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Preface

FUN with Algorithms is dedicated to the use, design, and analysis of algorithms and data
structures, focusing on results that provide amusing, witty but nonetheless original and
scientifically profound contributions to the area. Donald Knuth’s famous quote captures this
spirit nicely:.... pleasure has probably been the main goal all along. But I hesitate to admit it,
because computer scientists want to maintain their image as hard-working individuals who
deserve high salaries. Sooner or later society will realise that certain kinds of hard work are
in fact admirable even though they are more fun than just about anything else.

The previous FUNs were held in Elba Island, Italy; in Castiglioncello, Tuscany, Italy; in
Ischia Island, Italy; in San Servolo Island, Venice, Italy; in Lipari Island, Sicily, Italy; and
in La Maddalena Island, Sardinia, Italy. Special issues of Theoretical Computer Science,
Discrete Applied Mathematics, and Theory of Computing Systems were dedicated to them.

This volume contains the papers presented at the 9th International Conference on Fun
with Algorithms 2018, held on June 13-5, 2018, on La Maddalena Island, Italy. The call for
papers attracted 55 submissions from all over the world, addressing a wide variety of topics,
reviewed by three Program Committee members. After a careful reviewing process and a
thorough discussion, the committee decided to accept 30 papers. In addition, the program
featured two invited talks by Martin Farach-Colton and Kokichi Sugihara. Extended versions
of selected papers will appear in a special issue of the journal Theoretical Computer Science.

We thank all authors who submitted their work to FUN 2018, all Program Committee
members for their expert assessments and the ensuing discussions, all external reviewers for
their kind help, and Atsuki Nagao for taking care of the web management of the conference.
We used EasyChair (http://www.easychair.org/), that greatly facilitated the entire prepara-
tion of the conference, for handling submissions, reviews, the selection of papers, and the
production of this volume. Warm thanks also go to Michael Wagner for following carefully
the process of proceedings’ publication in LIPIcs series.

May, 2018

Hiro Ito

Stefano Leonardi
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Mind the Gap

Martin Farach-Colton'
Rutgers University, Department of Computer Science, Piscataway, NJ 08854, USA
martin@farach-colton.com

https://orcid.org/0000-0003-3616-7788

—— Abstract

As a New Yorker, I'm painfully aware of space. There is, after all, nothing more luxurious
than empty space! So when it comes to algorithms, I'm all in favor of leaving holes in my data
structures. In this talk, I'll explore the advantages of pampering algorithms with some much
needed breathing room.

2012 ACM Subject Classification Theory of computation — Data structures design and analysis

Keywords and phrases library sort, Italian island, packed memory arrays, weight balanced trees,
Italians know how to throw a conference

Digital Object ldentifier 10.4230/LIPIcs.FUN.2018.1

Category Invited Paper

L Supported by NSF CCF 1637458, NIH 1 U01 CA198952-01, a NetAPP Faculty Fellowship and a gift
from Dell/EMC.
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37 licensed under Creative Commons License CC-BY
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Evolution of Impossible Objects

Kokichi Sugihara

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 4-21-1 Nakano,
Nakano-ku, Tokyo 164-8525, Japan

http://www.isc.meiji.ac.jp/~kokichis/

kokichis@isc.meiji.ac.jp

—— Abstract

Impossible objects — 3D objects that can create a visual effect that seems impossible — can be
classified by generation based on the order in which they were discovered or produced. The first
generation consists of objects whose appearance when observed from a certain viewpoint matches
a picture of an impossible object. Many such objects can be created, as there are multiple 3D
objects that will project the same two-dimensional picture, including shapes that the human
vision system is unable to perceive. The gap between the mathematical and the psychological
can also create other types of “impossible” visual effects. Impossible objects are here classified
into seven groups.

2012 ACM Subject Classification Applied computing — Computer-aided design

Keywords and phrases Ambiguous cylinder, anomalous picture, impossible motion, impossible
object, optical illusion

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.2
Category Invited Paper

Acknowledgements This work is supported by the Grant-in-Aid for Basic Scientific Research
(A) No. 16H01728 of MEXT.

1 Introduction

“Anomalous pictures” or “pictures of impossible objects” are a class of pictures that give
viewers the impression of a 3D structure that is perceived to be impossible [2, 16]. A typical
example of such a picture is the endless loop of stairs proposed by Penrose and Penrose [6]
and which appears in Escher’s “Ascending and Descending” [4].

It was once thought that impossible objects exist only in the mind and that they could
not be constructed as actual 3D structures. However, several tricks were soon found for
creating 3D structures that could reproduce pictures of impossible objects. One such trick
is to make a discontinuous structure appear to be continuous when seen from a particular
viewpoint [5, 7]. A second trick is to use curved surfaces instead of planar surfaces [1, 3].

Sugihara describes a third trick [8, 9] in which the creator uses angles other than 90
degrees to produce a rectangular look. He called this the “non-rectangularity trick”. He
extended the trick in various directions and proposed new types of impossible objects,
including “impossible motion objects” in which the inserted motions appear to be impossible;
“ambiguous cylinders”, whose mirror images appear to be impossible; and “partly invisible
objects”, parts of which disappear when reflected in a mirror.

In this presentation, we classify Sugihara’s impossible objects according to their generation
and present typical examples. We also touch on some of the underlying mathematics.
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2:2 Evolution of Impossible Objects

<

(C)) (b) (c)

Figure 1 First-generation “anomalous object”: (a) picture of an endless loop of stairs; (b) solid
object producing the same picture; (c) another view of the object.

2  First-Generation “Anomalous Objects”

Not all of the 3D objects represented in anomalous pictures are impossible; in some cases,
they can be constructed as 3D solid objects. An example is shown in Fig. 1, where panel
(a) shows a picture of an endless loop of stairs and panel (b) shows an object made from
paper whose appearance from above coincides with the picture. The stairs at the top of the
four walls form a loop, suggesting that if we continue to ascend the stairs, we will eventually
come back to the starting point, which is impossible since ascending the stairs should bring
us always to a higher position. Fig. 1 (c) shows another view of the object, from which we
can see that the stairs on the left rear wall are not normal. Note that in this realization, all
faces are planar and the structures that look connected are actually connected.

This kind of realization can be found mathematically in the following way. As illustrated
in Fig. 2, let us fix an (x,y, z) Cartesian coordinate system, place a picture on the z = 1
plane, and fix the viewpoint at the origin. We are interested in judging whether the object
represented by the picture is realizable. Let (x;,y;,1) be the coordinates of the i-th vertex
in the picture. The associated vertex in 3D space, if it exists, should have coordinates
(i /ti,yi/ti, 1/t;), where t; is an unknown variable, because the vertex should be on the
half-line emanating from the origin and passing through the vertex (z;,y;,1). For the j-th
face, let

ajx+bjy+ciz+1=0 (1)

be the equation of the plane containing the face. All the coefficients a;, b;, c; are unknowns.
Suppose that the i-th vertex is on the j-th face. Then we can substitute the coordinates
of the vertex into the face equation and obtain

a;T; + bjyi + Cj + ti = 0,

which is linear in the unknowns %;,a;,b;,c;. We obtain a similar equation for each such
vertex and face pair. Collecting them all, we get a system of linear equations

Aw =0, (2)

where A is a constant matrix and w is the vector of unknown variables.
Pictures also have relative depth information. As shown in Fig. 3, let [ be an edge
separating the j-th face and the k-th face. Suppose that [ is a convex edge and the k-th face
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Jj-th face

i-th vertex

NN

Figure 2 Object and its projection.

<« i-th vertex

b «—— k-th face
J-th face

Figure 3 Relative depth.

contains the i-th vertex. Then the plane containing the j-th face passes between the i-th
vertex and the viewpoint, which is represented by

a;x; + bjyi +cj+ t; <O0.

(3)
Collecting all similar inequalities, we get the system of linear inequalities

Bw > 0. (4)

We can then prove that the picture represents a polyhedral object if and only if the
system of equations (2) and inequalities (4) has solutions [8]. Thus, we can determine the
realizability of impossible objects. The object shown in Fig. 1 corresponds to a solution of
the system of equations and inequalities. In this way, we can construct a potentially large
number of 3D objects whose projections coincide with anomalous pictures. We classify this
type of impossible object as first generation and call the objects “anomalous objects”.

3 Second-Generation “Ilmpossible Motion Objects”

If a given picture is correct, then the associated system of equations (2) and inequalities (4)
has solutions but they are not unique. We can utilize this property to construct another type
of impossibility. Let D be a picture of an ordinary 3D object. The system of (2) and (4)

contains a solution corresponding to the original object, but it contains many other solutions.

FEach solution corresponds to an object whose appearance is the same as the original object
but whose actual shape is different. For example, a picture of a slope ascending rightward also
contains a solution corresponding to a slope ascending leftward. By choosing an appropriate
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(@ (b)

Figure 4 Second-generation “impossible motion object”: (a) two walls with holes; (b) a rod
penetrating two windows; (c) another view.

solution, we can create the impression of impossible motion such as a ball climbing a slope
against gravity [10].

An example is shown in Fig. 4, where panel (a) shows an object composed of two walls
with rectangular holes, and panel (b) shows the motion of a rigid straight rod penetrating
through two windows. Fig. 4(c) shows another view of the object, from which we can see
that the actual shape of the object is different from what we perceive when we see the image
in Fig. 4(a).

We classify this type of impossible object as second generation and name the objects
“impossible motion objects”.

4 Cylinder-Type Impossible Objects

Anomalous objects and impossible motion objects create an “impossible” visual effect when
they are seen from a single special viewpoint. Another way to generate a sense of impossibility
is to observe an object from two or more viewpoints. If the appearance of the object is so
different when seen from the different viewpoints that the viewer is unable to believe that it
is the same object, then we may well have found a new impossible object. On the basis of
this idea, we can construct several additional classes of impossible objects.

4.1 Third-Generation “Ambiguous Cylinders”

The system of linear equations and equalities described in (2) and (4) has infinitely many
solutions if the associated picture is correct. This implies that the same 2D appearance can
be realized by many different 3D shapes, and, consequently, we may construct a 3D object
that projects two desired appearances when the object is seen from two special viewpoints.
This kind of object can be found by solving two systems of (2) and (4) corresponding to two
pictures with respect to two viewpoints.

An example is shown in Fig. 5. As shown in panel (a), when the cylinder is viewed
directly, it has the shape of a full moon, but when it is reflected in the vertical mirror behind,
it has the shape of a star.

We classify these types of impossible objects as third generation and call them “ambiguous
cylinders” [11].

4.2 Fourth-Generation “Partly invisible Objects”

The design method used for ambiguous cylinders can also be used to create another visual
illusion in which part of an object disappears when it is seen from a second viewpoint. To
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(@ (b)

Figure 5 Third-generation “ambiguous cylinder”: (a) full moon and star; (b) another view.

(a (b)

Figure 6 Fourth-generation “partly invisible object”: (a) object VH; (b) another view.

understand how this might work, consider an object composed of two parts, A and B. We
can construct an ambiguous cylinder in such a way that part A appears as it is from both
viewpoints, whereas part B appears as A when seen from the second viewpoint. The resulting
object is such that, when we see the object from the second viewpoint, parts A and B overlap
and, as a consequence, one is hidden by the other.

An example is given in Fig. 6. In panel (a), the object appears to be a regular hexagonal
cylinder on its side, while the lower half disappears in the mirror. As shown in panel (b), the
lower half is actually horizontal and gets hidden behind the upper half when seen from the
second viewpoint.

We classify these types of impossible objects as fourth generation and name them “partly
invisible objects” [14].

4.3 Fifth-Generation “Topology-Disturbing Objects”

We can apply the design method for ambiguous cylinders in still another way, one whereby
we create objects whose topology changes in the mirror. An example is shown in Fig. 7. As
shown in panel (a), the object appears in both views to consist of two circular cylinders;
however, the cylinders are separated in the direct view, while they appear to be mutually
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(@ (b)

Figure 7 Fifth-generation “topology-disturbing objects”: (a) two vertically aligned cylinders; (b)
another view.

(a (b) (c) (d)

Figure 8 Sixth-generation “deformable objects”: (a) arrow that likes to face rightward; (b), (c),
(d) sequence of other views.

intersecting in the mirror. In other words, the shape of each part does not change, but their
topology is disturbed in the mirror. The actual shape of the object can be understood when
we see it from another direction, as in panel (b).

We classify these types of impossible objects as fifth generation and name them “topology-
disturbing objects” [15].

4.4 Sixth-Generation “Deformable Objects”

Some ambiguous cylinders create another interesting visual effect in the sense that the
rotation of the object around a vertical axis generates the impression of a dynamic change of
shape. An example is shown in Fig. 8, where panels (a), (b), (c), and (d) show pictures of
the object being rotated around a vertical axis by approximately 0, 40, 100, and 150 degrees.
The object appears to be an arrow facing rightward; however, if we rotate it by 180 degrees
around the vertical axis, it again faces rightward. Moreover, during the rotation, the object
appears to be deforming continuously [13].

We call this type of impossible object sixth generation and name the objects “deformable
objects”.

4.5 Eighth-Generation “Reflexively Fused Objects”

Another application of the ambiguous cylinder is to make part of the goal shape as a solid
object and to provide the remaining part by its mirror image. An example is shown in Fig. 9,
where panel (a) shows an object, panel (b) shows the same object placed on a horizontally
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(@ (b) (c)

Figure 9 Eighth-generation “reflexively fused object”: (a) object alone; (b) object on a horizontally
oriented mirror; (c) another view.

(a (b)

Figure 10 Seventh-generation “height-reversal object”: (a) amphitheater and hill; (b) another
view.

oriented mirror so that the object and its mirror image are fused, and panel (c) shows another
view of the object on the mirror. The object itself is meaningless, but the object together
with its mirror image gives a meaningful shape. This type of an object can be constructed in
the following way. We first decompose a goal shape into an upper part and a lower part, next
transform the lower part into its height-reversed version, and finally apply the ambiguous
cylinder method to this pair of the shapes.

We call this type of impossible object eighth generation and name the objects “reflexively
fused objects”.

5 Seventh-Generation “Height Reversal Objects”

A picture placed on a horizontal plane can sometimes generate two interpretations of a 3D
object whose height is reversed when the object is seen from mutually opposite sides with
the same slant angle [12]. If we add to such a picture a 3D object showing the direction of
gravity and place a vertical mirror behind it, then the direct view and the mirror image give
quite different impressions of the 3D surfaces. An example is shown in Fig. 10. The direct
view appears to be an amphitheater with the stage at the bottom, whereas the mirror image
appears to be a hill.

We classify these types of impossible objects as seventh generation and name them
“height-reversal objects” [12].
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6 Concluding Remarks

We have classified objects that generate the impression of impossibility into several generations
and shown an example object for each generation, where all of objects involve visual illusions.

The mathematics behind the illusions is based on the principle that a single image does
not have depth information and hence there are many possible 3D shapes that give the same
2D appearance. By combining this mathematical property with the psychological preferences
of human vision systems, we can effectively create many new visual effects, with potential
applications to toys, tourism, magic, and so on. Our next goal is to realize these various

applications.
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—— Abstract

We analyze the computational complexity of the many types of pencil-and-paper-style puzzles
featured in the 2016 puzzle video game The Witness. In all puzzles, the goal is to draw a path
in a rectangular grid graph from a start vertex to a destination vertex. The different puzzle
types place different constraints on the path: preventing some edges from being visited (broken
edges); forcing some edges or vertices to be visited (hexagons); forcing some cells to have certain
numbers of incident path edges (triangles); or forcing the regions formed by the path to be
partially monochromatic (squares), have exactly two special cells (stars), or be singly covered
by given shapes (polyominoes) and/or negatively counting shapes (antipolyominoes). We show
that any one of these clue types (except the first) is enough to make path finding NP-complete
(“witnesses exist but are hard to find”), even for rectangular boards. Furthermore, we show that
a final clue type (antibody), which necessarily “cancels” the effect of another clue in the same
region, makes path finding Yo-complete (“witnesses do not exist”), even with a single antibody
(combined with many anti/polyominoes), and the problem gets no harder with many antibodies.

1 Now at Google Inc.
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1 Introduction

The Witness [9] is an acclaimed 2016 puzzle video game designed by Jonathan Blow (who
originally became famous for designing the 2008 platform puzzle game Braid, which is
undecidable [5]). The Witness is a first-person adventure game, but the main mechanic of
the game is solving 2D puzzles presented on flat panels (sometimes CRT monitors) within
the game. The 2D puzzles are in a style similar to pencil-and-paper puzzles, such as Nikoli
puzzles. Indeed, one clue type in Witness (triangles) is very similar to the Nikoli puzzle
Slitherlink (which is NP-complete [10]).

In this paper, we perform a systematic study of the computational complexity of all
single-panel puzzle types in The Witness, as well as some of the 3D “metapuzzles” embedded
in the environment itself. Table 1 summarizes our single-panel results, which range from
polynomial-time algorithms (as well as membership in L) to completeness in two complexity
classes, NP (i.e., ¥1) and the next level of the polynomial hierarchy, 5. Table 3 summarizes
our metapuzzle results, where PSPACE-completeness typically follows immediately.

For omitted proofs, see [1].

Witness puzzles. Single-panel puzzles in The Witness (which we refer to henceforth as
Witness puzzles) consist of an m x n full rectangular grid;? one or more start circles (drawn as
a large dot, @); one or more end caps (drawn as half-edges leaving the rectangle boundary);
and zero or more clues (detailed below) each drawn on a vertex, edge, or cell® of the
rectangular grid. Figure 1 shows a small example and its solution. The goal of the puzzle is
to find a path that starts at one of the start circles, ends at one of the end caps, and satisfies
all the constraints imposed by the clues (again, detailed below). We focus on the case of a
single start circle and single end cap, which makes our hardness proofs the most challenging.

We now describe the clue types and their corresponding constraints. Table 2 lists the
clues by what they are drawn on — grid edge, vertex, or cell — which we refer to as this
edge, vertex, or cell. While the last five clue types are drawn on a cell, their constraint

While most Witness puzzles have a rectangular boundary, some lie on a general grid graph. This
generalization is mostly equivalent to having broken-edge clues (defined below) on all the non-edges of
the grid graph, but the change in boundary can affect the decomposition into regions. We focus here on
the rectangular case because it is most common and makes our hardness proofs most challenging.

We refer to the unit-square faces of the rectangular grid as cells, given that “squares” are a type of clue
and “regions” are the connected components outlined by the solution path and rectangle boundary.
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Table 1 Our results for one-panel puzzles in The Witness: computational complexity with various
sets of allowed clue types (marked by v'). Allowed polyomino clues are either arbitrary (v'), or
restricted to be monominoes (v'®), vertical dominoes (v &), or rotatable dominoes (v'%).

broken edge hexagon star  triangle polyomino antipolyomino antibody

- o [ * B g & A
v eL
v v vertices NP-complete
v vertices OPEN
v edges NP-complete
eP
NP-complete
OPEN
NP-complete
NP-complete
NP-complete
OPEN
NP-complete
OPEN
Ve NP-complete
Vs NP-complete
: NP-complete
e NP
e NP
Yio-complete
Yio-complete
€ Yo

square
complexity

V1 color
V2 colors
v'1 color

v'n colors

AN N

v v

v'n
V2
vl
v v'n

applies to the region that contains that cell (referred to as this region), where we consider
the regions of cells in the rectangle as decomposed by the (hypothetical) solution path and
the rectangle boundary.

The solution path must satisfy all the constraints given by all the clues. (The meaning
of this statement in the presence of antibodies is complicated; see Section 8.) Note, however,
that if a region has no clue constraining it in a particular way, then it is free of any such
constraints. For example, a region without polyomino or antipolyomino clues has no packing
constraint.

As summarized in Table 1, we prove that most clue types by themselves are enough
to obtain NP-hardness. The exceptions are broken edges, which alone just define a graph
search problem; and vertex hexagons, which are related to Hamiltonian path in rectangular
grid graphs as solved in [6] but remain open. But vertex hexagons are NP-hard when
we also add broken edges. For squares, we determine that exactly two colors are needed
for hardness. For stars, we do not know whether one or any constant number of colors
are hard. For triangles, we know that 1-triangles or 3-triangles alone suffice for hardness,
but for 2-triangles the only hardness proof we know needs broken edges. For polyominoes,
monominoes alone are easy to solve [8], but monominoes plus antimonominoes are hard, as
are rotatable dominoes by themselves and vertical nonrotatable dominoes by themselves. All
problems without antibodies or without (anti)polyominoes are in NP. Antibodies combined
with (anti)polyominoes push the complexity up to Ys-completeness, but no further.
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Figure 1 A small Witness puzzle featuring all clue types (left) and its solution (right). (Not from
the actual video game.)

Table 2 Witness puzzle clue types and the definitions of their constraints.

clue

drawn on

symbol

constraint

broken edge
hexagon
hexagon
triangle

square

star

polyomino

antipolyomino

antibody

edge
edge
vertex
cell

cell

cell

cell

cell

cell

\J
-‘l

The solution path cannot include this edge.

The solution path must include this edge.

The solution path must visit this vertex.

There are three kinds of triangle clues (+, +«, ++4).
For a clue with ¢ triangles, the path must include
exactly 7 of the four edges surrounding this cell.

A square clue has a color. This region must not have
any squares of a color different from this clue.

A star clue has a color. This region must have exactly
one other star, exactly one square, or exactly one
antibody of the same color as this clue.

A polyomino clue has a specified polyomino shape,
and is either nonrotatable (if drawn orthogonally,
like &%) or rotatable by any multiple of 90° (if drawn
at 15°, like ). Assuming no antipolyominoes, this
region must be perfectly packable by the polyomino
clues within this region.

Like polyomino clues, an antipolyomino clue has a
specified polyomino shape and is either rotatable or
not. For some i € {0, 1}, each cell in this region must
be coverable by exactly ¢ layers, where polyominoes
count as +1 layer and antipolyominoes count as
—1 layer (and thus must overlap), with no positive
or negative layers of coverage spilling outside this
region.

Effectively “erases” itself and another clue in this
region. This clue also must be necessary, meaning
that the solution path should not otherwise satisfy
all the other clues. See Section 8 for details.
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Table 3 Our results for metapuzzles in The Witness: computational complexity with various
sets of environmental features.

features ‘ ‘ complexity
sliding bridges PSPACE-complete
elevators and ramps PSPACE-complete
power cables and doors || PSPACE-complete

(a) Instance of

grid-graph Hamil- (b) A possible so-

lution to (a)

tonicity

(c) Corresponding chambers and hallways

Figure 2 An example of the Hamiltonicity framework with » = 1 and s = 4.

Witness metapuzzles. We also consider some of the metapuzzles formed by the 3D envi-
ronment in The Witness, which interact with the 2D single-panel puzzles. See Section 9
for details of these interaction models. Table 3 lists our metapuzzle results, which are all
PSPACE-completeness proofs following the infrastructure of [2] (from FUN 2014).

2 Hamiltonicity Reduction Framework

We introduce a framework for proving NP-hardness of Witness puzzles by reduction from
Hamiltonian cycle in a grid graph G of maximum degree 3. Roughly speaking, we scale G
by a constant scale factor s, and replace each vertex by a block called a chamber; refer to
Figure 2. Precisely, for each vertex v of G at coordinates (z,y), we construct a 2r+1x 2r +1
subgrid of vertices {sz —r,...,sx +r} x {sy —r,...,sy+r}, and all induced edges between

them, called a chamber C,. This construction requires 2r < s for chambers not to overlap.

For each edge e = {v,w} of G, we construct a straight path in the grid from sv to sw, and
define the hallway H,, ., to be the subpath connecting the boundaries of v’s and w’s chambers,
which consists of s — 2r edges. Figure 2 illustrates this construction on a sample graph G.
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In each reduction, we define constraints to force the solution path to visit (some part of)
each chamber at least once, to alternate between visiting chambers and traversing hallways
that connect those chambers, and to traverse each hallway at most once. Because G has
maximum degree 3, these constraints imply that each chamber is entered exactly once and
exited exactly once. Next to one chamber on the boundary of G, called the start/end chamber,
we place the start circle and end cap of the Witness puzzle. Thus any solution to the Witness
puzzle induces a Hamiltonian cycle in G. To show that any Hamiltonian cycle in G induces
a solution to the Witness puzzle, we simply need to show that a chamber can be traversed in
each of the (3) ways.

3 Hexagons and Broken Edges

Hexagons are placed on vertices or edges of the graph and require the path to pass through
all of the hexagons. Broken edges are edges which cannot be included in the path. We show
the positive result that puzzles with just broken edges are solvable in L, and the negative
results that puzzles with just hexagons on edges are NP-complete and puzzles with just
hexagons on vertices and broken edges are NP-complete. We leave open the question of
puzzles with just hexagons on vertices (and no broken edges).

» Lemma 1. Witness puzzles containing only broken edges, multiple start circles and multiple
end caps are in L.

Proof. We keep two pointers and a counter to track which pairs of starts and ends we have
tried. For each start and end pair we run an (s,t) path existence algorithm, which is in L. If
any of these return yes, the answer is yes. Thus we’ve solved the problem with a quadratic
number of calls to a log-space algorithm, a constant number of pointers, and a counter, all of
which only require logarithmic space. |

» Lemma 2. [t is NP-complete to solve Witness puzzles containing only broken edges and
hexagons on vertices.

Proof. Hamiltonian path in grid graphs is a strict subproblem. |

» Theorem 3. [t is NP-complete to solve Witness puzzles containing only hexagons on edges
(and no broken edges).

Proof sketch. We use the Hamiltonicity framework; refer to Figure 3. Noting that two edge
hexagons incident to the same vertex must be consecutively traversed by the solution path,
we carefully force the solution path to traverse the boundary of every chamber separate from
the decision of which hallways to use. As with other Hamiltonicity framework reductions,
we force each chamber to be visited with an edge hexagon in its center and can deduce the
corresponding Hamiltonian cycle in the original grid graph from the set of used hallways. <«

» Open Problem 1. Is there a polynomial-time algorithm to solve Witness puzzles containing
only hexagons on vertices?

4 Squares

Each square clue has a color and is placed on a cell of the puzzle. Each region formed by the
solution path and puzzle boundary must have at most one color of squares. If a puzzle has
only a single color of squares, no non-trivial constraint is applied.
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(a) Instance corresponding to Figure 2a (b) Solution corresponding to Figure 2b

Figure 3 Example of the Hamiltonicity framework applied to Witness with edge hexagons.

4.1 Tree-Residue Vertex Breaking

Our reduction is from tree-residue vertex breaking [4]. Define breaking a vertex of degree
d to be the operation of replacing that vertex with d vertices, each of degree 1, with the

neighbors of the vertex becoming neighbors of these replacement vertices in a one-to-one way.

The input to the tree-residue vertex breaking problem is a planar multigraph in which each
vertex is labeled as “breakable” or “unbreakable”. The goal is to determine whether there
exists a subset of the breakable vertices such that breaking those vertices (and no others)

results in the graph becoming a tree (i.e., destroying all cycles without losing connectivity).

This problem is NP-hard even if all vertices are degree-4 breakable vertices or degree-3
unbreakable vertices[4].

4.2 Squares with Squares of Two Colors

» Theorem 4. [t is NP-complete to solve Witness puzzles containing only squares of two
colors.

Concurrent work [8] also proves this theorem. However, we prove this by showing that
the stronger Restricted Squares Problem is also hard, which will be useful to reduce from in
Section 5.

» Problem 1 (Restricted Squares Problem). An instance of the Restricted Squares Problem
is a Witness puzzle containing only squares of two colors (red and blue), where each cell
in the leftmost and rightmost columns, and each cell in the topmost or bottommost rows,
contains a square clue; and of these square clues, exactly one is blue, and that square clue is
not in a corner cell; and the start verter and end cap are the two boundary vertices incident
to that blue square; see Figure 4.

» Theorem 5. The Restricted Squares Problem is NP-complete.
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Figure 4 Boundary of the
Restricted Squares Problem. Figure 5 Unbreakable degree-3 vertex gadget
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Figure 6 Breakable degree-4 vertex gadget

Proof sketch. We reduce from tree-residue vertex breaking and construct gadgets for an
unbreakeable degree 3 vertex (Figure 5) and a breakable degree 4 vertex (Figure 6) out of
squares. We force the solution path to take an Fuler tour of these gadgets, which can only
be done if the underlying tree-residue vertex breaking graph is a tree. |

5 Stars

Star clues are in cells of a puzzle. If a region formed by the solution path and boundary of a
puzzle has a star of a given color, then the number of clues (stars, squares, or antibodies) of
that color in that region must be exactly two. A star imposes no constraint on clues with
colors different from that of the star.

» Theorem 6. It is NP-complete to solve Witness puzzles containing only stars (of arbitrarily
many colors).

Proof sketch. We reduce from the Restricted Squares Problem. For every square in the
source instance, I, we use exactly one pair of stars of a distinct color corresponding to
that square, as well as ten auxiliary colors. Figure 7 shows the high level structure of the
reduction. A subrectangle, S, of the puzzle is designated for recreating I. For each pair of
stars corresponding to a square, we place one of the two stars on the boundary of the puzzle,
and the other in S in the same position as the corresponding square in I. The solution
path will be forced to divide the overall puzzle into exactly two regions—an “inside” and
an “outside”—such that all of the boundary stars corresponding to red squares are on the
outside and all of the boundary stars corresponding to blue squares are on the inside. Then,
inside of S, the solution path must ensure that all stars corresponding to red squares are in
the outside region and all stars corresponding to blue squares are in the inside region, or
else the star constraint will be violated. Then the solution path inside of S must correspond
exactly to a solution path in I. <
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Figure 7 The boundary of the reduction. Each visual (color, number) pair represents a distinct
color in the constructed instance. All stars depicted as blue correspond to blue squares in the source
instance and must be in the inside region. Stars depicted as red correspond to red squares and must
be in the outside region. The other stars enforce this.

Table 4 Summary of Slitherlink / Witness triangle constraints. New results are bold.

Clue types ‘ Complezity ‘

0 P [10]

1 NP-complete [Theorem 7]
2 Open

3 NP-complete [Theorem 8]
4 P [trivial]

0 and 2 NP-complete

» Open Problem 2. [s it NP-complete to solve Witness puzzles containing only a constant
number of colors of stars?

6 Triangles

Triangles are placed in cells. The number of solution path edges adjacent to that cell
must match the number of triangles. This is similar to Slitherlink, which is known to be
NP-complete [10]; however the proof in [10] relies critically on being able to force zero edges
around a cell using 0-clues, which are not available in The Witness. We characterize all
possibile combinations of constraints of these types for grid graphs. Table 4 summarizes
what is known.

» Open Problem 3. Is it NP-complete to solve Witness puzzles containing only 2-triangle
clues (and no broken edges)?

6.1 One Triangle Clues

Proving hardness of Witness puzzles containing only 1-triangle clues is made challenging
by the fact that it is impossible to (locally) force turns on the interior of the puzzle. In
particular, any rectangular interior region can be locally satisfied by a solution path which
either traverses every second row of horizontal edges in the region or every second column of

vertical edges in the region regardless of the configuration of 1-triangle clues in the region.
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(a) Unsolved. (b) “All” or “active” solution.  (c) “Nothing” or “inactive”
solution.

Figure 8 All-or-nothing gadget.

Therefore, any local arguments we want to make about gadgets on the interior of the puzzle
will need to admit the possibility of local solutions which are comprised of just horizontal or
vertical paths straight through.

» Theorem 7. It is NP-complete to solve Witness puzzles containing only 1-triangle clues.

Proof sketch. We reduce from positive 1-in-3SAT, making use of the fact that the solution
path must be a single closed path. We force the solution path to traverse all horizontal
edges except for on the interior of gadgets, in which the solution path is allowed to connect
adjacent horizontal path segments in a controlled manner (see Figure 8 for one key gadget),
such that doing so corresponds to a solution to the source 1-in-3SAT instance. |

6.2 Three Triangle Clues

» Theorem 8. [t is NP-complete to solve Witness puzzles containing only 3-triangle clues.

Proof sketch. We use the Hamiltonicity framework. Adjacent 3-triangle clues must be
traversed consecutively by the solution path, so we can use them to for the solution path to
trace the boundary of each chamber. Figure 9 shows the construction of a chamber. |

7 Polyominoes

This section covers various types of polyomino and antipolyomino clues. Polyomino clues can
generally be characterized by the size and shape of the polyomino and whether or not they

can be rotated (8 vs. %). For each region, it must be possible to place all polyominoes and
antipolyominoes depicted in that region’s clues (not necessarily within the region) so that
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(a) Unsolved. (b) One possible solution, using the left and

bottom edges.

Figure 9 A chamber with edges to the left, right, and below.

%%%}(2k+1> -n
isi) dominoes

Figure 10 Overview of the rotatable dominoes NP-completeness proof.

for some i € {0, 1}, each cell inside the region is covered by exactly ¢ more polyomino than
antipolyomino and each cell outside the region is covered by the same number of polyominoes
and antipolyominoes. We give several negative results showing that some of the simplest
(anti)polyomino clues suffice for NP-completeness.

Concurrent work [8] shows that Witness puzzles with squares of two colors for which
every cell contains a square clue can be solved in polynomial time. Interestingly, such puzzles
are equivalent to puzzles with only monominoes, by replacing one color of square with
monominoes and the other color with blank cells. The only constraint on the two puzzle
types is that there can be no region with a mix of square colors or, equivalently, monomino
clues and blank cells. However, the question of whether puzzles with only monominoes and
broken edges can be solved in polynomial time is still open.

7.1 Rotatable Dominoes

» Theorem 9. [t is NP-complete to solve Witness puzzles containing only rotatable dominoes.

Proof sketch. We reduce from Rectilinear Steiner Tree: given n points with integer coor-
dinates (z},y;) in the plane, ¢ € {1,2,...,n}, and given an integer k, decide whether there
exists a rectilinear tree connecting the n points having total length at most k. As illustrated
in Figure 10, we embed the tree in the cells of a Witness puzzle, putting a domino clue
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at each vertex of the tree, which the solution path must therefore visit. The total number
of dominoes is proportional to k, such that with careful counting, the area enclosed by
the solution path must “look like” a tree of length exactly k in the original Steiner tree
instance. <

7.2 Monominoes + Antimonominoes

» Theorem 10. [t is NP-complete to solve Witness puzzles containing only monominoes and
antimonominoes.

Proof sketch. The reduction is very similar to that of Theorem 9, except that the vertices of
the Steiner tree contain antimonomino clues, and most of the other cells contain monomino
clues. We force the solution path to partition the puzzle into two regions, an “outside” region
which is entirely covered by monominoes, and an “inside” region which contains exactly as
many antimonominoes as monominoes, thereby satisfying both. We show that doing this
corresponds to a solution to the Steiner tree source instance. |

7.3 Nonrotatable Dominoes

» Theorem 11. [t is NP-complete to solve Witness puzzles containing only nonrotatable
vertical dominoes.

Proof sketch. We reduce from planar rectilinear monotone 3SAT [7]. Refer to Figure 11.
We construct variable “wires” which are comprised of dominoes arranged on a diagonal which
the solution path must enclose in one of two settings. Each clause needs to “connect” to at
least one of its literals, but can only get close enough to do so if the corresponding variable
is set appropriately. |

» Open Problem 4. Is there a polynomial-time algorithm to solve Witness puzzles containing
only monominoes and broken edges?

8 Antibodies

An antibody (&) eliminates itself and one other clue in its region. For the antibody to be
satisfied, this region must not be satisfied without eliminating a clue; that is, the antibody
must be necessary. An antibody may be colored, but its color does not restrict which clues it
can eliminate.* Very few Witness puzzles contain multiple antibodies, making the formal
rules for the interactions between antibodies not fully determined by the in-game puzzles.
We believe the following interpretation is a natural one: each antibody increments a count
of clues that must necessarily be unsatisfied for their containing region to be satisfied. If
there are k antibodies in a region, then there must be k clues which can be eliminated such
that those k clues were unsatisfied and all other clues were satisfied; furthermore, there must
not have been a set of fewer than k unsatisfied clues such that all other clues are satisfied®.
Antibodies cannot eliminate other antibodies. The choice of clue to eliminate need not be

Antibody color matters when checking if the antibody is necessary; a region containing only a star and
an antibody of the same color is unsatisfied because the antibody is not necessary.

Whether or not a clue is satisfied is usually determined only by the solution path; however, in the case
of polyominoes and antipolyominoes, there might be several choices of packings which satisfy different
sets of clues.



J. Bosboom et al.

|

|
T
-
-

:

(a) The puzzle. (b) The solution.

Figure 11 A Witness puzzle produced from (z VyV 2) A (mzV -y V —z) A (-z V -y V —y) and its
solution (z and y are FALSE, z is TRUE). Shaded cells show the domino tiling on the path’s interior.

unique; for instance, a region with three white stars and one antibody is satisfied, even
though the stars are not distinguished. Formally:

» Definition 12 (Simultaneous Antibodies). A region with k antibody clues is satisfied if and
only if there exists a set S of k non-antibody clues such that eliminating all clues in S and
all k antibodies leaves the region satisfied, and there does not exist a set S’ of non-antibody
clues with |S’| < k such that eliminating all clues in S’ and only |S’| of the antibodies leaves

the region satisfied.

» Theorem 13. Witness puzzles containing all clue types except polyominoes and antipoly-
ominoes are in NP.

Proof sketch. Other than antibodies, polyominoes, and antipolyominoes, whether or not a
clue is satisfied can be easily determined from the solution path. Thus, checking whether an
antibody which eliminates such a clue is necessary is easy. |

» Theorem 14. Witness puzzles containing all clue types except antipolyominoes and for
which at least one solution eliminates at most one polyomino in each region are in NP.

Proof sketch. If at least one polyomino is eliminated in a region containing at least two
polyominoes and the region is satisfied as a result, then the region can’t be satisfied without
deleting at least one polyomino because the total area of the polyominoes is greater than
that of the region, and therefore there is no packing. |

» Theorem 15. Witness puzzles containing any set of clue types (including polyominoes,
antipolyominoes, and antibodies) are in o.
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Proof. Solving this Witness puzzle requires picking clues for antibodies to eliminate and
finding a path which respects the remaining clues, such that the regions cannot be satisfied
if only a subset of antibodies are used to eliminate clues. Membership in ¥, requires an
algorithm which accepts only when there exists a certificate of validity for which there is
no certificate of invalidity (i.e., one alternation of JxVy). A certificate of invalidity allows a
polynomial-time algorithm to check whether an instance of a given problem is false. Our
certificate of validity is a solution path, a mapping from antibodies to eliminated clues, and
a packing witness for any region with at least one uneliminated polyomino. Our certificate
of invalidity is the solution path (from the certificate of validity), a mapping of a subset of
the antibodies to eliminated clues, and a packing witness for any region with at least one
uneliminated polyomino.

Our verification algorithm begins checking the certificate of validity by verifying the
packing witnesses and checking that the antibody mapping specifies distinct eliminated
clues in the same region as each antibody. Then we remove all antibodies, polyomino and
antipolyomino clues, and eliminated clues from the Witness puzzle and run the algorithm
given in the proof of Theorem 13 to verify that the remaining clues in each region are satisfied
under the solution path.

To verify the certificate of invalidity, we again check its packing witnesses and its (partial)
antibody mapping. Then we remove the used antibodies, polyomino and antipolyomino clues,
and eliminated clues from the Witness puzzle. We replace any unused colored antibodies
with stars of their color if they are in the same region as an (uneliminated) star of that color,
then remove any remaining antibodies. We run the polynomial-time algorithm given in the
proof of Theorem 13 on the resulting Witness puzzle. Our algorithm accepts if and only if
the certificate of validity is valid and all certificates of invalidity are invalid. |

Finally, we will show that Witness puzzles in general are ¥5-complete. We will proceed
in two steps, first considering puzzles which have two (or more) antibodies which might be
eliminating polyominoes in the same region, and then considering puzzles which have only
one antibody but both polyominoes and antipolyominoes. In both cases, we will reduce from
Adversarial-Boundary Edge-Matching, a one-round two-player game defined as follows:

» Problem 2 (Adversarial-Boundary Edge-Matching). A signed color is a sign (+ or —)
together with an element of a set C' of colors. Two signed colors match if they have the same
element of C' and the opposite sign. A tile is a unit square with a signed color on each of its
edges.

An n x (2m) boundary-colored board is an n x (2m) rectangle together with a signed
color on each of the unit edges along its boundary. Given such a board and a multiset T of
2nm tiles, a tiling is a placement of the tiles at integer locations within the rectangle such
that two adjacent tiles have matching colors along their shared edge, and a tile adjacent to the
boundary has a matching color along the shared edge. There are two types of tiling according
to whether tiles can only be translated or can also be rotated.

The adversarial-boundary edge-matching game is a one-round two-player game played
on a 2n X m boundary-colored board B and a multiset T of 2nm tiles. Name the unit edges
along B’s top boundary eg,e1,...,ea, from left to right. During the first player’s turn, for
each even i =0,2,4,...,2n — 2, the first player chooses to leave alone or swap the signed
colors on e; and e;+1. During the second player’s turn, the second player attempts to tile
the resulting boundary-colored board B’ such that signed colors on coincident edges (whether
on tiles or on the boundary of B’) match. If the second player succeeds in tiling, the second
player wins; otherwise, the first player wins.
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The adversarial-boundary edge-matching problem s to decide whether the first player
has a winning strategy for a given adversarial-boundary edge-matching game; that is, whether
there exists a choice of top-boundary swaps such that there does not exist an edge-matching
tiling of the resulting boundary-colored board.

» Lemma 16. Adversarial-boundary edge-matching is ¥o-hard, with or without tile rotation,
even when the first player has a losing strategy.

Proof sketch. We reduce from from QSAT5, which is the Ys-complete problem of decid-
ing a Boolean statement of the form Jxy : Jzg : -+ : Tz, : Yy, @ Vyo @ -+ : Yy, :
flzi, @, ..., Tn; Y1, Y2, - . -, Yn) Where f is a Boolean formula using AND (A), OR (V), and/or
NOT (—). We convert this formula into a circuit, lay out the circuit on a square grid, and
implement each circuit element as a set of tiles, one tile for each valid state (truth table row)
of that element. The first player’s boundary-edge swaps encode a setting of true or false for
the first player’s variables. Then, as part of solving the edge-matching problem, the second
player must exhibit a setting of their variables that makes the formula false; otherwise the
first player wins. <

» Theorem 17. [t is Yo-complete to solve Witness puzzles containing two antibodies and
polyominoes.

Proof. We reduce from adversarial-boundary edge-matching with the guarantee that the
first player has a losing strategy. We create a Witness puzzle containing two antibodies.
We will force the solution path to split the puzzle into two regions, with both antibodies in
the same region and with part of the solution path encoding top-boundary swaps. In the
construction, it will be easy to find a solution path satisfying all non-antibody clues when
both antibodies are used to eliminate clues, but the antibodies themselves are only satisfied if
they are necessary. When only one antibody is used, the remaining polyominoes in one of the
regions, together with the solution path, simulate the adversarial-boundary edge-matching
instance. The remaining polyominoes cannot pack the region (necessitating the second
antibody and making the Witness solution valid) exactly when the adversarial-boundary
edge-matching instance is a YES instance. (In the context of The Witness, the human player
is the first player in an adversarial-boundary edge-matching game, and The Witness is the
second player.)

Encoding signed colors. We encode signed colors on the edges of polyominoes in binary
as unit-square tabs (for positive colors) or pockets (for negative colors) [3, Figure 7]. If the
input adversarial-boundary edge-matching instance has ¢ colors, we need [log,(c+ 1)] bits
to encode the color®. To prevent pockets at the corners of a tile from overlapping, we do not
use the 2 x 2 squares at each corner to encode colors, so tiles are built out of squares with
side length w = [logy(c + 1)] + 47.

Clue sets. We consider the clues in the Witness puzzle to be grouped into two clue sets, A
and B, which we place far apart on the board. We will argue that any valid solution path
must partition the puzzle into two regions, such that each set is fully contained in one of the
regions. Figure 12 shows (the intended packing of) most of the polyomino clues.

5 We cannot use 0 as a color because we need at least one tab or pocket to determine the sign.

7 At the cost of introducing disconnected polyomino clues, we could leave only one pixel at each corner
out of the color encoding; that pixel is disconnected when the colors on its edges both have pockets
next to it.
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Figure 12 The intended packing of the puzzle after eliminating the medium polyomino (not
to scale). The left and right board-frame polyominoes slot inside the large polyomino, and the
monominoes fill the holes in the left board-frame polyomino. The stamps fill in their matching
handle slots in the large polyomino, leaving only the boundary-colored board for the simulated
adversarial-boundary edge-matching instance.

Clue set A contains:

Two antibodies.

2nw — ¢ monominoes, where ¢ is the total number of pockets minus the total number of
tabs across the “dies” of the “stamps” in clue set B (see below). There are 2n stamps
each having up to [logy(c+ 1)] tabs or pockets, so the total number of monominoes is
between 2nw — 2n[logy(c 4+ 1)] = 8n and 2nw + 2nflog,(c + 1)| = 4nw — 8n inclusive.
A w x w square polyomino for each of the 2nm tiles in the adversarial-boundary edge-
matching instance. The edges of each polyomino are modified with tabs and pockets
encoding the signed colors on the corresponding edges of the corresponding tile. Call the
upper-left corner of the w x w square the key pizel of that polyomino (even if tabs caused
other pixels to be further up or to the left).

A “medium” sized polyomino formed from a 2n(w 4+ 3) — 1 x m(w + 3) + 3 rectangle
polyomino; see Figure 13. Cut a hole out of this rectangle in the image of each tile
polyomino, aligning the key pixel of each tile polyomino to a 2n x m grid with upper-left
point at the fourth row, second column of the rectangle and w + 3 intervals between rows
and columns. Regardless of the pattern of tabs and pockets on each tile, this spacing
ensures at least two rows of pixels above the top row of tile-shaped holes, at least one
row on each other side, and at least one row between adjacent holes. Then add pixels
above the upper-leftmost and upper-rightmost pixel of the rectangle (the horns) and
below the middle-bottommost pixel of the rectangle (the t¢ail). Finally, cut 2nw pixels
out of the top row of the rectangle starting from the third pixel; this cutout is the stamp
accommodation zone.
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Figure 13 The medium polyomino, with boundary-colored holes matching each tile polyomino.

Two board-frame polyominoes. Again, starting from a 2n(w +3) — 1 x m(w + 3) + 3
rectangle polyomino, add horns and tail pixels in the same locations. Then cut out
a 2nw X muw rectangle whose upper-left pixel is the third pixel in the top row of the
rectangle. The left, right and bottom edges of this cutout are modified with tabs and
pockets encoding the signed colors on the corresponding sides of the boundary-colored
board in the adversarial-boundary edge-matching instance. Split the polyomino vertically
along the column of edges immediately to the right of the tail pixel.

Finally, for each monomino in this clue set, cut a pixel out of the left board-frame
polyomino, starting from the second-bottommost pixel in the second column, continuing
across every other column, then continuing with the fourth-bottomost pixel in the second
column, and so on. The left board-frame polyomino has width nw + 3n, we cut pixels
out of every other column, and we do not cut holes in its left or right columns, so we
cut pixels out of %3”72 columns. Below the mw-tall cutout and allowing two rows to
ensure cut pixels do not join with pockets encoding signed colors along the edges of the
cutout, we can cut pixels out of 3= rows (or 37“’, depending on parity). This allows
up to (mutn=2)(3u-l) — "(w74)2+2w(zw73)“3"+2 + 4nw — 8n pixels to be cut out, but
there are at most 4nw — 8n monominoes, so we can always cut enough pixels without

interfering with any other cuts.

Clue set B contains:

A stamp polyomino for each of the 2n edge segments of the top edge of the boundary-
colored board. Each stamp is composed of a w x 2 rectangle modified to encode the
signed color on the corresponding edge segment (called the die), a pixel centered above
that rectangle, and a 2 x h rectangular handle whose bottom-right pixel is immediately
above that pixel, where h = max(m(w + 3) + 7,n). Stamps corresponding to 1-indexed
edge segments 2¢ and 2i + 1 have pockets encoding ¢ in binary cut into the left edge of
their handle, starting from the second-to-top row of the handle.

A “large” sized polyomino built from a 2n(w+ 3) 4+ 1 x ¢ rectangular polyomino, where ¢ is
the total area of all other polyominoes so far defined. Modify this polyomino by cutting out
the middle pixel of the bottom row, the 2n(w+ 3) — 1 x m(w + 3) 4+ 3 horizontally-centered
rectangle immediately above that removed pixel, and the pixels above the upper-left
and upper-right removed pixels. (That is, cut out space for the medium polyomino,
including the horns and tail but not including the stamp accommodation zone.) Then
cut out the image of each stamp in the order of their corresponding edge segments in
the adversarial-boundary edge-matching instance, aligning the leftmost-bottom pixel of
the first stamp’s die two pixels to the right of the upper-left removed pixel and aligning
successive dies immediately adjacent to one another.

FUN 2018



3:18

Who witnesses The Witness? Finding witnesses in The Witness is hard/impossible

[N PY Kl

—-

Figure 14 Because both antibodies are surrounded by monominoes, any region containing an
antibody also contains at least one monomino.

Puzzle. The Witness puzzle is a 2n(w + 3) + 1 x t rectangle. The start circle and end cap
are at the middle two vertices of the bottom row of vertices.

Placement of A clues. We place a monomino from clue set A in the cell having the start
circle and end cap as vertices, then place an antibody above that monomino, surrounded
by a monomino in each of its other three neighbors. We then place the other antibody,
surrounded by monominoes in its neighboring cells, three cells above the first antibody.
(See Figure 14.) It is always possible to surround the antibodies in this way because there
are at least 8n monominoes. We place the remaining clues from clue set A inside the
2n(w+ 3) — 1 x m(w + 3) 4 3 rectangle one row above the bottom of the puzzle; this is always
possible because |A| < 4nw — 8n + 2nm + 5.

Placement of B clues. We place the large polyomino clue in the upper-left cell of the
board and the stamp clues in the 2n cells to its right.

Argument. In any valid solution to the resulting puzzle, the large polyomino is not elim-
inated. If it were, it must be in the same region as an antibody. Because each antibody
is surrounded by monomino clues, the number of polyomino clues in this region is strictly
greater than the number of antibodies, so the region must be packed by the non-eliminated
polyomino clues. The nearest (upper) antibody is ¢t — 4 columns and nw + 3n rows away
from the large polyomino clue, so this region has area at least ¢. Recall that ¢ is the total
area of all polyomino clues except the large polyomino. If the large polyomino is eliminated,
there is no way to pack this region, even if all other polyomino clues are used.

The large polyomino is as wide and as tall as the entire puzzle, so it has a unique placement.
The large polyomino intersects its bounding box everywhere except one unit-length edge
aligned with the start vertex and end cap, so any valid solution path can only touch the
boundary at the start and end. Thus the solution path divides the puzzle into at most two
regions (an inside and an outside).

Suppose the solution path places the entire puzzle into a single region; that is, suppose
the solution path proceeds (in either direction) from the start vertex to the end cap without
leaving the boundary. Then by the assumption that the first player has a losing strategy
in the input adversarial-boundary edge-matching instance, we can pack the region while
eliminating only one clue. The large polyomino’s placement is fixed. We eliminate the
medium polyomino, place the two board-frame polyominoes inside the large polyomino, and
place the monominoes in the pixels cut out of the left board-frame polyomino. It remains
to place the stamps and tiles. By the assumption, there is a losing set of top-boundary
swaps; we swap the corresponding pairs of stamps when placing them into the cutouts in the
large polyomino, and then place the tiles in the remaining uncovered area bordered by the
board-frame polyominoes and stamp dies. Because we satisfied all non-antibody constraints
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after eliminating only one clue, the unused antibody is unsatisfied, so any solution path
resulting in a single region is not a valid solution to the puzzle. Thus there are exactly two
regions.

The cells containing the stamp clues are covered by the large polyomino, so any valid
solution places the stamps in the same region as the large polyomino. The handles of the
stamps are taller than the cutout in the bottom-middle of the large polyomino, so they must
instead be placed in the stamp-shaped cutouts in the large polyomino. The pockets cut
into the left edges of the handles ensure that stamps can only swap places corresponding to
top-boundary swaps in the adversarial-boundary edge-matching instance.

All clues in set A are in the other region. The monomino clue in the cell having both the
start circle and end cap as vertices cannot be in the same region as the large polyomino (else
the path could not divide the puzzle into two regions). Because each antibody is surrounded
by monomino clues, the number of polyomino clues in this region is strictly greater than the
number of antibodies, so the region must be packed by the non-eliminated polyomino clues.
When both antibodies are used to eliminate clues, they must eliminate both board-frame
polyominoes, and when only one is used, it must eliminate the medium polyomino; any
other elimination leaves polyomino clues with too much or too little area to pack the area of
the puzzle not yet covered by the large polyomino or the stamps. Thus either the medium
polyomino or both board-frame polyominoes will not be eliminated. The medium polyomino
and board-frame polyominoes have unique placements within the large polyomino determined
by the horns and tail. The intersection of the outlines of these placements covers all the A
clues, so they are all in the same other region.

By this division of the clues into regions, any valid solution path traces the inner boundary
of the large polyomino and the dies of the stamps (possibly after swapping some pairs). It
remains to show that the solution path is valid exactly when the implied set of top-boundary
swaps is a winning strategy in the adversarial-boundary edge-matching instance.

When using both antibodies to eliminate the board-frame polyominoes, the remaining
polyominoes always pack their region. The medium polyomino’s placement is fixed by the
horns and tail; the stamp accommodation zone ensures this placement is legal regardless
of the pattern of tabs on the dies of the stamps. The tile polyominoes fit directly into the
cutouts in the medium polyomino and there are exactly enough monominoes to fill in the
uncovered area in the stamp accommodation zone and the pockets of the dies.

The solution path is only valid if both antibodies are necessary. When using one antibody
to eliminate the medium polyomino, the board-frame polyominoes’ position is forced by the
horns and tail. The monominoes are the only way to fill the single-pixel holes in the left
board-frame polyomino and there are exactly enough monominoes to do so. Then the dies of
the stamps and the edges of the rectangular cutout in the board-frame polyominoes models
the boundary-colored board of the input adversarial-boundary edge-matching instance (see
Figure 12). The tile polyominoes cannot pack this area, necessitating the second antibody
and making the solution path valid, exactly when the set of top-boundary swaps is a winning
strategy in the adversarial-boundary edge-matching instance. <

» Theorem 18. [t is Yo-complete to solve Witness puzzles containing one antibody, poly-
ominoes and antipolyominoes.

Proof sketch. As in the proof of Theorem 17, we reduce from adversarial-boundary edge-
matching, and the reduction is similar. The primary difference is that the medium polyomino
is also the singular board-frame polyomino. Besides the antibody and the tile polyominoes
(same as before), clue set A contains an antipolyomino called the antikit shaped like a 1-
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pixel-wide tree with the tile polyominoes (as antipolyominoes) at the leaves and a polyomino
shaped like the 1-pixel-wide tree (the sprue). The medium polyomino has the kit polyomino
attached to its right side and a cutout for the sprue and for the boundary-colored board.
The stamps must be placed in the large polyomino as in the previous proof. When
the antibody eliminates the medium polyomino, the antikit annihilates the sprue and tile
polyominoes, leaving no (anti)polyominoes in the inner region (so it is trivially satisfied).
When the antibody is not used, the antikit annihilates the kit-shaped part of the medium
polyomino and the sprue fits in the cutout in the medium polyomino, leaving only a boundary-
colored board for the tile polyominoes to be placed. Placing the tile polyominoes is impossible,
necessitating the antibody and making the solution path valid, exactly when the top-boundary
swaps are a winning strategy in the adversarial-boundary edge-matching instance. |

By Theorem 14, Theorem 17 and Theorem 18 are tight.

9 Metapuzzles

In this section, we analyze several of the metapuzzles that appear in The Witness. Metapuzzles
are puzzles which have one or more puzzle panels as a sub-component of the puzzle, and in
which solving the puzzle panel affects the surrounding world in a way that depends on the
choice of solution that was used to solve the panel.

9.1 Sliding Bridges

The marsh area contains sliding bridges. In this metapuzzle, each bridge has a corresponding
puzzle panel, and solving the puzzle causes the bridge to move into the position depicted by
the outline of the solution path. The following theorem demonstrates that, regardless of the
difficulty of the puzzle panels (i.e., even if it is easy to find all solutions of each individual
panel), it is PSPACE-complete to solve sliding bridge metapuzzles.

» Theorem 19. [t is PSPACE-complete to solve Witness metapuzzles containing sliding
bridges.

Proof sketch. We straightforwardly construct the one-way and door gadgets of [2], which
are known to be sufficient for PSPACE-completeness. <

9.2 Elevators and Ramps

Another metapuzzle which appears in The Witness consists of groups of platforms that move
vertically at one or both ends to form an elevator or ramp, controlled by the path drawn
on puzzle panels. Because the player cannot jump or fall in The Witness, the player can
walk onto an elevator platform only if it is at the same height as the player. The player can
adjust the height of the platforms from anywhere with line-of-sight to the controlling panel,
including while on the platforms themselves. Besides the sawmill, the other building in the
quarry contains a ramp and an elevator. The marsh contains a single puzzle with a 3 x 3
grid of elevators controlled by two identical panels; as a metapuzzle, our puzzle could be
built out of multiple marsh puzzles with two platforms and one panel each.

» Theorem 20. [t is PSPACE-complete to solve Witness metapuzzles containing elevator
reconfiguration, even when each panel controls at most one elevator.

Proof sketch. We construct one-way and door gadgets similar to Theorem 19. <
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9.3 Power Cables and Doors

In the introductory area of The Witness, there are panels with two solutions, each of which
activates a power cable. Activated cables can power one other panel (allowing it to the
solved) or one door (opening it). If a cable connected to a door is depowered, the door closes.
Cables cannot be split and panels can power at most one cable at a time.

» Theorem 21. [t is PSPACE-complete to solve Witness metapuzzles containing power
cables and doors.

Proof sketch. Again we construct one-way and door gadgets, with the slight complication
that all powered doors in The Witness are initially closed, so we need to give the player a
way to open exactly the set of doors which are initially open in the source instance. <
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—— Abstract

We consider the popular smartphone game Trainyard: a puzzle game that requires the player to
lay down tracks in order to route colored trains from departure stations to suitable arrival stations.
While it is already known [Almanza et al., FUN 2016] that the problem of finding a solution to a
given Trainyard instance (i.e., game level) is NP-hard, determining the computational complexity
of checking whether a candidate solution (i.e., a track layout) solves the level was left as an
open problem. In this paper we prove that this verification problem is PSPACE-complete, thus
implying that Trainyard players might not only have a hard time finding solutions to a given
level, but they might even be unable to efficiently recognize them.
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1 Introduction

The relationship between the Catholic Church and science and technology in the course of
history has been a long and complex one. On the one hand, there are dark and immensely
sad episodes like the condemnation of Galileo Galilei. On the other, one must acknowledge
the fantastic contribution to science and mathematics throughout the centuries at the hands
of Catholic clergymen, an all star team that includes the likes of Gregor Mendel, Francis
Bacon, Nicolaus Copernicus, and Bernard Bolzano, to name just a few.

Perhaps nothing better than the history of the railways illustrates the ambivalent rela-
tionship of the Catholic Church toward science and technology. Early adoption within the
Papal States of this revolutionary means of transportation was stymied by Pope Gregory
XVI (1765-1846) who famously warned “Chemins de fer, chemin d’enfer” (“road of iron,
road of hell”) [4, p. 164]. His successor Pious IX however, realized the potential of railway
transportation for the purposes of the Holy See. The roads of iron could not only lead to hell,
but also to holy places like the sanctuary of Lourdes. The steam engine became a facilitator
of mass pilgrimages. The all powerful Roman Curia finally gave in on October 2, 1934, when
the stately Vatican City Central Station opened [14, p. 653]. This imposing building has
been to this day the headquarters of the smallest railway system in the world—300 meters of
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[
(a) (b) (c) (d)

Figure 1 Different types of tiles: (a) a red departure station, (b) a red arrival station, (c) a red
painter, (d) a splitter.

tracks in totall—an apparent contradiction that epitomizes an ambivalent attitude toward a
profound dilemma.

One must wonder why such a potentially useful and, from the point of view of Catholic
orthodoxy, apparently innocuous technology was met with such a high degree of suspicion.
The answer, it turns out, is hidden in the odd meanderings of the computational complexity
of games. The puzzle game Trainyard beautifully captures the inherent tension between two
moral imperatives, finding the right path and making sure that the path taken is indeed the
virtuous one.

In a landmark paper, Almanza et al. proved that finding the layout of a railway network
in Trainyard—a computational task easily seen to be in PSPACE—is NP-hard [2]. They left
open the question of verification, namely the computational complexity of checking whether
a given track layout delivers all trains safely to destination. In this paper we show that,
surprisingly, this task is PSPACE-complete. Interestingly, it is still possible that Trainyard
lies in NP. If this were the case then checking certificates for Trainyard would be more
difficult than finding them, unless NP = PSPACE. In moral terms, walking along the path
of virtue could prove impossibly arduous, even when you have found it. This is a bizarre
state of affairs that vindicates the cautious approach of the Roman Curia toward the railway
question.

2 Problem Definition

In a Trainyard level we are given a rectangular board in which each of the cells is either empty
or occupied by a tile. The two main tile types are departure and arrival stations: a departure
station (shown in Figure 1 (a)) hosts a single train, initially colored either blue or red, while
an arrival station (shown in Figure 1 (b)) accepts one train of a given color. The player’s
task is to route trains from departure stations to arrival stations by placing (possibly rotated
versions of) the rail pieces of Figure 2 into empty cells. The rail pieces of Figure 2 (a)—(d)
are traversed by trains in the straightforward way, while the pieces of Figure 2 (e) and (f) are
called switches and route trains going in the bottom-to-top direction towards two neighboring
tiles in an alternating fashion, i.e., each transiting train flips the state of the switch. Trains
traveling in the opposite directions are routed to the tile immediately below the switch but
they still affect the switch’s state.

To further complicate! things, the grid also contains other special tiles that interact with
incoming trains in various ways (see Figure 1 (¢) and (d)), namely:
Painters: trains traversing this tile will acquire the color of the painter tile itself. A painter

can be either red or blue. Note that a painter gadget has only two entry points located

on opposite sides of the cell.

L Actually, the original game is even more complex that the one described in the present work. The subset
of rules and tiles described here, however, suffices for the purposes of our reduction.
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Figure 2 Different kinds of rail pieces. Each of the pieces can be rotated by 90, 180 or 270
degrees.

Splitters: 1 splitters act both on the number of trains and on their color. A splitter has only
a single one-way entry gate, and two one-way exit gates located at the left and right side
of the cell. When a train enters a splitter, it vanishes but two new trains are created and
exit from the sides. If the incoming train was red or blue, then the outgoing trains will
also have that same color. If the incoming train was purple,? then the new train exiting
from the left side will be blue, while the other outgoing trail will be red.

After all the rail pieces have been placed by the player, the design is put to the test:
trains exit from departure stations simultaneously and they travel on rails at a speed of one
tile per second. When a train moves from a tile to the next, the directions of the involved

rails must match. If this does not happen then the train will crash and the player loses.

Moreover, whenever two trains simultaneously occupy the same rail piece while traveling in
the same direction, they merge into a single train. The color of this resulting train depends
on the color of the two merged trains. We are only interested in the following cases: if the
merged trains had the same color, then the new train will also retain that color; if one merged
train was blue and the other was red, then the resulting train will be purple. Two trains
going in different directions can also occupy the same tile at the same time: in this case no
merge occurs but the color of both trains is still changed according to the previous rules.

The player wins iff this process eventually reaches a state in which there are no traveling
trains, each arrival station has received exactly one train of the associated color, and no
crash has occurred.

We study the computational complexity of the TRAINYARD-VERIFICATION problem, i.e.,
the problem of deciding whether a solution (i.e., a placement of the rail pieces) to a Trainyard
level results in a win for the player (see Figure 3). In some sense we investigate how hard it
is for the player to recognize a correct solution to a Trainyard level. Unfortunately for the
player, this tasks can not be performed efficiently, unless PSPACE = P. Indeed, we are able
to show the following;:

» Theorem 1. TRAINYARD-VERIFICATION is PSPACE-complete.

3 Other related works

Trainyard belongs to the broad class of casual games: these games are characterized by an
intuitive gameplay which is usually organized into a series of small puzzles of increasing
difficulty. Interestingly enough, many casual games are hard to solve, not only for human
players, but also for machines: it is often the case that the computational problem of finding
a solution to a given level (instance) of a casual game turns out to be at least NP-hard.
Notable examples include e.g., Candy Crush [8], 2048 [12], Flow-Free [1], Sokoban [3], Rush

2 Purple trains can appear when a red and a blue train meet, as we explain in the following.
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Figure 3 A correct solution to a Trainyard level, i.e., a yes-instance of TRAINYARD-VERIFICATION.

Hour [6], Two-Dots [13], or Peg-Solitaire [15, 9] and it might even be the case that the
success of these games is due, in part, to their challenging levels, as suggested in [5]. For a
discussion of other NP-hard and PSPACE-hard puzzles and of general tecniques for showing
their hardness, we refer the interested reader to [11] and [10].

4  OQur Reduction

4.1 Preliminaries

Our reduction is from the Iterated Monotone Boolean Circuit problem (IT-MON-BC for short)
[7]. A monotone boolean circuit C' is a directed acyclic graph whose non-source vertices are
labeled with either A (“and”) or V (“or”). The source vertices are called input-vertices, while
all the other vertices are called gates. Gates that are also sinks in G are called output-vertices.
Let vf,..., vl (resp. v¥,...,vQ) be the input-vertices (resp. output-vertices) of C, in some
order. Once a boolean value is associated to each input vertex, it is possible to evaluate the
circuit by computing a boolean value for each output-vertex. This is done by propagating
the input values from the sources towards the sinks, i.e., by considering the gates of C' in
preorder and assigning a truth value to them depending on their label and on the truth value
of their in-neighbors. If T = (x1,...,x,) is the boolean vector containing the input values
(where z; is the initial truth value for vertex v!), then the evaluation of C' computes a vector
Y = fo(T), where fc is the function from {True,False}" to {True,False}™ implemented by
the circuit and the i-th entry y; of ¥ is the truth value corresponding to vertex vio . Without
loss of generality we assume that all the gates of C' have in-degree 2. If n = m then we can
also compute

fe@ = (foo-- o fo)(@)
—_

t times

by evaluating C' ¢ times, where the input of i-th evaluation, for ¢ > 1, consists of output of
the ¢ — 1-th evaluation.

The IT-MON-BC problem asks, given a monotone boolean circuit with n = m, an input
vector z, and an index h, to determine whether there exists a positive integer ¢ such that
J&(T)n = True, ie., if iterating C with a T as the initial input eventually causes the h-th
output to become True.

» Theorem 2 (Lemma 3 in [7]). IT-MON-BC is PSPACE-complete even when restricted to
circuits of in-degree 2 and out-degree 2.
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Figure 4 Transformation of the circuit of an IT-MoON-BC instance (C,T) into an equivalent
circuit C’ having one additional input/output vertex pair (namely, u’ and u©). Initially, the truth
value of the new variable z¢ associated with u’ is False. The output value associated to u® becomes
True as soon as the value of v{ is True and remains True in all subsequent iterations.

Notice that, since there can be at most 2™ distinct input vectors, if (f&(Z)), = False for
each t =1,...,2" then, by the pigeonhole principle, we can conclude that the answer to an
instance of IT-MON-BC is false. For technical convenience we assume w.l.o.g. that h = 1 and
that, once the first output becomes True, it will remain True in all the subsequent iterations
of the circuit. Notice that this latter assumption is not restrictive and can be removed by
transforming the circuit C' into an equivalent circuit C” having the desired property as follows
(see also Figure 4): initially C” is a copy of C, then we add to C’ (i) a new input-vertex
u!, (ii) a new gate u having the same label as v{ in C, and (iii) a new output-vertex u®
having label V; then, for each each edge (v,v{) in C, we add a corresponding edge (v, u) to
C', and finally we add the two edges (u!,up) and (u,up) to C’. It is easy to check that, for
every input vector Z and any x € {True,False}, the truth value of the vertices v{, ..., v9
of C with input T coincides with the truth value of the corresponding vertices of C’ with
input (zo,1,...,T,) where x¢ is the value initially assigned to u!. Moreover, as soon as
v9 become True, up will also become True and will retain the True value in all subsequent
iterations. Hence, we have obtained a circuit ¢’ having the desired property, modulo a

renaming of its input/output vertices.

4.2 Qverview

In the following we show how to convert, in polynomial time, an instance (C,z,h) of
IT-MON-BC into a instance of TRAINYARD-VERIFICATION that is a valid solution iff

(f&"(Z))n = True, thus establishing the PSPACE-hardness of TRAINYARD-VERIFICATION.

Notice that TRAINYARD-VERIFICATION clearly belongs to PSPACE as simulating a solution
only requires polynomial space. Moreover, since the number of possible states that can occur
during the simulation is at most exponential in the instance’s size, there exists an upper
limit T to the number of simulation steps needed: if the Trainyard level is still not solved
after Ty steps, then the simulation must be stuck in some cyclic sequence of states, hence
the TRAINYARD-VERIFICATION instance has a “no” answer.

A high-level picture of our reduction is shown in Figure 5. The initial input T of the
circuit C is encoded in the color of n departing trains in the “input area”, if z; = True (e.g.,
x9 in Figure 5) then the i-th departure station is red, while if z; = False (e.g., 1 and z3 in
Figure 5) the corresponding departure station is blue. The departing trains (moving in the
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P
P

Loop & Check

Figure 5 Overview of our reduction from IT-MON-BC to TRAINYARD-VERIFICATION. The input
trains departing from the stations in the “Input” region traverse the “Circuit Implementation” area
exactly 2" times (using the outer loops to return to the bottom) and are then routed to the gray
check gadgets in the “Loop and Check” area.

bottom-to-top direction) then enter the “Circuit Implementation” area where they traverse
a series of gadgets that simulate the gates of the circuit C. Eventually, exactly n trains
exit from the “Circuit Implementation” area, the i-th of which encodes (in its color) the
truth value of the i-th output of the circuit. These trains are now routed to the one final
region of our Trainyard level, namely the “Loop and Check” area. This region contains n
loop gadgets that act transparently for the first 2 — 1 times they are traversed, i.e., they
let any train entering from the bottom exit unaltered from the top. These outgoing trains
are then re-routed back into the inputs of the circuit and the whole process repeats. At the
2"-th iteration, the loop gadgets stop acting transparently and instead divert the incoming
trains to the rails exiting from their right. Here each train enters a check gadget (shown in
gray in Figure 5) containing one arrival station. Collectively, these check gadgets allow the
level to be completed if and only if the train corresponding to the first output of the circuit
(which represents the first entry of f%n) encodes the value True.
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() (b)

Figure 6 (a) Implementation of Red-Shift gadget. (b) Implementation of Blue-Shift gadget.
These gadgets convert the color scheme of a train from CS2 to CS1 and vice-versa, respectively.

An interactive demonstration of our reduction is available at: https://trainyard.

isnphard.com/verification/

4.3 Gadgets and Color Schemes

We encode the gates of C using a combination of gadgets, i.e., combinations of rails and
special tiles, and the links of C' using rails between the two corresponding gadgets. Gadgets
will receive some trains as inputs (usually from the bottom), will perform some operations,
and will let the result trains exit (usually from the top). We assume that all the input
trains enter a gadget simultaneously: since a train always takes the same number of steps to
traverse a gadget®, this property can be guaranteed by choosing suitable lengths for the rails
connecting two consecutive gadgets.

The evaluation of C' will be simulated by trains that will carry truth values from one
gadget to the other. Those truth values will be encoded using train colors according to two
different color schemes.

CS1: A red train represents the value True, a purple train represents the value False. Blue
trains are not allowed.

CS2: A purple train represents the value True, a blue train represents the value False. Red
trains are not allowed.

4.3.1 Converting between color schemes

Here we show how to change the color of a train that is carrying a truth value encoded using
CS1 to the correct encoding according to CS2, and vice-versa.

The conversion from CS2 to CS1 is performed by the Red-Shift gadget shown in Figure 6 (a).
The input train enters the gadget from the rail on the bottom and is split into two trains
exiting from the sides of the splitter tile. If the incoming train is blue then these two trains
will be blue as well, the one on the left side will pass through a red painter tile and will
merge back with the blue train coming from the right side into a purple train. If incoming
train is purple then the train exiting the spliter tile from the left side will be blue while the
one exiting from the right will be red. Due to the red painter gadget, the left train will also
become red, and the two trains will merge thus causing a single red train to exit from the
top of the gadget. Notice also that if the input of a Red-Shift gadget is a red train, then the
train will retain its red color. This property will be useful in the sequel.

3 with the exception of loop gadgets, as will be discussed in the following.
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Figure 7 Implementation of red (a) and blue (b) absorption gadgets.

The conversion from CS2 to CS1 is done by the Blue-Shift gadget shown in Figure 6 (b),
whose operation is symmetric to the Red-Shift gadget. Notice again that blue trains retain
their colors when traversing a Red-Shift gadget.

These two gadgets allow us to change the color of each train entering a gadget in order
to meet the expected color scheme. We can hence assume that all the appropriate color
conversions happen on the railways connecting the output of a gadget to the input of next
one. This will be particularly useful in implementing gadgets for “and” and “or” gates which
require the two input trains to be colored according to different colors schemes. As an
example notice how the blue trains that will exit the departure stations of Figure 5 (i.e.,
the stations corresponding to False inputs) immediately traverse a Red-Shift gadget. This
ensures that all the trains leaving the “Input” area will be colored according to CS1.

4.3.2 Train Absorption Gadget

Some of the gadgets will generate additional trains as a side effect of their operation. In
order to get rid of these spurious trains we would like them to merge with a train that we call
a main train. This operation should be performed with care to ensure that the color of the
main train is preserved. This can be done by using the absorption gadgets shown in Figure 7.

Let us focus on the red absorption gadget of Figure 7 (a) which shows how a main train
colored according to CS1 and entering the gadget from the leftmost rail on the bottom can
be merged with any other train entering from the rightmost rail. Once the main train reaches
the splitter, the train exiting from the right side will always be red (recall that, according to
CS1, the main train must be either red or purple). We can therefore safely merge it with
the spurious train, which has been colored red by the red painter tile, to obtain a single red
train. This red train is then merged back with the train exiting the left side of the splitter,
resulting in a single train of the same color of the incoming main train.

The blue absorption gadget gadget of Figure 7 (b) merges a main train colored according
to CS2 with any other train (entering from the leftmost rail on the bottom) and its operation
is analogous the the red absorption gadget just described.

4.3.3 Crossover Gadget

The crossover gadget allows two trains entering (at the same time) from the bottom rails to
exit (at the same time) from the top two rails in the opposite order. Its implementation is
straightforward and it is shown in Figure 8 (a). The turns in the gadget ensure that the two
input trains do not meet when the rails cross (as this might alter their original colors).
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Figure 8 Implementation of the Crossover (a), Fanout (b), and Blend (c) gadgets.

4.3.4 Fanout Gadget

The fanout gadget duplicates an input train entering from the bottom rail into two identical
trains exiting from the top two rails. This gadget is necessary as, in general, input-vertices
and gates might have two or more out-neighbors. By chaining together several fanout gadgets
it is possible to create exactly one train for each out-neighbor of a vertex, each encoding the
same truth value. The implementation of this gadget is shown in Figure 8 (b).

4.3.5 Blend Gadget

We still have to show how “and” and “or” gates of the circuit C' are implemented. To this
aim it is useful to first describe an intermediate gadget that we call a blend gadget (see
Figure 8 (c¢)). This gadget takes two input trains entering from the bottom side: the leftmost

train is colored according to CS2 while the rightmost train is colored according to CSI.

There are four possible combinations of (valid) inputs, corresponding to the four values
in {True,False}?. In all of these cases the gadget will output three trains. Two of them,
namely the ones exiting from the left and right side of the gadget, are spurious trains and
will be dealt with by the “and” and “or” gadgets. The other train is the actual output of
the gadget and its color depends on the truth values of the input trains, as detailed in the
following table:

Left Value | Right Value Le(ﬂég;)lor R‘g(lgs(;‘)’l"r Output Color
True True purple red red
True False purple purple purple
False True blue red purple
False False blue purple blue

In other words, the output train is blue if both the inputs are false, red if they are both
true, and purple if exactly one of the inputs is true. Notice that, so far, this coloring scheme
does not adhere neither to CS1 nor to CS2.

4:9

FUN 2018



4:10

Tracks from hell — when finding a proof may be easier than checking it

Figure 9 Implementation of the “or” (a) and “and” (b) gadgets.

4.3.6 Or Gadget

The or gadget is shown in Figure 9 (a) and implements an “or” gate of the circuit C. It is
obtained by appending a Red-Shift gadget to the output of a Blend gadget. It is easy to
check that the color of the output train is red if at least one of the two inputs of the blend
gadget encodes the values True, and purple otherwise. In other words, the gadget computes
the logical or between the two signals carried by the input trains and encodes the result
according to CS1. To take care of the two extra trains exiting the Blend gadget we use two
Absorption gadgets to merge them into the output train.

4.3.7 And Gadget

The implementation of the and gadget is similar to the one of the or gadget: by appending a
Blue-Shift gadget to the output of a Blend gadget we have that the color output train is blue
if at least one of the two input trains carries the logical value False, and purple otherwise.
Thus, the and gadget computer the logical and of the two input signals and encodes the
output according to CS2. As before, we dispose of the the two spurious trains exiting from
the Blend gadget by using two Absorpion gadgets, as shown in Figure 9 (b).

4.3.8 Loop Gadget

The purpose of this gadget is to ensure that the circuit is evaluated (i.e., traversed by the
trains) exactly 2™ times, where the trains exiting from the output-vertices of one iteration
constitute the input of the next evaluation. After 2" evaluations this feedback loop will break
and the output trains will be allowed to reach the check area.

The gadget implementation is recursive and it is shown in Figure 10 (a)—(d). Figure 10 (a)
shows the details of a 2-loop gadget: the first train to enter the gadget from the single rail
on the bottom will exit from the top and will cause the two switches to flip, we call the first
encountered switch (i.e., the one closer to the bottom) a counting switch. When a second
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Figure 10 Implementation of a 2¢ loop-gadget for i = 1 (a), i = 2 (b), 4 = 3 (c), and in the
general case (d).
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train enters the gadget, it will now exit from the rail on the right side due to the position of
the counting switch (that will now revert to the initial state). Notice that the position of the
other (non-counting) switch plays no role in the gadget operation. Indeed, its sole purpose is
to provide an extra input that allows any train entering from the right side (i.e., moving
in the right-to-left direction) to exit from the top side of the gadget without affecting the
state of the counting switch. This allows a 2-loop to be used as a sub-gadget in the 4-loop
construction of Figure 10 (b): here the first train to exit from the right side of a 2-loop
traverses once again a counting and a non-counting switch (in order) and is routed back to
the top exit of the 2-loop; the second train to exit the 2-loop (which corresponds to the 4-th
train entering from the bottom rail) will revert the counting-switch to its original state and
it will proceed to the right. By repeating this construction one can easily obtain the 8-loop
of figure Figure 10 (c) and, more generally, the 2i-loop of Figure 10 (d). The first 2¢ — 1

trains entering a 2°-loop will exit from the top, while the 2¢-th train will exit from the right.

Notice how after the j trains have traversed a 2¢-loop, the state of the counting switches
encodes the number i mod 2! in binary, where the least-significant-bit corresponds to the
innermost counting switch.

We lay the tracks so that all the n trains entering the “Loop and Check” area (see
Figure 5) reach the 2"-loop gadgets at the same time (this can be guaranteed by tuning
the length of the railways connecting to the inputs of the loop gadgets). This is because,
in contrast to the other gadgets, the time required for a train to traverse a 2™-loop gadgets
depends on the specific iteration (i.e., on the state of the counting switches). By requiring
this additional property, we can ensure that, on every iteration, all the 2"-loop gadgets will
always change their state simultaneously and hence the n incoming trains will also exit the
gadgets simultaneously. This allows us to also synchronize the trains once they are routed
back to the “Input” area.

4.3.9 Check Gadgets

The purpose of the check gadgets (highlighted in gray in the “loop and check” area of Figure 5)
is to ensure that the solution to the Trainyard level will be valid if and only if the circuit C
of the IT-MON-BC instance is such that the first entry of § = fgn () is True. When the
loop gadgets in the “loop and check” area are traversed 2™ times, the trains encoding the n
output values of fgl (Z) will exit from the right side of their respective loop gadget. Since
we are not interested in the values ys, ..., y,, each of the corresponding trains is colored
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red (thus discarding its currently encoded truth value) and fed into an arrival station that
expects exactly one red train. As for the output train corresponding to y;, we assume w.l.o.g.
that it is encoded according to CS1 (if this is not the case, then it suffices to use a Red-Shift
gadget just after the output of the corresponding 2"™-loop gadget). Then, the train will be
red if y; is True and purple otherwise. Hence, it suffices to route this train into an arrival
station expecting one red train. If y; = True, all the arrival stations will be satisfied and the
Trainyard level is won, otherwise the purple train training to enter a red station will crash
and the level will be lost.

5 Conclusions

We have proved that the problem of checking whether a candidate solution to a Trainyard
instance actually solves the level is PSPACE-complete. What is the exact complexity of
finding such a solution, however, is still an open question: we know from [2] that this problem
is NP-hard and it is easy to check that it also belongs to PSPACE (since it is possible to
enumerate all the possible track layouts). If Trainyard belongs to NP, this would mean that
computing a solution could be easier than checking it, unless NP = PSPACE. It might be
the case that a more involved certificate than the natural one (i.e., the placement of the
tracks in a solution) is needed, or that every Trainyard level that admits a solution also
allows for a simple solution, i.e., a solution that can be recognized in polynomial time.

Other examples of games for which checking the natural solution is at least NP-hard*
include Settlers of Catan and Carcassonne®, as the scoring rules involve longest-path compu-
tations.
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—— Abstract

FIXED-FLOOD-IT and FREE-FLOOD-IT are combinatorial problems on graphs that generalize a
very popular puzzle called Flood-It. Both problems consist of recoloring moves whose goal is to
produce a monochromatic (“flooded”) graph as quickly as possible. Their difference is that in
FREE-FLOOD-IT the player has the additional freedom of choosing the vertex to play in each
move. In this paper, we investigate how this freedom affects the complexity of the problem. It
turns out that the freedom is bad in some sense. We show that some cases trivially solvable for
FIXED-FLOOD-IT become intractable for FREE-FLOOD-IT. We also show that some tractable
cases for FIXED-FLOOD-IT are still tractable for FREE-FLOOD-IT but need considerably more
involved arguments. We finally present some combinatorial properties connecting or separating
the two problems. In particular, we show that the length of an optimal solution for FIXED-
FLoobD-IT is always at most twice that of FREE-FLOOD-IT, and this is tight.
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Figure 2 A flooding sequence with no restriction on selected monochromatic components.

1 Introduction

Flood-1t is a popular puzzle, originally released as a computer game in 2006 by LabPixies (see
[1]). In this game, the player is presented with (what can be thought of as) a vertex-colored
grid graph, with a designated special pivot vertex, usually the top-left corner of the grid.
In each move, the player has the right to change the color of all vertices contained in the
same monochromatic component as the pivot to a different color of her choosing. Doing this
judiciously gradually increases the size of the pivot’s monochromatic component, until the
whole graph is flooded with one color. The goal is to achieve this flooding with the minimum
number of moves. See Figure 1 for an example.

Following the description above, Flood-It immediately gives rise to a natural optimization
problem: given a vertex-colored graph, determine the shortest sequence of flooding moves
that wins the game. This problem has been extensively studied in the last few years (e.g.
[10, 12, 14, 13, 7, 3, 17, 4, 15, 9]; a more detailed summary of known results is given
below), both because of the game’s popularity (and addictiveness!), but also because the
computational complexity questions associated with this problem have turned out to be
surprisingly deep, and the problem has turned out to be surprisingly intractable.

The goal of this paper is to add to our understanding of this interesting, puzzle-inspired,
optimization problem, by taking a closer look at the importance of the pivot vertex. As
explained above, the classical version of the game only allows the player to change the
color of a special vertex and its component and has been studied under the name FIXED-
Froob-It [12, 14, 13] (or FLOOD-IT in some papers [1, 17, 3, 4, 9]). However, it is extremely
natural to also consider a version where the player is also allowed to play a different vertex
of her choosing in each turn. This has also been well-studied under the name FREE-FLOOD-
It [1, 10, 12, 14, 13, 3, 17]. See Figure 2.

Since both versions of this problem have been studied before, the question of the impact
of the pivot vertex on the problem’s structure has (at least implicitly) been considered.
Intuitively, one would expect FREE-FLOOD-IT to be a harder problem; after all, the player
has to choose a color to play and a vertex to play it on, and is hence presented with a
larger set of possible moves. The state of the art seems to confirm this intuition, as only
some of the positive algorithmic results known for FIXED-FLOOD-IT are known also for
FREE-FLOOD-IT, while there do exist some isolated cases where FIXED-FLOOD-IT is tractable
and FREE-FLOOD-IT is hard, for example co-comparability graphs [5, 7] and grids of height 2
[1, 13]. Nevertheless, these results do not completely pinpoint the added complexity brought
by the task of selecting a vertex to play, as the mentioned algorithms for FIXED-FLOOD-IT
are already non-trivial, and hence the jump in complexity is likely to be the result of the
combination of the tasks of picking a color and a vertex. More broadly, [3] presented a
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generic reduction from FIXED-FLOOD-IT to FREE-FLOOD-IT that preserves a number of
crucial parameters (number of colors, optimal value, etc.) and gives convincing evidence that

FrREE-FLOOD-IT is always at least as hard as FIXED-FLOOD-IT, but not necessarily harder.

Our Results: We investigate the complexity of FREE-FLOOD-IT, mostly from the point of
view of parameterized complexity,' as well as the impact on the combinatorics of the game
of allowing moves outside the pivot. Due to space constraints, some proofs are ommited and
marked with %.

Our first result is to show that FREE-FLOOD-IT is W[2]-hard parameterized by the number
of moves in an optimal solution. We recall that for FIXED-FLOOD-IT this parameterization
is trivially fixed-parameter tractable: when a player has only k& moves available, then we can
safely assume that the graph uses at most (roughly) & colors, hence one can easily consider
all possible solutions in FPT time. The interest of our result is, therefore, to demonstrate
that the task of deciding which vertex to play next is sufficient to make FREE-FLOOD-IT
significantly harder than FIXED-FLOOD-IT. Indeed, the W[2]-hardness reduction we give,
implies also that FREE-FLOOD-IT is not solvable in n°(*) time under the ETH. This tightly
matches the complexity of a trivial algorithm which considers all possible vertices and colors
to be played. This is the first concrete example showing a case where FIXED-FLOOD-IT is
essentially trivial, but FREE-FLOOD-IT is intractable.

Motivated by this negative result we consider several other parameterizations of the
problem. We show that FREE-FLOOD-IT is fixed-parameter tractable when parameterized
by the number of possible moves and the clique-width. This result is tight in the sense that
the problem is hard when parameterized by only one of these parameters. It also implies
the fixed-parameter tractability of the problem parameterized by the number of colors and
the modular-width. In a similar vein, we present a polynomial kernel when FREE-FLOOD-IT
is parameterized by the input graph’s neighborhood diversity and number of colors. An
analogous result was shown for FIXED-FLOOD-IT in [4], but because of the freedom to
select vertices, several of the tricks used there do not apply to FREE-FLOOD-IT, and our
proofs are slightly more involved. Our previously mentioned reduction also implies that
FREE-FLOOD-IT does not admit a polynomial kernel parameterized by vertex cover, under
standard assumptions. This result was also shown for FIXED-FLOOD-IT in [4], but it does
not follow immediately for FREE-FLOOD-IT, as the reduction of [3] does not preserve the
graph’s vertex cover.

Motivated by the above results, which indicate that the complexity of the problem can be
seriously affected if one allows non-pivot moves, we also study some more purely combinatorial

questions with algorithmic applications. The main question we pose here is the following.

It is obvious that for all instances the optimal number of moves for FREE-FLOOD-IT is
upper-bounded by the optimal number of moves for FIXED-FLOOD-IT (since the player has
strictly more choices), and it is not hard to construct instances where FIXED-FLOOD-IT needs
strictly more moves. Can we bound the optimal number of FIXED-FLOOD-IT moves needed
as a function of the optimal number of FIXED-FLOOD-IT moves? Somewhat surprisingly, this
extremely natural question does not seem to have been explicitly considered in the literature
before. Here, we completely resolve it by showing that the two optimal values cannot be
more than a factor of 2 apart, and constructing a family of simple instances where they are
exactly a factor of 2 apart. As an immediate application, this gives a 2-approximation for
FREE-FLOOD-IT for every case where FIXED-FLOOD-IT is known to be tractable.

! For readers unfamiliar with the basic notions of this field, we refer to standard textbooks [2, 6].
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We also consider the problem’s monotonicity: FIXED-FLOOD-IT has the nice property
that even an adversary that selects a single bad move cannot increase the optimal (that is, in
the worst case a bad move is a wasted move). We construct minimal examples which show
that FREE-FLOOD-IT does not have this nice monotonicity property, even for extremely
simple graphs, that is, making a bad move may not only waste a move but also make the
instance strictly worse. Such a difference was not explicitly stated in the literature, while
the monotonicity of FIXED-FLOOD-IT was seem to be known or at least assumed. The only
result we are aware of is the monotonicity of FREE-FLOOD-IT on paths shown by Meeks and
Scott [12].

Known results: In 2009, the NP-hardness of FIXED-FLOOD-IT with six colors was sketched
by Elad Verbin as a comment to a blog post by Sariel Har-Peled [16]. Independently to the
blog comment, Clifford et al. [1] and Fleischer and Woeginger [5] started investigations of
the complexity of the problem, and published the conference versions of their papers at FUN
2010. Below we mostly summarize some of the known results on FREE-FLOOD-IT. For more
complete lists of previous result, see e.g. [7, 10, 4].

FREE-FLOOD-IT is NP-hard if the number of colors is at least 3 [1] even for trees with
only one vertex of degree more than 2 [10, 3], while it is polynomial-time solvable for general
graphs if the number of colors is at most 2 [1, 12, 10]. Moreover, it is NP-hard even for
height-3 grids with four colors [12]. Note that this result implies that FREE-FLOOD-IT with
a constant number colors is NP-hard even for graphs of bounded bandwidth. If the number
of colors is unbounded, then it is NP-hard for height-2 grids [13], trees of radius 2 [3], and,
proper interval graphs and caterpillars [7]. Also, it is known that there is no constant-factor
approximation with a factor independent of the number of colors unless P = NP [1].

There are a few positive results on FREE-FLOOD-IT. Meeks and Scott [14] showed that
every colored graph has a spanning tree with the same coloring such that the minimum
number of moves coincides in the graph and the spanning tree. Using this property, they
showed that if a graph has only a polynomial number of vertex subsets that induce connected
subgraphs, then FREE-FLOOD-IT (and FIXED-FLOOD-IT) on the graph can be solved in
polynomial time. This in particular implies the polynomial-time solvability on subdivisions
of a fixed graph. It is also known that FREE-FLOOD-IT for interval graphs and split graphs
is fixed-parameter tractable when parameterized by the number of colors [7].

2 Preliminaries

For a positive integer k, we use [k] to denote the set {1,...,k}. Given a graph G = (V, E), a
coloring function col: V' = [cpax|, Where cimax is a positive integer, and u € V', we denote by
Comp(col, u) the maximal set of vertices S such that for all v € S, col(u) = col(v) and there
exists a path from w to v such that for all its internal vertices w we have col(w) = col(u).
In other words, Comp(col, ) is the monochromatic connected component that contains u
under the coloring function col.

Given G, col, a move is defined as a pair (u,i) where u € V, i € [emax]. The result
of the move (u,c) is a new coloring function col’ defined as follows: col’(v) = ¢ for all
v € Comp(col,u); col'(v) = col(v) for all other vertices. In words, a move consists of
changing the color of u, and of all vertices in the same monochromatic component as wu,
to ¢. Given the above definition we can also define the result of a sequence of moves
(u1,c1), (ug,¢2), ..., (uk,ck) on a colored graph with initial coloring function coly in the
natural way, that is, for each ¢ € [k], col; is the result of move (u;,¢;) on col;_;.
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The FREE-FLOOD-IT problem is defined as follows: given a graph G = (V, E), an
integer k, and an initial coloring function coly, decide if there exists a sequence of k£ moves
(u1,¢1), (ug,c2),. .., (ug,ck) such that the result coly obtained by applying this sequence of
moves on coly is a constant function (that is, Vu,v € V' we have coly(u) = coli(v)).

In the FIXED-FLOOD-IT problem we are given the same input as in the FREE-FLOOD-IT
problem, as well as a designated vertex p € V' (the pivot). The question is again if there
exists a sequence of moves such that coly is monochromatic, with the added constraint that
we must have u; = p for all ¢ € [k].

We denote by OPTpyee(G, col), OPTrixed (G, col, p) the minimum k such that for the
input (G, col) (or (G, col,p) respectively) the FREE-FLOOD-IT problem (respectively the
FIXED-FLOOD-IT problem) admits a solution.

Graph parameters: The graph parameters considered in this paper are the vertex cover
number vc(G), the neighborhood diversity nd(G), the modular-width mw(G), and the clique-
width cw(G). Tt is known that cw(G) < mw(G) < nd(G) < 2¥(%) + vc(G) for every graph
G [8, 11]. (See [11, 8, 2] for definitions.)

3 W]2]-hardness of Free-Flood-It

The main result of this section is that FREE-FLOOD-IT is W|[2]-hard when parameterized by
the minimum length of any valid solution (the natural parameter). The proof consists of a
reduction from SET COVER, a canonical W[2]-complete problem.

Before presenting the construction, we recall two basic observations by Meeks and Vu [15],
both of which rest on the fact that any single move can (at most) eliminate a single color
from the graph, and this can only happen if a color induces a single component.

» Lemma 3.1 ([15]). For any graph G = (V, E), and coloring function col that uses cmax
distinct colors, we have OPTpyee(G,col) > cpax — 1.

» Lemma 3.2 ([15]). For any graph G = (V, E), and coloring function col that uses cmax
distinct colors, such that for all ¢ € [cmax], G[col ™ (¢)] is a disconnected graph, we have
OPTpree(G,col) > crax.

The proof of Theorem 3.6 relies on a reduction from a special form of SET COVER, which
we call MULTI-COLORED SET COVER (MCSC for short). MCSC is defined as follows:

» Definition 3.3. In MULTI-COLORED SET COVER (MCSC) we are given as input a set of
elements R and k collections of subsets of R, S1,...,Sk. We are asked if there exist k sets
S1,. .., Sk such that for all i € [k], S; € S;, and Uy Si = R.

Observe that MCSC is just a version of SET COVER where the collection of sets is given
to us pre-partitioned into k parts and we are asked to select one set from each part to form
a set cover of the universe. It is not hard to see that any SET COVER instance (S, R) where
we are asked if there exists a set cover of size k can easily be transformed to an equivalent
MCSC instance simply by setting S; = S for all 7 € [k], since the definition of MCSC does
not require that the sub-collections S; be disjoint. We conclude that known hardness results
for SET COVER immediately transfer to MCSC, and in particular MCSC is W[2]-hard when
parameterized by k.
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Figure 3 The graph G = (V, E) of FREE-FLOOD-IT constructed from the given MCSC instance.
All the vertices in each I; have color ¢ and all black vertices have color k£ + 1. Boxes containing black
vertices have size 3k. Also each vertex in L; has k neighbors with degree 1 colored 1, ..., k.

Construction

We are now ready to describe our reduction which, given a MCSC instance with universe R
and k collections of sets S;,4 € [k], produces an equivalent instance of FREE-FLOOD-IT, that
is, a graph G = (V, E) and a coloring function col on V. We construct this graph as follows:
for every set S € S;, construct a vertex in V. The set of vertices in V' corresponding
to sets of S; is denoted by I; and col(v) = i for each v € I;. I; U ... U I induces an
independent set colored {1, ..., k}.
for each i € [k], construct 3k new vertices, denoted by L; and connect all of them to all
vertices of I; such that L; U I; induces a complete bipartite graph of size 3k x |I;|. Then
set col(v) = k + 1 for each v € L;, for all i € [k].
for each vertex v € L; for 1 < i < k, construct k new leaf vertices connected to v with
distinct colors 1, ..., k.
for each element e € R, construct a vertex e. For each S € S; such that e € S we connect
e to the vertex of I; that represents S.
add a special vertex u with col(u) = k + 1 which is connected it to all vertices in I; for
i€ [kl

An illustration of G is shown in Fig.3. In the following we will show that (G, col) as
an instance of FREE-FLOOD-IT is solvable with at most 2k moves if and only if the given
MCSC instance has a set cover of size k which contains one set of each S;.

» Lemma 3.4. If (S1,...,Sk, R) is a YES instance of MCSC then OPTryee(G, col) < 2k.

Proof. Suppose that there is a solution S, ..., Sy of the given MCSC instance, with .S; € S;,
for i € [k] and U;cS; = R. Recall that for each S; there is a vertex in I; in the constructed
graph representing .S;. Our first £ moves consist of changing the color of each of these k
vertices to k + 1 in some arbitrary order.

Observe that in the graph resulting after these k moves the vertices with color k + 1 form
a single connected component: because US; is a set cover, all vertices of R have a neighbor
with color k + 1; all vertices with color k£ + 1 in some I; are in the same component as u; and
all vertices of Uy Li are connected to one of the vertices we played. Furthermore, observe
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that this component dominates the graph: all remaining vertices of UI;, as well as all leaves
attached to vertices of Uiy Li are dominated by the vertices of U L;. Hence, we can
select an arbitrary vertex with color k£ 4 1, say u, and cycle through the colors 1,...,k on
this vertex to make the graph monochromatic. |

Now we establish the converse of Lemma 3.4.
» Lemma 3.5. If OPTp..(G,col) < 2k, then (S1,...,Sk, R) is a YES instance of MCSC.

Proof. Suppose that there exists a sequence of at most 2k moves solving (G, col). We can
assume without loss of generality that the sequence has length exactly 2k, since performing a
move on a monochromatic graph keeps the graph monochromatic. Let (u1,c¢1), ..., (u2k, cak)
be a solution, let coly = col, and let col; denote the coloring of G obtained after the first ¢
moves. The key observation that we will rely on is the following:

() For all i € [k], there exist j € [k],v € I; such that col;(v) =k + 1.

In other words, we claim that for each group I; there exists a vertex that received color

k + 1 at some point during the first £ moves. Before proceeding, let us prove this claim.

Suppose for contradiction that the claim is false. Then, there exists a group I; such that no
vertex in that group has color k£ + 1 in any of the colorings coly, ..., coly. We now consider
the vertices of L; and their attached leaves. Since L; contains 3k > k + 2 vertices, there
exist two vertices vy, v of L; such that {uy,...,ur} contains neither vy, ve, nor any of their
attached leaves. In other words, there exist two vertices of L; on which the winning sequence
does not change colors by playing them or their private neighborhood directly. However,
since v, v9 only have neighbors in I; (except for their attached leaves), and no vertex of
I received color k + 1, we conclude that colg(v1) = colx(va) = k + 1, that is, the colors
of these two vertices have remained unchanged, and the same is true for their attached
leaves. Consider now the graph G with coloring coly: we observe that this coloring uses
k + 1 distinct colors, and that each color induces a disconnected graph. This is true for colors
1,...,k because of the leaves attached to vq,vs, and true of color k + 1 because of v, v9 and
the fact that no vertex of I; has color k 4+ 1. We conclude that OPTrye(G, coly) > k + 1 by
Lemma 3.2, which is a contradiction, because the whole sequence has length 2k.

Because of claim (i) we can now conclude that for all ¢ € [k] there exists a j € [k] such
that col;_;(u;) = i. In other words, for each color i there exists a move among the first &
moves of the solution that played a vertex which at that point had color ¢. To see that this
is true consider again for contradiction the case that for some 4 € [k] this statement does not
hold: this implies that vertices with color i in coly still have color ¢ in coly, ..., col, which
means that no vertex of I; has received color k + 1 in the first k£ moves, contradicting (i).

As a result of the above, we therefore claim that for all j € [k], we have col,;_1(u;) # k+1.

In other words, we claim that none of the first £ moves changes the color of a vertex that
at that point had color k 4+ 1. This is because, as argued, for each of the other k colors,
there is a move among the first £ moves that changes a vertex of that color. We therefore
conclude that for all vertices v for which coly(v) = k + 1 we have col;(v) = k + 1 for all
j € [k]. In addition, because in coly all colors induce independent sets, each of the first &
moves changes the color of a single vertex. Because of claim (i), this means that for each
i € [k] one of the first k moves changes the color of a single vertex from I; to k + 1. We
select the corresponding set of S; in our MCSC solution.

We now observe that, since all vertices of U;er)L; retain color k + 1 throughout the first
k moves, coly is a coloring function that uses k + 1 distinct colors, and colors 1, ...,k induce
disconnected graphs (because of the leaves attached to the vertices of each L;). Thanks to
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Lemma 3.2, this means that col,zl(k + 1) must induce a connected graph. Hence, all vertices
of R have a neighbor with color k + 1 in coly, which must be one of the k vertices played
in the first k£ moves; hence the corresponding element is dominated by our solution and we
have a valid set cover selecting one set from each S;. |

We are now ready to combine Lemmas 3.4 and 3.5 to obtain the main result of this
section.

» Theorem 3.6. FREE-FLOOD-IT is W/[2]-hard parameterized by OPTpyee, that is, param-
eterized by the length of the optimal solution. Furthermore, if there is an algorithm that
decides if a FREE-FLOOD-IT instance has a solution of length k in time n°*) | then the ETH
is false.

Proof. The described construction, as well as Lemmas 3.4 and 3.5 give a reduction from
MCSC, which is W[2]-hard parameterized by k, to an instance of FREE-FLOOD-IT with k+1
colors, where the question is to decide if OPTgec(G, col) < 2k. Furthermore, it is known
that MCSC generalizes DOMINATING SET, which does not admit an algorithm running in
time n°(®) under the ETH [2]. Since our reduction only modifies k& by a constant, we odtain
the same result for FREE-FLOOD-IT. |

We note that because of Lemma 3.1 we can always assume that the number of colors
of a given instance is not much higher than the length of the optimal solution. As a
result, FREE-FLOOD-IT parameterized by OPTpe is equivalent to the parameterization
of FREE-FLOOD-IT by OPTEyee + Cmax and the result of Theorem 3.6 also applies to this
parameterization. Also, as a byproduct of the reduction above, we can show a kernel lower
bound for FREE-FLOOD-IT parameterized by the vertex cover number.

» Theorem 3.7 (% ). FREE-FLOOD-IT parameterized by the vertex cover number admits no
polynomial kernel unless PH = X¥.

4 Clique-width and neighborhood diversity

In this section, we consider as a combined parameter for FREE-FLOOD-IT the length of an
optimal solution and the clique-width. We show that this case is indeed fixed-parameter
tractable by using the theory of the monadic second-order logic on graphs. As an application
of this result, we also show that combined parameterization by the number of colors and the
modular-width is fixed-parameter tractable.

» Theorem 4.1 (%). Given an instance (G,col) of FREE-FLOOD-IT such that G has
n vertices and clique-width at most w, it can be decided in time O(f(k,w) - n®) whether
OPTrree(G,col) < k, where f is some computable function.

» Corollary 4.2 (%). Given an integer k and an instance (G, col) of FREE-FLOOD-IT such
that G has n vertices and modular-width at most w, it can be decided in time O( f(cmax, w)-n3)
whether OPTpre.(G, col) < k, where [ is some computable function.

Since the modular-width of a graph is upper bounded by its neighborhood diversity, the
corollary above implies that FREE-FLOOD-IT is fixed-parameter tractable when parameterized
by both the neighborhood diversity and the number of colors. Here we show that FREE-
FLOOD-IT admits a polynomial kernel with the same parameterization.

» Theorem 4.3. FREE-FLOOD-IT admits a kernel of nd(Q) - ¢imax - (Nd(G) + cmax — 1) vertices.
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Our reduction rules are as follows:

Rule TT: Let u and v be true twins of the same color in (G, col). Remove v.

Rule FT: Let F be a set of false-twin vertices of the same color in (G, col) such that
|F'| = nd(G) + ¢max- Remove arbitrary one vertex in F.

Observe that after applying TT and FT exhaustively in polynomial time, the obtained
graph can have at most nd(G) - ¢max - (Nd(G) + ¢max — 1) vertices. This is because each set of
twin vertices can contain at most nd(G) + ¢max — 1 vertices. Hence, to prove Theorem 4.3, it
suffices to show the safeness of the rules.

» Lemma 4.4 (k). The rules TT and FT are safe.

5 Relation Between Fixed and Free Flood-It

The main theorem of this section is the following:
» Theorem 5.1. For any graph G = (V, E), coloring function col on G, and p € V' we have
OPTree(G, col) < OPTpized(G, col,p) < 20PTpree(G, col).

Theorem 5.1 states that the optimal solutions for FREE-FLOOD-IT and FiXED-FLOOD-IT
can never be more than a factor of 2 apart. It is worthy of note that we could not hope to
obtain a constant smaller than 2 in such a theorem, and hence the theorem is tight.

» Theorem 5.2. There exist instances of FIXED-FLOOD-IT such that OPTpizeqd(G, col, p) =
20PTrye(G, col)

Proof. Consider a path on 2n + 1 vertices properly colored with colors 1,2. If we set the
pivot to be one of the endpoints then OPTge = 2n. However, it is not hard to obtain a
FREE-FLOOD-IT solution with n moves by playing every vertex at odd distance from the
pivot. <

Before we proceed to give the proof of Theorem 5.1, let us give a high-level description of
our proof strategy and some general intuition. The first inequality is of course trivial, so
we focus on the second part. We will establish it by induction on the number of non-pivot
moves performed by an optimal FREE-FLOOD-IT solution. The main inductive argument is
based on observing that a valid FREE-FLOOD-IT solution will either at some point play a
neighbor u of the component of p to give it the same color as p, or if not, it will at some
point play p to give it the same color as one of its neighbors. The latter case is intuitively
easier to handle, since then we argue that the move that changed p’s color can be performed

first, and if the first move is a pivot move we can easily fall back on the inductive hypothesis.

The former case, which is the more interesting one, can be handled by replacing the single
move that gives u the same color as p, with two moves: one that gives p the same color as u,
and one that flips p back to its previous color. Intuitively, this basic step is the reason we
obtain a factor of 2 in the relationship between the two versions of the game.

The inductive strategy described above faces some complications due to the fact that
rearranging moves in this way may unintentionally re-color some vertices, which makes it
harder to continue the rest of the solution as before. To avoid this we define a somewhat
generalized version of FREE-FLOOD-IT, called SUBSET-FREE-FLOOD-IT.

» Definition 5.3. Given G = (V, E), a coloring function col on G, and a pivot p € V|
a set-move is a pair (S,¢), with S C V and S = Comp(col,u) for some u € V, or
{p} € S C Comp(col,p). The result of (9,¢) is the coloring col’ that sets col’(v) = ¢ for
v € S; and col’(v) = col(v) otherwise.
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We define SUBSET-FREE-FLOOD-IT as the problem of determining the minimum number
of set-moves required to make a graph monochromatic, and SUBSET-FIXED-FLOOD-IT as
the same problem when we impose the restriction that every move must change the color of
p, and denote as OPTg_pree, OPTs.Fixeq the corresponding optimum values.

Informally, a set-move is the same as a normal move in FREE-FLOOD-IT, except that
we are also allowed to select an arbitrary connected monochromatic set S that contains p
(even if S is not maximal) and change its color. Intuitively, one would expect moves that
set S to be a proper subset of Comp(col,p) to be counter-productive, since such moves
split a monochromatic component into two pieces. Indeed, we prove below in Lemma 5.4
that the optimal solutions to FIXED-FLOOD-IT and SUBSET-FIXED-FLOOD-IT coincide, and
hence such moves do not help. The reason we define this version of the game is that it gives
us more freedom to define a solution that avoids unintentionally recoloring vertices as we
transform a given FREE-FLOOD-IT solution to a FIXED-FLOOD-IT solution.

» Lemma 5.4. For any graph G = (V, E), coloring function col on G, and pivot p € V we
have OPTpied(G, col,p) = OPTs. pized(G, col, p).

Proof. First, observe that OPTg pixed(G, col,p) < OPTrixed(G,col,p) is trivial, as any
solution of FIXED-FLOOD-IT is a solution to SUBSET-FIXED-FLOOD-IT by playing the same
sequence of colors and always selecting all of the connected monochromatic component of p.

Let us also establish the converse inequality. Consider a solution (Si,¢1),. .., (Sk,ck) of
SUBSET-FIXED-FLOOD-IT, where by definition we have p € S; for all 7 € [k]. We would like
to prove that (p,c1), (p,c2), ..., (p,ck) is a valid solution for FIXED-FLOOD-IT. Let col; be

the result of the first i set-moves of the former solution, and col; be the result of the first i
moves of the latter solution. We will establish by induction the following:

1. For all i € [k] we have Comp(col;, p) C Comp(col}, p).

2. For all i € [k],u € V' \ Comp(col}, p) we have col;(u) = col;(u).

The statements are true for ¢ = 0. Suppose that the two statements are true after ¢ — 1
moves. The first solution now performs the set-move (5;, ¢;) with S; € Comp(col;_1,p) C
Comp(col,_,,p). We now have that Comp(col;, p) contains S; plus the neighbors of S;
which have color ¢; in col;_;. Such vertices either also have color ¢; in col;_;, or are contained
in Comp(col,_;,p); in both cases they are included in Comp(col;, p), which establishes
the first condition. To see that the second condition continues to hold observe that every
vertex for which col;_1(u) # col;(u) or col,_;(u) # col}(u) belongs in Comp(col}, p); the
colors of other vertices remain unchanged. Since in the end Comp(coly,p) = V the first
condition ensures that Comp(col},p) = V. <

We are now ready to state the proof of Theorem 5.1.

Proof of Theorem 5.1. As mentioned, we focus on proving the second inequality as the first
inequality follows trivially from the definition of the problems. Given a graph G = (V, E), an
initial coloring function col = coly, and a pivot p € V', we suppose we have a solution to FREE-
FLOOD-IT (uy,c1), (ug,c2),..., (ug,ck). In the remainder, we denote by col; the coloring
that results after the moves (u1,c1), ..., (ui, ¢;). We can immediately construct an equivalent
solution to SUBSET-FREE-FLOOD-IT from this, producing the same sequence of colorings:
(Comp(coly, uq),c1), (Comp(coly, usz),ca), ..., (Comp(coly_1,ug),cr). We will transform
this solution to a solution of SUBSET-FIXED-FLOOD-IT of length at most 2k, and then invoke
Lemma 5.4 to obtain a solution for FIXED-FLOOD-IT of length at most 2k. More precisely,
we will show that for any G, col, p we have OPTg_pixed (G, col,p) < 20PTs grec (G, col, p).
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For a solution § = (S1,¢1), (Sa,¢2), ..., (Sk, cx) to SUBSET-FREE-FLOOD-IT we define
the number of bad moves of S as b(S) = |{(S;,¢;) | p € Si}|. We will somewhat more strongly
prove the following statement for all G, col, p: for any valid SUBSET-FREE-FLOOD-IT solution
S, we have

OPTS-Fixed(G7 COLP) S |S| + b(S)

Since [S| + b(S) < 2|S], the above statement will imply the promised inequality and the
theorem.
We prove the statement by induction on |S| + 2b(S). If |S| + 2b(S) < 2 then S is already
a SUBSET-FIXED-FLOOD-IT solution, so the statement is trivial. Suppose then that the
statement holds when |S| + 2b(S) < n and we have a solution S with |S| 4 2b(S) =n + 1.
We consider the following cases:
The first move (51, ¢1) has p € S;. By the inductive hypothesis there is a SUBSET-FIXED-
FLooD-IT solution of length at most |S| + b(S) — 1 for (G, coly, p). We build a solution
for SUBSET-FIXED-FLOOD-IT by appending this solution to the move (51, ¢1), since this
is a valid move for SUBSET-FIXED-FLOOD-IT.
There exists a move (S;,¢;) with S; = Comp(col;_1,u), for some vertex u in
N(Comp(col;_1,p)) \ Comp(col;_1,p) such that ¢; = col;_1(p). That is, there ex-
ists a move that plays a vertex w that currently has a different color than p, and as a
result of this move the component of u and p merge, because u receives the same color as
p and v has a neighbor in the component of p.
Consider the first such move. We build a solution &’ as follows: we keep moves
(S1,¢1) ... (Si—1,¢i—1); we add the moves (Comp(col;_1,p), col;_1(u)), (Comp(col;_1,p)
UComp(col;_1,u), col;_1(p)); we append the rest of the previous solution (S;41, ¢it1), - - ..
To see that S’ is still a valid solution we observe that Comp(col;_1, p) UComp(col;_;,u)
is monochromatic and connected when we play it, and that the result of the first i — 1
moves, plus the two new moves is exactly col;. We also note that S’ + b(S’) = S + b(S)
because we replaced one bad move with two good moves. However, 8’ +2b(S’) < §+2b(S),
hence by the inductive hypothesis there exists a SUBSET-FIXED-FLOOD-IT solution of
the desired length.
There does not exist a move as specified in the previous case. We then show that this
reduces to the first case. If no move as described in the previous case exists and the
initial coloring is not already constant, S must have a move (S;, ¢;) where {p} C S; C
Comp(coly, p) and ¢; = col;_1(u) for u € N(Comp(coly,p)) \ Comp(coly, p). In other
words, this is a good move (it changes the color of p), that adds a new vertex u to the
connected monochromatic component of p. Such a move must exist, since if the initial
coloring is not constant, the initial component of p must be extended, and we assumed
that no move that extends it by recoloring one of its neighbors exists.
Consider the first such good move (S;,¢;) as described above. We build a solution &’ as
follows: the first move is (Comp(coly, p), coly(u)), where u is, as described above, the
neighbor of Comp(coly, p) with col;_(u) = ¢;. For j € [i — 1] we add the move (S}, ¢;) if
u ¢ Sj, or the move (Comp(col;_;,u) U Comp(coly,p),c;) if u € S;. In other words, we
keep other moves unchanged if they do not affect u, otherwise we add to them Comp(coly, p).
We observe that these moves are valid since we maintain the invariant that Comp(colp, p)
and u have the same color and since none of the first ¢ — 1 moves of S changes the color of p
(since we selected the first such move). The result of these i moves is exactly col;. We now
append the remaining move (S;11,¢;+1), ..., and we have a solution that starts with a good
move, has the same length and the same (or smaller) number of bad moves as S and is still
valid. We have therefore reduced this to the first case. <
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(G, col) ® (G, col’) ®

v
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Figure 4 Non-monotonicity of FREE-FLOOD-IT.

6 Non-monotonicity of Free-Flood-It

As a final remark, we consider the (non-)monotonicity of the problem. A game has the
monotonicity property if no legal move makes the situation worse. That is, if FIXED-FLOOD-
IT (or FREE-FLOOD-IT) has the monotonicity property, then no single move increases
the minimum number of steps to make the input graph monotone. We believe that the
monotonicity of FIXED-FLOOD-IT was known as folklore and used implicitly in the literature.
On the other hand, we are not sure that the non-monotonicity of FREE-FLOOD-IT was widely
known. The only result we are aware of is by Meeks and Scott [12] who showed that on
paths FREE-FLOOD-IT has the monotonicity property. Figure 4 shows that FREE-FLOOD-IT
loses its monotonicity property as soon as the underlying graph becomes a path with one
attached vertex. The instance (G, col’) is obtained from (G, col) by playing the move (v, 3).
We can show that OPTryee (G, col) < OPTryeo(G, col’).
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—— Abstract

We consider a community formation problem in social networks, where the users are either
friends or enemies. The users are partitioned into conflict-free groups (i.e., independent sets
in the conflict graph G- = (V, E) that represents the enmities between users). The dynamics
goes on as long as there exists any set of at most k users, k being any fixed parameter, that
can change their current groups in the partition simultaneously, in such a way that they all
strictly increase their utilities (number of friends i.e., the cardinality of their respective groups
minus one). Previously, the best-known upper-bounds on the maximum time of convergence were
O(|V|a(G™)) for k < 2 and O(|V|3) for k = 3, with a(G™) being the independence number of
G~. Our first contribution in this paper consists in reinterpreting the initial problem as the study
of a dominance ordering over the vectors of integer partitions. With this approach, we obtain for
k < 2 the tight upper-bound O(|V|min{a(G™), \/m}) and, when G~ is the empty graph, the

3/2
%. The time of convergence, for any fixed k > 4, was conjectured to

be polynomial [7, 14]. In this paper we disprove this. Specifically, we prove that for any k > 4,
the maximum time of convergence is an Q(|V/|®UegIVD),

exact value of order
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Foreword: The organizers of a wedding (party) have difficulties in arranging place settings
for the guests as there are many incompatibilities among those who do not want to be at
the same table as an "enemy" (ex girl (boy) friend, boss or employee, student or supervisor,
etc...). The organizers realize that they have no set of 5 pairwise friends and so allow
people place themselves. Successively each person joins a table where she has no enemies
or starts a new table. At any time a person can move from one table to another table (of
course where she has no enemy) if in doing so she increases strictly the number of friends
she has at the new table. The process converges relatively fast (linear time). Some time
later the organizers of FUN having heard about this scenario decide to use the same process
to place the participants in different groups for the social activities of the afternoon. Each
participant registers first in her own group. The organizers decide to accelerate the process
by authorizing not just one person but any subset of 4 persons to change their mind and
leave the group in which they are registered to join another group or create a new group;
these persons move only if they desire to do so, that is, they increase strictly the number
of friends. Surprisingly the process takes a very long (exponential) time and night arrives
before groups are formed. As we will discover, the exponential time derives from the fact
that at FUN all the persons are friends and there are no enemies due to the use of moves
implying 4 persons. At this point the reader (and the organizers) might ask why we see such
a difference in behaviors and how long does it takes for users of a social network to form
groups. The answers to these questions and "all you wanted to know but were afraid to ask"
will be revealed in this paper.

1 Introduction

Community formation is a fundamental problem in social network analysis. It has already
been modeled in several ways, each trying to capture key aspects of the problem. The model
studied in this paper has been proposed in [14] in order to reflect the impact of information
sharing on the community formation process. Although it is a simplified model, we show that
its understanding requires us to solve combinatorial problems that are surprisingly intricate.
More precisely, we consider the following dynamics of formation of groups (communities)
in social networks. Each group represents a set of users sharing about some information
topic. We assume for simplicity that each user shares about a given topic in only one group.
Therefore the groups will partition the set of users. We follow the approach of [14]. An
important feature is the emphasis on incompatibility between some pairs of users that we
will call enemies. Two enemies do not want to share information and so will necessarily
belong to different groups. In the general model one consider different degrees of friendship
or incompatibilities. Here we will restrict to the case where two users are either friends
or enemies — as noted in [14], even a little beyond this case, the problem quickly becomes
intractable. As an example, if we add a neutral (indifference) relation, there are instances
for which there is no stability.

The social network is often modeled by the friendship graph GT where the vertices are
the users and an edge represents a friendship relation. We will use this graph to present the
first notions and examples. However, for the rest of the article and the proofs we will use the
complementary graph, that we call the conflict graph and denote by G~; here the vertices
represent users and the edges represent the incompatibility relation. We assign each user a
utility which is the number of friends in the group to which she belongs. Equivalently, the
utility is the size of the group minus one, as in a group there is no pair of enemies; in [14]
this is modeled by putting the utility as —oo when there is an enemy in the group.

In the example of Figure 1, the graph depicted is the friendship graph: the edges represent
the friendship relation, and if there is no edge it corresponds to a pair of enemies. Figure 1(a)
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Total Utility = 24 (socially optimal) | Total Utility = 20 (soc. sub-optimal)
stable under 1,2, and 3-deviations stable under all deviations

Figure 1 A friendship graph with 12 vertices (users). (a) 3-stable partition that is not 4-stable
but it is optimal in terms of total utility. (b) k-stable partition for any k£ > 1 that is not optimal in
terms of total utility.

depicts a partition of 12 users composed of 4 non-empty groups each of size 3. The integers
on the vertices represent the utilities of the users which are all equal to 2. Figure 1(b) depicts
another partition consisting of 5 groups with one group of size 4 (where users have utility 3)
and 4 groups of size 2 (where users have utility 1).

In this study we are interested in the dynamics of formation of groups. Another important
feature of [14], taken into account in the dynamics, is the notion of bounded cooperation
between users. More precisely, the dynamics is as follows: initially each user is alone in her
own group. In the simplest case, a move consists for a specific user to leave the group to
which she belongs to join another group but only if this action increases strictly her utility
(acting in a selfish manner); in particular, it implies that a user does not join a group where
she has an enemy. In the k-bounded mode of cooperation, a set of at most k-users can leave
their respective groups to join another group, again, only if each user increases strictly their
utility. If the group they join is empty it corresponds to creating a new group. We call such
a move a k-deviation. Note that this notion is slightly different from that of (k4 1)-defection
of [14]. We will say that a partition is k-stable if there does not exist a k-deviation for this
partition.

The partition of Figure 1(a) is k-stable when k € {1,2,3}. Indeed each user has at least
one enemy in each non empty other group and so cannot join another group. Furthermore,
when k < 3, if k£ users join an empty group their utility will be at most 2 and so will not
strictly increase. However, this partition is not 4-stable because there is a 4-deviation: the

four central users can join an empty group and so they increase their utilities from 2 to 3.

The partition obtained after such a 4-deviation is depicted in Figure 1(b). This partition

is k-stable for any k > 1. Note that the utility of the other users is now 1 (instead of 2).

Thus, we deduce that this partition is not optimal in terms of total utility (the total utility
has decreased from 24 to 20); but it is now stable under all deviations. This illustrates the
fact that users act in a selfish manner as some increase their utility, but on the contrary the
global utility decreases. For more information on the suboptimality of k-stable partitions,
i.e., bounds on the price of anarchy and the price of stability, the reader is referred to [14].
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1.1 Related work

This above dynamics has been also modeled in the literature with coloring games. A coloring
game is played on the conflict graph. Players must choose a color in order to construct
a proper coloring of the graph, and the individual goal of each agent is to maximize the
number of agents with the same color as she has. On a more theoretical side, coloring games
have been introduced in [18] as a game-theoretic setting for studying the chromatic number
in graphs. Specifically, the authors in [18] have shown that for every coloring game, there
exists a Nash equilibrium where the number of colors is exactly the chromatic number of
the graph. Since then, these games have been used many times, attracting attention in the
study of information sharing and propagation in graphs [4, 7, 14]. Coloring games are an
important subclass of the more general Hedonic games, of which several variations have
been studied in the literature in order to model coalition formation under selfish preferences
of the agents [10, 12, 15, 5, 8, 16]. We stress that while every coloring game has a Nash
equilibrium that can be computed in polynomial-time [18], deciding whether a given Hedonic
game admits a Nash equilibrium is NP-complete [1].

If the set of edges of the conflict graph is empty (edgeless conflict graph), there exists
a unique k-stable partition, namely, that consists of the group of all the users. In [14], it
is proved that there always exists a k-stable partition for any conflict graph, but that it is
NP-hard to compute one if k is part of the input (this result was also proved independently
in [7]). Indeed, if k is equal to the number of users, a largest group in such a partition must
be a maximum independent set of the conflict graph. In contrast, it can be computed a
k-stable partition in polynomial time for every fixed k < 3, by using simple better-response
dynamics [18, 7, 14]. In such an algorithm one does a k-deviation until there does not exist
any one. That corresponds to the dynamics of formation of groups that we study in this
work for larger values of k.

1.2 Additional related work and our results

In this paper we are interested in analyzing in this simple model the convergence of the
dynamics with k-deviations, in particular in the worst case. It has been proved implicitly
in [14] that the dynamics always converges within at most O(2") steps. Let L(k,G™) be
the size of a longest sequence of k-deviations on a conflict graph G~. We first observe that
the maximum value, denoted L(k,n), of L(k,G~) over all the graphs with n vertices is
attained on the edgeless conflict graph G? of order n. Prior to this work, no lower bound on
L(k,n) was known, and the analysis was limited to potential function that only applies when
k < 3 [7, 14] giving upper bounds of O(n?) in the case k = 1,2 and O(n?) in the case k = 3.
In order to go further in our analysis, the key observation is that when the conflict graph is
edgeless, the dynamics depends only of the size of the groups of the partitions generated.
Following [3], let an integer partition of n > 1, be a non-increasing sequence of integers
Q= (q1,92,--.,qn) such that g1 > g2 > ... > ¢, > 0and >\, ¢; = n. If we rank the groups
by non increasing order of their size, there is a natural relation between partition in groups
and integer partitions (the size ¢; of the group X; corresponding to the integers ¢; of the
partition of n). Using this relation, we prove in Section 3 that the better response dynamics
algorithm reaches a stable partition in p,, steps, where p,, = O( (e”\/m) /n) denotes the
number of integer partitions. This is already far less than 2™, which was shown to be the best
upper bound that one can obtain for k¥ > 4 when using an additive potential function [14].
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Table 1 Previous bounds and results we obtained on L(k,n) and L(k,G7).

k Prior to our work Our results
O(n?) [14] exact analysis, which implies L(1,n) ~ % Theorem 6
2 O(n?) [14] exact analysis, which implies L(2,n) ~ % Theorem 9
1-2 | O(na(G7)) 18] | L(k,G7) = Q(na(G7)) for some G~ and | Theorem 12
a(G™) = O(/n)
3 O(n®) [7, 14] L(3,n) = Q(n?) Theorem 13
>4 O(2") [14] Lk,n) = Q@™ L(k,n) = | Theorem 14
O(exp(my/2n/3)/n)

Table 1 summarizes our contributions described below.

For k = 1,2, we refine the relation between partitions into groups and integer partitions

as follows.
In the case k = 1 (Section 4.1), we prove that there is a one to one mapping between
sequences of 1-deviations in the edgeless conflict graph and chains in the dominance
lattice of integer partitions. Then, we use the value of the longest chain in this
dominance lattice obtained in [9] to determine exactly L(1,n). More precisely, if
n = % +r, with 0 <r <m, L(1,n) = Z(m;rl) + mr. The latter implies in
particular L(1,n) is of order O(n?), thereby improving the previous bound O(n?).
In Section 4.2, we prove that any 2-deviation can be “replaced” (in some precise way)
either by one or two 1-deviations, and so, L(2,n) = L(1,n).
For k = 1,2 and a general conflict graph G, the value of L(k,G~) depends on the
independence number a(G~) (cardinality of a largest independent set) of the conflict

graph. In [18] it was proved that the convergence of the dynamics is in O(na(G7)).

In the case of edgeless conflict graph, we have seen that L(1,n) = O(n?/?) and so
the preceding upper-bound was not tight. So we inferred that the convergence of
the dynamics was in O(ny/a(G~)). Yet in fact we prove in Section 4.3 that, for any
a(G™) = O(y/n), there exists a conflict graph G~ with n vertices and independence
number o(G~) for which we need a sequence of at least Q(na(G™)) 1-deviations to
reach a stable partition. For the wedding’s example of the foreword, o(G~) = 4 and so
the sequence is linearly bounded.
Finally, our main contribution is obtained for £ > 3. Prior to our work, it was known
that L(3,n) = O(n?), which follows from another application of the potential function
method [14]. But nothing proved that L(3,n) > L(2,n), and in fact it was conjectured
in [7] that both values are equal. In Section 5, we prove (Theorem 13) that L(3,n) = Q(n?)
and thus we show for the first time that deviations can delay convergence and that the
gap between k = 2 and k = 3 obtained from potential function is indeed justified. It was
also conjectured in [14] that L(k,n) was polynomial in n for k fixed. In Section 5.1 we
disprove this conjecture and prove in Theorem 14 that L(4,n) = Q(ne(ln("))). This shows
that 4-deviations are responsible for a sudden complexity increase, as no polynomial
bounds exist for L(4,n). This explains why in the foreword it takes an exponential time
for the organizers of FUN to schedule the groups.

Notations

Conflict graph. We refer to [2] for standard graph terminology. For the remaining of the
paper, we suppose that we are given a conflict graph G~ = (V, E) where V is the set of
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vertices (called users or players in the introduction) and edges represent the incompatibility
relation (i.e., an edge means that the two users are enemies). The number of vertices is
denoted by n = |V|. The independence number of G~, denoted a(G™), is the maximum
cardinality of an independent set in G~. In particular, if «(G~) = n then the conflict graph
is edgeless and we denote it by G? = (V, E = §)) and call it the empty graph.

Partitions and utilities. We consider any partition P = Xy,...,X,,..., X, of the ver-
tices into n independent sets X; called groups (colors in coloring games), with some of them
being possibly empty. In particular, two enemies are not in the same group. We rank the
groups by non increasing size, that is |X;| > | X;4+1|. For any 1 <14 < n and for any v € X;,
the utility of vertex v is the number of other vertices in the same group as it, that is | X;| — 1.

We use in our proofs two alterni)tive representations of the partition P. The partition
vector associated to P is defined as A (P) = (A, (P),..., A\1(P)), where \;(P) is the number
of groups of size i. The integer partition associated to P is defined as @ = (q1,¢2,---,n)
such that 1 > g2 > ... > ¢, > 0 and Y., ¢; = n, where ¢; = | Xi|.

In the example of Figure 1(a) we have a partition P of the 12 vertices into 4 groups
each of size 3 and so A3(P) = 4 and X\;(P) = 0 for ¢ # 3; in other words X(P) =
(0,0,0,0,0,0,0,0,0,4,0,0). The corresponding integer partition is Q(P) =
(3,3,3,3,0,0,0,0,0,0,0,0). In the example of Figure 1(b) we have a partition P’ of the 12
vertices into one group of size 4 and 4 groups each of size 2 and so \y(P') =1, Ao(P') =4
and A\;(P') = 0 for i # 2,4; in other words X)(P) = (0,0,0,0,0,0,0,0,1,0,4,0). The
corresponding integer partition is Q(P') = (4,2,2,2,2,0,0,0,0,0,0,0).

k-deviations and k-stability. We can think of a k-deviation as a move of at most k vertices
which leave the groups to which they belong in P, to join another group (or create a new
group) with the necessary condition that each vertex strictly increases its utility, thereby
leading to a new partition P’. A k-stable partition is simply a partition for which there
exists no k-deviation. We write L(k,G™), resp. L(k,n), for the length of a longest sequence
of k-deviations to reach a stable partition in G~, resp. in any conflict graph with n
V_€>I‘tiCQS. Recall that we start with the partition consisting of n groups of size 1, that is,
A(P)=(...,0,0,0,n).

We next define a natural vector representation for k-deviations. The difference vector ?
associated to a k-deviation ¢ from P to P’ is equal to @ = X)(P’) — A(P). In concluding
this section, we define the difference vectors for some of the k-deviations used in our proofs:

3[ ,q], the 1-deviation where a vertex leaves a group of size ¢ + 1 for a group of size
p — 1 (valid when p > ¢+ 2). In that case o, =1, p_1 = —1, 441 = -1,y = —1, and
a; =0 for any i ¢ {¢,q+ 1,p — 1,p} (we omit for ease of reading the brackets [p, q]).

V[p], the 3-deviation where one vertex in each of 3 groups of size p — 1 moves to a group
of size p — 3 to form a new group of size p (valid if there are at least 3 groups of size p — 1
and one of size p — 3). In that case v, = 1,vp—1 = —3,%p—2 =3,7p—3 = —1, and v, =0
forany i ¢ {p —3,p—2,p— 1,p}.

?[p], the 4-deviation where one vertex in each of 4 groups of size p — 1 moves to a group
of size p — 4 to form a new group of size p (valid if there are at least 4 groups of size
p — 1 and one of size p — 4). In that case §, = 1,5p—1 = —4,6p—2 =4,6,_4 = —1, and
d; =0 forany i ¢ {p —4,p— 2,p — 1,p}. As an example, the move from the partition of
Figure 1(a) to the partition of Figure 1(b), is a 4-deviation with difference vector m .
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Algorithm 1 Dynamics of the system

Input: a positive integer k > 1, and a conflict graph G~
Output: a k-stable partition for G™.

1: Let P; be the partition composed of n singletons groups.

2: Set 1 = 1.

3: while there exists a k-deviation for P; do

4: Set i =14+ 1.

5 Choose one k-deviation and compute the partition P; after this k-deviation.
6: Return the partition P;.

3  Preliminary results

In [14], the authors prove that there always exists a k-stable partition, but that it is NP-hard
to compute one if k is part of the input (this result was also proved independently in [7]). In
contrast, it can be computed a k-stable partition in polynomial time for every fixed k < 3,
by using simple better-response dynamics [18, 7, 14]. The latter results question the role of
the value of k in the complexity of computing stable partitions.

Formally, a better-response dynamics proceeds as follows. We start from the trivial
partition P; consisting of n groups with one vertex in each of them. In particular, the
partition vector A (Py) is such that A1 (P;) = n and, for all other j # 1, \;(P;1) = 0. Provided
there exists a k-deviation with respect to the current partition P;, we pick any one of these
k-deviations ¢ and in so doing we obtain a new partition P;;,. If there is no k-deviation,
the partition P; is k-stable. An algorithmic presentation is given in Algorithm 1.

We now prove in Proposition 1 that better-response dynamics can be used for computing

a k-stable partition for every fized k > 1 (but not necessarily in polynomial time). It shows
that for every fixed k > 1, the problem of computing a k-stable partition is in the complexity

class PLS (Polynomial Local Search), that is conjectured to lie strictly between P and NP [13].

Recall that the problem becomes NP-hard when k is part of the input.

» Proposition 1. For any k > 1, for any conflict graph G—, Algorithm 1 converges to a
k-stable partition.

Proof. Let P;, P;y; be two partitions for G~ such that P;;; is obtained from P; after some
k-deviation ¢. Let S be the set of vertices which move (|S| < k) and let j be the size of
the group they join (j = 0 if they create a new group). Then, the new group obtained
has size p = j + |S|. Note that all the vertices of S have increased their utilities and so,
they belonged in P; to groups of size < p. Therefore, the coo@}inates of the difference
vector 3 satisfy ¢, =1 and ¢; =0 for j > p, and so A(P;) <1 A(P;41) where <z, is the
lexicographical ordering. Finally, as the number of possible partition vectors is finite, we
obtain the convergence of Algorithm 1. <

An instrumental observation for our next proofs is the following;:
» Observation 1. L(k,n) is always attained on the empty conflict graph G of order n.

Indeed, any sequence of k-deviations on a conflict graph G~ is also a sequence in the empty
conflict graph with the same vertices. Note that the converse is not true as it can happen
that some moves allowed in the empty conflict graph are not allowed in G~ as they bring
two enemies in the same group.
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22111

o—>
111111 211111 31111 4111 511 61

Figure 2 The lattice of integer partitions for n = 7.

Recall that we can associate to any partition P = X1,..., X;,..., X, of the vertices the
integer partition Q = (g1, g2, ...,qn) such that ¢s > g2 >...> ¢, >0and > ., ¢ =n by
letting ¢; = | X;|. The converse is not true in general; as an example it suffices to consider a
partition with ¢; > «(G~). However the converse is true when the conflict graph is empty;
indeed it suffices to associate to an integer partition any partition of the vertices obtained by
putting in the group X; a set of ¢; vertices .

We can now use the value p,, of the number of integer partitions (see [11]) to obtain the
following proposition which follows from Proposition 1.

2n

» Proposition 2. Algorithm 1 reaches a stable partition in at most p, = O((e"V 3 )/n)
steps.

Note that this is already far less than 2", which was shown to be the best upper bound
that one can obtain for k& > 4 when using an additive potential function [14].

4  Analysis for k < 2

In [14], the authors proved that for k < 2, Algorithm 1 converges to a stable partition in at
most a quadratic time (by using a potential function). Indeed when performing a 1-deviation
E>[p, q], a vertex moves from a group of size ¢ + 1 to a group of size p — 1 (with p > ¢+ 2);
the utility of this vertex increases by p — ¢ — 1, the utility of the ¢ other vertices of the
group of size g + 1 decreases by 1, while the utility of the vertices of the group of size p — 1
increases by 1. So the global utility increases by 2p —2q —2 > 2 as p > q + 2. Furthermore,
in a k-stable partition, the utility of a vertex is at most n — 1 and the global utility is at
most n(n — 1)/2. As a result, L(k,n) = O(n?).

In the next subsections we improve this result as we completely solve this case and give
the exact (non-asymptotic) value of L(k,n) when k < 2. The gist of the proof is to use a
partial ordering that was introduced in [3], and is sometimes called the dominance ordering.

4.1 Exact analysis for k = 1 and empty conflict graph

In [3] the author has defined an ordering over the integer partitions, sometimes called the
dominance ordering which creates a lattice of integer partitions. This ordering is a direct
application of the theory of majorization to integer partitions [17].

» Definition 3. (dominance ordering) Given two integer partitions of n > 1, Q =

(41,92, -+, qn) and Q" = (¢}, b, ..., q,), we say that Q' dominates Q if Z;Zl ¢ > Z;Zl 4,
forall 1 <i7<n.

The example of Figure 2 shows the dominance lattice for n = 7. We did not write in the
figure the integers equal to 0.

The two next lemmas show that there is a one to one mapping between chains in the
dominance lattice and sequences of 1-deviations in the empty conflict graph.
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» Lemma 4. Let P be a partition of the vertices and P’ be the partition obtained after a
1-deviation ¢. Then, the integer partition @ = Q(P') dominates Q@ = Q(P).

Proof. In the 1-deviation ¢ a vertex v moves from a group Xj to a group X; with ¢; =
|X;| > g = |Xk|. W.lo.g. we can suppose that the groups (ranked in non increasing
order of size) are ranked in a such a way that X; is the first group with size | X;| and Xj
the last group with size |Xj|. Thus, the integer partition Q(P) associated to P satisfies
Q>G> Qi1 > QG > Qi1 > Q> Qg .- - > . After the move the groups of P’
are the same as those of P except we have replaced X; with the group X; Uv and X}, with
X, — v. Therefore the integer partition @’ associated to P’ has the same elements as Q
except ¢; = ¢; + 1 and ¢;, = gx — 1 and so, Q' dominates Q. Note that this lemma holds for
any conflict graph. <

In the case n = 7, consider the partition P with one group of size 3, one of size 2 and
two of size 1. The integer partition associated to P is @ = (3,2,1,1,0,0,0). Let ¢ be the
1-deviation where a vertex in the group of size 1 moves to the group of size 3. We obtain the
partition P’ with one group of size 4, one of size 2 and one of size 1. The integer partition
associated to P’ is Q' = (4,2,1,0,0,0,0) which dominates Q.

» Lemma 5. Let G? be the empty conflict graph and let Q,Q’ be two integer partitions
of n = |V| such that Q' dominates Q. For any partition P associated to Q, there exists
another partition P’ associated to Q' such that P’ is obtained from P by doing a sequence of
1-deviations.

Proof. As proved in [3], we have that if @' dominates @ then there is a finite sequence of
integer partitions Q°,...,Q",..., Q% with Q = Q° and Q' = Q° such that for each 0 < r < s,
Q™! dominates Q" and differs from it only in two elements j, and k, with qJ’Jrl =gqj +1
and ¢, =q —1.

The proof is now by induction on r, starting from any partition P° = P associated to Q.
For r > 0, we consider the partition P" associated to Q". Recall that Q" and Q™! differ
only in the two groups X; and Xy, .. As q;j'l =gj, +1and q,:j'l =q — 1, P+l can be
obtained from P" by moving a vertex from Xj,_to X; . This move is valid as the conflict
graph is empty. (Note that the lemma is not valid for a general conflict graph.) |

As an example, consider the two integer partitions @ = (2,2,2,1,0,0,0) and Q' =
(5,1,1,0,0,0,0) where Q" dominates ). The sequence of integer partitions is Qy = @,
Q1 = (3,2,1,1,0,0,0), Q2 = (4,1,1,1,0,0,0), Q3 = (5,1,1,0,0,0,0). Partition P! is
obtained from PY by moving a vertex of a group of size 2 to another group of size 2. Then,
P2 is obtained by moving a vertex of the group of size 2 to the group of size 3 and P’ is
obtained from P? by moving a vertex of one group of size 1 to that of size 4.

In summary we conclude that a sequence of 1-deviations with an empty conflict graph
corresponds to a chain of integer partitions, and vice versa. Therefore, by Observation 1, the
length of the longest sequence of 1-deviations with an empty conflict graph is the same as
the length of the longest chain in the dominance lattice of integer partitions. Since it has
been proven in [9] that for n = w + 7, the longest chain in the Dominance Lattice has
length Q(mgrl) + mr, we obtain the exact value for L(1,n).

» Theorem 6. Let m and r be the unique non negative integers such that n = W +r

and 0 <r <m. Then, L(1,n) = Q(mg—l) +mr.

7

We note that the proof in [9] is not straightforward. One can think that the longest
chain is obtained by taking among the possible 1-deviations the one which leads to the
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smallest partition in the lexicographic order. Unfortunately this is not true. Indeed let
n = 9. After 6 steps we get the integer partition (3,3,2,1,0,0,0,0,0). Then, by choosing
the 1-deviation that gives the smallest partition (in the lexicographic order), we get the
partition (3,3,3,0,0,0,0,0,0) and then (4, 3,2,0,0,0,0,0,0). But there is a longer chain
of length 3 from (3,3,2,1,0,0,0,0,0) to (4,3,2,0,0,0,0,0,0), namely, (4,2,2,1,0,0,0,0,0),
(4,3,1,1,0,0,0,0,0), (4,3,2,0,0,0,0,0,0). However the proof in [9] implies that the following
simple construction works for any n. (see the full version).

» Proposition 7. A longest sequence of 1-deviations in the empty conflict graph is obtained
by choosing, at a given step, among all the possible 1-deviations, any one of which leads to
the smallest increase of the global utility.

4.2 Analysis for k = 2

Interestingly we will prove that any 2-deviation can be replaced either by one or two
1-deviations and so, we will prove in Theorem 9 that L(2,n) = L(1,n).

» Claim 8. If the conflict graph G~ is empty, then any 2-deviation can be replaced either by
one or two 1-deviations

Proof. Consider a 2-deviation which is not a 1-deviation. In that case case two vertices u;
and u; leave their respective group X; and X; (which can be the same) to join a group
Xi. Let |X;| > |X;|; in order for the utility of the vertices to increase, we should have
| Xk| = [X5] =1 (= [X;] = 1).
Case 1: | Xj| > |X;|. In that case the 2-deviation can be replaced by a sequence of two
1-deviations where firstly a vertex u; leaves X; to join X and then a vertex u; leaves X;
to join the group Xj Uu; whose size is now at least that of Xj.
Case 2: | X =|X;] —1=1|X,]—1=p—2and X; = X;. In that case the effect of the
2-deviation is to replace the group X; of size p—1 with a group of size p — 3 and to replace
the group Xy, of size p — 2 with a group of size p. Said otherwise, the difference vector
? associated to the 2-deviation has as non null coordinates ¢, =1,¢0p,_1 = —1,¢p_2 =
—1,¢p—3 = 1. We obtain the same effect by doing the 1-deviation ﬁ[p —1,p — 2] where
a vertex leaves Xy to join Xj.
Case 3: | Xy = |X;| -1 =X, -1 =p—2and X; # X,. In that case the effect
of the 2-deviation is to replace the 2 groups X; and X; of size p — 1 with two groups
of size p — 2 and to replace the group Xj of size p — 2 with a group of size p. Said
otherwise, the difference vector ? associated to the 2-deviation has as non null coordinates
vp = 1,0p—1 = —2,0p—2 = 1. We obtain the same effect by doing the 1-deviation
a[p —1,p — 1] where a vertex leaves X to join Xj.
Note that the fact that G~ is empty is needed for the proof. Indeed, in the case 2, it might
happen that all the vertices of X have some enemy in X; and so, the 1-deviation we describe
is not valid. Similarly, in case 3, it might happen that all the vertices of X; have some enemy
in X; and so, the 1-deviation we describe is not valid. |

» Theorem 9. L(2,n) = L(1,n).

Proof. Clearly, L(2,n) > L(1,n) as any 1-deviation is also a 2-deviation. By Observation 1,
the value of L(2,n) is obtained when the conflict graph G~ is empty. In that case, Claim 8
implies that L(2,n) < L(1,n). <
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4.3 Analysis for k < 2 and a general conflict graph

Using the potential function introduced at the beginning of this section, Panagopoulou and
Spirakis ([18]) proved that for every conflict graph G~ with independence number (G ™),
the convergence of the dynamics is in O(na(G™)). Indeed as we have seen each 1-deviation
increases the global utility by at least 2. But the global utility of a stable partition is at most
n(a(G~) — 1) as the groups have maximum size a(G ™). If the conflict graph is empty we
have seen that L(1,n) = ©(n3/2) that is in that case O(n/a(G~)). This led one of us ([6],
page 131) to conjecture that in the case of 1-deviations the worst time of convergence of the
dynamics is O(ny/a(G~)). We disprove the conjecture by proving the following theorem:
» Theorem 10. For n = ("), there exists a conflict graph G~ with a(G~) = m = ©(y/n)
and a sequence of (™3"') walid 1-deviations, that is a sequence of Q(n2) = Qna(G7))
1-deviations.

Proof. We will use part of the construction of Greene and Kleitman ([9]). Namely, they

m;r ! m;r 1) 1-deviations transforming the partition

Py consisting of n groups each of size 1 (the coordinates of A (P;) satisfy A\ = n) into the

prove that, if n = ( ), there is a sequence of (
partition P, consisting of m groups, one of each possible size i for 1 < ¢ < m (the coordinates
of X)(Pm) satisfy \; = 1 for 1 < ¢ < m). Furthermore they prove that the moves used
are V-steps (see the proof of proposition 7 in the full version) which are nothing else than
ﬁ[p +1,p—1] for some p (one vertex leaves a group of size p to join a group of the same size
p). One can note that in such a move the utility increases only by 2 and as the total utility
of P, is > i, i(i — 1) = (m + 1)m(m — 1)/3 the number of moves is (m + 1)m(m — 1) /6.

The conflict graph of the counterexample will consist of m complete graphs K7,1 < j <m
where K7 has exactly j vertices. An independent set is therefore formed by taking at most
one vertex in each K7 and a(G~) = m. We will denote the elements of K7 by {7} with
1 <i<j<m. The group of P, ofsizeiwillbeXi:sz withm+1—-¢<j<m. So
these groups are independent sets.

Recall that n = m(m + 1)/2. For each p,1 < p < m let us denote by P, the partition
consisting of 1 group of each size i for 1 < i < p and n — p(p + 1)/2 groups of size 1 (said

%
otherwise the coordinates of A (P,) satisfy A\; =1for2<i<pand \y =1+n—p(p+1)/2).

We will now describe the sequence o [p — 1] of p(p — 1)/2 1-deviations which transform the
partition P,_; into P,. One way to do the Greene-Keitman sequence is obtained by doing
successively the sequences Z;T:z ?[p — 1]. More precisely we will prove by induction the
following fact:

» Claim 11. There exists a sequence & [p—1] of p(p—1)/2 valid 1-deviations which transform
the partition P,_q into P, such that after this sequence the group X;[p] of size i, 1 <i<p
contains ezactly the vertices X;[p| = :E{+m_p withm+1—14i<j<m.

Proof. (see example given after the proof)

We suppose we have built the sequence till p — 1 and that, for 1 <i<p—1, X;[p—1] =
U 37?+m7p+1 with m+1—17 < j <m. In a first phase we consider the subpartition of n —p+1
elements obtained by removing the group X,_1[p — 1]. Namely, this above subpartition
consists of the groups X;[p — 1] for 1 <4 < p — 2 and groups of size 1. In particular, the
subpartition is isomorphic to P,_ with p — 1 singleton groups removed. Our construction
ensure that these p — 1 singleton groups that are missing are not used for ?[p —2]. So,
we can do the transformation o [p — 2] consisting of (p — 1)(p — 2)/2 valid moves on the
partition of n — p + 1 elements not contained in X,_1[p — 1]. It gives rise to the groups
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X3 X3 Group X [4]

90000

Figure 3 Illustration for Example 4.

Xilp] = Xicalp— 1]+ m;ﬁ;ll:; Note that at this stage we have two groups of size p — 1,
namely, the original one X,_1[p — 1] and the new one constructed X,_1[p]. The second
phase consists in doing p — 1 successive 1-deviations with the vertex z+1=P. More precisely
we move this vertex to the group Xi[p| created in the first phase, then from this group to
X>[p] and so on till X,_5[p] and finally from X,_[p] to the original X,_1[p — 1]. The moves
are valid as we move a vertex from K™+!~P and the groups did not contain any vertex of
this complete graph. Groups created in the first phase are eventually left unchanged as
M T1=P joins such groups and then leaves them. Finally we have constructed a new group

Xplp] = Xp-1[p — 1] UzmT1=P. The groups are exactly those described in the claim. <

In order to end the proof of Theorem 10, it suffices to note that the groups X; form an
independent set and that after 7", 7 [p — 1] we have obtained the desired groups of Py,
which gives the counterexample. |

Example for m = 4. (See Figure 3.)
After &[1], we have the 2 groups X5[2] = 24 Uz} and X;[2] = 3.
First phase of o[2]: we do the move of [1] on the vertices not in X5[2] and create the
groups X5[3] = 23 Ux3 and X;[3] = z3.
Second phase of @[2]: now we move z2 to X:[3] and then from X;[3] to the original
X5[2] = x4 U z3, thereby creating the group X3[3] = x Uz} Uz
First phase of o[3]: we do the 3 moves of & |[2] on the vertices not in X3[3] and create
the groups X3[4] = x5 U3 Ua3, Xo[4] = xd U a3, X1[4] = 2.
Second phase of 7[3]: now we move z} to X;[4] , then from X;[4] to X3[4] and finally
from X3[4] to the original X3[3] = a7 U a3 U 22, thereby creating the group X,[4] =
xﬁUwiUxZUxi.

We can prove a theorem analogous to Theorem 10 for any independence number (G ™).

» Theorem 12. For any a = O(y/n), there exists a conflict graph G~ with n vertices and
independence number o(G™) = o, and a sequence of at least Q(na) 1-deviations to reach a
stable partition.

Proof. Let G be the graph of Theorem 10 for m = a. Gy has ng = O(a?) vertices,
independence number «, and furthermore there exists a sequence of ©(a?) valid 1-deviations
for G5 . Let G~ be the graph obtained by taking the complete join of k = n/ng copies of
Gy (i.e., we add all possible edges between every two copies of G ). By construction, G~
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has order n = kng = O(na?) and the same independence number « as G . Furthermore,
there exists a sequence of kO(a?) = Q(na) valid 1-deviations for G~. |

Note that in any 2-deviation the global utility increases by at least 2 and so the number
of 2 deviations when the conflict graph has independence number «(G ™) is also at most
O(na(G7)). This bound is attained by using only 1-deviations as proved in Theorem 12,
which is also valid for k& = 2.

5 Lower bounds for k > 2

The classical dominance ordering does not suffice to describe all k-deviations as soon as k > 3.

As noted before, there is only one k-stable partition Pp,q, in the empty conflict graph G?,
namely, the one consisting of one group of size n, with integer partition Qma. = (n,0,...,0)
and partition vector (1,0,...,0). Let d(Q) be the length of a longest sequence in the
dominance lattice from the integer partition @ to the integer partition Q,,q,. For k = 4
let P be the partition consisting of 4 groups of size 4 and one group of size 1 with integer
partition Q = (4,4,4,4,1). Apply the 4-deviation where one vertex of each group of size 4

joins the group of size 1; it leads to the partition P’ with integer partition Q" = (5,3, 3,3, 3).

Q is covered in the dominance lattice by the integer partition (5,4,4,3,1) while @’ is at
distance 3 from it via (5,4, 3,3,2) and (5,4,4,2,2) and so, d(Q’) = d(Q) + 2.

Prior to our work, it was known that L(3,n) = O(n3) ( [14]). But nothing proved that
L(3,n) > L(2,n), and in fact it was conjectured in [7] that both values are equal. Theorem 13
proves for the first time that deviations can delay convergence and that the gap between
k =2 and k = 3 obtained from potential function is indeed justified. It was also conjectured
in [14] that L(k,n) was polynomial in n for k fixed. We disprove this conjecture and prove
in Theorem 14 a much more significant result: 4-deviations are responsible for a sudden
complexity increase, as we prove that no polynomial bounds exist for L(4,n).

» Theorem 13. L(3,n) = Q(n?).
» Theorem 14. L(4,n) = Q(nG(ln(n)))_

The main idea of the proofs consists in doing repeated shifted sequences (called cascades)
of deviations similar to the ones given in the example above. The proof of Theorem 13 can
be found in the full version. In the next section, we give the proof of Theorem 14 for k = 4.
We use sequences (cascades) of 4-deviations, called d6[p], and various additional tricks such
that the repetition of the process by using cascades of cascades. Our motivation for using
d[p] as a basic building block for our construction is that it is the only type of 4-deviation
which decreases the global utility.

5.1 Case k = 4. Proof of Theorem 14

Definition of §[p]: Consider a partition P containing at least 4 groups of size p — 1 and 1
group of size p — 4. In the 4-deviation 6[p] one vertex in each of the 4 groups of size p — 1
moves to the group of size p — 4 to form a new group of size p. The example given at the
beginning of this section corresponds to the case p = 5. The coordinates of the associated
difference vector (where we omit the bracket [p] for ease of reading) are:

Figure 4 gives a visual description of these cascades. Here we start with a sequence of
t 4-deviations §[p] represented by black rectangles (¢ = 16 in the figure). The cascade so
obtained, called § *[p,t], is represented in red. Then we do (¢ — 2) such cascades represented
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Table 2 Difference vector of §[p].

-

Figure 4 Cascades of cascades.

by red rectangles getting the cascade ?2[p,t — 2] represented in yellow which contains
224(= 16 - 14) 4-deviations. We apply some 1-deviations to get a deviation called ?Q[p] with
the SOf}aHed Nice Property enabling us to do recursive constructions. We do a cascade of
t_}hese ¢ 2[p] (shifted by 2) represented by yellow rectangles getting the blue cascade called
¢ 3[p]. We do a cascade of:ghese ¢ 3[p] (shifted by 3) represented by bhie> rectangles getting
the green cascade called ¢ “[p] and we finally do a cascade of these ¢ *[p] (shifted by 5)
represented by green rectangles getting the grey cascade called ¢ °[p]. The reader has to
r_e)alize that, in this example, ¢ ®[p] contains 3 cascades ¢ *[p] each containing 5 cascades
¢ 3[p] each consisting of 7 cascades (¢ ?[p]. Altogether the cascade ¢ °[p] of this example
contains 23520 4-deviations d[p].

The cascade ?1 [p,t]: we first do a cascade consisting of a sequence of ¢ shifted 4-deviations
d[pl, d[p — 1],...,0[p — t + 1], for some parameter ¢ which will be chosen later to give the
maximum number of 4-deviations.

The reader can follow the construction in Table 3 with ¢ = 7. The coordinates of ?1[p, t],
are given in Claim 15 and Table 4. We note that there are lot of cancellations and only 8
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Table 3 Computation of §*[p, 7].

.0 p pl p2 p3 p4d pd5 p6 p7 p8& p9Y p-10 O..
8[p] .0 1 4 4 0 -1 0 0 0 0 0 0 o.
+6[p — 1] L0 0 1 4 4 0 -1 0 0 0O 0 0 0.
+i[p — 2] L0 0 0 1 4 4 0 -1 0 0 0 0 O.
+3[p — 3] 00 0 0 1 4 0O -1 0 0 0 0.
+6[p — 4] .00 0 0 0 1 4 4 0 -1 0 0 0.
+6[p — 5] 0 0 0 0 0 0 4 4 0 -1 0 0.
+4[p — 6] L0 0 0 0 0 0 4 0 -1 0.
=5 'p, 7] L0 1 3 1 1 0 0 -1 1 -1 0.
Table 4 Difference vector &' [p, ¢].
Sp Op 1 Opo Opz e Opy Opiq Opio Spiz ..
.0 1 -3 1 1 0...0 -1 3 -1 -1 0...

non zero coordinates. Indeed consider the groups of size p — i for 4 < i < ¢ — 1; we have
deleted such a group when doing the 4-deviation ¢ [p + 4 — ], then created 4 such groups
with ?[p + 2 — i], then deleted 4 such groups with 7[@7 + 1 —i], and finally created one with

[p — ¢]. The reader can follow these cancellations in Table 3 for ¢ = 4,5,6. The variation
of the number of groups of a given size p — 4 (which correspond to the coordinate &, ;) is
obtained by summing the coefficients appearing in the corresponding column and so is 0 for

p—4,p—5,p—6.

» Claim 15. For 3 <t < p — 3, the coordinates of the cascade ?1[]), t] = Zz;é ?[p — 1]
satisfy: 0 =1, 0, 4 = =3, 0, 5 =1, 0, g =16, y = -1,0,, 1 =3, 0,4 ,=-1,
O0p—t—3 = —1, and 67 = 0 for all the others j (see Table 4).

Proof. We have 6} = Eﬁ;é d;lp —i]. For a given j, d;[p — i] = 0 except for the following
values of ¢ such that 0 <4 < ¢—1: i = p—j where §;[j] = 1; ¢ = p—j—1 where §;[j +1] = —4;
i =p—j—2where 0;[j+2] =4; i = p—j—4 where 0,;[j+4] = —1 (in the table it corresponds
to the non zero values in a column, whose number is at most 4). Therefore, for j > p:
1.8 — 1.8  _ _ _a.s1 _ .51 _ _ 1.
Sl=0;8 =10 = d4+1=-30 ,=4-4+1=16 ;=0+4-4+1=1;
forp—4>j>p—t+1,6, ;,=-14+0+4-44+1=0;0, ,=-1+0+4—-4=—1;
5;_t_ =-1+0+4=3; 5;_75_2 =-140=-1; 5;%—t—3 = —1and, for j < p—1t—4,
5 = 0. <

Validity of the cascades. We have to see when the cascades are valid, that is, to determine
how many groups we need at the beginning. For the cascade § ![p,t] we note that the
coordinates of any subsequence of the cascade, i.e., the coordinates of some & ![p,r], are all
at least —1 except 0, _;: which is —4 when r = 1 and then —3. Therefore such a cascade is
valid as soon as we have at least 4 groups of size p — 1 and one group of each other size p — ¢
(2 <i<t+3). To deal in general with the validity of cascades let us now introduce the
notion of h-balanced sequence.

— .
» Definition 16. Let & be a positive integer and let & = 22:1 27 be a cascade consisting
of s k-deviations. We call this cascade h-balanced if, for any 1 <14 <'s, the sum of the ¢ first
vectors, namely, >, A7, has all its coordinates greater than or equal to —h.
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Table 5 Computation of §2[p, 5].

.. p pl p-5 p-9 p-13 p-14
51[p 7] .0 1 -3 1 1 0 0 0 -1 3 -1 -1 0
8 p-1,7] .0 0 1 3 1 1 0 0 0 -1 3 -1 -1 0
§'[p-2,7] .0 0 0 3 1 1 0 0 0 -1 3 -1 -1 0
+51[p 3,7] 000 0o 0 1 -3 1 1 0 0 0 -1 3 -1 -1 0
+61[p-4,7] .0 0 0 0 3 1 1 0 0 1030 A -1
= 0 2[p,5) L0 1 2 0 -1 2 0 2 1 o 1 2 -1
Table 6 Difference vector 6%[p,t — 2].
5;2; 5;2;71 5272 557“2 5;2,7#1 524 52471 52472 5372“2 ‘5372#1 527%
0 1 2 -1 0 -1 2 0 2 1 0 1 -2 100

For example, the cascade 71 [p, t] described before is 4-balanced. The mterest of this
notion lies in the following fact: Let ppax be the largest index j that satisfies <I> # 0. Then,
if we start from a partition with at least h groups of each size j, for 1 < j S Pmax, an
h-balanced sequence is valid.

Note that a sequence is itself composed of sub-sequences and the following lemma will be
useful to bound the value h of a sequence.

— —
» Lemma 17. Let ®' be an hi-balanced sequence and ®2 be an hy-balanced sequence. Then,
O+ @2 is a (mazx {h1, ha — min;®}})-balanced sequence.

- -

Proof. As ®! is hi-balanced, the coordinates of any subsequence of ®! are greater than or
equal to —h;. Consider a subsequence ®' + &3 where &2 is a subsequence of @2 The j-th
coordinate is <I>1 + <I>3 by definition <I>3 > —hy and so, <I>1 —|—<I’3 > (I)l ho > min;®l —hy. <«

The cascade ?2 [p,t—2]: We do now the following sequence of ¢t —2 cascades ?2 [p,t—2] =
Zz;g ?Wp —4,t]. Altogether we have a sequence of t(t — 2) 4-deviations. There are a lot of
cancellations and in fact, as shown in Claim 18, 4 2[p,t — 2] has only 10 non zero coordinates.
Table 5 describes an example of computation of & ?[p,¢ — 2] with ¢t = 7.

» Claim 18. For 3 <t < %, the coordinates of the cascade ?2[p,t —-2] = t 3 ?1 — i, t]
satisfy: 52 =1, 512, L= —2, 5%72 =—1, 6p7t+2 =-1, 51,7“1 =2, 6p7t71 2, 5p7 i =1,
02 oii0 =1, 62 o = =2, 62 9, = —1, and 67 = 0 for all the others j (see Table 6).
Furthermore this cascade is 4-balanced.

Proof. We have 52 Zf 85}[ i,t]. Using the values ofé}[pfi,t],we get that: for j > p,
52*0 52*1 65 1—73+1* —2; 55 9 =1-34+1=-l;forp—-3>753>p—t+3,

52_1+1,3+170 52 o =14+1-3=-1; 6§_t+1:1+1:2; 5§_t:—1+120;
52_t_173 1=2;62 , 5 =—143—1=1;forp—t—3>j > p—2t+3,67 = —1-143—1 = 0;
512,_2”2 -1-14+3=1,; 52 gpy1 = —1—1=-2 512, o = —1, andforj <p-—2t, 52—0
Using Lemma 17 we get that § 2[p,t — 2] is 7-balanced; but a careful analysis shows
that this sequence is in fact 4-balanced. Indeed we will prove by induction that ?2[ ,T] =
Yo ?l[pfz t] is 4-balanced for any r < ¢t — 3. That is true for r = 1, as § [p,#] is
4-balanced. Suppose that it is true for . We have ?2 ,r+1] = 52 [p,7] + 6 tp—r—1,1.
All the coordinates of ?2 [p, 7] are by the computation above at least —3, and the coordinates
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Table 7 Difference vector ¢?[p].

C}% Cp—1 C;%—z Cg—a Cz—t C;—t—l <§—2t+2 C§—2t+1 Cg—zt C;g—?t—l
.0 1 0 -1 -1 0...0 1 1 0...0 -1 -1 0 1 0...
of ?1 —r —1,1] are greater than —1 except for j = p—r —2 where 6}, ,[p—r—1] = —4;
but 62, o[p,r] =1 (case r = 1) or 2 (case r > 1) and so, all the coordinates of ?2 [p,r + 1]
are at least —4. <

At this stage we could continue and do a cascade of ?Q[p,t — 2] but there is no more

the phenomenon of cancellation. In fact we will use the following “symmetrization” trick.

We will transform the cascade § 2[p,t — 2] into a sequence ¢ ?[p] by doing some sequence
of 1-deviations whose coordinates are given in Claim 19 The sequence obtained has only 8
non zero coefficients (4 with values 1 and 4 with values —1) arranged in a very symmetric
nice way (that we will call Nice Property). Furthermore we will be able to iterate a cascade
process on it many times keeping the property.

For p > q + 2, we will denote by o [p, q] the 1-deviation, where a vertex leaves a group of

size g + 1 for a group of size p — 1 (valid as p > g+ 2). Let En[p,q,r} =3 (}E)[pfi,qui]

denote a cascade of r such 1-deviations (we need p —r 4+ 1 > ¢+ r + 2 in order it is valid).

The coordinates of o' [p, g, 7] are given in the following Claim 19.

» Claim 19. Forp—r>q+ r +1, dlp,qr] = Z:;Ol A [p—i,q+i] has only 4 non zero

coordinates namely, a =1, a _r=—1, aé_H, = -1, and a; =1.

%
» Claim 20. For3 <t < pTH, the coordinates of the sequence ¢ 2[p] = ?Q[p,t— 2] + ﬁl[p—
Lp—2t—1,t—2]+alp—1,p—2t,2/ + @' p—t+2,p—2t+ 1,1+ @ [p—t,p—t—3,1]

satisfy: C,? =1, Cg_z =-1, Cz—s =-1, Cﬁ_t =1, Cﬁ_t_l =1, <§—2t+2 =-1 <§—2t+1 = -1
Cg_gt_l =1 (see Table 7). Furthermore this cascade is still 4-balanced.

Proof. By Claim 19, we have the following coordinates:

for p—1,p—2t—1,t—2], 11) 1—1 ozllj_t_H:—l, ozllj_t_gz—l, a;_zt_lzl;
for a@'[p—1,p —2t,2], a ap =10, 3= lozp g = —1, ap_ o =1

for d'fp—t+2,p—2t+1, 1] pt+2—1 ap 1=l a) g0 =10 o =1;
for dllp—t,p—t—31,0p ,=1, 0, , 1 =-1,a, , y=-1,a, , 3=1

Therefore, using these values and the values of the coordinates of 5]2 given in claim 18, we
get (2=1, 1 =-2+14+1=0, 5=-1, 3=0-1=-1,¢ , o, =-14+1=0,
2 1 =2-1-1=0,,=0+1=1,¢,,=2-1=1,C,,=1-1=0,
CFig=0—141=0,0 5 p=1-1-1=-1, 5, =—2+1=-1, 5, =-1+1=0
CF o1 =0+1
To prove that Z) [p] is 4-balanced, apply Lemma 17 with T = ?Q[p, t — 2] and T2 =
Alp—1,p—2t—1,t—2]+ ' p—1,p—2t, 1]+ ap—t+2,p—2t+1,1]+ ' [p—t,p—t—3,1].
We have that h; =4 and furthermore all the coefficients of ®! are greater than —2 and 32
is 2-balanced. Hence, ¢ 2[p] is max(4,2 + 2) = 4-balanced.

A

Table 8 shows an example with t = 7.

> Deflnltlon 21. Nice Property: Let k& > 2 be a positive integer. We will say the
sequence ( *[p] has the Nice Property, if there exist 3 integers a(k), b(k), and s(k) satisfying
1 < a(k) < b(k) < 2a(k) and b(k) < s(k) — 1 < p/2 and such that all coordinates of (¥ are
null except for:
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Table 8 Computation of ¢?[p] with t = 7.

.. p p-1 p-7 p-8 p-15
52[p, 5] 01 -2 -1 0 0 -1 2 0 2 1 0 0 2 -1 0
+a[p-1,p-15,5] 00 1 0 0 0 0 -1 0 0 0 -1 0 0 0 O 1 0
+ap-1,p-14,2] 00 1 0 -1 0 0 0 0 0 0 -1 0 -1 0 1 0 0
+a[p-5,p-13,1] 00 0 0 0 0 1 -1 0 0 0 0 0 -1 1 0 0 0
+a[p-7,p-10,1] 00 0 0 0 0 O 1 -1 -1 1 0 0 0 0 0 0
= ¢2[p] 01 0 -1 -1 0 0 1 1 0 0 0 -1 -1 0 1 0
E_ sk _
Cp - Cp+172s(k) - 1’
k _ rk _ rk _ rk _
Co—a(k) = Sp—b(k) = Spr1—2s(k)+b(k) = Spri—2s(k)+a(ky = — 1, and

k _ rk _
Cprimsih) = Sp—sih) = L

We note the Symmetry of the coordinates, as for any j, As an

p i C§+1—25(k)+j'
example, the sequence C 2[p] satisfies the Nice Property with a(2) = 2, b(2) = 3 and
s(2) = t 4+ 1 and is 4-balanced. Now we will show how sta_r)ting with a sequence ?k[p}
satisfying the Nice Property we can construct a sequence ¢ **![p] having still the Nice
Property.

» Claim 22. Main construction: Let ?k[p} be a sequence satisfying the Nice Property
with parameters a(k),b(k),s(k). Then, we can construct a sequence (*+1[p| satisfying the
following properties:
Ck*1[p] satisfies the Nice Property with parameters
a(k+1) = b(k),
bk +1) =b(k) +a(k),
s(k+1) = s(k)+a(k)r(k)/2, where r(k) is the greatest even integer such that r(k)a(k)+

b(k) < s(k) —1;
Z—>Z>k[ | is h(k)-balanced, then ?k"’l[ﬁ is (h(k) + 1)-balanced;

CHp] contains r(k) + 1 sequences ¢ *[p].

%
Proof. We will first do a cascade of ¢ *[p], but we will take values of the parameters differing
by a multiple _())f a(k) in order for some of the coordinates to cancel. Specifically, let us define
U= Z;:o ¢*[p — ja(k)]. Using the values of Definition 21, we get the following values for
the non zero coordinates:
(1) ¥, =1; ¢;_ja(k) =—-1+41=0 for 0 < j <r (cancellation phenomenom); v,
—1;
(2) w[:1+1—25(k)+a(k) = —1; 1/1;+1_25(k)_(j_1)a(k) =1-1=0for 0 < j < r (cancellation);
p+1—23('k)—ra(k) =1
(3) for0<j<r ¢y b(k)—jalk) =
(4) for 0= <7, 901 as(4b(0)—jar) = — 1
(5) for 0 <j <7 ¥ s _sty—jatk) = Yp—sth)—ja(r) = 1
Since a(k) < b(k) < 2a(k), all the indices of the coordinates are different provided we
choose 7 even and nonzero such that p — b(k) — ra(k) > p+ 1 — s(k) (that is equivalent
to ra(k) + b(k) < s(k) —1). Let_>us denote a(k + 1) = b(k), b(k + 1) = b(k) + a(k) and
s(k+1) = s(k)+ a(k)r/2. Then ¥U" has already part of the Nice Property for k + 1. Indeed
we have:
Yy =1by (1) and ¢y, » ) = 1Dy (2) with j =r (as 2s(k + 1) = 2s(k) + ra(k));
Vi—a(ern) = Yombk) = ~ b Ypostierr) = Ypmby—aqr) = —1 b (3) with 7 =0,1;

—(r+1)a(k) —

—1:

b
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w;+172s(k+1)+b(k+1) =-1 7w;+172s(k+1)+a'(k+1) = —1by (4) with j =7 — 1,7

Vpii—sksn) = Yp—sesny = 1 by (5) with j =r/2.

The remaining non zero coordinates are in number 4r: firstly there are r values —1,
namely, w;fb(k)fja(k) —1,for 2 <j <r and (U4 (r+1)a(k) = —1; then there are 2r values 1,

namely, ¢;+1—s(k+1) = ; sty = b for j # r/2; and finally there are r values —1, namely,
1/);+172S(k)+a(k) —land ) 25(k)+b(k)—ja(k) = — b for 0 < j <r — 2. These values are

disposed in a very symmetric way and can be written: for the values —1, in the form ¢, _
and ¢p+1 25 (k-+1) L0 and for the values 1, in the form ¢;_, —and pr 25(k-+1)+ym with
Tm < Ym (0 <m <7 —1). Furthermore, these r quadruples of values can be canceled by
adding to U" the r sequences @ [p — T, p+ 1 — 25(k + 1) + Ty, Ym — Tim)-

We claim that the sequence so obtained, with partition vector \_I]T + Zrm;lo ol [Pp—Tm,p+
1—2s(k+ 1)+ xm, Ym — Tm), satisfies the Nice Property with parameters a(k + 1), b(k + 1)
and s(k +1). Indeed a(k+ 1) = b(k) < b(k) + a(k) = b(k+ 1), b(k +1) = b(k) + a(k) <
b(k)+b(k) =2a(k+1) and b(k +1) =b(k) + a(k) < s(k) —1+a(k) <s(k+1)—1lasr>2.
We also have to ensure in the computations that p is chosen so that p > 2s(k) — 1. In order
to get the maximum number of deviations we will consider this sequence for the largest
possible even integer r satistying ra(k) + b(k) < s(k) — 1, denoted r(k) and we will denote
the sequence for this r(_lc)) by ¢**i[p). .

We now prove that ¢ ¥*1[p] is (h(k)+1)-balanced. We first prove by induction that ¥" is
(h(k) 4 1)-balanced. That is true for » = 0 as ¢ *[p] is h( )- balanced. Then suppose it is true
for some r ; we apply Lemma 17 with Bl U and B2 = ( [p— (r+1)a(k)]. We have that
hi1 = h(k)+1 by 1ndu£‘£10n hypothesis and furthegnore all the coefficients of ®! are greater
than —1; furthermore ® 2 is h(k)-balanced and so, ¥"+! is (max(h(k)+1, h(k)+1) = h(k)+1)-
balanced. Then when we add an o [p — @, p + 1 — 25(k + 1) + Zpn, Ym — ) which is
1-balanced we still get an (max(h(k) + 1,1+ 1) = h(k) + 1-balanced sequence.

Finally, by construction, we get that ¢ **1[p] contains r(k) + 1 sequences ¢ *[p). <

End of the proof of Theorem 14. At this stage we have built a sequence ?2[17] which
satisfies the Nice Property with a(2) =2, b(2) = 3 and s(2) = ¢+ 1 and is h(2)=4-balanced.
Furthermore, it contains ¢(t — 2) 4-deviations. See Claim 20. Then, for some well-chosen K
(to be defined later) we can apply K — 2 times the main construction (Claim 22) to construct
a sequence ?K [p] which satisfies the Nice Property with parameters a(K), b(K) and s(K)
and is h(K)-balanced.

We have a(k) = bk — 1), b(k) = bk —1) + a(k — 1) = b(k — 1) + b(k — 2) and so, we
recognize the Fibonacci recurrence relation. The k" Fibonacci number F(k) is denoted as
follows:

1 <<1+\/5)k (1 - JS)’“)
F(k)=— — :
/5 2 2
Then, as a(2) = 2 = F(3) and b(2) = 3 = F(4), we get a(K) = F(K + 1) and b(K) =
F(K +2). In fact in what follows we will only use that a(K) < 2K-! and b(K) < 2K.
We have s(k + 1) = s(k) + a(k)r(k)/2; but a(k)r(k) < s(k—1) —b(k) < s(k — 1) and so,
s(k+1) < (3/2) x s(k) and s(K) < 5(2)(3/2)< = (¢ + 1)(3/2)< 2.
Recall that we should have p > 2s(K) — 1 so we choose p = 2s(K). Furthermore by
induction we have that h(K) = K 4 2. So we need to start with a partition containing at

least K + 2 groups of each size i, 1 <1i < p. It is easy to obtain such a starting partition
from the initial partition — which consists of n groups of size 1 — by doing a sequence of
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1-deviation of size (K — 2)p(p + 1)/2; indeed we can create a group of any size ¢ with (i — 1)
1-deviations. Therefore, we will take n = (K — 2)p(p+1)/2 < (K — 2)s(K)(2s(K) + 1).
Using the inequality s(K) < (¢t +1)(3/2)% =2 we get that

n = O(t*K(3/2)%5). (1)

. On the other hand we have to lower_> bound the number of deviations. By construction
¢ H1p] contains 7(k) + 1 sequences ¢ *[p] and so, contains t(t — 2) [[r_' (r(k) + 1) 4-
deviations, as ( 2[p] contains ¢(t — 2) 4-deviations. Recall that r(k) is the greatest even
integer r such that ra(k) + b(k) < s(k) — 1 and so, r(k) > LWJ — 1. Using the
fact that b(k) + 1 < 2a(k) and s(k) > s(2) — 1 = ¢, and a(k) < a(K) < 2571 we get
r(k) > 8= — 3. Then Hf:_zl (r(k) +1) = (7= — 2)* 2 and the number D of deviations
satisfies:

D = (s - 252, (2)

92K -1

We have now to choose K as a function of ¢. In order for the number of deviations
as given by Equation 2 to increase we need that 25! is small compared to t, that is,
K << log,(t). However in view of Equation 1 we want to choose the largest possible
K. Therefore, a good choice is K = 1/2(log,(t)). In that case, we get by Equation 1
that n = O(t?log,(t)(3/2)°82(1), or equivalently logy(n) = O(2logy(t) + log,(logy(t) +
log,(t)(logs(3) — log,(2))). Using logy(3) — log,(2) > 0.585 and the fact that for t large
enough log,(log,(t)) < 0.0141og, () we get logy(n) = O(2.6logy(t)), that is, n = O(t*F).
On the other hand we get by Equation 2: D = Q((t!/2)1/2loe2(t)) = Q(¢'/41°82(1)) and so,

D = Q(n092(") with ¢ = m ~ 1/27, thereby proving Theorem 14.
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—— Abstract

Two Dots® is a popular single-player puzzle video game for iOS and Android. A level of this
game consists of a grid of colored dots. The player connects two or more adjacent dots, removing
them from the grid and causing the remaining dots to fall, as if influenced by gravity. One special
move, which is frequently a game-changer, consists of connecting a cycle of dots: this removes
all the dots of the given color from the grid. The goal is to remove a certain number of dots
of each color using a limited number of moves. The computational complexity of Two Dots has
already been addressed in [Misra, FUN 2016], where it has been shown that the general version
of the problem is NP-complete. Unfortunately, the known reductions produce Two Dots levels
having both a large number of colors and many columns. This does not completely match the
spirit of the game, where, on the one hand, only few colors are allowed, and on the other hand,
the grid of the game has only a constant number of columns. In this paper, we partially fill this
gap by assessing the computational complexity of Two Dots instances having a small number of
colors or columns. More precisely, we show that Two Dots is hard even for instances involving
only 3 colors or 2 columns. As a contrast, we also prove that the problem can be solved in
polynomial-time on single-column instances with a constant number of goals.

2012 ACM Subject Classification Theory of computation — Problems, reductions and com-
pleteness

Keywords and phrases puzzle, NP-complete, perfect information, combinatorial game theory

Digital Object ldentifier 10.4230/LIPIcs.FUN.2018.7

1 Introduction

Two Dots® (http://weplaydots.com/twodots.html) is a popular single-player puzzle video
game for i0S and Android. The game has been so much appreciated by the community that,
not even after 3 years from its launch, a recently introduced follow-up game, called Dots&Co®
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(https://www.dots.co/dotsandco/), has already passed the 5 millions of downloads. In
its simplest form, the game is played on a vertical grid where each location initially contains
a colored dot. Dots of the same color can be “connected” by the player, as long as they are
adjacent horizontally or vertically (but never diagonally). In particular, the player selects a
path of dots of the same color which can be either simple or it can contain exactly one cycle.
In the former case only the selected dots disappear, while, in the latter case, all dots of that
color disappear. It turns out that the cyclic move is frequently a game-changer, and plays an
important role in our results too. It is clearly a popular heuristic, and the official Two Dots
tutorial even offers the helpful tip: “When in doubt, make squares”. After a move, all the
remaining dots in the area fall down as if influenced by gravity. The game provides a certain
number of moves, and demands certain goals to be met (which are typically of the form of
collecting at least so many dots of such and such a color, where a dot of a particular color is
collected whenever it is removed).

The computational complexity of the game has been analyzed in [16], where the author
showed that the problem of deciding whether an instance can be won by the player is
NP-complete even in very restricted settings. In particular, the problem remains hard when
the board has only four rows, or when there is only one goal of collecting two dots of a
particular color, even if there is no restriction on the number of moves. In [16] it is also
shown that the problem is W[1]-hard when parameterized by the number of moves. It turns
out that all these reductions use a large (i.e., typically linear in the size of the instance)
number of both different colors and columns. However, this does not completely match the
spirit of the game, where, on the one hand, only few colors are allowed, and on the other
hand, the arena of the game has only a constant number of columns, while there can be
many rows (even if the player can only see the few down-most ones). Understanding the
complexity of the game under these more realistic conditions is explicitly mentioned as open
problems in [16].

In this paper, we partially fill this gap by showing that:

the game is NP-complete even when the instance has three colors, two moves, and two

goals;’

the game is NP-complete even when the board has two columns and there is no restriction

on the number of moves;

the game is polynomial-time solvable when the board has only one column, provided that

the number of goals is constant;

the game is NP-complete even when the board has two rows.

Observe that the first two results immediately imply that the problem is not fixed
parameter tractable when parameterized w.r.t. the number of colors, or the number of
columns, unless P=NP. We leave open the problem of setting the computational complexity
of the game when the instance has both a constant number of colors and columns.

Other related results

Two Dots belongs to the class of tile-matching video games. Tile-matching games allow the
player to select a subset of tiles on the board according to some matching rule. Once selected,
the tiles are removed from the board and the board configuration is updated automatically
following the game-specific rules (for instance, all the remaining tiles might move to fill
the voids as if influenced by gravity). Other popular games of this class also exhibit a rich

L A playable version of this reduction is available at https://twodots.isnphard.com.


https://www.dots.co/dotsandco/
https://twodots.isnphard.com

D. Bilo, L. Guala, S. Leucci, and N. Misra

o000 ® 600000 e
O0e L JOIOL L 1@
 JOIOX X N L X JOX
® O [ [ o0
® OO00e o0
® 000006000 O000O0OC0OVGVOS
® ® o ® ®

Figure 1 A depiction of a regular move. The first panel shows the set of locations of a move, the
second panel shows the voids created, and the third panel shows how dots fall due to gravity.

combinatorial structure and have been studied from the computational complexity perspective.

A noteworthy example is that of Candy Crush that has been shown to be NP-complete
together with other match-three games in [12]. Another game having a somewhat similar
mechanic to Two Dots is Flow Free: initially only a small number of dots of the board
are colored, each color appearing exactly twice, while all the other positions are filled with
uncolored dots. A move consists of connecting the two dots of a matching color by a path
that traverses only uncolored-dots, which then inherit the color of the path’s endpoints. The
player is challenged to connect all the matching pairs while coloring all the dots on the board,
which is equivalent to finding an embedding of monochromatic, non-intersecting, paths on
the game board. This problem is also known as Zig-Zag Numberlink and has been shown to
be NP-complete in [1]. The gameplay of Button and Scissors is also similar to the one of Two
Dots: the player selects a monochromatic horizontal, vertical, or diagonal path traversing at
least two dots (buttons), which are then removed (cut) from the board (the remaining dots
are unaffected by gravity). It has been shown that clearing the board is NP-hard [11] even
when only two colors are involved or when each color is used by at most 4 dots [6].

More broadly, all these games belong to the class of casual games. Casual games are
often characterized by a puzzle-like gameplay and simple rules, which make these games easy
to play, yet difficult to master. Indeed, the quality and enjoyability of puzzles has even been
linked to their computational complexity [7]. It is then not surprising that many of most
successful puzzles have been shown to be NP-complete, or even harder. This is the case,
e.g., of Tetris [5], the (n? — 1)-puzzle (a generalized version of the famous 15-puzzle) [17],
Rush Hour [9, 8], Peg-Solitaire [18, 13], Trainyard [3], Clickomania (also known as Same
Game) [4, 2], 2048 [15], and many others [14].

Organization of the paper

The paper is organized as follows: Section 2 provides the problem definition and basic
notation used through the paper, in Section 3 we show that the problem is NP-complete
when the the number of colors is constant, and in Section 4 we address levels of the game
with a constant number of columns. Finally, the results for levels with a constant number of
rows are reported in Section 5.

2 Preliminaries

An instance of Two Dots consists of the following:
1. A m x n grid in which each position (4, 7) is occupied by exactly one dot whose color
belongs to a set C.
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Figure 2 A depiction of a cyclic move, which has the effect of eliminating all the blue dots from
the board. The example is rather similar to the above, but note the difference in the number of
voids created.

2. A natural number k, specifying the number of moves allowed in the game.
3. A set of goals G. Every element of G is a pair (¢, ¢), where ¢ € C and ¢ € N.

Intuitively, a player has a winning strategy in an instance of Two Dots if all the goals
can be achieved within k moves. To formalize this, we need to first define moves, and the
notion of dots being collected.

There are two types of moves in Two Dots: regular moves and cyclic moves. We first de-
scribe the regular moves, which essentially involve removing simple paths in the grid occupied
by the same color. Recall that, two dots are adjacent if they occupy two neighboring position
on the grid, either horizontally or vertically (dots aligned diagonally are not considered
adjacent). Any move (either regular or cyclic) consists of a sequence of locations (t1,...¢s),
with s > 2, such that all locations contain a dot of the same color and, for every i = 2,... s,
t; is adjacent to t;_1.

= In a regular move all the locations of the sequence (t1,...t;) are unique (see Figure 1).

= In a cyclic move all the locations of the subsequence (t1,...ts;_1) are unique and t
coincides with ¢;, for some j € {1,...,s — 4} (see Figure 2). Informally speaking, the
locations induce a cycle with a (possibly empty) dangling path from ¢; consisting of the
locations in {t1,...,t;}.

A regular move creates voids in all the locations corresponding to the sequence. A cyclic
move creates voids in all the locations of the grid containing dots whose color match the color
of the dots in the selected sequence.? All the removed dots are collected by the player. Then
the dots “fall down” to fill out the voids — it is useful to think of the board as a vertically
oriented object, and the dots therein following the natural laws of gravity, pushing the voids
to the top.? We refer the reader to Figure 1 for an illustration.

At the end of k moves, when the game is over, we say that the player has won if, for each
goal (¢, £), the number of dots of color ¢ collected by the player is at least £.

We wish to determine whether a Two Dots level (i.e., an instance) can be won by the
player, namely whether there exists a sequence of at most & moves that meets all the goals.

Our reductions work for this simplified model which somehow contains “all the hardness” of the game.
In the actual game, dots that are enclosed in the cycle of a cyclic move become bombs which, after
falling down, explode and destroy their 8-neighborhood. Our reductions still work in this general model
but we would then need to introduce additional gaps in our gadgets.

This is a standard approach to generalize the game, but it differs slightly from the model used in [16],
where new dots join the board to fill the voids. We point out that the results in [16] also work in our
case.
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3 Hardness of levels with three colors, two moves, and two goals

In this section, we show that Two Dots is NP-complete even when the number of colors is
bounded by three. Since it is clear that Two Dots is in NP (a certificate being the sequence
of moves of a solution), we now focus on showing that Two Dots is NP-hard. A playable
version of the reduction is available at https://twodots.isnphard.com.

We reduce from the EXACT COVER BY 3-SETS problem (X3C for short). In an X3C
instance we are given: (i) a set Z = {I1,Is,...,I3,} of 3n items; and (ii) a collection
S = {51,59,...,Sn} of m subsets of Z, each subset having cardinality exactly 3. The
problem is that of determining whether there exists a collection &’ C S of n sets such that
Uses S =Z, i.e., each item belongs to exactly one set in S’. This problem is well-known to
be NP-complete (see, for example, [10]). W.l.o.g. we will assume that n is an odd number.

The overview of our reduction is shown in Figure 3. We focus on describing the construct
in the gray box, ignoring the first and last few columns. The middle columns correspond

to items in groups of five — thus the first five columns encode the first item, and so forth.

The dots are arranged in what we refer to as wires. There is one horizontal wire made of
red dots and m horizontal wires made of blue dots. The red wire is a check-wire while the
other m wires consisting of blue dots are set-wires. There are two empty rows between

any pair of consecutive wires. To complete the board, we connect together the left (resp.

right) endpoints of the set-wires using a single column of blue dots. Then, we introduce
several more columns — the exact number of which we will specify later — on the extreme
left and the extreme right of the board. These columns are populated with blue dots on
rows corresponding to the set wires and are connected to the two blue columns joining the
set-wires with a single dot each, on the top-right and on the bottom-left position, respectively
(see Figure 3). All remaining dots in the grid are occupied by green dots.

The player is asked to eliminate a sufficiently large number of blue dots and all the red
dots in two moves. The layout of the check-wire is such that all the red dots cannot all be
eliminated in the first move. Further, we need to use at least one move to meet the goal for
the blue dots. Therefore, in a winning strategy, the first move must involve the blue dots
and achieve two things: (i) the move should clear the desired number of blue dots, and (ii)
the move should result in the “alignment” of the red dots on the check-wire. The wires are
set up in such a way that the dots on the check-wire align only when the dots removed from
the set-wires correspond to the sets of a solution of the X3C instance.

We now describe the check-wire and set-wires in greater detail. First, let us establish
some notation. Given a X3C instance with 3n items and m sets, the board in the reduced
instance of Two Dots will have 5n + 27" columns and 4(m + 1) rows, where T' is a parameter

that we will fix later. In our discussion, we use p1,...,pr and q1,...,gr to label the first
and last T' columns, respectively. The remaining columns (indexed from 7'+ 1 to T + 5n)
are labeled by cy,...,cs, and use C to refer to this subset of columns. On the other hand,

we index the rows simply by their numbers, with the topmost row being the first.

The set-wires. For each set S; € S there is a two-cell tall set-wire traversing all columns
in C. The j-th wire is on rows r; = 4(j + 1) and r; — 1.

The wire is constructed as follows: For each item I; € Z we consider the sub-grid consisting
of 10 cells on rows r; and 7; — 1, and on columns ¢; to ¢; + 4. If I; € S; the lower row of
this sub-grid is filled with blue dots while the top row remains empty (see the highlighted
sub-grid corresponding to set Sy and item I, in Figure 3). If I; € S; then the we place a
blue dot on (i) all the cells of the bottom row of the sub-grid except for the one on column
¢i +2, and (ii) the cells on the top row of the sub-grid that are on columus ¢; + 1, ¢; + 2 and
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Figure 3 Overview of the reduction.

¢; + 3 (see the highlighted sub-grid corresponding to set S; and item I in Figure 3).
Notice that if all the dots of the set-wire corresponding to, say, the set S; are removed,
then all the dots above row r; will fall by exactly 1 cell, except for the ones on columns ¢; +1
and ¢; + 3 where 7 is such that I; € S;: in these columns, the dots above row r; will fall by
exactly 2 cells.
Finally, since the number of items contained in each set is exactly 3, notice that the
number of blue dots in each set-wire is exactly b:=5-(3n —3) +7-3 = 15n + 6.

The check-wire. The check-wire is a four-cell tall wire that is initially placed at top of the
board. It is constructed simply by repeating the same pattern of 9 red dots every 5 columns,
i.e., column ¢; ;5 has the same layout of column ¢;. The pattern is shown in Figure 4 (a).
Suppose that all the blue dots contained the set-wires corresponding to solution S’ of the
X3C instance are removed by the player, from top to bottom. This would cause all the dots of
the check-wire to fall by exactly n rows, except for the dots on column ¢; + 1 and ¢; + 3 for
i=1,...,3n that will fall by exactly (n + 1) cells. This will cause the dots on the items-wire
to arrange in the configuration shown in Figure 4 (b). Notice that, in this configuration, all
the 9 - 3n = 27n dots of the items-wire can be removed by the player using a single move.

The reduction from X3C to Two Dots
We are now able to prove our result:

» Theorem 1. Two Dots is NP-complete even when the numbers of colors, moves, and goals
are bounded by 3, 2, and 2, respectively.

Proof. Let A= (Z ={L,...,I3,},S = {S1,...,Sm}) be an instance of X3C and consider
the corresponding instance B of Two Dots as described above, where T is such that the
number 7 of blue dots in the first 7' — 2 columns (resp. the last T — 2 columns) is greater
than the number of remaining blue dots.

Assume, without loss of generality, that S is not itself a set cover for Z and remember
that n is odd. We will show that at least 2n blue dots and all the red dots can be removed
from B using at most two moves if and only if A admits an exact cover by 3-sets.
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Figure 4 (a) Initial setup of the check-wire. (b) The check-wire once it gets aligned.

The Forward Direction. Let 8" = {S;,,S},,...,S5;,} exact cover by 3-sets for A where
je €{1,...,m} for k =1,...,n. We assume, w.l.o.g., that j; < jo < -+ < j,. A winning
sequence of moves for the instance of B consists of:

1. connecting, in order and in a single move: all the blue dots in the fist 7' — 2 columns, the
single dot in the (7' — 1)*" column, all the dots of the set-wires on rows rj,,...r;, in a
zig-zag fashion, the single dot in the (7' + 5n + 1)** column, and finally all the dots in
the last T'— 2 columns. Notice that the above move is feasible since n is odd.

2. connecting, in a single move, all the red dots. This is possible since S’ is an exact cover,
and hence the previous move will cause the check-wire to align.

It is easily checked that both goals are satisfied (notice that the first and last 7' — 2 columns
contain 27 blue dots).

The Reverse Direction. Suppose now that there is a solution to the instance B of Two
Dots. From the fact that: (i) we are permitted only two moves; (ii) we have to clear all the
red dots; and (iii) all the red dots are not aligned in the initial state, it follows that the first
move has to meet the goal for the blue dots and also align the red dots on the check-wire so
that the second move can be used to eliminate all of them in one move. This means that the
first move cannot be a cycle-move, that it must involve dots that belong to both the first
and the last T"— 2 columns of the board, and that it must traverse set-wires entirely and in
a zig-zag fashion. Let 8’ be the sets corresponding to the sets-wires whose dots have been
removed in the first move. Suppose, towards a contradiction, that S’ is not an exact cover
for A. This means that at least one of the following conditions is true: (i) there exists an

item I; that is not covered by S’; or (ii) there exists one item I; that belongs ¢ > 2 sets in S'.

In the former case the number of blue dots removed from the columns associated with item
I; is the same, and hence it will not be possible to connect all the dots in the check-wire
in a single move. In the latter case, the number of blue dots removed from the 2"¢ and 4"
column associated with item I; exceeds the corresponding number of removed blue dots for
the 1%%, 3" and 5" column by 2t. Hence, after the first move, the red dots in the check-wire
are not aligned and therefore it is not possible to meet the read goal using a single additional
move. <«
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4 Boards with a constant number of columns

In this section, we address the complexity of Two Dots on boards that have a constant number
of columns. More precisely, we show that the problem is NP-complete if the board has two
or more columns, while it is polynomial-time solvable in the one-column case. Interestingly,
our hardness result holds even when the player has an unlimited number of moves and only
one goal to achieve.

4.1 Hardness of levels with two columns, one goal and unlimited moves

We proceed here by a reduction from 3-SAT. Let Cq,...,C,, be a set of clauses over the
variables z1,...,z,. We assume, without loss of generality, that every clause consists of
exactly three literals. The overall structure of the Two Dots instance that we construct is
given in Figure 5. We describe the components starting from the bottom. First, we stack
up a collection of clause gadgets, one corresponding to each variable of the 3-SAT instance.
Then, after a suitable gap, we introduce the variable gadgets, one corresponding to each
variable of the instance. Finally, we have a formula-check gadget, which is the basis for the
only goal that we have in this instance. We introduce one color for every literal and one for
every clause of the 3-SAT instance. Let the colors associated with the literals z; and Z; be p;
and g¢;, respectively; while we denote the color associated with the clause C; by ¢;. We also
have one special color that we denote by [. We now describe each gadget separately and
then explain the equivalence of the instances. In the following, when we speak of gaps in
the board, we may assume these to be dots of “dummy” colors, which are newly introduced
colors distinct from the colors mentioned already, and also distinct from each other.

The clause gadgets. Consider a clause C';. The gadget corresponding to a clause is shown
in part (a) of Figure 6. Let a,b, ¢ be the colors corresponding to the literals of C;. The first

row is a gap row, and the next seven rows?® consist of the following:

Dots colored ¢; occupy the first column on all seven rows;

Dots with colors a, b and ¢ occupy the second column on the third, fifth and seventh
rows, respectively; and

Dots colored ¢; occupy the remaining rows on the second column.

After these rows, we introduce another gap row. Finally, the first column of the last three
rows are occupied by dots colored a, b and ¢, respectively; while the second column on the
last three rows are occupied by dummy dots. Note that because of the way the seven rows
described above are “sandwiched” between gap rows, the only way to obtain a ¢;-colored
square is to make a square move with at least one of a, b or c.

The variable gadgets. For a variable z;, the variable gadget consists of four rows, alternat-
ingly occupied by dots of colors p; and ¢; on both columns (see Figure 6(c)). To be specific,
the first and third rows have dots colored p; on both columns, while the second and fourth
rows have dots colored ¢; on both columns. Observe that within the scope of this gadget,
any valid gameplay can involve a square move on either p; or g;, but not both.

4 Recall that our convention is to count rows from the top.
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Figure 5 Overview of the reduction. The grid cells marked x are filled with distinct colors
different from the ones used to represent variables and clauses. The goal of the game is to hit two
dots of color [ and the number of moves are unbounded.
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Figure 6 (a) Initial setup of the clause gadget. (b) The clause gadget in its aligned state. (c)
Initial setup of the variable gadget. (d) The state of the variable gadget after one move on one of
the literals. (e) The formula-check gadget.

The formula-check gadget. The formula-check gadget is depicted in Figure 6(e). It consists
of (m + 2) rows, where the dots occupying the first and last row of the first column have
color [ and the interim rows comprise of one dot each of color ¢;, 1 < j < m. For all rows,
we have dummy dots occupying the second column. The only goal in the game will be to hit
two dots colored [.

We are now ready to prove our main theorem for this section:

» Theorem 2. Two Dots is NP-complete on boards that have only two columns, even when
the player has to achieve only one goal with an unlimited number of moves at his disposal.

Proof. We proceed by a reduction from 3-SAT. Let an instance Z of 3-SAT comprise of the
clauses C1, ..., C), over the variables x1,...,z,, where every clause consists of exactly three
literals. Let B denote the instance of Two Dots constructed as described above. Recall that
the goal is to hit two dots colored [ and there is no bound on the number of moves. We now
establish the equivalence of the instances.

The Forward Direction. Let 7:V — {0,1} be a satisfying assignment for the instance Z.
For any variable x for which 7(z) = 1, we eliminate the row containing dots colored ¢; and
perform a square move on the dots of color p;, which becomes feasible once the g;-colored
dots are removed from either row of the variable gadget. On the other hand, for any variable
x for which 7(z) = 0, we eliminate the row containing dots colored p; and perform a square
move on the dots of color ¢;. Observe that after each square move on a variable gadget,
the design of the clause gadgets ensures that the number of dots hit in both columns is
equal. Therefore, after these moves are complete, an £;-colored square is created for every
1 < j < m. Making these moves in any order leaves us with a board where the [-colored
dots become adjacent, and the goal can be met with one final move.

The Reverse Direction. A winning gameplay involves a move that hits at least two [-
colored dots on board. Recall that the only [-colored dots are available in the formula check
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gadget and that they are separated by m dots corresponding to the colors of the clauses.
Since all other adjacent locations are occupied by dummy dots, it follows that the only way
to arrive at a configuration where the two [-colored dots are adjacent is to play a £;-cyclic
move for all 1 < j < m. For any such j, consider the clause gadget corresponding to C; and
let a, b, c denote the colors of the literals that appear in C;. A cycle with dots colored /;
can only manifest if there was a square move involving one of the colors a, b or c. We now
propose an assignment based on these moves: set the variable x; to 1 if the given gameplay
involved a square move on the color p; and set x; to 0 if the gameplay involved a square move
on the color ¢; . If the gameplay did not have a square move on either p; or ¢;, then set the
value of x; arbitrarily. Note that this is a well-defined assignment since no valid gameplay
can involve a square move on both p; and ¢;, by the design of the variable gadget and the
fact that the variable gadget is the only part of the overall construction where dots of these
colors are adjacent. To see that this is a satisfying assignment, proceed by contradiction: if a
clause C; is not satisfied, then it is easy to see that the choice of square moves amongst the
variable gadget which led us to our assignment were such that no £;-squares were generated,
which contradicts our assumption that we started with a winning gameplay. |

4.2 A polynomial-time algorithm for levels with one column

Let B be an instance of Two Dots where the board consists of one column with n dots. For
1 <i < n, let c(i) denote the color of the i*" dot in B. Moreover, for i < j, let B; ; denote
the subsequence of dots starting at the i*” row and ending at the j** row. By a slight abuse
of notation, we also use B; ; to denote the natural instance of Two Dots associated with this
(truncated) board. As a warm-up, and since this is instrumental to our general algorithm,
we begin by considering the case in which the goal is to remove all the dots in the board
(i-e., to clear the board) using the minimum number of moves.

4.2.1 Clearing the board

Let C(i, ) be the minimum number of moves needed to clear B; ;, or +oo if there exists no

R
such sequence of moves. We now describe a dynamic programming algorithm to compute all
the values C(i,7) (and, in particular, C(1,n)).

Ifj—i+1<0,orif j—i+1=1, then clearly C(%,j) = 0 and C(, j) = +o0, respectively.

We therefore consider the case in which j > i + 1. Notice that, in order to clear the board
B, j, the dot on the first row of B, ; must be hit with a move connecting (at least) one other
dot. Let h be the smallest index of a row in B; ; that contains one such dot. We distinguish
two cases:

1. The move hitting the dot on the first row of B; ; connects exactly 2 dots.

2. The move hitting the dot on the first row of B; ; connects 3 or more dots.

If the former case we “guess” the location h of the dot that partners with the first dot
of B; ;. This decomposes our instance into two sub-instances corresponding to the boards
Bitih—1 and By ;. In formulas:

Cy(i,j) = min {Cli+1,h—=1)+C(h+1,5)+ 1},
i<h<j such that c(h)=c(i)

where last term accounts for to the move that is used to hit the i** dot and the A** dot.
In the latter case we still guess the location h, but we now decompose the board into two

different sub-instances, namely B;i1 -1 and By ; (i.e., we still include the h*" dot in the

second sub-instance). The h!" dot can then be combined with another dot in row k' > h
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belonging to the same move that is used to hit both the i*" and the A" dot. This can be
repeated recursively until the last two dots hit by the move are considered, which falls into
the former case, and thus accounts for the whole multi-dot move. In formulas:

Ca(i, j) = min {Cli+1,h=1)+C(h,j)}.
i<h<j such that c(h)=c()

Overall, our recurrence is given by C(4,j) = min{C1 (¢, ), C2(i,7)}.

4.2.2 The general case

For the sake of simplicity we describe our algorithmic approach for the case when the game
has only one goal, and our task is to determine the minimum number of moves that are needed
to achieve said goal. In particular, suppose that the single goal demands the elimination of £
red dots. Nevertheless, our approach can be easily generalized for the case of multiple goals.
We now describe a dynamic programming routine to check if there is a sequence of at
most k moves that hits at least ¢ red dots. To this aim, let T'(¢, j, d) be the minimum number
of moves needed to gain at least § red dots in B, j, or +oo if there is no such sequence of
moves. By our definition, we have that, if § < 0, then T'(4,5,0) = 0 Vi,j5. If 6 > 0 and
j<=1i+1, then T(i,j,0) = +oo. Otherwise, we consider the following three cases:
1. There is a solution that does not hit the i*" dot.
2. There is a solution that hits the i*" dot along with one other dot.

3. There is a solution that hits the i*" dot along with two or more other dots.

To describe our recurrence corresponding to these cases, we denote by V(¢’, j') the number
of red dots in By j». We start by addressing the first case, in which the it" dot can be simply
ignored from the current board:

In the second case, we “guess” the location h of the dot that partners with the i** dot in
an optimal move. To this end, we consider separately the subsequences of dots corresponding
to Bit1,n—1 and to Bp41,,. This two sub-instances are handled differently as, in order to
connect the 3" dot with the A*" dot, all the dots in Bit1,,—1 need to be removed (while this
is not true for Bj41,,. We can write:

T5(i,7,0) = min {Ci+1,h—1)+T(h+1,4,6 —V(i,h)) + 1}.
i<h<j such that c(h)=c(i)
In the last case, we have the following analogous recurrence:

T3(i7j56) = min {C(l+1,h—1)+T(h,],(5—V(Z,h—1))}
i<h<j such that c(h)=c(i)

Overall, our recurrence is given by T'(i, j,6) = min{T} (¢, j, ), T2(¢, §, ), T3(i, 4, 6) }, and
we can state the following.

» Theorem 3. Two Dots admits a polynomial time algorithm for a constant number of goals
when the board consists of only one column.
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Figure 7 The edge gadget for the case of boards with two rows. Here we are representing an
edge e (©) incident on vertices u (©) and v (©).

5 Boards with a constant number of rows

Here, we state and prove the following result, strengthening the NP-hardness result for four
rows given in [16]. Unlike for the case of two columns, the reduction in this setting employs
the use of many goals and many colors.

» Theorem 4. Two Dots is NP-complete when the board has only two rows and can be solved
in polynomial time for boards that have one row.

Proof. The hardness for the case of two rows is by a reduction from Vertex Cover. Let
the (G = (V, E),k) be an instance of Vertex Cover where V = {vy,...,v,} and E =
{e1,...,em}. Our board consists of two rows and 2n + 5m columns. For every vertex v;,
introduce four dots of color ¢; such that they form a square on the adjacent columns 2i — 1
and 2i. For every edge e; = (vp,vq), introduce the edge gadget shown in Figure 7, which
involves three dots that have color d; and one dot each of color ¢, and ¢,. The remaining
five positions in the grid are filled with dummy dots that have colors distinct from the colors
that correspond to edges and vertices. The goal is to hit at least two dots of color d; for
each 1 < j < m in at most m + k moves.

We now argue the equivalence of these instances. In the forward direction, given a vertex

cover S C V of size k, perform the square moves on the colors corresponding to vertices in S.

This uses up the first £ moves. Since S is a vertex cover, this causes at least two dots of
color d; to become adjacent in the edge gadget corresponding to e;. The remaining m moves
can be used to now meet the demands of the game. In the other direction, assume we have a
valid gameplay that meets all the goals. Note that at least m moves must be used to hit
dots of color d;. Let S denote the set of colors on which square moves were employed in the
remaining moves. Note that this is a set of at most k colors, each of which corresponds to a
vertex in the graph G. We claim that this subset is a vertex cover. Indeed, if not, observe
that the edge gadget corresponding to any uncovered edge (say e;) remains unchanged and
therefore the goal for the color d; cannot be met, contradicting our assumption that we
started with a winning gameplay.

We now turn to the case of boards with one row, where we claim that a natural greedy
algorithm solves Two Dots in polynomial time. First, note that the goal of hitting k& dots of
color ¢ can be met if and only if the total number of dots colored ¢ present in intervals of
length at least two is at least k. Further, it is easily checked that in an optimal play, every
move hits colors for which there is a non-trivial goal left (note that this is not true in the
general game, where moves involving colors that have no goals associated with them can also
help with meeting the goals of the game). Finally, observe that we may employ a greedy
strategy here to meet any particular goal, where we proceed by hitting maximal intervals of
the longest length of a particular color first. <
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6

Conclusions

In this paper we have settled the computational complexity of several restrictions of Two

Dots involving narrow boards and/or few colors. Some problems which are still open and

that we regard as interesting are those of understanding the computational complexity of
Two Dots for (i) boards with only two colors, and (ii) boards with a constant number of
columns and colors, which nicely captures the spirit of the game. Finally, we remark that —
by carefully positioning the wire gadgets, and employing some other small modifications —

our reduction involving 3 colors, 2 moves, and 2 goals, can be adapted to require only 1 goal.
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—— Abstract

Peg Duotaire is a two-player version of the classical puzzle called Peg Solitaire. Players take

turns making peg-jumping moves, and the first player which is left without available moves loses
the game. Peg Duotaire has been studied from a combinatorial point of view and two versions
of the game have been considered, namely the single- and the multi-hop variant. On the other
hand, understanding the computational complexity of the game is explicitly mentioned as an
open problem in the literature. We close this problem and prove that both versions of the game
are PSPACE-complete. We also prove the PSPACE-completeness of other peg-jumping games
where two players control pegs of different colors.
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1 Introduction

Peg-Jumping games are games with one or more players that are played on boards of different
shapes. FEach position of the board can host at most one peg, and a move consists of jumping
a peg over an (horizontally or vertically) adjacent peg into an empty position. The move
causes the peg that is jumped over to be removed from the board (see Figure 1). Arguably,
the most popular game in this class is the single-player puzzle called Peg Solitaire (also
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Figure 1 A move in peg-jumping games.

known as Hi-Q), in which the aim is to find a sequence of moves which reduces an initial
placement of pegs into a single peg (and thus, the goal is that of clearing the board). A
classical instance of the game has a cross-shaped board full of pegs except for the central
position. The Peg Solitaire is an ancient game and its history dates back to at least the 17th
century (see [2] for a comprehensive overview on the game).

Several other single-player peg-jumping games have been considered. For example, in
the Solitaire-Reachability [15], the goal is, given an initial configuration of pegs, to find a
sequence of moves that places any peg on a given target position (it is not required to remove
all the other pegs). Another prominent game in this class, with a slightly different flavor,
is the Solitaire-Army problem: given a desert region on a (usually infinite) board, and a
target position in this region, one wishes to find an initial configuration of pegs outside of
the desert that allows a peg to reach the target position through a valid sequence of moves.
In its classical formulation, introduced by J.H. Conway in 1961, the desert is a half-plane,
and the challenge is to understand what is the farthest distance in the desert that allows the
target position to be reached. Conway devised an elegant potential argument to show that
distance 5 cannot be reached on any finite board [18]. Other desert shapes have also been
considered, such as square- and rhombus-shaped deserts [8].

In this paper, we focus on 2-player peg-jumping games, mainly on Peg Duotaire, a game
introduced in [22], in which two players alternatively make a peg move and the winner is
the last player to move. Two versions of Peg Duotaire have been considered: the single-hop
Duotaire [22, 13], where each move consists of a single-hop jump, and the multi-hop Duotaire
[21], where a series of (single-hop) jumps with the same peg can be made on a given turn.
Both variants are impartial games, and they have been studied from a combinatorial point
of view, while the problem of understanding the computational complexity of Peg Duotaire
is mentioned as an open problem in the book by Hearn and Demaine (Section A.4 in [17])
and [21].

Our results

We study the problem of deciding whether the first player in a Peg Duotaire instance can
force a win. As our main result, we show that this problem is PSPACE-complete for both
versions of the game, namely the single- and the multi-hop variant. This closes the open
problem given in [17] and [21].

We also consider another peg-jumping game, namely a 2-player version of Solitaire-
Reachability. In this game, pegs are partitioned into white pegs (controlled by the first
player) and black pegs (controlled by the second player). A move of the first (resp., the
second) player consists of a jump involving only white (resp., black) pegs. However, pegs of
a given color can prevent jumps of pegs of the other color since they occupy positions of the
board. Moreover, each player has a target position that wants to reach with a peg (and the
two target positions might coincide). As a natural extension of Solitaire-Reachability, we
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assume that the winner is the first player that reaches its target position.! However, different
types of winning conditions can be considered here. For example, we can assume —as usual
in the combinatorial game community— that the winner is the player that makes that last
move, or a combination of the two mentioned rules, e.g., a player wins by either reaching his
target position or by leaving his opponent with no available moves. We prove that all these
variants are PSPACE-complete.

Related Results

Despite of the simplicity of their rules [10, 11, 7, 5], peg-jumping games exhibit a non-trivial
combinatorial richness, and for this reason attracted the attention of many researchers over
their long history [6, 3, 4]. From a computational point of view, it has been shown that
single-player Peg Solitaire is NP-complete when the goal is to clear the entire board [23],
or when the task is to decide whether a given target position can be reached [15]. On the
other hand, deciding whether a given configuration can be transformed into a single peg is
polynomial-time solvable for rectangular boards of fixed (constant) height, since solvable
instances form a regular language [21, 22].

As far as 2-player peg-jumping games are concerned, single-hop Duotaire was introduced
in [22], and then studied in [13, 21], while the multi-hop variant has been introduced in [21],
where, besides other results, it is shown that even in the one-dimensional case, the set of
instances for which the first player wins cannot be described by a context-free language.

Another work which is close in spirit to our is [16], where the PSPACE-completeness has
been proved for another 2-player peg-jumping game called Konane, an ancient Hawaiian game
in which pegs are of two different colors, and a player moves a peg of his color by jumping it
over a peg of the opposite color in order to capture it. A peg may make multiple successive
jumps in a single move, as long as they are in a straight line (while no turns are allowed
within a single move). The first player that is unable to move wins. Due to the differences
of the rules, the reduction in [16] cannot be easily adapted to prove PSPACE-completeness
of the games we consider here. Finally, the present work contributes to the rich literature
investigating the computational complexity of combinatorial games [17, 14, 19, 1, 20, 9].

2 Single-Hop Duotaire

2.1 Overview

In this section we focus on Single-Hop Duotaire and we prove that the problem of deciding
whether the first player can force the win is PSPACE-complete.

Our reduction is from directed vertex geography (DVG). In this problem, we want to
decide whether the first player can force a win in the following game. We are given a directed
graph G and a distinguished vertex s € V(G) that initially contains a token. Two players
take turns performing the following move: first the token is moved from its current vertex u
to a neighboring vertex v, traversing the edge (u,v) € E(G), and then vertex u is deleted
from the graph. The first player who has no legal move loses the game (and the other player
wins).

The DVG problem is known to be PSPACE-complete even when G is planar, bipartite,
all the vertices have maximum degree 3, maximum indegree 2, and maximum outdegree 2

L In this case, we can assume that a player with no available moves can skip his turn, and that the game
can end with a draw, whenever no player can move and no target position has been reached yet.
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Original Vertex Equivalent Subgraph
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Figure 2 Vertex transformation. Original verteces with outdegree 0 (on the left), and equivalent
subgraphs (on the right).

[12]. We will furthermore assume that vertex s has outdegree 2 and no incoming edges, while
all the vertices in V(QG) \ {s} have either (i) indegree 1 and outdegree 2, (ii) indegree 2 and
outdegree 1, or (iii) indegree 1 and outdegree 1. It turns out that these assumptions can
be easily guaranteed by performing suitable transformations of the input graph, as we will
discuss in the sequel.

The idea is to consider a planar embedding of G on a grid from which we build an
equivalent instance of single-hop Duotaire where the token is simulated by a specific token peg
(see Figure 7 for an example of the input graph G and of the associated single-hop Duotaire
instance). We will simulate the behavior of the vertices of G using suitable gadgets: these
gadgets take the token peg as an input, which encodes the act of placing the token on the
associated DVG vertex (as a result of a previous move), and route it to a specific output,
which corresponds to selecting the next position of the token in DVG (and hence to selecting
an outgoing edge). The token peg will be transported from a vertex output (representing one
endpoint of an edge) to a vertex input (representing the other endpoint) using a wire gadget.

Moreover, in an isolated area of the board, we place two adjacent pegs that allow the
players to play a one-time extra move that we call dummy move. Except for this dummy
move, all the other moves available to the players at any given point in time will involve the
token peg.

2.2 Transforming the input DVG instance

Here we show how an instance of DVG on a planar, bipartite graph G in which all the
vertices have maximum degree 3, maximum indegree 2, and maximum outdegree 2, can be
transformed in order to further ensure that:

s has outdegree 2 and no incoming edges.

all the vertices in V(G) \ {s} have either (i) indegree 1 and outdegree 2, (ii) indegree 2

and outdegre 1, or (iii) indegree 1 and outdegree 1.

First of all, we delete from G all the edges entering in s, and we iteratively remove all the
other vertices of indegree 0. Then, while s has exactly one outgoing edge (s, s’), we perform
the following operation: we delete s from G, we move the token to s’, and we rename s’ to s.
It is easy to see that each such operation yields an equivalent instance in which the roles
of the two players are exchanged: Player 1 can force a win in the instance preceding the
operation iff Player 2 can win in the resulting instance (recall that Player 1 is always the
first player to move, and that PSPACE is closed under complement).

After the transformation, G contains exactly 1 vertex with indegree 0 (i.e., s), which
must also have outdegree 2. All the remaining vertices of G are either of one of the forms in
(i), (ii), (iii), or they have outdegree 0 and indegree in {1,2}. In the latter case, they can be
replaced with the equivalent subgraphs shown in Figure 2.
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Figure 3 The gadget for a vertex with indegree 1 and outdegree 2.

2.3 Gadgets

Here we describe all the gadgets. Each gadget is meant to be played in one or more
prescribed ways and is designed to ensure that any player deviating from the intended play
will necessarily lose the game.

2.3.1 Vertices with outdegree two

In our reduction there are two kinds of vertices having outdegree 2, namely the starting
vertex s (having indegree 0), and vertices having indegree 1.

Let us consider the case of vertices with indegree 1 first, which are implemented as shown
in Figure 3. Players will be able to play the gadget whenever the token peg reaches the
position marked with the black arrow. W.l.o.g., we assume that, once the token peg is
in place, it is Player 1’s turn. The intended play of the gadget follows the solid lines via
alternating moves of the players. In particular, notice that Player 2 moves the token peg into
the center of the gadget, where the solid lines meet. At this point, Player 1 can choose to
jump over either the peg immediately above, or the peg immediately below. This corresponds
to choosing which of the two outgoing edges of the associated vertex in the DVG instance
the token traverses next. The following moves are straightforward and will bring the token
peg to one of the two positions marked with the white arrows. Notice that this last move is
performed by Player 1, and hence the turn will be up to Player 2.

We now argue that any deviation from the above strategy, will cause the deviating player
to lose. In particular, all the deviations in this gadget consist of using one of the pegs of the
gadget to jump over the token peg. However, if a player plays such a move he will bring the
board in a configuration where the only available move is the dummy move. The opponent
can then use this dummy move to win the game.

On the converse, if any player plays the dummy move instead of a move involving the
token peg, the opponent can respond making a move that jumps over the token peg, thus
reaching a configuration where no move is left available to the other player (thus winning
the game).

As far as the starting vertex s is concerned, it suffices to implement it in the same way
of vertices with indegree 1 we just described, with the only exception that a peg is initially
placed in the position marked by the black arrow.

2.3.2 Vertices with outdegree 1

We first discuss vertices with outdegree 1 and indegree 2, which are implemented as shown
in Figure 4 (a). The indented ways to play this gadget carries the token peg from any of the
two input positions marked with the black arrows, to the output position marked with the
white arrow. Notice that during the corresponding sequence of moves, the players will need
to jump over the token peg along the solid black line. When this happens, the old token peg
is removed from play, nevertheless, instead of thinking of the resulting state of the board as a

configuration with no token peg, we promote the jumping peg to become the new token peg.
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ot el

(a) (e)

Figure 4 Gadgets for vertices with outdegree 1 and (c) indegree 1; (a) indegree 2. Picture (b)
shows how the gadget in (a) looks like once players played it, which intuitively corresponds to a
vertex already visited by the token in the associated DVG instance.

e L

As in the gadget encoding a vertex with outdegree 2, also in this case the first player

Figure 5 Wire gadgets.

making a move is also the player making the final move —placing the token peg in the output
position (i.e., playing a gadget changes the turn of the next player to play).

We now argue that any player that deviates from the prescribed strategy is bound to
lose. As in the previous case, notice that if a player makes a move that brings the token
peg outside of the solid lines, or in the opposite direction w.r.t. the intended play, then the
opponent can respond by playing the dummy move and winning the game. Notably, this
also ensures that a token peg cannot be brought from its initial input position to the other
input position (thus traversing the solid lines in the opposite direction).

We encode vertices having indegree and outdegree 1, with the gadget of Figure 4 (c),
whose correctness is straightforward.

Wires Wire gadgets are used to encode directed edges in the DVG instance. Such a gadget
receives the token peg as an input (which coincides with one of the outputs of the vertex
gadget associated with the tail of the encoded edge), and carries it to its output (which
coincides with the input of the vertex gadget associated with the head of the encoded edge),
through an even number of alternating moves. This ensure that the player making the first
move in the wire gadget will also be the next player to play after the wire gadget has been
completely traversed. Some examples of wire gadgets are shown in Figure 5. Notice that by
repeating the shown pattern, one can lengthen or shorten wires as needed, as well as perform
90, 180, and 270-degrees turns.

This is useful as the planar embedding of the graph G in the DVG instance will determine
how to lay wires on the board. It might however happen that such an embedding results
in wires with an odd number of moves. In this case, one can restore the desired parity by
replacing any straight portion of a wire consisting of 4 moves (see Figure 6 (a)) with the
gadget shown in Figure 6 (b), which uses the same input and output positions but requires 9
moves to be traversed.
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(b)

Figure 6 Picture (b): changing-parity gadget. Exactly 9 moves are needed to traverse it. The
gadget can be used to change the parity of the length of a wire by replacing a portion of a 4-move
straight wire (shown in (a)).

2.4 Putting all together

As we already described, we build the instance of single-hop Duotaire from a planar embedding
of G, by replacing each vertex with its corresponding vertex gadget, and by connecting vertex
gadgets through wires in the way prescribed by the planar embedding (see Figure 7 for an
example).

When we embed all the gadgets on the board, we shall guarantee that every output of a
gadget can be connected to the input of the consecutive gadget through a wire. We point out
that all our gadgets are designed in such a way that this is always possible. Indeed, every
gadget satisfies the following property: if an input is in the ¢-th row and the j-th column,
where both 4 and j are even, then each output of the gadget is in i’-th row and j’-th column,
with both i’ and 5 even. This is true for the wire gadget also, which allows us to connect an
arbitrary pair of even-even positions.

We now show that if a player has a winning strategy in a DVG instance, then he can also
force a win in the corresponding single-hop Duotaire instance. Let us consider the case in
which Player 1 has a winning strategy first, and assume that all the gadgets are played in
one of the intended ways (as otherwise the deviating player will lose if his opponent plays
optimally). Remember that, initially, the token peg is placed on the input position of the
gadget corresponding to vertex s (i.e., the black arrow of Figure 3). The two outputs of this
vertex gadget correspond to the edges outgoing s in the DVG instance. Player 1 can then
play the gadget in such a way that the token peg is carried to the output corresponding to
the first edge traversed in his winning strategy, say e = (s,u). This forces the players to
traverse the wire corresponding to edge e until the input position of the gadget corresponding
to vertex u is reached. Notice that, by our choice of the wire lengths, the turn is now up
to Player 2. Since gadgets are always played in the intended way, Player 2 must also bring
the token peg to one of the output positions of the gadget, which corresponds to an edge in
DVG, say (u,v). Suppose that v is a vertex whose gadget has never been reached by the
token peg so far; when the token peg reaches the corresponding input of the v’s gadget (on
Player 1’s turn), Player 1 can respond by moving the peg towards another vertex gadget
according to the DVG move prescribed by his winning strategy. Player 1 continues to play
according to this scheme until he routes the peg toward a vertex w whose gadget was already
traversed. Notice that vertex w must have indegree 2 (and outdegree 1), hence this is the
situation depicted in Figure 4 (b) (up to symmetries). Since there are exactly 6 leftover
moves along the solid lines (and any deviation causes the deviating player to lose), plus the
dummy move, Player 1 is then able to win the game. In other words, any player attempting
to move the token peg to a vertex that was already traversed will lose the game. A similar
argument applies to the case in which Player 2 has a winning strategy in DVG.

The previous discussion, and the fact that a winning strategy for a single-hop Duotaire
instance (if any) can be found by a DFS traversal of the (implicit) game tree (whose height
is at most the number of pegs in the instance), allow us to state the following:
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Figure 7 A DVG instance and its corresponding Single-Hop Duotaire one. Gadgets of Figure 6
are used to guarantee that every wire needs an even number of move to be traversed.

» Theorem 1. Deciding whether the first player can force a win in single-hop Duotaire is
PSPACE-complete.

3  Multi-Hop Duotaire

In this section we prove that the problem of deciding whether the first player can force the
win in the multi-hop Duotaire is PSPACE-complete.

Our reduction is from DVG on planar bipartite graphs of maximum degree 3. On the one
hand, similarly to the reduction for single-hop Duotaire, both planarity and maximum-degree
bounds are useful for embedding the instance on a board. On the other hand, bipartiteness
is needed to uniquely associate each vertex with exactly one of the two players. Indeed, if
the token is placed on a vertex of the left-hand side of the (vertex) bipartition and, w.l.o.g.,
it is Player 1’s turn, then the player can only shift the token along an edge, if any, to reach a
vertex of the right-hand side of the bipartition. Similarly, Player 2 can only shift the token
along an edge, if any, to reach a vertex of the left-hand side of the bipartition.

The idea of the reduction is to have a token peg placed on each vertex gadget; however,
each token peg needs to be activated by another token peg before it can be moved. At the
beginning of the game, only the token peg contained in the vertex gadget representing s is
active by default. Each token peg is owned by a specific player: in the intended play, the
token pegs associated with the vertices of the left-hand side of the bipartition can be moved
only by Player 1, while the remaining token pegs can be moved only by Player 2. When a
token peg, say t, is active, the player owning ¢ is first forced to jump over the token peg that
activated ¢, and then, thanks to suitable control pegs, the player is forced to continue moving
t along an edge until ¢ reaches a new vertex gadget, if possible, and activates the token peg
of that gadget. Therefore, once a player has moved his token peg away from a vertex gadget,
no token peg is left in the gadget, and the player that tries to move his token peg inside a
previously visited vertex gadget, will lose the game, due to the presence of one dummy move
as in the single-hop Duotaire. Similarly to the reduction for single-hop Duotaire, every move
other than the dummy move involves token pegs.
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Figure 8 The 6 ways of embedding control pegs to monitor each pair of consecutive black pegs.

The dots represent positions of the board nearby the control pegs that need to be empty. The picture
shows the opponent’s response when the moving player jumps only over the first of 2 consecutive
black pegs. In all the 6 cases, the countermove of the opponent generates a dummy move. In the
first 2 embeddings, the moving player can jump over the first black peg of the pair, and then also
over a control peg. We observe that in this case the token peg has reached an empty area of the
board, and the opponent wins the game by playing the dummy move.

3.1 Gadgets

Other than token pegs and (black) pegs that describe the main structure of the gadget, each
gadget contains control (gray) pegs that are used to force players to behave in the desired
way. Control pegs are embedded on the board to monitor each pair of consecutive black pegs
whose corresponding Manhattan distance is equal to 2. We use 6 types of embeddings (see
Figure 8). Basically, each configuration forces the player that is jumping over the first of 2
consecutive black pegs to jump also over the other black peg within the same move.

Wires. Wire gadgets are used to encode edges of the DVG instance as well as the vertex
s. Each such gadget receives a token peg as an input, and carries it to its output through
a single multi-hop move. This ensures that the player that is moving the token peg will
also traverse the entire wire. Three examples of wires are shown in Figure 9. To avoid that
the player moving the token peg would not traverse the entire wire, control pegs have been
added all along the wire. Observe that the embedding of control pegs that monitor a pair of
consecutive black pegs on straight wires is independent of the position of the other control
gadgets placed along the wire. Finally, notice that a wire can also make 90-degree turns both
clockwise and counterclockwise: indeed, the right-most drawing in Figure 9, being symmetric,
can be traversed in both directions.
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Figure 10 Vertex gadget. The rightmost drawing shows that the player that enters the gadget
from its output loses.

Vertices. Vertex gadgets (see Figure 10) are used to encode vertices of the DVG instance
that are different from s. Each such gadget receives the token peg of a player as an input,
and outputs the token peg owned by the other player in exactly 2 moves. This is done thanks
to the presence of control pegs which force the player that is entering the vertex gadget with
a token peg he owns, to terminate his move exactly when his token peg is aligned with the
token peg owned by the other player. Thus, the gadget forces the opponent to move his
token peg to the output of the gadget. We observe that no token peg remains inside a vertex
gadget once it has been visited. Furthermore, if we think of the game as if it were played on
a chessboard, we also observe that if the input token peg comes from a black (resp., white)
square of the chessboard, then the token peg contained in the vertex gadget is on a white
(resp., black) square. Finally, we observe that a player that cheats and tries to enter the
vertex gadget from its output position rather than from its input position, will lose the game.

Branches and one-way gadgets. A branch (see Figure 11) is used to model both the merge
of two distinct wires into a single wire (i.e., vertices with indegree 2), as well as the split of
one wire into two distinct wires (i.e., vertices with outdegree 2). The gadget takes one token
peg in one of the two possible input positions, and forces the moving player to exit from
the gadget either in the (unique) output position, or in the other input position. Branches
are not sufficient by themselves to model wire splits and merges, and they need to be used
together with one-way gadgets.
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Figure 12 One-way gadget. The rightmost drawing shows that the player that enters the gadget
from its output loses.

One-way gadgets (see Figure 12) are used to avoid that players can cheat by visiting
branches starting from their corresponding output positions rather than from their corre-
sponding input positions. The one-way gadget takes a token peg as an input, and outputs
the token peg with 3 multi-hop moves. A one-way gadget contains two additional token
pegs, one token peg for each player, each of which must be activated before it can be moved.
Similarly to the vertex gadget, a one-way gadget outputs a token peg that is different from
the one that entered the gadget. However, differently from the vertex gadget, the one-way
gadget outputs a token peg owned by the same player that entered the gadget. A one-way
gadget is designed in such a way that a player that cheats and tries to enter such a gadget
from its output rather than its input, will lose the game.

The merge of two wires can now be modelled with a branch whose output is attached with
the input of a one-way gadget. Similarly, the split of a wire into two wires can be modelled
by using a branch and two one-way gadgets, whose inputs are attached to the output and to
any of the 2 inputs of the branch, respectively.

3.2 Putting all together

The token pegs are placed over the (chess)board in such a way that, w.l.o.g., Player 1 owns
the token pegs that are placed on black squares, while Player 2 owns the token pegs that are
placed on white squares. We observe that this induces the position of each vertex gadget on
the board, according to the vertex-player association (we recall that each player has been
associated with a specific side of the bipartition). Therefore, when it is Player 1’s turn, the
(unique) active token peg is on a black square, and the player can only move such a token
peg to activate a token peg placed on a white square, if possible. Similarly, when it is Player
2’s turn, the (unique) active token peg is on a white square, and the player can only move
such a token peg to activate a token peg placed on a black square, if possible.
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Figure 13 A DVG instance and its corresponding Multi-Hop Duotaire one. For the sake of

readability, some (redundant) one-way gadgets have been removed.
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Figure 14 The three ingredients of our reduction for the 2-player version of Solitaire-Reachability.
Picture (a) shows (the form of) the peg configuration resulting from the application of the transfor-
mation given in [15] to a circuit C' (equivalent to the formula F'). There is a choice gadget for each
variable. Picture (b): the competitive choice gadget. Picture (c): the target gadget of Player 2. If
Player 1 is forced to make the only available move in the gadget, then Player 2’s target position
becomes reachable.

Similarly to the single-hop Duotaire, the embedding shall guarantee that each output
of any gadget can be connected to the corresponding input of the consecutive gadget. This
could be a problem when the output is, for example, in an even-even position while the input
is in a odd-odd position.? However, the one-way gadget can be used (also) to restore the
desired parity. See Figure 13 for an example multi-hop Duotaire instance obtained from a
corresponding DVG instance.

By using similar arguments to the ones we discussed for single-hop Duotaire, we can now
state the following:

» Theorem 2. Deciding whether the first player can force a win in multi-hop Duotaire is
PSPACE-complete.

4  2-player Solitaire Reachability

In this section we prove that the 2-player version of Solitaire Reachability discussed in the
introduction is PSPACE-complete. We present the reduction when the winning rule is the
following: a player wins when either he reaches his target position, or his opponent has no
available moves. Next, we show how to adapt the reduction for other winning conditions.
The main idea of the reduction is borrowed from the PSPACE-completeness reduction
of the bounded 2-player constraint logic presented in [17]. The reduction is from Positive
Conjunctive Boolean Formula Game (POS CNF), where one wants to understand whether
the first player can force a win in the following game. We are given a monotone boolean
formula F' in CNF, i.e., a formula containing positive literals only. The two players alternate
choosing some variable of F' that has not yet been chosen, and decide whether to assign
either true or false to that variable. The game ends after all variables of F' have been chosen.

2 Notice that the cases even-odd and odd-even cannot occur because of the vertex-player association.
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The first player wins if and only if F' is true; therefore, the second player wins if and only
if I is false. Observe that since F' is monotone, the first player has convenience to set the
chosen variables to true, while the second player will always set his variables to false.

It is well known that any CNF Boolean formula can be transformed, in polynomial
time, into an equivalent planar Boolean circuit of NAND gates only, which in turn can be
converted into an instance of Solitaire-Reachability [15]. More precisely, we use this fact to
convert F' into a configuration of white pegs and a target position having the form showed in
Figure 14 (a), where there is a choice gadget for each input variable. Each choice gadget
allows to set the corresponding variable either to true or false. The reduction given in [15]
implies the following: there exists a sequence of moves placing a peg in the target position if
and only if the chosen Boolean assignment satisfies F'.

In our reduction we first replace each choice gadget with a competitive choice gadget
(see Figure 14 (b)). The competitive choice gadget allows Player 1 to set the corresponding
variable either to true or false, unless Player 2 forces Player 1 to set the variable to false.
Therefore, the player that plays the gadget first essentially decides the assignment of the
variable. To complete the description of the reduction, we add the target gadget of Player
2 (see Figure 14 (c)), in which the target position of the player is occupied by a peg of his
opponent, and sufficiently many dummy moves that can be performed only by Player 2.

Clearly, since F' is monotone, both players have convenience to first play all the competitive
choice gadgets, and, once the truth assignment has been chosen, Player 1 has a sequence of
moves that allows him to win the game only if the truth assignment satisfies the formula.
Conversely, if the truth assignment does not satisfy the formula, then Player 1 runs out of
moves before Player 2, frees the target position of his opponent, and Player 2 wins the game.
Therefore, Player 1 can force a win in our instance if and only if he can force a win in the
POS CNF instance.

Our reduction can be adapted to other winning conditions:

The only way a player can win is reaching the target position. In this case, we can assume
that a player with no available moves can skip his turn, and that the game can end with
a draw, whenever no player can move and no target position has been reached yet. The
reduction is exactly the same.

There is no target position and the first player that has no available moves loses the game.
The reduction is the same but we remove the target gadget of Player 2, and we add a
number of sufficiently large moves for Player 1, that are triggered only if a (white) peg is
placed in the old target position of Player 1.
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—— Abstract

We show that the problem of deciding whether a collection of polyominoes, each fitting in a
2 x O(logn) rectangle, can be packed into a 3 x n box does not admit a 20(n/logn) _time algorithm,
unless the Exponential Time Hypothesis fails. We also give an algorithm that attains this lower
bound, solving any instance of polyomino packing with total area n in 29(*/1°87) time. This
establishes a tight bound on the complexity of Polyomino Packing, even in a very restricted case.
In contrast, for a 2 x n box, we show that the problem can be solved in strongly subexponential
time.
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1 Introduction

The complexity of games and puzzles is a widely studied topic, and the complexity of most
games and puzzles in terms of completeness for a particular complexity class (NP, PSPACE,
EXPTIME, ...) is generally well-understood (see e.g. [5] for an overview). Results in this
area are not only mathematically interesting and fun, but are also a great educational tool
for teaching hardness reductions. However, knowing that a game or puzzle is NP-complete
does not provide a very detailed picture: it only tells us that there is unlikely to be a
polynomial-time algorithm, but leaves open the possibility that there might be a very fast
superpolynomial but subexponential-time algorithm. This issue was precisely the motivation
for introducing the Exponential Time Hypothesis [6].

The Exponential Time Hypothesis (ETH) states that there exists no algorithm solving n-
variable 3-SAT in 2°(") time. Assuming this hypothesis, and by designing efficient reductions
(that do not blow up the instance size too much), it is possible to derive conditional lower
bounds on the running time of an algorithm.

In this paper, we study the POLYOMINO PACKING problem from the viewpoint of exact
complexity. We give a reduction from 3-SAT, showing that POLYOMINO PACKING can not
be solved in 2°(*/1°87) time, even if the target shape is a 3 x n rectangle and each piece fits
in a 2 x O(logn) rectangle. As the reduction is self-contained, direct from 3-SAT and rather
elegant, it could be an excellent example to use for teaching. We also show that this is tight:
POLYOMINO PACKING can be solved in 29("/1087) time for any set of polyominoes of total
area n that have to be packed into any shape.
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PoLYOMINO PACKING appears to behave similarly to SUBGRAPH ISOMORPHISM on planar
graphs, which has exact complexity 20(7/logn) [1] (i.e., there exist an algorithm solving
the problem in 20(*/1°27) time on n-vertex graphs, and unless the ETH fails there is no
20(n/10gm)_time algorithm).

Demaine and Demaine [4] showed that packing n polyominoes of size ©(logn) x ©(logn)
into a square box is NP-complete. This result left open a gap, namely of whether the problem
remained NP-complete for polyominoes of area O(logn). This gap was recently closed by
Brand [3], who showed that POLYOMINO PACKING is NP-complete even for polyominoes
of size 3 x O(logn) that have to be packed into a square. However, Brand’s construction
effectively builds up larger (more-or-less square) polyominoes by forcing smaller (rectangular)
polyominoes to be packed together in a particular way, by using jagged edges that correspond
to binary encodings of integers to enforce that certain pieces are placed together.

Our reduction also uses binary encoding of integers to force that various pieces are
placed together. However, in contrast, it gives hardness for a much more restricted case
(packing polyomino pieces of size 2 x O(logn) into a rectangle of height 3) and also reduces
directly from 3-SAT, avoiding the polynomial blowup incurred by Brand’s reduction from
3-PARTITION, thus giving a tight (under the Exponential Time Hypothesis) lower bound.
As 3-PARTITION is a frequently used tool for showing hardness of various types of packing
puzzles and games, we believe that these techniques could be used to give (tight, or at least
strong) lower bounds on the complexity of other games and puzzles.

This result is tight in another sense: we show that POLYOMINO PACKING where the
target shape is a 2 X n rectangle admits a 90(n*"*logn)_time algorithm, so 3 x n is the smallest
rectangle in which a 22"/ 1°87)_time lower bound can be attained.

Note that our results are agnostic to the type (free, fixed or one-sided) of polyomino
used. That is, it does not matter whether we are able to rotate (one-sided), rotate and flip
(free) or not (fixed) our polyominoes. Our reduction creates instances whose solvability is
preserved when changing the type of polyomino, while the algorithms can easily be adapted
to work with any type of polyomino. In the following, we consider the POLYOMINO PACKING
problem, which asks whether a given set of polyominoes can be packed to fit inside a given
target shape. If we include the additional restriction that the area of the target shape is
equal to the total area of the pieces, we obtain the EXACT POLYOMINO PACKING problem.

2 Lower Bounds

» Theorem 1. Unless the Exponential Time Hypothesis fails, there exists no 200"/ 108™) time
algorithm for POLYOMINO PACKING, even if the target shape is a 3 X n box, and the bounding
box of each polyomino is of size 2 x ©(logn).

Proof. A weaker version of the statement follows by a simple reduction from the ORTHO-
GONAL VECTOR CRAFTING problem [2]. However, because obtaining the bound on the piece
size requires a deeper understanding of the proof, and to illustrate the technique, we give a
self-contained proof that closely follows the presentation of [2].

We proceed by reduction from n-variable 3-SAT, which, unless the Exponential Time
Hypothesis fails, does not admit a 2°(™-time algorithm. By the Sparsification Lemma, [7],
we can assume that the number of clauses m = O(n).

Using the following well-known construction, we can furthermore assume that each
variable occurs as a literal at most 3 times: replace each variable x; that occurs k > 3 times
by k new variables x; 1,...,x;, and add the clauses (—@;1 V z;2) A (T2 V @iz) Ao A
(=i k-1 Vxig) Ak Vx;1). This only increases the total number of variables and clauses
linearly (assuming we start with a linear number of clauses).
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Figure 1 Top: polyominoes corresponding to variables x1,x2 and clause c3. Bottom: the

complementary polyominoes, that mate with the polyominoes above them to form a 3 x k square.

Note that the polyominoes are depicted compressed horizontally.

We remark that our construction works for general SAT formulas. The Sparsification
Lemma is only needed to achieve the stated 22("/1°2m) Jower bound, and the bound on the
number of occurrences of a variable is only needed to obtain the bound on the piece size.

Our construction will feature three types of polyomino: n formula-encoding polyominoes,
n variable-setting polyominoes and m clause-checking polyominoes. We number the variables
of the input formula 1,...,n and the clauses n +1,...,n 4+ m. With every clause or variable
we associate a bitstring of length 22 + 4[log (n + m)], which is obtained by taking the binary
representation of that clause/variable’s number, padding it with 0’s to obtain a bitstring of
length [log (n 4+ m)], replacing every 0 by 01 and every 1 by 10 (thus ensuring the number
of 1’s in the bitstring is equal to the number of 0’s, and that the bitstring contains at most
2 consecutive zeroes or ones) and then appending a reversed copy of the bitstring to itself
(making it palindromic). Finally, we prepend 11110001111 and append 11110001111 (note
that thus the start and end of the bitstring is the only place to feature 3 or more consequitive
0’s).

For any bitstring, we can create a corresponding polyomino: given a bitstring of length k,
its corresponding polyomino fits in a 2 x k rectangle, whose top row consists of k£ squares,
and whose bottom row has a square whenever the bitstring has a 1 in that position. For
each such polyomino, we can also create a complementary polyomino that mates with it
to form a 3 x k rectangle (which can also be seen as a flipped version of the polyomino
corresponding to the complement of the bitstring, i.e., the bitstring with all zeroes replaced
by ones and vice-versa). Figure 1 shows several example corresponding polyominoes and their
complements. Note that since the bitstrings are palindromic, the thus created polyominoes
are achiral, i.e., invariant over being flipped.

We can concatenate two polyominoes corresponding to bitstrings b1, bs by taking the
polyomino corresponding to the concatenation of the two bitstrings b;bs.

Note that the polyomino corresponding to a variable or clause can only mate with its
complementary polyomino, it can not fit together with any polyomino corresponding to
any other variable or clause or the complement thereof. Our construction uses as building
blocks two more polyominoes: the wildcard polyomino, which is obtained as the polyomino
corresponding to the bitstring 00001110000000 . ..00000001110000 (4[log (n 4+ m)] zeroes
surrounded by 00001110000, and the blocking polyomino, which is the complementary
polyomino for the wildcard. Note that the wildcard polyomino fits together with any clause
or variable polyomino, while the blocking polyomino only fits together with the wildcard
polyomino.

Since each variable occurs as a literal at most three times, we can assume that it appears
at most twice in positive form, and at most twice negated (if the variable occurs exclusively
positively or negated we can simply remove the clauses that contain it to obtain an equivalent
instance).
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Figure 2 Example of our reduction for the formula (z1 V z2) A (=21 V @2) A (mz1 V —z2). Top-
to-bottom, left-to-right: formula encoding polyomino for zi, variable-setting polyomino for zi,
clause-checking polyomino for c4, clause checking-polyomino for cs, formula-encoding polyomino

for 2, clause-checking polyomino for cs, variable-setting polyomino for z2. The polyominoes are
arranged in a way that suggests the solution x1 = false, xo = true.

We are now ready to define the formula-encoding polyominoes. The construction will
have n variable-encoding polyominoes, one for each variable x;, and each consists of the
concatenation of 7 polyominoes: we start with a polyomino corresponding to the bitstring of
x;. Next, for each time (at most two) z; occurs positively in a clause, we take a polyomino
corresponding to (the bitstring of) that clause. If x; occurs only once in positive form, then
we take (for padding) a copy of the blocking polyomino. Then, we take another copy of the
polyomino for z;. Next, we take the polyominoes corresponding to clauses in which x; occurs
negated. Again, we add the blocking polyomino if z; only occurs negated once. Finally, we
take another copy of the polyomino corresponding to x;.

The variable-setting polyomino for x; is the polyomino formed by concatenating, in the
following order: (a) the complement polyomino for the variable, (b) 2 copies of the wildcard
polyomino, (c) another copy of the complement polyomino.

The clause-checking polyominoes are simply the following: for each clause, we take a
polyomino corresponding to the complement of its bitstring.

This completes the construction. An example of the construction is shown in Figure 2.
Note that if fixed or one-sided polyominoes are used, the formula-encoding ones are provided
with the solid row of squares on top, and the remaining polyominoes are provided with
the solid row on the bottom. We claim this set of polyominoes can be packed into a
3 x Tn(22 4 4[log (n + m)]) box if and only if the formula is satisfiable.

(=). Suppose the polyominoes can be packed in a 3 x Tn(22 + 4[log (n +m)]) box. We
first examine the placement of the formula-encoding polyominoes. Because each formula-
encoding polyomino starts with a row of four ones, and the largest “gap” of zeroes occurring
in one is of length three, they cannot overlap vertically; each formula-encoding polyomino
must be fully to the right of the previous. Moreover, since the width of the target rectangle
matches exactly the total width of the formula-encoding polyominoes, they must be placed
back-to-back in some arbitrary permutation.

Consider the placement of a single complementary polyomino for a clause or variable. Be-
cause wherever two formula-encoding polyominoes touch back-to-back there are 8 consecutive
rows in which 2 squares are already occupied, and the longest “gap” in a complementary
polyomino is of length at most 5 (and at the left and right edges, there is a gap of length
exactly 4, we see that the rows in which this polyomino are placed can contain only a
single formula-encoding polyomino. This rules out any undesirable shifts: no complementary
polyomino can overlap (vertically) more than one formula-encoding polyomino. Moreover,
note that this same phenomenon forces the vertical alignment of polyominoes correspond-
ing to variables or clauses in the formula-encoding polyominoes with the complementary
polyominoes in variable-setting and clause-checking polyominoes.
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Now, consider the placement of a variable-setting polyomino (for variable z;). Since it
starts with a complementary polyomino for x;, and also ends with one x;, it must be placed
such that it only overlaps at most (and exactly) one formula-encoding polyomino, namely
the one for z;. It thus suffices to consider each formula-encoding polyomino in isolation.
Note that then, there are only two possible placements for the variable-setting polyomino for
variable x;: either overlapping the first half of the formula-encoding polyomino, with the
wildcard polyominoes used as building blocks in the variable-setting polyomino overlapping
(and thus blocking) the polyominoes corresponding to clauses that are satisfied by setting x;
to true, or, overlapping the second half of the formula-encoding polyomino, overlapping (and
thus blocking) the polyominoes corresponding to clauses that are satisfied by setting z; to
false.

Thus, the placement of the variable-setting polyominoes (unsurprisingly) corresponds to
an assignment for the variables of the formula. It is easy to see that the clause-checking
polyominoes can then be packed into the space left only if the assignment is satisfying:
if the assignment does not satisfy some clause, then all the places where the respective
clause-checking polyomino could fit are blocked by variable-setting polyominoes.

(«<). We can consider each formula-encoding polyomino in isolation. An assignment
for the formula immediately tells us how to pack the variable-setting polyomino for x; into
the formula-encoding polyomino for z; (namely: if z; is true we place the variable-setting
polyomino in the second half, otherwise, we place it in the first half of the formula-encoding
polyomino). It is easy to see that if the assignment is satisfying, then for each clause-checking
polyomino there is at least one possible placement inside a formula-encoding polyomino. For
an example of how the pieces fit together for a satisfying assignment, see Figure 2. <

Remark that our reduction leaves gaps inside the packing. If we consider the variant
of the problem where total area of the pieces is equal to the area of the target shape, and
thus the entire rectangle must be filled (ExAcT POLYOMINO PACKING), the instance can be
padded with several 1 x 1 polyominoes to make the total area of the pieces equal to the area
of the target rectangle.

» Corollary 2. Unless the Exponential Time Hypothesis fails, there exists no 200"/ 1987) _time
algorithm for EXACT POLYOMINO PACKING, even if the target shape is a 3 X n box, and the
bounding boz of each polyomino is of size 2 x O(logn).

This raises an interesting open problem: does EXACT POLYOMINO PACKING still admit
a 292(n/1ogn)_time lower bound when the pieces are similarly sized, that is, each piece must
have area O(logn) (or even just €(n)). This seems to greatly limit the number of possible
interactions between two polyomino pieces, since they cannot be combined in a way that
creates small gaps.

Note that in the previous reduction we can fix the position of the formula-encoding
polyominoes in advance. The problem then reduces to packing variable-setting and clause-
checking polyominoes into the shape left when subtracting the formula-encoding polyominoes
from the 3 x n rectangle, which fits inside a 2 x n rectangle. Doing so we obtain the following
corollary:

» Corollary 3. Unless the Exponential Time Hypothesis fails, there exists no 200"/ 187 _time
algorithm for POLYOMINO PACKING (Tesp., EXACT POLYOMINO PACKING), even if the target
shape fits inside a 2 X n box, and the bounding box of each polyomino is of size 2 x ©(logn)
(resp., 2 x O(logn)).
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Figure 3 Packing an arbitrary 2 X k polyomino into a Y-monotone polyomino results in several
pieces that are again Y-monotone.

3 Algorithms

Our lower bound applies in a rather constrained case: even for packing polyominoes with a
bounding box of size 2 x O(logn) into a rectangle of size 3 x n, there is no 2°(*/1°27)_time
algorithm. As we will show later, a similar lower bound can not be established when the
pieces are 1 X k or 2 X k rectangles (since the number of distinct such polyominoes is linear
in their area rather than exponential). An interesting question, which we answer negatively,
is whether a 22(?/1°87)_time lower bound can be obtained for packing polyominoes with a
bounding box of size 2 x O(logn) into a rectangle of size 2 x n. Thus, the case for which we
have derived our lower bound is essentially the most restrictive possible. Note that, while
solvable in strongly subexponential time, this problem is NP-complete, as can be seen by a
simple reduction from 3-PARTITION.

We say that a polyomino is Y-monotone if every row consists of a number of contiguous
squares, that is, there are no gaps.

» Theorem 4. POLYOMINO PACKING for fized, free or one-sided polyominoes can be solved
4
in 20" 1ogn) yime if the target shape is a 2 X n rectangle.

Proof. First, consider a simple O(2"n®™M)-time dynamic programming algorithm that
decides whether m polyominoes p1, ..., p, can be packed into a target polyomino of area
n: for any subset S of (the squares of) the target polyomino (there are 2™ such subsets)
and 1 < k < m, let B(S,k) be the proposition “the polyominoes pg, px+1,---,Pm can be
packed into S”. B(S,m) is simply the proposition that S is the same polyomino as p,; if
B(S,i— 1) is known for all S then B(S5’,i) can be computed by trying all (polyominally
many) placements of p; within S’.

If we are dealing with free or one-sided polyominoes we first guess how many (if any)
of the 1 x 2 polyominoes should be used in the vertical orientation, and how many in the
horizontal orientation. This thus converts them to fixed 1 x 2 or 2 x 1 polyominoes, and only
increases the running time of the algorithm by a factor n.

We augment the previously presented algorithm with the following observation: when
the target polyomino is a 2 X n rectangle, and if we process the polyominoes in a fixed order,
with the polyominoes that are 1 x k rectangles being processed last (thus after the 2 x 1
polyominoes and any other polyominoes), then the target shapes considered by the dynamic
programming algorithm are always the disjoint union of several Y-monotone polyominoes (c.f.
Figure 3). Such polyominoes can be described by 3 integers: one giving the number of squares
in the bottom row, one giving the number of squares in the top row, and one giving the shift
of the top row relative to the bottom row. Note that this observation crucially depends on
processing the 1 x k polyominoes last, since removing them from a 2 x k polyomino does
not necessarily result in a shape that is Y-monotone, however, if only 1 x k polyominoes
remain, we can ensure this requirement remains satisfied because we can consider the top
and bottom row of each polyomino in the target shape seperately.

If each of these integers is at most n'/*
the polyomino is large. We can use the following more efficient description of the target shape:

—1 we call the resulting polyomino small, otherwise,

for each polyomino in the shape that is small, we give the number of such polyominoes in the
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Figure 4 Polyomino Packing problem (left) modelled as Subgraph Isomorphism from pattern

(middle) into host graph (right).

Figure 5 Alternative constructions to use with fixed (left) or one-sided (right) polyominoes.

target shape and we simply list each large polyomino. Since there are at most n3/* distinct
small polyominoes, giving the quantity for each leads to at most (271)"3/4 < gn*/*(lognt1)
cases. There are at most n3 distinct large polyominoes, but the target shape contains at most
2n3/4 of them (since each has area at least nl/3), thus contributing (n3)2%"" < 26n**(ogn+1)
cases. Thus, if we identify equivalent target shapes, the dynamic programming algorithm
20(n*/*logn) subproblems, and each subproblem
can be handled in polynomial time. |

. 3/4
needs to consider at most 267" (logn+1)y —

Note that this algorithm only works when the target shape is a 2 x n rectangle. Corollary 3
shows that we should not expect a similar algorithm for packing polyominoes into an arbitrary
target shape, even if that target shape fits in a 2 x n box.

Finally, we show that our 22("/1°87)_time lower bound is tight:

» Theorem 5. POLYOMINO PACKING for free, fized or one-sided polyominoes can be solved
in 20(n/1087) time if the target shape has area n.

Proof. The problem can be modelled as Subgraph Isomorphism for an O(n)-vertex planar

graph, for which a 20("/1°87)_time algorithm is known [1]. The construction is as follows:
for every square in a polyomino, we take a cycle on four vertices, to which we add a fifth,
universal vertex (which can be embedded in a planar embedding in the middle of this cycle).

This fifth vertex is marked by adding a number of degree 1 vertices to it, to bring its degree
up to (at least) 9. Each edge of this cycle is associated with an edge of the square in the
polyomino. We make adjacent the endpoints of edges corresponding to adjacent edges in the
polyomino. Both the host graph and the guest graph are constructed in this way, the host
graph from the target shape (when viewed as a polyomino) and the guest graph from the
set of input polyominoes (which will thus have one connected component corresponding to
each separate polyomino that must be packed). An example for packing 3 polyominoes into
a 3 x 4 rectangle is shown in Figure 4. The special (degree 9) vertices must be mapped to
other vertices that are also degree 9, and this means that the cycles corresponding to squares
can only be mapped to cycles corresponding to other squares (and not to cycles created by
making cycles adjacent since those vertices have degree less than 9).

This construction works for free polyominoes. To restrict to fixed or one-sided polyominoes,

we can modify the construction slightly to make the structure used to represent a square
asymmetric. For one-sided polyominoes, we create a structure that is rotationally symmetric
but achiral. To this end, we subdivide each edge of the cycle twice and identify one of the
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two vertices created by this subdivision, add another vertex, adjacent to this vertex, to its
neighbours, and to the central vertex. For fixed polyominoes, we can add one additional edge
(from the center to one of the vertices of the cycle to also remove the rotational symmetry.
These constructions are depicted in Figure 5. <

To make the paper self-contained and more instructional, we give a direct proof of the
following weaker version of Theorem 5 — which illustrates in a simpler way the principles
from [1].

» Theorem 6. POLYOMINO PACKING for free, fized or one-sided polyominoes can be solved
in 20/ 1087) time if the target shape is a rectangle of area n.

Proof. If the rectangle is higher than it is wide, rotate it (and, if the polyominoes are fixed,
the polyominoes as well) 90 degrees. Consider a scanline passing over the rectangle from left
to right. At any given time, the scanline intersects at most O(y/n) squares of the rectangle.
We can specify how the intersection of the solution with the scanline looks by, for each square,
specifying the polyomino (if any) that is placed there, along with its rotation and translation
with respect to the square. This gives at most O(n?) cases for each square, and, since the
scanline intersects at most /n squares, 20(Vnlogn) cageg total.

We furthermore need to specify which polyominoes have already been used in the solution
(to the left of the scanline) and which ones still need to be packed. Similar to [1], a
polyomino is large if it has area greater than clogmn, and small otherwise. Since the number
of polyominoes with area k is bounded by 4.65% [8], the number of distinct small polyominoes
it at most 4.65¢°¢", For ¢ < 0.22, this is at most \/n. We can specify the quantity of
each small polyomino left with a single number from 0 to n, giving (n + 1)\/5 = 20(vnlogn)
cases. Meanwhile, the number of large polyominoes is at most n/(clogn), and thus there are
20(n/logn) hossible subsets of them.

The problem can now be solved by dynamic programming. For each position of the
scanline, we have 20("/1°87) gubproblems: can a given subset of pieces (20(n/1ogn) cases)
be packed entirely to the left of the scanline (with only the pieces intersecting the scanline
possibly sticking out to the right of it) such that the intersection with the scanline looks
as specified (20(V1987) cases) (and, in the case of EXACT POLYOMINO PACKING, leaving
no gaps)? For each such subproblem, we can find its answer by deleting the pieces whose
leftmost square(s) intersect the scanline, and checking whether the instance thus obtained is
compatible with some subproblem with the scanline moved one position to the left. |

There is an interesting contrast between these two algorithms. Whereas the strongly
subexponential algorithm for the case of the 2 x n rectangle works by considering the input
polyominoes in a fixed order (so that we always know which subset we have used) and uses a
bound on the number of subsets of the target shape that have to be considered, the algorithm
for the general case works the opposite way around: it considers subsets of the target shape
in a (more-or-less) fixed order (by the scanline approach) and bounds the number of possible
subsets of the input polyominoes.

Note that our 22("/1°g7)_time lower bound exploits the fact that we can construct
exponentially many polyominoes that fit inside a 2 x O(logn) rectangle. If we consider
polyominoes with simpler shapes, that is, polyominoes that are a x b rectangles, then the
problem can be solved in strongly subexponential time:

» Corollary 7. POLYOMINO PACKING can be solved in 20V1987) time if the polyominoes
are rectangular and the target shape is a rectangle with area n.
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Proof. Consider the algorithm presented in the proof of Theorem 6. The running time is
dominated by the number of cases for tracking a subset of the polyominoes. If the polyominoes
are rectangles, then note that the number of distinct rectangles of area at most n is also at
most n. Call a polyomino large if it has area > /n and small otherwise: there are at most
v/n large polyominoes in the input, and thus at most 2V subsets of them. The number of
distinct small polyominoes is at most 1/n, and thus specifying the quantity for each leads to
at most nV™ = 2vV71°8" cases. <

4 Conclusions

In this paper, we have given a precise characterization of the complexity of (EXACT)
PoLyoMINO PACKING. For a set of polyominoes of total area n, the problem can be solved
in 20(n/1og7) time. Even when restricted to the case where the pieces are of size 2 x O(logn)
and they have to be packed into a 3 X n rectangle or into a given shape which fits inside a
2 X n rectangle, there is no faster (up to the base of the exponentiation) algorithm unless the
Exponential Time Hypothesis fails. In contrast, in the case where the target shape is a 2 x n
rectangle, a strongly subexponential algorithm exists.
We conclude by listing several interesting open problems:
Exact polyomino packing with excess pieces: we are given some target shape, and a set
of polyominoes with total area possibly exceeding the target shape. Is it possible to use
a subset of the polyominoes to build the target shape? Clearly this problem is at least
as hard as (exact) polyomino packing; however, considering the set of pieces may be
much larger than the target shape, it would be interested to study this problem from a
parameterized perspective (where the parameter k is the area of the target shape). The
problem can be solved in 2809 -time (by the simple dynamic programming algorithm
of Section 3; is there a 2°(F)p (M _time (or even a 2°(F)20(n/1087)_time) algorithm?
What is the (exact) complexity of ExacT POLYOMINO PACKING when every piece has
area {Y(logn) or O(logn)? Our lower bound construction uses 1 x 1 polyominoes to fill
the gaps in the packing. Requiring that each piece has area Q(logn) seems to limit the
number of possible interactions between two pieces significantly.
We do not believe that our algorithm for packing polyominos into a 2 x n rectangle is
tight. What is the exact complexity of this problem? This is closely related to the exact
complexity of 3-PARTITION with the input given in unary, which (to our knowledge) is
also an open problem.
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—— Abstract

Once upon a time, a king had a very, very long list of names of his subjects. The king was also a
bit obsessed with name days: every day he would ask his servants to look the list for all persons
having their name day. Reading every day the whole list was taking an enormous amount of time
to the king’s servants. One day, the chancellor had a magnificent idea: he wrote a book with
instructions. The number of pages in the book was equal to the number of names, but following
the instructions one could find all people having their name day by looking at only a few pages
— in fact, as many pages as the length of the name — and just glimpsing at the list. Everybody
was happy, but in time the king’s servants got lazy: when the name was very long they would
find excuses to avoid looking at so many pages, and some name days were skipped. Desperate,
the king made a call through its reign, and a fat sorceress answered. There was a way to look at
much, much fewer pages using an additional magic book. But sometimes, very rarely, it would
not work (magic does not always work). The king accepted the offer, and name days parties
restarted. Only, once every a few thousand years, the magic book fails, and the assistants have
to go by the chancellor book. So the parties start a bit later. But they start anyway.

2012 ACM Subject Classification Theory of computation — Sorting and searching
Keywords and phrases Suffix trees, suffix arrays, z-fast tries, prefix search

Digital Object ldentifier 10.4230/LIPIcs.FUN.2018.10

1 Introduction

From what we can ascertain reading the enthusiastic reports of the contemporary historians,
the chancellor probably stumbled into an early version of suffiz arrays [11]. His book might
have contained a table of the initial points in the list for every name, sorted lexicographically
by suffix. Indeed, the suffix array of a string s over an ordered alphabet 3 of o elements,
in modern terms, is simply the array of the starting points of the string s$ (where $ is a
character larger than any character in X3) sorted lexicographically by the corresponding suffix.
Suffix arrays are an extremely effective way of looking for all occurrences of a pattern in a
string, as once they are built (with some additional ancillary data), search requires only an
amount of work linear in the length of the search pattern. In modern days, a large body of
research has gone into building and representing suffix arrays efficiently (e.g., in compressed
form) [6, 4, 13, 10, 7].

In fact, at the price of an additional (and very compressible) array of integers a suffix array
can represent implicitly the suffix tree associated with the string s [1]. While asymptotically
the two approaches give the same bounds, we know that managing a billion nodes or three
? Paolo Boldi and Se.bastiano Vigna.:,
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arrays of a billion integers is an entirely different business, especially if you are a poor servant
that lives on bread and water.

So, why were the servants still unhappy? Well, since the pages to look at were as many
as the letter in the names, with long names they had to jump through several pages of the
book and of the list quite at random. The book was heavy, and the list too. Looking at
consecutive pages was easy, jumping around much less.

Here is when the fat sorceress came in: she said that with an additional book and
additional instructions, looking at a number of pages equal to the logarithm of the length of
the name would have been sufficient to recover the same information, together with a few
scans on the list. The only problem is that magic is tricky and once in a while (although very
rarely) it would not work: if that happens, though, sevants would realize that something
went wrong, and they could still go the old way.

Through a thorough research we have been able to reconstruct the spell. What the fat
sorceress probably discovered is a way to apply fat binary search, the main ingredient of z-fast
tries [2], to a suffix array.! To use fat binary search, one stores some additional linear-space
information, the z-map. Then, given a pattern p of length m, one first preprocesses p in
time O(1+ (mlogo)/w), and then performs O(logm) search steps, each accessing a constant
amount of information. Then follows a verification phase, which accesses m characters, but
the interesting fact is that the characters are accessed in sequential fashion at less than o
different positions of the original text s. Thus, in modern-day parlance, fat binary search
makes it possible to find with high probability the occurrences of pattern p in s using time
O((mlogo)/w + logm + o) and O((mlogo)/B + logm + o) I/Os in the cache-oblivious
model.

2 Notation and Tools

Let X be a fixed alphabet (of cardinality o) not including the special symbol $, and define
S=%uU {$}. The alphabet ¥ comes endowed with a specified (arbitrary) total order, that
is inherited by 3 with the proviso that $ is larger than any other character. We use < to
denote the induced lexicographic order on i*, whereas = is used to denote the prefix order.

Ifz e isa string, = juxtaposed with an interval is the substring of x with those indices
(indices start from 0). Thus, for instance, z[a..b| is the substring of x starting at position a
(inclusive) and ending at position b (inclusive). We will write z[a] for z[a..a] and z[a..] for
zla..|z| — 1]. By definition, z[|z|..] =e.

We analyze our algorithms on a unit-cost word RAM with word size w in the cache-
oblivious model [5]. In this model, the machine has a two-level memory hierarchy, where the
fast level has an unknown size of M words and the slow level has an unbounded size and is
where our data reside. We assume that the fast level plays the role of a cache for the slow
level with an optimal replacement strategy where the transfers (a.k.a. I/Os) between the two
levels are done in blocks of an unknown size of B < M words; the I/O cost of an algorithm
is the total number of such block transfers. Scanning is a fundamental building block in the
design of cache-oblivious algorithms: given an array of N contiguous items the I/Os required
for scanning is O(1 + N/B).

We measure space in words. Thus, we will say that a suffix array takes linear space, even if
it needs O(nlogn) bits. A more detailed analysis can be performed when specific instances of
the various support structure have been instantiated (e.g., a compressed vs. non-compressed
lep array).

1 We should mention here that trying such a spell was suggested to the sorceress by the great sorcerer of
sorcerers, Ricardo Baeza-Yates.
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3 Static Z-Fast Tries on Arbitrary Languages

Fat binary search appeared for the first time in the context of probabilistic static z-fast
tries [2], which were originally introduced for prefix-free binary languages. Their main
purpose was to assign buckets to a larger set of strings. The basic idea is that of enriching a
standard compacted trie with a kind of acceleration map, the z-map, which makes it possible
navigate the trie quickly (i.e., using a number of accesses to the map logarithmic in the
length of the search string).

Subsequently, fat binary search was applied to dynamic z-fast tries [3], again based on
prefix-free binary strings. Dynamic z-fast tries exist in two versions: an exact version and
a signature-based version. In the first case, we store a z-map from strings to nodes, in the
second case a z-map from string signatures to nodes, and we have to handle collisions and
false positives.

In this section we start introducing exact static z-fast tries on prefix-free languages L on
a general alphabet Y, and show how they can be used to solve the following problem: is p
the prefix of some element of L? We describe the algorithms in the exact setting, adding
assertions that may fail in the signature-based setting.

3.1 Compacted tries

A compacted trie [9] over ¥ is a rooted tree such that
every node « is endowed with a string ¢, € ¥* (the compacted path of «)
every arc connecting an internal node a with one of its children o’ is labelled with a
character cy,ov € ¥ and cq o/ 7# Ca o for any two distinct children o' and o' of o
every internal node has at least two children.

For every node « of a compacted trie, we define its name n, € ¥* and its extent e, € X* as

follows:
Nyroot = €
€a = NaCq

if o is a child of «, then ny = eqCq 0

For any given finite nonempty prefix-free language L C >.*, the compacted trie of L is the
only compacted trie? T'(L) over ¥ such that L is the set of all the extents of the leaves of
T(L).

In Figure 1, we show an example of a trie with the nomenclature just introduced (and
some more that will be introduced in the following).

3.2 Exit nodes

Given a compacted trie over 3, and given a string p, we let exit(p) be the exit node of p, that

is, the only node «a such that n, < p and for every other node o' if n, = p then nl, < n,.

In other words, it is the node whose name is the longest possible prefix of p. (See Figure 1
for an example of an exit node). Moreover, we call parex node of p the parent of the exit
node of p, or a special symbol L if the exit node of p is the root (note that the parex of p is
the node with the longest extent that is a proper prefix of p).

It is worth stating the following property of exit nodes:

2 In [2], we studied compacted tries only for the binary case (i.e., ¥ = 2).

10:3

FUN 2018



10:4 Kings, Name Days, Lazy Servants and Magic

(] wm

g 2 7
= @ e}
=R = .
o | =
o

= |9 5]
: 5
&S

—

=

3 —  root
00100110 — «

Figure 1 (above) The compacted trie T'(L) (with the corresponding nomenclature) and its z-map.
Here L = {001001010,0010011010010,00100110101 }.

» Lemma 1. For a given string p, exit(p) is the only node v such that n, < p and one of
the following mutually exclusive properties holds:

D= ey

ey < p and v does not have a plle,|] child;

p and e, are =-incomparable.

Proof. The only remaining case is that e, < p with v having a p[|e,|]-child: but in this case,
that child would have a name that is still a prefix of p, longer than n.,. |

Another easy consequence of the definition is the following:

» Proposition 2. Let L C ¥* and consider the trie T(L). A string p € ¥* is a prefiz of
some element of L if and only if p = ecxig(p). Moreover, if the latter happens then the set

{eq | « is a leaf descendant of exit(p)}
is precisely the set of x € L such that p < x.

In the example of Figure 1, p = 00100100 is not the prefix of any of the strings in the
language. The name of its exit node exit(p) (the leftmost child of the root in the figure) is
0010010, which is in fact a prefix of p. Yet the extent of exit(p) is 001001010 of which p is
not a prefix. If we had taken p’ = 00100110 we would have exited at the rightmost child
of the root, whose extent 0010011010 has p’ as prefix: in fact, p’ is the prefix of two of the
elements of L, corresponding precisely to the rightmost two leaves in the trie.

A final important remark is the following: if p is not a prefix of an element of L, according
to Proposition 2, p A €exit(p). But more than this is true: p A e, for all nodes a (for
otherwise, a fortiori, p would be a prefix of the extent of a leaf).

3.3 Static z-fast tries

Let us assume that we have built the trie T'(L) for a given language L of size n. Proposition 2
gives an easy way to determine if a string p of length m is a prefix of some element of L:
it is enough to locate exit(p) and then to check whether p is a prefix of its extent or not.
Moreover, the second part of the statement suggests which elements of L have p as prefix.
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Algorithm 1 Querying the z-fast trie using fat binary search. Given a string p, it will return
either exit(p) or parex(p).

Input: a string p of length m
Output: either parex(p) or exit(p)
bir <+ 0,m
while ¢ < r do
f < the 2-fattest number in [¢.. 7]
B Z@lo..f — 1)
if B # 1 then
0+ |€[3| +1
Y B
else
r—f—1
end if
end while
return vy

Locating exit(p) can be done trivially in O(mo) steps, going down in the trie starting
from the root. In [2] we suggest an alternative, faster solution that needs an additional data
structure, called z-map. We briefly recall the idea.

» Definition 3 (2-fattest numbers and handles). The 2-fattest number of an interval [a .. b] of
non-negative integers is the unique integer in [a..b] that is divisible by the largest power of
two, or equivalently, that has the largest number of trailing zeroes in its binary representation.
The handle h,, of a node « of a trie is the prefix of e, whose length is 2-fattest in [|ng] . . |eq]]
(the skip interval of ).

In Figure 1 we show the (length of the) handles of each node, including the leaves: the
handle is the string ending just above the dotted lines you can see in each node.

» Definition 4 (z-map). The z-map Z(—) for the trie T'(L) is a map from elements of £* to
nodes in the trie, which maps h, to « for each internal node «.

In the example of Figure 1, there are only two internal nodes, so the map contains only
two pairs. The z-map can be stored using any static dictionary with constant-time access;
we assume that the dictionary returns the special value 1 whenever the key is not in the
dictionary.

The usefulness of the z-map is made evident by Algorithm 1, which takes as input a
string p € ¥* and outputs a node of the trie which is either exit(p) or parex(p): it is a
general-alphabet version of the classic fat binary search [2], and in fact, it is exactly identical
to the binary version, since the alphabet has no role in such searches. The proof from [2]
goes along in the same way.

» Theorem 5. Algorithm 1 is correct and its loop is executed at most logm times; in
particular, the z-map is accessed at most logm times.

Note that fat binary search does not use the trie structure: it only queries the z-map,
each time using a prefix of p, and computes possibly the length of the extent of a node
returned by the z-map.

If our purpose is determining whether p is the prefix of some element of L, we can start
with Algorithm 1, but then we need two things: first we must understand whether the
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Algorithm 2 Given a string p, it will return either exit(p) or L, depending on whether p is
the prefix of a string in L or not.

Input: a string p
Output: if p is the prefix of an element of L then exit(p), otherwise L
v <—Algorithm 1 on p
assert ny, < p
if p < e, then
return v /* 7 is the exit node */
else
if p and e, are <-incomparable then
return L /* v is the exit node, but p £ ecxis(p) */
else
/* necessarily e, < p */
if v has a child labelled p[|e,|] then
let 4" be the child /* 4/ is the exit node */
if p < e, then
return +/
else
assert p and e, are =<- incomparable or 7' does not have a pl|e,|]-child
return |
end if
else
return L /* v is the exit node, but p £ ecxit(p) */
end if
end if
end if

algorithm returned the exit node or its parent (and in the latter case we must go down to
the actual exit node), and second we need to use Proposition 2 to determine if p < eexit(p) Or
not. Algorithm 2 does both things at the same time.

» Theorem 6. Algorithm 2 is correct; moreover, if the length of the strings in L is bounded
by O(w/log o), the algorithm uses O(logm + o) time and I/0s.

Proof. First of all, note that since n, < p (as in the first assert), one can determine if
p = e just by comparing p[|n,|..|ey|] and ¢,. A similar consideration is true (later on in
the algorithm) for deciding if p < e,/.

Let now 7 be the output of Algorithm 1; =y is either the exit node or the parex: in either
case n, = p (which justifies the first assertion). If p < e, necessarily 7 is the exit node and
moreover p is a prefix of some element of L by Proposition 2. If p and e, are incomparable,
once more 7 is the exit node (because none of the children of v can have a name that is a
prefix of p), but (again using Proposition 2) we must return L. The last case is that e, < p.
If 4 has no child with label pHeW
but we must return 1. Otherwise, the child with label pHeVH, say 7', is the real exit node.

}, for the same reasons as in the last case, v is the exit node

We must continue to check if p < e, or not, but we can limit the check to the part of the
string p that was not checked so far. The last assertion states that 7’ is indeed the exit node.

For the complexity statement, the call to Algorithm 1 requires time O(logm) and the
same amount of I/Os to query Z(—) (every access to Z(—) is done in constant time because
of the assumption about the length of the strings in L). The comparison between p and
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e, (and, later, e,/) requires time O(1 + (mlogo)/w) and O(1 4 (mlogo)/B) I/Os (as we
observed above, in both cases we are comparing a substring of p with the compacted path
of a node), but m = O(w/log o) so these quantities are both O(1). The only case in which
Algorithm 1 needs to access the trie structure is when it needs to find the child of v with
|, which can be done in time O(0). <

label pHeA,

It is worth noting that Algorithm 2 performs at most one access to the trie structure in
case it needs to enumerate the children of «y. Moreover, the comparisons between p and other
strings requires at most o scans of overall m characters.

We also remark that if the z-map is modified to include also the handles of the leaves,
Algorithm 1 on a string in L never outputs the parex, which means that Algorithm 2 needs
just O(logm) time and I/Os to solve a membership query.

3.4 Signature-based static z-fast tries

If the length of the strings in L is not bounded by O(w/log o), the map Z(—) described in
the previous section uses superlinear space and superconstant time at every access. This is
why the “long string” version of dynamic z-fast tries [3] replaces handles with signatures:
instead of storing pairs (hq, @) we store pairs (H (hy), ) where H(—) is a suitably chosen
signature hash function. The signature-based version is designed to work with sets of at
most 29(*) strings of length up to 2°(*)_ but fat binary searches return the correct result
only with high probability.

Note that by using hashes of size (¢ + €)logn, ¢ > 2, we will find distinct hash values for
all handles after a constant expected number of attempts. Indeed, under a full randomness
assumption the probability of a collision when ¢ elements are extracted from a set of v with
replacement is well approximated by 1 — et/ 2¢_which means that with the choice above
the probability of having a hash collision between distinct handles is at most

2/21+(c+5) logn —1_ e_n2/2nc+s < 1

—n
l—e = 9pc—2+e

—0 as n — oo.

Once the signatures are all distinct, in estimating the probability of error of a fat binary
search we have to care just about at most logm false positives, which by the union bound
happen with probability at most

1 1
g~ (eFe)logn o0 — O(w) =o <) :
nene n¢

Note that each time we have to query the z-map, we have to compute the hash of
a potentially long prefix: to this purpose, the dynamic z-fast trie uses hash functions
that can hash any prefix of the pattern p in constant time after preprocessing p in time
O(14 (mlogo)/w) and storing a linear amount of information. We will see that even stronger
properties will be needed in Section 5.

Finally, the signature-based version needs that besides c,, also n, can be accessed in
constant time from «. This can be obtained in different ways, but usually the simplest one
(and the one used by the dynamic z-fast trie) is to store in a a pointer to a suitable element
of L. Another possibility is to store explicitly e,.

Due to signature collisions and false positives, Algorithm 1 may output a node ~ that
is neither the exit node nor the parex. Let us see how this fact impacts on Algorithm 2;
looking back at Lemma 1, we have the following cases:
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the node 7 returned by Algorithm 1 is in fact either the exit node or the parex (because
no false positives were found during the execution, or because by chance we anyway
landed in the correct place): in this case everything goes smoothly as before;

the returned node + is not even an ancestor of exit(p): in this case, the first assertion
(that n, < p) fails;

finally, if 7 is a proper ancestor of parex(p), then Algorithm 2 proceeds as if v was the
parex but then the second assertion of the algorithm fails (7" would in that case be an
ancestor of the parex, and not the exit node as expected).

Thus, when executing Algorithm 2 in the signature-based case, we have to actually verify
the assertions, which requires time O(1 + (mlogo)/w) and O(1 + (mlogo)/B) 1/0s, as we
have to compare the whole name n. with p (the cost of verifying the assertions covers also
the cost of the comparisons with extents discussed in the proof of Theorem 6). If either
assertion fails, we have to resort to the standard naive trie search to look for the exit node.
The naive search requires, of course, time O(mo). Summing up:

» Theorem 7. Under a full randomness assumption, let ¢ > 2 and assume that Z(—) stores
((c+¢)logn)-bit hash values without collisions. Then, in time O((mlogo)/w+logm+o) and
with O((mlogo)/B +logm + o) I/Os Algorithm 2 returns the correct result with probability
at least 1 — o(1/n°); otherwise, it detects an assertion error, in which case it returns the
correct result by resorting to the standard naive search on the trie, which requires O(mao)
time and 1/0s.

4  Suffix trees and suffix arrays

For a given string s € ¥* of length |s| = n, let Suff(s$) be the set of all the nonempty suffixes
of s$. We write T'(s) as an abbreviation for T'(Suff(s$)). The trie T'(s) is called the suffiz
tree of s. As an example, in Figure 2 we show T(ABRACADABRA).

Observe that T'(s) is a trie over the alphabet 3 (the addition of $ is needed to make the
language of suffixes prefix-free). It is worth noticing that in most papers on suffix trees there
are no labels on nodes; instead, arcs are labelled with a nonempty strings (and the arcs
to the children of a node have strings that differ in the first character). Our trees can be
transformed into this (perhaps more standard) representation by removing all node labels
and changing the label of each arc (o, &) to ¢y q/Cor. For the sake of comparison, we show
in Figure 3 the alternative representation of the same trie of Figure 2.

Although in theory one could build the suffix tree of a string explicitly, much more (space-
and time-) efficient approaches are available, based on suffix arrays. The suffiz array [11] sa
of s is the permutation of {0,1,...,n} such that

s$[sal0]..] < s$[sall]..] < --- < s$[sa[n]..].

Let us write s; as an abbreviation of s$[sa[i]..]. It is also convenient to define the lcp array
lep defined by letting lep[0] = lep[n + 2] = 0 and lep[i + 1], 0 < i < n, as the length of the
longest common prefix between s; and s;11. In Figure 4, we show the suffix array and the
lep array for our running example s = ABRACADABRA.

Every node « in the suffix tree can be identified with the interval [, .. 7] of indices such
that k € [{y..7o] if and only if si is the extent of one of the leaves that are descendants of
a. The interval [{,, ..r,] is called the lep-interval of node « [1]. It is easy to see that:

the lep-interval of the root is [0..n];

leaves are the only nodes whose lcp-interval is a singleton;
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€ —  root =[0..11]
A —  ap=1[0..4]
RA — 9..
ABRA — 0.
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Figure 2 The zuffix tree T(ABRACADABRA) and its z-map (with lcp-intervals).

the lep-intervals of the children «q, a1, ..., ai of a node a are an ordered partition of
the lcp-interval of their parent, where the ordering is established by the lexicographic
order of the characters cq,q, -

Not only there are efficient algorithms to build the suffix array (and the associated lcp
array) [10, 7, 12]: at the price of one additional (and very compressible) array of integers
the suffix array can be made into a so-called enhanced suffix array, and then used to
represent and navigate implicitly the suffix tree [1]. More precisely, we can enumerate the
lep-intervals [€..¢; — 1], [¢1..42 — 1], ..., [g .. 7] corresponding to the children of the node
whose lcp-interval is [¢..r]. Each child is enumerated in constant time.

It is easy to check that given a node with lep-interval [£..r] we can compute all the data
we need (name, extent, etc.) using only the suffix and the lcp arrays:

0 if =0 and r = n (root)
nen| = {1 + max(lcp[£], lep[r + 1])  otherwise
|6[e,r]| _ {n —sall]+1 ifl= 7". (leaf)
lepla] otherwise
|hie,)| = the 2-fattest number in [|ng,| .. |es]
np, = s[salf]..salf] + |n[w]‘ —1]
ey = 8 [sa[é] ..sall] + {6[57,«]| — 1]

where q is the left extreme of the lep-interval of the second child of [¢..7].

Getting back again to the example depicted in Figure 2, consider the leftmost grandchild of
the root, corresponding to the lep-interval [0.. 1]; its children are both leaves and correspond
to [0] and [1]. Its name has length 14 max(lep[0], lep[2]) = 2 (see Figure 4) and its extent has
length lep[1] = 4. Since sa[0] = 0, name and extent are s[0..1] = AB and s[0..3] = ABRA,
respectively. Its first child [0] has name of length 1 + max(lcp[0],lcp[1]) = 5 (its name is in
fact ABRAC), and extent of length n — sa[0] + 1 = 12 (which is in fact ABRACADABRAS).

FUN 2018
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Figure 3 The suffix tree T(ABRACADABRA) in the alternative representation used in most
papers about suffix trees.

5 Zuffification

As we explained, there are very efficient (in fact, even very well engineered) algorithms to
build a suffix tree or an (enhanced) suffix array in linear time. What we want to do is adding
to them a z-map gadget (in the case of suffix arrays, the z-map is that of the suffix tree that
the suffix array implicitly represents). We call this process zuffification (which looks really
nice for a spell), and resulting data structures are called the zuffiz tree and the (enhanced)
zuffix array.

The idea is very simple: we perform a depth-first visit of the suffix tree. For each internal
node, we can compute its handle (as explained in the previous section), the corresponding
hash, and store the correspondence between the hash and the node. We then check for
collisions in the hash values of handles, possibly restarting with a different hash function
if some collision is found, and finally build a static constant-time dictionary mapping the
hashes to the nodes.

Of course, computing a hash for x needs time O(1 + (|x|logo)/w). However, we can
make hashing time constant by resorting to a particular kind of rolling hashing: in particular,
we want the two following properties to be true:

1. Given a string « € ¥* and ¢ € %, we have H(zc) = f(H(x),c), where f can be computed
in constant time.

2. Given strings z,y € X*, we have H(y) = g(H (zy), H(x)), where g can be computed in
constant time.

If H is chosen in this way, we can build in linear time (by the first property) a table recording
the hashes of the prefixes of the text s. At that point, computing the hash of a(ny) substring
of s requires constant time by the second property (the values of H(z) and H(y) being
found in the table). Several types of hash functions have the properties described above: the
list includes hashing based on cyclic polynomials [15], Karp-Rabin hashing [8] and hashing
based on the remainder of the division by a general irreducible polynomial [14] (the string is
mapped to a string of bits and then interpreted as a polynomial over Fs). Thus,
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i | sali] | lep[i] | s; = s$[sali]..]
0 0 0 | ABRACADABRAS
1 7 4 | ABRAS
2 3 1 | ACADABRAS
3 5 1 | ADABRAS
4 10 1| AS
5 1 0 | BRACADABRAS$
6 8 3 | BRAS
7 4 0 | CADABRAS$
8 6 0 | DABRAS$
9 2 0 | RACADABRAS
10 9 2 | RAS
11 11 01]$
12 0

Figure 4 The suffix array and lcp array for the string ABRACADABRA.

» Theorem 8. Zuffification can be performed in expected linear time (in fact, with high
probability) both for suffix trees and suffix arrays.

A practical improvement that slows down the construction time, but reduces significantly
the space usage, is that of recording the hashes only for prefixes whose length is multiple of
some value O(w). In the cases above, it possible to still compute the hash of a substring
quickly, albeit in some case O(w) operations might be necessary (this depends on which
instructions are considered to be atomic: for example, modern processor have constant-time
multiplication of polynomial on F5). However, we have to store much fewer prefix hashes.

5.1 Searching with zuffix arrays

We can finally completely rebuild the spell of the fat sorceress. Given a string s, we build in
linear time its enhanced suffix array, and simulate in linear time a visit of the associated
suffix tree to build the z-map, thus obtaining the zuffix array. The latter operation works in
expected linear time, because there might be collisions.

To search the zuffix array, we apply Theorem 7 to our setting, obtaining the same bounds.
More importantly, since the nodes of the simulated suffix tree are exactly the intervals of the
suffix array containing the starting points of the suffixes we are looking for, at the end of
Algorithm 2 we have found all the locations of the search pattern:

» Theorem 9. Under a full randomness assumption, given a pattern p, a zuffix array (in
time O((mlogo)/w + logm + o) and with O((mlogo)/B + logm + o) 1/0s) returns the
interval of the underlying suffix array containing the positions at which p appears, with
probability at least 1 — o(1/n¢); otherwise, it returns the same result in time O(mo).

Significant practical improvements to the space used by the z-map can be obtained using
the following theorem, which can be proved by adapting the proof of Theorem 5:

» Theorem 10. Let L be a prefiz-free language, and S a parent-closed set of nodes of T(L).
Consider a map Z sending ho — o, a € S. Then, Algorithm 1 returns the lowest ancestor
in S of the exit node of the pattern, or its parent.

The theorem above opens the door to a number of interesting space-time tradeoffs: for
example, eliminating c levels of leaves in Definition 4 one obtains a much smaller map, but
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now locating the actual exit node (Algorithm 2) may require to go down c levels in the trie,
using time O((mlogo)/w + logm + co) and with O(mlogo/B + logm + co) 1/Os.

An even more interesting application is in DNA searching: usually the databases are
very large, but the patterns are several orders of magnitude shorter: by building a z-map
containing only handles shorter than ¢, the search for patterns shorter than ¢ will not be
affected, but the map will be much smaller (longer patterns will still be searchable, possibly
using time O(mo)).

6 Conclusions

The fat sorceress was actually quite good at spells: given a pattern p, after a search that is
logarithmic in |p|, a zuffix array tests p against s scanning from at most o positions. In practice,
this means at most o cache misses in the test phase (this fact is only partially expressed by
the I/Os in the cache-oblivious model, as the model does not consider prefetching). The
result needs an uncompressed original text, but in the context of the rise of modern low-cost
fast storage, like solid-state drives, this limitation does not seem so serious. We remark
that in our description we used enhanced suffix arrays, but nothing prevents zuffification of
compressed suffix trees [16], compressed suffix arrays [6] or even of the FM-index [4].

—— References

1  Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees
with enhanced suffix arrays. Journal of discrete algorithms, 2(1):53-86, 2004.

2 Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Monotone minimal
perfect hashing: Searching a sorted table with O(1) accesses. In Proceedings of the 20th
Annual ACM-SIAM Symposium On Discrete Mathematics (SODA), pages 785-794, New
York, 2009. ACM Press.

3  Djamal Belazzougui, Paolo Boldi, and Sebastiano Vigna. Dynamic z-fast tries. In Edgar
Chévez and Stefano Lonardi, editors, String Processing and Information Retrieval - 17th
International Symposium, SPIRE 2010, Los Cabos, Mezico, October 11-13, 2010. Proceed-
ings, volume 6393 of Lecture Notes in Computer Science, pages 159—172. Springer, 2010.

4 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552-581,
jul 2005.

5 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. ACM Trans. Algorithms, 8(1):4:1-4:22, 2012.

6 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM Journal on Computing, 35(2):378—
407, 2005.

7  Juha Kérkkéinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construc-
tion. Journal of the ACM (JACM), 53(6):918-936, 2006.

8 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249-260, 1987.

9 Donald E. Knuth. The Art of Computer Programming. Addison—Wesley, 1973.

10 Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. Journal
of Discrete Algorithms, 3(2-4):143-156, 2005.

11  Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935-948, 1993.

12 Ge Nong, Sen Zhang, and Wai Hong Chan. Linear suffix array construction by almost pure
induced-sorting. In Data Compression Conference, 2009. DCC’09., pages 193-202. IEEE,
2009.



P. Boldi and S. Vigna 10:13

13

14

15

16

Ge Nong, Sen Zhang, and Wai Hong Chan. Two efficient algorithms for linear time suffix
array construction. IEEE Transactions on Computers, 60(10):1471-1484, 2011.

W. W. Peterson and D. T. Brown. Cyclic codes for error detection. Proceedings of the IRE,
49(1):228-235, 1961.

Eugene Prange. Cyclic error-correcting codes in two symbols. Technical note AFCRC-TN-
57-103, Air Force Cambridge Research Center, 1957.

Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory of Computing
Systems, 41(4):589-607, 2007.

FUN 2018






Computational Complexity of Generalized
Push Fight

Jeffrey Bosboom
MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
jbosboom@csail.mit.edu

Erik D. Demaine
MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
edemaine@mit.edu

Mikhail Rudoy!
MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
mrudoy@gmail.com

—— Abstract

We analyze the computational complexity of optimally playing the two-player board game Push
Fight, generalized to an arbitrary board and number of pieces. We prove that the game is
PSPACE-hard to decide who will win from a given position, even for simple (almost rectangular)
hole-free boards. We also analyze the mate-in-1 problem: can the player win in a single turn?
One turn in Push Fight consists of up to two “moves” followed by a mandatory “push”. With
these rules, or generalizing the number of allowed moves to any constant, we show mate-in-1 can
be solved in polynomial time. If, however, the number of moves per turn is part of the input, the
problem becomes NP-complete. On the other hand, without any limit on the number of moves
per turn, the problem becomes polynomially solvable again.
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1 Introduction

Push Fight [10] is a two-player board game, invented by Brett Picotte around 1990, pop-
ularized by Penny Arcade in 2012 [9], and briefly published by Penny Arcade in 2015 [§].
Players take turns moving and pushing pieces on a square grid until a piece gets pushed off
the board or a player is unable to push on their turn. Figure 1 shows a Push Fight game in
progress, and Section 2 details the rules.

In this paper, we study the computational complexity of optimal play in Push Fight,
generalized to an arbitrary board and number of pieces, from two perspectives:
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Figure 1 A Push Fight game in progress. Photo by Brettco, Inc., used with permission.

Table 1 Summary of our results.

Computational complexity of. ..
Moves per turn | Mate-in-1 Who wins?
<2 P PSPACE-hard, in EXPTIME
< ¢ constant P open
< k input NP-complete | open
unlimited P open

1. Who wins? The typical complexity-of-games problem is to determine which player wins
from a given game configuration.

2. Mate-in-1: Can the current player win in a single turn?

Table 1 summarizes our results.

Generalized Push Fight is a two-player game played on a polynomially bounded board
for a potentially exponential number of moves, so we conjecture the “who wins?” decision
problem to be EXPTIME-complete, as with Checkers [11] and Chess [4]. (Certainly the
problem is in EXPTIME, by building the game tree.) In Section 4, we prove that the problem
is at least PSPACE-hard, using a proof patterned after the NP-hardness proof of Push-x
[7]. Our proof uses a simple, nearly rectangular board, in the spirit of the original game; in
particular, the board we use is hole-free and z-monotone (see Figure 8). It remains open
whether Push Fight is in PSPACE, EXPTIME-hard, or somewhere in between.

Our mate-in-1 results are perhaps most intriguing, showing a wide variability according
to whether and how we generalize the “up to two moves per turn” rule in Push Fight. If we
leave the rule as is, or generalize to “up to ¢ moves per turn” where c is a fixed constant
(part of the problem definition), then we show that the mate-in-1 problem is in P, i.e., can
be solved in polynomial time. However, if we generalize the rule to “up to & moves per turn’
where k is part of the input, then we show that the mate-in-1 problem becomes NP-complete.
On the other hand, if we remove the limit on the number of moves per turn, then we show
that the mate-in-1 problem is in P again. Section 3 proves these results.

)

The mate-in-1 problem has been studied previously for other board games. The earliest
result is that mate-in-1 Checkers is in P, even though a single turn can involve a long sequence
of jumps [3]. On the other hand, Phutball is a board game also featuring a sequence of jumps
in each turn, yet its mate-in-1 problem is NP-complete [2].

For omitted proofs, see the full version of the paper [1].
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a black king, a black pawn; and white and
black anchored kings (in an actual game, Figure 5 An example push.
there is only one anchor).

2 Rules

The original Push Fight board is an oddly shaped square grid containing 26 squares; see
Figure 2. Part of the boundary of this board has side rails which prevent pieces from being
pushed off across those edges. We generalize Push Fight by considering arbitrary polyomino
boards, with each boundary edge possibly having a side rail.

Push Fight is played with two types of pieces, each of which takes up a square of the
board: pawns (drawn as circles) and kings (drawn as squares). Each piece is colored either
black or white, denoting which player the piece belongs to. Standard Push Fight is played
with three kings and two pawns per player. Additionally, there is a single anchor that is
placed on top of a king after it pushes (but is never placed directly on the board). Figure 3
shows our notation for the pieces.

Push Fight gameplay consists of the two players alternating turns. During a player’s turn,
the player makes up to two optional moves followed by a mandatory push.

To make a move, a player moves one of their pieces along a simple path of orthogonally
adjacent empty squares; see Figure 4.

To push, a player moves one of their kings into an occupied adjacent square. The
piece occupying that square is pushed one square in the same direction, and this continues
recursively until a piece is pushed into an unoccupied square or off the board. If this process
would push a piece through a side rail, or would push the anchored king, the push cannot be
made. Pushes always move at least one other piece. When the push is complete, the pushing
king is anchored (the anchor is placed on top of that king). Figure 5 shows a valid push.

A player loses if any of their pieces are pushed off the board (even by their own push) or
if they cannot push on their turn.

» Definition 1. A Push Fight game state is a description of the board’s shape, including
which board edges have side rails, and for each board square, what type of piece or anchor
occupies it (if any).

Note that the position of the anchor encodes which player’s turn it is: if the anchor is on
a white king, it is black’s turn, and vice versa. If the anchor has not been placed (no turns
have been taken), it is white’s turn.
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FUN 2018



11:4

Computational Complexity of Generalized Push Fight

3 Mate-in-1

We consider three variants of mate-in-1 Push Fight, varying in how the number of moves is
specified: as a constant in the problem definition, as part of the input, or without a limit.

3.1 c-Move Mate-in-1

» Problem 2. ¢-MovVE PUsH FIGHT MATE-IN-1: Given a Push Fight game state, can the
player whose turn it is win this turn by making up to ¢ moves and one push?

The standard Push Fight game has ¢ = 2.
» Theorem 3. c-MoOVE PUSH FIGHT MATE-IN-1 is in P.

Proof Sketch. The number of possible turns is < A2¢t* on a board of area A. <

3.2 k-Move Mate-in-1 is in NP

» Problem 4. k-MoOVE PUSH FIGHT MATE-IN-1: Given a Push Fight game state and a
positive integer k, can the player whose turn it is win this turn by making up to k moves and
one push?

In this section, we prove the following upper bound on the number of useful moves in a
turn:

» Theorem 5. Given a Push Fight game state on a board having n squares, if the current
player can win this turn, they can do so using at most n® moves followed by a push.

Proof Sketch. We divide the reachable game states into < n* equivalence classes, and show
that two equivalent configurations can be reached via < n? moves within that class. |

Our bound directly implies an NP algorithm for k-MOVE PUsH FIGHT MATE-IN-1:
» Corollary 6. k-MoOVE PusH FIGHT MATE-IN-1 is in NP.

A turn consists of making some number of moves followed by a single push. For the purpose
of analyzing a single turn, kings other than the single king that pushes are indistinguishable
from pawns, so we can assume the current player first chooses a king, then replaces all of
their other kings with pawns before making their moves and push. The following definitions
are based on this assumption.

» Definition 7. Given a single-king game state, a board configuration is a placement of pieces
reachable by the current player making a sequence of moves.

» Definition 8. The pawnspace of a board configuration is the (possibly disconnected) region
of the board consisting of the empty squares and the squares containing the current player’s
pawns. Equivalently, the pawnspace is the region consisting of all squares not occupied by
the current player’s king or the other player’s pieces.

» Definition 9. The signature of a board configuration is a list of nonnegative integers,
where each integer is a count of the current player’s pawns in a connected component of the
configuration’s pawnspace, ordered according to row-major order on the leftmost topmost
square in the corresponding connected component.
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» Definition 10. Given two board configurations C; and Cj derived from the same game

state, we say that C; = Cs if and only if

1. C; and Cs have the same pawnspace (that is, the current player’s only king occupies the
same square in C7 and Cs) and

2. (4 and Cy have the same signature (that is, each connected component of the pawnspace
contains the same number of the current player’s pawns in Cq and Cs).

Relation = is clearly reflexive, symmetric, and transitive, so it is an equivalence relation
inducing a partition of the set of board configurations derived from a given game state into
equivalence classes. We need the following two lemmas about = for our proof of Theorem b5:

» Lemma 11. For a given game state on a board with n squares, there are at most n*
equivalence classes of board configurations.

» Lemma 12. If C; = Cs, then Co can be reached from C1 in at most n®2 — 1 moves without
leaving the equivalence class of Cy.

We are now ready to prove Theorem 5:

» Theorem 5. Given a Push Fight game state on a board having n squares, if the current
player can win this turn, they can do so using at most n® moves followed by a push.

Proof. By our assumption that the current player can win this turn, there exists a sequence of
moves for the current player after which they can immediately win with a push, corresponding
to a sequence of board configurations C,Cs, ..., ;. Configuration C; is obtained from
the initial game state by replacing all of the current player’s kings, except the one that
ends up pushing, with pawns. Each C;;1 can be reached from C; in one move, and Cj is a
configuration from which the current player can win with a push.

We now define simplifying a sequence of board configurations over an equivalence class
E. If the sequence contains no configurations from F, then simplifying the sequence over E
leaves it unchanged. Otherwise, let A; be the first configuration in the sequence in E and
A; be the last configuration in the sequence in E. By Lemma 12, there exists a sequence
of fewer than n? — 1 moves that transforms A; into A;, corresponding to a sequence of
board configurations A; = Do, D1,...,D, = A; with u < n? — 1. Then simplifying over E
consists of replacing all configurations between and including A; and A; with the replacement
sequence Dg, Dq,...,D,.

Notice that simplifying a sequence (over any class) never changes the first or last configu-
ration in the sequence, and each configuration in the resulting sequence remains reachable in
one move from the previous configuration in the resulting sequence. After simplifying over a
class F, the only configurations in the resulting sequence in E are those in the replacement
sequence, so the number of configurations in the sequence in F is at most n?. Furthermore,
all configurations in the replacement sequence are in E, so simplifying over FE never increases
(but may decrease) the number of configurations falling in other classes.

Let C1,CY, ..., C] be the result of simplifying Cy,Cy, ..., C; over every equivalence class.
By Lemma 11, there are at most n* such classes, and by the above paragraph there are at
most n? configurations from each class in C},C5, ..., C], so the length of C{,C%,...,C] is at
most n®. Each configuration in Cf,CY,...,C] is reachable in one move from the previous
configuration, and that sequence of at most n® moves leaves the current player in position to
win with a push, as desired. |
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3.3 Unbounded-Move Mate-in-1

» Problem 13. UNBOUNDED-MOVE PUSH FIGHT MATE-IN-1: Given a Push Fight game
state, can the player whose turn it is win this turn by making any number of moves and one
push?

» Theorem 14. UNBOUNDED-MOVE PUsH FIGHT MATE-IN-1 ¢s in P.

We can of course solve UNBOUNDED-MOVE PUSH FIGHT MATE-IN-1 by trying all possible
sequences of moves to find a board configuration from which the current player can win
with a push, but there are exponentially many board configurations, so such an algorithm
takes exponential time. Instead, we can use the fact that any two configurations in the same
equivalence class are reachable from each other in a polynomial number of moves (from
Lemma 12) to search over equivalence classes of board configurations instead of searching
over board configurations. There are at most n* equivalence classes (by Lemma 11), so they
can be searched in polynomial time.

We will make use of the following definitions:

» Definition 15. Two equivalence classes of board configurations C; and Cs are neighbors
if there exist board configurations by € C7 and by € C5 such that b; can be reached from
by with a king move of exactly one square. The equivalence class graph is a graph whose
vertices are equivalence classes of board configurations and whose edges connect neighboring
equivalence classes.

An equivalence class of board configurations C' is a winning equivalence class if there
exists a board configuration b € C such that the player whose turn it is can win with a push.

The key idea for our algorithm is the following:

» Lemma 16. There exists a path in the equivalence class graph from the equivalence class
of the initial board configuration to a winning equivalence class if and only if there exists a
winning move Sequence.

The size of the equivalence class graph is polynomial in n (by Lemma 11), so provided
the graph can be constructed and the winning equivalence classes identified, this type of
path in the equivalence class graph, if it exists, can be found in polynomial time.

Recall from Definition 10 that equivalence classes of board configurations are defined by
the pawnspace and signature, and that, for configurations derived from the same game state
(i.e., having the other player’s pieces in the same positions), the pawnspace is defined by
the position of the current player’s king. Thus we can uniquely name a class using the king
position and signature.

» Definition 17. The class descriptor of an equivalence class of board configurations for
a given game state is the ordered pair of the position of the current player’s king and the
signature defining that class.

To prove Theorem 14, we need to give polynomial-time algorithms to compute the
neighbors of an equivalence class and to decide whether a class is a winning equivalence class.

» Lemma 18. Given an initial game state and a class descriptor for some class C, we can
compute in polynomial time the equivalence classes (as class descriptors) neighboring C.

» Lemma 19. Given an initial game state and a class descriptor for some class C, we can
decide in polynomial time whether C is a winning equivalence class.
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We are now ready to prove Theorem 14:
» Theorem 14. UNBOUNDED-MOVE PUSH FIGHT MATE-IN-1 s in P.

Proof. First, compute the class descriptor for the equivalence class of the initial board
configuration. Then perform a breadth- or depth-first search of the equivalence class graph,
using the algorithm given in the proof of Lemma 18 to compute the neighboring class
descriptors and the algorithm given in the proof of Lemma 19 to decide if the search has
found a winning equivalence class. Each of these procedures takes polynomial time. By
Lemma 11, there are only polynomially many equivalence classes, so the search terminates
in polynomial time. By Lemma 16, there exists a winning move sequence if and only if this
search finds a path to a winning equivalence class. |

The key idea of the above proof is that, if we do not care how many moves we make
inside an equivalence class, then it is sufficient to search the graph of equivalence classes.
Thus the above proof does not apply to k-MOVE PUSH FIGHT MATE-IN-1, and in the next
section, we prove k-MOVE PUsH FiGHT MATE-IN-1 is NP-hard.

3.4 k-Move Mate-in-1 is NP-hard

To prove k-MOVE PUSH FIGHT MATE-IN-1 hard, we reduce from the following problem,
proved strongly NP-hard in [5]:

» Problem 20. INTEGER RECTILINEAR STEINER TREE: Given a set of points in R? having
integer coordinates and a length £, is there a tree of horizontal and vertical line segments of
total length at most £ containing all of the points?

» Theorem 21. k-MoVE PUsH FIGHT MATE-IN-1 is strongly NP-hard.

Proof Sketch. The basic idea of our reduction is to create a game state mostly full of the
current player’s pawns, but with a few empty squares (holes). The player must “move” the
holes (by moving pawns into them, creating a new hole at the pawn’s former square) to
free a king that can push one of the other player’s pieces off the board. Initially each pawn
can only travel one square (into an adjacent hole) per move, but once two holes have been
brought together, a pawn can travel two squares per move, and so on. Bringing the holes
together optimally amounts to finding a Steiner tree covering the holes’ initial positions.

Reduction: Suppose we are given an instance of INTEGER RECTILINEAR STEINER TREE
consisting of points p; = (x;,y;) with ¢ = 1,...,n and length ¢. For convenience, and without
affecting the answer, we first translate the points so that minx; = 2 and miny; = 4 and
reorder the points such that y; = 4.

We then build a Push Fight game state with a rectangular board with a height of max y;
and a width of n + max z;, indexed using 1-based coordinates with the origin in the bottom-
left square; refer to Figure 6. The entire boundary of the board has side rails except the
edge adjacent to square (x1,1). There is a white king in square (z1 4+ n,2) and a black king
with the anchor in square (z1 — 1,2). There is a black pawn in square (z,y) if any of the
following are true:

1. y=3 and x # =1,

2. y =2 and either z < x; — 1 or x > z1 + n, or

3. y=1.

The squares (z;, y;) with 1 <4 < n (corresponding to the points in the INTEGER RECTILINEAR
STEINER TREE instance) are empty. All remaining squares are filled with white pawns. The
output of the reduction is this Push Fight board together with k = ¢+ 3. |
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Figure 6 A Push Fight board (right) produced during the reduction from the points in an
example rectilinear Steiner tree instance (left).

4 Push Fight is PSPACE-hard

In this section, we analyze the problem of deciding the winner of a Push Fight game in
progress.

» Problem 22. PusH FiGHT: Given a Push Fight game state, does the current player have
a winning strategy (where players make up to two moves per turn)?

» Theorem 23. PusH FIGHT is PSPACE-hard.

To prove PSPACE-hardness, we reduce from Q3SAT, proved PSPACE-complete in
12, 6]:

» Problem 24. Q3SAT: Given a fully quantified boolean formula in conjunctive normal
form with at most three literals per clause, is the formula true?

Our proof parallels the NP-hardness proof of PUSH-# in [7]. PUSH-* is a motion-planning
problem in which a robot (agent) traverses a rectangular grid, some squares of which contain
blocks. The robot can push any number of consecutive blocks when moving into a square
containing a block, provided no blocks would be pushed over the boundary of the board.
The PusH-# decision problem asks, given a initial placement of blocks and a target location,
can the robot reach the target location by some sequence of moves? In our proof, the white
king takes the place of the PUSH-* robot? and white pawns function as blocks. Our proof
has the additional complication that Black sets the universally quantified variables, and that
White’s moves and Black’s push must be forced at all times to keep the other gadgets intact.

Figure 7 shows an overview of the reduction. The sole white king begins at the bottom-left
of the variable gadget I block, setting existentially quantified variables as it pushes up and
right. The wvariable gadget II block contains black pawns and holes that allow Black to set
the universally quantified variables. After all the variables have been set, the white king
traverses the bridge to the clause gadget block. The variable and clause gadgets interact via
a pattern of holes in the connection block encoding the literals in each clause. The white

2 The PUSH-* robot can move without pushing blocks, so the correspondence is not exact.
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Figure 7 An overview of the Push Fight board produced by our reduction.

king can traverse the clause gadgets only if the variable gadgets were traversed in a way
corresponding to a satisfying assignment of the variables. The reward gadget contains a
boundary square without a side rail, such that the white king can push a black pawn off the
board if the white king reaches the reward gadget. The overflow block contains empty squares
needed by the variable gadgets that were not used in the connection block (for variables
appearing in few clauses). The move-wasting gadget forces White’s moves and Black’s push,
ensuring the integrity of the other gadgets. Finally, all other squares on the board are filled
with white pawns, and the boundary has side rails except at specific locations in the reward
and move-wasting gadgets. Figure 8 shows an example output of the reduction.

We first prove the behavior of each of the gadgets, then describe how the gadgets are
assembled.

4.1 Move-wasting gadget

The move-wasting gadget requires White to use both moves to prevent Black from winning
on the next turn (unless White can win in the current turn). The move-wasting gadget
contains the only black king, thus consuming (and allowing) Black’s push each turn. When
analyzing the other gadgets, we can thus assume White can only push and Black can only
move. The move-wasting gadget comprises the entire bottom three rows of the board, but
pieces only move in the far-right portion. Figure 9a shows the initial state of the gadget.
Throughout this analysis, we assume White cannot win in one turn; Section 4.5, which
analyzes the reward gadget, describes the position in which White can immediately win in
one turn, and can therefore disregard the threat from Black in the move-wasting gadget.

In the initial state, the anchor is on the black king, so it is White’s turn. White must
move the pawn above the black king to avoid losing next turn. There are only two reachable
empty squares, both in the column left of the black king. If the other square in that column
remains empty, Black can move the black king into it and push the white pawn in that
column off the board. Thus White must fill the other square in that column, and the only way
to do so is to move the pawn two columns left of the white king one square right. Figure 9b
shows the resulting position (after White pushes elsewhere in the board).

11:9

FUN 2018



11:10

Computational Complexity of Generalized Push Fight

©)
©)
O

O[O|0]0O[O|0]|O
cl(e][e][e][e][e][6)

O[OJO|O[0]|0[O|0]|O
e](e][e) (¢ (c][c]lNie][c)] [o][e][c][c][c)] e)|el[e][e]le][e]e)

o](e][e) (@) (e][e][e, [e][e) (e][e][e][e][e)] eliel[e][e]ie](e]e]

o)(e][e) (¢ (e][e][e, [e][e) [e][e][e)
O[O[OIOI0|0[OI0|010| |0

o](e] [e][e][e][e][e][e][e][e]

](e][e][e][e][c][e)[e][c][e][e][®)
O|00]0[0|0[0O|0]|0[O|0]|O

y

O[O0 [O[O]O10|0]|O[O]0|O|O]O|0|0|O|O
e](e][e) (¢ (c][c]ll[e][c) (c][e][c][c][c][c]|e][c][c]le][e]e)
o](e][e) (@) (e][e][e][e][c) (c][e][e][c][e][c]|e)[e][e]ie][e]e]
o](e][e) (@) (e][e][e][e][e) (o][e][c][c][e][c]|e)[e][e]ie][e]e]

O[O[OIO0)0|0]|O
O[0[0IO)I0]| _|O

O[O[OI0[0O] [O[O]|O] |O]O[O|0J0|O]0|0] O[O

](e][e) (e][e][e][e][e][c][c][c][c][e][)

o](e][e) [o][e][e][c][c][c][c][c][c][cl[e][c][c CIH [Cl(e]le
o](e][e) ¢][e][c][e][e][c][c][e][e][c][e](e]e, Cl [©l[e]e]

o](e][¢) [e][ele][e][e][c][c][e][c][c][e][c]|e)[e][e][e) elle
o](e][e) [o][e][c][c][e][c][c][e][c][e)] c](c]ie)[c](e]ie]l[e][e]

e](e][e) [o]mu[e][e][e][e)

¢](e][e) (o][e][c][c][e][c][c][e][c][c][c][c][e Hile) [el[e]e)
o)(e][e) [¢][e][ec][e][e][c][c]ie][e][e][e][e]]e
o)(e][e) [¢][e][ec][e][e][c][c]ie][e][e][e][e]]e

O[0|OO] |0[O|0]0[O] [O|O|OIOJ0|0[0|O

O[O|OIOI0|0[OI0|O1I0|O]  |O
o)(e][e) (¢) (e][e][(e, [6][e, (el[c]I]C][e)
o](e][e)] [0][e][e][e, [e][c][c][e])[c][c)[c)[c][e)[c][®
O[O|0]10|@]| [OJO]|O[O|0]|O|O|0|O|0|O|O
O[O0 |O[OI0|0[O|0]|O|O]0|0|0|O[O
o](e][e) [e]ie][e][e) [e][c][c][e][c][c][e][e]ie][e](e
O[O|OJO[O]|O[O[O]O[O[O]O[O|OJO
o](e][e) [o][e][c][e][e][c][c][e][c][e][€)] @)
o)(e][e) ¢]|e][c][c][e][e][e][e][e][e][e)

N [ON
(O] [E[OR

Figure 8 The result of performing the reduction on the formula Vz3y (zV —-y) A (—zVy). Gadgets
and blocks are outlined.
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Figure 9 The move-wasting gadget.

Black’s only legal push is to the left, resulting in the position shown in Figure 9c.

The rightmost four columns in Figure 9¢ are simply the reflection of those columns in
Figure 9a, so by the same argument White must fill the column to the right of the black
king, resulting in Figure 9d.

Again, the rightmost four columns of Figures 9d and 9b are reflections of each other.
Black’s only legal push is to the right, restoring the gadget to the initial state shown in
Figure 9a. Thus until White can win in one turn, White must use both moves in the
move-wasting gadget, and at all times Black must (and can) push in the move-wasting gadget.
In the analysis of the remaining gadgets, if the white king reaches a position from which it
cannot push, we conclude that White immediately loses, because if White moves a pawn or
the king into position to push, Black can win on the next turn as explained above.
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Figure 11 Universal variable gadget.

4.2 Variable gadgets

The existential variable gadget forces White to fill all empty squares in one row of the
connection block, corresponding to setting the value of that variable. The universal variable
gadget allows Black to choose the value of the corresponding variable, then forces White to
similarly fill a row of empty squares. We first analyze a core gadget; the existential variable
gadget is a minor variant of the core gadget and its correctness follows directly, while the
universal variable gadget has an additional component to allow Black to choose the variable’s
value. Throughout our analysis, we take advantage of the board being filled with white
pawns to limit the number of pieces that can leave the gadget.

The core gadget occupies a rectangle of width p + 5 and height 5. When instantiated in
the reduction, the gadget lies entirely within the wvariable gadget I block. Integer p is one
more than the maximum number of occurrences of a literal in the input formula. The initial
state of the core gadget is shown in Figure 12. Each number along the boundary of the figure
gives the number of empty squares outside the gadget in that direction, and thus an upper
bound on the number of pieces that can leave the gadget via that edge.

The following lemma summarizes the constraints we prove about the core gadget.

» Lemma 25. Starting from the position in Figure 12, and assuming the white king does
not push down or left from this position,
(i) the white king leaves in the second-rightmost column, and
(ii) when the white king leaves either
(a) the gadget is as shown in Figure 13 and p + 1 white pawns have been pushed out
along the bottom row of the gadget, or
(b) the gadget is as shown in Figure 14 and p white pawns have been pushed out along
the second-to-bottom row of the gadget,
(iii) and no other pieces have left the gadget.

We will construct the existential and universal variable gadgets from the core gadget
such that the assumption holds. Lemma i ensures we can chain variable gadgets together
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Figure 12 The initial configuration of the core gadget together with upper bounds on the number
of pushes out of the gadget at each boundary edge. Omitted columns do not have a given upper
bound.
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Figure 13 The final configuration of the Figure 14 The final configuration of the
core gadget after setting the variable to true. core gadget after setting the variable to false.
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in sequence without the white king escaping. The outcomes implied by Lemma iia and iib
correspond to setting the variable to true or false (respectively) by filling in the empty squares
in the connection block that could be used to satisfy a clause gadget for a clause containing
the opposite literal; that is, pushing pawns out along the bottom row of a gadget prevents all
negative literals from being used to satisfy a clause, and similarly for the second-to-bottom
row and positive literals.

Proof. We proceed by case analysis starting from Figure 12. The move-wasting gadget
consumes White’s moves, and there are no black pieces in the core gadget, so we need only
analyze the sequence of White’s pushes.

Suppose the white king first pushes right. Because of the upper bounds along the top
and bottom edges of the gadget, the only legal push in the resulting configuration is to the
right, and this remains the case until the white king reaches the fourth column from the
right of the gadget. At this point p 4+ 1 pawns have been pushed off the right edge along the
bottom row of the gadget, so there are no empty squares remaining in that row, so pushing
right is no longer possible and the only legal push is up. Then the only legal push is again
up because of the constraints on the left edge of the gadget. Figure 15 shows the result of
this sequence of pushes.

If the white king pushes left from this position, the only possible next push is down, after
which there are no legal pushes, resulting in a loss for White. Figure 16 shows this sequence
of pushes.
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Figure 15 One possible push sequence starting from the initial state of the core gadget. The
starred arrow elides a series of pushes to the right.
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Figure 16 The result of pushing left and down from the last position in Figure 16. White has no
legal pushes in the final position.

The only other legal push from the last position in Figure 15 is to the right, after which
pushes right, up, up and up again are the only legal pushes. This sequence results in the
white king, preceded by a white pawn, exiting the top of the gadget in the second-rightmost

column, as desired by Lemma i. Figure 17 shows the positions resulting from this sequence.

The final position reached is the position in Figure 13, p + 1 pawns were pushed out of the
gadget to the right along the bottom row, as desired by Lemma iia, and and no other pieces
were pushed out of the gadget, as desired by Lemma iii.

Now suppose that the white king pushes up from the initial configuration. Because of
the constraints on the gadget boundary, the only legal push is to the right until the white
king reaches the fourth column from the right of the gadget. At this point p pawns have
been pushed off the right edge along the second-to-bottom row of the gadget, so there are no
empty squares remaining in that row, so pushing right is no longer possible and the only
legal push is up. Then the only legal push is again up because of the constraints on the left
edge of the gadget. Figure 18 shows the result of this sequence of pushes.

If the white king pushes up from this position, there are no legal pushes in the resulting
position, resulting in a loss for White. Figure 19 shows this push and the resulting losing
position.

The only other legal push from the last position in Figure 18 is to the right, after which
pushes right, up, up and up again are the only legal pushes. This sequence results in the
white king, preceded by a white pawn, exiting the top of the gadget in the second-rightmost
column, as desired by Lemma i. Figure 20 shows the positions resulting from this sequence.
The final position reached is the position in Figure 14, and p pawns were pushed out of the
gadget to the right along the second-to-bottom row, as desired by Lemma iib. No other
pieces were pushed out of the gadget, as desired by Lemma iii.

This completes the case analysis. |
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Figure 17 The result of pushing right from the last position in Figure 15, reaching the position
in Figure 13.
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Figure 18 The other possible push sequence starting from the initial state of the core gadget.
The starred arrow elides a series of pushes to the right.

Existential variable gadget:

The existential variable gadget, shown in Figure 10, is nearly the same as the core gadget,
differing only in the bottom of the leftmost column. When instantiated in the reduction,
the white king enters the gadget by pushing a white pawn up into the leftmost column,
becoming exactly the core gadget. From the position immediately after the white king
enters the gadget, the white king cannot push left (because there are no empty spaces in the
row to the left) nor down (because it just pushed up, leaving an empty space in its former
position), satisfying the assumption in Lemma 25. Thus by Lemma i, the white king leaves
the existential variable gadget in the second-rightmost column with a white pawn above it,
and by either Lemma iia or iib, all empty squares in one of two rows of the connection block
are now filled by pawns pushed out of the existential variable gadget.

Universal variable gadget:

The universal variable gadget consists of two disconnected regions. The left subregion of the
gadget occupies a (p + 6) x 5 rectangle in the variable gadget I block. As the white king
proceeds through the left region of the gadget, a subregion of the gadget reaches the initial
state of the core gadget. The right region of the gadget occupies a 4 x 4 rectangle in the
variable gadget IT block and contains a black pawn to allow Black to control the value of
the variable. The bottom of the right region is one row lower than the bottom of the left
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Figure 19 The result of pushing up from the last position in Figure 18. White has no legal
pushes in the final position.
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Figure 20 The result of pushing right from the last position in Figure 18, reaching the position
in Figure 14.

region. The area between the two regions of the gadget (in the three rows shared by both) is
entirely filled by white pawns. Figure 11 shows the universal variable gadget, including the
pawn-filled area between the regions.

As with the existential variable gadget, when instantiated in the reduction, the white king
enters the universal variable gadget by pushing a white pawn up into the leftmost column.
Figure 21 shows the resulting position. Regardless of Black’s move, White’s only legal push
is to the right. By moving the black pawn, Black can choose between the two positions in
Figure 22, depending on which of the two rows the black pawn is in when White pushes.

In both of the resulting positions, the black pawn is surrounded, so Black can no longer
influence events in this gadget. The left region of the gadget, without the leftmost column, is
identical to the initial position of the core gadget. In both positions, the white king cannot
push left (empty space) or down (no empty spaces down in the column), satisfying the
assumption in Lemma 25. Thus either Lemma iia or Lemma iib holds. Because of the edge
constraints, in Figure 22a, only Lemma iia is possible, resulting in Figure 23a. Similarly, in
Figure 22b, only Lemma iib is possible, resulting in Figure 23b. By moving the black pawn
to select one of these two cases, Black sets the value of the corresponding variable. Then
by Lemma i, the white king leaves in the second-rightmost column of the left region (in the
variable gadget I block) of the gadget. In both cases, the black pawn remains surrounded by
white pawns in the right region of the gadget.

4.3 Bridge gadget

The bridge gadget, shown in Figure 24, brings the white king from the exit of the last variable
gadget to the entrance of the first clause gadget. When instantiated in the reduction, the
white king enters the bridge gadget from the bottom of the leftmost column, preceded by a
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Figure 21 The universal variable gadget after the white king enters.
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Figure 22 The two possible configurations of the universal variable gadget one white turn after
the configuration from Figure 21.

white pawn. The white king’s traversal of the bridge gadget is entirely forced. The white
king leaves the gadget by pushing a white pawn out to the right in the second-to-top row.

4.4 Clause gadget

The clause gadget, shown in Figure 25, verifies that a column below the gadget contains
at least one empty square. When instantiated in the reduction, the white king enters the
gadget from the left in the top row, preceded by a white pawn. The resulting sequence of
forced pushes includes a push down in the central column of the gadget; if there are no empty
squares below the gadget in that column, the white king has no legal pushes and White loses.
If there are more empty squares, White can continue to push down, but (when instantiated
in the reduction) there are at most three total empty squares in that column, and once those
squares are filled, White cannot push. Thus the white king must push right instead and
leave the gadget by pushing a white pawn out to the right in the second-to-top row.

4.5 Reward gadget

The reward gadget, shown in Figure 26, allows White to win if the white king reaches
the gadget. The black pawn in this gadget cannot move because it is surrounded. When
instantiated in the reduction, the white king enters the gadget from the left in the top row,
preceded by a white pawn. After pushing right until the white king is in the third column of
Figure 26, White can win by moving a white pawn and the white king, then pushing upwards
to push the black pawn off the board, as shown in Figure 27. (Recall that the move-wasting
gadget no longer binds White once White can win in one turn; Black loses before Black can
win using the move-wasting gadget.)
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Figure 23 The two possible final positions of the universal variable gadget after the white king
exits.
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Figure 24 The bridge gadget. Figure 25 The clause gadget.

4.6 Layout

Having described the gadgets, it remains to show how to instantiate them in a Push Fight
game state for a given quantified 3-CNF formula. We first place gadgets with respect to
each other, remembering which squares should be left empty, then define the board as the

bounding box of the gadgets and fill any squares not recorded as empty with white pawns.

The resulting board is mostly rectangular with side rails on all boundary edges, with two
exceptions: one edge along the top of the rectangle lacks a side rail as part of the reward
gadget, and the board is extended in the bottom-right to accomodate the move-wasting
gadget along the bottom of the board.

We begin by building the variable gadget I block containing the existential variable gadgets
and the left portion of the universal variable gadgets. Gadgets are stacked from bottom to
top in the order of the quantifiers in the input formula (using the gadget corresponding to the
quantifier), with the leftmost column of each gadget aligned with the second-to-right column
of the previous gadget. (Recall that the width of the variable gadgets is defined based on
p, one more than the maximum number of occurrences of a literal in the input formula.)
This alignment allows (and requires) the white king to traverse the gadgets in sequence as
specified by Lemma 25. Figure 29 shows the relative layout of these variable gadgets.

We place the white king one square below the first variable gadget aligned with its
leftmost column, and place a white pawn one square above the white king. The white king
will push upwards into the first gadget on White’s first turn. (If the king was instead placed
directly in the variable gadget, if the first variable is universally quantified, Black would not
have a move with which to choose the value of the variable before White commits it.)

11:17

FUN 2018



11:18

Computational Complexity of Generalized Push Fight

0|@|0
O|0|O

O 0
OO0 0
o o 0 0 O
Figure 26 The reward gadget.
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Figure 27 Once the White king reaches the third column of the reward gadget, White can win
in a single turn.

We then build the variable gadget II block by placing the right regions of the universal
variable gadgets to the right of the corresponding left regions in a single column (further
right than any part of the variable gadget I section).

Next we place one clause gadget for each clause in the input formula. Each clause gadget
is directly to the right of and one square lower than the previous clause gadget. The entire
clause gadget block is further right of and above the wvariable gadget II block. Figure 30
shows the relative layout of the clause gadgets. Then we place a bridge gadget such that the
entrance of the bridge gadget aligns with the exit of the last variable gadget and the exit of
the bridge gadget aligns with the entrance of the first clause.

We place the reward gadget so that its entrance aligns with the exit of the last clause
gadget.

We leave empty squares in the connection block to encode the literals in each clause in
the input formula. When traversing each variable gadget, the white king pushes pawns to
the right in one of two rows. The lower (upper) row corresponds to setting the variable to
true (false), or equivalently, preventing negative (positive) literals from satisfying clauses.
Associate each row with the literal it prevents from satisfying clauses. Each clause gadget
enforces that at least one empty square remains below its middle column, corresponding to
at least one of its literals not having been ruled out by the truth assignment. To realize
this relation, for each literal in a clause, we leave an empty square at the intersection of the
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Figure 28 The shape of the Push Fight board produced by the reduction.

Figure 29 The layout of variable gadgets in the variable gadget I block.

column checked by the clause gadget and the row associated with that literal. All other
squares in the connection block are filled with white pawns (as are all squares in the board
whose contents are not otherwise specified).

The variable gadgets require each row associated with a literal to contain exactly p— 1, p
or p+ 1 empty squares (depending on the type of gadget and whether the row is the upper
or lower row). This is at least the number of occurrences of that literal (by the definition of
p), but it may be greater. We place any remaining empty squares in each row in columns
further right than the reward gadget, forming the overflow block.

The boundary of the board is the bounding box of all the gadgets placed thus far with a
move-wasting gadget appended to the bottom of the board. The left column of the move-
wasting gadget is aligned with the leftmost column of the first (leftmost) variable gadget
and the sixth-from-right column (the rightmost column having height 3) is aligned with the
rightmost column of the overflow block. We then fill all squares not part of a gadget nor
recorded as empty with white pawns and place side rails on all boundary edges except as
described in the move-wasting and reward gadgets. The anchor is on the black king as part
of the initial state of the move-wasting gadget.

4.7 Analysis

Our analysis of gadget behavior in the preceding sections constrains the white king’s pushes
under the assumption that there are a specific number of empty spaces (often 0) in a particular
row or column on a side of the gadget. We have already discharged the assumptions regarding
the rows associated with literals by our layout of the connection and overflow blocks. For
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Figure 30 The layout of clause gadgets in the clause gadget block.

every other gadget except the variable gadgets, none of the constrained rows or columns
intersects with another gadget, so the constraints on the edges are implied by the dense sea
of white pawns outside the gadgets. For the variable gadgets, we assumed that pushing down
in the second-to-left column of a variable gadget is not possible, but that column contains
the previous variable gadget’s rightmost column. We discharge this assumption by noting
that in the final state of each variable gadget (after the white king has left the gadget), the
rightmost column of that gadget is filled with white pawns, so pushing down in that column
is indeed not possible.

Thus the white king must traverse the variable gadgets, setting the value of each variable,
then traverse through the bridge gadget to the clause gadgets, where at least one empty
space must remain in each checked column for the king to reach the reward gadget. If the
choices made while traversing the variable gadgets results in filling all of the empty spaces
in a checked column (i.e., the clause is false under the corresponding truth assignment),
then White can only push by using a move outside the move-wasting gadget and Black wins
on the next turn. If the white king successfully traverses every clause gadget (i.e., every
clause is true under the truth assignment), then White wins when the white king pushes the
black pawn off the board in the reward gadget. Thus White has a winning strategy for this
Push Fight game state if and only if the input quantified 3-CNF formula is true.
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We consider SUPERSET, a lesser-known yet interesting variant of the famous card game SET. Here,
players look for SUPERSETS instead of SETs, that is, the symmetric difference of two SETs that
intersect in exactly one card. In this paper, we pose questions that have been previously posed
for SET and provide answers to them; we also show relations between SET and SUPERSET.

For the regular SET deck, which can be identified with F3, we give a proof for the fact that
the maximum number of cards that can be on the table without having a SUPERSET is 9. This
solves an open question posed by McMahon et al. in 2016. For the deck corresponding to Fg,
we show that this number is (1.442%) and O(1.733%). We also compute probabilities of the
presence of a superset in a collection of cards drawn uniformly at random. Finally, we consider
the computational complexity of deciding whether a multi-value version of SET or SUPERSET is
contained in a given set of cards, and show an FPT-reduction from the problem for SET to that
for SUPERSET, implying W[1]-hardness of the problem for SUPERSET.
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SUPERSET: A (Super)Natural Variant of the Card Game SET
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Figure 1 A SET is a collection of three cards that, in each of the properties, are either identical
or distinct.

1 Introduction

The famous [1, 20] game SET! [5, 28] is played with cards that have four attributes each:
The number, type, color, and shading of displayed shape(s). Each of these attributes can
take three values, and each of the possible 3* = 81 combinations of these values is contained
exactly once as a card in the deck. A SET is a collection of three cards that, in each of the
properties, are either identical or distinct (see Fig. 1). Among the cards that are laid out on
the table, all players have to simultaneously find SETs as fast as possible. While possibly
not evident from this description, we can assure you that the game is fun, even for a wider
audience [31], including cats [24, Figure L.5].

However, as players get better and faster, the game becomes quite fidgety and arguably
less fun. One straightforward way of making the game more difficult and thus slowing it
down is adding more properties to the cards. Unfortunately, this creates decks increasing
exponentially in size and possibly odor [14]. Other variants have been proposed [6, 14, 23, 24],
but full-contact SET [6] seems only remotely related to mathematics, and projective SET [14]
requires a completely different deck and seems incompatible with our gerontocracy [14].

Instead, we started playing a variant that is sufficiently more difficult, shows a rich
mathematical structure, and can be played with the same, typically odor-free, deck of cards
as SET: It is easy to see that for any pair of cards there exists exactly one missing card that
completes the pair to a SET. Any single card, however, serves as missing card for (actually
40) different pairs. In the variant of SET considered here, the four cards from two pairs with
the same missing card form the object (see Fig. 2) that the players look for instead of SETs.
Until recently, when it was published in a book [24], this variant seems to have been spread
mostly by word of mouth (as it was to one of the authors [7]), and appeared under different
names on the Internet [6, 11, 13, 23, 32].

To continue the (admittedly short) tradition of overloading? mathematical terms, we
choose to call the new object and the emerging variant of the game SUPERSET. We consider
natural questions regarding SUPERSET: How many cards can be on the table without having
a SUPERSET? More generally, what is the probability of having a SUPERSET in a collection of
cards of a certain size chosen uniformly at random? What is the computational complexity
of finding a SUPERSET? Are there any further connections between SUPERSET and SET?

SET is a registered trademark of Cannei, LLC. The distinctive SET symbols and cards are copyrights of
Cannei, LLC. All rights reserved. Used with permission from Set Enterprises, Inc.

Since we typeset the two central objects of this paper as SET and SUPERSET, at least in written language
we do not overload the corresponding mathematical terms. We however avoid using these mathematical
terms (and thereby hopefully confusion) in this paper.
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Figure 2 A SUPERSET is defined to be the symmetric difference of two SETs that intersect in
exactly one card. Here, cards 1-3 and 3-5 form the two SETs; all but the third card form the
SUPERSET.

These questions have, in fact, been considered for SET already, which is partly due to the
applications of its study to affine spaces [14, 24], Fourier analysis [4], and error-correcting
codes [19]. Clearly, the study of SUPERSET has the corresponding superapplications.

Related work. We briefly survey results related to SET. For a very accessible and lovely
introduction to the mathematics of SET, we refer to McMahon et al. [24]. An also very
well-written and at the time fairly comprehensive survey for mathematically more versed
readers was published by Davis and Maclagan in 2003 [14].

When playing SET, one typically deals 12 cards and then looks for SETs among them.

Sometimes, however, there turns out to be no SET, naturally leading to the question: How
many cards have to be dealt to guarantee that there is a SET on the table? This question
was in fact answered before the invention of the game SET in 1974, which is due to the
following connection: One can naturally identify the deck of cards with the vector space F3
(by identifying the components with the properties) and then SETs in the deck of cards
simply correspond to lines in F3. So the above question is equivalent to asking what is the
maximum size of a cap, that is, a line-free collection of elements, in F3. This number was
settled to be 20 in 1971 [26]. The most elegant proof known to date is based on counting
so-called marked hyperplanes in two different ways, making use of the symmetries of the
vector space [14].

It is natural to ask the same question for F¢ with different d, which translates to a
restricted or extended deck of cards. While this question for d < 4 can be easily answered
using the same techniques as for d = 4 [14], only in 2002 did two breakthrough papers [4, 15]
settle the maximum cap size for d = 5 to be 45 by relating the problem to the Fourier
transform. For d = 6, the maximum cap size is 112 [27], as shown by the techniques similar
to those used for d < 4 [14] along with a computer search, but the same paper claims that
the Fourier-transform techniques could be used instead. Interestingly, at least up to d = 6,
all maximum caps are from the same affine equivalence class, i.e., between any two of them
there is an affine transformation that maps one to the other [15, 18, 24, 27].

Finding maximum supercaps for increasingly larger fixed integers d will probably keep
(parts of) humanity busy for a while, but yet more forward-looking works have considered the
asymptotic behavior of the maximum cap size as d — oo. While {0, 1}9 is easily seen to be a

cap of size 2¢, more sophisticated product constructions [8, 16] yield caps of size (2.217%).

On the upper-bound side, Fourier transforms yield O(3?/d) [25] and further far-from-trivial
insights about the spectrum yield O(3¢/d'*¢) for some ¢ > 0 [3]. However, truly improving
(i.e., in terms of the base of the exponential) upon the trivial upper bound of O(3%) has been
a famous open problem [29] until recently. Only in 2016, the so-called polynomial method [12]
was utilized [17, 30] to show quite compactly that the maximum cap size is O(2.756%).
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Table 1 Bounds on the maximum cap and supercap sizes.

dimension “1‘2‘3‘ 4 ‘ 5 ‘ ‘
maximum cap size || 2 | 4 | 9 | 20 | 45 | --- | Q(2.217%) N O(2.756%)
maximum supercap size || 3 | 4 | 6 | 9 | 14 | --- | Q(1.442%) N O(1.733%)

One may also wonder what the probability of the presence of a SET is in the initial
layout of cards or, more generally, in a k-element collection chosen uniformly at random
from F¢. This question has been answered exactly for small values of k and d [24] and has
been considered computationally for arbitrary values of k and d [21, 24]. An overview of
the vast amount of interesting probabilistic questions, for example, the one for the expected
number of SETs, can be found in the book of MacMahon et al. [24].

Let us look at the problem of deciding whether a given set of cards has a SET. As this
question is boring in terms of asymptotic running time for 4, we first consider F¢ where d
is part of the input. Saving all cards in a dictionary and then checking the dictionary for the
missing card of each pair yields an O(n?)-time randomized algorithm and an O(n?logn)-
time deterministic algorithm [9]. Despite obvious resemblance to the 3SUM problem (three
elements a, b, c € F4 form a SET iff a+b+c = 0), 3SUM-hardness has only been conjectured [9].

To still be able to write computational-complexity papers about the problem, F¢ has been
considered, where v is part of the input as well. Note that a SET for a larger number of values
per property can be defined either through lines (line SETs, at least for v prime) or by asking
for identical or distinct values in each component (combinatorial SETs), but both variants
are different [14] (see Section 2). Indeed, defining SETs through lines only adds a factor
of v in the running time (because all v elements on the line have to be checked), but the
problem is NP-hard for combinatorial SETs, as shown by a reduction from a multi-dimensional
matching problem [9]. This result has been subsequently improved to W[1]-hardness for
parameter v [22].

Unfortunately, none of these results is super enough yet. Yet, to date SUPERSET has
not been rigorously studied. There are only a few Internet sources: experiments showing
that there is a collection of 9 cards for d = 4 that does not have a SUPERSET [32] and
some providing estimates for the probabilities of the presence of a superset in random
collections [13, 32].

Our contribution. Analogous to the study of caps, we initiate the (rigorous) study of
supercaps, that is, collections of cards that do not contain SUPERSETs. The same as for
caps, we are interested in the maximum size of supercaps, but our techniques are different.
For d = 2, by simply counting the number of pairs within the supercap and then using the
pigeonhole principle, one can easily show an upper bound of 4 on the size of any supercap.
A bound that can be easily matched from below by hand. In three dimensions, the same
upper-bound technique allows us to prove an upper bound of 7. Yet, constructed lower-bound
examples imply a maximum size of 6. To prove an upper bound of 6, we develop a refined
counting technique that is based on the following observation [2, 11, 24]. If two pairs of
points are disjoint and their induced vectors are parallel, then they form a SUPERSET (see
Lemma 1). In F4, which corresponds to the actual SET deck, we use the same counting
technique and a relatively short case distinction to show an upper bound of 9, which is
tight [2, 32] and thus solves an open problem [24, Question 8]. For d = 5, using the same
techniques, we can narrow down the maximum supercap size to at most 16 and at least 14,
but an exhaustive computer search shows that the maximum supercap size is indeed 14.
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Regarding asymptotic results, we utilize the simple pigeonhole-principle technique to
obtain a non-trivial upper bound of O(3%/2) ¢ O(1.733%) on the cardinality of any supercap.
To obtain a non-trivial lower bound, we essentially analyze an algorithm that greedily adds
elements to the supercap. The critical observation is that each card that we cannot add is
excluded by a triple of cards with which it would form a SUPERSET. Counting the number of
triples and the number of elements that each triple can exclude, we obtain a lower bound
of Q(3%/3) C 0(1.442¢). We summarize our results on maximum supercaps along with those
known for maximum caps in Table 1.

The preceding structural insights about supercaps suffice to compute the probability of
the presence of the a SUPERSET in a k-element collection of elements from F¢ when k = 4
and d is arbitrary (or, alternatively, the probability of the collection being a supercap). We
also manage to compute the same probability for d = 3 and k = 5,6, which is based on
a complete characterization of the corresponding supercaps. Since this characterization is
already fairly complicated, we do not compute the exact probabilities for d =4 and k > 5
but experimentally determine estimates (107 samples for every k).

To consider the computational complexity of deciding whether a given collection of cards
has a SUPERSET, we define a SUPERSET (more generally) to be the symmetric difference of
two (line or combinatorial) SETs that intersect in exactly one element. We note that the
polynomial-time algorithm known for deciding if a given collection of cards from F¢ (for v
possibly fixed) has a SET can be essentially generalized to the corresponding problem for
SUPERSET: One iterates through the pairs. If at least v — 3 other elements of the emerging
line are present, one then checks a dictionary for entries of the corresponding missing card(s)
and, if there are none, one saves the missing card(s) there. We then establish a close relation
between the two problems by providing an FPT reduction from the problem for combinatorial
SET to the corresponding one for SUPERSET, so that the W[1]-hardness [9] carries over.

Overview of this paper. In Section 2, we give formal definitions and preliminary obser-
vations. Then, we provide bounds on the maximum supercap sizes for various d and the
asymptotic case in Section 3. In Section 4, we use insights from the previous section and
new structural properties to obtain probabilities for the presence of supersets in the random
collections of cards. We obtain results on the computations complexity in Section 5 and
conclude the paper in Section 6.

2 Preliminaries

Definitions. We begin with considering F¢. A collection S = {a,b,c} C F? is called a SET
if a+ b+ ¢ = 0. Further, a collection of elements S = {a,b,¢,d} C Fg is called a SUPERSET
if for some element z € F¢ and for some 2,y € S, both {x,y, 2} and (S \ {z,y}) U{z} are
sETs. We say that two pairs {a1, b1}, {az,ba} C F4 are parallel if ay — by = r(a; — by) for
some 1 € F3 \ {0}. Note that if S = {aq,b1,a2,bs} contains a SET, then S is (ironically) not
a SUPERSET.

Moreover, a collection S of elements from F¢ is a cap if no SET is contained in it; it is a
supercap if no SUPERSET is contained in it. We will be looking at both maximum and maximal
(super)caps: The first type of (super)cap has largest-possible size among all (super)caps; the
addition of any card to the second type of (super)cap revokes its (super)cap property. Note
that any maximum (super)cap is maximal.

To consider the complexity of determining of a given collection of cards contains a SET
or SUPERSET, we define two different, yet equally natural, generalizations of a SET and a
SUPERSET. For an element a € F¢, we denote with ali] the value of the i-th dimension of a.
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Given a collection S = {c1,...,c,} C F? of v elements, we say it is a combinatorial
SET (or just SET when not stated differently) if for all dimensions ¢ € {1,...,d}, either
c1[i] = ... = ¢,[i] or the values ¢1[i],...,c,[i] are distinct. For prime v, we say that a
collection S C F? is a line SET if it is a line on FZ. Tt is not hard to see that these two
generalizations are equivalent only for v < 3.

We obtain two generalizations for a SUPERSET in straightforward manner from the
generalizations of a SET. A collection S C F? of 2(v — 1) elements is a combinatorial (line)
SUPERSET if there is an element z € F¢ and a partition S = AU B such that AU {z} and
B U {z} are both combinatorial (line) SETSs.

Preliminary observations. The following observation is used frequently in the technical
part of the paper. Given two elements a,b € F4, there is a unique third element in Fg,
namely —(a + b), that completes {a, b} to a SET. More generally, for a,b € F¢ there are v — 2
unique elements xq, T, . .. 2,, € F% such that {a,b, 21, 2s,...2,,} is a line SET, but there are
various ways of completing {a,b} to a combinatorial SET. Regarding SUPERSETS, consider
any three elements a,b,c € F4: If they form a SET, there is no element that completes
them to a SUPERSET; if they do not form a SET, they can be extended to precisely the
SUPERSETS {a,b,c,—(a + b)}, {a,b,¢c,—(a + ¢)}, and {a,b,c, —(b + ¢)}. The situation for
SUPERSETS is a bit more complicated in F¢ but irrelevant for this paper.

The following lemma contains the formal statement of a fairly well-known fact for those
that have concerned themselves with SUPERSETs [2, 11, 24]. For completeness, we still provide
a proof.

» Lemma 1. A collection S C F¢ with four distinct elements is a SUPERSET if and only
if {x,y} and S\ {z,y} are parallel pairs for some x,y € S.

Proof. Let S = {a,b,c,d} be as in the statement. Suppose, without loss of generality, that
{a,c} and {b,d} are parallel pairs. In this case, z,p = —(a + b) and z.q = —(c + d) are
the (unique) elements that complete the SETs S, = {a,b, 2.} and Scq = {z,d,zcq}.
Now, since {a,c} and {b,d} are parallel, we can assume that b — d = —(a — ¢) (otherwise
b—d = a—c, and we switch a and ¢). Thus we have —(¢ + d) = —(a + b), and hence
Zq,b = T¢,d, which implies that S is a SUPERSET.

Now, suppose that S is a SUPERSET. We may assume, without loss of generality, that
there is an element z € F¢ such that {a,b,2z} and {c,d, 2} are SETs. Thus, we have
a+b+z=c+d+ z=0, and hence a + b = ¢+ d, which implies a — ¢ = d — b. Therefore
{a,c} and {b,d} are parallel. <

3 Bounds for supercaps

In this section we exactly determine the maximum sizes of supercaps of F3, F3, and Fi. We
also prove non-trivial upper and lower bounds on the asymptotic behavior of the maximum
supercap size as d — 0.

3.1 Bounds for small d

In this subsection we present some auxiliary structural results along with the exact maximum
sizes of supercaps of F4, for d = 2,3, 4.

» Proposition 2. A collection of four elements of F3 is a supercap if and only if it contains
a SET.



F. Botler, A. Cristi, R. Hoeksma, K. Schewior, and A. Tonnis

(a) (b)

Figure 3 Maximum supercaps in F2 and F3.

Proof. Let S be a collection with precisely four distinct elements of F%. For every pair of
elements a,b € S, there is a (unique) third element z,, € F3 such that {a,b, x4} is a SET.
If S does not contain a SET, then x,, ¢ S, for every pair of elements of S. Since there
are precisely 6 such pairs, and |F3 — S| = 3% — 4 = 5, there must be two different pairs,
say {a,b} and {¢, d}, such that z,, = x.q. Therefore, S contains a SUPERSET. Now, suppose
that S contains a SET, say {a,b, c}, and another element d. If S is a SUPERSET, then we
may suppose that there is an element w in F3 such that, without loss of generality, {a, b, w}
and {c¢,d,w} are SETs. Since there is a unique w such that {a,b,w} is a SET, we have w = ¢,
which implies that {c¢,d, w} = {¢,d} is not a SET. <

This proposition immediately implies the lower-bound part of the following theorem.

» Theorem 3. A mazimum supercap in F3 has four elements.

Proof. By Proposition 2, there exists a supercap of size 4 in F2. We illustrate one in
Figure 3a.

We now prove that any collection S of elements of F% of size 5 contains a SUPERSET.
First, note that, if S contains two SETs S; and So, they need to intersect, because S has
only size 5. Since S; and S; are non-identical, they intersect exactly in one element w,
so (S1 U S2) \ {w} is a SUPERSET. Thus, if S does not contain a SUPERSET, then S contains
at most one SET. If S contains a SET, say P, then let = be an element of P, otherwise, let x
be any element of S. Now, note that S\ {z} contains four elements, and no SET. Therefore,
by Proposition 2, S\ {z} is a SUPERSET. <

Next, note that if p: F4 — F{ is an invertible affine transformation and S C F4, then ()
is a SET (resp. SUPERSET) if and only if S is a SET (resp. SUPERSET), because ¢ preserves
addition. The following result implies a lower bound for the size of a maximum supercap
of F3.

» Proposition 4. If S is a collection of elements of F3 consisting of two skew (disjoint
non-parallel) SETs, then S is a supercap.

Proof. Let S be as in the statement. Since these SETs are skew, their two direction vectors
and an arbitrary vector connecting them are linearly independent. So we can construct an
invertible linear transformation that maps these vectors into v; = (1,0,0), v2 = (0,1,0),
and (0,0, 1), respectively. We can further determine a translation such that the emerging
invertible affine transformation ¢ maps the SETs into P; = {ivy: i € F3} and P, = {(0,0,1) +
jug: j € F3}. Therefore, the element (—i,—7,2) is the unique element that forms a SET
with 4v; € Py and (0,0, 1)+ jvy € Ps. Since there are precisely nine pairs consisting of a vertex
of P; and a vertex of Ps, no element in {(—¢,—4,2): ¢,7 € F3} may complete to two different
such pairs to sETs. This implies that P;UP, is a supercap of F3, s0 S = {¢71(s) : s € PLUP,}
is as well. <
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Let S be a collection of elements of F$, for a fixed integer d. Each pair a,b € S defines
a direction a — b. We say that S generates a vector v € F¢ if there is a pair a,b € S such
that v = a—b. In this case, we also say that v is generated by the pair {a,b}. By Lemma 1, if
there are distinct a, b, ¢,d € S such that a — b is parallel to ¢ — d, then S contains a SUPERSET.
So, to obtain an upper bound on the size of a supercap S, one can compare the number of
parallel vectors that S generates and the number of equivalence classes of parallel vectors
in the entire space. The following lemma formalizes this idea and will be used for the next
upper-bound proofs.

» Lemma 5. Let S be a supercap in FS with s elements and r SETs. Then

2 . ad
7‘>F s 3—|—1]
- 4

Proof. Let S, s, and 7 be as in the statement. The number of pairs of elements of S is (3).
Note that each SET in S generates exactly 3 parallel vectors without creating a SUPERSET,
but there are 7 SETs in S. Only considering one vector per SET, S still generates (5) — 2r
vectors. Note that, since we only consider one vector per SET and all SETs are pairwise
disjoint (otherwise there would be a SUPERSET), any two pairs that generate parallel vectors
need to be disjoint. So, by Lemma 1, any two of the (;) — 2r must not be parallel. On the
other hand, we give an upper bound on the equivalence classes of parallel vectors in F¢ by
counting the SETs that go through the origin 0 = (0,...,0): Since, for any other a € Fg,
there is a unique SET containing 0 and a, and each SET has size 3, there are exactly (3¢ —1)/2
such SETs. Thus

S 3d_1
—2r <

and the result follows by solving for 7. <

We now apply Proposition 4 and Lemma 5 to get the following theorem.
» Theorem 6. A mazimum supercap in F3 has siz elements.

Proof. By Proposition 2, there exists a supercap of size 6 in F3. We illustrate one in
Figure 3b.

Now assume that S C F3 is a supercap of size 7. By Lemma 5, the number of SETs in S
is at least 4 but there are at most two non-intersecting SETs in S, a contradiction. |

The proof of the next theorem goes one step further. In this case, the application of
Lemma 5 does not directly imply a tight upper bound.

» Theorem 7. A mazimum supercap in F3 has nine elements.

Proof. A supercap of 3 of size 9 was previously known [32, 2] and is illustrated in Figure 4.

For the upper bound, let S be a supercap with precisely ten different elements of F4. By
Lemma 5, the number of SETs in S is at least [(100 — 10 — 81 + 1)/4] = 3. Analogously to
the proof of Proposition 4, by applying a certain invertible affine transformation, we can
suppose that two of these SETs are Py = {kvi: k € F3} and P, = {(0,0,1,0) 4+ kve: k € F3},
where v; = (1,0,0,0) and v = (0,1,0,0).

Now, let P3 = {(a,b,c,d) + kvs: k € Fs}. We first show that vs = (e, e2,0,0),
where e1,e2 € Fg \ {0}. Let v3 = (e1,e2,€e3,e4). If e4 # 0, then Ps has an element ¢ of the
form (z,y, z,0). Thus, the restriction S” of S to the affine subspace Fy = {(x,y,2,0): x,y,z €
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X | X | X]|X

Figure 4 Maximum supercap in Fa.

F3} contains the seven elements Py U P, U{q}. Since Fy is isomorphic to F3, by Theorem 6, S’
contains a SUPERSET, a contradiction. In fact, S may not contain any element of the
form (-, -, -, 0) different from the elements in P; U P,. Now, suppose that e # 0. Then P5 con-
tains elements ¢; and go of the form (-,-,0,d) and (-,-,2,d), with d # 0. Let A; = (0,0,0,0)
and A; = (0,0,1,0), and for ¢ = 1,2, consider the SETs P and P, defined by

P = {ris+q¢+r=0,s€P}
{=(s+4q):s€ P}

{—(Ai +kvi + @) k € F3}

{=(

{=(

A; +Ql) + 2kv;: k € Fg}
Ai +Q1) +k’l}ii ke Fg}

Note that hence P is parallel to P;, for i = 1,2. Moreover, since the vertices of P, and P, are
of the form (-, -,-,0), the vertices of P| and Py are of the form (-,-,-,3 — d). Also, since the
vertices of Py and ¢y are of the form (-, -,0, ), the vertices of P| are of the form (-,-,0,-); and
since the vertices of P are of the form (-,+,1,-), and go is of the form (-,+,2,-), the vertices
of Pj are of the form (-,-,0,-). We conclude that P; and Pj belong to the 2-dimensional
affine subspace Fy3—q = {(2,9,0,3 — d): 2,y € F3}. Note that P| and P} are not disjoint
because they are parallel, respectively, to P, and P,. Thus, there is a vertex ¢* in P; N P
such that s1+q1 +¢* = so+q2+¢* =0, for some s; € P; and sy € P,. Therefore, S contains
a SUPERSET, a contradiction. Now, if e; = 0 or e5 = 0, then Pj is parallel to either P or Ps,
a contradiction.

Now, let F; ; = {(z,y,4,j): «,y € Fs}, for i,j € F3. Since vs = (e1,e2,0,0), the SET P
must be contained in some affine subspace Fj« j-. Further, we must have j # 0 since otherwise
there are again seven elements of the form (-,-,-,0). Assume, by adapting the invertible
affine transformation accordingly, that * = 0 and j* = 1. Analogously to the proof of
Proposition 4, each element of F3 ( is the unique element that forms a SET with a vertex of P;
and of P; each element of Fp o is the unique element that forms a SET with a vertex of P;
and of P3; and each element of F; 5 is the unique element that forms a SET with a vertex
of P, and of P3; Recall that S has ten elements, i.e., there is an element ¢ in S\ (P, UP,U P3).
Note that the collections F070 U F170 U FQ,O, Fo,o ] F071 U F()’Q, and Fl,o ] F071 @] F272 are affine
subspaces isomorphic to F3, and, by Theorem 6, ¢ may not belong to any of these collections.
Now, suppose that ¢ € Fy ;. For each ¢ € P; C Fp, there is a vertex gz 2 € Fy 2 such
that ¢1 + ¢ + ¢22 = 0. As noted above, each element of F5 forms a SET with a vertex
of P, and of Ps, say ¢o,g3. Therefore {q1, g2, g3, q} is a SUPERSET. Analogously, if ¢ belongs
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X | X | X]|X

Figure 5 Maximum supercap in F3.

to Fy 1 or Fi o, we can find elements ¢; € Py, g2 € P, and g3 € P such that {¢1, ¢2,¢3,¢}
is a SUPERSET. This contradicts the assumption that S is a supercap and concludes the
proof. |

We conclude the subsection with a discussion of open questions, preliminary answers,
and fascinating phenomena. In F3, the largest supercap we can construct has size 14 (see
Figure 5), but Lemma 5 only shows an upper bound of 16 on the size of supercaps. While
an exhaustive computer search shows that 14 is indeed the right answer, we still believe
in (super) elegant proofs. Indeed, looking at the lower bounds in this section, one may
notice that, interestingly, all of them contain the maximum number of SETs possible. Also,
Lemma 5 gives the loosest upper bound when the maximum number of SETs are present. So
one may conjecture that, for each d, a maximum supercap is attained by a union of SETs
and at most 2 additional points.

On the other hand, it has been observed [24] that the maximum supercap in four
dimensions can be partitioned into ten pairs each of which is completed to a SET by the
same element. So it seems that caps and supercaps are somewhat complementary in that
maximum supercaps are far from being caps and vice versa. Unfortunately, however, we need
to push back on this line of thought a bit. As we will see in Section 4, already in F3 there
are maximum supercaps with only one (instead of two) SETs. Also, there is a maximum
supercap in F§ that does not have a SET at all. On a slightly different matter, this situation
is somewhat different from the one for caps in that, for any d € {1,...,6}, there is an affine
transormation that takes any maximum cap to any other maximum cap [15, 18, 24, 27].

As all of the phenomena pointed at here may simply be due to the (small) dimensions we
are working with, we now look at the asymptotic case.

3.2 Asymptotic supercaps

In this section we present upper and lower bounds for the size of a maximum supercap in F4.
The next theorem gives the upper bound; its proof is analogous to the proof of Theorems 6
and to some of the cases of the proof of Theorem 7.

» Theorem 8. A mazimum supercap in F9 has less than 2 - 3% elements.

Proof. It is sufficient to prove for d > 2 that, if a collection S C F¢ has size s = 2 - 3%, then
it contains a SUPERSET. Let S be such a collection, and suppose that S is a supercap. By
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Lemma 5, the number of non-intersecting SETs in .S is at least

4.34-92.34/2 _3d4 17
. )

On the other hand, there are at most |s/3] non-intersecting SETs in S. Thus, we have

‘4-3d—2.3d/2—3d+1‘< 2. 3d/2
4 = 3 '

Note that for any d > 2 we have

4.3 -2.3%/2 3441 >3~3d—2~3d/2 >g>2.3d/2
4 4 4 3

Therefore, we have

4.34_-9.34/2 _3d 41 4.3¢_-9.34/2 _3d 11 92.34/2 2. 3d/2
1 = 1 i E e

a contradiction. Therefore, for any SUPERSET S in F¢ we have |S| < 2 - 3%/2. <
The next theorem gives a lower bound for the size of a maximum supercap in Fg.
» Theorem 9. A mazimum supercap in F4 has more than 3% elements.

Proof. We prove that every maximal supercap has size at least 3%. Given a supercap S in
F4, let S be the collection of elements v of F4 — S for which there is at least one triple T in S
such that 7'U {v} is a SUPERSET. Note that if € F4\ (SUS), then S U {z} is a supercap.
Thus, if S is a maximal supercap, then SU S = F4. Given a,b € F4, let 2,4, be the (unique)
element of F§ such that {a,b,z.} is a SET; and given a triple {a,b,c} C FZ that is not a SET,
let y. be the (unique) element of Fg such that {¢, Zap,yc} is a SET. Note that for every such
triple {a,b, c} in a supercap S, we have yq, yp, y € S. Moreover, if {a,b,c,y} is a SUPERSET,
then y =y, for some z € {a,b,c}. Therefore, |S| < 3('*;') for every supercap S in Fg.

Now, suppose that S is a maximal supercap and that |S| = s < 3%. Since S is maximal,
we have 3¢ = |F¢| < |S| + |S|. Thus, we have

s3<3d<s+3<§>.

Yet, s > s+ 3(;) for all s > 1, contradicting our assumption, since a maximal supercap
has at least three elements. We conclude that if S is maximal, then |S| > 3%, |

4 Probabilities of the presence of a superset in random collections

In the section, we compute probabilities of k-element collections in F9 being supercaps. Using

structural insights from Section 3, we get the following result, settling the question for d = 2.

» Theorem 10. A collection of four elements drawn uniformly at random without replacement
d
from F¢ is a supercap with probability gd—:g

Proof. Let S = {a,b,c,d} be a collection of four elements drawn uniformly at random
without replacement from F¢. Consider the four elements of S in (alphabetical) order. As
noted earlier in Proposition 2, if S contains a SET, then it is a supercap. Without loss of
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generality, fix the first two elements {a,b}. The third element, ¢, completes a SET with
probability ?ﬁ%g, since exactly one of the remaining 3% — 2 elements from F$ forms a SET
with {a, b}. If {a, b, ¢} does not form a SET, then there are three pairs, {a, b}, {b, ¢}, and {a, c}
that define different elements with which they form a SET. Thus, there are exactly three
elements that can complement {a, b, c} into a SUPERSET. Therefore

. 1 39-3 31-6 39-5
Pr(Slsasupercap)z3d72+3d72'3d73:3d,2' «

For d = 3, we require new structural insights.

» Proposition 11. Let S be a collection with five elements in F3. Then S is a supercap if
and only if either
S contains a SET P and the elements not in P form a pair skew with P
or S does not contain a SET and there is no hyperplane in F3 containing at least four
elements of S.

Proof. Let S be a collection of five elements with a SET P. It is clear that if S\ P forms a
pair not skew with P, then S contains a SUPERSET either by the intersection of P and the
SET containing S\ P, or by P being parallel to S\ P. Now, suppose that S\ P = {a, b}
is skew with P. It is not hard to check that a SUPERSET admits three partitions into two
pairs, and one of these partitions consists of two pairs that miss the same third element
to complete a SET; and the other two of these partitions consist of two parallel pairs (see
Lemma 1). Since {a,b} is skew with P, for any ¢,d € P, the pair ({a,b}, {c,d}) forms
a partition of {a,b,c,d} that does not consist of two pairs with a common missing third
element, and does not consist of two parallel pairs. Thus, {a,b, c,d} is not a SUPERSET.

Suppose now that S does not contain a SET. Since a hyperplane in F3 is isomorphic to F3
and every SUPERSET is in a hyperplane, by proposition 2, S contains a SUPERSET if and
only if there is a set of four vertices contained in a hyperplane. <

» Proposition 12. Let S be a collection of six elements in F3. Then S is a supercap if and
only if either
S contains two SETs that are skew, or
there are three parallel planes Hy, Hy, H3 that partition F3 such that SN Hy = {a,b,c,d},
SN Hy={e}, and SN Hy = {f} where {a,b,c} = P is a SET and f ¢ {—(x +¢€):x €
SNH}U{z+d—e:x € P}.

Proof. Let S be as in the statement and first suppose that S is a supercap. First note
that Lemma 5 implies that S must contain at least one SET. If S contains two SETs, they
must be skew, because otherwise the two SETs (and thus at least five elements) are within
a two-dimensional affine subspace, contradicting Theorem 3. If S contains precisely one
SET {a,b,c} = P, we can find a plane H; that contains P and any fourth element d € S.
Note that H; may not contain any other element of S, because this would be a contradiction
to Theorem 3 again. Next, consider the case that there is a plane H' parallel to Hy such
that |[S N H'| = 2. But this is not possible: Since H; and H’ generate 5 vectors parallel
to Hy and, among the vectors parallel to Hy, there are only 4 equivalence classes of parallel
vectors, we get a contradiction to Lemma 1. Hence, there are planes Hy and Hs parallel
to Hy with SN Hy = {e} and SN Hz = {f} for some e, f € F3. Now, since S contains only
the set P, x+e+ f#0forall x € Hy,so f ¢ {—(x +¢€):2 €SN H}. Similarly, since S
isa supercap x +d # e+ fforallz € P,so f ¢ {x+d—e:xz € P}. Thus we are in the
second situation.
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If S contains two SETs that are skew, then Proposition 4 shows that S is a supercap.
If the second condition is fulfilled, then let a, ..., f and Hy, Ho, H3 be as in the statement.
Note that H; does not contain a SUPERSET by Proposition 2. If for a SUPERSET @ C 5,
we have |Q N Hy| = 3, then, for any pair z1,22 € Hy, ©1 + 22 € Hy, but 23 + x4 ¢ H;
where {z3,24} = Q \ {z1, 22}, a contradiction. So, if S contains a SUPERSET @, then Q =
{e, f,y1,y2} for some y1,y2 € SN Hy. But y; + e € Hs while y; + f € Hs for any i € {1,2}.
If d ¢ Q, then —(y1 +y2) € P, but f # —(x +e) for all z € P by the choice of f; a
contradiction. So Q = {e, f,d,z} for some x € P. But then we must have z +d=e+ f; a
contradiction to the choice of f. <

Using these insights and counting the numbers of the corresponding objects yields the
following theorem, which settles the central question of this section for d = 3.

» Theorem 13. A collection of five (siz) elements drawn uniformly at random without

replacement from T3 is a supercap with probability % ~ 46.96% % ~ 711%).

Proof. We count the number of supercaps of five elements using Proposition 11. The ones
that contain a SET and a pair skew with it can be constructed as follows. Choose a SET,
then any of the remaining (3¢ — 3) cards and finally any of the (3¢ — 9) cards that do not
complete an intersecting SET or creates a parallel vector with the SET. Since the last pair is
counted twice this way, the total number is

NS :w(giﬁ_g)(giﬁ_g).

SET,skew 6

= 25272

DN =

For the ones that do not contain a SET and in which no four elements are in a hyperplane,

3
we count first the number of collections with a SET: pick first one of the %(32) possible
SETS, then pick any pair on the remaining cards. With this procedure we double count the
collections composed by two intersecting SETs, so the total number of collections of five

elements with a SET is

/3% [3°-3\ 1/3% 1
5 _ - ) _Z .2 (33 -3).3=
NSET—3<2> ( 5 ) 3<2> 4(3 3) -3 = 30186

We now compute the number of collections without a SET but with a hyperplane. It is clear
that only one hyperplane contains four points of such a collection. Pick then the first four
elements to be the ones in the same hyper plane. There are 33 options for the first, (3% — 1)
for the second, (3% —3) for the third without forming a SET, and only 3 for the fourth so it lies
in the same hyperplane and does not form a SET. We divide by the number of permutations
of 4 elements to avoid multiple counting. For the fifth element the only condition is that it is
outside the hyperplane, so there are 337! - 2 options. The number of such collections is then

5 1
Nigrups = I33(33 —1)(3* —3)-3-(33712) = 37908

Now, the number of collections of five elements without a SET is N, = (353 ) — N, = 50544,
and the amount of collections without a SET and with no four elements in a hyperplane
is Niprampa = Niger — Nidprupa = 12636. Finally, the number of supercaps of size five

is NgET’SkeW + N{ZET’!HP 4 = 37908, which divided by (3; ) gives the probability that a random
collection S of five elements in F3 is a supercap, so
37908 54
Pr(S i = —— = — =~ 46.96%.
r(S is a supercap) 50730 — 115 %
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Table 2 Probabilities (and estimates thereof) of a k-element collection from F¢ being a supercap,
expressed as percentages rounded to two decimals. We used a computer to estimate the probability
where indicated by an asterisk (107 samples for each corresponding cell); the other probabilities are
exact.

| k=4 ] k=5 k=6 k=7 | k=8 | k=9
d=2 ] 57.14% 0 0 0 0 0
d=3 | 88.00% | 46.96% 7.11% 0 0 0
d=4 | 96.20% | 81.68%" | 52.08%" | 19.25%* | 2.34%* | 0.01%"

We count the number of supercaps S of six elements using Proposition 12. Note that the
number of two skew SETs is exactly a sixth the number of five cards formed by a SET and a
pair that is skew with it, so

33
Nt = 2L (3 =) 3 -0y L 1o
’ 3 12

Now consider the second situation in Proposition 12, and let a,..., f and Hy, Ho, H3 be as
in the statement. First note that f ¢ {—(z +€) : € SN H;} ensures that there is exactly
one SET in S, so the two situations cannot happen simultaneously. We count the number of
collections S that fall into this situation the following way: First fix any set {a,b,c} = P
and any fourth point d. There are 9 choices for e. Since {—(z +¢e) : x € SN Hy}
and {z +d — e : x € P} are both contained in H3 and are disjoint, there are 2 choices left
for f. As we count each collection three times (any of the points outside the SET can be the
fourth point), the total number of collections S that fall into the second situation is

(%)

1
Ngase2:T(33_3)92§:16848

In total, we get

NS, + N& oo 4212 +16848 18
Pr(S is a supercap) = QSETS’Skevgs == = — ~7.11%.
( 5 ) 296010 253
This concludes the proof. |

Considering the name of this conference, we leave proving similar statements for d = 4
to future work. To not disappoint the reader, we however provide probabilities that were
determined experimentally with the computer. We summarize the results in Table 2.

5 Algorithms and complexity

Chaudhuri et al. [9] as well as Lampis and Mitsou [22] consider decision problem versions
for SET and show complexity results for them. In these decision problems, we are given a
collection of n elements from F? and ask if the collection contains a SET?. In this section, we
obtain similar results for decision problem versions of SUPERSET.

We define the problems COMBINATORIAL SUPERSET and LINE SUPERSET as follows:
Given a collection of elements C' C F¢ for any v,d > 0, is there a combinatorial (line)

3 Previously only these decision versions of Combinatorial SETs were considered [9, 22]. More restricted
versions with given number of values (k-VALUE SET) or given number of dimensions (k-DIMENSIONAL
SET) have also been considered by the same authors.
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SUPERSET S C C7 We define k-VALUE COMBINATORIAL (LINE) SUPERSET as the restricted
versions where v = k is fixed, and k-DIMENSIONAL COMBINATORIAL (LINE) SUPERSET as
the restricted versions where d = k instead.

Note that, in order to get interesting complexity questions, the number of possible values
v of each attribute needs to be variable, as we see from the following result.

» Theorem 14. The problem k-VALUE COMBINATORIAL SUPERSET and k-VALUE LINE
SUPERSET can be solved in O(dkn*~1) time, for any given k > 0.

Proof. Consider the algorithm that iteratively checks all (kﬁl) subsets of size k — 1 and
keeps an AVL tree [10] of missing k-th elements to complete a SET, if such an element exists.
Then checking if the ordered list contains any duplicates decides if there is a SUPERSET in
the given collection of elements. This algorithm works independent of the considered type of
SUPERSET (combinatorial or line) and runs in O(dkn*~1) time. <

» Theorem 15. The problem LINE SUPERSET can be solved in O(dvn?) time.

Proof. Each pair of elements defines exactly one line, so it suffices to check for each pair if
the collection contains v — 1 elements of the line. If so, the missing element is stored in an
ordered list. <

Note that, by similar reasoning, LINE SET can also be solved in O(dvn?) time.

» Theorem 16. There is a O(k*n)-time reduction from k-DIMENSIONAL COMBINATORIAL
SET to (k+1)-DIMENSIONAL COMBINATORIAL SUPERSET. Furthermore, it sends an instance
on v values to an instance on v + 1 values.

Proof. Let S € F¥ be an instance of k-DIMENSIONAL COMBINATORIAL SET. That is, S is a
collection of n elements in k£ dimensions, each with v possible values. Through the following
procedure, we construct an instance of k + 1-DIMENSIONAL COMBINATORIAL SUPERSET
consisting of collection of elements S’ € Fﬁii of size at most (v + 1) - n, in k + 1 dimensions,
each with v 4+ 1 possible values.

Create a copy Sy of S on k + 1 dimensions, filling the (k 4+ 1)-th dimension of every
element with the value v + 1. Then, create (k 4 1)-dimensional copies S, ..., Sk of S, where
the (k 4 1)-th dimension of elements in S; have value equal to the i-th dimension of that
element elements. That is, for an element ¢’ € S; there is an element ¢ € S, such that
d = (c1],...,c[k],c[i]).

Now, we show that S contains a SET in F¥ if and only if S” = Uf:o S; contains a SUPERSET
in Fﬁﬂ (note that the union might be non disjoint). Suppose S contains a SET in F¥ say A,
and let A; C S; be the corresponding copy of A for all i € {0,...,v}. Let z € Fﬁﬂ be the
element that for all j € {1,...,k} has z[j] = a1[j], if a1[j] = az2[j], and z[j] = v+1, otherwise,

and z[k + 1] = v+ 1. Then Ag U {2} is a SET in FF'T{. Since the elements a1, ...,a, € A are
distinct and A is a SET in Fﬁ, there must be at least one dimension 1 < 5 < k such that the
values a1[j], ..., a,[j] are all distinct. Then A; U {z} forms a SET in k + 1 dimensions and

v+ 1 values, because the first k£ dimensions are the same as Ag U {z}, and dimension k + 1
has the same values as dimension j, so the missing value in A; is v+ 1. Since by construction
we have Ay N A; =0, we conclude that Ay U A; is a SUPERSET in ]F’;_ﬂ

Next, let AUB C S’ be a SUPERSET in ]Fifﬁ such that AN B = §) and there is an element

z such that AU {z} and BU {z} are sETs in F**1. This implies that |A| = |B| = v. Let

v41-
A={ay,...,a,} and let a;- € S denote the projection of a; onto its first £ dimensions, which
is the original of a; in S. If all elements af, ..., a), are different, then they form a SET in F¥.

Now, assume that there are two elements aj, and a¢ in A, such that a}, = aj. Since AU {z}
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is a SET, this implies that a} = a} = ... = a),. Moreover, the projection of z onto the first k
dimensions is equal to aj. Therefore, if the same holds for B, then the projections of each of
the elements of B onto the first & dimensions are all equal and these projections are also
equal to af. However, this is a contradiction, as S’ contains at most v 4+ 1 copies of the same
element in S (and |A U B| = 2v). Thus, without loss of generality, we can assume that the
elements in A are copies of different elements in S and the projection of A onto the first k&
dimensions is a SET in S. <

Chaudhuri et al. [9] prove that k-DIMENSIONAL COMBINATORIAL SET is NP-complete
for k > 3, and Lampis and Mitsou [22] prove that COMBINATORIAL SET parametrized by
the number of values is W[1]-hard. These two results, together with Theorem 16, yield the
following hardness results for SUPERSET.

» Corollary 17. The problem k-DIMENSIONAL COMBINATORIAL SUPERSET for k > 4 and
COMBINATORIAL SUPERSET are NP-complete.

» Corollary 18. The problem COMBINATORIAL SUPERSET parametrized by the number of
values v is W[1]-hard.

6 Conclusion

While it is plausible that we have exhausted (hopefully not gone beyond) the reader’s
tolerance of jokes including “super" in this paper, we believe that we have not done so to
their curiosity regarding SUPERSET. In fact, while we have made progress on many natural
questions in this paper, a few remain open: As for caps, the gaps for the maximum supercap
size for larger fixed dimensions and its asymptotic behavior would be interesting to investigate.
Also figuring out whether a subquadratic algorithm for deciding the presence of a SET or
SUPERSET exists in Fg seems to be an interesting open problem.

Just like SET became too easy one day, we will eventually demand a variant of SET more
difficult than SUPERSET. In fact, note that the term powerset is yet to be overloaded. For
instance, a POWERSET could be the union of three (or more) pairs that are all completed
to a SET by a same element [24] or, alternatively, the symmetric difference between two
SUPERSETSs that intersect in exactly one element.
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—— Abstract

In Conspiracy Santa, a variant of Secret Santa, a group of people offer each other Christmas
gifts, where each member of the group receives a gift from the other members of the group. To
that end, the members of the group form conspiracies, to decide on appropriate gifts, and usually
divide the cost of each gift among all participants of that conspiracy. This requires to settle the
shared expenses per conspiracy, so Conspiracy Santa can actually be seen as an aggregation of
several shared expenses problems.

First, we show that the problem of finding a minimal number of transaction when settling
shared expenses is NP-complete. Still, there exists good greedy approximations. Second, we
present a greedy distributed secure solution to Conspiracy Santa. This solution allows a group
of people to share the expenses for the gifts in such a way that no participant learns the price of
his gift, but at the same time notably reduces the number of transactions with respect to a naive
aggregation. Furthermore, our solution does not require a trusted third party, and can either
be implemented physically (the participants are in the same room and exchange money using
envelopes) or, virtually, using a cryptocurrency.
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1 Introduction

Secret Santa is a Christmas tradition, where members of a group are randomly assigned to
another person, to whom they have to offer a gift. The identity of the person offering the
present is usually secret, as well as the price of the present.

In Conspiracy Santa, a variant of Secret Santa, for each participant, the other members
of the group collude and jointly decide on an appropriate gift. The gift is then usually
bought by one of the colluding participants, and the expenses are shared among the colluding
participants.

In this setting, the price of the gift must remain secret and, potentially, also who
bought the present. At the same time, sharing the expenses usually results in numerous
transactions. Existing results in the literature (e.g., [3, 4, 5, 12]) aim at minimizing the
number of transactions, but they assume that all expenses are public, that all participants
are honest, and that communications are safe. Our goal is to propose a secure Conspiracy
Santa algorithm for cryptographers that do not want to disclose the prices.

1.1 Contributions

We provide the following contributions:

We show that the general problem of finding a solution with a minimal number of
transactions when sharing expenses is NP-complete.

We provide a secure protocol for Conspiracy Santa. The algorithm ensures that no
participant learns the price of his gift, nor who bought it. Moreover, the algorithm
reduces the number of transactions necessary compared to a naive solution (although the
solution in general is not optimal, as this could leak information).

Our secure algorithm is entirely distributed and does not require any trusted third party.
To also realize the payments in a distributed fashion, a secure peer-to-peer cryptocurrency
can be used. We also discuss a physical payment solution, using envelopes and bank
notes.

Our algorithm can also be used in the case where expenses are shared within multiple
groups. There, some people belong to several of these groups and the goal is to reduce the
number of transactions while still ensuring privacy: all participants only learn about the
expenses of their groups, not the other groups. One can also see this problem as a variant of
the dining cryptographers [7]. However, instead of respecting the cryptographers’ right to
anonymously invite everybody, we here want to respect the cryptographers’ right to privately
share expenses of multiple diners with different groups.
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1.2 OQutline

The remainder of the paper is structured as follows: in Section 2, we analyze the complexity
of the general problem of sharing expenses. In Section 3, we present our protocol to solve
the problem of privately sharing expenses in Conspiracy Santa, in a peer-to-peer setting. We
also discuss further applications of our solution, and how to realize the anonymous payments
required by the algorithm. We then conclude in Section 4.

2 The Shared Expenses Problem and its Complexity

Before analyzing the Conspiracy Santa problem in more detail, we now discuss the more
general problem of settling shared expenses with a minimal number of transactions. This
problem frequently arises, for example when a group of security researchers attends a FUN
conference and wants to share common expenses such as taxis, restaurants etc. Reducing
the overall number of transactions might then reduce the overall currency exchange fees paid
by the researchers.

In such a case, each participant covers some of the common expenses, and in the end
of the conference, some transactions are necessary to ensure that all participants payed the
same amount. Note for this first example, there are no privacy constraints, as all amounts
are public.

» Example 1. Alice, Bob, and Carole attended FUN’16. The first night, Alice payed the
restaurant for 155 €, and Bob the drinks at the bar for 52 €. The second day Carole payed
the restaurant and drinks for a total of 213 €.

The total sum is then 155 + 52 + 213 = 420 €, meaning 140 € per person. This means
that Alice payed 140 — 155 = —15 € too much, Bob needs to pay 140 — 52 = 88 € more,
and Carole has to receive 140 — 213 = —73 €. In this case, the optimal solution uses two
transactions: Bob gives 15 € to Alice, and 73 € to Carole.

There are numerous applications implementing solutions to this problem (e.g., [3, 4, 5]), but
it is unclear how they compute the transactions. Moreover, in these applications all expenses
are public, making them unsuitable for Conspiracy Santa.

David Vévra wrote a master’s thesis [12] about a similar smartphone application that
allows to settle expenses within group. He discusses a greedy approximation algorithm (see

below), and conjectures that the problem is NP-complete, but without giving a formal proof.

We start by formally defining the problem.

» Definition 2. Shared Expenses Problem (SEP). Given a multiset of values K = {k1,...,ky}
such that Y. | k; = 0 (where a positive k; means that participant i has to pay money, and
a negative k; means that ¢ has to be reimbursed), is there a way to do all reimbursements
using (strictly) less than n — 1 transactions?

Note that there is always a solution using n—1 transactions using a greedy approach: given the
values in K = {k1,...,ky,}, let i be the index of the maximum value of K (i = arg max,(k;))
and let j be the index of the minimum value of K (j = arg min,(k;)), we use one transaction

between ¢ and j such that after the transaction either the participant ¢ or j ends up at 0.

Le., if |k;| — |k;| > O, then the participant j ends up at 0, otherwise the participant ¢ ends
up at 0. By then recursively applying the same procedure on the remaining n — 1 values, we
can do all reimbursements. Overall, this greedy solution uses n — 1 transactions in the worst
case.

13:3
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It is easy to see that SEP € N'P: guess a list of (less than n — 1) transactions, and verify
for each participant that in the end there are no debts or credits left.

We show that SEP is A'P-complete, for this we use a reduction from the Subset Sum
Problem [10] which can be seen as a special case of the well known knapsack problem [9].

» Definition 3. Subset Sum Problem (SSP) Given a multiset of values K = {ky,...,kyp}, is
there a subset K’ C K such that ), . k' = 0?

The Subset Sum Problem is known to be N'P-complete (see, e.g., [8]).
» Theorem 4. The Shared Expenses Problem is N'P-complete.

Proof. Consider the following reduction algorithm:

Given a Subset Sum Problem (SSP) instance, i.e., a multiset of values K = {k1,...,kp},
compute s = >, k. If s = 0, return yes, otherwise let K’ = K U {—s} and return the
answer of an oracle for the Shared Expenses Problem for K'.

It is easy to see that the reduction is polynomial, as computing the sum is in O(n).
We now need to show that the reduction is correct. We consider the two following cases:
Suppose the answer to the SSP is yes, then there is a subset K" C K such that ), . k =
0. If K” = K, then the check in the reduction is true, and the algorithm returns yes. If
K" #+ K, then we can balance the expenses in the sets K” and K’ \ K" independently
using the greedy algorithm explained above. This results in |[K”| — 1 and |K'| — |[K"| —1
transactions respectively, for a total of |[K'| — |[K"| -1+ |K"|-1=|K'| -2 < |K'| -1
transactions. Thus there is a way to do all reimbursements using strictly less than |K'| —1
transactions, hence the answer will be yes.
Suppose the answer to the SSP is no, then there is no subset K” C K such that
> ke k= 0. This means that there is no subset K3 C K’ such that the expenses within
this set can be balanced independently of the other expenses. To see this, suppose it were
possible to balance the expenses in K3 independently, then we must have », - k=0,
contradicting the hypothesis that there is no such subset (note that w.l.o.g. K35 C K, if
it contains the added value one can simply choose K\ K3).

Hence any way of balancing the expenses has to involve all n participants, but building

a connected graph with n nodes requires at least n — 1 edges. Thus there cannot be a

solution with less than n — 1 transactions, and the oracle will answer no. |

3 Cryptographer’s Conspiracy Santa

Consider now the problem of organizing Conspiracy Santa, where no participant shall learn
the price of his gift. Obviously we cannot simply apply, e.g., the greedy algorithm explained
above on all the expenses, as this would imply that everybody learns all the prices.

More formally, an instance of Conspiracy Santa with n participant consists of n shared
expenses problem (sub-SEP), each with n — 1 participants and with non-empty intersections
of the participants. In each sub-SEP, the n — 1 participants freely discuss, decide on a gift,
its value v; and who pays it; then agree that their share for this gift is v;/(n — 1). Overall
the share of each participant j is

Z?:l,i;éj Vi
n—1
A participants balance p; is this share minus the values of the gifts she bought.

A simple solution would be to use a trusted third party, but most cryptographers are
paranoid and do not like trusted third parties. A distributed solution would be to settle
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the expenses for each gift within the associated conspiracy group individually, but this then
results in n instances of the problem, with n — 2 transactions each (assuming that only one
person bought the gift), for a total of n x (n — 2) transactions.

Moreover, the problem becomes more complex if several groups with non-empty in-
tersections want to minimize transactions all together while preserving the inter-group
privacy.

» Example 5. Ezample 1 continued. For the same conference, FUN’16, Alice, Bob and Dan
shared a taxi from the airport and Bob paid for a total of 60€, that is 20€ per person. There
are two possibilities. Either Alice and Dan make two new transactions to reimburse Bob.
Or, to minimize the overall number of transactions, they aggregate both accounts, i.e. those
from Example 1 with those of the taxi ride. That is [—15,88, —73,0] + [20, —40,0,20] =
[5,48, —73,20]. Overall Alice thus gives 5 € to Carole, Bob reduces his debt to Carole to only
48€ and Dan gives 20 € to Carole. The security issue, in this second case, is that maybe
Alice and Bob did not want Dan to know that they were having lunch with Carole, nor that
they had a debt of more than 20 €, etc.

In the next part we present our solution for the generalization of Conspiracy Santa as the
aggregation of several shared expenses problems with non-empty intersections between the
participants. This solution uses 3n transactions, preserves privacy, and does not require a
trusted third party.

3.1 A Distributed Solution using Cryptocurrencies

We suppose that all participants know a fixed upper bound B for the value of any gift.
Apart from the setup, the protocol has 3 rounds, each one with n transactions, and one
initialization phase.

Note that we consider semi-honest participants in the sense that the participants follow
honestly the protocol, but they try to exploit all intermediate information that they have
received during the protocol to break privacy.

Initialization Phase

In the setup phase, the participants learn the price of the gifts in which they participate and
can therefore compute their overall balance, p;. They also setup several anonymous addresses
in a given public transaction cryptocurrency like Bitcoin [1], ZCash [6] or Monero [2].

Finally the participants create one anonymous address which is used as a piggy bank.
They all have access to the secret key associated to that piggy bank address. For instance,
they can exchange encrypted emails to share this secret key. Protocol 1 presents the details
of this setup phase.

First Round

The idea is that the participants will round their debts or credits so that the different amounts
become indistinguishable. For this, the participants perform transactions to adjust their
balance to either 0, B or a negative multiple of B. The first participant randomly selects an
initial value between 1 and B €, and sends it to the second participant. This transaction is
realized via any private payment channel between the two participants (physical payment,
bank transfer, cryptocurrency payment, ..., as long as no other participant learns the
transferred amount). Then the second participant adds his balance to the received amount
modulo B, and forwards the money (up to B, or such that its credit becomes a multiple of

13:5
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Protocol 1 SEP broadcast setup

Require: An upper bound B on the value of any gift;
Require: All expenses.
Ensure: Each participant learns his balance p;.
Ensure: Each participant creates 1 or several anonymous currency addresses.
Ensure: A shared anonymous currency address.
1: One anonymous currency address is created and the associated secret key is shared
among all participants.
2: for each exchange group do
3 for each payment within the group do
4 broadcast the amount paid to all members of the group;
5 end for
6: for each participant in the group do
7 Sum all the paid amounts of all the participants;
8 Divide by the number of participants in the group;
9 This produces the in-group share by participant.
10: end for
11: end for
12: for each overall participant do
13: Add up all in-group shares;

14: Subtract all own expenses to get p;;

15: if p; <0 then

16: Create | % ] anonymous currency addresses.
17: end if

18: end for

B) to the next participant, and so on. The last participant also adds his balance and sends
the resulting amount to the first participant. In the end, all participants obtain a balance
of a multiple of B, and the random amount chosen by the first participant has hidden the
exact amounts. The details are described in Protocol 2.

Second Round

The second and third rounds of the protocol require anonymous payments, for which we use
anonymous cryptocurrency addresses. These two rounds are presented in Protocol 3. In the
second round, every participant makes one public transaction of B € to the piggy bank.

Third Round

Each creditor recovers their assets via | % | public transactions of B € from the piggy bank.
Note that if a participant needs to withdraw more than B € he needs to perform several
transactions. To ensure anonymity, he needs to use a different anonymous address for each
transaction. In the end, the account is empty and the number of transactions corresponds
exactly to the number of initial transactions used to credit the piggy bank’s account.

» Theorem 6. For n participants, Protocols 1, 2, 8 are correct and require 3n transactions.

Proof. Including the piggy bank, all the transactions are among participants, therefore the
sum of all the debts and credits is invariant and zero. There remains to prove that in the
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Protocol 2 Secure rounding to multiple of the bound

Require: An upper bound B on the value of any gift;

Require: Each one of n participants knows his balance p;;

Require: Y. p; =0.

Ensure: Each one of n participants has a new balance p;, either 0, B or a negative multiple
of B;

Ensure: ) " p; = 0;

Ensure: Each transaction is between 1 and B €;

Ensure: The protocol is zero-knowledge.

Pty & [1..B] uniformly sampled at random;

Py:pp =p1 — iy

Py sends t1 € to Ps; > Random transaction 1..B on a secure channel

Pa: py = pa+ 1y

fori=2ton—1do
PZ‘Z ti =D; mod .B7
PZiftz:Othentlztz—i—B,endif DlStZSB
Pi: pi =pi —ti;
P; sends t; € to Piy1; > Random transaction 1..B on a secure channel
Piy1: pit1 = piy1 +ti;

end for

: P,: t, = p, mod B;

: P,. if t, =0 then t, =t, + B; end if >1<t,<B

: Py pp=pn — ta;

: P, sends t,, € to Py; > Random transaction 1..B on a secure channel

: Priopr=p1 A+t

o T e S S S T T
D U W N = O

end of the protocol all the debts and credits are also zero. The value of any gift is bounded
by B, thus any initial debt for any gift is at most B/(n — 1). As participants participate to
at most n — 1 gifts, the largest debt is thus lower than B €. Then, during the first round,
all participants, except P;, round their credits or debts to multiples of B. But then, by
the invariant, after the first round, the debt or credit of P; must also be a multiple of B.
Furthermore, any debtor will thus either be at zero after the first round or at a debt of
exactly B €. After the second round any debtor will then be either at zero or at a credit
of exactly B €. Thus after the second round only the piggy bank has a debt. Since the
piggy bank received exactly nB €, exactly n transactions of B € will make it zero and the
invariant ensures that, after the third round, all the creditors must be zero too. <

» Remarks. It is important to use a cryptocurrency such as Bitcoin, Monero or ZCash in
order to hide both the issuer and the receiver of each transaction in the third round. This
ensures that nobody can identify the users.

Note that when using Bitcoin, users can potentially be tracked if the addresses are used
for other transactions. Using Monero or Zcash can offer more privacy since the exchanged
amount can also be anonymized. Moreover, to avoid leaking the fact that some persons need
to withdraw B€ multiple times, and are thus doing multiple transaction at the same time,
all the withdrawals should be synchronized. If exact synchronization is difficult to achieve,
one can decide on a common time interval, e.g., an hour, and all the transactions have to be
done at random time points during this interval, independently, whether they are executed
from the same or a different participant.

FUN 2018
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Protocol 3 Peer-to-peer secure debt resolution

Require: An upper bound B on the value of any gift;
Require: n participants each with a balance p;, either 0, B or a negative multiple of B.
Ensure: All balances are zero;
Ensure: The protocol is zero-knowledge.
1: parfor i =1 ton do > Everybody sends B to the piggy bank
2 P;: p;-=B;
3 P; sends B € to the shared anonymous address; > Public transaction of B
4: end parfor
5. parfor i =1 to n do
6 if p; <0 then > Creditors recover their assets
7 parfor j =1 to —%* do
8 P; makes the shared anonymous address pay B€ to one of his own anonymous

addresses; > Public transaction of B
9: end parfor
10: Pl pi = 0.
11: end if

12: end parfor

» Example 7. We now have a look at the algorithm for our example with Alice, Bob, Carole
and Dan. As in Example 5, the initial balance vector is [5,48,—73,20]. They decide on an
upper bound of B = 50 € (note that to provably ensure exactly 3n = 12 transactions they
should take an upper bound larger than any expense, that is larger than 213 €, but 50 is
sufficient for our example here). For the first round, Alice randomly selects 1 < ¢; =12 < 50
and makes a first private transaction of ¢t; = 12 € to Bob. Bob then makes a private
transaction of to = 12 4+ 48 mod 50 = 10 € to Carole; Carole makes a private transaction
of t3 = 10 — 73 mod 50 = 37 € to Dan; who makes a private transaction of t; = 37 + 20
mod 50 = 7 € to Alice. All these transactions are represented in Figure 1. The balance vector
is thus now [0, 50, —100, 50], because for instance Bob had a balance of 48 €, received 12 €
from Alice and sends 10 € to Carole, hence his new balance is 48+12—10 = 50 €. Everybody
sends 50 € to the piggy bank address, so that the balance vector becomes [—50, 0, —150, 0].
Finally there are four 50 € transactions, one to an address controlled by Alice and three to
(different) addresses controlled by Carole. These two last rounds are illustrated in Figure 2.
Note that we have exactly n = 4 transactions per round.

3.2 Security Proof

We now provide a formal security proof for our protocol. We use the standard multi-party

computations definition of security against semi-honest adversaries [11]. As stated above, we

consider semi-honest adversaries in the sense that the entities run honestly the protocols, but

they try to exploit all intermediate information that they have received during the protocol.
We start by formally defining the indistinguishability and the view of an entity.

» Definition 8 (Indistinguishability). Let 7 be a security parameter and X, and Y; two
distributions. We say that X, and Y, are indistinguishable, denoted X,, =Y, if for every
probabilistic distinguisher D we have:

Prir+ X,,: 1+ D(z)] - Prly+ Y, : 1+ D(y)] =0
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12 €
t =12 N
A5 B: 48
37+20 =7 mod 50 12 4+ 48 = 10 mod 50
D: 20 C:-73

10 — 73 =37 mod 50

Figure 1 First round of Example 7.

A: 0 B: 50 A: -50 B: 0
\3
50 € 50 € 50 € ™.,
50 €
Piggy Bank Piggy Bank
D: 50 C: -100 D: 0 T C: 2150

Figure 2 On the left: second round of Example 7. On the right: third round of Example 7.

Dotted arrows represent anonymous transactions, in particular Carole uses three different anonymous
addresses.

» Definition 9 (view). Let m(I) be an n-parties protocol for the entities (P;)1<;<, using
inputs I = (I;)1<i<n- The view of a party P;(I;) (where 1 <4 < n) during an execution of r,

denoted VIEW(7)(Pi(I;)), is the set of all values sent and received by P; during the protocol.

To prove that a party P learns nothing during execution of the protocol, we show that P
can run a simulator algorithm that simulates the protocol, such that P (or any polynomially
bounded algorithm) is not able to differentiate an execution of the simulator and an execution
of the real protocol. The idea is the following: since the entity P is able to generate his
view using the simulator without the secret inputs of other entities, P cannot extract any
information from his view during the protocol. This notion is formalized in Definition 10.

» Definition 10 (Security with respect to semi-honest behavior). Let 7(I) be an n-parties
protocol between the entites (P;)1<i<n using inputs I = (I;)1<i<n. We say that 7 is secure
in the presence of semi-honest adversaries if for each P; (where 1 < i < n) there exists a
protocol Sim;(I;) where P; interacts with a polynomial time algorithm S;(I;) such that:

VIEWSim, (1,)(Pi(13)) = VIEW (1) (P; (1))
» Theorem 11. Our conspiracy santa protocol is secure with respect to semi-honest behavior.

Proof. We denote our protocol by SCS,,(I) (for Secure Conspiracy Santa). For all 1 < i <mn,
each entity P; has the input I; = (n, B, p;), where I = (I;)1<i<n. For all 1 <i <n, we show
how to build the protocol Sim; such that:

VIEWSim, (1,) (P (I3)) = VIEWSscs,, (1) (P; (1))

13:9
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Simulator 4 Algorithm S; of the protocol Sim;(17).

Require: S; knows I; = (n, B, p1)

1: Sy receives t; € from Pi;

2: if 0 < (p; —t1) then

3: Sy sends (B — (p1 —t1)) € to Pi;

4: else if (p1 —t1) < 0 then

5: Sy sends (B — ((t1 —p1) mod B)) € to Pi;
6: end if

7. for j=1ton—1do

8: S1 sends B € to the shared anonymous address;
9: end for

10: if 0 < (p; —t1) then

11: xr =n,

12: else if (p; —¢1) < 0 then

13: r=n+ (Pl—tl)—((tll;pl) mod B);

14: end if

—
(S

: for j=1tox do

_.
2

S1 makes the shared anonymous address pay B € to an anonymous address;
: end for

—_
EN |

Simulator 5 Algorithm S; of the protocol Sim;(I;), where 1 < i < n.

Require: S; knows I} = (n, B, p;)
ti—l (i [13] 3
S; sends t;_1 € to P;;
S; receives t; € from P;;
for j=1ton—1do
S; sends B € to the shared anonymous address;
end for
r=n+ pi"t‘ti—é_ti_B;
for j =1tox do
S; makes the shared anonymous address pay B € to an anonymous address;

end for

—
@

Sim; is given in Simulator 4, and Sim; for 1 < ¢ < n is given in Simulator 5.
We first show that the view of P; in the real protocol SCS,, is the same as in the protocol
Simy:
At Instruction 1 of Simulator 4, Sy receives t; € from P; such that 1 < t; < B, as at
Instruction 3 of Protocol 2.
At Instruction 15 of Protocol 2, P, sends t,, € to P, such that:
1<t,<B
The balance of P is a multiple of B.
We show that these two conditions hold in the simulator. At Instruction 2 of Protocol 2,
the balance of Py is (p1 — t1).
1. If the balance is positive, then 0 < (p; — t1) < B and S7 sends B — (p; — t1) € to P;.
We then have:
].éB—(pl—tl)SB
The balance of Py is B — (p1 — t1) + (p1 — t1) = B which is multiple of B.
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2. If the balance is negative, then S; sends (B — ((t1 —p1) mod B)) € to P;. We then
have:
1<B-—((ty —p1) mod B) < B
The balance of Py is: B — ((t; — p1) mod B) + (p1 —t1) = B+ |25 |- B =
(L%J + 1) - B, which is a multiple of B.
At Instruction 8 of Simulator 4, Sy sends B € to the shared anonymous address (n — 1)
times, and P; sends B € to the shared anonymous address 1 time, so together they send
B € n times to the shared anonymous address, as at Instruction 3 of Protocol 3.
At Instruction 8 of Protocol 3, the users make the shared anonymous address pay B € to
n anonymous addresses. At Instruction 16 of Simulator 4, the balance of P is:
0if 0 < (p1 — t1) (because P; had B € and sent B € to the shared address).
Otherwise, the balance of Py is B — ((t; —p1) mod B) + (p1 —t1) — B = ((t1 — p1)
mod B) + (p1 — t1). Hence P; receives B € from the shared anonymous address
((t1—p1) mog B)+(p1—t1)

’ times, and S receives B € from the shared anonymous

address n+ {(2=p1) mod B)yt®1=t) times. We note that ((t; —p1) mod B)+(py—t1) <
0 because (p; —t1) < 0and ((t; —p1) mod B) < —(p1 —t;1). Finally, P; and S; make
the shared anonymous address pay B € to n anonymous addresses because:

((t1 =p1) mod B)+(p1—t1)  |((tx —p1) mod B)+ (p1 —t1)

n+ Iz + B =n

Finally, we deduce that the view of P; in the real protocol SCS,, is the the same as in the
simulator Simy:

VIEWSim, (1,)(P1(11)) = VIEWscs,, (1) (P1(11))

We then show that the view of P; in the real protocol SCS,, is the same as in the protocol
Simy for any 1 <i < mn:

At instruction 3 and 9 of Protocol 2, each user P; receives t;_1 € from P,_; for any

1 < i < nsuch that 1 < t;_; < B. We note that each t;_; depends on the value t;

chosen by P;. Moreover, t; comes form a uniform distribution and acts as a one-time

pad on the values t;_1, i.e., it randomizes t;_1 such that P; cannot distinguish whether

t;—1 was correctly generated or comes from the uniform distribution on {1,..., B}. At

instruction 1 of Simulator 5, S; chooses t;_; at random in the uniform distribution on

{1,...,B} and sends t;_; to P;.

At Instruction 3 of Simulator 5, S; receives t; € from P; such that 1 < t¢; < B, like at

Instruction 9 of Protocol 2.

At Instruction 5 of Simulator 5, S; sends B € to the shared anonymous address (n — 1)

times, and P; sends B € to the shared anonymous address 1 time, so together they send

B € n times to the shared anonymous address, as at Instruction 3 of Protocol 3.

At Instruction 8 of Protocol 3, the users make the shared anonymous address pay B € ton

anonymous addresses. At Instruction 9 of Simulator 5, the balance of P; is p;+t;_1—t;— B.

Hence P; receives B € from the shared anonymous address ‘W times, and

. itti1—t;—B .
S; receives B € from the shared anonymous address n + Mlﬁ times. We note

that p; + t,—1 —t; — B < 0; indeed, we have ¢; = (p; + t;—1) mod B (Instruction 6 of
Protocol 2). Since p; < B and t;_1 < B, then we have (p; + t;—1) — t; < B, so we have
pi +t;i—1 —t; — B <0. Finally, P; and S; make the shared anonymous address pay B €
to n anonymous addresses because:

pi+ti—1_ti_B+ pi-l-ti—l—ti—B’

n —+ =n

B B
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Finally, to conclude the proof, we deduce that for all 1 < i < n the view of P; in the real
protocol SCS,, is the the same as in the simulator Sim;:

VIEWSim, (1,) (P (1:)) = VIEWSscs,, (1) (Pi(1;))- <

3.3 Physical Variant

If one does not wish to use cryptocurrencies, one can use the following physical variant of
the protocol. In the first round each participant needs to transfer some money to another
participant using a private channel. A simple physical solution is that they meet and perform
the transfer face to face, while ensuring that nobody spies on them. For the second round,
the balance of all participants is a multiple of B €. During the first part of this algorithm,
everyone puts an envelope containing B € onto a stack that is in a secure room. By secure
room, we mean a place where no other participants can spy what is going on inside. In the
second part all participants enter this secure room one after the other and do the following
according to their balance:

If the balance is 0 then the participant does nothing.

If the balance is a multiple k& of B €, the participant takes k envelopes from the top of
the stack, opens them and collects the corresponding k *x B €. Then he places, in each of
the now empty k envelopes, a piece of paper that have the same shape and weight as a
the B €. These envelopes are placed under the stack of envelopes.

This method allows everyone to collect his money without revealing to the other ones how
much they have taken.

We show that this protocol is secure with respect to semi-honest behavior. For this, we
physically simulate the protocol for any participant. We first note that the first round of the
protocol is the same as Protocol 2, so this round can be simulated exactly as in the proof of
Theorem 11. We simulate the second round for any participant as follows. During the first
part of the algorithm, the simulator enters n — 1 times the secure room and puts an envelope
containing B € onto the stack. When it is his turn, the participant enters the room and
puts an envelope containing B € onto the stack. Finally, there are n envelopes containing
B € on a stack. In the second part the simulator enters the room n — 1 times and does
nothing. When it is his turn, the participant enters the room and takes k envelopes from the
top of the stack, opens them and collects the corresponding k * B € as in the real protocol,
where 0 < k£ < n. Since each of the n envelopes contains B €, the simulation works for any
0<k<n.

We deduce that the view of the participant during the simulation is the same as during the
real protocol, which implies that our physical protocol is secure with respect to semi-honest
behavior.

» Remark. This physical protocol mimics exactly the solution using cryptocurrencies. One
advantage, though, of the physical world is that it is easier to perform transactions with 0 €.
Therefore there exists a simpler solution for the second round, where creditors do not have
to give B € in advance: if the participant is in debt he puts an envelope containing B €
onto the stack, otherwise he puts an envelope containing a piece of paper under the stack.

The first and third rounds are not modified, and the simulator for the security proof is
not modified either.
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4 Conclusion

In this paper we showed that the Shared Expenses Problem (SEP) is A/P-complete. Moreover,
we devised a privacy-preserving protocol to share expenses in a Conspiracy Santa setting
where members of a group offer each other gifts.

Our protocol ensures that no participant learns the price of his gift, while reducing the
number of transactions compared to a naive solution, and not relying on a trusted third
party. We formally prove the security of our protocol and propose two variants, one relying
on cryptocurrencies for anonymous payments, the other one using physical means, such as
envelopes, to achieve anonymous payments.

Our protocol can also be used to share expenses among different groups with non-empty
intersections, while still ensuring that each participant only learns the expenses of his group(s).
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—— Abstract

We show the undecidability of whether a team has a forced win in a number of well known video
games including: Team Fortress 2, Super Smash Brothers: Brawl, and Mario Kart.To do so, we
give a simplification of the Team Computation Game [7] and use that to give an undecidable
abstract game on graphs. This graph game framework better captures the geometry and common
constraints in many games and is thus a powerful tool for showing their computational complexity.
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1 Introduction

Multiplayer videogames account for a large portion of the video game market and yet the
additional computational complexity added by coordinating different team members has not
seen much study from a theoretical standpoint. We finally bridge the gap between known
theoretical models where imperfect information team games are known to be much more
computationally complex and popular, commonly played video games.

In a series of papers [8-11], Reif and Peterson explored the computational complexity of
games of imperfect information. One surprising result was a proof that unbounded team
multiplayer games with imperfect information can be undecidable, despite having a bounded
configuration space in the game itself. This work has been expanded to include formula and
constraint logic games [7]; however, to the best of our knowledge, no commonly played game
has been shown to be undecidable using this framework.

The computational complexity of video games has started becoming a popular topic of
inquiry. Past research includes the study of classic arcade games like Pac-Man [13], classic
Nintendo games such as Mario and the Legend of Zelda [1], to more modern games like Candy
Crush [5], Portal [4], Angry Birds [12], and Braid [6]. However, all of these papers considered
single-player, perfect information versions of the game. These are both aspects that intuitively
and theoretically should make the games much more computationally challenging. This
paper critically utilizes these properties to show far stronger hardness results than usually
appears. We are aware of only one other video game, Braid, which has been shown to be
undecidable. However, it does so by the construction of a counter machine using enemy units
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and thus playing such a level will require unbounded computational resources. The ability
for a bounded game state to be able to lead to an undecidable problem has been remarked
on by others are a fascinating feature of this type of problem [7].

In addition, much of the past work on video games has focused on environmental obstacles
such as toggles for moving platforms and locking doors, rather than more central mechanics
of the game. An aesthetic advantage of our proofs are that they focus on player vs player
interaction and use the central combat mechanics of the game as core elements in the
reduction.

Organization

This paper is organized into two parts. The first half deals with abstract games and builds a
framework for later reductions. In particular, Section 2 details the gadgets involved in our
team multiplayer graph game. Section 3 reduces the TEAM COMPUTATION GAME to
the TEAM GRAPH GAME using our simplification of the former, the TEAM DFA GAME,
with further details in Appendix A. The second half, Section 4, applies this framework to
show the undecidability of several popular multiplayer games.

2 Team Graph Game Components

In this section we describe the different components of our undecidability framework which
will be instantiated in the TEAM GRAPH GAME which we define and show to be undecidable
in Section 3. Roughly speaking, it is a multi-player game with two teams, which we will refer
to as blue and red, on a graph where each team wants to get one of their players to one of
the win nodes. Players take time moving from node to node and from a node other nodes
may be visible, allowing the player to determine if another player is there. In addition, some
nodes will allow a player to guard an edge. A player attempting to cross a guarded edge will
be eliminated and no longer be able to perform any useful actions. In our reduction we want
to simulate a DFA which takes input from blue and red players and changes state based
on this input. The state of the DFA will be encoded in the location of one player on the
blue team, called the runner, and we call the other blue team members executors. The DFA
entering an accept state will correspond to the runner being on a path which leads freely to
a win node. The red team will supply their inputs by guarding some of the possible paths of
the executors, while the executors will provide the blue team’s inputs by choosing among
unguarded paths to take. Both teams’ inputs will force the runner to take a certain path
through the region representing the DFA transition function. This section of the paper will
describe these gadgets and their function in detail and Section 3 will formalize and complete
the proof.

We break this framework down into several important gadgets each given their own
subsection. We require a state transition gadget to manage the state of a deterministic finite
automaton. This is described in Subsection 2.3. Both teams need to set variables which are
taken as input to the DFA which is done with the choice gadgets described in Subsection 2.2.
We need to synchronize all of the players so that the variable choices and DFA execution all
occur in the proper order. This is done with the delay gadget described in Subsection 2.1.
Finally, there is an optional initializer gadget which forces players from initial locations to
the pathways needed in the gadgets. This is described in Subsection 2.4. These gadgets are
put together in Section 3, as shown in Figure 5.

In this paper we use the following diagram conventions. Edges and nodes in the graph
potentially containing red Team players are red and use square for nodes. Edges and nodes
potentially containing blue Team players except for the runner are blue with circles as nodes.
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Figure 1 Gadget to delay the runner until a blue executor arrives to remove the red attacker.

Edges and nodes potentially containing the runner are black with diamonds for nodes. The
graph contains both directed and undirected edges. Bold edges represent many different paths
which serve similar function but are only accessed by one player. They are often accompanied
by a label of how many edges are represented. Triple dots denote the continuation of a
pattern, often many of the same type of edge. In contrast to bold edges, a different player
will generally occupy each of these. Combat zones are pairs of nodes and edges and are
denoted by a lightly colored red or blue triangle. The color dictates which team is posing a
threat in the combat and always involves a node guarding an edge. If relevant, the combat
zone is labeled with the length of time an enemy must spend traversing a guarded edge to
be eliminated. These zones also imply visibility; however, we do not explicitly label visibility
in all of our diagrams. Labeled boxes are used to refer to unrepresented gadgets, and dotted
boxes are used to delineate different gadgets whose internal details are in the figure. An

encircled W is a win node. Other labels and notation will hopefully be clear from context.

Some of these conventions are used more liberally in the diagrams in Section 4 along side
more representative pictures for the games.

2.1 Delay Gadget

The simplest gadget is the Delay Gate, as seen in Figure 1. The blue runner moves through
the maze and is frequently blocked from making progress by a red player guarding a combat
zone (edge) from an attack node. To progress, one of the blue executors must arrive at its
own attack node which threatens the red guard, who must escape outside the combat zone
(and far from its attack node) or be eliminated. As long as the red-beats-blue time x < a
and the blue-beats-red time v < b, the delay gadget achieves this goal.

2.2 Red Team Choice Gadget

The Red Team Choice Gadget gives the red team the ability to influence the path of a blue
team player’s movement. Detailed in Figure 2, a blue team member starts at node v, and
wants to exit out of v or v{, and a red team chooser at u, (or its neighbors) will be able to
force the outcome without fully preventing progress.
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Figure 2 Gadget for a red player to force a blue player to take exit 0 or 1.

The graph is symmetric, so suppose without loss of generality that the red chooser wants
the blue player to exit out of v]. Given their choice of where to start among the subgraph
{ug, ur,u1}, they can successfully block the v, exit by simply waiting at uy and attacking if
the blue player tries to traverse edge (vo,v}). If ¢ > a + b, no starting location of the red
chooser allows them to prevent the blue player from reaching both exits: the red chooser
must start at least d = a + b — k time units away from ug to block v, which means starting
¢+ (¢ —d) > a+ b away from wu; which is too far to block v} as well.

An optimal strategy for the blue player to guarantee progress is thus to immediately
move towards v(. Either the red chooser is blocking v} and the blue player will leave through
the preferred exit, or red chooser is blocking v{, and the blue player will have time to turn
around and reach v{ (the preferred exit) before the red chooser can reach ;.

2.3 State Transition Gadget

Whereas the Red Team Choice Gadget is used to allow red team to influence a blue executor’s
path, the State Gate gadget is used to allow blue team executors to influence the blue
runner’s path. The "core" of a State Gate is essentially two Delay Gates sharing the same
red guard who, unlike the Red Team Choice Gadget, is able to simultaneously block both
exits for the blue runner. Depending on which of the two paths the blue executor is on, it
will be able to safely open one of two exit paths for the blue runner.

Looking ahead to our undecidability proof for TGG, we generalize the core into a State
Gate by first allowing for two independent hallways per blue executor "input" and second
to allow for multiple independent hallways for the blue runner. Detailed in Figure 3, the
first can be constructed using two cores (each with one hallway of each "input" type) or with
one core modified such that the red guard’s edges are the target of two blue executor attack
nodes at once. The second generalization is simply constructed using multiple instances of
the first in series along the blue executor’s paths, one per required blue runner hallway.

The core works correctly as long as the red guard has visibility on the blue runner and
executor and 7 < b < a — k. When safe, the red guard can mimic the blue runner’s movement
and always reach the closer attack node fast enough to block the path, but when the blue
executor arrives on one side, the red guard must vacate the corresponding attack zone and can
only safely block the opposite path. Thus, the blue runner strategy of repeatedly attempting
to go in either direction until the red guard stops following to block will allow for guaranteed
safe passage without visibility between the two blue team players. As a side note, the core



M. J. Coulombe and J. Lynch

|| | |
YY_ YV
X2 < > State
Gate

Yy vy

.| State
Gate

YY VY
oYY YY1
\L[/\ I/

State Gate E
ﬁ:ii

x4

AMA

>

T =
TN/ VARAVARN
Ovy vyl Ovy vvl

Figure 3 "State Gate" gadget schema for a blue executor to branch the blue runner. The core
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could also be implemented with two separate, unmodified Delay Gates, thus using two red
guards instead of one but having no additional timing constraints.

2.4 Initialization

In many games we are modeling with TGG, all players on each team start in their team’s
single spawn room. In order to force the team members into separate hallways, they are
coerced into guarding a set of paths, one per player (besides the runner), which all lead to the
victory node w. Figure 4 shows the initializer gadget with spawn nodes s or s,., where first
blue must split into three hallways to block any red players from reaching w and force the

red players to make progress and split up in order to block the blue runner from reaching w.

Specifically, to incentivize the blue team to fully split up, two red team "win paths" are
placed and each guarded by a series of n,. blue attack zones of length by > «, so that even
if the red team sends all of its players down one win path, the defending blue player could
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\

Figure 4 Initializer Gadget to separate players that must start together in team spawn rooms.

eliminate all of them by the end. If the blue team tries to send multiple players out the
same hallway from s, they will either allow red team to win through the other win path in
the initializer gadget, or have no player in the blue runner path, which is designed in our
undecidability construction to be the only path to w.

If blue team does split up and guard the red team win paths, then red team must then
prevent the blue runner from reaching w by going down a third path that splits into n,
branches, each responsible for guarding a different path for the blue runner. This forces
the red team to separate and block every path until the blue runner gives up and exits the
Initializer Gadget, at which point all other now-separated players can safely exit as well.

The constraints on the Initializer Gadget are light beyond the need for visibility so each
player can learn when it is safe to stop guarding an attack zone and make progress. No
information needs to be private at this point so full visibility is allowed within the gadget,
although a set of hallways at the exit for the blue runner to pass within visibility range
of every other player would be a sufficient signal for games being modeled by TGG with
occlusion or view distance constraints. For the blue players to have time to block the red
players, the attack nodes should be close enough together such that Vi € [0,n,) : a1 + tas <
bo + b1 + (i 4+ 1)(b2 — v). So that the red players have time to block the blue runner, it must
be that by + dp + d; < cg + ¢1 + 5 — K.
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3 Reductions

The TEAM COMPUTATION GAME (TCG), as defined in [3], is a game about two teams
(3 and V) whose players alternate writing symbols onto certain cells of a finite-length tape of
a Turing machine, which takes a fixed number of steps during each round and if it halts then
the game ends and one team wins based on whether it accepts or rejects. A simplifying insight
is that this Turing machine is effectively a DFA that teams are alternatively feeding input
symbols into until it ends up in a final state that determines which team wins. The following

modified definition will use this terminology instead for the purposes of the later reduction.

Reductions establishing the equivalence of TDA with TCG and thus its undecidability can
be found in Appendix A.

» Definition 1. The TEAM DFA GAME (TDG) is a two-versus-one team game. An instance
of the game is a DFA D = (X = {0,1}, Q, qo, 6, F = F3AFy). The existential team {31, 32}
competes against the universal team {V}. The game starts with D in state ¢o and each round
proceeds as follows:

1. If D’s state ¢ € F5 then team existential wins. If ¢ € Fy then team universal wins.

2. V learns the state ¢ of D then inputs two bits by, by into D.

3. Ji learns b; then inputs one bit m; into D. V learns m;.

4. 35 learns by then inputs one bit my into D. V learns mso.

We now go on to define the TEAM GRAPH GAME and show it is undecidable by a
reduction from the TEAM DFA GAME.

» Definition 2. The TEAM GRAPH GAME is a team multiplayer game. Let the TGG of
red team vs blue team consist of:

Directed Graph G = (V, E) with edge weights € N

Designated team start nodes s, s, € V and win node w € V

Directed visibility relation S C V2

(Uni)Directed attack relation A C V2

Initial number of players per team n,.,n, € N

The execution of the TEAM GRAPH GAME starts with n,. red player tokens at node s,
and ny, blue player tokens at node s,. Blue team wins if either every red token is eliminated
or any blue token reaches the node w. Red team wins similarly.

The game proceeds as a sequence of time steps, or frames. Each frame, all active players
simultaneously commit to their action and then all effects are triggered and handled before
the frame ends. The action of a player consists of a node n € N[v] to move towards (or none
to signify not moving). Once players have performed their moves, each player whose token
can "see" another player’s token learns of said token’s position and team. Visibility zones
are defined at nodes by S and on edges by union of the visibilities of the endpoints; combat
zones are defined similarly.

» Theorem 3. TDG reduces to the TEAM GRAPH GAME (TGG). Namely, 3h : (D) — (I)
which maps instances (D) of TDG and instances (I) of TGG such that the existential team
has a forced win in the TDG on D iff the blue team has a forced win in TGG on I.

Proof. Figure 5 gives an overview of the structure of I = h(D). Once the initializer gadget
distributes each blue and red player into their proper hallways, each loop of the blue team
in the graph simulates one round of TDG. The universal team’s decisions b1, bo are made
(cooperatively) by the two decision-making red team members in the red choice gadgets,
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Figure 5 A diagram of how the gadgets are put together.

and the existential team’s decisions mj, ms are made (independently of each-other) by the
decision-making blue team members directly after exiting the red choice gadgets. The blue
runner’s location corresponds directly to the state of the DFA, and their teammates open
paths inside state gates which allows the runner to implement the DFA transition function 4.

Each state ¢ € Q \ Fy of the DFA has an "arena" with two sides: the right side with a
series of four state gates of increasing arity and a left side with a series of two Delay Gates.
When the blue runner enters the right side of the arena for ¢ before the first state gate,
the DFA is in state q. If ¢ € F3 then there will also be a hallway here leading directly
to the win node. The four state gates encode the tree of states reachable from ¢ in up to
4 transitions, outputting the runner in one of 16 hallways each corresponding to a state
q' = foldl(6, g, [b1, b2, m1, ms]) and leading to the left side of the arena for ¢’. Once the runner
passes through the Delay Gates, they enter the right side of the arena for ¢’. Lastly, if ¢ € Fy,
then all hallways entering its arena lead to a dead-end.

As we showed in Section 2.4, each team has a course of action which will prevent any
players on the other team from reaching the Win node. Further, this puts every player on
a path whose only way forward is out of the initializer gadget. At that point there is no
incentive to stay in the initializer gadget and we may as well assume they continue into the
rest of the map.
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== Suppose the existential team has a forced win in TDG on D. This means that there are
optimal strategy functions s; : ([b;1,bi2, ..., bij—1], [Mi1, ..., mi j—1],b; ;) — m; ; which
produce a win-preserving move for 3; in round j given V’s move and what they learned
in the past j — 1 turns.
For decision-making blue player 4, on the j*" time they pass through red choice gate i,
let b; ; = 0 if exiting the A side else b; ; = 1 if exiting the B, let m; ; = s;([bi 1, ..., bi j—1],
[mi1,...,mij—1],b; ), then at the upcoming branch take path m; ;. The blue runner
should follow the hallways and wait until combat zones are safe before passing through,
and the decision-making blue team members should open combat zones long enough for
the runner to pass through safely and to defeat the red team member there if necessary.
By the structure of the graph, the path of the runner will lead to a ¢ € F3 no matter
what choices red team makes in the red choice gadgets, and every attack zone along the
way will be opened up for the blue runner by their teammates, thus blue team has a
forced win in TGG on I.

<= Now suppose blue team has a forced win in TGG on I. Since only the blue runner
can reach win node (outside the initializer gadget), any winning execution entails a path
through the graph that the runner took which starts by entering the right side of the gq
arena, passes through n arena right sides and left sides (as described earlier), and ends at
the entrance of the right side of an arena for some ¢, € F5.
In order for the runner to pass through the combat zones in the gates along the path, the
decision-making blue teammates must have dealt with the attacking red team members.
Since blue team has a forced win, they still have a forced win even if red team attackers
always leave their attack zone before the decision-making blue team member has a chance
to defeat them, thus that strategy forces the blue runner at the entrance of the right side
of an arena to take a path through the state gates determined by the red and blue teams’
choices at the start of the loop.
This implies the existence of functions s; : ([b;,1,bi2, ..., bi j—1], [Mi1, ..., mij—1],bi ;) —
m; ; which produce a win-preserving branch for decision-making blue team member 7 to
take on the loop j after exiting red choice gate ¢ from exit b; ; and what they learned
in the past j — 1 loops. By the structure of the graph, s; is also an optimal strategy
function for 3; in TDG on D, thus the existential team has a forced win. <

» Corollary 4. The TEAM GRAPH GAME is undecidable.

Proof. If TEAM GRAPH GAME were decidable, then TDG would be decidable using h
from Theorem 3 to get a homomorphic instance, but since TDG is undecidable by Corollary 8,
TEAM GRAPH GAME cannot be either. <

4 Applications

We now show how to apply the TEAM GRAPH game to generalized versions of several
popular video games. In particular we will show that it is undecidable to determine whether
a team can force a win in the following games: Team Fortress 2, Mario Kart, and Super
Smash Bros. Brawl. For all of these games we generalize the map size and number of players
able to participate in a single game. In addition, we assume that players on the same team
have no way of communicating with each other beyond their actions in the game. This means
players are not co-located, there is no screen-sharing, and any sort of team or global chat is
disabled.

The following are the essential components needed in the game to fit the TGG framework.
1) The game needs a 3D map or crossover gadgets in 2D because the TGG graph used in
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Figure 6 Grenade-only Attack Gadget (vertical 2D slice)

our reduction is non-planar. 2) One-way Doors. 3) Visibility zones such that we can have
two players communicate their location without being able to reach each others path, and
ways of blocking visibility so communication can only occur in specific regions. 4) Combat
zones which allow the attacker a guaranteed strategy to eliminate or disable the defender
and which has no path between the attacker and defender. 5) A win condition that can be
activated by one player in a limited location.

4.1 Team Fortress 2 and many other team FPS games

Like many others of its kind, Team Fortress 2 is a first person shooter with 3D environments
(1), one-way doorways (2), clear unbreakable glass/fences and opaque walls (3) made out of
polygons, grenades and sniper rifles (4), and a capture point where one team can win by
standing on it (5). These features allow TF2 and others to directly simulate TGG, leading
to their undecidability. Note: only the base TF2 game with default loadouts are considered.

The nodes and edges of the graph are generally represented as hallways made of opaque
walls connecting at intersections, possibly lengthened or bent-out-of-shape to enforce a
required minimum traversal time. Visibility is limited by the first-person view, and visibility
zones are constructed by making walls out of glass that gives a line-of-sight between desired
locations and possibly additional walls to block view elsewhere.

The combat zones are constructed based on which team the attacker is on. A blue team
member attacking a red team member will be faced with a room with a wall that only
Demomen grenades can be shot over and succeed at damaging the defender. Figure 77
shows how to construct a hole which only physics-enabled grenades can tumble through and
sticky bombs and other weapons cannot penetrate. A red team member attacking a blue
team member will be faced with a small hole in the wall at Sniper-eye-level which gives a
long-distance view of the defender’s head such that only a Sniper’s sniper rifle can kill the
defender before they can pass through the attack zone at optimal speed.

In order to further enforce desired class choices, the red and blue teams are incentivized
to choose the Sniper and Demoman classes (respectively) by the map design. The blue team
spawn room is separated by a deadly chasm that can only be crossed using the Demoman’s
unique ability to sticky bomb jump long distances through the air without touching a surface
(as a Soldier requires). Health pack pick-ups and distance-based fall damage may be used
to force the health of players down so one sniper shot or grenade explosion will defeat any
opponent.

By playing in a king-of-the-hill match with unlimited-time and with text and voice chat
disabled, this map structure will exactly simulate TGG.
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4.2 Super Smash Brothers

Super Smash Brothers is a popular Nintendo fighting game series. Out of the series’ five
releases, the most recent three (Super Smash Bros. Brawl, Super Smash Bros. for 3DS, and
Super Smash Bros. for Wii U, henceforth referred to as Brawl, SSB4 3DS, and SSB4 Wii
U, respectively) share a number of gameplay elements which we will shortly show result in
undecidability.

We consider a generalized Super Smash Bros. game, where an arbitrary number of players
on red or blue team control fighters (who are followed by the players’ personal, local cameras,
as in SSB4 3DS Smash Run mode) which fight on a stage (a bounded 2D plane with gravity,
solid polygonal ground, and other obstacles) in Stamina mode (where each player starts with
a given number of hit points and dies when they are depleted). Fighters are selected among
a set of characters, each with unique traits, and can walk, run, jump off the ground and
jump in the air finitely-many times before landing, and fight using aerial and ground attacks
(which may create hitboxes which damage and knockback other characters, may move the
attacker, and may provide defense), and defensive maneuvers such as shielding (a bubble
around character which blocks attacks at the expense of temporary shrinkage), air and ground
dodging (temporary invincibility at the cost of short vulnerability before and afterwards)
and rolling (a ground dodge with fixed motion left or right). Due to close-quarters, we
also consider obtrusive stage background music such that all character sound effects are
drowned-out.

» Theorem 5. In generalized Super Smash Bros. match between two teams of Pikachus on
some stage, it is undecidable whether Player 1’s team has a forced win.

Proof. Reducing from TGG constrained to graphs constructed from DFA as in Theorem 3,
we consider only the character Pikachu due to its unique Thunder attack that temporarily
spawns a damaging cloud and lightning strike at a fixed position above Pikachu, even if there
are obstacles in between. Instead of 3D hallways, our construction of the stage simulating
the graph only needs to bound 2D areas with strings of solid blocks (as in Brawl’s and
SSB4 Wii U’s stage builder) that are thin enough in certain areas for Thunder to attack
other characters through ceilings. We also use thin floors, which allow for jumping upwards
through but do not allow for falling through, to construct one-way doors.

The most striking problem for this 2D fighting game is the need for a crossover gadget.
We make use of the barrel cannon stage obstacle, as seen in the Kongo Jungle stage from the
first Super Smash Bros. as well as all future titles in some form, which captures a player
upon contact and, when activated by the player inside, launches them along a fixed path
without the player having aerial control until the end. Notably, we consider the original
design of the cannon where a launched player does not hurt others via collision. By using two
barrels and two one-way floors, a section of the stage as in Figure 7 can allow for crossovers
without player interaction, although it does provide visibility. Because the constrained TGG
graphs can be embedded in the plane where all edge crossings are either outside of the main
loop before the simulation begins, same-player crossings, or between players who are allowed
to know where the other’s token is located, visibility does not transmit information that is
useful for making red or blue team "choices."

As mentioned, attack zones are built around Pikachu’s Thunder attack, which uncon-
ditionally creates a hitbox at a fixed distance high above the character. For attack zones
that guard the traversal of an edge, the idea is to force the defending Pikachu to predictably
position itself in a vulnerable state above the attacker, so that the attacking Pikachu can
always hit them with Thunder if traversal is attempted. In Delay Gates, such as in Figure 8,
where the red attacker of the blue runner is under attack themselves, the blue attacker is
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able to Thunder the only location at which the red attacker can use Thunder to hit the blue
runner, so as to open the path safely. The Red Team Choice Gadget can be implemented in
Brawl similarly to the Delay Gate, and the State Gates directly out of Delay Gates, thus the
given TGG graph is fully representable.

When the blue runner reaches the win node, they can themselves open a path for the
other blue Pikachus and all go into a new series of pathways that lead underneath every red
team player so they can work together to eliminate them all, as properly-timed Thunders
by multiple players can break shields and hit for longer than dodge invincibility. and end
the match with a blue victory. This path-opening can be a Delay Gate or even compactly
implemented using Brawl’s Falling Block object, which is a solid obstacle that temporarily
falls and disappears after a player (the blue runner, in this case) stands on it, reappearing at
its original position after a short period of time. |

4.3 Mario Kart

In an earlier paper, two player, perfect information Mario Kart was shown to be PSPACE-
complete [2]. It also did not consider the commonly enjoyed Battle game type. Here we show
that a generalized version of Mario Kart in team Balloon Battle mode is undecidable by a
reduction from TGG.

Mario Kart takes place in a 3D environment where each player has a personal third-
person camera view of their character; when playing online or on local wireless, players
cannot see other players’ screens. In Balloon Battle, the players are placed in an enclosed,
obstacle-filled Battle Course with a small number of balloons that pop when the player is
damaged, eliminating the player if none remain. By searching the course for item boxes (in
fixed, reusable spawn locations), players can get items from a given distribution to damage
other players and avoid attacks against themselves. There is a blue team and a red team,
and if one team is completely eliminated, the other team wins.

» Theorem 6. In generalized Mario Kart Balloon Battle with the Bob-ombs Only item
distribution, it is undecidable whether or not the blue team has a forced win.

Proof. We reduce from TGG constrained to graphs constructed from DFA as in Theorem 3,
which involves building a Battle Course that simulates the graph. Mario Kart courses are
polygonal 3D environments with a finite maximum movement speed, one-way jumps, clear
glass, and opaque walls, so the primary complexity is describing the attack zones and how to
win.

A player using a Bob-omb item causes a Bob-omb to be thrown from the character’s kart
in an arc. It can bounce off walls and will explode into a large, temporary, damaging sphere
on contact with another player or after a short time interval. One common obstacle in Mario
Kart is the Thwomp, which are large spike-covered boxes which can move along fixed paths.

To construct an attack zone where the attacker is preventing the defending character
from traversing an edge, said edge is a short, thin hallway with exits guarded by Twomps
that alternate moving up and down between the ceiling and ground such that at least one is
always on the ground blocking the path and the space between is smaller than the diameter
of a Bob-omb explosion. The attacking character is spawned in a raised hallway with an
item box and an uncrossable pit such that a Bob-omb can be thrown by the attacker and
create an explosion to eliminate any player between the Thwomps but no Bob-omb can be
thrown back high enough to reach the attacker. In an attack zone where the defender is itself
an attacker in a dead-end hallway, there need only be one Thwomp guarding the single exit
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Figure 7 Super Smash Bros Crossover Gadget using Barrel Cannons
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Figure 8 Delay Gate constructed using Brawl’s Custom Stage Builder parts. A single player’s
screen is approximately 5 blocks tall, so the blue executor can never see the runner. Each "P" is
an example location of a Pikachu, "Ice" is a block with no edge to hang onto, and "Fall" represents
a Falling Block. Shaded blue figures are only relevant during the blue victory phase. Example
Thunder clouds and associated lightning strikes are also shown.
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Figure 9 Mario Kart Delay Gadget’s 3D Layout with Thwomps (opaque walls not shown).

and trapping the defender for a period of time such that the attacker in an even-more-raised
hallway could safely throw down a Bob-omb to eliminate them. Figure 9 gives an overview
of this construction.

When the Mario Kart character simulating blue runner is supposed to reach the win
node, they are first able to open a path for their blue teammates (normally blocked by a red
attack zone) to join them into a set of hallways above the rest of the course which lead to
attack zones spanning each red team character’s small region of the graph. With plentiful
item boxes, the blue team characters can thus trap and eliminate each red team member
using coordinated Bob-omb threats and throws, winning them the game. |

5 Conclusion and Open Problems

Our TEAM GRAPH GAME framework has proven useful in showing the undecidability of
more natural team multi-player games, as shown in our application to various video games.
We currently wonder how far this framework can go. Can we capture other popular genera
of video-games with teams such as MMORPGs like World of Warcraft and Guild Wars, real
time strategy games like Starcraft or Age of Empires, MoBAs like DotA and Heroes of the
Storm, or others? FEach of these has their own challenges in adapting to our framework,
but given our success with Super Smash Brothers which was a 2D game that lacked vision
blockers and a location based victory condition, we believe a lot can be done with a little
work. We also pose the question of whether this framework can be used to understand the
complexity of any real world multi-agent coordination scenarios.

There are also a number of interesting questions about imperfect information team
multi-player games, many of which would be very useful in allowing broader application of
this framework. First, can TGG be adapted to use only a constant number of players on
each team? The TCG needs only three; however, we find it useful to assign different players
to many of our gadgets, leading to a linear scaling. Is the TCG or TGG still undecidable
if we allow a limited amount of communication between players on the same team? For
example, players may be allowed to pairwise communicate or broadcast a constant number
of bits per round. At what point does this problem become equivalent to a two player game
of imperfect information? Finally, is there a way to adapt these abstract games to describe
semi-cooperative games and are these still undecidable. For example, instead of having
fixed teams and asking for a forced win, we might define optimal play to involve trying to
maximize an individual player’s probability of winning and ask whether a certain player has
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a strategy which wins with some fixed probability. If players have some chance of winning
by working together but zero chance of winning otherwise, we might be able to force players
to simulate teams in such a game.
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A TEAM DFA GAME is Undecidable

» Lemma 7. TDG is reducible from and to TCG. Namely, 3f : (D) — (I) and g : (I) — (D)
which map between instances (D) of TDG and instances (I) of TCG which both preserve the
predicate of whether or not the existential team has a forced win.

Proof.
<= Consider an instance I = (S,0,k,I' D O U {A, B}) of the TCG.

The TDG on the corresponding DFA D will directly simulate the TCG on I. The state

space Q(D) is the configurations of S as well as additional counters for input tracking.

The first V turn runs S without input from the existential team, thus go(D) is the result

of immediately applying ds k times (or until termination) from its initial configuration.

After that, both games check for termination in the same way (accept states of S are win
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states of existential team, reject for universal), then begin writing to S’s tape or feeding
bits into D. The only significant difference is that the existential moves O must be input
to D in binary over 2|log, |O|] rounds where the universal player’s moves are ignored
by D. The transition function §p simply writes the appropriate bits of the moves from
V,d1, J2 onto the tape of the current configuration, and once everything is input then it
updates the configuration by applying ds & times (or until termination).

— Consider an instance D of the TEAM DFA COMPUTATION GAME.

The TCG on the corresponding instance I = (S,0,k,T") will similarly be a direct
simulation of the TDG. Using k = 6 and I' = O = {0, 1}, the tape of S is just the cells
for each input bit by, by, m1, mo plus unused space at the end. Its state space simply
augments Q(D) with input reading states. The first &k steps, S will be in ¢o(D) and move
nowhere, but each following time S is simulated for k steps, starting at tape position 0,
S will read each bit, applying dp to update its DFA state for each read (unless it has
entered a final state), then just return to position 0.

At the start, TCG runs S for k steps, which does nothing. The termination check for each
game is the same, as before, then each player will input their move onto the appropriate
cell of the tape (in the same order in both games) then run S again, which will simulate
the same inputs being given to D and updating its state. |

» Corollary 8. The TEAM DFA GAME is undecidable.

Proof. If TDG were decidable, then TCG would be decidable using f from Theorem 7 to
get a homomorphic instance, but since TCG is undecidable [3], TDG cannot be either. <
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Consider the following FUN problem. Given m, s you want to divide m muffins among s students
so that everyone gets ™ muffins; however, you want to maximize the minimum piece so that
nobody gets crumbs. Let f(m, s) be the size of the smallest piece in an optimal procedure.

We study the case where Pme = 3 because (1) many of our hardest open problems were of
this form until we found this method, (2) we have used the technique to generate muffin-theorems,
and (3) we conjecture this can be used to solve the general case. We give (1) an algorithm to
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1 Introduction

Consider the following FUN problem. Given m,s you want to divide m muffins among s
students so that everyone gets “* muffins; however, you want to maximize the minimum
piece so that nobody gets crumbs. Let f(m, s) be the size of the smallest piece in an optimal
procedure.
We give an example:

You have 47 muffins and 36 students. You want to divide the muffins evenly, but no student
wants a small piece. Find a protocol that maximizes the smallest piece. We show in Section 5
that there is a procedure for this with smallest piece % and that this is optimal. Hence

£(47,36) = 3L

Convention. When discussing a muffin being cut we refer to pieces. When discussing a
student receiving we refer to shares. They are the same; however, it will be good to have
different terminologies to focus on what’s important. We treat a piece, a share, and its value
as the same thing. So we may say let © > % be given to a student.

» Definition 1. Let m,s € N. An (m, s)-protocol is a protocol to cut m muffins into pieces
and then distribute them to the s students so that each student gets * muffins. An (m, s)-
protocol is optimal if it has the largest smallest piece of any protocol. f(m,s) is the size of
the smallest piece in an optimal (m, s)-protocol.

Clearly, for all a € N, f(am,as) > f(m,s). All of our theorems indicate that f(am,as) =
f(m,s). We have not been able to prove this; however, we will only consider the cases where
m, s are relatively prime.

We came upon this problem in a pamphlet Julia Robinson Mathematics Festival: A
Sample of Mathematical Puzzles compiled by Nancy Blachman. On Page 2 was The Muffin
Puzzle which asked about the problem for several particular cases. Nancy Blachman attributes
the problem to Alan Frank and points out that it was described by Jeremy Copeland [3]. We
are the first ones to consider this problem seriously for general m, s with one caveat: There
was some discussion of this problem in the math-fun email list in 2009. We have obtained a
copy of their arxives and discovered that they already had Theorem 3 and 11. We will credit
the individuals when we get to those theorems.

Given m, s how hard is it to compute f(m,s)? Computing f(m,s) can be rephrased as a
mixed integer program on O(ms) variables (the proof is in the Section A). Since the input is
of size O(log m + log s) this result does not even put the problem into NP. One of the upshots
of this paper will be a procedure that we conjecture puts the computation of f(m,s) into P.

We study the case where [%ﬂ = 3 because (1) many of our hardest open problems
were of this form until we found this method, (2) we have used the technique to generate
muffin-theorems, (3) we conjecture this can be used to solve the general case.
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We have a long paper [2] and some programs [1] for computing f(m,s). For 1 < s < 50,

1 < m < 60 we have computed f(m,s). In this paper we focus on a subset of the material
that lends itself to generating theorems about muffins via an algorithm.

2  Summary of Results

In Sections 3,4 we give basic theorems and definitions used throughout the paper. In Section 5
we illustrate the Buddy-Match techniques by proving f(47,36) < § 31 . In Section 6 we illustrate
how to obtain lower bounds and present the result f(47,36) > 31

In Sections 7 we discuss how to generate theorems from the Buddy—Match Technique.

These theorems are of the form:
IfdeNand 1 <a<3d—-1, a,d relatively primes, then

dk + X

>
(VE > 1) f(3dk + a+d,3dk + a) < 3dk+ a

where X is a constant which can depend on a,d but not on k. In Section 8 we discuss how
to generate theorems that are more general. Here is an example:

If1<a< % and a # 23—d then f(3dk + a +d,3dk + a) < 555 where X = max{2“ ‘”‘d}

3

In Sections 10, 11 we show how, assuming certain conjectures, one can speed up the
Buddy-Match Technique. In Section 12 we give an algorithm that we conjecture puts f(m, s)
into P. In Section 13 we speculate about that algorithm and other muffin-issues.

In the appendix we state and sometimes prove theorems that are needed to fill in some of
the gaps in our narrative. We also give some examples of the theorems we generated.

3 Basic Theorems

In this section we prove two theorems that will enable us, for the rest of the paper, to only
consider m, s and protocols such that (1) m > s > 3, (2) s does not divide m, and (4) every
muffin is cut into exactly two pieces.

The following theorem takes care of the cases s =1 and s = 2. The proofs are easy and
left to the reader.

Theorem 2.

(Ym)[f(m, 1) = 1

(Ym)[m =0 (mod 2) — f(m,2) =1]
(Vm)m =1 (mod 2) — f(m,2) = 1]
(VYm, s)[s divides m — f(m,s) =1].

PwNEY

The following theorem shows that if you know f(m, s) then you know f(s, m). Combined
with Theorem 2 we need only consider m > s > 3. This theorem was independently discovered
by Erich Friedman, within the math-fun email list, in 2009.

» Theorem 3. Let m,s € N. Then f(s,m) = = f(m,s).

Proof. Assume f(m,s) > a. We show f(s,m) > >a. Let My,..., My, be the muffins. Let
S1,...,95s be the students. The protocol that achleveb f(m,s) > «a must be of the following
form:

1. For each 1 <14 < m divide M; into pieces (a;1, @2, ..., Gim,;) Where Z . a” =1.

2. For each 1 < j < s give S; the shares [b1;,baj, ..., b, j} where Y77 b; = 2.

15:3
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The following hold:
Uiz, Uit {as t = Ujmy UiZo b}

The min over all of the a;; is a.

The following protocol shows that f(s,m) > Za. Let Mj,..., M} be the muffins. Let
1,...,SI be the students.

1. 1*;or esgch 1 Si < idwide M]’ into (b1, =boj,..., -bs,5). Note that S 2bij =
s by =g x =1

2. For each 1 < i § m glve S’ [>ai1, >aij, ..., >~0im,]. Note that Zj 1 i
S g S ] = ' ' '
m j=1"7"t 7 m m*

Clearly this is a correct protocol and the minimum piece is of size > a.

We now show that f(s,m) = = f(m,s). By the above we have both (1) f(s,m) >
= f(m,s), and (2) f(m,s) > = f(s, m) Hence

F(s.m) = —f(m,s) = = f(s,m) = [(s,m).

Therefore f(s,m) = = f(m,s). <

» Theorem 4. Let m,s € N.

1. If f(m,s) > « and o > % via protocol P then protocol P cuts every muffin into 1 or 2
pieces.

2. f(m,s) > a and o < § wvia protocol P then there is a protocol P’ such that (1) P’ also
yields f(m,s) > «, and (2) P’ cuts every muffin into 2 or more pieces.

Proof.
a) If any muffin is cut into > 3 pieces then there is a piece < % < a.
b) If any muffin is uncut and given to (say) Alice then we can add a step where we cut the

muffin into ( and give both f—bized pieces to Alice. Since a < % adding in some

2 2)
pieces of size 35 L does not affect the smallest piece. <

By Theorem 4 we have the following convention.

Convention: When trying to show that f(m,s) < « where % <a< % we will assume, by
way of contradiction, that there is a protocol showing f(m, s) > « where every muffin is cut

into exactly 2 pieces.

4  Basic Definitions

» Definition 5. Let m, s € N. Assume there is an (m, s)-protocol.

1. The two pieces that come from the same muffin are called buddies. B(z) is the buddy of
z. Note that B(z) =1 — «.

2. A student that gets A shares is an A-student. A share given to an A-student is an
A-share.

3. 2-Shares that are given to the same 2-student are matched. M (z) is the match of 2-share
x. Note that M(r) =2 — x.

4. If x is a share given to a 3-student then Mg(x) is the smallest share (not including x)
that the student has, and M, (x) is the largest. Note that Mg(x) < % Hence
B(Ms(x)) > 1 - 3=,
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Notation: (a,b) will mean the set of shares that have size strictly between a and b. Hence
|(a,b)| will be the number of such shares. We use similar notation for [a, b].

5 An Example is Worth A Thousand Theorems: 43 muffins, 39
Students

The method we demonstrate in this section is called The Buddy-Match Method.

» Theorem 6. f(47,36) < 31 = 122,

Proof. To make the notation easier we write all fractions as having denominator 360.
Assume there is an (47, 36)-procedure. We show that there is a piece < 122, Note that

360"
47 _ 470
36 = 360
Case 1: Some student gets > 4 shares. Then some students has a share < 721 < 124,

%, so this is impossible.
Case 3: Every muffin is cut in 2 pieces and every student gets either 2 or 3 shares. The

total number of shares is 94. Let s (s3) be the number of 2-students (3-students).

Case 2: Some student gets < 1 share. 1 <

259 +3s3 = 94
So + S3 = 36

So sg = 14 and s3 = 22.

. : 234 70 234 __ 236 236 __ 124
Case 3.1: There is a 2-share x S 360 M(x) Z 360 360 ;o@z SO B(M(ZE)) S 1-— 360 — 360

6
Case 3.2: There is a 3-share z > 222, B(Mg(x)) <1 — 835 _ 12

360 2 360 -
. : : 236 _ 236 _ 124
Case 3.3: There is a 2-share v > £55. B(v) <1 — 555 = 355

Case 3.4: There is a 3-share z < %. This one is self-explanatory.

6
. . 124 222 _ : 234 236
Case 3.5: All 3-shares are in (555, 555) and all 2-shares are in (555, 555)-

The following picture captures what we know so far.

(=== L === 1 --- )

124 3 gl 222 Npoghs 23  2ghsg 236

360 360 360 360
: 1222 234 . 222 2347y _ 126 138
Since there are no shares in [£55, 2551, there are no shares in B([555, 5551) = (350 360

The following picture captures what we know so far.

(=== ) === JC === )l === ) === )

124 126 138 } 222 234 o 236
sao  o3-shs 355 Noshs 355 L3-shs 255 Noshs 255 2-shs 255

S3-shs stands for short 3-shares and L3-shs stands for large 3-shares. There are 2s5 = 28
2-shares so there are 28 S3-shares (B is a bijection between 2-shares and S3-shares). Since

there are 3s3 = 66 3-shares total that leaves 38 S3 shares.

Since the midpoint of L3-shs is 282 the Buddy function is a bijection from (138 180y ¢4

2 360 360
(%, %), Hence these two intervals have the same number of shares.

Since the midpoint of 2-shs is 2%, the Match function is a bijection from (233 235) {q

2 360 360
(%, %). Hence these two intervals have the same number of shares. Applying the Buddy

function to both these intervals we obtain that (325, £23) and (322, $28) have the same number
of shares.

In the scenarios above there are an even number of shares of size the midpoint. We
arbitrarily assign half to the left and half to the right.

We define the following intervals.
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» Definition 7.

1.1 = (128 120
e
2. Io = (3555: 360) (1] = [I2], [11 U Iz| = 28)
__ (138 180
i
4. Iy = (360 360) ([Is] = La], [I3 U 14| = 38)

Henceforth all of the students considered will be 3-students. We now look at the students
in a more detailed way than 2-students and 3-students.

» Definition 8. Let 1 <4y <--- <13 <4. An e(iy, i2,43)-student is a student who has, for
each 1 < j <3, a share in [;;. For example, an e(1,1,4)-students has two shares in I; and
one share in .

» Claim 1.
1. The only possible students are:

=R ~0 Q0 T 9
9]
[\
[\}
i

e(2,3,3
e(2,3,4
e(3,3,3
i. e(3,3,4
2. There are no shares in [305, 23]
3. There are no shares in [%, %] (this follows from the prior part and buddying).

Proof of Claim 1.
1) We establish that some students are impossible.

A e(1,4,4)-student has more than 125 + 2 x 180 = 382

A €(2,2,3)-student has less than 2 x 120 4 180 — 232

The result follows from these two statements, though the proof is tedious.
2) We look at which I-shares are used
A e(1,1,4) student uses Jy-share > 470 — 2 x 123 — 228
A e(1,2,4) student uses I-shares > % - % - % = %
A e(1,3,4) student uses Iy-shares < 355 — 355 — 365 = 360
A €(2,2,4) student uses Iy-shares > 3710 — 2 x 1206 = 218
A ¢(2,3,4) student uses I;-shares < 200 — 125 138 _ 207
A €(3,3,4) student uses Jy-shares < 310 — 2 x 38 = 134
Hence the only shares in I that can be used are those < % or > % The result
follows. |

We redefine the intervals.

» Definition 9.

1. Il = (%7 %)

2. I, = (3%, 530) (IL] = | L), [y U Ip| = 28)

3. 13 = (%7 ;,4?(2))

4. 14 = (%7 %)

5. Iy = (559, 208) (|| = |I5])

6. Ig = (313, 222) (|I5| = |Ig|, |13 U 14 U I5 U Ig| = 38)
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By a proof similar to that of Claim 1 we obtain the following:

» Claim 2.

1. The only possible students are: e(1,1,6), e(1,2,6), e(1,3,5), e(1,4,4), e(1,4,5), e(2,2,6),
e(2,3,5), e(2,4,4), e(2,4,5), e(3,3,5), e(3,4,4), and e(4,4,4).

2. There are no shares in [395, 222]

3. There are no shares in (355, 298] (this follows from the prior part and buddying).

We define the following intervals.

» Definition 10.

PN RWDN -

3607 360)
2= (522, 3%0) (1| = |I2], |1, U I2| = 28)
13_(%7%)
=
15:(%7%)
I = (355 305) (IIs] = |Is])
I — (202 205)
( )

By a proof similar to that of Claim 1 we obtain:

» Claim 3. The only possible students are: e(1,1,8), e(1,2,8), e(1,3,7), e(1,4,6), e(1,5,5),
e(2,2,8), e(2,3,7), e(2,4,6), e(2,5,5), €(3,3,6), and e(4,4,4).

[
[ )

WeEeNoORWNE

Let

Since |I1| = |I2|, 2a+b+c+d+e=b+2f+g+h+i, s02a+c+d+e=2f+g+h+i
Since |I3| = [Ig], c+g+2j=a+b+ f

Since |Iy| =|I7|, d+h+3k=c+yg

Since |Is| = |Ig|, 2e+2i=d+h+j

Since | UL =28, 2a+2b+c+d+e+2f+g+h+i=28

Since there are 22 3-students, a +b+c+d+e+ f+g+h+i+ k=22

From the last two equations we obtain a +b+ f =6

We combine Iy and Is into a single interval. This reduces the system to 6 variables,

resulting in the equation

1 1 1 1 1 177[p 22
2 1 1 1 0 oflq 28
-1 1 0 0 2 o|l|r]=]0
0 -1 1 0 0 3|]|s 0
0 0 -1 2 -1 o] [t 0
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However, one can check that eliminating the bottom 3 rows requires the top 2 rows to be in
the ratio 7:9. 22:28 £ 7: 9, so there is no solution. |

The above proof used that PT’”W = 3 since that is the condition that leads to having
2-shares and 3-shares. This is usually important since it gives us symmetry from matches, not
just from buddying; however, in this case we just so happened to not need that symmetry.

6 Finding a Procedure

We now describe the program that finds the procedure showing f(47,36) > égé We guess

that all shares are of the form % where 124 < z < 236. But we can cut down those variables

a lot based on the proof. For example, by modifying the proof slightly, we can deduce that

127 128 137
3607 3607 """ 360"

We can also use the symmetries of where shares can be.

there are no share of size This is a key factor in speeding up the program.

For every way to split a muffin we have a variable for how many muffins are split that

. (124 2367 - . . 125 235y : . .
way, as follows: (557, 555) is associated to the variables y124,236, (555, 555) 15 associated with

the variable yi25 235, etc. This variable is the number of muffins that are split that way.

For every way to give muffin shares to a student we have a variable for how many students

get that set of shares, as follows: [%, 3%, %] is associated to the variable zs7,79 69, [%, %]

is associated to the variables z11g,117, etc. This variable is the number of students who get
that share-size.
For each size we express how many pieces are of that size in two ways.
The number of pieces of that size based on the muffins. For example, the number of
131 180

pieces of size 355 1S y131,256. The number of pieces of size 555 is 2 X y180,180-

The number of shares of that size based on the students. For example, the number of

. 131
shares of size 355 is

2124,131,215 + * -+ + 2130,131,209 + 22131,131,208 + 2132,131,207 + * * - + 2215,131,124

For each size we get an equation by equating the muffin-based and student-based ex-
pressions. We have more equations based on the number of pieces and the number in each
interval which falls out of the proof of the upper bound. This leads to a set of linear equations
whose solution leads to a procedure.

Here is the procedure for f(47,36) > éég = % we obtained with this method:

1. Divide 1 muffin ( 180 %)
2. Divide 2 muffins (1830 %)
3. Divide 2 muffins (% %)
4. Divide 2 muffins (%33 %)
5. Divide 6 muffins (133 17?10)
6. Divide 6 muffins (%étlw %)
7. Divide 14 muffins (% %)
8. Divide 14 muffins (1*12 1%20)
9. Give 2 students [?70%%}
10. Give 2 students [%%%}
11. Give 2 students [%%17?10]
12. Give 2 students [%%%]
13. Give 2 students [105 59 02 ]
14. Give 6 students [%%%}
15. Give 6 students [%é%%}
16. Give 14 students [% %]
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The reader should be able to see how to generalize the method outlined above.

What is described above is not quite what we have coded up (though we will). The
Interval Method (see Section B) is another method to find lower bounds that gives information
that can be used to cut down the time to find a procedure. We have coded up a version of
what is outlined above with the interval method.

We denote the algorithm given above (the one using Buddy-Match) VLOWER (m, s, &)
where one finds a procedure showing f(m, s) > «, hence verifying that f(m,s) > a.

7  The Proof that f(47,36) < 2. Reveals Much More

The proof that f(47,36) < g—(l) can be modified very slightly (just notation) to obtain the

following result (which we write in a strange way for later exposition):

k> D) FE 1 b+ 11 43,33k 4+ 3) < - R TS
X X T ——
- ’ ~“3x11x3k+3

More generally the following seems to be true empirically:
for all d (d stands for difference and is m —s), for all1 < a < 3d—1 (a,d relatively primes),
there exists X :

dk+ X
>1 <
(Vk > )[f(3dk+d+a,3dk—|—a)_ 3dk+a}

For d = 1 to 8, for all relevant a, we have found X. In many concrete cases we have

shown that it is also an upper bound. In Section C we present the results for the d = 7 case.

2m

Note that we need k > 1 since if k¥ = 0 then we no longer have {T-‘ =3.

8 Generating More General Theorems

The techniques discussed in Section 7 generate theorems of the form

dk +X
vk >1 3dk d, 3dk < .
(k2 1)| f(3dk +a+ TS 3kt

However, the program can be modified to obtain more general theorems. As noted in
Section 7 our program finds interesting values of X. That is, the program may find that
(say) if X < I then there are no e(1,3,4)-students. What is it about X < I that makes this
happen? It may be that (say) 1 <a < 5—7‘1 and a # % makes this work, and it may be that
X = max{%, otd}

We have taken the results from the program and, with the help of additional programs
and our own ingenuity generated many theorems (we hope to fully automate it soon). These
theorems are a great time saver since often the result we want falls out of them directly. We
present a sample of such theorems in the Section D.

9 Howto find X

The proof of Theorem 6 can be summarizes as follows: The assumption f(47,36) > g—é
implies that a certain system of linear equations have a solution where all of the variables
are natural numbers between 0 and s3 = 22. The system had no such solution, hence a
contradiction.
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Imagine that we want an upper bound on f(47,36) but do not know what it is ahead of
time. Following the line of reasoning in Section 7 we seek X such that

11+ X
f(33+3+11,33+3) < B3
We use a program to simulate the proof of Theorem 6 but with X instead of the actual
numbers. This program will produce many values of X where something interesting happens,
such as a type of student no longer being allowed. The program looks at the (finite) set of
interesting values of X and finds the least one that causes the resulting system of linear
equations to be unsolvable using natural numbers between 0 and 22. Hence we have a value
of X. We then use VLOWER (47, 36, 1.£X) to find the matching lower bound (if this does
not work then the algorithm failed to find f(m, s)).

For the values 47, 36 it was easy to find the value of X. For larger m, s it may be that
verifying f(m, s) < « is faster than finding the «. In the next two sections we examine how
to speed up finding X.

We leave it to the reader to generalize the algorithm to any m, s where {%1
we give the following picture which represents intervals where 3-shares can be. In the picture
each nonempty interval has the number of 3-shares in it (though y is not known) and a label
such as I; so we can refer to it. This picture is the result of many buddy-match sequences.

= 3; however,

( a+d (L) | a+d (I2) i 0 ]
dk+X dk+35 dk+a—X dk+2X
3dk+a 3dk+a 3dk+a 3dk+a
( y (I3) i 0
dk+2X dk+atd—3X dk+d—a+2X
3dk+a 3dk+a 3dk+a
( 2d—a—y (I1) | 2d—a—y (I5) )
dk+d—at2X dk+ 244 dk+2a—2X
3dk+a 3dk+a 3dk+a
i 0 10y () )
dk+2a—2X dk+3X dk+a+d—2X
3dk+a 3dk+a 3dk+a
Facts and Caveats:
L L] = ||
2. || = |Is|

3. In the picture it is unclear if the endpoint of I is included in I;. We do not include
it; however, we take the even number of shares that are at that endpoint and arbitrary
assign half to I; and half to Is.

4. There is a similar comment for I, I, and I5.

We denote the version where you do not already have upper bound to check
BUDMAT(m, s) and the version where you do BUDMAT (m, s, &) where « is the bound. We
will avoid using BUDMAT (m, s) unless m, s are small since it may be slow.

10 How to find X Cheating a Little

Say you want to find f(213,200). Since [25213] = 3 you could run BUDMAT(213,200).
But the numbers are large! Following the line of reasoning in Section 7 we note that

d =213 — 200 = 13 and generalize the problem to finding an X such that

13k+ X

k 13,39k +5) < — T2
F(39k +5 413,39k +5) <~
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Lets look at the k = 1 case: f(57,44). Since [2%27] = 3 you could run BUDMAT(57, 44).

But the numbers are smalll Oh, thats a good thing! Lets say the answer is «. Run
VLOWER (57,44, @) to verify that its a lower bound. If it is then solve a = 23X to find

39+5
X. The proof you did for f(57,44) < %’ﬁf can be modified to show (Vk > 1)[f(39k + 5+
13,39k 4 5) < 22%X]. In particular £(213,200) < 224X — 3. Run VLOWER (213, 300, 3)

to verify the lower bound (if this does not work then the algorithm failed to find f(57,44)).
This is cheating a little since we don’t really know that the such an X exists. But it has
so far. And we do verify in the end.

We leave it to the reader to generalize this procedure. We denote this algorithm
CHEATALITTLE(m, s).

11 How to find X Cheating a Lot

Say you want to find f(1717,1650). Since {2%15737] = 3 you could run BUDMAT(1717, 1650).
But the numbers are really large! Following the line of reasoning in Section 7 we note that

d = 1717 — 1650 = 67 and generalize the problem to finding an X such that

67k + X
201k + 42 201k +42) < ——— .
f(201k 4+ 42 + 67,201k + )_201k+42

Lets look at the k = 1 case: f(310,243). These numbers are still big]

Lets look at the k = 0 case: f(109,42). These numbers are small! Since [221%2] > 4 you
cannot run BUDMAT(109,42)). But the situation is worse than that. Even if we bound
£(109,42) the proof will not use BUDMAT and hence cannot be modified to get an upper
bound for f(201k + 42 4 67,201k + 42). In fact, the answer for f(109,42) should have no
bearing on our problem.

Except for one thing. Empirically it does. In all cases that we looked at the X obtained
from knowing an upper bound on the k& = 0 case of f(3dk + a + d, 3dk + a) was the correct
X for kK > 1. We proceed as if this is always true.

We cannot use BUDMAT(109,42); however, there are other techniques that to find
an upper bound on f(m,s). They summarized in Section B. Use them. Lets say the
answer is . Run VLOWER(109, 42, «) to verify that its a lower bound. If it is then solve
a = % to find X. The proof you did for f(109,42) < % cannot be modified to show
(VE > 1)[f(201k + 42 + 67,201k + 42) < STEEX7 But you have a very good conjecture.

— 201+42

Run BUDMAT(109, 42, 2607171‘1(2). If it returns YES and a proof then modify the proof to

obtain (Vk > 1)[f(201k + 42 4+ 67,201k + 42) < %’fiﬁ] (if this does not work then the

algorithm failed to find f(1717,1650)). In particular f(1717,1658) < S2X3+%X = 4. Run
VLOWER(1717, 1658, 3) to verify the lower bound (if this does not work then the algorithm
failed to find f(1717,1650)).

This is cheating a lot since we don’t really know that the & = 0 case has any bearing on
the k > 1 case. But it has so far, and we verify in the end.

We leave it to the reader to generalize this procedure. We denote this algorithm

CHEATALOT(m, s).

12 A General Algorithm

We present an algorithm that we conjecture always finds f(m, s) and operates in polynomial
time.

The reader should read Section B since we will be using FC, INT, and BUD which are
explained there. They are other methods to find or verify upper bounds on f(m,s).

15:11

FUN 2018



15:12

A Muffin-Theorem Generator

1. Input(m, s).

2. If m = s output 1. If ged(m,s) = d > 1 then call the algorithm recursively with
f(m/d,s/d). If s =2 then output 1. If m < s then call the algorithm recursively to find
f(s,m) and output = f(s, m).

3. Compute a = FC(m, s). Compute VLOWER(m, s, a) to see if « is a matching lower
bound. If it is then output « and stop.

4. Compute a = INT(m,s). Compute VLOWER (m, s, @) to see if « is a matching lower
bound. If it is then output a and stop.

5 If PT’”W = 3 then:

a. Compute o« = CHEATALOT(m,s). Compute VLOWER(m, s, a) to see if a is a
matching lower bound. If it is then output « and stop. (This might fail if the methods
of Section B do not work on the input they are given.)

b. Compute « = CHEATALITTLE(m, s). Compute VLOWER(m, s, @) to see if « is a
matching lower bound. If it is then output « and stop.

6. If [27"’] >4 thenlet a = sand d = m—a. We seek f(3dx0+a+d,3dx0+a). Recursively
call f(3d + a+d,3d + a) (we could tell it to not bother with CHEATALOT(m, s) since
that just asks to compute f(a + d,a) using FC and INT). If the computation succeeds
and returns « then run BUD(m, s, ) to verify that f(m,s) < a. If this is verified then
compute VLOWER(m, s, ) to see if « is a matching lower bound. If it is then output «
and stop.

7. If nothing above works then output FAILED!

This can be sped up by, upon first seeing m, s, see if any of the general theorems such as
those in Sections C and D apply to get an upper bound « and then run VLOWER/(m, s, a).

13 Open Problems and Speculation

We would like to think that the algorithm in the last section will always work and hence
computing f(m,s) is in P. But we’ve been down this road before where we think we can
compute all f(m,s) only to come to a troublesome case which leads to a new technique
and more co-authors. The following are possible outcomes: (1) we prove that the algorithm
always works, (2) we keep running the algorithm and it always works but when the numbers
get too big we can’t tell, (3) we come across a value the algorithm does not work on and this
leads to a a new technique and more co-authors.

We believe that computing f(m, s) is in P. One piece of evidence for this is that for all s,
for all m > s3, f(m,s) = FC(m, s). Hence if you fix s then for large enough s the problem is
very easy. One might call this Fixed Parameter very tractable.

m

We believe that f(m, s) only depends on . This seems provable.
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A A Mixed Integer Program for f(m, s)

The following theorem shows that f(m,s) always exists (as opposed to having better and
better algorithms), is rational, and is computable. This theorem was independently discovered
by Veit Elser, within the math-fun email list, in 2009.

» Theorem 11. Let m,s > 1.

1. There is a mized integer program with O(ms) binary variables, O(ms) real variables,
O(ms) constraints, and all coefficients integers of absolute value < max{m, s} such that,
from the solution, one can extract f(m,s) and a protocol that achieves this bound. This
MIP can easily be obtained given m, s.

2. f(m,s) is always rational. This follows from part 1.

3. In every optimal protocol for m muffins and s students all of the pieces are of rational
size. This follows from part 1.

4. The problem of, given m,s, determine f(m,s), is decidable. This follows from part 1.

Proof. Counsider the following (failed) attempt to solve the problem using linear programming.

1. The variables are x;; where 1 < ¢ < m and 1 < j < s. The intent is that z;; is the
fraction of muffin ¢ that student j gets.

2. Forall1<i<m,1<j5<s,0<2;; <1

3. For each 1 <i <m, Z;:l z;; = 1.

This says that the amount of muffin ¢ that student 1 gets, students 2 gets, ..., student s
gets all adds up to 1.

4. Foreach 1 <j <s, > " x5 = 2.
This says that the amount that student j gets from muffin 1, muffin 2, ..., muffin m all
adds up to 2.

5. Forall1<i<m,1<j<s, 245 > 2.

6. Maximize z.

This does not work. The problem is that (say) xz13 could be 0. In fact it is likely that
some x;; is 0. This makes z = 0. What we really want is

LU”#O - .’EijZZ

It is easy to show that f(m,s) > % Hence every nonzero z;; is > <. We will use this in

1
S
our proof.
For 1 <i<m, 1 < j < s modify the linear program above as follows.
1. Add variable y;; which is in {0, 1}.
2. Add the constraint x;; +v;; < 1. Note that
25 =0 = x;; +y;; < 1, so the constraint imposes no condition on y;;.
Tij >0 = Yij <l = yijzo = T;j + Yij = T4j-
3. Add the constraint x;; +y;; > <. Note that
2 =0 = Yy > ¢ = yij =1 = i +yi; =1
z;; >0 = z;; > 1 (since we know all non-zero pieces are > 1) = z;; +y;; > 1,
so the constraint imposes no condition on y;;.
4. Replace the constraint z < x;; with z < 2455 + ;5.

If 2;; = 0 then the constraint

z<xij+yiy =1

15:13
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is always met and hence is (as it should be) irrelevant. If 2;; > 0 then the constraint
2 S Tij + Yig = Tij

is the constraint we want.
Solve the resulting mixed integer program. Since all of the coefficients are rational the
answer will be rational. |

B Other Methods

We discuss three methods for finding an upper bound on f(m,s).
The method from the following theorem is called The Floor Ceiling Method or just
FC-method. Note that it is very fast and gives you the upper bound.

» Theorem 12.  Assume that m,s € N and = ¢ N.

o) < max{ gomind - S

Proof. Assume we have an optimal (m,s) protocol. Since 2 ¢ N we can assume every

S

muffin is cut into at least 2 pieces.
Case 1: Some muffin is cut into u > 3 pieces. Then some piece is <
Case 2: All muffins are cut into 2 pieces.
Since there are 2m shares and s students both of the following happen:
Some student gets ¢t > [2m/s] shares, so some share is < FETYRR
Some student gets ¢ < [2m/s] shares, so some share x is > Tom7e]- B(z))<1- el

1
3-

Putting together Cases 1 and 2 yields the theorem. |

We denote the function from Theorem 12 FC(m, s).

The other two methods are to long to describe fully here so we just sketch.

The Interval Method is a primitive version of the Buddy-Match method where we do
not use symmetry and (since we have shares other than 2-shares and 3-shares) cannot use
the Match in Buddy-Match. This method is fast and can be used to derive the answer. We
denote the result INT(m, s).

The Buddy Method is like the Buddy-Match Method only we do not use the Match part
since we have shares other than 2-shares and 3-shares. And like the Buddy-Match Method
this one is faster if you already have the answer. We denote the version where you do not
already an upper bound to check BUD(m, s) and the version where you do BUD(m, s, @)
where « is the bound.

C Everything You Ever Wanted to Know About f(s + 7, s)

By either cheating a little (Section 10) or cheating a lot (Section 11) we have obtained
formulas for f(3dk+a+d,3dk+a)for1 <d<50and 1 <a < 3d—1 (a,d relatively primes).
We present the results for d = 7. Note that for most of the formulas the formula which is
supposed to only hold for k£ > 1 also holds for k = 0 (with a different proof).

» Theorem 13.

Loa. f(8,1)=1. Forallk>1, f(21k+8,21k + 1) < 75X where X = 3.

b. For allk >0, f(21k 49,21k 4+ 2) < JEES where X = 1.
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2. For allk >0, f(21k 410,21k 4 3) < 7555 where X = 3.
3. Forallk >0, f(21k 411,21k 4+ 4) = 7555 where X = £.
4. For all k >0, f(21k + 12,21k +5) < 255X where X = 2.
5. For all k>0, f(21k + 13,21k 4+ 6) < J55% where X = 2.
6. For all k>0, f(21k + 15,21k + 8) < &L where X = 3.
7. Forall k>0, f(21k + 16,21k + 9) < 255 where X = 4.
8. For allk >0, f(21k 417,21k 4+ 10) < 57255 where X = 4.
9. Forallk >0 f(21k+ 18,21k + 11) < 271’§:f1(1 where X =

10. For all k>0 f(21k + 19,21k + 12) < 2255 where X = 12

11. For all k>0 f(21k + 20,21k + 13) < 5455 where X = 5.

12. For allk > 0: f(21k + 22,21k + 15) = 1,

13. For allk > 0: f(21k + 23,21k + 16) = 1,

14. For all k> 0: f(21k + 24,21k + 17) = 3,

15. For allk > 0: f(21k + 25,21k + 18) = 1,

16. For all k > 0: f(21k + 26,21k + 19) = 1,

17. For all k > 0: f(21k + 27,21k +20) = &.

Note that the last few answers were i and there is an equality. The % follows from

3
Theorem 14. The equality holds since we have proven that, for all m > s, f(m,s) > %

D A Sample of General Theorems

In all cases a,d are relatively prime.

» Theorem 14. Ifa € {2d +1,...,3d — 1} then f(3dk + a + d,3dk + a) < gg,jé where
X =2 s0 f(3dk+a+d,3dk+a) <%
» Theorem 15. Ifa € {1,...,3d — 1}, a #d, then f(3dk +a+ d,3dk +a) < gg,jji where
_ a a+d 2a—d
X = max{§, %, sa—dy
» Theorem 16. If 1 <a <3d—1 and 5a # 7d then f(3dk + a + d,3dk +a) < gg,jé where
_ a at+d a+2d 3a—2d
X = max{g, 459, 45, )
» Theorem 17. If1 < a < ¢ and a # 2¢ then f(3dk + a+d,3dk + a) < gs,j_é where
X = max{ 2a a+d}
» Theorem 18. If 5d < g <d—1 then f(3dk + a+ d,3dk + a) < gs,:jfl where
X = max{ 211 3a d .
> Theorem 19. If 3¢ < a < 23 and a # 2d then f(3dk + a + d,3dk + a) < S where
_ 5a—d a+d 3a
X = InaX{T, %, -
E If m > sthen f(m,s) >1/3
Before showing the general technique we give an example.
» Example. f(19,17) > 1.
We express }—? as % since other fractions will have a denominator of 51.
We initially divide the 19 muffins (3, %,%). There are now 57 pieces i-shares. We

initially give 11 students 3 %—shares and 6 students 4 %—shares. (In the proof below W = 3,
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A Muffin-Theorem Generator

sw = s3 =11, and swy1 = s4 = 6.) A student who gets 3 (4) shares is called a 3-student
(4-student).

We describe a process whereby students give pieces of muffins, called gifts, to other

students so that, in the end, all students have % Each gift leads to a change in how the

muffins are cut in the first place; however, there will never be a muffin of size < %

[=2)
o)

Each 4-student has % = 22 and hence has to give (perhaps in several increments)
% — % = % to get down to . Realize that if a 4-student gives é—} to a 3-student, then
the 3-student now has g—} + % % > %

Each 3-student has % and hence has to receive % — g—} = % to get up to

Call the 11 3-students g1,...,911-

Call the 6 4-students f1,..., fs.

We use a notation that we just give an example of:

01‘0101
|| ==

57
51

f1 gives x to g1 by taking two %—pz’eces, combining them, cutting off a piece of size x,
giving it to g1 while keeping the rest. g1 takes the piece given to him and combines it with a
% piece. Notice that in terms of pieces we are taking three pieces of size % (2 from f1 and 1
from g1) and turning them into 1 piece of size % — x and one of size % + x. Hence we can
easily rearrange how the muffins are cut.

z(fi1 — g1)

We need to make sure this procedure never results in a piece that is < % In the above
example (1) f; now has a piece of size % — x, hence we need z < %, (2) g1 now has a piece of
size % + x, which is clearly > % Hence the only restriction is z < %

1. B(fi = g1). Now f has 57, YEAH. However, g; has 2.
2. Z(g1 — g2). Now g1 has 2 — 5 = 3 YEAH. However, go has 21 + 2 = 2.
3. L(fo — g2). Now g» has 2. YEAH. However, f, has &T.
4, é—(l)(fz — g3). Now fo has % YEAH. However, g3 has %.
5. 2 (g3 — ga). Now g3 has 57. YEAH. However, g4 has 23.
6. 52—1(f3 — g4). Now g4 has % YEAH. However, f3 has %.
7. 59—1(f3 — g5). Now f3 has % YEAH. However, g5 has %.
8. 2(g5 — go)- Now g5 has 57. YEAH. However, gs has 2.
9. 2(f1— gs). Now gs has 2. YEAH. However, f; has &.
10. 2(fs — g7). Now f4 has 2. YEAH. However, g7 has 22.
11. 2 (g7 — gs). Now g7 has % YEAH. However, gs has 23.
12. %(fg, — gg). Now gg has % YEAH. However, f5 has %.
13. 511(]‘5 — g9). Now f5 has % YEAH. However, g9 has %.
14. i(gg — g10). Now gg has %. YEAH. However, g19 has %
15. 55—1(f6 — g10)- Now gi0 has % YEAH. However, fg has g—?.
16. 56—1(f6 — g11)- Now fg has % YEAH. However, g11 has % OH. thats a good thing!

YEAH- we are done.
Note that the first z was % < % and the remaining x were all <
in the final protocol are > %

11 1 :
51 < 3. Hence all pieces

» Theorem 20. For allm > s, f(m,s) > i.

Proof. Divide all the muffins into (%, %, %) Initially distribute them as evenly as possible
among the students. There will be a number W such that some students get W shares and
some get (W + 1)-shares. Let sy (swi1) be the number of students who get W (W + 1)
shares.
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We do not need the following but are noting it anyway. If s does not divide 3m then
W = 377” and sy, sw1 are unique and determined by:
Wsw + (W + 1)Sw+1 =3m
Sw+Sw4+1 =S

(Technically, if s | 3m there are two possible values of W.)

A student who gets W (W + 1) shares we call a W-student ((W + 1)-student). All
W-students get % All (W 4+ 1)-students get %

A W-student must get < “: if a W-student got > ** then all students would get > =
and hence there would be > s™ = m muffins total. A (W + 1)-student must get > =: if
a (W 4+ 1)-student got < 2 then all students would get < ™ and hence there would be
< s = m muffins total.

Hence we have:

m W 1
o7 <z 1
s 3 3 (1)

W+1 m 1
-2<g )

3 s 3

Now we will need to smooth out the distribution so that everyone receives =*. We will do
this by doing a sequence of moves of the form z(f; — g;) or x(¢g; — g¢;). as defined in the
example.

We will assume sy41 and sy are relatively prime (this only comes up in Claim 3 below).
This is fine because if they have a common factor d, we can just use the procedure for the

SV&%, =W case repeated d times.

» Claim 1.
L. If swy1 < sw then ;V/;ri %>%_%.
2. If sy < sw41 then ¥H — 1 > m B
Proof of Claim 1.
W
Sw+1 X + sw X 3 =m

m W+1 m W m
Sw41 + Sw ;+5W+1 3 —? + sw 3—; =m

m W+1 m W m
SX;—FSW_H —; +sw|———)=m

3

s 3

W+1_m_ sw (m W
3 S SW+1

Both parts follow. <

We give the procedure to obtain f(m,s) < z. There are two cases.

1
3
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FUN 2018



15:18

A Muffin-Theorem Generator

Case 1: swy1 < sw. Hence by Claim 1 Wt —m > m _ ¥
Call the sy W-students ¢1,...,gsy -

Call the sy 41 (W + 1)-students f1,..., fop,-

1. Let z = Wt — ™ Note that z < 3. Do z(f; — g1). Now fi has . YEAH. However,
g1 has % + W3+1 — @ > 2. (This is where we use sy 41 < sw, or more accurately the
consequence of that from Claim 1.)

2. Let x = QWT'H —27. Do x(g1 — g2). Now g1 has =*. YEAH.

3. If go has > ™ then gy gives enough to g3 so that g» has . Keep up this chain of
91,92, 93, - - - until there is a g; such that g; end up with < 7 (though more than the %

that g; had originally).

4. Do x(fs — gi) where x is such that g; will now have “*.

5. Do x(f2 — gi+1) where x is such that fo will now have . Repeat the same chain of g;’s
as in step 3.

6. Repeat the above steps until you are done.

We need to show that (1) there is never a piece of size < %, and (2) the process ends with
every student getting .

. app s 1 app e
» Claim 2. The first gift is < 5 and no gift is larger.

Proof of Claim 2. Let C = % — ™ which is the size of the first gift. By equation (2)
C<i
Assume that all gifts so far have been < C'. We analyze the three kinds of gifts and show
that in all cases the gift is < C.
x(fi — gj) where (1) initially f; has > =, g; has < %, and (2) after the gift f; has .
When this occurs it is f;’s first or second gift giving. (This happens in steps 1 and 5
above, and later as well.) Before the gift f; has at least % but at most @, so this gift
has size at most % -2 =C.
x(g; — giy1) where (1) initially g; has > ™, g; has < ™, and (2) after the gift g; has
™. When this occurs g; has received a gift once and this is g;’s first time giving. (This
happens in steps 2 and in the chain referred to in step 5.) Since g; just received a gift of
size < C she has < %4—0. Hence the gift is < %—%+C§ C.
x(fi — g;) where (1) initially f; has > ™, g; has < ™, and (2) after the gift g; has .

This will be f;’s first time giving. (This happens in step 4 above.) Before the gift f; has

at least % but at most 2, so this gift has size at most > — % < C (by Claim 1). <«

S

» Claim 3. If sy and syw41 are relatively prime then the process terminates with all students
having “*.

Proof of Claim 3. In each step all of the f; have at least **. In each step the number of
students who have the correct amount of muffin goes up. One may be worried that at some
point we will try to do step 4 (for example) of the procedure and there will be no g; left
who need more muffin. But this is not possible because until the process terminates the f’s
always have more muffin than they need, so there is always a g with insufficient muffin.

One may also be worried that eventually we will get all of the f’s to have ¥, but the g’s
will not all have “*. This is not possible either, because whenever we only make gifts from f
to g when there is no g with more than “*.

Finally, if sy and sy 41 are not relatively prime, it is possible that the procedure will

terminate early because in step 5 the size of the donation z is 0. If this occurred it would
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mean that there is some subset of F' f’s and G g’s each of which having exactly **, who only

made donations amongst themselves. But then g = S‘;VV:l, a contradiction. |

Case 2: sy < swy1. This is similar to Case 1 except that instead of f; giving g1 so that
f1 has ==, f1 gives to g1 so that g; has . Hence we have a chain of f;’s instead of a chain

of g;’s. <
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—— Abstract

Queen Daniela of Sardinia is asleep at the center of a round room at the top of the tower in her
castle. She is accompanied by her faithful servant, Eva. Suddenly, they are awakened by cries
of “Fire”. The room is pitch black and they are disoriented. There is exactly one exit from the
room somewhere along its boundary. They must find it as quickly as possible in order to save
the life of the queen. It is known that with two people searching while moving at maximum
speed 1 anywhere in the room, the room can be evacuated (i.e., with both people exiting) in
14 2?“ + /3 ~ 4.8264 time units and this is optimal [Czyzowicz et al., DISC’14], assuming that
the first person to find the exit can directly guide the other person to the exit using her voice.
Somewhat surprisingly, in this paper we show that if the goal is to save the queen (possibly
leaving Eva behind to die in the fire) there is a slightly better strategy. We prove that this
“priority” version of evacuation can be solved in time at most 4.81854. Furthermore, we show
that any strategy for saving the queen requires time at least 3 + 7/6 + v/3/2 =~ 4.3896 in the
worst case. If one or both of the queen’s other servants (Biddy and/or Lili) are with her, we show
that the time bounds can be improved to 3.8327 for two servants, and 3.3738 for three servants.
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Finally we show lower bounds for these cases of 3.6307 (two servants) and 3.2017 (three servants).
The case of n > 4 is the subject of an independent study by Queen Daniela’s Royal Scientific
Team.

2012 ACM Subject Classification Computing methodologies — Distributed artificial intelli-
gence,Computing methodologies — Mobile agents

Keywords and phrases Algorithm, Evacuation, Exit, Disk, Wireless Communication, Queen,
Priority, Robots, Search, Servants, Trajectory

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.16

Related Version Full version hosted on arXiv http://arxiv.org/abs/1804.06011

1 Introduction

In traditional search, a group of searchers (modeled as mobile autonomous agents or robots)
may collaboratively search for an exit (or target) placed within a given search domain [1, 2, 20].
Although the searchers may have differing capabilities (communication, perception, mobility,
memory) search algorithms, previously employed, generally make no distinction between
them as they usually play identical roles throughout the execution of the search algorithm
and with respect to the termination time (with the exception of faulty robots, which also do
not contribute to searching). In this work we are motivated by real-life safeguarding-type
situations where a number of agents have the exclusive role to facilitate the execution of the
task by a distinguished entity. More particularly, we introduce and study Priority Evacuation,
a new form of search , under the wireless communication model, in which the search time
of the algorithm is measured by the time it takes a special searcher, called the queen, to
reach the exit. The remaining searchers in the group, called servants, are participating in
the search but are not required to exit.

1.1 Problem Definition of Priority Evacuation (PE,)

A target (exit) is hidden in an unknown location on the unit circle. The exit can be located
by any of the n + 1 robots (searchers) that walks over it (n = 1,2, 3). Robots share the same
coordinate system, start from the center of the circle, and have maximum speed 1. Among
them there is a distinguished robot, called the queen, and the remaining n robots are referred
to as servants. All servants are known to the queen by their identities. Robots may run
asymmetric algorithms, and can communicate their findings wirelessly and instantaneously
(each message is composed by an identity and a location). Only the queen is required to be
able to receive messages. Feasible solutions to this problem are evacuation algorithms, i.e.
robots’ movements (trajectories) that guarantee the finding of the hidden exit. The cost of
an evacuation algorithm is the evacuation time of the queen, i.e., the worst case total time
until the queen reaches the exit. None of the n servants needs to evacuate.

1.2 Related work

Related to our work is linear search which refers to search in an infinite line. There have been
several interesting studies attempting to optimize the search time which were initiated with
the influential works of Bellman [7] and Beck [6]. A long list of results followed for numerous
variants of the problem, citing which is outside the scope of this work. For a comprehensive
study of seminal search-type problems see [2, 3].
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The problem of searching in the plane by one or more searchers, has been considered by
[4, 5]. The unit disk model considered in our present paper is a form of two-dimensional
search that was initiated in the work of [10]. In this paper the authors obtained evacuation
algorithms in the wireless and face-to-face communication models both for a small number of
robots as well optimal asymptotic results for a large number of robots. Additional evacuation
algorithms in the face-to-face communication model were subsequently analyzed for two
robots in [14] and later in [8]. Other variations of the problem include the case of more than
one exit, see [9] and [19], triangular and square domains in [15], robots with different moving
speeds [18], and evacuation in the presence of crash or byzantine faulty robots [11].

A priority evacuation-type problem has been previously considered in [16, 17] but with
different terminology. Using the jargon of the current paper, an immobile queen is hidden
somewhere on the unit disk, and a number of robots try to locate her, and fetch (evacuate)
her to an exit which is also hidden. The performance of the evacuation algorithm is measured
by the time the queen reaches the exit.

Apart from the results in [16, 17], all relevant previous work in search-type problems
considered the objective of minimizing the time it takes either by the first or the last agent
to reach the hidden target. In contrast, this paper considers an evacuation (search-type)
problem where the completion time is defined with respect to a distinguished mobile agent,
the queen, while the remaining n servants are not required to evacuate. Our current focus
is to design efficient algorithms for n = 1,2, 3 servants, as well as give strong lower bounds.
Notably, the algorithms we propose significantly improve upon evacuation costs induced
by naive trajectories, and in fact the trajectories we propose are non-trivial. Our main
contribution concerns priority evacuation for each of the cases of n = 1,2, 3 servants, all of
which require special treatment. Moreover, all our algorithms are characterized by the fact
that the queen does contribute effectively to the search of the hidden item. In sharp contrast,
the independent and concurrent work of [13] studies the same problem for n > 4 servants
where the queen never contributes to the search. More importantly, the proposed algorithms
of [13] admit a unified description and analysis that does not intersect with the current work.

1.3 Our Results & Paper Organization

Section 2 introduces necessary notation and terminology and discusses preliminaries. Section 3
is devoted to upper bounds for PE,, for n = 1,2, 3 servants (see Subsections 3.1, 3.2, and 3.3,
respectively). All our upper bounds are achieved by fixing optimal parameters for families
of parameterized algorithms. In Section 4 we derive lower bounds for PE,,, n =1,2,3. An
interesting corollary of our positive results is that priority evacuation with n = 1,2, 3 servants
(i.e. with n + 1 searchers) can be performed strictly faster than ordinary evacuation with
n + 1 robots where all robots have to evacuate. Indeed, an argument found in [10] can be
adjusted to show that the evacuation problem with n 4+ 1 robots cannot be solved faster than
1+ 3(;%711) + /3. Surprisingly, when one needs to evacuate only one designated robot, the
task can provably (due to our upper bounds) be executed faster. All our results, together
with the comparison to the lower bounds of [10], are summarized in Table 1. We conclude
the paper in Section 5 with a discussion of open problems. Whenever we omit proofs, due to
space limitations, we provide an outline of our arguments. The interested reader may consult
the full version of our paper [12] for the missing details.
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Table 1 Upper and lower bounds for priority evacuation.

# of Servants | Upper Bounds for PE,, | Lower Bounds for PE,, | Lower Bounds for Ordinary Evacuation
n=1 4.8185 (Theorem 8) 4.3896 (Theorem 17) 4.826445 (see [10])
n=2 3.8327 (Theorem 10) 3.6307 (Theorem 19) 4.128314 (see [10])
n=3 3.3738 (Theorem 14) 3.2017 (Theorem 19) 3.779248 (see [10])

2 Notation and Preliminaries

We use n to denote the number of servants, and we set [n] = {1,...,n}. Queen and servant
i will be denoted by Q and §;, respectively, where i € [n]. We assume that all robots start
from the origin O = (0, 0) of a unit circle in R?. As usual, points in A € R? will be treated,
when it is convenient, as vectors from O to A, and ||A|| will denote the euclidean norm of
that vector.

2.1 Problem Reformulation & Solutions’ Description

Robots’ trajectories will be defined by parametric functions F(t) = (f(t),g(t)), where
f,9: R— R are continuous and piecewise differentiable. In particular, search algorithms for
all robots will be given by trajectories

where Q(t),S;(t) will denote the position of Q and S;, respectively, at time ¢ > 0.

» Definition 1 (Feasible Trajectories). We say that trajectories S,, are feasible for PE,, if:

(a) 9(0) =S8;(0) =0, for all i € [n],

(b) Q(t),{Si(t)}iepn) induce speed-1 trajectories for Q, {S;}ic[n) respectively, and

(c) there is some time tg > 1, such that each point of the unit circle is visited (searched)
by at least one robot in the time window [0, ty]. We refer to the smallest such ¢ as the
search time of the circle.

Note that feasible trajectories do indeed correspond to robots’ movements for PE,, in
which, eventually the entire circle is searched, and hence the search time is bounded. We
will describe all our search/evacuation algorithms as feasible trajectories, and we will assume
that once the target is reported, Q will go directly to the location of the exit.

For feasible trajectories S,, with search time to, and for any trajectory F(t) (either of the
queen or of a servant), we denote by I(F) the subinterval of [0, t] that contains all z € [0, o]
such that ||F(x)|| =1 (i.e. the robot is on the the circle) and no other robot has been to
F(z) before. Since robots start from the origin, it is immediate that I(F) C [1,¢]. With this
notation in mind, note that the exit can be discovered by some robot F, say at time z, only
if z € I(F). In this case, the finding is instantaneously reported, so Q goes directly to the
exit, moving along the corresponding line segment between her current position Q(z) and
the reported position of the exit F(x). Hence, the total time that Q needs to evacuate equals

z+ Q) = F(a)]|.
Therefore, the evacuation time of feasible trajectories S, to PE,, is given by expression

max su z+||9(x) — F(x)||}.
max sup {2+1Q() ~ F@)l)
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Notice that for “non-degenerate” search algorithms for which the last point on the circle is
not searched by Q alone, the previous maximum can be simply computed over the servants,
i.e the evacuation cost will be

max sup {z +[|Q(z) - Si(z)|}- (1)

i€n] zen(s;)

In other words, we can restate PE,, as the problem of determining feasible trajectories S,, so
as to minimize (1).

2.2 Useful Trajectories’ Components

Feasible trajectories induce, by definition, robots that are moving at (maximum) speed 1.

The speed restriction will be ensured by the next condition.
» Lemma 2. An object following trajectory F(t) = (f(t),g(t)) has unit speed if and only if
(FO) + () =1, vt 0.

Proof. For any ¢ > 0, the velocity of F is given by F'(t) = (df (t)/dt, dg(t)/dt), and its speed
is calculated as || F'(t)]|. <

Robots’ trajectories will be composed by piecewise smooth parametric functions. In
order to describe them, we introduce some further notation. For any 6 € R, we introduce
abbreviation Cy for point {cos(6),sin (6)}. Next we introduce parametric equations for

moving along the perimeter of a unit circle (Lemma 3), and along a line segment (Lemma 4).

» Lemma 3. Let b € [0,27) and o € {—1,1}. The trajectory of an object moving at speed 1
on the perimeter of a unit circle with initial location Cy is given by the parametric equation

C(b,at) := (cos (ot + b) ,sin (ot + b)).
If 0 = 1 the movement is counter-clockwise (ccw), and clockwise (cw) otherwise.

Proof. Clearly, C(b,0) = Cj. Also, it is easy to see that ||C(b,t)|| = 1, i.e. the object is
moving on the perimeter of the unit circle. Lastly,

<jt cos (ot + b)>2 - (C‘Zt sin (ot + b)>2 = 0% (—sin (ot +b))* + 0 (cos (ot +))* =1,

so the claim follows by Lemma 2. <

» Lemma 4. Consider distinct points A = (a1,az2), B = (b1, bs) in R%. The trajectory of a
speed 1 object moving along the line passing through A, B and with initial position A is given
by the parametric equation

L b1—a1 b2—a2
L(A,B,t) := <A—B||t+al7 HA_BHt—I—ag).

Proof. It is immediate that the parametric equation corresponds to a line. Also, it is easy
to see that L(A4, B,0) = A and L(A, B,||A — B||) = B, i.e. the object starts from A, and
eventually visits B. As for the object’s speed, we calculate

i () + (G () = (psn) ()
— t+a +{ = t+a = + =1
(ﬁQm—B| ' at \[[A-B| " [A— B |A— B

so, by Lemma 2, the speed is indeed 1. <
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Figure 1 An illustration of trajectories S(t), Q(t), and their critical angles at some fixed time 7,

with S(1) = 5,9(7) = Q,8'(1) = u, Q' (1) = v.

Robots trajectories will be described in phases. In each phase, robot, say F, will be
moving between two explicit points, and the corresponding trajectory F(¢) will be implied by
the previous description, using most of the times Lemma 3 and Lemma 4. We will summarize
the details in tables of the following format.

Robot || #  Description  Trajectory  Duration
F 0 F(t) to
1 F(t) t1

Phase 0 will usually correspond to the deployment of F from the origin to some point of
the circle. Also, for each phase we will summarize it’s duration. With that in mind, trajectory
F(t) during phase ¢, with duration ¢;, will be valid for all ¢ > 0 with |t — (to+t1+. .. ti—1)| < t;.

Lastly, the following abbreviation will be useful for the exposition of the trajectories. For
any p € [0,1] and 0 € [0, 27), we introduce notation

K(0,p) := (1= p)Cr—g + pC_s.

In other words, K (0, p) is a convex combination of antipodal points Cr_g, C_g of the unit
circle, i.e. it lies on the diameter of the unit circle passing through these two points. Moreover,
it is easy to see that ||Cr_g — K (0, p)|| = 2p, and hence

K (0,p) = C—pll =2 — 2p.
As it will be handy later, we also introduce abbreviation
AK(0,p) == [|Cx — K(0, p)| -

The choice of the abbreviation is clear, if the reader denotes C; = (—1,0) by A.

2.3 Critical Angles

The following definition introduces a key concept. In what follows, abstract trajectories will
be assumed to be continuous and differentiable, which in particular implies that corresponding
velocities are continuous.

» Definition 5 (Critical Angle). Let S(t) € R? denote the trajectory of a speed-1 object,
where t > 0. For some point Q € R?, we define the (S, Q)-critical angle at time t = 7 to be

the angle between the velocity vector S’(7) and vector S(7)@Q, i.e. the vector from S(7) to Q.
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We make the following critical observation, see also Figure 1.

» Theorem 6. Consider trajectories S(t), Q(t) of two speed-1 objects S,Q, where t > 0.
Let also ¢,0 denote the (S, Q(t))-critical angle and the (Q,S(t))-critical angle at time t,
respectively. Then t + ||Q(t) — S(t)|| is strictly increasing if cos (¢) + cos (0) < 1, strictly
decreasing if cos (¢) + cos () > 1, and constant otherwise.

Theorem 6 is an immediate corollary of the following lemma.

» Lemma 7. Consider trajectories S(t), Q(t) and their critical angles w,0, as in the statement
of Theorem 6. Then

d
o |Q(t) — S(t)|| = cos (¢) + cos () .

Proof. For any fixed ¢, let d denote D(t), and S, @ denote points S(t), Q(¢), respectively.
Denote also by u, v the velocities of S, Q at time ¢, respectively, i.e. u = §'(t),v = Q'(t). See
also Figure 1.

With that notation, observe that HS@H = d. Since ||ul| = ||v]| = 1, we see that

()
prostU = d S@

and

) _ cos(0)
prOJSQU = d Cﬁ

Now consider two imaginary objects S, @, with corresponding velocities g/(t) = projgqu and
Q' (t) = proj sov- It is immediate that [|Q(t) — S(t)|| = || Q(t) — S(t)]|-

In particular, projggu — projgqv is the projection of the relative velocities of S, Q on the
line segment connecting S(t), Q(t). As such, the distance between S, Q changes at a rate
determined by velocity

cos () + cos (9) @

Projgou — projgqv = ¥
where ||pr0jSQu — projSQvH = |cos (¢) + cos ()[. Moreover, projgqu, projggv are antipar-
allel iff and only if cos (¢),cos(6) > 0, in which case the two objects come closer to each
other. <

3 Upper Bounds
3.1 Evacuation Algorithm for PE;
This subsection is devoted in proving the following.

» Theorem 8. Consider the real function f(x) = x + sin (z), and denote by ag > 0 the
solution to equation

f(f(a =sin(a))) =sin(a),

with ag ~ 1.14193. Then PE; can be solved in time 1 + 7 — ap + 2sin (o) ~ 4.81854.

16:7

FUN 2018



16:8

God Save the Queen

SEARCH, (o, B)

— 9(0)
§1(t)

Figure 2 Algorithm SEARCH;(«, 8) depicted for the optimal parameters of the algorithm. In all
subsequent figures, as well as here, the orange points on the perimeter of the disc correspond to the
worst adversarial placements of the treasure, which due to our optimality conditions induce the same
evacuation cost. The orange points in Q’s trajectories correspond to the Q’s positioning when the
treasures are reported, in the worst cost induced cases. The green dashed line depict Q’s trajectory
after Q abandons her trajectory and moves toward the reported exit following a straight line.

The value of g is well defined in the statement of Theorem 8. Indeed, by letting
g(x) = f(f(x —sin(z))) — sin (x), we observe that g is continuous, while g(1) ~ —0.213934
and g(m/2) = 1.00729, hence there exists ap € (1,7/2) with g(ag) = 0.

In order to prove Theorem 8, and given parameters «, 3, we introduce the family of
trajectories SEARCH; (v, ), see also Figure 2.

Algorithm Search;(a, 8) ‘

Robot || #  Description Trajectory Duration
Q 0 Move to point Cx L(O,Cx,t) 1
1 Search circle cew till point C—o  C(m, ¢t — 1) T«
2 Move to point C_q43, L(C-0,Caip,t—(1+7—0a)) 2sin (58/2)
3 Search circle cw till point C_q CB—a,l+m—a+2sin(8/2)—t) B
S1 0  Move to point Cx L(0,Cr,t) 1
1 Search circle cw till point Cg_o  C(mw, —t+ 1) T+oa—p

Partitioning the circle clockwise, we see that the arc with endpoints Cr,Criq—3 is
searched by &;, while the remaining of the circle is searched by Q. Therefore, robots’
trajectories in SEARCH; («, ) are feasible, and it is also easy to see that they are continuous
as well. The search time equals 1 4+ 7 + max{a — 3,2sin (5/2) + § — a}, as well as

I(Q) =[1,1+m—a]U[l4+7m—a+2sin(8/2),1+7—a+2sin (8/2)+ 5], 1(S1) = [1,1+7+a—f5].

An illustration of the above trajectories for certain values of «, 5 can be seen in Figure 2.
First we make some observations pertaining to the monotonicity of the evacuation cost.

» Lemma 9. Assuming that o > /3 and that cos (a) + cos (o — 3/2) > 1, the evacuation
cost of SEARCH; (v, 8) is monotonically increasing if the exit is found by 81 during Q’s phase
1 and monotonically decreasing if the exit is found by S1 during Q’s phase 2.

Proof. Suppose that the exit is found by &7 during Q’s phase 1, i.e. at time = after robots
start searching for the first time, where 0 < z < 7w — . It is easy to see that the critical angles
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between Q,S; are both equal to 7 — . But then 2cos (7 — ) > 2cos () > 2cos (7/3) = 1.

Hence, by Theorem 6, the evacuation cost is decreasing in this case.

Now suppose that the exit is found by &; during Q’s phase 2, i.e. at time z after Q
starts moving along the chord with endpoints C_,,C_444, where 0 < x < 2sin (5/2). If
¢z, 0, denote the S, Q critical angles, then it is easy to see that ¢y = cos(«) and that
0o = a — B/2. Since cos (¢g) + cos (6p) > 1, Theorem 6 implies that the evacuation cost is
initially decreasing in this phase. For the remaining of Q’s phase 2, it is easy to see that both
¢, 0, are decreasing in x, hence cos (¢,,) + cos (6;) is increasing in x, hence, the evacuation
cost will remain decreasing in this phase. <

Now we can prove Theorem 8 by fixing certain values for parameters «, 8 of SEARCH{ (v, 3).
In particular, we set «g as in the statement of Theorem 8, and By = 2f(ag — sin (ap)) =~
0.925793. The trajectories of the robots, for the exact same values of the parameters, can be
seen in Figure 2.

Proof of Theorem 8. Let f, g be as in the statement of Theorem, and set 5y = 2f (g —
sin (ag)) &~ 0.925793. We argue that the worst evacuation time of SEARCH;(«g, ) is
14+ 7 — ap+ 2sin(ap). Note that for the given values of the parameters, we have that
ag > /3, that ag —sin (5p/2) < Bo, and that cos (ag) + cos (ag — 5o/2) > 1.

First we observe that if the exit if found by O, then the worst case evacuation time
Ey(ag, Bp) is incurred when the exit is found just before Q stops searching, that is

Eo(ao,ﬁo) =14+7m—qp —I—QSin(ﬁo/Z) + Bo.

Next we examine some cases as to when the exit is found by S;. If the exit is found by
S during the 1st phase of Q, then the evacuation time is, due to Lemma 9, given as

Eq (g, Bo) = sup {z+1|Q(x) = S1(z)||} =1+ 7 — ap + 2sin (ag) .

1<z<l+m—ao

Recall that cos (ag) + cos (ap — Sp/2) > 1, and so, again by Lemma 9 we may omit the
case that the exit is found by &; while Q is at phase 2. The end of Q’s phase 2 happens at
time 7 := 147 —ag+2sin (8y/2), when have that Q(7) = C_a15, and S1(7) = Cu—24in(8,/2)5
and both robots are intending to search ccw. Condition agy — sin (8y/2) < By says that S;
will finish searching prior to @, and this happens when S; reaches point C_,g. During this
phase, the distance between Q,S; stays invariant and equal to 2ag — Sy — 2sin (8y/2). We
conclude that the cost in this case would be

Es(ag, fo) =1+ 7+ ag — Bo + 2sin (ag — Bo/2 —sin (8o/2)) .

Then, we argue that that the choice of ay, Sy guarantees that Eo(ao, So) = F1(ao, o) =
Es(ap, Bo), as wanted.

Indeed, Ey(ao, Bo) = E1(ao, fo) implies that sin (8y/2) + Bo/2 = sin (o). But then, we
can rewrite Ea(ag, Bo) as

Es(ag, Bo) =1+ 7+ ag — Bo + 2sin (ap — sin (ap)) -
Equating the last expression with E1(ag, 8p) implies that
Bo/2 = ap — sin () + sin (ap — sin (ap)) = f(ag — sin ().

Substituting twice 8y/2 in the already derived condition sin (8y/2) + Bo/2 = sin (ag) implies
that

F(f(a = sin (o)) = sin (o)

16:9
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SEARCH, (a, B)

— 9(t)
§;(t)
S,(t)

K(a/2,p)

Figure 3 Algorithm SEARCH2(«, 3) depicted for the optimal parameters of the algorithm.

Figure 2 depicts the worst placements of the exit, along with the trajectories of the queen
(in dashed green lines) after the exit is reported. <

It should be stressed that Q’s Phases 2,3 are essential for achieving the promised bound.
Indeed, had we chosen o = § = 0, the worst case evacuation time would have been

sup  {z+||Q(x) — S1(x)||} = sup {1+ z+2sin(x)}.

1<x<l+m 0<z<
The maximum is attained at zo = 27/3 (and indeed, both critical angles in this case are 7/3
and in particular 2 cos (7/3) = 1), inducing cost 1 + 27/3 + /3 ~ 4.82645. The latter is the
cost of the evacuation algorithm for two robots without priority of [10].
3.2 Evacuation Algorithm for PE,
In this subsection we prove the following theorem.

» Theorem 10. PE; can be solved in time 3.8327.

Given parameters «, p, we introduce the family of trajectories SEARCHy(a, p), see also
Figure 3.

’ Algorithm Searchs(«, p) ‘

Robot || #  Description Trajectory Duration
Q 0  Move to point Cr_q L(O,Cr_q,t) 1

1 Search the circle ccw till point Cr Cr—a,t—1) !

2 Move to point K(a/2,p) L(Cr,K(a/2,p),t —(1+0a)) AK(a/2,p)

3 Move to point C_ /> L(K(a/2,p),C_q/2) 2—-2p
S 0 Move to point Cr_q L(0,Cr_a) 1

1 Search the circle cw till point C_,/2 C(m —a,—t+1) T™— a2
So 0 Move to point Cr L(0,Cr) 1

1 Search the circle cw till point C_,,2 C(m,t—1) T™— a2

Notice that, by definition of SEARCHs(«, p), robots’ trajectories are continuous and
feasible, meaning that the entire circle is eventually searched. Indeed, partitioning the circle
clockwise, we see that: the arc with endpoints C;,Cr_, is searched by Q, the arc with
endpoints Cr_n,C_,/3 is searched by &1, and the arc with endpoints C_,, o, C is searched
by 82.
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It is immediate from the description of the trajectories that the search time is 1+ m — a/2.
Moreover

[(Q) =[1,1+a], (&) =LSs) = [L,1+7 —a/2.

An illustration of the above trajectories for certain values of «, p can be seen in Figure 3.
Now we make some observations, in order to calculate the worst case evacuation time.

» Lemma 11. Suppose that m1 — /2 > o+ AK(a/2,p) +2 — 2p. Then ||Q(z) — S1(t)]] is
continuous and differentiable in the time intervals I, Is, I3 of Q’s phases 1,2,3, respectively.
Moreover, the worst case evacuation time of SEARCHz(«, p) can be computed as

1+ o+ 2sin(a),
supser, {t +[1Q(1) = S (1)1}

supser, {t +[1Q(1) = S ()|}
1+7—a/2

max

where
L=[1+al+a+AK(a/2,p)],I3=[1+a+ AK(a/2,p),3 = 2p+ a+ AK(a/2,p)].

Proof. Note that the line passing through O and C_, 5, call it €, has the property that
each point of it, including K(«/2,p) is equidistant from S;,Ss. Moreover, in the time
window [1 + a, 1+ o+ AK(a/2, p)] that only S1, Sy are searching, Q stays below line €. At
time 1+ a+ AK(a/2,p), Q is, by construction, equidistant from Sy, Sz, a property that is
preserved for the remaining of the execution of the algorithm. As a result, the evacuation
time of SEARCH3(«, p) is given by

sup  {t+ Q1) — Si(®)]]}-

1<t<l+m—or/2

Now note that condition 7 — a/2 > a + AK («/2, p) + 2 — 2p guarantees that Q reaches
point C_, /2 no later than S;. Moreover, in each time interval Iy, I, I3, Q’s trajectory is
differentiable (and so is S;’s trajectory). <

Now Theorem 10 can be proven by fixing parameters «, p for SEARCHz(a, p), in particular,
a = 0.6361, p = 0.7944. Notably, the performance of SEARCH3(«, p) is provably improvable
(slightly) using a technique we will describe in the next section.
3.3 Evacuation Algorithm for PE3
3.3.1 A Simple Algorithm
In this section we prove the following preliminary theorem (to be improved in Section 3.3.2).

» Theorem 12. PE3 can be solved in time 3.37882.

Given parameters «, 3, p, we introduce the family of trajectories SEARCH3(«, 3, p), cor-
responding to robots Q, 81,82, S3, see also Figure 4.

FUN 2018



16:12

God Save the Queen

SEARCH;(a, B, p)

(t)
$1(0)
S, (1)
S3(t)

Figure 4 Algorithm SEARCH3(«, 3, p) depicted for the optimal parameters of the algorithm.

Algorithm Search;(«, 3, p) ‘

Robot || #  Description Trajectory Duration
Q 0  Move to point Cr_q L(0,Cr_qa,t) 1
1 Search the circle ccw till point Cx Cm—a,t—1) o
2 Move to point K(“zﬁ p) L(Cﬂ7K(“TH37p)7t—(1+a)) AK(“—;rﬁ,p)
3 Move to point C_a+s E(K(O‘;'B,p),c’iﬂ) 2—-2p
2 2
S 0 Move to point Cr_q_g L(0,Cr_a—p) 1
1 Search the circle cw till point C_at1s  C(m —a—f8,—t+1) T— “;rﬁ
2
So 0  Move to point Cr L(0,Cxr) 1
1 Search the circle cew till point C a4s  C(mw,t —1) T — O‘;rﬁ
2
Ss3 0  Move to point Cr_a-g L(O,Cr—a-p) 1
1 Search the circle ccw till point C—,, Cr—a—-p3,—t+1) B8

As before, it is immediate that, in SEARCH3(«, 3, p), robots’ trajectories are continuous
and feasible, meaning that the entire circle is eventually searched. In particular, the arc with
endpoints C, Cr_, is searched by Q, the arc with endpoints Cr_4_3,C_a+s is searched

2
by &1, the arc with endpoints C_,,C_a+s is searched by S,, and the arc with endpoints
2
Cr—a,Cr_q—p is searched by Ss. Also, the search time is 1 4+ 7 — QQﬂ, and

I(Q)=[1,1+4q], I(&) =1(S2) =[1,1+7 — QQLB], I(S3) =[1,1+ 4]

An illustration of the above trajectories for certain values of «, 3, p can be seen in Figure 4.
Before we prove Theorem 12, we need to make some observation, in order to calculate
the worst case evacuation time.

» Lemma 13. Suppose that o < 3, a+AK(a—J2“B,p) > B, and ™ — “THR > a+AK(aT+ﬂ,p) +
2 — 2p. Then the following functions are continuous and differentiable in each associated
time intervals: ||Q(x) —Ss@t)|| in [ = {t > 0: o <t—-1 < g}, ||Q(x)—Si1(t)] in
L={t>0: [t-1-a| < AK(“LL,p)} andin Iy = {t > 0: |t—1-a—AK (%12, p)| < 2-2p}.
Moreover, the worst case evacuation time of SEARCHs3(«, 3, p) can be computed as

supger, {t+[1Q(t) = Ss(1)][}
supger, {t + Q) = S1(D)[}
supger, {t + Q1) = Si(B)][}

a+f
1+7T_T

max
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Proof. Conditions a < 8 and « + AK(#, p) > S mean that Q stops searching no later
than S3, and that when S3 stops searching Q is still in her phase 2, respectively.

The line passing through O and C_(,43)/2, call it €, has the property that each point
of it, including K (O‘Tw, p) is equidistant from S, S2. Moreover, while Sy, S, are searching,
Q never goes above line €. At time 1+ o + AK(O‘TW, p), Q is, by construction, equidistant
from 81, S, a property that is preserved for the remaining of the execution of the algorithm.
As a result, S; can be ignored in the performance analysis, and when it comes to the case
that Sy finds the exit, the evacuation cost is given by the supremum of ¢ 4 ||Q(¢) — S1(¢)|| in
the time interval I or in the interval I3. Note that in both intervals, the evacuation cost is
continuous and differentiable, by construction.

If the exit is reported by S5 then the evacuation cost is ¢+ Q(t) — Ss(¢)|| for t € [1,1+ 3].
However, it is easy to see that the cost is strictly increasing for all ¢ € [1,1 4 o] (in fact it is
linear). Since the evacuation cost is also continuous, we may restrict the analysis in interval
Il.

Lastly, observe that m — O‘—JQFB >a+ AK ("TJ“B, p) + 2 — 2p implies that S;,Ss reach point
C_(a+p)/2 no earlier than Q. Hence Q waits at C'_(,4g)/2 till the search of the circle is over,
which can be easily seen to induce the worse evacuation time after Q reaches C_(445)/2. <«

We prove Theorem 12 by fixing parameters «, 3, p for SEARCH3(«, 3, p), in particular
a = 0.26738, 8 = 1.2949, p = 0.70685.

3.3.2 Improved Search Algorithm
In this section we improve the upper bound of Theorem 12 by 0.00495 additive term.
» Theorem 14. PE;3 can be solved in time 3.37387.

The main idea can be described, at a high level, as a cost preservation technique. By the
analysis of Algorithm SEARCH3(«, 3, p) for the value of parameters of «, 3, p as in the proof
of Theorem 12, we know that there are is a critical time window [72, T3] so that the total
evacuation time is the same if the exit is found by S; either at time 75 or 73, and strictly
less for time moments strictly in-between. In fact, during time [75,1 + « + AK(O‘T+57 p)] Q is
executing phase 2, and in the time window [1 + a + AK(O‘TW, p), 3] Q is executing phase 3
of SEARCH3(«, 3, p).

From the above, it is immediate that we can lower Q’s speed in the time window [72, 73]
so that the evacuation time remains unchanged no matter when S; finds the exit in the same

time interval (notably, Ss has finished searching prior to 75 and ||Q(t) — S| > |Q(t) — Sal)).

But this also implies that we must be able to maintain the evacuation time even if we preserve
speed 1 for Q, that will in turn allow us to twist parameters «, 3, p, hopefully improving the
worst case evacuation time. We show this improvement is possible by using the following
technical observation

» Theorem 15. Consider point Q = (q1,q2) € R?. Let S(t) be the trajectory of an object
S moving at speed 1, where t > 0, and denote by ¢ the (S, Q)-critical angle at time t = 0.
Assuming that cos (¢) > 0, then there is some T > 0, and a trajectory Q(t) = (f(¢t),g(t)) of
a speed-1 object, where t > 0, so that t + ||Q(t) — S(t)|| remains constant, for all t € [0,7].
Moreover, Q(t) can be determined by solving the system of differential equations

(f') + (g 1) =1
t+ Q) — S) = 11S(0) - Q|
(£(0), 9(0) = (a1, 2).

—~ o~
= W N
= =
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Proof. An object with trajectory (f(t), g(t)) satisfying (2) and (4) has speed 1 (by Lemma 2),
and starts from point Q = (g1, g2). We need to examine whether we can choose f, g so as to
satisfy (3).

By Lemma 7, such a trajectory Q(t) exists exactly when we can guarantee that cos (¢) +
cos () = 1 over time t. When ¢t = 0 we are given that cos(¢) > 0, hence there exists 6
satisfying cos (¢) + cos () = 1. This uniquely determines the velocity of Q at t = 0.

By continuity of the velocities, there must exist a 7 > 0 such that cos (¢) + cos () =1
admits a solution for 6 also as ¢ changes over time ¢ € [0, 7], in which time window the cosine
of the (S, Q(t))-critical angle at time ¢ remains non-negative. )

Note that condition cos(¢) > 0 of Theorem 15 translates to that ||S(t) — Q|| is not
increasing at t = 7, i.e. that S does not move away from point Q.

Now fix parameters «, 3, p together with the trajectories of Sy, Sz, S3 as in the description
of Algorithm SEARCH3(«, 8, p). The description of our new algorithm N-SEARCH;3(a, 3, p)
will be complete once we fix a new trajectory for Q. Naming specific values for parameters
a, B, p will eventually prove Theorem 14. In order to do so, we introduce some further
notation and conditions, denoted below by (Conditions i-iv), that we later make sure are
satisfied.

Consider Q’s trajectory as in SEARCHs(«, 3, p). Let 79 denote a local maximum of

t+ Q) =S (@)l

as it reads for ¢t > O with [t —1—a| < AK (o‘—gﬁ, p) (recall that in this time window, expression
is differentiable by Lemma 13), i.e.

a+p

|70 — 1 —a] < AK( ,0) (Condition i)

Set Q@ = Q(7p), and assume that
“The cosine of the (S, Q)-critical angle at time 7 is non-negative.” (Condition ii)

Then obtain from Theorem 15 trajectory (f(¢), g(t)) that has the property that it preserves
7o + ||Q(70) — S1(70)|| in the time window [rg,7']. Assume also that

“There is time 7, < 7’ such that point K; := (f(m1),g(m1)) is equidistant from
S1(71), Sa(71),”
(Condition iii)
for the first time after time 7g, such that

mn<l+4+m-— a ;r ﬂ. (Condition iv)

Then consider the following modification of SEARCH3(«, 3, p), where the trajectories of
81,82, 83 remain unchanged, see also Figure 5.

‘ Algorithm N-Searchs(a, 8, p)

Robot || #  Description Trajectory Duration
Q 0  Move to point Cr_q L(O,Cr_q,t) 1
1 Search the circle ccw till point Cr  C(m — o, t — 1) «
2 Move toward point K (232, p) L(Cr, K(2E2 p),t — (1 +a)) To—1—a
3 Preserve 10 + ||Q(70) — S1(70)]| (f(®),q(t) T —To
4 Move to point Ci# C(Kl,Ci#) "K1707# ‘
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N-SEARCH;(a, 8, p)

— o
Cro—a f7 50
— 51
— 530

@+ P2

Figure 5 Algorithm SEARCH3(«, 3, p) depicted for the optimal parameters of the algorithm.

Note that in phase 2, Q is not reaching (necessarily) point K rather it moves toward it

for a certain duration. The search time is still 1 + 7 — O’TJFB Trajectories of Sy, 89,83 are

continuous as before, and

1(S1) = I(S,) = [1,14 7 — #}, 1(Ss) = [1,1+ 4],

as well as 1(Q) = [1,1 + af.

Condition i makes sure that while Q is at phase 2, and before it reaches K (#, 0),
there is a time moment 79 when the rate of change of ¢ + || Q(t) — S1(¢)] is 0. Together with
condition ii, this implies that Theorem 15 applies. In fact, for the corresponding critical

angles ¢, 0 between S;, Q at time 7y, we have that cos(¢) + cos(6) = 1 by construction.

Hence trajectory (f(t),g(t)) of phase 3 is well defined, and indeed, Q jumps from phase 2 to
phase 3 while Q is still moving toward point K. Notably, Q’s trajectory is even differentiable
at t = 7o (but not necessarily at t = 71). Then, Condition iii says that Q eventually will enter
phase 4, and that this will happen before S1, Ss finish the exploration of the circle. Overall,
we conclude that in N-SEARCH;3(«, p), robots’ trajectories are continuous and feasible. An
illustration of the above trajectories for certain values of «, 3, p can be seen in Figure 5.
Now we make some observations, in order to calculate the worst case evacuation time.

» Lemma 16. Suppose that o < 3, 1+ 8 < 79, and 1 + 7 — O‘Tw > 7+ HKl — C_QTW
as well as Conditions i-iv are satisfied. Then the following functions are continuous and
differentiable in each associated time intervals: ||Q(z) — Ss(t)|| in L ={t>0: a<t—1< 3},
1Q@) = S1(t)]| in I = {t > 0: 1+a<t<r and in Is = {tzO: =] < HKI ~CLass }

Moreover, the worst case evacuation time of N-SEARCH3(«, 3, p) can be computed as

sup,ep, {t + Q) — Ss ()]}
sup,ep, {t + Q) — S1()[[}
sup,ep, {t +[1Q(t) — S1()[[}
1+7— ‘XT'HR

Proof. Conditions o < 8 and 1+ 8 < 79 mean that Q stops searching no later than Ss, and
that when Q enters phase 3 after S is done searching, respectively.

The line passing through O and C_(,43)/2, call it €, has the property that each point
of it, including K (‘XTW, p) is equidistant from Sy, Sy. Moreover, while Sy, Se are searching,
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E F
2+ — f(s5)

Figure 6 (Left) The queen must be in region R at time f(s3). Here s3 = E and g3 = F.

Q never goes above line €. Also, while Q is executing phase 3, Q remains equidistant from
S1, 82 and this is preserved for the remainder of the execution of the algorithm. As a result,
Ss can be ignored in the performance analysis, and when it comes to the case that S; finds
the exit, the evacuation cost is given by the supremum of ¢ + ||Q(t) — S1(t)|| in the time
interval I or in the interval I5. Note that in both intervals, the evacuation cost is continuous
and differentiable, by construction.

If the exit is reported by S5 then the evacuation cost is t+ | Q(¢) — Ss(¢)|| for t € [1,1+ 3].
However, it is easy to see that the cost is strictly increasing for all t € [1,1 4 o] (in fact it is
linear). Since the evacuation cost is also continuous, we may restrict the analysis in interval
Il~

Lastly, observe that 1 4+ 7 — L‘gﬁ >71+ HK1 - C’_%a H implies that S1,Ss reach point
C_(a+p)/2 no earlier than Q. Hence Q waits at C_ (), till the search of the circle is over,
which can be easily seen to induce the worse evacuation time after Q reaches C_(445)/2. <«

We can prove now Theorem 14 by fixing parameters «, 3, p for N-SEARCH3(a, 5, p), in
particular o = 0.27764, 8 = 1.29839, p = 0.68648.

4 Lower Bounds

In this section we derive lower bounds for evacuation. In Section 4.1 we treat the case of n =1
(see Theorem 17) and in Section 4.2 we treat the case of n = 2 and 3 (see Theorem 19).

4.1 Lower Bound for PE;

We will derive the lower bound using an adversarial argument placing the exit at an unknown
vertex of a regular hexagon.

» Theorem 17. The worst-case evacuation time for PEq is at least 3+7/6+ \/3/2 ~ 4.3896

Proof. At time 1+ 7/6, at most /3 of the perimeter of the circle can have been explored
by the queen and servant. Thus, there is a regular hexagon, none of whose vertices have
been explored. If the exit is at one of these vertices, by Theorem 18, it takes 2 4 v/3/2 for
the queen to evacuate. The total time is 1+ 7/6 + 2 + /3/2. <

Next we proceed to provide a lower bound on a unit-side hexagon. Label the vertices
of the hexagon V as A,..., F as shown in Figure 6. Fix an evacuation algorithm A. For
any vertex v of the hexagon, we call f(v) the time of first visit of the vertex v by either the
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servant or the queen, according to algorithm A. We call ¢(v) the time that the queen gets to
the vertex v. Clearly, ¢(v) > f(v), and if the queen arrives at the vertex no later than the

servant, ¢(v) = f(v).

» Theorem 18. For any algorithm A, the evacuation time for the queen when the exit is at
one of the vertices of the hexagon is maz,ev{q(v)} > 2+ v/3/2.

Proof. Suppose there is an algorithm in which the queen can always evacuate in time
< 2 +/3/2. Consider the trajectories of the servant and the queen. If either the queen
or the servant are the first to visit 4 vertices, then for the fourth such vertex v, we have
f(v) > 3, a contradiction. Therefore, the queen is the first to visit three vertices, and the
servant is the first to visit three vertices. We denote the three vertices visited first by the
servant as s, Sa, S3 (in the order they are visited) and the three vertices visited first by the
queen as q1, q2, q3, and note that they are all distinct.

Notice that neither ss nor g3 can be visited before time 2, that is, f(ss3), f(g3) > 2. If
f(gs) < f(ss3), then we place the exit at s3, and the queen needs time at least 1 to get to ss,
which implies that T' > ¢(s3) > f(g3) + 1 > 3, a contradiction. We conclude that at time
f(s3), the queen is yet to visit g3. Since the exit can be at either s3 or ¢z, at time f(s3), the
queen must be at distance < 2 ++/3/2 — f(s3) < v/3/2 from both s3 and g3.

Assume without loss of generality that s3 = E (see Figure 6). Since A, B, D are all
at distance at least v/3 from E, we conclude that q3 is either C or F. Assume without
loss of generality that g3 = F'. Let R denote the lens-shaped region that is at distance
< 2+/3/2 — f(s3) from both E and F. Recall that at time f(s3), the queen must be
inside the region R. Notice that if f(s3) > 1.5+ v/3/2, the region R is empty, yielding a
contradiction. So it must be that 2 < f(s3) < 1.5+ /3/2.

We now work backwards to deduce the trajectories of the servant and the queen. Clearly

sy # F since g3 = F. If sy # C, then f(s3) > V3 + 1 > 1.5+ /3/2, a contradiction.

Therefore, s, = C. By the same reasoning, s; = A. Therefore, the queen is the first to visit
D and B. If ¢ = D and ¢2 = B, we place the exit at E; since f(g2) > 1 and dist(B, E) = 2,
we have T > ¢(FE) > 3, a contradiction. Thus, g = D and ¢; = B.

Consider the location of the queen at time 1. If she is at distance > 1 + \/5/2 from
C at time 1, then if the exit is at C, ¢(C) > 2+ +/3/2. So at time 1, the queen must
be at distance < 1 + \/?:/2 from C and consequently she is at distance > 1 — \/5/2 from
vertex D. Therefore f(g2) = f(D) > 2 —+/3/2. Also, f(D) < 1.5 since if the queen reaches

D at or after time 1.5, she cannot reach the region R before time 1.5 + /3/2 > f(s3).

So f(D) < f(s3). If the exit is at E = s3, the queen cannot reach the exit before time
f(D)+dist(D,E) > 2 — ﬁ/2 + /3 =2+ /3, concluding the proof by contradiction. <

We remark that the above bound is optimal, and is achieved by the algorithm depicted
in Figure 7.
4.2 Lower Bounds for PE, and PE;

In the case of n = 2 and n = 3 the proof is rather technical and we will only present a high
level outline as to why the lower bounds hold.

» Theorem 19. The worst-case evacuation time for PEqy is at least 3.6307 and for PEs at
least 3.2017.

Throughout this section we will use T to refer to the evacuation time of an arbitrary
algorithm and use U to refer to the unit circle which must be evacuated.
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Figure 7 Blue trajectory: servant and red trajectory: queen. At point H, if the queen hears of
an exit at I/, she goes there, otherwise she goes to F'.

The main thrust of the proof relies on a simple idea — the queen should aid in the
exploration of . This is immediately evident for the particular case of n = 2 since, if the
queen does not explore, it will take time at least 1 + 7 for the servants to search all of & and
we already have an upper bound smaller than this (Theorem 10). Thus, a general overview of
the proof is as follows: we show that in order to evacuate in time 7 the queen must explore
some minimum length of the perimeter of &. We will then demonstrate that the queen is not
able to explore this minimum amount in any algorithm with evacuation time smaller than
what is given in Theorem 19.

To be concrete, consider the case of n = 2 and assume that we have an algorithm with
evacuation time 7 < 1+ . Then, in order for the robots to have explored all of ¢ in time
T, the queen must explore a subset of the perimeter of total length at least 2(1 + 7 — 7).
Intuitively, this minimum length of perimeter will increase in size as 7 decreases.

Now consider that it is not possible for the queen to always remain on the perimeter
(indeed, in each of the algorithms presented, the queen leaves the perimeter). To see why
this is consider that, in any algorithm with evacuation time 7, it must be the case that all
unexplored points of U are located a distance no more than 7 — ¢ from the queen at all times
t < T. If the queen is on the perimeter at any time ¢ satisfying 7 — ¢ < 2, then, there will be
some arc 6(t,T) C U such that all points of (¢, T) are at a distance at least 7 — ¢ from the
queen. Thus, if the queen is to be on the perimeter at the time ¢ we can conclude that all of
the arc 0(¢, 7) must have already been discovered. However, we will find that 6(¢, T) will
often grow at a rate much larger than the robots can collectively explore and at some point
the queen will have to leave the perimeter. In fact, there will be an interval of time during
which it is not possible for the queen to be exploring and this in turn implies that there is a
maximum amount of perimeter that can be explored by the queen. Intuitively, the maximum
length of perimeter that can be explored by the queen will decrease as 7 decreases. The
lower bound will result by balancing the minimum amount of perimeter the queen needs to
search and the maximum amount of perimeter that the queen is able to search.

The above argument will need a slight modification in the case of n = 3. In this case we
will show that there is some critical time t, before which the queen must have explored some
minimum amount of perimeter. Again, the lower bound follows by balancing the maximum
amount of perimeter the queen can explore by the time ¢, and the minimum amount of
perimeter the queen needs to explore before the time t,.
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5

Conclusion

We considered an evacuation problem concerning priority searching on the perimeter of a

unit disk where only one robot (the queen) needs to find the exit. In addition to the queen,
there are n < 3 other robots (servants) aiding the queen by contributing to the exploration
of the disk but which do not need to evacuate. We proposed evacuation algorithms and
studied non-trivial tradeoffs on the queen evacuation time depending on the number n of
servants. In addition to analyzing tradeoffs and improving the bounds obtained for the
wireless communication model, an interesting open problem would be to investigate other

models with limited communication range, e.g., face-to-face.
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—— Abstract

We study the game Greedy Spiders, a two-player strategic defense game, on planar graphs and
show PSPACE-completeness for the problem of deciding whether one player has a winning strategy
for a given instance of the game. We also generalize our results in metatheorems, which consider
a large set of strategic defense games. We achieve more detailed complexity results by restricting
the possible strategies of one of the players, which leads us to 35- and II5-hardness results.
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1 Introduction

With computational devices in nearly everyone’s pockets nowadays, the opportunities to play
puzzle games on these devices are plentiful. What makes such games so addictive that they
are played every day by millions of people? One possible answer to the suggested question
is that (generalized variants of) these games are computationally intractable [9, 13], which
could explain why it can be so challenging to find a solution or to get a good score.

In this paper, we analyze the two-player strategic defense game Greedy Spiders [3] from a
computational complexity perspective. In the game Player 1 must prevent Player 2 from
reaching designated positions. In particular, we show that the problem of deciding whether
Player 1 or 2 has a winning strategy is PSPACE-complete. We also generalize this result to
state two metatheorems, which can be applied to a larger set of strategic defense games.
These metatheorems additionally claim that the problem becomes ¥5-hard if we restrict the
possible strategies of Player 1 to those that can be specified by a polynomial-time computable
algorithm that is to be submitted at the beginning of the game — the problem is IT5-hard if
we restrict Player 2 in a similar way. In both cases, the question is whether Player 1 has a
winning strategy. We get hardness results for the complementary classes, if we ask whether
Player 2 has a winning strategy.
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2 Related Work

While two-player board games have been studied well from a computational complexity point
of view in the 80’s [15, 16], two-player computer games are rarely examined till now. Despite
the fact that the first gaming console was released in 1983 [4], it took until 2000 until the
first computer games where studied in terms of their computational complexity. A good
survey is given by Demaine et al. [9] and Kendall et al. [13]. While the first results where
obtained by examining concrete games, Demaine et al. [10] made a first approach to find
more general structures in games by developing a directed graph based framework for which
they showed several hardness results for different versions. The framework was intended to
be “a natural problem to reduce from.” That approach instantly led to complexity results for
games like Sokoban, Rush Hour, Pushing blocks, and many more. This proposal was taken
up by Forisek [12], who coined the term “metatheorem” to describe complexity results for
abstracted games consisting of a combination of game elements, which are often implemented
in real computer games. The reduction from a metatheorem to a concrete computer game
is obtained by proving that all the elements of one metatheorem can be implemented with
the mechanics provided by the game. Note that this is often much easier than finding an
individual reduction from a computationally hard formal problem to a certain computer
game. Viglietta [19] further developed this approach with several metatheorems that are
particularly useful for platform- and puzzle-games. His metatheorems have been used to
study the complexity of the best-known Nintendo games [6]. Demaine, Lockhart and Lynche
also continued the study of metatheorems for platform-games [11]. To our knowledge, very
few of the currently known metatheorems are suitable to describe two-player games (the only
one known to us are given by Demaine and Hearn [10]) and most of the known metatheorems
are applicable to single-player platform- and puzzle-games only.

3 Greedy Spiders

We describe the game Greedy Spiders [3] as a two-player game — in the version of the game
for i0OS and Android devices, the user plays as Player 1, and the moves of Player 2 are
determined by the application. In this paper, we consider the most basic variant of the game.
We describe the game in intuitive terms, before we give a fully detailed formal description of
the game.

Informal Description of the Game

Greedy Spiders is a turn-based strategic defense two-player game played on planar graphs
(that represent spider webs). Initially, some nodes of the graph are occupied by spiders, and
some nodes of the graph are occupied by flies. The players alternate turns, and Player 1
plays first. In each turn of Player 1, she removes an edge from the graph, and Player 2 in
each of her turns moves a subset of the spiders (possibly all) along a remaining edge of the
graph to an adjacent node. The flies cannot move. Player 2 wins whenever some spider
occupies the same node as some fly, and Player 1 wins whenever there is no path anymore
from any of the spiders to any of the flies.

Formal Description of the Game

A game situation (for Greedy Spiders) is represented by a triple C' = (G, S, F'), where G =
(V, E) is an undirected planar graph, S C V is the set of nodes that are occupied by spiders,
and F' C V is the set of nodes that are occupied by flies.
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[ ] [ ] [ ]
C, = S/ ™~ Cy = S/ F Cs = '/ F Cy= '/ F
Figure 1 Example of a run ¢ = (C1,...,C4) that is winning for Player 1.

A walid move for Player 1 cousists of a tuple (C1, Cy), where Cy = (G4, S1, F1) and Cy =
(G, S3, F5) are game situations, such that Sy = Sy, F; = Fy, and G5 is obtained from G
by removing one edge, that is, G; = (V, E) and Gy = (V, E'\ {e}) for some e € E. A wvalid
move for Player 2 consists of a tuple (C1, Cs), where C; = (G1, 51, F1) and Cy = (Ga, Sa, F»)
are game situations, for which holds that G; = Gy = (V, E); that So = { f(s) | s € S1},
where f: 5] — V is an injective function such that for all s € Sy it holds that {s, f(s)} € F
or f(s) = s; and that Fy = F.

A game situation (G, S, F) is winning for Player 1 if for each s € S and each f € F', there

is no path in G from s to f. A game situation (G, S, F') is winning for Player 2 ift SN F # (.

A game situation is terminal if it is winning for either of the players, and it is non-terminal
otherwise.

A run o of the game is a finite sequence (C1,...,C,) of game situations where (1) for
each odd i € [n — 1] it holds that (C;,Ciy1) is a valid move for Player 1, (2) for each
even i € [n — 1] it holds that (C;, Ci+1) is a valid move for Player 2, (3) for each i € [n — 1]
it holds that C; is non-terminal, and (4) C,, is terminal. (For each u,v € N, we use [u] to
denote the set {1,...,u} and [u,v] to denote the set {u,...,v}.) The run o is winning for
either of the players if and only if (), is.

» Example 1. See Figure 1 for an example of a run o of the game Greedy Spiders that is
winning for Player 1. In this figure (as in all figures in this paper), nodes that are occupied
by a spider are marked with S and nodes that are occupied by a fly are marked with F.

We invite the reader to play the game and to verify that there is in fact a winning strategy
for Player 1 for the initial game situation C; depicted in Figure 1.

A strategy for Player 1 for an initial game situation C; is a finite tree 7' where each
node is labeled with a pair (C, j), where C' is a game situation and j € [2], that satisfies the
following conditions:

(a) the root of T is labeled with (C1, 1);
(b) whenever a node is labeled with (C,1), for some non-terminal game situation C, it has

one single child that is labeled with (C’,2) such that (C,C") is a valid move for Player 1;
(c) whenever a node is labeled with (C, 2), for some non-terminal game situation C, it has m

children nodes that are labeled with (C1,1),. .., (Cn, 1), respectively, where {(C, C1),. ..,

(C,Cp)} is the set of all valid moves for Player 2 that have C' as first component; and
(d) whenever a node is labeled with (C, j), for some terminal game situation C' and some j €

[2], it has no children (i.e., it is a leaf).
In the remainder of this paper, we will often slightly abuse notation by identifying a node
of a strategy T with the pair (C,j) with which it is labeled. A strategy T for Player 1 is
winning if all its leaves are labeled with pairs (C, j) where C' is winning for Player 1. (In fact,
it can easily be verified that this can only be the case if each leaf is labeled with a pair (C, 2)
for some game situation C that is winning for Player 1.) Note that any root-to-leaf path in
the strategy T corresponds to a run of the game.

Intuitively, a strategy for Player 1 specifies a sequence of valid moves for Player 1 for
each possible combination of valid moves that Player 2 makes. A winning strategy for
Player 1 specifies what moves Player 1 can make to ensure that she wins the game. (Winning)
strategies for Player 2 are defined analogously. Since Greedy Spiders is a zero-sum game,
there is a winning strategy for Player 1 if and only if there is no winning strategy for Player 2.
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Decision Problem

We consider the following decision problems in this paper.

WINNER DETERMINATION FOR PLAYER 1 Input: An initial game situation Cj.
Question: Is there a winning strategy for Player 1 for the game situation C7?

WINNER DETERMINATION FOR PLAYER 2 Input: An initial game situation Cf.
Question: Is there a winning strategy for Player 2 for the game situation Cy7?

Because the game Greedy Spiders never ends in a tie (either Player 1 or Player 2 wins), these
problems are complementary. That is, Player 1 has a winning strategy if and only if Player 2
does not have a winning strategy.

4 Preliminaries

We assume the reader to be familiar with basic notions from the theory of computational
complexity, such as the complexity classes P and NP, and polynomial-time (many-to-one)
reductions. For more details, we refer to textbooks on the topic (e.g., see [7]).

The class PSPACE consists of all decision problems that can be solved by an algorithm
that uses a polynomial amount of space (memory). Alternatively, one can characterize the
class PSPACE as all decision problems for which there exists a polynomial-time reduction to
the problem TQBF, that is defined using quantified Boolean formulas as follows. A quantified
Boolean formula (in prenex form) is a formula of the form Qx1Q2x5 ... Qnxy.1, where all x;
are propositional variables, each @; is either an existential or a universal quantifier, and 1
is a (quantifier-free) propositional formula over the variables x1,...,x, (called the matriz).
Truth for such formulas is defined in the usual way. The problem TQBF consists of deciding
whether a given quantified Boolean formula is true. It is well-known that the problem TQBF
is PSPACE-complete, and that it remains PSPACE-hard even when restricted to quantified
Boolean formulas whose matrix is in 3CNF.

The class PSPACE can also be characterized using alternating Turing machines (ATMs).
A problem is in PSPACE if and only if it can be solved in polynomial time by an alternating
Turing machine [8]. We refer to textbooks on complexity theory for more details (e.g., see [7]).

One can also restrict the number of quantifier alternations occurring in quantified Boolean
formulas, i.e., the number of times where Q; # Q;+1. For each constant k > 1 number of
alternations, this leads to a different complexity class. These classes together constitute
the Polynomial Hierarchy. We consider the complexity classes X7, for each k > 1. The
complexity class X} consists of all decision problems for which there exists a polynomial-time
reduction to the problem TQBFg ;, that is defined as follows. Instances of the problem are
quantified Boolean formulas of the form 3z ... 3w, Vre, 41.. .Yy, ... QuZe,_+1 - - - Qe -
1, where Q = 3 if k is odd and Qy =V if k is even, where 1 < ¢ < ... < {;, and where 1
is quantifier-free. The problem is to decide if the quantified Boolean formula is true. For
each k > 1, the dual problem TQBF\ ; is defined analogously, where the first quantifier
of the formula is universal rather than existential. The complexity class II} consists of
all decision problems for which there exists a polynomial-time reduction to the problem
TQBFy . The class NP coincides with X7, and the class co-NP coincides with II}.
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5 Complexity Results for Greedy Spiders

In this section, we show that the problems WINNER DETERMINATION FOR PLAYER 1 and
WINNER DETERMINATION FOR PLAYER 2 for Greedy Spiders are PSPACE-complete. Since
these problems are complementary, we focus on WINNER DETERMINATION FOR PLAYER 1.
The result for WINNER DETERMINATION FOR PLAYER 2 will then follow immediately, because
PSPACE is closed under complement. We begin with showing membership in PSPACE.

» Lemma 2. WINNER DETERMINATION FOR PLAYER 1 for Greedy Spiders is in PSPACE.

Proof. Let C; = (G, S, F) be an initial game situation, where G = (V, E). Since each valid
move for Player 1 removes an edge from G, we know that every possible run o that starts
with C is of length at most 2| E| — 1. Therefore, the problem can be solved in polynomial time
by an alternating Turing machine. We describe the algorithm that is implemented by such an
alternating Turing machine. The algorithm starts with a partial run ¢ = (C4) that is extended
to a complete run. Then, whenever the partial run o = (C4, ..., Cy) ends with a non-terminal
game situation Cy and is of odd length, the algorithm uses existential nondeterminism to guess
a game situation Cyyq such that (Cy, Cp11) is a valid move for Player 1, resulting in the partial
run (Cq,...,Cryr1). Whenever the partial run o = (C4,...,Cp) ends with a non-terminal
game situation Cy and is of even length, the algorithm uses universal nondeterminism to
guess a game situation Cyyq such that (Cy, Cy11) is a valid move for Player 2, resulting in the
partial run (C4,...,Cpr1). Whenever the partial run o = (C1, ..., Cy) ends with a terminal
game situation Cy, the algorithm accepts if and only if Cy is winning for Player 1. |

Next, to show PSPACE-hardness of WINNER DETERMINATION FOR PLAYER 1 for Greedy
Spiders, we will need a technical lemma that states that TQBF is PSPACE-hard even when
restricted to instances with a matrix in 3DNF whose incidence graph is planar.

Let ¢ = Q121 ... Qnxy¥ be a quantified Boolean formula, where v is a quantifier-free
DNF formula. Suppose that ¥ =dy V ---V d,,. The incidence graph G, of ¢ is a bipartite
graph that is defined as follows. The nodes V,, of G, are the literals and the terms of 1,
ie, Vo ={z1,...,2p,~@1,..., 2, } U{d1,...,dn}. A node corresponding to a literal [ is
connected by an edge to a node corresponding to a term d; if and only if [ occurs in the
term d;. The incidence graph of a formula with a matrix in CNF is defined analogously.
(Often a variant of incidence graphs with vertices only for variables, not literals, is used.)

» Lemma 3. TQBF is PSPACE-hard even when restricted to quantified Boolean formulas
(in prenex form) whose incidence graph is planar and whose matriz is a 3DNF formula.

Proof. It has been shown that TQBF remains PSPACE-hard when restricted to quantified
Boolean formulas (in prenex form) whose matrix is a 3CNF formula and whose incidence
graph is planar [14, Theorem 1]. This result can easily be adapted to work also for incidence
graphs with vertices for literals (by introducing existentially quantified copies of variables and
adding clauses to ensure that copies are assigned the same truth value). Then, since PSPACE
is closed under complement, and the negation of a quantified Boolean formula whose matrix
is in 3CNF is equivalent to a formula whose matrix is in 3DNF, the result follows. |

» Theorem 4. WINNER DETERMINATION FOR PLAYER 1 for Greedy Spiders ¢s PSPACE-
complete.

Proof. Membership in PSPACE is shown in Lemma 2. We show PSPACE-hardness by
means of a polynomial-time reduction from TQBF. Take an arbitrary instance ¢ =
dxy Voo ...z, 1.V, Y, where v = dy V- -+ V d,, is a quantifier-free 3DNF formula with n
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Figure 3 Gadget giV for variable z;, for even 1.

variables and m terms — without loss of generality we may assume that the odd-numbered
variables x; are existentially quantified, and that the even-numbered variables x; are univer-
sally quantified. Moreover, by Lemma 3, we may assume that the incidence graph of ¢ is
planar. Also, without loss of generality, we may assume that n is even and that m > 2.

We construct a game situation C7 = (G, S, F) as follows. We construct the planar
graph G = (V, E), together with the sets S C V and F C V by connecting various gadgets
for the variables and terms of .

The idea of the reduction is as follows. We introduce gadgets g? that allow Player 1 to
choose a truth assignment for variable z;, for odd i. Similarly, for even 4, we have gadgets g}
that allow Player 2 to choose a truth assignment for variable x;. These choices are made one
after the other, so that they can depend on the truth assignment of preceding variables. The
choices in these first gadgets consist of sending a spider on one of two paths. Then, we have
gadgets k; and k., that serve to let the spiders from gadgets g7 and g} pass onwards, while
giving Player 1 time to cut free flies in all but one of the gadgets h; representing the terms
of 1. If the chosen truth assignment satisfies a term d;, Player 1 can safely leave the fly in
gadget h; unprotected (and cut free the flies in all other gadgets h;/). In order to make this
function properly, we additionally have gadgets fy, forcing Player 1 to cut free a fly in this
gadget in one of her first £ turns. Figure 7 illustrates this for an example.

For each existentially quantified variable x; — that is, for every odd i € [n] — we add the
gadget g7 as depicted in Figure 2. For each universally quantified variable x; — that is, for
every even i € [n] — we add the gadget g as depicted in Figure 3. In these figures, nodes in S
are marked with S and nodes in F' are marked with F. Also, each edge that is marked with a
number ¢ represents a path containing ¢ edges (where each of the non-depicted nodes are
neither in .S nor in F'). In particular, if £ = 0, the two nodes adjacent to this edge coincide.

Intuitively, the gadgets g7 and g} simulate the quantification over the truth assignments
to the variables x1,...,x,. For each ¢ € [n], in Player 1’s (3(¢ — 1) 4+ 1)-th, (3(¢ — 1) + 2)-th
and (3(i — 1) + 3)-th turn, she is forced to make a move in gadget g or g (depending on
the parity of ), in order to prevent the spider in this gadget from capturing a fly in this
gadget. Moreover, in gadgets g7, her choices for these moves determine which of the two
paths leading to the nodes labeled y; and ¥;, respectively, are still available to the spider in
this gadget. In the gadgets g!, Player 2 is free to choose on which of the two paths, leading
to the nodes labeled y; and ¥;, respectively, the spider in this gadget moves. Moving a spider
on the path towards y; corresponds to setting variable z; to true, and moving a spider on
the path towards ¥; corresponds to setting variable z; to false. Thus, in this way, Player 1
can choose the truth values for the odd-numbered variables z; and Player 2 can choose the
truth values for the even-numbered variables x;.
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Figure 5 Gadget f; in which Player 1 is forced to remove an edge in her ¢-th turn (at the latest).

Then, for each i € [n], we identify the node labeled with y; in the gadget g? or gf with the
node labeled with y; in the gadget k; that is depicted in Figure 4. We similarly identify the
node labeled with g; in the gadget g? or gzv with the node labeled with y; in the gadget k;’,
which is entirely similar to the gadget depicted in Figure 4 — the only difference is that the
node label y; is replaced by ¥; and the node label z; is replaced by Z;. These gadgets consist
of m — 1 successive pieces, each consisting of m parallel paths of length 2 — here m is the
number of terms occurring in the matrix v of the quantified Boolean formula ¢. Intuitively,
the purpose of these gadgets k; and k; is to ensure that there remains a path of length 2m —2
from the node labeled with y; to the node labeled with x;, even after the next 2m — 2 moves
(and similarly for the nodes labeled with 7; and 7).

For each even £ € [3n + 1,3n + 2m — 2] (so not the odd values), we add the gadget f;, as
depicted in Figure 5. These gadgets force Player 1 to make a move in gadget f; in her ¢-th
turn (at the latest). As a result, Player 1 has no way of preventing any spider to move from
a node labeled with y; to a node labeled with x; in her (3n 4 1)-th until her (3n + 2m — 2)-th
turn (while also preventing the flies in the gadgets f, from getting captured by a spider).
However, notably, for each odd ¢ € [3n + 1,3n + 2m — 2], Player 1 is not forced to delete any
particular edge in the graph in her ¢-th turn (in order to avoid losing directly after that turn).
This free choice for Player 1 will play a role in the next type of gadget that we will add.

For each term d; of ¢, we add the gadget h;, as depicted in Figure 6. The leftmost nodes
in this gadget are labeled with x; or ;. We identify these leftmost nodes with the nodes
in gadgets k; and k; that have identical labels. Suppose that d; = (I;1 Alj2 Alj3), where
each 1, for v € [3], is either x; or Z; for some i € [n]. Then the leftmost nodes in the
gadget h; coincide with the nodes in gadgets k; and k;’ that are labeled with ljj, denoting
the complementary literal of [; ,,. For example, if d; = (21 AZ3 Ax3), then the leftmost nodes
in the gadget h; are identified with the nodes labeled with Z71, z2 and T3 in gadgets ki, ko
and ky'.

Intuitively, the gadgets h; all contain a fly that needs to be protected from the incoming
spiders on the paths from z; and 7;. Player 1 has time to remove the edges adjacent to the
flies in exactly m — 1 of these gadgets h; — she has time to do this in her ¢-th turns, for
odd values of ¢ € [3n + 1,3n + 2m — 2]. In other words, Player 1 needs to choose exactly
one j € [m] such that the fly in gadget h; is out of reach of the spiders, for her next two
turns.

Finally, we add the gadgets f;, as depicted in Figure 5, for both £ € [3n+2m — 1, 3n+ 2m)]
to ensure that after rescuing the flies in all but one of the gadgets h;, Player 1 has to make a
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Figure 6 Gadget h; for the term d; = (I;,1 Alj2 Alj3).

move in these gadgets in her next two turns. In other words, if the fly in the unique gadget h;
whose safety she did not ensure by deleting its adjacent edge is being approached by some
spider within distance 2, this spider will then be able to capture the fly. If this is not the
case, Player 1 can ensure the safety of this final fly in her (3n + 2m + 1)-th turn.

Clearly, this reduction runs in polynomial time. Moreover, since the incidence graph of ¢
is planar, the graph G that we constructed is also planar.

Verifying the correctness of this reduction is straightforward using the intuitions behind
and explanations of the workings of the gadgets g7, g7, ki, k;', f, and h; — that we gave
above — together with the following observations.

The first observation is that for each odd i € [n], Player 1 can decide which of the two
paths, towards the nodes labeled with y; or 7;, are left open for the spider in gadget g?, and
she can base this choice on her choices in the gadgets g?,, for odd 4’ € [i] and Player 2’s
choices in the gadgets g}, for even ' € [i]. Similarly, for each even i € [n], Player 2 can
decide which of the two paths, towards the nodes labeled with y; or ¥;, are taken by the
spider in gadget gy, and she can base this choice on her choices in gadgets giv,7 for even ¢’ € [i
and Player 1’s choices in the gadgets g3, for odd i’ € [i].

The second observation is that whenever a truth assignment satisfies 1, it must satisfy
some term d; of 1. This means that it must satisfy all literals in d;, and thus must make
all their complements false. Therefore, if (and only if) the spiders are on their way towards
the nodes labeled with x; and Z; in such a way that the corresponding truth assignment
satisfies ¢ (and thus satisfies d; for some j € [m]), Player 1 can safely leave the fly in
gadget h; unprotected during her (3n + 1)-th until (3n + 2m)-th turn.

This concludes our proof of PSPACE-hardness. |

» Example 5. Consider the quantified Boolean formula ¢ = Jx;.Vao.Jxs.Vay.[dr V da],
where di = (21 A z2 A x3) and dy = (21 A T2 A 23). The game situation C; = (G, S, F) as
constructed in the proof of Theorem 4 is depicted (schematically) in Figure 7. (Note that the
last universally quantified variable (z4) does not occur in the terms d; and dy — its presence
makes n even.)

» Corollary 6. WINNER DETERMINATION FOR PLAYER 2 for Greedy Spiders ¢s PSPACE-
complete.

Proof. This follows directly from Theorem 4, since PSPACE is closed under complement and
the problems WINNER DETERMINATION FOR PLAYER 1 and WINNER DETERMINATION FOR
PLAYER 2 are complementary. <

6 Metatheorems

For our metatheorems, we consider games that are turn-based two-player games modeled
on graphs. In the unrestricted version, the players alternate turns and every player has
unlimited resources in every turn to calculate her next move. A player is called strategically
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Figure 7 The game situation C1 = (G, S, F)) that is constructed from the quantified Boolean
formula ¢ = Jz1.Voe.Izsz.Vea.[(z1 A z2 A 23) V (21 A T2 A x3)] in the proof of Theorem 4 — see
Example 5. (The nodes that are drawn in this picture between two gadgets are the nodes that
belong to both gadgets, and are identified — e.g., the node drawn between the gadgets g7 and ki is
the node labeled with g1 that appears in both gadgets.)

restricted if she chooses in her first move a deterministic polynomial-time algorithm with a
polynomial-size description, that determines all of her moves on that game instance. The
algorithm is then disclosed to the opposing player. This means that the other player can
then calculate the reaction of her opponent for any possible situation in polynomial time.

We consider the following game mechanics. A game is said to implement defense positions,
if there exist positions which must not be reached by attackers of Player 2. Paths that can
be eliminated or permanently blocked by Player 1 are called destroyable paths. Player 1 has
the ability to destroy one destroyable path in each of her turns, while Player 2, in each of
her turns, moves all of her attackers (towards the defense positions of Player 1) over one
edge each. Player 1 wins the game if there is no path left from any attacker of Player 2 to
any defense position of Player 1. Conversely, Player 2 wins if at least one of her attackers
has reached a defense position of Player 1.

The decision problems WINNER DETERMINATION FOR PLAYER 1 and WINNER DETER-
MINATION FOR PLAYER 2 for games that implement defense positions and destroyable paths
are defined analogously as for the game of Greedy Spiders (see Section 3).

» Metatheorem 7. For a round-based two-player game implementing defense positions and
destroyable paths, the problem WINNER DETERMINATION FOR PLAYER 1 4s:

(1) PSPACE-hard if neither of the players is strategically restricted;

(2) X5-hard, if Player 1 is strategically restricted; and

(3) I5-hard, if Player 2 is strategically restricted.

These hardness results hold even when the game is restricted to planar graphs.

Proof (idea). Statement (1) follows as a corollary from the proof of our hardness result
for Theorem 4. The reduction used in this proof is entirely based on the game mechanics
of defense positions and destroyable paths. We will prove Statement (2) by modifying the
hardness reduction from the proof of Theorem 4 to a reduction from the X5-complete problem
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TQBF5 5 — we will explain this in more detail below. Similarly, we will prove Statement (3)
by modifying the same reduction to a reduction from an appropriate II5-complete variant of
the problem TQBF,, ; — we also work this out in more detail below. All these reductions
also work when restricted to planar graphs. <

Asking the converse question (i.e., whether Player 2 can win) leads to the following
metatheorem.

» Metatheorem 8. For a round-based two-player game implementing defense positions and
destroyable paths, the problem WINNER DETERMINATION FOR PLAYER 2 ¢s:

(1) PSPACE-hard if neither of the players is strategically restricted;

(2) TI5-hard, if Player 1 is strategically restricted; and

(3) Xb-hard, if Player 2 is strategically restricted.

These hardness results hold even when the game is restricted to planar graphs.

Proof. Because the problems WINNER DETERMINATION FOR PLAYER 1 and WINNER
DETERMINATION FOR PLAYER 2 are complementary, these statements follow directly from
Metatheorem 7. <

We now turn to proving Metatheorem 7(2-3).

Proof of Metatheorem 7(2). We describe how the hardness reduction from the proof of
Theorem 4 can be used to form a reduction from TQBF3 5 to WINNER DETERMINATION FOR
PLAYER 1 where Player 1 is strategically restricted. Let ¢ = 3z ... 32, Vop, 41... Vo, 0
be an instance of TQBF5,. Without loss of generality, we may assume that ¢ is in 3DNF
and has a planar incidence graph.

We consider the formula ¢’ = J21Vy; ... 3xn, - 1VYny —13Cn, Y0, +1Yny 41 - - - VER—1TYn—1
V.1, where the variables in Y = {y1,...,Yn,;~1,Yn,+1,- - -, Yn—1} are fresh variables that
do not occur in 1. That is, ¢’ differs from ¢ only in that variables from Y are added
to the quantifier prefix to ensure that existential and universal quantifiers alternate. We
know that ¢ is true if and only if ¢’ is true. Then, because the quantifiers in ¢’ alternate
between existential and universal quantifiers, we can employ the reduction from the proof of
Theorem 4 to construct a game situation C; where Player 1 has a winning strategy if and
only if ¢ is true (which is the case if and only if ¢ is true).

All that remains to show that whenever Player 1 has a winning strategy for C7, she
can — in her first turn — submit an algorithm (whose description is of polynomial size) that
computes the moves of her winning strategy in polynomial time. By construction of the
game instance C', and because the variables y1,...,yn, —1 do not occur in %, we know that
any winning strategy for Player 1 does not depend on Player 2’s moves in the gadgets g?
corresponding to the variables y1,...,yn, —1. Moreover, since the variables yn,11,...,Yn—1
do not occur in 1, Player 1’s optimal strategy in the gadgets g7 corresponding to the
variables ¥, 4+1,...,Yn—1 IS easy to determine. Player 1’s only moves that depend on the
choice of Player 2 in the gadgets g! are Player 1’s moves in the gadgets h;, and Player 1’s
optimal moves in these latter gadgets are easy to determine — these moves correspond to
evaluating 1 once the truth value of each variable is set. Therefore, the optimal moves for
carrying out her winning strategy can be generated by a polynomial-time algorithm that
she can submit at the beginning of the game. Thus, this reduction works for the case where
Player 1 is strategically restricted. |

In order to prove Metatheorem 7(3), we consider a ¥5-complete variant of TQBF5 5.
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» Lemma 9. There is a class of quantified Boolean formulas of the form ¢ = Jx1 ... 3z,

Yy1 ... VY, 321 ... Fze, .0 with the following properties:

(1) TQBYFg 5 restricted to this class of quantified Boolean formulas is Y5 -complete;

(2) each quantified Boolean formula @ in this class has a matriz in SCNF and has a planar
incidence graph; and

(3) for each quantified Boolean formula ¢ = 3y ... 3xe,Yy1 ... Yye, 21 . .. Tz, in this class,
and for each truth assignment o : {x1,..., 2o, Y1, -, Yo, } — {0,1}, it can be decided in
polynomial time (given ¢ and «) if there exists a truth assignment B : {z1,..., 205} —
{0,1} such that Y[aUp] evaluates to true, and such a truth assignment B can be computed
in polynomial time, if it exists.

Proof. We provide a reduction from TQBF5, to TQBF3 3 and show that the class of

quantified Boolean formulas that are produced by this reduction has Properties (1)—(3).

Hardness for 3% for the problem TQBFg 3 restricted to this class of quantified Boolean
formulas follows immediately from this reduction.

Let ¢ be an instance of TQBF5,. Without loss of generality, we may assume that ¢
has a matrix ¥ in 3DNF. We then transform the matrix ) to 3CNF using the standard
Tseitin transformation [18], by adding additional existentially quantified variables at the
end of the quantifier prefix — this will result in an equivalent quantified Boolean formula ¢’
with an “3v3” quantifier prefix. We then transform ¢’ into an equivalent quantified Boolean
formula ¢” with a matrix in 3CNF and a planar incidence graph using the gadgets used in
the proof that 3SAT restricted to planar formulas is NP-hard [14, Theorem 1] — this will add
additional existentially quantified variables at the end of the quantifier prefix.

The reduction clearly results in quantified Boolean formulas that satisfy Property (2). The
resulting formulas also satisfy Property (3). Once the variables from the original quantified
Boolean formula ¢ have been instantiated, only clauses corresponding to the introduced
gadgets in the two-step reduction described above (containing only existentially quantified
variables) remain — finding satisfying truth assignments for these remaining clauses can be
done in polynomial time. This is because both steps in the reduction have the property
that given any satisfying truth assignment « for the matrix of the original formula, one can
compute in polynomial time a truth assignment S such that o U § satisfies the matrix of the

constructed formula — and that both steps of the reduction are reversible in polynomial time.

For the first step of the reduction (where the matrix ¢ is transformed to 3CNF) this is the
case because the introduced clauses form a renamable Horn formula — thus after instantiating
the formula with «, a renamable Horn formula remains, and a satisfying truth assignment
for renamable Horn formulas can be found in polynomial time. For the second step of the
reduction (where the formula is transformed to an equivalent formula that has a planar
incidence graph) this property follows directly from the shape of the gadgets used in the
reduction [14, Theorem 1].

As a result of Property (3), we get membership in X5 for the problem TQBFg 3 restricted
to quantified Boolean formulas produced by the reduction above. Together with X5-hardness,
this gives us Property (1). <

The main idea behind the proof of ¥5-hardness is to apply Tseitin transformations [18]
to inputs of the problem TQBF5,. We denote the problem TQBFj ; restricted to the class
of quantified Boolean formulas identified in Lemma 9 by TQBF§,73. Similarly, we consider
the II5-complete dual problem TQBF@B, that concerns formulas that are equivalent to the
negation of instances of TQBFF ;.
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Proof (sketch) of Metatheorem 7(3). We modify the proof of Theorem 4 to a reduction
from the problem TQBF\’;,& These modifications are entirely analogous to the modifications
in the proof of Metatheorem 7(2). That is, we introduce new variables (not occurring in the
matrix of the quantified Boolean formula) to ensure that existential and universal quantifiers
alternate strictly.

In the resulting game, whenever Player 2 has a winning strategy that corresponds to a
way of assigning the universally quantified variables that makes the remaining formula false
(for any assignment to the existentially quantified variables), the optimal moves for carrying
out this strategy can be generated by a polynomial-time algorithm that she can submit at
the beginning of the game. This is because her only moves that (non-trivially) depend on
the choice of Player 1 in the gadgets g? are her moves in the gadgets g! corresponding to
the variables in the third quantified block and her moves in the gadgets h;, and Player 2’s
optimal moves in these latter gadgets are easy to determine — this is due to Lemma 9(3).
Thus, this reduction works for the case where Player 2 is strategically restricted. |

7 Application of Metatheorems

In this section we describe how to apply our metatheorems to tower-defense games. Games of
this genre can be described as two-player games where the defending Player 1 must prevent
the attackers of Player 2 from reaching designated locations on the playing field. For this
purpose Player 1 can place towers on the field which damage every attacker in their reach.
To place the towers, Player 1 usually has to pay some amount of a currency which is steadily
credited to Player 1 over time. In most tower-defense games Player 1 is played by the user,
while Player 2 is played by the computer. The strategy of Player 2 is fixed per instance, but
differs from instance to instance, so we will apply Metatheorem 7(3).

To apply Metatheorem 7(3), we have to show that all elements of the metatheorem
can be modeled within the game. Defense positions are naturally a part of tower-defense
games, since they all include positions which have to be protected from the attacking enemies.
Destroyable paths are implemented in the following way. A path is said to be destroyed if
no attacker can cross it (and survive). Therefore we can destroy a path by placing a strong
enough tower somewhere on the path to kill every attacker in its reach. The accessible
environment of this tower is regarded as the destroyed path. Every spot on the map where a
tower can be placed represents therefore a destroyable path. While most tower defense-games
are not round-based in a strong sense, we can still model them as round-based. To implement
the game elements, we only have to consider one type of attackers and one type of towers.
Since Player 1 earns coins of a currency every fixed amount of time we can graduate the
time in steps which are as long as it takes Player 1 to earn enough coins to buy one tower
instance. The step range of the attackers of Player 2 is therefore as long as the distance
they can walk in one time step. Thus we can assume the game to be round-based. Since all
criteria of Metatheorem 7(3) can be implemented, this shows that tower-defense games in
general are II)-hard.

In concrete terms, the above described implementation works among others for games
like Bloons Tower Defense 5 [2], Warcraft 3 [1], and Starcraft [5].

8 Conclusion

We showed PSPACE-completeness for the problem of deciding whether Player 1 has a winning
strategy for the game Greedy Spiders, as well as for the problem of deciding whether



R. de Haan and P. Wolf

Player 2 has a winning strategy. Afterwards we generalized the idea of our proof to give
two metatheorems referring to [11, 12, 19], which granulate the computational complexity
of the core element of the game by restricting the computational power of the players. In
particular, we showed that WINNER DETERMINATION FOR PLAYER 1 in a turn-based two-
player game containing defense positions and destroyable paths is in general PSPACE-hard,
becomes Y.5-hard if Player 1 is strategically restricted, and II5-hard if Player 2 is strategically
restricted. The reverse question of WINNER DETERMINATION FOR PLAYER 2 is in general
PSPACE-hard, becomes I15-hard if Player 1 is strategically restricted, and %5-hard if Player 2
is strategically restricted. Finally, we discussed the applicability of our metatheorems on
tower-defense games and mentioned some specific games to which our metatheorems can be
applied.

Finding metatheorems for the computational complexity of computer games has recently
become more and more of a focus. With tower-defense games, we grazed with our metatheo-
rems a previously untouched game genre in terms of computational complexity and provided
new tools to investigate them. As most metatheorems are discovered in the area of platform-
and puzzle-games, they can only be applied to single-player games. Therefore with our
metatheorems, we give new impulses in looking for metatheorems, which describe multiplayer
(specifically two-player) games. To our knowledge, our results are the first hardness results
for the complexity classes X5 and II5 in the field of computational complexity of computer
games.

A possibility for further research in this field is to look at two-player games and restrict
the computational power of one of the players. This approach could also be applied to well
studied board games like Chess, Checkers, or Mill. In general the field of multiplayer strategy
games seems to afford more yet undiscovered metatheorems and should be investigated in
the future. Beside tower-defense games, our metatheorem should also be applicable to other
strategic games, such as war simulations or any game in which one player has the role of a
defender who has to prevent the other player (with the role of an attacker) from reaching
certain locations in the game. Over the last few years, more and more complex and modern
games have been explored, resulting in metatheorems which are applicable to state of the
art games. Since many modern computer games provide scripting languages with whom
the players can modify the game, the games themselves are instantly Turing-complete. We
think that examining restricted versions of these games is still worth a try and can lead to
metatheorems for the essential elements of the games, taking off the focus from the scripting
languages.
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—— Abstract

We initiate a general theory for analyzing the complexity of motion planning of a single robot
through a graph of “gadgets”, each with their own state, set of locations, and allowed traversals
between locations that can depend on and change the state. This type of setup is common
to many robot motion planning hardness proofs. We characterize the complexity for a natural
simple case: each gadget connects up to four locations in a perfect matching (but each direction
can be traversable or not in the current state), has one or two states, every gadget traversal is
immediately undoable, and that gadget locations are connected by an always-traversable forest,
possibly restricted to avoid crossings in the plane. Specifically, we show that any single nontrivial
four-location two-state gadget type is enough for motion planning to become PSPACE-complete,
while any set of simpler gadgets (effectively two-location or one-state) has a polynomial-time
motion planning algorithm. As a sample application, our results show that motion planning
games with “spinners” are PSPACE-complete, establishing a new hard aspect of Zelda: Oracle
of Seasons.
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1 Introduction

Many hardness proofs are based on gadgets — local pieces, each often representing corre-
sponding pieces of the input instance, that combine to form the overall reduction. Garey and
Johnson [7] called gadgets “basic units” and the overall technique “local replacement proofs”.
The search for a hardness reduction usually starts by experimenting with small candidate
gadgets, seeing how they behave, and repeating until amassing a sufficient collection of
gadgets to prove hardness.

This approach leads to a natural question: what gadget sets suffice to prove hardness?
There are many possible answers to this question, depending on the precise meaning of
“gadget” and the style of problem considered. Schaefer [11] characterized the complexity of
all “Boolean constraint satisfiability” gadgets, including easy problems (2SAT, Horn SAT,
dual-Horn SAT, XOR SAT) and hard problems (3SAT, 1-in-3SAT, NAE 3SAT). Constraint
Logic [8] proves sufficiency of small sets of gadgets on directed graphs that always satisfy one
local rule (weighted in-degree at least 2), in many game types (1-player, 2-player, 2-team,
polynomially bounded, unbounded), although the exact minimal sets of required gadgets
remain unknown. Both of these general techniques naturally model “global” moves that can
be made anywhere at any time (while satisfying the constraints). Nonetheless, the techniques
have been successful at proving hardness for problems where moves must be made local to
an agent/robot that traverses the instance.

In this paper, we introduce a general model of gadgets that naturally arises from single-
agent motion planning problems, where a single agent/robot traverses a given environment
from a given start location to a given goal location. Our model is motivated by the plethora
of existing hardness proofs for such problems, such as Push-1, Push-x, PushPush, and
Push-X [3]; Push-2-F [5]; Push-1 Pull-1 [4,9]; as well as several Nintendo video games studied
at recent FUN conferences [1, 6].

1.1 Gadget model

In general, we model a gadget as consisting of one or more locations (entrances/exits) and one
or more states. (In this paper, we will focus on gadgets with at most two states.) Each state
s of the gadget defines a labeled directed graph on the locations, where a directed edge (a, b)
with label s’ means that the robot can enter the gadget at location a and exit at location b,
and that such a traversal forcibly changes the state of the gadget to s’. Equivalently, a gadget
is specified by its state space, a directed graph whose vertices are state/location pairs, where
a directed edge from (s,a) to (s',b) represents that the robot can traverse the gadget from a
to b if it is in state s, and that such traversal will change the gadget’s state to s’. Gadgets
are local in the sense that traversing a gadget does not change the state of any other gadgets.

A system of gadgets consists of gadgets, their initial states, and connections between
disjoint pairs of locations (forming a matching). If two locations a, b of two gadgets (or the
same gadget) are connected, then the robot can traverse freely between a and b (outside the
gadgets). (Equivalently, we can think of locations a and b as being identified.) These are
all the ways that the robot can move: exterior to gadgets using connections, and traversing
gadgets according to their current states. In a puzzle, we are given a system of gadgets, the
robot starts at a specified start location, and we want to find a sequence of moves that brings
the robot to a specified goal location. The main problem we consider here is the obvious
decision problem: is the given puzzle solvable?

One type of gadget we always allow in this paper is the branching hallway gadget,
which has one state and three locations, and always allows traversal between all pairs of
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Figure 1 Branching hallway gadget.

locations; see Figure 1. In other words, upon reaching such a gadget, the robot is free to
choose and move to any of the three locations. Connecting together multiple branching
hallways allows us to effectively connect the other gadgets’ locations according to an arbitrary
forest (as described in the abstract).

All other gadgets we consider in this paper are “deterministic” and “reversible”. A gadget
is deterministic if its state space has maximum out-degree < 1, i.e., a robot entering the
gadget at some location a in some state s (if possible) can exit at only one location b and
one new state s’. A gadget is reversible if its state space has the reverse of every edge, i.e., it
is the bidirectional version of an undirected graph. Thus a robot can immediately undo any
gadget traversal.® Together, determinism and reversibility are equivalent to requiring that
the state space is the bidirectional version of a matching.

Other than the (one-state) branching hallway, we further require that the states of a
gadget differ only in their orientations of the possible traversals. More precisely, a k-tunnel
gadget has 2k locations, paired in a perfect matching whose pairs are called tunnels, such
that each state defines which direction or directions each tunnel can be traversed.

We also consider planar systems of gadgets, where the gadgets and connections are drawn
in the plane without crossings. Planar gadgets are drawn as small regions (say, disks) with
their locations as points in a fixed clockwise order along their boundary. A single gadget type
thus corresponds to multiple planar gadget types, depending on the choice of the clockwise
order of locations. Connections are drawn as paths connecting the points corresponding to
the endpoint locations, without crossing gadget interiors or other connections.

1.2 Our results

We characterize the computational complexity of deciding puzzle solvability when the allowed
gadgets consist of the branching hallway and any number of deterministic reversible < 2-state
k-tunnel gadgets, for any k. Specifically, if there is at least one gadget type that is not
equivalent to a 1-state or 1-tunnel gadget, then the problem is PSPACE-complete; and
otherwise, the problem is in P. The same characterization holds for planar systems of gadgets;
thus, in applications, we do not have to worry about building a crossover gadget (which is
often the most difficult).

In Section 3, we sketch our proof from [4] that motion planning with two-toggle-locks
and crossovers is PSPACE-complete. In Section 4, we prove that one particular gadget,
the antiparallel two-toggle, can simulate a variety of other gadgets, eventually including a

3 This notion is different than the sense of “reversible” in reversible computing, which would mean that
we could derive which move to undo from the current state.
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two-toggle-lock and a crossover. As a consequence, motion planning with the antiparallel
two-toggle is PSPACE-complete. In Section 5, we show that all nontrivial deterministic
reversible 2-state, 2-tunnel gadgets can simulate the antiparallel two-toggle. As a consequence,
each corresponding motion planning problem is PSPACE-complete. In Section 7, we extend
these results to give a precise hardness characterization for the motion planning problem
with each deterministic reversible 2-state k-tunnel gadget.

We also partially characterize the computational complexity of deterministic reversible
< 2-state gadgets with three locations. In particular, we study spinners and deterministic
forks, as described in Section 6.

We hope that our approach will be useful for establishing hardness of many real-world
motion planning problems and puzzles. As a sample application, our results allow us to
establish a new PSPACE-hard aspect of the Nintendo video game Zelda: Oracle of Seasons
(which features spinners) Section 6.

2 Gadget Basics

To categorize the possible deterministic reversible 2-state 2-tunnel gadget types, we first
categorize the possible tunnel types in such a gadget. A tunnel is trivial if it is either never
traversable or always traversable. A trivial tunnel can always be split into a separate 1-state
1-tunnel gadget, so we can ignore them. What remain are three possible nontrivial tunnel

types:

—Ff——— Tripwire A tunnel that can always be traversed in either direction,
but traversing it switches the gadget’s state.

Cg Lock In the unlocked state (shown above), the tunnel can be
traversed in either direction; in the locked state (shown
below), the tunnel cannot be traversed in either direction.

— > Toggle A tunnel that can always be traversed in a single direction,
where the direction differs in the two states of the gadget.
The state is switched when the gadget is traversed.

There are six ways to combine these tunnel types into pairs. Two combinations, Lock—Lock
and Tripwire—Tripwire, are trivial combinations equivalent to one-state gadgets in which
each tunnel is either always traversable in both directions or never traversable. Thus we
restrict our attention to the four other combinations, listed below. Because we are interested
in planar systems, we consider the multiple planar gadgets for each nontrivial combination.
(We do, however, treat a gadget and its reflection as equivalent.) As a result, there are nine
different nontrivial two-tunnel two-state gadgets, abbreviated and listed below. The bulk of
our paper focuses on the six gadgets shown in Figure 2, which omits most crossing variants.

1. Tripwire—Lock: Traversing the tripwire makes the other tunnel flip between being
passable and impassable, causing it to ‘lock’ or ‘unlock’. There are crossing and non-
crossing varieties, abbreviated CWL (crossing wire lock) and NWL (non-crossing wire
lock).

2. Toggle—Lock: Traversing the toggle flips the lock tunnel between being passable and
impassable. Crossing the lock tunnel, by definition, does not change the state of the
gadget. Notice that one direction of the toggle corresponds to an open lock and the other
direction to the closed lock. There are crossing and non-crossing varieties, abbreviated
CTL (crossing toggle lock) and NTL (non-crossing toggle lock).
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Figure 2 Six of the nine deterministic reversible 2-state gadgets on two tunnels. We leave out
the CWL, CTL, and CWT gadgets as they are not heavily used in the paper.

3. Tripwire—Toggle: Here traversing either the tripwire or the toggle flips the direction of
the toggle. There are crossing and non-crossing varieties, abbreviated CWT (crossing
wire toggle) and NWT (non-crossing wire toggle).

4. Toggle—Toggle: Also known as a 2-toggle [4]. Traversing either toggle flips the direction
of both of them. This is the only case where there are two directed tunnels, leading
to three possibilities: crossing, parallel, and anti-parallel. They are abbreviated C2T
(crossing 2-toggle), P2T (parallel 2-toggle), and AP2T (anti-parallel 2-toggle).

In this paper we will often need to discuss putting gadgets together to create new behavior.

We will do so by creating a system of gadgets that is “equivalent” to some target gadget,
thereby “simulating” that gadget. Two systems of gadgets are equivalent if there is a bijective
correspondence between their locations and a correspondence between their states such
that the allowed transitions for all (locations, state) pairs are the same under these two
correspondences. We will say that a gadget or set of gadgets simulates a target gadget if it is
possible to combine gadgets from the set (possibly using duplicates) such that the resulting
system is equivalent to the target gadget. We will always implicitly allow the use of the
branching hallway gadget in these constructions. In all cases, these constructions will be
planar.

2.1 Closure Properties

» Lemma 2.1. Any system of gadgets composed of two reversible gadgets is reversible.

Proof. Consider any transition through the system formed by composing two reversible

gadgets. This transitions is a walk through the gadgets and connections that form a system.

Since both gadgets are reversible, it is possible for the robot to enact the exact reverse of
this walk after the walk is done. This will exactly reverse the effect of the walk within each
gadget. Thus, it is possible to reverse the entire transition.

Since every transition of the system can be reversed, the system is reversible. |

Since all of the gadgets we consider in this paper are reversible, Lemma 2.1 means our
systems will all be reversible as well.

» Lemma 2.2. Any system of gadgets composed of two deterministic reversible gadgets is
deterministic and reversible.

Proof. The state space of a reversible, deterministic gadget is an undirected matching of
some (state, location) pairs to each other. This a necessary and sufficient characterization of
reversible, deterministic gadgets.

When we compose two such gadgets, we create paths through the pair of gadgets. However,
no (state, location) pair has more than two edges: One connection to the other gadget, and
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one edge through its original gadget. Moreover, any (state, location) pair that forms an
external location has a most one edge, as it does not connect to the other gadget. As a
consequence, the path from any external location through the gadget is either a deterministic
path to another external location, or a dead end. There is no branching, as branching would
require a location with three edges.

Thus, the resultant object is deterministic. By Lemma 2.1 it is reversible as well. |

2.2 PSPACE Membership
» Lemma 2.3. Deciding puzzle solvability is in PSPACE.

Proof. The entire state of the system can be described by the current state of the gadgets
and the location of the agent. The gadgets have a polynomial number of states and there
can only be a polynomial number of gadgets. Since the entire state of the board fits in a
polynomial amount of space, we can non-deterministically search for a solution, showing
containment in NPSPACE. Savich’s Theorem [10] gives PSPACE = NPSPACE. <

3 2-toggle-lock and crossover motion planning is PSPACE-complete

In [4] we showed that motion planning with 4-toggles and crossovers is PSPACE-complete.
In that construction, the crucial gadget turned out to be a 2-toggle-lock, which is a 3-tunnel,
2-state gadget with two locks and a tunnel. The 4-toggle was not used in any way after the
construction of the 2-toggle-lock, showing that 2-toggle-locks and crossovers are PSPACE-
hard. For convenience we sketch the proof, with some refinement. One should refer to the
prior paper for a more detailed and rigorous proof.

» Definition 3.1. 3QSAT is the following decision problem. Given a fully quantified boolean
formula in prenex normal form and in conjunctive normal form with no more than three
variables per clause, decide whether the formula is true.

» Theorem 3.2. Motion planning with 2-toggle-locks and crossovers is PSPACE-hard.

We reduce from 3QSAT to motion-planning with 2-toggle-locks and crossovers. To do so we
need to construct clauses, universal variables, and existential variables. Literals will consist
of a 2-toggle-lock which will be set from the 2-toggle side and checked by passing through the
lock. Clauses are composed of a branching hallway that leads through each of its associated
literals.

Existential variables will be a branching hall with a group of toggle-locks in series. Passing
through in one direction opens the locks of the gadgets representing true literals of that
variable while closing the locks of the false ones. Going through the other way allows this to
be undone, as the system is reversible.

To construct universal quantifiers we connect up the 2-toggle sections as in Figure 3,
where each universal gadget consists of several antiparallel 2-toggles with locks. Each of these
gadgets sends the robot forward in one state or back to the beginning in the other state, and
flips the state. Repeatedly entering from the left iterates through all configurations of the
states, so the robot must check all of the possible values for the universal variables. The goal
state lies at the far end of the eries of universal gadgets.

For both the existentials and the universals, the variables are actually a long series of
2-toggle-locks with one lock for each literal of the variable in the formula.

When putting this all together, as in Figure 3, we need to ensure that the robot cannot
sneak back into the variable gadget and change existential settings it shouldn’t be allowed
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Figure 3 Structure of the QSAT reduction.

to access, namely those existentials beyond the universal it just emerged from. To do this
we construct a simple system that puts a lock on the return pathway at the end of each
universal variable which only allows passage if the prior variable is set to false. Since the
robot will have just exited from a variable which was set to true, this prevents the robot
from moving forward in the variable chain. In addition, all earlier variables are false allowing
the robot to travel back to the formula, since the universal gadgets take on incrementing
binary values with each loop through the gadget. Since those existential variables are ones
the robot was allowed to set to any value on the prior passage, going back and changing
them now gives no advantage over having set them to that value earlier.

This safeguard is the one difference from the prior construction, which checked the values
of all prior universal variables, requiring a quadratic blow-up in number of gadgets. The need
for crossovers and a 2D layout will still create a quadratic blowup in problem size overall,
but this simplification seemed worth noting and should allow for the 3D result to cause only
a linear blowup in problem size.

With this guard in place, the robot can only reach the goal state by demonstrating a
solution to the 3QSAT instance, after iterating through all settings of the universal gadget. <«

4  Antiparallel 2-toggle motion planning is PSPACE-complete

We will show that the question of whether a robot in a system of antiparallel 2-toggle gadgets
can reach a specified goal location is PSPACE-complete. To do so, we will simulate various
other gadgets using AP2T gadgets, eventually simulating 2-toggle-locks and crossovers. Since
motion planning with 2-toggle-locks and crossovers is PSPACE-complete, this implies that
AP2T motion planning is PSPACE-complete.

» Theorem 4.1. Motion Planning with AP2T gadgets is PSPACE-complete.

We will simulate the gadgets needed for the PSPACE-completeness proof, and a wide
variety of other intermediate gadgets to help us get there. The steps are as follows:
1. Simulate a C2T, using AP2Ts. Lemma 4.2.
2. Simulate a P2T, using C2Ts. Lemma 4.3.
3. Simulate a NTL, using AP2Ts, C2Ts and P2Ts. Lemma 4.4.
4. Simulate various types of 2-toggle locks, with “round” and “stacked” internal connections.
The types of internal connections are described in Section 4.1, and the constructions are
given in Lemmas 4.6 and 4.7.
Simulate a NWL, using the stacked antiparallel 2-toggle lock. Lemma 4.8.
Simulate a stacked tripwire-lock-tripwire, using NWLs. Lemma 4.9
7. Simulate a crossover, using stacked tripwire-lock-tripwires. Lemma 4.10

S

18:7

FUN 2018



18:8

Computational Complexity of Motion Planning of a Robot through Simple Gadgets

Figure 4 Anti-parallel 2-toggles simulate a crossing 2-toggle.

Figure 5 Crossing 2-toggles simulate a parallel 2-toggle.

With a 2-toggle lock and a crossover constructed, we can apply Theorem 3.2 to show
that motion planning with AP2Ts is PSPACE-hard. Adding in Lemma 2.3, we find that it is
PSPACE-complete.

» Lemma 4.2. Antiparallel 2-toggles (AP2Ts) simulate a crossing 2-toggle (C2T).

Proof. The construction is given in Figure 4. In the state of the construction shown in the
figure, there are two possible transitions: the robot can move from the upper left to the
bottom right of the construction, or from the upper right to the bottom left. Either of those
transitions toggles both AP2Ts, leaving the construction mirrored top to bottom. Thus, the
construction has two states. The possible traversals in one state (as shown above) are from
the top left to the bottom right and from the top right to the bottom left, while the possible
traversals in the other state are (by symmetry) from the bottom left to the top right and
from the bottom right to the top left. Following any of these traversals swaps the state of
the construction. Notice that this is exactly the behavior of a C2T.

If the robot enters the construction shown from the upper left, upon reaching the center
the robot can only proceed to the bottom right, or come back the way it came. Therefore, the
upper left to bottom right transition is the only possible transition from that location. By
symmetry, the same is true from top left to bottom right. Thus, the one traversal described
for each location in each state is the only one possible. <

» Lemma 4.3. Crossing 2-toggles (C2Ts) simulate a parallel 2-toggle (P2T).

Proof. The construction is given in Figure 5. In the state of the construction shown in
the figure, there are two possible transitions: the robot can move from the top left to the
top right of the construction, or from the bottom left to the bottom right. Either of these
transitions toggles both C2Ts, leaving the construction mirrored left to right. The allowed
traversals in one state (as shown above) are from the top left to the top right and from
the bottom left to the bottom right, while the allowed traversals in the other state are (by
symmetry) from the top right to the top left and from the bottom right to the bottom left.
Following any of these traversals swaps the state of the construction. Notice that this is
exactly the behavior of a P2T.

Since the system is composed entirely of C2Ts (without even branching hallways), which
are both reversible and deterministic, the result is also both reversible and deterministic, by
Lemma 2.2. Thus, the one transition described for each location in each state is the only
transition possible. <
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Figure 6 2-toggles simulate 1-toggle-lock.

» Lemma 4.4. 2-toggles (AP2Ts, P2Ts and C2Ts) simulate a noncrossing toggle lock (NTL).

Proof. The construction is shown in Figure 6.

In this lemma, we will refer to toggles 1 and 2 in the figure as the “outer toggles”, toggles
3 and 4 as the “middle toggles”, and toggles 5 and 6 as the “bottom toggles”. We will call
the pathway through the lower tunnels of the bottom toggles the “bottom tunnel” of the
overall gadget, and the rest of the gadget the “middle tunnel” of the overall gadget.

An NTL has two externally observable states: locked, and unlocked. The locked state
corresponds to the upper tunnels of the bottom toggles oriented out, and the unlocked state
corresponds to the bottom toggles oriented in. The unlocked state is shown in Figure 6.

In this gadget, there are two internal states corresponding to each external state: with

the horizontal tunnels of the middle toggles both oriented left, and with both oriented right.

The only accessible states of this gadget are the states with the outer toggles oriented in, the
middle toggles oriented both left or both right, and upper pathways of the bottom toggles
oriented both in or both out. We will show that the gadget allows exactly the traversals of
the NTL from these configurations, and cannot be left in any other configuration.
The bottom tunnel traversals are straightforward — the bottom tunnel acts as a toggle,
and a traversal flips both bottom toggles, and hence the externally observable state.
Also clearly, the robot cannot move between the bottom tunnel and the middle tunnel.
Now, we wish to establish that in the unlocked state, the robot can always traverse the
middle tunnel in either direction. In the state shown, the middle tunnel may be traversed
from external location to external location as follows:
The robot can get across, left to right, by traversing the following toggles in the following
order: enter through toggle 1’s lower tunnel, down to toggle 5, up to toggle 4’s vertical
tunnel, through toggle 1’s upper tunnel, around the top to toggle 2’s top tunnel, back
down through toggle 4, back out through toggle 5, across through toggle 3’s horizontal
tunnel, then through toggle 4’s horizontal tunnel, then out through toggle 2’s lower
tunnel.
The robot can get across, right to left, by traversing the following toggles in the following
order: enter through toggle 2’s lower tunnel, down to toggle 6, up to toggle 4’s vertical
tunnel, through toggle 2’s top tunnel, around to toggle 1’s top tunnel, down through
toggle 3’s vertical tunnel, back out through toggle 6, across through toggle 4’s horizontal
tunnel, then through toggle 3’s horizontal tunnel, then out through toggle 1’s lower
tunnel.
If the middle toggles are in the opposite orientation, the system is simply mirrored, left
to right, and the traversals are still possible.
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Next, we wish to establish that the robot cannot cross the middle tunnel in the locked
state. After entering from either middle tunnel location, the only traversable toggles are the
middle toggles. After traversing those, the robot can go no further. The bottom toggles
can’t be traversed, so the entire middle region is inaccessible. As a consequence, the opposite
outer toggle’s upper pathway can’t be accessed. Therefore the robot can only leave via its
original location.

We also must establish that if the gadget starts in one of the configurations mentioned,
the robot must leave it in the proper state, and can’t leave it in a configuration that wasn’t
mentioned. This is straightforward for the bottom tunnel, so we will focus on the middle
two locations.

We will show that the accessible configurations of the gadget are exactly as described.
To do so, we will make use of the concept of a cut in a gadget.

» Lemma 4.5. Let A be a connected region of a planar embedding of a gadget system which
does not contain any locations. Then the boundary of A, which we will call a cut, is traversed
an even number of times during any traversal of the construction.

Proof. Whenever the boundary of A is crossed, the robot goes from inside A to outside or
vice versa. Since the robot starts a traversal outside A and ends it outside A, it must cross
the boundary an even number of times. <

The upper pathways of the outer toggles form a cut, and the lower pathways of the outer
toggles form a cut. Thus, the upper pathways of the outer toggles are crossed an even number
of times, and the lower pathways are passed an even number of times, so the outer toggles
must be passed an even number of times in total. Thus, the toggles must either be both
oriented in or both out when leaving. However, when leaving the gadget, the outer toggle
which the robot exited through must end up oriented in, so both outer toggles must end up
oriented in.

The vertical pathways of the middle toggles form a cut. The horizontal pathways form a
cut. Thus, upon leaving, the middle toggles must have been traversed an even number of
times in total, and hence must end up both left or both right.

The upper pathways of the bottom toggles must be passed an even number of times. So
the upper pathways of those toggles must either be both in or both out when leaving the
gadget system.

Thus, the gadget system must be left in a state where the outer toggles are oriented in,
the middle toggles are oriented either both left or both right, and the upper pathways of
the bottom toggles are oriented either both in or both out. Therefore, these are exactly the
accessible configurations, as desired.

Finally, we show that the robot leaves the gadget in the same state it was entered in,
if it is entered on the middle tunnel. If the robot passes through one of the upper tunnels
of the bottom toggles, when it leaves the region bounded by the bottom toggles’ upper
tunnels, it must leave one of the bottom toggle’s upper tunnels oriented in. By the parity
constraint, both bottom toggles’ upper tunnels will be oriented in, thus leaving the gadget in
the unlocked state. If the central tunnels are entered in the unlocked state, they will be left
in the unlocked state. In the locked state, the upper tunnels of the bottom toggles cannot be
passed, and so the gadget will be left in the locked state.

Thus, the construction correctly simulates a NTL. <
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Figure 7 Round antiparallel 2-toggle-lock construction.

4.1 2-toggles and non-crossing toggle locks simulate 2-toggle locks

We introduce some new three tunnel objects. There are several distinct planar topologies of
the tunnels in a three tunnel object. We will focus on the two topologies which can be drawn
with no internal crossing tunnels: three tunnels around the perimeter, and three tunnels in
parallel. We will call the former a “round” topology, and the latter a “stacked” topology.
Note that in the stacked topology, the order of the tunnels is relevant. In either topology, if
there are multiple toggles, the relative orientation must still be specified.

» Lemma 4.6. 2-toggles and noncrossing toggle locks simulate a round antiparallel 2-toggle-
lock (RAP2TL) and a round parallel 2-toggle-lock (RP2TL).

Proof. The construction shown in Figure 7 simulates the behavior of a round antiparallel 2-
toggle-lock. It has two externally accessible states: as shown, and with the middle two gadgets
flipped. These correspond to the 2-toggle of the RAP2TL being pointed counterclockwise
and clockwise respectively.

We will demonstrate that this gadget is equivalent to a RAP2TL by examining all possible
traversals. From the two locations that are on the lock tunnel of the NTL, the only possible
traversals are to each other, if the lock tunnel is unlocked. This forms the lock tunnel of the
RAP2TL.

Traversals from the top left location: The robot must go down and to the right, due to
the orientation of the toggle of the NTL. Then, the robot can go through the C2T, at which
point it is blocked by the orientation of the bottom P2T. Thus, no traversal is possible from
this location in this state.

Traversals from the top right location: The robot can go through the C2T, then through
the NTL. At this point, the robot cannot go through the C2T again, because the C2T has
been toggled. Therefore, its only option is to go through the upper P2T and leave at the
top left location. This traversal toggles both of the middle two gadgets, and toggles the
upper P2T twice. Thus, the external state of the gadget is flipped. This is the equivalent of
traversing the upper toggle of the RAP2TL that we are simulating.

Traversals from the bottom left location: The robot must go up and to the left, due to
the orientation of the C2T. Then, the robot can go through the NTL. Due to the orientation
of the upper P2T, the robot must now go through the C2T. Now, the robot can leave at the
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Figure 8 A round parallel 2-toggle lock Figure 9 A noncrossing tripwire lock con-
is used to construct a stacked antiparallel structed from an anti-parallel 2-toggle and
2-toggle lock. lock with the lock on the side.

bottom right location. This traversal toggles both of the middle two gadgets, and toggles
the lower P2T twice. Thus, the external state of the gadget is flipped. This is the equivalent
of traversing the lower toggle of the RAP2TL that we are simulating.

Traversals from the bottom right location: The robot is blocked by the orientation of the
C2T. Thus, no traversal is possible from this location in this state.

The opposite state is equivalent to a top-bottom mirror reversal, except for a change
in the state of the lock, which does not affect which traversals are possible. Thus, in every
state, this system of gadgets is equivalent to a round antiparallel two-toggle-lock (RAP2TL).

Consider the gadget which is the same as the one in Figure 7, except that the bottom P2T
is replaced with a C2T with its toggles allowing traversals from the bottom locations into
the gadget. Clearly, the effect of this change is to swap the roles of the bottom two locations.
As a result, this new construction is a round parallel two-toggle-lock, a RP2TL. |

» Lemma 4.7. RP2TLs and 2Ts simulate a stacked antiparallel 2-toggle-lock (SAP2TL).

Proof. A SAP2TL is a three tunnel gadget where the three tunnels cross the gadget in
parallel, with the two antiparallel toggle tunnels next to each other.

Starting with a RP2TL and two C2Ts, we can simulate a SAP2TL as shown in Figure 8.
The lock tunnel is straightforward. The two other traversals are from the top left to the
bottom left, and from the bottom right to the top right. Both of these traversals pass through
every gadget. In the other state, all three gadgets are flipped, and the same traversals are
possible in the opposite direction.

Since every state-affecting traversal traverses all gadgets, the states of the three gadgets
always switch together, and the behavior is that of an SAP2TL. Equivalently, by Lemma 2.2,
the system of gadgets is deterministic and reversible, so the three traversals mentioned are
the only ones possible, and the construction simulates a SAP2TL. <

4.2 2-toggle locks simulate non-crossing wire locks

» Lemma 4.8. AP2TLS simulates a NWL.

Proof. By connecting the locations of the SAP2TL as shown in Figure 9, we can simulate a
NWL.

Each traversal of either connected toggle tunnel flips the state. The connections between
these two tunnels ensure that travel in either direction is always possible. As a result, the
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Figure 10 A stacked tripwire-lock-tripwire Figure 11 A crossover constructed from

constructed from non-crossing tripwire locks.  stacked tripwire-lock-tripwires.

combination of these connected pathways acts as a tripwire, always allowing the robot to
pass in either direction and opening or closing the lock with each traversal. |

4.3 Non-crossing wire locks simulate crossovers

On our way to simulating a crossover, we will simulate another three tunnel gadget, a stacked
tripwire-lock-tripwire (SWLW). Note that the lock tunnel is specifically the center tunnel.

» Lemma 4.9. NWLs simulate a stacked tripwire-lock-tripwire (SWLW).

Proof. The construction is shown in Figure 10. There are four accessible states of this
gadget, which are any of the states where there is one locked and one unlocked NWL among
the two top NWLs, and one of each among the two bottom NWLs.

The states can only be changed by traversing the tripwire tunnels, and doing so flips
both NWLs on the side traversed, maintaining the invariant.

If both left NWLs are locked, or both right NWLs are locked, the center tunnel is not
passable. In the other two accessible states, the center tunnel is passable. The two pairs
correspond to the two external states, with the lock locked and unlocked respectively. In any
state, traversing either tripwire moves the gadget to a state with the opposite passability of
the lock tunnel. Thus, this construction simulates a SWLW. |

» Lemma 4.10. SWLWs simulate a crossover.

Proof. The gadget shown in Figure 11 implements a crossover. The robot may always cross

from left to right, right to left, top to bottom and bottom to top, but in no other directions.

There is a single accessible state, the one with all four SWLWs in the unlocked state.
When the robot enters from any of the four external locations it has only a single option
up until the point where it reaches the four-way intersection at the center. Upon reaching

this point, the robot has traversed the tripwire tunnels of two of the SWLWs, locking them.
In particular, the SWLWSs whose lock tunnels are on the two orthogonal pathways are locked.

For instance, if the robot entered from the top, the left and right pathway’s SWLWs would
be locked at this point. As a result, the only way for the robot to continue is to go straight,
passing through the other tripwires of the same two SWLWs, and emerging from the other
side. The robot has completed a crossover traversal, with no other options.

Because the robot passed through the tripwires of two SWLWs twice, and only the lock
tunnels of the other two SWLWs, the object is left in its original state, making the state shown
in Figure 11 the only accessible state. This construction correctly simulates a crossover. <«

For the PSPACE-completeness result, we make use of 2-toggle locks and crossovers.

Combining the lemmas in Section 4, we have the result we will make use of:
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» Theorem 4.11. AP2Ts simulate crossovers and all 2-toggle-locks.

Proof. By composing the lemmas in Section 4, we see that AP2Ts simulate crossovers and
RAP2TLs. By using the crossover to effectively rearrange locations, we can simulate an
arbitrary 2-toggle-lock. <

5 Everything simulates everything else

The remaining gadgets of interest are each individually (when combined with branching
hallways) sufficient to make motion planning problems PSPACE-complete. Moreover, each
gadget can be simulated by a constant number of each other gadget. To prove this, we give
simple gadgets to show how to construct noncrossing-tripwire-toggles from anti-parallel-2-
toggles, and anti-parallel 2-toggles from each of noncrossing-toggle-locks, noncrossing-wire-
locks, noncrossing-wire-toggles and parallel-2-toggles. We then show that a crossing version
of a gadget can very simply make a non-crossing version of the same gadget.

» Theorem 5.1. The 2-toggles, toggle-locks, tripwire-locks and tripwire-toggles, in all orien-
tations, can each simulate each other.

Proof. We have already established that AP2Ts can simulate P2Ts, C2Ts, NTLs and NWLs
and crossovers. We will establish that:

AP2Ts can simulate NWTs. Lemma 5.3.

P2Ts, NTLs, NWTs and NWLs can each simulate AP2Ts. Lemmas 5.4, 5.5, 5.6, 5.7,

respectively.

C2Ts can simulate P2Ts by Lemma 4.3, and hence AP2Ts as well.

CTLs can simulate NTLs, CWLs can simulate NWLs, and CWTs can simulate NWTs.

Lemma 5.8.
Thus, every gadget can simulate AP2Ts, and AP2Ts can simulate every non-crossing gadget,
as well as crossovers. By combining non-crossing gadgets with crossovers, AP2Ts can simulate
every gadget. This gives a simulation of every gadget by every other gadget, via AP2Ts as
an intermediate step. |

» Corollary 5.2. Motion planning with any one of the gadgets in Theorem 5.1 (and branching
hallways) is PSPACE-complete.

Proof. Corollary 5.2 follows from Theorem 5.1, which establishes that each gadget can
simulate a AP2T, and Theorem 4.1, which establishes that motion planning with AP2Ts is
PSPACE-complete. |

» Lemma 5.3. AP2T5s simulate an NWT.

Proof. We will construct a NW'T as shown in Figure 12. This requires NWLs, crossovers,
and 1-toggles. We already have existing constructions of NWLs and crossovers with AP2Ts.
We can also build a 1-toggle with an AP2T simply by ignoring one of the two tunnels. Thus,
all that’s left is to show that the construction successfully simulates a NWT.

There are four accessible states: As shown in Figure 12, with all of the NWLs flipped, with
the toggle flipped, and with everything flipped. The first and last correspond to the external
state where the toggle is pointed right, while the other two correspond to the external state
where the toggle is pointed right. The horizontal tunnel corresponds to the toggle, while the
U-shaped tunnel corresponds to the tripwire in the composed gadget. In the state shown in
the figure, the toggle is oriented to the right from the external perspective.
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Figure 12 A noncrossing wire toggle constructed from a toggle, four noncrossing tripwire locks,
and two crossovers.

Figure 13 Parallel 2-toggles simulate anti-parallel 2-toggles.

Clearly, traversing the U-shaped tunnel will flip all of the tripwires of the NWL, resulting
in a state which corresponds to the opposite external state, as desired.
In the state shown in the figure, the horizontal tunnel may be traversed from left to right

along a unique pathway due to the placement of the locks, flipping the toggle along the way.

The orientation of the toggle blocks the right to left traversal. Thus, in this state, the upper
tunnel may be traversed in one direction resulting in an allowed state which corresponds to
the opposite external state, as desired.

Placing the toggle in the opposite state is equivalent to a rotation by 7 of the upper
tunnel, showing this state also correctly simulates an NWT.

Flipping the states of all of the NWLs is equivalent to a vertical reflection of the upper
tunnel, showing this state also correctly simulates an NWT. |

» Lemma 5.4. P2Ts simulate an AP2T.

Proof. Figure 13 gives a construction of an antiparallel-2-toggle out of parallel-2-toggles.

There are two accessible states: As shown, and with the four inner P2Ts flipped. The
former corresponds to the AP2T having a tunnel connecting the left two locations with its
toggle oriented upward, and a tunnel connecting the right locations with its toggle oriented
downward, while the latter corresponds to the two toggles flipped.
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Figure 14 Noncrossing-toggle-lock simulates anti-parallel-2-toggle.

First, let us examine the bottom right location in the state shown in the figure. After
passing the rightmost P2T, the robot is blocked. No transitions or state changes are possible.
This matches the desired behavior, because the right toggle in the AP2T being simulated is
oriented down.

Next, let us examine the top right location in the state shown in Figure 13. After passing
the rightmost P2T, then the upper right P2T, the robot may now either proceed along the
top tunnel, or down to the central loop. In the former case, the robot may pass through the
upper left P2T, but then is blocked. In the later case, the robot may either proceed around
the loop to the left or to the right. If the robot goes to the right, it can pass through the
lower tunnel of the upper right P2T, but then is stuck. If the robot goes to the left, it can
pass through the lower tunnel of the upper left P2T, then the upper tunnel of the lower left
P2T.

At this point, the robot may either continue around the loop, or exit the loop downward.
If the robot continues around the loop, it can pass through the upper tunnel of the lower
right P2T, but then is stuck. If it exits the loop, it can either go left or right on the bottom
tunnel. If it goes left, it can pass through the lower tunnel of the lower left P2T, but then is
stuck. If it goes right, it can pass through the lower tunnel of the lower right P2T, then the
lower tunnel of the rightmost P2T, and exit the gadget.

Overall, we observe that the robot can make exactly one transition, from top right to
bottom right. The right toggle is traversed twice, and the inner toggles are all traversed
once, leaving the gadget in the other accessible state. No other transition or state change is
possible, from that entrance.

Since the gadget is rotationally symmetric about its center, the possible transitions from
the right mirror the possible transitions from the left. Since the other state is simply the state
shown in the figure mirrored top-to-bottom, the transitions described mirror the transitions
in the other state as well. |

» Lemma 5.5. NTLs simulate an AP2T.

Proof. The construction is shown in Figure 14. The two accessible states are the state shown
in the figure and the state with all of the NTLs flipped, but the one-toggles still oriented
inward. These correspond to an AP2T with the top tunnel directed left and bottom tunnel
directed right, and the left-right mirror image.

If the robot enters from the top right, after passing the lock of the top right NTL, it
must pass the upper one-toggle and proceed into the central loop. Since the lower toggle is
directed upward, the robot must eventually leave the central loop via the upper toggle. The
robot may now proceed around the loop. The loop may only be traversed counterclockwise,
and it may only be traversed once. The robot may of course backtrack at any point, but
when it leaves via the upper toggle, it must have either traversed the loop zero or one times.
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Figure 15 Noncrossing-wire-toggle simulates anti-parallel-2-toggle.

In the former case, the robot must leave via the top right location, leaving the system in
its original state. In the latter case, the robot must leave via the top left location, as all of
the locks have flipped. Thus, the top tunnel may be traversed via a right to left traversal,
flipping the state, and that is the only traversal in that direction.

If the robot enters from the top left, it is immediately blocked by the lock, and no traversal
is possible. Thus, the top tunnel works as desired.

Since the gadget possesses rotational symmetry around its center, the bottom tunnel is
exactly the same, allowing only a left to right traversal, flipping the state.

The opposite state is the same as the original state except for a left-right right mirror
reversal, so it also functions exactly as desired from the AP2T. |

» Lemma 5.6. NWTs simulate an AP2T.

Proof. A noncrossing wire toggle can simulate an anti-parallel 2-toggle with the simple
construction shown in Figure 15. The direction of each tunnel is dictated by the toggle on
the tunnel, and the wire ensures both toggles are synchronized. Thus when either tunnel is
traversed, both NWTs flip and the direction each tunnel can be traversed flips. <

» Lemma 5.7. NWLs simulate an AP2T.

Proof. The construction of an anti-parallel 2-toggle from non-crossing tripwire locks can
be seen in Figure 16. Note that a 1-toggle can be constructed from an NWL by simply
connecting one location of the wire to one location of the lock. A closed lock will prevent
travel in one direction, but crossing the tripwire in the other direction will open the lock
and allow the robot to proceed. An open lock will allow travel in the other direction. In
the direction starting from the tripwire, the tripwire will close the lock in front of the robot
preventing traversal. In either traversal, the tripwire is crossed, flipping the state.

There are two main parts to this gadget, the top and bottom tunnels, and the inner
loop. As with the NTL construction from Lemma 5.5, the 1-toggles ensure that the loop
must be exited from the same place it was entered, which ensures all gadgets on the loop are
traversed the same number of times. Since all wires are on this loop, in a given traversal of
this gadget system, all of the NWLs will change state the same number of times, keeping
them in sync. The upper and lower paths each contain a locked and unlocked tunnel. The
locked portion prevents entry and interaction with the gadget. From the unlocked side, the
robot is able to enter the gadget and flip its state an arbitrary number of times. If the state
is flipped an even number of times, the robot’s only path out is the way it came. If an odd
number of flips have occurred, the robot can now exit through the opposite side of its path,
leaving the gadget in the opposite state.

Therefore, the gadget may traversed right to left along the top tunnel, flipping the state,
and left to right along the bottom tunnel, flipping the state. We have built an AP2T. <«

» Lemma 5.8. CWTs simulate an NWT, CWLs simulate an NWL, CTLs simulate an NTL.
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Figure 16 Noncrossing-wire-lock simulates anti-parallel-2-toggle.

Figure 17 Crossing 2-toggles simulate parallel 2-toggle.

In general, one can very easily simulate a non-crossing version of a 2-tunnel gadget from
the crossing version. Figure 17 shows a parallel-2-toggle being constructed from a crossing-
2-toggle. The same construction works for uncrossing the other gadgets we have analyzed,
namely tripwire-toggles, tripwire-locks and toggle-locks. Going from non-crossing to crossing
versions is significantly more complicated (except in the case of anti-parallel-2-toggle to
crossing-2-toggle) but we are rescued from the need of such constructions by being able to
simulate a general crossover in Lemma 4.10.

6 More reasons Zelda is hard

In this section we use this framework to give an alternate proof that The Legend of Zelda:
Oracle of Seasons is PSPACE-complete. Along the way, we will show that motion planning
with reversible deterministic gadgets we call ‘spinners’ is also PSPACE-complete.

A k-spinner is a two state deterministic reversible gadget on k locations. In one state,
each location is connected to its neighbor by a directed edge in a clockwise direction. In the
other state, all locations are likewise connected in a counterclockwise direction. A 4-spinner
is shown in Figure 18. The study of 4-spinners was posed by Jeffrey Bosboom due to
their appearance in The Legend of Zelda: Oracle of Seasons. We show that for any k > 4,
path-planning problems with k-spinners and branching hallways is PSPACE-complete.

First, we can take a k spinner and have all but three consecutive locations lead to dead
ends. The remaining three locations form a gadget that we call a deterministic fork. A
deterministic fork is a reversible, deterministic gadget on three locations. In one state, it
allows the robot to go from the center to the right location and return from the left to
the center location. In the other state these directions are reversed. Figure 19 shows the
construction of a crossing 2-toggle from two 4-spinners or equivalently two deterministic
forks.

» Theorem 6.1. For any k > 4, the path-planning problem with k-spinners and branching
hallways is PSPACE-complete.

Proof. We construct a deterministic fork by ignoring & — 3 of the edges in the spinner.
Two deterministic forks together simulate a crossing 2-toggle as shown in Figure 19. By
Corollary 5.2, the motion planning problem with crossing 2-toggles is PSPACE-complete. <«
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Figure 18 Example of a 4-spinner in The Figure 19 4-spinners simulate deterministic
Legend of Zelda: Oracle of Seasons. forks which simulate crossing 2-toggles.

» Corollary 6.2. Determining if a player can beat a level in generalized The Legend of Zelda:
Oracle of Seasons is PSPACE-hard.

Proof. The Legend of Zelda: Oracle of Seasons contains 4-spinners and requires the player
to navigate from one location to a target location in a grid. Since planar graphs can be laid
out in a grid with only quadratic blowup [2], we can reduce from motion planning problems
with 4-spinners which are PSPACE-complete by Theorem 6.1. |

The complexity of motion planning with 3-spinners, as well as the two other reversible,
deterministic, 2 state, 3 location gadgets, remains open. Since 2-spinners are the same as an
edge in a graph, this would give a tight characterization for the spinner gadget. The authors
would also be interested to know what other games and puzzles use spinners.

7 General hardness characterization

Here, we tightly characterize the hardness of the motion planning problem with all determin-
istic, reversible, 2-state, k-tunnel gadgets.

» Theorem 7.1. Motion planning with any deterministic, reversible, 2-state, k-tunnel planar
gadget (with branching hallways) is PSPACE-complete if and only if the gadget has two toggle
tunnels, a toggle tunnel and a tripwire tunnel, a toggle tunnel and a lock tunnel or a tripwire
tunnel and a lock tunnel. Motion planning with oll other such gadgets is in P.

First, we provide upper bounds for some classes of simpler gadgets. This shows that, for
their category, our hardness results are minimal in the sense that path planning with simpler
gadgets in the same class can be solved in P.

» Theorem 7.2. Gadgets with only one state are in NL.

Proof. One state gadgets cannot change in any way. Thus they must all be comprised of
static descriptions of allowed traversals from one location to another. This can be modeled
as a mixed graph. Path planning in mixed graphs is in NL [10]. |

The only nontrivial gadget on 1 tunnel with two states which is reversible and deterministic
is the 1-toggle.

» Theorem 7.3. Motion planning with 1-toggles is in NL.
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Proof. We reduce this problem to ST connectivity in mixed graphs. To solve this problem
we simply treat every 1-toggle as a directed edge pointed in the direction the 1-toggle is
initially oriented and then run the standard algorithm. It is obvious that if a solution here
exists then a path in the 1-toggle planning problem also exists. What is less clear is that
this is sufficient to find any such path.

Consider a path which traverses at least one toggle more than once. Consider the last
toggle on the path which is traversed more than once. After this toggle is traversed, only
toggles which are traversed at most once are on the path. Call this toggle ¢, and let its final
traversal be from u to v. Since ¢ was traversed repeatedly, there was some previous point
in the path where the robot was at v, before it traversed ¢ the second-to-last time. Let us
create a new path where the robot skips the cycle in the original path from v through ¢ to wu,
then eventually back to w through t to v. This path must successfully reach the end, as every
toggle after ¢ is traversed at most once, and so is in the same state regardless of whether the
cycle is omitted.

Thus, under the assumption that there is a path which traverses toggle more than once,
there is another, shorter path. Thus, the shortest path must not traverse toggles more than
once, and so such a path must exist if any path exists. |

The remaining two-state two-tunnel deterministic reversible gadgets are also in P. We note
that a wire-wire never changes its connectivity and is thus no different then two undirected
edges. A lock-lock can never change its state and thus is reducible to a one state gadget,
simply zero, one, or two undirected edges. A gadget with a tunnel which does not change
and is not changed by the state of the gadget is reducible to two gadgets on one tunnel each,
which are in P by Theorem 7.3. This exhausts the 2-state 2-tunnel reversible undirected
gadgets.

Proof of Theorem 7.1. Now, we can characterize all two state, deterministic, reversible
gadgets on any number of tunnels.

Any gadget with two toggle tunnels, a toggle tunnel and a tripwire tunnel, a toggle tunnel
and a lock tunnel or a tripwire and a lock tunnel is sufficient to make motion planning hard,
by ignoring all other tunnels and using one of the constructions from this paper.

We can divide all other gadgets into three categories: those with tripwires and trivial
tunnels, those with locks and trivial tunnels, and those with a single toggle and trivial
tunnels. The passability of a tunnel in a gadget with only tripwires and trivial tunnels never
changes, making motion planning equivalent to st-connectivity. A gadget with only locks
and trivial tunnels can never have its state change, allowing us to apply Theorem 7.2. A
gadget with a single toggle and some number of trivial tunnels can be treated as a one-toggle
together with some number of undirected edges. Thus, any system of gadgets of these types
is equivalent to a system of 1-toggles and undirected edges. After that, the same argument
as in Theorem 7.3 can be used to solve the motion planning problem in that system. <

8 Open Problems / Conclusion

This framework for abstract motion planning problems leaves open the question of the
computational complexity of motion planning with many other types of gadgets. One can
examine gadgets with more states, without the tunnel restriction, or without the deterministic
and reversible restrictions. Since this is a vast undertaking with many of the gadgets and
their combinations likely to be uninteresting, we suggest some of the following categories to
be of particular interest.
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3 spinners are the only size of spinner for which motion planning remains open.

Three location, 2-state, deterministic, reversible gadgets seem like the obvious ‘simplest’
category of gadgets.

Are there any sets of purely deterministic and reversible gadgets for which motion planning
is PSPACE-complete (e.g. without branching hallways, which are non-deterministic)?
What about reversible but nondeterministic gadgets on two tunnels or three locations?

There is currently significant partial progress on all of the listed topics. Please contact us

before spending significant time working on the open problems listed to prevent duplication

of effort.
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—— Abstract
We classify the computational complexity of the popular video games Portal and Portal 2. We
isolate individual mechanics of the game and prove NP-hardness, PSPACE-completeness, or
pseudo-polynomiality depending on the specific game mechanics allowed. One of our proofs
generalizes to prove NP-hardness of many other video games such as Half-Life 2, Halo, Doom,
Elder Scrolls, Fallout, Grand Theft Auto, Left 4 Dead, Mass Effect, Deus Ex, Metal Gear Solid,
and Resident Evil. These results build on the established literature on the complexity of video
games [1,3,7,18].
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1 Introduction

In Valve’s critically acclaimed Portal franchise, the player guides Chell (the game’s silent
protagonist) through a “test facility” constructed by the mysterious fictional organization
Aperture Science. Its unique game mechanic is the Portal Gun, which enables the player
to place a pair of portals on certain surfaces within each test chamber. When the player’s
avatar jumps into one of the portals, she is instantly transported to the other. This mechanic,
coupled with the fact that in-game items can be thrown through the portals, has allowed
the developers to create a series of unique and challenging puzzles for the player to solve as
they guide Chell to freedom. Indeed, the Portal series has proved extremely popular, and is
estimated to have sold more than 22 million copies [2,20].
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Table 1 Summary of new Portal complexity results

Mechanics Portals | Long fall | Complexity ‘
Emancipation Grills, No Terminal Velocity Yes Yes Weakly NP-comp. (§4)
Turrets No Yes NP-hard (§5)

Timed Door Buttons and Doors No No NP-hard (§6)

HEP Launcher and Catcher Yes No NP-hard (§7)

Cubes, Weighted Buttons, Doors No No PSPACE-comp. (§8)
Lasers, Relays, Moving Platforms Yes No PSPACE-comp. (§9)
Gravity Beams, Cubes, Weighted Buttons, Doors | No No PSPACE-comp. (§9)

We analyze the computational complexity of Portal following the recent surge of interest
in complexity analysis of video games and puzzles. Examples of previous work in this
area includes NP-completeness of Tetris [5], PSPACE-completeness of Lemmings [19] and
Super Mario Bros. [6], and hardness of many other classic video games [7,18]. See also the
surveys [4,9,11].

In this paper, we explore how different game elements contribute to the computational
complexity of Portal 1 and Portal 2 (which we collectively refer to as Portal), with an
emphasis on identifying gadgets and proof techniques that can be used in hardness results for
other video games. We show that a generalized version of Portal with Emancipation Grills is
weakly NP-hard (Section 4); Portal with turrets is NP-hard (Section 5); Portal with timed
door buttons and doors is NP-hard (Section 6); Portal with High Energy Pellet launchers
and catchers is NP-hard (Section 7); Portal with Cubes, Weighted Buttons, and Doors is
PSPACE-complete (Section 8); and Portal with lasers, laser relays, and moving platforms is
PSPACE-complete (Section 8).

Table 1 summarizes these results. The first column lists the primary game mechanics
of Portal we are investigating. The second and third column note whether the long fall or
Portal Gun mechanics are needed for the proof. Section 2 provides more details about what
these models mean. The turret proof generalizes to many other video games, as described in
Section 5.4.

2 Definitions of Game Elements

Portal is a single-player platform game: a game with the goal of navigating the avatar from
a start location to an end location of a series of stages, called levels. The gameplay in Portal
involves walking, turning, jumping, crouching, pressing buttons, picking up objects, and
creating portals. The locations and movement of the avatar and all in-game objects are
discretized. For convenience we make a few assumptions about the game engine, which we
feel preserve the essential character of the games under consideration, while abstracting
away certain irrelevant implementation details in order to make complexity analysis more
amenable:

Positions and velocities are represented as triples of fixed-point numbers in Cartesian
coordinates.2 Each velocity vector is limited in magnitude by a terminal velocity vmmag-

2 The actual game uses floats in many instances. We claim that all our proofs work if we round the
numbers involved, and only encode the problems in the significand.
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Time is discretized and represented as a fixed-point number. Parameter § defines the
amount of time advanced during each simulation time step.
At each time step, there is only a constant number of possible user inputs: button presses

and the cursor position. The user is able to apply any of these inputs within a time step.

The cursor position is represented by two fixed-point numbers in spherical coordinates.
At each time step, we update all objects’ positions and velocities as follows:
Update velocities based on acceleration from user commands and from gravity: Uy41 =
Ut + 0(@input + d) where @, = [0,0, —v] and g is a constant.

If a velocity vector U471 has magnitude > v;,44, scale it down to have magnitude v,,q5.

Update positions according to these velocities: pyy1 = py + 0U.
Check for collisions by extruding the objects into a fourth temporal dimension by §
and checking for intersection of those objects.?
For the purposes of this paper, we define a collision model only between single moving
objects and non-moving objects, as this is all we need in our proofs possibly involving
collisions (Sections 4 and 7). We ignore details of more complex collisions as they are
not relevant to our results.
For an inelastic collision between a moving object A and a non-moving object B, we
calculate the first time 4’ < § at which the objects would intersect, and move A instead
to this position (scaling the velocity vector by ¢’ instead of ¢). Then we project A’s
velocity vector onto the surface of B at the point of intersection.
For an elastic collision, we similarly calculate the first time of intersection and update
the position of A, but update the velocity vector instead to its reflection off of the
surface at the point of intersection.
If an object passes through a portal, its velocity vector is rotated by the rotation that
brings the entering portal frame to the exiting portal frame.
Portals from the portal gun and bullets from turrets are resolved instantaneously in a
single time step by line-of-effect rather than any ballistic simulation.*

In Portal, a level is a description of the polygonal surfaces in 3D defining the geometry of
the map, along with a simulation rate and a list of game elements with their locations and,
if applicable, connections to each other. In general, we assume that the level can be specified
succinctly as a collection of polygons whose coordinates may have polynomial precision,
(and thus so can the player coordinates), and thus exponentially large values (ratios). This
assumption matches the Valve Map Format (VMF) used to specify levels in Portal, Portal 2,
and other Source games [16]. A realistic special case is where we aim for pseudopolynomial
algorithms, that is, we assume that the coordinates of the polygons and player are assumed
to have polynomial values/ratios (logarithmic precision), as when the levels are composed of
explicit discrete blocks. This assumption matches the voxel-based P2C format sometimes
used for community-created Portal 2 levels [15].

In this work, we consider the following decision problem, which asks whether a given
level has a path from the given start location the end location.

» Problem 1. PORTAL
Parameter: A set of allowed gameplay elements.

3 This approach is precise, and should reasonably capture the relevant dynamics in the game, but
computationally inefficient and likely not how collision detection is performed in practice.
4 The end of Portal 2 gives a very large lower bound on the speed of effect of the portal gun.
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Input: A description of a Portal level using only allowed gameplay elements, and spatial
coordinates specifying a start and end location.

Output: Whether there exists a path traversable by a Portal player from the start location
to the end location.

3 Game Element Descriptions

The key game mechanic, the Portal Gun, creates a portal on the closest surface in a direct
line from the player’s avatar if the surface is of the appropriate type. We call surfaces that
admit portals portalable. There are a variety of other gameplay elements which can be a
part of a Portal level. Below we give descriptions and images of various game elements used
in Portal 1 and 2.

1. A long fall is a drop in the level terrain that the avatar
can jump down from without dying, but cannot jump

up.

It’s a long way down.

2. A door can be open or closed, and can be traversed by
the player’s avatar if and only if it is open. In Portal,
many mechanics can act as doors, such as literal doors,
laser fields, and moving platforms. On several occasions
we will assume the door being used also blocks other
objects in the game, such as High Energy Pellets or
lasers, which is not generally true.

A Door in Portal 2

3. A button is an element which can be interacted with .
when the avatar is nearby to change the state of the
level, e.g., a button to open or close a door.

4. A timed button will revert back to its previous state
after a set period of time, reverting its associated change

to the level too, e.g., a timed button which opens a

door for 10 seconds, before closing it again. Timed Button

5. A weighted floor button is a an element which changes
the state of a level when one or more of a set of objects
is placed on it. In Portal, the 1500 Megawatt Aperture
Science Heavy Duty Super-Colliding Super Button is an
example of a weighted floor button which activates when
the avatar or a Weighted Storage Cube is placed on top
of it. An activated weighted floor button can activate
other mechanics such as doors, moving platforms, laser Heavy Duty Super-Colliding
emitters, and gravitational beam emitters. Super Button
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10.

. Blocks can be picked up and moved by the avatar.

The block can be set down and used as a platform,
allowing the avatar to reach higher points in the level.
While carrying a block, the avatar will not fit through
small gaps, rendering some places inaccessible while
doing so. In Portal, the Weighted Storage Cube is an
example of a block that can be jumped on or used
to activate weighted floor buttons. We will refer to
Weighted Storage Cubes, Companion Cubes, etc. as
simply cubes.

. A Material Emancipation Grid, also called an Eman-

cipation Grill or fizzler, destroys some objects which
attempt to pass through it, such as cubes and turrets.
When the avatar passes through an Emancipation Grid,
all previously placed portals are removed from the map.
Portals cannot be shot through an emancipation grid.

. The Portal Gun allows the player to place portals on

portalable surfaces within their line of effect. Portals
are orange or blue. If the player jumps into an orange
(blue) portal, they are transported to the blue (orange)
portal. Only one orange portal and one blue portal
may be placed on the level at any given time. Placing a
new orange (blue) portal removes the previously placed
orange (blue) portal from the level.

. A High Energy Pellet (HEP) is a spherical object which

moves in a straight line until it encounters another ob-
ject. HEPs move faster than the player avatar. If they
collide with the player avatar, then the avatar is killed.
If a HEP encounters a wall or another object, it will
bounce off it with equal angle of incidence and reflec-
tion. In Portal, some HEPs have a finite lifespan, which
is reset when the HEP passes through a portal, and
others have an unbounded lifespan. These unbounded
HEPs are referred to as Super High Energy Pellets.

A HEP Launcher emits a HEP at an angle normal
to the surface upon which it is placed. These are
launched when the HEP launcher is activated or when
the previously emitted HEP has been destroyed.

Weighted Storage Cube

Emancipation Grid

Portal Gun

A HEP about to reach a HEP
Collector

HEP Launcher
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11.

12,

13.

14.

15.

16.

A HEP Catcher is a device which is activated if it is
ever hit by a HEP. In Portal, this device can act as a
button, and is commonly used to open doors or move
platforms when activated.

A Laser Emitter emits a Thermal Discouragement
Beam at an angle normal to the surface upon which it
is placed. The beam travels in a straight line until it is
stopped by a wall or another object. The beam causes
damage to the player avatar and will kill the avatar if
they stay close to it for too long. We call the beam and
its emitter a laser.

A Laser Relay is an object which can activate other
objects while a laser passes through it.

A Laser Catcher is an object which can activate other
objects while a contacts it.

A Moving Platform is a solid polygon with an inact-
ive and an active position. It begins in the inactive
position and will move in a line at a constant velocity
to the active position when activated. If it becomes
deactivated it will move back to the inactive position
with the opposite velocity.

A Turret is an enemy which cannot move on its own.
If the player’s avatar is within the field of view of a
turret, the turret will fire on the avatar. If the avatar
is shot sufficiently many times within a short period of
time, the avatar will die.

HEP Catcher

A Laser Emitter and Thermal
Discouragement Beam.

An active laser relay and laser
catcher.

R W 4

A horizontal moving platform.

Turret from Portal 2
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17. An Excursion Funnel, also called a Gravitational Beam
Emitter emits a gravitational beam normal to the sur-
face upon which it is placed. The gravitational beam
is directed and will move small objects at a constant
velocity in the prescribed direction. Importantly, it will
carry Weighted Storage Cubes and the player avatar.
Gravitational Beam Emitters can be switched on and

A Gravity Beam and Excursion

off, as well as flipping the direction of the gravitational
Funnel.

beam they emit.

There are two main pieces of software for creating levels in Portal 2: the Puzzle Maker
(also known as the Puzzle Creator), and the Valve Hammer Editor equipped with the Portal
2 Authoring Tools. Both of these tools are publicly available for players to create their own
levels. The Puzzle Maker is a more restricted editor than Hammer, with the advantage of
providing a more user-friendly editing experience. However, levels created in the Puzzle
Maker must be coarsely discretized, with coarsely discretized object locations, and must be
made of voxels. In particular, the Puzzle Maker uses the P2C file format while Hammer
uses VMF, which restricts it to instances where the size of the level is polynomial in the
size of the problem description. Furthermore, no HEP launchers or additional doors can be
placed in Puzzle Maker levels. We will often comment on which of our reductions can be
constructed with the additional Puzzle Maker restrictions (except, of course, the small level
size and item count), but this distinction is not a primary focus of this work.

4 Portal with Emancipation Grills is Weakly NP-complete

In this section, we prove that PORTAL with portals and Emancipation Grills is weakly
NP-hard by reduction from SUBSET SuM [8], which is defined like so.

» Problem 2. SUBSET Sum
Input: A set of integers A = {aj,as,...,a,}, and a target value t.
Output: Whether there exists a subset {s1, $2,...,8m} C A such that

m

The reduction involves representing the integers in A as distances which are translated into
the avatar’s velocity. More explicitly, the input A will be constructed from long holes the
avatar can fall down, and the target will be encoded in a distance the avatar must launch
themselves after falling. For the next theorem, it is necessary to allow the terminal velocity
Umaz t0 be specified as input to the problem (so it can scale with the level size).

» Theorem 3. PORTAL with portals, long fall, Emacipation Grills, and generalized terminal
velocity is weakly NP-hard.

Proof. Refer to Figure 1. The elements of A are represented by a series of wells, each of
width ¢ and depth b - a; as measured from the ceiling directly above it. Here a; € A is the
number to be encoded, b = 2-¢-n? -t is a large number, c is a large constant expansion
factor greater than the height of the avatar plus the height she can jump, n is the number of
elements in A, and t is the target value of the SUBSET SuM instance. The bottom of each
well is a portalable surface, and the ceiling above each well is also a portalable surface. Fach
well also has an Emancipation Grill a distance ¢ from the ceiling. This construction allows
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Figure 1 A cross-section of the element selection gadget, where b =2-c¢-n?-t. Grey lines are
portalable surfaces and blue lines are Emancipation Grills.

the avatar to shoot a portal to the bottom of the well they are falling into, and to a ceiling
tile of another well, selecting the next number.

If the SUBSET SUM instance has a solution S, we can fall through the wells of depth b - a;
for each a; € S in order, without touching any walls, for a total fall distance of b -t. After
such a fall, we reach a “target” velocity vy = gv/2bt.

We cannot allow the avatar to select the same element more than once. The Emancipation
Grills below each portalable ceiling serve to remove the portal from the ceiling of the well
into which the avatar is currently falling, and to prevent sending a portal up to that same
ceiling tile. The stair-stepped ceiling allow the player to see the ceilings of all of the wells
with index greater than the one they are currently at, but prevents them from seeing the
portalable surface of the wells with a lower index. This construction ensures that the player
can select each element only once using portals. The enforced order of choosing does not
matter when solving SUBSET SUM.

We also need to prevent the avatar from moving horizontally from one well to another while
falling. The avatar can move horizontally (via user input) up to a small fixed acceleration «y.
To successfully fall through one well of width ¢ and depth at least b below the ground
without hitting its side walls, the avatar’s horizontal velocity vy, over vertical velocity v,
must be at most ¢/b. Also, after falling at least b, we must have vertical velocity v, > V/2b.
The fall through the top part of the next well, of depth less than (n 4 1)¢, will thus take
s < (n+ 1)e/v, time. During this fall, the avatar can add at most aps < ap(n + 1)c/v, to
horizontal velocity. Thus, during this fall, the avatar can travel horizontally by at most

2
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Setting d to be at least this value (and at least ¢), we prevent the player from reaching an
adjacent well by horizontal travel.

We must also ensure that the player actually able to target the portable surfaces to select
the elements of A. To do so, we set the time step § to be less than ¢/(10v;) where v; is the
target velocity. This ensures that the player will have at least 9 time steps to target while
falling ¢ units, in particular while passing between the heights of each target surface for A
and its emancipation grid.

The verification gadget (not drawn) involves two main pieces: a single portalable surface
on a vertical wall (“launch point”) and a ¢ x ¢ horizontal floor (“target platform”) for the
player to reach. We place the launch point so it can always be shot from the region above
the wells. Relative to the launch point, the target platform is placed g/2 units below and at
a horizontal distance of v; in front, so that leaving the portalable surface with the target
velocity v; will cause the player to reach the target platform in 1 unit of time. The size of the
target platform is much smaller than the difference (> v/b > n) if the target value ¢ differed
by 1. If the player enters the final portal with horizontal velocity vy, and vertical velocity v,,
satisfying vy, /v, < ¢/b as proved above, then the avatar launches with horizontal velocity v,
and vertical velocity vy, < v,c/b. This vertical velocity is insufficient to affect the landing
position by as much as changing ¢ by 1. Similarly, user input during the 1 unit of time has
minimal effect on the horizontal velocity. |

All of the game elements needed for this construction can be placed in the Puzzle Maker.

However, this reduction would not be constructible because maps in the Puzzle Maker appear
to be specified in terms of voxels. Because SUBSET SUM is only weakly NP-hard (8], we need
the values of the elements of A to be exponential in n. Thus we need to describe the map in
terms of coordinates specifying the polygons making up the map, whereas the Puzzle Maker
specifies each voxel in the map.

» Theorem 4. PORTAL with portals, long fall, emancipation grills, and generalized terminal
velocity can be solved in pseudopolynomial time.

Proof. We construct a state-space graph of the Portal level. Each vertex represents a tuple
comprised of the avatar’s position vector within the level, the avatar’s velocity vector (limited
by the terminal velocity v..), the avatar’s orientation, the position vector of the blue
portal, and the position vector of the orange portal. The vertices are connected with directed
edges encoding the state transitions caused by user input. Finally, for each edge that would
represent traversal through an emancipation grid, we replace it by an edge that maps to the
same state of the avatar but with both portal locations removed. We can then search for a
path from the initial game state to any of the winning game states in time polynomial in the
size of the graph. <

5 Portal with Turrets is NP-hard

In this section we prove PORTAL with turrets is NP-hard, and show that our method can be
generalized to prove that many 3D platform games with enemies are NP-hard. Although
enemies in a game can provide interesting and complex interactions, we can pull out a few
simple properties that will allow them to be used as gadgets to reduce solving a game from
3-SAT, defined like so.

» Problem 5. 3-SAT
Input: A 3-CNF boolean formula f.
Output: Whether there exists a satisfying assignment for f.
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This proof follows the architecture laid out in [1]:

1. The enemy must be able to prevent the player from traversing a specific region of the
map; call this the blocked region.

2. The player avatar must be able to enter an area of the map, which is path-disconnected
from the blocked region, but from which the player can remove the enemy in the blocked
region.

3. The level must contain long falls.

We further assume that the behavior of the enemies is local, meaning an interaction with
one enemy will not effect the behavior of another enemy if they are sufficiently far away. In
many games one must also be careful about ammo and any damage the player may incur
while interacting with the gadget, because these quantities will scale with the number of
literals. Here long falls serve only in the construction of one-way gadgets, and can of course
be replaced by some equivalent game mechanic. Similarly, a 2D game with these elements
and an appropriate crossover gadget should also be NP-hard. The following is a construction
proving Portal with Turrets is NP-hard using this technique. Note that these gadgets can be
constructed in the Portal 2 Puzzle Maker.

5.1 Literal

Each literal is encoded with a hallway with three turrents placed in a raised section, illustrated
in Figure 2. The hallway must be traversed by the player, starting from “Traverse In”, ending
at “Traverse Out”. If the turrets are active, they will kill the avatar before the avatar can
cross the hallway or reach the turrets. The literal is true if the turrets are deactivated or
removed, and false if they are active. The “Unlock In” and “Unlock Out” pathways allow for
the player avatar to destroy the turrets from behind, deactivating them and counting as a
true assignment of the literal.

5.2 Variable

The variable gadget consists of a hallway that splits into two separate paths. Each hallway
starts and ends with a one-way gadget constructed with a long fall. This construction forces
the avatar to commit to one of the two paths. The hallways connect the “Unlock In” and
“Unlock Out” paths of the literals corresponding to a particular variable. Furthermore, one
path connects all of the true literals, the other connects all of the false literals.

5.3 Clause Gadget

Each clause gadget is implemented with three hallways in parallel. A section of each hallway
is the “Traverse In” through the “Traverse Out” corresponding to a literal. The avatar
can progress from one end of the clause to the other if any of the literals is true (and thus
passable). Furthermore, each of the clause gadgets is connected in series. Figures 3 and 4
illustrate a full clause gadget.

» Theorem 6. PORTAL with Turrets and long falls is NP-hard.

Proof. Given an instance of a 3SAT problem, we can translate it into a Portal with Turrets
map using the above gadgets. This map is solvable if and only if the corresponding 3SAT
problem is solvable. <
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Figure 2 An example of a (currently) false literal constructed with Turrets. Labels added over
the screenshot denote

It is tempting to claim NP-completeness because disabling the turrets need only be
performed once per turret and thus seems to have a monotonically changing state. However,
the turrets themselves are physical objects that can be picked up and moved around. Their
relocation add an exponential amount of state to the level. Further, if they can be jumped
on top of or used to block the player in a constrained hallway, they may conceivably cause
the level to be PSPACE-complete in the same way boxes can add significant complexity to a
game.

5.4 Application to Other Games

While the framework we have presented is shown using the gameplay elements of Portal,
similar elements to those we have used show up in other video games. Hence, our framework
can be generalized to show hardness of other games. In this section we note several common
features of games which would allow for an equivalent to the turret “guarding unit” in
Portal. We list examples of notable games which fit the criteria. We give ideas how to use
our framework to prove hardness results for these games, but it is important to note that
game-specific implementation details will need to be taken into account for any hardness
proof.

The first examples are games that include player controlled weapons with fixed positions,
such as stationary turrets or gun emplacements. The immovable turrets should be placed
at the unlock points of the literal gadget, so that they only allow the player to shoot the
one desired blocking unit. Examples in contemporary video games include the Emplacement
Gun in Half-Life 2, the Type-26 ASG in Half-Life, and the Anti-Infantry Stationary Guns in
Halo 1 through 4.

Another set of examples are games which include a pair of ranged weapons, where one is
more powerful than the other, but h