to remove the red attacker.

Edges and nodes potentially containing the runner are black with diamonds for nodes. The
graph contains both directed and undirected edges. Bold edges represent many different paths
which serve similar function but are only accessed by one player. They are often accompanied
by a label of how many edges are represented. Triple dots denote the continuation of a
pattern, often many of the same type of edge. In contrast to bold edges, a different player
will generally occupy each of these. Combat zones are pairs of nodes and edges and are
denoted by a lightly colored red or blue triangle. The color dictates which team is posing a
threat in the combat and always involves a node guarding an edge. If relevant, the combat
zone is labeled with the length of time an enemy must spend traversing a guarded edge to
be eliminated. These zones also imply visibility; however, we do not explicitly label visibility
in all of our diagrams. Labeled boxes are used to refer to unrepresented gadgets, and dotted
boxes are used to delineate different gadgets whose internal details are in the figure. An
encircled W is a win node. Other labels and notation will hopefully be clear from context.
Some of these conventions are used more liberally in the diagrams in Section 4 along side
more representative pictures for the games.

2.1 Delay Gadget
The simplest gadget is the Delay Gate, as seen in Figure 1. The blue runner moves through
the maze and is frequently blocked from making progress by a red player guarding a combat
zone (edge) from an attack node. To progress, one of the blue executors must arrive at its
own attack node which threatens the red guard, who must escape outside the combat zone
(and far from its attack node) or be eliminated. As long as the red-beats-blue time κ < a

and the blue-beats-red time γ < b, the delay gadget achieves this goal.

2.2 Red Team Choice Gadget
The Red Team Choice Gadget gives the red team the ability to influence the path of a blue
team player’s movement. Detailed in Figure 2, a blue team member starts at node vb and
wants to exit out of v′0 or v′1, and a red team chooser at ur (or its neighbors) will be able to
force the outcome without fully preventing progress.

FUN 2018

14:4 Cooperating in Video Games? Impossible! Undecidability of TeamMultiplayer Games

a

b

c

a
vbv0 v1

v'0 v'1

u0
c

u1

ur

d dκ

b

κ

0 1
Figure 2 Gadget for a red player to force a blue player to take exit 0 or 1.

The graph is symmetric, so suppose without loss of generality that the red chooser wants
the blue player to exit out of v′1. Given their choice of where to start among the subgraph
{u0, ur, u1}, they can successfully block the v′0 exit by simply waiting at u0 and attacking if
the blue player tries to traverse edge (v0, v

′
0). If c > a+ b, no starting location of the red

chooser allows them to prevent the blue player from reaching both exits: the red chooser
must start at least d = a+ b− κ time units away from u0 to block v′0, which means starting
c+ (c− d) > a+ b away from u1 which is too far to block v′1 as well.

An optimal strategy for the blue player to guarantee progress is thus to immediately
move towards v′0. Either the red chooser is blocking v′1 and the blue player will leave through
the preferred exit, or red chooser is blocking v′0 and the blue player will have time to turn
around and reach v′1 (the preferred exit) before the red chooser can reach u1.

2.3 State Transition Gadget
Whereas the Red Team Choice Gadget is used to allow red team to influence a blue executor’s
path, the State Gate gadget is used to allow blue team executors to influence the blue
runner’s path. The "core" of a State Gate is essentially two Delay Gates sharing the same
red guard who, unlike the Red Team Choice Gadget, is able to simultaneously block both
exits for the blue runner. Depending on which of the two paths the blue executor is on, it
will be able to safely open one of two exit paths for the blue runner.

Looking ahead to our undecidability proof for TGG, we generalize the core into a State
Gate by first allowing for two independent hallways per blue executor "input" and second
to allow for multiple independent hallways for the blue runner. Detailed in Figure 3, the
first can be constructed using two cores (each with one hallway of each "input" type) or with
one core modified such that the red guard’s edges are the target of two blue executor attack
nodes at once. The second generalization is simply constructed using multiple instances of
the first in series along the blue executor’s paths, one per required blue runner hallway.

The core works correctly as long as the red guard has visibility on the blue runner and
executor and γ < b < a−κ. When safe, the red guard can mimic the blue runner’s movement
and always reach the closer attack node fast enough to block the path, but when the blue
executor arrives on one side, the red guard must vacate the corresponding attack zone and can
only safely block the opposite path. Thus, the blue runner strategy of repeatedly attempting
to go in either direction until the red guard stops following to block will allow for guaranteed
safe passage without visibility between the two blue team players. As a side note, the core

M. J. Coulombe and J. Lynch 14:5

a

a

b

κ

κ

γ

γ

1

0 0

1
State
Gate

State
Gate

x2

x4

0

0

0
1

1

1

0

1

0 1

0 1

State Gate

State
Gate

Figure 3 "State Gate" gadget schema for a blue executor to branch the blue runner. The core
of player interaction (top-left) is generalized first allowing two blue paths per input (two possible
constructions on bottom) then allowing multiple runner paths (top-right).

could also be implemented with two separate, unmodified Delay Gates, thus using two red
guards instead of one but having no additional timing constraints.

2.4 Initialization
In many games we are modeling with TGG, all players on each team start in their team’s
single spawn room. In order to force the team members into separate hallways, they are
coerced into guarding a set of paths, one per player (besides the runner), which all lead to the
victory node w. Figure 4 shows the initializer gadget with spawn nodes sb or sr, where first
blue must split into three hallways to block any red players from reaching w and force the
red players to make progress and split up in order to block the blue runner from reaching w.

Specifically, to incentivize the blue team to fully split up, two red team "win paths" are
placed and each guarded by a series of nr blue attack zones of length b2 > γ, so that even
if the red team sends all of its players down one win path, the defending blue player could

FUN 2018

14:6 Cooperating in Video Games? Impossible! Undecidability of TeamMultiplayer Games

sb sr

γ
W

a1

b1

a1

b1
b2

d0

...

...

...

κ

κ

c0

...

b0

d1

d1

c1

c1c2

c2

γ

γ

b2γ

a2

...

...

b2

b2

Figure 4 Initializer Gadget to separate players that must start together in team spawn rooms.

eliminate all of them by the end. If the blue team tries to send multiple players out the
same hallway from sb, they will either allow red team to win through the other win path in
the initializer gadget, or have no player in the blue runner path, which is designed in our
undecidability construction to be the only path to w.

If blue team does split up and guard the red team win paths, then red team must then
prevent the blue runner from reaching w by going down a third path that splits into nr

branches, each responsible for guarding a different path for the blue runner. This forces
the red team to separate and block every path until the blue runner gives up and exits the
Initializer Gadget, at which point all other now-separated players can safely exit as well.

The constraints on the Initializer Gadget are light beyond the need for visibility so each
player can learn when it is safe to stop guarding an attack zone and make progress. No
information needs to be private at this point so full visibility is allowed within the gadget,
although a set of hallways at the exit for the blue runner to pass within visibility range
of every other player would be a sufficient signal for games being modeled by TGG with
occlusion or view distance constraints. For the blue players to have time to block the red
players, the attack nodes should be close enough together such that ∀i ∈ [0, nr) : a1 + ia2 <

b0 + b1 + (i+ 1)(b2 − γ). So that the red players have time to block the blue runner, it must
be that b0 + d0 + d1 < c0 + c1 + c2 − κ.

M. J. Coulombe and J. Lynch 14:7

3 Reductions

The TEAM COMPUTATION GAME (TCG), as defined in [3], is a game about two teams
(∃ and ∀) whose players alternate writing symbols onto certain cells of a finite-length tape of
a Turing machine, which takes a fixed number of steps during each round and if it halts then
the game ends and one team wins based on whether it accepts or rejects. A simplifying insight
is that this Turing machine is effectively a DFA that teams are alternatively feeding input
symbols into until it ends up in a final state that determines which team wins. The following
modified definition will use this terminology instead for the purposes of the later reduction.
Reductions establishing the equivalence of TDA with TCG and thus its undecidability can
be found in Appendix A.

I Definition 1. The TEAM DFA GAME (TDG) is a two-versus-one team game. An instance
of the game is a DFA D = (Σ = {0, 1}, Q, q0, δ, F = F∃∆F∀). The existential team {∃1,∃2}
competes against the universal team {∀}. The game starts with D in state q0 and each round
proceeds as follows:
1. If D’s state q ∈ F∃ then team existential wins. If q ∈ F∀ then team universal wins.
2. ∀ learns the state q of D then inputs two bits b1, b2 into D.
3. ∃1 learns b1 then inputs one bit m1 into D. ∀ learns m1.
4. ∃2 learns b2 then inputs one bit m2 into D. ∀ learns m2.

We now go on to define the TEAM GRAPH GAME and show it is undecidable by a
reduction from the TEAM DFA GAME.

I Definition 2. The TEAM GRAPH GAME is a team multiplayer game. Let the TGG of
red team vs blue team consist of:

Directed Graph G = (V,E) with edge weights ∈ N
Designated team start nodes sr, sb ∈ V and win node w ∈ V
Directed visibility relation S ⊆ V 2

(Uni)Directed attack relation A ⊆ V 2

Initial number of players per team nr, nb ∈ N

The execution of the TEAM GRAPH GAME starts with nr red player tokens at node sr

and nb blue player tokens at node sb. Blue team wins if either every red token is eliminated
or any blue token reaches the node w. Red team wins similarly.

The game proceeds as a sequence of time steps, or frames. Each frame, all active players
simultaneously commit to their action and then all effects are triggered and handled before
the frame ends. The action of a player consists of a node n ∈ N [v] to move towards (or none
to signify not moving). Once players have performed their moves, each player whose token
can "see" another player’s token learns of said token’s position and team. Visibility zones
are defined at nodes by S and on edges by union of the visibilities of the endpoints; combat
zones are defined similarly.

I Theorem 3. TDG reduces to the TEAM GRAPH GAME (TGG). Namely, ∃h : 〈D〉 7→ 〈I〉
which maps instances 〈D〉 of TDG and instances 〈I〉 of TGG such that the existential team
has a forced win in the TDG on D iff the blue team has a forced win in TGG on I.

Proof. Figure 5 gives an overview of the structure of I = h(D). Once the initializer gadget
distributes each blue and red player into their proper hallways, each loop of the blue team
in the graph simulates one round of TDG. The universal team’s decisions b1, b2 are made
(cooperatively) by the two decision-making red team members in the red choice gadgets,

FUN 2018

14:8 Cooperating in Video Games? Impossible! Undecidability of TeamMultiplayer Games

...
Initializer Gadget

Red Choice
Gadget #1

0 1 0 1

0 1

0 1 0 1

0 1

Red Choice
Gadget #2

...

for q ∋ Q∖F∀:

Delay
Gate

Delay
Gate

in q0

W
q ∋ F∃

State
Gate State

Gate

out q

x2
x4

x8

x16

in q(0000)...

in q(1111)

F∀

Dead End

out q

in q
for q ∋ Q∖F∀:

0 0 1 1
0 1 0 1

0 0 1 1
0 1 0 1

..

State
Gate State

Gate

xlQl

Figure 5 A diagram of how the gadgets are put together.

and the existential team’s decisions m1,m2 are made (independently of each-other) by the
decision-making blue team members directly after exiting the red choice gadgets. The blue
runner’s location corresponds directly to the state of the DFA, and their teammates open
paths inside state gates which allows the runner to implement the DFA transition function δ.

Each state q ∈ Q \ F∀ of the DFA has an "arena" with two sides: the right side with a
series of four state gates of increasing arity and a left side with a series of two Delay Gates.
When the blue runner enters the right side of the arena for q before the first state gate,
the DFA is in state q. If q ∈ F∃ then there will also be a hallway here leading directly
to the win node. The four state gates encode the tree of states reachable from q in up to
4 transitions, outputting the runner in one of 16 hallways each corresponding to a state
q′ = foldl(δ, q, [b1, b2,m1,m2]) and leading to the left side of the arena for q′. Once the runner
passes through the Delay Gates, they enter the right side of the arena for q′. Lastly, if q ∈ F∀,
then all hallways entering its arena lead to a dead-end.

As we showed in Section 2.4, each team has a course of action which will prevent any
players on the other team from reaching the Win node. Further, this puts every player on
a path whose only way forward is out of the initializer gadget. At that point there is no
incentive to stay in the initializer gadget and we may as well assume they continue into the
rest of the map.

M. J. Coulombe and J. Lynch 14:9

=⇒ Suppose the existential team has a forced win in TDG on D. This means that there are
optimal strategy functions si : ([bi,1, bi,2, ..., bi,j−1], [mi,1, ...,mi,j−1], bi,j) 7→ mi,j which
produce a win-preserving move for ∃i in round j given ∀’s move and what they learned
in the past j − 1 turns.
For decision-making blue player i, on the jth time they pass through red choice gate i,
let bi,j = 0 if exiting the A side else bi,j = 1 if exiting the B, let mi,j = si([bi,1, ..., bi,j−1],
[mi,1, ...,mi,j−1], bi,j), then at the upcoming branch take path mi,j . The blue runner
should follow the hallways and wait until combat zones are safe before passing through,
and the decision-making blue team members should open combat zones long enough for
the runner to pass through safely and to defeat the red team member there if necessary.
By the structure of the graph, the path of the runner will lead to a q ∈ F∃ no matter
what choices red team makes in the red choice gadgets, and every attack zone along the
way will be opened up for the blue runner by their teammates, thus blue team has a
forced win in TGG on I.

⇐= Now suppose blue team has a forced win in TGG on I. Since only the blue runner
can reach win node (outside the initializer gadget), any winning execution entails a path
through the graph that the runner took which starts by entering the right side of the q0
arena, passes through n arena right sides and left sides (as described earlier), and ends at
the entrance of the right side of an arena for some qn ∈ F∃.
In order for the runner to pass through the combat zones in the gates along the path, the
decision-making blue teammates must have dealt with the attacking red team members.
Since blue team has a forced win, they still have a forced win even if red team attackers
always leave their attack zone before the decision-making blue team member has a chance
to defeat them, thus that strategy forces the blue runner at the entrance of the right side
of an arena to take a path through the state gates determined by the red and blue teams’
choices at the start of the loop.
This implies the existence of functions si : ([bi,1, bi,2, ..., bi,j−1], [mi,1, ...,mi,j−1], bi,j) 7→
mi,j which produce a win-preserving branch for decision-making blue team member i to
take on the loop j after exiting red choice gate i from exit bi,j and what they learned
in the past j − 1 loops. By the structure of the graph, si is also an optimal strategy
function for ∃i in TDG on D, thus the existential team has a forced win. J

I Corollary 4. The TEAM GRAPH GAME is undecidable.

Proof. If TEAM GRAPH GAME were decidable, then TDG would be decidable using h
from Theorem 3 to get a homomorphic instance, but since TDG is undecidable by Corollary 8,
TEAM GRAPH GAME cannot be either. J

4 Applications

We now show how to apply the TEAM GRAPH game to generalized versions of several
popular video games. In particular we will show that it is undecidable to determine whether
a team can force a win in the following games: Team Fortress 2, Mario Kart, and Super
Smash Bros. Brawl. For all of these games we generalize the map size and number of players
able to participate in a single game. In addition, we assume that players on the same team
have no way of communicating with each other beyond their actions in the game. This means
players are not co-located, there is no screen-sharing, and any sort of team or global chat is
disabled.

The following are the essential components needed in the game to fit the TGG framework.
1) The game needs a 3D map or crossover gadgets in 2D because the TGG graph used in

FUN 2018

14:10 Cooperating in Video Games? Impossible! Undecidability of TeamMultiplayer Games

Figure 6 Grenade-only Attack Gadget (vertical 2D slice)

our reduction is non-planar. 2) One-way Doors. 3) Visibility zones such that we can have
two players communicate their location without being able to reach each others path, and
ways of blocking visibility so communication can only occur in specific regions. 4) Combat
zones which allow the attacker a guaranteed strategy to eliminate or disable the defender
and which has no path between the attacker and defender. 5) A win condition that can be
activated by one player in a limited location.

4.1 Team Fortress 2 and many other team FPS games
Like many others of its kind, Team Fortress 2 is a first person shooter with 3D environments
(1), one-way doorways (2), clear unbreakable glass/fences and opaque walls (3) made out of
polygons, grenades and sniper rifles (4), and a capture point where one team can win by
standing on it (5). These features allow TF2 and others to directly simulate TGG, leading
to their undecidability. Note: only the base TF2 game with default loadouts are considered.

The nodes and edges of the graph are generally represented as hallways made of opaque
walls connecting at intersections, possibly lengthened or bent-out-of-shape to enforce a
required minimum traversal time. Visibility is limited by the first-person view, and visibility
zones are constructed by making walls out of glass that gives a line-of-sight between desired
locations and possibly additional walls to block view elsewhere.

The combat zones are constructed based on which team the attacker is on. A blue team
member attacking a red team member will be faced with a room with a wall that only
Demomen grenades can be shot over and succeed at damaging the defender. Figure ??
shows how to construct a hole which only physics-enabled grenades can tumble through and
sticky bombs and other weapons cannot penetrate. A red team member attacking a blue
team member will be faced with a small hole in the wall at Sniper-eye-level which gives a
long-distance view of the defender’s head such that only a Sniper’s sniper rifle can kill the
defender before they can pass through the attack zone at optimal speed.

In order to further enforce desired class choices, the red and blue teams are incentivized
to choose the Sniper and Demoman classes (respectively) by the map design. The blue team
spawn room is separated by a deadly chasm that can only be crossed using the Demoman’s
unique ability to sticky bomb jump long distances through the air without touching a surface
(as a Soldier requires). Health pack pick-ups and distance-based fall damage may be used
to force the health of players down so one sniper shot or grenade explosion will defeat any
opponent.

By playing in a king-of-the-hill match with unlimited-time and with text and voice chat
disabled, this map structure will exactly simulate TGG.

M. J. Coulombe and J. Lynch 14:11

4.2 Super Smash Brothers
Super Smash Brothers is a popular Nintendo fighting game series. Out of the series’ five
releases, the most recent three (Super Smash Bros. Brawl, Super Smash Bros. for 3DS, and
Super Smash Bros. for Wii U, henceforth referred to as Brawl, SSB4 3DS, and SSB4 Wii
U, respectively) share a number of gameplay elements which we will shortly show result in
undecidability.

We consider a generalized Super Smash Bros. game, where an arbitrary number of players
on red or blue team control fighters (who are followed by the players’ personal, local cameras,
as in SSB4 3DS Smash Run mode) which fight on a stage (a bounded 2D plane with gravity,
solid polygonal ground, and other obstacles) in Stamina mode (where each player starts with
a given number of hit points and dies when they are depleted). Fighters are selected among
a set of characters, each with unique traits, and can walk, run, jump off the ground and
jump in the air finitely-many times before landing, and fight using aerial and ground attacks
(which may create hitboxes which damage and knockback other characters, may move the
attacker, and may provide defense), and defensive maneuvers such as shielding (a bubble
around character which blocks attacks at the expense of temporary shrinkage), air and ground
dodging (temporary invincibility at the cost of short vulnerability before and afterwards)
and rolling (a ground dodge with fixed motion left or right). Due to close-quarters, we
also consider obtrusive stage background music such that all character sound effects are
drowned-out.

I Theorem 5. In generalized Super Smash Bros. match between two teams of Pikachus on
some stage, it is undecidable whether Player 1’s team has a forced win.

Proof. Reducing from TGG constrained to graphs constructed from DFA as in Theorem 3,
we consider only the character Pikachu due to its unique Thunder attack that temporarily
spawns a damaging cloud and lightning strike at a fixed position above Pikachu, even if there
are obstacles in between. Instead of 3D hallways, our construction of the stage simulating
the graph only needs to bound 2D areas with strings of solid blocks (as in Brawl’s and
SSB4 Wii U’s stage builder) that are thin enough in certain areas for Thunder to attack
other characters through ceilings. We also use thin floors, which allow for jumping upwards
through but do not allow for falling through, to construct one-way doors.

The most striking problem for this 2D fighting game is the need for a crossover gadget.
We make use of the barrel cannon stage obstacle, as seen in the Kongo Jungle stage from the
first Super Smash Bros. as well as all future titles in some form, which captures a player
upon contact and, when activated by the player inside, launches them along a fixed path
without the player having aerial control until the end. Notably, we consider the original
design of the cannon where a launched player does not hurt others via collision. By using two
barrels and two one-way floors, a section of the stage as in Figure 7 can allow for crossovers
without player interaction, although it does provide visibility. Because the constrained TGG
graphs can be embedded in the plane where all edge crossings are either outside of the main
loop before the simulation begins, same-player crossings, or between players who are allowed
to know where the other’s token is located, visibility does not transmit information that is
useful for making red or blue team "choices."

As mentioned, attack zones are built around Pikachu’s Thunder attack, which uncon-
ditionally creates a hitbox at a fixed distance high above the character. For attack zones
that guard the traversal of an edge, the idea is to force the defending Pikachu to predictably
position itself in a vulnerable state above the attacker, so that the attacking Pikachu can
always hit them with Thunder if traversal is attempted. In Delay Gates, such as in Figure 8,
where the red attacker of the blue runner is under attack themselves, the blue attacker is

FUN 2018

14:12 Cooperating in Video Games? Impossible! Undecidability of TeamMultiplayer Games

able to Thunder the only location at which the red attacker can use Thunder to hit the blue
runner, so as to open the path safely. The Red Team Choice Gadget can be implemented in
Brawl similarly to the Delay Gate, and the State Gates directly out of Delay Gates, thus the
given TGG graph is fully representable.

When the blue runner reaches the win node, they can themselves open a path for the
other blue Pikachus and all go into a new series of pathways that lead underneath every red
team player so they can work together to eliminate them all, as properly-timed Thunders
by multiple players can break shields and hit for longer than dodge invincibility. and end
the match with a blue victory. This path-opening can be a Delay Gate or even compactly
implemented using Brawl’s Falling Block object, which is a solid obstacle that temporarily
falls and disappears after a player (the blue runner, in this case) stands on it, reappearing at
its original position after a short period of time. J

4.3 Mario Kart
In an earlier paper, two player, perfect information Mario Kart was shown to be PSPACE-
complete [2]. It also did not consider the commonly enjoyed Battle game type. Here we show
that a generalized version of Mario Kart in team Balloon Battle mode is undecidable by a
reduction from TGG.

Mario Kart takes place in a 3D environment where each player has a personal third-
person camera view of their character; when playing online or on local wireless, players
cannot see other players’ screens. In Balloon Battle, the players are placed in an enclosed,
obstacle-filled Battle Course with a small number of balloons that pop when the player is
damaged, eliminating the player if none remain. By searching the course for item boxes (in
fixed, reusable spawn locations), players can get items from a given distribution to damage
other players and avoid attacks against themselves. There is a blue team and a red team,
and if one team is completely eliminated, the other team wins.

I Theorem 6. In generalized Mario Kart Balloon Battle with the Bob-ombs Only item
distribution, it is undecidable whether or not the blue team has a forced win.

Proof. We reduce from TGG constrained to graphs constructed from DFA as in Theorem 3,
which involves building a Battle Course that simulates the graph. Mario Kart courses are
polygonal 3D environments with a finite maximum movement speed, one-way jumps, clear
glass, and opaque walls, so the primary complexity is describing the attack zones and how to
win.

A player using a Bob-omb item causes a Bob-omb to be thrown from the character’s kart
in an arc. It can bounce off walls and will explode into a large, temporary, damaging sphere
on contact with another player or after a short time interval. One common obstacle in Mario
Kart is the Thwomp, which are large spike-covered boxes which can move along fixed paths.

To construct an attack zone where the attacker is preventing the defending character
from traversing an edge, said edge is a short, thin hallway with exits guarded by Twomps
that alternate moving up and down between the ceiling and ground such that at least one is
always on the ground blocking the path and the space between is smaller than the diameter
of a Bob-omb explosion. The attacking character is spawned in a raised hallway with an
item box and an uncrossable pit such that a Bob-omb can be thrown by the attacker and
create an explosion to eliminate any player between the Thwomps but no Bob-omb can be
thrown back high enough to reach the attacker. In an attack zone where the defender is itself
an attacker in a dead-end hallway, there need only be one Thwomp guarding the single exit

M. J. Coulombe and J. Lynch 14:13

Figure 7 Super Smash Bros Crossover Gadget using Barrel Cannons

Ice

Ice

P

P

P

P

P

T
h
u
n

d
e
r

H
e
ig

h
t

Fall

Figure 8 Delay Gate constructed using Brawl’s Custom Stage Builder parts. A single player’s
screen is approximately 5 blocks tall, so the blue executor can never see the runner. Each "P" is
an example location of a Pikachu, "Ice" is a block with no edge to hang onto, and "Fall" represents
a Falling Block. Shaded blue figures are only relevant during the blue victory phase. Example
Thunder clouds and associated lightning strikes are also shown.

FUN 2018

14:14 Cooperating in Video Games? Impossible! Undecidability of TeamMultiplayer Games

):
<

):
<

):
<

Figure 9 Mario Kart Delay Gadget’s 3D Layout with Thwomps (opaque walls not shown).

and trapping the defender for a period of time such that the attacker in an even-more-raised
hallway could safely throw down a Bob-omb to eliminate them. Figure 9 gives an overview
of this construction.

When the Mario Kart character simulating blue runner is supposed to reach the win
node, they are first able to open a path for their blue teammates (normally blocked by a red
attack zone) to join them into a set of hallways above the rest of the course which lead to
attack zones spanning each red team character’s small region of the graph. With plentiful
item boxes, the blue team characters can thus trap and eliminate each red team member
using coordinated Bob-omb threats and throws, winning them the game. J

5 Conclusion and Open Problems

Our TEAM GRAPH GAME framework has proven useful in showing the undecidability of
more natural team multi-player games, as shown in our application to various video games.
We currently wonder how far this framework can go. Can we capture other popular genera
of video-games with teams such as MMORPGs like World of Warcraft and Guild Wars, real
time strategy games like Starcraft or Age of Empires, MoBAs like DotA and Heroes of the
Storm, or others? Each of these has their own challenges in adapting to our framework,
but given our success with Super Smash Brothers which was a 2D game that lacked vision
blockers and a location based victory condition, we believe a lot can be done with a little
work. We also pose the question of whether this framework can be used to understand the
complexity of any real world multi-agent coordination scenarios.

There are also a number of interesting questions about imperfect information team
multi-player games, many of which would be very useful in allowing broader application of
this framework. First, can TGG be adapted to use only a constant number of players on
each team? The TCG needs only three; however, we find it useful to assign different players
to many of our gadgets, leading to a linear scaling. Is the TCG or TGG still undecidable
if we allow a limited amount of communication between players on the same team? For
example, players may be allowed to pairwise communicate or broadcast a constant number
of bits per round. At what point does this problem become equivalent to a two player game
of imperfect information? Finally, is there a way to adapt these abstract games to describe
semi-cooperative games and are these still undecidable. For example, instead of having
fixed teams and asking for a forced win, we might define optimal play to involve trying to
maximize an individual player’s probability of winning and ask whether a certain player has

M. J. Coulombe and J. Lynch 14:15

a strategy which wins with some fixed probability. If players have some chance of winning
by working together but zero chance of winning otherwise, we might be able to force players
to simulate teams in such a game.

References
1 Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo games

are (NP-)hard. In Proceedings of the 7th International Conference on Fun with Algorithms
(FUN 2014), Lipari Island, Italy, July 1–3 2014.

2 Jeffrey Bosboom, Erik D Demaine, Adam Hesterberg, Jayson Lynch, and Erik Waingarten.
Mario kart is hard. In Japanese Conference on Discrete and Computational Geometry and
Graphs, pages 49–59. Springer, 2015.

3 Erik D Demaine and Robert A Hearn. Constraint logic: A uniform framework for modeling
computation as games. In Computational Complexity, 2008. CCC’08. 23rd Annual IEEE
Conference on, pages 149–162. IEEE, 2008.

4 Erik D Demaine, Joshua Lockhart, and Jayson Lynch. The computational complexity of
portal and other 3d video games. arXiv preprint arXiv:1611.10319, 2016.

5 Luciano Guala, Stefano Leucci, and Emanuele Natale. Bejeweled, candy crush and other
match-three games are (np-) hard. In IEEE Conference on Computational Intelligence and
Games, pages 1–8. IEEE, 2014.

6 Linus Hamilton. Braid is undecidable. arXiv preprint arXiv:1412.0784, 2014.
7 Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. A. K. Peters,

Ltd., Natick, MA, USA, 2009.
8 G. Peterson, J. Reif, and S. Azhar. Lower bounds for multiplayer noncooperative games

of incomplete information. Computers and Mathematics with Applications, 41(7):957–992,
2001. doi:10.1016/S0898-1221(00)00333-3.

9 Gary L Peterson and John H Reif. Multiple-person alternation. In Foundations of Computer
Science, 1979., 20th Annual Symposium on, pages 348–363. IEEE, 1979.

10 John H Reif. Universal games of incomplete information. In Proceedings of the eleventh
annual ACM symposium on Theory of computing, pages 288–308. ACM, 1979.

11 John H Reif. The complexity of two-player games of incomplete information. Journal of
computer and system sciences, 29(2):274–301, 1984.

12 Matthew Stephenson, Jochen Renz, and Xiaoyu Ge. The computational complexity of
angry birds and similar physics-simulation games. 2017.

13 Giovanni Viglietta. Gaming is a hard job, but someone has to do it! Theory of Computing
Systems, 54(4):595–621, 2014.

A TEAM DFA GAME is Undecidable

I Lemma 7. TDG is reducible from and to TCG. Namely, ∃f : 〈D〉 → 〈I〉 and ∃g : 〈I〉 → 〈D〉
which map between instances 〈D〉 of TDG and instances 〈I〉 of TCG which both preserve the
predicate of whether or not the existential team has a forced win.

Proof.
⇐= Consider an instance I = 〈S,O, k,Γ ⊃ O ∪ {A,B}〉 of the TCG.

The TDG on the corresponding DFA D will directly simulate the TCG on I. The state
space Q(D) is the configurations of S as well as additional counters for input tracking.
The first ∀ turn runs S without input from the existential team, thus q0(D) is the result
of immediately applying δS k times (or until termination) from its initial configuration.
After that, both games check for termination in the same way (accept states of S are win

FUN 2018

http://dx.doi.org/10.1016/S0898-1221(00)00333-3

14:16 Cooperating in Video Games? Impossible! Undecidability of TeamMultiplayer Games

states of existential team, reject for universal), then begin writing to S’s tape or feeding
bits into D. The only significant difference is that the existential moves O must be input
to D in binary over 2blog2 |O|c rounds where the universal player’s moves are ignored
by D. The transition function δD simply writes the appropriate bits of the moves from
∀,∃1,∃2 onto the tape of the current configuration, and once everything is input then it
updates the configuration by applying δS k times (or until termination).

=⇒ Consider an instance D of the TEAM DFA COMPUTATION GAME.
The TCG on the corresponding instance I = 〈S,O, k,Γ〉 will similarly be a direct
simulation of the TDG. Using k = 6 and Γ = O = {0, 1}, the tape of S is just the cells
for each input bit b1, b2,m1,m2 plus unused space at the end. Its state space simply
augments Q(D) with input reading states. The first k steps, S will be in q0(D) and move
nowhere, but each following time S is simulated for k steps, starting at tape position 0,
S will read each bit, applying δD to update its DFA state for each read (unless it has
entered a final state), then just return to position 0.
At the start, TCG runs S for k steps, which does nothing. The termination check for each
game is the same, as before, then each player will input their move onto the appropriate
cell of the tape (in the same order in both games) then run S again, which will simulate
the same inputs being given to D and updating its state. J

I Corollary 8. The TEAM DFA GAME is undecidable.

Proof. If TDG were decidable, then TCG would be decidable using f from Theorem 7 to
get a homomorphic instance, but since TCG is undecidable [3], TDG cannot be either. J

A Muffin-Theorem Generator
Guangqi Cui
Montgomery Blair High School
bestwillcui@gmail.com

John Dickerson
Department of Computer Science and UMIACS, Univ of MD at College Park
john@cs.umd.edu

Naveen Durvasula
Montgomery Blair High School
140.naveen.d@gmail.com

William Gasarch
Department of Computer Science, Univ of MD at College Park
gasarch@cs.umd.edu

Erik Metz
Department of Mathematics, Univ of MD at College Park (ugrad)
emetz1618@gmail.com

Jacob Prinz
Department of Physics, Univ of MD at College Park (ugrad)
jacobeliasprinz@gmail.com

Naveen Raman
Richard Montgomery High School
nav.j.raman@gmail.com

Daniel Smolyak
Department of Computer Science (ugrad). Univ of MD at College Park
dsmolyak@gmail.com

Sung Hyun Yoo
Bergen County Academies (a High School)
sunnyyoo812@gmail.com

Abstract
Consider the following FUN problem. Given m, s you want to divide m muffins among s students
so that everyone gets m

s muffins; however, you want to maximize the minimum piece so that
nobody gets crumbs. Let f(m, s) be the size of the smallest piece in an optimal procedure.

We study the case where
⌈ 2m

s

⌉
= 3 because (1) many of our hardest open problems were of

this form until we found this method, (2) we have used the technique to generate muffin-theorems,
and (3) we conjecture this can be used to solve the general case. We give (1) an algorithm to
find an upper bound for f(m, s) when

⌈ 2m
s

⌉
= 3 (and some ways to speed up that algorithm if

certain conjectures are true), (2) an algorithm that uses the information from (1) to try to find
a lower bound on f(m, s) (a procedure) which matches the upper bound, (3) an algorithm that
uses the information from (1) to generate muffin-theorems, and (4) an algorithm that we think
works well in practice to find f(m, s) for any m, s.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases Fair Division, Theorem Generation

© Guangqi Cui, John Dickerson, Naveen Durvasula, William Gasarch, Erik Metz,
Jacob Prinz, Naveen Raman, Daniel Smolyak, and Sung Hyun Yoo;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 15; pp. 15:1–15:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bestwillcui@gmail.com
mailto:john@cs.umd.edu
mailto:140.naveen.d@gmail.com
mailto:gasarch@cs.umd.edu
mailto:emetz1618@gmail.com
mailto:jacobeliasprinz@gmail.com
mailto:nav.j.raman@gmail.com
mailto:dsmolyak@gmail.com
mailto:sunnyyoo812@gmail.com
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 A Muffin-Theorem Generator

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.15

Related Version https://arxiv.org/abs/1709.02452

Acknowledgements We thank Nancy Blachman who compiled the list of problems that intro-
duced us to this problem, Alan Frank who first came up with the problem. We would also like
to thank Alan Frank, James Propp, and Sam Zbarsky for stimulating discussions of the topic.

1 Introduction

Consider the following FUN problem. Given m, s you want to divide m muffins among s
students so that everyone gets m

s muffins; however, you want to maximize the minimum
piece so that nobody gets crumbs. Let f(m, s) be the size of the smallest piece in an optimal
procedure.

We give an example:
You have 47 muffins and 36 students. You want to divide the muffins evenly, but no student
wants a small piece. Find a protocol that maximizes the smallest piece. We show in Section 5
that there is a procedure for this with smallest piece 31

90 and that this is optimal. Hence
f(47, 36) = 31

90 .

Convention. When discussing a muffin being cut we refer to pieces. When discussing a
student receiving we refer to shares. They are the same; however, it will be good to have
different terminologies to focus on what’s important. We treat a piece, a share, and its value
as the same thing. So we may say let x ≥ 1

3 be given to a student.

I Definition 1. Let m, s ∈ N. An (m, s)-protocol is a protocol to cut m muffins into pieces
and then distribute them to the s students so that each student gets m

s muffins. An (m, s)-
protocol is optimal if it has the largest smallest piece of any protocol. f(m, s) is the size of
the smallest piece in an optimal (m, s)-protocol.

Clearly, for all a ∈ N, f(am, as) ≥ f(m, s). All of our theorems indicate that f(am, as) =
f(m, s). We have not been able to prove this; however, we will only consider the cases where
m, s are relatively prime.

We came upon this problem in a pamphlet Julia Robinson Mathematics Festival: A
Sample of Mathematical Puzzles compiled by Nancy Blachman. On Page 2 was The Muffin
Puzzle which asked about the problem for several particular cases. Nancy Blachman attributes
the problem to Alan Frank and points out that it was described by Jeremy Copeland [3]. We
are the first ones to consider this problem seriously for general m, s with one caveat: There
was some discussion of this problem in the math-fun email list in 2009. We have obtained a
copy of their arxives and discovered that they already had Theorem 3 and 11. We will credit
the individuals when we get to those theorems.

Given m, s how hard is it to compute f(m, s)? Computing f(m, s) can be rephrased as a
mixed integer program on O(ms) variables (the proof is in the Section A). Since the input is
of size O(logm+ log s) this result does not even put the problem into NP. One of the upshots
of this paper will be a procedure that we conjecture puts the computation of f(m, s) into P.

We study the case where
⌈ 2m

s

⌉
= 3 because (1) many of our hardest open problems

were of this form until we found this method, (2) we have used the technique to generate
muffin-theorems, (3) we conjecture this can be used to solve the general case.

http://dx.doi.org/10.4230/LIPIcs.FUN.2018.15
https://arxiv.org/abs/1709.02452

G. Cui et al. 15:3

We have a long paper [2] and some programs [1] for computing f(m, s). For 1 ≤ s ≤ 50,
1 ≤ m ≤ 60 we have computed f(m, s). In this paper we focus on a subset of the material
that lends itself to generating theorems about muffins via an algorithm.

2 Summary of Results

In Sections 3,4 we give basic theorems and definitions used throughout the paper. In Section 5
we illustrate the Buddy-Match techniques by proving f(47, 36) ≤ 31

90 . In Section 6 we illustrate
how to obtain lower bounds and present the result f(47, 36) ≥ 31

90 .
In Sections 7 we discuss how to generate theorems from the Buddy-Match Technique.

These theorems are of the form:

If d ∈ N and 1 ≤ a ≤ 3d− 1, a, d relatively primes, then

(∀k ≥ 1)
[
f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

]
where X is a constant which can depend on a, d but not on k. In Section 8 we discuss how
to generate theorems that are more general. Here is an example:

If 1 ≤ a ≤ 5d
7 and a 6= 2d

3 then f(3dk + a+ d, 3dk + a) ≤ X
360 where X = max{ 2a

5 ,
a+d

6 }.

In Sections 10, 11 we show how, assuming certain conjectures, one can speed up the
Buddy-Match Technique. In Section 12 we give an algorithm that we conjecture puts f(m, s)
into P. In Section 13 we speculate about that algorithm and other muffin-issues.

In the appendix we state and sometimes prove theorems that are needed to fill in some of
the gaps in our narrative. We also give some examples of the theorems we generated.

3 Basic Theorems

In this section we prove two theorems that will enable us, for the rest of the paper, to only
consider m, s and protocols such that (1) m > s ≥ 3, (2) s does not divide m, and (4) every
muffin is cut into exactly two pieces.

The following theorem takes care of the cases s = 1 and s = 2. The proofs are easy and
left to the reader.

I Theorem 2.
1. (∀m)[f(m, 1) = 1]
2. (∀m)[m ≡ 0 (mod 2)→ f(m, 2) = 1]
3. (∀m)[m ≡ 1 (mod 2)→ f(m, 2) = 1

2]
4. (∀m, s)[s divides m→ f(m, s) = 1].

The following theorem shows that if you know f(m, s) then you know f(s,m). Combined
with Theorem 2 we need only considerm > s ≥ 3. This theorem was independently discovered
by Erich Friedman, within the math-fun email list, in 2009.

I Theorem 3. Let m, s ∈ N. Then f(s,m) = s
mf(m, s).

Proof. Assume f(m, s) ≥ α. We show f(s,m) ≥ s
mα. Let M1, . . . ,Mm be the muffins. Let

S1, . . . , Ss be the students. The protocol that achieves f(m, s) ≥ α must be of the following
form:
1. For each 1 ≤ i ≤ m divide Mi into pieces (ai1, ai2, . . . , aimi) where

∑mi

j=1 aij = 1.
2. For each 1 ≤ j ≤ s give Sj the shares [b1j , b2j , . . . , bsjj] where

∑sj

i=1 bij = m
s .

FUN 2018

15:4 A Muffin-Theorem Generator

The following hold:⋃m
i=1
⋃mi

j=1{aij} =
⋃s

j=1
⋃sj

i=1{bij}
The min over all of the aij is α.

The following protocol shows that f(s,m) ≥ s
mα. Let M ′1, . . . ,M ′s be the muffins. Let

S′1, . . . , S
′
m be the students.

1. For each 1 ≤ j ≤ s divide M ′j into (s
mb1j ,

s
mb2j , . . . ,

s
mbsjj). Note that

∑sj

i=1
s
mbij =

s
m

∑sj

i=1 bij = s
m ×

m
s = 1.

2. For each 1 ≤ i ≤ m give S′j [s
mai1,

s
maij , . . . ,

s
maimi

]. Note that
∑mi

j=1
s
maij =

s
m

∑mi

j=1 aij = s
m × 1 = s

m .

Clearly this is a correct protocol and the minimum piece is of size s
mα.

We now show that f(s,m) = s
mf(m, s). By the above we have both (1) f(s,m) ≥

s
mf(m, s), and (2) f(m, s) ≥ m

s f(s,m). Hence

f(s,m) ≥ s

m
f(m, s) ≥ s

m

m

s
f(s,m) = f(s,m).

Therefore f(s,m) = s
mf(m, s). J

I Theorem 4. Let m, s ∈ N.
1. If f(m, s) ≥ α and α > 1

3 via protocol P then protocol P cuts every muffin into 1 or 2
pieces.

2. f(m, s) ≥ α and α ≤ 1
2 via protocol P then there is a protocol P’ such that (1) P’ also

yields f(m, s) ≥ α, and (2) P’ cuts every muffin into 2 or more pieces.

Proof.
a) If any muffin is cut into ≥ 3 pieces then there is a piece ≤ 1

3 < α.
b) If any muffin is uncut and given to (say) Alice then we can add a step where we cut the

muffin into (1
2 ,

1
2) and give both 1

2 -sized pieces to Alice. Since α ≤ 1
2 adding in some

pieces of size 1
2 does not affect the smallest piece. J

By Theorem 4 we have the following convention.

Convention: When trying to show that f(m, s) ≤ α where 1
3 < α < 1

2 we will assume, by
way of contradiction, that there is a protocol showing f(m, s) > α where every muffin is cut
into exactly 2 pieces.

4 Basic Definitions

I Definition 5. Let m, s ∈ N. Assume there is an (m, s)-protocol.
1. The two pieces that come from the same muffin are called buddies. B(x) is the buddy of

x. Note that B(x) = 1− x.
2. A student that gets A shares is an A-student. A share given to an A-student is an

A-share.
3. 2-Shares that are given to the same 2-student are matched. M(x) is the match of 2-share

x. Note that M(x) = m
s − x.

4. If x is a share given to a 3-student then MS(x) is the smallest share (not including x)
that the student has, and ML(x) is the largest. Note that MS(x) ≤ (m/s)−x

2 . Hence
B(MS(x)) ≥ 1− (m/s)−x

2 .

G. Cui et al. 15:5

Notation: (a, b) will mean the set of shares that have size strictly between a and b. Hence
|(a, b)| will be the number of such shares. We use similar notation for [a, b].

5 An Example is Worth A Thousand Theorems: 43 muffins, 39
Students

The method we demonstrate in this section is called The Buddy-Match Method.

I Theorem 6. f(47, 36) ≤ 31
90 = 124

360 .

Proof. To make the notation easier we write all fractions as having denominator 360.
Assume there is an (47, 36)-procedure. We show that there is a piece ≤ 124

360 . Note that
47
36 = 470

360 .
Case 1: Some student gets ≥ 4 shares. Then some students has a share ≤ 47

36×4 <
124
360 .

Case 2: Some student gets ≤ 1 share. 1 < 47
36 , so this is impossible.

Case 3: Every muffin is cut in 2 pieces and every student gets either 2 or 3 shares. The
total number of shares is 94. Let s2 (s3) be the number of 2-students (3-students).

2s2 + 3s3 = 94
s2 + s3 = 36

So s2 = 14 and s3 = 22.
Case 3.1: There is a 2-share x ≤ 234

360 . M(x) ≥ 470
360 −

234
360 = 236

360 so B(M(x)) ≤ 1− 236
360 = 124

360

Case 3.2: There is a 3-share x ≥ 222
360 . B(MS(x)) ≤ 1−

470
360−

222
360

2 = 124
360 .

Case 3.3: There is a 2-share x ≥ 236
360 . B(x) ≤ 1− 236

360 = 124
360

Case 3.4: There is a 3-share x ≤ 124
360 . This one is self-explanatory.

Case 3.5: All 3-shares are in (124
360 ,

222
360) and all 2-shares are in (234

360 ,
236
360).

The following picture captures what we know so far.

(−−−)−−−
124
360 3-shs 222

360 No shs 234
360 2-shs 236

360

Since there are no shares in [222
360 ,

234
360], there are no shares in B([222

360 ,
234
360]) = [126

360 ,
138
360]

The following picture captures what we know so far.

(−−−)−−−−−−
124
360 S3-shs 126

360 No shs 138
360 L3-shs 222

360 No shs 234
360 2-shs 236

360

S3-shs stands for short 3-shares and L3-shs stands for large 3-shares. There are 2s2 = 28
2-shares so there are 28 S3-shares (B is a bijection between 2-shares and S3-shares). Since
there are 3s3 = 66 3-shares total that leaves 38 S3 shares.

Since the midpoint of L3-shs is 360
2 , the Buddy function is a bijection from (138

360 ,
180
360) to

(180
360 ,

222
360), Hence these two intervals have the same number of shares.

Since the midpoint of 2-shs is 470
2 , the Match function is a bijection from (234

360 ,
235
360) to

(235
360 ,

236
360). Hence these two intervals have the same number of shares. Applying the Buddy

function to both these intervals we obtain that (124
360 ,

125
360) and (125

360 ,
126
360) have the same number

of shares.
In the scenarios above there are an even number of shares of size the midpoint. We

arbitrarily assign half to the left and half to the right.
We define the following intervals.

FUN 2018

15:6 A Muffin-Theorem Generator

I Definition 7.
1. I1 = (124

360 ,
125
360)

2. I2 = (125
360 ,

126
360) (|I1| = |I2|, |I1 ∪ I2| = 28)

3. I3 = (138
360 ,

180
360)

4. I4 = (180
360 ,

222
360) (|I3| = |I4|, |I3 ∪ I4| = 38)

Henceforth all of the students considered will be 3-students. We now look at the students
in a more detailed way than 2-students and 3-students.

I Definition 8. Let 1 ≤ i1 ≤ · · · ≤ i3 ≤ 4. An e(i1, i2, i3)-student is a student who has, for
each 1 ≤ j ≤ 3, a share in Iij

. For example, an e(1, 1, 4)-students has two shares in I1 and
one share in I4.

I Claim 1.
1. The only possible students are:

a. e(1, 1, 4)
b. e(1, 2, 4)
c. e(1, 3, 3)
d. e(1, 3, 4)
e. e(2, 2, 4)
f. e(2, 3, 3)
g. e(2, 3, 4)
h. e(3, 3, 3)
i. e(3, 3, 4)

2. There are no shares in [208
360 ,

218
360]

3. There are no shares in [142
360 ,

152
360] (this follows from the prior part and buddying).

Proof of Claim 1.
1) We establish that some students are impossible.

A e(1, 4, 4)-student has more than 124
360 + 2× 180

360 = 484
360

A e(2, 2, 3)-student has less than 2× 126
360 + 180

360 = 432
360

The result follows from these two statements, though the proof is tedious.
2) We look at which I4-shares are used

A e(1, 1, 4) student uses I4-share > 470
360 − 2× 125

360 = 220
360

A e(1, 2, 4) student uses I4-shares > 470
360 −

125
360 −

126
360 = 219

360
A e(1, 3, 4) student uses I4-shares < 470

360 −
124
360 −

138
360 = 208

360
A e(2, 2, 4) student uses I4-shares > 470

360 − 2× 126
360 = 218

360
A e(2, 3, 4) student uses I4-shares < 470

360 −
125
360 −

138
360 = 207

360
A e(3, 3, 4) student uses I4-shares < 470

360 − 2× 138
360 = 194

360
Hence the only shares in I4 that can be used are those < 208

360 or > 218
360 . The result

follows. J

We redefine the intervals.

I Definition 9.
1. I1 = (124

360 ,
125
360)

2. I2 = (125
360 ,

126
360) (|I1| = |I2|), |I1 ∪ I2| = 28)

3. I3 = (138
360 ,

142
360)

4. I4 = (152
360 ,

180
360)

5. I5 = (180
360 ,

208
360) (|I4| = |I5|)

6. I6 = (218
360 ,

222
360) (|I3| = |I6|, |I3 ∪ I4 ∪ I5 ∪ I6| = 38)

G. Cui et al. 15:7

By a proof similar to that of Claim 1 we obtain the following:

I Claim 2.
1. The only possible students are: e(1, 1, 6), e(1, 2, 6), e(1, 3, 5), e(1, 4, 4), e(1, 4, 5), e(2, 2, 6),

e(2, 3, 5), e(2, 4, 4), e(2, 4, 5), e(3, 3, 5), e(3, 4, 4), and e(4, 4, 4).
2. There are no shares in [194

360 ,
202
360]

3. There are no shares in [158
360 ,

166
360] (this follows from the prior part and buddying).

We define the following intervals.

I Definition 10.
1. I1 = (124

360 ,
125
360)

2. I2 = (125
360 ,

126
360) (|I1| = |I2|, |I1 ∪ I2| = 28)

3. I3 = (138
360 ,

142
360)

4. I4 = (152
360 ,

158
360)

5. I5 = (166
360 ,

180
360)

6. I6 = (180
360 ,

194
360) (|I5| = |I6|)

7. I7 = (202
360 ,

208
360) (|I4| = |I7|)

8. I8 = (218
360 ,

222
360) (|I3| = |I8|, |I3 ∪ · · · ∪ I8| = 38)

By a proof similar to that of Claim 1 we obtain:

I Claim 3. The only possible students are: e(1, 1, 8), e(1, 2, 8), e(1, 3, 7), e(1, 4, 6), e(1, 5, 5),
e(2, 2, 8), e(2, 3, 7), e(2, 4, 6), e(2, 5, 5), e(3, 3, 6), and e(4, 4, 4).

Let
1. |e(1, 1, 8)| = a

2. |e(1, 2, 8)| = b

3. |e(1, 3, 7)| = c

4. |e(1, 4, 6)| = d

5. |e(1, 5, 5)| = e

6. |e(2, 2, 8)| = f

7. |e(2, 3, 7)| = g

8. |e(2, 4, 6)| = h

9. |e(2, 5, 5)| = i

10. |e(3, 3, 6)| = j

11. |e(4, 4, 4)| = k

Since |I1| = |I2|, 2a+ b+ c+ d+ e = b+ 2f + g+ h+ i, so 2a+ c+ d+ e = 2f + g+ h+ i

Since |I3| = |I8|, c+ g + 2j = a+ b+ f

Since |I4| = |I7|, d+ h+ 3k = c+ g

Since |I5| = |I6|, 2e+ 2i = d+ h+ j

Since |I1 ∪ I2| = 28, 2a+ 2b+ c+ d+ e+ 2f + g + h+ i = 28
Since there are 22 3-students, a+ b+ c+ d+ e+ f + g + h+ i+ k = 22
From the last two equations we obtain a+ b+ f = 6
We combine I1 and I2 into a single interval. This reduces the system to 6 variables,

resulting in the equation
1 1 1 1 1 1
2 1 1 1 0 0
−1 1 0 0 2 0
0 −1 1 0 0 3
0 0 −1 2 −1 0



p

q

r

s

t

 =


22
28
0
0
0



FUN 2018

15:8 A Muffin-Theorem Generator

However, one can check that eliminating the bottom 3 rows requires the top 2 rows to be in
the ratio 7 : 9. 22 : 28 6= 7 : 9, so there is no solution. J

The above proof used that
⌈ 2m

s

⌉
= 3 since that is the condition that leads to having

2-shares and 3-shares. This is usually important since it gives us symmetry from matches, not
just from buddying; however, in this case we just so happened to not need that symmetry.

6 Finding a Procedure

We now describe the program that finds the procedure showing f(47, 36) ≥ 124
360 . We guess

that all shares are of the form x
360 where 124 ≤ x ≤ 236. But we can cut down those variables

a lot based on the proof. For example, by modifying the proof slightly, we can deduce that
there are no share of size 127

360 ,
128
360 , . . . ,

137
360 . This is a key factor in speeding up the program.

We can also use the symmetries of where shares can be.
For every way to split a muffin we have a variable for how many muffins are split that

way, as follows: (124
360 ,

236
360) is associated to the variables y124,236, (125

360 ,
235
360) is associated with

the variable y125,235, etc. This variable is the number of muffins that are split that way.
For every way to give muffin shares to a student we have a variable for how many students

get that set of shares, as follows: [87
360 ,

79
360 ,

69
360] is associated to the variable z87,79,69, [118

360 ,
117
360]

is associated to the variables z118,117, etc. This variable is the number of students who get
that share-size.

For each size we express how many pieces are of that size in two ways.
The number of pieces of that size based on the muffins. For example, the number of
pieces of size 131

360 is y131,256. The number of pieces of size 180
360 is 2× y180,180.

The number of shares of that size based on the students. For example, the number of
shares of size 131

360 is

z124,131,215 + · · ·+ z130,131,209 + 2z131,131,208 + z132,131,207 + · · ·+ z215,131,124

For each size we get an equation by equating the muffin-based and student-based ex-
pressions. We have more equations based on the number of pieces and the number in each
interval which falls out of the proof of the upper bound. This leads to a set of linear equations
whose solution leads to a procedure.

Here is the procedure for f(47, 36) ≥ 124
360 = 117

180 we obtained with this method:
1. Divide 1 muffin (90

180 ,
90

180)
2. Divide 2 muffins (93

180 ,
87

180)
3. Divide 2 muffins (101

180 ,
79

180)
4. Divide 2 muffins (104

180 ,
76

180)
5. Divide 6 muffins (109

180 ,
71

180)
6. Divide 6 muffins (111

180 ,
69

180)
7. Divide 14 muffins (117

180 ,
63

180)
8. Divide 14 muffins (118

180 ,
62

180)
9. Give 2 students [87

180
79

180
69

180]
10. Give 2 students [90

180
76

180
69

180]
11. Give 2 students [93

180
71

180
71

180]
12. Give 2 students [101

180
71

180
63

180]
13. Give 2 students [104

180
69

180
62

180]
14. Give 6 students [109

180
63

180
63

180]
15. Give 6 students [111

180
62

180
62

180]
16. Give 14 students [118

180
117
180]

G. Cui et al. 15:9

The reader should be able to see how to generalize the method outlined above.
What is described above is not quite what we have coded up (though we will). The

Interval Method (see Section B) is another method to find lower bounds that gives information
that can be used to cut down the time to find a procedure. We have coded up a version of
what is outlined above with the interval method.

We denote the algorithm given above (the one using Buddy-Match) VLOWER(m, s, α)
where one finds a procedure showing f(m, s) ≥ α, hence verifying that f(m, s) ≥ α.

7 The Proof that f(47, 36) ≤ 31
90 Reveals Much More

The proof that f(47, 36) ≤ 31
90 can be modified very slightly (just notation) to obtain the

following result (which we write in a strange way for later exposition):

(∀k ≥ 1)
[
f(3× 11× k + 11 + 3, 33k + 3) ≤

11k + 7
5

3× 11× 3k + 3

]
More generally the following seems to be true empirically:

for all d (d stands for difference and is m− s), for all 1 ≤ a ≤ 3d− 1 (a, d relatively primes),
there exists X:

(∀k ≥ 1)
[
f(3dk + d+ a, 3dk + a) ≤ dk +X

3dk + a

]

For d = 1 to 8, for all relevant a, we have found X. In many concrete cases we have
shown that it is also an upper bound. In Section C we present the results for the d = 7 case.

Note that we need k ≥ 1 since if k = 0 then we no longer have
⌈ 2m

s

⌉
= 3.

8 Generating More General Theorems

The techniques discussed in Section 7 generate theorems of the form

(∀k ≥ 1)
[
f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

]
.

However, the program can be modified to obtain more general theorems. As noted in
Section 7 our program finds interesting values of X. That is, the program may find that
(say) if X ≤ 7

6 then there are no e(1, 3, 4)-students. What is it about X ≤ 7
6 that makes this

happen? It may be that (say) 1 ≤ a ≤ 5d
7 and a 6= 2d

3 makes this work, and it may be that
X = max{ 2a

5 ,
a+d

6 }.
We have taken the results from the program and, with the help of additional programs

and our own ingenuity generated many theorems (we hope to fully automate it soon). These
theorems are a great time saver since often the result we want falls out of them directly. We
present a sample of such theorems in the Section D.

9 How to find X

The proof of Theorem 6 can be summarizes as follows: The assumption f(47, 36) > 31
90

implies that a certain system of linear equations have a solution where all of the variables
are natural numbers between 0 and s3 = 22. The system had no such solution, hence a
contradiction.

FUN 2018

15:10 A Muffin-Theorem Generator

Imagine that we want an upper bound on f(47, 36) but do not know what it is ahead of
time. Following the line of reasoning in Section 7 we seek X such that

f(33 + 3 + 11, 33 + 3) ≤ 11 +X

33 + 3 .

We use a program to simulate the proof of Theorem 6 but with X instead of the actual
numbers. This program will produce many values of X where something interesting happens,
such as a type of student no longer being allowed. The program looks at the (finite) set of
interesting values of X and finds the least one that causes the resulting system of linear
equations to be unsolvable using natural numbers between 0 and 22. Hence we have a value
of X. We then use VLOWER(47, 36, 11+X

36) to find the matching lower bound (if this does
not work then the algorithm failed to find f(m, s)).

For the values 47, 36 it was easy to find the value of X. For larger m, s it may be that
verifying f(m, s) ≤ α is faster than finding the α. In the next two sections we examine how
to speed up finding X.

We leave it to the reader to generalize the algorithm to any m, s where
⌈ 2m

s

⌉
= 3; however,

we give the following picture which represents intervals where 3-shares can be. In the picture
each nonempty interval has the number of 3-shares in it (though y is not known) and a label
such as I1 so we can refer to it. This picture is the result of many buddy-match sequences.

(a+ d (I1) | a+ d (I2))[0]
dk+X
3dk+a

dk+ a
2

3dk+a
dk+a−X

3dk+a
dk+2X
3dk+a

(y (I3))[0]
dk+2X
3dk+a

dk+a+d−3X
3dk+a

dk+d−a+2X
3dk+a

(2d− a− y (I4) | 2d− a− y (I5))
dk+d−a+2X

3dk+a

dk+ a+d
2

3dk+a
dk+2a−2X

3dk+a

)[0](y (I6))
dk+2a−2X

3dk+a
dk+3X
3dk+a

dk+a+d−2X
3dk+a

Facts and Caveats:
1. |I1| = |I2|
2. |I4| = |I5|
3. In the picture it is unclear if the endpoint of I1 is included in I1. We do not include

it; however, we take the even number of shares that are at that endpoint and arbitrary
assign half to I1 and half to I2.

4. There is a similar comment for I2, I4, and I5.

We denote the version where you do not already have upper bound to check
BUDMAT(m, s) and the version where you do BUDMAT(m, s, α) where α is the bound. We
will avoid using BUDMAT(m, s) unless m, s are small since it may be slow.

10 How to find X Cheating a Little

Say you want to find f(213, 200). Since
⌈ 2×213

200
⌉

= 3 you could run BUDMAT(213, 200).
But the numbers are large! Following the line of reasoning in Section 7 we note that
d = 213− 200 = 13 and generalize the problem to finding an X such that

f(39k + 5 + 13, 39k + 5) ≤ 13k +X

39k + 5 .

G. Cui et al. 15:11

Lets look at the k = 1 case: f(57, 44). Since
⌈ 2×57

44
⌉

= 3 you could run BUDMAT(57, 44).
But the numbers are small! Oh, thats a good thing! Lets say the answer is α. Run
VLOWER(57, 44, α) to verify that its a lower bound. If it is then solve α = 13+X

39+5 to find
X. The proof you did for f(57, 44) ≤ 13+X

39+5 can be modified to show (∀k ≥ 1)[f(39k + 5 +
13, 39k + 5) ≤ 13k+X

39k+5]. In particular f(213, 200) ≤ 13×5+X
39×5+5 = β. Run VLOWER(213, 300, β)

to verify the lower bound (if this does not work then the algorithm failed to find f(57, 44)).
This is cheating a little since we don’t really know that the such an X exists. But it has

so far. And we do verify in the end.
We leave it to the reader to generalize this procedure. We denote this algorithm

CHEATALITTLE(m, s).

11 How to find X Cheating a Lot

Say you want to find f(1717, 1650). Since
⌈ 2×1717

1650
⌉

= 3 you could run BUDMAT(1717, 1650).
But the numbers are really large! Following the line of reasoning in Section 7 we note that
d = 1717− 1650 = 67 and generalize the problem to finding an X such that

f(201k + 42 + 67, 201k + 42) ≤ 67k +X

201k + 42 .

Lets look at the k = 1 case: f(310, 243). These numbers are still big!
Lets look at the k = 0 case: f(109, 42). These numbers are small! Since

⌈ 2×109
42

⌉
≥ 4 you

cannot run BUDMAT(109, 42)). But the situation is worse than that. Even if we bound
f(109, 42) the proof will not use BUDMAT and hence cannot be modified to get an upper
bound for f(201k + 42 + 67, 201k + 42). In fact, the answer for f(109, 42) should have no
bearing on our problem.

Except for one thing. Empirically it does. In all cases that we looked at the X obtained
from knowing an upper bound on the k = 0 case of f(3dk + a+ d, 3dk + a) was the correct
X for k ≥ 1. We proceed as if this is always true.

We cannot use BUDMAT(109, 42); however, there are other techniques that to find
an upper bound on f(m, s). They summarized in Section B. Use them. Lets say the
answer is α. Run VLOWER(109, 42, α) to verify that its a lower bound. If it is then solve
α = X

42 to find X. The proof you did for f(109, 42) ≤ X
42 cannot be modified to show

(∀k ≥ 1)[f(201k + 42 + 67, 201k + 42) ≤ 67k+X
201+42]. But you have a very good conjecture.

Run BUDMAT(109, 42, 67+X
201+42). If it returns YES and a proof then modify the proof to

obtain (∀k ≥ 1)[f(201k + 42 + 67, 201k + 42) ≤ 67k+X
201+42] (if this does not work then the

algorithm failed to find f(1717, 1650)). In particular f(1717, 1658) ≤ 67×5+X
201×5+5 = β. Run

VLOWER(1717, 1658, β) to verify the lower bound (if this does not work then the algorithm
failed to find f(1717, 1650)).

This is cheating a lot since we don’t really know that the k = 0 case has any bearing on
the k ≥ 1 case. But it has so far, and we verify in the end.

We leave it to the reader to generalize this procedure. We denote this algorithm
CHEATALOT(m, s).

12 A General Algorithm

We present an algorithm that we conjecture always finds f(m, s) and operates in polynomial
time.

The reader should read Section B since we will be using FC, INT, and BUD which are
explained there. They are other methods to find or verify upper bounds on f(m, s).

FUN 2018

15:12 A Muffin-Theorem Generator

1. Input(m, s).
2. If m = s output 1. If gcd(m, s) = d ≥ 1 then call the algorithm recursively with

f(m/d, s/d). If s = 2 then output 1
2 . If m < s then call the algorithm recursively to find

f(s,m) and output m
s f(s,m).

3. Compute α = FC(m, s). Compute VLOWER(m, s, α) to see if α is a matching lower
bound. If it is then output α and stop.

4. Compute α = INT(m, s). Compute VLOWER(m, s, α) to see if α is a matching lower
bound. If it is then output α and stop.

5. If
⌈ 2m

s

⌉
= 3 then:

a. Compute α = CHEATALOT(m, s). Compute VLOWER(m, s, α) to see if α is a
matching lower bound. If it is then output α and stop. (This might fail if the methods
of Section B do not work on the input they are given.)

b. Compute α = CHEATALITTLE(m, s). Compute VLOWER(m, s, α) to see if α is a
matching lower bound. If it is then output α and stop.

6. If
⌈ 2m

s

⌉
≥ 4 then let a = s and d = m−a. We seek f(3d×0+a+d, 3d×0+a). Recursively

call f(3d+ a+ d, 3d+ a) (we could tell it to not bother with CHEATALOT(m, s) since
that just asks to compute f(a+ d, a) using FC and INT). If the computation succeeds
and returns α then run BUD(m, s, α) to verify that f(m, s) ≤ α. If this is verified then
compute VLOWER(m, s, α) to see if α is a matching lower bound. If it is then output α
and stop.

7. If nothing above works then output FAILED!

This can be sped up by, upon first seeing m, s, see if any of the general theorems such as
those in Sections C and D apply to get an upper bound α and then run VLOWER(m, s, α).

13 Open Problems and Speculation

We would like to think that the algorithm in the last section will always work and hence
computing f(m, s) is in P. But we’ve been down this road before where we think we can
compute all f(m, s) only to come to a troublesome case which leads to a new technique
and more co-authors. The following are possible outcomes: (1) we prove that the algorithm
always works, (2) we keep running the algorithm and it always works but when the numbers
get too big we can’t tell, (3) we come across a value the algorithm does not work on and this
leads to a a new technique and more co-authors.

We believe that computing f(m, s) is in P. One piece of evidence for this is that for all s,
for all m ≥ s3, f(m, s) = FC(m, s). Hence if you fix s then for large enough s the problem is
very easy. One might call this Fixed Parameter very tractable.

We believe that f(m, s) only depends on m
s . This seems provable.

References
1 Guangiqi Cui, John Dickerson, Naveen Durvasula, William Gasarch, Erik Metz, Jacob

Prinz, Naveen Raman, Daniel Smolyak, and Sung Hyun Yoo. Code for muffin problems,
2017. https://github.com/jeprinz/MuffinProblem.

2 Guangiqi Cui, John Dickerson, Naveen Durvasula, William Gasarch, Erik Metz, Jacob
Prinz, Naveen Raman, Daniel Smolyak, and Sung Hyun Yoo. The muffin problem, 2017.
https://arxiv.org/abs/1709.02452.

3 Alan Frank. The muffin problem, 2013. Described to Jeremy Copeland and in the New
York Times Numberplay Online Blog wordplay.blogs.nytimes.com/2013/08/19/cake.

https://github.com/jeprinz/MuffinProblem
https://arxiv.org/abs/1709.02452
wordplay.blogs.nytimes.com/2013/08/19/cake

G. Cui et al. 15:13

A A Mixed Integer Program for f(m, s)

The following theorem shows that f(m, s) always exists (as opposed to having better and
better algorithms), is rational, and is computable. This theorem was independently discovered
by Veit Elser, within the math-fun email list, in 2009.

I Theorem 11. Let m, s ≥ 1.
1. There is a mixed integer program with O(ms) binary variables, O(ms) real variables,

O(ms) constraints, and all coefficients integers of absolute value ≤ max{m, s} such that,
from the solution, one can extract f(m, s) and a protocol that achieves this bound. This
MIP can easily be obtained given m, s.

2. f(m, s) is always rational. This follows from part 1.
3. In every optimal protocol for m muffins and s students all of the pieces are of rational

size. This follows from part 1.
4. The problem of, given m, s, determine f(m, s), is decidable. This follows from part 1.

Proof. Consider the following (failed) attempt to solve the problem using linear programming.
1. The variables are xij where 1 ≤ i ≤ m and 1 ≤ j ≤ s. The intent is that xij is the

fraction of muffin i that student j gets.
2. For all 1 ≤ i ≤ m, 1 ≤ j ≤ s, 0 ≤ xij ≤ 1.
3. For each 1 ≤ i ≤ m,

∑s
j=1 xij = 1.

This says that the amount of muffin i that student 1 gets, students 2 gets, . . ., student s
gets all adds up to 1.

4. For each 1 ≤ j ≤ s,
∑m

i=1 xij = m
s .

This says that the amount that student j gets from muffin 1, muffin 2, . . ., muffin m all
adds up to m

s .
5. For all 1 ≤ i ≤ m, 1 ≤ j ≤ s, xij ≥ z.
6. Maximize z.

This does not work. The problem is that (say) x13 could be 0. In fact it is likely that
some xij is 0. This makes z = 0. What we really want is

xij 6= 0 =⇒ xij ≥ z

It is easy to show that f(m, s) ≥ 1
s . Hence every nonzero xij is ≥ 1

s . We will use this in
our proof.

For 1 ≤ i ≤ m, 1 ≤ j ≤ s modify the linear program above as follows.
1. Add variable yij which is in {0, 1}.
2. Add the constraint xij + yij ≤ 1. Note that

xij = 0 =⇒ xij + yij ≤ 1, so the constraint imposes no condition on yij .
xij > 0 =⇒ yij < 1 =⇒ yij = 0 =⇒ xij + yij = xij .

3. Add the constraint xij + yij ≥ 1
s . Note that

xij = 0 =⇒ yij ≥ 1
s =⇒ yij = 1 =⇒ xij + yij = 1

xij > 0 =⇒ xij ≥ 1
s (since we know all non-zero pieces are ≥ 1

s) =⇒ xij + yij ≥ 1
s ,

so the constraint imposes no condition on yij .
4. Replace the constraint z ≤ xij with z ≤ xij + yij .

If xij = 0 then the constraint

z ≤ xij + yij = 1

FUN 2018

15:14 A Muffin-Theorem Generator

is always met and hence is (as it should be) irrelevant. If xij > 0 then the constraint

z ≤ xij + yij = xij

is the constraint we want.
Solve the resulting mixed integer program. Since all of the coefficients are rational the

answer will be rational. J

B Other Methods

We discuss three methods for finding an upper bound on f(m, s).
The method from the following theorem is called The Floor Ceiling Method or just

FC-method. Note that it is very fast and gives you the upper bound.

I Theorem 12. Assume that m, s ∈ N and m
s /∈ N.

f(m, s) ≤ max
{

1
3 ,min

{
m

s d2m/se , 1−
m

s b2m/sc

}}
.

Proof. Assume we have an optimal (m, s) protocol. Since m
s /∈ N we can assume every

muffin is cut into at least 2 pieces.
Case 1: Some muffin is cut into u ≥ 3 pieces. Then some piece is ≤ 1

3 .
Case 2: All muffins are cut into 2 pieces.
Since there are 2m shares and s students both of the following happen:

Some student gets t ≥ d2m/se shares, so some share is ≤ m
sd2m/se .

Some student gets t ≤ b2m/sc shares, so some share x is ≥ m
sb2m/sc . B(x)) ≤ 1− m

sb2m/sc .

Putting together Cases 1 and 2 yields the theorem. J

We denote the function from Theorem 12 FC(m, s).
The other two methods are to long to describe fully here so we just sketch.
The Interval Method is a primitive version of the Buddy-Match method where we do

not use symmetry and (since we have shares other than 2-shares and 3-shares) cannot use
the Match in Buddy-Match. This method is fast and can be used to derive the answer. We
denote the result INT(m, s).

The Buddy Method is like the Buddy-Match Method only we do not use the Match part
since we have shares other than 2-shares and 3-shares. And like the Buddy-Match Method
this one is faster if you already have the answer. We denote the version where you do not
already an upper bound to check BUD(m, s) and the version where you do BUD(m, s, α)
where α is the bound.

C Everything You Ever Wanted to Know About f(s + 7, s)

By either cheating a little (Section 10) or cheating a lot (Section 11) we have obtained
formulas for f(3dk+a+d, 3dk+a) for 1 ≤ d ≤ 50 and 1 ≤ a ≤ 3d−1 (a, d relatively primes).
We present the results for d = 7. Note that for most of the formulas the formula which is
supposed to only hold for k ≥ 1 also holds for k = 0 (with a different proof).

I Theorem 13.
1. a. f(8, 1) = 1. For all k ≥ 1, f(21k + 8, 21k + 1) ≤ 7k+X

21k+1 where X = 1
2 .

b. For all k ≥ 0, f(21k + 9, 21k + 2) ≤ 7k+X
21k+2 where X = 1.

G. Cui et al. 15:15

2. For all k ≥ 0, f(21k + 10, 21k + 3) ≤ 7k+X
21k+3 where X = 4

3 .
3. For all k ≥ 0, f(21k + 11, 21k + 4) = 7k+X

21k+4 where X = 9
5 .

4. For all k ≥ 0, f(21k + 12, 21k + 5) ≤ 7k+X
21k+5 where X = 2.

5. For all k ≥ 0, f(21k + 13, 21k + 6) ≤ 7k+X
21k+6 where X = 13

5 .
6. For all k ≥ 0, f(21k + 15, 21k + 8) ≤ 7k+X

21k+8 where X = 3.
7. For all k ≥ 0, f(21k + 16, 21k + 9) ≤ 7k+X

21k+9 where X = 11
3 .

8. For all k ≥ 0, f(21k + 17, 21k + 10) ≤ 7k+X
21k+10 where X = 4.

9. For all k ≥ 0 f(21k + 18, 21k + 11) ≤ 7k+X
21k+11 where X = 9

2 .
10. For all k ≥ 0 f(21k + 19, 21k + 12) ≤ 7k+X

2ak+12 where X = 19
4 .

11. For all k ≥ 0 f(21k + 20, 21k + 13) ≤ 7k+X
21k+13 where X = 5.

12. For all k ≥ 0: f(21k + 22, 21k + 15) = 1
3 ,

13. For all k ≥ 0: f(21k + 23, 21k + 16) = 1
3 ,

14. For all k ≥ 0: f(21k + 24, 21k + 17) = 1
3 ,

15. For all k ≥ 0: f(21k + 25, 21k + 18) = 1
3 ,

16. For all k ≥ 0: f(21k + 26, 21k + 19) = 1
3 ,

17. For all k ≥ 0: f(21k + 27, 21k + 20) = 1
3 .

Note that the last few answers were 1
3 and there is an equality. The 1

3 follows from
Theorem 14. The equality holds since we have proven that, for all m > s, f(m, s) ≥ 1

3 .

D A Sample of General Theorems

In all cases a, d are relatively prime.

I Theorem 14. If a ∈ {2d + 1, . . . , 3d − 1} then f(3dk + a + d, 3dk + a) ≤ dk+X
3dk+a where

X = a
3 , so f(3dk + a+ d, 3dk + a) ≤ 1

3 .

I Theorem 15. If a ∈ {1, . . . , 3d− 1}, a 6= d, then f(3dk + a+ d, 3dk + a) ≤ dk+X
3dk+a where

X = max{a
3 ,

a+d
5 , 2a−d

3 }.

I Theorem 16. If 1 ≤ a ≤ 3d− 1 and 5a 6= 7d then f(3dk + a+ d, 3dk + a) ≤ dk+X
3dk+a where

X = max{a
3 ,

a+d
5 , a+2d

6 , 3a−2d
4 }.

I Theorem 17. If 1 ≤ a ≤ 5d
7 and a 6= 2d

3 then f(3dk + a+ d, 3dk + a) ≤ dk+X
3dk+a where

X = max{ 2a
5 ,

a+d
6 }.

I Theorem 18. If 5d
7 ≤ a ≤ d− 1 then f(3dk + a+ d, 3dk + a) ≤ dk+X

3dk+a where
X = max{ 2a

5 ,
3a−d

4 }.

I Theorem 19. If 5d
13 ≤ a ≤

13d
29 and a 6= 2

5d then f(3dk + a+ d, 3dk + a) ≤ dk+X
3dk+a where

X = max{ 5a−d
6 , a+d

8 , 3a
7 }.

E If m ≥ s then f(m, s) ≥ 1/3

Before showing the general technique we give an example.

I Example. f(19, 17) ≥ 1
3 .

We express 19
17 as 57

51 since other fractions will have a denominator of 51.
We initially divide the 19 muffins (1

3 ,
1
3 ,

1
3). There are now 57 pieces 1

3 -shares. We
initially give 11 students 3 1

3 -shares and 6 students 4 1
3 -shares. (In the proof below W = 3,

FUN 2018

15:16 A Muffin-Theorem Generator

sW = s3 = 11, and sW +1 = s4 = 6.) A student who gets 3 (4) shares is called a 3-student
(4-student).

We describe a process whereby students give pieces of muffins, called gifts, to other
students so that, in the end, all students have 57

51 . Each gift leads to a change in how the
muffins are cut in the first place; however, there will never be a muffin of size < 1

3 .
Each 4-student has 4

3 = 68
51 and hence has to give (perhaps in several increments)

68
51 −

57
51 = 11

51 to get down to 57
51 . Realize that if a 4-student gives 11

51 to a 3-student, then
the 3-student now has 51

51 + 11
51 = 62

51 >
57
51 .

Each 3-student has 51
51 and hence has to receive 57

51 −
51
51 = 6

51 to get up to 57
51 .

Call the 11 3-students g1, . . . , g11.
Call the 6 4-students f1, . . . , f6.
We use a notation that we just give an example of:
f1 gives x to g1 by taking two 1

3 -pieces, combining them, cutting off a piece of size x,
giving it to g1 while keeping the rest. g1 takes the piece given to him and combines it with a
1
3 piece. Notice that in terms of pieces we are taking three pieces of size 1

3 (2 from f1 and 1
from g1) and turning them into 1 piece of size 2

3 − x and one of size 1
3 + x. Hence we can

easily rearrange how the muffins are cut.
x(f1 → g1)
We need to make sure this procedure never results in a piece that is < 1

3 . In the above
example (1) f1 now has a piece of size 2

3 − x, hence we need x ≤ 1
3 , (2) g1 now has a piece of

size 1
3 + x, which is clearly ≥ 1

3 . Hence the only restriction is x ≤ 1
3 .

1. 11
51 (f1 → g1). Now f1 has 57

51 . YEAH. However, g1 has 62
51 .

2. 5
51 (g1 → g2). Now g1 has 62

51 −
5

51 = 57
51 . YEAH. However, g2 has 51

51 + 5
51 = 56

51 .
3. 1

51 (f2 → g2). Now g2 has 57
51 . YEAH. However, f2 has 67

51 .
4. 10

51 (f2 → g3). Now f2 has 57
51 . YEAH. However, g3 has 61

51 .
5. 4

51 (g3 → g4). Now g3 has 57
51 . YEAH. However, g4 has 55

51 .
6. 2

51 (f3 → g4). Now g4 has 57
51 . YEAH. However, f3 has 66

51 .
7. 9

51 (f3 → g5). Now f3 has 57
51 . YEAH. However, g5 has 60

51 .
8. 3

51 (g5 → g6). Now g5 has 57
51 . YEAH. However, g6 has 54

51 .
9. 3

51 (f4 → g6). Now g6 has 57
51 . YEAH. However, f4 has 65

51 .
10. 8

51 (f4 → g7). Now f4 has 57
51 . YEAH. However, g7 has 59

51 .
11. 2

51 (g7 → g8). Now g7 has 57
51 . YEAH. However, g8 has 53

51 .
12. 4

51 (f5 → g8). Now g8 has 57
51 . YEAH. However, f5 has 64

51 .
13. 7

51 (f5 → g9). Now f5 has 57
51 . YEAH. However, g9 has 58

51 .
14. 1

51 (g9 → g10). Now g9 has 58
51 . YEAH. However, g10 has 52

51 .
15. 5

51 (f6 → g10). Now g10 has 57
51 . YEAH. However, f6 has 63

51 .
16. 6

51 (f6 → g11). Now f6 has 57
51 . YEAH. However, g11 has 57

51 . OH. thats a good thing!

YEAH- we are done.
Note that the first x was 11

51 ≤
1
3 and the remaining x were all ≤ 11

51 ≤
1
3 . Hence all pieces

in the final protocol are ≥ 1
3 .

I Theorem 20. For all m ≥ s, f(m, s) ≥ 1
3 .

Proof. Divide all the muffins into (1
3 ,

1
3 ,

1
3). Initially distribute them as evenly as possible

among the students. There will be a number W such that some students get W shares and
some get (W + 1)-shares. Let sW (sW +1) be the number of students who get W (W + 1)
shares.

G. Cui et al. 15:17

We do not need the following but are noting it anyway. If s does not divide 3m then
W = 3m

s and sW , sW +1 are unique and determined by:

WsW + (W + 1)sW +1 = 3m
sW + sW +1 = s

(Technically, if s | 3m there are two possible values of W .)
A student who gets W (W + 1) shares we call a W -student ((W + 1)-student). All

W -students get W
3 . All (W + 1)-students get W +1

3 .
A W -student must get < m

s : if a W -student got > m
s then all students would get > m

s

and hence there would be > sm
s = m muffins total. A (W + 1)-student must get > m

s : if
a (W + 1)-student got < m

s then all students would get < m
s and hence there would be

< sm
s = m muffins total.
Hence we have:

m

s
− W

3 ≤
1
3 (1)

W + 1
3 − m

s
≤ 1

3 (2)

Now we will need to smooth out the distribution so that everyone receives m
s . We will do

this by doing a sequence of moves of the form x(fi → gj) or x(gi → gj). as defined in the
example.

We will assume sW +1 and sW are relatively prime (this only comes up in Claim 3 below).
This is fine because if they have a common factor d, we can just use the procedure for the
sW +1

d , sW

d case repeated d times.

I Claim 1.
1. If sW +1 < sW then W +1

3 − m
s > m

s −
W
3 .

2. If sW < sW +1 then W +1
3 − m

s > m
s −

W
3 .

Proof of Claim 1.

sW +1 ×
W + 1

3 + sW ×
W

3 = m

sW +1 ×
(
m

s
+ W + 1

3 − m

s

)
+ sW

(
m

s
+ W

3 −
m

s

)
= m.

(
sW +1 + sW

)
m

s
+ sW +1

(
W + 1

3 − m

s

)
+ sW

(
W

3 −
m

s

)
= m

s× m

s
+ sW +1

(
W + 1

3 − m

s

)
+ sW

(
W

3 −
m

s

)
= m

W + 1
3 − m

s
= sW

sW +1

(
m

s
− W

3

)
Both parts follow. J

We give the procedure to obtain f(m, s) ≤ 1
3 . There are two cases.

FUN 2018

15:18 A Muffin-Theorem Generator

Case 1: sW +1 < sW . Hence by Claim 1 W +1
3 − m

s > m
s −

W
3 .

Call the sW W -students g1, . . . , gsW
.

Call the sW +1 (W + 1)-students f1, . . . , fsW +1 .

1. Let x = W +1
3 − m

s . Note that x ≤ 1
3 . Do x(f1 → g1). Now f1 has m

s . YEAH. However,
g1 has W

3 + W +1
3 − m

s > m
s . (This is where we use sW +1 < sW , or more accurately the

consequence of that from Claim 1.)
2. Let x = 2W +1

3 − 2 m
s . Do x(g1 → g2). Now g1 has m

s . YEAH.
3. If g2 has > m

s then g2 gives enough to g3 so that g2 has m
s . Keep up this chain of

g1, g2, g3, . . . until there is a gi such that gi end up with < m
s (though more than the W

3
that gi had originally).

4. Do x(f2 → gi) where x is such that gi will now have m
s .

5. Do x(f2 → gi+1) where x is such that f2 will now have m
s . Repeat the same chain of gi’s

as in step 3.
6. Repeat the above steps until you are done.

We need to show that (1) there is never a piece of size < 1
3 , and (2) the process ends with

every student getting m
s .

I Claim 2. The first gift is ≤ 1
3 and no gift is larger.

Proof of Claim 2. Let C = W +1
3 − m

s which is the size of the first gift. By equation (2)
C ≤ 1

3 .
Assume that all gifts so far have been ≤ C. We analyze the three kinds of gifts and show

that in all cases the gift is ≤ C.
x(fi → gj) where (1) initially fi has > m

s , gj has < m
s , and (2) after the gift fi has m

s .
When this occurs it is fi’s first or second gift giving. (This happens in steps 1 and 5
above, and later as well.) Before the gift fi has at least m

s but at most W +1
3 , so this gift

has size at most W +1
3 − m

s = C.
x(gi → gi+1) where (1) initially gi has > m

s , gj has < m
s , and (2) after the gift gi has

m
s . When this occurs gi has received a gift once and this is gi’s first time giving. (This
happens in steps 2 and in the chain referred to in step 5.) Since gi just received a gift of
size ≤ C she has ≤ W

3 + C. Hence the gift is ≤ W
3 −

m
s + C ≤ C.

x(fi → gj) where (1) initially fi has > m
s , gj has < m

s , and (2) after the gift gj has m
s .

This will be fi’s first time giving. (This happens in step 4 above.) Before the gift fi has
at least W

3 but at most m
s , so this gift has size at most m

s −
W
3 ≤ C (by Claim 1). J

I Claim 3. If sW and sW +1 are relatively prime then the process terminates with all students
having m

s .

Proof of Claim 3. In each step all of the fi have at least m
s . In each step the number of

students who have the correct amount of muffin goes up. One may be worried that at some
point we will try to do step 4 (for example) of the procedure and there will be no gi left
who need more muffin. But this is not possible because until the process terminates the f ’s
always have more muffin than they need, so there is always a g with insufficient muffin.

One may also be worried that eventually we will get all of the f ’s to have m
s , but the g’s

will not all have m
s . This is not possible either, because whenever we only make gifts from f

to g when there is no g with more than m
s .

Finally, if sW and sW +1 are not relatively prime, it is possible that the procedure will
terminate early because in step 5 the size of the donation x is 0. If this occurred it would

G. Cui et al. 15:19

mean that there is some subset of F f ’s and G g’s each of which having exactly m
s , who only

made donations amongst themselves. But then F
G = sW +1

sW
, a contradiction. J

Case 2: sW < sW +1. This is similar to Case 1 except that instead of f1 giving g1 so that
f1 has m

s , f1 gives to g1 so that g1 has m
s . Hence we have a chain of fi’s instead of a chain

of gi’s. J

FUN 2018

God Save the Queen
Jurek Czyzowicz1

Université du Québec en Outaouais, Gatineau, Québec, Canada
jurek.czyzowicz@uqo.ca

Konstantinos Georgiou2

Department of Mathematics, Ryerson University, Toronto, Ontario, Canada
konstantinos@ryerson.ca

Ryan Killick3

School of Computer Science, Carleton University, Ottawa, Ontario, Canada
ryankillick@cmail.carleton.ca

Evangelos Kranakis4

School of Computer Science, Carleton University, Ottawa, Ontario, Canada
kranakis@scs.carleton.ca

Danny Krizanc
Department of Mathematics & Comp. Sci., Wesleyan University, Middletown, CT, USA
dkrizanc@wesleyan.edu

Lata Narayanan5

Department of Comp. Sci. and Software Eng., Concordia University, Montreal, Québec, Canada
lata@encs.concordia.ca

Jaroslav Opatrny
Department of Comp. Sci. and Software Eng., Concordia University, Montreal, Québec, Canada
opatrny@cs.concordia.ca

Sunil Shende
Department of Computer Science, Rutgers University, Camden, NJ, USA
shende@camden.rutgers.edu

Abstract
Queen Daniela of Sardinia is asleep at the center of a round room at the top of the tower in her
castle. She is accompanied by her faithful servant, Eva. Suddenly, they are awakened by cries
of “Fire”. The room is pitch black and they are disoriented. There is exactly one exit from the
room somewhere along its boundary. They must find it as quickly as possible in order to save
the life of the queen. It is known that with two people searching while moving at maximum
speed 1 anywhere in the room, the room can be evacuated (i.e., with both people exiting) in
1 + 2π

3 +
√

3 ≈ 4.8264 time units and this is optimal [Czyzowicz et al., DISC’14], assuming that
the first person to find the exit can directly guide the other person to the exit using her voice.
Somewhat surprisingly, in this paper we show that if the goal is to save the queen (possibly
leaving Eva behind to die in the fire) there is a slightly better strategy. We prove that this
“priority” version of evacuation can be solved in time at most 4.81854. Furthermore, we show
that any strategy for saving the queen requires time at least 3 + π/6 +

√
3/2 ≈ 4.3896 in the

worst case. If one or both of the queen’s other servants (Biddy and/or Lili) are with her, we show
that the time bounds can be improved to 3.8327 for two servants, and 3.3738 for three servants.

1 NSERC
2 NSERC
3 OGS
4 NSERC
5 NSERC

© Jurek Czyzowicz, Konstantinos Georgiou, Ryan Killick, Evangelos Kranakis,
Danny Krizanc, Lata Narayanan, Jaroslav Opatrny, and Sunil Sende;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 16; pp. 16:1–16:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jurek.czyzowicz@uqo.ca
mailto:konstantinos@ryerson.ca
mailto:ryankillick@cmail.carleton.ca
mailto:kranakis@scs.carleton.ca
mailto:dkrizanc@wesleyan.edu
mailto:lata@encs.concordia.ca
mailto:opatrny@cs.concordia.ca
mailto:shende@camden.rutgers.edu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 God Save the Queen

Finally we show lower bounds for these cases of 3.6307 (two servants) and 3.2017 (three servants).
The case of n ≥ 4 is the subject of an independent study by Queen Daniela’s Royal Scientific
Team.

2012 ACM Subject Classification Computing methodologies → Distributed artificial intelli-
gence,Computing methodologies → Mobile agents

Keywords and phrases Algorithm, Evacuation, Exit, Disk, Wireless Communication, Queen,
Priority, Robots, Search, Servants, Trajectory

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.16

Related Version Full version hosted on arXiv http://arxiv.org/abs/1804.06011

1 Introduction

In traditional search, a group of searchers (modeled as mobile autonomous agents or robots)
may collaboratively search for an exit (or target) placed within a given search domain [1, 2, 20].
Although the searchers may have differing capabilities (communication, perception, mobility,
memory) search algorithms, previously employed, generally make no distinction between
them as they usually play identical roles throughout the execution of the search algorithm
and with respect to the termination time (with the exception of faulty robots, which also do
not contribute to searching). In this work we are motivated by real-life safeguarding-type
situations where a number of agents have the exclusive role to facilitate the execution of the
task by a distinguished entity. More particularly, we introduce and study Priority Evacuation,
a new form of search , under the wireless communication model, in which the search time
of the algorithm is measured by the time it takes a special searcher, called the queen, to
reach the exit. The remaining searchers in the group, called servants, are participating in
the search but are not required to exit.

1.1 Problem Definition of Priority Evacuation (PEn)
A target (exit) is hidden in an unknown location on the unit circle. The exit can be located
by any of the n+ 1 robots (searchers) that walks over it (n = 1, 2, 3). Robots share the same
coordinate system, start from the center of the circle, and have maximum speed 1. Among
them there is a distinguished robot, called the queen, and the remaining n robots are referred
to as servants. All servants are known to the queen by their identities. Robots may run
asymmetric algorithms, and can communicate their findings wirelessly and instantaneously
(each message is composed by an identity and a location). Only the queen is required to be
able to receive messages. Feasible solutions to this problem are evacuation algorithms, i.e.
robots’ movements (trajectories) that guarantee the finding of the hidden exit. The cost of
an evacuation algorithm is the evacuation time of the queen, i.e., the worst case total time
until the queen reaches the exit. None of the n servants needs to evacuate.

1.2 Related work
Related to our work is linear search which refers to search in an infinite line. There have been
several interesting studies attempting to optimize the search time which were initiated with
the influential works of Bellman [7] and Beck [6]. A long list of results followed for numerous
variants of the problem, citing which is outside the scope of this work. For a comprehensive
study of seminal search-type problems see [2, 3].

http://dx.doi.org/10.4230/LIPIcs.FUN.2018.16
http://arxiv.org/abs/1804.06011

J. Czyzowicz et al. 16:3

The problem of searching in the plane by one or more searchers, has been considered by
[4, 5]. The unit disk model considered in our present paper is a form of two-dimensional
search that was initiated in the work of [10]. In this paper the authors obtained evacuation
algorithms in the wireless and face-to-face communication models both for a small number of
robots as well optimal asymptotic results for a large number of robots. Additional evacuation
algorithms in the face-to-face communication model were subsequently analyzed for two
robots in [14] and later in [8]. Other variations of the problem include the case of more than
one exit, see [9] and [19], triangular and square domains in [15], robots with different moving
speeds [18], and evacuation in the presence of crash or byzantine faulty robots [11].

A priority evacuation-type problem has been previously considered in [16, 17] but with
different terminology. Using the jargon of the current paper, an immobile queen is hidden
somewhere on the unit disk, and a number of robots try to locate her, and fetch (evacuate)
her to an exit which is also hidden. The performance of the evacuation algorithm is measured
by the time the queen reaches the exit.

Apart from the results in [16, 17], all relevant previous work in search-type problems
considered the objective of minimizing the time it takes either by the first or the last agent
to reach the hidden target. In contrast, this paper considers an evacuation (search-type)
problem where the completion time is defined with respect to a distinguished mobile agent,
the queen, while the remaining n servants are not required to evacuate. Our current focus
is to design efficient algorithms for n = 1, 2, 3 servants, as well as give strong lower bounds.
Notably, the algorithms we propose significantly improve upon evacuation costs induced
by naive trajectories, and in fact the trajectories we propose are non-trivial. Our main
contribution concerns priority evacuation for each of the cases of n = 1, 2, 3 servants, all of
which require special treatment. Moreover, all our algorithms are characterized by the fact
that the queen does contribute effectively to the search of the hidden item. In sharp contrast,
the independent and concurrent work of [13] studies the same problem for n ≥ 4 servants
where the queen never contributes to the search. More importantly, the proposed algorithms
of [13] admit a unified description and analysis that does not intersect with the current work.

1.3 Our Results & Paper Organization

Section 2 introduces necessary notation and terminology and discusses preliminaries. Section 3
is devoted to upper bounds for PEn for n = 1, 2, 3 servants (see Subsections 3.1, 3.2, and 3.3,
respectively). All our upper bounds are achieved by fixing optimal parameters for families
of parameterized algorithms. In Section 4 we derive lower bounds for PEn, n = 1, 2, 3. An
interesting corollary of our positive results is that priority evacuation with n = 1, 2, 3 servants
(i.e. with n+ 1 searchers) can be performed strictly faster than ordinary evacuation with
n+ 1 robots where all robots have to evacuate. Indeed, an argument found in [10] can be
adjusted to show that the evacuation problem with n+ 1 robots cannot be solved faster than
1 + 4π

3(n+1) +
√

3. Surprisingly, when one needs to evacuate only one designated robot, the
task can provably (due to our upper bounds) be executed faster. All our results, together
with the comparison to the lower bounds of [10], are summarized in Table 1. We conclude
the paper in Section 5 with a discussion of open problems. Whenever we omit proofs, due to
space limitations, we provide an outline of our arguments. The interested reader may consult
the full version of our paper [12] for the missing details.

FUN 2018

16:4 God Save the Queen

Table 1 Upper and lower bounds for priority evacuation.

of Servants Upper Bounds for PEn Lower Bounds for PEn Lower Bounds for Ordinary Evacuation
n = 1 4.8185 (Theorem 8) 4.3896 (Theorem 17) 4.826445 (see [10])
n = 2 3.8327 (Theorem 10) 3.6307 (Theorem 19) 4.128314 (see [10])
n = 3 3.3738 (Theorem 14) 3.2017 (Theorem 19) 3.779248 (see [10])

2 Notation and Preliminaries

We use n to denote the number of servants, and we set [n] = {1, . . . , n}. Queen and servant
i will be denoted by Q and Si, respectively, where i ∈ [n]. We assume that all robots start
from the origin O = (0, 0) of a unit circle in R2. As usual, points in A ∈ R2 will be treated,
when it is convenient, as vectors from O to A, and ‖A‖ will denote the euclidean norm of
that vector.

2.1 Problem Reformulation & Solutions’ Description
Robots’ trajectories will be defined by parametric functions F(t) = (f(t), g(t)), where
f, g : R 7→ R are continuous and piecewise differentiable. In particular, search algorithms for
all robots will be given by trajectories

Sn :=
{
Q(t), {Si(t)}i∈[n]

}
,

where Q(t),Si(t) will denote the position of Q and Si, respectively, at time t ≥ 0.

I Definition 1 (Feasible Trajectories). We say that trajectories Sn are feasible for PEn if:
(a) Q(0) = Si(0) = O, for all i ∈ [n],
(b) Q(t), {Si(t)}i∈[n] induce speed-1 trajectories for Q, {Si}i∈[n] respectively, and
(c) there is some time t0 ≥ 1, such that each point of the unit circle is visited (searched)

by at least one robot in the time window [0, t0]. We refer to the smallest such t0 as the
search time of the circle.

Note that feasible trajectories do indeed correspond to robots’ movements for PEn in
which, eventually the entire circle is searched, and hence the search time is bounded. We
will describe all our search/evacuation algorithms as feasible trajectories, and we will assume
that once the target is reported, Q will go directly to the location of the exit.

For feasible trajectories Sn with search time t0, and for any trajectory F(t) (either of the
queen or of a servant), we denote by I(F) the subinterval of [0, t0] that contains all x ∈ [0, t0]
such that ‖F(x)‖ = 1 (i.e. the robot is on the the circle) and no other robot has been to
F(x) before. Since robots start from the origin, it is immediate that I(F) ⊆ [1, t0]. With this
notation in mind, note that the exit can be discovered by some robot F , say at time x, only
if x ∈ I(F). In this case, the finding is instantaneously reported, so Q goes directly to the
exit, moving along the corresponding line segment between her current position Q(x) and
the reported position of the exit F(x). Hence, the total time that Q needs to evacuate equals

x+ ‖Q(x)−F(x)‖ .

Therefore, the evacuation time of feasible trajectories Sn to PEn is given by expression

max
F∈Sn

sup
x∈I(F)

{x+ ‖Q(x)−F(x)‖} .

J. Czyzowicz et al. 16:5

Notice that for “non-degenerate” search algorithms for which the last point on the circle is
not searched by Q alone, the previous maximum can be simply computed over the servants,
i.e the evacuation cost will be

max
i∈[n]

sup
x∈I(Si)

{x+ ‖Q(x)− Si(x)‖} . (1)

In other words, we can restate PEn as the problem of determining feasible trajectories Sn so
as to minimize (1).

2.2 Useful Trajectories’ Components
Feasible trajectories induce, by definition, robots that are moving at (maximum) speed 1.
The speed restriction will be ensured by the next condition.

I Lemma 2. An object following trajectory F(t) = (f(t), g(t)) has unit speed if and only if

(f ′(t))2 + (g′(t))2 = 1, ∀t ≥ 0.

Proof. For any t ≥ 0, the velocity of F is given by F ′(t) = (df(t)/dt, dg(t)/dt), and its speed
is calculated as ‖F ′(t)‖. J

Robots’ trajectories will be composed by piecewise smooth parametric functions. In
order to describe them, we introduce some further notation. For any θ ∈ R, we introduce
abbreviation Cθ for point {cos (θ) , sin (θ)}. Next we introduce parametric equations for
moving along the perimeter of a unit circle (Lemma 3), and along a line segment (Lemma 4).

I Lemma 3. Let b ∈ [0, 2π) and σ ∈ {−1, 1}. The trajectory of an object moving at speed 1
on the perimeter of a unit circle with initial location Cb is given by the parametric equation

C(b, σt) := (cos (σt+ b) , sin (σt+ b)).

If σ = 1 the movement is counter-clockwise (ccw), and clockwise (cw) otherwise.

Proof. Clearly, C(b, 0) = Cb. Also, it is easy to see that ‖C(b, t)‖ = 1, i.e. the object is
moving on the perimeter of the unit circle. Lastly,(

d

dt
cos (σt+ b)

)2
+
(
d

dt
sin (σt+ b)

)2
= σ2 (− sin (σt+ b))2 + σ2 (cos (σt+ b))2 = 1,

so the claim follows by Lemma 2. J

I Lemma 4. Consider distinct points A = (a1, a2), B = (b1, b2) in R2. The trajectory of a
speed 1 object moving along the line passing through A,B and with initial position A is given
by the parametric equation

L(A,B, t) :=
(
b1 − a1

‖A−B‖
t+ a1,

b2 − a2

‖A−B‖
t+ a2

)
.

Proof. It is immediate that the parametric equation corresponds to a line. Also, it is easy
to see that L(A,B, 0) = A and L(A,B, ‖A−B‖) = B, i.e. the object starts from A, and
eventually visits B. As for the object’s speed, we calculate(

d

dt

(
b1 − a1

‖A−B‖
t+ a1

))2
+
(
d

dt

(
b2 − a2

‖A−B‖
t+ a2

))2
=
(
b1 − a1

‖A−B‖

)2
+
(
b2 − a2

‖A−B‖

)2
= 1

so, by Lemma 2, the speed is indeed 1. J

FUN 2018

16:6 God Save the Queen

𝑆𝑆(𝑡𝑡) 𝑄𝑄(𝑡𝑡)

𝑆𝑆
𝑄𝑄

𝑢𝑢
𝑣𝑣

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆𝑣𝑣

ϕ 𝜃𝜃

Figure 1 An illustration of trajectories S(t),Q(t), and their critical angles at some fixed time τ ,
with S(τ) = S,Q(τ) = Q,S ′(τ) = u,Q′(τ) = v.

Robots trajectories will be described in phases. In each phase, robot, say F , will be
moving between two explicit points, and the corresponding trajectory F(t) will be implied by
the previous description, using most of the times Lemma 3 and Lemma 4. We will summarize
the details in tables of the following format.

Robot # Description Trajectory Duration
F 0 F(t) t0

1 F(t) t1
...

...

Phase 0 will usually correspond to the deployment of F from the origin to some point of
the circle. Also, for each phase we will summarize it’s duration. With that in mind, trajectory
F(t) during phase i, with duration ti, will be valid for all t ≥ 0 with |t−(t0+t1+. . . ti−1)| ≤ ti.

Lastly, the following abbreviation will be useful for the exposition of the trajectories. For
any ρ ∈ [0, 1] and θ ∈ [0, 2π), we introduce notation

K(θ, ρ) := (1− ρ)Cπ−θ + ρC−θ.

In other words, K(θ, ρ) is a convex combination of antipodal points Cπ−θ, C−θ of the unit
circle, i.e. it lies on the diameter of the unit circle passing through these two points. Moreover,
it is easy to see that ‖Cπ−θ −K(θ, ρ)‖ = 2ρ, and hence

‖K(θ, ρ)− C−θ‖ = 2− 2ρ.

As it will be handy later, we also introduce abbreviation

AK(θ, ρ) := ‖Cπ −K(θ, ρ)‖ .

The choice of the abbreviation is clear, if the reader denotes Cπ = (−1, 0) by A.

2.3 Critical Angles
The following definition introduces a key concept. In what follows, abstract trajectories will
be assumed to be continuous and differentiable, which in particular implies that corresponding
velocities are continuous.

I Definition 5 (Critical Angle). Let S(t) ∈ R2 denote the trajectory of a speed-1 object,
where t ≥ 0. For some point Q ∈ R2, we define the (S, Q)-critical angle at time t = τ to be
the angle between the velocity vector S ′(τ) and vector

−−−−→
S(τ)Q, i.e. the vector from S(τ) to Q.

J. Czyzowicz et al. 16:7

We make the following critical observation, see also Figure 1.

I Theorem 6. Consider trajectories S(t),Q(t) of two speed-1 objects S,Q, where t ≥ 0.
Let also φ, θ denote the (S,Q(t))-critical angle and the (Q,S(t))-critical angle at time t,
respectively. Then t + ‖Q(t)− S(t)‖ is strictly increasing if cos (φ) + cos (θ) < 1, strictly
decreasing if cos (φ) + cos (θ) > 1, and constant otherwise.

Theorem 6 is an immediate corollary of the following lemma.

I Lemma 7. Consider trajectories S(t),Q(t) and their critical angles π, θ, as in the statement
of Theorem 6. Then

d

dt
‖Q(t)− S(t)‖ = cos (φ) + cos (θ) .

Proof. For any fixed t, let d denote D(t), and S,Q denote points S(t),Q(t), respectively.
Denote also by u, v the velocities of S,Q at time t, respectively, i.e. u = S ′(t), v = Q′(t). See
also Figure 1.

With that notation, observe that
∥∥∥−→SQ∥∥∥ = d. Since ‖u‖ = ‖v‖ = 1, we see that

projSQu = cos (φ)
d

−→
SQ

and

projSQv = cos (θ)
d

−→
QS.

Now consider two imaginary objects S,Q, with corresponding velocities S′(t) = projSQu and
Q′(t) = projSQv. It is immediate that ‖Q(t)− S(t)‖ =

∥∥Q(t)− S(t)
∥∥.

In particular, projSQu− projSQv is the projection of the relative velocities of S,Q on the
line segment connecting S(t),Q(t). As such, the distance between S,Q changes at a rate
determined by velocity

projSQu− projSQv = cos (φ) + cos (θ)
d

−→
SQ,

where
∥∥projSQu− projSQv

∥∥ = |cos (φ) + cos (θ)|. Moreover, projSQu,projSQv are antipar-
allel iff and only if cos (φ) , cos (θ) > 0, in which case the two objects come closer to each
other. J

3 Upper Bounds

3.1 Evacuation Algorithm for PE1

This subsection is devoted in proving the following.

I Theorem 8. Consider the real function f(x) = x + sin (x), and denote by α0 > 0 the
solution to equation

f(f(α− sin (α))) = sin (α) ,

with α0 ≈ 1.14193. Then PE1 can be solved in time 1 + π − α0 + 2 sin (α0) ≈ 4.81854.

FUN 2018

16:8 God Save the Queen

𝜋𝜋 − 𝛼𝛼 𝛽𝛽

𝐶𝐶−𝛼𝛼

𝐶𝐶−𝛼𝛼+𝛽𝛽

𝐶𝐶𝛼𝛼
SEARCH1 𝛼𝛼,𝛽𝛽

𝒬𝒬 𝑡𝑡

𝒮𝒮1 𝑡𝑡

Figure 2 Algorithm Search1(α, β) depicted for the optimal parameters of the algorithm. In all
subsequent figures, as well as here, the orange points on the perimeter of the disc correspond to the
worst adversarial placements of the treasure, which due to our optimality conditions induce the same
evacuation cost. The orange points in Q’s trajectories correspond to the Q’s positioning when the
treasures are reported, in the worst cost induced cases. The green dashed line depict Q’s trajectory
after Q abandons her trajectory and moves toward the reported exit following a straight line.

The value of α0 is well defined in the statement of Theorem 8. Indeed, by letting
g(x) = f(f(x− sin (x)))− sin (x), we observe that g is continuous, while g(1) ≈ −0.213934
and g(π/2) ≈ 1.00729, hence there exists α0 ∈ (1, π/2) with g(α0) = 0.

In order to prove Theorem 8, and given parameters α, β, we introduce the family of
trajectories Search1(α, β), see also Figure 2.

Algorithm Search1(α, β)
Robot # Description Trajectory Duration
Q 0 Move to point Cπ L(O,Cπ, t) 1

1 Search circle ccw till point C−α C(π, t− 1) π − α
2 Move to point C−α+β , L(C−α, C−α+β , t− (1 + π − α)) 2 sin (β/2)
3 Search circle cw till point C−α C(β − α, 1 + π − α+ 2 sin (β/2)− t) β

S1 0 Move to point Cπ L(O,Cπ, t) 1
1 Search circle cw till point Cβ−α C(π,−t+ 1) π + α− β

Partitioning the circle clockwise, we see that the arc with endpoints Cπ, Cπ+α−β is
searched by S1, while the remaining of the circle is searched by Q. Therefore, robots’
trajectories in Search1(α, β) are feasible, and it is also easy to see that they are continuous
as well. The search time equals 1 + π + max{α− β, 2 sin (β/2) + β − α}, as well as

I(Q) = [1, 1+π−α]∪ [1+π−α+2 sin (β/2) , 1+π−α+2 sin (β/2)+β], I(S1) = [1, 1+π+α−β].

An illustration of the above trajectories for certain values of α, β can be seen in Figure 2.
First we make some observations pertaining to the monotonicity of the evacuation cost.

I Lemma 9. Assuming that α > π/3 and that cos (α) + cos (α− β/2) > 1, the evacuation
cost of Search1(α, β) is monotonically increasing if the exit is found by S1 during Q’s phase
1 and monotonically decreasing if the exit is found by S1 during Q’s phase 2.

Proof. Suppose that the exit is found by S1 during Q’s phase 1, i.e. at time x after robots
start searching for the first time, where 0 ≤ x ≤ π−α. It is easy to see that the critical angles

J. Czyzowicz et al. 16:9

between Q,S1 are both equal to π − x. But then 2 cos (π − x) ≥ 2 cos (α) > 2 cos (π/3) = 1.
Hence, by Theorem 6, the evacuation cost is decreasing in this case.

Now suppose that the exit is found by S1 during Q’s phase 2, i.e. at time x after Q
starts moving along the chord with endpoints C−α, C−α+β , where 0 ≤ x ≤ 2 sin (β/2). If
φx, θx denote the S1,Q critical angles, then it is easy to see that φ0 = cos (α) and that
θ0 = α− β/2. Since cos (φ0) + cos (θ0) > 1, Theorem 6 implies that the evacuation cost is
initially decreasing in this phase. For the remaining of Q’s phase 2, it is easy to see that both
φx, θx are decreasing in x, hence cos (φx) + cos (θx) is increasing in x, hence, the evacuation
cost will remain decreasing in this phase. J

Now we can prove Theorem 8 by fixing certain values for parameters α, β of Search1(α, β).
In particular, we set α0 as in the statement of Theorem 8, and β0 = 2f(α0 − sin (α0)) ≈
0.925793. The trajectories of the robots, for the exact same values of the parameters, can be
seen in Figure 2.

Proof of Theorem 8. Let f, α0 be as in the statement of Theorem, and set β0 = 2f(α0 −
sin (α0)) ≈ 0.925793. We argue that the worst evacuation time of Search1(α0, β0) is
1 + π − α0 + 2 sin (α0). Note that for the given values of the parameters, we have that
α0 > π/3, that α0 − sin (β0/2) ≤ β0, and that cos (α0) + cos (α0 − β0/2) > 1.

First we observe that if the exit if found by Q, then the worst case evacuation time
E0(α0, β0) is incurred when the exit is found just before Q stops searching, that is

E0(α0, β0) = 1 + π − α0 + 2 sin (β0/2) + β0.

Next we examine some cases as to when the exit is found by S1. If the exit is found by
S1 during the 1st phase of Q, then the evacuation time is, due to Lemma 9, given as

E1(α0, β0) = sup
1≤x≤1+π−α0

{x+ ‖Q(x)− S1(x)‖} = 1 + π − α0 + 2 sin (α0) .

Recall that cos (α0) + cos (α0 − β0/2) > 1, and so, again by Lemma 9 we may omit the
case that the exit is found by S1 while Q is at phase 2. The end of Q’s phase 2 happens at
time τ := 1+π−α0 +2 sin (β0/2), when have that Q(τ) = C−α+β , and S1(τ) = Cα−2 sin(β0/2),
and both robots are intending to search ccw. Condition α0 − sin (β0/2) ≤ β0 says that S1
will finish searching prior to Q, and this happens when S1 reaches point C−α+β . During this
phase, the distance between Q,S1 stays invariant and equal to 2α0 − β0 − 2 sin (β0/2). We
conclude that the cost in this case would be

E2(α0, β0) = 1 + π + α0 − β0 + 2 sin (α0 − β0/2− sin (β0/2)) .

Then, we argue that that the choice of α0, β0 guarantees that E0(α0, β0) = E1(α0, β0) =
E2(α0, β0), as wanted.

Indeed, E0(α0, β0) = E1(α0, β0) implies that sin (β0/2) + β0/2 = sin (α0). But then, we
can rewrite E2(α0, β0) as

E2(α0, β0) = 1 + π + α0 − β0 + 2 sin (α0 − sin (α0)) .

Equating the last expression with E1(α0, β0) implies that

β0/2 = α0 − sin (α0) + sin (α0 − sin (α0)) = f(α0 − sin (α0)).

Substituting twice β0/2 in the already derived condition sin (β0/2) + β0/2 = sin (α0) implies
that

f(f(α− sin (α0))) = sin (α0) .

FUN 2018

16:10 God Save the Queen

𝐶𝐶𝜋𝜋−𝛼𝛼

𝐶𝐶−𝛼𝛼/2𝐾𝐾 𝛼𝛼/2, 𝜌𝜌

𝛼𝛼

𝛼𝛼/2

SEARCH2 𝛼𝛼,𝛽𝛽

𝒬𝒬 𝑡𝑡

𝒮𝒮1 𝑡𝑡

𝒮𝒮2 𝑡𝑡

Figure 3 Algorithm Search2(α, β) depicted for the optimal parameters of the algorithm.

Figure 2 depicts the worst placements of the exit, along with the trajectories of the queen
(in dashed green lines) after the exit is reported. J

It should be stressed that Q’s Phases 2,3 are essential for achieving the promised bound.
Indeed, had we chosen α = β = 0, the worst case evacuation time would have been

sup
1≤x≤1+π

{x+ ‖Q(x)− S1(x)‖} = sup
0≤x≤π

{1 + x+ 2 sin (x)} .

The maximum is attained at x0 = 2π/3 (and indeed, both critical angles in this case are π/3
and in particular 2 cos (π/3) = 1), inducing cost 1 + 2π/3 +

√
3 ≈ 4.82645. The latter is the

cost of the evacuation algorithm for two robots without priority of [10].

3.2 Evacuation Algorithm for PE2

In this subsection we prove the following theorem.

I Theorem 10. PE2 can be solved in time 3.8327.

Given parameters α, ρ, we introduce the family of trajectories Search2(α, ρ), see also
Figure 3.

Algorithm Search2(α, ρ)
Robot # Description Trajectory Duration
Q 0 Move to point Cπ−α L(O,Cπ−α, t) 1

1 Search the circle ccw till point Cπ C(π − α, t− 1) α

2 Move to point K(α/2, ρ) L(Cπ,K(α/2, ρ), t− (1 + α)) AK(α/2, ρ)
3 Move to point C−α/2 L(K(α/2, ρ), C−α/2) 2− 2ρ

S1 0 Move to point Cπ−α L(O,Cπ−α) 1
1 Search the circle cw till point C−α/2 C(π − α,−t+ 1) π − α/2

S2 0 Move to point Cπ L(O,Cπ) 1
1 Search the circle cw till point C−α/2 C(π, t− 1) π − α/2

Notice that, by definition of Search2(α, ρ), robots’ trajectories are continuous and
feasible, meaning that the entire circle is eventually searched. Indeed, partitioning the circle
clockwise, we see that: the arc with endpoints Cπ, Cπ−α is searched by Q, the arc with
endpoints Cπ−α, C−α/2 is searched by S1, and the arc with endpoints C−α/2, Cπ is searched
by S2.

J. Czyzowicz et al. 16:11

It is immediate from the description of the trajectories that the search time is 1 +π−α/2.
Moreover

I(Q) = [1, 1 + α], I(S1) = I(S2) = [1, 1 + π − α/2].

An illustration of the above trajectories for certain values of α, ρ can be seen in Figure 3.
Now we make some observations, in order to calculate the worst case evacuation time.

I Lemma 11. Suppose that π − α/2 ≥ α + AK(α/2, ρ) + 2− 2ρ. Then ‖Q(x)− S1(t)‖ is
continuous and differentiable in the time intervals I1, I2, I3 of Q’s phases 1,2,3, respectively.
Moreover, the worst case evacuation time of Search2(α, ρ) can be computed as

max


1 + α+ 2 sin (α) ,
supt∈I2 {t+ ‖Q(t)− S1(t)‖}
supt∈I3 {t+ ‖Q(t)− S1(t)‖}
1 + π − α/2


where

I2 = [1 + α, 1 + α+AK(α/2, ρ)], I3 = [1 + α+AK(α/2, ρ), 3− 2ρ+ α+AK(α/2, ρ)].

Proof. Note that the line passing through O and C−α/2, call it ε, has the property that
each point of it, including K(α/2, ρ) is equidistant from S1,S2. Moreover, in the time
window [1 + α, 1 + α+AK(α/2, ρ)] that only S1,S2 are searching, Q stays below line ε. At
time 1 + α+AK(α/2, ρ), Q is, by construction, equidistant from S1,S2, a property that is
preserved for the remaining of the execution of the algorithm. As a result, the evacuation
time of Search2(α, ρ) is given by

sup
1≤t≤1+π−α/2

{t+ ‖Q(t)− S1(t)‖}.

Now note that condition π − α/2 ≥ α+AK(α/2, ρ) + 2− 2ρ guarantees that Q reaches
point C−α/2 no later than S1. Moreover, in each time interval I1, I2, I3, Q’s trajectory is
differentiable (and so is S1’s trajectory). J

Now Theorem 10 can be proven by fixing parameters α, ρ for Search2(α, ρ), in particular,
α = 0.6361, ρ = 0.7944. Notably, the performance of Search2(α, ρ) is provably improvable
(slightly) using a technique we will describe in the next section.

3.3 Evacuation Algorithm for PE3

3.3.1 A Simple Algorithm

In this section we prove the following preliminary theorem (to be improved in Section 3.3.2).

I Theorem 12. PE3 can be solved in time 3.37882.

Given parameters α, β, ρ, we introduce the family of trajectories Search3(α, β, ρ), cor-
responding to robots Q,S1,S2,S3, see also Figure 4.

FUN 2018

16:12 God Save the Queen

𝐶𝐶𝜋𝜋−𝛼𝛼

𝐶𝐶− 𝛼𝛼−𝛽𝛽 /2

𝐾𝐾
𝛼𝛼 + 𝛽𝛽

2
,𝜌𝜌

𝛼𝛼

(𝛼𝛼 + 𝛽𝛽)/2

𝐶𝐶𝜋𝜋−𝛼𝛼−𝛽𝛽
𝛽𝛽

SEARCH3 𝛼𝛼,𝛽𝛽, 𝜌𝜌

𝒬𝒬 𝑡𝑡

𝒮𝒮1 𝑡𝑡

𝒮𝒮2 𝑡𝑡

𝒮𝒮3 𝑡𝑡

Figure 4 Algorithm Search3(α, β, ρ) depicted for the optimal parameters of the algorithm.

Algorithm Search3(α, β, ρ)
Robot # Description Trajectory Duration
Q 0 Move to point Cπ−α L(O,Cπ−α, t) 1

1 Search the circle ccw till point Cπ C(π − α, t− 1) α

2 Move to point K(α+β
2 , ρ) L(Cπ,K(α+β

2 , ρ), t− (1 + α)) AK(α+β
2 , ρ)

3 Move to point C−α+β
2

L(K(α+β
2 , ρ), C−α+β

2
) 2− 2ρ

S1 0 Move to point Cπ−α−β L(O,Cπ−α−β) 1
1 Search the circle cw till point C−α+β

2
C(π − α− β,−t+ 1) π − α+β

2

S2 0 Move to point Cπ L(O,Cπ) 1
1 Search the circle ccw till point C−α+β

2
C(π, t− 1) π − α+β

2

S3 0 Move to point Cπ−α−β L(O,Cπ−α−β) 1
1 Search the circle ccw till point C−α C(π − α− β,−t+ 1) β

As before, it is immediate that, in Search3(α, β, ρ), robots’ trajectories are continuous
and feasible, meaning that the entire circle is eventually searched. In particular, the arc with
endpoints Cπ, Cπ−α is searched by Q, the arc with endpoints Cπ−α−β , C−α+β

2
is searched

by S1, the arc with endpoints C−π, C−α+β
2

is searched by S2, and the arc with endpoints
Cπ−α, Cπ−α−β is searched by S3. Also, the search time is 1 + π − α+β

2 , and

I(Q) = [1, 1 + α], I(S1) = I(S2) = [1, 1 + π − α+ β

2], I(S3) = [1, 1 + β].

An illustration of the above trajectories for certain values of α, β, ρ can be seen in Figure 4.
Before we prove Theorem 12, we need to make some observation, in order to calculate

the worst case evacuation time.

I Lemma 13. Suppose that α ≤ β, α+AK(α+β
2 , ρ) ≥ β, and π− α+β

2 ≥ α+AK(α+β
2 , ρ) +

2 − 2ρ. Then the following functions are continuous and differentiable in each associated
time intervals: ‖Q(x)− S3(t)‖ in I1 = {t ≥ 0 : α ≤ t − 1 ≤ β}, ‖Q(x)− S1(t)‖ in
I2 = {t ≥ 0 : |t−1−α| ≤ AK(α+β

2 , ρ)} and in I3 = {t ≥ 0 : |t−1−α−AK(α+β
2 , ρ)| ≤ 2−2ρ}.

Moreover, the worst case evacuation time of Search3(α, β, ρ) can be computed as

max


supt∈I1 {t+ ‖Q(t)− S3(t)‖}
supt∈I2 {t+ ‖Q(t)− S1(t)‖}
supt∈I3 {t+ ‖Q(t)− S1(t)‖}
1 + π − α+β

2



J. Czyzowicz et al. 16:13

Proof. Conditions α ≤ β and α + AK(α+β
2 , ρ) ≥ β mean that Q stops searching no later

than S3, and that when S3 stops searching Q is still in her phase 2, respectively.
The line passing through O and C−(α+β)/2, call it ε, has the property that each point

of it, including K(α+β
2 , ρ) is equidistant from S1,S2. Moreover, while S1,S2 are searching,

Q never goes above line ε. At time 1 + α+AK(α+β
2 , ρ), Q is, by construction, equidistant

from S1,S2, a property that is preserved for the remaining of the execution of the algorithm.
As a result, S2 can be ignored in the performance analysis, and when it comes to the case
that S1 finds the exit, the evacuation cost is given by the supremum of t+ ‖Q(t)− S1(t)‖ in
the time interval I2 or in the interval I3. Note that in both intervals, the evacuation cost is
continuous and differentiable, by construction.

If the exit is reported by S3 then the evacuation cost is t+‖Q(t)− S3(t)‖ for t ∈ [1, 1+β].
However, it is easy to see that the cost is strictly increasing for all t ∈ [1, 1 + α] (in fact it is
linear). Since the evacuation cost is also continuous, we may restrict the analysis in interval
I1.

Lastly, observe that π − α+β
2 ≥ α+AK(α+β

2 , ρ) + 2− 2ρ implies that S1,S2 reach point
C−(α+β)/2 no earlier than Q. Hence Q waits at C−(α+β)/2 till the search of the circle is over,
which can be easily seen to induce the worse evacuation time after Q reaches C−(α+β)/2. J

We prove Theorem 12 by fixing parameters α, β, ρ for Search3(α, β, ρ), in particular
α = 0.26738, β = 1.2949, ρ = 0.70685.

3.3.2 Improved Search Algorithm
In this section we improve the upper bound of Theorem 12 by 0.00495 additive term.

I Theorem 14. PE3 can be solved in time 3.37387.

The main idea can be described, at a high level, as a cost preservation technique. By the
analysis of Algorithm Search3(α, β, ρ) for the value of parameters of α, β, ρ as in the proof
of Theorem 12, we know that there are is a critical time window [τ2, τ3] so that the total
evacuation time is the same if the exit is found by S1 either at time τ2 or τ3, and strictly
less for time moments strictly in-between. In fact, during time [τ2, 1 + α+AK(α+β

2 , ρ)] Q is
executing phase 2, and in the time window [1 + α+AK(α+β

2 , ρ), τ3] Q is executing phase 3
of Search3(α, β, ρ).

From the above, it is immediate that we can lower Q’s speed in the time window [τ2, τ3]
so that the evacuation time remains unchanged no matter when S1 finds the exit in the same
time interval (notably, S3 has finished searching prior to τ2 and ‖Q(t)− S1‖ ≥ ‖Q(t)− S2‖).
But this also implies that we must be able to maintain the evacuation time even if we preserve
speed 1 for Q, that will in turn allow us to twist parameters α, β, ρ, hopefully improving the
worst case evacuation time. We show this improvement is possible by using the following
technical observation

I Theorem 15. Consider point Q = (q1, q2) ∈ R2. Let S(t) be the trajectory of an object
S moving at speed 1, where t ≥ 0, and denote by φ the (S, Q)-critical angle at time t = 0.
Assuming that cos (φ) ≥ 0, then there is some τ > 0, and a trajectory Q(t) = (f(t), g(t)) of
a speed-1 object, where t ≥ 0, so that t+ ‖Q(t)− S(t)‖ remains constant, for all t ∈ [0, τ].
Moreover, Q(t) can be determined by solving the system of differential equations

(f ′(t))2 + (g′(t))2 = 1 (2)
t+ ‖Q(t)− S(t)‖ = ‖S(0)−Q‖ (3)
(f(0), g(0)) = (q1, q2). (4)

FUN 2018

16:14 God Save the Queen

Proof. An object with trajectory (f(t), g(t)) satisfying (2) and (4) has speed 1 (by Lemma 2),
and starts from point Q = (q1, q2). We need to examine whether we can choose f, g so as to
satisfy (3).

By Lemma 7, such a trajectory Q(t) exists exactly when we can guarantee that cos (φ) +
cos (θ) = 1 over time t. When t = 0 we are given that cos (φ) > 0, hence there exists θ
satisfying cos (φ) + cos (θ) = 1. This uniquely determines the velocity of Q at t = 0.

By continuity of the velocities, there must exist a τ > 0 such that cos (φ) + cos (θ) = 1
admits a solution for θ also as φ changes over time t ∈ [0, τ], in which time window the cosine
of the (S,Q(t))-critical angle at time t remains non-negative. J

Note that condition cos (φ) ≥ 0 of Theorem 15 translates to that ‖S(t)−Q‖ is not
increasing at t = τ , i.e. that S does not move away from point Q.

Now fix parameters α, β, ρ together with the trajectories of S1,S2,S3 as in the description
of Algorithm Search3(α, β, ρ). The description of our new algorithm N-Search3(α, β, ρ)
will be complete once we fix a new trajectory for Q. Naming specific values for parameters
α, β, ρ will eventually prove Theorem 14. In order to do so, we introduce some further
notation and conditions, denoted below by (Conditions i-iv), that we later make sure are
satisfied.

Consider Q’s trajectory as in Search3(α, β, ρ). Let τ0 denote a local maximum of

t+ ‖Q(t)− S1(t)‖

as it reads for t ≥ 0 with |t−1−α| ≤ AK(α+β
2 , ρ) (recall that in this time window, expression

is differentiable by Lemma 13), i.e.

|τ0 − 1− α| ≤ AK(α+ β

2 , ρ) (Condition i)

Set Q = Q(τ0), and assume that

“The cosine of the (S, Q)-critical angle at time τ0 is non-negative.” (Condition ii)

Then obtain from Theorem 15 trajectory (f(t), g(t)) that has the property that it preserves
τ0 + ‖Q(τ0)− S1(τ0)‖ in the time window [τ0, τ

′]. Assume also that

“There is time τ1 ≤ τ ′ such that point K1 := (f(τ1), g(τ1)) is equidistant from
S1(τ1),S2(τ1),”

(Condition iii)

for the first time after time τ0, such that

τ1 ≤ 1 + π − α+ β

2 . (Condition iv)

Then consider the following modification of Search3(α, β, ρ), where the trajectories of
S1,S2,S3 remain unchanged, see also Figure 5.

Algorithm N-Search3(α, β, ρ)
Robot # Description Trajectory Duration
Q 0 Move to point Cπ−α L(O,Cπ−α, t) 1

1 Search the circle ccw till point Cπ C(π − α, t− 1) α

2 Move toward point K(α+β
2 , ρ) L(Cπ,K(α+β

2 , ρ), t− (1 + α)) τ0 − 1− α
3 Preserve τ0 + ‖Q(τ0)− S1(τ0)‖ (f(t), g(t)) τ1 − τ0

4 Move to point C−α+β
2

L(K1, C−α+β
2

)
∥∥∥K1 − C−α+β

2

∥∥∥

J. Czyzowicz et al. 16:15

𝐶𝐶𝜋𝜋−𝛼𝛼

𝐶𝐶− 𝛼𝛼−𝛽𝛽 /2

𝐾𝐾
𝛼𝛼 + 𝛽𝛽

2
,𝜌𝜌

𝛼𝛼

(𝛼𝛼 + 𝛽𝛽)/2

𝐶𝐶𝜋𝜋−𝛼𝛼−𝛽𝛽
𝛽𝛽

N-SEARCH3 𝛼𝛼,𝛽𝛽,𝜌𝜌

𝒬𝒬 𝑡𝑡

𝒮𝒮1 𝑡𝑡

𝒮𝒮2 𝑡𝑡

𝒮𝒮3 𝑡𝑡

Figure 5 Algorithm Search3(α, β, ρ) depicted for the optimal parameters of the algorithm.

Note that in phase 2, Q is not reaching (necessarily) point K rather it moves toward it
for a certain duration. The search time is still 1 + π − α+β

2 . Trajectories of S1,S2,S3 are
continuous as before, and

I(S1) = I(S2) = [1, 1 + π − α+ β

2], I(S3) = [1, 1 + β],

as well as I(Q) = [1, 1 + α].
Condition i makes sure that while Q is at phase 2, and before it reaches K(α+β

2 , ρ),
there is a time moment τ0 when the rate of change of t+ ‖Q(t)− S1(t)‖ is 0. Together with
condition ii, this implies that Theorem 15 applies. In fact, for the corresponding critical
angles φ, θ between S1,Q at time τ0, we have that cos (φ) + cos (θ) = 1 by construction.
Hence trajectory (f(t), g(t)) of phase 3 is well defined, and indeed, Q jumps from phase 2 to
phase 3 while Q is still moving toward point K. Notably, Q’s trajectory is even differentiable
at t = τ0 (but not necessarily at t = τ1). Then, Condition iii says that Q eventually will enter
phase 4, and that this will happen before S1,S2 finish the exploration of the circle. Overall,
we conclude that in N-Search3(α, ρ), robots’ trajectories are continuous and feasible. An
illustration of the above trajectories for certain values of α, β, ρ can be seen in Figure 5.

Now we make some observations, in order to calculate the worst case evacuation time.

I Lemma 16. Suppose that α ≤ β, 1 + β ≤ τ0, and 1 + π − α+β
2 ≥ τ1 +

∥∥∥K1 − C−α+β
2

∥∥∥
as well as Conditions i-iv are satisfied. Then the following functions are continuous and
differentiable in each associated time intervals: ‖Q(x)− S3(t)‖ in I1 = {t ≥ 0 : α ≤ t− 1 ≤ β},
‖Q(x)− S1(t)‖ in I2 = {t ≥ 0 : 1 + α ≤ t ≤ τ0 and in I3 =

{
t ≥ 0 : |t− τ1| ≤

∥∥∥K1 − C−α+β
2

∥∥∥}.
Moreover, the worst case evacuation time of N-Search3(α, β, ρ) can be computed as

max


supt∈I1 {t+ ‖Q(t)− S3(t)‖}
supt∈I2 {t+ ‖Q(t)− S1(t)‖}
supt∈I3 {t+ ‖Q(t)− S1(t)‖}
1 + π − α+β

2


Proof. Conditions α ≤ β and 1 + β ≤ τ0 mean that Q stops searching no later than S3, and
that when Q enters phase 3 after S3 is done searching, respectively.

The line passing through O and C−(α+β)/2, call it ε, has the property that each point
of it, including K(α+β

2 , ρ) is equidistant from S1,S2. Moreover, while S1,S2 are searching,

FUN 2018

16:16 God Save the Queen

B

C D

E F

A

2 +
p
3
2 − f(s3)

R

Figure 6 (Left) The queen must be in region R at time f(s3). Here s3 = E and q3 = F .

Q never goes above line ε. Also, while Q is executing phase 3, Q remains equidistant from
S1,S2 and this is preserved for the remainder of the execution of the algorithm. As a result,
S2 can be ignored in the performance analysis, and when it comes to the case that S1 finds
the exit, the evacuation cost is given by the supremum of t + ‖Q(t)− S1(t)‖ in the time
interval I2 or in the interval I3. Note that in both intervals, the evacuation cost is continuous
and differentiable, by construction.

If the exit is reported by S3 then the evacuation cost is t+‖Q(t)− S3(t)‖ for t ∈ [1, 1+β].
However, it is easy to see that the cost is strictly increasing for all t ∈ [1, 1 + α] (in fact it is
linear). Since the evacuation cost is also continuous, we may restrict the analysis in interval
I1.

Lastly, observe that 1 + π − α+β
2 ≥ τ1 +

∥∥∥K1 − C−α+β
2

∥∥∥ implies that S1,S2 reach point
C−(α+β)/2 no earlier than Q. Hence Q waits at C−(α+β)/2 till the search of the circle is over,
which can be easily seen to induce the worse evacuation time after Q reaches C−(α+β)/2. J

We can prove now Theorem 14 by fixing parameters α, β, ρ for N-Search3(α, β, ρ), in
particular α = 0.27764, β = 1.29839, ρ = 0.68648.

4 Lower Bounds

In this section we derive lower bounds for evacuation. In Section 4.1 we treat the case of n = 1
(see Theorem 17) and in Section 4.2 we treat the case of n = 2 and 3 (see Theorem 19).

4.1 Lower Bound for PE1

We will derive the lower bound using an adversarial argument placing the exit at an unknown
vertex of a regular hexagon.

I Theorem 17. The worst-case evacuation time for PE1 is at least 3 +π/6 +
√

3/2 ≈ 4.3896

Proof. At time 1 + π/6, at most π/3 of the perimeter of the circle can have been explored
by the queen and servant. Thus, there is a regular hexagon, none of whose vertices have
been explored. If the exit is at one of these vertices, by Theorem 18, it takes 2 +

√
3/2 for

the queen to evacuate. The total time is 1 + π/6 + 2 +
√

3/2. J

Next we proceed to provide a lower bound on a unit-side hexagon. Label the vertices
of the hexagon V as A, . . . , F as shown in Figure 6. Fix an evacuation algorithm A. For
any vertex v of the hexagon, we call f(v) the time of first visit of the vertex v by either the

J. Czyzowicz et al. 16:17

servant or the queen, according to algorithm A. We call q(v) the time that the queen gets to
the vertex v. Clearly, q(v) ≥ f(v), and if the queen arrives at the vertex no later than the
servant, q(v) = f(v).

I Theorem 18. For any algorithm A, the evacuation time for the queen when the exit is at
one of the vertices of the hexagon is maxv∈V {q(v)} ≥ 2 +

√
3/2.

Proof. Suppose there is an algorithm in which the queen can always evacuate in time
< 2 +

√
3/2. Consider the trajectories of the servant and the queen. If either the queen

or the servant are the first to visit 4 vertices, then for the fourth such vertex v, we have
f(v) ≥ 3, a contradiction. Therefore, the queen is the first to visit three vertices, and the
servant is the first to visit three vertices. We denote the three vertices visited first by the
servant as s1, s2, s3 (in the order they are visited) and the three vertices visited first by the
queen as q1, q2, q3, and note that they are all distinct.

Notice that neither s3 nor q3 can be visited before time 2, that is, f(s3), f(q3) ≥ 2. If
f(q3) ≤ f(s3), then we place the exit at s3, and the queen needs time at least 1 to get to s3,
which implies that T ≥ q(s3) ≥ f(q3) + 1 ≥ 3, a contradiction. We conclude that at time
f(s3), the queen is yet to visit q3. Since the exit can be at either s3 or q3, at time f(s3), the
queen must be at distance < 2 +

√
3/2− f(s3) ≤

√
3/2 from both s3 and q3.

Assume without loss of generality that s3 = E (see Figure 6). Since A,B,D are all
at distance at least

√
3 from E, we conclude that q3 is either C or F . Assume without

loss of generality that q3 = F . Let R denote the lens-shaped region that is at distance
< 2 +

√
3/2 − f(s3) from both E and F . Recall that at time f(s3), the queen must be

inside the region R. Notice that if f(s3) ≥ 1.5 +
√

3/2, the region R is empty, yielding a
contradiction. So it must be that 2 ≤ f(s3) < 1.5 +

√
3/2.

We now work backwards to deduce the trajectories of the servant and the queen. Clearly
s2 6= F since q3 = F . If s2 6= C, then f(s3) ≥

√
3 + 1 > 1.5 +

√
3/2, a contradiction.

Therefore, s2 = C. By the same reasoning, s1 = A. Therefore, the queen is the first to visit
D and B. If q1 = D and q2 = B, we place the exit at E; since f(q2) ≥ 1 and dist(B,E) = 2,
we have T ≥ q(E) ≥ 3, a contradiction. Thus, q2 = D and q1 = B.

Consider the location of the queen at time 1. If she is at distance ≥ 1 +
√

3/2 from
C at time 1, then if the exit is at C, q(C) ≥ 2 +

√
3/2. So at time 1, the queen must

be at distance < 1 +
√

3/2 from C and consequently she is at distance ≥ 1 −
√

3/2 from
vertex D. Therefore f(q2) = f(D) ≥ 2−

√
3/2. Also, f(D) < 1.5 since if the queen reaches

D at or after time 1.5, she cannot reach the region R before time 1.5 +
√

3/2 > f(s3).
So f(D) ≤ f(s3). If the exit is at E = s3, the queen cannot reach the exit before time
f(D) + dist(D,E) ≥ 2−

√
3/2 +

√
3 = 2 +

√
3, concluding the proof by contradiction. J

We remark that the above bound is optimal, and is achieved by the algorithm depicted
in Figure 7.

4.2 Lower Bounds for PE2 and PE3

In the case of n = 2 and n = 3 the proof is rather technical and we will only present a high
level outline as to why the lower bounds hold.

I Theorem 19. The worst-case evacuation time for PE2 is at least 3.6307 and for PE3 at
least 3.2017.

Throughout this section we will use T to refer to the evacuation time of an arbitrary
algorithm and use U to refer to the unit circle which must be evacuated.

FUN 2018

16:18 God Save the Queen

Figure 7 Blue trajectory: servant and red trajectory: queen. At point H, if the queen hears of
an exit at E, she goes there, otherwise she goes to F .

The main thrust of the proof relies on a simple idea – the queen should aid in the
exploration of U . This is immediately evident for the particular case of n = 2 since, if the
queen does not explore, it will take time at least 1 + π for the servants to search all of U and
we already have an upper bound smaller than this (Theorem 10). Thus, a general overview of
the proof is as follows: we show that in order to evacuate in time T the queen must explore
some minimum length of the perimeter of U . We will then demonstrate that the queen is not
able to explore this minimum amount in any algorithm with evacuation time smaller than
what is given in Theorem 19.

To be concrete, consider the case of n = 2 and assume that we have an algorithm with
evacuation time T < 1 + π. Then, in order for the robots to have explored all of U in time
T , the queen must explore a subset of the perimeter of total length at least 2(1 + π − T).
Intuitively, this minimum length of perimeter will increase in size as T decreases.

Now consider that it is not possible for the queen to always remain on the perimeter
(indeed, in each of the algorithms presented, the queen leaves the perimeter). To see why
this is consider that, in any algorithm with evacuation time T , it must be the case that all
unexplored points of U are located a distance no more than T − t from the queen at all times
t ≤ T . If the queen is on the perimeter at any time t satisfying T − t ≤ 2, then, there will be
some arc θ(t, T) ⊂ U such that all points of θ(t, T) are at a distance at least T − t from the
queen. Thus, if the queen is to be on the perimeter at the time t we can conclude that all of
the arc θ(t, T) must have already been discovered. However, we will find that θ(t, T) will
often grow at a rate much larger than the robots can collectively explore and at some point
the queen will have to leave the perimeter. In fact, there will be an interval of time during
which it is not possible for the queen to be exploring and this in turn implies that there is a
maximum amount of perimeter that can be explored by the queen. Intuitively, the maximum
length of perimeter that can be explored by the queen will decrease as T decreases. The
lower bound will result by balancing the minimum amount of perimeter the queen needs to
search and the maximum amount of perimeter that the queen is able to search.

The above argument will need a slight modification in the case of n = 3. In this case we
will show that there is some critical time t∗ before which the queen must have explored some
minimum amount of perimeter. Again, the lower bound follows by balancing the maximum
amount of perimeter the queen can explore by the time t∗ and the minimum amount of
perimeter the queen needs to explore before the time t∗.

J. Czyzowicz et al. 16:19

5 Conclusion

We considered an evacuation problem concerning priority searching on the perimeter of a
unit disk where only one robot (the queen) needs to find the exit. In addition to the queen,
there are n ≤ 3 other robots (servants) aiding the queen by contributing to the exploration
of the disk but which do not need to evacuate. We proposed evacuation algorithms and
studied non-trivial tradeoffs on the queen evacuation time depending on the number n of
servants. In addition to analyzing tradeoffs and improving the bounds obtained for the
wireless communication model, an interesting open problem would be to investigate other
models with limited communication range, e.g., face-to-face.

References
1 R. Ahlswede and I. Wegener. Search problems. Wiley-Interscience, 1987.
2 S. Alpern and S. Gal. The theory of search games and rendezvous, volume 55. Kluwer

Academic Publishers, 2002.
3 Steve Alpern, Robbert Fokkink, Leszek Gąsieniec, Roy Lindelauf, and V.S. Subrahmanian,

editors. Ten Open Problems in Rendezvous Search, pages 223–230. Springer NY, New York,
NY, 2013.

4 R. Baeza Yates, J. Culberson, and G. Rawlins. Searching in the plane. Information and
Computation, 106(2):234–252, 1993.

5 R. Baeza-Yates and R. Schott. Parallel searching in the plane. Computational Geometry,
5(3):143–154, 1995.

6 A. Beck. On the linear search problem. Israel J. of Mathematics, 2(4):221–228, 1964.
7 R. Bellman. An optimal search. SIAM Review, 5(3):274–274, 1963.
8 S. Brandt, F. Laufenberg, Y. Lv, D. Stolz, and R. Wattenhofer. Collaboration without

communication: Evacuating two robots from a disk. In Proceedings of Algorithms and
Complexity - 10th International Conference, CIAC 2017, Athens, Greece, May 24-26, 2017,
pages 104–115, 2017.

9 J. Czyzowicz, S. Dobrev, K. Georgiou, E. Kranakis, and F. MacQuarrie. Evacuating two
robots from multiple unknown exits in a circle. Theor. Comput. Sci., 709:20–30, 2018.

10 J. Czyzowicz, L. Gasieniec, T. Gorry, E. Kranakis, R. Martin, and D. Pajak. Evacuating
robots from an unknown exit located on the perimeter of a disc. In Proceedings DISC,
Austin, Texas, pages 122–136. Springer, 2014.

11 J. Czyzowicz, K. Georgiou, M. Godon, E. Kranakis, D. Krizanc, W. Rytter, and M. Wlodar-
czyk. Evacuation from a disc in the presence of a faulty robot. In Proceedings SIROCCO
2017, 19-22 June 2017, Porquerolles, France, pages 158–173, 2018.

12 J. Czyzowicz, K. Georgiou, R. Killick, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny,
and S. Shence. God Save the Queen. CoRR, abs/1804.06011, 2018.

13 J. Czyzowicz, K. Georgiou, R. Killick, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny,
and S. Shende. Priority evacuation from a disk using mobile robots, 2018, Submitted.

14 J. Czyzowicz, K. Georgiou, E. Kranakis, L. Narayanan, J. Opatrny, and B. Vogtenhuber.
Evacuating robots from a disk using face-to-face communication (extended abstract). In
Proceedings of Algorithms and Complexity, CIAC 2015, Paris, France, May 20-22, 2015,
pages 140–152, 2015.

15 J. Czyzowicz, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, and S. Shende. Wireless
autonomous robot evacuation from equilateral triangles and squares. In Proceedings of
Ad-hoc, Mobile, and Wireless Networks, ADHOC-NOW, Athens, Greece, June 29 - July 1,
2015, pages 181–194, 2015.

FUN 2018

16:20 God Save the Queen

16 Konstantinos Georgiou, George Karakostas, and Evangelos Kranakis. Search-and-fetch
with one robot on a disk - (track: Wireless and geometry). In Algorithms for Sensor Sys-
tems - 12th International Symposium on Algorithms and Experiments for Wireless Sensor
Networks, ALGOSENSORS 2016, Aarhus, Denmark, August 25-26, 2016, Revised Selected
Papers, pages 80–94, 2016.

17 Konstantinos Georgiou, George Karakostas, and Evangelos Kranakis. Search-and-fetch
with 2 robots on a disk - wireless and face-to-face communication models. In Federico
Liberatore, Greg H. Parlier, and Marc Demange, editors, Proceedings of the 6th Interna-
tional Conference on Operations Research and Enterprise Systems, ICORES 2017, Porto,
Portugal, February 23-25, 2017, pages 15–26. SciTePress, 2017.

18 I. Lamprou, R. Martin, and S. Schewe. Fast two-robot disk evacuation with wireless com-
munication. In Proceedings DISC, Paris, France, pages 1–15, 2016.

19 D. Pattanayak, H. Ramesh, P.S. Mandal, and S. Schmid. Evacuating two robots from two
unknown exits on the perimeter of a disk with wireless communication. In Proceedings
of the 19th International Conference on Distributed Computing and Networking, ICDCN
2018, Varanasi, India, January 4-7, 2018, pages 20:1–20:4, 2018.

20 L. Stone. Theory of optimal search. Academic Press New York, 1975.

Restricted Power – Computational Complexity
Results for Strategic Defense Games

Ronald de Haan
Institute for Logic, Language and Computation, University of Amsterdam, the Netherlands
me@ronalddehaan.eu

https://orcid.org/0000-0003-2023-0586

Petra Wolf
Wilhelm-Schickard-Institut, University of Tübingen, Germany
wolfp@informatik.uni-tuebingen.de

Abstract
We study the game Greedy Spiders, a two-player strategic defense game, on planar graphs and
show PSPACE-completeness for the problem of deciding whether one player has a winning strategy
for a given instance of the game. We also generalize our results in metatheorems, which consider
a large set of strategic defense games. We achieve more detailed complexity results by restricting
the possible strategies of one of the players, which leads us to Σp

2- and Πp
2-hardness results.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases Computational complexity, generalized games, metatheorems

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.17

Funding Ronald de Haan is supported by the Austrian Science Fund (FWF), project J4047.

Acknowledgements We thank Janosch Döcker and Britta Dorn for proof-reading.

1 Introduction

With computational devices in nearly everyone’s pockets nowadays, the opportunities to play
puzzle games on these devices are plentiful. What makes such games so addictive that they
are played every day by millions of people? One possible answer to the suggested question
is that (generalized variants of) these games are computationally intractable [9, 13], which
could explain why it can be so challenging to find a solution or to get a good score.

In this paper, we analyze the two-player strategic defense game Greedy Spiders [3] from a
computational complexity perspective. In the game Player 1 must prevent Player 2 from
reaching designated positions. In particular, we show that the problem of deciding whether
Player 1 or 2 has a winning strategy is PSPACE-complete. We also generalize this result to
state two metatheorems, which can be applied to a larger set of strategic defense games.
These metatheorems additionally claim that the problem becomes Σp

2-hard if we restrict the
possible strategies of Player 1 to those that can be specified by a polynomial-time computable
algorithm that is to be submitted at the beginning of the game – the problem is Πp

2-hard if
we restrict Player 2 in a similar way. In both cases, the question is whether Player 1 has a
winning strategy. We get hardness results for the complementary classes, if we ask whether
Player 2 has a winning strategy.

© Ronald de Haan and Petra Wolf;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 17; pp. 17:1–17:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:me@ronalddehaan.eu
https://orcid.org/0000-0003-2023-0586
mailto:wolfp@informatik.uni-tuebingen.de
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Restricted Power – Computational Complexity Results for Strategic Defense Games

2 Related Work

While two-player board games have been studied well from a computational complexity point
of view in the 80’s [15, 16], two-player computer games are rarely examined till now. Despite
the fact that the first gaming console was released in 1983 [4], it took until 2000 until the
first computer games where studied in terms of their computational complexity. A good
survey is given by Demaine et al. [9] and Kendall et al. [13]. While the first results where
obtained by examining concrete games, Demaine et al. [10] made a first approach to find
more general structures in games by developing a directed graph based framework for which
they showed several hardness results for different versions. The framework was intended to
be “a natural problem to reduce from.” That approach instantly led to complexity results for
games like Sokoban, Rush Hour, Pushing blocks, and many more. This proposal was taken
up by Forišek [12], who coined the term “metatheorem” to describe complexity results for
abstracted games consisting of a combination of game elements, which are often implemented
in real computer games. The reduction from a metatheorem to a concrete computer game
is obtained by proving that all the elements of one metatheorem can be implemented with
the mechanics provided by the game. Note that this is often much easier than finding an
individual reduction from a computationally hard formal problem to a certain computer
game. Viglietta [19] further developed this approach with several metatheorems that are
particularly useful for platform- and puzzle-games. His metatheorems have been used to
study the complexity of the best-known Nintendo games [6]. Demaine, Lockhart and Lynche
also continued the study of metatheorems for platform-games [11]. To our knowledge, very
few of the currently known metatheorems are suitable to describe two-player games (the only
one known to us are given by Demaine and Hearn [10]) and most of the known metatheorems
are applicable to single-player platform- and puzzle-games only.

3 Greedy Spiders

We describe the game Greedy Spiders [3] as a two-player game – in the version of the game
for iOS and Android devices, the user plays as Player 1, and the moves of Player 2 are
determined by the application. In this paper, we consider the most basic variant of the game.
We describe the game in intuitive terms, before we give a fully detailed formal description of
the game.

Informal Description of the Game

Greedy Spiders is a turn-based strategic defense two-player game played on planar graphs
(that represent spider webs). Initially, some nodes of the graph are occupied by spiders, and
some nodes of the graph are occupied by flies. The players alternate turns, and Player 1
plays first. In each turn of Player 1, she removes an edge from the graph, and Player 2 in
each of her turns moves a subset of the spiders (possibly all) along a remaining edge of the
graph to an adjacent node. The flies cannot move. Player 2 wins whenever some spider
occupies the same node as some fly, and Player 1 wins whenever there is no path anymore
from any of the spiders to any of the flies.

Formal Description of the Game

A game situation (for Greedy Spiders) is represented by a triple C = (G,S, F), where G =
(V,E) is an undirected planar graph, S ⊆ V is the set of nodes that are occupied by spiders,
and F ⊆ V is the set of nodes that are occupied by flies.

R. de Haan and P. Wolf 17:3

C1 = S
•

•
F C2 = S

•

•
F C3 = •

•

S
F C4 = •

•

S
F

Figure 1 Example of a run σ = (C1, . . . , C4) that is winning for Player 1.

A valid move for Player 1 consists of a tuple (C1, C2), where C1 = (G1, S1, F1) and C2 =
(G2, S2, F2) are game situations, such that S1 = S2, F1 = F2, and G2 is obtained from G1
by removing one edge, that is, G1 = (V,E) and G2 = (V,E \ {e}) for some e ∈ E. A valid
move for Player 2 consists of a tuple (C1, C2), where C1 = (G1, S1, F1) and C2 = (G2, S2, F2)
are game situations, for which holds that G1 = G2 = (V,E); that S2 = { f(s) | s ∈ S1 },
where f : S1 → V is an injective function such that for all s ∈ S1 it holds that {s, f(s)} ∈ E
or f(s) = s; and that F1 = F2.

A game situation (G,S, F) is winning for Player 1 if for each s ∈ S and each f ∈ F , there
is no path in G from s to f . A game situation (G,S, F) is winning for Player 2 if S ∩F 6= ∅.
A game situation is terminal if it is winning for either of the players, and it is non-terminal
otherwise.

A run σ of the game is a finite sequence (C1, . . . , Cn) of game situations where (1) for
each odd i ∈ [n − 1] it holds that (Ci, Ci+1) is a valid move for Player 1, (2) for each
even i ∈ [n− 1] it holds that (Ci, Ci+1) is a valid move for Player 2, (3) for each i ∈ [n− 1]
it holds that Ci is non-terminal, and (4) Cn is terminal. (For each u, v ∈ N, we use [u] to
denote the set {1, . . . , u} and [u, v] to denote the set {u, . . . , v}.) The run σ is winning for
either of the players if and only if Cn is.

I Example 1. See Figure 1 for an example of a run σ of the game Greedy Spiders that is
winning for Player 1. In this figure (as in all figures in this paper), nodes that are occupied
by a spider are marked with S and nodes that are occupied by a fly are marked with F.

We invite the reader to play the game and to verify that there is in fact a winning strategy
for Player 1 for the initial game situation C1 depicted in Figure 1.

A strategy for Player 1 for an initial game situation C1 is a finite tree T where each
node is labeled with a pair (C, j), where C is a game situation and j ∈ [2], that satisfies the
following conditions:
(a) the root of T is labeled with (C1, 1);
(b) whenever a node is labeled with (C, 1), for some non-terminal game situation C, it has

one single child that is labeled with (C ′, 2) such that (C,C ′) is a valid move for Player 1;
(c) whenever a node is labeled with (C, 2), for some non-terminal game situation C, it has m

children nodes that are labeled with (C1, 1), . . . , (Cm, 1), respectively, where {(C,C1), . . . ,
(C,Cm)} is the set of all valid moves for Player 2 that have C as first component; and

(d) whenever a node is labeled with (C, j), for some terminal game situation C and some j ∈
[2], it has no children (i.e., it is a leaf).

In the remainder of this paper, we will often slightly abuse notation by identifying a node
of a strategy T with the pair (C, j) with which it is labeled. A strategy T for Player 1 is
winning if all its leaves are labeled with pairs (C, j) where C is winning for Player 1. (In fact,
it can easily be verified that this can only be the case if each leaf is labeled with a pair (C, 2)
for some game situation C that is winning for Player 1.) Note that any root-to-leaf path in
the strategy T corresponds to a run of the game.

Intuitively, a strategy for Player 1 specifies a sequence of valid moves for Player 1 for
each possible combination of valid moves that Player 2 makes. A winning strategy for
Player 1 specifies what moves Player 1 can make to ensure that she wins the game. (Winning)
strategies for Player 2 are defined analogously. Since Greedy Spiders is a zero-sum game,
there is a winning strategy for Player 1 if and only if there is no winning strategy for Player 2.

FUN 2018

17:4 Restricted Power – Computational Complexity Results for Strategic Defense Games

Decision Problem

We consider the following decision problems in this paper.

Winner Determination for Player 1 Input: An initial game situation C1.
Question: Is there a winning strategy for Player 1 for the game situation C1?

Winner Determination for Player 2 Input: An initial game situation C1.
Question: Is there a winning strategy for Player 2 for the game situation C1?

Because the game Greedy Spiders never ends in a tie (either Player 1 or Player 2 wins), these
problems are complementary. That is, Player 1 has a winning strategy if and only if Player 2
does not have a winning strategy.

4 Preliminaries

We assume the reader to be familiar with basic notions from the theory of computational
complexity, such as the complexity classes P and NP, and polynomial-time (many-to-one)
reductions. For more details, we refer to textbooks on the topic (e.g., see [7]).

The class PSPACE consists of all decision problems that can be solved by an algorithm
that uses a polynomial amount of space (memory). Alternatively, one can characterize the
class PSPACE as all decision problems for which there exists a polynomial-time reduction to
the problem TQBF, that is defined using quantified Boolean formulas as follows. A quantified
Boolean formula (in prenex form) is a formula of the form Q1x1Q2x2 . . . Qnxn.ψ, where all xi

are propositional variables, each Qi is either an existential or a universal quantifier, and ψ
is a (quantifier-free) propositional formula over the variables x1, . . . , xn (called the matrix).
Truth for such formulas is defined in the usual way. The problem TQBF consists of deciding
whether a given quantified Boolean formula is true. It is well-known that the problem TQBF
is PSPACE-complete, and that it remains PSPACE-hard even when restricted to quantified
Boolean formulas whose matrix is in 3CNF.

The class PSPACE can also be characterized using alternating Turing machines (ATMs).
A problem is in PSPACE if and only if it can be solved in polynomial time by an alternating
Turing machine [8]. We refer to textbooks on complexity theory for more details (e.g., see [7]).

One can also restrict the number of quantifier alternations occurring in quantified Boolean
formulas, i.e., the number of times where Qi 6= Qi+1. For each constant k ≥ 1 number of
alternations, this leads to a different complexity class. These classes together constitute
the Polynomial Hierarchy. We consider the complexity classes Σp

k, for each k ≥ 1. The
complexity class Σp

k consists of all decision problems for which there exists a polynomial-time
reduction to the problem TQBF∃,k, that is defined as follows. Instances of the problem are
quantified Boolean formulas of the form ∃x1 . . . ∃x`1∀x`1+1 . . . ∀x`2 . . . Qkx`k−1+1 . . . Qkx`k

.

ψ, where Qk = ∃ if k is odd and Qk = ∀ if k is even, where 1 ≤ `1 ≤ · · · ≤ `k, and where ψ
is quantifier-free. The problem is to decide if the quantified Boolean formula is true. For
each k ≥ 1, the dual problem TQBF∀,k is defined analogously, where the first quantifier
of the formula is universal rather than existential. The complexity class Πp

k consists of
all decision problems for which there exists a polynomial-time reduction to the problem
TQBF∀,k. The class NP coincides with Σp

1 , and the class co-NP coincides with Πp
1 .

R. de Haan and P. Wolf 17:5

5 Complexity Results for Greedy Spiders

In this section, we show that the problems Winner Determination for Player 1 and
Winner Determination for Player 2 for Greedy Spiders are PSPACE-complete. Since
these problems are complementary, we focus on Winner Determination for Player 1.
The result for Winner Determination for Player 2 will then follow immediately, because
PSPACE is closed under complement. We begin with showing membership in PSPACE.

I Lemma 2. Winner Determination for Player 1 for Greedy Spiders is in PSPACE.

Proof. Let C1 = (G,S, F) be an initial game situation, where G = (V,E). Since each valid
move for Player 1 removes an edge from G, we know that every possible run σ that starts
with C1 is of length at most 2|E|−1. Therefore, the problem can be solved in polynomial time
by an alternating Turing machine. We describe the algorithm that is implemented by such an
alternating Turing machine. The algorithm starts with a partial run σ = (C1) that is extended
to a complete run. Then, whenever the partial run σ = (C1, . . . , C`) ends with a non-terminal
game situation C` and is of odd length, the algorithm uses existential nondeterminism to guess
a game situation C`+1 such that (C`, C`+1) is a valid move for Player 1, resulting in the partial
run (C1, . . . , C`+1). Whenever the partial run σ = (C1, . . . , C`) ends with a non-terminal
game situation C` and is of even length, the algorithm uses universal nondeterminism to
guess a game situation C`+1 such that (C`, C`+1) is a valid move for Player 2, resulting in the
partial run (C1, . . . , C`+1). Whenever the partial run σ = (C1, . . . , C`) ends with a terminal
game situation C`, the algorithm accepts if and only if C` is winning for Player 1. J

Next, to show PSPACE-hardness of Winner Determination for Player 1 for Greedy
Spiders, we will need a technical lemma that states that TQBF is PSPACE-hard even when
restricted to instances with a matrix in 3DNF whose incidence graph is planar.

Let ϕ = Q1x1 . . . Qnxn.ψ be a quantified Boolean formula, where ψ is a quantifier-free
DNF formula. Suppose that ψ = d1 ∨ · · · ∨ dm. The incidence graph Gϕ of ϕ is a bipartite
graph that is defined as follows. The nodes Vϕ of Gϕ are the literals and the terms of ψ,
i.e., Vϕ = {x1, . . . , xn,¬x1, . . . ,¬xn} ∪ {d1, . . . , dm}. A node corresponding to a literal l is
connected by an edge to a node corresponding to a term dj if and only if l occurs in the
term dj . The incidence graph of a formula with a matrix in CNF is defined analogously.
(Often a variant of incidence graphs with vertices only for variables, not literals, is used.)

I Lemma 3. TQBF is PSPACE-hard even when restricted to quantified Boolean formulas
(in prenex form) whose incidence graph is planar and whose matrix is a 3DNF formula.

Proof. It has been shown that TQBF remains PSPACE-hard when restricted to quantified
Boolean formulas (in prenex form) whose matrix is a 3CNF formula and whose incidence
graph is planar [14, Theorem 1]. This result can easily be adapted to work also for incidence
graphs with vertices for literals (by introducing existentially quantified copies of variables and
adding clauses to ensure that copies are assigned the same truth value). Then, since PSPACE
is closed under complement, and the negation of a quantified Boolean formula whose matrix
is in 3CNF is equivalent to a formula whose matrix is in 3DNF, the result follows. J

I Theorem 4. Winner Determination for Player 1 for Greedy Spiders is PSPACE-
complete.

Proof. Membership in PSPACE is shown in Lemma 2. We show PSPACE-hardness by
means of a polynomial-time reduction from TQBF. Take an arbitrary instance ϕ =
∃x1.∀x2 . . . ∃xn−1.∀xn.ψ, where ψ = d1 ∨ · · · ∨ dm is a quantifier-free 3DNF formula with n

FUN 2018

17:6 Restricted Power – Computational Complexity Results for Strategic Defense Games

g∃i

◦ yi

◦ yi

= S •
•

•
F

•

•

• yi

• yi

3(i− 1)
(3(n− i) + 1)

(3(n− i) + 1)

Figure 2 Gadget g∃
i for variable xi, for odd i.

g∀i

◦ yi

◦ yi

= S •
•

•

• yi

• yi

3(i− 1)
(3(n− i) + 2)

(3(n− i) + 2)

S F(3(i− 1) + 1)

S F(3(i− 1) + 2)

S F(3(i− 1) + 3)

Figure 3 Gadget g∀
i for variable xi, for even i.

variables and m terms – without loss of generality we may assume that the odd-numbered
variables xi are existentially quantified, and that the even-numbered variables xi are univer-
sally quantified. Moreover, by Lemma 3, we may assume that the incidence graph of ϕ is
planar. Also, without loss of generality, we may assume that n is even and that m ≥ 2.

We construct a game situation C1 = (G,S, F) as follows. We construct the planar
graph G = (V,E), together with the sets S ⊆ V and F ⊆ V by connecting various gadgets
for the variables and terms of ϕ.

The idea of the reduction is as follows. We introduce gadgets g∃i that allow Player 1 to
choose a truth assignment for variable xi, for odd i. Similarly, for even i, we have gadgets g∀i
that allow Player 2 to choose a truth assignment for variable xi. These choices are made one
after the other, so that they can depend on the truth assignment of preceding variables. The
choices in these first gadgets consist of sending a spider on one of two paths. Then, we have
gadgets ki and k′i, that serve to let the spiders from gadgets g∃i and g∀i pass onwards, while
giving Player 1 time to cut free flies in all but one of the gadgets hj representing the terms
of ψ. If the chosen truth assignment satisfies a term dj , Player 1 can safely leave the fly in
gadget hj unprotected (and cut free the flies in all other gadgets hj′). In order to make this
function properly, we additionally have gadgets f`, forcing Player 1 to cut free a fly in this
gadget in one of her first ` turns. Figure 7 illustrates this for an example.

For each existentially quantified variable xi – that is, for every odd i ∈ [n] – we add the
gadget g∃i as depicted in Figure 2. For each universally quantified variable xi – that is, for
every even i ∈ [n] – we add the gadget g∀i as depicted in Figure 3. In these figures, nodes in S
are marked with S and nodes in F are marked with F. Also, each edge that is marked with a
number ` represents a path containing ` edges (where each of the non-depicted nodes are
neither in S nor in F). In particular, if ` = 0, the two nodes adjacent to this edge coincide.

Intuitively, the gadgets g∃i and g∀i simulate the quantification over the truth assignments
to the variables x1, . . . , xn. For each i ∈ [n], in Player 1’s (3(i− 1) + 1)-th, (3(i− 1) + 2)-th
and (3(i− 1) + 3)-th turn, she is forced to make a move in gadget g∃i or g∀i (depending on
the parity of i), in order to prevent the spider in this gadget from capturing a fly in this
gadget. Moreover, in gadgets g∃i , her choices for these moves determine which of the two
paths leading to the nodes labeled yi and yi, respectively, are still available to the spider in
this gadget. In the gadgets g∀i , Player 2 is free to choose on which of the two paths, leading
to the nodes labeled yi and yi, respectively, the spider in this gadget moves. Moving a spider
on the path towards yi corresponds to setting variable xi to true, and moving a spider on
the path towards yi corresponds to setting variable xi to false. Thus, in this way, Player 1
can choose the truth values for the odd-numbered variables xi and Player 2 can choose the
truth values for the even-numbered variables xi.

R. de Haan and P. Wolf 17:7

◦yi ki ◦ xi = •yi

•
•

•
•

... •

•
•

•
•

... • · · · •

•
•

•
•

... • xi m

2m− 2 edges

Figure 4 Secondary gadget ki for literal xi. The secondary gadget k¬
i for literal xi is entirely

similar, replacing yi by yi and xi by xi.

f` = S F`

Figure 5 Gadget f` in which Player 1 is forced to remove an edge in her `-th turn (at the latest).

Then, for each i ∈ [n], we identify the node labeled with yi in the gadget g∃i or g∀i with the
node labeled with yi in the gadget ki that is depicted in Figure 4. We similarly identify the
node labeled with yi in the gadget g∃i or g∀i with the node labeled with yi in the gadget k¬i ,
which is entirely similar to the gadget depicted in Figure 4 – the only difference is that the
node label yi is replaced by yi and the node label xi is replaced by xi. These gadgets consist
of m− 1 successive pieces, each consisting of m parallel paths of length 2 – here m is the
number of terms occurring in the matrix ψ of the quantified Boolean formula ϕ. Intuitively,
the purpose of these gadgets ki and k¬i is to ensure that there remains a path of length 2m−2
from the node labeled with yi to the node labeled with xi, even after the next 2m− 2 moves
(and similarly for the nodes labeled with yi and xi).

For each even ` ∈ [3n+ 1, 3n+ 2m− 2] (so not the odd values), we add the gadget f`, as
depicted in Figure 5. These gadgets force Player 1 to make a move in gadget f` in her `-th
turn (at the latest). As a result, Player 1 has no way of preventing any spider to move from
a node labeled with yi to a node labeled with xi in her (3n+ 1)-th until her (3n+ 2m− 2)-th
turn (while also preventing the flies in the gadgets f` from getting captured by a spider).
However, notably, for each odd ` ∈ [3n+ 1, 3n+ 2m− 2], Player 1 is not forced to delete any
particular edge in the graph in her `-th turn (in order to avoid losing directly after that turn).
This free choice for Player 1 will play a role in the next type of gadget that we will add.

For each term dj of ψ, we add the gadget hj , as depicted in Figure 6. The leftmost nodes
in this gadget are labeled with xi or xi. We identify these leftmost nodes with the nodes
in gadgets ki and k¬i that have identical labels. Suppose that dj = (lj,1 ∧ lj,2 ∧ lj,3), where
each lj,u, for u ∈ [3], is either xi or xi for some i ∈ [n]. Then the leftmost nodes in the
gadget hj coincide with the nodes in gadgets ki and k¬i that are labeled with lj,u, denoting
the complementary literal of lj,u. For example, if dj = (x1 ∧x2 ∧x3), then the leftmost nodes
in the gadget hj are identified with the nodes labeled with x1, x2 and x3 in gadgets k¬1 , k2
and k¬3 .

Intuitively, the gadgets hj all contain a fly that needs to be protected from the incoming
spiders on the paths from xi and xi. Player 1 has time to remove the edges adjacent to the
flies in exactly m − 1 of these gadgets hj – she has time to do this in her `-th turns, for
odd values of ` ∈ [3n + 1, 3n + 2m − 2]. In other words, Player 1 needs to choose exactly
one j ∈ [m] such that the fly in gadget hj is out of reach of the spiders, for her next two
turns.

Finally, we add the gadgets f`, as depicted in Figure 5, for both ` ∈ [3n+2m−1, 3n+2m]
to ensure that after rescuing the flies in all but one of the gadgets hj , Player 1 has to make a

FUN 2018

17:8 Restricted Power – Computational Complexity Results for Strategic Defense Games

hj

◦lj,1

◦lj,2

◦lj,3

=

•lj,1

•lj,2

•lj,3

• F

Figure 6 Gadget hj for the term dj = (lj,1 ∧ lj,2 ∧ lj,3).

move in these gadgets in her next two turns. In other words, if the fly in the unique gadget hj

whose safety she did not ensure by deleting its adjacent edge is being approached by some
spider within distance 2, this spider will then be able to capture the fly. If this is not the
case, Player 1 can ensure the safety of this final fly in her (3n+ 2m+ 1)-th turn.

Clearly, this reduction runs in polynomial time. Moreover, since the incidence graph of ϕ
is planar, the graph G that we constructed is also planar.

Verifying the correctness of this reduction is straightforward using the intuitions behind
and explanations of the workings of the gadgets g∃i , g∀i , ki, k¬i , f`, and hj – that we gave
above – together with the following observations.

The first observation is that for each odd i ∈ [n], Player 1 can decide which of the two
paths, towards the nodes labeled with yi or yi, are left open for the spider in gadget g∃i , and
she can base this choice on her choices in the gadgets g∃i′ , for odd i′ ∈ [i] and Player 2’s
choices in the gadgets g∀i′ , for even i′ ∈ [i]. Similarly, for each even i ∈ [n], Player 2 can
decide which of the two paths, towards the nodes labeled with yi or yi, are taken by the
spider in gadget g∀i , and she can base this choice on her choices in gadgets g∀i′ , for even i′ ∈ [i]
and Player 1’s choices in the gadgets g∃i′ , for odd i′ ∈ [i].

The second observation is that whenever a truth assignment satisfies ψ, it must satisfy
some term dj of ψ. This means that it must satisfy all literals in dj , and thus must make
all their complements false. Therefore, if (and only if) the spiders are on their way towards
the nodes labeled with xi and xi in such a way that the corresponding truth assignment
satisfies ψ (and thus satisfies dj for some j ∈ [m]), Player 1 can safely leave the fly in
gadget hj unprotected during her (3n+ 1)-th until (3n+ 2m)-th turn.

This concludes our proof of PSPACE-hardness. J

I Example 5. Consider the quantified Boolean formula ϕ = ∃x1.∀x2.∃x3.∀x4.[d1 ∨ d2],
where d1 = (x1 ∧ x2 ∧ x3) and d2 = (x1 ∧ x2 ∧ x3). The game situation C1 = (G,S, F) as
constructed in the proof of Theorem 4 is depicted (schematically) in Figure 7. (Note that the
last universally quantified variable (x4) does not occur in the terms d1 and d2 – its presence
makes n even.)

I Corollary 6. Winner Determination for Player 2 for Greedy Spiders is PSPACE-
complete.

Proof. This follows directly from Theorem 4, since PSPACE is closed under complement and
the problems Winner Determination for Player 1 and Winner Determination for
Player 2 are complementary. J

6 Metatheorems

For our metatheorems, we consider games that are turn-based two-player games modeled
on graphs. In the unrestricted version, the players alternate turns and every player has
unlimited resources in every turn to calculate her next move. A player is called strategically

R. de Haan and P. Wolf 17:9

◦ ◦

h1

◦

g∃1

◦

◦ g∀2

◦

◦

g∀4

◦

◦

g∃3

◦

◦

h2

◦

k¬2

k2

◦

k¬4

◦

k4

k1

◦

k3

◦

k¬1 k¬3

f14 f15 f16

Figure 7 The game situation C1 = (G,S, F) that is constructed from the quantified Boolean
formula ϕ = ∃x1.∀x2.∃x3.∀x4.[(x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)] in the proof of Theorem 4 – see
Example 5. (The nodes that are drawn in this picture between two gadgets are the nodes that
belong to both gadgets, and are identified – e.g., the node drawn between the gadgets g∃

1 and k¬
1 is

the node labeled with y1 that appears in both gadgets.)

restricted if she chooses in her first move a deterministic polynomial-time algorithm with a
polynomial-size description, that determines all of her moves on that game instance. The
algorithm is then disclosed to the opposing player. This means that the other player can
then calculate the reaction of her opponent for any possible situation in polynomial time.

We consider the following game mechanics. A game is said to implement defense positions,
if there exist positions which must not be reached by attackers of Player 2. Paths that can
be eliminated or permanently blocked by Player 1 are called destroyable paths. Player 1 has
the ability to destroy one destroyable path in each of her turns, while Player 2, in each of
her turns, moves all of her attackers (towards the defense positions of Player 1) over one
edge each. Player 1 wins the game if there is no path left from any attacker of Player 2 to
any defense position of Player 1. Conversely, Player 2 wins if at least one of her attackers
has reached a defense position of Player 1.

The decision problems Winner Determination for Player 1 and Winner Deter-
mination for Player 2 for games that implement defense positions and destroyable paths
are defined analogously as for the game of Greedy Spiders (see Section 3).

I Metatheorem 7. For a round-based two-player game implementing defense positions and
destroyable paths, the problem Winner Determination for Player 1 is:
(1) PSPACE-hard if neither of the players is strategically restricted;
(2) Σp

2-hard, if Player 1 is strategically restricted; and
(3) Πp

2-hard, if Player 2 is strategically restricted.
These hardness results hold even when the game is restricted to planar graphs.

Proof (idea). Statement (1) follows as a corollary from the proof of our hardness result
for Theorem 4. The reduction used in this proof is entirely based on the game mechanics
of defense positions and destroyable paths. We will prove Statement (2) by modifying the
hardness reduction from the proof of Theorem 4 to a reduction from the Σp

2-complete problem

FUN 2018

17:10 Restricted Power – Computational Complexity Results for Strategic Defense Games

TQBF∃,2 – we will explain this in more detail below. Similarly, we will prove Statement (3)
by modifying the same reduction to a reduction from an appropriate Πp

2-complete variant of
the problem TQBF∀,3 – we also work this out in more detail below. All these reductions
also work when restricted to planar graphs. J

Asking the converse question (i.e., whether Player 2 can win) leads to the following
metatheorem.

I Metatheorem 8. For a round-based two-player game implementing defense positions and
destroyable paths, the problem Winner Determination for Player 2 is:
(1) PSPACE-hard if neither of the players is strategically restricted;
(2) Πp

2-hard, if Player 1 is strategically restricted; and
(3) Σp

2-hard, if Player 2 is strategically restricted.
These hardness results hold even when the game is restricted to planar graphs.

Proof. Because the problems Winner Determination for Player 1 and Winner
Determination for Player 2 are complementary, these statements follow directly from
Metatheorem 7. J

We now turn to proving Metatheorem 7(2–3).

Proof of Metatheorem 7(2). We describe how the hardness reduction from the proof of
Theorem 4 can be used to form a reduction from TQBF∃,2 to Winner Determination for
Player 1 where Player 1 is strategically restricted. Let ϕ = ∃x1 . . . ∃xn1∀xn1+1 . . . ∀xn.ψ

be an instance of TQBF∃,2. Without loss of generality, we may assume that ψ is in 3DNF
and has a planar incidence graph.

We consider the formula ϕ′ = ∃x1∀y1 . . . ∃xn1−1∀yn1−1∃xn1∀xn1+1∃yn1+1 . . . ∀xn−1∃yn−1
∀xn.ψ, where the variables in Y = {y1, . . . , yn1−1, yn1+1, . . . , yn−1} are fresh variables that
do not occur in ψ. That is, ϕ′ differs from ϕ only in that variables from Y are added
to the quantifier prefix to ensure that existential and universal quantifiers alternate. We
know that ϕ is true if and only if ϕ′ is true. Then, because the quantifiers in ϕ′ alternate
between existential and universal quantifiers, we can employ the reduction from the proof of
Theorem 4 to construct a game situation C1 where Player 1 has a winning strategy if and
only if ϕ′ is true (which is the case if and only if ϕ is true).

All that remains to show that whenever Player 1 has a winning strategy for C1, she
can – in her first turn – submit an algorithm (whose description is of polynomial size) that
computes the moves of her winning strategy in polynomial time. By construction of the
game instance C1, and because the variables y1, . . . , yn1−1 do not occur in ψ, we know that
any winning strategy for Player 1 does not depend on Player 2’s moves in the gadgets g∀i
corresponding to the variables y1, . . . , yn1−1. Moreover, since the variables yn1+1, . . . , yn−1
do not occur in ψ, Player 1’s optimal strategy in the gadgets g∃i corresponding to the
variables yn1+1, . . . , yn−1 is easy to determine. Player 1’s only moves that depend on the
choice of Player 2 in the gadgets g∀i are Player 1’s moves in the gadgets hj , and Player 1’s
optimal moves in these latter gadgets are easy to determine – these moves correspond to
evaluating ψ once the truth value of each variable is set. Therefore, the optimal moves for
carrying out her winning strategy can be generated by a polynomial-time algorithm that
she can submit at the beginning of the game. Thus, this reduction works for the case where
Player 1 is strategically restricted. J

In order to prove Metatheorem 7(3), we consider a Σp
2-complete variant of TQBF∃,3.

R. de Haan and P. Wolf 17:11

I Lemma 9. There is a class of quantified Boolean formulas of the form ϕ = ∃x1 . . . ∃x`1

∀y1 . . . ∀y`2∃z1 . . . ∃z`3 .ψ with the following properties:
(1) TQBF∃,3 restricted to this class of quantified Boolean formulas is Σp

2-complete;
(2) each quantified Boolean formula ϕ in this class has a matrix in 3CNF and has a planar

incidence graph; and
(3) for each quantified Boolean formula ϕ = ∃x1 . . . ∃x`1∀y1 . . . ∀y`2∃z1 . . . ∃z`3 .ψ in this class,

and for each truth assignment α : {x1, . . . , x`1 , y1, . . . , y`2} → {0, 1}, it can be decided in
polynomial time (given ϕ and α) if there exists a truth assignment β : {z1, . . . , z`3} →
{0, 1} such that ψ[α∪β] evaluates to true, and such a truth assignment β can be computed
in polynomial time, if it exists.

Proof. We provide a reduction from TQBF∃,2 to TQBF∃,3 and show that the class of
quantified Boolean formulas that are produced by this reduction has Properties (1)–(3).
Hardness for Σp

2 for the problem TQBF∃,3 restricted to this class of quantified Boolean
formulas follows immediately from this reduction.

Let ϕ be an instance of TQBF∃,2. Without loss of generality, we may assume that ϕ
has a matrix ψ in 3DNF. We then transform the matrix ψ to 3CNF using the standard
Tseitin transformation [18], by adding additional existentially quantified variables at the
end of the quantifier prefix – this will result in an equivalent quantified Boolean formula ϕ′
with an “∃∀∃” quantifier prefix. We then transform ϕ′ into an equivalent quantified Boolean
formula ϕ′′ with a matrix in 3CNF and a planar incidence graph using the gadgets used in
the proof that 3SAT restricted to planar formulas is NP-hard [14, Theorem 1] – this will add
additional existentially quantified variables at the end of the quantifier prefix.

The reduction clearly results in quantified Boolean formulas that satisfy Property (2). The
resulting formulas also satisfy Property (3). Once the variables from the original quantified
Boolean formula ϕ have been instantiated, only clauses corresponding to the introduced
gadgets in the two-step reduction described above (containing only existentially quantified
variables) remain – finding satisfying truth assignments for these remaining clauses can be
done in polynomial time. This is because both steps in the reduction have the property
that given any satisfying truth assignment α for the matrix of the original formula, one can
compute in polynomial time a truth assignment β such that α ∪ β satisfies the matrix of the
constructed formula – and that both steps of the reduction are reversible in polynomial time.
For the first step of the reduction (where the matrix ψ is transformed to 3CNF) this is the
case because the introduced clauses form a renamable Horn formula – thus after instantiating
the formula with α, a renamable Horn formula remains, and a satisfying truth assignment
for renamable Horn formulas can be found in polynomial time. For the second step of the
reduction (where the formula is transformed to an equivalent formula that has a planar
incidence graph) this property follows directly from the shape of the gadgets used in the
reduction [14, Theorem 1].

As a result of Property (3), we get membership in Σp
2 for the problem TQBF∃,3 restricted

to quantified Boolean formulas produced by the reduction above. Together with Σp
2-hardness,

this gives us Property (1). J

The main idea behind the proof of Σp
2-hardness is to apply Tseitin transformations [18]

to inputs of the problem TQBF∃,2. We denote the problem TQBF∃,3 restricted to the class
of quantified Boolean formulas identified in Lemma 9 by TQBF?

∃,3. Similarly, we consider
the Πp

2-complete dual problem TQBF?
∀,3, that concerns formulas that are equivalent to the

negation of instances of TQBF?
∃,3.

FUN 2018

17:12 Restricted Power – Computational Complexity Results for Strategic Defense Games

Proof (sketch) of Metatheorem 7(3). We modify the proof of Theorem 4 to a reduction
from the problem TQBF?

∀,3. These modifications are entirely analogous to the modifications
in the proof of Metatheorem 7(2). That is, we introduce new variables (not occurring in the
matrix of the quantified Boolean formula) to ensure that existential and universal quantifiers
alternate strictly.

In the resulting game, whenever Player 2 has a winning strategy that corresponds to a
way of assigning the universally quantified variables that makes the remaining formula false
(for any assignment to the existentially quantified variables), the optimal moves for carrying
out this strategy can be generated by a polynomial-time algorithm that she can submit at
the beginning of the game. This is because her only moves that (non-trivially) depend on
the choice of Player 1 in the gadgets g∃i are her moves in the gadgets g∀i corresponding to
the variables in the third quantified block and her moves in the gadgets hj , and Player 2’s
optimal moves in these latter gadgets are easy to determine – this is due to Lemma 9(3).
Thus, this reduction works for the case where Player 2 is strategically restricted. J

7 Application of Metatheorems

In this section we describe how to apply our metatheorems to tower-defense games. Games of
this genre can be described as two-player games where the defending Player 1 must prevent
the attackers of Player 2 from reaching designated locations on the playing field. For this
purpose Player 1 can place towers on the field which damage every attacker in their reach.
To place the towers, Player 1 usually has to pay some amount of a currency which is steadily
credited to Player 1 over time. In most tower-defense games Player 1 is played by the user,
while Player 2 is played by the computer. The strategy of Player 2 is fixed per instance, but
differs from instance to instance, so we will apply Metatheorem 7(3).

To apply Metatheorem 7(3), we have to show that all elements of the metatheorem
can be modeled within the game. Defense positions are naturally a part of tower-defense
games, since they all include positions which have to be protected from the attacking enemies.
Destroyable paths are implemented in the following way. A path is said to be destroyed if
no attacker can cross it (and survive). Therefore we can destroy a path by placing a strong
enough tower somewhere on the path to kill every attacker in its reach. The accessible
environment of this tower is regarded as the destroyed path. Every spot on the map where a
tower can be placed represents therefore a destroyable path. While most tower defense-games
are not round-based in a strong sense, we can still model them as round-based. To implement
the game elements, we only have to consider one type of attackers and one type of towers.
Since Player 1 earns coins of a currency every fixed amount of time we can graduate the
time in steps which are as long as it takes Player 1 to earn enough coins to buy one tower
instance. The step range of the attackers of Player 2 is therefore as long as the distance
they can walk in one time step. Thus we can assume the game to be round-based. Since all
criteria of Metatheorem 7(3) can be implemented, this shows that tower-defense games in
general are Πp

2-hard.
In concrete terms, the above described implementation works among others for games

like Bloons Tower Defense 5 [2], Warcraft 3 [1], and Starcraft [5].

8 Conclusion

We showed PSPACE-completeness for the problem of deciding whether Player 1 has a winning
strategy for the game Greedy Spiders, as well as for the problem of deciding whether

R. de Haan and P. Wolf 17:13

Player 2 has a winning strategy. Afterwards we generalized the idea of our proof to give
two metatheorems referring to [11, 12, 19], which granulate the computational complexity
of the core element of the game by restricting the computational power of the players. In
particular, we showed that Winner Determination for Player 1 in a turn-based two-
player game containing defense positions and destroyable paths is in general PSPACE-hard,
becomes Σp

2-hard if Player 1 is strategically restricted, and Πp
2-hard if Player 2 is strategically

restricted. The reverse question of Winner Determination for Player 2 is in general
PSPACE-hard, becomes Πp

2-hard if Player 1 is strategically restricted, and Σp
2-hard if Player 2

is strategically restricted. Finally, we discussed the applicability of our metatheorems on
tower-defense games and mentioned some specific games to which our metatheorems can be
applied.

Finding metatheorems for the computational complexity of computer games has recently
become more and more of a focus. With tower-defense games, we grazed with our metatheo-
rems a previously untouched game genre in terms of computational complexity and provided
new tools to investigate them. As most metatheorems are discovered in the area of platform-
and puzzle-games, they can only be applied to single-player games. Therefore with our
metatheorems, we give new impulses in looking for metatheorems, which describe multiplayer
(specifically two-player) games. To our knowledge, our results are the first hardness results
for the complexity classes Σp

2 and Πp
2 in the field of computational complexity of computer

games.
A possibility for further research in this field is to look at two-player games and restrict

the computational power of one of the players. This approach could also be applied to well
studied board games like Chess, Checkers, or Mill. In general the field of multiplayer strategy
games seems to afford more yet undiscovered metatheorems and should be investigated in
the future. Beside tower-defense games, our metatheorem should also be applicable to other
strategic games, such as war simulations or any game in which one player has the role of a
defender who has to prevent the other player (with the role of an attacker) from reaching
certain locations in the game. Over the last few years, more and more complex and modern
games have been explored, resulting in metatheorems which are applicable to state of the
art games. Since many modern computer games provide scripting languages with whom
the players can modify the game, the games themselves are instantly Turing-complete. We
think that examining restricted versions of these games is still worth a try and can lead to
metatheorems for the essential elements of the games, taking off the focus from the scripting
languages.

References
1 Blizzard Entertainment: Warcraft III. http://eu.blizzard.com/en-gb/games/war3/.

Accessed: 2018-02-17.
2 Bloons Tower Defense 5. http://bloons.wikia.com/wiki/Bloons_Tower_Defense_5. Ac-

cessed: 2018-02-17.
3 Greedy Spiders. http://greedyspiders.com/. Accessed: 2018-02-17.
4 Nintendo Entertainment System (NES). http://www.pcgames.de/

Nintendo-Entertainment-System-NES-Konsolen-255246/. Accessed: 2018-02-01.
5 StarCraft: Remastered. https://starcraft.com/en-us/. Accessed: 2018-02-17.
6 Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo Games

are (Computationally) Hard. Theoretical Computer Science, 586:135–160, 2015.
7 Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cam-

bridge University Press, 2009.

FUN 2018

http://eu.blizzard.com/en-gb/games/war3/
http://bloons.wikia.com/wiki/Bloons_Tower_Defense_5
http://greedyspiders.com/
http://www.pcgames.de/Nintendo-Entertainment-System-NES-Konsolen-255246/
http://www.pcgames.de/Nintendo-Entertainment-System-NES-Konsolen-255246/
https://starcraft.com/en-us/

17:14 Restricted Power – Computational Complexity Results for Strategic Defense Games

8 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. of the
ACM, 28(1):114–133, 1981.

9 Erik D. Demaine. Playing Games with Algorithms: Algorithmic Combinatorial Game
Theory. In Proceedings of the 26th International Symposium on Mathematical Foundations
of Computer Science (MFCS), pages 18–33. Springer, 2001.

10 Erik D. Demaine and Robert A. Hearn. Constraint Logic: A Uniform Framework for
Modeling Computation as Games. In Proceedings of the 23rd Annual IEEE Conference on
Computational Complexity, 2008 (CCC 2008), pages 149–162. IEEE, 2008.

11 Erik D. Demaine, Joshua Lockhart, and Jayson Lynch. The Computational Complexity of
Portal and Other 3D Video Games. arXiv preprint 1611.10319, 2016.

12 Michal Forišek. Computational Complexity of Two-Dimensional Platform Games. In Pro-
ceedings of the 5th International Conference on Fun with Algorithms (FUN 2010), pages
214–227. Springer, 2010.

13 Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A Survey of NP-complete
Puzzles. ICGA Journal, 31(1):13–34, 2008.

14 David Lichtenstein. Planar Formulae and Their Uses. SIAM J. Comput., 11(2):329–343,
1982.

15 John Michael Robson. The Complexity of Go. In IFIP Congress, pages 413–417, 1983.
16 John Michael Robson. N by N Checkers is Exptime complete. SIAM J. Comput., 13(2):252–

267, 1984.
17 Jörg Siekmann and Graham Wrightson, editors. Automation of reasoning. Classical Papers

on Computer Science 1967–1970, volume 2. 1983.
18 G. S. Tseitin. Complexity of a Derivation in the Propositional Calculus. Zap. Nauchn. Sem.

Leningrad Otd. Mat. Inst. Akad. Nauk SSSR, 8:23–41, 1968. English transl. repr. in [17].
19 Giovanni Viglietta. Gaming is a hard job, but someone has to do it! Theory Comput. Syst.,

54(4):595–621, 2014. doi:10.1007/s00224-013-9497-5.

http://dx.doi.org/10.1007/s00224-013-9497-5

Computational Complexity of Motion Planning of
a Robot through Simple Gadgets

Erik D. Demaine
MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
edemaine@mit.edu

Isaac Grosof1

MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
isaacg@alum.mit.edu

Jayson Lynch
MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
jaysonl@mit.edu

Mikhail Rudoy2

MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
mrudoy@gmail.com

Abstract
We initiate a general theory for analyzing the complexity of motion planning of a single robot
through a graph of “gadgets”, each with their own state, set of locations, and allowed traversals
between locations that can depend on and change the state. This type of setup is common
to many robot motion planning hardness proofs. We characterize the complexity for a natural
simple case: each gadget connects up to four locations in a perfect matching (but each direction
can be traversable or not in the current state), has one or two states, every gadget traversal is
immediately undoable, and that gadget locations are connected by an always-traversable forest,
possibly restricted to avoid crossings in the plane. Specifically, we show that any single nontrivial
four-location two-state gadget type is enough for motion planning to become PSPACE-complete,
while any set of simpler gadgets (effectively two-location or one-state) has a polynomial-time
motion planning algorithm. As a sample application, our results show that motion planning
games with “spinners” are PSPACE-complete, establishing a new hard aspect of Zelda: Oracle
of Seasons.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases PSPACE, hardness, motion planning, puzzles

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.18

Acknowledgements This work grew out of an open problem session from the MIT class on
Algorithmic Lower Bounds: Fun with Hardness Proofs (6.890) from Fall 2014. We particularly
thank Jeffrey Bosboom for posing the problem of analyzing 4-spinners from Legend of Zelda:
Oracle of Seasons (in 2015), for simplifying the 2-state k-tunnels proof, and for other helpful
discussions.

1 Now at Carnegie Mellon University.
2 Now at Google Inc.

© Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 18; pp. 18:1–18:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:edemaine@mit.edu
mailto:isaacg@alum.mit.edu
mailto:jaysonl@mit.edu
mailto:mrudoy@gmail.com
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

1 Introduction

Many hardness proofs are based on gadgets — local pieces, each often representing corre-
sponding pieces of the input instance, that combine to form the overall reduction. Garey and
Johnson [7] called gadgets “basic units” and the overall technique “local replacement proofs”.
The search for a hardness reduction usually starts by experimenting with small candidate
gadgets, seeing how they behave, and repeating until amassing a sufficient collection of
gadgets to prove hardness.

This approach leads to a natural question: what gadget sets suffice to prove hardness?
There are many possible answers to this question, depending on the precise meaning of
“gadget” and the style of problem considered. Schaefer [11] characterized the complexity of
all “Boolean constraint satisfiability” gadgets, including easy problems (2SAT, Horn SAT,
dual-Horn SAT, XOR SAT) and hard problems (3SAT, 1-in-3SAT, NAE 3SAT). Constraint
Logic [8] proves sufficiency of small sets of gadgets on directed graphs that always satisfy one
local rule (weighted in-degree at least 2), in many game types (1-player, 2-player, 2-team,
polynomially bounded, unbounded), although the exact minimal sets of required gadgets
remain unknown. Both of these general techniques naturally model “global” moves that can
be made anywhere at any time (while satisfying the constraints). Nonetheless, the techniques
have been successful at proving hardness for problems where moves must be made local to
an agent/robot that traverses the instance.

In this paper, we introduce a general model of gadgets that naturally arises from single-
agent motion planning problems, where a single agent/robot traverses a given environment
from a given start location to a given goal location. Our model is motivated by the plethora
of existing hardness proofs for such problems, such as Push-1, Push-∗, PushPush, and
Push-X [3]; Push-2-F [5]; Push-1 Pull-1 [4,9]; as well as several Nintendo video games studied
at recent FUN conferences [1, 6].

1.1 Gadget model
In general, we model a gadget as consisting of one or more locations (entrances/exits) and one
or more states. (In this paper, we will focus on gadgets with at most two states.) Each state
s of the gadget defines a labeled directed graph on the locations, where a directed edge (a, b)
with label s′ means that the robot can enter the gadget at location a and exit at location b,
and that such a traversal forcibly changes the state of the gadget to s′. Equivalently, a gadget
is specified by its state space, a directed graph whose vertices are state/location pairs, where
a directed edge from (s, a) to (s′, b) represents that the robot can traverse the gadget from a

to b if it is in state s, and that such traversal will change the gadget’s state to s′. Gadgets
are local in the sense that traversing a gadget does not change the state of any other gadgets.

A system of gadgets consists of gadgets, their initial states, and connections between
disjoint pairs of locations (forming a matching). If two locations a, b of two gadgets (or the
same gadget) are connected, then the robot can traverse freely between a and b (outside the
gadgets). (Equivalently, we can think of locations a and b as being identified.) These are
all the ways that the robot can move: exterior to gadgets using connections, and traversing
gadgets according to their current states. In a puzzle, we are given a system of gadgets, the
robot starts at a specified start location, and we want to find a sequence of moves that brings
the robot to a specified goal location. The main problem we consider here is the obvious
decision problem: is the given puzzle solvable?

One type of gadget we always allow in this paper is the branching hallway gadget,
which has one state and three locations, and always allows traversal between all pairs of

E.D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:3

Figure 1 Branching hallway gadget.

locations; see Figure 1. In other words, upon reaching such a gadget, the robot is free to
choose and move to any of the three locations. Connecting together multiple branching
hallways allows us to effectively connect the other gadgets’ locations according to an arbitrary
forest (as described in the abstract).

All other gadgets we consider in this paper are “deterministic” and “reversible”. A gadget
is deterministic if its state space has maximum out-degree ≤ 1, i.e., a robot entering the
gadget at some location a in some state s (if possible) can exit at only one location b and
one new state s′. A gadget is reversible if its state space has the reverse of every edge, i.e., it
is the bidirectional version of an undirected graph. Thus a robot can immediately undo any
gadget traversal.3 Together, determinism and reversibility are equivalent to requiring that
the state space is the bidirectional version of a matching.

Other than the (one-state) branching hallway, we further require that the states of a
gadget differ only in their orientations of the possible traversals. More precisely, a k-tunnel
gadget has 2k locations, paired in a perfect matching whose pairs are called tunnels, such
that each state defines which direction or directions each tunnel can be traversed.

We also consider planar systems of gadgets, where the gadgets and connections are drawn
in the plane without crossings. Planar gadgets are drawn as small regions (say, disks) with
their locations as points in a fixed clockwise order along their boundary. A single gadget type
thus corresponds to multiple planar gadget types, depending on the choice of the clockwise
order of locations. Connections are drawn as paths connecting the points corresponding to
the endpoint locations, without crossing gadget interiors or other connections.

1.2 Our results
We characterize the computational complexity of deciding puzzle solvability when the allowed
gadgets consist of the branching hallway and any number of deterministic reversible ≤ 2-state
k-tunnel gadgets, for any k. Specifically, if there is at least one gadget type that is not
equivalent to a 1-state or 1-tunnel gadget, then the problem is PSPACE-complete; and
otherwise, the problem is in P. The same characterization holds for planar systems of gadgets;
thus, in applications, we do not have to worry about building a crossover gadget (which is
often the most difficult).

In Section 3, we sketch our proof from [4] that motion planning with two-toggle-locks
and crossovers is PSPACE-complete. In Section 4, we prove that one particular gadget,
the antiparallel two-toggle, can simulate a variety of other gadgets, eventually including a

3 This notion is different than the sense of “reversible” in reversible computing, which would mean that
we could derive which move to undo from the current state.

FUN 2018

18:4 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

two-toggle-lock and a crossover. As a consequence, motion planning with the antiparallel
two-toggle is PSPACE-complete. In Section 5, we show that all nontrivial deterministic
reversible 2-state, 2-tunnel gadgets can simulate the antiparallel two-toggle. As a consequence,
each corresponding motion planning problem is PSPACE-complete. In Section 7, we extend
these results to give a precise hardness characterization for the motion planning problem
with each deterministic reversible 2-state k-tunnel gadget.

We also partially characterize the computational complexity of deterministic reversible
≤ 2-state gadgets with three locations. In particular, we study spinners and deterministic
forks, as described in Section 6.

We hope that our approach will be useful for establishing hardness of many real-world
motion planning problems and puzzles. As a sample application, our results allow us to
establish a new PSPACE-hard aspect of the Nintendo video game Zelda: Oracle of Seasons
(which features spinners) Section 6.

2 Gadget Basics

To categorize the possible deterministic reversible 2-state 2-tunnel gadget types, we first
categorize the possible tunnel types in such a gadget. A tunnel is trivial if it is either never
traversable or always traversable. A trivial tunnel can always be split into a separate 1-state
1-tunnel gadget, so we can ignore them. What remain are three possible nontrivial tunnel
types:

Tripwire A tunnel that can always be traversed in either direction,
but traversing it switches the gadget’s state.

Lock In the unlocked state (shown above), the tunnel can be
traversed in either direction; in the locked state (shown
below), the tunnel cannot be traversed in either direction.

Toggle A tunnel that can always be traversed in a single direction,
where the direction differs in the two states of the gadget.
The state is switched when the gadget is traversed.

There are six ways to combine these tunnel types into pairs. Two combinations, Lock–Lock
and Tripwire–Tripwire, are trivial combinations equivalent to one-state gadgets in which
each tunnel is either always traversable in both directions or never traversable. Thus we
restrict our attention to the four other combinations, listed below. Because we are interested
in planar systems, we consider the multiple planar gadgets for each nontrivial combination.
(We do, however, treat a gadget and its reflection as equivalent.) As a result, there are nine
different nontrivial two-tunnel two-state gadgets, abbreviated and listed below. The bulk of
our paper focuses on the six gadgets shown in Figure 2, which omits most crossing variants.

1. Tripwire–Lock: Traversing the tripwire makes the other tunnel flip between being
passable and impassable, causing it to ‘lock’ or ‘unlock’. There are crossing and non-
crossing varieties, abbreviated CWL (crossing wire lock) and NWL (non-crossing wire
lock).

2. Toggle–Lock: Traversing the toggle flips the lock tunnel between being passable and
impassable. Crossing the lock tunnel, by definition, does not change the state of the
gadget. Notice that one direction of the toggle corresponds to an open lock and the other
direction to the closed lock. There are crossing and non-crossing varieties, abbreviated
CTL (crossing toggle lock) and NTL (non-crossing toggle lock).

E.D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:5

(a) NWL (b) NTL (c) NWT (d) P2T (e) AP2T (f) C2T

Figure 2 Six of the nine deterministic reversible 2-state gadgets on two tunnels. We leave out
the CWL, CTL, and CWT gadgets as they are not heavily used in the paper.

3. Tripwire–Toggle: Here traversing either the tripwire or the toggle flips the direction of
the toggle. There are crossing and non-crossing varieties, abbreviated CWT (crossing
wire toggle) and NWT (non-crossing wire toggle).

4. Toggle–Toggle: Also known as a 2-toggle [4]. Traversing either toggle flips the direction
of both of them. This is the only case where there are two directed tunnels, leading
to three possibilities: crossing, parallel, and anti-parallel. They are abbreviated C2T
(crossing 2-toggle), P2T (parallel 2-toggle), and AP2T (anti-parallel 2-toggle).

In this paper we will often need to discuss putting gadgets together to create new behavior.
We will do so by creating a system of gadgets that is “equivalent” to some target gadget,
thereby “simulating” that gadget. Two systems of gadgets are equivalent if there is a bijective
correspondence between their locations and a correspondence between their states such
that the allowed transitions for all (locations, state) pairs are the same under these two
correspondences. We will say that a gadget or set of gadgets simulates a target gadget if it is
possible to combine gadgets from the set (possibly using duplicates) such that the resulting
system is equivalent to the target gadget. We will always implicitly allow the use of the
branching hallway gadget in these constructions. In all cases, these constructions will be
planar.

2.1 Closure Properties
I Lemma 2.1. Any system of gadgets composed of two reversible gadgets is reversible.

Proof. Consider any transition through the system formed by composing two reversible
gadgets. This transitions is a walk through the gadgets and connections that form a system.
Since both gadgets are reversible, it is possible for the robot to enact the exact reverse of
this walk after the walk is done. This will exactly reverse the effect of the walk within each
gadget. Thus, it is possible to reverse the entire transition.

Since every transition of the system can be reversed, the system is reversible. J

Since all of the gadgets we consider in this paper are reversible, Lemma 2.1 means our
systems will all be reversible as well.

I Lemma 2.2. Any system of gadgets composed of two deterministic reversible gadgets is
deterministic and reversible.

Proof. The state space of a reversible, deterministic gadget is an undirected matching of
some (state, location) pairs to each other. This a necessary and sufficient characterization of
reversible, deterministic gadgets.

When we compose two such gadgets, we create paths through the pair of gadgets. However,
no (state, location) pair has more than two edges: One connection to the other gadget, and

FUN 2018

18:6 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

one edge through its original gadget. Moreover, any (state, location) pair that forms an
external location has a most one edge, as it does not connect to the other gadget. As a
consequence, the path from any external location through the gadget is either a deterministic
path to another external location, or a dead end. There is no branching, as branching would
require a location with three edges.

Thus, the resultant object is deterministic. By Lemma 2.1 it is reversible as well. J

2.2 PSPACE Membership
I Lemma 2.3. Deciding puzzle solvability is in PSPACE.

Proof. The entire state of the system can be described by the current state of the gadgets
and the location of the agent. The gadgets have a polynomial number of states and there
can only be a polynomial number of gadgets. Since the entire state of the board fits in a
polynomial amount of space, we can non-deterministically search for a solution, showing
containment in NPSPACE. Savich’s Theorem [10] gives PSPACE = NPSPACE. J

3 2-toggle-lock and crossover motion planning is PSPACE-complete

In [4] we showed that motion planning with 4-toggles and crossovers is PSPACE-complete.
In that construction, the crucial gadget turned out to be a 2-toggle-lock, which is a 3-tunnel,
2-state gadget with two locks and a tunnel. The 4-toggle was not used in any way after the
construction of the 2-toggle-lock, showing that 2-toggle-locks and crossovers are PSPACE-
hard. For convenience we sketch the proof, with some refinement. One should refer to the
prior paper for a more detailed and rigorous proof.

I Definition 3.1. 3QSAT is the following decision problem. Given a fully quantified boolean
formula in prenex normal form and in conjunctive normal form with no more than three
variables per clause, decide whether the formula is true.

I Theorem 3.2. Motion planning with 2-toggle-locks and crossovers is PSPACE-hard.

We reduce from 3QSAT to motion-planning with 2-toggle-locks and crossovers. To do so we
need to construct clauses, universal variables, and existential variables. Literals will consist
of a 2-toggle-lock which will be set from the 2-toggle side and checked by passing through the
lock. Clauses are composed of a branching hallway that leads through each of its associated
literals.

Existential variables will be a branching hall with a group of toggle-locks in series. Passing
through in one direction opens the locks of the gadgets representing true literals of that
variable while closing the locks of the false ones. Going through the other way allows this to
be undone, as the system is reversible.

To construct universal quantifiers we connect up the 2-toggle sections as in Figure 3,
where each universal gadget consists of several antiparallel 2-toggles with locks. Each of these
gadgets sends the robot forward in one state or back to the beginning in the other state, and
flips the state. Repeatedly entering from the left iterates through all configurations of the
states, so the robot must check all of the possible values for the universal variables. The goal
state lies at the far end of the eries of universal gadgets.

For both the existentials and the universals, the variables are actually a long series of
2-toggle-locks with one lock for each literal of the variable in the formula.

When putting this all together, as in Figure 3, we need to ensure that the robot cannot
sneak back into the variable gadget and change existential settings it shouldn’t be allowed

E.D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:7

∀y1 ∃x1 ∀y2

y1 =? 0

∃x2 ∀y3

y2 =? 0
formula

∃x3

Figure 3 Structure of the QSAT reduction.

to access, namely those existentials beyond the universal it just emerged from. To do this
we construct a simple system that puts a lock on the return pathway at the end of each
universal variable which only allows passage if the prior variable is set to false. Since the
robot will have just exited from a variable which was set to true, this prevents the robot
from moving forward in the variable chain. In addition, all earlier variables are false allowing
the robot to travel back to the formula, since the universal gadgets take on incrementing
binary values with each loop through the gadget. Since those existential variables are ones
the robot was allowed to set to any value on the prior passage, going back and changing
them now gives no advantage over having set them to that value earlier.

This safeguard is the one difference from the prior construction, which checked the values
of all prior universal variables, requiring a quadratic blow-up in number of gadgets. The need
for crossovers and a 2D layout will still create a quadratic blowup in problem size overall,
but this simplification seemed worth noting and should allow for the 3D result to cause only
a linear blowup in problem size.

With this guard in place, the robot can only reach the goal state by demonstrating a
solution to the 3QSAT instance, after iterating through all settings of the universal gadget. J

4 Antiparallel 2-toggle motion planning is PSPACE-complete

We will show that the question of whether a robot in a system of antiparallel 2-toggle gadgets
can reach a specified goal location is PSPACE-complete. To do so, we will simulate various
other gadgets using AP2T gadgets, eventually simulating 2-toggle-locks and crossovers. Since
motion planning with 2-toggle-locks and crossovers is PSPACE-complete, this implies that
AP2T motion planning is PSPACE-complete.

I Theorem 4.1. Motion Planning with AP2T gadgets is PSPACE-complete.

We will simulate the gadgets needed for the PSPACE-completeness proof, and a wide
variety of other intermediate gadgets to help us get there. The steps are as follows:
1. Simulate a C2T, using AP2Ts. Lemma 4.2.
2. Simulate a P2T, using C2Ts. Lemma 4.3.
3. Simulate a NTL, using AP2Ts, C2Ts and P2Ts. Lemma 4.4.
4. Simulate various types of 2-toggle locks, with “round” and “stacked” internal connections.

The types of internal connections are described in Section 4.1, and the constructions are
given in Lemmas 4.6 and 4.7.

5. Simulate a NWL, using the stacked antiparallel 2-toggle lock. Lemma 4.8.
6. Simulate a stacked tripwire-lock-tripwire, using NWLs. Lemma 4.9
7. Simulate a crossover, using stacked tripwire-lock-tripwires. Lemma 4.10

FUN 2018

18:8 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

Figure 4 Anti-parallel 2-toggles simulate a crossing 2-toggle.

Figure 5 Crossing 2-toggles simulate a parallel 2-toggle.

With a 2-toggle lock and a crossover constructed, we can apply Theorem 3.2 to show
that motion planning with AP2Ts is PSPACE-hard. Adding in Lemma 2.3, we find that it is
PSPACE-complete.

I Lemma 4.2. Antiparallel 2-toggles (AP2Ts) simulate a crossing 2-toggle (C2T).

Proof. The construction is given in Figure 4. In the state of the construction shown in the
figure, there are two possible transitions: the robot can move from the upper left to the
bottom right of the construction, or from the upper right to the bottom left. Either of those
transitions toggles both AP2Ts, leaving the construction mirrored top to bottom. Thus, the
construction has two states. The possible traversals in one state (as shown above) are from
the top left to the bottom right and from the top right to the bottom left, while the possible
traversals in the other state are (by symmetry) from the bottom left to the top right and
from the bottom right to the top left. Following any of these traversals swaps the state of
the construction. Notice that this is exactly the behavior of a C2T.

If the robot enters the construction shown from the upper left, upon reaching the center
the robot can only proceed to the bottom right, or come back the way it came. Therefore, the
upper left to bottom right transition is the only possible transition from that location. By
symmetry, the same is true from top left to bottom right. Thus, the one traversal described
for each location in each state is the only one possible. J

I Lemma 4.3. Crossing 2-toggles (C2Ts) simulate a parallel 2-toggle (P2T).

Proof. The construction is given in Figure 5. In the state of the construction shown in
the figure, there are two possible transitions: the robot can move from the top left to the
top right of the construction, or from the bottom left to the bottom right. Either of these
transitions toggles both C2Ts, leaving the construction mirrored left to right. The allowed
traversals in one state (as shown above) are from the top left to the top right and from
the bottom left to the bottom right, while the allowed traversals in the other state are (by
symmetry) from the top right to the top left and from the bottom right to the bottom left.
Following any of these traversals swaps the state of the construction. Notice that this is
exactly the behavior of a P2T.

Since the system is composed entirely of C2Ts (without even branching hallways), which
are both reversible and deterministic, the result is also both reversible and deterministic, by
Lemma 2.2. Thus, the one transition described for each location in each state is the only
transition possible. J

E.D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:9

 1

3 4

2

5 6

Figure 6 2-toggles simulate 1-toggle-lock.

I Lemma 4.4. 2-toggles (AP2Ts, P2Ts and C2Ts) simulate a noncrossing toggle lock (NTL).

Proof. The construction is shown in Figure 6.
In this lemma, we will refer to toggles 1 and 2 in the figure as the “outer toggles”, toggles

3 and 4 as the “middle toggles”, and toggles 5 and 6 as the “bottom toggles”. We will call
the pathway through the lower tunnels of the bottom toggles the “bottom tunnel” of the
overall gadget, and the rest of the gadget the “middle tunnel” of the overall gadget.

An NTL has two externally observable states: locked, and unlocked. The locked state
corresponds to the upper tunnels of the bottom toggles oriented out, and the unlocked state
corresponds to the bottom toggles oriented in. The unlocked state is shown in Figure 6.

In this gadget, there are two internal states corresponding to each external state: with
the horizontal tunnels of the middle toggles both oriented left, and with both oriented right.
The only accessible states of this gadget are the states with the outer toggles oriented in, the
middle toggles oriented both left or both right, and upper pathways of the bottom toggles
oriented both in or both out. We will show that the gadget allows exactly the traversals of
the NTL from these configurations, and cannot be left in any other configuration.

The bottom tunnel traversals are straightforward — the bottom tunnel acts as a toggle,
and a traversal flips both bottom toggles, and hence the externally observable state.

Also clearly, the robot cannot move between the bottom tunnel and the middle tunnel.
Now, we wish to establish that in the unlocked state, the robot can always traverse the

middle tunnel in either direction. In the state shown, the middle tunnel may be traversed
from external location to external location as follows:

The robot can get across, left to right, by traversing the following toggles in the following
order: enter through toggle 1’s lower tunnel, down to toggle 5, up to toggle 4’s vertical
tunnel, through toggle 1’s upper tunnel, around the top to toggle 2’s top tunnel, back
down through toggle 4, back out through toggle 5, across through toggle 3’s horizontal
tunnel, then through toggle 4’s horizontal tunnel, then out through toggle 2’s lower
tunnel.
The robot can get across, right to left, by traversing the following toggles in the following
order: enter through toggle 2’s lower tunnel, down to toggle 6, up to toggle 4’s vertical
tunnel, through toggle 2’s top tunnel, around to toggle 1’s top tunnel, down through
toggle 3’s vertical tunnel, back out through toggle 6, across through toggle 4’s horizontal
tunnel, then through toggle 3’s horizontal tunnel, then out through toggle 1’s lower
tunnel.
If the middle toggles are in the opposite orientation, the system is simply mirrored, left
to right, and the traversals are still possible.

FUN 2018

18:10 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

Next, we wish to establish that the robot cannot cross the middle tunnel in the locked
state. After entering from either middle tunnel location, the only traversable toggles are the
middle toggles. After traversing those, the robot can go no further. The bottom toggles
can’t be traversed, so the entire middle region is inaccessible. As a consequence, the opposite
outer toggle’s upper pathway can’t be accessed. Therefore the robot can only leave via its
original location.

We also must establish that if the gadget starts in one of the configurations mentioned,
the robot must leave it in the proper state, and can’t leave it in a configuration that wasn’t
mentioned. This is straightforward for the bottom tunnel, so we will focus on the middle
two locations.

We will show that the accessible configurations of the gadget are exactly as described.
To do so, we will make use of the concept of a cut in a gadget.

I Lemma 4.5. Let A be a connected region of a planar embedding of a gadget system which
does not contain any locations. Then the boundary of A, which we will call a cut, is traversed
an even number of times during any traversal of the construction.

Proof. Whenever the boundary of A is crossed, the robot goes from inside A to outside or
vice versa. Since the robot starts a traversal outside A and ends it outside A, it must cross
the boundary an even number of times. J

The upper pathways of the outer toggles form a cut, and the lower pathways of the outer
toggles form a cut. Thus, the upper pathways of the outer toggles are crossed an even number
of times, and the lower pathways are passed an even number of times, so the outer toggles
must be passed an even number of times in total. Thus, the toggles must either be both
oriented in or both out when leaving. However, when leaving the gadget, the outer toggle
which the robot exited through must end up oriented in, so both outer toggles must end up
oriented in.

The vertical pathways of the middle toggles form a cut. The horizontal pathways form a
cut. Thus, upon leaving, the middle toggles must have been traversed an even number of
times in total, and hence must end up both left or both right.

The upper pathways of the bottom toggles must be passed an even number of times. So
the upper pathways of those toggles must either be both in or both out when leaving the
gadget system.

Thus, the gadget system must be left in a state where the outer toggles are oriented in,
the middle toggles are oriented either both left or both right, and the upper pathways of
the bottom toggles are oriented either both in or both out. Therefore, these are exactly the
accessible configurations, as desired.

Finally, we show that the robot leaves the gadget in the same state it was entered in,
if it is entered on the middle tunnel. If the robot passes through one of the upper tunnels
of the bottom toggles, when it leaves the region bounded by the bottom toggles’ upper
tunnels, it must leave one of the bottom toggle’s upper tunnels oriented in. By the parity
constraint, both bottom toggles’ upper tunnels will be oriented in, thus leaving the gadget in
the unlocked state. If the central tunnels are entered in the unlocked state, they will be left
in the unlocked state. In the locked state, the upper tunnels of the bottom toggles cannot be
passed, and so the gadget will be left in the locked state.

Thus, the construction correctly simulates a NTL. J

E.D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:11

Figure 7 Round antiparallel 2-toggle-lock construction.

4.1 2-toggles and non-crossing toggle locks simulate 2-toggle locks
We introduce some new three tunnel objects. There are several distinct planar topologies of
the tunnels in a three tunnel object. We will focus on the two topologies which can be drawn
with no internal crossing tunnels: three tunnels around the perimeter, and three tunnels in
parallel. We will call the former a “round” topology, and the latter a “stacked” topology.
Note that in the stacked topology, the order of the tunnels is relevant. In either topology, if
there are multiple toggles, the relative orientation must still be specified.

I Lemma 4.6. 2-toggles and noncrossing toggle locks simulate a round antiparallel 2-toggle-
lock (RAP2TL) and a round parallel 2-toggle-lock (RP2TL).

Proof. The construction shown in Figure 7 simulates the behavior of a round antiparallel 2-
toggle-lock. It has two externally accessible states: as shown, and with the middle two gadgets
flipped. These correspond to the 2-toggle of the RAP2TL being pointed counterclockwise
and clockwise respectively.

We will demonstrate that this gadget is equivalent to a RAP2TL by examining all possible
traversals. From the two locations that are on the lock tunnel of the NTL, the only possible
traversals are to each other, if the lock tunnel is unlocked. This forms the lock tunnel of the
RAP2TL.

Traversals from the top left location: The robot must go down and to the right, due to
the orientation of the toggle of the NTL. Then, the robot can go through the C2T, at which
point it is blocked by the orientation of the bottom P2T. Thus, no traversal is possible from
this location in this state.

Traversals from the top right location: The robot can go through the C2T, then through
the NTL. At this point, the robot cannot go through the C2T again, because the C2T has
been toggled. Therefore, its only option is to go through the upper P2T and leave at the
top left location. This traversal toggles both of the middle two gadgets, and toggles the
upper P2T twice. Thus, the external state of the gadget is flipped. This is the equivalent of
traversing the upper toggle of the RAP2TL that we are simulating.

Traversals from the bottom left location: The robot must go up and to the left, due to
the orientation of the C2T. Then, the robot can go through the NTL. Due to the orientation
of the upper P2T, the robot must now go through the C2T. Now, the robot can leave at the

FUN 2018

18:12 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

Figure 8 A round parallel 2-toggle lock
is used to construct a stacked antiparallel
2-toggle lock.

Figure 9 A noncrossing tripwire lock con-
structed from an anti-parallel 2-toggle and
lock with the lock on the side.

bottom right location. This traversal toggles both of the middle two gadgets, and toggles
the lower P2T twice. Thus, the external state of the gadget is flipped. This is the equivalent
of traversing the lower toggle of the RAP2TL that we are simulating.

Traversals from the bottom right location: The robot is blocked by the orientation of the
C2T. Thus, no traversal is possible from this location in this state.

The opposite state is equivalent to a top-bottom mirror reversal, except for a change
in the state of the lock, which does not affect which traversals are possible. Thus, in every
state, this system of gadgets is equivalent to a round antiparallel two-toggle-lock (RAP2TL).

Consider the gadget which is the same as the one in Figure 7, except that the bottom P2T
is replaced with a C2T with its toggles allowing traversals from the bottom locations into
the gadget. Clearly, the effect of this change is to swap the roles of the bottom two locations.
As a result, this new construction is a round parallel two-toggle-lock, a RP2TL. J

I Lemma 4.7. RP2TLs and 2Ts simulate a stacked antiparallel 2-toggle-lock (SAP2TL).

Proof. A SAP2TL is a three tunnel gadget where the three tunnels cross the gadget in
parallel, with the two antiparallel toggle tunnels next to each other.

Starting with a RP2TL and two C2Ts, we can simulate a SAP2TL as shown in Figure 8.
The lock tunnel is straightforward. The two other traversals are from the top left to the
bottom left, and from the bottom right to the top right. Both of these traversals pass through
every gadget. In the other state, all three gadgets are flipped, and the same traversals are
possible in the opposite direction.

Since every state-affecting traversal traverses all gadgets, the states of the three gadgets
always switch together, and the behavior is that of an SAP2TL. Equivalently, by Lemma 2.2,
the system of gadgets is deterministic and reversible, so the three traversals mentioned are
the only ones possible, and the construction simulates a SAP2TL. J

4.2 2-toggle locks simulate non-crossing wire locks
I Lemma 4.8. AP2TLS simulates a NWL.

Proof. By connecting the locations of the SAP2TL as shown in Figure 9, we can simulate a
NWL.

Each traversal of either connected toggle tunnel flips the state. The connections between
these two tunnels ensure that travel in either direction is always possible. As a result, the

E.D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:13

Figure 10 A stacked tripwire-lock-tripwire
constructed from non-crossing tripwire locks.

Figure 11 A crossover constructed from
stacked tripwire-lock-tripwires.

combination of these connected pathways acts as a tripwire, always allowing the robot to
pass in either direction and opening or closing the lock with each traversal. J

4.3 Non-crossing wire locks simulate crossovers
On our way to simulating a crossover, we will simulate another three tunnel gadget, a stacked
tripwire-lock-tripwire (SWLW). Note that the lock tunnel is specifically the center tunnel.

I Lemma 4.9. NWLs simulate a stacked tripwire-lock-tripwire (SWLW).

Proof. The construction is shown in Figure 10. There are four accessible states of this
gadget, which are any of the states where there is one locked and one unlocked NWL among
the two top NWLs, and one of each among the two bottom NWLs.

The states can only be changed by traversing the tripwire tunnels, and doing so flips
both NWLs on the side traversed, maintaining the invariant.

If both left NWLs are locked, or both right NWLs are locked, the center tunnel is not
passable. In the other two accessible states, the center tunnel is passable. The two pairs
correspond to the two external states, with the lock locked and unlocked respectively. In any
state, traversing either tripwire moves the gadget to a state with the opposite passability of
the lock tunnel. Thus, this construction simulates a SWLW. J

I Lemma 4.10. SWLWs simulate a crossover.

Proof. The gadget shown in Figure 11 implements a crossover. The robot may always cross
from left to right, right to left, top to bottom and bottom to top, but in no other directions.
There is a single accessible state, the one with all four SWLWs in the unlocked state.

When the robot enters from any of the four external locations it has only a single option
up until the point where it reaches the four-way intersection at the center. Upon reaching
this point, the robot has traversed the tripwire tunnels of two of the SWLWs, locking them.
In particular, the SWLWs whose lock tunnels are on the two orthogonal pathways are locked.
For instance, if the robot entered from the top, the left and right pathway’s SWLWs would
be locked at this point. As a result, the only way for the robot to continue is to go straight,
passing through the other tripwires of the same two SWLWs, and emerging from the other
side. The robot has completed a crossover traversal, with no other options.

Because the robot passed through the tripwires of two SWLWs twice, and only the lock
tunnels of the other two SWLWs, the object is left in its original state, making the state shown
in Figure 11 the only accessible state. This construction correctly simulates a crossover. J

For the PSPACE-completeness result, we make use of 2-toggle locks and crossovers.
Combining the lemmas in Section 4, we have the result we will make use of:

FUN 2018

18:14 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

I Theorem 4.11. AP2Ts simulate crossovers and all 2-toggle-locks.

Proof. By composing the lemmas in Section 4, we see that AP2Ts simulate crossovers and
RAP2TLs. By using the crossover to effectively rearrange locations, we can simulate an
arbitrary 2-toggle-lock. J

5 Everything simulates everything else

The remaining gadgets of interest are each individually (when combined with branching
hallways) sufficient to make motion planning problems PSPACE-complete. Moreover, each
gadget can be simulated by a constant number of each other gadget. To prove this, we give
simple gadgets to show how to construct noncrossing-tripwire-toggles from anti-parallel-2-
toggles, and anti-parallel 2-toggles from each of noncrossing-toggle-locks, noncrossing-wire-
locks, noncrossing-wire-toggles and parallel-2-toggles. We then show that a crossing version
of a gadget can very simply make a non-crossing version of the same gadget.

I Theorem 5.1. The 2-toggles, toggle-locks, tripwire-locks and tripwire-toggles, in all orien-
tations, can each simulate each other.

Proof. We have already established that AP2Ts can simulate P2Ts, C2Ts, NTLs and NWLs
and crossovers. We will establish that:

AP2Ts can simulate NWTs. Lemma 5.3.
P2Ts, NTLs, NWTs and NWLs can each simulate AP2Ts. Lemmas 5.4, 5.5, 5.6, 5.7,
respectively.
C2Ts can simulate P2Ts by Lemma 4.3, and hence AP2Ts as well.
CTLs can simulate NTLs, CWLs can simulate NWLs, and CWTs can simulate NWTs.
Lemma 5.8.

Thus, every gadget can simulate AP2Ts, and AP2Ts can simulate every non-crossing gadget,
as well as crossovers. By combining non-crossing gadgets with crossovers, AP2Ts can simulate
every gadget. This gives a simulation of every gadget by every other gadget, via AP2Ts as
an intermediate step. J

I Corollary 5.2. Motion planning with any one of the gadgets in Theorem 5.1 (and branching
hallways) is PSPACE-complete.

Proof. Corollary 5.2 follows from Theorem 5.1, which establishes that each gadget can
simulate a AP2T, and Theorem 4.1, which establishes that motion planning with AP2Ts is
PSPACE-complete. J

I Lemma 5.3. AP2Ts simulate an NWT.

Proof. We will construct a NWT as shown in Figure 12. This requires NWLs, crossovers,
and 1-toggles. We already have existing constructions of NWLs and crossovers with AP2Ts.
We can also build a 1-toggle with an AP2T simply by ignoring one of the two tunnels. Thus,
all that’s left is to show that the construction successfully simulates a NWT.

There are four accessible states: As shown in Figure 12, with all of the NWLs flipped, with
the toggle flipped, and with everything flipped. The first and last correspond to the external
state where the toggle is pointed right, while the other two correspond to the external state
where the toggle is pointed right. The horizontal tunnel corresponds to the toggle, while the
U-shaped tunnel corresponds to the tripwire in the composed gadget. In the state shown in
the figure, the toggle is oriented to the right from the external perspective.

E.D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:15

Figure 12 A noncrossing wire toggle constructed from a toggle, four noncrossing tripwire locks,
and two crossovers.

Figure 13 Parallel 2-toggles simulate anti-parallel 2-toggles.

Clearly, traversing the U-shaped tunnel will flip all of the tripwires of the NWL, resulting
in a state which corresponds to the opposite external state, as desired.

In the state shown in the figure, the horizontal tunnel may be traversed from left to right
along a unique pathway due to the placement of the locks, flipping the toggle along the way.
The orientation of the toggle blocks the right to left traversal. Thus, in this state, the upper
tunnel may be traversed in one direction resulting in an allowed state which corresponds to
the opposite external state, as desired.

Placing the toggle in the opposite state is equivalent to a rotation by π of the upper
tunnel, showing this state also correctly simulates an NWT.

Flipping the states of all of the NWLs is equivalent to a vertical reflection of the upper
tunnel, showing this state also correctly simulates an NWT. J

I Lemma 5.4. P2Ts simulate an AP2T.

Proof. Figure 13 gives a construction of an antiparallel-2-toggle out of parallel-2-toggles.
There are two accessible states: As shown, and with the four inner P2Ts flipped. The

former corresponds to the AP2T having a tunnel connecting the left two locations with its
toggle oriented upward, and a tunnel connecting the right locations with its toggle oriented
downward, while the latter corresponds to the two toggles flipped.

FUN 2018

18:16 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

Figure 14 Noncrossing-toggle-lock simulates anti-parallel-2-toggle.

First, let us examine the bottom right location in the state shown in the figure. After
passing the rightmost P2T, the robot is blocked. No transitions or state changes are possible.
This matches the desired behavior, because the right toggle in the AP2T being simulated is
oriented down.

Next, let us examine the top right location in the state shown in Figure 13. After passing
the rightmost P2T, then the upper right P2T, the robot may now either proceed along the
top tunnel, or down to the central loop. In the former case, the robot may pass through the
upper left P2T, but then is blocked. In the later case, the robot may either proceed around
the loop to the left or to the right. If the robot goes to the right, it can pass through the
lower tunnel of the upper right P2T, but then is stuck. If the robot goes to the left, it can
pass through the lower tunnel of the upper left P2T, then the upper tunnel of the lower left
P2T.

At this point, the robot may either continue around the loop, or exit the loop downward.
If the robot continues around the loop, it can pass through the upper tunnel of the lower
right P2T, but then is stuck. If it exits the loop, it can either go left or right on the bottom
tunnel. If it goes left, it can pass through the lower tunnel of the lower left P2T, but then is
stuck. If it goes right, it can pass through the lower tunnel of the lower right P2T, then the
lower tunnel of the rightmost P2T, and exit the gadget.

Overall, we observe that the robot can make exactly one transition, from top right to
bottom right. The right toggle is traversed twice, and the inner toggles are all traversed
once, leaving the gadget in the other accessible state. No other transition or state change is
possible, from that entrance.

Since the gadget is rotationally symmetric about its center, the possible transitions from
the right mirror the possible transitions from the left. Since the other state is simply the state
shown in the figure mirrored top-to-bottom, the transitions described mirror the transitions
in the other state as well. J

I Lemma 5.5. NTLs simulate an AP2T.

Proof. The construction is shown in Figure 14. The two accessible states are the state shown
in the figure and the state with all of the NTLs flipped, but the one-toggles still oriented
inward. These correspond to an AP2T with the top tunnel directed left and bottom tunnel
directed right, and the left-right mirror image.

If the robot enters from the top right, after passing the lock of the top right NTL, it
must pass the upper one-toggle and proceed into the central loop. Since the lower toggle is
directed upward, the robot must eventually leave the central loop via the upper toggle. The
robot may now proceed around the loop. The loop may only be traversed counterclockwise,
and it may only be traversed once. The robot may of course backtrack at any point, but
when it leaves via the upper toggle, it must have either traversed the loop zero or one times.

E.D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:17

Figure 15 Noncrossing-wire-toggle simulates anti-parallel-2-toggle.

In the former case, the robot must leave via the top right location, leaving the system in
its original state. In the latter case, the robot must leave via the top left location, as all of
the locks have flipped. Thus, the top tunnel may be traversed via a right to left traversal,
flipping the state, and that is the only traversal in that direction.

If the robot enters from the top left, it is immediately blocked by the lock, and no traversal
is possible. Thus, the top tunnel works as desired.

Since the gadget possesses rotational symmetry around its center, the bottom tunnel is
exactly the same, allowing only a left to right traversal, flipping the state.

The opposite state is the same as the original state except for a left-right right mirror
reversal, so it also functions exactly as desired from the AP2T. J

I Lemma 5.6. NWTs simulate an AP2T.

Proof. A noncrossing wire toggle can simulate an anti-parallel 2-toggle with the simple
construction shown in Figure 15. The direction of each tunnel is dictated by the toggle on
the tunnel, and the wire ensures both toggles are synchronized. Thus when either tunnel is
traversed, both NWTs flip and the direction each tunnel can be traversed flips. J

I Lemma 5.7. NWLs simulate an AP2T.

Proof. The construction of an anti-parallel 2-toggle from non-crossing tripwire locks can
be seen in Figure 16. Note that a 1-toggle can be constructed from an NWL by simply
connecting one location of the wire to one location of the lock. A closed lock will prevent
travel in one direction, but crossing the tripwire in the other direction will open the lock
and allow the robot to proceed. An open lock will allow travel in the other direction. In
the direction starting from the tripwire, the tripwire will close the lock in front of the robot
preventing traversal. In either traversal, the tripwire is crossed, flipping the state.

There are two main parts to this gadget, the top and bottom tunnels, and the inner
loop. As with the NTL construction from Lemma 5.5, the 1-toggles ensure that the loop
must be exited from the same place it was entered, which ensures all gadgets on the loop are
traversed the same number of times. Since all wires are on this loop, in a given traversal of
this gadget system, all of the NWLs will change state the same number of times, keeping
them in sync. The upper and lower paths each contain a locked and unlocked tunnel. The
locked portion prevents entry and interaction with the gadget. From the unlocked side, the
robot is able to enter the gadget and flip its state an arbitrary number of times. If the state
is flipped an even number of times, the robot’s only path out is the way it came. If an odd
number of flips have occurred, the robot can now exit through the opposite side of its path,
leaving the gadget in the opposite state.

Therefore, the gadget may traversed right to left along the top tunnel, flipping the state,
and left to right along the bottom tunnel, flipping the state. We have built an AP2T. J

I Lemma 5.8. CWTs simulate an NWT, CWLs simulate an NWL, CTLs simulate an NTL.

FUN 2018

18:18 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

Figure 16 Noncrossing-wire-lock simulates anti-parallel-2-toggle.

Figure 17 Crossing 2-toggles simulate parallel 2-toggle.

In general, one can very easily simulate a non-crossing version of a 2-tunnel gadget from
the crossing version. Figure 17 shows a parallel-2-toggle being constructed from a crossing-
2-toggle. The same construction works for uncrossing the other gadgets we have analyzed,
namely tripwire-toggles, tripwire-locks and toggle-locks. Going from non-crossing to crossing
versions is significantly more complicated (except in the case of anti-parallel-2-toggle to
crossing-2-toggle) but we are rescued from the need of such constructions by being able to
simulate a general crossover in Lemma 4.10.

6 More reasons Zelda is hard

In this section we use this framework to give an alternate proof that The Legend of Zelda:
Oracle of Seasons is PSPACE-complete. Along the way, we will show that motion planning
with reversible deterministic gadgets we call ‘spinners’ is also PSPACE-complete.

A k-spinner is a two state deterministic reversible gadget on k locations. In one state,
each location is connected to its neighbor by a directed edge in a clockwise direction. In the
other state, all locations are likewise connected in a counterclockwise direction. A 4-spinner
is shown in Figure 18. The study of 4-spinners was posed by Jeffrey Bosboom due to
their appearance in The Legend of Zelda: Oracle of Seasons. We show that for any k ≥ 4,
path-planning problems with k-spinners and branching hallways is PSPACE-complete.

First, we can take a k spinner and have all but three consecutive locations lead to dead
ends. The remaining three locations form a gadget that we call a deterministic fork. A
deterministic fork is a reversible, deterministic gadget on three locations. In one state, it
allows the robot to go from the center to the right location and return from the left to
the center location. In the other state these directions are reversed. Figure 19 shows the
construction of a crossing 2-toggle from two 4-spinners or equivalently two deterministic
forks.

I Theorem 6.1. For any k ≥ 4, the path-planning problem with k-spinners and branching
hallways is PSPACE-complete.

Proof. We construct a deterministic fork by ignoring k − 3 of the edges in the spinner.
Two deterministic forks together simulate a crossing 2-toggle as shown in Figure 19. By
Corollary 5.2, the motion planning problem with crossing 2-toggles is PSPACE-complete. J

E.D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:19

Figure 18 Example of a 4-spinner in The
Legend of Zelda: Oracle of Seasons.

Figure 19 4-spinners simulate deterministic
forks which simulate crossing 2-toggles.

I Corollary 6.2. Determining if a player can beat a level in generalized The Legend of Zelda:
Oracle of Seasons is PSPACE-hard.

Proof. The Legend of Zelda: Oracle of Seasons contains 4-spinners and requires the player
to navigate from one location to a target location in a grid. Since planar graphs can be laid
out in a grid with only quadratic blowup [2], we can reduce from motion planning problems
with 4-spinners which are PSPACE-complete by Theorem 6.1. J

The complexity of motion planning with 3-spinners, as well as the two other reversible,
deterministic, 2 state, 3 location gadgets, remains open. Since 2-spinners are the same as an
edge in a graph, this would give a tight characterization for the spinner gadget. The authors
would also be interested to know what other games and puzzles use spinners.

7 General hardness characterization

Here, we tightly characterize the hardness of the motion planning problem with all determin-
istic, reversible, 2-state, k-tunnel gadgets.

I Theorem 7.1. Motion planning with any deterministic, reversible, 2-state, k-tunnel planar
gadget (with branching hallways) is PSPACE-complete if and only if the gadget has two toggle
tunnels, a toggle tunnel and a tripwire tunnel, a toggle tunnel and a lock tunnel or a tripwire
tunnel and a lock tunnel. Motion planning with all other such gadgets is in P.

First, we provide upper bounds for some classes of simpler gadgets. This shows that, for
their category, our hardness results are minimal in the sense that path planning with simpler
gadgets in the same class can be solved in P.

I Theorem 7.2. Gadgets with only one state are in NL.

Proof. One state gadgets cannot change in any way. Thus they must all be comprised of
static descriptions of allowed traversals from one location to another. This can be modeled
as a mixed graph. Path planning in mixed graphs is in NL [10]. J

The only nontrivial gadget on 1 tunnel with two states which is reversible and deterministic
is the 1-toggle.

I Theorem 7.3. Motion planning with 1-toggles is in NL.

FUN 2018

18:20 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

Proof. We reduce this problem to ST connectivity in mixed graphs. To solve this problem
we simply treat every 1-toggle as a directed edge pointed in the direction the 1-toggle is
initially oriented and then run the standard algorithm. It is obvious that if a solution here
exists then a path in the 1-toggle planning problem also exists. What is less clear is that
this is sufficient to find any such path.

Consider a path which traverses at least one toggle more than once. Consider the last
toggle on the path which is traversed more than once. After this toggle is traversed, only
toggles which are traversed at most once are on the path. Call this toggle t, and let its final
traversal be from u to v. Since t was traversed repeatedly, there was some previous point
in the path where the robot was at v, before it traversed t the second-to-last time. Let us
create a new path where the robot skips the cycle in the original path from v through t to u,
then eventually back to u through t to v. This path must successfully reach the end, as every
toggle after t is traversed at most once, and so is in the same state regardless of whether the
cycle is omitted.

Thus, under the assumption that there is a path which traverses toggle more than once,
there is another, shorter path. Thus, the shortest path must not traverse toggles more than
once, and so such a path must exist if any path exists. J

The remaining two-state two-tunnel deterministic reversible gadgets are also in P. We note
that a wire-wire never changes its connectivity and is thus no different then two undirected
edges. A lock-lock can never change its state and thus is reducible to a one state gadget,
simply zero, one, or two undirected edges. A gadget with a tunnel which does not change
and is not changed by the state of the gadget is reducible to two gadgets on one tunnel each,
which are in P by Theorem 7.3. This exhausts the 2-state 2-tunnel reversible undirected
gadgets.

Proof of Theorem 7.1. Now, we can characterize all two state, deterministic, reversible
gadgets on any number of tunnels.

Any gadget with two toggle tunnels, a toggle tunnel and a tripwire tunnel, a toggle tunnel
and a lock tunnel or a tripwire and a lock tunnel is sufficient to make motion planning hard,
by ignoring all other tunnels and using one of the constructions from this paper.

We can divide all other gadgets into three categories: those with tripwires and trivial
tunnels, those with locks and trivial tunnels, and those with a single toggle and trivial
tunnels. The passability of a tunnel in a gadget with only tripwires and trivial tunnels never
changes, making motion planning equivalent to st-connectivity. A gadget with only locks
and trivial tunnels can never have its state change, allowing us to apply Theorem 7.2. A
gadget with a single toggle and some number of trivial tunnels can be treated as a one-toggle
together with some number of undirected edges. Thus, any system of gadgets of these types
is equivalent to a system of 1-toggles and undirected edges. After that, the same argument
as in Theorem 7.3 can be used to solve the motion planning problem in that system. J

8 Open Problems / Conclusion

This framework for abstract motion planning problems leaves open the question of the
computational complexity of motion planning with many other types of gadgets. One can
examine gadgets with more states, without the tunnel restriction, or without the deterministic
and reversible restrictions. Since this is a vast undertaking with many of the gadgets and
their combinations likely to be uninteresting, we suggest some of the following categories to
be of particular interest.

E.D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:21

3 spinners are the only size of spinner for which motion planning remains open.
Three location, 2-state, deterministic, reversible gadgets seem like the obvious ‘simplest’
category of gadgets.
Are there any sets of purely deterministic and reversible gadgets for which motion planning
is PSPACE-complete (e.g. without branching hallways, which are non-deterministic)?
What about reversible but nondeterministic gadgets on two tunnels or three locations?

There is currently significant partial progress on all of the listed topics. Please contact us
before spending significant time working on the open problems listed to prevent duplication
of effort.

References
1 Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo games

are (computationally) hard. Theoretical Computer Science, 586:135–160, 2015. Originally
at FUN 2014.

2 Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a
grid. Combinatorica, 10(1):41–51, 1990. doi:10.1007/BF02122694.

3 Erik D. Demaine, Martin L. Demaine, Michael Hoffmann, and Joseph O’Rourke. Pushing
blocks is hard. Computational Geometry: Theory and Applications, 26(1):21–36, August
2003.

4 Erik D. Demaine, Isaac Grosof, and Jayson Lynch. Push-pull block puzzles are hard.
In Dimitris Fotakis, Aris Pagourtzis, and Vangelis Th. Paschos, editors, Algorithms and
Complexity - 10th International Conference, CIAC 2017, Athens, Greece, May 24-26, 2017,
Proceedings, volume 10236 of Lecture Notes in Computer Science, pages 177–195, 2017.
doi:10.1007/978-3-319-57586-5_16.

5 Erik D. Demaine, Robert A. Hearn, and Michael Hoffmann. Push-2-f is pspace-complete.
In Proceedings of the 14th Canadian Conference on Computational Geometry, pages 31–35,
Lethbridge, Alberta, Canada, August 12–14 2002.

6 Erik D. Demaine, Giovanni Viglietta, and Aaron Williams. Super Mario Bros. is hard-
er/easier than we thought. In Proceedings of the 8th International Conference on Fun with
Algorithms, pages 13:1–13:14, La Maddalena, Italy, June 8–10 2016.

7 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

8 Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. A. K. Peters,
Ltd., Natick, MA, USA, 2009.

9 André Grahl Pereira, Marcus Ritt, and Luciana S. Buriol. Pull and pushpull are pspace-
complete. Theor. Comput. Sci., 628:50–61, 2016. doi:10.1016/j.tcs.2016.03.012.

10 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complex-
ities. J. Comput. Syst. Sci., 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)80006-X.

11 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing, pages 216–226, San Diego, California,
May 1978.

FUN 2018

http://dx.doi.org/10.1007/BF02122694
http://dx.doi.org/10.1007/978-3-319-57586-5_16
http://dx.doi.org/10.1016/j.tcs.2016.03.012
http://dx.doi.org/10.1016/S0022-0000(70)80006-X

The Computational Complexity of Portal and
Other 3D Video Games
Erik D. Demaine
MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
edemaine@mit.edu

Joshua Lockhart1

Department of Computer Science, University College London, London, WC1E 6BT, UK
joshua.lockhart.14@ucl.ac.uk

Jayson Lynch
MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge,
MA 02139, USA
jaysonl@mit.edu

Abstract
We classify the computational complexity of the popular video games Portal and Portal 2. We
isolate individual mechanics of the game and prove NP-hardness, PSPACE-completeness, or
pseudo-polynomiality depending on the specific game mechanics allowed. One of our proofs
generalizes to prove NP-hardness of many other video games such as Half-Life 2, Halo, Doom,
Elder Scrolls, Fallout, Grand Theft Auto, Left 4 Dead, Mass Effect, Deus Ex, Metal Gear Solid,
and Resident Evil. These results build on the established literature on the complexity of video
games [1, 3, 7, 18].

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases video games, hardness, motion planning, NP, PSPACE

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.19

Related Version https://arxiv.org/abs/1611.10319

Acknowledgements All raster figures are screenshots from Valve’s Portal or Portal 2, either using
Portal 2’s Puzzle Maker or by way of the Portal Unofficial Wiki (http://theportalwiki.com/).

1 Introduction

In Valve’s critically acclaimed Portal franchise, the player guides Chell (the game’s silent
protagonist) through a “test facility” constructed by the mysterious fictional organization
Aperture Science. Its unique game mechanic is the Portal Gun, which enables the player
to place a pair of portals on certain surfaces within each test chamber. When the player’s
avatar jumps into one of the portals, she is instantly transported to the other. This mechanic,
coupled with the fact that in-game items can be thrown through the portals, has allowed
the developers to create a series of unique and challenging puzzles for the player to solve as
they guide Chell to freedom. Indeed, the Portal series has proved extremely popular, and is
estimated to have sold more than 22 million copies [2, 20].

1 Work started while author was at School of Electronics, Electrical Engineering and Computer Science,
Queen’s University, Belfast, BT7 1NN, UK

© Erik D. Demaine, Joshua Lockhart, and Jayson Lynch;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 19; pp. 19:1–19:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:edemaine@mit.edu
mailto:joshua.lockhart.14@ucl.ac.uk
mailto:jaysonl@mit.edu
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.19
https://arxiv.org/abs/1611.10319
http://theportalwiki.com/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 The Computational Complexity of Portal

Table 1 Summary of new Portal complexity results

Mechanics Portals Long fall Complexity

Emancipation Grills, No Terminal Velocity Yes Yes Weakly NP-comp. (§4)
Turrets No Yes NP-hard (§5)
Timed Door Buttons and Doors No No NP-hard (§6)
HEP Launcher and Catcher Yes No NP-hard (§7)
Cubes, Weighted Buttons, Doors No No PSPACE-comp. (§8)
Lasers, Relays, Moving Platforms Yes No PSPACE-comp. (§9)
Gravity Beams, Cubes, Weighted Buttons, Doors No No PSPACE-comp. (§9)

We analyze the computational complexity of Portal following the recent surge of interest
in complexity analysis of video games and puzzles. Examples of previous work in this
area includes NP-completeness of Tetris [5], PSPACE-completeness of Lemmings [19] and
Super Mario Bros. [6], and hardness of many other classic video games [7, 18]. See also the
surveys [4, 9, 11].

In this paper, we explore how different game elements contribute to the computational
complexity of Portal 1 and Portal 2 (which we collectively refer to as Portal), with an
emphasis on identifying gadgets and proof techniques that can be used in hardness results for
other video games. We show that a generalized version of Portal with Emancipation Grills is
weakly NP-hard (Section 4); Portal with turrets is NP-hard (Section 5); Portal with timed
door buttons and doors is NP-hard (Section 6); Portal with High Energy Pellet launchers
and catchers is NP-hard (Section 7); Portal with Cubes, Weighted Buttons, and Doors is
PSPACE-complete (Section 8); and Portal with lasers, laser relays, and moving platforms is
PSPACE-complete (Section 8).

Table 1 summarizes these results. The first column lists the primary game mechanics
of Portal we are investigating. The second and third column note whether the long fall or
Portal Gun mechanics are needed for the proof. Section 2 provides more details about what
these models mean. The turret proof generalizes to many other video games, as described in
Section 5.4.

2 Definitions of Game Elements

Portal is a single-player platform game: a game with the goal of navigating the avatar from
a start location to an end location of a series of stages, called levels. The gameplay in Portal
involves walking, turning, jumping, crouching, pressing buttons, picking up objects, and
creating portals. The locations and movement of the avatar and all in-game objects are
discretized. For convenience we make a few assumptions about the game engine, which we
feel preserve the essential character of the games under consideration, while abstracting
away certain irrelevant implementation details in order to make complexity analysis more
amenable:

Positions and velocities are represented as triples of fixed-point numbers in Cartesian
coordinates.2 Each velocity vector is limited in magnitude by a terminal velocity vmax .

2 The actual game uses floats in many instances. We claim that all our proofs work if we round the
numbers involved, and only encode the problems in the significand.

E.D. Demaine, J. Lockhart, and J. Lynch 19:3

Time is discretized and represented as a fixed-point number. Parameter δ defines the
amount of time advanced during each simulation time step.
At each time step, there is only a constant number of possible user inputs: button presses
and the cursor position. The user is able to apply any of these inputs within a time step.
The cursor position is represented by two fixed-point numbers in spherical coordinates.
At each time step, we update all objects’ positions and velocities as follows:

Update velocities based on acceleration from user commands and from gravity: ~vt+1 =
~vt + δ(~ainput + ~aγ) where ~aγ = [0, 0,−γ] and g is a constant.
If a velocity vector ~vt+1 has magnitude > vmax , scale it down to have magnitude vmax .
Update positions according to these velocities: ~pt+1 = ~pt + δ~v.
Check for collisions by extruding the objects into a fourth temporal dimension by δ
and checking for intersection of those objects.3

For the purposes of this paper, we define a collision model only between single moving
objects and non-moving objects, as this is all we need in our proofs possibly involving
collisions (Sections 4 and 7). We ignore details of more complex collisions as they are
not relevant to our results.
For an inelastic collision between a moving object A and a non-moving object B, we
calculate the first time δ′ ≤ δ at which the objects would intersect, and move A instead
to this position (scaling the velocity vector by δ′ instead of δ). Then we project A’s
velocity vector onto the surface of B at the point of intersection.
For an elastic collision, we similarly calculate the first time of intersection and update
the position of A, but update the velocity vector instead to its reflection off of the
surface at the point of intersection.
If an object passes through a portal, its velocity vector is rotated by the rotation that
brings the entering portal frame to the exiting portal frame.

Portals from the portal gun and bullets from turrets are resolved instantaneously in a
single time step by line-of-effect rather than any ballistic simulation.4

In Portal, a level is a description of the polygonal surfaces in 3D defining the geometry of
the map, along with a simulation rate and a list of game elements with their locations and,
if applicable, connections to each other. In general, we assume that the level can be specified
succinctly as a collection of polygons whose coordinates may have polynomial precision,
(and thus so can the player coordinates), and thus exponentially large values (ratios). This
assumption matches the Valve Map Format (VMF) used to specify levels in Portal, Portal 2,
and other Source games [16]. A realistic special case is where we aim for pseudopolynomial
algorithms, that is, we assume that the coordinates of the polygons and player are assumed
to have polynomial values/ratios (logarithmic precision), as when the levels are composed of
explicit discrete blocks. This assumption matches the voxel-based P2C format sometimes
used for community-created Portal 2 levels [15].

In this work, we consider the following decision problem, which asks whether a given
level has a path from the given start location the end location.

I Problem 1. Portal
Parameter : A set of allowed gameplay elements.

3 This approach is precise, and should reasonably capture the relevant dynamics in the game, but
computationally inefficient and likely not how collision detection is performed in practice.

4 The end of Portal 2 gives a very large lower bound on the speed of effect of the portal gun.

FUN 2018

19:4 The Computational Complexity of Portal

Input: A description of a Portal level using only allowed gameplay elements, and spatial
coordinates specifying a start and end location.

Output: Whether there exists a path traversable by a Portal player from the start location
to the end location.

3 Game Element Descriptions

The key game mechanic, the Portal Gun, creates a portal on the closest surface in a direct
line from the player’s avatar if the surface is of the appropriate type. We call surfaces that
admit portals portalable. There are a variety of other gameplay elements which can be a
part of a Portal level. Below we give descriptions and images of various game elements used
in Portal 1 and 2.

1. A long fall is a drop in the level terrain that the avatar
can jump down from without dying, but cannot jump
up.

It’s a long way down.

2. A door can be open or closed, and can be traversed by
the player’s avatar if and only if it is open. In Portal,
many mechanics can act as doors, such as literal doors,
laser fields, and moving platforms. On several occasions
we will assume the door being used also blocks other
objects in the game, such as High Energy Pellets or
lasers, which is not generally true.

A Door in Portal 2

3. A button is an element which can be interacted with
when the avatar is nearby to change the state of the
level, e.g., a button to open or close a door.

4. A timed button will revert back to its previous state
after a set period of time, reverting its associated change
to the level too, e.g., a timed button which opens a
door for 10 seconds, before closing it again. Timed Button

5. A weighted floor button is a an element which changes
the state of a level when one or more of a set of objects
is placed on it. In Portal, the 1500 Megawatt Aperture
Science Heavy Duty Super-Colliding Super Button is an
example of a weighted floor button which activates when
the avatar or a Weighted Storage Cube is placed on top
of it. An activated weighted floor button can activate
other mechanics such as doors, moving platforms, laser
emitters, and gravitational beam emitters.

Heavy Duty Super-Colliding
Super Button

E.D. Demaine, J. Lockhart, and J. Lynch 19:5

6. Blocks can be picked up and moved by the avatar.
The block can be set down and used as a platform,
allowing the avatar to reach higher points in the level.
While carrying a block, the avatar will not fit through
small gaps, rendering some places inaccessible while
doing so. In Portal, the Weighted Storage Cube is an
example of a block that can be jumped on or used
to activate weighted floor buttons. We will refer to
Weighted Storage Cubes, Companion Cubes, etc. as
simply cubes.

Weighted Storage Cube

7. A Material Emancipation Grid, also called an Eman-
cipation Grill or fizzler, destroys some objects which
attempt to pass through it, such as cubes and turrets.
When the avatar passes through an Emancipation Grid,
all previously placed portals are removed from the map.
Portals cannot be shot through an emancipation grid.

Emancipation Grid

8. The Portal Gun allows the player to place portals on
portalable surfaces within their line of effect. Portals
are orange or blue. If the player jumps into an orange
(blue) portal, they are transported to the blue (orange)
portal. Only one orange portal and one blue portal
may be placed on the level at any given time. Placing a
new orange (blue) portal removes the previously placed
orange (blue) portal from the level.

Portal Gun

9. A High Energy Pellet (HEP) is a spherical object which
moves in a straight line until it encounters another ob-
ject. HEPs move faster than the player avatar. If they
collide with the player avatar, then the avatar is killed.
If a HEP encounters a wall or another object, it will
bounce off it with equal angle of incidence and reflec-
tion. In Portal, some HEPs have a finite lifespan, which
is reset when the HEP passes through a portal, and
others have an unbounded lifespan. These unbounded
HEPs are referred to as Super High Energy Pellets.

A HEP about to reach a HEP
Collector

10. A HEP Launcher emits a HEP at an angle normal
to the surface upon which it is placed. These are
launched when the HEP launcher is activated or when
the previously emitted HEP has been destroyed.

HEP Launcher

FUN 2018

19:6 The Computational Complexity of Portal

11. A HEP Catcher is a device which is activated if it is
ever hit by a HEP. In Portal, this device can act as a
button, and is commonly used to open doors or move
platforms when activated.

HEP Catcher

12. A Laser Emitter emits a Thermal Discouragement
Beam at an angle normal to the surface upon which it
is placed. The beam travels in a straight line until it is
stopped by a wall or another object. The beam causes
damage to the player avatar and will kill the avatar if
they stay close to it for too long. We call the beam and
its emitter a laser. A Laser Emitter and Thermal

Discouragement Beam.

13. A Laser Relay is an object which can activate other
objects while a laser passes through it.

14. A Laser Catcher is an object which can activate other
objects while a contacts it.

An active laser relay and laser
catcher.

15. A Moving Platform is a solid polygon with an inact-
ive and an active position. It begins in the inactive
position and will move in a line at a constant velocity
to the active position when activated. If it becomes
deactivated it will move back to the inactive position
with the opposite velocity.

A horizontal moving platform.

16. A Turret is an enemy which cannot move on its own.
If the player’s avatar is within the field of view of a
turret, the turret will fire on the avatar. If the avatar
is shot sufficiently many times within a short period of
time, the avatar will die.

Turret from Portal 2

E.D. Demaine, J. Lockhart, and J. Lynch 19:7

17. An Excursion Funnel, also called a Gravitational Beam
Emitter emits a gravitational beam normal to the sur-
face upon which it is placed. The gravitational beam
is directed and will move small objects at a constant
velocity in the prescribed direction. Importantly, it will
carry Weighted Storage Cubes and the player avatar.
Gravitational Beam Emitters can be switched on and
off, as well as flipping the direction of the gravitational
beam they emit.

A Gravity Beam and Excursion
Funnel.

There are two main pieces of software for creating levels in Portal 2: the Puzzle Maker
(also known as the Puzzle Creator), and the Valve Hammer Editor equipped with the Portal
2 Authoring Tools. Both of these tools are publicly available for players to create their own
levels. The Puzzle Maker is a more restricted editor than Hammer, with the advantage of
providing a more user-friendly editing experience. However, levels created in the Puzzle
Maker must be coarsely discretized, with coarsely discretized object locations, and must be
made of voxels. In particular, the Puzzle Maker uses the P2C file format while Hammer
uses VMF, which restricts it to instances where the size of the level is polynomial in the
size of the problem description. Furthermore, no HEP launchers or additional doors can be
placed in Puzzle Maker levels. We will often comment on which of our reductions can be
constructed with the additional Puzzle Maker restrictions (except, of course, the small level
size and item count), but this distinction is not a primary focus of this work.

4 Portal with Emancipation Grills is Weakly NP-complete

In this section, we prove that Portal with portals and Emancipation Grills is weakly
NP-hard by reduction from Subset Sum [8], which is defined like so.

I Problem 2. Subset Sum
Input: A set of integers A = {a1, a2, . . . , an}, and a target value t.
Output: Whether there exists a subset {s1, s2, . . . , sm} ⊆ A such that

m∑
i=1

si = t.

The reduction involves representing the integers in A as distances which are translated into
the avatar’s velocity. More explicitly, the input A will be constructed from long holes the
avatar can fall down, and the target will be encoded in a distance the avatar must launch
themselves after falling. For the next theorem, it is necessary to allow the terminal velocity
vmax to be specified as input to the problem (so it can scale with the level size).

I Theorem 3. Portal with portals, long fall, Emacipation Grills, and generalized terminal
velocity is weakly NP-hard.

Proof. Refer to Figure 1. The elements of A are represented by a series of wells, each of
width c and depth b · ai as measured from the ceiling directly above it. Here ai ∈ A is the
number to be encoded, b = 2 · c · n2 · t is a large number, c is a large constant expansion
factor greater than the height of the avatar plus the height she can jump, n is the number of
elements in A, and t is the target value of the Subset Sum instance. The bottom of each
well is a portalable surface, and the ceiling above each well is also a portalable surface. Each
well also has an Emancipation Grill a distance c from the ceiling. This construction allows

FUN 2018

19:8 The Computational Complexity of Portal

(−n(c+d),−c)

(−n(c+d), nc)

(c+ d,−a1b− c)

(2(c+ d),−a2b− 2c)

(3(c+ d),−a3b− 3c)

(n(c+ d),−anb− nc)

Figure 1 A cross-section of the element selection gadget, where b = 2 · c · n2 · t. Grey lines are
portalable surfaces and blue lines are Emancipation Grills.

the avatar to shoot a portal to the bottom of the well they are falling into, and to a ceiling
tile of another well, selecting the next number.

If the Subset Sum instance has a solution S, we can fall through the wells of depth b · ai
for each ai ∈ S in order, without touching any walls, for a total fall distance of b · t. After
such a fall, we reach a “target” velocity vt = g

√
2bt.

We cannot allow the avatar to select the same element more than once. The Emancipation
Grills below each portalable ceiling serve to remove the portal from the ceiling of the well
into which the avatar is currently falling, and to prevent sending a portal up to that same
ceiling tile. The stair-stepped ceiling allow the player to see the ceilings of all of the wells
with index greater than the one they are currently at, but prevents them from seeing the
portalable surface of the wells with a lower index. This construction ensures that the player
can select each element only once using portals. The enforced order of choosing does not
matter when solving Subset Sum.

We also need to prevent the avatar from moving horizontally from one well to another while
falling. The avatar can move horizontally (via user input) up to a small fixed acceleration αh.
To successfully fall through one well of width c and depth at least b below the ground
without hitting its side walls, the avatar’s horizontal velocity vh over vertical velocity vv
must be at most c/b. Also, after falling at least b, we must have vertical velocity vv ≥

√
2b.

The fall through the top part of the next well, of depth less than (n + 1)c, will thus take
s ≤ (n+ 1)c/vv time. During this fall, the avatar can add at most αhs ≤ αh(n+ 1)c/vv to
horizontal velocity. Thus, during this fall, the avatar can travel horizontally by at most

vhs+ 1
2αhs

2 ≤ vvc

b

(n+ 1)c
vv

+ 1
2αh

(
(n+ 1)c
vv

)2

= (n+ 1)c
2

b
+ αh(n+ 1)2c2

2v2
v

≤ (n+ 1)c
2

b
+ αh(n+ 1)2c2

b

=
(
n+ 1 + αh(n+ 1)2) c2

b

=
(
n+ 1 + αh(n+ 1)2) c

2n2t

= αh
2t c+O(1/n).

E.D. Demaine, J. Lockhart, and J. Lynch 19:9

Setting d to be at least this value (and at least c), we prevent the player from reaching an
adjacent well by horizontal travel.

We must also ensure that the player actually able to target the portable surfaces to select
the elements of A. To do so, we set the time step δ to be less than c/(10vt) where vt is the
target velocity. This ensures that the player will have at least 9 time steps to target while
falling c units, in particular while passing between the heights of each target surface for A
and its emancipation grid.

The verification gadget (not drawn) involves two main pieces: a single portalable surface
on a vertical wall (“launch point”) and a c× c horizontal floor (“target platform”) for the
player to reach. We place the launch point so it can always be shot from the region above
the wells. Relative to the launch point, the target platform is placed g/2 units below and at
a horizontal distance of vt in front, so that leaving the portalable surface with the target
velocity vt will cause the player to reach the target platform in 1 unit of time. The size of the
target platform is much smaller than the difference (≥

√
b ≥ n) if the target value t differed

by 1. If the player enters the final portal with horizontal velocity vh and vertical velocity vv,
satisfying vh/vv ≤ c/b as proved above, then the avatar launches with horizontal velocity vv
and vertical velocity vh ≤ vvc/b. This vertical velocity is insufficient to affect the landing
position by as much as changing t by 1. Similarly, user input during the 1 unit of time has
minimal effect on the horizontal velocity. J

All of the game elements needed for this construction can be placed in the Puzzle Maker.
However, this reduction would not be constructible because maps in the Puzzle Maker appear
to be specified in terms of voxels. Because Subset Sum is only weakly NP-hard [8], we need
the values of the elements of A to be exponential in n. Thus we need to describe the map in
terms of coordinates specifying the polygons making up the map, whereas the Puzzle Maker
specifies each voxel in the map.

I Theorem 4. Portal with portals, long fall, emancipation grills, and generalized terminal
velocity can be solved in pseudopolynomial time.

Proof. We construct a state-space graph of the Portal level. Each vertex represents a tuple
comprised of the avatar’s position vector within the level, the avatar’s velocity vector (limited
by the terminal velocity vmax), the avatar’s orientation, the position vector of the blue
portal, and the position vector of the orange portal. The vertices are connected with directed
edges encoding the state transitions caused by user input. Finally, for each edge that would
represent traversal through an emancipation grid, we replace it by an edge that maps to the
same state of the avatar but with both portal locations removed. We can then search for a
path from the initial game state to any of the winning game states in time polynomial in the
size of the graph. J

5 Portal with Turrets is NP-hard

In this section we prove Portal with turrets is NP-hard, and show that our method can be
generalized to prove that many 3D platform games with enemies are NP-hard. Although
enemies in a game can provide interesting and complex interactions, we can pull out a few
simple properties that will allow them to be used as gadgets to reduce solving a game from
3-SAT, defined like so.

I Problem 5. 3-SAT
Input: A 3-CNF boolean formula f .
Output: Whether there exists a satisfying assignment for f .

FUN 2018

19:10 The Computational Complexity of Portal

This proof follows the architecture laid out in [1]:
1. The enemy must be able to prevent the player from traversing a specific region of the

map; call this the blocked region.
2. The player avatar must be able to enter an area of the map, which is path-disconnected

from the blocked region, but from which the player can remove the enemy in the blocked
region.

3. The level must contain long falls.

We further assume that the behavior of the enemies is local, meaning an interaction with
one enemy will not effect the behavior of another enemy if they are sufficiently far away. In
many games one must also be careful about ammo and any damage the player may incur
while interacting with the gadget, because these quantities will scale with the number of
literals. Here long falls serve only in the construction of one-way gadgets, and can of course
be replaced by some equivalent game mechanic. Similarly, a 2D game with these elements
and an appropriate crossover gadget should also be NP-hard. The following is a construction
proving Portal with Turrets is NP-hard using this technique. Note that these gadgets can be
constructed in the Portal 2 Puzzle Maker.

5.1 Literal
Each literal is encoded with a hallway with three turrents placed in a raised section, illustrated
in Figure 2. The hallway must be traversed by the player, starting from “Traverse In”, ending
at “Traverse Out”. If the turrets are active, they will kill the avatar before the avatar can
cross the hallway or reach the turrets. The literal is true if the turrets are deactivated or
removed, and false if they are active. The “Unlock In” and “Unlock Out” pathways allow for
the player avatar to destroy the turrets from behind, deactivating them and counting as a
true assignment of the literal.

5.2 Variable
The variable gadget consists of a hallway that splits into two separate paths. Each hallway
starts and ends with a one-way gadget constructed with a long fall. This construction forces
the avatar to commit to one of the two paths. The hallways connect the “Unlock In” and
“Unlock Out” paths of the literals corresponding to a particular variable. Furthermore, one
path connects all of the true literals, the other connects all of the false literals.

5.3 Clause Gadget
Each clause gadget is implemented with three hallways in parallel. A section of each hallway
is the “Traverse In” through the “Traverse Out” corresponding to a literal. The avatar
can progress from one end of the clause to the other if any of the literals is true (and thus
passable). Furthermore, each of the clause gadgets is connected in series. Figures 3 and 4
illustrate a full clause gadget.

I Theorem 6. Portal with Turrets and long falls is NP-hard.

Proof. Given an instance of a 3SAT problem, we can translate it into a Portal with Turrets
map using the above gadgets. This map is solvable if and only if the corresponding 3SAT
problem is solvable. J

E.D. Demaine, J. Lockhart, and J. Lynch 19:11

Figure 2 An example of a (currently) false literal constructed with Turrets. Labels added over
the screenshot denote

It is tempting to claim NP-completeness because disabling the turrets need only be
performed once per turret and thus seems to have a monotonically changing state. However,
the turrets themselves are physical objects that can be picked up and moved around. Their
relocation add an exponential amount of state to the level. Further, if they can be jumped
on top of or used to block the player in a constrained hallway, they may conceivably cause
the level to be PSPACE-complete in the same way boxes can add significant complexity to a
game.

5.4 Application to Other Games

While the framework we have presented is shown using the gameplay elements of Portal,
similar elements to those we have used show up in other video games. Hence, our framework
can be generalized to show hardness of other games. In this section we note several common
features of games which would allow for an equivalent to the turret “guarding unit” in
Portal. We list examples of notable games which fit the criteria. We give ideas how to use
our framework to prove hardness results for these games, but it is important to note that
game-specific implementation details will need to be taken into account for any hardness
proof.

The first examples are games that include player controlled weapons with fixed positions,
such as stationary turrets or gun emplacements. The immovable turrets should be placed
at the unlock points of the literal gadget, so that they only allow the player to shoot the
one desired blocking unit. Examples in contemporary video games include the Emplacement
Gun in Half-Life 2, the Type-26 ASG in Half-Life, and the Anti-Infantry Stationary Guns in
Halo 1 through 4.

Another set of examples are games which include a pair of ranged weapons, where one is
more powerful than the other, but has shorter range. In place of the turrets in the Portal

FUN 2018

19:12 The Computational Complexity of Portal

Unlock In

Traverse In

Traverse Out

Traverse In

Traverse Out

Traverse In

Traverse Out

Ck Out

Ck In

Xa Xb Xc

Unlock Out Unlock Out

Unlock In Unlock In

Unlock Out

Figure 3 A diagram of clause Ck which contains variables xa, xb, and xc.

literal gadgets, we place an enemy unit equipped with the short range weapon, and give
the player avatar the long range weapon. We place the blocked region such that it is in
range and line of sight of the player while standing in the unlock region of the literal gadget.
Additionally, we place the player such that they are not in range of the enemy’s weapon.
Thus the player can kill the enemy from the unlock area. Suppose further that the blocked
region is built in such a way that the player can only pass through it by moving within
range of the enemy. One way of doing this would be to build it with tight turns. The result
would be an equivalent implementation of the variable and clause gadgets from our Portal
constructions. Note that a special case involves melee enemies. This construction applies
to Doom, the Elder Scrolls III–V, Fallout 3 and 4, Grand Theft Auto 3–5, Left 4 Dead 1
and 2, the Mass Effect series, the Deus Ex series, the Metal Gear Solid series, the Resident
Evil series, and many others. The complementary case occurs when the player has the short
ranged, but more powerful weapon and the enemy has the weaker, long ranged weapon. Here
the unlock region provides close proximity to the enemy unit but the locked region involves
a significant region within line of sight and range of the enemy but is outside of the player’s
weapon’s range. Although most games where this construction is applicable will also fall
into the prior case, examples exist where the player has limited attacks, such as in the Spyro
series.

A third case is where the environment impacts the effectiveness of attacks. For example,
certain barriers might block projectile weapons but not magic spells. Skills that can shoot
above or around barriers like this show up with Thunderstorm in Diablo II, Firestorm in
Guild Wars, and Psi-storm in StarCraft. Another common effect is a location based bonus,
for example the elevated-ground bonus in XCOM. Unfortunately these games lack a long-fall,
and thus require the construction of a one-way gadget if one wishes to prove hardness.

While we have so far only covered NP-hardness, we conjecture that these games are
significantly harder. Assuming simple AI and perfect information, many are likely PSPACE-
complete; however, when all of the details are taken into consideration, EXPTIME or

E.D. Demaine, J. Lockhart, and J. Lynch 19:13

Unlock Out
Unlock Out

Traverse In

Traverse Out

Traverse In

Traverse
Out

Unlock In

Figure 4 An example of a clause gadget with two literals.

NEXPTIME seem more likely. Proving such results will require development of more
sophisticated mathematical machinery.

6 Portal with Timed Door Buttons is NP-hard

We provide a new metatheorem related to Forisek’s Metatheorem 2 [7] and Viglietta’s
Metatheorem 1 [18].

I Metatheorem 7. A platform game with doors controlled by timed switches is NP-hard.

Proof. We will prove hardness by reducing from finding Hamiltonian cycles in grid graphs [10].
Every vertex of the graph will be represented by a room with a timed switch in the middle.
These rooms will be laid out in a grid with hallways in-between. The rooms are small in
comparison to the hallways. In particular, the time it takes to press a timed button and
travel across a room is δ and the time it takes to traverse a hallway is α > n · δ where n is
the number of nodes in the graph. This property ensures the error from turning versus going
straight through a room won’t matter in comparison to traveling from node to node. All of
the timed switches will be connected to a series of closed doors blocking the exit hallway
connected to the start node. The timers will be set, such that the doors will close again
after (α+ δ) · (t+ 1) + ε where ε is the time it takes to move from the switch at the start
node through the open doors to the exit. The exit is thus only reachable if all of the timed
switches are simultaneously active. Because we can make α much larger than ε, we can
ensure that there is only time to visit every switch exactly once and then pass through before
any of the doors revert. J

I Corollary 8. A Portal level with only timed door buttons is NP-hard.

A screenshot of an example map for Corollary 8 is given in Figure 5. Because the Portal 2
Workshop does not allow additional doors, the example uses collapsible stairs. We note that
anything which will prevent the player from passing unless currently activated by a timed

FUN 2018

19:14 The Computational Complexity of Portal

Figure 5 An example of a map forcing the player to find a Hamiltonian cycle in a grid graph.

Figure 6 Close-up of a node in the grid graph.

button will suffice. Moving platforms and Laser Fields are other examples. Unfortunately, the
Puzzle Maker does not allow the timer length to be specified, which is a needed generalization
for the reduction and available in the Hammer editor.

7 Portal with High-Energy Pellets and Portals is NP-hard

In Portal, the High-Energy Pellet, HEP, is an object which moves in a straight line until it
encounters another object. HEPs move faster than the player avatar and if they collide with
the player avatar, the avatar is killed. If a HEP encounters another wall or object, it will
bounce off of that object with equal angle of incidence and reflection. In Portal, some HEPs
have a finite lifespan, which is reset when the HEP passes through a portal, and others have
an unbounded lifespan. A HEP launcher emits a HEP normal to the surface it is placed
upon. These are launched when the HEP launcher is activated or when the previous HEP
emitted has been destroyed. A HEP catcher is another device that is activated if it is ever hit
by a HEP. When activated this device can activate other objects, such as doors or moving
platforms. HEP’s are only seen in the first Portal game and are not present in the Portal 2
Puzzle Maker.

I Theorem 9. Portal with Portals, High-Energy Pellets, HEP launchers, HEP catchers,
and doors controlled by HEP catchers is NP-hard.

Proof. We will reduce from finding Hamiltonian cycles in grid graphs [10]; refer to Figure 7.
For this construction, we will need a gadget to ensure the avatar traverses every represented
node, as well as a timing element. Each node in the graph will be represented by a room
that contains a HEP launcher and a HEP catcher. They are positioned near the ceiling,
each facing a portalable surface. The HEP catcher is connected to a closed door preventing
the avatar from reaching the exit. The rooms are small in comparison to the hallways. In
particular, the time it takes to shoot a portal, wait for it to enter the HEP Catcher, and

E.D. Demaine, J. Lockhart, and J. Lynch 19:15

Figure 7 An example level for the HEP reduction. Not drawn to scale.

travel across a room is δ and the time it takes to traverse a hallway is α > n · δ where n is
the number of nodes in the graph. This property ensures the error from turning versus going
straight through a room won’t matter in comparison to traveling from node to node.

The timer will contain two elements. First, we will arrange for a hallway with two exits
and a HEP launcher behind a door on one end. The hallway is long enough so it is impossible
for the avatar to traverse the hallway when the door is open. Call this component the time
verifier. In another area, we have a HEP launcher and a HEP catcher on opposite ends of a
hallway that is inaccessible to the avatar. The catcher in this section will open the door in
the time verifier. This construction ensures that the player can only pass through the time
verifier if they enter it before a certain point after starting. To complete the proof, we set
the timer equal to (α+ δ) · n+ ε1 + ε2 where ε1 is the minimum time needed for the avatar
to traverse the hallway with doors, ε2 is the minimum time needed for the avatar to traverse
the time verifier, α is the minimum time it takes for the player to move to an adjacent room
and change the trajectory of the HEP, and n+ 1 is the number of HEP catchers in the level.
Thus concludes our reduction from the Hamiltonian cycle problem in grid graphs. J

The HEP Catchers are only able to be activated once, so one may be tempted to claim
this problem is in NP. This is not necessarily the case because navigating around HEP
particles with more complicated trajectories might require long paths or wait times. The
PSPACE-hardness of motion planning with periodic obstacles [14] suggests the natural class
for this problem is actually PSPACE-complete.

8 Portal is PSPACE-complete

In this section we give a new metatheorem for games with doors and switches, in the same
vein as the metatheorems in [7], [18], and [17]. We use this metatheorem to give proofs of
PSPACE-completeness of Portal with various game elements, included here and in Section 9.
All of the gadgets in this section can be created in the Portal 2 Puzzle Maker.

The proofs in this section revolve around constructing game mechanics which implement
a switch: the construction can be in one of two states, and the state is controllable by the
player. When the avatar is near the switch, it can be freely set to either state. Each state has
a set of doors which are open and others which are closed when the switch is in that state. A
switch is very similar to a button in that it controls whether doors are open or closed, and the
player has the option of interacting with it. The key difference is that buttons can be pressed

FUN 2018

19:16 The Computational Complexity of Portal

multiple times to open or close its associated doors, and cannot necessarily be ‘unpressed’ to
undo the action. We show that a game with switches and doors is PSPACE-complete, using
similar techniques to [17].

In what follows we will use the nondeterministic constraint logic framework [9], wherein
the state of a nondeterministic machine is encoded by a graph called a constraint graph. The
state is updated by changing the orientation of the edges in such a way that constraints
stored on the vertices are satisfied.

Formally, an constraint graph is an undirected simple graphG = (V,E) with an assignment
of nonnegative integers to the edges w : E → Z+, referred to as weights, and an assignment
of integers to the vertices c : V → Z, referred to as constraints. Each edge has an orientation
p : E → {+1,−1}. A constraint graph is fully specified by the tuple G = (G,w, c, p).
The edge orientation p induces a directed graph DG,p. Let v ∈ V be a vertex of G. Its
in-neighborhood

N−(v, p) = {w | (v, w) ∈ A}

is the set of vertices of DG,p = (V,A) with an arc oriented towards it. The constraint graph
G is valid if, for all y ∈ V ,

∑
x∈N−(y,p) w((x, y)) ≥ c(x). The state of a constraint graph

can be changed by selecting an edge and multiplying its orientation by −1, such that the
resulting constraint graph is valid. We say that we have flipped the edge.

A vertex v in a constraint graph with three incident edges x, y, o can implement an AND
gate by setting c(v) = 2, w(x) = w(y) = 1, and w(o) = 2. Clearly, the edge o can only point
away from v if both x and y are pointing towards v. In a similar fashion, we can implement
an OR gate by setting w(v) = 2, w(x) = w(y) = w(o) = 2. A constraint graph where all
vertices are AND or OR vertices is called an AND/OR constraint graph. The following
decision problem about constraint graphs is PSPACE-complete.

I Problem 10. Nondeterministic Constraint Logic
Input: An AND/OR constraint logic graph G = ((V,E), w, c, p), and a target edge

i, j ∈ E.
Output: Whether there exists a constraint graph G′ = ((V,E), w, c, p′) such that

p′({i, j}) = −p({i, j}), and which can be obtained from G by a sequence of valid edge
flips.

I Metatheorem 11. Games with doors that can be controlled by a single switch and switches
that can control at least six doors are PSPACE-complete.

Proof. We prove this by reduction from Nondeterministic Constraint Logic. The
edges of the consistency graph are represented by a single switch whose state represents
the edge orientation. Connected to each switch is a consistency check gadget. This gadget
consists of a series of hallways that checks that the state of the two vertices adjacent to the
simulated edge are in a valid configuration and thus that the update made to the graph
was valid. Each edge switch is connected to doors in up to six consistency checks, two for
itself and four for the adjacent edges. For an AND vertex, the weight-two edge is given by
the door with the single hallway, and the weight one edges connect to the two doors in the
other hallway. For an OR vertex we have a hallway that splits in three, each with one node.
An example is given in Figure 8. Each switch thus connects to five doors. All of the edge
gadgets, with their constraint checks, are connected together. This construction allows the
player to change the direction of any edge they choose. However, to get back to the main
hallway connecting the gadgets, the graph must be left in a valid state. Off the main hallway

E.D. Demaine, J. Lockhart, and J. Lynch 19:17

a

b

c

d

d

(a) Section of a constraint logic graph being
simulated. Blue edges are weight 2 and red
edges are weight 1.

c

a b

c

d

e

S

(b) Gadget simulating edge c in the constraint
logic graph. Green dotted lines are open
doors.

Figure 8 Example of an edge gadget built from switches and doors.

there is a final exit connected to the target location, but blocked by a door connected to the
target edge. If the player is able to flip the edge by visiting the edge gadget, flip the switch
which opens the exit door, and return through the graph consistency check, then the avatar
can reach the target location. J

I Theorem 12. Portal with any subset of long falls, portals, Weighted Storage Cubes,
doors, Heavy Duty Super Buttons, lasers, laser relays, gravity beams, turrets, timed buttons,
and moving platforms is in PSPACE.

Proof. Portal levels do not increase in size and the walls and floors have a fixed geometry.
Assuming all velocities are polynomially bounded, all gameplay elements have a polynomial
amount of state which describes them. For example the position and velocity of the avatar
or a HEP; whether a door is open or closed; and the time on a button timer. The number
of gameplay elements remains bounded while playing. Most gameplay elements cannot be
added while playing, and items like the HEP launcher and cube suppliers only produce
another copy when the prior one has been destroyed. We only need a polynomial amount of
space to describe the state of a game of Portal at any given point in time. Thus one can
nondeterministically search the state space for any solutions to the Portal problem, putting
it in NPSPACE. Thus by Savitch’s Theorem [13] the problem is in PSPACE. J

I Theorem 13. Portal with Weighted Storage Cubes, doors, and Heavy Duty Super Buttons
is PSPACE-complete.

Proof. We will construct switches and doors out of doors, Weighted Storage Cubes, and
Heavy Duty Super Buttons. Then, we invoke Metatheorem 11 to complete the proof. A
switch is constructed out of a room with a single cube and two buttons as in Figure 9. Which
of the buttons being pressed by the cube dictates the state of the switch. Each button is
connected to the corresponding doors which should open when the switch is in that state. To
ensure the switch is always in a valid state, we put an additional door in the only entrance to
the room. This door is only open if at least one of the two buttons is depressed. Furthermore,
this construction prevents the cube from being removed from the room to be used elsewhere.
As long as there are no extra cubes in the level, the room must be left in exactly one of
the two valid switch states for the avatar to exit the room. We now apply our doors and
simulated switches as in Metatheorem 11 completing the hardness proof. Theorem 12 implies
inclusion in PSPACE. J

FUN 2018

19:18 The Computational Complexity of Portal

Figure 9 An example of a single switch implemented with cubes, doors, and buttons. The door
will only open if at least one of the buttons is pressed.

9 Additional Applications of NCL Construction

In this section we use Theorem 11 to prove additional results about Portal.

I Theorem 14. Portal with lasers, relays, portals, and moving platforms is PSPACE-
complete.

Proof. We will construct doors and switches out of lasers, relays, and moving platforms
allowing us to use Metatheorem 11. In Portal 2, the avatar is not able to cross through an
active laser. Because lasers can be blocked by the moving platforms game element, a door
can be constructed by placing a moving platform and laser at one end of a small hallway.
If the moving platform is in front of the laser, the gadget is in the unlocked state. If the
moving platform is to the side, then the player cannot pass through the hallway and it is in
the locked state. Moving platforms can be controlled by laser relays and will switch position
based on whether the laser relay is active. Lasers can be directed to selectively activate laser
relays with portals, so we have a mechanism to lock or unlock the doors.

As it stands, once a new portal is created the previously opened door will revert to its
previous state. To prove PSPACE-hardness, we need to make these changes persist. To do
so, we introduce a memory latch gadget, shown in Figures 10 and 11. When the relay in this
gadget is activated for a sufficiently long period of time, the platform will move out of the
way and the laser will keep the relay active. If the relay has been blocked for enough time,
the platform moves back and blocks the laser. Thus, the state of the gadget persists.

The last construction is the switch, which we build out of two groups of lasers, moving
platforms, and laser relays, as well as a memory latch. The player has the ability to change
the state of the memory latch. We interpret the state of the memory latch as the state of
the switch. When active, one of the relays in the latch moves a platform out of the way
of one of the lasers, activating the corresponding relays and opening the set of doors to
which they are connected. Another relay in the latch moves the second moving platform into
the path of the second laser, deactivating its corresponding laser relays and the doors they
control. Likewise, deactivating the memory latch causes both moving platforms to revert

E.D. Demaine, J. Lockhart, and J. Lynch 19:19

Figure 10 A memory latch in the off state. Figure 11 A memory latch in the on state.

to their original positions, blocking the first laser and letting the second through. We have
now successfully constructed doors and switches, so by Metatheorem 11 and Theorem 12,
PSPACE-completeness follows. J

Note that in the proof of the preceding theorem, laser catchers could be used in place of
laser relays, although the relays have the convenient property that they each need only be
connected to a single moving platform. It is also possible that the proof could be adapted
to use a single Reflection Cube instead of portals. Additional care would be required with
respect to the construction of the door, and it would need to be the case that lasers from
multiple directions blocked the avatar. Emancipation Grills or long falls with the moving
platforms would simplify this particular door construction.

The game elements in the following corollary are a superset of those used in Theorem 13,
so this result follows trivially. However, we prove it by using a construction similar to that
in Theorem 14, as we feel that the gadgets involved are interesting. We also note that the
proof only uses Heavy Duty Super Buttons placed on vertical surfaces, whereas Theorem 13
relies on their placement on the floor.

I Corollary 15. Portal with gravity beams, cubes, Heavy Duty Super Buttons, and long
fall is PSPACE-complete.

Proof. When active, a gravity beam causes objects which fit inside its diameter to be pushed
or pulled in line with the gravity beam emitter. Objects in the gravity beam ignore the
normal pull of gravity, and thus float along their course. We construct a simple door by
placing a gravity beam so that it can carry the player avatar across a pit large enough that
the avatar would otherwise be unable to traverse. We hook the gravity beam emitter up to a
button allowing it to be turned on and off, unlocking and locking the door.

If we wish to only use buttons placed on vertical surfaces, we are now faced with the
problem of making changes to doors persist once the avatar stops holding a cube next to
the button. To solve this problem, we construct a memory latch as in Theorem 14. If a
weighted cube button is placed in the path of a gravity beam, a weighted cube caught in
the beam can depress the button as in Figure 13. A cube on the floor near a gravity beam,
as in Figure 12 will be picked up by the beam. Weighted cube buttons can activate and
deactivate the same mechanics as laser catchers, including gravity beam emitters. Figures 12
and 13 demonstrate a memory latch in the off and on positions, respectively. We also note
that gravity beams are blocked by moving platforms, just like lasers. At this point, we have
the properties we need from the laser, laser catcher, and moving platform. We also note
that the player can pick up and remove cubes from the beam, meaning that portals are not
needed. J

FUN 2018

19:20 The Computational Complexity of Portal

Figure 12 A memory latch in the off state. Figure 13 A memory latch in the on state.

10 Conclusion

In this paper we proved a number of hardness results about the video game Portal. In Sections
4 through 7 we have identified several game elements that, when accounted for, give Portal
sufficient flexibility so as to encode instances of NP-hard problems. Furthermore, in Section 8
we gave a new metatheorem and use it to prove that certain additional game elements, such
as lasers, relays and moving platforms, make the game PSPACE-complete. The unique
game mechanics of Portal provided us with a beautiful and unique playground in which to
implement the gadgets involved in the hardness proofs. Indeed, our work shows how clause,
literal, and variable gadgets inspired by the work of Aloupis et al. [1] can be implemented
in a 3D video game. While our results about Portal itself will be of interest to game and
puzzle enthusiasts, what we consider most interesting are the techniques we utilized to obtain
them. Adding new, simple gadgets to this collection of abstractions gives us powerful new
tools with which to attack future problems. In Section 5.4 we identified several other video
games that our techniques can be generalized to. We also believe the decomposition of games
into individual mechanics will be an important tactic for understanding games of increasing
complexity. Metatheorems 7 and 11 are new metatheorems for platform games. We hope that
our work is useful as a stepping stone towards more metatheorems of this type. Additionally,
we hope the study of motion planning in environments with dynamic topologies leads to new
insights in this area.

10.1 Open Questions

This work leads to many open questions to pursue in future research. In Portal, we leave
many hardness gaps and a number of mechanics unexplored. We are particularly curious
about Portal with only portals, and Portal with only cubes. The removal of Emancipation
Fields from our proofs would be very satisfying. The other major introduction in Portal
2 that we have not covered is co-op mode. If the players are free to communicate and
have perfect information of the map, this feature should not add to the complexity of the
game. However, the game seems designed with limited communication in mind and thus an
imperfect-information model seems reasonable. Although perfect-information team games
tend to reduce down to one- or two-player games, it has been shown that when the players
have imperfect information the problem can become significantly harder. In particular, a
cooperative game with imperfect information can be 2EXPTIME-complete [12].

More than the results themselves, one would hope to use these techniques to show
hardness for other problems. Many other games use movable blocks, timed door buttons, and
stationary turrets and may have hardness results that immediately follow. Some techniques

E.D. Demaine, J. Lockhart, and J. Lynch 19:21

like encoding numbers in velocities might be transferable. It would be good to generalize
some of these into metatheorems which cover a larger variety of games.

References
1 Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo games

are (NP-)hard. In Proceedings of the 7th International Conference on Fun with Algorithms
(FUN 2014), Lipari Island, Italy, July 1–3 2014.

2 Eric Caoili. Portal 2 has sold over 4m copies. http://www.gamasutra.com/view/news/
169967/Portal_2_has_sold_over_4M_copies.php. Accessed: 2015-08-21.

3 G. Cormode. The hardness of the Lemmings game, or oh no, more NP-completeness
proofs. In Proceedings of Third International Conference on Fun with Algorithms, pages
65–76, 2004. URL: ../papers/cormodelemmings.pdf.

4 Erik D. Demaine and Robert A. Hearn. Playing games with algorithms: Algorithmic
combinatorial game theory. In Michael H. Albert and Richard J. Nowakowski, editors,
Games of No Chance 3, volume 56 ofMathematical Sciences Research Institute Publications,
pages 3–56. Cambridge University Press, 2009.

5 Erik D. Demaine, Susan Hohenberger, and David Liben-Nowell. Tetris is hard, even to
approximate. In Proceedings of the 9th International Computing and Combinatorics Con-
ference (COCOON 2003), pages 351–363, Big Sky, Montana, July 25–28 2003.

6 Erik D. Demaine, Giovanni Viglietta, and Aaron Williams. Super Mario Bros. is harder-
/easier than we thought. In Proceedings of the 8th International Conference on Fun with
Algorithms, La Maddalena, Italy, June 2016.

7 Michal Forisek. Computational complexity of two-dimensional platform games. In Pro-
ceedings International Conference on Fun with Algorithms (FUN 2010), pages 214–227,
2010.

8 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

9 Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. A. K. Peters,
Ltd., Natick, MA, USA, 2009.

10 Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid
graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

11 Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A survey of NP-complete puzzles.
ICGA Journal, 31(1):13–34, 2008. URL: http://dblp.uni-trier.de/db/journals/icga/icga31.
html#KendallPS08.

12 Gary Peterson, John Reif, and Salman Azhar. Lower bounds for multiplayer noncooperative
games of incomplete information. Computers & Mathematics with Applications, 41(7):957–
992, 2001.

13 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complex-
ities. J. Comput. Syst. Sci., 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)80006-X.

14 Klaus Sutner and Wolfgang Maass. Motion planning among time dependent obstacles. Acta
Informatica, 26(1-2):93–122, 1988.

15 Valve Developer Community. P2C. https://developer.valvesoftware.com/wiki/P2C, 2013.
16 Valve Developer Community. Valve map format. https://developer.valvesoftware.com/

wiki/VMF_documentation, 2016.
17 Tom C. van der Zanden and Hans L. Bodlaender. Pspace-completeness of bloxorz and of

games with 2-buttons. In Vangelis Th. Paschos and Peter Widmayer, editors, Algorithms
and Complexity - 9th International Conference, CIAC 2015, Paris, France, May 20-22,
2015. Proceedings, volume 9079 of Lecture Notes in Computer Science, pages 403–415.
Springer, 2015. doi:10.1007/978-3-319-18173-8_30.

FUN 2018

http://www.gamasutra.com/view/news/169967/Portal_2_has_sold_over_4M_copies.php
http://www.gamasutra.com/view/news/169967/Portal_2_has_sold_over_4M_copies.php
../papers/cormodelemmings.pdf
http://dblp.uni-trier.de/db/journals/icga/icga31.html#KendallPS08
http://dblp.uni-trier.de/db/journals/icga/icga31.html#KendallPS08
http://dx.doi.org/10.1016/S0022-0000(70)80006-X
https://developer.valvesoftware.com/wiki/P2C
https://developer.valvesoftware.com/wiki/VMF_documentation
https://developer.valvesoftware.com/wiki/VMF_documentation
http://dx.doi.org/10.1007/978-3-319-18173-8_30

19:22 The Computational Complexity of Portal

18 Giovanni Viglietta. Gaming is a hard job, but someone has to do it! Theory of Computing
Systems, 54(4):595–621, 2014.

19 Giovanni Viglietta. Lemmings is PSPACE-complete. Theoretical Computer Science,
586:120–134, 2015.

20 Wesley Yin-Poole. Portal sells nearly four million. http://www.eurogamer.net/articles/
2011-04-20-portal-sells-nearly-four-million. Accessed: 2015-08-21.

http://www.eurogamer.net/articles/2011-04-20-portal-sells-nearly-four-million
http://www.eurogamer.net/articles/2011-04-20-portal-sells-nearly-four-million

Faster Evaluation of Subtraction Games
David Eppstein1

Computer Science Department, University of California, Irvine
eppstein@uci.edu

Abstract
Subtraction games are played with one or more heaps of tokens, with players taking turns re-
moving from a single heap a number of tokens belonging to a specified subtraction set; the last
player to move wins. We describe how to compute the set of winning heap sizes in single-heap
subtraction games (for an input consisting of the subtraction set and maximum heap size n),
in time Õ(n), where the Õ elides logarithmic factors. For multi-heap games, the optimal game
play is determined by the nim-value of each heap; we describe how to compute the nim-values of
all heaps of size up to n in time Õ(mn), where m is the maximum nim-value occurring among
these heap sizes. These time bounds improve naive dynamic programming algorithms with time
O(n|S|), because m ≤ |S| for all such games. We apply these results to the game of subtract-a-
square, whose set of winning positions is a maximal square-difference-free set of a type studied in
number theory in connection with the Furstenberg–Sárközy theorem. We provide experimental
evidence that, for this game, the set of winning positions has a density comparable to that of
the densest known square-difference-free sets, and has a modular structure related to the known
constructions for these dense sets. Additionally, this game’s nim-values are (experimentally) sig-
nificantly smaller than the size of its subtraction set, implying that our algorithm achieves a
polynomial speedup over dynamic programming.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases subtraction games, Sprague–Grundy theory, nim-values

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.20

1 Introduction

Subtraction games were made famous by the French film L’Année dernière à Marienbad
(1961), which showed repeated scenes of two men playing Nim. A subtraction game is
played by two players, with some heaps of game tokens (such as coins, stones, or, in the
film, matchsticks) between them. On each turn, a player may take away a number of tokens
from a single heap. The tokens removed in each turn are discarded, and play continues until
all the tokens are gone. Under the normal winning convention, the last player to move is
the winner [2]. In Nim, any number of tokens may be removed in a turn. This game has
a simple analysis according to which it is a winning move to make the bitwise exclusive-or
of the binary representations of the heap sizes become zero. If this bitwise exclusive-or is
already zero, the player who just moved already has a winning position [4]. However, other
subtraction games require the number of removed tokens to belong to a predetermined set of
numbers, the subtraction set of the game. Different subtraction sets lead to different games
with different strategies.2

1 Supported in part by NSF grants CCF-1618301 and CCF-1616248.
2 Golomb [7] has considered an even more general class of games, in which the subtraction set specifies

combinations of numbers of tokens that may be simultaneously removed from each pile.

© David Eppstein;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 20; pp. 20:1–20:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eppstein@uci.edu
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Faster Evaluation of Subtraction Games

All subtraction games are impartial, meaning that the choice of moves on each turn does
not depend on who is making the move. As such, with the normal winning convention, these
games can be analyzed by the Sprague–Grundy theory, according to which each heap of
tokens in a subtraction game has a nim-value, the size of an equivalent heap in the game of
Nim [4,8,17]. The optimal play in any such game is to move to make the bitwise exclusive-or
of the nim-values zero. The winning positions are the ones in which this bitwise exclusive-or
is already zero. Unlike Nim itself, positions with a single nonempty heap of tokens may
be winning for the player who just moved; this is true when the nim-value of the heap is
zero. The heap sizes whose nim-values are zero are called “cold”, while the remaining heap
sizes are called “hot”. In a game with a single heap of tokens, it is a winning move to take
a number of tokens such that the remaining tokens form a cold position. If the position is
already cold, the player who just moved already has a winning position, because the player
to move must move to a hot position.

Every finite subtraction set leads to a game with periodic nim-values (depending only on
the sizes of the heaps modulo a fixed number). Some natural choices of infinite subtraction
set, such as the prime numbers, also do not lead to interesting subtraction games [7]. However,
a more complicated subtraction game, “subtract-a-square”, has the square numbers as its
subtraction set. That is, on each move, each player may remove any square number of
tokens from any single heap of tokens. The game of subtract-a-square was studied in 1966
by Golomb [7], who calls it “remarkably complex”; Golomb credits its invention to Richard
A. Epstein.3 Its sequence of nim-values,

0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3, 2, 3, 4, 5, 3, 2, 3, 4, 0, . . .

(sequence A014586 in the Online Encyclopedia of Integer Sequences, OEIS) displays no
obvious patterns.

Subtract-a-square has another reason for interest, beyond investigations related to combi-
natorial game theory. The set C of cold positions in this game,

0, 2, 5, 7, 10, 12, 15, 17, 20, 22, 34, 39, 44, 52, 57, 62, 65, 67, 72, 85, 95, . . .

(sequence A030193 in the OEIS) has the property that no two elements of C differ by a
square number. A sequence with this property is called a square-difference-free set. The
cold positions of subtract-a-square are square-difference-free because, whenever c is a cold
position, and i is a positive integer, c+ i2 must be hot, as one could win by moving from
c + i2 to c. The square-difference-free sets have been extensively investigated in number
theory, following the work of Furstenberg [6] and Sárközy [14], who showed that they have
natural density zero. This means that, for all ε, there exists an N such that, for all n > N ,
the fraction of positive integers up to n that belong to the set is at most ε.

More strongly, the set C of cold positions in subtract-a-square is a maximal square-
difference-free set. Every positive integer that is not in C (a hot position) has a move to a
cold position, so it could not be added to C without destroying the square-difference-free
property. Every maximal square-difference-free subset of the range [0, n] must have size at
least Ω(

√
n) (otherwise there would not be enough sums or differences of set elements and

squares to prevent the addition of another number in this range)4 and size at most

O

(
n

(logn) 1
4 log log log log n

)

3 No relation.
4 See Golomb [7], Theorem 4.1.

https://oeis.org/A014586
https://oeis.org/A030193

D. Eppstein 20:3

by quantitative forms of the Furstenberg–Sárközy theorem [12]. In particular, these bounds
apply to |C ∩ [0, n]|, the number of cold positions of subtract-a-square up to n. However, it
is not known whether these upper and lower bounds are tight or where the number of cold
positions lies with respect to them. In the densest known maximal square-difference-free sets,
the number of elements up to n is

Ω
(
n(1+log205 12)/2

)
≈ n0.733412.

The construction for these dense sets involves finding a square-difference-free set modulo some
base b, and selecting the numbers whose base-b representation has these values in its even
digit positions and arbitrary values in its odd digit positions [13]. The bound given in the
formula above comes from applying this method to a square-difference-free set of 12 values
modulo 205 [1, 10]. Plausibly, a greater understanding of the nim-values of subtract-a-square
could lead to progress in this area of number theory.

Algorithmically, for a subtraction game in which the allowed moves are to take a number
of tokens in a given set S, the nim-values can be computed by dynamic programming, using
the recurrence

nimvalue(n) = mex
i∈S,i≤n

nimvalue(n− i).

Here, the “mex” operator (short for “minimum excludent” [4]) returns the smallest non-
negative integer that cannot be represented by an expression of the given form. No separate
base case is needed, because in the base case (when n = 0), the set of available moves
(numbers in S that are at most n) is empty and the mex of an empty set of choices is zero.
Evaluating this recurrence, for all heap sizes up to a given threshold n, takes time O(n|S|).
The set C of cold positions can be determined within the same time bound, by applying this
recurrence and then returning the set of positions whose nim-value is zero.

However, in the study of algorithms, many naive dynamic programming algorithms turn
out to be suboptimal: they can be improved by more sophisticated algorithms for the same
problem. Is that the case for this one? We will see that it is. We provide the following two
results:

We show how to compute the set of cold positions in a given subtraction game, for heaps
of size up to a given threshold n, in time Õ(n).
We show how to compute the nim-values of a given subtraction game, for heaps of size
up to a given threshold n, in time Õ(mn).

In these time bounds, the Õ notation elides logarithmic factors in the time bound, and the
parameter m refers to the maximum nim-value of any position within the given range.

Ignoring the logarithmic factors hidden in the Õ notation, our time bounds are always
at least as good as the O(n|S|) time for naive dynamic programming, because for any
subtraction game m ≤ |S| (if there are only |S| possible moves, the mex of their values can
be at most m). But are they actually a significant improvement? To answer this, we need to
know how quickly m grows compared to the known growth rate of |S|.

To determine whether our algorithms provide a speedup for the game of subtract-a-square,
we performed a sequence of computational experiments to determine the density of this
game’s cold positions and the growth rate of its largest nim-values. We find experimentally
that, up to a given n, the largest nim-value appears to grow as O(n0.35), significantly more
slowly than the O(n1/2) growth rate of the subtraction set. The difference in the growth
rates for these quantities shows that our algorithms are indeed an asymptotic improvement
by a polynomial factor. Additionally, the number of cold positions appears to grow at least

FUN 2018

20:4 Faster Evaluation of Subtraction Games

as quickly as n0.69. That is, the cold positions of this game provide an unexpectedly large
square-difference-free set, competitive with the best theoretical constructions for these sets.
Examining the modular structure of the set of cold positions, we find that it appears to be
similar to the structure of these theoretical constructions, with a square-difference-free set of
digit values in even positions and arbitrary values in odd positions.

2 Algorithms

2.1 Subtraction with hotspots
In order to evaluate subtraction games efficiently, it will be convenient to generalize them
somewhat, to a class of subtraction games with hotspots. Given two sets S and H (of positive
and non-negative integers respectively), we define a subtraction game with subtraction set S
and hotspot set H as follows. The game starts with a single pile of some number of tokens,
and the players alternate in choosing a number from S and removing that number of tokens
from the pile, as before. However, if any move leaves a pile whose remaining number of
tokens belongs to H, then the player who made that move immediately loses. (This is not
quite the same as allowing the other player to remove all the tokens from piles whose size
belongs to H, because H might contain the number zero, in which case removing all the
tokens could be a losing move instead of a winning move.)

The presence of these hotspots makes defining a nim-value for these games problematic:
they are not played by the normal winning convention, so what would happen if we played a
game with multiple piles and one player moved to a hotspot? Nevertheless, a recurrence of
the usual form suffices to determine the set of hot and cold positions of such a game:

hot(n) = n ∈ H ∨
∨

i∈S,i≤n

¬hot(n− i).

2.2 Finding the hotspots
In a subtraction game (with subtraction set S, with or without hotspots), suppose that some
set C of positions has already been determined to be cold. Then all positions H that can
reach C in a single move are automatically hot. We can formulate membership in this set of
hot positions as a Boolean formula in conjunctive normal form (2-CNF):

(i ∈ H)⇐⇒
∨

j+k=i

(j ∈ C) ∧ (k ∈ S).

Now suppose that C and S are both represented as bitvectors: arrays of binary values
that are 0 for non-members and 1 for members of each set. Then the problem of computing
the bitvector representation of H from the above formula is a standard problem known as
Boolean convolution, studied for its applications in string matching [5,9,11]. It is an instance
of a more general class of convolution problems in which we compute

C[i] = ⊕
j+k=i

A[j]⊗B[j]

for an “addition” operation ⊕ and “multiplication” operation ⊗. In Boolean convolution, ⊗
is conjunction (∧), and ⊕ is disjunction (∨).

If the input bitvectors have total length n, their Boolean convolution can be computed in
O(n logn) time by replacing their Boolean values with the numbers 0 and 1 and computing
a numerical convolution (with addition as ⊕ and multiplication as ⊗) using the fast Fourier
transform algorithm.

D. Eppstein 20:5

2.3 Divide and conquer
We are now ready to describe our algorithm for finding the hot and cold positions of a
subtraction game with hotspots. We assume that we are given as input a range [x, y) of
integer values to evaluate (following the Python convention for half-open integer ranges
where the bottom delimiter is inside the range and the top delimiter is outside it), together
with two sets: the subtraction set S and a set H of predetermined hotspots.

As a base case, if the range has zero or one values in it, we can solve the problem directly:
each value in the range is hot or cold accordingly as it belongs or does not belong to H,
respectively. Otherwise, we perform the following steps:
1. Find the midpoint m = (x + y)/2 of the range, and partition the range into the two

subranges [x,m) and [m, y).
2. Recursively evaluate the lower subrange [x,m), determining its hot and cold positions

(Hx and Cx respectively).
3. Use Boolean convolution to find the positions Hm in the upper subrange [m, y) that are

hot because they can be reached in a single step from a cold position Cx in the lower
subrange.

4. Recursively evaluate the upper subrange [m, y), with hotspot set H ∪Hm, determining
its hot and cold positions (Hy and Cy respectively).

5. Return the hot set Hx ∪Hy and cold set Cx ∪ Cy.

The time for this algorithm can be analyzed using the master method, as is standard for
such divide-and-conquer algorithms, giving the following result:

I Theorem 1. We can determine which positions are hot and which are cold, in a range of
n positions of a subtraction game with hotspots, in time O(n log2 n).

2.4 Nim-values
We can reduce the computation of nim-values in a subtraction game to the computation of
hot and cold positions in a subtraction game with hotspots, via the following lemma.

I Lemma 2. Let S be a subtraction set, and let H be the set of positions in the subtraction
game for S that have nim-value at most t. Then the positions that have nim-value t+ 1 are
exactly the cold positions of the subtraction game with hotspots with subtraction set S and
hotspot set H.

Proof. A position has nim-value t+ 1 if it does not belong to H (else it would have a smaller
nim-value) and does not have a move to a smaller position with nim-value t+ 1 (else t+ 1
would not be one of its excluded values). But this is exactly the defining condition for the
cold positions of the subtraction game with hotspots. J

I Theorem 3. In any subtraction game with subtraction set S, we can determine the nim-
values of the first n positions in time O(mn log2 n), where m is the maximum nim-value of
any of these positions.

Proof. We loop over the range of nim-values from 0 to s, using Theorem 2 to compute the
set of positions having each successive nim-value in time O(n log2 n) per nim-value. The
loop terminates when all of the first n positions have been assigned a nim-value. J

The maximum nim-value of a subtraction game is |S|, so (except for the logarithmic
factors) this time bound compares favorably with a naive O(n|S|) dynamic programming
algorithm for computing the nim-values of each position by finding the minimum excluded
value among the other positions reachable from it.

FUN 2018

20:6 Faster Evaluation of Subtraction Games

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●
●●

●●
●●

●●
●●
●●●

●●
●●●

●●●
●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●●
●●●●●

●●●●●
●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

0 5 10 15 20

0
2

4
6

8

log2 n

lo
g2

 m
ax

 n
im

−
va

lu
e

m = 1.3251885340723 * n**0.350735691549274

Figure 1 The maximum nim-values m seen among the first n positions in subtract-a-square.

3 Experiments

To compare the performance of our Boolean convolution based evaluation algorithms to naive
algorithms for subtract-a-square, we performed some computational experiments, which we
describe here.

3.1 Maximum nim-value
Figure 1 plots (on a doubly logarithmic scale) the maximum nim-values m seen among the
first n positions in subtract-a-square. Only the positions where a new maximum is attained
are included in the plot.

We fitted a function of the form cne (a monomial with constant coefficient c and exponent
e) to these points, by using Siegel’s repeated median estimator [16], a form of robust statistical
regression that is insensitive to outliers (as would be expected to occur in the lower left
parts of the plot). This estimator fits a line through a sample of points by, for each point,
computing the median of the slopes formed by it and the other points, and then choosing
the slope of the fit line to be the median of these medians. It similarly chooses the height of
the fit line so that it passes above and below an equal number of points. We applied this to
the points on our log-log plot, using the mblm library of the R statistical package, which
implements this estimator, and then transformed the fit line back to a monomial over the

D. Eppstein 20:7

●

●

●

●

●

●
●

●
●

●
●

●
●●

●●●●●
●●

●●
●●

●●●
●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●
●●●
●●●
●●
●●
●●●

●●●

0 5 10 15 20 25 30

0
5

10
15

20

log2 n

lo
g2

 #
 c

ol
d

c = 0.897244337916743 * n**0.698354314248528

Figure 2 The number of cold positions among the first n positions in subtract-a-square.

original coordinates of the data points. The result is shown in red in the figure.
As the figure shows, the maximum nim-value m among the first n positions of subtract-a-

square is accurately estimated by a function of the form O(n0.351), well below the O(n0.5)
size of the subtraction set for this game. Therefore, we would expect our O(mn log2 n)-time
convolution-based algorithm for computing the nim-values of this game to be asymptotically
faster than the O(n3/2) time for dynamic programming. However, even if we ignore the
different constant factors in the running times of these two algorithms, n needs to be
approximately 1026 in order for n1.35 log2

2 n to be smaller than n1.5, so we would not expect
this speedup to be applicable to practically relevant ranges of n. Because of the simplicity
and relative efficiency of the dynamic programming algorithm for small n, the values in
Figure 1 (for n up to 224) were computed by dynamic programming rather than convolution.

3.2 Number of cold positions

Our next experiment measures the number of cold positions among the first n positions in
subtract-a-square (Figure 2). In order to provide more data points in the lower left part of
the log-log plot than would be visible if we used uniform sampling of the range of values
of n, the plot of Figure 2 shows the number of cold positions for each value of n that is a
perfect cube (that is, for the values 1, 8, 27, 64, . . .) up to 230. As in the previous experiment,

FUN 2018

20:8 Faster Evaluation of Subtraction Games

we fitted a monomial function to these points using Siegel’s repeated median estimator.
The number of cold positions does not directly affect the time bound for our convolution-

based algorithm. However, it does affect the time for a different algorithm, for computing
the set of cold positions (but not their nim-values) directly, in any subtraction game. This
algorithm is analogous to the sieve of Eratosthenes, which finds prime numbers iteratively,
for each one marking off the numbers that are not prime. To compute the cold positions
among the first n positions, it performs the following steps:
1. Initialize a Boolean array H of length n (indicating whether each position is hot) to be

false in each cell.
2. For each position i from 0 to n, test whether H[i] is still false. If it is, perform the

following steps:
a. Output i as one of the cold positions.
b. For each value s in the subtraction set S, mark i+ s as hot by setting H[i+ s] to be

true.
If the set of cold positions up to n is C, and the subtraction set is S, then this sieving
algorithm takes time O(|C| · |S|).

In some subtraction games, C could be as small as n/|S|, in which case the sieving
algorithm would take linear time. However, our experiments show that, for subtract-a-square,
C appears to grow more like n0.7, giving the sieving algorithm a running time of approximately
n1.2, compared to the O(n log2 n) time bound of the convolution based algorithm. Again
ignoring the constant factors in the time bounds, n would need to be approximately 1018 for
the convolution-based algorithm to be faster than the sieving algorithm. Because it is simple
to code and fast for smaller values of n, the results in Figure 2 were calculated using the
sieving algorithm.

3.3 Modularity
The high density of cold positions in subtract-a-square is surprising, especially in view of
earlier conjectures in the theory of square-difference-free sets that the number of values up to
n in such a set could be at most n1/2+o(1) [15]. These conjectures were disproven by finding
sets of numbers of a special form: numbers whose radix-b representation, for a carefully
chosen base b, use only base-b digits from a square-difference-free set (modulo b) in their even
digit positions [1,10,13]. Although the cold positions of subtract-a-square have somewhat
lower density than these constructions, they arise more naturally, and it is of interest to
investigate their modular structure and compare it to the structure of these other known
dense square-difference-free sets.

The idea of considering the base-b structure of these positions, for different choices of
the base b, also arises from the consideration of a different subtraction game, described by
Golomb [7]. This game has as its subtraction set the Moser–de Bruijn sequence

0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, . . .

of numbers that are sums of distinct powers of four. That is, when written in base 4, the
numbers of the subtraction set have only 0 and 1 as their base-4 digits. The nim-value
of any position n may be obtained by writing n in base 4, taking each digit modulo 2
(reducing it to 0 or 1), and then reinterpreting the resulting string of 0’s and 1’s as a binary
number. Because of this simple formula for its nim-values, the Moser–de Bruijn subtraction
game has both a maximum nim-value and a number of cold positions (among the first n
positions) proportional to Θ(

√
n). It subtraction set size, also Θ(

√
n), is comparable to that

D. Eppstein 20:9

ones fives twentyfives

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05

Figure 3 The distribution of digit values among the three low-order base-5 digits of cold positions
(for n < 230) in subtract-a-square.

for subtract-a-square. In particular, for this game, convolution is neither asymptotically
faster than dynamic programming nor than sieving, although all of these algorithms can be
improved by using the formula instead. What makes subtract-a-square so different from the
Moser–de Bruijn subtraction game?

To approach these questions, we performed more computational experiments studying the
distribution of digit values for the cold positions in subtract-a-square, for various bases. This
study follows the earlier work of Golomb [7], who observed that the low-order base-5 digits
of the cold positions among the first first 20,000 game positions were highly non-uniformly
distributed, and of Bush [3], who extended this study to the first 40,000,000 game positions.
Figure 3 shows an extension of this study to the first 230 game positions, and to the three
low-order base-5 digits of each cold position. As the figure shows, with a few exceptions,
the ones digit of the cold positions lies within the square-difference-free set {0, 2} (mod 5).
The fives digit shows no significant non-uniformities, but the twentyfives digit is quite non-
uniformly distributed, and is possibly heading towards the same square-difference-free set
{0, 2} (mod 5). In this way, the cold positions of subtract-a-square appear to be emulating
the strategy of the known dense square-difference-free sets [1, 10, 13] of having a square-
difference-free set of digits in even digit positions and all possible digits in odd positions
modulo a base b. In this case b = 5, and following this strategy perfectly for b = 5 would lead
to a set of size nlog10 25 ≈ n0.71534. The slightly slower growth rate of the cold positions in
subtract-a-square can be explained by the slow convergence of its higher-order base-5 digits
to square-difference-free sets of digits.

FUN 2018

20:10 Faster Evaluation of Subtraction Games

sevens

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

thirteens

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

Figure 4 The distribution of digit values among the low-order base-7 and base-13 digits of cold
positions (for n < 230) in subtract-a-square.

What about other bases? Figure 4 shows the results of the same experiment (for the
low-order digits only) for base 7 and base 13. Because 7 is 3 modulo 4, there are no nontrivial
square-difference-free sets modulo 7: every two numbers modulo 7 differ by a square (mod 7).
Perhaps because of this, the digit values in base 7 show no significant nonuniformities.
However, modulo 13, the squares are 0, ±1, ±3, and ±4. Because 13 is 1 modulo 4, each of
the nonzero squares occurs four times among the squares of values mod 13; for instance, ±3 is
the square of 4, 6, 7, and 9 (mod 13). As the figure shows, the low-order digits of the base-13
representations of the cold positions in subtract-a-square appear to be converging towards
the square-difference-free set {0, 2, 7} (mod 13). Perhaps subtract-a-square implements the
modular strategy for finding dense square-difference-free sets in all prime bases (congruent
to 1 mod 4) simultaneously?

4 Conclusions

We have developed new convolution-based methods for evaluating arbitrary subtraction
games (either to determine the set of cold positions or to evaluate the nim-value of each
position). Our experiments on the subtract-a-square game show that its maximum nim-value
is lower than the theoretical value for games with subtraction sets of the same size, and
its number of cold positions is higher than the theoretical value. These results show that,

D. Eppstein 20:11

asymptotically, our new algorithms are faster than alternative dynamic programming or
sieving approaches for the same problems on this game. However, the breakeven point for
the new algorithms is high enough that our convolution-based approach is not yet practical.
It would be of interest to develop improved algorithms that are both asymptotically faster
and more practical than existing approaches.

In an attempt to investigate why the cold positions of subtract-a-square produce a dense
square-difference-free set, we investigated the base-b representations of the cold positions
for several small prime choices of b. Our tests found significant irregularities in the even
positions of these base-b representations, when b is congruent to 1 mod 4. We leave the
problem of finding a theoretical explanation for these patterns, and for the density of the
cold positions in subtract-a-square, as open for future research.

References

1 Richard Beigel and William Gasarch. Square-difference-free sets of size Ω(n0.7334...). Elec-
tronic preprint arxiv:0804.4892, 2008.

2 Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Subtraction games. In Win-
ning Ways for your Mathematical Plays, Vol. I: Games in General, pages 83–86. Addison-
Wesley, 1982.

3 David Bush. The uniqueness of 11,356. sci.math usenet newsgroup, October 12 1992. URL:
https://www.ics.uci.edu/~eppstein/cgt/subsquare.html.

4 J. H. Conway. Chapter 11: Impartial Games and the Game of Nim. In On Numbers and
Games, pages 122–135. Academic Press, 1976.

5 Michael J. Fischer and Michael S. Paterson. String-matching and other products. In Com-
plexity of computation (Proc. SIAM-AMS Appl. Math. Sympos., New York, 1973), volume 7
of SIAM-AMS Proceedings, pages 113–125, Providence, RI, 1974. American Mathematical
Society.

6 Harry Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi
on arithmetic progressions. Journal d’Analyse Mathématique, 31:204–256, 1977. doi:10.
1007/BF02813304.

7 Solomon W. Golomb. A mathematical investigation of games of “take-away”. Journal of
Combinatorial Theory, 1:443–458, 1966. doi:10.1016/S0021-9800(66)80016-9.

8 P. M. Grundy. Mathematics and games. Eureka, 2:6–8, 1939.
9 Adam Kalai. Efficient pattern-matching with don’t cares. In Proceedings of the 13th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA ’02), pages 655–656, Philadelphia,
PA, 2002. Society for Industrial and Applied Mathematics. URL: https://dl.acm.org/
citation.cfm?id=545381.545468.

10 Mark Lewko. An improved lower bound related to the Furstenberg-Sárközy theorem. Elec-
tronic Journal of Combinatorics, 22(1):P1.32, 2015. URL: https://www.combinatorics.
org/ojs/index.php/eljc/article/view/v22i1p32.

11 S. Muthukrishnan and Krishna V. Palem. Non-standard stringology: algorithms and com-
plexity. In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings of the
Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Mon-
tréal, Québec, Canada, pages 770–779. ACM, 1994. doi:10.1145/195058.195457.

12 János Pintz, W. L. Steiger, and Endre Szemerédi. On sets of natural numbers whose
difference set contains no squares. Journal of the London Mathematical Society (2nd Series),
37(2):219–231, 1988. doi:10.1112/jlms/s2-37.2.219.

13 I. Z. Ruzsa. Difference sets without squares. Periodica Mathematica Hungarica, 15(3):205–
209, 1984. doi:10.1007/BF02454169.

FUN 2018

https://www.ics.uci.edu/~eppstein/cgt/subsquare.html
http://dx.doi.org/10.1007/BF02813304
http://dx.doi.org/10.1007/BF02813304
http://dx.doi.org/10.1016/S0021-9800(66)80016-9
https://dl.acm.org/citation.cfm?id=545381.545468
https://dl.acm.org/citation.cfm?id=545381.545468
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p32
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p32
http://dx.doi.org/10.1145/195058.195457
http://dx.doi.org/10.1112/jlms/s2-37.2.219
http://dx.doi.org/10.1007/BF02454169

20:12 Faster Evaluation of Subtraction Games

14 A. Sárkőzy. On difference sets of sequences of integers. I. Acta Mathematica Academiae
Scientiarum Hungaricae, 31(1–2):125–149, 1978. doi:10.1007/BF01896079.

15 A. Sárközy. On difference sets of sequences of integers. II. Annales Universitatis Scientiarum
Budapestinensis de Rolando Eötvös Nominatae, 21:45–53, 1978.

16 Andrew F. Siegel. Robust regression using repeated medians. Biometrika, 69(1):242–244,
1982. doi:10.1093/biomet/69.1.242.

17 R. P. Sprague. Über mathematische Kampfspiele. Tohoku Math. J, 41:438–444, 1935. URL:
https://www.jstage.jst.go.jp/article/tmj1911/41/0/41_0_438/_article.

http://dx.doi.org/10.1007/BF01896079
http://dx.doi.org/10.1093/biomet/69.1.242
https://www.jstage.jst.go.jp/article/tmj1911/41/0/41_0_438/_article

Making Change in 2048

David Eppstein1

Computer Science Department, University of California, Irvine
eppstein@uci.edu

Abstract
The 2048 game involves tiles labeled with powers of two that can be merged to form bigger powers
of two; variants of the same puzzle involve similar merges of other tile values. We analyze the
maximum score achievable in these games by proving a min-max theorem equating this maximum
score (in an abstract generalized variation of 2048 that allows all the moves of the original game)
with the minimum value that causes a greedy change-making algorithm to use a given number
of coins. A widely-followed strategy in 2048 maintains tiles that represent the move number
in binary notation, and a similar strategy in the Fibonacci number variant of the game (987)
maintains the Zeckendorf representation of the move number as a sum of the fewest possible
Fibonacci numbers; our analysis shows that the ability to follow these strategies is intimately
connected with the fact that greedy change-making is optimal for binary and Fibonacci coinage.
For variants of 2048 using tile values for which greedy change-making is suboptimal, it is the
greedy strategy, not the optimal representation as sums of tile values, that controls the length of
the game. In particular, the game will always terminate whenever the sequence of allowable tile
values has arbitrarily large gaps between consecutive values.

2012 ACM Subject Classification Theory of computation → Discrete optimization

Keywords and phrases 2048, change-making problem, greedy algorithm, integer sequences, halt-
ing problem

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.21

1 Introduction

The solitaire game 2048 was developed in 2014 by Gabriele Cirulli, based on another game
called Threes developed earlier in 2014 by Asher Vollmer [28]. It is played on a 16-cell square
grid, each cell of which can either be empty or contain a tile labeled with a power of two. In
each turn, a tile of value 2 or 4 is placed by the game software on a randomly chosen empty
cell. The player then must tilt the board in one of the four cardinal directions, causing its
tiles to slide until reaching the edge of the board or another tile. When two tiles of equal
value slide into each other, they merge into a new tile of twice the value. The game stops
when the whole board fills with tiles, and the goal is to achieve the highest single tile value
possible. Figure 1 shows the state of the game after approximately 4000 moves, when a tile
with value 8192 has been reached.

As most players of the game quickly learn, it is not possible to keep playing a single game
of 2048 forever. At any step of the game, there must be at least one tile for each nonzero bit
in the binary representation of the total tile value. For total tile values just below a large
power of two, the number of ones in the binary representation is similarly large, eventually
exceeding the number of cells in the board.

1 Supported in part by NSF grants CCF-1618301 and CCF-1616248.

© David Eppstein;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 21; pp. 21:1–21:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eppstein@uci.edu
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Making Change in 2048

Figure 1 A state in the game 2048 in which a tile of value 8192 has been reached.

But other variants of 2048 use different tile values than powers of two. Threes uses the
sequence of numbers that are either powers of two or three times a power of two:

1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, . . .

(It also restricts tile merges to pairs of tiles whose values are equal or differ by a factor of
two.) Fives uses 2, 3, and powers of two times 5, giving the sequence of allowable values [12]

1, 2, 3, 5, 10, 20, 40, 80, 160, 320, 640, . . .

Another variant, called 987, uses as its tile values the Fibonacci numbers,

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

We can find analogous ad-hoc arguments for why these games must terminate, but can we
generalize them to arbitrary systems of tile values? If we define a 2048-like game with a set
S as its tile values, is the length of the game and the maximum value that can be achieved
controlled, as it is for binary numbers, by the lengths of the shortest representations of
arbitrary numbers as sums of members of S?

For instance, suppose that we allow any practical number as a tile value, and any merge
of two tiles that produces another practical number. The practical numbers are defined by
the property that, for a practical number n, every integer m < n can be expressed as a sum
of distinct divisors of n. Their sequence begins

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, . . .

There are many more practical numbers than powers of two, and the practical numbers
behave in many ways like the prime numbers. In particular, analogously to Goldbach’s
conjecture for the prime numbers, every even integer can be expressed as a sum of two
practical numbers [17], and therefore every integer can be expressed as a sum of three
practical numbers. Because we can express every tile value using a bounded number of
practical-number tiles, does the practical-number variant of 2048 go on forever?

Alternatively, suppose we use 3-smooth tile values, the numbers whose only prime factors
are two or three:

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, . . .

D. Eppstein 21:3

Because the number of distinct 3-smooth numbers in the range from 1 to n is only O(log2 n),
an information-theoretic argument shows that some numbers in this range will require
Ω(log n/ log log n) terms in their shortest representation as a sum of 3-smooth numbers.
Therefore, for a game using these tile values to last for n moves, it must use a game board
that has at least Ω(log n/ log log n) cells. Is this analysis tight?

1.1 New results
In this paper we show that the answer to these questions is no. 2048-like games are not
controlled by the shortest representations of numbers as sums of tile values, but rather by
their greedy representations, representations generated by a greedy heuristic for the problem
of making change using the smallest number of coins from a given coinage system. For
the powers of two, the Fibonacci numbers, and the numbers used by Threes and Fives,
these greedy representations coincide with the shortest representations, but that is not true
for many other natural sets of numbers including the practical numbers and the 3-smooth
numbers. The lengths of greedy representations, in turn, are controlled by the lengths of the
gaps between consecutive tile values.

As a consequence, we show that whenever a sequence of numbers has arbitrarily large
gaps, the 2048-like game based on those numbers must terminate with a finite limit on its
number of moves and on its largest achievable tile value. For instance, because the practical
numbers have inverse-logarithmic density (analogously to the prime number theorem for the
density of the prime numbers) [29], they have arbitrarily large gaps and the game based on
them terminates, albeit much more slowly than for the powers of two.

1.2 Related work
2048 has been the subject of much past research. Its past investigations include studies of its
computational complexity [1, 2, 12, 16], artificial intelligence based game strategies [10, 15, 19,
23,27,30], computer science education [18], and computer-human interaction [22].

2 Simplification through abstraction

Several features of 2048 and its variants complicate their analysis, possibly making its game
play more interesting but without (it appears) greatly affecting the questions we wish to
study, on how long a game can last or which tile values can be achieved.

Board geometry. The cells of the 2048 board are arranged in a square grid, which controls
both the sliding movement of the tiles across the board and the pairs of tiles that can
become adjacent to each other and merge. Much of the strategy of the game involves
linearizing this two-dimensional arrangement of cells by finding a zigzag path that covers
all the cells of the grid and playing in such a way that tiles move and merge with each
other only along this path.

Restricted tile merges. In some variations of 2048, such as Threes, certain pairs of tiles
cannot merge even when their summed value would be an allowable tile value. For
instance, in Threes, the merge 3 + 1 = 4 is not allowed; only pairs of tiles with the same
value or with one twice the other can merge. Even in 2048, only pairs of tiles, and not
larger combinations of tiles, are allowed to merge.

Unknown or random future events. In 2048, the next tile could either have value 2 or 4.
In most cases this causes little change to game play, because a tile of value 4 is not

FUN 2018

21:4 Making Change in 2048

significantly different than two consecutive tiles of value 2 that then became merged,
but it can interact with the board geometry to cause tiles to become out of position,
making continued play more difficult. And in many of these games, the location of each
newly placed tile could be any previously-open cell. These unknowns make the game
nondeterministic, and complicate the definition of the longest play or highest achievable
tile value: do we mean the worst case (the best that a player could achieve against a
malicious adversary), best case (the best one could hope to achieve against repeated play
with a random adversary), or some kind of probabilistic analysis that determines the
distribution or expected value of scores?

To avoid these complications, we define a class of variants of 2048 in which they are
eliminated.

I Definition 1 (abstract generalized games). Given a set A of allowable tile values, an initial
element a ∈ A (usually a = 1), and a number n of cells, we define the abstract generalized
2048 game for A and a to be a solitaire game in which there are n indistinguishable cells,
each of which can either be empty or contain a tile with a value in A. We define a position
of the game to be an assignment of either a tile with a value in A or no tile to each cell of
the game. The initial position of the game is a position in which all cells are empty. Starting
from the initial position, each step of the game consists of the following actions:

The player chooses any empty cell, and a tile of value a is placed into that cell.
The player may choose to merge any sets of non-empty cells whose total value belongs to
A into a single tile, which is placed on a single cell from its set. The remaining cells in
each chosen set become empty.

The game ends when, after one of these steps, all cells are nonempty. When this happens,
there would be nowhere to place the new tile of value a in the next step.

We denote the abstract generalized 2048 game on n cells with tile value set A and initial
tile value a by AGG(n, A, a) or (when a = 1) by AGG(n, A).

I Observation 2 (simulation by abstract games). With the possible exception of the value
of each newly placed tile, each action in 2048, Threes, Fives, or 987 can be simulated by a
corresponding action in the abstract generalized 2048 game with the same set of tile values
and the same number of cells. Therefore, any upper bound on the number of moves or
maximum tile value in the abstract generalized 2048 game provides a valid upper bound for
the number of moves or maximum tile value in the corresponding sliding-tile game.

3 Optimal strategy in the abstract game

The abstract generalized 2048 game eliminates the complications of board geometry, tile
position, and sliding mechanics from the game, making its analysis much simpler. As a
consequence, we can characterize the optimal strategies in this game. We begin by describing
some helpful move-ordering principles.

I Definition 3 (eager sequences). We say that a sequence of steps in AGG(n, A) is eager if
each merge of tiles is performed in the first step at which all of the tiles to be merged have
their merged values, rather than delaying the merge until some later step.

I Observation 4 (all sequences can be made eager). If a position in AGG(n, A) can be
reached by a sequence of steps, it can be reached by an eager sequence of steps.

D. Eppstein 21:5

I Lemma 5 (single-tile-first strategy). Let P be a position in AGG(n, A) that can be reached
by a sequence of steps from the initial position. Then there exists a non-empty cell c of value
v in P , and a sequence of steps that reaches P from the initial position, with the following
structure:

First, perform a sequence of steps that reaches the position P ′, where P ′ has a tile of
value v in cell c and n− 1 empty cells.
Next, perform a sequence of steps in the game AGG(n− 1, A), using only the cells that
are empty in position P ′, to reach the position P ′′ in that game corresponding to position
P in AGG(n, A) (the position formed from P by removing one cell of value m).

Proof. Let S be an eager sequence of steps that produces position P . By assumption, S

exists, and we may assume by Observation 4 that S is eager. By running the sequence of
steps in S backwards from P , we may determine, for each position reached during the course
of sequence S, which of its nonempty tiles eventually contribute to each tile of P . By the
eager property of S, each merge produced in each step involves only tiles that contribute to
the same cell as the newly-placed tile in that step.

Let c be the cell of P to which the first newly-placed tile contributes, and let v be the
value of the tile in cell c of position P . Because the cells are indistinguishable, we may
rearrange the cells of AGG(n, A) so that the first newly-placed tile is placed into cell c, and
so that each subsequent merge step involving this tile places the merged tile back into cell c.
After this rearrangement, cell c is always occupied by a tile that contributes to the eventual
value in cell c. We may then separate S into two subsequences of steps, the subsequence S1
of steps whose newly placed tile contributes to c and the subsequence S2 of steps in which
the newly placed tile contributes to some other cell of P .

Then subsequence S1 may be performed first, before any steps of S2. This change of
order causes positions of the game to be empty in S1 that are non-empty in S, but those
positions do not contribute to c and therefore do not affect what happens in these steps.
Performing S1 reaches state P ′, as described by the statement of the lemma.

The cells other than c form an instance of AGG(n− 1, A), and each step of S2 operates
only on these cells because at each of these steps, c is occupied by a tile that is unchanged by
that step. Therefore, S2 may be performed on AGG(n−1, A) to reach position P ′′. Because c

is the only nonempty cell after S1 and is unused by S2, it is valid to perform the concatenation
of subsequences S1S2, which reaches state P with the desired step ordering. J

I Lemma 6 (step-by-step reachability for single tiles). Let x > 1 be a tile value in set A, and
let y be the largest value in A that is less than x. Let n be a positive integer, let Px be the
position consisting of one cell containing a tile of value x and n− 1 empty tiles, and let Py

be defined in the same way for value y. Then there is a sequence of steps in AGG(n, A) that
reaches Px if and only if the following conditions are both true:
1. There is a sequence of steps in AGG(n, A) that reaches Py.
2. There is a sequence of steps in AGG(n− 1, A) that reaches a position of total value x− y.

Proof. We prove separately that both conditions imply reachability of Px, and that reacha-
bility of Px implies both conditions.

(1 & 2) ⇒ Px:
Clearly if both conditions are true, then we can use the sequence from the first condition
to reach Py, then concatenate the sequence of steps from the second condition to reach a
position that includes both y and some other tiles of total value x−y, and finally perform
a single merge operation to combine all of these tiles to a single tile of value x.

FUN 2018

21:6 Making Change in 2048

Px ⇒ (1):
Let S be any sequence of steps that reach Px. Then the first y steps of S reach a position
of total value y, from which Py can be formed by one more merge operation.

Px ⇒ (2):
Px is reachable if and only if we can reach a position P ′ of total value x− 1, with at least
one empty cell, so that the newly placed tile of the next step creates total value x. By
the single-tile-first strategy (Lemma 5), P ′ is reachable if and only if there exists z ∈ A,
with 0 < z < x, such that Pz is reachable in AGG(n, A) and the remaining cells of P ′, of
total value x− z− 1 and with at least one empty cell, are reachable in AGG(n− 1, A). If
y = z then one more step in AGG(n− 1, A) places a new tile of value 1 in the empty cell
and creates a position of total value x− y, meeting condition 2. If, on the other hand,
y > z, then x− y ≤ x− z− 1 and the first x− y steps in AGG(n− 1, A) already create a
position of total value x− y, again meeting condition 2. J

I Corollary 7 (threshold of single-tile reachability). For every n and A then there exists a value
Single(n, A) ∈ A ∪ {∞} such that the positions Px (with one tile of value x and n− 1 empty
cells) are reachable in AGG(n, A) if and only if x ∈ A and x ≤ Single(n, A). If Single(n, A)
is finite, it is the maximum single tile value achievable in game AGG(n, A); if not, all tile
values are achievable.

I Observation 8 (monoticity of single-tile thresholds). For all n > 1 and A, Single(n, A) ≥
Single(n− 1, A).

Proof. If we can reach any single tile value v in game AGG(n− 1, A), we can also reach it
in AGG(n, A) by ignoring the extra cell. J

I Theorem 9 (characterization of reachable positions). Let n and A be given. Then a position
P of AGG(n, A) is reachable by a sequence of steps from its initial position if and only if the
sequence of its tile values v1, . . . vn (sorted from smallest to largest, with vi = 0 if there are
at least i empty cells in P) satisfies the inequalities vi ≤ Single(i, A) for all i.

Proof. By applying the single-tile-first strategy (Lemma 5) recursively, we may decompose
P into a sequence of tile values un (the single tile used by the strategy to reach P), un−1
(the tile used by applying Lemma 5 to the game AGG(n− 1, A) after constructing tile un,
. . . padding the sequence with zeros if necessary. Then by construction un is achievable in
game AGG(n, A), un−1 is achievable in game AGG(n − 1, A), etc., so these values satisfy
inequalities ui ≤ Single(i, A) for all i like the ones in the statement of the lemma.

This decomposition need not be sorted. However, because the values of Single(i, A) are
monotonically non-decreasing (Observation 8), swapping any two values of ui and uj that are
out of order preserves the inequalities between these values and Single(i, A) and Single(j, A).
Since the sorted sequence of values vi can be obtained from the sequence ui by such swaps,
it also obeys all the same inequalities. J

Using this characterization we can strengthen Lemma 5 to more explicitly describe a
game strategy for reaching any given position.

I Corollary 10 (how to play to reach any single position). Let P be any reachable position in
game AGG(n, A). Then the following strategy for playing the game reaches P :

If P contains more than one tile, first play the strategy recursively to reach a position
with one nonempty cell, containing the largest tile value in P . Then continue recursively
in the game AGG(n− 1, A) on the remaining cells to construct the remaining tiles of P .

D. Eppstein 21:7

If P contains only one tile, of value x, let y be the largest value in A that is less than v.
Play the strategy recursively to reach a position with two nonempty cells, with values y

and x− y, and then in the final step of the recursive strategy merge these two values.

The correctness of this strategy follows easily by using Theorem 9 to prove that each
recursive goal within this strategy is itself reachable.

Putting the results of this section together, we have the following simple recurrence for
computing Single(n, A) and Total(n, A):

I Theorem 11 (recurrence for single-tile and total-value reachability). Beginning with

Single(0, A) = Total(0, A) = 0,

we may compute Single(n, A) as the smallest value in A whose difference from the next larger
value in A is larger than Total(n− 1, A), or ∞ if no such value exists. We may compute

Total(n, A) = Single(n, A) + Total(n− 1, A) =
n∑

i=1
Single(i, A).

Proof. The computation of Single(n, A) follows from Lemma 6. By that lemma, each tile
value up to the given value can be reached from its predecessor in A, and each larger value
cannot be reached.

The computation of Total(n, A) follows from Theorem 9. By that lemma, the tile values
of any reachable position are individually dominated by the values in the reachable position
that has one tile of each value Single(i, A) for i ranging from 1 to n. The sum in the formula
gives the value of this position, which clearly obeys the stated recurrence. J

I Corollary 12 (termination if and only if gaps are unbounded). For every A, the values
of Single(n, A) and Total(n, A) are finite for all n (and the game AGG(n, A) necessarily
terminates for all n) if and only if the gaps between consecutive members of A are not bounded
in size.

Proof. As a sum of values of Single, Total is finite if and only if Single is. Additionally, Total
is strictly monotonically increasing, because it is always possible to add a single tile of value
one to a reachable position in AGG(n− 1, A) and produce a higher-value reachable position
in AGG(n, A). Therefore, for larger and larger values of n, the formula for Single(n, A) will
require us to find correspondingly larger gaps in the sequence of values in A. This will
be possible, leading to finite values of Single(n, A) for all n, if and only if A has gaps of
unbounded size. J

4 Making change

The change-making problem involves making change for a given amount of money, using as
few coins as possible from a given set of coin denominations. Most countries have coinage
that allows the problem to be solved optimally by a greedy algorithm: to make change for a
given amount of money x, first select the largest-valued coin whose value y is less than or
equal to x, and then (if x 6= y) recursively solve the remaining change-making subproblem
for the value x − y. However, greedy change-making is not always optimal. For instance,
consider the situation of a cashier who is trying to make change in US money, for which
the most commonly-used coin denominations are 1 cent (the penny), 5 cents (the nickel),
10 cents (the dime), and 25 cents (the quarter). To make change for 30 cents, the optimal
choice would be the greedy choice, one quarter and one nickel. But if the change tray is out

FUN 2018

21:8 Making Change in 2048

of nickels, so that the only coin values available are 1, 10, and 25 cents, the optimal choice
would be three dimes, while the greedy algorithm would instead choose a quarter and five
pennies, twice as many coins.

Optimal change-making is weakly NP-hard but has a pseudopolynomial time dynamic
program that is often used as an example or an exercise in undergraduate algorithms
classes [5, 7]. However, although there have also been studies on sets of coins that would
lead to small solutions [24] or on counting distinct ways of making change [4], much of the
research on change-making has focused on a different problem: for which coinage systems is
the greedy algorithm optimal [3, 6, 11,14,20]? This can be tested in polynomial time [20].

A particularly simple test (the Magazine–Nemhauser–Trotter one-shot test) determines
whether a system of coins has a stronger property, that if the coins are sorted by value from
smallest to largest, every prefix of this sorted sequence forms a set of coins for which greedy
change-making is optimal. For each prefix let x and y be the largest and second-largest coins
in the prefix; then the one-shot test rounds x up to an integer multiple ky of y and applies the
greedy change-making algorithm to this number ky. If it uses more than k coins, the greedy
algorithm is suboptimal, but if every prefix uses this number of coins or fewer, then the
greedy algorithm can be proven to be optimal for all prefixes [14]. Following Cowen et al. [6],
we call a system of coins that passes this test totally greedy. Although the change-making
problem is usually considered only for finite sets of coin denominations, the one-shot test and
the prefix-greedy definition make sense equally well for infinite sets. For instance, the powers
of two are totally greedy (the ith instance of the one-shot test uses one coin to represent the
test value 2 · 2i−1 = 2i) as are the Fibonacci numbers (the ith instance of the one-shot test
uses two coins to represent the test value 2Fi−1 = Fi + Fi−3).

In connection with our analysis of abstract generalized 2048, we are interested in the
behavior of the greedy algorithm on arbitrary coinage systems, regardless of whether the
greedy algorithm is optimal for the system. The following quantity is of particular interest:

I Definition 13 (hard-to-change inputs to the greedy algorithm). For any integer n ≥ 0 and
set of positive integer coin values A, we define GreedyCoins(n, A) to be the smallest integer
x that causes the greedy change-making algorithm to use at least n coins.

The following result is folklore; it is possible that it was first observed by Pillai in his
1930 study of greedy change-making for prime-number coin values [21] but we have been
unable to obtain a copy of his paper to check.

I Lemma 14 (recurrence for hard-to-change inputs). We may compute GreedyCoins(n, A)
using the recurrence

GreedyCoins(n, A) = GreedyCoins(n− 1, A) + x,

where x is the smallest member of A such that the difference between x and the next-larger
member of A exceeds GreedyCoins(n− 1, A), and with the base case GreedyCoins(0, A) = 0.

Proof. The greedy algorithm will use n or more coins on a given number s if and only if s

has the form t + u where t is a member of A, t + u is less than the next larger member of A

(so that the greedy algorithm begins by choosing t), and the greedy algorithm uses n− 1 or
more coins on u (its recursive subproblem). The number GreedyCoins(n− 1, A) + x has this
form, with t = x and u = GreedyCoins(n− 1, A). It is the smallest number with this form,
because any smaller value of u would not cause the greedy algorithm to use n− 1 or more
coins on u, and any smaller value of t with the same or larger value of u would cause there
to exist another member r of A in the range t < r ≤ t + u, preventing the greedy algorithm
from starting by choosing t. J

D. Eppstein 21:9

Table 1 Python code to generate the sequence of values Total(n, A) from a generator for sequence
A, using only a constant number of additional integer variables.

def Total(A):
single ,total = 1,0
for tile in A:

while tile > single + total:
total += single
yield total

single = tile

We are now ready to prove our min-max theorem relating 2048 to change-making:

I Theorem 15 (equality of 2048 and greedy change-making). The maximum total value
achieved in an n-cell abstract greedy 2048 game, Total(n, A), equals the minimum value that
would cause the greedy change-making algorithm to use n or more coins, GreedyCoins(n, A).

Proof. By Theorem 11 and Lemma 14, both of these numbers are computed by the same
recurrence with the same base case. J

5 Specific sets of tile values

The Python code in Table 1 takes as input a generator for a sorted sequence A of tile values
in an abstract generalized 2048 game (or of coin values in a greedy change-making problem),
and returns a generator for the sequence of total tile values Total(n, A) achievable with
n = 1, 2, 3, . . . cells. It does so by computing, for each tile value in A, the gap between that
value and the previous value, and when that gap is large enough using it to take a step
in the recurrence for Total(n, A). As can be seen from the code, the total space necessary
(beyond that for generating A) consists only of a constant number of integer variables. It is
not possible to analyze the performance of this algorithm in terms of the variable n without
knowing more about the behavior of gaps in the sequence A, but we can at least state that
the time to generate all values Total(n, A) that are below some threshold value N is at most
proportional to the time to generate all values in A below the same threshold.

For sequences that are totally greedy, the same algorithm will determine more strongly
the smallest value that requires n terms to represent as a sum of sequence values (not just as
a greedy sum). We ran this code using several different integer sequences A, to determine for
each one its corresponding sequence of maximum achievable total game values Total(n, A).
We identify each sequence using its code in the Online Encyclopedia of Integer Sequences
(oeis.org), a string of the form Axxx where the x’s are decimal digits. Although some of these
sequences would be problematic for games that combine tile values only in pairs (because
their tile values cannot be reached by such pairwise combinations), this is not an issue for our
abstract generalized 2048 game, which allows combinations of more than two tiles at once.

A000040
This is the sequence of prime numbers, 2, 3, 5, 7, 11, . . . , in which we included also 1 (even
though it is not prime) to make a valid set of tile or coin values. It is not totally greedy.
When A is this sequence, Total(n, A) is Pillai’s sequence [13, 21] A066352 of the numbers
1, 4, 27, 1354, 401429925999155061, Because the gaps in the prime numbers grow so
slowly, it has been estimated in the OEIS that the next number of this sequence would
require hundreds of millions of digits.

FUN 2018

https://oeis.org
https://oeis.org/A000040
https://oeis.org/A066352

21:10 Making Change in 2048

A000045
This is the sequence of Fibonacci numbers, 1, 2, 3, 5, 8, 13, . . . , used in the 987 game. It is
totally greedy. When A is this sequence, Total(n, A) is the sequence A027941 of numbers
F2n+1 − 1 = 1, 4, 12, 33, 88, . . . of every other Fibonacci number, minus one.

A000079
This is the sequence of powers of two, 2i = 1, 2, 4, 8, . . . , used in the 2048 game. It is
totally greedy. When A is this sequence, Total(n, A) is the sequence of Mersenne numbers
A000225, 2n−1 − 1 = 1, 3, 7, 15,

A000225
This is the sequence of Mersenne numbers, Mi = 2i+1 − 1 = 1, 3, 7, 15, It is also
totally greedy, because each prefix of the sequence passes the one-shot test according
to the identity 3Mi = Mi+1 + 2Mi−1. When A is this sequence, Total(n, A) is the
sequence A000325 of numbers 2n − n = 1, 2, 5, 12, 27, . . . which is not totally greedy
(3 · 12 = 27 + 5 + 2 + 2 is expanded to four coins, not three, by the greedy algorithm,
failing the one-shot test).

A005153
This is the sequence of practical numbers 1, 2, 4, 6, 8, 12, 16, . . . discussed in the introduc-
tion. It can be generated by using a variation of the sieve of Eratosthenes to generate
the factorizations of each positive integer, and then using an efficient test of Stewart and
Sierpinski [25, 26] to determine from each factorization whether each integer is practical.
When A is this sequence, Total(n, A) is a sequence beginning 1, 3, 11, 191, not in the
OEIS. Because the gaps in the sequence of practical numbers are (like the gaps in the
primes) slowly growing, the next number in the sequence should be quite large.

A003586
This is the sequence of 3-smooth numbers 1, 2, 3, 4, 6, 8, 9, . . . (the numbers having only 2
or 3 as prime factors), discussed in the introduction. It is not totally greedy. When A is
this sequence, Total(n, A) is the sequence A296840: 1, 5, 23, 185, 1721, 15545, 277689,

A029744
This is the sequence of numbers 2i or 3 ·2i = 1, 2, 3, 4, 6, 8, 12, . . . used in the game Threes.
It is totally greedy. When A is this sequence, Total(n, A) is the sequence A002450 of
numbers (4n+1 − 1)/3 = 1, 5, 21, 85, 341,

A126684
This is the sequence of numbers 1, 2, 4, 5, 8, 10, 16, 17, 20, 21, 32, . . . whose binary represen-
tations have either all even bit positions zero or all odd bit positions zero. It gives perhaps
the most extreme example of the distinction between optimal and greedy change-making:
for a system of coins with these values, any amount of change can be made with at most
two coins, and the Θ(n2) growth rate of this sequence is the fastest possible for this
two-coin property. However, greedy change-making will typically use more than two
coins. For instance, although 13 can be represented as the sum of two sequence members
8 + 5, its greedy representation is 10 + 2 + 1. When A is this sequence, Total(n, A) is the
sequence A302757 of numbers 1, 3, 13, 55, 225, 907, 3637, . . . , which grows exponentially
according to the recurrence an = 4an−1 + 2n− 5.

The tile values 1, 2, 3, 5, 10, 20, 40, 80, . . . in the game Fives are not listed in the OEIS,
but the maximum achievable values Total(n, A) form the sequence A052549 of numbers
1, 4, 9, 19, 39, 79. They have the formula b5 · 2n−2 − 1c.

https://oeis.org/A000045
https://oeis.org/A027941
https://oeis.org/A000079
https://oeis.org/A000225
https://oeis.org/A000225
https://oeis.org/A000325
https://oeis.org/A005153
https://oeis.org/A003586
https://oeis.org/A296840
https://oeis.org/A029744
https://oeis.org/A002450
https://oeis.org/A126684
https://oeis.org/A302757
https://oeis.org/A052549

D. Eppstein 21:11

A similar analysis could be applied to many other sequences, yielding new sequences not
already part of the OEIS. For instance, sequences A296840 and A302757 were added to the
OEIS as a result of our investigations, not having been studied before.

6 Discussion

We have described an abstract version of the game 2048 that eliminates the geometry and
other complicating factors of the game, allowing us to provide a complete analysis of our
abstract game for any set of allowable tile values and any number of cells. We proved a
min-max theorem equating the maximum total tile value that can be achieved in this game
with the minimum value that would cause a greedy change-making algorithm, using coins
of the same value as the tiles, to use the same number of coins as the number of cells in
the game. Finally, we showed how to compute the values from this theorem by a streaming
algorithm that uses only a constant number of integer variables beyond the requirements
of generating the tile value sequence itself, and used our implementation to compute the
sequences of maximum game values for several choices of allowable tile value sets.

It would be of interest to understand in more detail for which non-abstract 2048-like games
this analysis is tight or nearly tight, and for which it fails to capture the game dynamics and
produces a bound on the total game value that is large compared to the actual achievable
value. For instance, experience with 2048 and 987 suggests that, in those games, a strategy
close to that of the abstract game can usually be followed, leading to total game values
similar to what could be achieved in the abstract game. On the other hand, in Threes, the
inability to add some pairs of game tiles such as 1 + 3, even when the sum would be another
allowable tile value, may cause this game’s maximum achievable value to be closer to 2n

than to the (4n+1− 1)/3 formula for the total score achievable on the corresponding abstract
game. We leave such questions open for future research.

Additionally, some variants of 2048 are not amenable to our analysis. These include
2048 Circle of Fifths, a game based on the circle of fifths in music theory whose tile values
involve modular arithmetic [9], and 2048 Numberwang, in which the tile combinations that
are allowed on each move vary randomly [8]. Developing a theoretical analysis of these games
could be fun.

References

1 Ahmed Abdelkader, Aditya Acharya, and Philip Dasler. On the complexity of
slide-and-merge games. Electronic preprint arxiv:1501.03837, 2015.

2 Ahmed Abdelkader, Aditya Acharya, and Philip Dasler. 2048 without new tiles is still
hard. In Erik D. Demaine and Fabrizio Grandoni, editors, 8th International Conference
on Fun with Algorithms, FUN 2016, June 8-10, 2016, La Maddalena, Italy, volume 49 of
LIPIcs, pages 1:1–1:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.FUN.2016.1.

3 Anna Adamaszek and Michal Adamaszek. Combinatorics of the change-making problem.
Eur. J. Comb., 31(1):47–63, 2010. doi:10.1016/j.ejc.2009.05.002.

4 Terry Beyer and D. F. Swinehart. Number of multiply-restricted partitions [A1]
(algorithm 448). Commun. ACM, 16(6):379, 1973. doi:10.1145/362248.362275.

5 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2009. Problem 16-1, p. 446.

FUN 2018

https://oeis.org/A296840
https://oeis.org/A302757
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.1
http://dx.doi.org/10.1016/j.ejc.2009.05.002
http://dx.doi.org/10.1145/362248.362275

21:12 Making Change in 2048

6 L. J. Cowen, Robert Cowen, and Arthur Steinberg. Totally greedy coin sets and greedy
obstructions. Electronic Journal of Combinatorics, 15(1):RP90, 2008. URL:
https://www.combinatorics.org/Volume_15/Abstracts/v15i1r90.html.

7 Michael T. Goodrich and Roberto Tamassia. Algorithm Design and Applications. Wiley,
2015. Exercise A-12.1, p. 349.

8 Lou Huang. 2048 Numberwang. Web applet. URL:
https://louh.github.io/2048-numberwang/.

9 Caleb Hugo. 2048 Circle of Fifths. Web applet. URL: https:
//calebhugo.com/musical-games-interact-with-sound/2048-circle-of-fifths/.

10 Wojciech Jaśkowski. Mastering 2048 with delayed temporal coherence learning,
multi-stage weight promotion, redundant encoding and carousel shaping. IEEE
Transactions on Computational Intelligence and AI in Games, 2017.
doi:10.1109/TCIAIG.2017.2651887.

11 Dexter Kozen and Shmuel Zaks. Optimal bounds for the change-making problem. Theor.
Comput. Sci., 123(2):377–388, 1994. doi:10.1016/0304-3975(94)90134-1.

12 Stefan Langerman and Yushi Uno. Threes!, fives, 1024!, and 2048 are hard. In Erik D.
Demaine and Fabrizio Grandoni, editors, 8th International Conference on Fun with
Algorithms, FUN 2016, June 8-10, 2016, La Maddalena, Italy, volume 49 of LIPIcs, pages
22:1–22:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.FUN.2016.22.

13 Florian Luca and Ravindranathan Thangadurai. On an arithmetic function considered by
Pillai. Journal de Théorie des Nombres de Bordeaux, 21(3):693–699, 2009. URL:
https://jtnb.cedram.org/item?id=JTNB_2009__21_3_693_0.

14 M. J. Magazine, G. L. Nemhauser, and L. E. Trotter, Jr. When the greedy solution solves
a class of knapsack problems. Operations Research, 23(2):207–217, 1975. URL:
https://www.jstor.org/stable/169525.

15 Kiminori Matsuzaki. Developing a 2048 player with backward temporal coherence
learning and restart. In Mark H. M. Winands, H. Jaap van den Herik, and Walter A.
Kosters, editors, Advances in Computer Games - 15th International Conferences, ACG
2017, Leiden, The Netherlands, July 3-5, 2017, Revised Selected Papers, volume 10664 of
Lecture Notes in Computer Science, pages 176–187. Springer, 2017.
doi:10.1007/978-3-319-71649-7_15.

16 Rahul Mehta. 2048 is (PSPACE) hard, but sometimes easy. Electronic preprint
arxiv:1408.6315, 2014.

17 Giuseppe Melfi. On two conjectures about practical numbers. J. Number Theory,
56(1):205–210, 1996. doi:10.1006/jnth.1996.0012.

18 Todd W. Neller. Pedagogical possibilities for the 2048 puzzle game. Journal of
Computing Sciences in Colleges, 30(3):38–46, 2015. URL:
https://dl.acm.org/citation.cfm?id=2675327.2675335.

19 Kazuto Oka and Kiminori Matsuzaki. Systematic selection of n-tuple networks for 2048.
In Aske Plaat, Walter A. Kosters, and H. Jaap van den Herik, editors, Computers and
Games - 9th International Conference, CG 2016, Leiden, The Netherlands, June 29 - July
1, 2016, Revised Selected Papers, volume 10068 of Lecture Notes in Computer Science,
pages 81–92. Springer, 2016. doi:10.1007/978-3-319-50935-8_8.

20 David Pearson. A polynomial-time algorithm for the change-making problem. Oper. Res.
Lett., 33(3):231–234, 2005. doi:10.1016/j.orl.2004.06.001.

21 S. S. Pillai. An arithmetical function concerning primes. Annamalai University Journal,
pages 159–167, 1930. As cited by Luca and Thangadurai [13].

22 Rebecca S. Portnoff, Linda N. Lee, Serge Egelman, Pratyush Mishra, Derek Leung, and
David A. Wagner. Somebody’s watching me?: Assessing the effectiveness of webcam

https://www.combinatorics.org/Volume_15/Abstracts/v15i1r90.html
https://louh.github.io/2048-numberwang/
https://calebhugo.com/musical-games-interact-with-sound/2048-circle-of-fifths/
https://calebhugo.com/musical-games-interact-with-sound/2048-circle-of-fifths/
http://dx.doi.org/10.1109/TCIAIG.2017.2651887
http://dx.doi.org/10.1016/0304-3975(94)90134-1
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.22
https://jtnb.cedram.org/item?id=JTNB_2009__21_3_693_0
https://www.jstor.org/stable/169525
http://dx.doi.org/10.1007/978-3-319-71649-7_15
http://dx.doi.org/10.1006/jnth.1996.0012
https://dl.acm.org/citation.cfm?id=2675327.2675335
http://dx.doi.org/10.1007/978-3-319-50935-8_8
http://dx.doi.org/10.1016/j.orl.2004.06.001

D. Eppstein 21:13

indicator lights. In Bo Begole, Jinwoo Kim, Kori Inkpen, and Woontack Woo, editors,
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, CHI 2015, Seoul, Republic of Korea, April 18-23, 2015, pages 1649–1658. ACM,
2015. doi:10.1145/2702123.2702164.

23 Philip Rodgers and John Levine. An investigation into 2048 AI strategies. In 2014 IEEE
Conference on Computational Intelligence and Games, CIG 2014, Dortmund, Germany,
August 26-29, 2014, pages 1–2. IEEE, 2014. doi:10.1109/CIG.2014.6932920.

24 Jeffrey Shallit. What this country needs is an 18¢ piece. The Mathematical Intelligencer,
25(2):20–23, 2003. doi:10.1007/bf02984830.

25 Wacław Sierpiński. Sur une propriété des nombres naturels. Annali di Matematica Pura
ed Applicata, 39(1):69–74, 1955. doi:10.1007/BF02410762.

26 B. M. Stewart. Sums of distinct divisors. American Journal of Mathematics,
76(4):779–785, 1954. doi:10.2307/2372651.

27 Marcin Grzegorz Szubert and Wojciech Jaskowski. Temporal difference learning of
n-tuple networks for the game 2048. In 2014 IEEE Conference on Computational
Intelligence and Games, CIG 2014, Dortmund, Germany, August 26-29, 2014, pages 1–8.
IEEE, 2014. doi:10.1109/CIG.2014.6932907.

28 H. Jaap van den Herik. Five new games. ICGA Journal, pages 129–130, September 2014.
URL:
https://icga.leidenuniv.nl/wp-content/uploads/2015/04/September-2014.pdf.

29 A. Weingartner. Practical numbers and the distribution of divisors. The Quarterly
Journal of Mathematics, 66(2):743–758, 2015. doi:10.1093/qmath/hav006.

30 Kun-Hao Yeh, I-Chen Wu, Chu-Hsuan Hsueh, Chia-Chuan Chang, Chao-Chin Liang, and
Han Chiang. Multistage temporal difference learning for 2048-like games. IEEE Trans.
Comput. Intellig. and AI in Games, 9(4):369–380, 2017.
doi:10.1109/TCIAIG.2016.2593710.

FUN 2018

http://dx.doi.org/10.1145/2702123.2702164
http://dx.doi.org/10.1109/CIG.2014.6932920
http://dx.doi.org/10.1007/bf02984830
http://dx.doi.org/10.1007/BF02410762
http://dx.doi.org/10.2307/2372651
http://dx.doi.org/10.1109/CIG.2014.6932907
https://icga.leidenuniv.nl/wp-content/uploads/2015/04/September-2014.pdf
http://dx.doi.org/10.1093/qmath/hav006
http://dx.doi.org/10.1109/TCIAIG.2016.2593710

Pick, Pack, & Survive: Charging Robots in a
Modern Warehouse based on Online Connected
Dominating Sets
Heiko Hamann
Institute of Computer Engineering, University of Lübeck, Germany
https://www.iti.uni-luebeck.de
hamann@iti.uni-luebeck.de

Christine Markarian
Heinz Nixdorf Institute, Paderborn University, Germany
https://www.uni-paderborn.de
christine.markarian@upb.de

Friedhelm Meyer auf der Heide
Heinz Nixdorf Institute, Paderborn University , Germany
https://www.uni-paderborn.de
fmadh@upb.de

Mostafa Wahby
Institute of Computer Engineering, University of Lübeck, Germany
https://www.iti.uni-luebeck.de
mostafa.wahby@uni-luebeck.de

Abstract
The modern warehouse is partially automated by robots. Instead of letting human workers walk
into shelfs and pick up the required stock, big groups of autonomous mobile robots transport
the inventory to the workers. Typically, these robots have an electric drive and need to recharge
frequently during the day. When we scale this approach up, it is essential to place recharging
stations strategically and as soon as needed so that all robots can survive. In this work, we
represent a warehouse topology by a graph and address this challenge with the Online Connected
Dominating Set problem (OCDS), an online variant of the classical Connected Dominating Set
problem [10]. We are given an undirected connected graph G = (V,E) and a sequence of subsets
of V arriving over time. The goal is to grow a connected subgraph that dominates all arriving
nodes and contains as few nodes as possible. We propose an O(log2 n)-competitive randomized
algorithm for OCDS in general graphs, where n is the number of nodes in the input graph. This
is the best one can achieve due to Korman’s randomized lower bound of Ω(logn logm) [14] for the
related Online Set Cover problem [2], where n is the number of elements and m is the number
of subsets. We also run extensive simulations to show that our algorithm performs well in a
simulated warehouse, where the topology of a warehouse is modeled as a randomly generated
geometric graph.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases connected dominating set, online algorithm, competitive analysis, geo-
metric graph, robot warehouse, recharging stations

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.22

Acknowledgements This work was partially supported by the Federal Ministry of Education
and Research (BMBF) as part of the project ‘Resilience by Spontaneous Volunteers Networks for

© Heiko Hamann, Christine Markarian, Friedhelm Meyer auf der Heide, and
Mostafa Wahby;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 22; pp. 22:1–22:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.iti.uni-luebeck.de
mailto:hamann@iti.uni-luebeck.de
https://www.uni-paderborn.de
mailto:christine.markarian@upb.de
https://www.uni-paderborn.de
mailto:fmadh@upb.de
https://www.iti.uni-luebeck.de
mailto:mostafa.wahby@uni-luebeck.de
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Charging Robots based on Online Connected Dominating Sets

Coping with Emergencies and Disaster’ (RESIBES) - grant number 13N13955 to 13N13957 and
the German Research Foundation (DFG) within the Collaborative Research Center ‘On-The-Fly
Computing’ (SFB 901).

1 Introduction

Ever wondered what happens in a warehouse when Amazon orders are placed? Modern
warehouses (so-called pick-pack-and-ship warehouses [20]) are nowadays run by hundreds of
mobile robots (cf. swarm robotics [4]). A popular example is the Kiva system [6, 11] that is
used by the Amazon.com corporation. When orders are placed, robots bring inventory to
warehouse workers while workers stay stationary. Since robots need to act autonomously, the
system is considered as a multi-agent system that requires rather complex path planning and
resource allocation. In this paper, we focus on the specific issue of recharging robots. The
robots have rechargeable lead-acid batteries that need to be recharged frequently throughout
the day. In the case of Kiva robots, for example, they recharge every 55 minutes for five
minutes. Once a robot detects a low battery level, it drives autonomously to the next charging
station. Such warehouses can have several 10,000 square meters and do 200,000 picks per
day [11]. When one wants to scale up, it will get important to position the recharging
stations strategically, otherwise the system’s efficiency will decrease or robots will even run
out of energy before they reach a charging station. In addition, extreme differences in the
distribution shipping volumes per day are typical for Internet retailers, for example, before
Christmas. Hence, it is important to be able to scale up on demand.

In a hypothetical scenario, one can imagine a huge warehouse where certain areas are
more busy during the week than others. Hence, it would be useful to have movable charging
stations and to position them on demand in the respective busy areas. In addition, one can
assume that any two charging stations should not be too far apart from each other, because
robots may be required to move from any of these busy areas to any other (i.e., there may
be a massive task allocation going on, which is however beyond this paper’s scope). As
robots may not always be fully charged when they start their travel and because we want
to be scalable to huge warehouses, robots may even require to recharge on their move. So
besides positioning charging stations at busy areas we also may position charging stations in
between busy areas as kind of relay stations to guarantee reachability of all busy areas. We
represent the warehouse topology as a graph whose nodes represent potential locations for
recharging stations and busy areas. Recharging stations are placed sequentially on the nodes
depending on current demands. The edges in the graph represent distances that can safely
be covered by robots with a battery of average charge. A sequence of requests arrives over
time such that a request consists of a subset of nodes representing busy areas that require a
charging station nearby. These areas cannot be known in advance and must be provided with
a charging station as soon as revealed. Charging stations need to be placed on a small subset
of nodes such that all busy areas have a nearby station. Moreover, to guarantee reachability
of all busy areas, we require that the subset of nodes induces a connected subgraph (see
Fig. 1). The goal is to serve all requests upon their arrival by placing as few recharging
stations as possible and without knowing future busy areas. At the core of this scenario we
have a complex online optimization problem, the Online Connected Dominating Set problem
(OCDS), defined as follows.

I Definition 1. (Online Connected Dominating Set problem - OCDS) Given an undirected
connected graph G = (V,E) and a sequence of subsets of V arriving over time. In each step,
nodes from V are revealed and need to be dominated by a connected subgraph of G - a

H. Hamann, C. Markarian, F. Meyer auf der Heide, and M. Wahby 22:3

busy

busy

busy

relay

busy

busy

Figure 1 Warehouse topology modeled as a graph. Nodes represent busy areas and potential
locations for recharging stations. Three recharging stations are placed (in red) one of which acts as
a relay station.

subset is dominated if each node in it is either in the subgraph or adjacent to a node in the
subgraph. OCDS asks to grow a connected subgraph containing as few nodes as possible
without knowing future nodes in advance.

OCDS is an online variant of the classical Connected Dominating Set problem (CDS). Given
a graph G = (V,E), CDS asks to construct a minimum subset S of V such that each node in
V is dominated and the subgraph induced by S is connected. CDS has been widely studied
in both theory and practice, with various applications in wireless networks [21]. It is NP-
complete even in planar graphs [9]. For general graphs, it admits an O(ln ∆)-approximation,
where ∆ is the maximum node degree of the input graph [10]. This is the best possible unless
NP ⊂ DTIME(nlog n log n) [10]. We propose a randomized online algorithm for OCDS and
evaluate it using the classical notion of competitive analysis. Given an input sequence σ,
let CA(σ) and COP T (σ) denote the cost incurred by an algorithm A and an optimal offline
algorithm OPT , respectively. Algorithm A is said to be c-competitive (or has competitive
ratio c) if there exists a constant α such that CA(σ) ≤ c · COP T (σ) +α for all input sequences
σ. We show that our proposed algorithm is O(log2 n)-competitive against an oblivious
adversary, where n is the number of nodes in the input graph. This is the best one can
achieve due to Korman’s randomized lower bound for the related Online Set Cover problem
(OSC) [2], an online variant of the classical Set Cover problem. OSC is defined as follows.
Given a universe U of elements and a collection S of subsets of U . In each step, elements
from U are revealed and need to be covered by subsets from S. OSC asks to cover all given
elements while minimizing the total number of chosen subsets. Korman [14] has shown a
randomized lower bound of Ω(logn logm) for OSC, where n is the number of elements and
m is the number of subsets. It has been shown that the Set Cover problem can be reduced
to CDS [8, 10, 15]. By a similar argumentation, a reduction from OSC to OCDS can be
made, implying a randomized lower bound of Ω(log2 n) for OCDS. We also run extensive
simulations to show that our algorithm performs well in a simulated warehouse, where the
topology of a warehouse is modeled as a randomly generated geometric graph.

FUN 2018

22:4 Charging Robots based on Online Connected Dominating Sets

2 Related Work

In this section, we give an overview of literature related to online connected dominating sets
and robot warehouses, respectively.

2.1 Online Connected Dominating Sets
While there are many works that address CDS and its variants in the offline setting [10, 21],
only few consider the online setting. Eidenbenz [7] has studied an online variant of CDS, in
which the input graph is restricted to a class (tree, unit disk graph, bounded degree graph)
and is not known in advance. It is revealed over time such that in each step a node is either
inserted or deleted. The goal is to maintain a connected subgraph that contains as few nodes
as possible and dominates all present nodes. Eidenbenz has shown that a simple greedy
approach attains a (1 + 1

OPT)-competitive ratio in trees - where OPT is the cost of the
optimal offline solution, an (8 + ε)-competitive ratio in unit disk graphs - for arbitrary small
ε > 0, and b-competitive ratio in b-bounded degree graphs. Note that in OCDS, the input
graph is given in advance (offline) and only the nodes that need to be dominated are revealed
over time (online). For the Online Set Cover problem defined earlier, Alon et al. [2] have
proposed an O(logn logm)-competitive deterministic algorithm, where m is the number of
sets and n is the number of elements. They have also shown a nearly matching deterministic
lower bound of Ω(log n log m

log log n+log log m) for interesting values of m and n. Naor et al. [17] have
studied an online variant of the classical Steiner Tree problem with weighted nodes and
edges, the Online Node-Weighted Steiner Tree problem (ONWST), defined as follows.

I Definition 2. (Online Node-Weighted Steiner Tree problem - ONWST) Given a graph
G = (V,E) with weighted nodes and edges. In each step, nodes from V (called terminals)
are revealed and need to be connected to each other. ONWST asks to grow a subgraph S
(called a Steiner tree) that connects all terminals while minimizing the total cost of edges
and nodes in S.

Naor et al. [17] have given an O(logn log2 k)-competitive randomized algorithm for
ONWST, where k is the number of terminals and n is the number of nodes in the input
graph. A special case of ONWST in which all edges have cost 0 and all nodes have cost 1
can be reduced to OCDS by setting the nodes to be dominated as terminals. This variant
will appear in the analysis of our algorithm in Section 4.

2.2 Robot Warehouses
Even though it may seem a rather specialized problem of positioning charging stations
for multi-robot and swarm systems, there is a rich literature about this problem. Kannan
et al. define the Autonomous Recharging Problem (ARP) as the problem of planning and
coordinating when, where, and how to recharge robots [13]. They consider both static and
mobile charging stations and how to find recharging schedules to maximize efficiency of the
system. Couture-Beil and Vaughan argue that suboptimal positioning of the charging station
may cause spatial interference. Therefore, they study an adaptive mobile charging station [5]
where the charging station itself is a mobile robot. They argue that in a dynamic task the
correct and adaptive placement of the charging station is even more important. A similar
approach is studied by Arvin et al. for recharging a robot swarm with a mobile charging
station [3]. Kamagaew et al. discuss the problem of how to switch from a central approach
to a multiplicity of small self-organizing transport units in the warehouse [12]. They study

H. Hamann, C. Markarian, F. Meyer auf der Heide, and M. Wahby 22:5

a decentralized control system for autonomous vehicle swarms and how methods of swarm
intelligence can help. In summary, the Autonomous Recharging Problem and in particular
the optimal positioning of charging stations in multi-robot systems is relevant and currently
investigated intensively.

3 Online Algorithm

In this section, we propose an online algorithm for OCDS. Given an undirected connected
graph G = (V,E). In each step t, a subset Dt ⊆ V of nodes is given. Let St denote the set
of nodes selected by the algorithm in step t. Let S :=

∑
t St, ∀t be the solution set and

D :=
∑

t Dt, ∀t be the demand set. We fix a cost cj = 1 to each i ∈ V . The algorithm runs
in two phases. In the first phase, it dominates each node in Dt with a subset S′t ⊆ V . In the
second phase, it connects the nodes in S′t with an additional subset S′′t ⊆ V , forming the set
St = S′t∪S′′t . We call the set of nodes that can dominate i the candidates of i and denote it as
Qi. The algorithm uses a randomized rounding approach commonly used in designing online
algorithms [17], in both of its phases. In Phase 1, to dominate a given node i, the algorithm
buys fractions of i’s candidates until they sum up to 1. These fractions are then rounded
using a randomized process in attempt to add at least one candidate into the solution. If the
latter does not happen, the algorithm arbitrary adds one of the candidates into the solution.
In Phase 2, for each node j selected by the algorithm in Phase 1, the algorithm chooses a
representative node k from D that is dominated by j and connects k to the current solution
S, as follows. The minimum cut value (or maximum flow) between a node k and a set S is the
smallest total weight of edges which if removed would disconnect k from S. These edges form
a minimum cut. The algorithm transforms the weights of the graph from the nodes to the
edges such that the weight of an edge (u, v) is set to min{wu, wv}, where wu and wv are the
weights of u and v, respectively. If either u or v is in S, the weight of edge (u, v) is set to the
weight of the one not in S. It then constructs a minimum cut C between k and S by running
the algorithm by Schroeder et al. for undirected connected edge-weighted graphs [19]. For
an edge (u, v) ∈ C and wu < wv, u is called a minimum cut node. As long as the maximum
flow between k and S is less than 1, the algorithm constructs a minimum cut and increases
the weights of the corresponding minimum cut nodes. Then, it rounds these weights using a
randomized process in attempt to add at least one path connecting k to S into the solution. If
the latter does not happen, the algorithm adds a cheapest path that connects k to S into the
solution. For Phase 1, we maintain a fraction fi to each node i ∈ V , initially set to zero and
non-decreasing throughout the algorithm. We define a random variable µ as µ := min{X(q)}
such that 2 dlog(n+ 1)e independent random variables X(q) are distributed uniformly in the
interval [0, 1] and 1 ≤ q ≤ 2 dlog(n+ 1)e. As for Phase 2, we maintain a weight wi to each
i ∈ V , initially set to zero and non-decreasing throughout the algorithm. We define a random
variable µ′ as µ′ := min{X(q)} such that 2 dlog(n+ 1)e independent random variables X(q)
are distributed uniformly in the interval [0, 1] and 1 ≤ q ≤ 2 dlog(n+ 1)e. The two phases of
the algorithm are depicted in Algorithm 1 below. Fig. ?? shows the result of a two-step
run on a randomly generated connected graph of 10 nodes.

4 Competitive Analysis

We dedicate this section to showing that the algorithm above is O(log2 n)-competitive for
OCDS, where n is the number of nodes in the input graph. Recall that Ω(log2 n) is a lower
bound for OCDS [14].

FUN 2018

22:6 Charging Robots based on Online Connected Dominating Sets

Algorithm 1
Phase 1. For each i ∈ Dt not dominated by some node in S ∪ S′t,

Step 1: while
∑

j∈Qi
fj < 1,

for each j ∈ Qi: fj = fj · (1 + 1/cj) + 1
|Qi|·cj

Step 2: add j ∈ Qi to S′t if fj > µ

Step 3: if i is not dominated by some node in S′t, add an arbitrary j ∈ Qi to S′t
Phase 2. For each j ∈ S′t, if it is adjacent to some node in S, add j to S, else,

Step 1: choose a node k from the set Dt dominated by j and add it to S′′t
Step 2: if k is not connected to S,
While the maximum flow between k and S is not 1,
- Construct a minimum cut and select the minimum cut nodes K ⊆ V \ S
- For each i ∈ K, set wi = wi · (1 + 1/ci) + 1

|K|·ci

Add v ∈ V to S′′t if wv > µ′

If k is still not connected via nodes in S′′t , choose a shortest path connecting k to S
and add its nodes to S′′t

Step 3: Add j and the nodes in S′′t that connect j to S, to S

I Lemma 3. The expected cost C1 of the algorithm in Phase 1 is at most O(log2 n) · OPT ,
where OPT is the cost of the optimal offline solution.

Proof. Let C1 be the expected cost of the algorithm in Phase 1 and let OPT be the cost of
the optimal offline solution. For any j ∈ V , the probability that the algorithm adds j into
the solution is the probability that fj > µ, which is at most 2 log(n+ 1) · fj . Adding up over
all j ∈ V , the expected cost C1 of the algorithm will be at most:∑

j∈V

2 log(n+ 1) · fj = 2 log(n+ 1) ·
∑
j∈V

fj (1)

Next we bound
∑

j∈V fj . Whenever we want to dominate a node i ∈ V not yet dominated,
we increase the fraction corresponding to each of its |Qi| candidates. The fraction fj of each
candidate j ∈ Qi is increased by

(
fj

cj
+ 1
|Qi|·cj

)
. Summing up over all i’s candidates, we get

an overall fractional increase of:∑
j∈Qi

(
fj

cj
+ 1
|Qi| · cj

)
≤ 2 (2)

The above inequality holds since
∑

j∈Qi
fj ≤ 1 before any fractional increase and cj = 1:

∀j ∈ V . An optimal solution must contain at least one node. Let us fix any such node
p ∈ Qi (OPT ≥ cp). The fraction fp corresponding to p becomes at least 1 after at most
OPT · log |Qi| fractional increases and hence no further fractional increases can be made.
With this observation together with inequality 2, we conclude that:∑

j∈V

fj ≤ OPT · 2 · log (∆ + 1) (3)

The above inequality holds since |Qi| ≤ ∆ + 1, where ∆ is the maximum number of nodes
adjacent to any node in V . So far we have measured the cost of the algorithm during the
first two steps. Equations 1 and 3 yield a cost of O(log2 n) · OPT . It remains to measure
the additional cost incurred by Step 3 of Phase 1, which is necessary to guarantee a feasible

H. Hamann, C. Markarian, F. Meyer auf der Heide, and M. Wahby 22:7

0.2 0.4 0.6 0.8 1.0
0.3

0.4

0.5

0.6

0.7

0.8

0

1

2

3

4

5

6

7

8

9

First time step.

0.2 0.4 0.6 0.8 1.0
0.3

0.4

0.5

0.6

0.7

0.8

2

3

5

0

1

4

6

7

8

9

Second time step.

Figure 2 Two-step run of Algorithm 1 on randomly generated connected graph with |V | = 10.
Nodes in red or with red border represent demand nodes and nodes in green represent solution
nodes.

solution. For a single 1 ≤ q ≤ 2 dlog(n+ 1)e, the probability that a node i is not covered is
at most:∏

j∈Qi

(1− fj) ≤ e−
∑

j∈Qi
fj ≤ 1/e

The last inequality holds because the algorithm guarantees in the first step that
∑

j∈Qi
fj ≥

1. Hence, the probability that i is not covered, for all 1 ≤ q ≤ 2 dlog(n+ 1)e, is at most
1/n2. The additional expected cost for each of the at most n nodes is then upper bounded
by n · 1/n2 · OPT , since the cost of adding one additional node is clearly less than OPT .
Therefore, we conclude that C1 ≤ O(log2 n) · OPT . J

I Lemma 4. The expected cost C2 of the algorithm in Phase 2 is at most C1+O(log2 n)·OPT ,
where OPT is the cost of the optimal offline solution and C1 is the expected cost of the
algorithm in Phase 1.

Proof. in Appendix A. J

Adding C1 and C2 from Lemma 3 and Lemma 4, respectively, ultimately leads to the
theorem below.

I Theorem 5. There is an optimal O(log2 n)-competitive randomized algorithm for the
Online Connected Dominating Set problem (OCDS).

5 Simulation Study

In this section, we show that our proposed algorithm for OCDS performs well in a simulated
warehouse, where the topology of a warehouse is modeled as a randomly generated connected
geometric graph.

Since no other algorithm has been proposed for OCDS in the literature, the only algorithm
we could compare to is offline, that is, an algorithm for CDS. Since the latter is NP-complete,
the comparison is made against an optimal O(ln ∆)-approximation algorithm for CDS, based
on a greedy approach, following Guha et al. [10]. Recall that an input to CDS is a graph
G = (V,E) in which all nodes need to be dominated and to which the algorithm reacts once.

FUN 2018

22:8 Charging Robots based on Online Connected Dominating Sets

In OCDS, we are given a graph G = (V,E) and the nodes to be dominated are given in
steps. The algorithm needs to react to each step without knowing about future steps. The
comparison is made at the final step, after which the algorithm had accumulated its solution
over the steps. Without loss of generality, we assume all nodes at this step have been asked
to be dominated in at least one of the steps. We perform our simulation study in five different
settings, each with different number of nodes (i.e., potential locations for recharging stations):
|V | ∈ {50, 100, 150, 200, 250}. For each setting, we perform 100 runs. Since the algorithm is
randomized, we run it 10 times for each instance and observe its mean, best, and worst case
performance. In each simulation run, we generate a connected geometric graph G = (V,E)
whose nodes are placed uniformly at random in a unit square Euclidean plane (see Fig. 2).
The connectivity threshold r is set to a small value of 0.17 to provide graphs with minimal
number of edges. A value below 0.17 decreases the chance to generate geometric graphs that
are connected. The input to the approximation algorithm is G = (V,E) whereas the input to
the online algorithm is composed of offline and online parts. The offline part is G = (V,E)
and the online part is the sequence of subset of nodes revealed over time. In each step t, a
subset Dt of nodes is revealed (i.e., the current demand of recharging stations at step t).

The cardinality of Dt is uniformly sampled from the interval
[

0,
|V | −

∑i=t−1
i=1 |Di|
2

]
. The

subset Dt excludes previously given nodes and is sampled randomly.

Results. The boxplots in Fig. 3 show the performance of the online algorithm and the
offline approximation algorithm for |V | = 50, 100, 150, 200, and 250. For each |V |, 100
instance graphs are generated.

The online algorithm is run 10 times for each instance graph: its mean, best, and worst
case performance for each of the 100 instances are recorded.
The offline approximation algorithm is run for each instance graph: its performance for
each of the 100 instances is recorded.
The datasets represented by the boxplots shown in Fig. 3 are all pairwise statistically
significantly different (i.e., all p-values ≤ 0.05 based on Wilcoxon signed-rank test).

We define two performance measures:
1. the percentage difference, which is the number of nodes the online algorithm outputs

more, in comparison to the offline algorithm, in percentage.
2. the average competitive ratio, which is the ratio of the number of nodes outputted by the

online algorithm to that by the offline approximation algorithm.

Table 1 shows the two performance measures for each |V | in the mean, best, and worst
cases, evaluated by taking the average over all 100 instance graphs. Notice that the percentage
difference never exceeds 51.08% in the worst case. For |V | = 50, it is as small as 11.10% in the
best case. Moreover, as |V | grows, the percentage difference does not increase significantly.
Instead, it sometimes gets smaller - for instance, in the mean case as |V | grows from 150 to
250 (from 34.25% to 32.15% to 30.84%). One reasoning for the latter might be the following.
Recall that the connectivity threshold r is set to 0.17 for all |V | and the nodes are placed
uniformly at random in a bounded region. Thus the generated graphs become denser as |V |
grows, resulting in less complex solutions.

In terms of average competitive ratio, notice that the online algorithm’s worst output is
at most 6.83 times the output of the offline algorithm. Moreover, for |V | = 50, the online
algorithm is nearly optimal with an average competitive ratio of 1.63 and 1.29 in the mean
and best cases, respectively.

H. Hamann, C. Markarian, F. Meyer auf der Heide, and M. Wahby 22:9

offline

nu
m

be
r

of
 n

od
es

online
(worst)

15
20
25
30
35
40
45

online
(mean)

online
(best)

(a) |V | = 50

10
20
30
40
50
60
70
80
90

nu
m

be
r

of
 n

od
es

offlineonline
(worst)

online
(mean)

online
(best)

(b) |V | = 100

20
40
60
80
100
120

nu
m

be
r

of
 n

od
es

offlineonline
(worst)

online
(mean)

online
(best)

(c) |V | = 150

20
40
60
80
100
120
140
160

nu
m

be
r

of
 n

od
es

offlineonline
(worst)

online
(mean)

online
(best)

(d) |V | = 200

25
50
75
100
125
150
175
200

nu
m

be
r

of
 n

od
es

offlineonline
(worst)

online
(mean)

online
(best)

(e) |V | = 250

Figure 3 Boxplots showing the performance of the online algorithm (mean, best, and worst cases)
and the offline algorithm for |V | = 50, 100, 150, 200, and 250. All datasets are pairwise statistically
significantly different (p ≤ 0.05, Wilcoxon signed-rank test).

6 Open problems

We have presented a provably optimal online approach to positioning recharging stations
in a robot warehouse. Partially automated robot warehouses are state-of-the-art and in
the future they will need to scale up. The problem of correctly placing charging stations
is highly relevant and intensively studied. Efficient online algorithms for placing charging
stations are essential to ensure scalability and efficiency. This work has been a small attempt
towards this goal. There is certainly much more to do. As a first next step, it would be
interesting to target better competitive ratios for OCDS in restricted graph classes, e.g., by
employing properties of geometric graphs. Another important direction is to consider stations
that do not serve forever but are renewed whenever needed. A related model is Meyerson’s
leasing model [16], that has been studied in the context of many optimization problems
such as the Online Set Cover problem [1], in which sets can cover elements for limited
duration and costs are incurred accordingly. Furthermore, our simulation results show that,
even without knowing the demands of the day, an efficient placement of charging stations
can be done using our algorithm. Moreover, our random-geometric-graph based simulated

FUN 2018

22:10 Charging Robots based on Online Connected Dominating Sets

Table 1 Percentage difference and average competitive ratio for |V | = 50, 100, 150, 200, and 250
in the mean, best, and worst cases.

Mean Performance |V | Percentage Difference Average Competitive Ratio
50 23.74 1.63
100 31.37 2.51
150 34.25 3.43
200 32.15 3.96
250 30.84 4.52

Best Performance
50 11.10 1.29
100 14.96 1.72
150 16.32 2.16
200 12.21 2.12
250 10.30 2.18

Worst Performance
50 35.78 1.95
100 46.91 3.26
150 50.79 4.61
200 51.09 5.71
250 51.08 6.83

warehouse arguably generalizes topologies of warehouses and the modeled temporal evolution
of incoming demands is based on rather rough assumptions. Still, it would be interesting to
extend our simulation study to include data acquired from actual Internet retailers. Therefore,
the model would be refined so that it resembles actual evolutions of demands during the day
or week in automated warehouses. Also an application to the domain of swarm robotics for
any scenario, such as collective transport, collective construction, etc., may be possible and
advantageous either with manually placed or autonomous mobile charging stations [3, 4]. We
have also skipped the required task allocation for the robots in this study. An interesting
extension hence can be a combined analysis of task allocation algorithms together with the
challenge of positioning charging stations. Besides central task allocation algorithms, there
are decentralized approaches to task allocation that don’t require global information and
scale up well [18].

References

1 Sebastian Abshoff, Peter Kling, Christine Markarian, Friedhelm Meyer auf der Heide, and
Peter Pietrzyk. Towards the price of leasing online. J. Comb. Optim., 32(4):1197–1216,
2016. doi:10.1007/s10878-015-9915-5.

2 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online
set cover problem. In Lawrence L. Larmore and Michel X. Goemans, editors, Proceedings
of the 35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego,
CA, USA, pages 100–105. ACM, 2003. doi:10.1145/780542.780558.

3 Farshad Arvin, Khairulmizam Samsudin, and Abdul Rahman Ramli. Swarm robots long
term autonomy using moveable charger. In Future Computer and Communication, 2009.
ICFCC 2009. International Conference on Future Computer and Communication, pages
127–130. IEEE, 2009.

http://dx.doi.org/10.1007/s10878-015-9915-5
http://dx.doi.org/10.1145/780542.780558

H. Hamann, C. Markarian, F. Meyer auf der Heide, and M. Wahby 22:11

4 Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm robotics:
a review from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41, 2013.
doi:10.1007/s11721-012-0075-2.

5 Alex Couture-Beil and Richard T. Vaughan. Adaptive mobile charging stations for multi-
robot systems. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2009, pages 1363–1368. IEEE, 2009.

6 Raffaello D’Andrea. Guest editorial: A revolution in the warehouse: A retrospective on
Kiva systems and the grand challenges ahead. IEEE Transactions on Automation Science
and Engineering, 9(4):638–639, 2012.

7 Stephan Eidenbenz. Online Dominating Set and Variations on Restricted Graph Classes.
Technical report, Department of Computer Science, ETH Zürich, 2002.

8 Uriel Feige. A threshold of ln n for approximating set cover (preliminary version). In
Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 314–318.
ACM, 1996. doi:10.1145/237814.237977.

9 Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

10 Sudipto Guha and Samir Khuller. Approximation algorithms for connected dominating
sets. Algorithmica, 20(4):374–387, 1998. doi:10.1007/PL00009201.

11 Eric Guizzo. Three engineers, hundreds of robots, one warehouse. IEEE spectrum, 45(7):26–
34, 2008.

12 Andreas Kamagaew, Jonas Stenzel, Andreas Nettsträter, and Michael ten Hompel. Concept
of cellular transport systems in facility logistics. In 5th International Conference on Auto-
mation, Robotics and Applications (ICARA), pages 40–45. IEEE, 2011.

13 Balajee Kannan, Victor Marmol, Jaime Bourne, and M. Bernardine Dias. The autonomous
recharging problem: Formulation and a market-based solution. In IEEE International
Conference on Robotics and Automation (ICRA 2013), pages 3503–3510. IEEE, 2013.

14 Simon Korman. On the use of randomization in the online set cover problem. In M.S.
thesis, Weizmann Institute of Science, 2005.

15 Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization
problems. J. ACM, 41(5):960–981, 1994. doi:10.1145/185675.306789.

16 Adam Meyerson. The parking permit problem. In 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA,
Proceedings, pages 274–284. IEEE Computer Society, 2005. doi:10.1109/SFCS.2005.72.

17 Joseph Naor, Debmalya Panigrahi, and Mohit Singh. Online node-weighted steiner tree
and related problems. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25,
2011, pages 210–219. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.65.

18 Giovanni Pini, Arne Brutschy, Gianpiero Francesca, Marco Dorigo, and Mauro Birattari.
Multi-armed bandit formulation of the task partitioning problem in swarm robotics. In 8th
Int. Conf. on Swarm Intelligence (ANTS), pages 109–120. Springer, 2012.

19 Jonatan Schroeder, André Guedes, and Elias P. Duarte Jr. Computing the minimum cut
and maximum flow of undirected graphs. Technical report, Federal University of Paraná,
Department of Informatics, 2004.

20 Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hundreds of co-
operative, autonomous vehicles in warehouses. AI magazine, 29(1):9, 2008.

21 Jiguo Yu, Nannan Wang, Guanghui Wang, and Dongxiao Yu. Connected dominating sets in
wireless ad hoc and sensor networks - A comprehensive survey. Computer Communications,
36(2):121–134, 2013. doi:10.1016/j.comcom.2012.10.005.

FUN 2018

http://dx.doi.org/10.1007/s11721-012-0075-2
http://dx.doi.org/10.1145/237814.237977
http://dx.doi.org/10.1007/PL00009201
http://dx.doi.org/10.1145/185675.306789
http://dx.doi.org/10.1109/SFCS.2005.72
http://dx.doi.org/10.1109/FOCS.2011.65
http://dx.doi.org/10.1016/j.comcom.2012.10.005

22:12 Charging Robots based on Online Connected Dominating Sets

A Proof of Lemma 4

Proof. Let C2 be the expected cost of the algorithm in Phase 2 and let OPT be the cost of
the optimal offline solution. Phase 2 connects the nodes in S′t : ∀t that were not connected
to S in Phase 1. For each such node u, Step 1 chooses a representative node k from D

that is dominated by u. These representative nodes are then connected in Step 2 and form
the terminals of a special case instance of the Online Node-weighted Steiner Tree problem
(ONWST) (Definition 2), in which all nodes have cost 1 and all edges have cost 0. Let
R be the set of these representative nodes. By similar arguments as in Phase 1, we show
that Step 2 of Phase 2 admits an O(log2 n)-competitive algorithm for this special case of
ONWST. Let CSt be the expected cost of the Steiner tree constructed in Step 2 of Phase
2 and let OPT St be the cost of an optimal Steiner tree. For any i ∈ V , the probability
that the algorithm adds i into the solution is the probability that wi > µ′, which is at most
2 log(n+ 1) · wi. Adding up over all i ∈ V , the expected cost CSt will be at most:∑

i∈V

2 log(n+ 1) · wi = 2 log(n+ 1) ·
∑
i∈V

wi (4)

Next we bound
∑

i∈V wi. To connect a node k ∈ V not yet connected, the algorithm
constructs a minimum cut. Let Pk denote the corresponding minimum cut nodes of such a
cut. We increase the weight corresponding to each node in Pk. The weight wi of each i ∈ Pk

is increased by
(

wi

ci
+ 1
|Pk|·ci

)
. Summing up over all the nodes in Pk, we get an overall weight

increase of:∑
i∈Pk

(
wi

ci
+ 1
|Pk| · ci

)
≤ 2 (5)

The above inequality holds since
∑

i∈Pk
wi ≤ 1 before any weight increase and ci = 1: ∀i ∈ V .

An optimal Steiner tree must contain at least one node p ∈ Pk, in order to connect k. The
weight wp corresponding to p becomes at least 1 after at most OPT St · log |Pk| weight
increases and hence no further weight increases can be made. The weight of wp becomes 1
and so it cannot belong to any other minimum cut chosen afterwards, since the algorithm
constructs a minimum cut only if the maximum flow is less than one. The same argument
holds for all minimum cuts chosen afterwards such that each can contain a distinct node in
the optimal solution. With this observation together with inequality 5, we conclude that:

∑
i∈V

wi ≤ OPT St · 2 · logn (6)

The above inequality holds since |Pk| ≤ n. Equations 4 and 6 yield a cost of O(log2 n) ·
OPT St. Let i ∈ Pk be a node with weight wi > µ′. Now, we need to measure the additional
cost incurred in the last part of Step 2, which is necessary to guarantee a feasible solution.
Note that, we have that the weight of each node in a path connecting k to S must be at least
the flow going through the path. For a single 1 ≤ q ≤ 2 dlog(n+ 1)e, the probability that a
node k is not connected is at most:∏

i∈Pk

(1− wi) ≤ e
−
∑

i∈Pk
wi ≤ 1/e

The last inequality holds since the algorithm guarantees that
∑

i∈Pk
wi ≥ 1. Hence,

the probability that k is not connected, for all 1 ≤ q ≤ 2 dlog(n+ 1)e, is at most 1/n2.

H. Hamann, C. Markarian, F. Meyer auf der Heide, and M. Wahby 22:13

The additional expected cost for each of the at most n nodes is then upper bounded by
n · 1/n2 · OPT St, since the cost of adding one additional node is clearly less than OPT St.
Therefore, we conclude that:

CSt ≤ O(log2 n) · OPT St (7)

Thus, we have C2 ≤ C1 + CSt ≤ C1 +O(log2 n) · OPT St, where C1 results from adding
at most one node for each node in S′t. Moreover, since an optimal offline solution for OCDS
dominates all the given nodes and is connected, it forms a Steiner tree over the demand set
D and consequently over the set R of representative nodes. Hence, OPT St ≤ OPT and
therefore:

C2 ≤ C1 +O(log2 n) · OPT (8)

J

FUN 2018

Selection Via the Bogo-Method – More on the
Analysis of Perversely Awful Randomized
Algorithms
Markus Holzer
Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany
holzer@informatik.uni-giessen.de

Jan-Tobias Maurer
Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany
jan.t.maurer@math.uni-giessen.de

Abstract
We continue our research on perversely awful randomized algorithms, which started nearly a
decade ago. Based on the bogo-method we design a bogo-selection algorithm and variants thereof
and analyse them with elementary methods. Moreover, practical experiments are performed.

2012 ACM Subject Classification Mathematics of computing → Combinatorics, Mathematics
of computing→ robability and statistics, Theory of computation→ Algorithm design techniques

Keywords and phrases selection, bogo-method, combinatorial sums and series, inverse binomial
coefficients, experimental result

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.23

Acknowledgements Thanks goes to Gerrit Eichner for his help on the statistical analysis of our
experimental data.

1 Introduction

Bogo-sort, also known as Monkey-sort, is according to [6] the archetypical perversely awful
randomized algorithm. It is the equivalent to repeatedly throwing a deck of cards in the air,
picking them up at random, and then testing whether they are in order. The analysis of
bogo-sort carried out in [3] shows that this algorithm, while having best-case expected running
time as low as O(n), achieves an asymptotic expected running time as high as Ω(n · n!)
already in the average case. Although there are other sorting algorithms known such as, e.g.,
Bogobogo-sort, Evil-sort, etc., with even higher inefficiency, the concept of bogusness was
not considered as an algorithm design principle in general. Thus, the question arises, what is
the concept of bogusness? In fact the design of Bogo-sort as stated in the beginning nicely
generalizes to what we call the bogo-method by repeatedly throwing a deck of cards in the
air and picking up sufficient cards at random in order to test whether a certain property is
met. At first glance this design principle looks crazy, but it can be nicely applied to other
problems than sorting such as, e.g., the selection problem or the two-element sum problem.
In the former case the property that has to be met is that the kth largest element of a given
array a[1 . . . n] is exactly on the kth position and that all the elements to the left of a[k]
are smaller while all the element to the right of a[k] are larger – we obviously require that
1 ≤ k ≤ n holds. Thus, it is obvious that we have to pick up all cards at random in order to
verify the stated property.

© Markus Holzer and Jan T. Maurer;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 23; pp. 23:1–23:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:holzer@informatik.uni-giessen.de
mailto:jan.t.maurer@math.uni-giessen.de
https://doi.org/10.4230/LIPIcs.FUN.2018.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Selection Via the Bogo-Method

Here we will focus on the analysis of several selection algorithms following the bogo-
method. The pseudo code for bogo-select that ensures the property mentioned above reads
as follows:

Listing 1 Algorithm: Bogo-Select (by partitioning)
1 Input array a[1..n] and k with 1<=k<=n
2 while a[1..n] is not partitioned (k) do
3 randomly permute a[1..n]
4 endwhile
5 Output a[k]

The test whether the array is partitioned such that a[i] ≤ a[k], for 1 ≤ i < k, and
a[k] ≤ a[i], for k < i ≤ n as well as the permutation of the array have to be programmed
with some care:

1 procedure partitioned (int: k):
2 // returns true if the array
3 // is partitioned according
4 // to a[k] and false otherwise
5 for i=1 to k-1 do
6 if a[i]>a[k] then
7 return false
8 endif
9 endfor

10 for i=k+1 to n do
11 if a[i]<a[k] then
12 return false
13 endif
14 endfor
15 return true

1 procedure randomly permute :
2 // permutes the array a[1..n]
3 for i=1 to n-1 do
4 j := rand[i..n]
5 swap a[i] and a[j]
6 endfor

The second algorithm was already used for the bogo-sort algorithm and is found, e.g., in [4,
p.139]. The random permutation is done quickly by a single loop, where rand gives a random
value in the specified range. And the test for partitioning according to the element a[k] is
carried out from left to right.

In this work we present a detailed analysis of the bogo-select algorithm in several variations.
It is worth mentioning that we still obtain a randomized selection algorithm if we relax the
condition of being partitioned to a condition that only requires that there are exactly k − 1
elements in a[1 . . . k−1, k+1, . . . n] that are smaller or equal to a[k]; equivalently one requires
that exactly n− k elements in the array a[1 . . . k − 1, k + 1 . . . n] are larger or equal to a[k].
This variant of the bogo-select algorithm will be analyzed later on. Our proofs require only a
basic knowledge of probability and can be readily understood by non-specialists. This makes
the analysis well-suited to be included as motivating example in courses on randomized
algorithms. We will analyze the expected running time for bogo-select under the assumption
that we are given an array x = x1x2 . . . xn containing a permutation of the set of numbers
{1, 2, . . . , n} with n ≥ 2. To analyze the running time of the bogo-select algorithm and the
variants thereof, we on the one hand count the number of comparisons, and on the other
hand the number of swaps. This is similar to the analysis of the bogo-sort algorithm done
in [3]. An immediate observation is that the algorithm isn’t guaranteed to terminate at all.
However, as we will prove that the expectation of the running time T is finite as we see by

M. Holzer and J. T. Maurer 23:3

Markov’s inequality

P[T ≥ t] ≤ E[T]
t
, for t > 0,

that the probability of this event equals 0. There are essentially two different initial
configurations: either the list x is initially partitioned according to the kth element or it
is not. We have to make this distinction as the algorithm is smart enough to detect if the
given list is initially well partitioned, and has much better running time in this case. This
welcome built-in feature also makes the running time analysis of this case very easy: the
number of total comparisons equals n− 1, and the total number of swaps equals zero, since
the while-loop is never entered.

We come to the case where the array is not initially well partitioned. Note that the first
shuffle yields a randomly ordered list, so the behavior of the algorithm does no longer depend
on the initial order – the number of comparisons before the first shuffle still does.

2 Bogo-Select: Selection By Partitioning

2.1 How Long Does it Take to Check Whether the kth Element is on
its Correct Position?

Before the analysis of the procedure partitioned we begin with a detour on inverse
binomial coefficients, since they are mostly not too intensively covered by monographs on
combinatorics – an exception is, e.g., [1]. Obviously, an inverse binomial coefficient obeys
the identity

(
n
k

)−1 = k!(n−k)!
n! . The first theorem is based on the elementary identity(

n

k

)−1
=
(
n− 1
k − 1

)−1
− (n− k)

(n− k + 1)

(
n

k − 1

)−1

on inverse binomial coefficients. The proof of the following theorem is literally taken from [7].

I Theorem 1. For n ≥ 2, we have

∞∑
i=0

(
n+ i

i

)−1
= n

n− 1 .

Proof. The proof is by induction on n. For n = 2, the sum equals

∞∑
i=0

(
2 + i

i

)−1
=
∞∑
i=0

i! · (2 + i− i)!
(2 + i)! = 2

∞∑
i=0

1
(i+ 1)(i+ 2) = 2

∞∑
i=0

(
1

i+ 1 −
1

i+ 2

)
= 2

for the terms pairwise cancel. For n > 2, we observe that

∞∑
i=0

(
n+ i

i

)−1
=
(
n+ 0

0

)−1
+
∞∑
i=1

(
n+ i

i

)−1
= 1 +

∞∑
i=0

(
n+ (i+ 1)
i+ 1

)−1
.

Applying the elementary equation on inverse binomial coefficients mentioned before the
theorem to the rightmost sum, we have

∞∑
i=0

(
n+ i

i

)−1
= 1 +

∞∑
i=0

[(
n+ i

i

)−1
− n

n+ 1

(
n+ (i+ 1)

i

)−1
]
.

FUN 2018

23:4 Selection Via the Bogo-Method

Assuming
∑∞
i=0
(
n+i
i

)−1 = n
n−1 and hence is finite, we obtain

n

n+ 1

∞∑
i=0

(
(n+ 1) + i

i

)−1
= 1,

completing the proof. J

In the forthcoming we will come across more involved combinatorial sums and series
containing inverse binomial coefficients, which will be evaluated with the help of a more
general approach based on Euler’s Gamma function. This will detailed in Subsection 3.1.

Now we are ready to analyse the procedure partitioned. Recall that we demand n to
be at least 2 as a prerequisite. Thus, we will not state n ≥ 2 explicitly in all theorems and
lemmata to come.

I Theorem 2. Assume x is a random permutation of {1, 2, . . . , n}, and let C denote the
random variable counting the number of comparisons carried out in the test whether x is
partitioned according to the kth element. Then

E[C] =
k−1∑
i=1

1
i

+ 1
k

n−1∑
i=k

(
i

k

)−1
.

It holds E[C] = Hn−1, if k = 1 or k = n, and E[C] ∼ Hk−1 + 1
k−1 , otherwise.

Proof. Let k with 1 ≤ k ≤ n be fixed. In order to calculate E[C] =
∑
i≥1 P[C ≥ i] we

determine the probability for every valid i, that is 1 ≤ i ≤ n− 1 since we can compare a[k]
with at most n− 1 other elements. Observe that the ith comparison is reached if and only if
the algorithm did not drop out at the i− 1 comparisons before. Furthermore observe that
the first comparison within the second loop equals the kth total comparison. Therefore we
consider two cases:
1. Let 1 ≤ i < k. If the routine makes a minimum of i comparisons, the i − 1 first

comparisons needed to be successful in order for the ith one to be carried out, yielding
us x1, x2, . . . , xi−1 ≤ xk. Thus, the probability P[C ≥ i] computes as

P[C ≥ i] =
(
n
i

)
· (i− 1)! · (n− i)!

n! .

The numerator is the product of the number of possibilities to choose i elements to arrange
the (i− 1) smaller ones at the beginning of the array and the number of possibilities to
arrange them, place the maximum from the i chosen elements on position k, and the
number of possibilities to arrange the remaining n− i elements at the uncharted part of
the array, and the denominator is just the total number of arrays of length n. Reducing
this fraction, we obtain P[C ≥ i] = 1

i .
2. For k ≤ i < n we argue in similar veins as above and again find that P[C ≥ i] can be

estimated as

P[C ≥ i] =
(
n
i

)
· (k − 1)! · (i− k)! · (n− i)!

n! .

The numerator is the product of the number of possibilities to choose i elements to arrange
the k − 1 smallest elements at the beginning of the array and the number of possibilities
to arrange them, place the kth largest element on position k, and the remaining i− k
elements just after the kth position and the number of possibilities to arrange them, and

M. Holzer and J. T. Maurer 23:5

finally the number of possibilities to arrange the remaining n− i elements at the end part
of the array with the denominator again being the total number of arrays of length n.
Simplifying this fraction, results in P[C ≥ i] = 1

k

(
i
k

)−1.
As the range of C is non-negative, we combine those two cases for P[C ≥ i] for the expected
value of C as follows:

E[C] =
∑
i≥1

P[C ≥ i] =
k−1∑
i=1

1
i

+
n−1∑
i=k

1
k

(
i

k

)−1
.

The former sum can easily be identified as the harmonic number Hk−1 =
∑k−1
i=1

1
i . For the

second term of the expected value above we have to do a little bit more calculation and the
help of Theorem 1 we get:1

n−1∑
i=k

1
k

(
i

k

)−1
= 1
k

n−1−k∑
i=0

(
k + i

k

)−1
≤ 1
k

∞∑
i=0

(
k + i

i

)−1
= 1
k
· k

k − 1 = 1
k − 1 ,

if k ≥ 2. In case k = 1 we find

E[C] =
1−1∑
i=1

1
i

+
n−1∑
i=1

1
1

(
i

1

)−1
=
n−1∑
i=1

1
i
,

which equals the harmonic number Hn−1 similar to above – observe, that for k = 1 and k = n

the values for E[C] are the same further stressing the highly symmetrical nature of this
very algorithm. Putting things together we obtain E[C] = Hn−1, if k = 1 or k = n, and
E[C] ∼ Hk−1 + 1

k−1 , otherwise, as n tends to infinity. This proves the stated claim on the
asymptotics. J

Theorem 2 tells us that we can expect comparisons in the range of Hn to check if a large
array is well partitioned, and for n large enough, this number is about lnn, because Hn

satisfies the asymptotic

Hn ∼ lnn+ γ,

where γ ≈ 0.5772156649 is the Euler-Mascheroni constant. Compare to the worst case, where
we have to compare n − 1 times. This is a noticeable departure from the check for being
sorted from left to right as analysed in [3], where it was shown that on average one only needs
a constant number of comparisons, namely e− 1 ≈ 1.718281828 for large enough arrays.

2.2 The Expected Number of Swaps in Bogo-Select
When computing the expected number of iterations in bogo-select, we concentrate on the
case where the input x is not partitioned according to the kth element; for the other case it

1 With a little bit more effort one can show that
n∑

i=0

(
k + i

i

)−1

= k

k − 1

[
1−
(

n + k

n + 1

)−1
]

,

for k ≥ 2 and n ≥ 0; e.g., see the alternative proof of Theorem 1 given on page 33:9 or [2, page
16, Equation (2.2)]. This allows us to refine the expected value of C to the precise expression
E[C] = Hk−1 + 1

k−1

[
1−
(

n−1
k−1

)−1
]
, for k ≥ 2.

FUN 2018

23:6 Selection Via the Bogo-Method

equals 0, because of the intelligent design of the algorithm. In each iteration, the array is
permuted uniformly at random, and we iterate until we hit a sequence that is well partitioned
for the first time. As a well partitioned ordered sequence w.r.t. the kth element is hit with
probability (k−1)!(n−k)!

n! in each trial, the number of iterations I is a random variable with a
probability as follows:

P[I = i] =
(

1− (k − 1)!(n− k)!
n!

)i−1
· (k − 1)!(n− k)!

n!

That is, I is a geometrically distributed random variable with hitting probability p =
(k−1)!(n−k)!

n! . Simple calculations show that p = 1
k

(
n
k

)−1 and that the expected value of I is
equal to E[I] = p−1 = k ·

(
n
k

)
In each iteration, the array is shuffled and a shuffle costs n− 1 swaps. As the algorithm

operates kind of economically with respect to the number of swaps, these are the only swaps
carried out while running the algorithm. If S denotes the random variable counting the
number of swaps, when asking for the kth element, we have S = (n− 1) · I. By linearity of
expectation, we derive:

I Theorem 3. If S denotes the total number of swaps carried out for an input x of length n,
when asking for the kth element, for 1 ≤ k ≤ n, we have

E[S] =
{

0 if x is well partitioned according to the kth element
k(n− 1)

(
n
k

)
otherwise.

Thus we immediately obtain:

I Corollary 4. Let S denote the number of swaps carried out by bogo-select on a given input x
of length n and an integer k with 1 ≤ k ≤ n. Then

E[S] =
{

0 in the best case
k(n− 1)

(
n
k

)
in the worst and average case.

If k = 1, that is, we are interested in obtaining the smallest element in the array, then we
have E[S] = (n− 1) · n = n2 − n. This is not to bad for a bogo-algorithm. In case we are
interested in the last element we come to the same polynomial of E[S] = n2(n− 1). On the
other hand, since the binomial coefficients are uni-modal2 the elements in the middle are
the largest ones. Using the asymptotic estimate of

(
n
k

)
∼ 2n/2
√
πn

, if k = n
2 + O(1) (taken from

from [8]), we estimate that E[S] ∼ n(n−1)·2n/2−1
√
πn

, if k = n
2 + O(1). Therefore, computing the

median induces an exponential number of swaps on average.

3 Two Variations on Bogo-Select

In this section we discuss two natural variants of the bogo-select algorithm by switching
out the procedure partitioned. This will influence the expected number of comparisons
that are needed in order to verify that the kth element is in its correct position and also the
expected number of swaps. We use the generic bogo-select algorithm and replace the probe
algorithm in the second line by another appropriate verifier like, e.g., z-partitioned and
p-counted, which will be detailed in the forthcoming.

2 A finite sequence of numbers is uni-modal if the sequence first increases and then decreases.

M. Holzer and J. T. Maurer 23:7

3.1 Bogo-Select by Zig-Zag-Partition
Checking for being well partitioned w.r.t. the kth element is done from left to right, which
corresponds to draw cards from the top of the deck. When using bottom dealing or base
dealing, which is by the way considered as cheating in poker, we would end up in a similar
situation as with drawing cards from the top (aka. top dealing). Thus, it is left to consider
when top and bottom dealing is alternately used for checking well partitioning, i.e., a[1] is
checked against a[k], then a[n] against a[k], followed by a[2] against a[k], etc. If alternation
between top and bottom dealing is not possible anymore, then one continues with top
or bottom dealing only. This results in the bogo-select (by zig-zag-partition), where the
implementation of the checker z-partitioned reads as follows – the pseudo code if k belongs
to the second half of the array is straight forward and therefore left to the interested reader:

1 procedure z- partitioned (int: k):
2 // returns true if the array is
3 // zig -zag partitioned according
4 // to a[k] and false otherwise
5 if k <=(n+1)/2 then
6 // k in the first half
7 ...
8 else
9 // k in the second half

10 ...
11 endif
12 return true

7.1 // k in the first half
7.2 for i=1 to k-1 do
7.3 if a[i]>a[k] then
7.4 return false
7.5 endif
7.6 if a[n+1-i]<a[k] then
7.7 return false
7.8 endif
7.9 endfor

7.10 for i=k+1 to n-k+1 do
7.11 if a[i]<a[k] then
7.12 return false
7.13 endif
7.14 endfor

The analysis of this algorithm is quite similar to before. Again, we encounter a combinat-
orial sum and series with inverse binomial coefficients. A more general approach to evaluate
these sums and series is based on Euler’s well known Beta functions defined by

B(m,n) =
1∫

0

tm−1(1− t)n−1 dt,

for all complex numbers m and n with a positive real part. Since

B(m,n) = Γ(m)Γ(n)
Γ(m+ n) = (m− 1)!(n− 1)!

(m+ n− 1)! ,

where Γ refers to the Gamma function satisfying Γ(n+ 1) = n!, we get(
n

k

)−1
= (n+ 1)

1∫
0

tk(1− t)n−k dt

for all non-negative integers n and k with n ≥ k. Although this is an explicit formula for
the inverse binomial coefficient, it is somehow more convenient to replace inverse binomial
coefficients by factorials and in turn by the Gamma and Beta function and its integral
representation when dealing with combinatorial sums and series. This allows to simplify the
inner terms of a combinatorial sum taking extra factors into account. We demonstrate this
strategy in the following theorem, which is known as Lehmer’s identity [5], and uses basics
on integrals and (inverse) trigonometric functions; the proof is literally taken from [10] to
keep this presentation self contained.

FUN 2018

23:8 Selection Via the Bogo-Method

I Theorem 5 (Lehmer’s Identity). If |x| < 1, then

∞∑
i=1

(2x)2i

i

(
2i
i

)−1
= 2x√

1− x2
arcsin(x).

Proof. We replace the inverse binomial coefficient and the factor 1/i in the infinite sum by
the Gamma function and in turn by the Beta function and its integral definition and obtain

∞∑
i=1

(2x)2i

i

(
2i
i

)−1
=
∞∑
i=1

(2x)2i · i!(i− 1)!
(2i)!

=
∞∑
i=1

(2x)2i · Γ(i+ 1)Γ(i)
Γ(2i+ 1)

=
∞∑
i=1

(2x)2iB(i+ 1, i) =
∞∑
i=1

(2x)2i
1∫

0

ti(1− t)i−1 dt.

After exchanging the sum and the integral and evaluating the geometric sum we find

∞∑
i=1

(2x)2i
1∫

0

ti(1− t)i−1 dt =
1∫

0

∞∑
i=1

(2x)2iti(1− t)i−1 dt

=
1∫

0

1
1− t

∞∑
i=1

(4x2t(1− t))i dt

=
1∫

0

4x2t

1− 4x2t(1− t) dt.

By considering the derivation of denominator we decide to use the substitution s = x(2t− 1)
and hence ds

dt = 2x. Thus the above integral is further equal to

x∫
−x

s

s2 + (1− x2) ds+ x

x∫
−x

1
s2 + (1− x2) ds. (1)

Since

∫ 1
x
dx = ln |x|, and

∫ 1
x2 + a2 dx = 1

a
arctan

(x
a

)

as found in the theoretical computer science cheat sheet3 one observes that the former term

3 The theoretical computer science cheat sheet can be downloaded from, for instance, https://tug.org/
texshowcase/cheat.pdf.

https://tug.org/texshowcase/cheat.pdf
https://tug.org/texshowcase/cheat.pdf

M. Holzer and J. T. Maurer 23:9

of Equation (1) evaluates to zero,4 while the latter term of Equation 1 is equal to

x

x∫
−x

1
s2 + (1− x2) ds = x

(
1√

1− x2
arctan

(
s√

1− x2

) ∣∣∣∣x
−x

)

= 2x√
1− x2

arctan
(

x√
1− x2

)
,

because arctan(−x) = arctan(x), for |x| < 1. Thus, we get

∞∑
i=1

(2x)2i

i

(
2i
i

)−1
= 2x√

1− x2
arctan

(
x√

1− x2

)
= 2x√

1− x2
arcsin(x),

since the inverse trigonometry functions arcsin and arctan obey

arcsin(x) = arctan
(

x√
1− x2

)
for |x| < 1

as mentioned in the theoretical computer science cheat sheet. This proves the stated
claim. J

It is worth mentioning that Theorem 1 can be shown in similar way as above by using
the Beta function and its integral definition.

Alternative Proof of Theorem 1. We show a slightly stronger statement

m∑
i=0

(
n+ i

i

)−1
= n

n− 1

[
1−

(
m+ n

n+ 1

)−1
]
,

for n ≥ 2 and m ≥ 0. If m tends to infinity, we obtain the statement of Theorem 1, because
the inverse binomial coefficient approaches 0.

We proceed as in the proof of Theorem 5. Thus, we replace the inverse binomial coefficient
by its definition, then the factorials by the Gamma function and in turn by the Beta function
and its integral definition. This results in the following calculation:

m∑
i=0

(
n+ i

i

)−1
=

m∑
i=0

i!n!
(n+ i)!

= n

m∑
i=0

Γ(i+ 1)Γ(n)
Γ(n+ i+ 1)

= n

m∑
i=0

B(i+ 1, n) = n

m∑
i=0

1∫
0

ti(1− t)n−1 dt.

4 A simpler argument that
x∫

−x

s

s2 + (1− x2) ds = 0

is that the function f(s) = s/(s2 + (1− x2)) is symmetric to the origin, and thus the integral from −x
to x evaluates to zero.

FUN 2018

23:10 Selection Via the Bogo-Method

Next we exchange the sum and the integral and evaluate the geometric sum. This leads us to

n

m∑
i=0

1∫
0

ti(1− t)n−1 dt = n

1∫
0

m∑
i=0

ti(1− t)n−1 dt

= n

1∫
0

(1− t)n−1
m∑
i=0

ti dt = n

1∫
0

(1− t)n−1 1− tm+1

1− t dt.

To keep the calculation simple we rewrite the above integral by its difference and obtain

n

1∫
0

(1− t)n−1 1− tm+1

1− t dt = n

1∫
0

(1− t)n−2(1− tm+1) dt

= n

1∫
0

(1− t)n−2 dt− n
1∫

0

tm+1(1− t)n−2 dt.

Since n ≥ 2 we find that the former term of the above given difference is equal to

n

1∫
0

(1− t)n−2 dt = n

(
−1
n− 1(1− t)n−1

∣∣∣∣1
0

)

= n

(
−1
n− 1(1− 1)n−1 − −1

n− 1(1− 0)n−1
)

= n

n− 1 ,

while the latter term can be rewritten by the Beta function and in turn by the Gamma
function or by factorials, which reads as

n

1∫
0

tm+1(1− t)n−2 dt = n ·B(m+ 2, n− 1)

= n · Γ(m+ 2)Γ(n− 1)
Γ(m+ n+ 1)

= n · (m+ 1)!(n− 2)!
(m+ n)! = n

n− 1

(
m+ n

m+ 1

)−1

which gives the desired result by putting both terms together and factor n/(n− 1) out. J

We are interested in special values on inverse central binomial coefficients (with some
particular factors). Both values are well known, e.g., see [9]. The value for the first
combinatorial sum is obtained by evaluating Lehmer’s identify for x = 1/2 taking into
account that arcsin(1/2) = π/6. In order to obtain the value for second combinatorial sum
we differentiate Lehmer’s identity, multiply it with x, integrate it, and evaluate it again
at x = 1/2.

I Theorem 6. It holds

∞∑
i=1

1
i

(
2i
i

)−1
= π
√

3
9 and

∞∑
i=0

1
2i+ 1

(
2i
i

)−1
= 2π

√
3

9 .

M. Holzer and J. T. Maurer 23:11

Proof. The value for the first combinatorial sum is obtained by evaluating Lehmer’s identify
for x = 1/2 taking into account that arcsin(1/2) = π/6. Thus we have

∞∑
i=1

1
i

(
2i
i

)
= 2√

3
π

6 = π
√

3
9 .

In order to obtain the value for other combinatorial sum we start with the differentiation
of Lehmer’s identity. Differentiation of the polynomial on the left hand-side of Lehmer’s
identity is straight forward and gives

d
dx

∞∑
i=1

(2x)2i

i

(
2i
i

)−1
=
∞∑
i=1

4(2x)2i−1
(

2i
i

)−1
. (2)

On the other hand, the differentiation of the right hand-side involves the product of a quotient
with an arcsin. We find

d
dx

2x√
1− x2

arcsin(x) = 2 arcsin(x)√
1− x2

+ 2x2 arcsin(x)
(1− x2)3/2 + 2x

1− x2 , (3)

where we used
d

dx arcsin(x) = 1√
1− x2

, for |x| < 1.

Equation (3) can be easily verified with a symbolic computation software at hand. Hence,
plugging together (2) and (3) we have

∞∑
i=1

4(2x)2i−1
(

2i
i

)−1
= 2 arcsin(x)√

1− x2
+ 2x2 arcsin(x)

(1− x2)3/2 + 2x
1− x2 , (4)

Then value for the second combinatorial sum
∑∞
i=1

1
2i+1

(2i
i

)−1 is obtained by multiplying
Equation (4) by x and integrating it. For the left hand-side of Equation (4) we thus get∫ ∞∑

i=1
2(2x)2i

(
2i
i

)−1
dx =

∞∑
i=1

∫
2(2x)2i

(
2i
i

)−1
dx

=
∞∑
i=1

22i+1x2i+1

2i+ 1

(
2i
i

)−1
=
∞∑
i=1

(2x)2i+1

2i+ 1

(
2i
i

)−1
. (5)

The integration of the right hand-side of Equation (4) is quite tedious for it is done by parts.
Hence we use a symbolic manipulation software, in order to minimize our work effort. We
obtain∫

x

(
2 arcsin(x)√

1− x2
+ 2x2 arcsin(x)

(1− x2)3/2 + 2x
1− x2

)
dx

= 2 arcsin(x)√
1− x2

− 2 ln
(∣∣∣∣ 1√

1− x2
+ x√

1− x2

∣∣∣∣)− 2x− ln(|x− 1|) + ln(|x+ 1|).

(6)

Thus, by (5) and (6) we have
∞∑
i=1

(2x)2i+1

2i+ 1

(
2i
i

)−1

= 2 arcsin(x)√
1− x2

− 2 ln
(∣∣∣∣ 1√

1− x2
+ x√

1− x2

∣∣∣∣)− 2x− ln(|x− 1|) + ln(|x+ 1|),

FUN 2018

23:12 Selection Via the Bogo-Method

which evaluated at x = 1/2 results in

∞∑
i=1

1
2i+ 1

(
2i
i

)−1
= 4π

6
√

3
− 2 ln

(
3√
3

)
− 1− ln

(
1
2

)
+ ln

(
3
2

)

= 2π
√

3
9 − ln(3) + ln(2) + ln

(
3
2

)
− 1 = 2π

√
3

9 − 1.

At last we shift the sum down to i = 0 as we need this form later on:
∞∑
i=0

1
2i+ 1

(
2i
i

)−1
= 1

2 · 0 + 1

(
2 · 0

0

)−1
+
∞∑
i=1

1
2i+ 1

(
2i
i

)−1
= 1 + 2π

√
3

9 − 1 = 2π
√

3
9

This completes the proof. J

Now we are ready to determine the expected number of comparisons within the procedure
z-partitioned.

I Theorem 7. Assume x is a random permutation of {1, 2, . . . , n}, and let C denote the ran-
dom variable counting the number of comparisons carried out by the procedure z-partitioned
in the test whether x is partitioned according to the kth element, for 1 ≤ k ≤ (n+ 1)/2, then:

E[C] =
k−1∑
j=1

[
1

2j − 1

(
2(j − 1)
j − 1

)−1
+ 1
j

(
2j
j

)−1
]

+ 1
k

n−1∑
i=2k−1

(
i

k

)−1

It holds E[C] = Hn−1, if k = 1, and E[C] ∼ π
√

3
3 + 1

k−1
(2(k−1)
k−1

)−1
, otherwise. The statement

remains valid in case k satisfies (n+ 1)/2 < k ≤ n by replacing k by n− k + 1.

Proof. Let k with 1 ≤ k ≤ n be fixed. We analyse the procedure z-partitioned only for
the case that k lies in the first half of the array, i.e., k ≤ (n + 1)/2. It is easy to see that
if k is in the second half of the array the case is symmetric to the above one by replacing k
by n− k + 1 in the formulas.

Recall that the ith comparison is reached if and only if the algorithm did not drop out
at the i− 1 comparisons before. We therefore consider two cases regarding the number of
successful comparisons counting i – the probabilities are modelled similar to the proof of
Theorem 2.
1. Let 1 ≤ i ≤ 2k − 2, i.e., the algorithm has yet to leave the zig-zag-comparison. Then

we distinguish two subcases, namely whether i is odd or even. In the former case we
have completed j := (i− 1)/2 pairs of comparisons with 0 ≤ j ≤ k − 2, which yields the
probability

P[C ≥ i] =
(
n
i

)
j!j!(n− i)!
n! = 1

2j + 1

(
2j
j

)−1
.

In the latter case the (i− 1)th comparison is carried out at the beginning of the array,
and we find

P[C ≥ i] =
(
n
i

)
j!(j − 1)!(n− i)!

n! = 1
j

(
2j
j

)−1
,

where j := i/2 with 1 ≤ j ≤ k − 1.

M. Holzer and J. T. Maurer 23:13

2. Let 2k − 1 ≤ i < n− 1, i.e., the algorithm is in the second for-loop and therefore outside
the zig-zag-comparison. Then we have

P[C ≥ i] =
(
n
i

)
(k − 1)!(i− 1− (k − 1))!(n− i)!

n! = 1
k

(
i

k

)−1
.

We obtain the expected value of C by summing up the probabilities in every case, since the
range of C is non-negative, and we get

E[C] =
∑
i≥1

P[C ≥ i] =
k−2∑
j=0

1
2j + 1

(
2j
j

)−1
+
k−1∑
j=1

1
j

(
2j
j

)−1
+

n−1∑
i=2k−1

1
k

(
i

k

)−1
(7)

=
k−1∑
j=1

[
1

2j − 1

(
2(j − 1)
j − 1

)−1
+ 1
j

(
2j
j

)−1
]

+ 1
k

n−1∑
i=2k−1

(
i

k

)−1
.

Each of the three sums in Equation (7) can be bounded from above. For the first two sums
we use the estimates from Theorem 6, while for the last one we need a more sophisticated
estimate than the one encountered within the proof of Theorem 2, because the sum is
truncated at the beginning. Consider

n−1∑
i=2k−1

(
i

k

)−1
=
n−k−1∑
i=k−1

(
i+ k

k

)−1
=
n−k−1∑
i=0

(
i+ k

k

)−1
−
k−2∑
i=0

(
i+ k

k

)−1
,

which by the equation given in the footnote on page 5 is equal to

k

k − 1

[
1−

(
n− 1
n− k

)−1
]
− k

k − 1

[
1−

(
2k − 2
k − 1

)−1
]

= k

k − 1

[(
2(k − 1)
k − 1

)−1
−
(
n− 1
n− k

)−1
]

and in the limit is k
k−1

(2(k−1)
k−1

)−1
as n tends to infinity. Therefore E[C] is at most

2π
√

3
9 + π

√
3

9 + 1
k
· k

k − 1

(
2(k − 1)
k − 1

)−1
= π
√

3
3 + 1

k − 1

(
2(k − 1)
k − 1

)−1
,

for k ≥ 2. In case k = 1 the former two combinatorial sums are zero and the remaining terms
sum up to

∑n−1
i=1

1
i , which again equals the harmonic number of Hn−1. This completes our

proof. J

Wasn’t that awesome? Theorem 7 tells us that we need only a constant number of
comparisons on the average to check if a large array is well partitioned w.r.t. k, if k ≥ 2, and
for n large enough, and this number is about

π
√

3
3 ≈ 1.81379936423.

Compare this to Theorem 2 and to to the worst case, where we have to compare n− 1 times.
When considering the expected number of swaps, we find an identical result as in the

case of the original bogo-select (by partition) algorithm, which we state without proof.

I Theorem 8. If S denotes the total number of swaps carried out by the bogo-select (by
zig-zag partition) for an input x of length n, when asking for the kth element, for 1 ≤ k ≤ n,
we have

E[S] =
{

0 if x is well partitioned according to the kth element
k(n− 1)

(
n
k

)
otherwise.

FUN 2018

23:14 Selection Via the Bogo-Method

3.2 Bogo-Selection by Counting
As already mentioned in the introduction we also consider a variant of bogo-select relaxing
the condition of being partitioned to a condition that only requires that there are exactly k−1
elements in a[1 . . . k − 1, k + 1, . . . n] smaller or equal to a[k]; equivalently one requires that
exactly n− k elements in the array a[1 . . . k − 1, k + 1 . . . n] are larger or equal to a[k]. This
slight change of the condition alters the running time of the algorithm significantly. For
instance, in case n = 7 and k = 3 the original bogo-select and its newly introduced variant
would terminate on input x = 1 2 3 4 5 6 7: the values 1 and 2 are smaller or equal than 3
while the remaining values are strictly larger and so the input is well partitioned according
to the 3rd element of x. On the other hand, on input x = 5 6 3 1 2 4 7 the original bogo-select
algorithm starts with randomly permuting the input, because in this case x is not well
partitioned w.r.t. the 3rd element. For the newly introduced variant this second input
x = 5 6 3 1 2 4 7 leads to immediate termination in contrast. The new variant of bogo-select
(now by counting) gives rise to a new procedure named p-counted that requires an additional
counter c initially set to 0 in order to collect the number of elements that are smaller or
equal to a[k]. Observe, that the value of c is only compared to k in the second for-loop (and
once after the for-loop is finished). The procedure p-counted reads as follows:

1 procedure p- counted (int: k):
2 // returns true if exactly k-1 elements
3 // of a[1..k-1,k+1..n] are smaller or
4 // equal than a[k] and false otherwise
5 c := 0
6 for i=1 to k-1 do
7 if a[i]<=a[k] then
8 c := c+1
9 endif

10 endfor
11 for i=k+1 to n do
12 if a[i]<=a[k] then
13 c := c+1
14 if c>=k then
15 return false
16 endif
17 endif
18 endfor
19 if c<k-1 then
20 return false
21 endif
22 return true

Initially, enumerating the number of comparisons of the bogo-select (by counting) al-
gorithm looks more involved, since one has also to take the counter values into consideration.
In fact, the analysis is surprisingly easy.

I Theorem 9. Assume x is a random permutation of {1, 2, . . . , n}, and let C denote the
random variable counting the number of comparisons of array elements carried out by the
procedure p-counted in the test whether x is partitioned according to the kth element. Then

E[C] =
{
Hn−1 if k = 1,
(k − 1) + k(Hn−1 −Hk−1) otherwise.

M. Holzer and J. T. Maurer 23:15

Proof. Let k with 1 ≤ k ≤ n be fixed. We proceed as in the previous two proofs. Therefore
we again consider two cases:
1. Let 1 ≤ i < k. Then by the careful design of the algorithm we have

P[C ≥ i] = 1,

because in the first for-loop the procedure p-counted in no case terminates. Furthermore
the first comparison within the second loop is always carried out totalling to a minimum
of k comparisons.

2. Next assume k ≤ i < n. Up until the ith comparison the value of the counter variable c
ranges from 0 to at most k − 1, since otherwise the procedure p-counted would have
already returned false. Thus, in order to determine the value of P[C ≥ i] we first consider
the following example: let n = 10 and k = 4. Assume we are about to reach i = 7
comparisons with counter c set to 3. Then we have hit i elements out of n, that is, for
instance, {1, 3, 4, 7, 8, 9, 10}. Now c indicates that exactly three elements from that sublist
are already smaller than our given element xk, thus yielding us 7 to be xk – in general
xk then equals the (c+ 1)st element. The remaining i− 1 elements from the selected set
can be freely permuted as well as the rest with a size of n− i. A last ith comparison is
then carried out that is allowed to also fail now thus setting no further restrictions on
the input. From this consideration we can derive in general

P[C ≥ i] = k ·
(
n
i

)
(i− 1)!(n− i)!

n! = k

i
.

Summing up gives

E[C] =
∑
i>0

P[C ≥ i] =
k−1∑
i=1

1 +
n−1∑
i=k

k

i
= (k − 1) + k

n−1∑
i=k

1
i
.

The remaining sum is then equal to Hn−1 −Hk−1, yielding

E[C] = (k − 1) + k(Hn−1 −Hk−1),

if k ≥ 2. In case k = 1 the former sum disappears and we end up with
∑n−1
i=1

1
i , which is the

(n− 1)th harmonic number Hn−1. This proves the claimed bounds. J

A more detailed analysis of the procedure p-counted also taking into account the
comparisons of the counter c at lines 14 and 19 is given next. While the upper theorem offers
a complete analysis of p-counted regarding the comparison of array elements it ignores that
counter c is also monitored via a comparison (in line 14). As it turns out this does not factor
into the asymptotics in a meaningful way. Going back to the procedure p-counted we can
see that the only repeated comparison not covered by the analysis above happens in line 14
where the counter c is checked for overflow. This very comparison is only carried out when c
itself has been incremented one line earlier, i.e., the comparison of array elements within
the second loop was successful. We can therefore deduce that the number of comparisons
within the second loop is at maximum double the comparisons we counted in Theorem 9.
Furthermore a last comparison can happen afterwards summing up to an upper bound. Thus,
we have

E[C] ≤ E[Ctot] ≤ E[C] +
{
Hn−1 + 1 if k = 1
k(Hn−1 −Hk−1) + 1 otherwise,

FUN 2018

23:16 Selection Via the Bogo-Method

where Ctot denotes the random variable counting the total number of comparisons (lines 12,
14, and 19) carried out by the procedure p-counted in the test whether x is partitioned
according to the kth element. The next theorem gives a more precise estimate on E[Ctot], by
a more detailed analysis of the p-counted procedure.

I Theorem 10. Assume x is a random permutation of {1, 2, . . . , n}, and let Ctot denote the
random variable counting the total number of comparisons (lines 12, 14, and 19) carried out
by the procedure p-counted in the test whether x is partitioned according to the kth element.
Then

E[Ctot] = E[C] + k + 1
2 − k(k − 1)

2n .

It holds E[Ctot] ∼ E[C] + k+1
2 .

Proof. Let R denote the random variable counting the raises of counter c within the procedure
p-counted. We calculate the expected value using the ansatz E[R] =

∑
i≥0 i · P[R = i].

Since we drop out for c = k we can deduce 0 ≤ i ≤ k. We consider two cases:
1. When c is raised at most 0 ≤ i ≤ k− 1 times there are a total of i smaller elements within

the array and therefore xk has to be the (i+ 1)st element which we hit with a probability
of

P[R = i] = 1
n
.

2. Otherwise c = k, which can be modeled using the complementary probability to the case
above:

P[R = k] = 1−
k−1∑
i=0

1
n

= 1− k

n

Summing it up we get

E[R] =
∑
i≥0

i · P[R = i] =
k−1∑
i=0

i
1
n

+ k

(
1− k

n

)
= 1
n

k−1∑
i=1

i+ k − k2

n

= 1
n

(
(k − 1)k

2

)
+ k − k2

n
= k2 − k + 2kn− 2k2

2n = 2kn− k − k2

2n .

Up next let the random variable R1 count the raises of counter c only within the first
loop. Going over the first k elements we can at most find k − 1 smaller elements. Each
possible counter value fixes us a specific element again, allowing us to calculate the expected
value as follows:

E[R1] =
∑
i≥0

i · P[R = i] =
k−1∑
i=0

i
1
k

= 1
k

k−1∑
i=1

i = 1
k

(
(k − 1)k

2

)
= k − 1

2

Lastly let random variable F indicate whether the final comparison in line 19 is carried out.
We reach this comparison when we have not dropped out before, that is if and only if there
were a maximum of k − 1 smaller elements to xk. In other words xk is one of the k smallest
elements within the array yielding us an expected value of

E[F] =
∑
i≥0

i · P[F = i] = 0 · P[F = 0] + 1 · P[F = 1] = k

n
.

M. Holzer and J. T. Maurer 23:17

Now observe that every comparison within procedure p-counted that was not covered
by random variable C of the theorem 9 happens either when the counter is raised within
the second loop or in line 19 after the complete array has been covered. So the random
variable Ctot counting the total number of comparison within procedure p-counted is given
by

Ctot = C + (R−R1) + F.

By linearity of the expected value we can calculate

E[Ctot] = E[C] + E[R]− E[R1] + E[F],

where

E[R]− E[R1] + E[F] = 2kn− k − k2

2n − k − 1
2 + k

n
= kn+ k − k2 + n

2n
and therefore

E[Ctot] = E[C] + kn+ k − k2 + n

2n = E[C] + k + 1
2 − k(k − 1)

2n ,

yielding the stated result. Thus, asymptotically E[Ctot] ∼ E[C] + k+1
2 , as n tends to

infinity. J

This completes the more detail analysis of the procedure p-counted.
Finally, for the total number of swaps of the bogo-select (by counting) algorithm we

obtain the following result. A permutation (or array) x satisfying

|{ i | xi ≤ xk, for 1 ≤ i ≤ n and i 6= k }| = k − 1

is said to be p-counted w.r.t. the kth element.

I Theorem 11. If S denotes the total number of swaps carried out by bogo-select by counting
for an input x of length n, when asking for the kth element, for 1 ≤ k ≤ n, we have

E[S] =
{

0 if x is p-counted w.r.t the kth element
n(n− 1) otherwise.

Proof. We argue as in the case of the bogo-select algorithm. The hitting probability for a
permutation to be p-counted by the kth element is (n−1)!

n! in each trial; the kth element is fixed
and the remaining n− 1 elements can be arbitrarily arranged. The number of iterations I
is a geometrically distributed variable with hitting complexity p = 1

n and E[I] = p−1 = n.
Since each iteration costs n− 1 swaps the expected number of swaps counted by the random
variable S is equal to E[S] = n(n− 1), if the input is not p-counted w.r.t. the kth element of
the array, and E[S] = 0, otherwise. J

4 Experimental Results

We have implemented the considered algorithms in Lua5 and have performed some experi-
ments. The source code as well as the test scripts are available on request by email to one of

5 Lua is a powerful, efficient, lightweight, embeddable scripting language that can be downloaded form
https://www.lua.org as a small package that builds out-of-the-box on all platforms that have a
standard C compiler.

FUN 2018

https://www.lua.org

23:18 Selection Via the Bogo-Method

5
10 5

10

0

2

4

n k

E[
C

]

5
10 5

10

0

2

4

n k

5
10 5

10

0

5

10

n k

Figure 1 The expected number of comparisons carried out by the three considered probe
procedures (i) partitioned, (ii) z-partitioned, and (iii) p-counted – diagrams are from left to
right. Observe, that the vertical axis is scaled differently on the rightmost diagram.

5
10 5

10

0

1

2
·104

n k

E[
S

]

5
10 5

10

0

1

2
·104

n k

5
10 5

10

0

50

100

n k

Figure 2 The expected number of swaps carried out by the three considered randomized selection
algorithms bogo-select (i) by partition, (ii) by zig-zag-partition, and (iii) by counting – diagrams are
from left to right. Observe, that the vertical axis is differently scaled on the rightmost diagram.

the authors. The experiments were conducted on an iMac (mid 2011 version) with an Intel
Core i5 processor (2.7 GHz) and 4GB main memory. It took quite some time to collect our
results, but this was no problem, since we started in early January with our experiments.
We first implemented every investigated variant of the bogo-select as-is in order to observe
the performance on the given machine depending on different input sizes.

We ran all three probe procedures on every possible permutation of input array a[1 . . . n]
up to length n = 10 in order to track the arithmetic mean of the number of comparisons.
As expected our experimental values for every valid combination of n, k exactly match the
expected value calculated earlier. The results on the number of comparisons are shown in
Figure 1. Since the number of possible inputs grows superexponentially, exact values for
higher input sizes become quite costly and would necessitate further experiments.

It is important to note that our calculations for the number of swaps are based on the
premise that the input does not comply to the property at hand initially. Furthermore
neither the number of swaps nor the state of the input from iteration 2 onward in any way
depend on the original input – as we already stated in the introduction. We therefore take
an array that meets the given property – i.e., a fully ordered one – and swap entries xk, xk+1
yielding us an input as required. Via the insertion of a counter variable we tracked the swaps
carried out in 10.000 runs for every valid combination of n, k up to n = 10. The experimental
results depicted in Figure 2 nicely line up with the theoretical values. A more detailed
statistical analysis for the number of swaps is given next. When we consider the swaps the
analysis is not that simple for we counted them over r = 10000 randomized runs of each
algorithm. First up we use their arithmetic mean S as an unbiased estimate for the expected
value due to the number of runs r being sufficiently large – as stated earlier the values lined

M. Holzer and J. T. Maurer 23:19

2 3 4 5 6200

300

400

500

600

700

800

900

k

N
um

be
r
of

sw
ap

s

3600

620

640

k

5600

620

640

k

Figure 3 Confidence intervals for the number of swaps performed in bogo-select (by zig-zag-
partition) with n = 7 and k ∈ {2, 3, 4, 5, 6}. The expected number of swaps is drawn blue.

up reasonably well with the theoretical results. We also calculated the sample standard
deviation via σ =

√
1
r−1

∑r
i=1 (Si − S)2 to quantify how far the experimental results are

dispersed in relation to the arithmetic mean. Having this information we now perform some
statistical analysis upon the experimentally produced data sets – we do not factor in our
theoretical results to reach a second (and independent) conclusion.

The generally known hypothesis test does not offer further insight here since it is only
significant when it comes to rejecting an hypothesis while our objective is to verify the
theoretical results as calculated earlier. Based on our experimental data it is good practise
to calculate a confidence interval for the expected value of the number of swaps E[S] instead.
It is a statistical technique that gives an interval covering the underlying expected value of
a given probe with a fixed probability α. In our case we make no preconception about the
distribution at hand and have a probe size r sufficiently large. Therefore we can calculate
the confidence interval as [S ± t∞,1−α/2

σ√
r
] with t∞,1−α/2 being the 1− α/2 quantile of the

t-distribution with unlimited degrees of freedom.

With this method we are now able to check whether our theoretically calculated expected
value falls into the range that covers the expected value within the experiments (with
probability α = 95%). E.g. looking into the results for bogo-select (by zig-zag-partition), we
can see that for n = 7 and k = 5 we have an expected value of E[S] = 630 that comfortably
sits in the confidence interval of I ≈ 630.68± 10.5 we have generated experimentally. On
the other hand for n = 7 and k = 3 the expected value of E[S] = 630 misses the confidence
interval I ≈ 615.79±10.253 by a noticeable margin. Still the overall fit for n = 7 is quite good
as we can see in Figure 3. Deviations like the above are to be expected since the confidence
interval itself depends upon the randomness inherent to the experiments. In order to further
quantify how often the individual confidence intervals match with our theoretical results we

FUN 2018

23:20 Selection Via the Bogo-Method

Table 1 We cumulated the ratio whether the confidence intervals cover the theoretical values
(Conf) for all three bogo-select variants as well as the maximum deviation between arithmetic mean
and theoretical value relative to the latter (maxDev = max

(
|E[S]−S|

E[S]

)
).

Bogo-select by. . . Conf maxDev

partitioning 81.81% 2.507619%
z-partitioning 89.09% 2.255524%
p-counting 94.54% 2.73%

analyse the generated data sets with the powerful statistical programming language R.6 First
we calculated the percentage for said matches regarding every bogo-select variant that was
analysed within this paper. As you can see (in the first column of the Table 1) the coverage
is quite high. Please note that this ratio is not directly related to the significance of the
confidence intervals. The given level only ensures that a specific interval under identical
conditions covers the real value in 95% of all cases. In our experiments on the other hand
we only calculated a single confidence interval for every valid pair of n and k. Additionally
we are interested how much the experimental value differs from the theoretical results in
general. For this reason we also included the biggest distance between the two (relatively to
the theoretical expected value) in Table 1.

As one can see we stay well below a 3% discrepancy for every algorithm. In summary
it is safe to say that our experiments also support our theoretical analysis regarding the
number of swaps.

5 Conclusions

We continued our research on the still unexplored research field of pessimal algorithm design
with a theoretical and experimental study of bogo-select and variants thereof, which are
archetypical perversely awful algorithms. Remarkably, the expected running time of these
algorithms in terms of the number of swaps and comparisons can be determined exactly using
only elementary methods in probability and combinatorics. Though optimizing the running
time seems somewhat out of place in the field of pessimal algorithm design, it can be quite
revealing for beginners in both fields of optimal and pessimal algorithm design to see how a
single optimization step can yield a dramatic speed-up. The very first obvious optimization
step in all aforementioned algorithms is to swap two elements only if this makes sense. That
is, before swapping a pair, we check if it is an inversion: a pair of positions (i, j) in the
array a[1 . . . n] is an inversion if i < j and a[i] > a[j]. This leads to an optimized variant
of bogo-select (by partitioning or zig-zag partition), which we refer to as bogo-selectopt.
As there are at most

(
n
2
)
inversions, this number gives an immediate upper bound on the

number of swaps for the optimized bogo-select variants. Thus a single optimization step
yields polynomial running time. This can be shown with a similar proof based on the coupon
collectors’ problem as given in [3] for an appropriate optimized inversion based bogo-sort
variant.

6 The statistical programming language R is a industry standard to analyse huge amounts of data with a
vast library of statistical functions available out of the box.

M. Holzer and J. T. Maurer 23:21

References
1 L. Comtet. Advanced Combinatorics—The Art of Finite and Infinite Expansions. Reidel

Publishing, 1974.
2 H. W. Gould. Combinatorial Identities. Morgantown Printing and Binding, 1972.
3 Hermann Gruber, Markus Holzer, and Oliver Ruepp. Sorting the slow way: An analysis

of perversely awful randomized sorting algorithms. In Pierluigi Crescenzi, Giuseppe Pren-
cipe, and Geppino Pucci, editors, Fun with Algorithms, 4th International Conference, FUN
2007, Castiglioncello, Italy, June 3-5, 2007, Proceedings, volume 4475 of Lecture Notes in
Computer Science, pages 183–197. Springer, 2007. doi:10.1007/978-3-540-72914-3_17.

4 D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming.
Addison-Wesley, 1969.

5 D. H. Lehmer. Interesting series involving the central binomial coefficient. Amer. Math.
Mon., 92(7):449–457, – 1985. doi:10.2307/2322496.

6 E. S. Raymond. The New Hacker’s Dictionary. MIT Press, 1996.
7 A. M. Rockett. Sums of inverses of binomial coefficients. Fibonacci Quart., 19(5):433–437,

1981.
8 R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms. Pearson

Education, 2013.
9 R. Sprugnoli. Sum of reciprocals of the central binomial coefficients. Integers, 6:A27, 2006.

10 B. Sury, T. Wang, and F.-Z. Zhao. Identities involving reciprocals of binomial coefficients.
Integer Seq., 7:04.2.8, 2004.

FUN 2018

http://dx.doi.org/10.1007/978-3-540-72914-3_17
http://dx.doi.org/10.2307/2322496

Correction of Theorem 7

In Theorem 7 the expected value of the random variable C that counts the number of
comparisons carried out by the procedure z-partitioned was determined to be

E[C] =
k−1∑
j=1

[
1

2j − 1

(
2(j − 1)
j − 1

)−1
+ 1
j

(
2j
j

)−1
]

+ 1
k

n−1∑
i=2k−1

(
i

k

)−1
. (8)

Then the asymptotic value of E[C] that comes from the first sum was overestimated under
the constraints that k is fixed and that n, the number of elements, tends to infinite. Under
these prerequisites Theorem 7 must read as follows, where (8) is also simplified:

I Theorem 7∗. Assume x is a random permutation of {1, 2, . . . , n}, and let C denote
the random variable counting the number of comparisons carried out by the procedure z-
partitioned in the test whether x is partitioned according to the kth element, for 1 ≤ k ≤
(n+ 1)/2, then:

E[C] = 3
k−1∑
j=1

1
j

(
2j
j

)−1
+ 1
k

n−1∑
i=2k−1

(
i

k

)−1

It holds E[C] = Hn−1, if k = 1, and

π
√

3
3 − 1

k − 1

(
2(k − 1)
k − 1

)−1
≤ E[C] ≤ π

√
3

3 + 1
k − 1

(
2(k − 1)
k − 1

)−1
,

otherwise. The statement remains valid in case k satisfies (n+ 1)/2 < k ≤ n by replacing k
by n− k + 1.

Observe, that the left term of the first sum in (8) can be rewritten as

1
2j − 1

(
2(j − 1)
j − 1

)−1
= 1

2j − 1 ·
(j − 1)!(j − 1)!

(2j − 2)! = 2j
j · j

· j!j!(2j)! = 2
j

(
2j
j

)−1

and therefore the former sum simplifies to

k−1∑
j=1

[
1

2j − 1

(
2(j − 1)
j − 1

)−1
+ 1
j

(
2j
j

)−1
]

= 3
k−1∑
j=1

1
j

(
2j
j

)−1
.

Next, in order to determine the bounds on E[C] we have to estimate the error in terms
of k that is induced by partial summation. To this end we use the following upper and lower
bound result from [1] on approximation of finite sums: let S =

∑∞
i=1 ai and let the kth

partial sum be Sk =
∑k
i=1 ai. Suppose that the sequence a1, a2, . . . is a positive decreasing

sequence and limi→∞
ai+1
ai

= q < 1. Then we distinguish two cases:
1. If ai+1

ai
decreases to the limit q, then

S − ak+1

1− ak+1
ak

≤ Sk ≤ S − ak
q

1− q .

2. If ai+1
ai

increases to the limit q, then

S − ak
q

1− q ≤ Sk ≤ S −
ak+1

1− ak+1
ak

.

In other words, the kth partial sum Sk can be bounded from above and below in terms
of the last element from the partial sum and its successor element, that is already outside
the partial sum.

Consider the first sum

3
k−1∑
j=1

1
j

(
2j
j

)−1
=
k−1∑
j=1

ai,

in Theorem 7∗, where ai = 3
i

(2i
i

)−1. Obviously, the infinite sequence a1, a2, . . . is positive
and decreasing and

lim
i→∞

ai+1

ai
= lim
i→∞

3
(i+ 1) ·

(i+ 1)!(i+ 1)!
(2i+ 2)! · i3 ·

(2i)!
i!i! = lim

i→∞

i(i+ 1)
(2i+ 1)(2i+ 2) = 1

4 ,

By inspection, the sequence ai+1
ai

increases to the limit q := 1
4 leading to the second case

for bounding the partial summation. Since q
1−q = 1

3 , we therefore bound the sum of the
(k − 1)st partial sum of the ai’s by

π
√

3
9 − ak−1 ·

1
3 ≤

k−1∑
j=1

aj ≤
∞∑
j=1

aj = π
√

3
9 ,

where the last equality follows from Lehmer’s identity. Since ak−1 = 3
k−1

(2(k−1)
k−1

)−1
, together

with the already correctly stated upper bound 1
k−1

(2(k−1)
k−1

)−1
of the second sum in Theorem 7∗

in the original proof, one observes that E[C] lies in between

π
√

3
3 − 1

k − 1

(
2(k − 1)
k − 1

)−1
≤ E[C] ≤ π

√
3

3 + 1
k − 1

(
2(k − 1)
k − 1

)−1
.

This proves the stated result.

References
1 B. Braden. Calculating sums of infinite series. American Mathematical Monthly, 99(7):649–

655, August–September 1992.

Revision Notice

This is a revised version of the eponymous paper appeared in the proceedings of FUN 2018
(LIPIcs, volume 100, http://www.dagstuhl.de/dagpub/978-3-95977-067-5, published in
May, 2018), in which Theorem 7 was revised to correct an overestimation of the asymptotic
bound of the expected number of comparisons for one of the methods.

Dagstuhl Publishing – October 15, 2018.

http://www.dagstuhl.de/dagpub/978-3-95977-067-5

Herugolf and Makaro are NP-complete
Chuzo Iwamoto1

Hiroshima University, Graduate School of Engineering, Higashi-Hiroshima 739-8527, Japan
chuzo@hiroshima-u.ac.jp

Masato Haruishi
Hiroshima University, Graduate School of Engineering, Higashi-Hiroshima 739-8527, Japan

Tatsuaki Ibusuki
Hiroshima University, School of Integrated Arts and Sciences, Higashi-Hiroshima 739-8521,
Japan

Abstract
Herugolf and Makaro are Nikoli’s pencil puzzles. We study the computational complexity of
Herugolf and Makaro puzzles. It is shown that deciding whether a given instance of each puzzle
has a solution is NP-complete.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases Herugolf, Makaro, pencil puzzle, NP-complete

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.24

1 Introduction

The Herugolf puzzle is played on a rectangular grid of cells (see Fig. 1(a)). Initially, there
are circles (balls) and holes (H) on the grid, where an integer is in each circle. The purpose
of the puzzle is to move (hit) all balls one or more times, and bring them to a cell with an H
in the following rules [1]: (1) One ball must be brought to every hole H. (2) The movement
of a ball is shown by an arrow, with the tip of the arrow in the cell where it stops. The
arrows cannot cross other balls, holes, or lines of other arrows. (3) A ball moves across as
many cells as the number in it in the first move, vertically or horizontally. The next move
becomes one shorter; it decreases one by one. (4) The direction of movement may change
after a move. When the next movement becomes 0, or the ball stops at an H, the ball cannot
move any further. (5) A ball cannot leave the grid (OB), and cannot stop in a grey area
(water hazard).

Figure 1(a) is the initial configuration of a Herugolf puzzle. In this figure, there are eight
balls and eight holes in the 6× 6 cells. From Figs. 1(b)–(f), the reader can understand the
basic technique for finding a solution. (b) The bottom right ball ® must be moved 3 cells to
the left, since there is a hole H in the blue cell. Then the ball is moved 2 cells to the upper
direction, since there is a water hazard in the bottom left cell. (c) There is exactly one ball
which can be brought to the hole H in the red cell. On the other hand, there is exactly one
hole which the ball in the blue cell can reach. (d) Balls ® and ¬ are moved to holes H in the
red and blue cells, respectively. (e) If the ball ­ in the blue cell is brought to the hole H in
the red cell, then one of the two balls ­ in the green cells cannot reach any hole. (f) is a
solution.

1 This work was partially supported by JSPS KAKENHI Grant Number 16K00020.

© Chuzo Iwamoto, Masato Haruishi, and Tatsuaki Ibusuki;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 24; pp. 24:1–24:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chuzo@hiroshima-u.ac.jp
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Herugolf and Makaro are NP-complete

(a) (b)

(d) (e) (f)

(c)

3
2

1
22

2
1 2H H

H
H
HHH

H
3

2
1

22
2

1 2H H
H

H
HHH

H
3

2
1

22
2

1 2H H
H

H
HHH

H

3
2

1
22

2
1 2H H

H
H
HHH

H
3

2
1

22
2

1 2H H
H

H
HHH

H
3

2
1

22
2

1 2H H
H

H
HHH

H

Figure 1 (a) Initial configuration of a Herugolf puzzle. (b)–(f) are the progress from the initial
configuration to a solution.

The Makaro puzzle is also played on a rectangular grid of cells (see Fig. 2(a)). Initially,
some of the cells are colored black and contain an arrow, and the remaining cells are divided
into rooms surrounded by bold lines. The purpose of the puzzle is to fill in all white cells
with numbers under the following rules [2]: (1) Each room contains all the natural numbers
up to the number of cells in it, starting from 1 (see Fig. 2(h)). (2) Every arrow in black cells
must point at the biggest number among the numbers in the adjacent cells. (3) A number
must not be next to the same number in another room.

Figure 2(a) is the initial configuration of a Makaro puzzle. (b) Since an arrow exists
between two yellow 2-cell rooms, numbers 2 and 1 are placed so that the arrow is between
them and points at the number 2, which is bigger than the other number 1. (c) Four numbers
are placed in the blue cells. (d) Since number 2 in a green cell is pointed by an arrow, another
green cell must contain 1. (e) Since the yellow cell contains number 2, one of the two red
cells must contain 2; therefore the green and blue cells must contain 3 and 4, respectively.
(f) Since the two red cells can contain numbers less than 3, the number 3 is in the blue cell.
(g) Two and seven numbers are placed in the yellow and red cells, respectively. (h) is a
solution.

In this paper, we study the computational complexity of the decision version of the
Herugolf and Makaro puzzles. The instance of the Herugolf puzzle problem is defined as a
rectangular grid of cells, on which there are circled integers in {¬, ­, ®, . . .} and holes H. The
instance of the Makaro puzzle problem is a rectangular grid of cells, where some of the cells
are colored black and contain an arrow, and the remaining cells are divided into rooms. The
problem is to decide whether there is a solution to the instance. It is shown that the Herugolf
and Makaro puzzle problems are NP-complete. It is clear that both problems belong to NP.

There has been a huge amount of literature on the computational complexities of
games and puzzles. In 2009, a survey of games, puzzles, and their complexities was
reported by Hearn and Demaine [9]. After the publication of this book, the following
Nikoli’s pencil puzzles were shown to be NP-complete: Fillmat [16], Hashiwokakero [4],
Hebi, Satogaeri, and Suraromu [12], Kurodoko [13], LITS and Norinori [5], Numberlink [3],
Pipe link [17], Shakashaka [7], Shikaku and Ripple Effect [15], Yajilin and Country Road [10],
and Yosenabe [11].

C. Iwamoto, M. Haruishi, and T. Ibusuki 24:3

(a) (b)

 1 2

(c)

 1 2
 2

 1 2
 1

 3

(d)

 1 2
 2 1

 1 2
 1

(g)

 1 2
 2 1

 1 2
 1

 3
 3

 4
 1 2 2 1

 2
 1

 1

(f)

 1 2
 2 1

 1 2
 1

 3
 3

 4

(h)

 1 2
 2 1

 1 2
 1

 3
 3

 4
 1 2 2 1

 2
 1

 1
 3 2

 3 2

 3 2

 3 2 3 2

(e)

 1 2
 2 1

 1 2
 1

 3 4

 3 2
 3 2

Figure 2 (a) Initial configuration of a Makaro puzzle. (b)–(h) are the progress from the initial
configuration to a solution.

2 NP-completeness of Herugolf and Makaro

2.1 3SAT Problem
The definition of 3SAT is mostly from [8]. Let U = {x1, x2, . . . , xn} be a set of Boolean
variables. Boolean variables take on values 0 (false) and 1 (true). If x is a variable in U , then
x and x are literals over U . The value of x is 1 (true) if and only if x is 0 (false). A clause
over U is a set of literals over U , such as {x1, x3, x4}. It represents the disjunction of those
literals and is satisfied by a truth assignment if and only if at least one of its members is
true under that assignment.

An instance of PLANAR 3SAT is a collection C = {c1, c2, . . . , cm} of clauses over U such
that (i) |cj | ≤ 3 for each cj ∈ C and (ii) the bipartite graph G = (V, E), where V = U ∪ C

and E contains exactly those pairs {x, c} such that either literal x or x belongs to the clause c,
is planar.

The PLANAR 3SAT problem asks whether there exists some truth assignment for U that
simultaneously satisfies all the clauses in C. This problem is known to be NP-complete. For
example, U = {x1, x2, x3, x4}, C = {c1, c2, c3, c4}, and c1 = {x1, x2, x3}, c2 = {x1, x2, x4},
c3 = {x1, x3, x4}, c4 = {x2, x3, x4} provide an instance of PLANAR 3SAT. For this instance,
the answer is “yes,” since there is a truth assignment (x1, x2, x3, x4) = (0, 1, 0, 0) satisfying
all clauses. It is known that PLANAR 3SAT is NP-complete even if each variable occurs
exactly once positively and exactly twice negatively in C [6].

2.2 Transformation from an Instance of 3SAT to a Herugolf Puzzle
We present a polynomial-time transformation from an arbitrary instance C of 3SAT to a
Herugolf puzzle such that C is satisfiable if and only if the puzzle has a solution.

Each variable xi ∈ {x1, x2, . . . , xn} is transformed into the variable gadget as illustrated
in Fig. 3(a), which is composed of six holes and eight balls. (Each gadget constructed in this
section uses no water hazards, although some of the cells in Fig. 3(a) are colored grey.) Note
that the instances of 3SAT considered in this section have the restriction explained at the
end of Sect. 2.1.

FUN 2018

24:4 Herugolf and Makaro are NP-complete

x

3

H
H 2

2

H3H

H
2

2
2 H1

(a)

(c)

H

H

3

H
H 2

2

H3H

H
2

2
2

H

H1

H

(b)

H

H

x = 1

3

H
H 2

x = 0
2

H3H

H
2

2
2

H

H1

H

i

i i i ix = 0 x = 1

Figure 3 (a) Variable gadget of Herugolf transformed from xi. (b) Assignment xi = 1. (c) As-
signment xi = 1.

H

H

c
H
1

1

j

(a)

H

H

c

1

1

1

H
H

H

1

1

j

(b)

H

H

c

1

1

1

H
H

H

1

1

j

(c)

H

H

c

1

1

1

H
H

H

1

1

j

(d)

Figure 4 (a) Clause gadget of Herugolf transformed from cj . (b)–(d) If at least one of the three
balls ¬ is moved from a red cell to a blue cell, then the three holes H in the blue cells receive three
balls.

Consider the four balls and four holes in the grey area of Fig. 3(b). There are two possible
solutions to those balls. Suppose that the top ball ® is moved 3 cells to the right and then
2 cells to the downward direction. Then the left ball ­ (resp. right ball ­) in the grey area
must be moved upward (resp. downward), and the bottom ball ® must be moved 3 cells to
the left. In this case, three balls ­ in the red cells can be moved 2 cells to the left. This
configuration corresponds to xi = 1. (Note that four holes H outside the red dotted square
belong to the connection gadget, which will be explained later.)

On the other hand, if the top ball ® is moved 3 cells to the left and then 2 cells to the
downward direction (see Fig. 3(c)), then two of the three balls ­ in the red cells can be
moved 2 cells to the right, and the remaining one ball ­ can be moved downward. This
corresponds to xi = 1. In Fig. 3(a), the red ball ® cannot reach the red hole H, since there
is a hole H just above the red ball ®.

Clause cj ∈ {c1, c2, . . . , cm} is transformed into the clause gadget as illustrated in the
blue cells of Fig. 4(a), which is composed of three holes H and two balls ¬. If either literal xi

C. Iwamoto, M. Haruishi, and T. Ibusuki 24:5

H

1
H1

1
H
1

H

(a) (b)

H1

H
1

H1

1
H
1

H

H1

(c)

H
1

H1

1
H
1

H

H1

H
1

H
1

H
1

(d)

odd

1

1

2

1

H

H

H

H

Figure 5 (a) Connection gadget of Herugolf. (b) and (c) are two possible movements. (d) The
distance between two balls ¬ is odd.

or xi belongs to the clause cj , then clause gadget cj is connected to a variable gadget xi

by using the connection gadget as illustrated in Fig. 5(a) (see also Fig. 8). The three holes
of a clause gadget can each receive balls if and only if at least one of the three balls are
moved into one of these holes from a neighboring red cell. The cases are illustrated in
Figs. 4(b)–(d). If clause cj contains only two literals, Fig. 4(a) is replaced with 3× 1 blue
cells containing “H,¬,H." (The clauses of two literals are essential, since it is known that
3SAT with exactly three occurrences per variable is polynomial-time solvable if every clause
has three literals [14].)

Figure 5(a) is a connection gadget connecting between variable and clause gadgets. In
Figs. 5(b) and 5(c), a “signal” is transmitted from the top right hole H to the bottom left
ball ¬ and vice versa. Namely, if the top right hole of Fig. 5(b) receives a ball from the right
side, then the bottom left ball can be moved to the left. If you want the distance between
two balls ¬ to be odd (see Fig. 5(d)), then ball ­ is used in a connection gadget. Figure 6 is
a crossover gadget.

In each variable gadget (see Fig. 3(a)), the number of balls is two larger than the number
of holes. In each clause gadget (see Fig. 4(a)), the number of balls is one smaller than the
number of holes. Therefore, the number of balls is 2n−m larger than the number of holes in
total, where n and m are the numbers of variables and clauses, respectively. Finally, we add a
terminator gadget as illustrated in the red dotted rectangle of size (2n−m)× (2n+4m−1) of
Fig. 7. The top row of the terminator gadget is an alternating sequence of “H ¬ H ¬ · · ·¬ H”
of length 2n + 4m− 1. The second row is an alternating sequence of length 2n + 4m− 3,
and so on.

Every pair of “H,¬” in green cells of Fig. 7 is connected to a hole H in the green cell of
Fig. 3(a) or a hole H in the yellow cells of Fig. 4(a) by a connection gadget (see Fig. 8). In
the terminator gadget, the number of holes is 2n−m larger than the number of balls, so
2n−m signals are terminated in the terminator gadget. (In Fig. 8, 2n−m (= 4) signals are
terminated at the leftmost 2n−m holes in the red dotted rectangle.)

Figure 8 is a Herugolf puzzle transformed from C = {c1, c2, c3, c4} and U = {x1, x2, x3, x4},
where c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, c4 = {x2, x3, x4}. In this figure,
several pairs of a black ball and a hole are placed in the white areas so that balls in grey, red,
green, and yellow areas do not move to unintended directions. (If variable and clause gadgets

FUN 2018

24:6 Herugolf and Makaro are NP-complete

HH

H1H

1
H

HH

H

H H
2 2

2 1

1H

1
1

1
H

(a) (b)

1
H

HH

H

H
2 2

2

1H

1
1

1
H

1
H

HH

H

HH
2 2

21

1H

1
1

1

(c) (d)

1
H

HH

H

HH
2 2

21

1H

1
1

1
H

H

H

Figure 6 Crossover gadget of Herugolf.

HH 1 H 1 H 1 H 1 H 1 H H 1 H 1 H 1
H 1 H 1 H 1 H H 1 H 1 H 1 H

H 1 H 1 H 1 1 H 1 H 1 H
H 1 H 1 H 1 H 1 H 1 H 1 H

1 H 1
HH 1

H
11

H
1

H
1

H H H
1

H
1

H
1 1

H
1

H
1

1

H
1

H
1
H1 H 1

1 H 1 H
1 H 1 H

1 H 1 H

2n + 4m ���

2n ��m

n + 2m

Figure 7 Terminator gadget of Herugolf.

are embedded on a sufficiently large space, no such pair is required.) From this construction,
the instance C of 3SAT is satisfiable if and only if the corresponding Herugolf puzzle has a
solution.

2.3 Transformation from an Instance of 3SAT to a Makaro Puzzle
We present a polynomial-time transformation from an arbitrary instance C of PLANAR
3SAT to a Makaro puzzle such that C is satisfiable if and only if the puzzle has a solution.

Each variable xi ∈ {x1, x2, . . . , xn} is transformed into the variable gadget as illustrated
in Fig. 9(a), which is composed of three grey 2-cell rooms. Figures 9(b) and 9(c) correspond
to xi = 1 and xi = 1, respectively. Note that the instances of PLANAR 3SAT considered in
this section have the restriction explained at the end of Sect. 2.1.

Clause cj ∈ {c1, c2, . . . , cm} is transformed into the clause gadget as illustrated in
Fig. 10(a), which is composed of one blue 4-cell room, three black cells, two grey 4-cell

C. Iwamoto, M. Haruishi, and T. Ibusuki 24:7

rooms, and four 1-cell rooms. If all of the three black cells are adjacent to number 2 in red
2-cell rooms (see Fig. 10(b)), then there is no solution to the blue 4-cell room. On the other
hand, if at least one of the three black cells is adjacent to number 1 in a red 2-cell room
(see Figs. 10(c) and 10(d), and Fig. 12), then there is a solution to the blue 4-cell room. If
clause cj contains only two literals, the gadget is composed of one blue 3-cell room, two black
cells, and four grey 1-cell rooms (see Figs. 10(e)–(g)).

Fig. 11(a) is a connection gadget connecting between variable and clause gadgets. In
Figs. 11(b) and 11(c), a “signal” is transmitted from the top right room to the bottom left
room and vice versa. If you want the distance between two 2-cell rooms to be odd, you can
use a gadget of Fig. 11(d).

Figure 12 is a Makaro puzzle transformed from C = {c1, c2, c3, c4} and U = {x1, x2, x3, x4},
where c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, c4 = {x2, x3, x4}. In this figure,
there are six large white rooms separated by connection, variable, and clause gadgets. Those
white rooms can easily be filled with numbers 1, 2, 3, · · · . From this construction, the in-
stance C of PLANAR 3SAT is satisfiable if and only if the corresponding Makaro puzzle has
a solution.

References
1 http://nikoli.co.jp/en/puzzles/herugolf.html.
2 http://nikoli.co.jp/en/puzzles/makaro.html.
3 Aaron B. Adcock, Erik D. Demaine, Martin L. Demaine, Michael P. O’Brien, Felix Reidl,

Fernando Sánchez Villaamil, and Blair D. Sullivan. Zig-zag numberlink is NP-complete. J.
Inf. Process., 23(3):239–245, 2015. doi:10.2197/ipsjjip.23.239.

4 Daniel Andersson. Hashiwokakero is NP-complete. Inf. Process. Lett., 109:1145–1146, 2009.
doi:10.1016/j.ipl.2009.07.017.

5 Michael Biro and Christiane Schmidt. Computational complexity and bounds for Norinori
and LITS. In 33rd European Workshop on Computational Geometry, Malmö, Sweden,
April 5–7, 2017, pages 29–32, 2017.

6 M.R. Cerioli, L. Faria, T.O. Ferreira, C.A.J. Martinhon, F. Protti, and B. Reed. Partition
into cliques for cubic graphs: planar case, complexity and approximation. Discrete Appl.
Math., 156(12):2270–2278, 2008. doi:10.1016/j.dam.2007.10.015.

7 Erik D. Demaine, Yoshio Okamoto, Ryuhei Uehara, and Yushi Uno. Computational com-
plexity and an integer programming model of Shakashaka. In 25th Canadian Conference
on Computational Geometry, Waterloo, Ontario, Canada, August 8–10, 2013, (online)
http://cccg.ca/.

8 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, 1979.

9 Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. A K Peters
Ltd., 2009.

10 Ayaka Ishibashi, Yuichi Sato, and Shigeki Iwata. NP-completeness of two pencil puzzles:
Yajilin and Country Road. Utilitas Mathematica, 88:237–246, 2012.

11 Chuzo Iwamoto. Yosenabe is NP-complete. J. Inf. Process., 22(1):40–43, 2014.
doi:10.2197/ipsjjip.22.40.

12 Shohei Kanehiro and Yasuhiko Takenaga. Satogaeri, Hebi and Suraromu are NP-complete.
In 3rd Intl. Conf. on Applied Computing and Information Technology, Okayama, Japan,
July 12–16, 2015, pages 47–52.

13 Jonas Kölker. Kurodoko is NP-complete. J. Inf. Process., 20(3):694–706, 2012.
doi:10.2197/ipsjjip.20.694.

14 Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

FUN 2018

24:8 Herugolf and Makaro are NP-complete

15 Yasuhiko Takenaga, Shintaro Aoyagi, Shigeki Iwata, and Takumi Kasai. Shikaku and Ripple
Effect are NP-complete. Congressus Numerantium, 216:119–127, 2013.

16 Akihiro Uejima and Hiroaki Suzuki. Fillmat is NP-complete and ASP-complete. J. Inf.
Process., 23(3):310–316, 2015. doi.org/10.2197/ipsjjip.23.310.

17 Akihiro Uejima, Hiroaki Suzuki, and Atsuki Okada. The complexity of generalized pipe
link puzzles. J. Inf. Process., 25:724–729, 2017. doi:10.2197/ipsjjip.25.724.

C. Iwamoto, M. Haruishi, and T. Ibusuki 24:9

c3

H

H

H

H

x = 1

3

H
H 2

1 x = 0 1

2

H3H

H
2

2
2

H

H

x = 0

3

H
H 2

2 x = 1 2

2

H3H

H
2

2
2

H

H

H

H

x = 1

3

H
H 2

3 x = 0 3

2

H3H

H
2

2
2

H

H

H

x = 1

3

H
H 2

4 x = 0 4

2

H3H

H
2

2
2

H

H

H

c1

1

1

1H

H

c4

1

H1

1

H
1

1

1
H
1
H

c2

1

1

1

1
H

H
1
H
1
H
1
H

H1 HH 11 HH 11 HH 11 H1

1
H

H1 HH 11 H1

1

1
H

H 1

1
H

H1 H1
H

H1

1

1H 1

1
H

H

1
H

1
H

H

H
1

H

2

H
1

H
1

H

H
1

H
1

H
1

1

H

H
1

H
1

H
1

1

1
H

H
1 H 1 H 1 H 1

H
1

H
1

H
1

H
1

H

H
1

H
1

H
1

1

H
1
H

H
1

H
1

1

H
1

H
1

H
1

H2

H

H
1

H
1

H
1

1

H
1
H

H
1

H
1

1

1
H

1
H

1
H

H

1

H1 H1H1

1

H 1H 1H 1H 1 H1

H 1H1

H
1
H
1

1HH 1H1H

H
H

H
1

H
1

H
1
H

H
1

H
1

1

H

H
1

1

H
1
H
1
H

H
1

H
1

1

H
1

H
1

H
1
H

H
1

H
1

1

H

H
1

1

H 1 H 1

H1H1H1 H1 H1 H1

H
1
H

H
1

1

H

H
1

H
1

1

H
1H1H1 H1 H1

H
1

HH 1 H 1 H 1 H 1 H 1 H 1 H 1 H 1 H 1 H 1
H 1 H 1 H 1 H 1 H H 1 H 1 H 1 H

H 1 H 1 H 1 H 1 1 H 1 H 1 H
H 1 H 1 H 1 H 1 H 1 H 1 H 1 H

1 H
1 H

1 H
1 H

H

H
1

H
1

1

1

H
1H1

H

H
1H 1

1
H

H
1

1
H

H1

1
H

H1

1

H
1

HH

H

HH
2 2

21

HH

H H

2 2
2 H

HH

H H

2 2
2 H

H H

H H

2 2
2H

H H

H

2 2
2H

H H

H H

2 2
2H

H H

H H

2 2
2H1

1
H

H H

H H

2 2
2 HH1

H

1
H

1
H

H

H

H

H
H1

H

H

H

H

H 1

1

H2

1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H
1
H

H

1
H

H 1

H
1

1
H

1
H

1
H

H
1

1H

H1

H1

H1 H1
H
1
H

H
1

1

1

H 1
H 1

H1

H
1
H
1

H1

H
1

1
H

2

H

H
1

1
H

H
1
H

H
1

1

H
1

H1H1

H

H 1H1

H1

1
H

1
H

H

1

H

2

H 1

H
1

H
1

H
1

H 2

H1 H1

1
H
1
H

1
H
1
H

H
1

1H

1H

H1
H
1

H1

H1

H1

H

H1

H
1

1
H
1
H
1

1
H 1

H

H

HH 11

H
1

H1

H
1

H
1

1
H
1
H

H1

H
1

1
H

1
H

H
1

H1 H1

HHH 1

H

2

2
2

H
1

H

2
2
2

H 1

H
1

1

H

H
1

H
1

1

H1
H
1

1

1
H
1
H
1
H

H

2

1
H

H
1

1
H

H

H

H
1

H
1

H
1

1

H
1
H

H 1H1H1 H1 1

2
H
1

H
1

2

H
1

H

2

2

H
1
H

2

H

1

1
H

H
1

1

1
H

1

1

1

1

1
1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

1

1

1

1

H
1
H1

H1

H
1

H
1

H
1

H
1 H

1
HH

1
H

H1

H 1

1
H

H 1H 1

1
H

1
HH

1
1
H

1
H

H

H 1

1 H 1
HH 1

H1
H
1

H1

H1

H1

H
1

H
1

H1

H
1

H
1

H
1

H 1

H
1

H
1

H
1

H 1

H
1

H1

H1H 1
H
1

H1 H1

H1

2n + 4m ���

2n ��m

H
1

Figure 8 A Herugolf puzzle transformed from C = {c1, c2, c3, c4}, where c1 = {x1, x2, x3},
c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, c4 = {x2, x3, x4}. From the solution of the puzzle, one can see
that the assignment (x1, x2, x3, x4) = (0, 1, 0, 0) satisfies all clauses of C.

FUN 2018

24:10 Herugolf and Makaro are NP-complete

(a)

xi

(b)

xi

(c)

 1 2

x 1
 2 1 2

 1 2
i

 2 1

 1
 2

 2 1

 2 1

x = 1 x = 0 i i i ix = 0 x = 1

Figure 9 (a) Variable gadget of Makaro transformed from xi. (b) Assignment xi = 1. (c) Assign-
ment xi = 1.

c

(a)

j 2 1c
 3

 4

 1 1
 1

 1
 1 1

 4

 3

 2
 3

 2
 4

 1
 2

 2 1

(b)

j 1

 1

 1

 1
 1

 1
 1

 4
 2

 3

 4

 1 2

 1
 2

 2
 3

 4 2
 3

cj

 2
 1

 2
 1

 1
 2

cj 1 2

 2
 1

(c) (d)

(e) (f)

cj cj

 2
 1

(g)

cj

 1
 2

 2
 1

 1
 2

 2
 1
 3

 1 1

 1 1

Figure 10 (a) Clause gadget of Makaro transformed from cj . (b) If all of the three black cells are
adjacent to number 2 in red 2-cell rooms, then there is no solution to the blue 4-cell room. (c),(d) If
at least one of the three black cells is adjacent to number 1 in a red 2-cell room, then there is a
solution to the blue room. (e)–(g) If clause cj contains only two literals, the gadget is composed of
one blue 3-cell room, two black cells, and four grey 1-cell rooms.

C. Iwamoto, M. Haruishi, and T. Ibusuki 24:11

(d)

(a)

 2 1
 1
 2

 1
 2

 1
 2

 1
 2

 2 1

(b) (c)

 1 2

 1 2

 1
 2
 1
 2
 1
 2
 1
 2

 2 1 1 2 1 2

 2 1 1

 3 2 1 2 1

odd

Figure 11 (a) Connection gadget of Makaro. (b) and (c) are two possible solutions. (d) The
interval between two 2-cell rooms is odd.

 2 1

 1 2

 2 1

1c 1 2

 2 1

 2 1

2x

1x

3x

4x

3c

 3

 4

 1

 2 1

 1
 2

 2 1

 2 1

 1
 2

 2 1

 2 1

 1
 2

 2 1

 2 1

 1
 2 1 2

 1 2

 1
 2

 2 1

 1 2

4c

 2 1

 1
 2

 2 1 2 1

 1 2 1 2 1 2

 2 1 1

 1 2 1
 2

 1 2 1 2 1 2 1 2

 1
 2

 1
 2

 1
 2 12c

 1 2 1 2

 2 1

 2 1

 2 1

 2 1 2 1 2 1

 1
 2
 1
 2
 1
 2

 1
 2
 1
 2

 3

 1 2

 3

 4

 4

 2

 1
 2

 1 2

 1 1
 1

 1
 1 1

 2 1 4

 3

 2
 3

 2
 4

 1
 2

 1

 1

 1

 1

 1
 4

 3
 2

 1
 4

 2
 3

 1
 2

 1
 2

 1 2

 1
 2

 1

 1

 1
 4

 3
 2
 1

 1
 1
 4

 3
 2

 2 1

 2 1 1

 1

 1
 1

 1
 1

 4
 2

 3

 4

 1 2

 1
 2

 2
 3

 4 2
 3

 1
 2

 1
 2

 1
 2

 1 2
 1 2

 1 2

 2 1 2

 2 1 1

 3

 1
 2

 2 1
 1
 2

 1
 2

 2 1 2 1 2 1

 2 1 2 1

 2 1 1
 2

 1 2 1 2

 1 2
 1
 2

 2 1 2 1 2 1

Figure 12 A Makaro puzzle transformed from C = {c1, c2, c3, c4}, where c1 = {x1, x2, x3},
c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, c4 = {x2, x3, x4}. From the solution of the puzzle, one can see
that the assignment (x1, x2, x3, x4) = (0, 1, 0, 0) satisfies all clauses of C.

FUN 2018

The Fewest Clues Problem of Picross 3D
Kei Kimura1

Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1
Hibarigaoka, Tempaku, Toyohashi, Aichi, Japan
kimura@cs.tut.ac.jp

Takuya Kamehashi
Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1
Hibarigaoka, Tempaku, Toyohashi, Aichi, Japan
kamehashi@algo.cs.tut.ac.jp

Toshihiro Fujito2

Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1
Hibarigaoka, Tempaku, Toyohashi, Aichi, Japan
fujito@cs.tut.ac.jp

Abstract
Picross 3D is a popular single-player puzzle video game for the Nintendo DS. It is a 3D variant of
Nonogram, which is a popular pencil-and-paper puzzle. While Nonogram provides a rectangular
grid of squares that must be filled in to create a picture, Picross 3D presents a rectangular
parallelepiped (i.e., rectangular box) made of unit cubes, some of which must be removed to
construct an image in three dimensions. Each row or column has at most one integer on it, and
the integer indicates how many cubes in the corresponding 1D slice remain when the image is
complete. It is shown by Kusano et al. that Picross 3D is NP-complete. We in this paper show
that the fewest clues problem of Picross 3D is ΣP

2 -complete and that the counting version and
the another solution problem of Picross 3D are #P-complete and NP-complete, respectively.

2012 ACM Subject Classification Theory of computation → Theory and algorithms for appli-
cation domains

Keywords and phrases Puzzle, computational complexity, fewest clues problem

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.25

Acknowledgements The authors are grateful to the reviewers for their valuable comments and
suggestions. Especially, one of them pointed out the connection between Picross 3D and discrete
tomography.

1 Introduction

Many pencil-and-paper puzzles have been shown to be NP-complete [7]. For example, Akari
(also known as Light-ups) [11], Number Place (also known as Sudoku) [13], Shakashaka [5]
are all known to be NP-complete. Different from this line of research, Demaine et al. [4]
recently introduced the fewest clues problem (FCP) framework for analyzing computational
complexity of designing “good” puzzles. The FCP is, given an instance to a puzzle, to
decide the minimum number of clues we must add in order to make the instance uniquely
solvable. It is of great interest for puzzle makers to know hardness of such a version since it

1 The first author is supported by JSPS KAKENHI Grant Number JP15H06286.
2 The third author is supported by JSPS KAKENHI Grant Number JP17K00013.

© Kei Kimura, Takuya Kamehashi, and Toshihiro Fujito;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 25; pp. 25:1–25:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kimura@cs.tut.ac.jp
mailto:kamehashi@algo.cs.tut.ac.jp
mailto:fujito@cs.tut.ac.jp
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 The Fewest Clues Problem of Picross 3D

is usually the case that they want to ensure a puzzle instance to have a unique solution. In
[4], along with the FCP versions of classical NP-complete problems such as 3-SAT, those of
the three common Nikoli puzzles (Akari, Number Place, and Shakashaka) are shown to be
ΣP

2 -complete. Here, ΣP
2 is the complexity class that lies on the second level of the polynomial

hierarchy and includes the class NP. Hence, ΣP
2 -complete problems are at least as hard as

NP-complete problems. See, e.g., [1] for more details.
We in this paper investigate computational complexity of the FCP of Picross 3D and show

that it is ΣP
2 -complete. Picross 3D is a video-game puzzle developed by HAL Laboratory,

published by Nintendo, and was first released in 2009. While 2-dimensional Picross (also
known as Nonogram) provides a rectangular grid of squares that must be filled in to create
a picture, Picross 3D presents a rectangular parallelepiped (i.e., rectangular box) made of
unit cubes, some of which must be removed to construct an image in three dimensions. Each
row or column has at most one integer on it, and the integer indicates how many cubes in
the corresponding 1D slice remain when the image is complete. If the integer is not circled
nor boxed, then the remaining cubes in the 1D slice must form a section (i.e., the cubes
must be consecutive). If the integer is circled, then the remaining cubes in the 1D slice must
be split up into two sections. If the integer is boxed, then the cubes must be split up into
three or more sections. If there are no numbers on a row or column, then there are no rules
concerning the number of cubes (or sections) to remain. An instance of Picross 3D is shown
in Figure 1(a), and its solution is given in 1(b).

As many other puzzles, Picross 3D is shown to be NP-complete via a reduction from
3-SAT [10]. To show the ΣP

2 -completeness of the FCP of Picross 3D, we reduce to it the
FCP of positive 1-in-3 SAT, which is known to be ΣP

2 -complete [4]3. We note that those
Nikoli puzzles were chosen in [4] because their NP-hardness reductions mostly preserve clue
structure and their FCP versions were shown ΣP

2 -complete by using the same reductions or
slightly modified ones. On the other hand, we cannot do the same for the FCP of Picross
3D using the NP-hardness reduction of [10]; we instead modify it to devise a parsimonious
reduction from positive 1-in-3 SAT to Picross 3D. Here, a reduction is called parsimonious if,
for each instance, there exists a one-to-one correspondence between the solution sets of the
original instance and the reduced one. Intuitively, since a parsimonious reduction preserves
the number of solutions, it helps to provide a reduction that preserves the number of clues.
Moreover, it follows from the above parsimonious reduction that (i) the counting version
of Picross 3D is #P-complete since so is the counting version of positive 1-in-3 SAT [2, 3]4,
and (ii) the another solution problem (ASP) of Picross 3D is NP-complete5 since so is ASP
positive 1-in-3 SAT [12, 13]. Here, ASP Picross 3D is, given an instance of Picross 3D and a
solution to it, to determine if there exists another solution to the instance.

We now discuss related work. Picross 3D can be seen as a variant of problems that
have been studied in the field of (3D) discrete tomography. Discrete tomography deals with
problems of determining shape of a discrete object from a set of projections. These problems
have applications in, e.g., physical chemistry, medicine, and data coding, and have strong
connections with combinatorics and geometry; see [8] for details. Especially, Picross 3D
without the consecutiveness conditions on solutions is a basic problem in discrete tomography
and intensively studied from an algorithmic point of view; the problem is known to be NP-,

3 More precisely, the FCP of 1-in-3 SAT is shown ΣP
2 -complete in [4]. However, the proof in [4] also shows

the ΣP
2 -completeness of the FCP of positive 1-in-3 SAT.

4 More precisely, the counting version of monotone 1-in-3 SAT (i.e., each clause has only positive literals
or only negative literals) is shown #P-complete in [2]. However, it is not difficult to modify the proof in
[2] to show the #P-completeness of the counting version of positive 1-in-3 SAT.

5 This fact was pointed out by a reviewer.

K. Kimura, T. Kamehashi, and T. Fujito 25:3

(a) (b)

Figure 1 An instance of Picross 3D and its solution

ASP-, and #P-complete [9, 6]. Moreover, the 2D version of the problem, which corresponds
to Nonogram, can be solved in polynomial time [8]. We note that the reductions in [9, 6]
cannot be used to show our results.

2 Preliminaries

In this section, we first introduce a formal definition of the puzzle Picross 3D and then
introduce the fewest clues problems (FCPs) of Picross 3D and positive 1-in-3 SAT.

2.1 Picross 3D

In Picross 3D, we are given a rectangular parallelepiped of height h, width w, and depth d.
Each unit square in the front, side and top faces have at most one nonnegative integer that
indicates how many cubes the row or column should contain when the image is complete.
These integers are conveniently represented by three matrices: an h× w matrix F = (fi,j)
called the front constraint matrix, an h × d matrix S = (si,k) called the side constraint
matrix, and a d×w matrix T = (tj,k) called the top constraint matrix. Each element of these
matrices is either an integer, a circled integer (e.g., 1O), a boxed integer (e.g., 1), or ε. Here,
ε indicates that there is no constraint concerning the remaining cubes in the corresponding
row or column. We denote by I = (h, w, d, F, S, T) an instance of Picross 3D.

For the sake of clarity, we index these matrices as follows.

F =


f1,1 f1,2 · · · f1,w

f2,1 f2,2 · · · f2,w

...
...

fh,1 fh,2 · · · fh,w

 , S =


s1,1 s1,2 · · · s1,d

s2,1 s2,2 · · · s2,d

...
...

sh,1 sh,2 · · · sh,d

 ,

T =


t1,d t2,d · · · tw,d

t1,d−1 t2,d−1 · · · tw,d−1
...

...
t1,1 t2,1 · · · tw,1

 .

FUN 2018

25:4 The Fewest Clues Problem of Picross 3D

Note that j is the index of the columns and k is the index (from bottom to top) of the rows
of T = (tj,k).

A solution to an instance I = (h, w, d, F, S, T) of Picross 3D is a three dimensional matrix
P = (pi,j,k) ∈ {0, 1}h×w×d that satisfies the following conditions: each integer (even if circled
or boxed) indicates the number of 1’s in the column or row where the integer is written.
Namely, we must have

∑d
k=1 pi,j,k = fi,j for each i and j,

∑w
j=1 pi,j,k = si,k for each i and k,

and
∑h

i=1 pi,j,k = tj,k for each j and k. Moreover, (i) if the integer is not circled nor boxed,
then all the 1’s in the row or column must be consecutive, (ii) if the integer is circled, then
the row or column must contain exactly two sections that consecutively consist of only 1’s,
and (iii) if the integer is boxed, then the row or column must contain more than two sections
that consecutively consist of only 1’s. We describe a solution to Picross 3D as a sequence of
matrices as follows.

P =




p1,1,1 p1,2,1 · · · p1,w,1
p2,1,1 p2,2,1 · · · p2,w,1
...

...
ph,1,1 ph,2,1 · · · ph,w,1

 ,


p1,1,2 p1,2,2 · · · p1,w,2
p2,1,2 p2,2,2 · · · p2,w,2
...

...
ph,1,2 ph,2,2 · · · ph,w,2

 , . . . ,


p1,1,d p1,2,d · · · p1,w,d

p2,1,d p2,2,d · · · p2,w,d

...
...

ph,1,d ph,2,d · · · ph,w,d


 .

I Example 1. Let h = 5, w = 2, and d = 3, and define the constraint matrices as follows.

F =


ε ε

2 ε

ε 1
1 ε

0 2

 , S =


ε 1 2
ε ε 2
2 ε ε

ε 1 1
ε ε ε

 , T =

3O ε

2 2
2O 3

 .

Then, I = (h, w, d, F, S, T) represents the instance given in Figure 1(a).
Let

P =




1 1
0 0
1 1
0 0
0 1

 ,


1 0
1 0
0 0
0 1
0 1

 ,


1 1
1 1
0 0
1 0
0 0


 .

Then P is the solution to I that is depicted in Figure 1(b).

2.2 Fewest Clues Problem
We here define the FCP of Picross 3D and positive 1-in-3 SAT. A positive CNF is a CNF
where every literal occurring in it is positive.

FCP Picross 3D Given an instance I of Picross 3D and an integer `, does there exists a
partial assignment of at most ` variables such that there exists a unique solution to I

extending the partial assignment?
FCP positive 1-in-3 SAT Given a positive 3-CNF ϕ and an integer `, does there exists a

partial assignment of at most ` variables such that there exists a unique solution to ϕ,
where every clause has exactly one true literal, extending the partial assignment?

K. Kimura, T. Kamehashi, and T. Fujito 25:5

3 Parsimonious Reduction from positive 1-in-3 SAT to Picross 3D

In this section, we provide a parsimonious reduction from positive 1-in-3 SAT to Picross
3D. Recall that a reduction is parsimonious if, for each instance, there exists a one-to-one
correspondence between the solution sets of the original instance and the reduced one. The
reduction will be used to show the ΣP

2 -completeness of FCP Picross 3D in the next section.
We note that from the reduction it follows that the counting version and the another solution
problem (ASP) of Picross 3D are respectively #P-complete and NP-complete, since so are
these variants of positive 1-in-3 SAT [2, 3, 12, 13]. We also note that our reduction is similar
to the reduction from 3-SAT to Picross 3D in [10]; indeed, the variables of a given 3-CNF
are represented in the same way. However, the reduction in [10] is not parsimonious and
seems hard to be used for showing the ΣP

2 -completeness of FCP Picross 3D.
I Proposition 2. There exists a parsimonious reduction from positive 1-in-3 SAT to Picross
3D.

Proof. Let ϕ be an instance of positive 1-in-3 SAT, where ϕ =
∧m

j=1 Cj is a positive
3-CNF with n variables and m clauses, and Cj = (xj1 ∨ xj2 ∨ xj3) for j = 1, . . . , m.
Here, 1 ≤ j1, j2, j3 ≤ n and j`’s are distinct for j = 1, . . . , m. We construct an instance
Iϕ = (h, w, d, F, S, T) of Picross 3D as follows.

We set h = 4, w = 2(m + n− 1) + 1, and d = 3n. Let a function div be defined as

div(i) =


i if i = 0, 1
iO if i = 2
i if i ≥ 3.

The front constraint matrix F , which is an h×w(= 4× (2m + 2n− 1)) matrix, is defined
as

(i)


f1,j = f4,j = f1,m+n+j = f4,m+n+j = div(n),
f2,j = 1,

f3,j = div(2),

for 1 ≤ j ≤ m, (ii) f1,j = f4,j = f1,m+n+j = f4,m+n+j = div(m + n − j) for m + 1 ≤ j ≤
m + n− 1, (iii) f2,j = f3,j = 0 for m + 1 ≤ j ≤ w, and (iv) f1,n+m = f4,n+m = 0. Namely,

F =

m︷ ︸︸ ︷ n−1︷ ︸︸ ︷
div(n) . . . div(n) div(n − 1) . . . div(1) 0

1 . . . 1 0 . . . 0 0
div(2) . . . div(2) 0 . . . 0 0
div(n) . . . div(n) div(n − 1) . . . div(1) 0

m︷ ︸︸ ︷ n−1︷ ︸︸ ︷
div(n) . . . div(n) div(n − 1) . . . div(1) 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0
div(n) . . . div(n) div(n − 1) . . . div(1) .

The side constraint matrix S, which is an h× d(= 4× 3n) matrix, is defined as
s1,3k−2 = s4,3k−1 = m + n− k,

s2,3k−2 = s3,3k−1 = ε,

s1,3k = s2,3k = s3,3k = s4,3k = 0,

FUN 2018

25:6 The Fewest Clues Problem of Picross 3D

for 1 ≤ k ≤ n. Namely,

S =

3n︷ ︸︸ ︷
m + n− 1 m + n− 1 0 m + n− 2 m + n− 2 0 . . . m m 0 ε ε 0 ε ε 0 . . . ε ε 0

ε ε 0 ε ε 0 . . . ε ε 0
m + n− 1 m + n− 1 0 m + n− 2 m + n− 2 0 . . . m m 0 .

The top constraint matrix T , which is d×w(= 3n× (2m + 2n− 1)) matrix, is defined as
follows.

(i) tj,3k−2 =
{

2 if xk ∈ {xj1 , xj2 , xj3},
1 otherwise,

for 1 ≤ j ≤ m and 1 ≤ k ≤ n, (ii) tj,3k−2 = tj,3k−1 = 1 for m + 1 ≤ j ≤ m + n − k and
1 ≤ k ≤ n− 1, (iii) tj,3k−2 = tj,3k−1 = 1 for m + n + 1 ≤ j ≤ 2m + 2n− k and 1 ≤ k ≤ n− 1,
and (iv) tjk = 0 for the remaining entries. Hence,

T =



0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0




3n

1 . . . 1 0 0 . . . 0 0 1 . . . 1 0 0 . . . 0
1 or 2 . . . 1 or 2 0 0 . . . 0 0 1 . . . 1 0 0 . . . 0

0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0
1 . . . 1 1 0 . . . 0 0 1 . . . 1 1 0 . . . 0

1 or 2 . . . 1 or 2 1 0 . . . 0 0 1 . . . 1 1 0 . . . 0
...

... 0
...

...
0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 . . . 0 0
1 . . . 1 1 . . . 1 0 0 1 . . . 1 1 . . . 1 0

1 or 2 . . . 1 or 2 1 . . . 1 0 0 1 . . . 1 1 . . . 1 0
0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 . . . 0 0
1 . . . 1 1 . . . 1 1 0 1 . . . 1 1 . . . 1 1

1 or 2 . . . 1 or 2 1 . . . 1 1 0 1 . . . 1 1 . . . 1 1 .︸ ︷︷ ︸
m

︸ ︷︷ ︸
n−1

︸ ︷︷ ︸
m

︸ ︷︷ ︸
n−1

I Example 3. For ϕ = (x1 ∨ x3 ∨ x4)(x2 ∨ x3 ∨ x4), Iϕ is depicted as Figure 2(a), and its
solution is given in 2(b).

We now show that the above reduction is parsimonious. We first show several auxiliary
claims.

I Claim 3.1. Let P = (pi,j,k) be a solution to Iϕ. Then, for 1 ≤ k ≤ n, we have either

(i)



p1,1,3k−2 = · · · = p1,m+n−k,3k−2 = 1
p1,1,3k−1 = · · · = p1,m+n−k,3k−1 = 0
p4,1,3k−2 = · · · = p4,m+n−k,3k−2 = 0
p4,1,3k−1 = · · · = p4,m+n−k,3k−1 = 1
p1,m+n+1,3k−2 = · · · = p1,2m+2n−k,3k−2 = 0
p1,m+n+1,3k−1 = · · · = p1,2m+2n−k,3k−1 = 1
p4,m+n+1,3k−2 = · · · = p4,2m+2n−k,3k−2 = 1
p4,m+n+1,3k−1 = · · · = p4,2m+2n−k,3k−1 = 0,

K. Kimura, T. Kamehashi, and T. Fujito 25:7

(a) (b)

Figure 2 The instance Iϕ of Picross 3D and its solution for ϕ = (x1 ∨ x3 ∨ x4)(x2 ∨ x3 ∨ x4)

or

(ii)



p1,1,3k−2 = · · · = p1,m+n−k,3k−2 = 0
p1,1,3k−1 = · · · = p1,m+n−k,3k−1 = 1
p4,1,3k−2 = · · · = p4,m+n−k,3k−2 = 1
p4,1,3k−1 = · · · = p4,m+n−k,3k−1 = 0
p1,m+n+1,3k−2 = · · · = p1,2m+2n−k,3k−2 = 1
p1,m+n+1,3k−1 = · · · = p1,2m+2n−k,3k−1 = 0
p4,m+n+1,3k−2 = · · · = p4,2m+2n−k,3k−2 = 0
p4,m+n+1,3k−1 = · · · = p4,2m+2n−k,3k−1 = 1.

Proof. We show the claim by induction on k. Assume that k = 1. We first show that either
(pi,1,` = · · · = pi,m+n−1,` = 1 and pi,m+n+1,` = · · · = pi,2m+2n−1,` = 0) or (pi,1,` = · · · =
pi,m+n−1,` = 0 and pi,m+n+1,` = · · · = pi,2m+2n−1,` = 1) hold for (i, `) ∈ {1, 4} × {1, 2}. For
(i, `) = (1, 1), since s1,1 = m+n−1, we have to consecutively set p1,a,1 = · · · = p1,a+m+n−2,1 =
1 for some a ≥ 1. On the other hand, since f1,m+n = 0, we have p1,m+n,1 = 0. Therefore, we
must have either (p1,1,1 = · · · = p1,m+n−1,1 = 1 and p1,m+n+1,1 = · · · = p1,2m+2n−1,1 = 0) or
(p1,1,1 = · · · = p1,m+n−1,1 = 0 and p1,m+n+1,1 = · · · = p1,2m+2n−1,1 = 1). Similarly, for other
(i, `), from si,` = m + n− 1 and f1,m+n = 0, we have either (pi,1,` = · · · = pi,m+n−1,` = 1 and
pi,m+n+1,` = · · · = pi,2m+2n−1,` = 0) or (pi,1,` = · · · = pi,m+n−1,` = 0 and pi,m+n+1,` = · · · =
pi,2m+2n−1,` = 1). We next show that p1,m+n−1,1 + p1,m+n−1,2 = p4,m+n−1,1 + p4,m+n−1,2 =
p1,m+n−1,1 +p4,m+n−1,1 = 1 holds. From f1,m+n−1 = div(1) = 1, we have

∑3n
`=1 p1,m+n−1,` =

1. On the other hand, tm+n−1,` = 0 implies that p1,m+n−1,` = 0 for ` = 3, 4, . . . , 3n.
Therefore, we have p1,m+n−1,1 + p1,m+n−1,2 = 1. Similarly, from f4,m+n−1 = div(1) = 1 and
tm+n−1,` = 0 for ` = 3, 4, . . . , 3n, we obtain p4,m+n−1,1 + p4,m+n−1,2 = 1. Moreover, from
tm+n−1,1 = 1, we have

∑4
i=1 pi,m+n−1,1 = 1. On the other hand, fi,m+n−1 = 0 implies that

pi,m+n−1,1 = 0 for i = 1, 2. Therefore, we have p1,m+n−1,1 + p4,m+n−1,1 = 1. Combining the
above equations, we obtain the claim for k = 1.

For k ≥ 2, assume that the claim holds for 1, . . . , k − 1. The proof is similar to the
one for k = 1. We first show that either (pi,1,3k−3+` = · · · = pi,m+n−k,3k−3+` = 1 and
pi,m+n+1,3k−3+` = · · · = pi,2m+2n−k,3k−3+` = 0) or (pi,1,3k−3+` = · · · = pi,m+n−k,3k−3+` = 0
and pi,m+n+1,3k−3+` = · · · = pi,2m+2n−k,3k−3+` = 1) hold for (i, `) ∈ {1, 4} × {1, 2}. For
(i, `) = (1, 1), since s1,3k−2 = m + n − k, we have to consecutively set p1,a,1 = · · · =
p1,a+m+n−k−1,1 = 1 for some a ≥ 1. On the other hand, since f1,m+n = 0, we have p1,m+n,1 =

FUN 2018

25:8 The Fewest Clues Problem of Picross 3D

0. Moreover, f1,m+n−a = div(a) implies that
∑3n

b=1 p1,m+n−a,b = a for a = 1, . . . , k − 1. On
the other hand, by the inductive hypothesis, we have p1,m+n−a,3b−2 + p1,m+n−a,3b−1 = 1
for a = 1, . . . , k − 1 and b = 1, . . . , a. Therefore, we obtain that p1,m+n−a,3k−2 = 0 for
a = 1, . . . , k − 1. These imply that either (p1,1,3k−2 = · · · = p1,m+n−k,3k−2 = 1 and
p1,m+n+1,3k−2 = · · · = p1,2m+2n−k,3k−2 = 0) or (p1,1,3k−2 = · · · = p1,m+n−k,3k−2 = 0
and p1,m+n+1,3k−2 = · · · = p1,2m+2n−k,3k−2 = 1) hold. Similarly, for other (i, `), from
si,` = m+n−k and f1,m+n−a = div(a) for a = 0, . . . , k−1, we have either (pi,1,3k−3+` = · · · =
pi,m+n−k,3k−3+` = 1 and pi,m+n+1,3k−3+` = · · · = pi,2m+2n−k,3k−3+` = 0) or (pi,1,3k−3+` =
· · · = pi,m+n−k,` = 0 and pi,m+n+1,3k−3+` = · · · = pi,2m+2n−k,3k−3+` = 1). We next show
that p1,m+n−k,3k−2 + p1,m+n−k,3k−1 = p4,m+n−k,3k−2 + p4,m+n−k,3k−1 = p1,m+n−k,3k−2 +
p4,m+n−k,3k−2 = 1 holds. From f1,m+n−k = div(k), we have

∑3n
`=1 p1,m+n−k,` = k. By the

inductive hypothesis, we have p1,m+n−k,3`−2 +p1,m+n−k,3`−1 = 1 for ` = 1, . . . , k−1. We also
have p1,m+n−k,3` = 0 for ` = 1, . . . , k− 1, since tm+n−k,3` = 0 for ` = 1, . . . , k− 1. Hence, we
have

∑3n
`=3k−2 p1,m+n−k,` = 1. On the other hand, tm+n−k,` = 0 implies that p1,m+n−1,` = 0

for ` = 3k, 3k + 1, . . . , 3n. Therefore, we have p1,m+n−k,3k−2 + p1,m+n−k,3k−1 = 1. Similarly,
from f4,m+n−k = div(k) and tm+n−k,` = 0 for ` = 3, 6, . . . , 3k − 3 and ` = 3k, 3k + 1, . . . , 3n,
we obtain p4,m+n−k,3k−2 + p4,m+n−k,3k−1 = 1. Moreover, from tm+n−1,k = 1, we have∑4

i=1 pi,m+n−k,1 = 1. On the other hand, fi,m+n−k = 0 implies that pi,m+n−k,3k−2 = 0
for i = 1, 2. Therefore, we have p1,m+n−k,3k−2 + p4,m+n−k,3k−2 = 1. Combining the above
equations, we obtain the claim for k. This completes the proof. J

Intuitively, for 1 ≤ k ≤ n, xk = 1 if and only if (i) in Claim 3.1 holds. We also need the
following claim.

I Claim 3.2. Let P = (pi,j,k) be a solution to Iϕ. Then we have pi,j,3k = 0 for i = 1, 2, 3, 4,
j = 1, . . . , 2m + 2n − 1, and k = 1, . . . , n. Moreover, we have pi,j,k = 0 for i = 2, 3, j =
m + 1, . . . , 2m + 2n− 1, and k = 1, 2, . . . , 3n. Furthermore, we have pi,j,3k−2 = pi,j,3k−1 = 0
for i = 2, 3, k = 1, . . . , n, and j = m+n−k+1, . . . , m+n−1, 2m+2n−k+1, . . . , 2m+2n−1.

Proof. For j = 1, . . . , 2m + 2n + 1 and k = 1, . . . , n, we have tj,3k = 0, implying that
pi,j,3k = 0 holds for i = 1, 2, 3, 4.

For i = 2, 3 and j = m + 1, . . . , 2m + 2n + 1, we have fi,j = 0, implying that pi,j,k = 0
holds for k = 1, 2 . . . , 3n.

For k = 1, . . . , n and j = m+n−k +1, . . . , m+n−1, 2m+2n−k +1, . . . , 2m+2n−1, we
have tj,3k−2 = tj,3k−1 = 1 and p1,j,3k−2 + p4,j,3k−2 = p1,j,3k−1 + p4,j,3k−1 = 1 by Claim 3.1.
Therefore, we have pi,j,3k−2 = pi,j,3k−1 = 0 for i = 2, 3. J

The following claim indicates which variable is true in each clause.

I Claim 3.3. Let P = (pi,j,k) be a solution to Iϕ. Then, for j = 1, . . . , m and k = 1, . . . , n,
we have (i) in Claim 3.1 and tj,3k−2 = 2 if and only if p2,j,3k−2 = 1 holds.

Proof. Fix j ∈ {1, . . . , m} and k ∈ {1, . . . , n}. Assume that (i) in Claim 3.1 and tj,3k−2 = 2
hold. From Claim 3.1, we have p1,j,3k−2 = 1. Moreover, since tj,3k−2 = 2 implies that we
have to consecutively set pi,j,3k−2 = pi+1,j,3k−2 for some i ≥ 1, we have p2,j,3k−2 = 1.

Conversely, assume that p2,j,3k−2 = 1 holds. By Claim 3.1, we have either p1,j,3k−2 = 1
or p4,j,3k−2 = 1. Hence, we have

∑4
i=1 pi,j,3k−2 ≥ 2. Since tj,3k−2 = 1 or 2 by definition, it

follows that tj,3k−2 = 2. This implies that we have to consecutively set pi,j,3k−2 = pi+1,j,3k−2
for some i ≥ 1. Together with p2,j,3k−2 = 1 and either p1,j,3k−2 = 1 or p4,j,3k−2 = 1, we have
p1,j,3k−2 = 1. Hence, from Claim 3.1, we have (i) in Claim 3.1. This completes the proof. J

K. Kimura, T. Kamehashi, and T. Fujito 25:9

Intuitively, for j = 1, . . . , m and k = 1, . . . , n, clause Cj contains xk and xk is the unique
variable that is true in Cj if and only if p2,j,3k−2 = 1 holds.

We now construct a bijection between the solution sets of ϕ and Iϕ. We first construct a
mapping from the solution set of ϕ to that of Iϕ. Let x be a solution to ϕ. Then define an
assignment P to Iϕ as follows. For 1 ≤ k ≤ n, if xk = 1 then set

p1,1,3k−2 = · · · = p1,m+n−k,3k−2 = 1
p1,1,3k−1 = · · · = p1,m+n−k,3k−1 = 0
p4,1,3k−2 = · · · = p4,m+n−k,3k−2 = 0
p4,1,3k−1 = · · · = p4,m+n−k,3k−1 = 1
p1,m+n+1,3k−2 = · · · = p1,2m+2n−k,3k−2 = 0
p1,m+n+1,3k−1 = · · · = p1,2m+2n−k,3k−1 = 1
p4,m+n+1,3k−2 = · · · = p4,2m+2n−k,3k−2 = 1
p4,m+n+1,3k−1 = · · · = p4,2m+2n−k,3k−1 = 0,

(1)

and if xk = 0 then set

p1,1,3k−2 = · · · = p1,m+n−k,3k−2 = 0
p1,1,3k−1 = · · · = p1,m+n−k,3k−1 = 1
p4,1,3k−2 = · · · = p4,m+n−k,3k−2 = 1
p4,1,3k−1 = · · · = p4,m+n−k,3k−1 = 0
p1,m+n+1,3k−2 = · · · = p1,2m+2n−k,3k−2 = 1
p1,m+n+1,3k−1 = · · · = p1,2m+2n−k,3k−1 = 0
p4,m+n+1,3k−2 = · · · = p4,2m+2n−k,3k−2 = 0
p4,m+n+1,3k−1 = · · · = p4,2m+2n−k,3k−1 = 1.

(2)

For j = 1, . . . , m, if clause Cj contains xk and xk = 1, then set p2,j,3k−2 = 1 and p3,j,3k−2 = 0.

For j = 1, . . . , m, if clause Cj contains xk and xk = 0, then set p2,j,3k−2 = 0 and p3,j,3k−2 = 1.

For all the remaining pi,j,k, set pi,j,k = 0. We show that the assignment P constructed from
x as above is a solution to Iϕ. We show this by showing that each constraint is satisfied by
P .

We first examine the constraints for matrix F . For j = 1, . . . , m, we have
∑3n

k=1 p1,j,k = n

from (1) and (2). Therefore, the constraint f1,j = div(n) is satisfied for j = 1, . . . , m.
Similarly, the constraint f4,j = div(n) is satisfied for j = 1, . . . , m, since

∑3n
k=1 p4,j,k = n

holds. For j = 1, . . . , m, we have
∑3n

k=1 p2,j,k = 1 if and only if there exists exactly one xk in
Cj such that xk = 1, since xk = 1 implies that p2,j,3k−2 = 1. Because x is a solution to ϕ,
we have

∑3n
k=1 p2,j,k = 1 and the constraint f2,j = 1 is satisfied for j = 1, . . . , m. Similarly,

the constraint f3,j = 2 is satisfied for j = 1, . . . , m, since
∑3n

k=1 p3,j,k = 2 holds if and only if
there exist exactly two xk

′s in Cj such that xk = 0.
We then focus on the constraints for matrix S. For i = 1, 4 and k = 1, . . . , n, we have∑2m+2n−1

j=1 pi,j,3k−2 = m+n−k from (1) and (2). Therefore the constraint si,3k−2 = m+n−k

is satisfied for i = 1, 4 and k = 1, . . . , n. Similarly, the constraint si,3k−1 = m + n − k is
satisfied for i = 1, 4 and k = 1, . . . , n. Furthermore, since pi,j,3k = 0 for i = 1, 2, 3, 4,
j = 1, . . . , 2m + 2n− 1, and k = 1, . . . , n, the constraint si,3k = 0 is satisfied for i = 1, 2, 3, 4
and k = 1, . . . , n.

Finally, we examine the constraints for matrix T . Firstly, for j = 1, . . . , m and k = 1, . . . , n,
we have tj,3k−2 = 1 or 2 by definition. Assume first that tj,3k−2 = 1 holds. Then, by definition,
clause Cj does not contain variable xk. Hence, we have p2,j,3k−2 = p3,j,3k−2 = 0. Moreover,
from assignment (1) and (2), we have p1,j,3k−2 + p4,j,3k−2 = 1. Therefore, the constraint
tj,3k−2 = 1 is satisfied. Assume next that tj,3k−2 = 2 holds. Then, by definition, clause

FUN 2018

25:10 The Fewest Clues Problem of Picross 3D

Cj contains variable xk. Hence, we have p2,j,3k−2 + p3,j,3k−2 = 1. Furthermore, we have
p1,j,3k−2 + p4,j,3k−2 = 1 from (1) and (2). Therefore,

∑4
i=1 pi,j,3k−2 = 2 holds. Moreover,

from Claim 3.3, we have p1,j,3k−2 = 1 if and only if p2,j,3k−2 = 1 holds. Hence, we must have
either (p1,j,3k−2 = 1 and p2,j,3k−2 = 1) or (p3,j,3k−2 = 1 and p4,j,3k−2 = 1). In either case,
we have two consecutive 1’s. Therefore, the constraint tj,3k−2 = 2 is satisfied. Secondly, for
j = 1, . . . , m and k = 1, . . . , n, we have tj,3k−1 = 1 by definition. Since p1,j,3k−1+p4,j,3k−1 = 1
by (1) and (2), and p1,j,3k−1 = p4,j,3k−1 = 0, the constraint tj,3k−1 = 1 is satisfied. Thirdly,
for j = m + 1, . . . , m + n − 1 and k = 1, . . . , n, we have tj,3k−2 = 1 if j ≤ m + n − k

and tj,3k−2 = 0 if j ≥ m + n − k + 1 by definition. If j ≤ m + n − k, then we have
p1,j,3k−2 + p1,j,3k−2 = 1 from (1) and (2), and p2,j,3k−1 = p3,j,3k−1 = 0. Thus, we have∑4

i=1 pi,j,3k−2 = 1 and the constraint tj,3k−2 = 1 is satisfied. If j ≥ m + n − k + 1, then
we have pi,j,3k−2 = 0 for i = 1, 2, 3, 4. Thus, we have

∑4
i=1 pi,j,3k−2 = 0 and the constraint

tj,3k−2 = 0 is satisfied. Similarly, for j = m+1, . . . , m+n−1 and k = 1, . . . , n, the constraint
tj,3k−1 = 0 is satisfied. Fourthly, for j = 1, . . . , 2m + 2n − 1 and k = 1, . . . , n, we have
tj,3k = 0 by definition. Since pi,j,3k = 0 holds for i = 1, 2, 3, 4, the constraint tj,3k = 0 is
satisfied. Finally, for j = m + n and k = 1, 2 . . . , 3n, we have tj,k = 0 by definition. Since
pi,j,k = 0 holds for i = 1, 2, 3, 4, the constraint tj,k = 0 is satisfied.

We next show that if Iϕ has a solution, then ϕ has a solution. To show this, we construct
a solution x to ϕ from a solution P to Iϕ as follows. Note that, for each k = 1, . . . , n, we have
either (i) or (ii) in Claim 3.1, since P is a solution to Iϕ. For each k, set xk = 1 if (i) holds and
xk = 0 if (ii) holds. We show that x defined as above is a solution to ϕ. It suffices to show that
for each j = 1, . . . , m, clause Cj contains exactly one xk that is set to 1. Fix j ∈ {1, . . . , m}.
From f2,j = 1, we have

∑3n
k=1 p2,j,k = 1. Moreover, from tj,3k = 0, we have p3,j,3k−3 = 0 for

k = 1, . . . , n. Furthermore, from tj,3k−1 = 1 and p1,j,3k−1 + p4,j,3k−1 = 1 by Claim 3.1, we
have p2,j,3k−1 = 0 for k = 1, . . . , n. Therefore, we have

∑n
k=1 p2,j,3k−2 = 1. From Claim 3.3,

p2,j,3k−2 = 1 holds if and only if p1,1,3k−2 = 1 and tj,3k−2 = 2 holds. Therefore, together
with

∑n
k=1 p2,j,3k−2 = 1, there exists exactly one k such that p1,1,3k−2 = 1 and tj,3k−2 = 2

holds. By definition, we have tj,3k−2 = 2 if and only if Cj contains xk, and p1,1,3k−2 = 1 if
and only if xk = 1. Therefore, Cj contains exactly one xk that is set to 1. Hence, x is a
solution to ϕ.

We finally show that the above reduction is parsimonious. To show this, we show that
the mappings between the solution sets of ϕ and Iϕ defined above are inverse to each other.
Let x be a solution to ϕ and let P be the solution of Iϕ corresponding to x. Moreover, let x′

be the solution constructed from P . We show that x = x′ holds. Observe first that xk = 1 if
and only if p1,1,3k−2 = 1 from (1) and (2) for k = 1, . . . , n. Furthermore, p1,1,3k−2 = 1 if and
only if x′k = 1 from Claim 3.1 for k = 1, . . . , n. Hence, xk = x′k for k = 1, . . . , n and thus
x = x′.

Conversely, let P be a solution to Iϕ and let x be the solution to ϕ constructed from P .
Moreover, let P ′ be the solution constructed from x. We show that P = P ′ holds. Firstly,
for k = 1, . . . , n, P satisfies (i) in Claim 3.1 if and only if xk = 1 holds. Furthermore, xk = 1
holds if and only if P ′ satisfies (i) in Claim 3.1 for k = 1, . . . , n. Hence, P and P ′ coincide
in the indices appearing in Claim 3.1 for k = 1, . . . , n. Secondly, from tj,3k−1 = 1 and
p1,k,3k−1 + p4,k,3k−1 = p′1,k,3k−1 + p′4,k,3k−1 = 1 for j = 1, . . . , m and k = 1, . . . , n, we have
p2,k,3k−1 = p3,k,3k−1 = p′2,k,3k−1 = p′3,k,3k−1 = 0 for j = 1, . . . , m and k = 1, . . . , n. Thirdly,
from the proof of Claim 3.1, we have pi,j,3k−2 = pi,j,3k−1 = p′i,j,3k−2 = p′i,j,3k−1 = 0 for
i = 1, 4, k = 2, . . . , n, and j = m + n − k + 1, . . . , 2m + 2n + 1. Fourthly, from Claim 3.2
we have pi,j,3k = p′i,j,3k = 0 for i = 1, 2, 3, 4, j = 1, . . . , 2m + 2n + 1, and k = 1, . . . , n, and
pi,j,k = p′i,j,k = 0 for i = 2, 3, j = m + 1, . . . , 2m + 2n + 1, and k = 1, 2, . . . , 3n. Finally,

K. Kimura, T. Kamehashi, and T. Fujito 25:11

from Claim 3.3, we have p1,1,3k−2 = 1 and tj,3k−2 = 2 if and only if p2,j,3k−2 = 1 holds for
j = 1, . . . , m and k = 1, . . . , n. Since p1,1,3k−2 = p′1,1,3k−2 holds from the above argument,
we have p2,j,3k−2 = p′2,j,3k−2 for j = 1, . . . , m and k = 1, . . . , n. Hence, P = P ′ holds. This
completes the proof. J

I Corollary 4. The counting version of Picross 3D is #P-complete and ASP Picross 3D is
NP-complete.

Proof. The former follows from the #P-completeness of the counting version of positive
1-in-3 SAT [2, 3] and Proposition 2. The latter follows from the NP-completeness of ASP
positive 1-in-3 SAT [12, 13] and Proposition 2. J

4 ΣP
2 -completeness of FCP Picross 3D

In this section, we show the following theorem using the reduction in the previous section.

I Theorem 5. FCP Picross 3D is ΣP
2 -complete.

Proof. Since Picross 3D is in NP, FCP Picross 3D is in ΣP
2 [4]. We hence show that FCP

Picross 3D is ΣP
2 -hard in the following.

Let (ϕ, `) be an instance of FCP positive 1-in-3 SAT. We show that (ϕ, `) is a yes instance
if and only if (Iϕ, `) is a yes instance, where Iϕ is defined in the proof of Proposition 2.

We first show that if (ϕ, `) is a yes instance, then (Iϕ, `) is a yes instance. For simplicity,
we identify a partial assignment with a set of single-variable assignments corresponding to
it in the following. Let {xk = εk | k ∈ K} be a clue that makes ϕ uniquely solvable, where
K ⊆ {1, . . . , n}, |K| ≤ `, and εk is either 0 or 1 for k ∈ K. We claim that {p1,1,3k−2 = εk |
k ∈ K} is a clue that makes Iϕ uniquely solvable. In fact, since {xk = εk | k ∈ K} can be
extended to a solution of ϕ, {p1,1,3k−2 = εk | k ∈ K} can also be extended to a solution to
Iϕ. Moreover, if there exist two solutions extending {p1,1,3k−2 = εk | k ∈ K} in Iϕ, then
there must be two solutions to ϕ corresponding to these solutions since the reduction is
parsimonious. These two solutions to ϕ coincide in the indices in K from the argument in
the proof of Proposition 2. This contradicts that {xk = εk | k ∈ K} is a clue that makes
ϕ uniquely solvable. Therefore, {p1,1,3k−2 = εk | k ∈ K} is a clue that makes Iϕ uniquely
solvable. Since |{p1,1,3k−2 = εk | k ∈ K}| ≤ `, we have that (Iϕ, `) is a yes instance.

We next show that if (Iϕ, `) is a yes instance, then (ϕ, `) is a yes instance. Let cpic =
{piv,jv,kv

= εv | v ∈ V } be a clue that makes Iϕ uniquely solvable, where |V | ≤ `, (iv, jv, kv) ∈
{1, . . . , h}×{1, . . . , w}×{1, . . . , d} for v ∈ V , and εv is either 0 or 1 for v ∈ V . We construct
a clue csat of ϕ as follows. Set csat = ∅. For k = 1, . . . , n, add xk = 1 to csat if cpic contains
at least one of the following assignments:

p1,1,3k−2 = 1, . . . , p1,m+n−k,3k−2 = 1
p1,1,3k−1 = 0, . . . , p1,m+n−k,3k−1 = 0
p4,1,3k−2 = 0, . . . , p4,m+n−k,3k−2 = 0
p4,1,3k−1 = 1, . . . , p4,m+n−k,3k−1 = 1
p1,m+n+1,3k−2 = 0, . . . , p1,2m+2n−k,3k−2 = 0
p1,m+n+1,3k−1 = 1, . . . , p1,2m+2n−k,3k−1 = 1
p4,m+n+1,3k−2 = 1, . . . , p4,2m+2n−k,3k−2 = 1
p4,m+n+1,3k−1 = 0, . . . , p4,2m+2n−k,3k−1 = 0.

(3)

FUN 2018

25:12 The Fewest Clues Problem of Picross 3D

Moreover, for k = 1, . . . , n, add xk = 0 to csat if cpic contains at least one of the following
assignments:

p1,1,3k−2 = 0, . . . , p1,m+n−k,3k−2 = 0
p1,1,3k−1 = 1, . . . , p1,m+n−k,3k−1 = 1
p4,1,3k−2 = 1, . . . , p4,m+n−k,3k−2 = 1
p4,1,3k−1 = 0, . . . , p4,m+n−k,3k−1 = 0
p1,m+n+1,3k−2 = 1, . . . , p1,2m+2n−k,3k−2 = 1
p1,m+n+1,3k−1 = 0, . . . , p1,2m+2n−k,3k−1 = 0
p4,m+n+1,3k−2 = 0, . . . , p4,2m+2n−k,3k−2 = 0
p4,m+n+1,3k−1 = 1, . . . , p4,2m+2n−k,3k−1 = 1.

(4)

Furthermore, for k = 1, . . . , n, add xk = 1 to csat if tj,3k−2 = 2 and cpic contains at least one
of the following assignments:

p2,1,3k−2 = 1, p2,2,3k−2 = 1, . . . , p2,m,3k−2 = 1,

p3,1,3k−2 = 0, p3,2,3k−2 = 0, . . . , p3,m,3k−2 = 0.
(5)

Finally, for k = 1, . . . , n, add xk = 0 to csat if tj,3k−2 = 2 and cpic contains at least one of
the following assignments:

p2,1,3k−2 = 0, p2,2,3k−2 = 0, . . . , p2,m,3k−2 = 0,

p3,1,3k−2 = 1, p3,2,3k−2 = 1, . . . , p3,m,3k−2 = 1.
(6)

Then clearly |csat| ≤ ` holds. We show that csat is a clue that makes ϕ uniquely solvable.
To show this, we construct a clue c′pic to Iϕ from csat as follows. Set c′pic = ∅. Firstly, for
k = 1, . . . , n, if xk = 1 is in csat, then add to c′pic all the assignments in (3). Secondly,
for k = 1, . . . , n, if xk = 0 is in csat, then add to c′pic all the assignments in (4). Thirdly,
for k = 1, . . . , n, if xk = 1 is in csat and tj,3k−2 = 2, then add to c′pic all the assignments
in (5). Fourthly, for k = 1, . . . , n, if xk = 0 is in csat and tj,3k−2 = 2, then add to c′pic all
the assignments in (6). Finally, as in Claim 3.2, add pi,j,k = 0 to c′pic if pi,j,k = 0 holds
for any solution to Iϕ. Then clearly cpic ⊆ c′pic holds. Since cpic determines the solution
uniquely, so does c′pic. Moreover, for any solution x to ϕ extending csat, the solution P ′ to Iϕ

corresponding to x contains c′pic, i.e., c′pic ⊆ P ′ holds. Hence, P ′ is uniquely determined, and
so is x from Proposition 2. Therefore, csat is a clue that makes ϕ uniquely solvable. This
completes the proof. J

5 Conclusion

We in this paper show that FCP Picross 3D is ΣP
2 -complete. To show the result, we provide

a parsimonious reduction from positive 1-in-3 SAT, where the FCP of it is known to be
ΣP

2 -complete [4]. From the reduction, we also show that the counting version of Picross 3D
is #P-complete and ASP Picross 3D is NP-complete.

References
1 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-

bridge University Press, 2009.
2 Nadia Creignou and Miki Hermann. On #P-completeness of some counting problems.

Research report 2144, Institut de Recherche en Informatique et en Automatique, 1993.
3 Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting prob-

lems. Information and Computation, 125:1–12, 1996.

K. Kimura, T. Kamehashi, and T. Fujito 25:13

4 Erik D. Demaine, Fermi Ma, Ariel Schvartzman, Erik Waingarten, and Scott Aaronson.
The fewest clues problem. In Proceedings of the 8th International Conference on Fun with
Algorithms (FUN 2016), volume 49 of LIPIcs, pages 12:1–12:12, 2016.

5 Erik D. Demaine, Yoshio Okamoto, Ryuhei Uehara, and Yushi Uno. Computational com-
plexity and an integer programming model of shakashaka. IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences, 97:1213–1219, 2014.

6 R. J. Gardner, P. Gritzmann, and D. Prangenberg. On the computational complexity of
reconstructing lattice sets from their X-rays. Discrete Mathematics, 202:45–71, 1999.

7 Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. A K Peters
Ltd., 2009.

8 Gabor T. Herman and Attila Kuba, editors. Discrete Tomography: Foundations, Algo-
rithms, and Applications. Birkhäuser Basel, Pennsylvania, USA, 1999.

9 Robert W. Irving and Mark R. Jerrum. Three-dimensional statistical data security prob-
lems. SIAM Journal on Computing, 23(1):170–184, 1994.

10 Kazuhiko Kusano, Kazuyuki Narisawa, and Ayumi Shinohara. Picross 3D is NP-complete.
In Proceedings of the 15th Game Programming Workshop 2010, pages 108–113, 2010 (in
Japanese).

11 Brandon McPhail. Light up is NP-complete. Unpublished manuscript, 2005. URL: http:
//www.mountainvistasoft.com/docs/lightup-is-np-complete.pdf.

12 Takahiro Seta. The complexity of CROSS SUM. Sig technical reports, Information Pro-
cessing Society of Japan, 2002 (in Japanese).

13 Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another solu-
tion and its application to puzzles. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 86:1052–1060, 2003.

FUN 2018

http://www.mountainvistasoft.com/docs/lightup-is-np-complete.pdf
http://www.mountainvistasoft.com/docs/lightup-is-np-complete.pdf

Uniform Distribution On Pachinko∗

Naoki Kitamura
Nagoya Institute of Technology, Syowa-ku, Gokiso-cho, Nagoya, Aichi, 466-8555, Japan
29414045@stn.nitech.ac.jp

Yuya Kawabata
Nagoya Institute of Technology, Syowa-ku, Gokiso-cho, Nagoya, Aichi, 466-8555, Japan
29414043@stn.nitech.ac.jp

Taisuke Izumi
Nagoya Institute of Technology, Syowa-ku, Gokiso-cho, Nagoya, Aichi, 466-8555, Japan
t-izumi@nitech.ac.jp

Abstract
Pachinko is a japanese mechanical gambling game similar to pinball. Recently, Akitaya et al.
proposed several mathematical models of Pachinko. A number of pins are spiked in a field. A
ball drops from the top-side end of the playfield, and falls down. In the 50-50 model, if the ball
hits a pin, it moves to the left or right of the pin with equal probability. An arrangement of pins
generates a distribution of the drop probability over all columns. We consider the problem of
generating uniform distributions. Akitaya et al. show that (1/2a)-uniform distribution is possible
for a ∈ {0, 1, 2, 3, 4} and conjectured that it is possible for any positive integer a. In this paper,
we show that the conjecture is true by a constructive way.

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems

Keywords and phrases Pachinko, discrete mathematics

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.26

1 Introduction

1.1 Background
Pachinko is a japanese mechanical gambling game similar to pinball (Figure 1). The machine
stands up vertically, and the player shoots a metal ball into the playfield. Many pins are
spiked in the playfield, and the ball drops from the top of the field. If it goes into a pocket in
the field, then the player gets some reward. Recently, Pachinko is analyzed in the context of
discrete mathematics. The origin of mathematical Pachinko is the book written by Akiyama
in 2008 [3], and recently, Akitaya et al. study an idealized geometry of a simple form of
Pachinko [2]. In this paper, we consider one of the mathematical models, called 50-50 model,
posed there.

The 50-50 model consists of three factors, field, pins, and a ball. The field is a half-plane
triangle lattice with the top-side end. We can put a pin at any lattice point. A row is a
horizontal line where lattice points exist, and a column is a vertical line where lattice points
exist. Since we consider the triangle lattice, intersection points of rows and columns do not
necessarily have a lattice point (see Figure 2). The ball drops from the center of the top
end and falls down vertically. If the ball hits a pin, then it moves to the left or right of the
pin with equal probability, and the ball continues to fall down vertically. Once we fix a pin

∗ A preliminary version of this paper is presented in 19th Japan Conference on Discrete and Computational
Geometry, Graphs, and Games (JCDCG3 2016).

© Naoki Kitamura, Yuya Kawabata, and Taisuke Izumi;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 26; pp. 26:1–26:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:29414045@stn.nitech.ac.jp
mailto:29414043@stn.nitech.ac.jp
mailto:t-izumi@nitech.ac.jp
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Uniform Distribution On Pachinko

Figure 1 A classical Pachinko (from [1]).

1/2 1/2

1/4 1/4

1/8

1/16 1/16
5/8

1

1/8

Figure 2 An example of 50-50 model. Each
value means the drop probability of each
column.

... ... 0

...

1

2𝑘

1

2𝑘

1

2𝑘

1

2𝑘

1

2𝑘

1

2𝑘

1

2𝑘

1

2𝑘

2𝑘−1 2𝑘−1

Figure 3 An example of uniform distribu-
tions. The center column has probability 0.

arrangement under the 50-50 model, we can calculate the probability that the ball drops to
each column. Then we can define its inverse problem of “deciding whether there exists a pin
arrangement generating a given distribution or not”.

1.2 Problem and Our Result
In [2], it is shown that any probability distribution 〈p1, p2, ..., pn〉 in the 50-50 model can be
constructed within an arbitrarily small additive error, and thus the main interest is the exact
generation of a given distribution. The (1/2a)-uniform distribution in the 50-50 model is
the probability distribution, where the probability that the ball drops at the center is 0 and
the probability at the 2a closest coordinates from the center is 1

2a (see Figure 3). Akitaya et
al. show that the (1/2a)-uniform distribution for a ∈ {0, 1, 2, 3, 4} can be constructed, and

N. Kitamura, Y. Kawabata, and T. Izumi 26:3

they conjecture that 2a uniform distribution for any positive integer a can be constructed in
[2]. The contribution of this paper is to show that this conjecture is true. That is, for any
a ≥ 1, the (1/2a)-uniform distribution can be constructed. Moreover, the construction can
be done using only a polynomial of 2a number of pins. To show the result, we introduce a
new language-theoretic formulation, which is simple but substantially useful for the analysis
of the 50-50 model.

2 Preliminaries

2.1 Configuration and Rewriting Rule
We formulate the problem in the 50-50 model using the notion of formal grammar. A
Pachinko machine is represented by a triangle lattice on a half plane with infinite horizontal
length and infinite downward vertical length. Each horizontal line containing lattice points is
called a row. From the top-side end, we assign each row with a y-coordinate 1, 2, Since
the field is a triangle lattice, the lattice points on an odd row are half-shifted from those on
an even row. To fit them into the standard orthogonal coordinate system, we assign even
x-coordinates to the lattice points in even rows, and odd x-coordinates to those in odd rows
(see Figure 4). Any coordinate (i, j) ∈ N × N+ for i and j with different parity is not a
lattice point, which is the space for the ball to drop down to lower rows. Those coordinates
are called passages. Initially, the ball is dropped from the horizontal center of the top-side.
Hence, the probability that the ball passes through (0, 0) is one. A pin can be placed at any
lattice point. In the 50-50 model, if the dropping ball hits a pin at point (i, j) (i.e., passes
through (i, j − 1)), it moves to either (i− 1, j) or (i + 1, j) with probability 1/2. If no pin is
spiked at (i, j), the drop probability of (i, j) is equal to that of (i, j − 1).

A pin arrangement is a set of lattice points where a pin is spiked. Given a pin arrangement
P and any i ≥ 1, P generates the drop probability distribution over all coordinates in the
i-th row, which is called the i-th configuration of P (or simply say a configuration). Formally,
a configuration is a finite odd-length sequence of rational values whose sum is equal to one,
where the center of the sequence corresponds to the drop probability at x-coordinate zero
and two infinite sequences of zeros spanning x-coordinates ±∞ are cut off. Throughout this
paper, we assume the minimum granularity 1/2g of each probability for some g ≥ 1. Then,
by multiplying each value by 2g, we can treat any configuration as a sequence of non-negative
integer values.

The change of configurations (i.e., the change of the corresponding probability distribution)
by placing a pin at a lattice point is expressed as an application of rewriting rules in formal
grammar. While we can put two or more pins in the same row, such a pin placement is
equivalently translated into the placement in a number of rows where each row contains
exactly one pin. Thus, without loss of generality, we assume that each row contains one pin.
We regard each configuration as a word over the symbol set [0, 2g]. If a pin is put at a lattice
point with x-coordinate (i, j + 1), the probability mass of coordinate (i, j) is evenly split into
(i− 1, j + 1) and (i + 1, j + 1), which is expressed by the rewriting rule as follows:

I Definition 1.

abc→
[
a + b

2

]
0
[
c + b

2

]
(Rule R1).

where bracket [] represents the single symbol corresponding to the value inside. The symbol
a or c may be an implicit zero value omitted in the representation of configurations. An
example of rewriting is illustrated in Figure 4.

FUN 2018

26:4 Uniform Distribution On Pachinko

1

8

1

4

1

4

1

4

1

8

22444

22606

⇔

… …

1

8

3

8
 0

3

8

1

8

… …

2 1 0 -1 -2

𝑥-coordinate

d

d+1

d+2 𝑦
-c

o
o
rd

in
at

e

Figure 4 An example of configurations (g = 3) and rewriting.

1104011$ 1104012104011

⇔

1104020$ 1104020204011

Figure 5 An example of rewriting symmetric configurations.

2.2 Symmetric Configuration
Throughout this paper, we only consider symmetric configurations, that is, the configurations
mirror-symmetric about the center. To express symmetric configurations, the right side from
the center is not necessary. More precisely, we denote a symmetric configuration w[v]wR

as w[v/2]$, where wR is the inversion of w, and $ is the special symbol representing the
right side from the center (say the boundary). Except for the center, any rewriting is applied
symmetrically. That is, in the transformation of symmetric configurations, putting a pin
at (i, j) implies putting another pin at (−i, j). The exceptional case is the rewriting at the
center, which is handled by the special rule below (note that the drop probability at the
center is expressed by its half).

I Definition 2.

ab$→ [a + b] 0$ (Rule R2).

The symbol $ corresponds to the center. Figure 5 is an example of how symmetric configura-
tions are rewritten by Rule R2. If we can generate a configuration u$ from w$ by finite-time
applications of rewriting rules, then we say u$ is transformed from w$, and write w$ u$.
We also extend this notion of transformability into substring cases. Let xyz$ and xy′z$ be

N. Kitamura, Y. Kawabata, and T. Izumi 26:5

the two words such that y and y′ have the same length. If xyz$ xy′z$ holds for any x

and z, we say y′ is transformed from y, and write y y′.

2.3 Formulation of the Problem
In this section we formalize the problem of generating uniform distributions. The goal of
the problem is to generate the probability distribution of 1/2a, 1/2a, · · · ,1/2a, 0, 1/2a, 1/2a,
· · · , 1/2a. We call it the (1/2a)-uniform distribution. In our construction, the minimum
granularity 1/2a+1 of drop probability suffices to generate the (1/2a)-uniform distribution,
and thus the problem is reduced to the transformability of [2a+1]$ 2(2a)$ (upper subscripts
mean repetition of symbols). The problem actually we solve is a “recursive” version of this
transformability, which is stated by the following Theorem.

I Theorem 3. 4k0$ 22k0$ holds for a ≥ 4 and k = 2a.

In [2], it has been proved that (1/2a)-uniform distribution can be generated for a ≤ 4. By
applying Theorem 3 iteratively, we can show that the (1/2a)-uniform distribution can be
generated for any a ≥ 1.

3 Generating Uniform Distribution

The whole of Section 3 is devoted to the proof of Theorem 3. The proof consists of the
following three parts.
1. 4k0$ (440) k

2 $.
2. (440) k

2 $ 42k−302k−14$.
3. 42k−302k+14$ 22k0$.
Clearly, the combination of these transformations results in Theorem 3. In the following
subsections, we look at the details of each part.

3.1 Part 1: From 4k0$ to (440)k
2 $

First, we explain a preliminary lemma.

I Lemma 4. Let x, y, and z be any symbols, and j be a positive integer greater than or equal
to 3. Then the following transformations are possible.

xyjz [x + y]0yj−20[z + y]. (1)

xyj0$ [x + y]0yj−10$. (2)

Proof. We first consider the transformation (1). The proof is based on the induction on j.
(Basis) In the case of j = 3, we have the following transformation (each underline represents
the position of rewriting):

xyyyz

[
x + y

2

]
0[2y]0

[
z + y

2

]

[
x + y

2

]
y0y

[
z + y

2

]
 [x + y]0y0[z + y].

FUN 2018

26:6 Uniform Distribution On Pachinko

(Inductive step) Suppose as the induction hypothesis that the transformation (1) is possible
for j = k. The case of j = k + 1 is obtained as follows:

xyk+1z

=xykyz (Induction hypothesis)
 [x + y]0yk−20[2y]z

 [x + y]0yk−2y0[y + z]
=[x + y]0yk−10[y + z].

Thus the transformation (1) is possible. The proof of the transformation (2) follows the
rewriting process below:

xyj0$ (Transformation (1))
 [x + y]0yj−20y$
 [x + y]0yj−2y0$
=[x + y]0yj−10$.

The lemma is proved. J

For simplicity of arguments, we pad an appropriate number of zeros to the left side of w such
that the number of zeros in w becomes exactly k/2 + 1. The i-th run of w (1 ≤ i ≤ k/2) is
the substring between i-th zero and (i + 1)-th zero (indexed from the left end of w). The
length of the i-th run in w is denoted by lw(i). Now we define the notion of Normal Forms
(NFs), which is the class of configurations we have to treat in the proof of Part 1.

I Definition 5. A word w is a normal form(NF) with respect to k if and only if every run
in w consists of only symbol 4, the number of runs (of 4) is at most k/2, and the symbol
neighboring to the boundary is 0.

Let lw(j) be the length of j-th run in NF w. The run-length vector v(w) of w is the k/2-
dimensional vector whose j-th element corresponds to lw(j). Let volw(h) =

∑
j∈[1,h] lw(j).

Then SNFs are defined as follows:

I Definition 6. A NF w (with respect to k) is a strongly-normal form(SNF) (with respect
to k) if and only if it satisfies volw(h) ≤ 2h for any h ∈ [1, k/2].

Note that 4k0$ and (440)k/2$ are both SNFs. For any two SNFs w1 and w2, we define
c(w1, w2) to be the minimum index such that lw1(c(w1, w2)) 6= lw2(c(w1, w2)) holds, and
define Nk as the set of all SNFs with respect to k. Then we define a total order ≺ over Nk

by the lexicographic order of corresponding run-length vectors. That is, we define

w1 ≺ w2 ⇔ lw1(c(w1, w2)) ≤ lw2(c(w1, w2)).

For any SNF w, let t(w) be the position of the leftmost run with length more than two, that is,
t(w) = minj∈[1,k/2],lw(j)≥3 j. If no run has a length more than two, we define t(w) = k/2 + 1.
The rewriting process of 4k0$ (440)k/2$ is to iterate the application of Lemma 4 (1) (if
t(w) < k/2) or (2) (if t(w) = k/2) to the t(w)-th run, until the transformation reaches the
word w′ with t(w) = k/2 + 1. In the remaining part of this section we show that this process
correctly creates (440)k/2.

N. Kitamura, Y. Kawabata, and T. Izumi 26:7

I Lemma 7. Let x be any SNF, and x′ be the word after the application of Lemma 4 to the
t(x)-th run in x. Then, x′ is also an SNF and x ≺ x′.

Proof. It is easy to check that any run of x′ consists of only 4s and symbol 0 is the neighbor
of $ in x′. By the definition of SNFs for h = 1, for any SNF w, lw(1) ≤ 2 holds and
thus t(w) > 1 necessarily holds. Since we have to apply Lemma 4 to the first run for
increasing the number of runs to more than k/2, the number of runs in x′ is at most k/2.
Consequently x′ is a NF. Since the application of Lemma 4 at the i-th run of a word
w increases li−1(w) and li+1(w) by one, and decreases li(w) by two, the transformation
from x to x′ can increase only the value of volx(t(x)− 1). For showing that x′ is an SNF,
it suffices to prove volx′(t(x) − 1) ≤ 2(t(x) − 1). By the fact of lx(t(x)) ≥ 3, we have
volx(t(x)− 1) + 3 ≤ volx(t(x)) ≤ 2t(x) and thus volx(t(x)− 1) ≤ 2(t(x)− 1)− 1 holds. Since
the length of t(x)-th run increases at most by one after the application of Lemma 4. We
obtain volx′(t(x)− 1) ≤ volx(t(x)− 1) + 1 ≤ 2(t(x)− 1). Thus x′ is a SNF. By the definition,
c(w, w′) = t(x)− 1 holds and thus we obtain lc(w,w′)(w′) > lc(w,w′)(w), that is x′ ≺ x. The
lemma is proved J

I Lemma 8. The word (440)k/2$ is the maximum element with respect to ≺.

Proof. Let w = (440)k/2$. Suppose for contradiction that a SNF w′ satisfies w 6= w′ and
w ≺ w′. Then, volw(c(w, w′)) < volw′(c(w, w′)) holds. However, since volw(c(w, w′)) =
2c(w, w′) holds, we have volw′(c(w, w′)) > 2c(w, w′). It contradicts the fact that w′ is an
SNF. J

The two lemmas above imply that our rewriting process eventually leads the maximum
element of SNFs, and thus the following corollary holds.

I Corollary 9. Let k ∈ N be any even positive integer. Then the following transformation is
possible.

4k0$ (440) k
2 $.

3.2 Part 2: From (440)k
2 $ to 42k−302k−14$

In this section, we first introduce a magical string Bi = 42i02i+14$, as well as its nice
properties. Before showing the properties of Bi, we present further preliminary lemmas.

I Lemma 10. Let x,y, and z be any symbols, and j be any positive integer. Then the
following transformations are possible.

x[2y]yjz [x + y]yj−10[2y]z. (3)

x[2y]yjz [x + y]yj0[z + y]. (4)

Proof. We first consider the transformation (3). The proof is based on the induction on j.
(Basis) In the case of j = 1, we can have the following transformation:

x[2y]yz

 [x + y]0[2y]z.

FUN 2018

26:8 Uniform Distribution On Pachinko

(Inductive step) Suppose as the induction hypothesis that the transformation (3) is possible
for j = k. The case of j = k + 1 is obtained as follows:

x[2y]yk+1z

 [x + y]0[2y]ykz (Induction hypothesis)

 [x + y]yk0[2y]z.

The proof for the transformation (4) follows the rewriting process presented below:

x[2y]yjz (Transformation(3))

 [x + y]yj−10[2y]z

 [x + y]yj0[z + y].

The lemma is proved. J

I Corollary 11. Let x,y, and z be any symbols, and j be any positive integer. Then the
following transformations are possible.

xyj [2y]z x[2y]0yj−1[z + y]. (5)

xyj [2y]z [x + y]0yj [z + y]. (6)

I Lemma 12. Let j be a positive integer greater than or equal to 4. Then 02j4$ 2202j−24$
holds.

Proof. We can rewrite 02j4$ as follows.

02j4$
=022222j−44$ (Lemma 4 (1), x = 0, y = 2, z = 2)
 202042j−44$ (Lemma 10 (4), x = 0, y = 2, z = 2)
 202j−3044$
 202j−3080$
 202j−3404$ (Corollary 11 (6), x = 0, y = 2, z = 0)
 2202j−324$
=2202j−24$.

The lemma is proved. J

The goal of Part 2 is to obtain Bk−3 from (440) k
2 . We introduce two important properties of

Bi = 42i02i+24$, which is the primary reason why we claim that Bi is “magical”.

I Lemma 13. Let i be any positive integer. Then the following transformations are possible.

04Bi 40Bi. (7)

0440Bi Bi+2. (8)

N. Kitamura, Y. Kawabata, and T. Izumi 26:9

Proof. We first consider the transformation (7), which is obtained as follows.

04Bi

=0442i02i+24$
 06042i−102i+24$ (Lemma 10 (4), x = 0, y = 2, z = 0)
 062i02i+34$ (Lemma 12)
 062i+202i+14$ (Lemma 4 (1), x = 6, y = 2, z = 0)
 0802i02i+24$
 4042i02i+24$
=40Bi.

The proof for the transformation (8) follows the rewriting process below:

0440Bi

=044042i02i+24$ (Lemma 10 (4), x = 0, y = 2, z = 0)
 0442i+102i+34$
=04Bi+1 (Transformation (7))

 40Bi+1

=4042i+102i+34$ (Lemma 10 (4), x = 0, y = 2, z = 0)
 42i+202i+44$
=Bi+2.

The lemma is proved. J

Why these properties are so important? The intuitive understanding of the reason for the
first property is that we can treat Bi as $. In Part 1, we only use the application of rule R2
for b = 4. Then the behaviors of 4$ and 4Bi are the same, and thus any transformation in
Section 3.1 applicable to w′$ is also applicable to w′Bi. This fact yields the corollary below.

I Corollary 14. Let k′ ∈ N be an even positive integer, and w be a SNF with respect to k′.
Letting w′ be the word obtained from w by deleting $, wBi (440)k′/2Bi holds.

Combining this corollary with the second property of Lemma 13, we can show that Bi can
recursively “absorb” substring 440 to make itself grow up. The following lemma corresponds
to the base case of this rewriting process.

I Lemma 15.

(440)4$ 44440B1.

Proof. Deferred to the appendix. J

The following two lemmas are the main body of Part 2, which shows the rewriting process of
absorbing substring 440.

I Lemma 16. Let i and j be any positive integer. Then 0i(440)iBj Bj+2i holds.

Proof. The proof is based on the induction on i. (Basis) In the case of i = 1, we have the
following transformation:

0440Bj (Lemma 13 (8))
 Bj+2,

FUN 2018

26:10 Uniform Distribution On Pachinko

and in the case of i = 2, we also have the following transformation:

02(440)2Bj

=02440440Bj (Lemma 13 (8))

 0244Bj+2 (Lemma 13 (7))

 0280Bj+2

 0404Bj+2 (Lemma 13 (7))

 0440Bj+2 (Lemma 13 (8))
 Bj+4.

(Inductive step) Suppose as the induction hypothesis that Lemma 16 holds for i = k (k ≥ 2).
The case of i = k + 1 is proved by:

0k+1(440)k+1Bj (Because of k ≥ 2)
=0k+1(440)k−2440440440Bj (Lemma 13 (8))

 0k+1(440)k−244044Bj+2 (Lemma 13 (7))

 0k+1(440)k−244080Bj+2

 0k+1(440)k−244404Bj+2 (Lemma 13 (7))

 0k+1(440)k−244440Bj+2 (Corollary 14)

 0k(440)kBj+2 (Induction hypothesis)

 Bj+2(k+1).

The Lemma is proved. J

I Lemma 17. Let k be a positive integer greater than or equal to 8. Then (440) k
2 $ Bk−3

holds.

Proof.

(440) k
2 $

=(440) k
2−4(440)4$ (Lemma 15)

 (440) k
2−444440B1.

(440) k
2−444440 is an SNF (with respect to k − 2). Thus, we can rewrite it as follows.

(440) k
2−444440B1 (Corollary 14)

 (440) k
2−2B1 (Lemma 16)

 Bk−3.

The lemma is proved. J

3.3 Part 3: From 42k−302k−14$ to 22k0$
Finally, we prove that 42k−302k−14$ can be transformed into 22k0$. We explain four
preliminary lemmas used in this section.

N. Kitamura, Y. Kawabata, and T. Izumi 26:11

I Lemma 18. Let x, z be any positive integers, and y be a positive integer greater than or
equal to 2. Then the following transformation is possible.

02x022y02z$ 02x+y−102202z+y−1$.

Proof. The proof is based on the induction on y. (Basis) In the case of y = 2, we can have
the following transformation:

02x02402z$ (Lemma 4 (1), x = 0, y = 2, z = 0)
 02x+102202z+1$.

(Inductive step) Suppose as the induction hypothesis that the Lemma 18 holds for y = k.
The case of y = k + 1 is proved by:

02x022(k+1)02z$ (Lemma 4 (1), x = 0, y = 2, z = 0)
 02x+1022k02z+1$ (Induction hypothesis)
 02x+k02202z+k$.

The Lemma is proved. J

I Lemma 19. Let i be a positive integer greater than or equal to 5. Then 02202i4$
2i−40220244$ holds.

Proof. The proof is based on the induction i. (Basis) In the case of i = 5, we can have the
following transformation:

0220254$ (Lemma 12)
 022220234$ (Lemma 4 (1), x = 0, y = 2, z = 0)
 20220244$.

(Inductive step) Suppose as the induction hypothesis that Lemma 19 holds for i = k. The
case of i = k + 1 is proved by:

02202k+14$ (Lemma 12)
 0222202k−14$ (Lemma 4 (1), x = 0, y = 2, z = 0)
 202202k4$ (Induction hypothesis)
 2k−30220244$.

The lemma is proved. J

I Lemma 20. Let i be any positive integer. Then x2i$ [x + 2]2i−10$ holds.

Proof. The proof is based on the induction on i. (Basis) In the case of i = 1, we have the
following transformation:

x2$
 [x + 2]0$.

FUN 2018

26:12 Uniform Distribution On Pachinko

(Inductive step) Suppose as the induction hypothesis that Lemma 20 holds for i = k. For
the case of i = k + 1, we have the transformation as follows:

x2k+1$
=x22k$ (Induction hypothesis)
 x42i−20$ (Lemma 10 (4), x = x, y = 2, z = 0)
 [x + 2]2i−202$
 [x + 2]2i−10$.

The case of i = k + 1 is proved, and thus the lemma holds. J

I Lemma 21.

022022224$ 222222220$.

Proof. Deferred to the appendix. J

The combination of the four lemmas straightforwardly deduces the main lemma of Part 3.

I Lemma 22. Let k be a positive integer greater than or equal to 8. The following trans-
formation is possible.

0042k−302k−14$ 22k0$.

Proof. We can have the following transformation:

0042k−302k−14$ (Lemma 10 (4), x = 0, y = 2, z = 0)
 02k−202k4$ (Lemma 18)

 2 k
2−202202 3k

2 −24$ (Lemma 19)

 2 k
2−22 3k

2 −60220244$
=22k−80220244$ (Lemma 21)
 22k−8222222220$
=22k0$.

J

4 Conclusions and discussion

In this paper, we proved that (1/2a)-uniform distributions in the 50-50 model can be generated
for any a ≥ 1. This is the complete positive answer for the open problem posed by [2]. In
this article we do not consider the complexity of the generation process — the number of
pins, or the number of rows. While it is not difficult to bound the number of pins used in our
construction by a polynomial of 2a, its fine-grained analysis is not proposed yet (following a
rough estimation it is bounded by O(24a), but the tight analysis is probably O(23a) pins).
The complexity on the number of rows is much complicated. In our construction, the
restriction of one pin at one row made the analysis so simple, but when we want to optimize
the number of rows, that restriction cannot be used. It is also an interesting to reveal the
computational complexity on the problem of generating given distributions. In the context of
formal language theory, our rewriting rule is not a context-free grammar, and thus it is not
clear if the decision problem on the generability of a given distribution is in class P or not.

N. Kitamura, Y. Kawabata, and T. Izumi 26:13

References

1 Pachinko - wikipedia. URL: https://en.wikipedia.org/wiki/Pachinko.
2 Hugo A Akitaya, Erik D Demaine, Martin L Demaine, Adam Hesterberg, Ferran Hur-

tado, Jason S Ku, and Jayson Lynch. Pachinko. Computational Geometry: Theory and
Applications, 68, 2018.

3 Jin Akiyama and Mari-Jo P. Ruiz. Pachinko math.In A Day’s Adventure in Math Wonder-
land. World Scientific, 2008.

Omitted Proofs

I Lemma 15.

(440)4 44440B1.

Proof. The lemma is proved by the following transformation:

(440)4$
=(440)2440440$
 (440)2602602$
 (440)2602620$
 (440)2610801$
 (440)2614041$
 (440)2630403$
 (440)2632023$
 (440)2640204$
 (440)2802204$
=440440802204$
 440444042204$ (Lemma 10 (4), x = 0, y = 2, z = 0)
 440444222024$ (Lemma 4 (1), x = 4, y = 2, z = 0)
 440446020224$
 440608020224$
 440640420224$
 440804040224$
 444044202224$
=44404B1 (Lemma 13 (7))
 44440B1.

J

I Lemma 21.

022022224$ 222222220$.

FUN 2018

https://en.wikipedia.org/wiki/Pachinko

26:14 Uniform Distribution On Pachinko

Proof. The lemma is proved by the following transformation:

022022224$ (Lemma 4 (1), x = 0, y = 2, z = 2)
 022202044$
 022202080$
 022202404$
 022202440$
 022202602$
 022202620$
 022210801$
 022214041$
 022230403$
 022232023$
 022240204$ (Corollary 11 (6), x = 0, y = 2, z = 0)
 202222204$
 202222240$ (Corollary 11 (6), x = 0, y = 2, z = 0)
 220222222$ (Lemma 20)
 222222220$.

J

The complexity of speedrunning video games
Manuel Lafond1

Department of Mathematics and Statistics, University of Ottawa, Canada
mlafond2@uOttawa.ca

Abstract
Speedrunning is a popular activity in which the goal is to finish a video game as fast as possible.
Players around the world spend hours each day on live stream, perfecting their skills to achieve
a world record in well-known games such as Super Mario Bros, Castlevania or Mega Man. But
human execution is not the only factor in a successful speed run. Some common techniques such
as damage boosting or routing require careful planning to optimize time gains. In this paper, we
show that optimizing these mechanics is in fact a profound algorithmic problem, as they lead to
novel generalizations of the well-known NP-hard knapsack and feedback arc set problems.

We show that the problem of finding the optimal damage boosting locations in a game admits
an FPTAS and is FPT in k + r, the number k of enemy types in the game and r the number of
health refill locations. However, if the player is allowed to lose a life to regain health, the problem
becomes hard to approximate within a factor 1/2 but admits a (1/2− ε)-approximation with two
lives. Damage boosting can also be solved in pseudo-polynomial time. As for routing, we show
various hardness results, including W [2]-hardness in the time lost in a game, even on bounded
treewidth stage graphs. On the positive side, we exhibit an FPT algorithm for stage graphs of
bounded treewidth and bounded in-degree.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms,
Theory of computation → Approximation algorithms analysis, Theory of computation → Para-
meterized complexity and exact algorithms

Keywords and phrases Approximation algorithms, parameterized complexity, video games, knap-
sack, feedback arc set

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.27

1 Introduction

The study of the complexity of video games has been a relatively popular area of research in
the recent years. This line of work first started in the early 2000s with puzzle-oriented video
games such as Minesweeper, Tetris or Lemmings [22, 11, 25]2. More recently, platforming
games were subjected to complexity analysis [17], and it is now known that for a wide
variety of such games (including Super Mario Bros, Donkey Kong Country or Zelda), it is
NP-hard [5] or sometimes PSPACE-hard [13] to decide whether a given instance of the game
can be finished. Notably, Viglietta proposed in [24] a series of meta-theorems that describe
common video game mechanics under which a game is NP-hard or PSPACE-hard.

Of course, few games are (computationally) hard to finish, as there is little incentive
for publishers to release an unfinishable game. Here, we take a different perspective on the
complexity of video games, and rather ask how fast can a game be finished? This question is
of special interest to the adepts of speedrunning, in which the goal is to finish a video game

1 The author acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC)
for the financial support of this project.

2 All products, company names, brand names, trademarks, and sprites are properties of their respective
owners. Video game screen-shots and sprites are used here under Fair Use for educational purposes.

© Manuel Lafond;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 27; pp. 27:1–27:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mlafond2@uOttawa.ca
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 The complexity of speedrunning video games

as fast as possible. This has been a relatively obscure activity until the last decade, during
which speedrunning has seen a significant increase in popularity. This is especially owing to
video game streaming websites, where professional speedrunners can spend hours each day
on camera trying to earn a world record whilst receiving enough donations from viewers to
make a living. Games Done Quick, one of the most popular events in this discipline, is a
speedrunning marathon in which professional gamers take turn on live stream to go through
a wide range of games as fast as possible [2]. Performances are broadcast 24 hours a day for a
whole week, and viewers are invited to provide donations which are then given to charitable
organizations. The event went from raising $10,000 during its first event in 2010 to amassing
over $2 million in its January 2018 event.

Owing to this popularity, speedrunning is now an extremely competitive area, and having
near-perfect execution is mandatory to obtain reasonable times. A single misplaced jump, or
an attack that comes a split-second late, can cost a player a world record. There is, however,
a category of speedrunning that can circumvent these harsh execution requirements: Tool
Assisted Speedruns (TAS). In a TAS, the player is allowed to use any tool provided by
emulators, which include slowing down the game, rewinding the game, saving multiple states
and reloading them, etc. In the end, the final speedrun is presented in a continuous segment,
as if played by a human. In a TAS, execution is therefore not the main challenge, as the
player can retry any portion of the game hundreds of times if necessary. But speedrunning
remains a challenging task, as difficult optimization problems arise.

In this paper, we are interested in the algorithmic challenges underlying some common
mechanics that are unique to speedrunning. We first formulate the problem of speedrunning
by modeling a game as a series of punctual time-saving events, which can be taken or not.
This is in contrast with the natural formulation “given a video game X, can X be finished in
time t”, as it was done for Mario Kart in [7]. This allows our results to be applicable to any
game that can be described by time-saving events, and also enables us to avoid dealing with
unfinishable games.

We then study the approximation and parameterized complexity aspects of the tech-
niques of damage boosting and routing stages. Damage boosting consists in taking damage
intentionally to go through some obstacles quickly. The amount of damage that can be taken
in a game is limited, and it is possible to regain health using items, or by losing a life (this
is called death abusing). This can be seen as a generalization of the knapsack problem in
which the items come in a specific order and some of them have a negative weight. We show
that if no life can be lost, optimizing damage boosts in a game admits the same FPTAS as
knapsack, and is fixed-parameter tractable (FPT) in the number of possible damage sources
and healing locations. If lives can be lost to regain health, we show that damage boosting
cannot be approximated within a factor 1/2 or better, but can be approximated within a
factor 1/2− ε with two lives and can be solved in pseudo-polynomial time.

Routing applies to games in which the player is free to choose in which order a set of
stages is to be completed. This includes the Mega Man games, for example. Each completed
stage yields a new ability to the player, which can then be used in later stages to gain time
on certain events, such as defeating a boss more quickly. The time saved in an event depends
on the best ability currently available. As we shall see, this makes Routing a generalization
of the well-known feedback arc set (FAS) problem, as the time-gain dependencies can be
represented as a directed graph D. Unlike FAS though, we show that Routing is W [2]-hard
in the time lost in a game, even if D has treewidth 1, and that it is also hard to approximate
within a O(logn) factor. We then show that Routing is FPT in the maximum in-degree of
D plus its treewidth.

M. Lafond 27:3

The paper is structured as follows. In Section 2, we provide a non-technical summary of
the speedrunning mechanics that are discussed in this work and present our general model of
speedrunning. In Section 3, we formally define the problem of optimizing damage boosting
and present our algorithmic results. Then in Section 4, we define our routing optimization
problems and provide the underlying algorithmic results.

2 Models, speedrunning mechanics, and problems

In this section, we first motivate our model of speedrunning, and how we depart from the
traditional formulation of deciding whether a stage can be finished. We then describe the
two speedrunning mechanics that we study in more detail.

As mentioned before, perhaps the most natural formulation of speedrunning is the
following: given a set of stages, we are asked whether they can be completed in time at most
t [7]. However for many games, it is NP-hard to decide whether a given set of stages can be
completed at all (e.g. [24]). It follows that for these games, speedrunning is NP-hard even
for t =∞. But in reality, video games that are played by speedrunners are always known to
be completable. We will therefore assume that an initial way of finishing the game is known,
which yields an upper bound t on the time required to complete the game. This time t is
usually the time taken to finish the game “normally”, as intended by the developers. The
problem of speedrunning now becomes: given an initial way of completing the game in time
t, can this be improved to time t′ < t?

To simplify further, stages are often linear and time saves usually consist of punctual
events that allow the player to save a few seconds over the developer-intended path. For
example, the player may exploit a glitch to go through a wall, or use a certain item to defeat
an enemy faster than usual. These punctual events are assumed to occur one after another,
and therefore, we will model a stage as a sequence S = (e1, . . . , en) of time-saving events. For
each such event ei, the player has a choice of taking the time save from ei or not. If the event
only has positive consequences, then of course the player must take it and we will assume
that all events in S offer some sort of trade-off. A notable advantage of this formulation is
that it does not depend on a specific video game. For instance, if the events of S model
damage boosting, then our hardness results apply to any game that allows damage boosting
as a mechanic. We now describe this latter notion.

Damage boosting
The idea of damage boosting is to take damage to save time. This is a common technique that
is useful in one of the following ways. In many games, the player is given some invulnerability
time after taking damage. This invincibility period allows unintended behavior such as
walking on deadly spikes or going through a horde of enemies quickly. Also, when taking
damage, the player often loses control and gets knocked back, regardless of the current
location and status of the character. If damage is taken at the apex of a jump, say, then this
back-knocking can extend the jump higher and farther than normal, allowing the player to
access unintended locations. An example of this is illustrated in Figure 1.

Damage-boosting is not without cost. In a game, the player has a limited number of
hit points, or HP for short. In the top-left of Figure 1, one can see that the player has a
maximum of 16 HP, but has 14 remaining after hitting a bat. Each time damage is taken,
the player’s HP decreases by a certain amount and a life is lost when it reaches 0. Suppose
that each time-saving event is described by a pair (d, t), where d is the damage taken and
the time gained t. Then it is easy to see that this is exactly the knapsack problem. Indeed,

FUN 2018

27:4 The complexity of speedrunning video games

Figure 1 A well-known example of damage boosting in the NES game Castlevania. In this
portion of Stage 1, the developer-intended path is to go downstairs, go through an underground
section, go up and reappear on the right side of the screen. Here, Simon Belmont can skip the
underground section by passing over the wall on the right side of the screen. To do this, the player
times a precise jump while facing right, switches direction in mid-air to face left, and lands on a bat
passing by at the right moment, damaging the player. When Simon Belmont takes damage, he says
“Ow” and gets knocked back (middle figure). This back-knocking allows him to extend his jump
farther right and reach the ledge of the wall. This saves 30-40 seconds over taking the normal path.

if hp is the starting HP of the player, speedrunning with damage boosting asks for the set of
time-saving events that can be taken such that a maximum total time gain is achieved, and
such that the total damage of these events does not exceed hp.

The problem can be made more interesting by considering the possibility of regaining
health during a stage. For instance in Castlevania, there is chicken hidden inside walls and
candles across the castle. Fetching these chickens is usually time-consuming, and the player
must decide whether the additional damage boosts that this allows is worth it. In Figure 2,
Richter Belmont from Castlevania X takes a detour to a dead-end to grab a chicken and
regain health. Another way to regain HP is to lose a life. When the player runs out of HP, a
life is lost and the game restarts at the last checkpoint with full health. This can be beneficial
if the checkpoint is not too far away and new damage boosts are to be taken. It is worth
mentioning that the idea of losing lives is used in [13] to establish the hardness of completing
a Super Mario Bros game (although losing lives is not used as a health refill mechanism).

Routing
In many games, the player has the freedom to choose the order in which to clear a set of
stages or to visit a set of locations. For example, in many Metroid games, a certain set of
items scattered across a map must be obtained before reaching the end of the game, and the
goal of routing is to obtain these items in the optimal order3.

As another example, in the Mega Man games, the order in which stages are visited is
fundamental from a speedrunning perspective. When a stage is cleared after defeating its
robot master, Mega Man gains a new weapon/ability that can be used in the latter stages.
This has an impact on how fast a stage S can be completed, as previously obtained weapons
can be used to gain time – notably during the boss fights. For instance, in Mega Man 2, the
boss Crash Man takes 2 damage from the regular weapon, but 20 damage from the weapon
left by Air Man. Thus Crash Man can be defeated 10 times faster if the Air Man stage is

3 The astute reader will observe that Metroid games do restrict the ordering of locations that can be
visited. However, many sequence-breaking glitches have been found in the last years, and this ordering
restriction is often irrelevant. For example in Super Metroid, the Norfair boss Ridley is often defeated
first in speedruns, whereas this boss is normally supposed to be reached last.

M. Lafond 27:5

Figure 2 “This candle chicken certainly tastes great, but it is time-consuming...” - Richter
Belmont going out of his way for meat.

Figure 3 A event in Mega Man 3 : facing Big Snakey. If Mega Man has Magnet Man’s weapon,
Big Snakey can be defeated in 5 shots, which saves about 8 seconds. But if Mega Man has acquired
Rush Jet from Needle Man, he can simply fly over Big Snakey, which saves about 15 seconds.

cleared beforehand. Bosses are not the only time-saving events in the game though, as the
stages themselves also offer many opportunities. See Figure 3 for an example. Here, Mega
Man must face Big Snakey and can achieve various time gains depending on the weapons
currently at his disposal from the previous stages.

The problem of routing is to determine the order in which to clear the stages so as to
save a maximum amount of time. If we represent stages as a graph, with an arc from S′

to S weighted by the time saved in stage S by having cleared S′ first, this is similar to the
feedback arc set problem, which asks for an ordering of the vertices of a graph in a way that
the number of forward edges is maximized. One notable difference is that each event within
a stage can make use of a different previous stage.

Before proceeding, we introduce some notation that we will use throughout the paper.
Given an ordered list S = (s1, . . . , sn), we write si <S sj if i < j (and si ≤S sj if i ≤ j). We
denote by head(S) and tail(S) the first and last element of S, respectively. A subsequence of
S is another ordered list S′ = (s′1, . . . , s′k) in which s′i <S s′i+1 for every i ∈ [k − 1]. Suppose
that each element in S is distinct. Let X be the set underlying S. We call S a linear ordering
of X, or simply an ordering for short. Abusing notation slightly, we may treat S as the set
X whenever convenient (e.g. we may write s ∈ S if s occurs in S).

3 Damage boosting

We first study the damage boosting mechanics when losing a life is forbidden. That is, the
player can only take damage or refill health, without ever letting health drop to zero. An
event is an opportunity to gain time by taking damage, and is represented by a pair e = (d, t)
where d is the damage to take to save t units of time. We will assume that d and t are
integers, possibly negative. If both d and t are negative, we call e a chicken event, as d

FUN 2018

27:6 The complexity of speedrunning video games

represents a health refill and t the time lost to regain this health. We denote by d(e) and
t(e) the damage and time-save components of e, respectively.

A stage S = (e1, . . . , en) is an ordered list of events. A solution Ŝ = (ê1, . . . , êk) to a
stage S is a subsequence of S. We say that we take event ei if ei ∈ Ŝ. A given integer hp
represents the player’s hit points (HP) at the start of the stage. The player’s hit points
can never exceed hp. Each event êi ∈ Ŝ leaves the player with a number of hit points
hŜ(êi) after being taken. We define hŜ(ê1) = min(hp, hp − d(ê1)) and, for i ∈ {2, . . . , k},
hŜ(êi) = min(hp, hŜ(êi−1)− d(êi)). A solution is valid if hŜ(êi) > 0 for every êi in Ŝ.

Given a stage S and maximum hit points hp, the objective in the DAMAGE BOOSTING
problem is to find a valid solution Ŝ for S that maximizes t(Ŝ) =

∑
e∈Ŝ t(e).

As mentioned before, DAMAGE BOOSTING can be viewed as a knapsack instance in
which each item is given in order, and we have some opportunities to (partially) empty the
sack (which corresponds to our chicken events). It is not hard to show that the well-known
pseudo-polynomial time algorithm and FPTAS for knapsack can be adapted to DAMAGE
BOOSTING. The proof is essentially the same as in the knapsack FPTAS - we include it
here for the sake of completeness.

I Theorem 1. DAMAGE BOOSTING can be solved in pseudo-polynomial time O(n2T),
where T is the maximum time gain of an event. Moreover, DAMAGE BOOSTING admits
an FPTAS, and can be approximated within a factor 1− ε in time O(n3/ε) for any ε > 0.

Proof. Let (S, hp) be an instance of DAMAGE BOOSTING, S = (e1, . . . , en). Let H(i, t)
denote the highest HP value achievable when gaining a time of exactly t by taking a subset of
the events {e1, . . . , ei}. Define H(i, t) = −∞ if this is not possible, and define H(0, 0) = hp

and H(0, t) = −∞ for t > 0. Then

H(i, t) = min {hp,max {H(i− 1, t), H(i− 1, t− t(ei)} − d(ei))}

H(i, t) needs to be computed for each i ∈ [n] and each t ∈ [nT]. We then look at the
maximum value of t such that H(n, t) > 0, which leads to a dynamic programming algorithm
with the claimed complexity.

To get an FPTAS, we scale the time gains as in the knapsack FPTAS. Let ε > 0 and
let c = εT/n. Let S′ = (e′1, . . . , e′n), where e′i = (d(ei), bt(ei)/cc). Let Ŝ (resp. Ŝ′) be a
subsequence of S (resp. S′) that maximizes the time gain t(Ŝ) (resp. t(Ŝ′)). Observe that
for each ei ∈ S, we have t(ei)/c − 1 ≤ t(e′i) ≤ t(e)/c whether ei is a chicken event or not.
Hence, t(Ŝ′) ≥

∑
ei∈Ŝ t(e

′
i) ≥ t(Ŝ)/c− n (where the first inequality is due to the optimality

of Ŝ′ on S′). Note that Ŝ′ is a valid solution for S, since the damage values were unchanged
from S to S′. The time gained by taking the events of Ŝ′ as our solution for S is∑

e′
i
∈Ŝ′

t(ei) ≥
∑
e′
i
∈Ŝ′

c · t(e′i) ≥ c · (t(Ŝ)/c− n) = t(Ŝ)− cn = t(Ŝ)− εT ≥ (1− ε)t(Ŝ)

where we use t(Ŝ) ≥ T in the last inequality. The algorithm takes time O(n2T/(εT/n)) =
O(n3/ε). J

From the point of view of parameterized complexity, Theorem 1 implies that DAMAGE
BOOSTING is FPT in t, the total time that can be gained (due to results of [8]). However
t is typically high, and alternative parameterizations are needed. In the context of video
games, although stages can be large, the number of types of enemies and damage sources is
usually limited. Likewise, there are usually only a few healing items in a stage. The time
gained or lost per event can vary widely though.

M. Lafond 27:7

We would therefore like to parameterize DAMAGE BOOSTING by the number k of
values that d(e) can take in the events of S. It was shown in [15] that knapsack can be solved
in time O(22.5k log kpoly(n)), where k is the number of distinct weights that appear in the
input. The algorithm does not seem to extend directly to DAMAGE BOOSTING, and we
leave the FPT status of the problem open for k. We do show, however, that if the number of
chicken events is also bounded by some integer r, one can devise an FPT algorithm in k + r

based on the ideas of [15]. We make use of the result of Lokshtanov [23, Theorem 2.8.2],
which improve upon Kannan’s algorithm [21] and state that a solution to an Integer Linear
Program (ILP) with ` variables can be found in time O(`2.5`poly(n)).

I Theorem 2. DAMAGE BOOSTING is FPT in k + r, where k is the number of possible
damage values and r the number of chicken events. Moreover, an optimal solution can be
found in time O(2r(2k(r + 1) + r)2.5(2k(r+1)+r)poly(n)).

Proof. Let C be the set of chicken events of S, and suppose r = |C|. We simply “guess”
which of the 2r subsets of C to take. That is, for each subset C ′ ⊆ C, we find the maximum
time gain achievable under the condition that the chicken events taken are exactly C ′, hence
the 2r factor in the complexity. For the rest of the proof, assume C = {c0, c1, . . . , cr, cr+1}
is a set of chicken events such that ci <S ci+1 for 0 ≤ i ≤ r, each of which must be taken.
For notational convenience, we have added chicken c0 = cr+1 = (0, 0), where c0 (respectively
cr+1) is a chicken event that occurs before (resp. after) every event of S.

Let d1, . . . , dk be the possible damage values. For i ∈ [k] and j ∈ {0, . . . , r}, let nij be
the number of events of damage value di that occur after chicken cj , but before chicken cj+1.
Note that to obtain a solution, it suffices to know how many events of damage value di we
take for each i and j. That is, let (e1

ij , . . . , e
nij
ij) be the events of damage value di that occur

between chickens cj and cj+1 in S, sorted in non-increasing order of time gain. If we know
that, say, xij ∈ {0, . . . , nij} events of damage value di must be taken between chickens cj
and cj+1, then we simply take the first xij events of maximum time gain, i.e. e1

ij , . . . , e
xij
ij .

The time gain with respect to xij is fij(xij) :=
∑xij
h=1 t(ehij).

This lets us formulate an ILP with at most 2(r + 1)k + r variables. For each j ∈ [r],
a variable hj represents the player’s HP right after taking the j-th chicken. We add the
constant h0 := hp for convenience. For i ∈ [k], j ∈ {0, . . . , r}, there is a variable xij for the
number of events of damage value di to take between chicken cj and cj+1, and a variable gij
for the time gained by events of damage value di within this range. The ILP is the following.

maximize
k∑
i=1

r∑
j=0

gij

subject to hj+1 ≤ hj −
k∑
i=1

xijdi − d(cj+1) j ∈ {0, . . . , r − 1}

hj ≤ hp j ∈ {1, . . . , r}

hj −
k∑
i=1

xijdi > 0 j ∈ {0, . . . , r}

gij ≤ fij(xij) i ∈ [k], j ∈ {0, . . . , r}
hj ∈ N j ∈ {1, . . . , r}
xij ∈ {0, . . . , nij}, gij ∈ N i ∈ [k], j ∈ {0, . . . , r}

The first constraint ensures that the player’s HP after taking chicken cj+1 never exceeds
the HP after taking chicken cj and taking the damage boosts in-between. The second

FUN 2018

27:8 The complexity of speedrunning video games

constraint ensures that we do not exceed the maximum hit points. The third constraint
ensures that the player never dies. The fourth constraint bounds the total time gained by
the damage boosts taken. The correctness of the above ILP is then straightforward to verify.
The functions fij(xij) are however not guaranteed to be linear. But they are convex since
they consist of the partial sums of a non-increasing sequence of integers. The authors of [15]
have shown that the constraint gij ≤ fij(xij) can easily be replaced (in polynomial time) by
a set of linear constraints gij ≤ p(`)

ij (xij), for ` ∈ [nij]. We refer the reader to [15, Lemma 2]
for more details. The complexity follows from the aforementioned result of [23]. J

Damage boosting with lives
In the rest of this section, we consider the death abuse speedrunning strategy. In most games,
when the player reaches 0 hit points, a life is lost and the player restarts with full health
at the last predefined revival location traversed. We call such a location a checkpoint. The
game is over once the player does not have any lives remaining. Death abusing is a common
way of replenishing health, at the cost of having to re-traverse the portion of the stage from
the last checkpoint to the location of death.

We modify the DAMAGE BOOSTING problem to incorporate death abuse as follows.
A DAMAGE BOOSTING WITH LIVES instance is a 5-tuple (S, hp, `, C, p) where S =
(e1, . . . , en) is a sequence of events, hp is the maximum hit points, ` is the starting number of
lives, C ⊆ {e1, . . . , en} is the set of checkpoints and p : {e1, . . . , en} → N is the death penalty,
where p(ei) is the time lost by dying at event ei and having to re-do the stage from the
last checkpoint to ei. For an event ei ∈ S, let c(ei) ∈ C be the latest checkpoint of S that
occurs before ei. If the player reaches 0 HP at event ei, the game restarts right before event
c(ei) (so that taking the event c(ei) is possible after dying). If c(ei) = ej , we assume that
p(ei) ≥

∑i
h=j t(eh), as otherwise it might be possible to gain time by dying.

A solution to S is a list of k ≤ ` event subsequences (S1, . . . , Sk) that describes the
events taken in each life used by the player. For i ∈ [k − 1], the i-th life of the player
must end exactly after taking the last event of Si. That is, Si = (ei1, . . . , eir) must satisfy
hSi(eij) > 0 for each j ∈ [r − 1] and hSi(eir) ≤ 0. As for Sk, it must simply be valid, since
the player’s hit points can never go below 0 in the last life. Finally, we require that for
i ∈ {2, . . . , k}, Si starts at the checkpoint assigned to the event at which the player died in
Si−1. In other words, the first event of Si must occur after the appropriate checkpoint, so
that c(tail(Si−1)) ≤S head(Si).

For i < k, the time gained t(Si) at life Si is defined as before, except that t(tail(Si)) is
replaced by the penalty p(tail(Si)) of dying at the last event. That is, t(Si) =

∑
e∈Si t(e)−

t(tail(Si))− p(tail(Si)). Our objective is to find a solution (S1, . . . , Sk) to S that maximizes∑
i∈[k−1] t(Si) +

∑
e∈Sk t(e).

In this section, we show that having even only one life to spare removes the possibility of
having a PTAS for DAMAGE BOOSTING WITH LIVES (unless P = NP). Despite this, we
show that the problem still admits a pseudo-polynomial time algorithm. Beforehand, we
state a simple approximabiltiy result.

I Proposition 3. For any ε > 0, DAMAGE BOOSTING WITH LIVES can be approximated
within a factor 1

` − ε in time O(n3/ε).

Proof. Let (S, hp, `, C, p) be a given instance of DAMAGE BOOSTING WITH LIVES,
and let t be the maximum time gain achievable in stage S without losing a single life. By
Theorem 1, t can be approximated within a factor 1− ε for any ε > 0. Now, each life of the

M. Lafond 27:9

player can be used to gain at most t time, implying that at most `t time can be gained. The
Lemma follows, since (1− ε)t ≥ 1−ε

` · `t ≥ (1
` − ε)`t. J

We then present our inapproximability result. Note that this implies that the above
approximation is tight in the case that the player has two lives.

I Theorem 4. DAMAGE BOOSTING WITH LIVES is hard to approximate within a factor
1/2, even if the player has two lives, and there is no chicken event.

Proof. We show that having an algorithm with approximation factor 1/2 or better would
allow solving SUBSET SUM in polynomial time. Let (B, s) be a SUBSET SUM instance,
with B = {b1, . . . , bn} a (multi)-set of n positive integers and s the target sum. Define a
DAMAGE BOOSTING WITH LIVES instance (S, hp, `, C, p) as follows. Put hp = s+ 1 and
` = 2. Also let S = (e1, . . . , en, x, y). Here the ei events correspond to the bi integers, and x
and y are two additional special events. For each i ∈ [n], put ei = (bi, bi), and put x = (1, 0),
y = (s, s− 1). Set x as the only checkpoint, i.e. C = {x}. The only relevant death penalties
are p(x) = 0 and p(y) = 10s. We show that if (B, s) is a YES instance, then it is possible
to gain a total of 2s− 1 time units, and if (B, s) is a NO instance, then at most s− 1 time
units can be gained.

Suppose that (B, s) is a YES instance, and that there is a subset B′ = {bi1 , . . . , bik} of
B whose elements sum to s. Then the player can take the damage boosts ei1 , . . . , eik before
arriving at x. At this point, s time units have been gained and s damage has been taken.
Hence there is only 1 HP remaining. The player can take the 1 damage at event x, lose a life,
and reappear at event x at full health with no time penalty. With this new life, the player
then skips x, and takes the y damage boost, saving an additional s− 1 time units. The total
time gain is 2s− 1.

Now suppose that (B, s) is a NO instance. Assume that the player uses an optimal
strategy on the constructed DAMAGE BOOSTING WITH LIVES instance. Consider the
situation when the player arrives at event x, before deciding whether to take it (for the first
time, if more than one). Let hx and tx be the remaining HP of the player and the time
gained at this point, respectively. Observe that since all the ei events have equal damage
and time gain, we have hx = hp− tx. We must have tx 6= s, since otherwise the events taken
so far would provide a solution to the SUBSET SUM instance. Moreover, we cannot have
tx > s, since otherwise hx = hp− tx = s+ 1− tx ≤ 0, i.e. the player would have died before
event x, and would have restarted at the beginning of the stage. Thus, tx < s, and therefore
hx > 1. Since only 1 HP can be lost at event x, the player cannot die at event x. Thus the
player arrives at y with a time gain of at most s− 1. Note that there is no point in dying at
the y event, as the time lost is too high. Moreover, the only way the player can gain time
from the y event is by being at full health. Since the player did not die at event x and there
is no chicken, full health is only possible if the player has taken no damage boost before
getting to y. It follows that there are then only two possibilities: if the player takes some
events prior to x, he can save at most tx < s time units, and otherwise, he can skip every
damage boost prior to x and save s− 1 time units by taking event y. We conclude that the
time gain is at most s− 1.

Now, observe that if there is a factor 1/2 approximation algorithm, it returns a time gain
of at least (2s− 1)/2 = s− 1/2 on YES instances, and a time gain of at most s− 1 on NO
instances. This gap can be used to distinguish between YES and NO instances. J

We do not know whether there exists a constant-factor approximation algorithm for
DAMAGE BOOSTING WITH LIVES that holds for all values of `. However, the problem
does admit a pseudo-polynomial time algorithm. The dynamic programming is not as

FUN 2018

27:10 The complexity of speedrunning video games

straightforward as the one for the knapsack, since the player can die and come back at
checkpoints. The idea is to optimize the first life for each possible death, then the second life
depending on the first, and so on.
I Theorem 5. DAMAGE BOOSTING WITH LIVES can be solved in time O(n2 · hp2 · `).

Proof. Let (S, hp, `, C, p) be a given DAMAGE BOOSTING WITH LIVES instance, with
S = (e1, . . . , en). For simplicity, we assume that e1 = (0, 0). Denote by T (i, h, l) the
maximum time gain that can be achieved by exiting event ei (i.e. after deciding whether
to take it or not) with exactly h hit points and l lives. Note that event ei might have been
visited in a previous life. Define T (i, h, l) = −∞ if h > hp, h ≤ 0, l > ` or l ≤ 0. Our goal is
to compute max1≤h≤hp,1≤l≤` T (n, h, l).

For i = 1, set T (1, hp, `) = 0 and T (1, h, l) = −∞ whenever h 6= hp or l 6= ` (we assume
that we will never return to e1 by losing a life, as this would be pointless).

For i > 1 such that ei /∈ C, note that we can only enter ei through ei−1 with the same
number of lives. If ei is not a chicken event, we thus have

T (i, h, l) = max {T (i− 1, h, l), T (i− 1, h+ d(ei), l) + t(ei)}

(observe that invalid values of h+ d(ei) yield a time gain of −∞)
If ei is a chicken event, the above recurrence applies unless taking event ei would refill

the player’s health above hp. Thus T (i, hp, l) is a special case, which we handle as follows
(recall that d(ei) and t(ei) are now negative):

T (i, hp, l) = max
{
T (i− 1, hp, l), max

hp+d(ei)≤d≤hp
{T (i− 1, hp− d, l)}+ t(ei)

}
Now suppose that i > 1 is such that ei ∈ C. We can either enter ei through ei−1

with the same number of lives, or through some ej with j > i by dying while having
l + 1 lives. In the latter case, we must enter ei with health equal to hp. Therefore, if
h /∈ {hp, hp−d(ei)}, it is impossible to enter ei by dying and exiting with exactly h hit points.
Hence, if h /∈ {hp, hp− d(ei)}, the above recurrence from the i > 1 case applies. Moreover, if
l = `, the player cannot have died yet and the same recurrence also applies. Assume that
h ∈ {hp, hp− d(ei)} and l < `. We must compute a temporary value for T (i, h, l). Let ek be
the latest event that leads to checkpoint ei upon death. That is, c(ek) = ei but either k = n

or c(ek+1) 6= ei. Define

Di,l = max
i≤j≤k

{
max

h′≤d(ej)
{T (j, h′, l + 1)− p(ej)}

}
which is the maximum time gain achievable by losing the player’s (l+1)-th life and respawning
at ei. Then it follows that

T (i, hp, l) = max{T (i− 1, hp, l), Di,l}

if ei is not a chicken event. If ei is a chicken event, then similarly as we did above,

T (i, hp, l) = max
{
T (i− 1, hp, l), max

hp+d(ei)≤d≤hp
{T (i− 1, hp− d, l)}+ t(ei), Di,l

}
Finally, for the case h = hp− d(ei), we have

T (i, hp− d(ei), l) = max{T (i− 1, hp− d(ei), l), Di,l + t(ei)}

Note that to compute T (i, h, l), one only needs values of T (j, h′, l′) with either j < i and
l′ = l, or with l′ = l+ 1. It is not difficult to see that one can compute the T (i, h, l) values in
decreasing order of values of l, starting at l = `, and in increasing order of i. Each T (i, h, l)
value depends on at most O(n · hp) values. There are (n + 2) · |hp| · |`| possible T (i, h, l)
values, resulting in a O(n2 · (hp)2 · `) time algorithm. J

M. Lafond 27:11

Figure 4 The dependency graph for the game Mega Man (with approximate time gains in seconds
according to [1]), where the only event considered is defeating the boss.

4 Routing

We now turn to the problem of routing, in which the player may visit a set of locations or
stages in any order. Clearing a stage yields a new weapon to the player. Each stage has a set
of time-saving events, and each weapon can be used to gain some amount of time in an event.
The time saved on an event depends on the best weapon available. Figure 4 represents this
notion in Mega Man as a weighted directed graph. For instance, defeating Guts Man first
(far left) allows saving 7 seconds against Cut Man (second), and 8 seconds could be gained
by defeating Bomb Man (far right) before Guts Man.

In this section, a game is a set of stages S = {S1, . . . , Sn}. A stage Si = {e1, . . . , ek} is a
set of events, where here an event ej : S→ N is a function mapping each stage to an integer.
The event ej is interpreted as follows: if stage Si is cleared, then a time of ej(Si) can be
saved while going through ej using the weapon gained from Si. Let C ⊆ S and let e be an
event. We will write e(C) = maxS∈C e(S). That is, if C is the set of cleared stages, we will
assume that event e will be cleared using the best option available. Given C, the time gained
in a stage S becomes t(S,C) :=

∑
e∈S e(C).

In the ROUTING problem, we are given a set of stages S = {S1, . . . , Sn}. The objective
is to find a linear ordering π of S such that

∑
i∈[n] t(Si, {Sj : Sj <π Si}) is maximum. Later

on, we shall consider the minimization version of ROUTING.
We define the notion of a dependency digraph D(S) for a set of stages S. The digraph

D(S) = (S, A,w) has one vertex for each stage, and for every ordered pair (i, j), an arc from
Si to Sj of weight w(Si, Sj) =

∑
e∈Sj e(Si). The underlying undirected graph of D(S) is the

graph obtained by removing the arcs of weight 0, ignoring the other weights and the direction
of the arcs.

We start with two easy special cases. The first case is when each stage contains only
one event, which could for example correspond to the case in which we only consider the
fastest way to defeat all bosses. This reduces to finding a maximum weight branching in
D(S), where a branching of a digraph D is an acyclic subdigraph of D in which every vertex
has in-degree 0 or 1. The second case is when each event depends on only one stage. The
Routing problem then becomes equivalent to finding a maximum weight directed acyclic
sub-digraph of D(S). This is the maximum weight sub-DAG problem, the maximization
version of the feedback arc set problem.

I Theorem 6. The following properties of Routing hold:
1. If each stage contains a single event, ROUTING can be solved in time O(|A|+ |S| log |S|).
2. If, for each event e, there is only one Si ∈ S such that e(Si) > 0, then ROUTING is

equivalent to the maximum weight sub-DAG problem on D(S).

Proof. (1) For a stage Si, denote by ei the single event of Si. Given an ordering π of S and
a stage Si 6= tail(π), denote by pπ(Si) the stage prior to Si that allows a maximum time
gain on ei, breaking ties arbitrarily. That is, pπ(Si) = arg maxSj<πSi ei(Sj).

FUN 2018

27:12 The complexity of speedrunning video games

Observe that for any ordering π and any stage Si 6= tail(π), because Si has only one event
there is at most one stage prior to Si that can be useful to clear it, namely pπ(Si). Recalling
that D(S) = (S, A,w), the time gain for a given π is t =

∑
Si∈S w(pπ(Si), Si). Consider the

set of arcs A′ = {(pπ(Si), Si) : 1 < i ≤ n and ei(pπ(Si)) > 0}. Then the subdigraph of
D(S) formed by the arc set A′ contains no directed cycle, and each vertex has at most one
incoming arc, with the exception of the first the vertex of π which has none. Thus A′ forms
a branching, and its weight is t. Conversely, let B be a branching of D(S) with arc set A′.
Then it is not hard to see that B can be converted to an ordering π of S such that the total
time gained is

∑
(u,v)∈A′ w(u, v). Indeed, as B is acyclic, a topological sorting of B yield a

linear ordering of S in which each event eSi can be completed using the in-neighbor of Si
in A′ (if any). A maximum weight branching can be found in time O(|A| + |S| log |S|) by
reduction to the maximum weight spanning arborescence problem (see e.g. [10, Chapter 6]),
and using Gabow & al.’s algorithm [18].

(2) If every event depends on exactly one stage, we show that ROUTING and maximum
weight sub-DAG reduce to one another with the same optimality value. We start by reducing
ROUTING to maximum weight sub-DAG. Consider the D(S) = (S, A,w) digraph. Because
each e ∈ Sj depends only on one stage, w(Si, Sj) corresponds exactly to the time gain
contribution of Si to stage Sj if Si is completed before Sj (which might not be the case if an
event could be completed by more than one stage). Thus given an ordering π of S, the total
time gain is t =

∑
Si<πSj

w(Si, Sj) (where w(Si, Sj) = 0 if (Si, Sj) /∈ A). Moreover, the arcs
{(Si, Sj) ∈ A : Si <π Sj} cannot form a cycle in D(S). It follows that an ordering π of time
gain t can be used to find a sub-DAG of D(S) of weight t. Conversely, a topological sorting
of a sub-DAG of D(S) with total weight t gives an ordering of the stages with total time
gain t.

The reduction from the maximum weight sub-DAG problem to the routing problem
goes along the same lines. Given a maximum weight sub-DAG instance H = (V,A,w), it
suffices to create a stage Su for each u ∈ V , and add one event euv in Su for each v such that
(v, u) ∈ A. We put euv (Sv) = w(v, u). It is easy to see that a total time of t can be gained if
and only if H has a sub-DAG of weight t. J

The above implies that every known hardness result for the maximum weight sub-DAG
problem transfers to ROUTING. In particular, ROUTING is NP-hard even if the maximum
degree of the D(S) is 4 (this follows from the hardness of vertex cover in cubic graphs [3]).
Also, the maximum weight sub-DAG problem cannot be approximated within a ratio better
than 1/2, assuming the Unique Games Conjecture [19]. On the positive side, it is trivial to
attain this bound, just as in the maximum weight sub-DAG problem: take any ordering π.
Either π or its reverse will attain 1/2 of the maximum possible time save.

I Proposition 7. ROUTING admits a factor 1/2 approximation algorithm.

Proof. Note that
∑
i∈[n]

∑
e∈Si e(S) is an obvious upper bound on the maximum time gain

achievable. Pick a random ordering (S1, . . . , Sn) of S, and let (Sn, . . . , S1) be the reverse
ordering. One of these two must achieve a time gain of e(S) for at least half the events e
that are in S. J

Minimizing time loss

We now turn to the minimization version of the ROUTING problem. That is, consider the
upper bound µ :=

∑
i∈[n]

∑
e∈Si e(S) on the possible time gain. Ideally, one would like to get

M. Lafond 27:13

as close as possible to µ, which amounts to finding a time gain t that minimizes µ− t. Given
an ordering π of S, denote by cost(S, π) := µ−

∑
i∈[n] t(Si, {Sj : Sj <π Si}).

We define the MIN-ROUTING-LOSS as follows: given a set of n stages S, find a linear
ordering π of S that minimizes cost(S, π).

By Theorem 6, this is at least as hard as the feedback arc set (FAS) problem, where the goal
is to delete a set of arcs of minimum weight from a digraph to obtain a DAG (these deletions
correspond to time losses in D(S)). FAS is APX-hard [20], but determining if there is a
constant factor approximation appears to be open. A factor O(logn log logn) approximation
algorithm is presented in [16], but does not appear to apply to MIN-ROUTING-LOSS.

We will show that MIN-ROUTING-LOSS cannot be approximated with a ratio better
than O(logn). As for parameterized complexity, FAS is known to be FPT in k, the weight
of the edges to remove (assuming weights in poly(n)) [9]. FAS is also known to be FPT in
the treewidth of the underlying undirected graph [6]. As we show here, both parameters are
not applicable to MIN-ROUTING-LOSS.

I Theorem 8. MIN-ROUTING-LOSS is W[2]-hard with respect to the time loss k and hard
to approximate within a factor O(logn). This holds even on instances in which the underlying
undirected graph of D(S) is a tree and only one stage has more than one event.

Proof. We reduce from DOMINATING SET, which is known to be W[2]-hard for parameter k,
the number of vertices in the dominating set [14]. Let (G, k) be an instance of DOMINATING
SET. Denote V (G) = {v1, . . . , vn}. Create a set of stages S = {S1, . . . , Sn, X}. For i ∈ [n],
stage Si has only one event ei, whereas X has n events {x1, . . . , xn}. For each edge
vivj ∈ E(G), set xj(Si) very high, say xj(Si) = kn10. Also set xj(Sj) = kn10 for all j ∈ [n].
Then for each i ∈ [n], set ei(X) = 1. All other event completion times are set to 0. Note
that the upper time bound on S is µ = n+ (kn10)n. We show that G has a dominating set
of size at most k if and only if a time gain of at least µ− k is possible.

Let B = {vi1 , . . . , vik} be a dominating set of G of size k, and denote {vik+1 , . . . , vin} =
V (G) \ B. Order the stages of S as follows: π = (Si1 , . . . , Sik , X, Sik+1 , . . . , Sin). For any
xj ∈ X, either vj ∈ B or there is some vi ∈ B such that vivj ∈ E(G). Since one of Sj <π X
or Si <π X holds, event xj can be cleared with time gain kn10. Also, every event in
Sik+1 , . . . , Sin can be cleared with a time gain 1 using stage X. Only the events in stages
Si1 , . . . , Sik do not yield a time gain, and the total time gain is therefore µ− k.

Conversely, suppose that there is an ordering π of S that achieves a time gain of at least
µ − k. For this to be possible, every event of X must be cleared with a time gain kn10.
Consider the set B = {Si1 , . . . , Sih} that precedes X in π. None of these stages can yield a
time gain, which implies h ≤ k. Moreover, B must be a dominating set, for if not, there is
an event xj ∈ X that cannot be cleared with a time gain of kn10.

As for the inapproximability result, DOMINATING SET is hard to approximate within
a factor O(logn) (see [4]). It is not hard to see that the above reduction is approximation
preserving: from a dominating set of size k, one can obtain a time loss of at most k and
vice-versa. As the number of stages in S is n+ 1, the O(logn) inapproximability follows. J

Observe that in addition to treewidth, the number of stages with more than one event
is also not an option for parameterization, as well as the maximum degree of D(S) (due to
Theorem 6 and the remark after). In the rest of this section, we show that Routing is FPT
when combining the treewidth and maximum in-degree parameters.

FUN 2018

27:14 The complexity of speedrunning video games

Parameterization by treewidth and maximum in-degree
In this section, we assume that the in-degree of a vertex in D(S) is bounded by d and the
treewidth of the underlying undirected graph of D(S) is bounded by t. We devise a more
or less standard dynamic programming algorithm on the tree decomposition of D(S). We
introduce the essential notions here, and refer the reader to [14, 12] for more details.

A tree decomposition of a graph G = (V,E) is a tree T in which each node x is associated
with a bag Bx ⊆ V such that

⋃
x∈V Bx = V . Moreover, the two following properties must

hold: (1) for any uv ∈ E, there is some x ∈ V (T) such that u, v ∈ Bx, and (2) for any v ∈ V ,
the set {x ∈ V (T) : v ∈ Bx} induces a connected component of T . The width of T is the
size of the largest bag of T minus 1, and the treewidth of G is the minimum width of a tree
decomposition of G.

A tree decomposition T for G is nice if each x ∈ V (T) is of one of the following types:
Leaf node: x is a leaf of T and Bx = ∅.
Introduce node: x has exactly one child y and Bx = By ∪ {v} for some v ∈ V (G).
Forget node: x has exactly one child y and Bx = By \ {v} for some v ∈ V (G).
Join node: x has exactly two children y, z and Bx = By = Bz.

We also assume that T is rooted at a vertex r such that Br = ∅. The root defines the
ancestor/descendant relationship between nodes of T . It is well-known that a nice tree
decomposition T ′ of width t can be constructed from a tree decomposition T of width t in
polynomial time (see [12, 14]).

The routing algorithm

Assume that we have constructed a nice tree decomposition T from D(S) = (V,A,w). For
convenience, we shall treat stages of S as vertices (hence, each v ∈ V is a set of events).
For v ∈ V , denote by N−(v) = {u ∈ V : (u, v) ∈ A} and N−[v] = N−(v) ∪ {v}. Under our
assumptions, |N−(v)| ≤ d for all v ∈ V . Roughly speaking, at each node x ∈ V (T), we
would like to “try” each ordering of Bx and compute a time cost for each stage v ∈ Bx based
on the children of x. This is essentially the idea in the bounded treewidth FPT algorithm
for feedback arc set [6]. This however does not work directly, as the cost of a stage v ∈ Bx
depends on N−(v), which may or may not be included in Bx. To solve this problem, we
also include all the in-neighbors of the stages in Bx in the set of orderings to consider. One
way to do this would be to consider all orderings of

⋃
v∈Bx N

−[v] at every bag Bx and
assign a cost to every vertex in Bx or in a bag below. This would lead to a relatively simple
O((dt)!poly(n)) algorithm. However, this complexity can be improved (at the expense of
more technicality) by considering, instead of every permutation of

⋃
v∈Bx N

−[v], only the
subsets of N−(v) that occur before v for each v ∈ Bx.

To formalize this notion, let P = {π1, . . . , πs} be a set of orderings of (possible different)
subsets of V . We say that P is realizable if there exists an ordering π of V such that for each
i ∈ [s], u <πi v implies u <π v. We then say that π realizes P (or for short, π realizes π′ if
P = {π′}). Note that the existence of π can be verified in polynomial time.

Let Vx be the subset of vertices of V appearing in the bags under x, i.e. v ∈ Vx if and
only if x has a descendant y such that v ∈ By (noting that x is a descendant of itself). For
x ∈ V (T), we denote by Π(x) the set of all |Bx|! possible orderings of Bx (with Π(x) = {()}
if Bx = ∅). Denote by Λ(x) the set of all combinations of subsets of in-neighbors of vertices
in Bx. That is, if Bx = {v1, . . . , vs} with 1 ≤ s ≤ t, then

Λ(x) = P(N−(v1))× . . .× P(N−(vs))

M. Lafond 27:15

where P(X) denotes the powerset of X. Let Λ(x) = {()} contain the empty sequence if
Bx = ∅. Observe that |Λ(x)| = O(2dt). For Px = (P1, . . . , Ps) ∈ Λ(x), we interpret Pi as “all
elements of Pi occur before vi, and those of N−(vi) \ Pi occur after vi”. We thus denote the
set of two-elements orderings implied by Px by

s(Px) =
⋃

vi∈Bx

{(u, vi) : u ∈ Pi} ∪ {(vi, u) : u ∈ N−(vi) \ Pi}

We now define a time cost D(x, µx, Px) over all x ∈ V (T), µx ∈ Π(x) and Px =
(P1, . . . , Ps) ∈ Λ(x). Given an ordering π of V and v ∈ V , let cost(v, π) =

∑
e∈vi(e(V)−e({u :

u <π v})) be the time lost in stage v. Let V ′x = Vx ∪
⋃
v∈Bx N

−(v). Then

D(x, µx, Px) := min{
∑
v∈Vx

cost(v, π) : π is an ordering of V ′x that realizes {µx} ∪ s(Px)}

In words, D(x, µx, Px) is the minimum cost for the set of stages in Vx in an ordering of
V ′x, with the obligation of using the partial orderings prescribed by µx and Px. If r is the
root of T , our goal is to compute D(r, (), ()) (recall that Br = ∅). For v ∈ V and P ⊆ N−(v),
let cost(vi, P) =

∑
e∈vi(e(V)− e(P)) the time lost at stage vi if precisely the elements of P

occur before v. We claim that D(x, µx, Px) can be computed as follows.
If x is a leaf node, then Vx and Bx are empty and we simply set D(x, (), ()) = 0;
If x is an introduce node with child y, let vi be the new node in Bx and Pi be the subset
of N−(vi) present in Px. Then

D(x, µx, Px) = min{D(y, µy, Py) : µy ∈ Π(y), Py ∈ Λ(y) and
s(Px) ∪ s(Py) ∪ {µx, µy} is realizable}+ cost(vi, Pi)

If x is a forget node with child y, then

D(x, µx, Px) = min{D(y, µy, Py) : µy ∈ Π(y), Py ∈ Λ(y) and
s(Px) ∪ s(Py) ∪ {µx, µy} is realizable}

If x is a join node with children y and z, then

D(x, µx, Px) = D(y, µx, Px) +D(z, µx, Px)−
∑
vi∈Bx

cost(vi, Pi)

where Pi is the ordering of Px for N−[vi], for each vi ∈ Bx.

The above yield the following result. The main difficulty is to show that an ordering at
node x can be obtained from the ordering of its child/children.

I Theorem 9. ROUTING can be solved in time O(2t(d+log t)(2d +md) · nt), where m is the
maximum number of events in a stage.

Proof. We prove the complexity first, then proceed with the correctness of the dynamic
programming recurrences. There are O(nt!2dt) = O(n2t log t2dt) = O(n2t(d+log t)) possible
x, µx and Px combinations for the values of D(x, µx, Px). To compute a specific D(x, µx, Px),
in the worst case we need to consider all the possible D(y, µy, Py) values for the child y

of x, in the case of introduce and forget nodes. However in these situations, µx and µy
differ only by one element, and so given µx, there are only O(t) orderings of By such that
{µx, µy} are realizable. Similarly, s(Px) ∪ s(Py) are realizable only if they have the same

FUN 2018

27:16 The complexity of speedrunning video games

sets of in-neighbors for each v ∈ Bx ∩By. Therefore, only one subset of N−(vi) can differ
between Px and Py, where here vi is the introduced or forgotten vertex. It follows that only
O(t2d) combinations of µy and Py need to be checked from D(y, µy, Px). One still needs to
check whether µx, µy, s(Px) and s(Py) are realizable. This can easily be done in time O(n),
for instance by constructing the directed graph on vertex set V and adding an arc from u

to v whenever u is immediately before v in an ordering of {µx, µy} ∪ s(Px) ∪ s(Py). This
graph has O(td) arcs and it suffices to check that it is acyclic. In the case of introduce nodes,
the value of cost(vi, Pi) can be computed in time O(md). At most t such values need to be
computed. It follows that the total complexity is O(n2t(d+log t)(t2d + tmd)).

It remains to show that our recurrences for D(x, µx, Px) are correct, which we do by
induction over the nodes of T from the leaves to the root. As a base case, this is true for the
leaves, so assume x ∈ V (T) is an internal node of T . For the remainder of the proof, given
an ordering π of some set X, let π|X ′ denote the ordering on X ′ ⊆ X of π restricted to X ′
(i.e. π|X ′ is the unique ordering of X ′ such that π realizes π|X ′).

Before proceeding with the correctness, we first claim that for any child y of x ∈ V (T),
V ′y ⊆ V ′x. Suppose this is not the case. Because Vy ⊆ Vx, by the definition of V ′y and V ′x,
there must be some v ∈ By \ Bx and u ∈ N−(v) such that u /∈ V ′x. In particular, u /∈ Vx.
Since T is a tree decomposition, there must be a node z ∈ V (T) such that u, v ∈ Bz. But
since u /∈ Vx, z cannot be in the subtree rooted at x, as otherwise u ∈ V ′x would hold. This
is a contradiction, as this implies that the vertices with bags containing v do not form a
connected component of T , which proves our claim.

We now treat each possible node type separately to prove our recurrences correct.

Introduce nodes. Suppose x is an introduce node with child y and new vertex vi. For each
vj ∈ Bx, let Pj ∈ Px be the subset of N−(vj) for vj . Let u ∈ N−(vi). It is straightforward to
check that u /∈ Vy \Bx, since a bag of T must contain u and v, vi was introduced in bag Bx
and u is not in Bx. Similarly, let u ∈ Vy \By. One can check that N−(u) ⊆ Vy, as otherwise
a neighbor of u outside of Vy would lead to the same type of contradiction.

We first show that D(x, µx, Px) ≥ miny,µy,Py{D(y, µy, Py) + cost(vi, Pi)}, where Pi is the
subset of N−(vi) for vi in Px, and {µx, µy}∪s(Px)∪s(Py) are realizable. Let π be an ordering
of V ′x such that

∑
v∈Vx cost(v, π) = D(x, µx, Px) and such that π realizes µx and s(Px). Let

πy := π|V ′y (note that πy is well-defined since V ′y ⊆ V ′x), and let µy = πy|By and Py ∈ Λ(y)
be such that πy realizes s(Py). Clearly, {µx, µy} ∪ s(Px) ∪ s(Py) is realizable (as witnessed
by π). Moreover,

∑
w∈Vy cost(w, πy) ≥ D(y, µy, Py), by the definition of D(y, µy, Py). As we

also have cost(vi, π) = cost(vi, Pi), it follows that∑
v∈Vx

cost(v, π) ≥ D(y, µy, Py) + cost(vi, Pi) ≥ min
y′,µ′

y,P
′
y

{D(y′, µ′y, P ′y)}+ cost(vi, Pi)

as desired.
As for the converse bound, take any ordering πy of V ′y of cost D(y, µy, Py) that realizes µy

and Py on By such that {µx, µy}∪s(Px)∪s(Py) is realizable. We start from πy and construct
an ordering of V ′x. If vi is not in πy, insert vi in πy anywhere so that it realizes µx (this is
possible since πy realizes µy = µx|(Bx \ {vi}). Then let π′y := πy|(Vy ∪{vi}). Note that since
any u ∈ Vy \Bx has no in-neighbor outside of Vy, the cost of u is entirely defined by π′y, and
hence unchanged from πy. We now want to insert the elements of V ′x \ (Vy ∪ {vi}) so as to
realize s(Px). Let π̂ be any ordering of

⋃
vi∈Bx N

−[vi] that realizes s(Px) ∪ s(Py) ∪ {µx},
and let π′ := π̂|((V ′x \ Vy) ∪Bx). Since the elements of π′y and π′ coincide only on Bx and
both realize µx, it is easy to see that there is some ordering π that realizes π′y and π′. Note
that π is an ordering of V ′x. Moreover, π realizes µx, and therefore also realizes µy.

M. Lafond 27:17

We must now argue that π realizes s(Px) (which also implies that π realizes s(Py)). First
consider Pj ∈ Px, where i 6= j so that vj ∈ Bx ∩By and Pj is the subset of N−(vj) for vj in
Px. Let u ∈ Pj . If u ∈ Vy, then u <π vj since π realizes π′y (which is a subordering of πy that
realizes s(Py)). If u ∈ V ′x \ Vy, then u <π vj because π realizes π′ (which is a subordering of
π̂ that realizes s(Px)). By a similar argument, one can check that all u ∈ N−(vj) \ Pj occur
after vj . Now consider Pi ∈ Px, the subset of N−(vi) for vi. Let u ∈ Pi, and recall that
u /∈ Vy \Bx. If u ∈ Bx, then u <π vi because π realizes µx (and we may assume u <µx vi as
otherwise µx and s(Px) are not possibly realizable together). If u ∈ V ′x \Bx, then u <µx vi
because π realizes π′, as above. The case u ∈ N−(vi) \Pi can be verified in a similar manner.

Since the costs of the v ∈ Vy are unchanged from πy to π, it follows that D(x, µx, Px) ≤∑
v∈Vx cost(v, π) =

∑
v∈Vy cost(v, πy)+cost(vi, πy) = D(y, µy, Py)+cost(vi, Pi), which yields

the complementary bound.

Forget nodes. Suppose that x is a forget node with child y. In this case, Vx = Vy and
V ′x = V ′y . It is not hard to see that it suffices to inherit the time costs computed at the y
node.

Join nodes. Suppose x is a join node with children y, z, in which case Bx = By = Bz.
Denote Bx = {v1, . . . , vs}. For each vi ∈ Bx, let Pi ∈ Px be the subset of N−(vi) for vi.
Note that if v ∈ Vy \ Bx, then v /∈ Vz (otherwise, the bags containing v would not be
connected). Similarly, if v ∈ Vz \Bx then v /∈ Vy. Hence Vy ∩ Vz = Bx. Let π be an ordering
of V ′x that realizes µx and s(Px) of cost D(x, µx, Px). Let πy := π|V ′y and πz := π|V ′z . Note
that both πy and πz must realize µx and s(Px). Hence

∑
v∈Vy cost(v, πy) ≥ D(y, µx, Px)

and
∑
v∈Vz cost(v, πz) ≥ D(z, µx, Px). Since Vy ∩ Vz = Bx, it follows that D(x, µx, Px) ≥

D(y, µx, Px) +D(z, µz, Px)−
∑
vi∈Bx cost(vi, Pi).

For the converse bound, let πy (respectively πz) be orderings of V ′y (V ′z) that realize µx
and s(Px) of cost D(y, µx, Px) (D(z, µx, Px)). Note that if u ∈ Vz \ Bx, then N−(u) ⊆ Vz
(using tree decomposition arguments) and if u ∈ Vy \ Bx, then N−(u) ⊆ Vy. Let π′y :=
πy|(V ′y \ Vz) ∪Bx. Then for all u ∈ Vy \Bx, the cost of u is unchanged from πy to π′y. Then,
let π′z := πz|Vz, with the same remark on u ∈ Vz \Bx. Let π be an ordering of V ′x that realizes
π′y and π′z. Note that π exists, since π′y and π′z coincide only on Bx and both realize µx.

We argue that π realizes s(Px). Let vi ∈ Bx and u ∈ Pi. If u ∈ Bx, then u <π vi because
π realizes µx (which, as we may assume, is realizable with s(Px)). If u ∈ V ′y \ Vz, then
u <π vi because π realizes π′y (which is a subordering of πy which realizes s(Px)). Finally if
u ∈ Vz \Bx, then u <π vi because π realizes π′z (which is a subordering of πz which realizes
s(Px)). A similar argument shows that vi <π u for u ∈ N−(vi) \ Pi.

It remains to argue that D(x, µx, Px) ≤
∑
v∈Vx cost(v, π) = D(x, µx, Px) +D(y, µx, Px)−∑

v∈Bx cost(v, Pi). For v ∈ Vy \ Bx or v ∈ Vz \ Bx, the cost is unchanged from πy and
πz, respectively, as we mentioned above. If v ∈ Bx, the cost is the same as in πy and
πz, since π, πy and πz all realize s(Px). Therefore,

∑
v∈Vx cost(v, π) =

∑
v∈Vy cost(v, πy) +∑

v∈Vz cost(v, πz)−
∑
vi∈Bx cost(v, π) (as we double-counted the Bx elements). The correct-

ness follows, since
∑
v∈Vy cost(v, πy) = D(y, µx, Bx) and

∑
v∈Vz cost(v, πz) = D(z, µx, Bx).

J

5 Conclusion

The hardness results presented in this work apply to any game that allows damage boosting
or routing in its speedrunning mechanics. However, the positive results ignore other possible

FUN 2018

27:18 The complexity of speedrunning video games

aspects of the game, which could be incorporated in our problem models in the future. For
instance, some games may offer multiple possible paths that in turn offer different sets of events.
Also, role-playing games such as Final Fantasy are notorious for the calculations needed
for manipulating the game’s random number generator, which leads to other optimization
problems. We also leave the problems of approximating damage boosting with lives and
minimum-loss routing open, as well as determining their precise FPT status.

References

1 Classic damage data charts mega man 1 damage data chart. http://megaman.wikia.com/
wiki/Mega_Man_1_Damage_Data_Chart. Accessed: 2018-02-21.

2 Games done quick. https://gamesdonequick.com/. Accessed: 2018-02-21.
3 Paola Alimonti and Viggo Kann. Hardness of approximating problems on cubic graphs. In

Italian Conference on Algorithms and Complexity, pages 288–298. Springer, 1997.
4 Noga Alon, Dana Moshkovitz, and Shmuel Safra. Algorithmic construction of sets for

k-restrictions. ACM Transactions on Algorithms (TALG), 2(2):153–177, 2006.
5 Greg Aloupis, Erik D Demaine, Alan Guo, and Giovanni Viglietta. Classic nintendo games

are (computationally) hard. Theoretical Computer Science, 586:135–160, 2015.
6 Marthe Bonamy, Lukasz Kowalik, Jesper Nederlof, Michal Pilipczuk, Arkadiusz Socala,

and Marcin Wrochna. On directed feedback vertex set parameterized by treewidth. arXiv
preprint arXiv:1707.01470, 2017.

7 Jeffrey Bosboom, Erik D Demaine, Adam Hesterberg, Jayson Lynch, and Erik Waingarten.
Mario kart is hard. In Japanese Conference on Discrete and Computational Geometry and
Graphs, pages 49–59. Springer, 2015.

8 Liming Cai and Jianer Chen. On fixed-parameter tractability and approximability of NP
optimization problems. Journal of Computer and System Sciences, 54(3):465–474, 1997.

9 Jianer Chen, Yang Liu, Songjian Lu, Barry O’sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. Journal of the ACM (JACM),
55(5):21, 2008.

10 William Cook, László Lovász, Paul D Seymour, et al. Combinatorial optimization: papers
from the DIMACS Special Year, volume 20. American Mathematical Soc., 1995.

11 Graham Cormode. The hardness of the lemmings game, or oh no, more NP-completeness
proofs. In Proceedings of Third International Conference on Fun with Algorithms, pages
65–76, 2004.

12 Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Mar-
cin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4.
Springer, 2015.

13 Erik D Demaine, Giovanni Viglietta, and Aaron Williams. Super Mario Bros. is harder-
/easier than we thought. In Proceedings of Third International Conference on Fun with
Algorithms, 2016.

14 Rodney G Downey and Michael Ralph Fellows. Parameterized complexity. Springer Science
& Business Media, 2012.

15 Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. Polynomial kernels
for weighted problems. Journal of Computer and System Sciences, 84:1–10, 2017.

16 Guy Even, J Seffi Naor, Baruch Schieber, and Madhu Sudan. Approximating minimum
feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998.

17 Michal Forišek. Computational complexity of two-dimensional platform games. In Inter-
national Conference on Fun with Algorithms, pages 214–227. Springer, 2010.

http://megaman.wikia.com/wiki/Mega_Man_1_Damage_Data_Chart
http://megaman.wikia.com/wiki/Mega_Man_1_Damage_Data_Chart
https://gamesdonequick.com/

M. Lafond 27:19

18 Harold N Gabow, Zvi Galil, Thomas Spencer, and Robert E Tarjan. Efficient algorithms
for finding minimum spanning trees in undirected and directed graphs. Combinatorica,
6(2):109–122, 1986.

19 Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the ran-
dom ordering is hard: Inapproximability of maximum acyclic subgraph. In Foundations of
Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium on, pages 573–582.
IEEE, 2008.

20 Viggo Kann. On the approximability of NP-complete optimization problems. PhD thesis,
Royal Institute of Technology Stockholm, 1992.

21 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics
of operations research, 12(3):415–440, 1987.

22 Richard Kaye. Minesweeper is NP-complete. The Mathematical Intelligencer, 22(2):9–15,
2000.

23 Daniel Lokshtanov. New methods in parameterized algorithms and complexity. University
of Bergen, Norway, 2009.

24 Giovanni Viglietta. Gaming is a hard job, but someone has to do it! Theory of Computing
Systems, 54(4):595–621, 2014.

25 Giovanni Viglietta. Lemmings is PSPACE-complete. Theoretical Computer Science,
586:120–134, 2015.

FUN 2018

Gender-Aware Facility Location in
Multi-Gender World
Valentin Polishchuk
Communications and Transport Systems, ITN, Linköping University, Sweden
valentin.polishchuk@liu.se

Leonid Sedov
Communications and Transport Systems, ITN, Linköping University, Sweden
leonid.sedov@liu.se

Abstract
This interdisciplinary (GS and CS) paper starts from considering the problem of locating re-
strooms or locker rooms in a privacy-preserving way, i.e., so that while following the path to
one’s room, one cannot peek into another room; the rooms are meant for a multitude of genders,
one room per gender. We then proceed to showing that gender inequality (non-uniform treat-
ment of genders by genders) makes the room placement hard. Finally, we delve into specifics
of gender definition and consider locating facilities for the genders in a “perfect” way, i.e., so
that navigating to the facilities involves only quick binary decisions; on the way, we indicate that
there is room for interpretation the facilities under consideration (we outline several possibilities,
depending on the application).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases visibility, Strahler number, perfect tree, interval graphs, gender studies

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.28

Acknowledgements We thank the anonymous reviewers for their helpful comments and Dr. Mari-
etta Radomska from the Gender studies unit of Linköping University for bringing our attention
to gender issues. The authors are partially supported by Swedish Transport Administration.

1 Introduction

The future progressive mankind, realizing and recognizing existence of more than two
genders [5,14,22,39,43], faces social, political, economic, as well as algorithmic and scientistic1
challenges of adjusting to practices of the multi-gender world and catering to the multiple
genders needs. For instance, in the TEDx talk [32] on gendered innovations – a hot topic on
both sides of the Atlantic [10,35] – a possibility is suggested to “require sophisticated sex and
gender analysis when selecting papers for publication” (it would be fair to mention that the
suggestion referred to doing it for journals and not for FUN). A lot of other inspiring material
is available, produced not only by academics but also by recreational mathematicians and
science popularizers [17].

One place where gender considerations come into play are locker rooms in a gym and
public restrooms in a mall. As locking the locker room and restroom usage to biological sex

1 We define a scientistic, or scientistical challenge as a non-scientific challenge faced by a scientist.
Examples of scientistic challenges abound; one example relevant to this paper is learning to speak about
genders without referring to sexes.

© Valentin Polishchuk and Leonid Sedov;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 28; pp. 28:1–28:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:valentin.polishchuk@liu.se
mailto:leonid.sedov@liu.se
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Gender-Aware Facility Location in Multi-Gender World

is being questioned (see e.g., [21]), solutions are explored both in terms of extreme gender
segregation (cf. women-only gyms) and integration (cf. unisex public toilets).

For concreteness, let us speak about the gym application. We will often call the locker
rooms just rooms. Privacy preservation stipulates that each gender has its own room, and
that no gender g can see into another gender’s room while going to g’s room. We assume that
the undesired peeking into other rooms may happen only from the path to the locker room,
and not from anywhere in the gym (as no one wants to embarrass oneself by standing at a
known spot of other-genders spotting, pretending to exercise; in addition, when exercising,
people are busy with their own bodies).

Going deeper into the physics (optics) of peeking, observe that undesired exposures
happen through rooms doors.2 Locker room areas are a scarce resource, especially given the
multitude of genders, so there may be people, in any locker room, arbitrarily close to the
door (in fact, this is the case in many existing space-constrained gyms – those doubtful are
welcome to visit a popular fitness facility at 6pm). Therefore, we ignore the locker room
shapes, and require that no gender g sees another gender’s door while going to g’s door.

We model the gym by a simple polygon P . Let V be the vertices of P . One of the vertices
s ∈ V is the entrance to the gym. The potential locker room doors are a subset D ⊂ V (we
model doors as vertices, and not edges of P , because doors are small). For a point p ∈ P ,
let π(s, p) denote the shortest s-p path. Our goal is to pick a maximum-cardinality subset
L ⊆ D of locker room doors so that no point on the shortest path π(s, l) from s to a door
l ∈ L sees another door l′ ∈ L, l′ 6= l.

1.1 Related work
Genders (and perfectness – the other theme of this paper, developed below) are in focus of
Hall’s Marriage Theorem [42]: a bipartite graph, whose parts are two genders and whose
edges indicate compatible pairs, has a perfect matching if and only if the vertices from
any size-k subset of one part are collectively connected to at least k vertices (from the
other part). Genders are central in research on Stable Marriage [16], where individuals rank
members of the other gender and the goal is to match people so that there exists no pair of
opposite-gender individuals each of which ranks the other higher than the current partner.
Last but not least, three genders are the subject in 3D Matching – one of the six basic
NP-complete problems [11, Section 3.1], in which the input is a set of compatible triples,
each containing one member of each of the three genders, and the goal is to choose a subset
of the triples so that each individual belongs to exactly one triple.

Hiding genders from the other genders is related to People Hiding, which is the problem
of selecting a largest set of pairwise-invisible polygon vertices, or the Maximum Independent
Set (MIS) in the visibility graph on V . Our problem is related to People Hiding because a
feasible set L of locker room doors must be an independent set (IS) in the graph. People
Hiding was proved NP-hard in [33], and [8] showed hardness of giving a PTAS.

More generally, both visibility and path planning are textbook subjects in geometric
computing – see, e.g., the respective chapters in the handbook [13] and the books [12,27].
Visibility meets path planning in a variety of computational-geometry tasks. Historically,
the first approach to finding shortest paths was based on searching the visibility graph of
the domain. Visibility is vital also in computing minimum-link paths, i.e., paths with fewest
edges [23, 25, 37]. Last but not least, “visibility-driven” route planning is the subject in

2 In addition, the door must be open, but the sensitive study of the birth–death process of people inside
locker rooms is outside the scope of this paper; anyway, doors are regularly opened for drying.

V. Polishchuk and L. Sedov 28:3

Watchman Route problems [2,6,7,24,28] where the goal is to find the shortest path (or a
closed loop) from which every point of the domain is seen (our door-picking algorithm uses the
“essential cut” from watchman-route solutions). Apart from the above-mentioned theoretical
considerations, visibility and motion planning are closely coupled in practice: computer
vision and robot navigation go hand-in-hand in many courses and real-world applications.

1.2 Contributions and Roadmap

We open up the door (pun intended) to algorithmic gender studies. Specifically,
Section 2 gives an algorithm for choosing the maximum number of doors so that no door is

seen from the shortest path between the entrance and another door. Note the contrast
with the hardness of hiding people: while just picking a maximum subset of pairwise-
invisible doors is equivalent to the NP-hard People Hiding (see Section 1.1), adding
the restriction that no door is seen also from the entire path to another door makes
our problem solvable in polynomial time (usually, adding restrictions makes problems
harder). To make our solution efficient, we give a simple algorithm for MIS in “interval
nest digraphs” (an extension of interval graphs), improving the currently-best cubic
runtime [19] to quadratic; our algorithm also works for the weighted MIS, improving the
currently-best runtime from quatric [18] to quadratic (the algorithms in [18, 19] work for
more general class of graphs, however). We also give a simple reduction from People
Hiding to our problem in domains with holes.

Section 3 proves (or, rather, gives another justification to the apparent fact) that non-equal
treatment of genders by genders makes things hard(er): the door picking problem becomes
NP-hard when every gender has a list of genders by whom it does not want to be seen
(and the list does not simply contain all the other genders).

Section 4 considers picking facilities for gender segregation without taking into account the
(in)visibility of genders to genders. We introduce the view on a gender as a (binary)
string of attributes, formulate the Axiom of (Gender) Choice and derive from it the first
result of the Gender Number Theory – the Fundamental Theorem On Multiple Genders.
The theorem, along with navigation convenience, motivates us to consider choosing a
subset of intervals on the polygon boundary so that the shortest paths from the entrance
to the chosen intervals form a perfect binary tree. We give an algorithm for the problem,
combining the greedy solution for MIS in an interval graph (which is perfect) with the
bottom-up computation of Strahler number [41], or the dimension [9] of a tree, which is
the height of the largest perfect tree minor of the given tree. We thus compute the gender
dimension of a set of intervals on the boundary of a polygon – the number of genders
that can be accommodated in a perfect way. The geometric nature of our MIS instances
is used to bound the amount of information propagated up the tree by the algorithm;
for general graphs, the requirement to have a perfect tree on the IS does not make the
problem easier than vanilla MIS.

2 The gender number of a gym

We show how to find the maximum number of genders that can have the “pathview-
independent” locker rooms in a gym. Recall the notation from Section 1: we are given a
subset D ⊂ V of vertices of a simple polygon P (the potential locker room doors) and a
vertex s ∈ V (the entrance), and want to pick a maximum-cardinality subset L ⊆ D so that
for any door l ∈ L, no point on the shortest s-l path π(s, l) sees another door l′ ∈ L, l′ 6= l.

FUN 2018

28:4 Gender-Aware Facility Location in Multi-Gender World

s

v a

b

P

i(v)

V

Su

Tu Sv

Sw

Tw

Tu

Figure 1 Left: V is shaded, i(v) is blue; v is seen from π(s, u) if and only if u ∈ i(v). Right: Any
IS is a path in the complement DAG, and vice versa: two consecutive vertices are connected in the
DAG by definition; moreover, if uv, vw are edges, then Sv is right of Tu (since Sv is right of Su,
and there is no uv edge in the original graph) and hence Sw is also right of Tu (since Sw is right
of Sv), implying that uw is also an edge, and inductively – that the whole path is a clique in the
complement (the path coincides with its transitive closure).

Consider the visibility polygon V of a vertex v ∈ D, which is the set of points seen by v
(Fig. 1, left). The polygon is bounded by edges and chords of P , with each chord connecting
a vertex of P to a point on the boundary of P . One immediate observation is that if a vertex
is visible from s, then the vertex cannot serve as the door to a room; thus it can be assumed
w.l.o.g. that no vertex in D sees s.

For a vertex v that does not see s, there is a unique chord ab of V separating v from s.
The chord is called the essential cut of v [2]. Let i(v) denote the interval a-b along the
boundary of P , to which v belongs. The vertex v is seen from the path π(s, u) to a vertex u
if and only if the path crosses ab, or, equivalently if and only if u ∈ i(v). Thus, our problem
reduces to the following: given the set of pairs (v, i(v))v∈D where v is a vertex and i(v) is an
interval on the boundary of P , find a maximum-cardinality subset L ⊆ D so that there are
no two vertices l, l′ ∈ L with l ∈ i(l′).

The above problem is an extension of MIS in interval graphs. Specifically, the intersection
graph of a family of geometric objects has a vertex for every object and an edge for every pair
of intersecting objects; the most prominent example, relevant for us, is the class of interval
graphs in which the objects are intervals on a line. (A generalization of interval graphs are
circular-arc graphs in which the objects are arcs on a circle; however, we have an interval
graph, not circular-arc graph, because none of our intervals contains s, as s is separated by
the essential cuts.) The following generalization of intersection graphs was proposed in [4]:
the intersection digraph of a family (Sv, Tv)v∈D of ordered pairs of sets has D as the vertex
set and a (directed) arc from vertex v to vertex u whenever Sv ∩ Tu 6= ∅; in the interval
digraph the sets Sv, Tv are intervals of the real line. Our problem reduces to finding MIS in
an interval digraph (or more precisely, in the undirected underlying graph in which every
arc is turned into undirected edge), simply by setting Sv = v, Tv = i(v); in fact, we have an
interval catch digraph [29], which are interval digraphs where Sv is a point and Sv ⊆ Tv. It
was shown in [29] that interval catch digraphs are weakly triangulated (contain no chordless
cycle of length at least 5 and no complement of such a cycle), and weakly triangulated graphs
are perfect [20]. A well known property of perfect graphs (see, e.g., [15, Chapter 9]) is that
MIS in them can be found in polynomial time.

I Theorem 1. The maximum number of genders, for which a gym can set up locker rooms so
that the shortest path from the entrance to any locker room does not see the door to another
locker room, can be computed in polynomial time.

I Remark. Instead of having D ⊂ V , we could consider a more general version where the
doors are segments on the boundary of P . We would then redefine V to be the weak visibility

V. Polishchuk and L. Sedov 28:5

P

s

Figure 2 The free space (blue) is P , the corridor and the zigzags (zigzags are drawn not to all
vertices); everything else (white) is obstacles.

polygon of v, i.e., the set of points seen from some point of v, or the union of the visibility
polygons of points of v – as above, if s is inside V, then v cannot be a locker room door.
Otherwise, a point of the door is seen from a path iff the path crosses the essential cut of v,
so the problem again reduces to MIS; this time – MIS in an interval nest digraph, in which
Sv is a segment and Sv ⊆ Tv (not interval catch digraph, as we had above, when the doors
were vertices). When the doors are non-point objects, other models could be possible for the
unwanted exposure: when a gender’s door l is fully seen from a point on the path π(s, l′) to
another gender’s door, when all of l is seen (collectively) from a subset of π(s, l′) (i.e., when
there exists π′ ⊆ π(s, l′) : l ⊂ ∪p∈π(s,l′)V(p) where V(p) is the visibility polygon of a point
p), when π′ has to be a contiguous subpath of π(s, l′), etc. – we leave these open.

I Remark. In non-simple gyms the problem becomes NP-hard. Indeed, given an instance of
People Hiding (finding MIS in the visibility graph of vertices of a simple polygon P), we set
the potential doors D to be the vertices of P , put a corridor around P and set the entrance s
to the obtained domain at the start of the corridor; we connect the corridor to each vertex of
P with a thin zigzag, so that no vertex sees any part of the corridor – this way, the path to
any door may see another door if and only if the two doors are visible in P (Fig. 2). Thus,
the maximum number of people that can hide from each other at vertices of P equals the
maximum number of genders that can have the “pathview-independent” locker rooms in the
domain.

2.1 A more efficient, combinatorial solution
General algorithms for MIS in perfect graphs [15, Chapter 9] are non-combinatorial and
may have high complexity; therefore a lot of effort has been devoted to designing faster
algorithms for special classes of perfect graphs. In particular, existing algorithms for interval
catch and interval nest digraphs look for cliques in the complement [30]; the same is true
also about general weakly triangulated graphs [1, 18, 19,31, 34]. The fastest existing solution
to our problem (MIS in an interval catch digraph) would run in worst-case cubic time [19];
here we give a simple quadratic algorithm. Our algorithm generalizes verbatim to interval
nest graphs and to finding weighted MIS, improving from the currently-best quartic-time
solution for the weighted case [18] (algorithms in [18, 19] work for more general classes of
graphs though).3

3 While going down from quartic to quadratic is a drastic theoretical improvement, we do not foresee an
application of weighing the genders unequally. A (different) gender-unequal situation is considered in

FUN 2018

28:6 Gender-Aware Facility Location in Multi-Gender World

s

Figure 3 Solid circles are the doors; a gender will see the doors of the genders in the same “leg”
of the caterpillar.

(Similarly to earlier algorithms,) we build the complement graph. (However, instead of
looking for a clique in it,) we turn the complement into a DAG using Sv’s for the vertices
and directing the edges from left to right (if Sv is to the right of Su, then there is a directed
edge uv; Fig. 1, right), and find a longest path in it. The (quadratic) runtime is dominated
by building the DAG and finding the path.

3 Gender inequality leads to hardness

In the previous section, the genders were gender-oblivious: it did not matter, for any gender,
which other gender would see it naked – the exposure was undesirable regardless. In this
section we consider the case when each gender has a list of genders to which it does not want
to be exposed; being seen by the genders outside the list is not an issue. This generalization
makes our problem NP-hard:

I Theorem 2. If genders have lists of genders by whom they do not want to be seen, it is
NP-hard to decide whether it is possible to set up locker rooms so that there are no unwanted
exposures from the shortest paths between the entrance and the locker rooms.

Proof. The reduction is from Partition Into Triangles [11, Problem GT11] (a close relative
of 3D Matching, see Section 1.1): Can vertices of a graph be partitioned into triples so that
the induced subgraph on each triple is a triangle? Given an instance of the problem, create a
caterpillar-like polygon which consists of a long corridor to which short corridors are attached
(Fig. 3), each ending with 3 doors; the total number of doors equals the number of vertices in
the graph. We have as many genders as there are doors – thus, our problem is not to choose
the doors (all doors need to be chosen), but to match perfectly the genders with the doors
(in Section 2, the matching was not an issue since all genders were equal).

We associate each vertex of the graph with a gender. For every edge in the graph, the
genders on the edge endpoints do not care about being exposed to each other, i.e., they are
not in each other’s lists (even though we are no longer in a gender-equal world, we at least
have gender-symmetric lists: if one gender does not want to be seen by another, the latter
does not want to be seen by the former). Thus, the vertices of the graph can be split into
triangle-inducing triples if and only if the rooms can be assigned to the genders, avoiding
undesirable exposures. J

4 Gender dimension and perfectness

In this section we stop taking (in)visibility between genders into account, consider premises
other than gyms and go deeper into understanding what a gender is.

the next section.

V. Polishchuk and L. Sedov 28:7

4.1 Setting up the perfect scene
Women-only gyms are an extreme way to address (if at all) gender issues; an arguably milder
approach to gender segregation, practiced e.g., in fast-food chains and airports in gender-
segregating societies, is to have separate counters for the different genders. The ancient
segregation tradition is unlikely to fade away, but maybe the modern ideas of acknowledging
multiple genders existence could make their way into gender-segregating cultures? Being
proactive, in anticipation of this, we consider the algorithmic question of picking disjoint
counters for the many genders; here, hiding genders from genders is not an issue (as it was
in Section 2) since people appear in the restaurant/airport well dressed.

Similar problems may arise e.g., in a ballet class where different genders use different
barres lined up along the walls, and may even be supervised by different(-gender) coaches.
A usual reason for separating genders in ballet classes is that they practice different, often
complementary, parties. In ballet, gender questions have always been answered in the most
progressive ways (and even were subjects of publications [26]); e.g., more-than-lightweight
ballerinas and their spectacular performance are recurring topics in ballet circles [38,40]. We
may look forward ballet pieces in which presence of multiple genders is an essential part of
the composition (as the two genders currently are) in the foreseeable future (directing such
compositions may lead to interesting geometric questions). That is, solving the problem of
optimally setting up the barres for multiple genders may be even more pressing than the
above-discussed question of segregating genders at counters. Again, no issue of hiding (from)
genders is present (on the contrary, genders might even want to show off to other genders).

Examples like above bear the common abstract gist, which may be formalized in the
following problem statement:

Picking Intervals for Gender Segregation (PIGS) problem We are given a set D of inter-
vals on the boundary of a simple polygon P – representing potential counters in a shop or
restaurant, (sequences of) ballet barres, etc.; also given is a vertex s of P – the entrance.
None of the intervals in D contains s, but otherwise, the intervals are not connected to P
in any way (they may start and end in the middle of P ’s edges, may span multiple edges,
etc.). It can be assumed w.l.o.g. that no interval is a subset of another interval. The goal
is to pick a maximum-cardinality subset L ⊆ D of non-overlapping intervals.

Giving a polynomial-time algorithm for PIGS is not interesting, since the intervals form
an interval graph which is perfect (as in Section 2, we have an interval graph, and not
circular-arc graph, since s belongs to no interval, implying that the boundary of P may be
punctured at s). In the reminder of the section we take perfection one step further and
require also that the shortest paths from s to the picked intervals form a perfect binary tree
(which we will often call just “perfect” tree) – i.e., a binary tree in which every internal node
has degree 2 (after vertices along paths are smoothed) and all leaves are at the same level
(such a tree is sometimes called “complete” [44]). The motivation for the requirement comes
from a deeper study of gender nature, presented next.

4.2 Gender definition and formal GS foundations
A moment of reflection suggests that a gender must be characterized by certain attributes –
of social, biological, or any other nature. To expand and formalize this thought, we define
gender as a string:

I Definition 3. Let A1, . . . , AK be a set of attributes; for k = 1 . . .K, let Ak be the set of
values that Ak may assume. A gender is a string a1 . . . aK where ak ∈ Ak.

FUN 2018

28:8 Gender-Aware Facility Location in Multi-Gender World

Algorithmic gender studies, for which this paper makes the first steps, will become an
essential part of Gender Science (GS). As any science, GS must be built on a solid axiomatic
foundation (currently missing, which is forgivable for a science as young as GS). In particular,
we believe that it would be unfair to deprive GS of the Axiom of Choice (while the good old
sciences like mathematics enjoy the axiom in its full generally). The GS axiom reads:

I Axiom 4 (Axiom of Choice). Given a set of attributes, there is a gender for each choice of
values for the attributes.

For instance, assume that aK = baldness is a binary attribute (equal to 1 for a bald person
and 0 otherwise), and let S = a1 . . . aK−1 be a length-(K − 1) string with ak ∈ Ak, k =
1 . . .K − 1. Then both S0 and S1 should be genders, for it would be discriminative if
bald people could identify themselves with a separate gender, while non-bald could not, or
vice versa (boldness, or another attribute could be used in the example just as well). As
computer scientists (who are adepts of the binary view of the world, reducing everything to
0s and 1s – cf. the classical joke about 10 types of people), we postulate that every attribute
can assume only the values of 0 and 1 (∀k = 1 . . .K,Ak = {0, 1}); if not, just represent any
kind of non-binary attribute by a set of binary attributes of appropriate size. With this
interdisciplinary GS–CS postulate, we are ready to prove the first (and maybe the last) result
in Gender Number Theory:

I Theorem 5 (Fundamental Theorem On Multiple Genders (Fundamental OMG Theorem)).
The number of genders is a power of 2.

Proof. By the Axiom of Choice, the number of genders is 2K . J

We emphasize that the number of attributes K (and hence the number of genders) is not a
constant; as the society gender awareness evolves, K may grow (and possibly decrease – but
this is outside our scope).

4.3 Perfect counter/barre choice
We now return to choosing disjoint intervals for the genders (PIGS). By the Fundamental OMG
Theorem, the number of picked intervals, |L|, must be a power of 2. As the number of genders
will grow exponentially with new attributes being introduced/acknowledged/fashonable, it
may become cumbersome to navigate from the entrance, s, to the intervals corresponding
to people’s genders. Returning for a moment to our gym application (Section 2), we ran
extensive experiments on ourselves, in which the subject arrives to a new gym and finds the
way to the locker room of the subject’s gender; it was observed that, unsurprisingly, the task
is much easier to perform in gyms with legible signs which first point in the general direction
of the locker rooms, and then clearly mark the point where the paths to the different-gender
rooms diverge.4 Back to PIGS, we envision that in multi-gender society, it will also be
convenient to have a “binary-split” shortest path tree (an extension of the classical “Boys to
the left, girls to the right” directions from field trips to the wild), for navigation from s to
the genders target intervals, with clearly marked split nodes. It might be confusing, however,
to have a sign listing, say, 17 genders whose intervals are in one direction and 15 genders
whose targets are in another – in fact, it could be embarrassing to stand near such a sign as

4 Detailed report of the experimental results is deferred to a submission to the future sister conference on
FUN with Experimental Algorithms.

V. Polishchuk and L. Sedov 28:9

s
P

span(Y)
i

y
span(X)

x
a b

lca(Y)lca(X)

Figure 4 Left: Bold intervals are a perfect set Y of height 2. Red is the span of the set (Definition 6
below) and blue is SPT(Y); lca(Y) = s. Right: Intervals are black; paths in SPT(D) are blue.

if confused about own gender (like the gender-confused Wolf from Shrek 1, mentioned as
such in Shrek 2). On the contrary, it would be more natural (and gender-respectful) to split
the genders paths based on the attributes, with each split involving only one attribute.

Thus, a gender-caring facility owner may face PIGS with the additional requirement that
the shortest paths tree from s to the chosen intervals has maximum degree 3 (i.e., when
viewed as rooted tree with s as the root, its every node has either 1 or 2 children). To state
the full problem formally, let us introduce some notation.

We keep the assumptions from PIGS; in particular, the assumption that s does not belong
to any interval from D. For an interval i ∈ D, we define the left endpoint l(i) of i to be its
(end)point encountered first when going from s counterclockwise around ∂P ; more generally,
we say that for two points a, b ∈ ∂P , a is to the left of b if a is between s and b when following
the boundary counterclockwise from s. For a vertex v of P , the shortest path from v to i will
mean the shortest path π(v, l(i)) to l(i). (Alternatively, we could have used any other fixed
points on the intervals to define the shortest paths or even use the “true” shortest paths
to the intervals – i.e., shortest paths to their points that are closest to s– but dealing with
paths to points makes the exposition cleaner; in terms of our applications, we may assume
that the left endpoints are where the cashiers are at the counters or where the ballet dancers
drop their stuff before using the barres.) For a subset X ⊆ D of intervals, let SPT(X) be
the shortest paths tree from s to the intervals in X, and let lca(X) be the intervals’ least
common ancestor in SPT(D). It can be assumed w.l.o.g. that all intervals in D are leaves of
SPT(D) (otherwise, if an interval i corresponding to an internal node of the tree is picked,
the interval can be replaced by a leaf interval i′, the shortest path to which goes via i).

Let Y ⊆ D be a set of pairwise-disjoint intervals; we say that intervals in Y are independent
(since they form an IS in the interval graph). Let tree T be the union of the shortest paths
from lca(Y) to intervals in Y (Fig. 4, left). Abusing the terminology, we say that T is perfect
if it becomes a perfect binary tree after its degree-2 vertices are repeatedly smoothed (i.e.,
after every path of degree-2 vertices in T is replaced by a single edge). If T is perfect, we
say that Y is a perfect IS, or simply a perfect (sub)set. Clearly, the cardinality of a perfect
subset is a power of 2. We say that a size-2k perfect set Y has height k (because k is the
height of lca(Y) when T becomes perfect after the smoothing).

With the above notation, our problem may be stated as:

Perfect PIGS We are given a set D of intervals on the boundary of a simple polygon P ; also
given is a vertex s of P . The goal is to pick the largest perfect subset L of D (i.e., the
largest subset L ⊆ D such that SPT(L) is perfect).

That is, solution to Perfect PIGS gives the maximum number of genders for which the
intervals can be picked so that people can navigate to their intervals in a “perfect” way –
with only binary decisions at the branching points of SPT(L).

FUN 2018

28:10 Gender-Aware Facility Location in Multi-Gender World

Perfect PIGS is an extension of not only PIGS but also of the problem of finding the
dimension [9], or the Strahler number [41] of a tree – the height of the largest perfect minor of
the tree (it is assumed that the tree is rooted and that the perfect minor has the same root).
We therefore define the gender dimension of D as the height of the perfect tree SPT(L); with
this definition, Perfect PIGS becomes the problem of computing the gender dimension of a
set of intervals.

Our solution for Perfect PIGS, presented in Section 4.4, is based on two simple algorithms:
the greedy Earliest-Endpoint algorithm for MIS in interval graphs: iteratively pick the
interval with leftmost right endpoint and remove the intervals overlapping the picked one;
the recursive procedure to compute the Strahler number of a tree (and in fact, the Strahler
number of each subtree – the height of the largest perfect minor of the subtree): assign
Strahler number d(l) = 0 to each leaf l, and then for an internal node v, let k be the
maximum of the Strahler numbers of v’s children – if the maximum is unique, assign
d(v) = k, otherwise, d(v) = k + 1.

For Perfect PIGS, to make sure the leaves of SPT(L) are pairwise-disjoint, we propagate
more information up the tree SPT(D): for every node v of SPT(D) we list, for every k, all
height-k “tight” perfect sets of intervals from the subtree of v (where tight is an analog of
earliest-endpoint). The details follow.

4.4 Algorithm for Perfect PIGS
We start from showing that when merging perfect sets from sibling nodes of SPT(D), it
suffices to look at “spans” of the sets. Specifically, let X ⊆ D be a perfect set.

I Definition 6. The span of X, denoted span(X), is the smallest interval containing all
intervals in X (refer to Fig. 4, left).

Clearly, if spans of two independent sets do not overlap, their union is also an IS. The next
lemma shows that if the sets live in different subtrees of SPT(D), the converse is also true:

I Lemma 7. Let X,Y ⊂ D be independent sets such that none of them is a subset of the
other and lca(X) 6= lca(Y). If X ∪ Y is independent, then span(X) ∩ span(Y) = ∅.

Proof. Let x, y be the left endpoints of span(X) and span(Y) resp. (Fig. 4, right); assume
w.l.o.g. that y is to the right of x, and let i ∈ Y be the interval whose left endpoint is y
(y = l(i)). Let ab be the rightmost interval in X (so b is the right endpoint of span(X)). The
paths from lca(X) to x and a, together with the part of the boundary of P from x to a form
a closed loop; since none of lca(X), lca(Y) is in the subtree of the other (for otherwise one of
X, Y would be a subset of the other), lca(Y) is outside the loop. We claim that if the spans
of X and Y intersect, then y is to the left of a, implying that the path π(lca(Y), y) from
lca(Y) to i would intersect the loop, contradicting planarity of SPT(D) (which follows from
the triangle inequality). Indeed, for the spans to intersect, y must be to the left of b, but if y
is also to the right of a, then i intersects ab – contradicting that X ∪ Y is independent. J

Lemma 7 allows us to work with spans of perfect sets (instead of the sets themselves) when
merging sets up SPT(D); moreover, where it creates no confusion, we will identify X with
span(X), and with lca(X). E.g., we will speak about perfect sets X, Y (or the spans span(X),
span(Y)) being siblings – meaning that lca(X), lca(Y) are siblings in SPT(D). In addition,
unless stated otherwise, whenever we speak about two perfect sets X, Y , we will assume
that they are siblings and have the same height (i.e., the same number of intervals) – this
is because we separately maintain perfect sets of each possible height and merge up the

V. Polishchuk and L. Sedov 28:11

︸ ︷︷ ︸
X

︸ ︷︷ ︸
Y

Y ′︷ ︸︸ ︷ u v

w

Figure 5 Left: SPT(D) is blue; Y is tight w.r.t. X, but Y ’ is not. Right: Tight height-1 sets at u
are green and yellow, and the sets at v are red and blue; tight height-2 sets at w will be green+red
and yellow+blue.

tree only pairs of sibling sets with the same height. Finally, whenever two spans have been
merged in the course of the algorithm, we do a cleanup by removing “dominating” spans
among siblings (span(Y) dominates a sibling span span(X) if span(X) ⊆ span(Y)) – this lets
us speak about one set being to the left of another sibling set: X is to the left of a sibling Y
if the left endpoint of span(X) is to the left of the left endpoint of span(Y) (due to removal
of dominating spans, the right endpoint of X is also to the left of the right endpoint of Y).

Suppose now that X is to the left of Y and their spans do not overlap, or, to spell out all
the assumptions, let X,Y ⊂ D be perfect sets such that |X| = |Y |, (any point of) span(X)
is to the left of span(Y), and lca(X) and lca(Y) are siblings in SPT(D).

I Definition 8. Y is tight w.r.t. X if there is no perfect set Y ’ such that (Fig 5, left): Y ’ is
in the same subtree (lca(Y ′) = lca(Y)); |Y ′| = |Y |; X ∪ Y ′ is an IS; Y ’ is to the left of Y .

Let v = lca(lca(X), lca(Y)) be the common parent of lca(X) and lca(Y). Since (even) the
spans of X and Y do not intersect, Z = X ∪ Y is an IS. Since X and Y have the same
number of intervals and are siblings, Z is perfect: the height of the perfect tree rooted at v is
by one larger than the height of the perfect trees rooted at its children; with our terminology,
if each of X, Y had height k, the height of Z is k + 1.

Our algorithm merges, for each possible height k of perfect sets, only tight sets (Fig. 5,
right). We initialize by making at each leaf of SPT(D) the list containing the interval at the
leaf (k = 0). We then go up the tree. First of all, an internal node v of SPT(D) inherits
the lists of its children for all k. In addition, we go through the lists of v’s children for k,
searching for tight merges of perfect sets. We do it brute force: for every child x of v, for
every set X in the list of x, we go through each set Y in the list of every other child y

checking whether span(X) and span(Y) are disjoint; out of the found sets, we keep only the
tight one – for a fixed X, there is at most one tight union X ∪ Y . The tight union becomes
part of the list of v for k + 1. If no pair (X,Y) with disjoint spans is found, then v’s list for
k + 1 is empty.

I Theorem 9. There is a polynomial-time algorithm for Perfect PIGS.

Proof. Any tight set, after being created at a node v, appears also in the lists of all nodes on
the path from v to the root s (unless the set is removed due to domination) – altogether at
most |V | times. To bound the number of sets created through the algorithm, note that since
we remove dominating sets, at any node of SPT(D), for any k, we have at most one tight set
“starting” at any interval i, i.e., the set whose span’s left endpoint is l(i) (in any case, the
total number of possible spans is O(|D|2), as the spans endpoints come from endpoints of
the original intervals). Since k is logarithmic in |D|, there are O(log |D|)) lists at any node,
so we can afford the propagation for all k – the total amount of propagated information is
polynomial in |D| and |V |, and the algorithm runs in polynomial time.

FUN 2018

28:12 Gender-Aware Facility Location in Multi-Gender World

x1 ¬x1

Figure 6 Left: Red and green spans are not tight, while red and blue are; using the tight union
cannot lead to overlap with an interval i from another subtree, as such overlap would imply a crossing
in SPT(D). Right: (Some of) the graph edges are drawn black; the inter-clause edges connect any
variable to its negation.

Correctness of the solution can be shown by arguing that all “recursively tight sets” appear
in our algorithm in the sets lists and that it suffices to look only at such sets. Specifically,
let T be a perfect tree and let L ⊆ D be its leaves. For a set Z ⊆ L let v = lcaT (Z) be the
node of T whose subtree has Z as the leaves, and let X and Y be the sets at T ’s children
of v (so Z = X ∪ Y), with Y being tight w.r.t X. Say that Z is recursively tight if the sets
at each internal node of the subtree of v is a tight union (i.e., if recursively, each of X and
Y is a tight union, and – for the base of the recursion – a single interval is assumed to be
a tight union). By induction on the node height, our algorithm lists all recursively tight
sets, as it goes through all possible pairs of sets at each node of SPT(D). At the same time,
there must exist a recursively tight optimal solution. Indeed, any feasible solution can be
made recursively tight by (recursively) shuffling the spans to the left: start at the root of the
perfect tree, and if the set Z = X ∪ Y at the root is not a tight union, then there exists a set
Y ’ such that Z ′ = X ∪ Y ′ is a tight union – the solution with Y replaced by Y ’ is still an
IS; recursively, if any of X, Y ’ is not a tight union, it can be fixed in the same way – the
solution will remain feasible, which can be seen by a planarity argument analogous to the
proof of Lemma 6 (Fig. 6, left). J

I Remark. Unsurprisingly, in general, putting a tree on top of an arbitrary graph and
requiring to have a perfect tree minor on the IS from the graph, does not help finding MIS.
To see this, use CLRS [3, p.1087] reduction from 3-SAT to MIS in the graph with a vertex for
every literal, the literals in each clause connected into triangle (so at most one vertex from
every clause may enter MIS) and edges between two literals whenever they are a variable
and its negation (so only one can be in MIS); MIS size equals the number of clauses if and
only if the 3-SAT instance is feasible (Fig. 6, right). It is easy to make the number of clauses
a power of 2 and add a tree on the graph nodes, with vertices in each clause triangle being
siblings of a height-1 parent, and the perfect binary tree up the leaves parents – any MIS will
be perfect, so demanding the tree perfectness does not make the problem easier. It could
be interesting to explore for which graphs, if any, the perfectness requirement changes the
hardness of finding MIS; one question relevant to the gender study is whether it is possible
to find perfect MIS in an interval catch digraph, to which reduces the problem of picking
genders’ locker room doors (like in Section 2) in the perfect way (like in Section 4) – we
answer the question affirmatively in Appendix A.

5 Conclusion

We gave first algorithmic results for assessing how fit a gym is (i.e., how many genders it can
accommodate) and related questions, presenting some polynomially-solvable and g-hard (for
gender-hard, i.e., hard w.r.t. the number of genders) problems. Many extensions are possible:

V. Polishchuk and L. Sedov 28:13

For a given number of genders, if it is not feasible to choose doors so that there is no
exposure (Section 2), one may want to minimize various measures of the exposure – the
number of undesirable peeks, the total length of the parts of the shortest paths from
which the other(s’) doors are seen, the total area seen behind the doors, the “depth” of
the exposures (how far into locker rooms other genders see), etc. In the gender-oblivious
scenario (when any gender does not want to be seen by all the others) the assignment of
genders to the doors does not matter (as in Section 2); what matters is which vertices
are chosen to be the doors.
The gender-unequal setting in Section 3 may be generalized to the case when there is
a whole matrix of numbers (possibly with positive entries, for exhibitionist genders)
signifying (un)desirability of one gender being seen by every other. Here, one may want
to minimize the weighted exposure.
Last but not least, it would be interesting to know hardness of finding maximum perfect
IS in a general perfect graph with a tree over its vertices. E.g., can the math programming
algorithms for MIS in perfect graphs be made to work?

More generally, further mathematical studies on genders are to come, e.g., extending the
differential equations for love [36] to many genders.

References
1 Srinivasa Arikati and C. Rangan. An efficient algorithm for finding a two-pair, and its

applications. Discrete Applied Mathematics, 31(1):71–74, 1991.
2 Svante Carlsson, Håkan Jonsson, and Bengt J. Nilsson. Finding the shortest watchman

route in a simple polygon. Discrete & Computational Geometry, 22(3):377–402, 1999. doi:
10.1007/PL00009467.

3 Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction to
Algorithms. The MIT Press, 3rd edition, 2009.

4 Sandip Das, M Sen, AB Roy, and Douglas B West. Interval digraphs. J. Graph Theory,
13(2):189–202, 1989.

5 Donna Dean. Changing ones: 3rd & 4th genders in native America. Women and Military,
18(2):54–54, 2000.

6 Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph Mitchell. Touring a sequence of polygons.
In Lawrence L. Larmore and Michel X. Goemans, editors, SToC’03, pages 473–482. ACM,
2003.

7 Adrian Dumitrescu and Csaba D. Tóth. Watchman tours for polygons with holes. Comput.
Geom., 45(7):326–333, 2012. doi:10.1016/j.comgeo.2012.02.001.

8 Stephan Eidenbenz. Inapproximability of finding maximum hidden sets on polygons and
terrains. CGTA, 21(3):139–153, 2002.

9 Javier Esparza, Michael Luttenberger, and Maximilian Schlund. Fpsolve: A generic solver
for fixpoint equations over semirings. Intl J Foundations of Computer Science, 26(07):805–
825, 2015.

10 European Commission. Gendered Innovations.
11 Michael R. Garey and David S. Johnson. Computers and Intractability. Freeman & Co.,

New York, NY, USA, 1979.
12 Subir Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, New York,

NY, USA, 2007.
13 J.E. Goodman and J. O’Rourke, editors. Handbook of Discrete and Computational Geo-

metry. Discrete Mathematics and Its Applications. Taylor & Francis, 2nd edition, 2004.
14 Sharyn Graham. Sulawesi’s fifth gender. Inside Indonesia, 66, 2001.

FUN 2018

http://dx.doi.org/10.1007/PL00009467
http://dx.doi.org/10.1007/PL00009467
http://dx.doi.org/10.1016/j.comgeo.2012.02.001
http://ec.europa.eu/research/swafs/gendered-innovations/index_en.cfm

28:14 Gender-Aware Facility Location in Multi-Gender World

15 Martin Grötschel, László Lovász, and Alexander Schrijver. Combinatorial optimization,
volume 2. Springer Science & Business Media, 2012.

16 Dan Gusfield and Robert Irving. The Stable Marriage Problem: Structure and Algorithms.
MIT Press, Cambridge, MA, USA, 1989.

17 Vi Hart. On Gender, 2015.
18 Ryan Hayward, Chính Hoàng, and Frédéric Maffray. Optimizing weakly triangulated

graphs. Graphs and Combinatorics, 5(1):339–349, Dec 1989.
19 Ryan Hayward, Jeremy Spinrad, and R. Sritharan. Weakly chordal graph algorithms via

handles. In SODA’00, pages 42–49, Philadelphia, PA, USA, 2000. Society for Industrial
and Applied Mathematics.

20 Ryan B Hayward. Weakly triangulated graphs. J Comb Theory, Series B, 39(3):200–208,
1985.

21 Aaron Homer. Man Uses Women’s Locker Room At Seattle Pool, Says It’s Legal Because
Of Anti-Transgender Discrimination Laws, 2016.

22 M Kay Martin and Barbara Voorhies. Female of the Species. Columbia University Press,
1975.

23 J. Mitchell, G. Rote, and G. Woeginger. Minimum-link paths among obstacles. Alg-ca’92,
8(1):431–459, 1992.

24 Joseph Mitchell. Approximating watchman routes. In Sanjeev Khanna, editor, Proc. 24th
Annual ACM-SIAM Symp. on Discrete Algorithms, SODA’13, New Orleans, Louisiana,
USA, pages 844–855. SIAM, 2013.

25 Joseph S. B. Mitchell, Valentin Polishchuk, and Mikko Sysikaski. Minimum-link paths
revisited. Comput. Geom., 47(6):651–667, 2014. doi:10.1016/j.comgeo.2013.12.005.

26 Cynthia J Novack. Ballet, gender and cultural power. In Dance, gender and culture, pages
34–48. Springer, 1993.

27 Joseph O’Rourke. Art Gallery Theorems and Algorithms. The International Series of
Monographs on Computer Science. Oxford University Press, New York, NY, 1987.

28 Eli Packer. Computing multiple watchman routes. In Catherine C. McGeoch, editor,
SEA’08, volume 5038 of Lecture Notes in Computer Science, pages 114–128. Springer, 2008.

29 Erich Prisner. A characterization of interval catch digraphs. Discrete Math, 73(3):285–289,
1989.

30 Erich Prisner. Algorithms for interval catch digraphs. Discrete Appl Math, 51(1-2):147–157,
1994.

31 Arvind Raghunathan. Algorithms for weakly triangulated graphs, 1989. Tech Rep, UC
Berkeley. URL: http://www2.eecs.berkeley.edu/Pubs/TechRpts/1989/5196.html.

32 Londa Schiebinger. Gendered Innovations, 2013.
33 T Shermer. Hiding people in polygons. Computing, 42(2):109–131, 1989.
34 Jeremy P. Spinrad and R. Sritharan. Algorithms for weakly triangulated graphs. Discrete

Applied Mathematics, 59(2):181–191, 1995. doi:10.1016/0166-218X(93)E0161-Q.
35 Stanford University. Gendered Innovations.
36 Steven H Strogatz. Love affairs and differential equations. Mathematics Magazine, 61(1):35,

1988.
37 Subhash Suri. A linear-time algorithm for minimum link paths inside a simple polygon.

Computer Vision, Graphics and Image Processing, 35(1):99–110, 1986.
38 Erica Tempesta. Stereotypes are made to be broken!, 2017.
39 Randolph Trumbach. From 3 sexes to 4 genders in the making of modern culture. Routledge,

1991.
40 Peter Walker. Men need lots of energy to lift ballet dancers because women are getting

taller, 2017.
41 Wikipedia contributors. Strahler number, 2017.

https://www.youtube.com/watch?v=hmKix-75dsg
https://www.inquisitr.com/2804761/man-uses-womens-locker-room-at-seattle-pool-says-its-legal-because-of-anti-transgender-discrimination-laws/
https://www.inquisitr.com/2804761/man-uses-womens-locker-room-at-seattle-pool-says-its-legal-because-of-anti-transgender-discrimination-laws/
http://dx.doi.org/10.1016/j.comgeo.2013.12.005
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1989/5196.html
https://www.youtube.com/watch?v=JaYzdz9X3n4
http://dx.doi.org/10.1016/0166-218X(93)E0161-Q
https://genderedinnovations.stanford.edu
http://www.dailymail.co.uk/femail/article-4118028/Stereotypes-broken-Plus-size-ballerina-online-star-footage-teen-executing-elaborate-turning-sequence-goes-viral.html
http://www.telegraph.co.uk/news/2017/06/04/men-need-lots-energy-lift-ballet-dancers-women-getting-taller/
http://www.telegraph.co.uk/news/2017/06/04/men-need-lots-energy-lift-ballet-dancers-women-getting-taller/
https://en.wikipedia.org/w/index.php?title=Strahler_number&oldid=815882619

V. Polishchuk and L. Sedov 28:15

42 Wikipedia contributors. Hall’s marriage theorem, 2018.
43 Wikipedia contributors. Third gender, 2018.
44 Yuming Zou and Paul Black. Perfect binary tree. In Vreda Pieterse and Paul E. Black,

editors, Dictionary of Algorithms and Data Structures. National Institute of Standards and
Technology, 2008.

A Maximum perfect subset of doors

This section extends the algorithm for perfect MIS in interval graphs (Section 4) to interval
catch digraphs, thus solving the problem of picking genders’ locker room doors (like in
Section 2) in the perfect way (like in Section 4). The extension follows the same approach
of merging “tight” sets up the tree, after appropriate modifications of definitions for span,
being to the left, tightness, etc. The technical details follow.

We first recollect some definitions from Section 2. An interval digraph has two intervals
(Sv, Tv) for each vertex v; two vertices u, v are connected if either Su ∩Tv 6= ∅ or Sv ∩Tu 6= ∅
(or both). Strictly speaking, the graph is directed, but, similarly to almost all work on
interval digraphs, we will look at the underlying undirected graph and often say simply
“graph” for “digraph”. An interval nest digraph has Sv ⊆ Tv ∀v; we call Sv and Tv the inner
and the outer intervals, resp. An interval nest graph is an interval catch graph if Sv is a single
point for all v. As usual, we will identify graph vertices with their intervals. The problem of
picking maximum perfect subset of locker rooms reduces to the following: given an interval
catch graph on the potential doors D, with Sv = v, Tv = i(v) ∀v ∈ D (see Section 2 for
notation), find a maximum independent set L ⊆ D such that the shortest paths from s to L
form a perfect tree (see Section 4 for terminology).

Our algorithm for picking a maximum perfect pathview-independent subset of locker
room doors reuses two ideas from the algorithm of [30] for maximum clique in interval catch
digraphs:

instead of solving the problem for interval catch graphs, solve it for (more general) interval
nest graphs
if two vertices u, v of an interval nest graph are replaced by their “span”, the span will be
connected to those and only those vertices to which (at least) one of u, v was connected
([30, Theorem 3.6]; see also [18] for an application of the similar idea to finding maximum
cliques in general weakly triangulated graphs).

We now define the span formally. Extending Definition 6 (Section 4) of the span of a set
of segments, we obtain the span of two vertices in an interval nest digraph by taking the
spans of both the inner and the outer intervals:

I Definition 10. The span of two vertices u, v consists of a pair of intervals (S, T) where S
is the smallest interval containing Su, Sv and T is the smallest interval containing Tu, Tv.

Clearly, if Sv ⊆ Tv, Su ⊆ Tu, then S ⊆ T ; thus, we can speak about the new interval
nest graph in which u and v are replaced by their span (in [18, 30] such graph is denoted by
G(uv >> w) where G is the original graph and w is the vertex for the span of u, v). The
span of more than two vertices is defined analogously, using associativity of taking the span.
We retain all conventions from Section 4: a “set” will usually mean a perfect IS, two sets will
generally have the same cardinality and be siblings in SPT(D), we will identify sets with
their spans, and sometimes say “vertices” instead of “spans” – meaning that the spans are
vertices in the interval nest graph (obtained by applying the G(uv >> w) operation, possibly
several times).

FUN 2018

https://en.wikipedia.org/w/index.php?oldid=810002918
https://en.wikipedia.org/w/index.php?title=Third_gender&oldid=819839594
https://www.nist.gov/dads/HTML/perfectBinaryTree.html

28:16 Gender-Aware Facility Location in Multi-Gender World

︸ ︷︷ ︸
X ︸ ︷︷ ︸

Y

Y ′︷ ︸︸ ︷

Figure 7 The inner intervals are represented by the arrows. Left: Y is tight w.r.t. X, but Y ’ is
not; as in the proof of Lemma 7, if Y ’ were to be picked together with a set Z (grey) from another
subtree, then SPT(D) (blue) would have had a crossing – to see this, ignore the outer intervals
TX , TY ′ , TZ and note that the paths to vertices in X, Y ’ and Z end inside SX , SY ′ , SZ resp. (and for
Z to be independent from both X and Y ’, SZ must not overlap with any of SX , SY ′ – so SZ would
have to lie between SX and SY ′ , implying the crossing). Right: Any black set is tight w.r.t. the red;
no black sets “dominates” another black set because, depending on which green set is present, any
black set may be the only one compatible with the green.

Analogously to merging intervals in Section 4, we merge (tight spans of) vertices up the
tree SPT(D). The only difference is that for interval nest graphs the tightness is defined
w.r.t. both inner and outer intervals. Specifically, let X and Y be two non-connected vertices,
i.e., spelling out all our assumptions, two same-cardinality perfect independent sets such that
lca(X), lca(Y) are siblings and X ∪ Y is a perfect IS (or two spans of such sets); assume
w.l.o.g. that X is “to the left” of Y – i.e., TX is to the left of SY and (hence) SX is to the
left of TY .

I Definition 11. Y is tight w.r.t. X if there is no perfect set Y ’ such that (Fig 7, left):
Y ’ is in the same subtree (lca(Y ′) = lca(Y));
|Y ′| = |Y |;
X ∪ Y ′ is an IS;
the right endpoint of SY ′ is to the left of the right endpoint of SY , or the right endpoint
of TY ′ is to the left of the right endpoint of TY .

The first three items are the same as in the tightness definition for interval graphs (Definition 8
in Section 4), while the last is slightly more involved since for interval nest graphs we have
to look at both the inner and outer intervals (Fig. 7, right).

As in Section 4, considering only tight unions is enough, since any feasible solution can
be made recursively tight by the same (recursive) procedure as in the proof of Theorem 9
– replace any non-tight set Y with a set Y ’ that certifies non-tightness if Y ; also as in the
theorem’s proof, our algorithm lists all recursively tight sets, as it goes through all possible
tight sets at every node of SPT(D). The only difference is that for interval nest graphs, more
tight sets are created because there may be more than one tight set “starting” at any vertex
v ∈ D (i.e., the set whose span’s inner interval has left endpoint at l(Sv) or whose span’s
outer interval has left endpoint at l(Tv)); refer to Fig. 7, right. Still, for every k, at any node
of SPT(D) there are O(|D|4) spans – this is because a span is defined by 4 points (endpoints
of the inner and outer intervals), each of which is either v ∈ D or an endpoint of i(v); thus
there are O(|D|4) different spans overall.

Card-Based Zero-Knowledge Proof for Sudoku
Tatsuya Sasaki
Graduate School of Information Sciences, Tohoku University
6–3–09 Aramaki-Aza-Aoba, Aoba, Sendai 980–8579, Japan
tatsuya.sasaki.p2@dc.tohoku.ac.jp

Takaaki Mizuki
Cyberscience Center, Tohoku University
6–3 Aramaki-Aza-Aoba, Aoba, Sendai 980–8578, Japan
tm-paper+cardsudk@g-mail.tohoku-university.jp

Hideaki Sone
Cyberscience Center, Tohoku University
6–3 Aramaki-Aza-Aoba, Aoba, Sendai 980–8578, Japan

Abstract
In 2009, Gradwohl, Naor, Pinkas, and Rothblum proposed physical zero-knowledge proof pro-
tocols for Sudoku. That is, for a puzzle instance of Sudoku, their excellent protocols allow a
prover to convince a verifier that there is a solution to the Sudoku puzzle and that he/she knows
it, without revealing any information about the solution. The possible drawback is that the
existing protocols have a soundness error with a non-zero probability or need special cards (such
as scratch-off cards). Thus, in this study, we propose new protocols to perform zero-knowledge
proof for Sudoku that use a normal deck of playing cards and have no soundness error. Our
protocols can be easily implemented by humans with a reasonable number of playing cards.

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques

Keywords and phrases Zero-knowledge proof, Card-based cryptography, Sudoku

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.29

Funding This work was supported by JSPS KAKENHI Grant Number JP17K00001.

Acknowledgements The authors would like to express their deepest appreciation to Kazumasa
Shinagawa for helpful discussions during this work.

1 Introduction

Sudoku is one of the most famous puzzles. In a standard challenge, a 9×9 grid is used, which
is divided into 3× 3 subgrids. Some of the cells are already filled with numbers between 1
and 9. The goal of Sudoku is to fill all the empty cells with numbers so that each row, each
column, and each subgrid contains all the numbers from 1 to 9. Figure 1 shows an example
of a standard Sudoku challenge, and its solution.

We address a generalized version of Sudoku in this study. That is, a Sudoku puzzle where
a grid is n× n cells, a subgrid is k × k cells, and numbers from 1 to n are used. Note that
n = k2; the standard size of a Sudoku puzzle corresponds to n = 9 and k = 3.

We solicit zero-knowledge proof protocols for Sudoku. That is, for a certain Sudoku
puzzle, we assume a prover P who knows the solution to the Sudoku puzzle and a verifier
V who does not know it, and suppose that P wants to convince V of the following without
revealing any information about the solution.

© Tatsuya Sasaki, Takaaki Mizuki, and Hideaki Sone;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 29; pp. 29:1–29:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tatsuya.sasaki.p2@dc.tohoku.ac.jp
mailto:tm-paper+cardsudk@g-mail.tohoku-university.jp
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Card-Based Zero-Knowledge Proof for Sudoku

2017/12/13 16

1 5 6 7
2 4 8

6 7
3 5

4 1 8
8 2 9
2 4

9 2 7 8 3
6 1 2

8 3 1 9 2 5 6 7 4
9 2 5 6 7 4 8 3 1
6 7 4 8 3 1 9 2 5
3 1 8 2 5 9 7 4 6
2 5 9 7 4 6 3 1 8
7 4 6 3 1 8 2 5 9
1 8 3 5 9 2 4 6 7
5 9 2 4 6 7 1 8 3
4 6 7 1 8 3 5 9 2

Figure 1 Example of the standard Sudoku challenge, and its solution.

There is a solution to the puzzle;
P knows the solution.

Unlike in conventional zero-knowledge proof (see, e.g., [4]), in our setting we do not want
to use electronic devices such as computers. Instead, we want to use only everyday items
to execute a protocol manually. The prover P and the verifier V are assumed to be in
the same place. Such a restricted zero-knowledge proof is called a physical zero-knowledge
proof [1, 2, 5].

In 2009, Gradwohl, Naor, Pinkas, and Rothblum proposed a few physical zero-knowledge
proof protocols for Sudoku [5]. Among them, Protocol 3 (hereinafter referred to as GNPR
Protocol 3) utilizes a deck of cards having numbers on their faces, such as playing cards1.
This protocol needs 3n2 cards and has a soundness error with a non-zero probability. In
contrast, Protocol 5 (hereinafter referred to as GNPR Protocol 5) avoids soundness error
by utilizing special cards (namely, scratch-off cards that allow the colors to be covered) and
scissors2. Unfortunately, GNPR Protocol 5 consumes non-reusable scratch-off cards at every
execution of the protocol. Therefore, it is preferable to construct a protocol that can be
implemented with only reusable everyday objects such as playing cards.

Thus, in this paper, we propose zero-knowledge proof protocols that satisfy the following:
(i) they utilize the same items as GNPR Protocol 3, namely a standard deck of playing cards,
(ii) they are implementable with fewer cards than GNPR Protocol 3, and (iii) they have no
soundness error. The main idea behind our protocols is to apply techniques of card-based
cryptography (see, e.g., [6], [8]). In particular, copy computation, which is an important
primitive in the field of card-based cryptography, prevents the prover P from inputting
incorrect numbers.

The remainder of this paper is organized as follows. In Section 2, we review zero-knowledge
proof, GNPR Protocol 3, and GNPR Protocol 5. In Section 3, we present our proposed
protocols. In Section 4, we compare our protocols with the existing ones, and conclude this
paper.

2 Preliminaries

In this section, we first review zero-knowledge proof and then introduce two existing protocols,
GNPR Protocols 3 and 5.

1 Protocols 1 and 2 presented in [5] are conventional (non-physical) zero-knowledge proof protocols.
2 Protocol 4 in [5] is a variation of GNPR Protocol 3.

T. Sasaki, T. Mizuki, and H. Sone 29:3

2.1 Zero-Knowledge Proof
A zero-knowledge proof is an interactive proof between a prover P and a verifier V . They
both have an instance of problem x and only P knows w, which is some information about a
solution or a witness. The verifier V is computationally bounded so that V cannot obtain
w from x. Under these assumptions, P wants to convince V that he/she knows w without
revealing any information about w. Such a proof is called a zero-knowledge proof, which must
satisfy the following three properties.
Completeness If P knows w, P is able to convince V .
Soundness If P does not know w, P cannot convince V (with a high probability).
Zero-knowledge V cannot obtain any information about w.

The probability that V will be convinced although P does not know w is called the
soundness error. If we have a zero-knowledge proof protocol, the soundness error of which
is δ > 0, repeating the protocol ` times allows V to detect that P does not know w with
a probability 1− δ`. Therefore, in general, even if the soundness error of a protocol is not
0, we can in practice establish zero-knowledge proof with a negligible soundness error by
repeating the protocol. However, since we assume that a protocol is executed by human
hands, it is impractical to repeat the protocol many times. Therefore, it is indispensable to
design a protocol with no soundness error.

A zero-knowledge proof was first defined by Goldwasser, Micali, and Rackoff [4], and it was
proved that (computational) zero-knowledge proofs exist for any NP problems [3]. Because
it is known that Sudoku is NP-complete [9], we can construct conventional (computational)
zero-knowledge proof protocols for it [5]. Remember, however, that this paper is focused not
on a conventional zero-knowledge but on a physical zero-knowledge proof for Sudoku. Hence,
we introduce the existing physical protocols, GNPR Protocols 3 and 5, in the following two
subsections.

2.2 Gradwohl, Naor, Pinkas, and Rothblum Protocol 3
Here, we review GNPR Protocol 3 [5]. This protocol utilizes physical cards, the face side
of each of which has one number between 1 and n, such as 1 2 ... n ; all the back
sides are identical, for example, ? ? ... ? . The protocol uses 3n sets of such n cards,
namely, 3n2 cards in total.

Before presenting the protocol, we define a shuffle operation for cards. Given a sequence
of ` cards (c1, c2, c3, ..., c`), a shuffle results in a sequence(

cr−1(1), cr−1(2), cr−1(3), ..., cr−1(`)
)
,

where r ∈ S` is a uniformly random permutation and S` is the symmetric group of degree `.
GNPR Protocol 3 proceeds as follows.
The prover P places three face-down cards on each cell according to the Sudoku solution.
On the filled-in cells, P places three face-up cards corresponding to the numbers filled in.
After V confirms the values of the face-up cards, P turns them over.
The verifier V picks one card randomly from each cell of a row to make a packet of n
cards corresponding to the row. Because there are n rows, n packets are created. The
same procedure is applied for each column and each subgrid. Thus, V makes 3n packets
in total and passes them to P .
P who received the packets from V applies a shuffle to the cards in each packet and
returns the n shuffled packets to V .
V opens all the cards in all the packets and checks that each packet contains all the
numbers from 1 to n.

FUN 2018

29:4 Card-Based Zero-Knowledge Proof for Sudoku

This is GNPR Protocol 3, which satisfies the three properties of zero-knowledge proof, as
follows.

Completeness If P places the face-down cards correctly according to the solution, every
packet made by V must contain all the numbers from 1 to n. By checking them, V is
convinced that all the cards have been placed according to the solution. Furthermore, V
is convinced that the packets are not a solution to another puzzle instance, because V
sees the face-up cards corresponding to the values of the filled-in cells.

Soundness Consider a situation where V is convinced, in spite of an illegal input by P .
Such a situation occurs when the three cards placed on each cell are not identical. The
soundness error was shown to be at most 1/9 [5].

Zero-knowledge Assume a simulator S that simulates the conversation between P and V .
Although S does not have any information about the witness w, S is allowed to replace
packets with arbitrary packets. S acts as follows.

The simulator S places three arbitrary face-down cards on each cell. On filled-in cells,
S places three face-up cards, according to the filled-in cells. After V confirms the
values, S turns them over.
V makes 3n packets using the same procedure as in GNPR Protocol 3 and passes
them to S.
S shuffles the cards in each packet. Before passing the packets to V , S replaces them
all by new ones, each of which contains all the cards numbered from 1 to n.
V opens all the packets and checks that each packet contains all the numbers from 1
to n.

Since the conversation of S is indistinguishable from that of P , the protocol satisfies the
zero-knowledge property.

In this protocol, P places three cards on each cell, and hence, the protocol uses 3n2

cards in total. For example, in the case of a Sudoku puzzle consisting of a 9× 9 grid, the
protocol needs 243 cards. Because a physical zero-knowledge proof protocol is supposed to
be executed by human hands, it is preferable that the number of cards used in a protocol is
as small as possible. In addition, as mentioned in Section 2.1, a protocol with no soundness
error is also preferable.

2.3 Gradwohl, Naor, Pinkas, and Rothblum Protocol 5
As mentioned in the previous subsection, a soundness error during an execution of GNPR
Protocol 3 would occur if the prover P did not place three identical cards on a cell. Therefore,
if we could guarantee that all three cards placed on each cell are identical, a soundness error
would never occur. This can be realized by using the following special scratch-off cards [5].

Consider scratch-off cards that cover any one of n colors. Assume that P and V agree
on a one-to-one correspondence from a color to a Sudoku number. Suppose that only P
knows which scratch-off card covers which color. Under these assumptions, P places such a
scratch-off card on each cell according to the Sudoku solution. Next, V cuts every scratch-off
card into three pieces with scissors so that they have three small cards having the same
shape and size. Because the verifier V cuts the cards him/herself, it is possible to guarantee
that the three small obtained cards are identical and cover the same color. Thus, scratch-off
cards and scissors provide a protocol with no soundness error; this is GNPR Protocol 5 [5].

However, such scratch-off cards do not seem to be ordinary everyday items, and in
addition, they are non-reusable. Therefore, in the next section, we propose a method to
guarantee that the three cards placed on each cell are identical without any use of special
cards.

T. Sasaki, T. Mizuki, and H. Sone 29:5

3 Our Protocols

In this section, we propose efficient zero-knowledge proof protocols for Sudoku with no
soundness error in which card-based cryptography perspectives are applied. Our protocols
utilize the same type of cards as GNPR Protocol 3, but require fewer cards. We first design
a fundamental protocol, and then modify it to attain more efficient protocols.

The outline of our fundamental protocol is as follows.
P places exactly one face-down card on each cell corresponding to the solution (as seen
in Section 3.1).
V checks that the format of the packet of face-down cards placed on each subgrid is
correct while making two identical copies of the packet (as seen in Section 3.2), which
will be used for verifying rows and columns.
V verifies that each row and each column contains all the numbers from 1 to n (as seen
in Sections 3.3 and 3.4).

In Section 3.5, we show that our protocols satisfy the zero-knowledge proof properties.

3.1 Commitment as Input
In our protocols, the prover P places a single face-down card on each cell according to the
solution. On filled-in cells, P places face-up cards. After V confirms the value of the face-up
cards, P turns them over. Now, there are exactly n2 cards placed on the grid. We call a
sequence of n face-down cards corresponding to each subgrid a commitment.

For example, in the case of the top-left subgrid in Figure 1, P places nine cards according
to the solution; after V confirms the value of the face-up cards, P turns them over:

? ? 1

? 2 ?

6 7 ?

→

? ? ?

? ? ?

? ? ? .

This is a commitment corresponding to this subgrid, and we regard it as a sequence:

1st row︷ ︸︸ ︷
? ? ?

2nd row︷ ︸︸ ︷
? ? ?

3rd row︷ ︸︸ ︷
? ? ? .

Thus, P and V generate n commitments corresponding to n subgrids.

3.2 Subgrid Copy
After n commitments, each of which corresponds to a subgrid, have been generated, P and V
want to copy these commitments to verify each row and each column. In addition, they also
want to make sure that each commitment contains all the numbers from 1 to n. Therefore,
in this subsection, we propose a method to verify that the format of a given commitment is
correct, which involves making two copied commitments.

To this end, we first introduce a well-known shuffle operation called pile-scramble shuffle [7].
Assume that there are m piles, each of which consists of the same number of face-down cards;
we denote this by

(pile1, pile2, pile3, ..., pilem).

FUN 2018

29:6 Card-Based Zero-Knowledge Proof for Sudoku

For such a sequence of piles, applying a pile-scramble shuffle results in

(piler−1(1), piler−1(2), piler−1(3), ..., piler−1(m)),

where r ∈ Sm is a uniformly distributed random permutation. A pile-scramble shuffle can be
implemented with the help of clips, envelopes, or similar items.

We now borrow two existing ideas: (i) a method for regarding a commitment as a
permutation and a technique for inverting a permutation, which were given by Hashimoto,
Shinagawa, Nuida, Inamura, and Hanaoka [6], and (ii) a technique for checking the format
of a sequence of face-down cards, which was given by Mizuki and Shizuya [8]. That is, we
regard a commitment consisting of n cards as a permutation v ∈ Sn:

? ? ? . . . ? (v),

where a card having number i, 1 ≤ i ≤ n, on its face side is placed at the v(i)-th position, and
a permutation with parentheses, such as (v), means that the permutation is hidden (because
the cards are face-down). Given a commitment to a permutation v ∈ Sn, we construct a
method to check whether the commitment consists of all the numbers from 1 to n that
involves making two identical copied commitments. We call this method subgrid copy and it
operates as follows.
1. V puts n cards numbered from 1 to n in this order to generate a card sequence corres-

ponding to the identity permutation id under the commitment to v:

? ? ? . . . ?

1 2 3 . . . n

(v)

id .

2. V turns over all the face-up cards in the bottom row and stacks the cards in each column
so that there are n two-card piles:

?
?

?
?

. . .
?
?

(v)
id .

P applies a pile-scramble shuffle to them and obtains a commitment to rv ∈ Sn and a
commitment to r ∈ Sn, where r ∈ Sn is a uniformly distributed random permutation:[

?
?

?
?

. . .
?
?

]
→

?

?

?

?

. . .

. . .

?

?

(rv)

(r) .

3. V turns over all the cards in the top row and checks the opened cards. If there are all
cards numbered from 1 to n, V is convinced that the face-down cards placed by P on
the subgrid are compatible with the puzzle solution. Since V learns only the value of rv,
which is also a random permutation, no information about v leaks.

4. P sorts the n columns so that the top row becomes id. This means that a permutation
(rv)−1 is multiplied to each row, and hence, the bottom row becomes a commitment to
(rv)−1r = v−1, i.e., the inverse of v:

1 2 3 . . . n

? ? ? . . . ?

id

(v−1).

T. Sasaki, T. Mizuki, and H. Sone 29:7

5. From now on, we make two copied commitments to v. V places two identity permutations
id under the commitment to v−1;

? ? ? . . . ?

1 2 3 . . . n

1 2 3 . . . n

(v−1)

id

id .

6. By applying a procedure similar to Steps 2 and 3, the bottom-most two rows become
commitments to v:

1 2 3 . . . n

? ? ? . . . ?

? ? ? . . . ?

id

(v)

(v) .

Thus, we can verify that a given commitment corresponding to a subgrid contains all
the numbers from 1 to n, while making two copied commitments. This requires 2n cards in
addition to the input commitment. The copied commitments are used for verifying rows and
columns, as we describe in the complete protocol in the next subsection.

3.3 Fundamental Protocol
We are now ready to describe our fundamental protocol. The protocol proceeds as follows.
1. P places a commitment on each subgrid (as already described in Section 3.1).
2. V and P apply the subgrid copy (as explained in Section 3.2) to all subgrids. Then, there

are two cards on each cell of the grid. Note that the verification that every commitment
contains all cards numbered from 1 to n has been completed.

3. As in a similar way to GNPR Protocol 3, P makes 2n packets corresponding to n rows
and n columns. Each packet is shuffled.

4. V opens all the packets and checks that each packet includes all the numbers from 1 to n.

Let us count how many cards we use in this protocol. Immediately before applying the
subgrid copy to the final subgrid, there are 2(n2 − n) + n cards on the grid. To apply the
subgrid copy to the n-th subgrid, we need 2n more additional cards, and hence, we need
2n2 + n cards in total. This is the maximum number of required cards during any execution.
Therefore, the protocol requires 2n2 + n cards.

3.4 Compact Protocol
In the fundamental protocol presented in Section 3.3, a subgrid copy was applied to all the
subgrids before the verifications of each row and each column were performed. However, we
do not have to wait until all the copy actions of n subgrids are complete; when verification
of rows or columns becomes applicable, we can stop the subgrid copy action, and instead,
start to verify rows or columns so that we have reusable opened cards, and consequently, it
is possible to reduce the number of required cards. Thus, we have a compact protocol, as
follows.

As mentioned in Section 1, an n× n grid of Sudoku can be regarded as a subgrid matrix
of k×k. We refer to such rows and columns of subgrids as subgrid-rows and subgrid-columns,
respectively. The protocol proceeds as follows.

FUN 2018

29:8 Card-Based Zero-Knowledge Proof for Sudoku

1. P places a commitment for each subgrid (as explained in Section 3.1).
2. V and P apply subgrid copy (as explained in Section 3.2) to all the subgrids in the first

subgrid-row.
3. After Step 2, two cards are placed on each cell in the first subgrid-row. V verifies that

each of the first k rows (which constitute the first subgrid-row) contains all the numbers
from 1 to n. After the verification is complete, there is one card on every cell.

4. P and V repeat the same procedure as Steps 2 and 3 for every subgrid-row from the
second to the (k-1)-th.

5. In the k-th subgrid-row, V and P will operate a similar procedure to verify the columns.
First, the subgrid copy action is applied to the first subgrid in the k-th subgrid-row.
Then, P and V verify the first k columns.

6. P and V repeat the same procedure as Step 5 for every subgrid-column from the second
to the k-th.

7. Finally, P and V verify the rows in the k-th subgrid-row, so that the verification is
complete for all rows, columns, and subgrids.

Let us consider at which point the number of used cards becomes largest. It is when the
subgrid copy is applied to the last subgrid in Step 4, and at that point we use n2 + (k + 1)n
cards. Therefore, this compact protocol requires n2 + (k + 1)n cards.

3.5 Correctness of Proposed Protocols
In this subsection, we show that our protocols proposed in Sections 3.3 and 3.4 satisfy the
properties of zero-knowledge proof.

Completeness A prover P who knows the solution can place cards so that each row, each
column, and each subgrid contains all the numbers. Whether the format of each subgrid
is correct can be checked by using the subgrid copy, and whether the format of each row
and each column is correct can be checked by using the copied commitments. Further,
V is convinced that P ’s input is not a solution to another problem by comparing the
face-up cards and the corresponding value of the filled-in cells.

Soundness Since P and V use copied commitments, it is guaranteed that the cards placed
on each cell are identical. Therefore, the protocol has no soundness error.

Zero-Knowledge Assume a simulator that simulates the conversation as in Section 2.2.
When verifying each row and each column, information about knowledge w does not
leak for the same reason as in GNPR Protocol 3. Thus, it is sufficient to show the
zero-knowledge property of the subgrid copy.

The simulator S places one arbitrary face-down card on each cell. On filled-in cells, S
places face-up cards. After V confirms them, S turns them over.
V makes a sequence of n piles using the same procedure as Step 2 in Section 3.2, and
passes them to S.
S replaces the sequence by the following two identity permutations id. S applies a
pile-scramble shuffle to the replaced sequence, and passes it to V .

? ? ? . . . ?

? ? ? . . . ?

(id)

(id)

V opens the cards in the top row, and checks whether it contains all the numbers from
1 to n. Then, V operates the same procedure as described in Section 3.2, and outputs
the bottom row.

T. Sasaki, T. Mizuki, and H. Sone 29:9

V operates Step 5 in Section 3.2, makes n packets, and passes them to S.
S applies a pile-scramble shuffle to the sequence and passes it to V . In this case, S
does not need to replace packets.

Since the conversation of S is indistinguishable from that of P , the protocol satisfies the
zero-knowledge property.

4 Conclusion

In this paper, we proposed two card-based zero-knowledge proof protocols for Sudoku. We
now compare our protocols with the existing protocols, GNPR Protocols 3 and 5, in terms
of the number of cards, the number of shuffles, and the soundness error. Table 1 shows the
performance of the protocols.

Our fundamental protocol and our compact protocol use 2n2 +n and n2 + (k+ 1)n cards,
respectively, as described in Sections 3.3 and 3.4. Let us count the number of shuffles in our
proposed protocols. The subgrid copy procedure requires two shuffles, and this procedure is
performed for each of n subgrids. The packet shuffle is performed once in the verification of
each row and each column, and their number is 2n. Therefore, the total number of shuffles is
2n+ 2n = 4n. Furthermore, as shown previously, our protocols have no soundness error. See
Table 1 again.

In Sudoku’s standard size n = 9, the compact protocol can be implemented with less
than half the number of cards used in GNPR Protocol 3 (117 versus 241). Further, when
GNPR Protocol 3 is executed more than once, the number of shuffles is larger than that in
our protocol. As compared to GNPR Protocol 5, the number of shuffles in our protocol is
larger; however, in our opinion, a protocol that uses no special cards is superior.

Finally, we attempt to reduce the number of cards and shuffles further (but it looks
crafty).
Further reduction of the number of cards

Thus far, we assumed that P places his/her inputs on all the cells simultaneously. If we
allow P to input at multiple timings, it is possible to construct a protocol with fewer
cards. The outline is as follows.
1. P places a commitment on one subgrid.
2. P and V apply the subgrid copy action to the subgrid.
3. P and V apply Steps 1 and 2 also to the other subgrids, and, as in the compact

protocol, perform verification when it becomes possible to verify the rows and columns.
This protocol uses n2 + n cards. For example, when n = 9, the number of required cards
is 90.

Reduction of the number of shuffles3
In the subgrid copy action, P performs a pile-scramble shuffle twice; the output commit-
ment obtained by the first pile-scramble shuffle is an inverse of v, and hence, P needs
to shuffle again to obtain a commitment v. However, if P places a commitment of an
inverse as input, P can omit one pile-scramble shuffle.

The performance of this crafty protocol is also shown in Table 1.
In the literature, for several puzzles other than Sudoku, physical zero-knowledge proof pro-

tocols have been proposed [1, 2]. Therefore, interesting future work is to design more efficient
zero-knowledge proof protocols for those puzzles with the help of card-based cryptography.

3 The idea was introduced by Kazumasa Shinagawa.

FUN 2018

29:10 Card-Based Zero-Knowledge Proof for Sudoku

Table 1 Comparison of protocols

of cards # of shuffles Soundness error

GNPR Protocol 3 3n2 3n × ` at most (1
9)`

GNPR Protocol 5 n2 (special cards) 3n 0

Fundamental Protocol 2n2 + n 4n 0

Compact Protocol n2 + (k + 1)n 4n 0

Crafty Protocol n2 + n 3n 0

References
1 Xavier Bultel, Jannik Dreier, Jean-Guillaume Dumas, and Pascal Lafourcade. Physical

zero-knowledge proofs for akari, takuzu, kakuro and kenken. In Erik D. Demaine and
Fabrizio Grandoni, editors, 8th International Conference on Fun with Algorithms, FUN
2016, June 8-10, 2016, La Maddalena, Italy, volume 49 of LIPIcs, pages 8:1–8:20. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.FUN.2016.8.

2 Yu-Feng Chien and Wing-Kai Hon. Cryptographic and physical zero-knowledge proof:
From sudoku to nonogram. In Paolo Boldi and Luisa Gargano, editors, Fun with Algorithms,
5th International Conference, FUN 2010, Ischia, Italy, June 2-4, 2010. Proceedings, volume
6099 of Lecture Notes in Computer Science, pages 102–112. Springer, 2010. doi:10.1007/
978-3-642-13122-6_12.

3 Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–
729, 1991. doi:10.1145/116825.116852.

4 Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of inter-
active proof systems. SIAM J. Comput., 18(1):186–208, 1989. doi:10.1137/0218012.

5 Ronen Gradwohl, Moni Naor, Benny Pinkas, and Guy N. Rothblum. Cryptographic and
physical zero-knowledge proof systems for solutions of sudoku puzzles. Theory Comput.
Syst., 44(2):245–268, 2009. doi:10.1007/s00224-008-9119-9.

6 Yuji Hashimoto, Kazumasa Shinagawa, Koji Nuida, Masaki Inamura, and Goichiro Hana-
oka. Secure grouping protocol using a deck of cards. In Junji Shikata, editor, Informa-
tion Theoretic Security - 10th International Conference, ICITS 2017, Hong Kong, China,
November 29 - December 2, 2017, Proceedings, volume 10681 of Lecture Notes in Computer
Science, pages 135–152. Springer, 2017. doi:10.1007/978-3-319-72089-0_8.

7 Rie Ishikawa, Eikoh Chida, and Takaaki Mizuki. Efficient card-based protocols for gen-
erating a hidden random permutation without fixed points. In Cristian S. Calude and
Michael J. Dinneen, editors, Unconventional Computation and Natural Computation - 14th
International Conference, UCNC 2015, Auckland, New Zealand, August 30 - September
3, 2015, Proceedings, volume 9252 of Lecture Notes in Computer Science, pages 215–226.
Springer, 2015. doi:10.1007/978-3-319-21819-9_16.

8 Takaaki Mizuki and Hiroki Shizuya. Practical card-based cryptography. In Alfredo Ferro,
Fabrizio Luccio, and Peter Widmayer, editors, Fun with Algorithms - 7th International
Conference, FUN 2014, Lipari Island, Sicily, Italy, July 1-3, 2014. Proceedings, volume
8496 of Lecture Notes in Computer Science, pages 313–324. Springer, 2014. doi:10.1007/
978-3-319-07890-8_27.

9 Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another solution
and its application to puzzles. IEICE Transactions, 86-A(5):1052–1060, 2003.

http://dx.doi.org/10.4230/LIPIcs.FUN.2016.8
http://dx.doi.org/10.1007/978-3-642-13122-6_12
http://dx.doi.org/10.1007/978-3-642-13122-6_12
http://dx.doi.org/10.1145/116825.116852
http://dx.doi.org/10.1137/0218012
http://dx.doi.org/10.1007/s00224-008-9119-9
http://dx.doi.org/10.1007/978-3-319-72089-0_8
http://dx.doi.org/10.1007/978-3-319-21819-9_16
http://dx.doi.org/10.1007/978-3-319-07890-8_27
http://dx.doi.org/10.1007/978-3-319-07890-8_27

The Complexity of Escaping Labyrinths and
Enchanted Forests
Florian D. Schwahn1

Department of Mathematics, University of Kaiserslautern, Paul-Ehrlich-Str. 14,
D-67663 Kaiserslautern, Germany
fschwahn@mathematik.uni-kl.de

Clemens Thielen
Department of Mathematics, University of Kaiserslautern, Paul-Ehrlich-Str. 14,
D-67663 Kaiserslautern, Germany
thielen@mathematik.uni-kl.de

https://orcid.org/0000-0003-0897-3571

Abstract
The board games The aMAZEing Labyrinth (or simply Labyrinth for short) and Enchanted Forest
published by Ravensburger are seemingly simple family games.

In Labyrinth, the players move though a labyrinth in order to collect specific items. To do
so, they shift the tiles making up the labyrinth in order to open up new paths (and, at the same
time, close paths for their opponents). We show that, even without any opponents, determining a
shortest path (i.e., a path using the minimum possible number of turns) to the next desired item
in the labyrinth is strongly NP-hard. Moreover, we show that, when competing with another
player, deciding whether there exists a strategy that guarantees to reach one’s next item faster
than one’s opponent is PSPACE-hard.

In Enchanted Forest, items are hidden under specific trees and the objective of the players
is to report their locations to the king in his castle. Movements are performed by rolling two
dice, resulting in two numbers of fields one has to move, where each of the two movements
must be executed consecutively in one direction (but the player can choose the order in which
the two movements are performed). Here, we provide an efficient polynomial-time algorithm for
computing a shortest path between two fields on the board for a given sequence of die rolls, which
also has implications for the complexity of problems the players face in the game when future
die rolls are unknown.

2012 ACM Subject Classification Theory of computation → Shortest paths, Theory of compu-
tation → Representations of games and their complexity

Keywords and phrases board games, combinatorial game theory, computational complexity

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.30

1 Introduction

Computational complexity questions related to games and puzzles have received considerable
interest among mathematicians and computer scientists within the last decades. For an
introduction to the topic and an overview of known results, we refer to [1, 3, 5]. While many
one-player puzzles are NP-complete, two-player games often turn out to be PSPACE-complete
or even EXPTIME-complete.

1 The work of this author was partially supported by Anne M. Schwahn by explaining the two studied
board games to him back in the dark winters of 1990 and 1991.

© Florian D. Schwahn and Clemens Thielen;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 30; pp. 30:1–30:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fschwahn@mathematik.uni-kl.de
mailto:thielen@mathematik.uni-kl.de
https://orcid.org/0000-0003-0897-3571
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 The Complexity of Escaping Labyrinths and Enchanted Forests

(a) The empty board. (b) Before the shift. (c) After the shift.

Figure 1 The aMAZEing board.

In this paper, we study the computational complexity of several natural decision problems
arising in the two board games (The aMAZEing) Labyrinth [6] and Enchanted Forest [8].
In both games, the players move on a board subject to specific movement rules in order to
find certain items. In Labyrinth, this involves shifting the moving tiles on the board in order
to open up paths through the labyrinth. In Enchanted Forest, movement is performed by
rolling two dice, resulting in two numbers of fields the player has to move subject to the
constraint that each of the two movements must be executed consecutively in one direction.

In the following sections, we first consider Labyrinth and show that – even without any
opponents – deciding whether a given tile on the board is reachable within a given number of
turns is strongly NP-complete. When competing with another player, the natural extension
of this shortest path problem that asks whether a player has a strategy that guarantees to
reach a given target tile faster than her opponent reaches their (possibly different) target
tile is shown to be PSPACE-hard. For Enchanted Forest, on the other hand, we provide an
efficient polynomial-time algorithm for deciding whether a given field on the board can be
reached in a given number of turns for a given sequence of die rolls.

2 The aMAZEing Labyrinth

The game (The aMAZEing) Labyrinth, developed by Max J. Kobbert, was originally published
by Ravensburger in 1986 under the German title “Das verrückte Labyrinth” [6] (“verrückt”
is a play on two possible meanings, similar to disarranged). The game is a huge success all
over the world with about 30 million sold units in over 60 countries so far.

In the game, one to four players2 try to collect a sequence of items on a board consisting
of moving tiles. The board (see Figure 1 (a)) features spots for 7× 7 square tiles, with some
of those fixed to it. The tiles have three different shapes, which can be rotated in two/four
orientations: I-tile (,) , L-tile (, , ,) , T -tile (, , ,) .

The board is randomly filled with the movable tiles and one additional tile is placed aside.
In a player’s turn, she has to execute a shift and a move action (see Figures 1 (b) and (c)).

2 This refers to the original release of the game, where playing alone was actually allowed. Now, it is sold
as a game for two to four players.

F.D. Schwahn and C. Thielen 30:3

Shift: The (mandatory) shift action is performed by pushing in the surplus tile - in any
orientation - from any border, such that all tiles in this row/column are shifted by one place
and the border tile on the other end of the row/column is pushed out of the board (obviously,
the rows and columns containing fixed tiles cannot be shifted). This tile is left in the place in
order to mark the last shift action for the next player, who is not allowed to directly reverse
the previous shift. If some player is standing on the tile that is pushed out of the board, the
player is instead placed on the tile that has just been pushed in (wrap-around rule).

Move: After shifting, a player may either move to any tile reachable in the labyrinth (e.g.
the requested bat tile in Figure 1 (c)), or choose not to move at all. An adjacent tile is
(directly) reachable if both tiles feature open space on their common edge.

Goal: Some tiles feature the symbol of an item, animal, or mythical creature. At the
beginning of the game, each player gets a stack of cards requesting to collect some of those
objects. At each point in time, each player only knows about the object she is requested to
collect next, but not about the further objects she has to collect. The currently requested
object is collected if the move action of the player ends on the tile featuring this object. She
may then look at her next card, showing the next object to collect. Once a player collects
the last object requested from her, the last goal is to return to her starting tile. Whoever is
the first to accomplish this is the winner of the game.

2.1 Formal Problem Definition
In order to analyze the game mathematically, we consider a board of arbitrary size. Hence,
the rectangle board contains a× b spots for (a · b) + 1 tiles, some of which may be fixed. The
kinds of tiles considered and the rules of the game are as described above.

At each point in time during the game, a player only knows about the next object she
is requested to collect. Hence, the fundamental problem faced at each point in time when
a player plays alone is reaching the next object (or her starting tile in case that she has
already collected the last object) in the minimum number of turns. The decision version of
this single-player problem is formally defined as follows:

I Definition 1 (SP-Labyrinth).
INSTANCE: The initial board setting, the shape of the current surplus tile, two distinct tiles s

and t on the board, and an allowed number of turns k ∈ N.
QUESTION: Can a single player starting at tile s reach tile t in at most k turns?

When two opposing players play alternately, the fundamental problem each player faces
amounts to reaching the object she is requested to collect next (or her starting tile if she has
already collected all required objects) faster than her opponent reaches their next object (or
starting tile). The decision version of the two-player problem is, thus, defined as follows:

I Definition 2 (SP-Versus-Labyrinth).
INSTANCE: The initial board setting, the shape of the current surplus tile, and two pairs (s1, t1),

(s2, t2) of tiles on the board.
QUESTION: Is there a strategy for player 1 (who has the first turn and starts at tile s1) that

allows her to reach tile t1 before player 2 (starting at tile s2) can reach tile t2?

In the following subsections, we first show that already the single-player problem
SP-Labyrinth in strongly NP-complete (this problem has already been used as a bench-
mark problem for testing ASP solvers, cf. [2]). Afterwards, we consider the two-player
problem SP-Versus-Labyrinth and show that this problem is PSPACE-hard.

FUN 2018

30:4 The Complexity of Escaping Labyrinths and Enchanted Forests

s
lx̄1

x1
lx̄2

x2
lx̄3

x3
lx̄4

x4

x̄
1
∨
x

2
∨
x̄

3



x
4
∨
x̄

4

t

s
↑x̄1 ↓x2 ↑x̄3 ↓x4

t

Figure 2 Example of a clause and a variable gadget (initial and final board setting).

2.2 Escaping the Labyrinth is hard . . .
Poor little Alice got lost in the aMAZEing Labyrinth and has to find her way to the exit
before the batteries of her flashlight run out. Unfortunately (for her) we now show that
deciding whether she can get out in time is strongly NP-complete:

I Theorem 3. SP-Labyrinth is strongly NP-complete.

Proof. Since it is straightforward to check that the player reaches t from s with a given
sequence of shifts and moves, the problem is clearly contained in NP.

To show NP-hardness, we use a reduction from 3SAT (a problem that Alice has probably
encountered when reading [4]). Given an instance I of 3SAT with variables x1, . . . , xn and
clauses C1, . . . , Cm, we construct an instance of SP-Labyrinth in which the player can reach t
in at most k := n turns if and only if I is satisfiable.3

Figure 2 shows an example of a clause and a variable gadget we use in this reduction.
In total, there is one gadget for each variable and one gadget for each clause, i.e., there are
n+m gadgets with twelve rows each. Together with the top row containing s and the bottom
row containing t, this makes 12 · (n+m) + 2 rows. To reach t from s, the player needs to
move through or get shifted through the 12 · (n+m) rows between s and t. As each shift of
the avatar itself can only contribute a single row, she has to move along vertical paths to
reach t fast enough. To avoid problems with the wrap-around rule, we augment the board on

3 This also shows that it is sometimes helpful to have a SAT solver with you when entering a labyrinth.

F.D. Schwahn and C. Thielen 30:5

Figure 3 The four hook gadgets (negated, unnegated, either-or, empty).

each side by 2n columns / rows that are filled with -tiles and -tiles in alternating order.
Thus, none of the central tiles shown in Figure 2 can be shifted out of the board and the
player cannot reach any boundary of the augmented board in n turns. Moreover, even with
those additional tiles, the resulting board has size polynomial in n and m, so the instance
can be constructed in polynomial time.

The complete board setting includes one gadget for each clause and one gadget for each
variable. The gadgets vary only in the special variable columns (marked with lx̄i

xi). Here,
shifting the variable column corresponding to a variable xi downwards will correspond to
setting xi to true, while shifting the column upwards will correspond to setting xi to false.4
The connection to the clauses is made by using the four different kinds of hook gadgets
shown in Figure 3. Each clause gadget contains the corresponding hook gadget for each
variable (depending on whether the variable is contained in the clause negated, unnegated,
both negated and unnegated, or not at all). For example, the clause gadget for x̄1 ∨ x2 ∨ x̄3
presented in Figure 2 contains a negated hook gadget for x1 and x3, and unnegated hook
gadget for x2, and an empty hook gadget for x4 (since x4 is not contained in the clause). As
one can see, the clause gadget can be crossed if and only if the variable column corresponding
to either x1 or x3 is shifted upwards, or the variable column corresponding to x2 is shifted
downwards. Since x4 is not contained in the clause, shifting the corresponding variable
column cannot make the gadget crossable.

The first and last three rows of every clause gadget (above and below the hook gadgets)
ensure that, starting from the top left of the gadget, we can choose to cross by any variable
column (given that the corresponding variable was set to satisfy the clause) and reach the
bottom left of the gadget in order to enter the next gadget.

Below the clause gadgets, there is an analogously constructed gadget for each variable
(i.e., the gadget for variable xi corresponds to a clause gadget for the clause xi ∨ x̄i, see
Figure 2). Thus, the variable gadget corresponding to variable xi will be crossable if and only
if the column of variable xi was shifted either upwards or downwards. Hence, all variable
gadgets will be crossable if and only if each variable was set to either true or false.

We now show that the constructed instance is equivalent to the given instance I of 3SAT,
i.e., that the player can reach t in at most n turns if and only if I is satisfiable.

First assume that I is satisfiable. Then, shifting the variable columns according to some
satisfying variable assignment yields a path from s to t through which the player can move
after the n-th shift (in the previous n− 1 turns, the player does not move at all). Hence, the
player can reach t in at most n turns.

4 Instead, one could equivalently shift the column to the left of the variable column in the opposite
direction, which has the same effect (but could be prevented by putting a fixed tile on top of this
column). In the following, we will assume that the variable column itself is always shifted instead of the
column to its left.

FUN 2018

30:6 The Complexity of Escaping Labyrinths and Enchanted Forests

In order to prove the other direction, we observe that, in every solution to the constructed
SP-Labyrinth instance, each variable column must be shifted exactly once. This follows
since the corresponding variable gadget is not crossable in its initial form and the only
possible way to make it crossable by using only a single (row or column) shift is to shift
the corresponding variable column exactly once (as there are n variable gadgets in total
and only n shifts are available, we cannot use more than one shift to make a single variable
gadget crossable). Hence, each solution to the constructed SP-Labyrinth instance corresponds
to a truth-assignment for the variables in the given 3SAT-instance I by setting xi to true
(false) if and only if the variable column corresponding to xi is shifted downwards (upwards).
Moreover, since all clause gadgets are crossable in the solution to the SP-Labyrinth instance,
all clauses in I must be satisfied by this truth-assignment. J

2.3 . . . but doing it faster than someone else is even harder.5

The famous archaeologists Lara and Henry Jr. play a game of the aMAZEing Labyrinth
and each of them only needs to return to their starting tile. It is Lara’s turn – but will she
manage to arrive first and, thus, win the game? Who will resort to a destructive strategy?
Does it pay off?

I Theorem 4. SP-Versus-Labyrinth is PSPACE-hard.

Proof. We use a reduction from Quantified Satisfiability (QSAT) (also known as Quantified
Boolean Formula, cf. [9]). Given an instance I of QSAT with variables x1, . . . , xn and clauses
C1, . . . , Cm, we construct an instance of SP-Versus-Labyrinth in which player 1 (Lara) has a
winning strategy if and only if I is a yes-instance.6 Without loss of generality, we assume
that the number n of variables in I is odd.

This time, we translate “setting variables” into “shifting variable rows” by using similar
clause gadgets as in the proof of Theorem 3 (rotated clockwise by 90 degrees). However, we
now use only a single variable gadget corresponding to variable xn - the other variables have
no corresponding variable gadgets. Instead, the board contains a distinct order preserving
gadget for each player, which is used to make sure that the player has to set her corresponding
variables xi (the ones with odd i for Lara and the ones with even i for Henry) in the correct
order. In between each pair of adjacent gadgets and at the sides of the board, we need
some buffer columns to avoid any unintentional interaction of the gadgets as well as using
the wrap-around rule. Since we will show that at least one of the players will always reach
their goal after at most n+ 1 turns, n+ 2 buffer columns consisting of alternating and
-tiles are sufficient between each pair of adjacent gadgets and at the left and the right of

the board.7
In order to reach her goal, Lara has to cross her order gadget as well as the clause gadgets,

whereas Henry only has to cross his order gadget and the variable gadget of variable xn (but
not the clause gadgets). An overview of the structure of the board is given in Figure 4. The
pink row at the top in Figure 4 is used in order to connect the different gadgets and will be
referred to as the wiring row throughout the rest of the proof. The blue row at the bottom
is used as an escape path that makes a player reach her goal directly in case that the other

5 Assuming NP 6= PSPACE.
6 This shows that, as expected, beating an archaeologist as intelligent as Henry Jr. is very challenging.
7 As will become clear later in the proof, two buffer columns (instead of n + 2) are actually sufficient

at each of these places since no row will ever be shifted more than twice before one of the players can
reach their goal.

F.D. Schwahn and C. Thielen 30:7

Lara’s
order
gadget

s1

Henry’s
order
gadget

s2

C1
clause
gadgets Cm xn ∨ x̄n

. . .

. . .

t1 t2

Figure 4 Overview of the board used in the proof of Theorem 4.

xi↔

ei↔

xi+1↔

ei+1↔

Figure 5 A segment of a player’s order gadget (before turn i of the other player).

player does not shift their corresponding variable rows in the correct order. All tiles of the
wiring row and the escape path row are fixed, which implies that only rows can be shifted
and the wrap-around rule cannot be used on the top or the bottom of the board (where no
buffer was added).

In Figure 5, we illustrate a segment of a player’s order gadget. Here, exactly the variable
rows of Henry’s variables (i.e., the ones with even index) are crossable via the pink path at
the beginning of the game in Lara’s order gadget, while the variable rows of Lara’s variables
(i.e., the ones with odd index) are crossable via the pink path in Henry’s order gadget
at the beginning. Moreover, Lara starts in the middle of the row below the variable row
corresponding to x1 in her order gadget, while Henry starts in the middle of the row above
the variable row of x1. The lowermost shiftable row corresponds to x1 and the uppermost
shiftable row corresponds to xn (i.e., there is no row en). We note that, compared to the
(rotated) structure of the clause gadgets and the variable gadget of xn shown in Figure 2, the
row ei represents an additional row (column in the figure) between the variables xi and xi+1
for each i ∈ {1, . . . , n − 1}. Within the clause gadgets and the variable gadget of xn, this
additional row is simply filled by -tiles (which would correspond to -tiles in Figure 2 due
to the rotation) so that it can always be crossed and does not change the structure of the
gadgets.

In total, the board contains 4n rows (2 for each xi for i ∈ {1, . . . , n}, 2 for each ei for
i ∈ {1, . . . , n − 1}, the wiring row, and the escape path row). Since each of the two order
gadgets, each of the m clause gadgets, and the variable gadget corresponding to xn only
requires a constant number of columns and n+ 2 buffer columns are inserted in between each

FUN 2018

30:8 The Complexity of Escaping Labyrinths and Enchanted Forests

pair of adjacent gadgets as outlined above, the constructed board is of size poly(n,m), so
the described instance can be constructed from the given instance I of QSAT in polynomial
time.

We now show that the constructed instance is equivalent to the given instance I of QSAT,
i.e., that Lara has a winning strategy if and only if I is a yes-instance. To do so, we first
assume that both players only shift their corresponding variable rows in the correct order,
i.e., that Lara always sets the next odd variable available in each of her turns and that Henry
always sets the next even variable available in each of his turns. As we show afterwards, this
behavior of the players will be enforced since each player can reach the escape path at the
bottom of the board (and, thus, win) if the other player deviates from this rule.

Lara starts the game and, according to the above assumption, shifts the variable row
corresponding to x1 in turn one, thereby setting x1 to either true or false. Moreover, this
closes the blue path in Henry’s order gadget (Figure 5 and, thus, prevents Henry from using
this path in order to reach the escape path at the bottom of the board. After her shift, Lara
can move past the variable row of x1 and also the untouched variable row of x2 in her order
gadget. However, she cannot yet cross the variable row corresponding to x3 in her order
gadget. Thus, in order to still have the blue path after the variable row of x2 available in
case that Henry should not set x2 in the next turn, Lara will stop in the row between x2
and e2.

Again according to the above assumption, Henry will now shift the variable row corre-
sponding to x2 in turn two (which is Henry’s first turn), thereby setting x2 to either true
or false. Moreover, this closes the blue path in Lara’s order gadget and prevents her from
entering the escape path at the bottom of the board in her next turn. After his shift, Henry
can move past the variable row of x2 and also the untouched variable row of x3 in his order
gadget. However, he cannot yet cross the variable row corresponding to x4 in his order
gadget. Thus, in order to still have the blue path after the variable row of x3 available in
case that Lara should not set x3 in her second turn, Henry will stop in the row between x3
and e3.

It is then Lara’s turn again and she will now set variable x3 and so on. At the end, in
turn n− 1, Henry will set variable xn−1 due to the assumption that n is odd. Thus, Henry
reaches the entry to the wiring row at the top of his order gadget in turn n− 1. However, he
cannot yet reach his goal t2 since he cannot yet cross the variable gadget of the still unset
variable xn. Turn n is then Lara’s turn and she only has to set variable xn in order to reach
the entry to the wiring row at the top of her order gadget. Since she has to cross the clause
gadgets in order to reach her goal t1, she will, thus, arrive at t1 in turn n (i.e., before Henry
reaches t2) if and only if all the clauses are satisfied by the variable assignment determined
by both players in the n turns. Since, in any case, Henry will reach t2 in turn n+ 1, this
shows that Lara has a winning strategy (i.e., a strategy of setting the odd variables in her
corresponding turns so that all clauses will be satisfied no matter how Henry sets the even
variables in his turns) if and only if the given instance I of QSAT is a yes-instance.

It remains to show that whoever violates the order first loses the game. So assume that
both players always set their corresponding variables as desired during the first i− 1 turns,
but in turn i, the corresponding player (say Lara) decides not to shift the variable row
corresponding to xi. For Lara, this means that the variable row corresponding to xi is still
blocked in her order gadget and she cannot proceed. For i = n, Lara loses in this case since
Henry will reach t2 in turn n+ 1 as seen above. For i < n, Henry finds his order gadget as
in Figure 5 before his next turn (standing in the circled spot in the row between xi and ei)
and, with a left or right shift of row ei, he can move onto the blue path (which is not blocked

F.D. Schwahn and C. Thielen 30:9

since Lara did not shift the variable row corresponding to xi). Note that, even though Lara
may have shifted row ei in turn i, Henry can always enter the blue path either to the left or
to the right since any single shift in row ei opens the blue path for him. Consequently, Henry
can enter the escape path row, which directly takes him to his goal t2, and Lara loses the
game. Similarly, Lara can enter the escape path row if Henry deviates first, which finishes
the proof. J

Note that our proof of PSPACE-hardness did not rely on the rule that prevents a player
from directly reversing the previous shift – the hardness result in Theorem 4 holds both with
and without this rule.

Concerning upper bounds on the computational complexity of SP-Versus-Labyrinth, note
that the number of possible positions for each of the avatars and goals of the two players is
bounded by the number of spots on the board, there are only twenty different tiles possible at
each spot (counting different orientations and whether the tile is fixed or not), and only three
possible shapes exit for the current surplus tile. Consequently, the number of possible game
states in SP-Versus-Labyrinth is bounded from above by an exponential function of the board
size a · b and it follows by standard arguments that SP-Versus-Labyrinth ∈ EXPTIME (see, for
example, [12]). Furthermore, it can easily be seen that SP-Versus-Labyrinth ∈ PSPACE when
upper bounding the number of turns by some value k polynomial in the encoding length
of the game and then rating which player has achieved the better situation after k turns,
i.e., has fewer turns left to reach her goal when continuing to play alone (similar to the
turn-restricted version of Go analyzed in [9]). Since our proof of PSPACE-hardness works
also for this turn-restricted version of SP-Versus-Labyrinth, it follows that the turn-restricted
version of the problem is PSPACE-complete. Whether the actual (not turn-restricted) version
of SP-Versus-Labyrinth belongs to PSPACE, however, remains an interesting open question.

3 Enchanted Forest

The game Enchanted Forest developed by Alex Randolph and Michel Matschoss was originally
published by Ravensburger in 1981 under the German title “Sagaland” [8]. In 1982, the
game earned the prestigious award “Spiel des Jahres” (engl. Game of the Year) [10].

In the game, two to six players move around in an enchanted forest in order to find items
from popular fairy tales that are hidden under special trees. At the beginning of the game,
all players start in the village next to the enchanted forest. A player gets to know which
item is hidden under one of the trees if she ends her move on the blue field next to the tree.
The king in the castle requests the location of the different items and whoever moves up to
the castle and reports the correct location of the currently requested item earns a point. The
player standing in the castle may then continue to name (guess if necessary) the locations of
the next requested items to earn additional points. When she names a wrong location for
the first time, she must return to the starting point in the village. The first player to earn
three points wins the game.

A player’s turn consists of rolling two dice, which results in two numbers of fields she has
to move. Each of the two movements must be executed consecutively in one direction, but
the player can choose the order in which the two movements are performed (see Figure 6
for an example). If the roll is a double, the player may alternatively choose to either move
to any blue field adjacent to a tree or to the castle, or to shuffle the cards determining the
order in which the king requests the items. If a player moves to a field already occupied by
another player, the other player is moved back to the starting point in the village.

FUN 2018

30:10 The Complexity of Escaping Labyrinths and Enchanted Forests

(a) Initial position of the
player and the result of rolling
the two dice.

(b) The player’s position af-
ter her first movement (five
fields).

(c) After the second move-
ment (three fields), the player
reaches the tree and observes
the item hidden underneath it.

Figure 6 A player’s turn in Enchanted Forest.

3.1 Formal Problem Definition
In order to analyze the game mathematically, we model the board as an undirected, connected,
simple graph G = (V,E), where each vertex corresponds to a field on the board and there
is a unit-length edge between each pair of adjacent fields.8 As usual, we let n := |V | and
m := |E|. The special fields to which a player can move instantaneously when rolling a
double (the blue fields adjacent to the trees and the castle) are given as a subset V ′ ⊆ V .
Moreover, we consider two arbitrary d-sided dice for the moves (where d > n is possible
since the graph may contain cycles). If a player rolls (x, x̄) with x, x̄ ∈ {1, . . . , d} and starts
at s ∈ V , she can decide on two (not necessarily simple) paths to follow, where the first one
starts at s and the second one starts at the end vertex of the first one. One of these two
paths must have length x and the other one length x̄. Moreover, the requirement that each
movement has to be executed consecutively in one direction means that the two paths are
not allowed to contain cycles of length 2 as subpaths. The special rules used when rolling a
double mean that, if x = x̄, the player may alternatively choose to move to any vertex in the
subset V ′.

As in Labyrinth, we consider the fundamental problem of reaching a certain location on
the board (e.g., the castle or a specific tree) in a minimum number of turns. Here, we assume
that the player has complete knowledge of the sequence of die rolls for her future turns. The
decision version of this problem is formally defined as follows:

I Definition 5 (SP-EnchantedForest).
INSTANCE: The simple graph G = (V, E), the subset V ′ ⊆ V , the maximum die value d ∈ N,

the die rolls (x1, x̄1), . . . , (xk, x̄k) with xi, x̄i ∈ {1, . . . , d}, and two vertices s, t ∈ V .
QUESTION: Can a player starting at vertex s reach vertex t in at most k turns using the given

rolls of the dice?

The encoding length of an instance of SP-EnchantedForest (when storing the graph G in
adjacency list representation) is O(n+m+ k · log2 d).

In the following subsection, we show that SP-EnchantedForest can be solved efficiently
in polynomial time. This result also has implications for the complexity of problems the
players face in Enchanted Forest when the outcomes of future die rolls are unknown. For
example, the polynomial-time solvability of SP-EnchantedForest directly implies that, when

8 Note that, even though G models an enchanted forest, the graph may contain cycles (as does the original
board).

F.D. Schwahn and C. Thielen 30:11

the outcomes of future die rolls are unknown, the problem of choosing two movements for
the current turn that maximize the probability of reaching a desired location in (at most) k
turns for a given constant k can be solved in polynomial time.

3.2 Finding one’s way in the Enchanted Forest is easy
After living a long, rich, and joyful life, Gretel wants to relive her childhood memories and
eat some gingerbread from the gingerbread house in the Enchanted Forest. However, the
ancient enchantments do not allow her to simply follow the path of pebbles laid out. Before
making the next step, she has to roll two dice and move accordingly. At least, with all the
lucky charms she obtained from the witch’s heritage, she can predict the rolls. Can she find
the delicious gingerbread or will the journey be too long to bear the appetite?

Gretel rolls (or rather predicts to roll) (x1, x̄1), . . . , (xk, x̄k) and decides that it is probably
a good idea to first compute which vertices in G she can reach from a given position in the
enchanted forest by using a single die roll. Thus, for any x ∈ {1, . . . , d}, she defines the
(symmetric) (n× n)-matrix Dx with entries in {0, 1} such that, for each pair (u, v) ∈ V × V ,
the matrix has an entry 1 at the position corresponding to u and v if and only if there exists
a (not necessarily simple) path of length x from u to v in G that does not contain any cycles
of length 2 as subpaths. However, in order to compute Dx efficiently in polynomial time,
Gretel cannot explore the graph G step-by-step by always moving to an adjacent vertex since
this would lead to a time requirement polynomial in d, but not in log2 d. Instead, she uses
the following procedure provided by two friendly scholars:

Computing Dx efficiently: In order to make sure that only paths that do not contain
cycles of length 2 as subpaths are considered, Gretel constructs a directed graph H = (N,A)
from G by setting

N := {vu : {u, v} ∈ E}, and A := {(vu, wv) : vu, wv ∈ N, {v, w} ∈ E,w 6= u}.

Here, the vertex set N of H contains a copy vu of each vertex v ∈ V for every neighbor u
of v in G. The arcs in H are constructed such that the copy vu of v corresponding to u is
connected by a directed arc (of unit length) to all copies wv of the neighbors w of v that
are different from u. Thus, there exists a path of length x without cycles of length 2 as
subpaths from a node ũ to another node ṽ in G if and only if there exists a directed path
of the same length from some copy of ũ to some copy of ṽ in H. Hence, the problem of
determining whether a node ṽ in G can be reached from a given node ũ in G by a path
of length x without cycles of length 2 as subpaths reduces to determining whether some
copy ṽw of ṽ can be reached from some copy ũz of ũ by a directed path of length x in H.

To compute which vertices in H are reachable from which other vertices, Gretel com-
putes the x-th power of the adjacency matrix M of H (cf. [11]). This can be done in
O(|N |2.373 log2 x) = O(m2.373 log2 d) time by computing M2α for α = 1, . . . , blog2 xc via the
square matrix multiplication algorithm from [7] (since |N | = 2 · |E| = 2m and x ∈ {1, . . . , d}).
Then, Dx has a 1 at the position corresponding to u ∈ V and v ∈ V exactly if Mx has a
positive entry at some position corresponding to a copy of u and a copy of v.

Computing which vertices are reachable in a single turn: With the knowledge of the next
k rolls (x1, x̄1), . . . , (xk, x̄k) and the above method for computing the sets Dx, Gretel can now
compute efficiently which vertices v she can reach from any given vertex u in the graph G
with any single pair (xi, x̄i) of die rolls. To do so, she defines the (n × n)-matrix D(xi,x̄i)

FUN 2018

30:12 The Complexity of Escaping Labyrinths and Enchanted Forests

with entries in {0, 1} such that, for each pair (u, v) ∈ V × V , the matrix has an entry 1 at
the position corresponding to u and v if and only if vertex v can be reached from vertex u
with the pair (xi, x̄i) of die rolls. Gretel now wants to compute D(xi,x̄i) efficiently. If (xi, x̄i)
is not a double (i.e., if xi 6= x̄i), she notes that, by definition of the matrices Dxi and Dx̄i ,
the matrix D(xi,x̄i) has a 1 at the position corresponding to u and v if and only if at least
one of the matrices Dxi ·Dx̄i and Dx̄i ·Dxi has a positive entry at this position. If (xi, x̄i) is
a double (i.e., if xi = x̄i), Gretel has to take into account that she can also decide to move
instantaneously to any vertex in the subset V ′ ⊆ V . Hence, in this case, the matrix D(xi,x̄i)
also has a 1 at the position corresponding to u and v whenever v ∈ V ′. If Gretel again uses
the square matrix multiplication algorithm from [7] to compute Dxi ·Dx̄i and Dx̄i ·Dxi , this
shows that she can obtain D(xi,x̄i) from the matrices Dx and Dx̄i in time O(n2.373).

Turn-expanded network: Similar to a time-expanded network, Gretel constructs the (di-
rected) turn-expanded network F = (NF , AF) with

NF := {vi : v ∈ V, i = 0, . . . , k} ∪ {t∗}, and

AF :=
k⋃

i=1
{(ui−1, vi) : D(xi,x̄i) has entry 1 at position (u, v)} ∪ {(t1, t∗), . . . , (tk, t∗)}.

She can now compute a shortest path from s0 to t∗ by breadth-first search in O(|NF |+|AF |) =
O(k · n2) time and decide whether she can reach her favorite dish in k turns (the required
number of turns equals the length of a shortest s0-t∗-path minus one). As computing the at
most 2k matrices Dx is the most time consuming step, the overall running time of Gretel’s
procedure is O(k ·m2.373 · log2 d), which is polynomial in the input length. This shows:

I Theorem 6. SP-EnchantedForest can be solved in polynomial time O(k ·m2.373 · log2 d). J

As noted before, the result of Theorem 6 also has implications for the complexity of
problems that Gretel faces when she cannot use her lucky charms in order to predict
the outcomes of future die rolls. For example, the polynomial-time solvability of SP-
EnchantedForest directly implies that, when the outcomes of future die rolls are unknown,
Gretel only needs polynomial time in order to compute two movements for her current turn
that maximize the probability of reaching the gingerbread house in (at most) k turns for a
given constant k.

References
1 E. D. Demaine and R. A. Hearn. Playing games with algorithms: Algorithmic combinatorial

game theory, 2001. http://arxiv.org/abs/cs.CC/0106019.
2 C. Dodaro, M. Alviano, W. Faber, N. Leone, F. Ricca, and M. Sirianni. The birth of

a WASP: Preliminary report on a new ASP solver. In Proceedings of the 26th Italian
Conference on Computational Logic (CILC), pages 99–113, 2011.

3 D. Eppstein. Computational complexity of games and puzzles. https://www.ics.uci.
edu/~eppstein/cgt/hard.html. Accessed: 2018-04-16.

4 M. R. Garey and D. S. Johnson. Computers and Intractability (A Guide to the Theory of
NP-Completeness). W.H. Freeman and Company, New York, 1979.

5 G. Kendall, A. J. Parkes, and K. Spoerer. A survey of NP-complete puzzles. ICGA Journal,
31(1):13–34, 2008.

6 M. J. Kobbert. Das verrückte Labyrinth. Ravensburger, 1986.

http://arxiv.org/abs/cs.CC/0106019
https://www.ics.uci.edu/~eppstein/cgt/hard.html
https://www.ics.uci.edu/~eppstein/cgt/hard.html

F.D. Schwahn and C. Thielen 30:13

7 F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
International Symposium on Symbolic and Algebraic Computation (ISSAC), pages 296–303,
2014.

8 M. Matschoss and A. Randolph. Sagaland. Ravensburger, 1981.
9 C. Papadimitriou. Computational Complexity. Addison Wesley, 1993.
10 Spiel des Jahres e.V. Spiel des Jahres. http://www.spiel-des-jahres.com/en.
11 R. P. Stanley. Enumerative Combinatorics. Wadsworth Publ. Co., 1986.
12 L. J. Stockmeyer and A. K. Chandra. Provably difficult combinatorial games. SIAM

Journal on Computing, 8(2):151–174, 1979.

FUN 2018

http://www.spiel-des-jahres.com/en

Card-based Protocols Using Triangle Cards
Kazumasa Shinagawa
Tokyo Institute of Technology, Tokyo, Japan
Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
shinagawakazumasa@gmail.com

Takaaki Mizuki
Tohoku University, Sendai, Japan
tm-paper+triacard@g-mail.tohoku-university.jp

Abstract
Suppose that three boys and three girls attend a party. Each boy and girl have a crush on exactly
one of the three girls and three boys, respectively. The following dilemma arises: On one hand,
each person thinks that if there is a mutual affection between a girl and boy, the couple should
go on a date the next day. On the other hand, everyone wants to avoid the possible embarrassing
situation in which their heart is broken “publicly.” In this paper, we solve the dilemma using novel
cards called triangle cards. The number of cards required is only six, which is minimal in the
case where each player commits their input at the beginning of the protocol. We also construct
multiplication and addition protocols based on triangle cards. Combining these protocols, we
can securely compute any function f : {0, 1, 2}n → {0, 1, 2}.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols

Keywords and phrases Cryptography without computer, Secure computation, Card-based pro-
tocols, Triangle cards, Three-valued computation, Secure matching problem

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.31

Funding Supported by JSPS KAKENHI Grant Numbers 17J01169 and 17K00001.

1 Introduction

Three girls, Alice, Carol, and Ellen, and three boys, Bob, Dave, and Frank, are having a
good time at a party. Assume that each boy has a crush on exactly one of the three girls,
and each girl has a crush on exactly one of the three boys. On one hand, everyone thinks
that if there is a mutual affection between a girl and a boy the couple should go on a date
the next day. On the other hand, each of the six people is too shy to announce the person
they have in mind: Everyone wants to avoid the possible embarrassing situation in which
their heart is broken “publicly.” Are there any solutions to this dilemma?

A cryptographic technique called secure multiparty computation provides a viable solution.
This enables participants holding private inputs to securely compute the value of a desired
function, without revealing their input information. In order to solve the social dilemma
described above, it suffices to design a secure multiparty computation protocol for the
function f : {0, 1, 2}6 → {0, 1}9:

f(a0, a1, a2, b0, b1, b2) = (c0,0, c0,1, c0,2, c1,0, c1,1, c1,2, c2,0, c2,1, c2,2),

where ci,j = 1 if (ai = j) ∧ (bj = i) and ci,j = 0 otherwise. We call this function f the
(3, 3)-matching function, and refer to the problem of securely computing f as the secure
(3, 3)-matching problem. Because it is well-known in the field of cryptography that any
function can be securely computed [2], the secure (3, 3)-matching problem can clearly be

© Kazumasa Shinagawa and Takaaki Mizuki;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 31; pp. 31:1–31:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shinagawakazumasa@gmail.com
mailto:tm-paper+triacard@g-mail.tohoku-university.jp
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Card-based Protocols Using Triangle Cards

resolved somehow. However, conventional secure multiparty computation protocols tend
to be based on a deep mathematical perspective, and hence it seems to be unlikely that
all participants executing a given protocol will concretely understand its correctness and
security. Because the secure (3, 3)-matching problem would typically arise in everyday life,
such as in the party scenario mentioned above, it is desirable to have a more simple and
convenient solution. Thus, this paper solicits a solution to the secure matching problem
using physical cards. The cards used in this paper are novel ones, called triangle cards, which
can easily be constructed using sheets of paper and seals.

1.1 Triangle card

In this paper, we propose a novel card called a triangle card, whose shape is a regular triangle,
where its front/back sides have the same symbol (e.g., ♠). We use the following encoding
rules:

4♠ ↔ 0, 4♠ ↔ 1, 4♠ ↔ 2 = −1.

In an execution of a protocol, both faces of a card can be hidden by placing seals as follows:

4© .

We will formally define triangle cards in Section 2.

1.2 Our results

In this paper, we design a protocol for solving the secure (3, 3)-matching problem using six
triangle cards. We also design a protocol for any function f : (F3)n → F3.

1.2.1 Secure (3, 3)-matching protocol

As shown in Table 1, we construct a protocol for the secure (3, 3)-matching problem using
six cards and six shuffles. Our protocol is efficient in terms of both the number of cards and
shuffles, because a straightforward solution based on the five-card trick [1] requires 42 cards
and 15 shuffles, as explained in Section 3. Our protocol is optimal in terms of the number of
cards when each party submits a (tuple of) card(s) as input at the beginning of a protocol,
because the number of parties in (3, 3)-matching is six.

1.2.2 Protocol for any function

As shown in Table 1, we design a multiplication protocol over F3 using four cards. Regular
3-sided cards, proposed by Shinagawa et al. [5], also enable a secure multiplication protocol
over F3, while requiring 15 cards. Although the previous work in [5] and ours are based on
different types of cards, and thus incomparable, this paper implies that triangle cards are
effective for computing a function over F3 compared with regular 3-sided cards. Based on
the previous addition protocol in [5], we also design an addition protocol for triangle cards.
Because our protocols output a card with seals, an output card for our protocol can be used
as an input card for another protocol, i.e., our protocols are composable. By combining our
protocols, we can securely compute any function over F3.

Kazumasa Shinagawa and Takaaki Mizuki 31:3

Table 1 Comparison between our protocols and previous ones.

Type of cards Number of cards Number of shuffles
◦ Protocol for Secure (3, 3)-Matching Problem
Based on [1] ♣,♥ 42 15

Ours triangle 6 6
◦ Multiplication over F3

[5] regular 3-sided 15 2
Ours triangle 4 2

◦ Addition over F3

[5] regular 3-sided 2 1
Ours triangle 2 1

1.3 Related work
While most existing card-based protocols (cf. [1,4]) utilize a binary pair of cards ♣ ♥ , there
are some studies based on different types of cards, such as cards with rotationally symmetric
backs [3,7], polarizing cards [6], and regular n-sided polygon cards [5]. Part of our technique
is motivated by this previous works. In particular, we employ a rotation shuffle [3,5] and a
turning shuffle [6].

2 Triangle card

In this section, we define triangle cards and the operations used in our protocols.

2.1 Definition of triangle cards
A triangle card is a card of regular triangular shape, whose front and back sides show the
same symbol, as follows:

4♠
front side

4♠
back side

.

We use the following encoding rule:

4♠ ↔ 0, 4♠ ↔ 1, 4♠ ↔ 2 = −1.

The value of a card can be hidden from participating parties by placing seals on both sides,
as follows:

4♠ Put a seal−−−−−−→4© .

For a value a ∈ F3, we call a card of a without seals an opened card, denoted by bbacc, and a
card of a with seals a closed card, denoted by ddaee. That is, there are six states for a triangle
card, as follows:

4♠
bb0cc
4♠

bb1cc
4♠

bb2cc
4©
dd0ee
4©
dd1ee
4©
dd2ee

.

We define operations for a single triangle card as follows:

FUN 2018

31:4 Card-based Protocols Using Triangle Cards

Open/Close: An open operation transforms a closed card ddaee into the opened card bbacc,
as follows:

4©
dd0ee

open−−−→4♠
bb0cc

, 4©
dd1ee

open−−−→4♠

bb1cc

, 4©
dd2ee

open−−−→4♠

bb2cc

.

Conversely, a close operation transforms an opened card bbacc into the closed card ddaee, as
follows:

4♠
bb0cc

close−−−→4©
dd0ee

, 4♠
bb1cc

close−−−→4©
dd1ee

, 4♠

bb2cc

close−−−→4©
dd2ee

.

Rotate: A rotation by 120◦ transforms a card of value a into a card of value a + 1, as
follows:

4♠
bb0cc

120◦

−−−→4♠

bb1cc

120◦

−−−→4♠

bb2cc

120◦

−−−→4♠
bb0cc

.

4©
dd0ee

120◦

−−−→4©
dd1ee

120◦

−−−→4©
dd2ee

120◦

−−−→4©
dd0ee

.

Consequently, a rotation by (n× 120)◦ transforms a card of value a into a card of value
a + n. We call this operation a rotation n-times.
Turn: A turn operation turns over a card. That is, it transforms a card of value a into a
card of value −a, as follows:

4♠
bb0cc

turn−−−→4♠
bb0cc

, 4♠

bb1cc

turn−−−→4♠

bb2cc

, 4♠

bb2cc

turn−−−→4♠

bb1cc

.

4©
dd0ee

turn−−−→4©
dd0ee

, 4©
dd1ee

turn−−−→4©
dd2ee

, 4©
dd2ee

turn−−−→4©
dd1ee

.

2.2 Shuffles for triangle cards

A shuffle is a probabilistic operation on a sequence of cards. In this paper, we use three
types of shuffle: rotation shuffle, turning shuffle, and flower shuffle. We present example
implementations of these shuffles in the appendix.

2.2.1 Rotation shuffle

This takes a sequence of n closed cards (ddx1ee, ddx2ee, · · · , ddxnee) and outputs a sequence of n

closed cards (ddx1 + ree, ddx2 + ree, · · · , ddxn + ree), where r is a uniformly random number over
F3 that is independent from the inputs and other randomness, and information-theoretically
hidden from all parties. (See Figure 2 in the appendix.) We denote this shuffle as follows:(
4©
ddx1ee
4©
ddx2ee

· · ·4©
ddxnee

)
→ 4©
ddx1+ree
4©
ddx2+ree

· · · 4©
ddxn+ree

.

Kazumasa Shinagawa and Takaaki Mizuki 31:5

2.2.2 Turning shuffle
This takes a sequence of n closed cards (ddx1ee, ddx2ee, · · · , ddxnee) and outputs a sequence of
n closed cards (dd(−1)r · x1ee, dd(−1)r · x2ee, · · · , dd(−1)r · xnee), where r is a uniformly ran-
dom number over {0, 1} that is independent from the inputs and other randomness, and
information-theoretically hidden from all parties. (See Figure 3 in the appendix.) We denote
this shuffle as follows:[
4©
ddx1ee
4©
ddx2ee

· · ·4©
ddxnee

]
→ 4©
dd(−1)r·x1ee

4©
dd(−1)r·x2ee

· · · 4©
dd(−1)r·xnee

.

2.2.3 Flower shuffle
This takes a sequence of 3 + n closed cards (ddx0ee, ddx1ee, ddx2ee, ddy1ee, · · · , ddynee) and outputs
a sequence of 3 + n closed cards (ddxree, ddxr+1ee, ddxr+2ee, ddy1 + ree, · · · , ddyn + ree), where r is
a uniformly random number over F3 that is independent of the inputs and other randomness,
and information-theoretically hidden from all parties. (See Figure 4 in the appendix.) We
denote this shuffle as follows:〈
4©
ddx0ee
4©
ddx1ee
4©
ddx2ee

∣∣∣∣4©
ddy1ee

· · ·4©
ddynee

〉
→4©
ddxree
4©
ddxr+1ee
4©
ddxr+2ee
4©
ddy1+ree

· · · 4©
ddyn+ree

.

3 A solution based on existing methods

In this section, we briefly describe a straightforward solution for the secure (3, 3)-matching
problem using a deck of cards employed in previous studies, where their front sides show
♣ , ♥ and their back sides show the same ? . A pair of face-down cards is called a
commitment to 0 (resp. 1) if its face-up symbols are (♣,♥) (resp. (♥,♣)). The main
tool used is the five-card trick, proposed by den Boer [1], which takes two commitments to
a, b ∈ {0, 1} and a single additional card, and outputs the value c = a ∧ b with five free cards
as follows:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♥ → c, ♣ ♣ ♥ ♥ ♥ .

This requires a single shuffle called a random cut. Let Alice (resp. Bob) input 1 if she likes
Bob (resp. Alice), and 0 otherwise. This solves a secure matching problem between two
parties, where either both parties like each other or one party does not like the other. A
straightforward solution for the secure (3, 3)-matching problem is to apply the five-card trick
for every boy-girl pair. That is, each girl (indexed by i) submits a tuple of three commitments
to (ai,0, ai,1, ai,2) ∈ {0, 1}3, where ai,j = 1 if and only if she likes the j-th boy. Similarly, each
boy submits a tuple of three commitments in the same manner. Then, for every i, j ∈ F3 we
apply the five-card trick to the commitments to ai,j and bj,i. We set ci,j = 1 if the output
is 1, and 0 otherwise. (Recall that ci,j = 1 means that the i-th girl and j-th boy have a
mutual affection.) This idea solves the secure (3, 3)-matching problem using 36 + 1 cards
and 9 shuffles.

One weakness of the above idea is that each party may deviate from the input rule, i.e.,
each party may submit two or more commitments to 1. In order to prevent a deviation from
the input rule, we should check the input format in a zero-knowledge manner. Based on
the idea of Shinagawa et al. [5] (Section 5, a voting protocol), we can check the validity

FUN 2018

31:6 Card-based Protocols Using Triangle Cards

v ∈ {true, false} of three commitments using additional six cards, without destroying the
input, as follows:

? ?︸ ︷︷ ︸
ai,0

? ?︸ ︷︷ ︸
ai,1

? ?︸ ︷︷ ︸
ai,2

♣ ♣ ♣ ♥ ♥ ♥ → v, ? ?︸ ︷︷ ︸
ai,0

? ?︸ ︷︷ ︸
ai,1

? ?︸ ︷︷ ︸
ai,2

♣ ♣ ♣ ♥ ♥ ♥ .

This also requires a single shuffle. Thus, the number of cards required is 42 (= 36 + 6), and
the number of shuffles required is 15 (= 9 + 6).

4 Our main solution

In this section, we solve the (3, 3)-matching problem using six triangle cards. Recall that the
(3, 3)-matching function f : (F3)6 → {0, 1}9 is defined follows:

f(a0, a1, a2, b0, b1, b2) = (c0,0, c0,1, c0,2, c1,0, c1,1, c1,2, c2,0, c2,1, c2,2),

where ci,j = 1 if (ai = j) ∧ (bj = i) and ci,j = 0 otherwise.
We first design a protocol for checking x

?= 0 in Section 4.1. Then, we construct a
(3, 3)-matching protocol in Section 4.2.

4.1 IsZero protocol

The IsZero protocol takes two cards (ddxee, bb0cc), and outputs a predicate c ∈ {0, 1} for x
?= 0

without changing the sequence or revealing information of x beyond the predicate c.
The protocol proceeds as follows.

1. Rotate and close the right card as follows:

4©
ddxee
4♠ rotate−−−−→4©

ddxee
4♠ close−−−→4©

ddxee
4©
dd1ee

.

2. Apply a turning shuffle to these.[
4©
ddxee
4©
dd1ee

]
→ 4©
dd(−1)r·xee

4©
dd(−1)ree

,

where r is a random value generated in the shuffle.
3. Open the left card. Let v = (−1)r · x be the opened value.

a. The case v = 0: Close the left card, open the right card, and rotate the right card 2
(resp. 1) times if the opened value is 1 (resp. 2), as follows:

4♠ 4©
dd(−1)ree

close−−−→4©
dd0ee
4©
dd(−1)ree

open−−−→


4©
dd0ee
4♠ rotate−−−−→4©

dd0ee
4♠ ;

4©
dd0ee
4♠ rotate−−−−→4©

dd0ee
4♠ .

b. Case v = 1: Exchange the two cards, and rotate the right card 2-times, as follows:

4♠ 4©
dd(−1)ree

permute−−−−−→ 4©
dd(−1)ree
4♠ rotate−−−−→ 4©

dd(−1)ree
4♠ .

Kazumasa Shinagawa and Takaaki Mizuki 31:7

c. Case v = 2: Turn the right card, exchange the two cards, and rotate the right card
1-time, as follows:

4♠ 4©
dd(−1)ree

turn−−−→4♠ 4©
dd(−1)r+1ee

permute−−−−−→ 4©
dd(−1)r+1ee
4♠ rotate−−−−→ 4©

dd(−1)r+1ee
4♠ .

4. Output c = 1 if v = 0 and c = 0 otherwise.

4.1.1 Correctness
First, let us check that the resulting sequence is equal to the original sequence (ddxee, bb0cc).
When v = 0, it holds that x = 0. Thus, the resulting sequence (dd0ee, bb0cc) is equal to the
original sequence. When v = 1, it is either the case that (x, r) = (1, 0) or (x, r) = (2, 1).
Thus, the resulting sequence (dd(−1)ree, bb0cc) is equal to the original sequence. When v = 2,
either (x, r) = (2, 0) or (x, r) = (1, 1). Thus, the resulting sequence (dd(−1)r+1ee, bb0cc) is equal
to the original sequence. Moreover, we can observe that c is equal to the predicate for x

?= 0,
because v = 0 if and only if x = 0.

4.1.2 Security
When c = 1, i.e., x = 0, the opened value v is always 0. When c = 0, the opened value
v = 1 (or 2) with a probability of exactly 1/2. Thus, the distribution of v is statistically
independent from x given c.

4.2 Secure (3, 3)-matching protocol
The protocol proceeds as follows.

1. Place the six cards as follows:

4©
dda2ee
4©
dda1ee
4©
dda0ee
4©
ddb0ee
4©
ddb1ee
4©
ddb2ee

.

2. Apply a flower shuffle to the sequence:〈
4©
dda2ee
4©
dda1ee
4©
dda0ee

∣∣∣∣4©
ddb0ee
4©
ddb1ee
4©
ddb2ee

〉
→ 4©
dda2−r0ee
4©
dda1−r0ee
4©
dda−r0ee
4©
ddb0+r0ee
4©
ddb1+r0ee
4©
ddb2+r0ee

,

where r0 is a random value generated in the shuffle. Note that the first three cards of
the resulting sequence are (a2−r0 , a1−r0 , a−r0), because those of the original sequence are
arranged in reverse order (a2, a1, a0).

3. Open the fourth card. Let v0 = b0 + r0 be the opened value. Now, the current sequence
can be expressed as follows:

4©
dda2+b0−v0ee

4©
dda1+b0−v0ee

4©
ddab0−v0ee
4v0 4©

ddb1+v0−b0ee
4©

ddb2+v0−b0ee

.

4. Permute the first three cards according to (A) if v0 = 1 and (B) if v0 = 2:

(A)
4©4©4©

4©4©4©
(B)
4©4©4©

4©4©4© .

FUN 2018

31:8 Card-based Protocols Using Triangle Cards

Rotate the fourth/fifth/sixth cards (3−v0)-times. Now, the current sequence is as follows:

4©
dda2+b0ee
4©
dda1+b0ee
4©
ddab0ee
4♠ 4©

ddb1−b0ee
4©
ddb2−b0ee

.

5. Apply the IsZero protocol to the third/fourth cards, and let c0 be the output of this.
6. Remove the fourth card.

4©
dda2+b0ee
4©
dda1+b0ee
4©
ddab0ee
4♠ 4©

ddb1−b0ee
4©
ddb2−b0ee

remove−−−−→ 4©
dda2+b0ee
4©
dda1+b0ee
4©
ddab0ee
4©
ddb1−b0ee
4©
ddb2−b0ee

.

7. Apply a flower shuffle to the sequence:〈
4©
dda2+b0ee
4©
dda1+b0ee
4©
ddab0ee

∣∣∣∣ 4©
ddb1−b0ee
4©
ddb2−b0ee

〉
→ 4©
dda2+b0−r1ee

4©
dda1+b0−r1ee

4©
ddab0−r1ee

4©
ddb1−b0+r1ee

4©
ddb2−b0+r1ee

,

where r1 is a random value generated in the shuffle.
8. Open the fourth card. Let v1 = b1 − b0 + r1 be the opened value. Now, the current

sequence can be expressed as follows:

4©
dda2+b1−v1ee

4©
dda1+b1−v1ee

4©
ddab1−v1ee
4v1 4©

ddb2+v1−b1ee

.

9. Permute the first three cards according to (A) in Step 4 if v1 = 1 and (B) in Step 4 if
v1 = 2. Rotate the fourth/fifth cards (3− v1)-times, and rotate the third card 2-times.
Now, the current sequence is as follows:

4©
dda2+b1ee
4©
dda1+b1ee
4©

dd−1+ab1ee
4♠ 4©

ddb2−b1ee

.

10. Apply the IsZero protocol to the third/fourth cards, and let c1 be the output of this.
11. Remove the fourth card.

4©
dda2+b1ee
4©
dda1+b1ee
4©
ddab1ee
4♠ 4©

ddb2−b1ee

remove−−−−→ 4©
dda2+b1ee
4©
dda1+b1ee
4©
ddab1ee
4©
ddb2−b1ee

.

12. Apply a flower shuffle to the sequence:〈
4©
dda2+b1ee
4©
dda1+b1ee
4©
ddab1ee

∣∣∣∣ 4©
ddb2−b1ee

〉
→ 4©
dda2+b1−r2ee

4©
dda1+b1−r2ee

4©
ddab1−r2ee

4©
ddb2−b1+r2ee

,

where r2 is a random value generated in the shuffle.
13. Open the fourth card, and let v2 = b2 − b1 + r2 be the opened value. Now, the current

sequence can be expressed as follows:

4©
dda2+b2−v2ee

4©
dda1+b2−v2ee

4©
ddab2−v2ee
4v2 .

14. Permute the first three cards according to (A) in Step 4 if v2 = 1 and (B) in Step 4 if
v2 = 2. Rotate the fourth/fifth cards (3 − v2)-times, and rotate the third card 1-time.
Now, the current sequence is as follows:

4©
dda2+b2ee
4©
dda1+b2ee
4©

dd−2+ab2ee
4♠ .

Kazumasa Shinagawa and Takaaki Mizuki 31:9

15. Apply the IsZero protocol to the third/fourth cards, and let c2 be the output of this.
16. For j = 0, 1, 2, do the following: If cj = 1, the (j + 3)-th input bj is publicly announced1

by the (j + 3)-th party, and we set cj,bj
= 1 and ci,j = 0 for i 6= bj . Otherwise, set

(c0,j , c1,j , c2,j) = (0, 0, 0).
17. Output (c0,0, c0,1, c0,2, c1,0, c1,1, c1,2, c2,0, c2,1, c2,2).

4.2.1 Correctness
Let j ∈ {0, 1, 2} be any index. From the correctness of the IsZero protocol, the value ci,j

is 1 if it holds that both i = bj and −j + abj = 0, and 0 otherwise. That is, ci,j = 1 if
(ai = j) ∧ (bj = i), and ci,j = 0 otherwise. Therefore, the above protocol correctly computes
the (3, 3)-matching function.

4.2.2 Security
From the security of the IsZero protocol, the opened values of the IsZero protocol are
statistically independent from the inputs ab0 , ab1 , ab2 given the outputs c0, c1, c2. The opened
values v0 = b0 + r0, v1 = b1 + r1, v2 = b2 + r2 in Steps 3, 8, and 13, respectively, are masked
by a uniformly random number r0, r1, r2 ∈ F3. Thus, the distribution of the opened values
and the distribution of the inputs are statistically independent given an output value.

5 Secure computation for any function

In this section, we construct addition and multiplication protocols. Given two closed cards
ddaee, ddbee as inputs, the former protocol outputs dda + bee, and the latter outputs ddabee. Because
any function over F3 can be expressed using additions and multiplications, we can securely
compute any function over F3 by combining these protocols.

5.1 Addition protocol
The protocol proceeds as follows:
1. Place the two cards as follows:

4©
ddaee
4©
ddbee

.

2. Apply the turning operation to the left card:

4©
ddaee
4©
ddbee

→4©
dd−aee
4©
ddbee

.

3. Apply a rotation shuffle to the cards:(
4©
dd−aee
4©
ddbee

)
→ 4©
dd−a+ree
4©
ddb+ree

.

1 We note that the j-th boy such that cj = 1 can maliciously announce the i-th girl such that i 6= bj , and
this is not noticed when the i-th girl is attracted to the j-th boy. Thus, the levels of trust between boys
and girls are different. To avoid this asymmetry of boys and girls, we can use one additional card. That
is, by using an additional card, we can copy the input of each boy and verify the girl they have in mind.

FUN 2018

31:10 Card-based Protocols Using Triangle Cards

Table 2 All possibilities of the final sequence in our addition protocol.

(a, b) a + b s0 s1 s2

(0, 0) 0 (0, 0) (1, 1) (2, 2)
(0, 1) 1 (0, 1) (1, 2) (2, 0)
(0, 2) 2 (0, 2) (1, 0) (2, 1)
(1, 0) 1 (2, 0) (0, 1) (1, 2)
(1, 1) 2 (2, 1) (0, 2) (1, 0)
(1, 2) 0 (2, 2) (0, 0) (1, 1)
(2, 0) 2 (1, 0) (2, 1) (0, 2)
(2, 1) 0 (1, 1) (2, 2) (0, 0)
(2, 2) 1 (1, 2) (2, 0) (0, 1)

4. Open the first card. Then, a commitment to a + b is obtained as follows:

4♠ 4©
dda+bee

or 4♠ 4©
dda+b+1ee

or 4♠ 4©
dda+b+2ee

.

5.1.1 Correctness
After applying a rotation shuffle to the sequence (dd−aee, ddbee) in Step 3, the resulting sequence
is one of s0, s1, s2 as follows:

s0 = (dd−aee, ddbee),
s1 = (dd−a + 1ee, ddb + 1ee),
s2 = (dd−a + 2ee, ddb + 2ee).

Table 2 shows all possibilities of the final sequence in our addition protocol. We can observe
that in each sequence, the right value is a + b + `, where ` is the left value. Therefore, our
addition protocol is correct.

5.1.2 Security
Let v be the opened value in Step 4. Owing to the rotation shuffle in Step 3, v is equal
to −a + r, where r ∈ F3 is a uniformly random value that is hidden from all parties and
independent from the inputs (a, b). Thus, the distribution of v and the distribution of the
inputs are statistically independent.

5.2 Multiplication protocol
The protocol proceeds as follows:
1. Place the four cards (ddaee, dd0ee, dd0ee, ddbee) as follows:

4©
ddaee
4©
dd0ee
4©
dd0ee
4©
ddbee

.

2. Apply our addition protocol to the leftmost three cards (ddaee, dd0ee, dd0ee):

4©
ddaee
4©
dd0ee
4©
dd0ee
4©
ddbee

→4♠ 4©
ddaee
4©
ddaee
4©
ddbee

.

Kazumasa Shinagawa and Takaaki Mizuki 31:11

Table 3 All possibilities of the final sequence in our multiplication protocol. (An underlined
value corresponds to the output.)

(a, b) ab s0 s1 s2

(0, 0) 0 (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 0, 2)
(0, 1) 0 (0, 0, 0, 1) (0, 0, 0, 2) (0, 0, 0, 0)
(0, 2) 0 (0, 0, 0, 2) (0, 0, 0, 0) (0, 0, 0, 1)
(1, 0) 0 (0, 2, 1, 0) (1, 2, 0, 1) (2, 0, 1, 2)
(1, 1) 1 (0, 2, 1, 1) (2, 1, 0, 2) (1, 0, 2, 0)
(1, 2) 2 (0, 2, 1, 2) (2, 1, 0, 0) (1, 0, 2, 1)
(2, 0) 0 (0, 1, 2, 0) (1, 2, 0, 1) (2, 0, 1, 2)
(2, 1) 2 (0, 1, 2, 1) (1, 2, 0, 2) (2, 0, 1, 0)
(2, 2) 1 (0, 1, 2, 2) (1, 2, 0, 0) (2, 0, 1, 1)

3. Close the first card, and apply a turning operation to the second card:

4©
dd0ee
4©
dd−aee
4©
ddaee
4©
ddbee

.

4. Apply a flower shuffle to the sequence:〈
4©
dd0ee
4©
dd−aee
4©
ddaee

∣∣∣∣∣4©
ddbee

〉
→4© 4© 4© 4© .

5. Open the fourth card. Then, the closed card ddabee is obtained as follows:

4©
ddabee
4© 4© 4♠ or 4© 4© 4©

ddabee
4♠ or 4© 4©

ddabee
4© 4♠ .

5.2.1 Correctness
After applying a flower shuffle to the sequence (dd0ee, dd−aee, ddaee, ddbee) in Step 4, the resulting
sequence is one of s0, s1, s2 as follows:

s0 = (dd0ee, dd−aee, ddaee, ddbee),
s1 = (dd−aee, ddaee, dd0ee, ddb + 1ee),
s2 = (ddaee, dd0ee, dd−aee, ddb + 2ee).

Table 3 shows all the possibilities of the final sequence in our multiplication protocol. We can
observe that in each sequence, the underlying value is equal to ab, and the first/second/third
value is underlined if the fourth value is 0/2/1, respectively. Therefore, our multiplication
protocol is correct.

5.2.2 Security
Let v1, v2 be the opened values in Steps 2 and 5, respectively. From Section 5.1.2, v1 is
statistically independent from the inputs. Owing to the flower shuffle in Step 4, v2 is equal
to b + r, where r ∈ F3 is a uniformly random value that is hidden from all parties and
independent from v1 and the inputs (a, b). Thus, the distribution of the opened values and
the distribution of the inputs are statistically independent.

FUN 2018

31:12 Card-based Protocols Using Triangle Cards

6 Conclusion

In this paper, we proposed novel cards called triangle cards, and solved the secure (3, 3)-
matching problem using six triangle cards. We also designed a protocol for any function over
F3. One could ask if our technique applies to Fn for any n. A straightforward generalization
to this case does not work. This is because for a regular n-sided polygon with n > 3, a
rotation over n − 1 points with a single fixed point cannot be implemented by a physical
operation. In contrast, in the triangle case a turning operation corresponds to an operation
of this type: a rotation between 1 and 2 with a fixed point 0. Our protocols exploits this
property. This is why we concentrate on a triangle rather than a general polygon. An
interesting open question is that of finding new physical objects that enable the construction
of an efficient protocol for the secure (n, m)-matching problem for any integers n, m.

References
1 Bert den Boer. More efficient match-making and satisfiability: The Five Card Trick. In

Jean-Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology - EURO-
CRYPT ’89, Workshop on the Theory and Application of of Cryptographic Techniques,
Houthalen, Belgium, April 10-13, 1989, Proceedings, volume 434 of Lecture Notes in Com-
puter Science, pages 208–217. Springer, 1989. doi:10.1007/3-540-46885-4_23.

2 Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred V. Aho, editor,
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New
York, New York, USA, pages 218–229. ACM, 1987. doi:10.1145/28395.28420.

3 Takaaki Mizuki and Hiroki Shizuya. Practical card-based cryptography. In Alfredo Ferro,
Fabrizio Luccio, and Peter Widmayer, editors, Fun with Algorithms - 7th International
Conference, FUN 2014, Lipari Island, Sicily, Italy, July 1-3, 2014. Proceedings, volume
8496 of Lecture Notes in Computer Science, pages 313–324. Springer, 2014. doi:10.1007/
978-3-319-07890-8_27.

4 Takaaki Mizuki and Hideaki Sone. Six-card secure AND and four-card secure XOR. In
Xiaotie Deng, John E. Hopcroft, and Jinyun Xue, editors, Frontiers in Algorithmics, Third
International Workshop, FAW 2009, Hefei, China, June 20-23, 2009. Proceedings, volume
5598 of Lecture Notes in Computer Science, pages 358–369. Springer, 2009. doi:10.1007/
978-3-642-02270-8_36.

5 Kazumasa Shinagawa, Takaaki Mizuki, Jacob C. N. Schuldt, Koji Nuida, Naoki Kanayama,
Takashi Nishide, Goichiro Hanaoka, and Eiji Okamoto. Multi-party computation with
small shuffle complexity using regular polygon cards. In Man Ho Au and Atsuko Miyaji,
editors, Provable Security - 9th International Conference, ProvSec 2015, Kanazawa, Japan,
November 24-26, 2015, Proceedings, volume 9451 of Lecture Notes in Computer Science,
pages 127–146. Springer, 2015. doi:10.1007/978-3-319-26059-4_7.

6 Kazumasa Shinagawa, Takaaki Mizuki, Jacob C. N. Schuldt, Koji Nuida, Naoki Kanayama,
Takashi Nishide, Goichiro Hanaoka, and Eiji Okamoto. Secure multi-party computation
using polarizing cards. In Keisuke Tanaka and Yuji Suga, editors, Advances in Information
and Computer Security - 10th International Workshop on Security, IWSEC 2015, Nara,
Japan, August 26-28, 2015, Proceedings, volume 9241 of Lecture Notes in Computer Science,
pages 281–297. Springer, 2015. doi:10.1007/978-3-319-22425-1_17.

7 Kazumasa Shinagawa, Koji Nuida, Takashi Nishide, Goichiro Hanaoka, and Eiji Okamoto.
Committed AND protocol using three cards with more handy shuffle. In 2016 International
Symposium on Information Theory and Its Applications, ISITA 2016, Monterey, CA, USA,
October 30 - November 2, 2016, pages 700–702. IEEE, 2016. URL: http://ieeexplore.
ieee.org/document/7840515/.

http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1145/28395.28420
http://dx.doi.org/10.1007/978-3-319-07890-8_27
http://dx.doi.org/10.1007/978-3-319-07890-8_27
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1007/978-3-319-22425-1_17
http://ieeexplore.ieee.org/document/7840515/
http://ieeexplore.ieee.org/document/7840515/

Kazumasa Shinagawa and Takaaki Mizuki 31:13

Figure 1 Triangle cards: an opened card (left) and a closed card (right).

Figure 2 A rotation shuffle. Figure 3 A turning shuffle. Figure 4 A flower shuffle.

8 Itaru Ueda, Akihiro Nishimura, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone.
How to implement a random bisection cut. In Carlos Martín-Vide, Takaaki Mizuki,
and Miguel A. Vega-Rodríguez, editors, Theory and Practice of Natural Computing -
5th International Conference, TPNC 2016, Sendai, Japan, December 12-13, 2016, Pro-
ceedings, volume 10071 of Lecture Notes in Computer Science, pages 58–69, 2016. doi:
10.1007/978-3-319-49001-4_5.

A Implementation of cards and shuffles

Figure 1 shows an example implementation of a triangle card. The left card is an opened
card, and the right card is a closed card. A rotation shuffle is implemented by using
three clips: all cards are stacked using three clips as in Figure 2, and then the stack is
spun like a “roulette wheel.” A turning shuffle is implemented by using a single clip: all
cards are stacked using a clip as in Figure 3, and then the stack is thrown in a spinning
manner, like a coin toss (this technique is called a spinning throw [8]). A flower shuffle for
(ddx0ee, ddx1ee, ddx2ee, ddy1ee, · · · , ddynee) is implemented by using three clips: As in Figure 4, the
last n cards ddy1ee, · · · , ddynee are stacked and placed on the center of the flower, ddx0ee is placed
on the top petal, ddx1ee is placed on the right petal, and ddx2ee is placed on the left petal.
Then, the flower is spun like a “roulette wheel.”

FUN 2018

http://dx.doi.org/10.1007/978-3-319-49001-4_5
http://dx.doi.org/10.1007/978-3-319-49001-4_5

The Power of One Secret Agent
Tami Tamir
School of Computer Science, The Interdisciplinary Center (IDC), Herzliya, Israel
tami@idc.ac.il

Abstract
I am a job. In job-scheduling applications, my friends and I are assigned to machines that
can process us. In the last decade, thanks to our strong employee committee, and the rise of
algorithmic game theory, we are getting more and more freedom regarding our assignment. Each
of us acts to minimize his own cost, rather than to optimize a global objective.

My goal is different. I am a secret agent operated by the system. I do my best to lead my
fellow jobs to an outcome with a high social cost. My naive friends keep doing the best they
can, each of them performs his best-response move whenever he gets the opportunity to do so.
Luckily, I am a charismatic guy. I can determine the order according to which the naive jobs
perform their best-response moves. In this paper, I analyze my power, formalized as the Price
of a Traitor (PoT), in cost-sharing scheduling games – in which we need to cover the cost of the
machines that process us.

Starting from an initial Nash Equilibrium (NE) profile, I join the instance and hurt its stability.
A sequence of best-response moves is performed until I vanish, leaving the naive jobs in a new
NE. For an initial NE assignment, S0, the PoT measures the ratio between the social cost of a
worst NE I can lead the jobs to, starting from S0, and the social cost of S0. The PoT of a game
is the maximal such ratio among all game instances and initial NE assignments.

My analysis distinguishes between instances with unit- and arbitrary-cost machines, and
instances with unit- and arbitrary-length jobs. I give exact bounds on the PoT for each setting,
in general and in symmetric games. While it turns out that in most settings my power is really
impressive, my task is computationally hard (and also hard to approximate).

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases Job scheduling games, Cost sharing, Equilibrium inefficiency

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.32

1 Introduction

I am a job. In job-scheduling applications, my friends and I are assigned to machines that can
process us. The authorities that assign us to machines like to analyze the way we are assigned.
They treat us as instances of combinatorial optimization problems, and our assignment
became a major discipline in operations research. In the old days, we were all controlled
by a centralized scheduler who assigned us in a way that achieves an effective use of the
system’s resources, or a target quality of service [20]. In the last decade, thanks to our strong
employees committee, and also the rise of algorithmic game theory, we are getting more and
more freedom regarding our assignment. Many modern systems provide service to multiple
strategic users, whose individual payoff is affected by the decisions made by other users of
the system. As a result, non-cooperative game theory has become an essential tool in the
analysis of our assignment [21, 15, 24, 4, 12, 3]. Each of us has strategic considerations and
acts to minimize his own cost, rather than to optimize any global objective. Practically, this
means that we choose a machine instead of being assigned to one by a centralized scheduler.

© Tami Tamir;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 32; pp. 32:1–32:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tami@idc.ac.il
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 The Power of One Secret Agent

a

m1 m2

j0b

a

m1 m2

b j0

b

m1 m2

a

j0

b

m1 m2

a

b

m1 m2

a

Figure 1 A simple example of a traitor BR-sequence with PoT= 2.

My goal is different, I am not the regular job you are used to analyze. Already in my
childhood I was a problematic kid and my parents were invited regularly to school to discuss
my behavior1. Recently, I started to work as a secret agent, operated by the system. My
mission is to join a stable assignment of other jobs, perturb its stability, and lead a sequence
of best-response moves, whose outcome is as poor as possible. When I’m done, I vanish,
leaving the other jobs in a new stable profile, whose cost is hopefully higher. My naive friends
keep doing the best they can, each of them performs his best-response move whenever he
gets the opportunity to do so. Luckily, I am a charismatic guy; I can determine the order
according to which the naive jobs deviate.

In this paper, I analyze my power, formalized as the Price of a traitor (PoT), in cost-
sharing scheduling games. In these games every job has a subset of the machines on which it
can be assigned, and the cost of every utilized machine is shared by the job assigned to it,
where the share is proportional to the load generated by the jobs. My goal is to lead the
jobs into a stable assignment in which the total cost of utilized machines is maximal. Before
diving into the details, let me demonstrate my mission on a small example.

Example 1: Consider an instance with two machinesm1 andm2 of costs 1 and 2 respectively.
Assume that two naive jobs of length 1 are assigned on m1 (see leftmost assignment in Figure
1). The cost of each of them in this initial profile is 1/2. Assume that my length is 3 + ε,
and I appear and assign myself on m2 (I am Job 0 - the gray guy in the figure). Since
2/(4 + ε) < 1/2 each of the naive jobs will benefit from joining me. So they join me one after
the other. Once we are all on m2, I vanish. The jobs are left on the more expensive machine
(rightmost assignment in Figure 1), and their assignment is stable, since they each pay 1,
and a unilateral deviation to m1 will also result in this cost. My mission is completed with a
NE whose cost is doubled.

1.1 Preliminaries
An instance of a cost-sharing game with a traitor (CST) is given by a tuple
G = 〈J ,M, {Mj}j∈J , p0〉, where M is a set of m machines, and J is a set of k naive
jobs. Not all machines are feasible to all jobs. For each j ∈ J , the machines that may
process Job j are given by the set Mj ⊆M. Every job j ∈ J has processing time pj which is
independent of the machine on which it is assigned. Every machine i ∈M has an activation
cost, c(i). The last component of the tuple specifies my length - the processing time of the
traitor. Throughout this paper, I am denoted Job 0.

Every job is a player, where the strategy space of Job j is the set of machines in Mj .
A profile of a CST game is a vector S = 〈s0, s1, . . . , sk〉 ∈ ((M∪ {⊥}) ×M1 × . . . ×Mk),

1 Enthusiastic fans of the conference FUN with algorithms may recognize me as a bully job in [23].

T. Tamir 32:3

describing the machines selected by the jobs. My strategy, s0, is inM∪{⊥}, meaning that I
can go to any machine and also be away, in which case s0 = ⊥. A profile in which s0 = ⊥ is
denoted a traitor-free profile. For a machine i ∈M, the load on i in S, denoted Li(S), is the
total processing time of the jobs assigned to machine i in S, that is, Li(S) =

∑
{j|sj=i} pj .

When S is clear from the context it is omitted.

A machine i is utilized in a profile S if Li(S) > 0. The cost of a utilized machine is covered
by the jobs assigned to it, where the share is proportional to the load generated by the jobs.
Formally, the cost of Job j in the profile S is costj(S) = c(sj) · pj

Lsj
(S) . This cost-sharing

scheme fits the commonly used proportional cost-sharing rule for weighted players, (e.g.,
[21, 1, 11]).

Consider a game G. For a profile S, a job j, and a strategy s′j ∈ Mj , let (S−j , s′j)
denote the profile obtained from S by replacing the strategy of Job j by s′j . That is, the
profile resulting from a migration of Job j from machine sj to machine s′j . A profile s is
a pure Nash equilibrium (NE) if no job can benefit from unilaterally deviating from his
strategy in S to another strategy; i.e., for every job j and every strategy s′j ∈Mj it holds
that costj((S−j , s′j)) ≥ costj(S). This paper considers only pure strategies. Unlike mixed
strategies, pure strategies may not be random or drawn from a distribution.

Given a profile S, the best response (BR) of Job j is BRj(S) = arg mins′
j
∈Mj

costj(S−j , s′j);
i.e., a machine i such that Job j’s cost will be minimized if he is assigned to machine i,
fixing the assignment of all other jobs. If there are several such machines, each of them is
considered a best-response. Best-Response Dynamics (BRD) is a local-search method where
in each step some player is chosen and plays his BR.

A naive job j is said to be suboptimal in a profile S if he can reduce his cost by migrating
to another machine, i.e., if sj 6∈ BRj(S). Given an initial profile S0, a traitor BR-sequence
from S0 is a sequence of profiles 〈S0, S1, . . . ST 〉 in which for every t = 0, 1, . . ., either there
exists a naive job j such that St+1 ∈ (St−j

, BRj(St)), or St+1 = (St−0 , s
′
0). In other words,

either a naive job performs a BR move or I perform a move of my choice – even if it is not
beneficial for me. I am interested in traitor BR-sequences in which both S0 and ST are
traitor-free NEs. The stability of S0 is perturbed once I arrive and select some machine.
Formally, in S0 my strategy is ⊥, and no naive job is suboptimal. Then, S1 = (S0−0 , s

′
0) for

s′0 ∈ M. The last profile in a traitor BR-sequence is also traitor-free, that is s0(ST) = ⊥.
For a profile S0, let TNE(S0) be the set of Nash equilibria reachable from S0 via a traitor
BR-sequence. If my departure leaves the naive jobs in a non-stable profile, they will keep
forming BR-moves until they converge to a NE (by [2] this will surely happen).

The social cost of a profile S is the total cost of resources utilized in S, which is equal to
the total cost of the players. Formally, cost(S) =

∑
j∈J∪{0} costj(S) =

∑
i∈∪jsj

c(i). Note
that I pay my part in utilizing a machine that I share with others – this is essential also
to keep my reliability among the naive jobs. However, the fact that the final NE in the
sequence is traitor-free guarantees that I cannot force a very expensive outcome by selecting
an expensive machine for myself.

Let NE(G) be the set of Nash equilibria in a CST game G. Being a weighted cost-sharing
game with singleton strategies, it is well known that NE(G) 6= ∅ and that BRD converges
to a NE [2]. Recall that TNE(S0) is the set of traitor-free Nash equilibria reachable from a
traitor-free NE S0 via a traitor BR-sequence.

The Price of a Traitor in a game G, denoted PoT(G), is defined as the worst ratio, among
all initial traitor-free NE profiles S0, between the social cost of a NE in TNE(S0) and the

FUN 2018

32:4 The Power of One Secret Agent

social cost of S0. I.e.,

PoT (G) = sup
S0∈NE(G)

max
S∈TNE(S0)

cost(S)
cost(S0) .

For a class of games G, the price of a traitor with respect to G is defined as the worst-case
PoT over all games in G. That is, PoT(G) = supG∈G{PoT(G)}.

It is well known that NE profiles may be sub-optimal. Let OPT (G) denote the minimal
possible social cost of a feasible assignment of J , i.e., OPT (G) = minS cost(S). The
inefficiency incurred due to self-interested behavior is quantified according to the price of
anarchy (PoA) [15, 19] and price of stability (PoS) [1] measures. The PoA is the worst-case
inefficiency of a pure Nash equilibrium, while the PoS measures the best-case inefficiency of a
pure Nash equilibrium. Formally, PoA(G) = maxS∈NE(G) cost(S)/OPT (G), and PoS(G) =
minS∈NE(G) cost(S)/OPT (G).

The following observation bounds my power for any game instance.

I Observation 1. For every game G, 1 ≤ PoT(G) ≤ PoA(G)
PoS(G)

.

Proof. For every initial NE profile, S0, it holds that cost(S0) ≥ OPT (G) ·PoS(G). Also, for
every S ∈ TNE(S0), it holds that cost(S) ≤ OPT (G) · PoA(G). Therefore,

PoT(G) ≤ max
S∈TNE(S0)

cost(S)
cost(S0) ≤

OPT (G) · PoA(G)
OPT (G) · PoS(G) = PoA(G)

PoS(G) .

Also, since S0 ∈ TNE(S0), it holds that PoT(G) ≥ 1. J

Related work: I am not a young job. I participated in many assignments in my life, and
I always tried to analyze the performance of these assignments. In addition, I’m trying to
follow the huge effort done by researchers in analyzing our assignments. Before the rise of
algorithmic game theory, most of the study dealt with achieving a global objective of the
assignment such as load balancing, minimizing our total completion time, or the makespan
(corresponding to the maximal cost of some job) [20].

In the last decade, game-theoretic analysis became an important tool for analyzing our
assignments, as many other systems in which a set of resources is shared by selfish users.
Congestion games consist of a set of resources and a set of players who need to use these
resources. Players’ strategies are subsets of resources. Each resource has a latency function
which, given the load generated by the players on the resource, returns the cost of the
resource [21, 1]. CST games are congestion games with singleton strategies, in which each
resource has an activation cost that is shared by the players using it according to some
sharing mechanism. A generalized, traitor-free, model of this game, in which the processing
times of jobs depend on the machines they are assigned to was studied in [17, 2].

Best-Response dynamics corresponds to actual dynamics in real life applications. They
are therefore starring in the study of non-cooperative game theory [1, 13, 8]. The important
questions are whether BRD converges to a NE, if one exists [17, 12]; what is the converges
time [5, 6, 22, 13]; and what is the quality of the solution [8]. The paper [22] studies the
complexity of equilibria in a wide range of cost sharing games.

Other related work deal with games in which some of the players are not selfish. For
example, in the Stackelberg model [14, 10, 7], a fraction of the jobs are selfish, while the rest
are willing to obey a centralized authority. A Stackelberg strategy assigns the controllable
jobs, trying to minimize the inefficiency caused by the others.

T. Tamir 32:5

Table 1 The non-restricted jobs and their initial profile in the CST game constructed in the
reduction.

Job j pj Mj S0(j) cost0(j)
a 1 {m1, m2, m3} m1 1/4
b 1 {m2, m4} m2 1/2
c 2 {m3, m5} m5 2/5
d 2 {m3, m5} m5 2/5

1, . . . , n aj {m1, m2} m1 aj/4

Games in which some players are adversarial were defined and study in the areas of
Cryptography [16, 18] and Rational Synthesis [9]. However, the goals and the allowed actions
of the malicious players in these games are different, and their analysis is not relevant to my
power.

2 Unit-cost Machines

In this section I study my power in an environment of unit-cost machines. The cost of a
profile is simply the number of utilized machines. My goal is therefore to activate as many
new machines, and keep them utilized also after my departure. Unfortunately, it turns out
that my ambition exceeds my ability: in order to achieve my goal, I need to solve an NP-hard
problem. Moreover, the reduction below presents an instance for which (i) cost(S0) = 4,
(ii) for every ST ∈ TNE(S0) it holds that cost(ST) ∈ {4, 5}, and (iii) an NP-hard problem
should be solved in order to lead the jobs to a profile of cost 5. This implies that it is unlikely
to have an algorithm that approximates my potential damage with ratio better than 4/5,
and thus, my mission is APX-hard.

I Theorem 2. My task is APX-hard even with a constant number of unit-cost machines.

Proof. I show a reduction from the Partition problem. The input is a set I of positive
numbers {a1, a2, ..., an} such that ∀j, 0 < aj < 1 and

∑
j aj = 2. The goal is to decide

whether there exists a subset I1 ⊂ I, such that
∑
j∈I1

aj =
∑
j∈I\I1

aj = 1. Given an
instance of Partition, consider the CST game and initial profile depicted in Figure 2(a). The
game is played on M = {m1,m2,m3,m4,m5}, where ∀i, c(mi) = 1. The are n + 8 naive
jobs. Four jobs of length 1 are restricted. Each of them is restricted to go to a different single
machine, m1,m2,m4 or m5. These are the gray jobs in the figure. Since |Mj | = 1 for each of
these jobs, they will not participate in the BR-sequence. The restricted jobs guarantee that
the cost of every profile is at least 4. The lengths, possible strategies, and initial assignments
of the other jobs are given in Table 1. My length is p0 = 2 + ε. Note that the last n jobs are
originated from the Partition instance. Let JI denote this set, whose total length is 2.

The initial profile, S0, depicted in Figure 2(a) is indeed a NE, as jobs can only migrate
to machines with a lower or equal load. My goal is to utilize m3 and keep it utilized after I
vanish. As I show, I must be able to solve the Partition problem in order to do it.

I Claim 3. I can lead the jobs to a NE on 5 machines if and only if a partition exists.

Proof. Assume first that a partition exists. Let JA be a set of jobs JA ⊂ JI such that∑
j∈JA

aj = 1, and let JB = JI \ JA. Here is a traitor BR-sequence that ends with a NE
on 5 machines: First, I’ll migrate to m2 and let the jobs in JA perform BR. Recall that my
length is 2 + ε. The loads on m1 and m2 are 4 and 4 + ε, respectively. Since aj

4 >
aj

4+ε+aj
,

FUN 2018

32:6 The Power of One Secret Agent(a)

a

m1 m2 m3 m4 m5

JI b

(b)

j0
a

m1 m2 m3 m4 m5

JI
b JB JA

(c)

j0

a

m1 m2 m3 m4 m5

b JB JA

(d)

j0

a

m1 m2 m3 m4 m5

b

c

d

(e)

a

m1 m2 m3 m4 m5

b

c

d

JI
c

d

c

d

c

d

(a)

a

m1 m2 m3 m4 m5

JI b JB JA

(b)

j0

a

b JB JA

(c)

j0

a

m1 m2 m3 m4 m5

b

c

d

(d)

a

m1 m2 m3 m4 m5

b

c

d

JI
c

d

c

d

m1 m2 m3 m4 m5

Figure 2 The CST game constructed in the reduction from Partition. (a) The initial profile S0,
(b) The profile before Job a performs BR, (c) The profile after c and d join us on m3, and (d) the
final NE if a Partition exists.

the jobs in JA will move to m2. Once the jobs of JA are all on m2, I’ll migrate to m4, and
let Job b perform BR. He will join me, since 1

3 >
1

4+ε . Then, I’ll move to m3. The profile at
this time-point is depicted in Figure 2(b). Let’s analyze the possible strategies of Job a: If
he stays on m1 or move to m2 his cost will be 1/3, while if he joins me on m3 his cost will
be 1/(3 + ε). Thus, joining me on m3 is his BR. This is exactly what I wanted - now I can
attract additional jobs to this machine! After Job a joins me, I will let Jobs c and d perform
BR. These guys are required in order to keep Job a on m3 after I leave. Job c currently pays
2/5. He will join us since 2/5 > 2/(5 + ε). Job d will clearly follow since 2/3 > 2/(7 + ε).
The profile at this time-point is depicted in Figure 2(c). Stay tuned, we are getting closer to
the end of our sequence. Next, I will let the jobs in JB move, and join their friends in JA on
m2; Job b will also join them. My mission is now completed - I can vanish, leaving the naive
jobs in the profile depicted in Figure 2(d). This profile is a traitor-free NE: Jobs c and d will
not return to m5 since their cost will increase to 2/3. Job a is staying with them since his
cost would be 1/5 also on m2. The jobs of JI are clearly happy together, and all other four
jobs are restricted. The cost of this traitor-free NE is 5.

Assume now that a partition of I does not exist. I argue that I have no chance to keep
m3 utilized. First, note that Jobs c and d will not join me on m3 if it’s only me there, since
2/(4 + ε) > 2/5. Next, let’s analyze the conditions for Job a to join me on m3. In order for
m3 to be his BR, the load on each of m1 and m2 must be less than my length, 2 + ε. In any
assignment, the jobs of JI are partitioned such that for some 0 ≤ α ≤ 2, jobs of total length
α are on m1 and jobs of total length 2− α are on m2. However, for a small enough ε, we
have that max(1 + α, 3− α) ≤ 2 + ε only for α = 1. Therefore, if I has no partition, I will
not be able to attract anyone to join me on m3, and exactly 4 machines will be utilized in
any traitor-free NE. J

J

2.1 PoT in Games with Unit-length Jobs
In this simplest setting, of unit-cost machines and unit-length jobs, my power is very limited.
The price of anarchy in this setting is k. PoA= k is achieved by an instance in which one
machine can process all the jobs, but in the NE each job is assigned on a different machine
that is only capable to process him. The price of stability in this setting is 1 since an optimal
assignment is stable - no job will utilize a new machine. Thus, by Observation 1, my potential
power is k. Unfortunately, independent of S0, I will never be able to lead the naive jobs to a
more expensive profile. Formally,

T. Tamir 32:7

I Theorem 4. For G = {CST games with unit-cost machines and unit-length jobs}, it holds
that PoT(G) = 1.

Proof. Let S0 be an initial NE. Along any traitor BR-sequence, no naive job activates a
new machine, since activating a new machine costs 1, which is the maximal cost of a job in
any profile. Assume that I move to a new machine and someone joins me. Each of us now
pays 1/2. Such a migration is beneficial only if the other guy was on a machine by himself,
implying that some machine was abandoned when he joined me. Moreover, additional jobs
may join us, meaning that additional machines may be abandoned. Therefore, whenever I
activate a new machine, if someone joins me, then the cost of at least one machine is saved,
and if no one joins me then the total cost of the machines for the other guys does not change.
Therefore, I will never be able to increase the number of machines that accommodate naive
jobs. J

2.2 PoT in Games with Arbitrary-length Jobs
In games with unit-cost machines and arbitrary-length jobs, I can do much better. My power
varies depending on k and m, and is equal to the price of anarchy [2].

I Theorem 5. Let G = {CST games on unit-cost machines}. (i) For G1 ⊆ G with k < m,
PoT (G1) = k, (ii) For G2 ⊆ G with m ≤ k ≤ 2m− 2, PoT (G2) = m− 1, (iii) For G3 ⊆ G
with k ≥ 2m− 1, PoT (G3) = m.

Proof. (i) Assume that k < m. Clearly, cost(S0) ≥ 1 and in any NE profile the naive jobs
may need to cover the cost of at most k machines. Thus, PoT ≤ k. For the lower bound,
given m and k such that k < m, consider a game G onM = {m0, . . . ,mm−1}. My length
is p0 = 2k, and for 1 ≤ j ≤ k, Job j has length pj = 2j and Mj = {m0,mj}. In the initial
profile, S0, the naive jobs are all together on m0. This is clearly a NE, since a deviating job
will need to pay for a new machine.

Here is a traitor BR-sequence that will lead us to a NE on k machines: starting from S0,
I will move to mk. Since 2k >

∑k−1
j=1 2j , poor Job k needs to pay a bit more than 1/2. Since

we have the same length, he will gladly join me to share the cost of mk. I will then move
to mk−1. It is now the turn of Job k − 1 to contribute a bit more than half of the load on
m0, and join me on mk−1. Well, I’m sure you can now complete the sequence by yourself.
Eventually, I will be together with Job 1 on m1, while m0 is empty and each of m2, . . . ,mk

is assigned only one job. This is the right time for me to vanish. The resulting profile is a
TNE. The only alternative of each naive job is returning to m0; however, m0 is empty so
it does not attract anyone. Since cost(S0) = 1, and in the final NE the naive jobs are on k
machines, we have that PoT(G) = k.

(ii) Assume that m ≤ k ≤ 2m− 2. Let me show you that PoT = m− 1. The lower bound
is similar to the case in which k < m. My length is p0 = 2k, while for 1 ≤ j ≤ m− 1, Job
j has length pj = 2j and Mj = {m0,mj}. For m ≤ j ≤ k, Job j has length pj = ε and his
capable machines are {m0,mm−1}. In S0 they are all assigned to m0. As in case (i), I can
lead the jobs to a profile in which they are assigned on m− 1 machines, by attracting them,
one by one starting from the longest job to their ‘second’ machine. Since cost(S0) = 1, The
PoT in this game is m− 1.

For the upper bound, assume by contradiction that there is a game G ∈ G2 such that
PoT(G) > m−1. Since S0 uses at least one machine and any profile uses at most m machines,
in an instance with PoT > m− 1 it must be that cost(S0) = 1 and some NE costs m. Since
there is just one active machine in S0, this machine is capable for all naive jobs. Denote this

FUN 2018

32:8 The Power of One Secret Agent

machine ma. Assume that ST ∈ TNE(S0) and cost(ST) = m. It must be that there is at
least one naive job on every machine. Since k ≤ 2m− 2, by the pigeonhole principle, there
are at least two machines that are used by exactly one naive job. Let mb 6= ma be a machine
that is used only by some Job j. Thus, costj(ST) = 1. Since there is at least one naive
job on ma and ma ∈Mj , by deviating to ma, Job j can reduce his cost, contradicting the
assumption that ST is a NE, and thus, contradicting the assumption that PoT(G) > m− 1.

(iii) Assume that k ≥ 2m− 1. Let me present a game G ∈ G3 in which cost(S0) = 1 and
some NE in TNE(S0) uses m machines, thus, PoT(G) = m. This is clearly a tight bound as
cost(S0) ≥ 1 and any schedule uses at most m machines. Given k,m, consider a game G on
M = {m0, . . . ,mm−1}. My length is p0 = 22m−2, and for 1 ≤ j ≤ 2m− 2, Job j has length
pj = 2j and Mj = {m0,mdj/2e}. Let JR be the set of jobs {j ≥ 2m− 1}. Since k ≥ 2m− 1,
the set JR is not empty. The jobs of JR have total length 1, and are restricted to m0. In the
initial profile, which is clearly a NE, all naive jobs are on m0.

Here is a traitor BR-sequence that will lead the naive jobs to a NE on m machines:
starting from S0, I will assign myself on mm−1. The load on m0 is

∑2m−2
i=0 2i = 22m−1 − 1.

Poor Job 2m− 2, whose length is 22m−2, needs to pay a bit more than 1/2. Since we have
the same length, he will gladly join me to share the cost of mm−1. The remaining load on m0
is

∑2m−3
i=0 2i = 22m−2− 1. It is now the turn of Job 2m− 3 to contribute a bit more than half

of the load on m0. He will gladly join us on mm−1. I will then move to mm−2 and attract
the next pair of long jobs on m0 to join me one after the other. The sequence continues
- in turn, I attract the pair with the largest length to their ‘second’ machine. Eventually,
only jobs from JR, of total length 1, remain on m0. At this time point, I will vanish. The
resulting profile uses m machines and is a NE. The jobs of JR have no alternative strategy,
and the only alternative of the other naive jobs is returning to m0. However, their current
cost is either 1/3 or 2/3, so they prefer it over returning to m0 and share it with JR. Since
cost(S0) = 1, we get that PoT(G) = m. J

3 Arbitrary-cost Machines

CST games with arbitrary-cost machines and unit-cost jobs fit the classic model of fair
cost-sharing with singleton strategies. For games without a traitor it is known that the PoA
is k and the PoS is Hk were H0 = 0, and Hi = 1 + 1/2 + . . .+ 1/i. As I show, my power is
quite limited, and moreover - my mission is computationally hard. On the other hand, as
detailed in Section 4, when jobs may have arbitrary lengths, then my power equals the PoA
already in symmetric games.

Let me start with the hardness result.

I Theorem 6. My task is APX-hard, even with unit-length jobs and if for every naive job j,
|Mj | ≤ 4.

Proof. I show a reduction from the maximum 3-bounded 3-dimensional matching problem
(3DM-3). The input to the 3DM-3 problem is a set of triplets U ⊆ X × Y × Z, where
|X| = |Y | = |Z| = n. The number of occurrences of every element of X ∪ Y ∪ Z in U is at
most 3. The number of triplets is |U | ≥ n. The desired output is a 3-dimensional matching
in U of maximal cardinality; i.e., a subset U ′ ⊆ U , such that every element in X ∪ Y ∪ Z
appears at most once in U ′, and |U ′| is maximal. It is known that 3DM-3 is APX-hard.

Given an instance of 3DM-3, construct the following CST game with unit length jobs.
J = {x1, x

′
1 . . . , xn, x

′
n, y1, y

′
1, . . . , yn, y

′
n, z1, z

′
1, . . . , zn, z

′
n}, that is, 3n pairs of jobs, one pair

for every element of X∪Y ∪Z. LetM = MX∪MY ∪MZ∪MU , where each ofMX ,MY ,MZ is

T. Tamir 32:9

𝑥1

mx1 mx2 mx3 my1 my2 my3 mz1 mz2 mz3 mu1 mu2 mu3

(a)
𝑥1
′

𝑥2

𝑥2
′

𝑥3

𝑥3
′

𝑦1

𝑦1
′

𝑦2

𝑦2
′

𝑦3

𝑦3
′

𝑧1

𝑧1
′

𝑧2

𝑧2
′

𝑧3

𝑧3
′

𝑥1

mx1 mx2 mx3 my1 my2 my3 mz1 mz2 mz3 mu1 mu2 mu3

(b) 𝑥1
′

𝑥2

𝑥2
′ 𝑥3𝑥3

′

𝑦1

𝑦1
′

𝑦2

𝑦2
′

𝑦3

𝑦3
′

𝑧1

𝑧1
′

𝑧2

𝑧2
′

𝑧3

𝑧3
′

Figure 3 The CST game constructed for n = 3 and U = {{x1, y2, z2}, {x1, y3, z3}, {x3, y1, z1}}.
(a) The initial profile S0, (b) The NE corresponding to the matching {{x1, y2, z2}, {x3, y1, z1}}.

a set of n element-machines, one machine per element, andMU is a set of |U | triplet-machines,
one machine per triplet.

Every machine in MX costs 3 + ε, every machine in MY ∪MZ costs 2 + ε, and every
machine in MU costs 3. The feasible machines for the naive jobs are as follows: For the
pair xi and x′i, Job xi can choose between mxi

and any machine of a triplet he belongs to,
while Job x′i is restricted to go to machine mxi

. Formally, Mxi
= {mxi

} ∪ {mu`
|xi ∈ u`},

and Mx′
i

= {mxi
}. Similarly, for the pair yj and y′j , Myj

= {myj
} ∪ {mu`

|yj ∈ u`}, and
My′

j
= {myj

}, and for the pair zk and z′k, Mzk
= {mzk

} ∪ {mu`
|zk ∈ u`}, and Mz′

k
= {mzk

}.
In the initial assignment, S0, every pair is assigned on his dedicated machine. See

an example in Figure 3(a). It is easy to verify that S0 is a NE. The cost for every job
corresponding to an X-element is (3 + ε)/2, the cost for every other job is (2 + ε)/2. Any
migration of a naive job is associated with an activation of a triplet-machine and is therefore
not beneficial. It holds that cost(S0) = 7n+ 3nε.

I Claim 7. I can lead to a NE whose cost is cost(S0) + 3w if and only if a matching of size
w exists.

Proof. Let W = {u1, . . . , uw} be a 3-dim matching of size w. The traitor BR-sequence I will
lead from S0 consists of w iterations, in each of them I attract the elements of one triplet
to their triplet-machine. Assume 〈xi, yj , zk〉 = u` ∈ W . After I move to mu`

, I offer Job
xi to perform a BR-move. His current cost, on mxi , is (3 + ε)/2, and he can reduce it to
3/2 by joining me. All other triplet-machines that are capable to process him are empty,
and therefore, joining me is his BR. Once he joins me, I offer yj to perform a BR-move.
Since (2 + ε)/2 > 3/3, he would join us. Next, zk will join us since (2 + ε)/2 > 3/4. I will
then move to attract the next triplet to their triplet-machine. After w such iterations, I will
vanish. The resulting profile (see Figure 3(b)) is a traitor-free NE - the jobs assigned to the
w triplet-machines each pays 3/3 = 1 while returning to their element-machines will cost
them (3 + ε)/2 or (2 + ε)/2. The other jobs are either restricted to their machine (jobs of
type x′i, y′j or z′k), or can move to an empty triplet-machine - which is not beneficial.

For the other side of the reduction assume that there is a traitor BR-sequence that ends
in a NE ST whose cost is cost(S0) + 3w. For every element-machine there is one job (the
‘prime’-job) who is restricted to it. Also, all element-machines are utilized in S0; therefore,
in order to achieve cost cost(S0) + 3w, exactly w triplet-machines are utilized in ST . I claim
that each such machine is assigned all its corresponding triplet. If u` is assigned only two
jobs, then the cost for each of them is 1.5. Since at least one of the two jobs is a Y -job or

FUN 2018

32:10 The Power of One Secret Agent

a Z-job, he can migrate from mu`
to join his pair in S0 for cost 1 + ε/2. Therefore, ST is

stable only if w machines are assigned their corresponding triplets - inducing a matching of
size w. J

J

3.1 PoT in Games with unit-length jobs
In order to bound my power in this setting, let us consider a stronger model, in which the
jobs are allowed to perform better-response moves, and not only best-response ones. An
upgraded traitor has the ability to select the next job to deviate and also his next strategy,
as long as it is better than his current strategy. My power in this model is at least as high
as in the regular model, since every BR-sequence is also a better-response one. The upper
bound for the PoT in CST games with unit-length jobs is valid also for the stronger model,
while the lower bound in my analysis below is achieved already by a traitor BR-sequence.

Let G = {CST games with unit-length jobs}. Let G ∈ G and let S0 be an initial profile
in G, such that PoT(G) is achieved by G starting from S0. The proof of the following
lemma is based on the fact that the setM can be tailored to include machines that can only
accommodate one specific job, and I can attract the jobs to these machines.

I Lemma 8. W.l.o.g., in the worst traitor better-response sequence from S0, all the initial
machines are emptied, and every job migrates exactly once.

Proof. Let ST be the most expensive profile in TNE(S0). Assume by contradiction that
there is a machine ma that was utilized in S0 and is not empty in ST . Assume that
La(ST) = `. Consider a game G′ in whichM′ =M∪ {m′1, . . .m′`}. For 1 < z ≤ `, define
c(m′z) = 2c(ma)/z − ε. For m′1 define c(m′1) = c(ma). Let j1, j2, . . . , j` be the jobs on ma

in ST according to the order they joined ma. It is possible that some of them were on
ma in S0, in which case their enumeration is arbitrary. In G′, for every 1 ≤ z ≤ ` define
M ′jz

= Mjz ∪ {m′z}. Clearly, for all z, costjz (ST) = c(ma)/`. I claim that I can lead G′

from S0 to a NE of cost cost(S0) +
∑`
z=1 c(m′z). Thus, G′ has a higher PoT. The traitor

better-response sequence from S0 in G′ will be identical to the sequence in G with the
following suffix: Before I vanish, I will migrate to machine m′`. Since c(m′`)/2 < c(ma)/`,
joining me is attractive for j`. I will continue in a similar way to evacuate ma. Note that
c(m′1) = c(ma). The machine m′1 is essential, since it is important to make sure that j1 also
leaves ma: this guarantees that the resulting profile is a NE - for all 1 ≤ z ≤ `, we have
c(m′z) ≤ c(ma), and therefore none of them has an incentive to return to ma and attract the
other jobs back after I’m gone. Also, since m′z is only capable to process Job jz, no other
job is affected. The above extension of the traitor better-response sequence can be applied
for any machine which is utilized in S0 but not emptied along sequence.

Using a similar extension of the sequence, I can show that there exists a worst traitor
better-response sequence from S0, in which every utilized machine accommodates exactly
one naive job. Finally, let me show that there exists a worst sequence in which every naive
job j migrates exactly once - from machine sj(S0) to some new machine: By the above,
there exists a sequence in which all the machines that were active in S0 are empty in ST and
every utilized machine accommodates a single job. Therefore, every job migrates at least
once. Assume by contradiction that there are naive jobs who migrate more than once. Let j
be the naive job who performed the last before-last migration. By the choice of j, after his
before-last migration there were migrations only to final destinations, and according to the
properties above, these migrations are into new dedicated machines - each accommodating a
single job.

T. Tamir 32:11

Assume that in his before-last migration, Job j moved from ma to mb. Let `a and `b
denote the loads on ma and mb, respectively, before the migration of Job j from ma to mb.
The migration is beneficial, therefore, c(ma)/`a > c(mb)/(`b + 1). Given that mb is about to
be evacuated, there exists some job on mb who will be the first to migrate to some dedicated
machine m′. His move would be beneficial, so his cost on m′ will be less than c(mb)/(`b + 1).
Define a game G′ in which M ′j = Mj ∪ {m′}. Consider the sequence in which before the
migration of job j I move to m′ and then let Job j perform a BR move. Joining me will be
j’s best-response. In G′ I need to permute the dedicated machines allowed for each of the
jobs currently on Mb - such that it will be emptied as before, maybe in a different order.
This permutation however does not hurt the total cost of the machines activated due to the
jobs leaving mb. Therefore, there exists a sequence in which the before-last migration of j is
saved, and the total cost of machines utilized is not hurt. The above process can be repeated
as long as there are jobs migrating more than once – to end up with a sequence fulfilling the
properties stated in the lemma. J

Based on the above characterization, the PoT can be bounded as follows.

I Theorem 9. For G = {CST games with unit-length jobs }, it holds that PoT(G) = 2Hk−1.

Proof. By Lemma 8, the PoT is achieved by emptying one by one the machines in S0,
where every job is attracted to a new machine. Thus, for every machine mi, the load on
mi reduces during the traitor BR-sequence from Li(S0) to 0. A naive job j that leaves
his machine ma when the load on it is ` will be attracted to join me on a new machine
only if its cost is less than 2c(ma)

` . Also, if ` = 1 then I can attract j to a machine
of cost at most c(ma), as otherwise, j will return to ma after I’m gone, and will also
attract the other jobs back to it. For ` > 1, the new machines have cost lower than
2c(ma)

` ≤ c(ma), and therefore, the trapped jobs will not have an incentive to return to ma

after I vanish. The total cost of machines I will utilize in order to empty ma is therefore less
than c(ma) +

∑La(S0)
`=2

2c(ma)
` = c(ma)(2HLa(S0) − 1). Summing over all the machines in S0,

we get that for the final NE ST , cost(ST) <
∑
i|Li(S′0)>0 c(i)(2HLi(S′0) − 1). For at least one

machine, Li(S0) ≤ k, implying that cost(ST) < cost(S0)(2Hk − 1).
For the lower bound, let me describe a CST game in which I can lead the jobs to a NE

whose cost is arbitrarily close to cost(S0)(2Hk−1). The game is played onm = k+1 machines,
M = {0, 1, . . . , k}. The cost of machine m0 is 1 + ε, for 1 ≤ i < k, we have c(mi) = 2

k−i+1 ,
and c(mk) = 1. There are k unit-length jobs, where for 1 ≤ j ≤ k, Mj = {m0,mj}. In the
initial profile, S0, all the jobs are on m0. Since the cost for each naive job is 1+ε

k and the
cheapest empty machine has cost 2

k , S0 is a NE. Here is a traitor BR-sequence I can initiate:
First, I appear on m1, whose cost is 2

k . Joining me is beneficial and possible for Job 1. Once
he migrates and joins me, I move further to m2 and let Job 2 perform best-response. His
current cost is 1+ε

k−1 and I offer him a cheaper alternative. I continue to attract the jobs one
after the other until eventually, m0 is empty, mi accommodates Job i, for all 1 ≤ i ≤ k − 1,
and mk is shared by Job k and myself. My mission is completed. The resulting profile is a
NE: the naive players have no incentive to activate m0, since each of them has current cost
at most 1.

The cost of this NE is
∑k
i=1 c(mi) =

∑k−1
i=1

2
k−i+1 + c(mk) = 2(Hk − 1) + 1 = 2Hk − 1.

Since cost(S0) = 1 + ε, the PoT is arbitrarily close to 2Hk − 1. J

FUN 2018

32:12 The Power of One Secret Agent

4 Symmetric Games

In a symmetric game, all the players have the same set of feasible machines. W.l.o.g., for
all j, Mj = M. It is well-known that in symmetric games, all the players use the same
strategy in every NE. Indeed, if two naive players use different strategies, then at least one
of them would benefit from joining the other. It is also known that PoA= k and PoS=1 in
this settings [1], where the high PoA is achieved even with unit-length jobs.

In this section I show that with unit-length jobs or with unit-cost machines I have no
power, that is, I cannot lead the players to a NE worse than S0. I then suggest an efficient
way to increase my power: I consider the lightest relaxation of the unit-length condition, and
show that allowing me to have an arbitrary length (while all other jobs have unit-length),
is sufficient to achieve PoT=PoA= k. I then provide a tight bound for my power with
arbitrary-length jobs and arbitrary-cost machines.

The first theorem follows trivially from the fact that in symmetric games all the players
use a single machine in every NE.

I Theorem 10. For G = {symmetric CST games with unit-cost machines}, it holds that
PoT(G) = 1.

Next, let me show that I cannot be of any help also with unit-length jobs.

I Theorem 11. For G = {symmetric CST games with unit-length jobs}, it holds that
PoT(G) = 1.

Proof. Since the game is symmetric, in S0 all the jobs are on the same machine, say m0.
Assume w.l.o.g., that cost(S0) = c(m0) = 1. For k = 1, I will be able to attract the single
naive job only to a machine whose cost is less than 2. However, once I vanish, he would
return to m0. Therefore, for every ST ∈ TNE(S0), cost(ST) = cost1(ST) ≤ 1 = cost(S0).

Assume next that k > 1. Clearly, I am the only job who may initiate the use of a machine
whose cost is more than 1. In order to end up with a more expensive profile, some job
must join me on an expensive machine. Assume by contradiction that there exists a traitor
BR-sequence in which I attract someone to join me on an expensive machine. Let ma be
the first expensive machine in which a job j joins me. When job j migrates, since k > 1,
apart from ma, there is at least one active machine mb utilized by jobs in J \ {0, j}. Since
ma is the first expensive machine to accommodate a naive job, it must be that c(mb) ≤ 1.
Therefore, Job j has an alternative strategy, mb, in which his cost would be at most 1/2,
contradicting the assumption that his BR-move is to join me on ma. We conclude that naive
jobs will only migrate to machines of cost at most 1. Since they will end-up on a single
machine, we get that also for k > 1, PoT = 1. J

To increase my power in symmetric games with unit-length jobs, I asked my operators to
increase my processing time. Gladly, this works above and beyond everyone’s expectations:

I Theorem 12. For G = {symmetric CST games with unit-length jobs and arbitrary-length
traitor}, it holds that PoT(G) = k.

Proof. The upper bound follows from Observation 1 and the fact that in cost sharing
symmetric games PoA ≤ k [15]. The lower bound is a generalization for arbitrary k of
Example 1. Consider an instance with two machines m1 and m2 of costs 1 and k respectively.
Assume that k unit-length jobs are assigned on m1. Assume now that I appear and assign
myself on m2. My length is k2 − 1 + ε, thus, a job that joins me would pay k · 1

k2+ε , which is
less than 1

k , his current cost on m1. The other jobs will follow, and once they are all on m2,
I will be gone, leaving them on in a traitor-free NE of cost k. J

T. Tamir 32:13

Table 2 My power in various environments. In entries marked by [?], the P oT is lower than the
P oA/P oS-bound and the P oA = k. In all other entries, P oT = P oA.

Jobs \ Machines unit-cost arbitrary-cost
general symmetric general symmetric

unit-length 1 [?] 1 Θ(Hk) [?] 1 [?]

arbitrary-length min(m, k) 1 k

∑
j

pj

maxj pj

Let’s consider next instances with arbitrary-length jobs and arbitrary-cost machines. Let
L(J) =

∑
j∈J pj be the total length of the naive jobs, and let α(J) = maxj∈J pj/L(J).

Theorem 12 analyzes the case α(J) = 1/k. The following theorem generalizes it for arbitrary
α(J).

I Theorem 13. For G = {symmetric CST games}, it holds that PoT (G) = PoA(G) =
1/α(J).

Proof. Let me first bound the PoA. Assume that Job 1 determines the value of α, and that
OPT = 1. Let S be a NE profile. Since the game is symmetric, all the jobs are on a single
machine, and the cost of Job 1 is α · cost(S). He can deviate to the machine of cost 1 utilized
in the optimal profile, therefore, in order for S to be a NE, it must hold that α · cost(S) ≤ 1,
implying cost(S) ≤ 1/α.

The lower bound is a generalization of Example 1. Given a set of naive jobs J , let
L = L(J), α = α(J). Assume that Job 1 determines the value of α. Consider a symmetric
CST game, on two machines, where c(m1) = 1 and c(m2) = 1

α = L
p1
. Let S0 be the initial

stable profile in which all the jobs are on m1. Assume now that I appear and assign myself
on m2. My length is L2

p1
− p1 + ε. Note that if Job 1 joins me, his cost would be L

p1
· p1

L2
p1

+ε

which is less than p1
L , his current cost on m1. It is easy to see that the other jobs will follow.

Once they are all on m2, I will be gone. The resulting profile has cost c(m2) = 1
α . The cost

for a job of length pj is L
p1
· pj

L ≤ 1, thus, no one will migrate back to m1 and this profile is a
traitor-free NE. J

5 Conclusions and Plans for My Retirement

Being the evil guy is not an easy task, but a rewarding one. My power is summarized in
Table 2. I’m a bit disappointed from my limited power in instances with unit-length jobs,
which is significantly lower than the PoA/PoS bound. However, if you run a system that
processes arbitrary-length jobs and would like to boost your revenue, you should definitely
hire me! If you deal with symmetric jobs then you will greatly enjoy my services if you
process arbitrary-length jobs on arbitrary-cost machines.

I am exploring several ways to increase my power. One clear direction is to employ
additional secret agents to work with me. I want to analyze the power of several traitors,
who coordinate their moves trying to lead the naive jobs to a poor outcome. In this general
setting, the number of traitors is γk for some fraction γ. Fooling the naive jobs by a bunch
of secret agents could be really fun and rewarding!

I would also like to devise algorithms that calculate, for a given initial profile, a traitor
BR-sequence with high PoT. In this paper I proved that the problem is NP-hard, but I
believe that there are interesting classes of instances for which it is possible to come up with
an optimal sequence, or at least an approximated one. Another interesting problem is to

FUN 2018

32:14 The Power of One Secret Agent

consider the power of a traitor in other congestion games. Specifically, after my retirement, I
hope to volunteer in networks, and be in charge of routing messages. After gaining the trust
of other players there, I will challenge myself harming the social cost in network formation
games.

Alternatively, I may enter the world of congestion games – in which the cost associated
with using a resource increases with the load on it. It seems that a totally different approach
is required in such games, because I will no longer attract naive players to join me, but to
get away from me. In general, almost every congestion game becomes more interesting when
a single or multiple traitors are involved.

References
1 E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden. The

price of stability for network design with fair cost allocation. SIAM Journal on Computing,
38(4):1602–1623, 2008.

2 G. Avni and T. Tamir. Cost-sharing scheduling games on restricted unrelated machines.
Theoretical Computer Science, 646:26–39, 2016.

3 V. Bilò and C. Vinci. On the impact of singleton strategies in congestion games. In Proc.
25th Annual European Symposium on Algorithms, pages 17:1–17:14, 2017.

4 Ioannis Caragiannis, Michele Flammini, Christos Kaklamanis, Panagiotis Kanellopoulos,
and Luca Moscardelli. Tight bounds for selfish and greedy load balancing. Algorithmica,
61(3):606–637, 2011.

5 E.Even-Dar, A.Kesselman, and Y.Mansour. Convergence time to nash equilibria. In Proc.
30th Int. Colloq. on Automata, Languages, and Programming, pages 502–513, 2003.

6 A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure nash equilibria.
In Proc. 36th ACM Symp. on Theory of Computing, pages 604–612, 2004.

7 A. Fanelli, M. Flammini, and L. Moscardelli. Stackelberg strategies for network design
games. In Proc. of the 3rd International Conference on Algorithmic Game Theory, pages
222––233, 2010.

8 M. Feldman, Y. Snappir, and T. Tamir. The efficiency of best-response dynamics. In Proc.
of the 10th International Symposium on Algorithmic Game Theory (SAGT), 2017.

9 D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. In The 16th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 190–204, 2010.

10 D. Fotakis. Stackelberg strategies for atomic congestion games. Theory of Computing
Systems, 47(1):218–249, 2010.

11 Vasilis Gkatzelis, Konstantinos Kollias, and Tim Roughgarden. Optimal cost-sharing in
general resource selection games. Operations Research, 64(6):1230–1238, 2016.

12 T. Harks and M. Klimm. On the existence of pure nash equilibria in weighted congestion
games. Math. Oper. Res., 37(3):419–436, 2012.

13 Samuel Ieong, Robert McGrew, Eugene Nudelman, Yoav Shoham, and Qixiang Sun. Fast
and compact: A simple class of congestion games. In Proceedings of the 20th National
Conference on Artificial Intelligence - Volume 2, AAAI’05, 2005.

14 Yannis A. Korilis, Aurel A. Lazar, and Ariel Orda. Achieving network optima using stack-
elberg routing strategies. IEEE/ACM Trans. Netw., 5(1):161–173, 1997.

15 E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Computer Science Review,
3(2):65–69, 2009.

16 Anna Lysyanskaya and Nikos Triandopoulos. Rationality and adversarial behavior in multi-
party computation. In Advances in Cryptology - CRYPTO 2006, pages 180–197, 2006.

T. Tamir 32:15

17 I. Milchtaich. Congestion games with player-specific payoff functions. Games and Economic
Behavior, 13(1):111–124, 1996.

18 Shien Jin Ong, David C. Parkes, Alon Rosen, and Salil Vadhan. Fairness with an honest
minority and a rational majority. In Omer Reingold, editor, Theory of Cryptography, pages
36–53, 2009.

19 C. H. Papadimitriou. Algorithms, games, and the internet. In Proc. 33rd ACM Symp. on
Theory of Computing, pages 749–753, 2001.

20 M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 2008.
21 R. W. Rosenthal. A class of games possessing pure-strategy nash equilibria. International

Journal of Game Theory, 2:65–67, 1973.
22 V. Syrgkanis. The complexity of equilibria in cost sharing games. In WINE, volume 6484,

pages 366–377. Springer, 2010.
23 Tami Tamir. Scheduling with bully selfish jobs. In Proceedings of the 5th International

Conference on Fun with Algorithms, FUN’10, pages 355–367, 2010.
24 B. Vöcking. Algorithmic Game Theory, chapter 20: Selfish Load Balancing. Cambridge

University Press, 2007.

FUN 2018

	p00-frontmatter
	Preface

	p01-Farach-Colton
	p02-Sugihara
	Introduction
	First-Generation ``Anomalous Objects''
	Second-Generation ``Impossible Motion Objects''
	Cylinder-Type Impossible Objects
	Third-Generation ``Ambiguous Cylinders''
	Fourth-Generation ``Partly invisible Objects''
	Fifth-Generation ``Topology-Disturbing Objects''
	Sixth-Generation ``Deformable Objects''
	Eighth-Generation ``Reflexively Fused Objects''

	Seventh-Generation ``Height Reversal Objects''
	Concluding Remarks

	p03-Abel
	Introduction
	Hamiltonicity Reduction Framework
	Hexagons and Broken Edges
	Squares
	Tree-Residue Vertex Breaking
	Squares with Squares of Two Colors

	Stars
	Triangles
	One Triangle Clues
	Three Triangle Clues

	Polyominoes
	Rotatable Dominoes
	Monominoes + Antimonominoes
	Nonrotatable Dominoes

	Antibodies
	Metapuzzles
	Sliding Bridges
	Elevators and Ramps
	Power Cables and Doors

	p04-Almanza
	Introduction
	Problem Definition
	Other related works
	Our Reduction
	Preliminaries
	Overview
	Gadgets and Color Schemes
	Converting between color schemes
	Train Absorption Gadget
	Crossover Gadget
	Fanout Gadget
	Blend Gadget
	Or Gadget
	And Gadget
	Loop Gadget
	Check Gadgets

	Conclusions

	p05-Belmonte
	Introduction
	Preliminaries
	W[2]-hardness of Free-Flood-It
	Clique-width and neighborhood diversity
	Relation Between Fixed and Free Flood-It
	Non-monotonicity of Free-Flood-It

	p06-Bermond
	Introduction
	Related work
	Additional related work and our results

	Notations
	Preliminary results
	Analysis for k <= 2
	Exact analysis for k = 1 and empty conflict graph
	Analysis for k = 2
	Analysis for k <= 2 and a general conflict graph

	Lower bounds for k > 2
	Case k = 4. Proof of Theorem 14

	p07-Bilo
	Introduction
	Preliminaries
	Hardness of levels with three colors, two moves, and two goals
	Boards with a constant number of columns
	Hardness of levels with two columns, one goal and unlimited moves
	A polynomial-time algorithm for levels with one column
	Clearing the board
	The general case

	Boards with a constant number of rows
	Conclusions

	p08-Bilo
	Introduction
	Single-Hop Duotaire
	Overview
	Transforming the input DVG instance
	Gadgets
	Vertices with outdegree two
	Vertices with outdegree 1

	Putting all together

	Multi-Hop Duotaire
	Gadgets
	Putting all together

	2-player Solitaire Reachability

	p09-Bodlaender
	Introduction
	Lower Bounds
	Algorithms
	Conclusions

	p10-Boldi
	Introduction
	Notation and Tools
	Static Z-Fast Tries on Arbitrary Languages
	Compacted tries
	Exit nodes
	Static z-fast tries
	Signature-based static z-fast tries

	Suffix trees and suffix arrays
	Zuffification
	Searching with zuffix arrays

	Conclusions

	p11-Bosboom
	Introduction
	Rules
	Mate-in-1
	c-Move Mate-in-1
	k-Move Mate-in-1 is in NP
	Unbounded-Move Mate-in-1
	k-Move Mate-in-1 is NP-hard

	Push Fight is PSPACE-hard
	Move-wasting gadget
	Variable gadgets
	Bridge gadget
	Clause gadget
	Reward gadget
	Layout
	Analysis

	p12-Botler
	Introduction
	Preliminaries
	Bounds for supercaps
	Bounds for small d
	Asymptotic supercaps

	Probabilities of the presence of a superset in random collections
	Algorithms and complexity
	Conclusion

	p13-Bultel
	Introduction
	Contributions
	Outline

	The Shared Expenses Problem and its Complexity
	Cryptographer's Conspiracy Santa
	A Distributed Solution using Cryptocurrencies
	Security Proof
	Physical Variant

	Conclusion

	p14-Coulombe
	Introduction
	Team Graph Game Components
	Delay Gadget
	Red Team Choice Gadget
	State Transition Gadget
	Initialization

	Reductions
	Applications
	Team Fortress 2 and many other team FPS games
	Super Smash Brothers
	Mario Kart

	Conclusion and Open Problems
	TEAM DFA GAME is Undecidable

	p15-Cui
	Introduction
	Summary of Results
	Basic Theorems
	Basic Definitions
	An Example is Worth A Thousand Theorems: 43 muffins, 39 Students
	Finding a Procedure
	The Proof that f(47,36) <= 31/90 Reveals Much More
	Generating More General Theorems
	How to find X
	How to find X Cheating a Little
	How to find X Cheating a Lot
	A General Algorithm
	Open Problems and Speculation
	A Mixed Integer Program for f(m,s)
	Other Methods
	Everything You Ever Wanted to Know About f(s+7,s)
	A Sample of General Theorems
	If m >= s then f(m,s) >= 1/3

	p16-Czyzowicz
	Introduction
	Problem Definition of Priority Evacuation (PE_n)
	Related work
	Our Results & Paper Organization

	Notation and Preliminaries
	Problem Reformulation & Solutions' Description
	Useful Trajectories' Components
	Critical Angles

	Upper Bounds
	Evacuation Algorithm for PE_1
	Evacuation Algorithm for PE_2
	Evacuation Algorithm for PE_3
	A Simple Algorithm
	Improved Search Algorithm

	Lower Bounds
	Lower Bound for PE_1
	Lower Bounds for PE_2 and PE_3

	Conclusion

	p17-deHaan
	Introduction
	Related Work
	Greedy Spiders
	Preliminaries
	Complexity Results for Greedy Spiders
	Metatheorems
	Application of Metatheorems
	Conclusion

	p18-Demaine
	Introduction
	Gadget model
	Our results

	Gadget Basics
	Closure Properties
	PSPACE Membership

	2-toggle-lock and crossover motion planning is PSPACE-complete
	Antiparallel 2-toggle motion planning is PSPACE-complete
	2-toggles and non-crossing toggle locks simulate 2-toggle locks
	2-toggle locks simulate non-crossing wire locks
	Non-crossing wire locks simulate crossovers

	Everything simulates everything else
	More reasons Zelda is hard
	General hardness characterization
	Open Problems / Conclusion

	p19-Demaine
	Introduction
	Definitions of Game Elements
	Game Element Descriptions
	Portal with Emancipation Grills is Weakly NP-complete
	Portal with Turrets is NP-hard
	Literal
	Variable
	Clause Gadget
	Application to Other Games

	Portal with Timed Door Buttons is NP-hard
	Portal with High-Energy Pellets and Portals is NP-hard
	Portal is PSPACE-complete
	Additional Applications of NCL Construction
	Conclusion
	Open Questions

	p20-Eppstein
	Introduction
	Algorithms
	Subtraction with hotspots
	Finding the hotspots
	Divide and conquer
	Nim-values

	Experiments
	Maximum nim-value
	Number of cold positions
	Modularity

	Conclusions

	p21-Eppstein
	Introduction
	New results
	Related work

	Simplification through abstraction
	Optimal strategy in the abstract game
	Making change
	Specific sets of tile values
	Discussion

	p22-Hamann
	Introduction
	Related Work
	Online Connected Dominating Sets
	Robot Warehouses

	Online Algorithm
	Competitive Analysis
	Simulation Study
	Open problems
	Proof of Lemma 4

	p23-Holzer
	Introduction
	Bogo-Select: Selection By Partitioning
	How Long Does it Take to Check Whether the kth Element is on its Correct Position?
	The Expected Number of Swaps in Bogo-Select

	Two Variations on Bogo-Select
	Bogo-Select by Zig-Zag-Partition
	Bogo-Selection by Counting

	Experimental Results
	Conclusions

	p24-Iwamoto
	Introduction
	NP-completeness of Herugolf and Makaro
	3SAT Problem
	Transformation from an Instance of 3SAT to a Herugolf Puzzle
	Transformation from an Instance of 3SAT to a Makaro Puzzle

	p25-Kimura
	Introduction
	Preliminaries
	Picross 3D
	Fewest Clues Problem

	Parsimonious Reduction from positive 1-in-3 SAT to Picross 3D
	Sigma_2^P-completeness of FCP Picross 3D
	Conclusion

	p26-Kitamura
	Introduction
	Background
	Problem and Our Result

	Preliminaries
	Configuration and Rewriting Rule
	Symmetric Configuration
	Formulation of the Problem

	Generating Uniform Distribution
	Part 1: From 4^k0$ to (440)^k/2$
	Part 2: From (440)^k/2$ to 42^k-302^k-14$
	Part 3: From 42^k-302^k-14$ to 2^2k0$

	Conclusions and discussion

	p27-Lafond
	Introduction
	Models, speedrunning mechanics, and problems
	Damage boosting
	Routing
	Conclusion

	p28-Polishchuk
	Introduction
	Related work
	Contributions and Roadmap

	The gender number of a gym
	A more efficient, combinatorial solution

	Gender inequality leads to hardness
	Gender dimension and perfectness
	Setting up the perfect scene
	Gender definition and formal GS foundations
	Perfect counter/barre choice
	Algorithm for Perfect PIGS

	Conclusion
	Maximum perfect subset of doors

	p29-Sasaki
	Introduction
	Preliminaries
	Zero-Knowledge Proof
	Gradwohl, Naor, Pinkas, and Rothblum Protocol 3
	Gradwohl, Naor, Pinkas, and Rothblum Protocol 5

	Our Protocols
	Commitment as Input
	Subgrid Copy
	Fundamental Protocol
	Compact Protocol
	Correctness of Proposed Protocols

	Conclusion

	p30-Schwahn
	Introduction
	The aMAZEing Labyrinth
	Formal Problem Definition
	Escaping the Labyrinth is hard …
	…but doing it faster than someone else is even harder.

	Enchanted Forest
	Formal Problem Definition
	Finding one's way in the Enchanted Forest is easy

	p31-Shinagawa
	Introduction
	Triangle card
	Our results
	Secure (3,3)-matching protocol
	Protocol for any function

	Related work

	Triangle card
	Definition of triangle cards
	Shuffles for triangle cards
	Rotation shuffle
	Turning shuffle
	Flower shuffle

	A solution based on existing methods
	Our main solution
	IsZero protocol
	Correctness
	Security

	Secure (3,3)-matching protocol
	Correctness
	Security

	Secure computation for any function
	Addition protocol
	Correctness
	Security

	Multiplication protocol
	Correctness
	Security

	Conclusion
	Implementation of cards and shuffles

	p32-Tamir
	Introduction
	Preliminaries

	Unit-cost Machines
	PoT in Games with Unit-length Jobs
	PoT in Games with Arbitrary-length Jobs

	Arbitrary-cost Machines
	PoT in Games with unit-length jobs

	Symmetric Games
	Conclusions and Plans for My Retirement

